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ABSTRACT

This dissertation explores the implications of private information on the trade-

off between incentives to work and risk-sharing, and on the choice of capital structure

and performance of entrepreneurial firms. In Chapter 1 we characterize optimal

dynamic contracts in environments with limited commitment and moral hazard. We

study the implications of such contracts for the evolution of consumption and effort of

the two agents who participate in an infinitely repeated risk-sharing arrangement. In

these environments, we show the extent to which moral hazard restricts risk-sharing

allocations prescribed in a limited enforceability environment. To put it differently,

we investigate how the need to sustain a risk-sharing relationship in the presence of

limited commitment restricts the punishments and rewards associated with optimal

effort provision. We find that optimal contracts preserve some limited commitment

properties even when there is private information. We also find that the steady state

distribution of consumption is not degenerate. The need to provide incentives for

work increases the variability of consumption near the bounds.

In Chapter 2, which is a joint work with Dzmitry Asinski, we contribute to the

growing empirical literature focusing on the effects of capital structure on the perfor-

mance of small business start-ups in their first years of existence. In contrast to most

of the existing studies, we explicitly recognize potential endogeneity of the capital

structure. Business financing is a choice that can be affected by unobservables and

can also affect performance. This can lead to biased and inconsistent estimates. Our
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econometric specification allows joint modeling of capital structure and performance

of business start-ups. We use a unique data set collected by the National Federation of

Independent Business (NFIB) Foundation. Our results demonstrate that controlling

for endogeneity of capital structure leads to qualitatively different results compared

to a simple model assuming exogeneity. We find that outside equity has a negative

effect on survival probability but positive effect on growth. Debt has a positive effect

only on some measures of performance but not others.
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CHAPTER 1
CONTRACTS UNDER MORAL HAZARD AND LIMITED

COMMITMENT

1.1 Introduction

In this paper we characterize optimal dynamic contracts in environments with

limited commitment and moral hazard. We study the implications of such contracts

for the evolution of consumption and effort of the two agents who participate in an in-

finitely repeated risk-sharing arrangement. Here we construct several models in which

two agents exert effort to produce output according to some stochastic production

function. The models differ in the information available to the agents and enforce-

ability of contracts. In particular, individual efforts may be private information, and

contracts are not perfectly enforceable.

To this end, we propose the following models. There are two identical agents

with access to the same stochastic production technology that converts effort into

consumption goods. The agents are risk-averse and would like to smooth consumption

streams across states and time. They start a contractual relationship in period zero

and share combined outputs according to some optimal rules. We consider several

possible environments.

The first two environments exhibit imperfect enforceability of contracts, but

both agents have full information about the environment. Namely, the first model

requires that the optimal contract has to be enforceable in any state of the world

before the agents observe their output realizations. This implies that each agent can
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commit only to the contract that provides a consumption stream that is at least

as good as the one he or she can get in autarky from tomorrow on. This is the

type of commitment that is studied in Zhao (2007) in the model of double moral

hazard. We call this model “ex-ante limited commitment model.” The second type

of commitment constrains optimal contracts to be enforceable in each state of the

world after the agents observe their output realizations. We call this model “ex-post

limited commitment model.” Kocherlakota (1996) introduces this environment and

shows that in some states of the world, the perfect risk-sharing is achieved: The ratio

of marginal utilities of both agents stays the same as in the previous state or period

for some output realizations. The difference between this model and Kocherlakota’s

is that the agents in our model employ production technology to generate income,

while in his model, the income is an endowment process. In the ex-post commitment

problem, the lower limit on the agent’s lifetime utility varies with the current output,

while in the ex-ante type it is constant across output states.

Our two final models introduce private information about efforts in the previ-

ous two models. That is, the third model includes private information about efforts

and the ex-ante commitment problem, while the fourth model incorporates private

information and the ex-post commitment problem. Both of these environments pro-

vide a look at how moral hazard restricts the risk-sharing allocations prescribed in a

limited enforceability environment. To put it differently, we study how the need to

sustain the risk-sharing relationship in the presence of limited commitment restricts

the punishments and rewards needed to provide effort incentives in the presence of
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private information. The optimal contracts in these environments are compared to

the ones in limited commitment environments with full information about efforts.

The presence of hidden actions complicates theoretical analysis, since the value

function may fail to be concave on some parts of the domain. Here we take a dif-

ferent approach. To deal with the possibility of non-concavity, we follow Phelan and

Townsend (1991), Sleet and Yeltekin (2001), and Prescott (1999) and convexify our

models using lotteries. We use value function iterations and linear programming

to solve the models and characterize optimal contracts using policy and value func-

tions. In line with the literature on hidden actions and limited commitment, we also

investigate the long-run behavior of contracts by simulating histories of optimal con-

sumption and effort and determining the steady state dynamics of consumption and

effort levels.

In this study, we find that the optimal contracts preserve some limited com-

mitment properties even when there is private information about effort, and incentive

provision is crucial. The consumption does not vary across states as much as in a

simple double moral hazard when there are bounds on lifetime utilities. Unless one of

the agents is close to his or her lower or higher bound, the aggregate consumption is

split in half independently of output realizations and even in the presence of private

information. If the agents are near the commitment bounds, then the one closer to the

lower bound has to share his or her output with the other agent regardless of output

realizations. This is due to the other agent’s utility promise hitting the upper bound

with no scope for an increase in future utility promises. In order to guarantee such a
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high utility promise to that agent, the contract increases his or her consumption in

the current period. The agent near the lower bound is promised higher consumption

in the future instead. In contrast, the standard principal-agent model predicts that

consumption and utility promises should vary with output realizations, and higher

output realizations should always be rewarded with higher current and future con-

sumption.

We find that in the long run, the contracts in such limited commitment en-

vironments with and without private information do not exhibit “immiserization”

property, with one agent consuming all the output and the other agent consuming

nothing. In addition, we do not observe one of the agents being driven to lower bounds

in the long-run. Rather, in the steady-state, the utility promises cluster around some

middle value of utility promises for both agents, and the consumption distribution is

clustered around the consumption levels that reflect the equal division of aggregate

output.

Comparing limited commitment environments with full and private informa-

tion, we show that the recommended work patterns significantly differ between them.

When the efforts are observable, there is no need to motivate the agents to work

through punishments and rewards of future consumption. As a result, the steady

state distribution of utility promises is degenerate and only one of the agents exerts

high effort in the steady state. In our models, the mass of the distribution is concen-

trated on some inside value of the utility promise space, and not on the lower bounds

(with one agent consuming everything in the long run).



5

In the limited commitment environments with private information, the optimal

contract has to provide incentives for effort. This leads to a less degenerate steady-

state distribution of utility promises. The distribution is clustered around several

states inside the bounds. In fact, we find that the expected steady state utility

promises of the agents become closer in value under private information. This implies

that in the world in which each agent is treated the same, the introduction of private

information (and a need to provide incentives for work) leads to a “fairer” society in

which both agents are almost equally likely to exert high effort.

To summarize, we show that when there is private information about efforts,

the risk-sharing is diminished as optimal consumption has to vary more across states

when the agents are constrained. The commitment bounds restrict the rewards and

punishments rendering them ineffective near the limits. On the other hand, the

presence of private information creates the society of working middle class, as the

steady state distributions of utility promises and efforts are more equal.

We proceed as follows. In Section 1.2 we relate our research to existing lit-

erature. In Section 1.3 we describe our economic environments and introduce the

limited commitment problems. In Section 1.4 we describe the restrictions imposed by

private information in the models of limited commitment. In Section 1.5 we provide

the recursive formulation. In Section 1.6 we give the parameterization of the models.

In Sections 1.7 and 1.8 we summarize our results, and Section 1.9 concludes with

research suggestions.
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1.2 Related Literature

Mutual insurance arrangements were long considered in economic literature.

The research has been motivated by empirical evidence that household consumption

allocations do not reflect Pareto-efficient full risk-sharing outcomes that are predicted

by the full information model with complete markets. In particular, empirical findings

suggest that individual consumption is correlated with individual income. However,

the basic model of complete markets predicts full insurance against idiosyncratic

income shocks for the agents in the economy.

Several models explain this deviation from complete insurance by the presence

of private information about individual income, effort, or preferences. For example,

Green (1987), Thomas and Worrall (1990), Phelan and Townsend (1991), Atkeson

and Lucas (1992), and Atkeson and Lucas (1995) find that incomplete risk-sharing is

an efficient response to the problem of costly monitoring of unobservable variables. In

addition, the properties of the agents may be perfectly observable to all agents, but

it is costly for the third party to enforce the contracts between the agents because

it cannot verify the agent-specific characteristics. To illustrate the implications of

limited enforcement of contracts, Kocherlakota (1996) proposes a model in which

contracts are enforceable only when they provide at least some specified level of

lifetime utility. He finds that in such an environment, incomplete risk-sharing is an

optimal response to this friction.

Kocherlakota (1996) and Zhao (2007) are the two papers that are most related

to our paper. However, there several differences between these papers and ours.
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Zhao (2007) is a theoretical paper that concentrates on contracts in a double moral

hazard model. He also introduces limited commitment in his model and studies the

implications of “ex-ante” commitment as described above. He does not, however,

explore the role of such commitment constraints numerically. The version of his

model is only one among our four models, and we explore it numerically in greater

detail. We borrow our definition of “ex-post” commitment from Kocherlakota (1996).

In his environment there is full information about the agents’ characteristics, there

is no production, and the agents receive stochastic endowment each period. We also

investigate this type of environment in our model, and compare the allocations and

histories with other models that have additional features, like unobservable actions.

The absence of “immiserization” effect in our private information models is

similar to the findings of Atkeson and Lucas (1995). In our models, as well as in

Atkeson and Lucas (1995), the lower and upper bounds are “reflecting barriers.” It

is enough to receive one high (low) output realization on the lower (upper) bound

to be pushed back inside the bounds. In fact, the policy functions for future utility

promises in our models resemble those in Atkeson and Lucas (1995), and that is why

we get similar results.

The settings of our models allow us to compare some of our results to the

results in the literature on relative contracts. Yeltekin (1997) considers the model

with one principal and two agents who participate in separate production processes,

but experience the same correlated productivity shock. The shock provides additional

information on the output outcomes and is utilized in the optimal contract. The
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author finds that if both agents have the same output realizations, then the optimal

contract prescribes the same level of consumption to both agents. When the outputs

differ across agents, then the agent with the highest output is rewarded and the other

one is punished with lower consumption. This does not happen in our environment.

When none of the agents are constrained, they split the sum of either high or low

outputs equally. However, if one of the agents is constrained then she has to be

motivated to stay in a contract by being given a higher consumption. To put it

differently, the other agent is promised a utility promise close to his upper bound,

and in order to fulfill such a promise, more consumption has to be given to that

agent. This decreases the consumption of the first agent. We also find that if one of

the agents does better but is not constrained, then they split the aggregate output in

half. In that sense, some of our models exhibit complete risk insurance in some states.

The utility promises do vary in order to motivate the agent to work, and the agent

who gets a higher output is rewarded for low values of current utilities, but receives

relatively low future utility promise for relatively higher current utility promises.

In terms of computational approach, our paper is most closely related to Phe-

lan and Townsend (1991) and Sleet and Yeltekin (2001) who introduce lotteries into

a standard principal-agent model. We also follow dynamic contract literature and

use utility promises as state variables that keep track of performance histories, which

were introduced by Spear and Srivastava (1987).
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1.3 The Limited Commitment Economy

In Sections 1.3.1-1.3.3 we consider the two models of limited commitment in

which the effort levels are publicly observed. In particular, we consider two types

of commitment problems. Section 1.3.2 presents the model with “ex-ante limited

commitment.” The optimal contract has to be enforceable in any state of the world

before the agents observe their output realizations. This is the type of commitment

that is studied in Zhao (2007) in a model of double moral hazard. The second type

of commitment is of more interest to us, and it constrains optimal contracts to be en-

forceable in each state of the world after the agents observe their output realizations.

We call this model the “ex-post limited commitment” model. Section 1.3.3 provides

the description of this model. In Section 1.4 we consider the environments with these

types of commitment, but in which the exerted efforts are private information. The

presence of private information imposes additional restrictions on optimal contracts

in the form of incentive-compatibility constraints.

1.3.1 Physical Environment

We consider the following discretized economy. Time is discrete and t =

1, 2...∞. There are two infinitely lived risk-averse agents, indexed by k = 1, 2. They

are identical in all respects. Both agents participate in output production individually

and can enter into a mutual risk-sharing arrangement. If they enter into such an

arrangement, then they have to respect the social contract. Otherwise, the agents

will be forced into autarky and restricted to consume their own output. The risk-
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averse agents value risk-sharing because this allows them to smooth consumption

across time and states. We assume that the technology is stochastic and converts the

agent’s effort into different realizations of output.

The timing of the model is as follows. In the beginning of a period t, provided

the agents are in a contract, the contract recommends the actions to the agents. Then

the agents decide whether to take the recommended action. Later they take their

actions, and then their respective outputs are realized, which they share according to

certain rules prescribed by the contract.

Formally, in period t the agent k chooses an effort level akt ∈ A = {ai}nai=1,

where ai+1 > ai for all i, and receives a stochastic output in terms of consumption

goods qkt ∈ Q = {qi}nqi=1, where 0 < q1 < q2 < ... < qnq. Since this is a closed economy,

the outputs of the two agents in period t, (q1
t , q

2
t ) determine the aggregate output

available for consumption q1
t + q2

t ∈ Q × Q. We assume that there is no technology

for self-insurance available to the agents. Let C = {ci}nci=1 be a finite ordered set of

consumptions of agent 1, with c1 and cnc being the minimal and maximal elements

of the set C, respectively. Then the consumption of agent 1 in period t is given by

c1t ∈ C and the consumption of agent 2 is given by c2t = q1
t + q2

t − c1t .

We assume that the effort-contingent technology P (q | a) is described by a

stochastic matrix P with dimensions na × nq. Then the production takes place

according to the probability Pij, where i identifies the exerted effort ai and j identifies

the output realization qj. The matrix P satisfies monotonicity in a sense that the

i-th row distribution stochastically dominates the one in the j-th row.
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The social planner provides the agents with lotteries over infinite histories of

effort, consumption, and output realizations.1 Define Ω ≡ A × A × Q × Q × C =

A2 × Q2 × C and let ωt ∈ Ω denote a t−period history. Define Π(Ω∞) to be the

set of probability distributions over Ω∞ ≡ Ω × Ω × .... These lotteries are denoted

π∞ ∈ Π(Ω∞). The agents maximize ex-ante expected lifetime utilities and discount

the future by a common discount factor β ∈ (0, 1). The agent k evaluates the lotteries

over the streams of consumption according to her preferences given by the utility

function:

Uk(π∞) = Eπ∞
∞∑
t=0

βt
[
u(ckt )− g(akt )

]
. (1.1)

The instantaneous utility function u : C → < is increasing and strictly concave. To

guarantee an interior solution we assume that limc→0 u
′(c) = +∞. The disutility

function g : A → < is increasing and concave in effort a. The expectation Eπ∞

denotes the expectation under the probability measure π∞.

Let agent 2 be the principal and agent 1 be the agent. Then any optimal

contract has to deliver some initial lifetime utility promise w0 to agent 1. That is, for

a given initial lifetime utility promise w0 the contract maximizes the lifetime utility

(1.1) of agent 2 subject to guaranteeing at least w0 to agent 1. This constraint is called

the participation constraint and it requires that the optimal contract π∞ ∈ Π(Ω∞)

1This approach is similar to the one used in Phelan and Townsend (1991) in a standard
principal-agent model. In contrast, in our environment both the principal and the agent
are risk-averse and they both participate in individual production.
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satisfies:

w0 = Eπ∞
∞∑
t=0

βt
[
u(c1t )− g(a1

t )
]
. (1.2)

With a slight abuse of notation, we denote the contract π∞ that satisfies the partici-

pation constraint (1.2) by π∞,w0 .

Since the contract π∞,w0 implies probabilities of output realizations condi-

tional on actions, but it is also a choice variable, we need to impose some additional

restrictions on the contract to ensure that the optimal contract is consistent with the

exogenous stochastic technology P (q | a). For all ωt ∈ Ωt, q1
t , q

2
t ∈ Q, and a1

t , a
2
t ∈ A

we require that:

∑
ωt−1×a1

t×a2
t×q1t×q2t×C

π∞,w0(ωt) =
∑

ωt−1×a1
t×a2

t×Q×Q×C

P (q1
t | a1

t )P (q2
t | a2

t )π
∞,w0(ωt).

(1.3)

We also require that π∞ is a valid probability measure:

∑
A2×Q2×C

π∞,w0(ωt) = 1, (1.4)

and

π∞,w0(ωt) ≥ 0, (1.5)

for all (a1, a2, q1, q2, c) ∈ Ω∞.

When there are no commitment problems, the lowest lifetime utility the agent

can get is when she consumes the smallest possible consumption c = c1 and exerts

the smallest possible effort a = a1 (because the agent cannot be forced to exert high
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effort) with certainty forever, or w = [u(c)−g(a)]/(1−β). The highest lifetime utility

is given by w = [u(c) − g(a)]/(1 − β), when the agent gets the highest consumption

possible c = cnc and exerts the smallest effort a = a1 with certainty. However, we are

interested in a model in which the agents have an incentive to break the contract,

and therefore, we require the optimal contract to be self-enforcing. The lower and

upper bounds defined above may never be achievable if the autarky environment gives

higher lifetime utility.

1.3.2 The Ex-Ante Commitment Problem

This Section introduces the ex-ante limited commitment contract, while Sec-

tion 1.3.3 describes the ex-post limited commitment contract.

The limited commitment constraints require that the agents’ lifetime utilities

are greater than some lower bounds that represent their outside options. Otherwise,

the agent can take his or her outside option and leave the contract. In our ex-ante

limited commitment model, such a natural lower bound is the lifetime utility that

the agent can get if she does not participate in a risk-sharing contract and lives in

autarky consuming her output. After effort is chosen in period t, before the output is

realized, agent k can guarantee himself the expected value associated with consuming

his own income stream and exerting optimal level of effort from time t onward. This

value is given by

Uaut(a) = max
{at+τ}∞τ=0

Et

∞∑
τ=0

βτ
[
u(qkt+τ )− g(akt+τ )

]
. (1.6)

The expectation is taken with respect to the stochastic production technology. The
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value of autarky is the same for both agents as the agents are identical. This maxi-

mization problem (1.6) is well defined and does not require the use of lotteries to be

solved. Note that the autarkic effort levels in general will be different from the effort

levels chosen in the social planner’s problem. Also, in order to make our investigation

nontrivial, we assume that there are other possible allocations besides the autarkic

allocation, defined as ckaut =
{
qkt
}∞
t=1

and akaut =
{
akt
}∞
t=1

for k = 1, 2, and give more

utility to both agents. This assumption is not restrictive as we can always find a set of

parameters for which the above is true. The definition of ex-ante limited commitment

is as follows.

Definition 1.1. A contract π∞ is the ex-ante limited commitment contract if

Eπ∞,w0

∞∑
τ=0

βτ
[
u(ckt+τ )− g(akt+τ )

]
≥ Uaut (1.7)

holds in every period t = 1, ...∞ for k = 1, 2.

The inequality (1.7) implies that the optimal allocation of consumption and

effort provides the value to the agent that is at least as high as the lifetime value of

autarky. This constraint is the same in every period and the lower bound Uaut does

not fluctuate with income realization.

1.3.3 The Ex-Post Commitment Problem

Now we introduce the constraints associated with ex-post limited commitment.

This definition follows Kocherlakota (1996). It requires that in every period, the

optimal contract assigns positive probability to such a stream of consumption and

efforts that the value of this stream is at least as high as the value of reverting into
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autarky this period and staying in autarky forever. That is, after the output is

realized in period t, the optimal current consumption and future consumption and

effort stream have to deliver at least as much utility to the agent as the consumption

of his or her current output and future consumption and effort stream in autarky do.

The formal definition of the ex-post commitment problem is given below.

Definition 1.2. A contract π∞,w0 is the ex-post limited commitment contract if

u(ckt ) + Eπ∞,w0

∞∑
τ=1

βτ
[
u(ckt+τ )− g(akt+τ )

]
≥ u(qkt ) + βUaut (1.8)

holds in every period t = 1, ...∞ for k = 1, 2.

The disutility of effort g(akt ) cancels out from both sides of the inequality as

the effort has already been exerted in period t, and thus it is the same in both the

optimal contract (the left-hand side) and the autarky (the right-hand side) that starts

in the current period.

The difference between the ex-ante and the ex-post limited commitment lies

in the definition of the lower bound. Firstly, in the ex-ante commitment model the

lower bound Uaut is the same in all states and all periods, while in the ex-post limited

commitment model the lower bound fluctuates with output realizations. Secondly,

the ex-post constraint (1.8) may be binding while the ex-ante constraint (1.7) may

be slack for the same income realizations. Thus, in that sense, the ex-post limited

commitment environment is more restrictive.

Let Uk(π
∞,w0) and Uk(π

∞,w0′) be the expected lifetime utility that agent k

obtains from the allocation assigned by π∞,w0 and π∞,w0′, respectively. The following
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definition describes the standard notion of optimality of the contract that we use in

this investigation.

Definition 1.3. An ex-ante (or ex-post) limited commitment contract π∞,w0 is Pareto

optimal (constrained-efficient) if π∞,w0 is feasible, satisfies ex-ante limited commit-

ment constraint (1.7) (or ex-post limited commitment constraint (1.8)), and there

does not exist any other optimal ex-ante (or ex-post) limited commitment contract

π∞,w0′ such that Uk(π
∞,w0′) ≥ Uk(π

∞,w0) with strict inequality for some k = 1, 2.

In Section 1.5 we provide a recursive formulation of limited commitment mod-

els, and in Section 1.7 we compare the ex-ante and ex-post environments after solving

the models numerically.

1.4 The Private Information Economy

In this research we are also interested in the role of private information. When

the individual effort levels are not publicly observable, the actions specified by some

contracts are no longer enforceable. The agents can claim that they exerted the

required effort even if they did not. There is a class of contracts that ensures that the

agents take recommended actions. These contracts are called incentive compatible

and they utilize the available information about output realizations. In the presence

of private information, optimal consumption depends on output realizations because

output is a noisy signal of the exerted effort. In general, the higher the output the

more likely that the agent exerted higher effort.

The incentive constraints that the optimal contract has to satisfy are such
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that the agents willingly take the recommended action. That is, the optimal contract

has to specify the consumption stream that rewards the agent when she exerts the

optimal effort. In our definition of the incentive constraints we follow Sleet and

Yeltekin (2001). Let δ = {δt}∞t=0 and δt : Ωt−1 × A → A be a deviation from the

recommended action, and let π∞,w0

δ denote a probability measure that incorporates

the deviation. Then define

π∞,w0

δ (ωt) ≡
t∏
i=1

P (qi | δi(ωi−1, ai))

P (qi | ai)
π∞,w0(ωt),

where the ratio of probabilities indicates how likely it is to get the output qi with this

deviating action relative to the recommended action ai. Then the lifetime utility that

the agent can get from deviating is given by:

Uk
δ (π∞,w0

δ ) = Eπ∞,w0
δ

∞∑
t=0

βt
[
u(ckt )− g(δkt )

]
.

Definition 1.4. The contract π∞,w0 is incentive compatible if

Uk(π∞,w0) ≥ sup
δ
Uk
δ (π∞,w0

δ ) (1.9)

holds for k = 1, 2.

If the constraint (1.9) holds, then taking the recommended actions is in the

agents’ best interests. That is, the agents do not have any incentive to deviate from

the prescribed action level. The contract that satisfies this constraint induces the

recommended actions even though the actions are not publicly observable. In general,

the levels of recommended actions will differ in the models with and without private

information. The provision of incentives is costly as embodied by this constraint, and
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as current utility promises increase for agent 1, it becomes more difficult to motivate

this agent to exert high effort. The opposite is true for agent 2, as his lifetime utility

decreases in current utility promises.

At any date t, the consumption allocation depends only on the variables that

are jointly observable at date t. It does not depend on individual effort levels, since

they only are observable to an individual agent. Thus, consumptions of both agents

at time t depend only on the history of income realizations. They do not depend

on the history of past consumptions because we can solve back recursively and the

consumption at time 1 depends only on incomes realized at time 1. The effort levels

are chosen before the current period incomes are realized, and we can write them

as akt (ω
t−1), k = 1, 2. The optimal effort levels do not depend on the history of

consumption levels because we can solve recursively to show that time t effort will

only depend on the history of incomes up to time t, ωt−1. In addition, due to the

utility being time separable, the optimal effort levels will not depend on the history

of past chosen efforts.

In Section 1.5 we show how to transform the incentive constraints (1.9) into

the recursive incentive constraints. Later in Section 1.8 we discuss the role of private

information in limited commitment environments and how it changes the optimal

allocations.
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1.5 Recursive Contracts

In order to facilitate the analysis of dynamic contracts described in Sections

1.3 and 1.4, we transform the models into a recursive form. Here we concentrate on

renegotiation-proof contracts, and thus all continuation contracts are also optimal.

As in Spear and Srivastava (1987), we use the lifetime utility promise for agent 1

as a state variable and rewrite the problem recursively. The lifetime utility promise

of agent 1 summarizes the history of output realizations in one variable, and thus it

decreases the dimensionality of the maximization problems.

First we describe the timing of the model within the period. The agents enter

the period with lifetime utility promise w and the value of providing this utility

promise U(w). Then the agents individually randomize over the action levels and

receive their individual output realizations according to the stochastic production

technology P . Then the contract prescribes the randomization over consumption c

and future utility promises, w′. The agents consume their consumption shares and

enter the next period with the future utility promise as a state variable.

Given the description above, the lottery contract is a probability distribution

over recommended actions, π(a), and a probability distribution over consumption and

future utility promises conditional on output realizations, the recommended actions

and the current utility promises, π(c | a, q, w), π(w′ | a, q, w), where all the variables

are two-dimensional vectors.

Assume that per-period utility is CRRA, i.e., u(c) = c1−γ/(1 − γ), and the

disutility function is g(a) = αa2. The output can take either high or low values: qL
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and qH , and so does the effort: aH and aL. Let β < 1. The discretization of the space

of consumption and utility promises implies that W = {w1, ..., wnw} ∈ [Uaut, Umax],

Q = {qi}nqi=1 =
{
qL, qH

}
, C = {c1, ..., cnc} ∈

[
ε, 2qH

]
, and A = {ai}nai=1 =

{
aL, aH

}
.

Here nw, nc, nq, and na denote the number of elements in the grid sets of utility

promises, consumptions, outputs, and efforts, respectively. Then the lottery contract

π is an object that has dimensions na2 ·nq2 ·nc ·nw×nw. That is, each column of the

lottery contract represents a probability distribution over available actions, outputs,

consumption, and future utility promises for a given current utility promise wi. Since

the choice of optimal lottery contract for a given utility promise w does not alter the

choice of optimal lottery contract for another utility promise, we can separate the

overall maximization problem into smaller maximization problems associated with

particular utility promises. Then the current utility promise w defines the current

state (and fixes the column in π). Then π(a1, a2, q1, q2, c, w′) = π(a1
i , a

2
i , q

1
i , q

2
i , ci, w

′
i),

where i denotes a particular row in a column associated with current state w, and

gives the probability that the combination (a1
i , a

2
i , q

1
i , q

2
i , ci, w

′
i) is optimal.

The contract in the ex-ante limited commitment model is given by πEA such

that πEA satisfies the participation constraint that requires it to deliver agent 1 at least

his current utility promise w, is consistent with the exogenous production technology,

and satisfies the ex-ante limited commitment constraint. Similarly, the ex-post limited

commitment contract is given by πEP , and delivers agent 1 at least his current utility

promise w, is consistent with the exogenous production technology P , and satisfies the

ex-post limited commitment constraint. Finally, the limited commitment models with
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private information about efforts have to respect all the constraints mentioned above

and additional incentive constraints. Now we will describe the recursive formulation

of all these models.

The functional equation defines the objective function of the constrained op-

timization problem. Here U(w) is the lifetime utility value of agent 2 given that the

contract must guarantee at least w to agent 2. It is a recursive version of the equation

(1.1):

U(w) = max
π

∑
A2×Q2×C×W

{
u(q1 + q2 − c) + βU(w′)− g(a2)

}
π
(
a1, a2, q1, q2, c, w′

)
.

(1.10)

The promise-keeping constraint (1.2) that requires that the contract delivers at least

w has the following recursive representation. For all w ∈ W :

∑
A2×Q2×C×W

{
u(c) + βw′ − g(a1)

}
π
(
a1, a2, q1, q2, c, w′

)
≥ w. (1.11)

The constraint (1.3) that requires that the chosen probability distribution must be

consistent with the exogenous technology for output, p(y | a) is modified accordingly.

For all (ā1, ā2, q̄1, q̄2) ∈ A2 ×Q2:

∑
C×W

π
(
ā1, ā2, q̄1, q̄2, c, w′

)
= p(q̄1 | ā1)p(q̄2 | ā2)

∑
Q2×C×W

π
(
ā1, ā2, q1, q2, c, w′

)
.

(1.12)

In addition, each π must be a valid probability measure (the constraints (1.4) and
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(1.5)):

∑
A2×Q2×C×W

π
(
a1, a2, q1, q2, c, w′

)
= 1, (1.13)

and for all (a1, a2, q1, q2, c, w′) ∈ A2 ×Q2 × C ×W :

π
(
a1, a2, q1, q2, c, w′

)
≥ 0. (1.14)

Also we need to ensure that the agents’ consumption is positive in the optimal con-

tract:

c > 0, (1.15)

y1 + y2 − c > 0. (1.16)

In the models with limited commitment, the ex-ante limited commitment constraint

(1.7) becomes

w′ ≥ Uaut w′ ∈ W, (1.17)

U(w′) ≥ Uaut U(w′) ∈ W,

and the ex-post limited commitment constraint (1.8) becomes for all (q1, q2) ∈ Q×Q

u(c) + βw′ ≥ u(q1) + βUaut w′ ∈ W, (1.18)

u(y1 + y2 − c) + βU(w′) ≥ u(y2) + βUaut U2(w′) ∈ W.

Due to the timing of the models, the action choice is the same on both sides of

the constraint (1.18), and thus it cancels out. The constraints (1.15)-(1.18) do not

involve the probability measure π directly. To ensure that this constraint is respected

in optimal contract, we restrict those elements of π, for which consumption, utility
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promises outputs, and actions are such that the constraints are not satisfied, to be

zeros. That is, the combination of {a1, a2, q1, q2, c, w′} ∈ Ω that does not satisfy the

above constraints is assigned zero mass in optimal contract π.

In the models with private information, the incentive constraints (1.9) require

that the lifetime utility from taking the recommended action is greater than from

any other deviation. In our environment, there are only two actions available to each

agent. Therefore, there are only four such incentive constraints. They are transformed

in the following way. For all (a1, ã1) ∈ A

∑
A×Q2×C×W

{
u(c) + βw′ − g(a1)

}
π
(
a1, a2, q1, q2, c, w′

)
(1.19)

≥
∑

A×Q2×C×W

{
u(c) + βw′ − g(ã1)

} p(q1 | ã1)

p(q1 | a1)
π
(
a1, a2, q1, q2, c, w′

)
,

and for all (a2, ã2) ∈ A

∑
A×Q2×C×W

{
u(q1 + q2 − c) + βw′ − g(a2)

}
π
(
a1, a2, q1, q2, c, w′

)
(1.20)

≥
∑

A×Q2×C×W

{
u(q1 + q2 − c) + βw′ − g(ã2)

} p(q2 | ã2)

p(q2 | a2)
π
(
a1, a2, q1, q2, c, w′

)
.

1.5.1 Concavity of the Value Function

The introduction of lotteries convexifies the optimization problem. Here linear

combinations (with weights that sum up to one) of π probabilities also satisfy the

constraints above. But limited commitment constraints require special attention as

they do not involve π directly. However, the contract π restrains the probability of

the consumption-action combinations that are not feasible to be zero. This type of

constraint is also linear and any linear combinations of π will satisfy such constraints.
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That is, the linear combinations of choice variables are also feasible and belong to the

constraint set. The objective function is weakly concave (linear) in the probabilities.

Therefore, we can apply Theorems 4.6-4.9 in Stokey, Lucas, and Prescott (1989) to

show that the value function is concave.

1.6 Parameterization

Given w, an optimal limited commitment contract is a probability distribution

π (a1, a2, q1, q2, c, w′) that maximizes the objective function (1.10) subject to con-

straints (1.11)-(1.16) along with the constraint (1.17) in the ex-ante commitment

model and the constraint (1.18) in the ex-post commitment model. In the mod-

els with private information, the optimal contract also has to respect the incentive

constraints (1.19) and (1.20).

Given the optimal probability distribution, we can use conditional and uncon-

ditional distributions π(c|q1, q2), π(w′|q1, q2), and π(a1, a2) to derive policy functions

for consumption, utility promises, and effort.

Table 1.1 summarizes the values of the parameters that are used in numerical

computations.

It is straightforward to compute the value of autarky. In autarky, each period

from time t looks the same as period t before the output realization. This is essentially

a static problem. Since there are only two levels of effort available, we have to

compare the lifetime utility from always exerting high effort and the lifetime utility

from always exerting low effort, then choose the highest of the two numbers. In
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Table 1.1: Parameterization

Parameters Value Name
β 0.98 discount factor
γ 1.5 risk aversion parameter

p(qH | aH) 0.72 Pr[qH | aH ]
p(qL | aH) 0.28 Pr[qL | aH ]
p(qH | aL) 0.28 Pr[qH | aL]
p(qL | aL) 0.72 Pr[qL | aL]

α 2.5 disutility parameter
qH 3 high output
qL 0.5 low output
aH 0.6 high effort
aL 0.2 low effort
nc various grid, consumption
nw various grid, utility promises

our parameterization, the agent always exerts high effort and the value of autarky is

equal to -63.08. This is the lower bound on utility promises in the ex-ante limited

commitment model. In the ex-post limited commitment model, the lower bound on

the sum of the current utility plus discounted future utility promise fluctuates between

-63.39 and -61.72 depending on the output realization.

1.7 Results: Ex-Ante vs. Ex-Post Commitment

This section compares the optimal contracts in ex-ante and ex-post limited

commitment models. Section 1.8 studies how the optimal contract changes when the

actions are no longer publicly observed. Figures 1.1 through 1.5 show the solutions

to both ex-ante and ex-post limited commitment models.

We find that the two models are very similar in terms of their predictions.
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The difference between them is in the optimal behavior near the bounds. The ex-ante

limited commitment constraints are not as restrictive as ex-post limited commitment

constraints. In our parameterization, the autarky level is -63.08, while the ex-post

commitment bounds are -63.39 and -61.72 depending on the output realization. This

implies that there are more states of the world in the ex-post commitment model that

are binding. Qualitatively, the predictions of both models are the same.

A version of the ex-post commitment model has been studied in Kocherlakota

(1996). There is no output production, and thus no action choice in Kocherlakota’s

model. Our results are consistent with Kocherlakota (1996) even in the presence

of production. We find that unless one of the agents is constrained, the first best

solution (in our models the output is shared equally) is obtained. However, when

one of the agents is close to his upper bound (and the other agent is close to his

lower bound), his high current utility promise can be fulfilled only by increasing his

current consumption. This implies that the agent on the lower bound has to share

his output. Since this agent’s current utility promise is so low, he is compensated

with future utility promise that is high enough to keep him in the contract.

In the long-run, the distribution of utility promises becomes degenerate, with

all the mass concentrated on some value within the limited commitment bounds. We

do not observe one agent being driven to his lower bound as in the “immiserization”

steady state. Also, only one of the agents exerts higher effort in the steady state.

These predictions differ in the environments with private information. Section 1.8

discusses the differences in greater detail.
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1.7.1 Value Functions

In Figure 1.1 we compare the value functions U(w) for both ex-ante and ex-

post limited commitment models. The x-axis is utility promises to agent 1 at the

beginning of the current period. The vertical (horizontal) dashed black lines shows

the autarky value Uaut for agent 1 (agent 2). As we speculated in Section 1.3.3, in the

ex-post limited commitment environment the agents are more constrained because the

ex-post limited commitment value function lies uniformly below the ex-ante limited

commitment value function. In terms of risk-sharing, this means that the ex-post

commitment model exhibits less risk-sharing than the ex-ante commitment model.

This is due to the bounds on utility promises being tighter in the former. Since this

is a production economy, the optimal contract would use the spread in utility promises

to induce the required action. But near the bounds, there is a limit to such spread.

1.7.2 Consumption

Figure 1.2 displays the consumption policy functions computed as conditional

expectations, E(c | q1, q2). The upper panel shows the optimal consumption in the ex-

ante limited commitment model, while the lower panel shows the ex-post commitment

model. When both agents realize the same output and neither of the agents is near the

bounds, then they each consume their own outputs. The risk-sharing comes into play

when the agents’ output realizations differ in the current period. There are such values

of state variable w, that both agents just split the aggregate consumption in half. This

is not surprising because the agents are identical. In the ex-post commitment model,
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Figure 1.1: Value Functions in Ex-Ante and Ex-Post Limited Commitment Models.
The vertical (horizontal) dashed black line shows the autarky value Uaut for agent 1
(agent 2)
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if agent 1 realized low output while agent 2 realized high output, then the optimal

contract prescribes a decrease in agent 1’s consumption. This is because agent 2

came into the period with very high utility promise close to U(Uaut), and the only

way to fulfill that promise is to decrease agent 1’s consumption and increase his utility

promise. Since agent 1 realized low output, he is indifferent between autarky and the

contract. The contract rewards him with higher future utility promise. This decrease

in consumption is not present in the ex-ante limited commitment model.

1.7.3 Utility Promises and Efforts

Figure 1.3 displays the utility promises computed as conditional expectations,

E(w′ | q1, q2) and recommended actions, computed as unconditional expectations

E(a). The left panel shows the optimal utility promises in the ex-ante limited com-

mitment model, while the right panel shows the one in the ex-post commitment

problem. Apart from the variability in policy functions that comes from coarseness of

the grid, an interesting observation emerges.2 There is such a level of utility promises

w∗ that if agent 1’s current utility promise is below w∗, then he is assigned higher

action. Otherwise, agent 2 has to take higher action. This observation is consistent

with leisure being a normal good. As the current utility promises of the agent in-

crease, he becomes “richer” in lifetime utility sense, and it becomes very costly to

keep him working. This explanation is supported in the lower panel of Figure 1.3,

2Grid lotteries are lotteries over adjacent grid points. Prescott (1999) points out that
they often appear in such computations. These variations have no economic meaning and
are present due to finiteness of the grids.
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Figure 1.2: Consumption in Ex-Ante and Ex-Post Limited Commitment Models
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where the recommended actions are shown. Around w∗, there is a switch in the roles

of the agents: One of the agents starts exerting higher effort, and the other one lower

effort.

Interestingly, although the actions are publicly observable, and any recom-

mended action can be enforced, the utility promises still show the variation. This

feature is particular to this model. The two agents are identical and risk-averse, and

the optimal contract has to respect this. There is also production that requires effort.

In a model with endowment shocks (like Kocherlakota (1996)), there is no effort and

as a result, there is no need in the variation of utility promises for some income real-

izations. In fact, in an endowment economy, there is a range of income realizations

for each current utility promise that perfect risk-sharing is achieved on that interval.

We do not observe this here.

1.7.4 Invariant Distributions and Effort Transitions

Figure 1.4 displays the invariant distributions of utility promises and efforts,

while Figure 1.5 shows the invariant distributions of consumption and aggregate out-

put. One of the discussions in the literature on contracts with limited commitment

and/or private information is that without lower bounds, the steady-state utility

promise and consumption distributions become degenerate, and one agent consum-

ing everything and the other agent nothing. The limited commitment environment

does not produce such an “immiserization” result. The invariant distributions here

converge to absorbing states, that are not near the boundaries Uaut and U(Uaut), but
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Figure 1.3: Utility Promises and Efforts in Ex-Ante and Ex-Post Limited Commit-
ment Models
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rather, are close to the middle of the interval. The optimal contract prescribes that

only one agent works in the steady state. Since the efforts are observable, they can

actually be implemented. When the efforts are not observable, both agents work in

the steady-state.

In Figure 1.5 we show the steady-state distribution of consumption and ag-

gregate output. The distribution is clustered around qL, 0.5(qH + qL), and qH . The

expected aggregate output differs across these economies. For our parameterization,

the expected aggregate output is 3.47 in the ex-ante limited commitment model, and

3.59 in the ex-post limited commitment model.

Table 1.2: Transition Probability Matrix: Effort Levels of Agent 1. Ex-Ante (upper
panel) and Ex-Post (lower panel) Limited Commitment Models

Ex-Ante LC st+1 = aL st+1 = aH

st = aL 0.95 0.05
st = aH 0 1

Steady- State Probability Matrix
st = aL st = aH

0 1
Ex-Post LC st+1 = aL st+1 = aH

st = aL 0.91 0.09
st = aH 0 1

Steady- State Probability Matrix
0 1

To study the fluctuations in optimal efforts, it is useful to construct a transition

matrix. In particular, for each model we simulate 500 life histories for 2,000 periods.
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Figure 1.4: Invariant Distributions in Ex-Ante (left column) and Ex-Post (right col-
umn) Limited Commitment Models: Utility Promises (top two rows) and Effort (bot-
tom two rows). The red line denotes the autarky
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Figure 1.5: Invariant Distributions in Ex-Ante (left column) and Ex-Post (right col-
umn) Limited Commitment Models: Consumption (top two rows) and Aggregate
Output (bottom row)
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For each life-history, we count the transitions from aL to aH . Later, we take the mean

of all 500 counts and divide by the sum of counts that describe the transitions from

high to low, provided that effort aL or aH was recommended in the current period.

Then Table 1.2 provides the transition matrices for the effort processes in both models.

The steady-state distributions of the transition matrices are shown in the third row of

Figure 1.4. The transition probability matrices confirm the degenerate steady-state

distribution of optimal efforts.

1.8 Results: The Role of Private Information

The introduction of unobservability of actions adds additional constraints on

the value function and it lowers the surplus available to the agents as the expected

output goes down. It also leads to a greater variability in consumption and changes

the long-run properties of the contract.

In general, both ex-ante and ex-post limited commitment models with private

information produce very similar predictions about policy functions and steady-state

distributions. A common result emerges: When the efforts are not observable, it

is optimal to induce both agents to work in the steady-state. This is in contrast

to the predictions of the limited commitment models with full information. In the

latter environments, it is optimal to have only one agent working in the steady-

state. Because now the contract has to punish the agent if his output realization

is low, and reward him if it is high, there is a small variability in the steady-state

utility promises. Even though the invariant distributions of utility promises are still



37

degenerate (as in the full information models), there are now more states that are

absorbing, and they are all concentrated toward the middle of the interval [Uaut, Umax].

The difference between the steady-state lifetime utilities of agent 1 and agent 2 also

decreases, indicating that if each agent is valued equally in these models, then the

steady-state distribution of life-time utilities becomes “fairer.”

In addition, optimal consumption patterns also exhibit greater variability near

the lower and upper bounds than in the models with only limited commitment. Not

only individual consumption varies because of commitment constraints, now it also

helps with incentives for work. For example, consider the case when agent 1 is near

his lower bound on utility promises. In the models with only limited commitment,

the agent receives higher utility promise in order to compensate for the decrease in

his consumption (that goes as a transfer to agent 2 to keep him from breaking the

contract). This is true even if his output realization is low. In the limited commitment

models with private information, the agent has to be punished for the low output

realization, and his utility promise has to decrease. But if he is near his lower bound,

this puts a limit on how much his future utility promise can be decreased. In the

extreme case of agent 1 being promised w = Uaut in the current period, the future

utility promise w′ cannot go lower than what he is promised in the current period.

Then agent 1’s consumption has to decrease in order to create proper incentives for

work.

In the long-run, both private information and full information limited commit-

ment models predict similar steady-state distribution of consumption that has three
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absorbing states: qL, 0.5(qH+qL), and qH . This result is a stark contrast to the results

in other models with private information (for example, Thomas and Worrall (1990)),

where the steady- state consumption is concentrated on a lower bound. Since our

steady-state distribution is similar in full information and private information models

(the expected consumption is lower in private information models), we conclude that

this is the result of our economy being closed and both agents being risk-averse.

Sections 1.8.1 through 1.8.3 discuss in more detail the predictions of the models

with and without private information.

1.8.1 Moral Hazard in the Ex-Ante Commitment Model

1.8.1.1 Value Functions

Figure 1.6 compares the value functions of the ex-ante limited commitment

model with and without private information. The vertical (horizontal) dashed black

lines shows the autarky value Uaut for agent 1 (agent 2). As expected, the incentive

compatibility decreases the surplus and lowers the value function when the actions are

not observable. Otherwise, the value functions are concave and decreasing, implying

that the only way to give more future consumption to one of the agents is by decreasing

future consumption of the other agent.

1.8.1.2 Consumption

Figure 1.7 displays the consumption policy functions computed as conditional

expectations, E(c | q1, q2). The upper panel shows the optimal consumption in the ex-

ante limited commitment model, while the lower panel shows the ex-ante commitment
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Figure 1.6: Value Functions in Ex-Ante Limited Commitment and Private Informa-
tion Models. The vertical (horizontal) dashed black line shows the autarky value Uaut
for agent 1 (agent 2)
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problem with private information. In the presence of private information, we observe

a strong resemblance to results of the standard principal-agent model: When agent 1

realizes low output and agent 2 realizes high output, agent 1 is punished by a decrease

in his current consumption and agent 2 is rewarded with higher consumption. The

utility promise of agent 2 does not increase because it is impossible to have a spread in

future utilities for agent 2 near the higher bound of the utility promises. In a private

information environment, the need for rewards and punishments near the bounds

introduces variability in optimal consumption near the bounds.

When both agents are away from the lower and upper bounds of their utility

promises, they split the aggregate output in half. Now, in the case when agent 1 is

close to his upper bound for utility promises and he realizes higher output than agent

2, then agent 1 is given higher consumption (his future utility promise cannot go up

by much because he is close to his upper bound). This is due to agent 1 having such

a high current utility promise w = U(Uaut). The only way to fulfill this promise is to

give him more consumption. This is the limited commitment part of the increase in

agent 1’s consumption. Since he also realized higher output than agent 2, he has to

be rewarded with both higher consumption and higher utility promise w′. However,

he is near the upper bound, so only his consumption can be increased. This leads

to an even bigger increase in agent 1 consumption. That is why we observe more

variability across states when both limited commitment and private information are

present.
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Figure 1.7: Consumption in Ex-Ante Limited Commitment and Private Information
Models
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1.8.1.3 Utility Promises and Efforts

The presence of private information creates a distinctive pattern in utility

promises, as evident in Figure 1.8. The utility promises are computed as conditional

expectations E(w′ | q1, q2), and recommended actions are computed as unconditional

expectations E(a). The left panel in Figure 1.8 shows the optimal future utility

promises in the ex-ante limited commitment model without private information, while

the right panel shows utilities for the ex-ante commitment problem with private infor-

mation. The upper row shows the utility promises and the lower row shows optimal

effort levels. In the model with private information, agent 1 cannot be punished below

the autarky level when he realizes output that is lower than agent 2’s (light blue line

in the utility promise panel). Therefore, the contract varies his consumption.

The pattern of utility promises is similar to the standard principal agent model:

Reward the agents when they have high output, and punish them when the outputs

are low. As before, there is one distinctive feature: Utility promises go on or below

the 45 degree line for some w∗ (that is, below his current utility promise w). This

implies that it is too costly to make agent 1 work when his utility promise is above

w∗. In that region of utility promises, the effort of agent 1 switches to the lowest level

possible, and agent 2 starts exerting higher effort. This is the result of our particular

double-sided model. This corresponds to a more general result in principal-agent

models: As the current utility promises increase, the “wealth” effect increases leisure

(a normal good) and decreases effort. In other words, it is costlier to create a spread

in utilities to motivate the agent when he is promised high life-time utility than
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when he is promised a low life-time utility. Zhao (2007) studies the model with ex-

ante commitment and private information. Although he does not report the policy

functions, his simulated life-time utility promises and efforts exhibit the same pattern:

As utility promises increase, the recommended efforts decrease.

1.8.1.4 Invariant Distributions and Effort Transitions

Figure 1.9 displays the invariant distributions of utility promises and efforts,

while Figure 1.10 shows the invariant distributions of consumption and aggregate

output. The left panels in Figures 1.9 and 1.10 show the distributions in the ex-

ante limited commitment model without private information, while the right panels

show the distributions for the ex-ante commitment problem with private information.

In Figure 1.9, the upper four panels show the steady-state distributions of utility

promises of agent 1 (the first row) and agent 2 (the second row). The last two rows

show the steady-state distributions of effort for agent 1 and agent 2.

While the invariant distribution of utility promises in the ex-ante commitment

model converges to some absorbing state, the invariant distribution in a model with

private information has more absorbing states. The mass is located closer to the

middle of [Uaut, Umax]. This is similar to the findings of Zhao (2007), who finds that

the utility limits act as reflecting barriers and the utility promises bounce back into

the interior of the set after hitting the bounds. In the long-run the actual bounds

between which the utility promises fluctuate are much higher than the autarky value.

The stark difference is in the optimal recommendations for efforts. In the full
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Figure 1.8: Utility Promises and Efforts in Ex-Ante Limited Commitment and Private
Information Models
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information ex-ante limited commitment model, agent 1 always exerts higher effort

and is poorer (his distribution is more to the left in top row) in terms of steady-state

utility promise, while agent 2 is exerting lower effort and is richer in terms of life-time

utility. That is, we observe “working poor” and rich agents. In contrast, in the model

with private information, both agents are recommended to work, and the spread in

the steady-state utility promises decreases (agent 1’s distribution shifts to the right

in top row). The model society with equal treatment of agents becomes “fairer.”

The steady-state distributions of consumption and aggregate output are sim-

ilar in both full information and private information environments. The difference

lies in the expected steady-state consumption and output. In the model with ex-ante

limited commitment and private information, the expected aggregate output is 3.41,

which is lower than 3.47 in the full information version. As said before, some of the

potential surplus is lost to provide proper incentives.

We also compare the transition probability matrices for effort processes for

these models. They are given in Table 1.3. In the full information limited commitment

model, agent 1 works most of the time, while in the model with private information,

both agents work almost equally in a steady-state.

1.8.2 Moral Hazard in the Ex-Post Commitment Model

1.8.2.1 Value Functions

Figure 1.11 compares the value functions of the ex-post limited commitment

model with and without private information. The vertical (horizontal) dashed black
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Figure 1.9: Invariant Distributions in Ex-Ante (left column) and Ex-Ante with Private
Information (right column) Limited Commitment Models: Utility Promises (top two
rows) and Effort (bottom two rows). The red line denotes the autarky
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Figure 1.10: Invariant Distributions in Ex-Ante (left column) and Ex-Ante with Pri-
vate Information (right column) Limited Commitment Models: Consumption (top
two rows) and Aggregate Output (bottom row)
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Table 1.3: Transition Probability Matrix: Effort Levels of Agent 1. Ex-Ante (upper
panel) and Ex-Ante with Private Information (lower panel) Limited Commitment
Models

Ex-Ante LC st+1 = aL st+1 = aH

st = aL 0.95 0.05
st = aH 0 1

Steady-State Probability Matrix
0 1

Ex-Ante LC and PI st+1 = aL st+1 = aH

st = aL 0.49 0.51
st = aH 0.71 0.29

Steady-State Probability Matrix
0.58 0.42

lines shows the autarky value Uaut for agent 1 (agent 2). As before, the incentive

compatibility decreases the surplus and lowers the value function when the actions

are not observable.

1.8.2.2 Consumption

Figure 1.12 displays the consumption policy functions computed as conditional

expectations, E(c | q1, q2). The upper panel shows the optimal consumption in the ex-

post limited commitment model, while the lower panel shows the ex-post commitment

problem with private information. Similar to Section 1.8.1, we find an increase in

consumption variability across states near the bounds on utility promises. Near the

upper bound of the utility promises, it is impossible to have a spread in future utilities,

and as a result, the contract introduces variability in consumption. When agent 2

is close to his upper bound for utility promises, he is rewarded when he gets higher
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Figure 1.11: Value Functions in Ex-Post Limited Commitment and Private Informa-
tion Models. The vertical (horizontal) dashed black line shows the autarky value Uaut
for agent 1 (agent 2)
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Figure 1.12: Consumption in Ex-Post Limited Commitment and Private Information
Models
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output than agent 1. Because agent 2 has such a high utility promise, the only way

to fulfill this promise is to give him more consumption. The contract cannot also

give him more of the future utility because agent 1 is at his lower bound, and his

utility cannot be pushed down. Since the aggregate output is equal to aggregate

consumption, the consumption of agent 2 goes up. When agent 1 is close to his

lower bound, he is rewarded if he realizes high output (the green line is above the

blue line), but because agent 2 has a high utility promise, the only way to keep that

promise is by giving him more consumption. Therefore, even though agent 1 has a

high output realization, he has to share it with agent 2. Optimal consumption in the

full information ex-post limited commitment model does not exhibit such variations.

1.8.2.3 Utility Promises and Efforts

The presence of private information creates a distinctive pattern in utility

promises, as shown in Figure 1.13. The utility promises are computed as conditional

expectations, E(w′ | q1, q2) and recommended actions are computed as unconditional

expectations E(a). The left panel in Figure 1.8 shows the optimal future utility

promises in the ex-post limited commitment model without private information, while

the right panel shows utilities for the ex-post commitment problem with private infor-

mation. The upper row shows the utility promises and the lower row shows optimal

effort levels. The prediction of the model with ex-post limited commitment and pri-

vate information are very similar to the predictions of the model with ex-ante limited

commitment and private information. The variability of optimal consumption in-
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creases in the former, as the agents cannot be punished in more states (the lower

bounds are now -63.39 and -61.72, compared to the value of autarky -63.08). But if

the agent near autarky gets high output (even if the other agent gets higher output

as well), he is immediately rewarded with higher future utility promise.

Again, in the model with private information, agent 1 cannot be punished

below the autarky level when he realizes output that is lower than agent 2’s (blue line

in the utility promise panel). Therefore, the contract varies his consumption. The

pattern of utility promises is similar to the standard principal agent model: Reward

the agents when they have high output, and punish them when the outputs are low.

As before, there is one distinctive feature: Utility promises go on or below the 45

degree line for some w∗. This implies that it is too costly to make agent 1 work when

his utility promise is above w∗. In that region of utility promises, the effort of agent 1

switches to the lowest level possible. This is the result of our particular double-sided

model and is not present in a general principal-agent model. However, there is a

similarity in that leisure is a normal good, and thus increases with utility promises.

1.8.2.4 Invariant Distributions and Effort Transitions

Figure 1.14 displays the invariant distributions of utility promises and efforts,

while Figure 1.15 shows the steady-state distributions of consumption and aggregate

output. The long-run predictions of the ex-post model with private information are

similar to the ones with ex-ante limited commitment model with private information.

While the invariant distribution of utility promises in the ex-post commitment model
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Figure 1.13: Utility Promises and Efforts in Ex-Post Limited Commitment and Pri-
vate Information Models
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converges to some absorbing state, the invariant distribution in a model with private

information has more absorbing states. These implies that in the steady-state the

utility promises fluctuate within the bounds identified by the probability distribution.

Similarly, we observe the difference in the optimal recommendations for efforts.

In the full information ex-post limited commitment model, agent 1 always exerts

higher effort and is poorer (his distribution is more to the left in the top row) in terms

of steady-state utility promise, while agent 2 is exerting lower effort and is richer

in terms of life-time utility. That is, we observe “working poor” and rich agents.

In contrast, in the model with private information, both agents are recommended

to work, and the spread in the steady-state utility promises decreases (agent 1’s

distribution shifts to the right in top row, and agent 2’s distribution shifts right in

the second row). The model society with equal treatment of agents becomes “fairer.”

In Figure 1.15 the steady-state distributions of consumption and aggregate

output are similar in both full information and private information environments. The

difference lies in the expected steady-state consumption and output. In the model

with ex-post limited commitment and private information, the expected aggregate

output is 3.46, which is lower than 3.59 in the full information version. As said

before, some of the potential surplus is lost to provide proper incentives.

Similarly, the transition probability matrices for effort processes are computed

for these models and are given in Table 1.4. In the full information limited commit-

ment problem, one of the agents works most of the time, while in the model with

private information, both agents work almost equally in a steady-state.
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Figure 1.14: Invariant Distributions in Ex-Post (left column) and Ex-Post Limited
Commitment with Private Information (right column) Models: Utility Promises (top
two rows) and Effort (bottom two rows). The red line denotes the autarky
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Figure 1.15: Invariant Distributions in Ex-Post (left column) and Ex-Post Limited
Commitment with Private Information (right column) Models: Consumption (top
two rows) and Aggregate Output (bottom row)
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Table 1.4: Transition Probability Matrix: Effort Levels of Agent 1. Ex-Post (upper
panel) and Ex-Post with Private Information (lower panel) Limited Commitment
Models

Ex-Post LC st+1 = aL st+1 = aH

st = aL 0.91 0.09
st = aH 0 1

Steady-State Probability Matrix
0 1

Ex-Post LC and PI st+1 = aL st+1 = aH

st = aL 0.35 0.65
st = aH 0.46 0.54

Steady-State Probability Matrix
0.42 0.58

1.8.3 Ex-Ante vs. Ex-Post Commitment

with Moral Hazard

The predictions of the model with ex-ante limited commitment with private

information and the ex-post limited commitment model with private information

are very similar. Figures 1.16-1.19 compare the two models. Figure 1.16 compares

the value functions of the limited commitment models with private information. The

vertical (horizontal) dashed black lines shows the autarky value Uaut for agent 1 (agent

2). The value function of the ex-ante commitment problem is higher than the one with

ex-post limited commitment because the ex-post limited commitment constraints are

tighter. The consumption and utility promises patterns are similar in both models as

evident from Figures 1.17 and 1.18. The prediction of the model with ex-post limited

commitment and private information are very similar to the predictions of the model
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Figure 1.16: Value Functions in Ex-Ante and Ex-Post Limited Commitment with
Private Information Models. The vertical (horizontal) dashed black line shows the
autarky value Uaut for agent 1 (agent 2)
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with ex-ante limited commitment and private information. The difference is that

in the former model, optimal consumption varies in more states near the bounds.

The patterns of the optimal utility promises resemble the predictions of a standard

principal agent model with rewards being associated with higher outputs and vice

versa.

The invariant distributions of utility promises, efforts, consumptions, and ag-

gregate output are shown in Figures 1.19 and 1.20. Both types of models predict

the invariant distributions of utility promises, with mass around the middle of the

utility promise space (top two rows in Figure 1.19). The distributions have absorbing

states, but the distributions are not completely degenerate. This is the result of the

interplay between lower (upper) bounds on punishments (rewards) and the incentive

compatibility required by the optimal contract. The variability in utility promises is

needed to provide correct incentives for effort. In a standard principal-agent model

with no bounds on utility promises, the punishments can be made arbitrarily severe

and the agent’s current utility promise can be driven to infinitely small number. This

makes it less costly for the principal to provide the spread in future utility promises.

Such a scenario is not possible in our model because the bounds on utility promises

act as “reflecting barriers” and push the agents out of the lower bounds.

The absence of “immiserization” effect is similar to the findings of Atkeson

and Lucas (1995). In our models, as well as in Atkeson and Lucas (1995), the lower

and upper bounds are “reflecting barriers.” It is enough to receive one high (low)

output realization on the lower (upper) bound to be pushed back inside the bounds.
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Figure 1.17: Consumption in Ex-Ante and Ex-Post Limited Commitment with Pri-
vate Information Models
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Figure 1.18: Utility Promises and Efforts in Ex-Ante and Ex-Post Limited Commit-
ment with Private Information Models
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In fact, the policy functions for future utility promises in our models resemble those

in Atkeson and Lucas (1995), and that is why we get similar results.

The transition probabilities for the agents’ effort processes are given in Table

1.5. In the current parameterization, agent 1 in ex-post limited commitment model

with private information exerts higher effort more often that agent 1 in the ex-ante

limited commitment model with private information.

Table 1.5: Transition Probability Matrix: Effort Levels of Agent 1. Ex-Ante (upper
panel) and Ex-Post (lower panel) Limited Commitment with Private Information
Models

Ex-Ante LC and PI st+1 = aL st+1 = aH

st = aL 0.49 0.51
st = aH 0.71 0.29

Steady-State Probability Matrix
0.58 0.42

Ex-Post LC and PI st+1 = aL st+1 = aH

st = aL 0.35 0.65
st = aH 0.46 0.54

Steady-State Probability Matrix
0.42 0.58

1.9 Concluding Remarks

The dynamic contract models of private information are known to produce a

degenerate steady-state distribution of consumption and utility promises, with the

agent’s utility becoming arbitrarily small with probability one. In this paper we
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Figure 1.19: Invariant Distributions in Ex-Ante (left column) and Ex-Post (right
column) Limited Commitment Models with Private Information: Utility Promises
(top two rows) and Effort (bottom two rows). The red line denotes the autarky
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Figure 1.20: Invariant Distributions in Ex-Ante (left column) and Ex-Post (right
column) Limited Commitment Models with Private Information: Consumption (top
two rows) and Aggregate Output (bottom row)
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explore the steady-state distributions of consumption, efforts, and utility promises

in model environments that impose limited enforceability of dynamic contracts, and

in effect, create lower bounds on utilities of the agents. To be more precise, the

environments include two identical risk-averse agents that exert possibly unobservable

efforts to produce individual outputs. The two agents are assumed to enter the

risk-sharing arrangement and share the outputs. However, the contracts have to be

self-enforcing and provide at least the autarkic value to both agents.

We find that in the long-run, the contracts in such limited commitment en-

vironments with and without private information do not exhibit “immiserization”

property, with one agent consuming all the output and the other agent consuming

nothing. In addition, we do not observe one of the agents being driven to lower bounds

in the long-run. Rather, in the steady-state the utility promises cluster around some

middle value of utility promises for both agents, and the consumption distribution is

clustered around the consumption levels that reflect the equal division of aggregate

output.

Comparing limited commitment environments with full and private informa-

tion, we show that the recommended work patterns significantly differ between them.

When the efforts are observable, there is no need to motivate the agents to work

through punishments and rewards of future consumption. As a result, the steady-

state distribution of utility promises is degenerate and only one of the agents exert

high effort in the steady-state. This particular result about the distribution is consis-

tent with Kocherlakota (1996), who shows that if the agents are particularly patient,
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then the distribution of utility promises is degenerate. In our models, the mass of the

distribution is concentrated on some inside value of the utility promise space, and not

on the lower bounds (with one agent consuming everything in the long-run).

In the limited commitment environments with private information, the optimal

contract has to provide incentives for effort. This leads to a less degenerate steady-

state distribution of utility promises. The distribution is clustered around several

states inside the bounds. In fact, we find that the expected steady-state utility

promises of the agents become closer in value under private information. This implies

that in the world in which each agent is treated the same, the introduction of private

information (and a need to provide incentives for work) leads to a “fairer” society in

which both agents are almost equally likely to exert high effort.

The absence of “immiserization” effect in our private information models is

similar to the findings of Atkeson and Lucas (1995). In our models, as well as in

Atkeson and Lucas (1995), the lower and upper bounds are “reflecting barriers.” It

is enough to receive one high (low) output realization on the lower (upper) bound

to be pushed back inside the bounds. In fact, the policy functions for future utility

promises in our models resemble those in Atkeson and Lucas (1995), and that is why

we get similar results.

We also find that optimal contracts in our models show several properties that

are present in the literature on limited commitment and moral hazard. Namely, the

environment with ex-post limited commitment is more restrictive than the ex-ante

limited commitment environment (the limited commitment constraints bind in more
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states in the former model); the incentive-compatible contracts reward higher outputs

and punish lower outputs in some states of the world; the effort levels decrease with

utility promises as leisure is a normal good.

In addition, there are several features that are particular to our model. There

are some states of the world where the utility promises are not used or are not as

effective as rewards and punishments. They are near and on the lower and upper

bounds of the utility promise space. For example, unless one of the agents is close

to his or her lower or higher bound, the aggregate consumption is split in half in-

dependently of output realizations even in the presence of private information. If

the agents are near the commitment bounds, then the one closer to the lower bound

has to share his or her output with the other agent regardless of output realizations.

This is due to the other agent’s utility promises hitting the upper bound with no

scope for an increase in utility promises. In order to guarantee such high current

utility promises to the other agent, the contract increases that agent’s consumption

in the current period. In contrast, the standard principal-agent model predicts that

consumption and utility promises should vary with output realizations, and higher

output realizations should be rewarded with higher current consumption and higher

future utility promises. Moreover, although optimal utility promises behave accord-

ing to the standard principal-agent model, there is a certain level of current utility

promises such that for states with utility promises above that level, agent 1 stops and

agent 2 begins exerting high effort and vice versa.

Finally, we want to contrast the optimal contracts in our environment with op-



68

timal relative dynamic contracts. For example, Yeltekin (1997) finds that in the model

in which one principal contracts with two agents who exert unobservable efforts to

produce individual outputs, the optimal consumption depends on the relative differ-

ence in output realizations. Thus, the agent is rewarded with higher consumption and

utility promises if his or her output realization is larger than that of the other agent.

In our models with private information the opposite happens: Unless the agents are

close to their commitment limits, the optimal consumption is equal between the two

agents no matter what the output realizations are. Thus, optimal consumption in our

environment exhibits tournament-like features of relative contracts only when close

to the bounds. In addition, the optimal utility promises reward high outputs and

punish low outputs in relative contracts, whereas in our models this happens only

within the utility bounds.

To summarize, we show that when there is private information about efforts,

the risk-sharing is diminished because optimal consumption has to vary more across

states when the agents are constrained. The commitment bounds restrict the rewards

and punishments rendering them ineffective near the limits. On the other hand, the

presence of private information creates the society of working middle class, as the

steady-state distributions of utility promises and efforts are more equal.
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CHAPTER 2
THE CAPITAL STRUCTURE AND PERFORMANCE OF BUSINESS
START-UPS: THE ROLE OF UNOBSERVED INFORMATION AND

INCENTIVES

2.1 Introduction

The question of whether business financing decisions have any effect on a firm’s

performance and market value is one of the central issues in corporate governance

literature (Williamson (1988)). Modigliani and Miller (1958) demonstrated conditions

under which capital structure decisions do not affect market value. However, the

theoretical literature on informational asymmetries and effects of agency costs on

performance is large and growing (Jensen and Meckling (1976)). Economic theory

suggests that different capital structures create different incentives for entrepreneurs

when their actions (for example, effort) are not perfectly observed. For example,

the dilution of an entrepreneur’s ownership through outside equity may decrease her

incentives to exert effort because she has to share the returns with other stakeholders.

Lower effort, in turn, translates into a weaker performance of her firm. While these

theories were extensively tested for established publicly traded firms, there are only a

few papers that study the capital structure of start-up firms that are not plagued by

survivorship bias or limited to certain regions and industries (see, for example, Cassar

(2004)).1 Our primary focus is on small business start-ups in which the potential

asymmetric information problems may be especially pronounced because of inherent

1Survivorship bias results from the fact that we typically have a non-random sample of
all business start-ups because we do not observe the failed ones.
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informational opaqueness of firms in their first years of existence.

We contribute to the the growing empirical literature by testing the effects

of capital structure on the performance of a sample of small businesses in their first

years of existence. In contrast to most of the existing studies (Reid (1999), Majumdar

and Chhibber (1999), and Weill (2003), we explicitly recognize potential endogeneity

of the capital structure. Endogeneity of capital structure can lead to biased results

in a regression explaining performance. The bias results from the fact that capital

structure is a choice variable and it can be affected by unobservable business charac-

teristics that could also affect performance.2 In such cases, the measures of capital

structure would be correlated with the error term.

We deal with the issue of potential endogeneity of capital structure by using

a type of the endogenous treatment model. In addition to allowing us to obtain

unbiased estimates of the incentive effects of capital structure on performance, our

estimation framework allows us to quantify the strength of any potential selection

effects. We also contribute to the empirical literature by proposing new instruments

for the effect of capital structure on performance that are consistent with theories of

entrepreneurship and lending. To approximate initial capital structure, we employ

three broad measures of outside business financing: bank and government loans, funds

supplied by individual investors, and any outside financing whether provided by banks

2The examples of such characteristics may be indicators of quality, productivity, or risk
properties of a business project that are known only to the entrepreneur (Darrough and
Stoughton (1986)). If an entrepreneur expects her business to be very successful in the
future, she would prefer to engage debt as opposed to external equity to retain all the
residual profits after repaying the loan.
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or outside investors.3 Our performance measures are survival, the growth in number

of employees, and total sales per worker.

The primary data source used in this paper is the national survey of business

start-up firms called New Business in America: The Firms and Their Owners. This

survey was first fielded in 1985 by the National Federation of Independent Business

(NFIB) Foundation. One of the distinguishing features of our sample is the relatively

young age of the surveyed businesses (the average age is just over 14 months). In

contrast, Federal Reserve’s Surveys of Small Business Finances, often used in research

on small non-public companies, contains data on much older firms. For example, the

average age of a firm sampled by the National Survey of Small Business Finances

(NSSBF) is equal to 13.4 years (Bitler, Moskowitz, and Vissing-Jorgensen (2005)). In

this respect, the study that comes closest in terms of the relatively young sample of

businesses analyzed is the paper by Reid (1999). Reid (1999) uses a sample of Scottish

firms with the average age of 21 months. The paper models the survival probability

after one year as a function of different measures of financial structure. The results

are generally inconclusive. Access to trade credit and previous bank financing (both

as dummy variables) have positive effects on survival probability while presence of

any debt or extended purchase commitments (also dummy variables) have a negative

effect. The leverage ratio typically employed in the literature on capital structure was

found to be not statistically significant. The overall conclusion is that financial factors

3For each of these three measures, we calculate two ratios – to the total capital and to
the total internal equity capital.
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are less important than non-financial factors in determining survival probability.

Our results indicate that controlling for endogeneity of capital structure mea-

sures produces qualitatively different results when compared to uncorrected coeffi-

cients. This is especially pronounced when performance is measured by the sales per

employee. The effects of leverage on the performance measures of business start-

ups are mostly insignificant, contrary to previous findings on well-established firms.

In contrast, outside equity decreases chances of survival while increasing growth in

employment and sales in surviving businesses.

This paper is organized as follows. Section 2.2 provides an extensive literature

review on capital structure and business performance theories. Section 2.3 describes

our econometric model, identification, and the algorithm used for estimation. Section

2.4 discusses the data. Section 2.5 provides the results and Section 2.6 concludes.

2.2 Literature Review

To evaluate the effect of capital structure on firm survival and growth while

controlling for selection, we concentrate on two large theoretical areas – optimal cap-

ital structure theories and theories of incentives implied by a given capital structure.

Although there are several theories that incorporate both selection and incentive ef-

fects, we are not aware of a single unifying theory that explains the problem at hand.

While there are many competing finance theories of optimal capital structure, most

were developed for large companies with dispersed ownership where the influence of a

single manager or owner is likely to be insignificant. In the case of start-up firms, an
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entrepreneur herself and her incentives are major forces behind the choices and per-

formance of her firm. Furthermore, contract theory suggests several possible effects

of capital structure on the entrepreneur’s effort and/or her choice of risk-return char-

acteristics of a given project. This section reviews the most significant implications

of the relevant theoretical literature.

Given the various predictions provided by the literature on capital structure

and performance, we do not have prior expectations about the way unobservable

characteristics and capital structure affect performance. Instead, we summarize the

literature into three main hypotheses and later discuss the consistency of our results

with these hypotheses.

2.2.1 Capital Structure Theories

There are four leading theories of optimal capital structure developed in the

finance literature (see Myers (2003) for a comprehensive summary). Here we briefly

describe them and concentrate on the ones that seem most relevant for business start-

up financing:

1. The Modigliani-Miller value-irrelevance theory states that sources of financing

do not matter for the value of the firm as long as the capital markets are “per-

fect.” Perfect markets imply that markets for capital are not only competitive

and frictionless, they are also complete and it is possible to insure against any

possible contingency that may arise. This theory is mainly used as a start-

ing point to identify the situations when markets are incomplete and capital
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structure may matter.

2. The static trade-off theory implies that firms choose optimal debt-to-equity ra-

tios such that the tax benefits associated with debt are equal to the distress

costs associated with extra debt at the margin. Interest tax benefits of debt

increase the value of the firm, while too much debt increases risk of bankruptcy

or exacerbates agency costs like conflicts between creditors and shareholders.

However, there appears to be no definitive research that shows that tax incen-

tives play any significant role in debt policy decisions. Furthermore, empirical

research shows that companies do not try to achieve their optimal debt ratios.

3. The pecking-order theory incorporates asymmetric information about the firm’s

assets and growth opportunities. As a result, the value of shares may not reflect

the true value of the firm and the issuance of new shares may signal that either

those opportunities are good or managers are trying to sell overvalued shares.

In equilibrium, this leads to the following capital structure: firms prefer internal

to external finance; if external financing is needed, firms first issue less risky

debt and only then outside equity. In other words, if the manager of a firm

has favorable information about assets and growth opportunities, he will avoid

external equity financing (Myers and Majluf (1984)).

4. Agency and asymmetric information theories of capital structure pioneered by

Jensen and Meckling (1976) state that some unobservable characteristics or ac-

tions influence the choice of capital structure. Agency theory recognizes that
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the interests of managers and owners in the firm are not aligned. This implies a

similar capital structure to pecking-order theory, although the underlining prin-

ciples are different: pecking-order theory assumes that the interests of managers

and outside owners coincide. If the firm starts as being fully owned by the man-

ager, the incentives are aligned properly. If external financing is required, then

the firm should turn to debt to maintain proper incentives. Once debt becomes

too risky and there is a chance of default, then the firm turns to the last source

of additional capital, outside equity.

It is worth emphasizing that these theories were developed to explain financing

decisions of big corporations. Among them, the last two theories are most suitable

for small and start-up firms because these firms usually are most opaque and do not

have an established record. This may explain why the majority of start-up firms do

not have any outside financing at all and all the initial investment is financed by the

entrepreneur’s savings.4

We concentrate on several relevant theories that describe the relationship be-

tween unobservable characteristics of the entrepreneur (or a firm) and capital struc-

ture. Leland and Pyle (1977) and Ross (1977) develop models in which “good”

entrepreneurs signal their quality. The paper of Leland and Pyle (1977) assumes

that quality of the project is known only to the risk-averse entrepreneur who wants

to diversify her risks in the project. They show that if the level of self-financing is

4Berger and Udell (2003) show that among small firms sampled in the 1993 National
Survey of Small Business Finance, personal and close relatives funds contribute around 45%
of all capital employed. In our data set this number is close to 64% (see Table 2.2 below).
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observable, then good-quality entrepreneurs would signal their quality by partially

financing their projects at the expense of diversification. In Ross (1977) “good” en-

trepreneurs choose debt because the risk of bankruptcy is lower for them than for

“bad” entrepreneurs. Myers and Majluf (1984) argue that if the entrepreneur tries to

raise outside equity to finance the project then the value of the project may not be

perceived as very high by outsiders since the entrepreneur wants to share its proceeds.

Therefore, financial investors would demand a high price for external finance. In that

case, debt is preferable to outside equity even though bankruptcy becomes an issue.

This leads to the pecking-order theory with internal financing being the cheapest way

to finance the business.

All these theories predict that “better” firms would choose debt to signal their

quality and that they would prefer debt to outside equity. Therefore, if there were

no incentive effects of capital structure, then we would expect to see that debt is

positively related to performance of start-ups because intrinsically good firms choose

debt and perform well.5 We summarize the existing capital structure theories in the

following hypothesis:

Hypothesis 1: Firms that expect to be more successful would prefer debt to

outside equity and we would expect a positive relationship (measured by correlation)

between debt and performance measures; and a negative relationship between outside

equity and performance measures.

5However, Berger and Udell (2003) show that if debt is too large then there would be an
adverse effect of debt on performance as the risk of default increases, implying a negative
relationship between performance and debt.
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2.2.2 Capital Structure and Performance

In this subsection we describe main theoretical and empirical research on the

effect of capital structure on performance. In general, these theories are referred to

as agency theories, and they assume that there are either effort incentives or risk

incentives of capital structure. For example, outside equity – which usually results

in lower ownership share of the entrepreneur-manager – may induce the entrepreneur

to exert less effort. Moreover, the entrepreneur may choose either riskier projects,

or perquisites, or simply withdraw assets from the firm. This problem of providing

the correct incentives to insiders has received a lot of consideration since it was first

raised by Jensen and Meckling (1976). Harris and Raviv (1991) and Myers (2001)

provide surveys of this literature.

The testable implication of this literature is that debt could be used to alle-

viate such problems and we should observe a positive relationship between debt and

performance. Moreover, the risk of default may discipline entrepreneurs because in

case of bankruptcy they risk losing their firms (Grossman and Hart (1982)). The

following hypothesis summarizes the agency theories of effort incentives of capital

structure:

Hypothesis 2: Based on agency theories about effort incentives created by debt,

we expect to see a positive relationship between debt and performance measures, and

a negative relationship between outside equity and performance.

While negative effects of outside equity on performance are well understood,

there may also be negative incentive effects of debt. For example, an entrepreneur
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who acquired debt financing may shift into riskier projects and increase the riskiness

of her firm. Therefore, for risky firms, outside equity may be a good monitoring

device and result in a positive relationship between outside equity and performance

(Berger and Udell (2003)).6 In addition, Dybvig and Wang (2002) argue that debt

financing may induce an entrepreneur to keep the revenues and default on her debt.

Such problems would result in a negative relationship between debt and performance.

The following hypothesis summarizes the agency theories of risk incentives of capital

structure:

Hypothesis 3: Based on agency theories about risk incentives created by debt,

we expect to see a negative relationship between debt and performance measures, and

a positive relationship between outside equity and performance.

2.2.3 Models with Both Types of Informational Frictions

There is also a series of papers that incorporate both adverse selection and

moral hazard into financing decision. Darrough and Stoughton (1986) developed

a model of optimal capital structure under both adverse selection and moral haz-

ard, which shows that inside equity decreases with volatility of returns and the en-

trepreneur’s effort decreases with higher expected marginal productivity when marginal

productivity and riskiness of the project are unobservable characteristics of the en-

trepreneur. This model predicts that more efficient entrepreneurs would choose more

debt while entrepreneurs with riskier projects would prefer less debt and more out-

6This is one of the rationales for venture capital financing of fast-growing high-tech
companies.
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side equity, other things equal. However, due to assumptions of their model, it is

not possible to determine the effect of effort on performance. Wahrenburg (1996)

constructs a principal-agent model of project investment with both adverse selection

and so-called “false” moral hazard. He shows that the optimal contract can be imple-

mented in terms of debt and equity payoffs, with higher-ability agents keeping 100%

stake in the project and repaying debt to the principal. Bajaj, Chan, and Dasgupta

(1998) modify the model of Leland and Pyle (1977) to allow for both adverse selection

and moral hazard in business financing with the degree of moral hazard measured as

control rights of the entrepreneur. This model explains capital structure and firm

performance in terms of exogenous ownership structure. They show that debt in-

creases with ownership because ownership works as a signal of quality, with higher

ownership meaning better quality, and that the performance also increases with own-

ership. Jullien, Salaniè, and Salaniè (2007) construct a model of moral hazard with

agents differing in unobservable risk-aversion. They find that more risk-averse en-

trepreneurs would prefer debt to equity. Moreover, the probability of success of the

project increases with inside equity because it stimulates the entrepreneur’s effort.

The testable prediction of these models is that debt is positively related to perfor-

mance and better firms choose debt over equity. Furthermore, the success of the

project is also positively related to debt.

There are two other papers that study capital structure choice and firm per-

formance simultaneously as we do here. The most closely related to our work is a

study by Dessi and Robertson (2003). They examine the effect of leverage on perfor-
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mance of established U.K. firms while explicitly accounting for endogeneity of capital

structure choices. They find that unobserved firm characteristics are important de-

terminants of capital structure and performance. Furthermore, the leverage stops

being significant after controlling for capital structure endogeneity, suggesting that

debt is chosen optimally according with the static trade-off theory. However, the

main purpose of our study is to examine entrepreneurial firms at the time of their

creation, and to do so we employ a different methodology and different measures of

performance. Berger and di Patti (2006) consider the impact of capital structure

on firm performance (measured as profit efficiency) and argue that firm performance

influences capital structure because either more efficient firms have lower expected

costs of bankruptcy (therefore, they acquire more debt) or more efficient firms want

to protect the rents that come from higher profit efficiency and shareholders prefer

to hold more equity to avoid liquidation leading to less debt. Our paper differs from

Berger and di Patti (2006) in that we use survival and growth as the performance

measures, and they are measured after the choice of initial capital structure is made,

and therefore they cannot influence the choice of initial capital structure. The simul-

taneity in our paper comes from the idea that some unobservable variables influence

both capital structure and performance. As a result, capital structure endogeneity

has to be taken into account when estimating the effect of capital structure on per-

formance. Furthermore, our sample is not limited to one particular industry, unlike

Berger and di Patti (2006) paper, which concentrates on banking industry.
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2.2.4 Selection and Moral Hazard in

Lending and Insurance Markets

The issue of selection and incentive effects is explored in other markets as

well. Edelberg (2004) proposes and tests a model of consumer lending that incor-

porates both adverse selection and moral hazard. Using the data on mortgages and

automobile loans from the Survey of Consumer Finances, she shows that consumers

self-select into contracts that differ in terms of interest rates and levels of collateral.

Moreover, higher levels of collateral induce consumers to exert higher effort to ensure

the loans are repayed. Using a data set that describes the Kansas voluntary deposit

insurance system for banks during 1910-1920, Wheelock and Kumbhakar (1995) show

that riskier banks selected to participate in the insurance system, and banks in the

system chose to hold less reserves and became more prone to risk.

There is a stream of papers that separate moral hazard and adverse selection

in automobile insurance markets. Under adverse selection, higher-risk agents are

more likely to self-select into contracts with more coverage. They are also more likely

to have an accident. At the same time, better coverage has the incentive effect –

it induces riskier behavior. In both cases, better coverage is positively correlated

with probability of an accident. For example, Dionne, Michaud, and Dahchor (2004)

find that low-risk individuals self-select into contracts that provide less coverage over

time, and this induces them to change their unobservable efforts to reduce claims.

Chiappori and Salaniè (2000), however, find no evidence of adverse selection or moral

hazard in the French market for automobile insurance. But Abbring, Chiappori,
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Heckman, and Pinquet (2003) argue that dynamic analysis would be more relevant

because previous experience could partially reveal hidden effort.

2.3 The Model

2.3.1 General Outline

Entrepreneurs are assumed to have private information about the expected

future outcome of their start-up. The observed capital structure (e.g., the level of

external debt) will be affected by this private information. For example, it is often

hypothesized in the theoretical literature that businesses with better prospects will

choose debt over external equity because debt does not dilute ownership. Conditional

on the chosen capital structure, an entrepreneur decides how much effort to supply,

which in turn affects performance. For example, high levels of external equity (as

opposed to external debt) are generally believed to reduce the effort because the

entrepreneur will own just a part of the business. Based on these hypotheses, we

expect to have a positive correlation between the level of debt of each individual

start-up and its success.

We have two distinct processes that can generate this positive correlation. On

the one hand, entrepreneurs who expect to do well may want to have as large an

ownership share as possible and not dilute it with external equity by inviting outside

investors. If an entrepreneur does not have high expectations for the future payoff

(either because the project is expected to generate fairly low returns or the risk is very

high), she may prefer to bring in external investors to share the risk. On the other
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hand, given the chosen capital structure, entrepreneurs with high levels of debt and

low levels of external equity will face relatively high incentives to supply more effort

than those entrepreneurs with high levels of external equity because their ownership

is not diluted (standard moral hazard). Assuming that high levels of effort translate

into better performance, we will once again observe positive correlation between debt

and success. The direction of the causality is different. In one case, the expectation of

success affects the choice of capital structure. In the other case, the capital structure

affects incentives, and thus, probability of success.

Each start-up can face different debt (or external equity) contract offers that

reflect its observable characteristics. In other words, observably more promising en-

terprises may be offered more attractive debt contracts, thus making them more likely

to increase their debt levels. However, the important feature of the decision-making

process is that firms may have the unobserved by the potential lender propensity to

perform well, which would obviously influence both the capital structure decision and

the resulting performance. This means that estimating the effect of capital structure

on performance will generally produce biased estimates because the error term will

correlate with observed debt levels.

These unobserved factors can be accounted for in the following econometric

specification. With the subscript i denoting an individual start-up, we denote by Y ∗i

some continuous measure of its performance and by L∗i some continuous measure of
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its capital structure:

Y ∗i = x1iβ1 + γL∗i + η1i, (2.1)

L∗i = x2iβ2 + η2i, (2.2)

where x1i and x2i are 1 × k1 and 1 × k2 vectors of exogenous variables; β1 and β2

are k1 × 1 and k2 × 1 vectors of parameters, γ is a scalar parameter measuring the

effect of the endogenous capital structure on performance; and ηi = (η1i, η2i)
′ is the

vector of error terms assumed to be normally distributed with zero mean µ = (0, 0)′

and covariance Σ:

Σ =

 σ11 σ12

σ12 σ22

 . (2.3)

Importantly to our analysis, the error terms of the two equations are allowed to be

correlated with each other. This correlation term is designed to capture unobserved

private information about the quality of the start-up, which directly influences the

outcome Y ∗i and also affects the capital structure (borrowing) decision L∗i of each firm.

Non-zero correlation implies that capital structure is not exogenous to performance.

Ignoring this potential correlation between errors and running equation (2.1) alone

would produce biased estimates. Later we discuss the results that assume that there

is no correlation between errors of the two equations, which is equivalent to estimating

them separately.

We use three measures of performance: the survival of business start-ups

within three years of the initial interview, the change in the number of employees

(the ratio of total employment in the third year to total employment in the first
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year), and the total sales per employee in the third (final) year of the survey. The

first performance measure is dichotomous while the last two are continuous. We use

the percentage of the total investment into business coming from loans as our measure

of debt and the percentage of the total investment coming from external individual

investors and investment companies as our measure of external equity. We also cal-

culate the combined percentage of external financing. Lastly, we employ percentages

of debt, outside equity, and total outside financing to inside equity financing.

All our capital structure measures are continuous censored random variables.

When using the discrete measure of performance, we have to make certain adjust-

ments to our error covariance matrix, which will have implications for the estimation

procedure. In particular, the variance of the error term of the first equation is nor-

malized to 1. We refer to this specification with the normalized variance of the error

in the first equation (dichotomous performance measure) as Specification 1 and to

the model with the unrestricted variance (continuous performance measure) as Spec-

ification 2.

Denoting by Yi and Li the observed measures of performance and capital

structure, respectively, we have the following system of equations:

Y ∗i = x1iβ1 + γLi + η1i,

L∗i = x2iβ2 + η2i. (2.4)

The latent data Y ∗i and L∗i are transformed into observed data Yi and Li in the
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following manner for Specification 1 :

Yi = I [Y ∗i ≥ 0] ,

Li = I [L∗i ≥ 0]× L∗i , (2.5)

and for Specification 2 :

Yi = Y ∗i ,

Li = I [L∗i ≥ 0]× L∗i . (2.6)

where I [.] is an indicator function taking value 1 if the expression in brackets is true

and value 0 otherwise.

The hypotheses formulated in the previous section can be expressed in terms

of the parameters of our model as follows:

Hypothesis 1: We expect σ12 > 0 for outside debt and σ12 < 0 for outside

equity.

Hypothesis 2: Based on agency theories about effort incentives created by debt,

we expect γ > 0 for outside debt and γ < 0 for outside equity.

Hypothesis 3: Based on agency theories about risk incentives created by debt,

we expect γ < 0 for outside debt and γ > 0 for outside equity.

2.3.2 Estimation Details

We use Bayesian estimation procedures to estimate the system of equations

(2.4) jointly. The choice of methodology is motivated by the superiority in perfor-

mance of Bayesian methods over Maximum Simulated Likelihood (MSL) in this type
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of endogenous treatment models.7 The basic idea is to obtain the posterior distri-

bution of the parameters of the model. The posterior distribution is proportional

to the product of the likelihood of the observed data and prior distribution of the

parameters:

p (parameters| data) ∝ p (data|parameters) p (parameters) .

We use simulation to obtain samples from the posterior distribution of the parame-

ters because it does not have a form of any recognizable distribution. We develop a

straightforward Gibbs sampler with data augmentation to simulate draws from the

posterior distribution. The data augmentation step draws the values of latent vari-

ables Y ∗i and L∗i conditional on the observed data and the parameters of the model

(see Albert and Chib (1993)). The details of the algorithms are provided below. We

derive two separate posterior simulators for each of the two specifications because the

sets of the parameters to be estimated are different.

We start by deriving the (augmented) likelihood of the latent variables Y ∗i and

L∗i . We stack the two equations in the following manner:

β =


β1

γ

β2


(k1+k2+1)×1

; Xi =

 x1i Li 01×k2

01×k1 0 x2i


2×(k1+k2+1)

;

y∗i =

 Y ∗i

L∗i


2×1

; ηi =

 η1i

η2i


2×1

.

7Munkin and Trivedi (2003).
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The system can then be expressed as

y∗i = Xiβ + ηi.

We then stack all the observations together as

y∗ =



y∗1

y∗2

...

y∗n


2n×1

;X =



X1

X2

...

Xn


2n×(k1+k2+1)

; η =



η1

η2

...

ηn


2n×1

,

to produce

y∗ = Xβ + η.

We can express the covariance matrix for y∗ as

Ω =



H−1 0 . . . 0

0 H−1 . . . 0

...
...

. . .
...

0 0 . . . H−1


2n×2n

= In ⊗H−1, where H = Σ−1
2×2.

Conditional on the parameters of the model, the augmented likelihood can be

expressed as:8

p (y∗|β,Σ) = (2π)−
2n
2 |In ⊗H−1|−

1
2 exp (−1

2
(y∗ −Xβ)′(In ⊗H−1)−1(y∗ −Xβ))

∝ |H|
n
2 exp (−1

2
tr[

n∑
i=1

(y∗i −Xiβ)′H(y∗i −Xiβ)]). (2.7)

8See appendix for details.
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For computational simplicity, the latent variables Y ∗i and L∗i are treated as

additional parameters of the model. The appropriate steps are added to our Gibbs

sampling algorithm to draw these latent variables conditional on the realized values

of the main parameters of the model. The latent data are then integrated out to

obtain the posterior distribution of the main parameters. The augmented posterior

p (y∗, β,Σ| data), which also contains the latent data, is proportional to

p (y∗, β,Σ| data) ∝ p (data|y∗) p (y∗|β,Σ) p (β,Σ) ,

where p (data|y∗) is the distribution of the observed data conditional on the latent

data (this distribution is going to be different for the two specifications we use),

p (y∗|β,Σ) is the augmented likelihood, and p (β,Σ) is the prior distribution of the

main parameters.

We specify independent priors for β and H−1. The prior for β is normal and

given by:

β ∼ N(β0, V0). (2.8)

The conditional posterior of β can be shown to be also normal:9

β|data,H, y∗i ∼ N (β1, V1) (2.9)

V1 = (
n∑
i=1

X ′iHXi + V −1
0 )−1

β1 = V1(
n∑
i=1

X ′iHy
∗
i + V −1

0 β0).

The prior and the posterior distributions of the precision matrix H depends on what

type of dependent variable Yi we use. We consider two cases.

9See appendix for details.
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The first case is when Yi is a continuous random variable. We assume a Wishart

prior for the precision matrix H:

H ∼ W (ν0, H0) . (2.10)

It can be shown that the conditional posterior distribution of H is also Wishart:

H|data, β, y∗i ∼ W (ν1, H1) (2.11)

ν1 = ν0 + n

H1 =

(
n∑
i=1

(y∗i −Xiβ)(y∗i −Xiβ)′ +H−1
0

)−1

.

The other case that we consider is of the binary survival dependent variable

Yi. The approach developed for the continuous dependent variable is not directly

applicable here because the variance parameter in binary discrete choice models is

not identified. Only the ratio β1

σ
1/2
11

is identified. This follows from the fact that we do

not observe the underlying latent propensity Y ∗i . Thus, in the case of dichotomous

dependent variable we have to work with the following identified covariance matrix:

Σ = H−1 =

 1 ρ

ρ σ22



=

 1 ρ

ρ h−1 + ρ2

 . (2.12)

The reason to use the parametrization given above is that it allows us to use the prop-

erties of the multivariate normal distribution. In particular, p (ηi) = p (η1i) p (η2i|η1i).

We restrict η1i ∼ N (0, 1), while η2i|η1i ∼ N (ρη1i, σ22 − ρ2). Following McCulloch et
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al. (2000), we specify the following prior

p (ρ, h) = p (ρ) p (h) (2.13)

ρ ∼ N (ρ0, Vρ0)

h ∼ G (ν0, h0) ,

where G (ν0, h0) is the gamma distribution with mean h0 and degrees of freedom ν0.

The likelihood with this new parametrization can be rewritten as:

p (y∗|β, ρ, h) ∝ |H|
n
2 exp (−1

2
tr[

n∑
i=1

η′iHηi])

∝ h
n
2 exp (−1

2

n∑
i=1

(η2
1i

(
1 + hρ2

)
− 2η1iη2ihρ+ η2

2ih)). (2.14)

Observe that given ρ, h, the distribution of H is degenerate.10 Therefore, the con-

ditional posterior for β is exactly the same. The conditional posteriors of (ρ, h) are

given by

ρ|data, β, h, y∗i ∼ N (ρ1, Vρ1) (2.15)

Vρ1 = (V −1
ρ0 + h

n∑
i=1

η2
1i)
−1

ρ1 = Vρ1(ρ0V
−1
ρ0 + h

n∑
i=1

η1iη2i),

and

h|data, β, ρ ∼ G (ν1, h1) (2.16)

ν1 = ν0 + n

h1 = [
ν0

h0(ν0 + n)
+

∑n
i=1 (η1iρ− η2i)

2

(ν0 + n)
]−1.

10It can be shown that the transformation from (ρ, h) to H is one-to-one.
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We use Gibbs sampling algorithms to successively draw from conditional dis-

tributions for parameters of the model β, H and latent indices Y ∗i and L∗i . We denote

the sth realization of variable a by as. The total number of draws S = S0 + S1 will

be made with the first S0 discarded as the burn-in. We use the following algorithm

for Specification 1 :

step 0: Set (Y ∗i )0 = Yi, (L∗i )
0 = Li, ρ

0 = 0, and h0 = 1 (which corresponds to Σ

equal to identity matrix);

step 1: draw β1 from the distribution given in (2.9) conditional on (Y ∗i )0, (L∗i )
0, ρ0

and h0;

step 2: draw the elements of covariance matrix Σ as a block:

draw ρ1 from distribution given in (2.15) conditional on (Y ∗i )0, (L∗i )
0, β1

and h0;

draw h1 from distribution given in (2.16) conditional on (Y ∗i )0, (L∗i )
0, β1

and ρ0;

step 3: draw (L∗i )
1 conditional on (Y ∗i )0, ρ1, h1 and β1 as:

(L∗i )
1 =



Li if Li ≥ 0

draw from normal distribution

truncated above at 0 with mean equal to

x2i(β2)
1 + ρ1[(Y ∗i )0 − x1i(β1)

1 + γ1Li]

and variance equal to(h1)−1 if Li < 0;



93

step 4: draw (Y ∗i )1 conditional on (L∗i )
1, ρ1, h1 and β1 as:

(Y ∗i )1 =



draw from normal distribution

truncated below at 0 with mean equal to

x1i(β1)
1 + ρ1

(ρ1)2+(h1)−1 ((L∗i )
1 − x2i(β2)

1)

and variance equal to

1− (ρ1)2

(ρ1)2+(h1)−1 if Yi ≥ 0

draw from normal distribution

truncated above at 0 with mean equal to

x1i(β1)
1 + ρ1

(ρ1)2+(h1)−1 ((L∗i )
1 − x2i(β2)

1)

and variance equal to

1− (ρ1)2

(ρ1)2+(h1)−1 if Yi < 0

step 5: repeat steps 1-4 S times.

We use the following algorithm for Specification 2 :

step 0: Set (L∗i )
0 = Li, H

0 = I (where I is an identity matrix);

step 1: draw β1 from distribution given in (2.9) conditional on Yi, (L∗i )
0, H0;

step 2: draw the precision matrixH1 from the distribution given in (2.11) conditional

on Yi, (L∗i )
0, β1, then invert it to obtain (Σ)1;

step 3: draw (L∗i )
1 conditional on Yi, H

1 and β1 as:
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(L∗i )
1 =



Li if Li ≥ 0

draw from normal distribution

truncated above at 0 with mean equal to

x2i(β2)
1 + (σ12)1

(σ11)1
[(Y ∗i )0 − x1i(β1)

1 + γ1Li]

and variance equal to(σ22)
1 − (σ2

12)1

(σ11)1
if Li < 0;

step 4: repeat steps 1-3 S times.

For each run of Specification 1 we set S0 = 50, 000 and S1 = 50, 000. For

each run of Specification 2 we set S0 = 10, 000 and S1 = 50, 000. The reason for this

difference is that our preliminary Monte Carlo tests showed that it takes longer for

parameters to converge to their true distribution if the dependent variable in equation

1 is dichotomous (implying the necessity to simulate the underlying latent variable).

We specify proper but sufficiently diffuse priors in all cases. For both specifications,

the prior distribution of β is given by

β ∼ N(0k1+k2+1, 100 ∗ Ik1+k2+1),

where Ik1+k2+1 is the (k1 + k2 + 1)× (k1 + k2 + 1) identity matrix. We assume the

following Wishart prior for the precision matrix H in the Specification 2 :

H ∼ W (

 1 0

0 1

 , 3).

We choose the following priors for ρ and h in the Specification 1 :

ρ ∼ N (0, 100)

h ∼ G (2, 5) .
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We performed some diagnostics of the Markov Chains used in this paper. The

post-burn-in first-order autocorrelation coefficient for the covariance parameter was

about 0.91 and the autocorrelation for γ was around 0.87. Although both of them

are fairly high, the large number of post-burn-in replications (50,000) insures that

the sampler covers the posterior distribution sufficiently well (it takes less than 50

iterations for the effects of previous shocks to disappear). Gelman-Rubin statistics

were 1.021 for γ and 1.011 for the covariance parameter in the Specification 1. The

values of Gelman-Rubin statistics in the Specification 2 were 1.005 for γ and 1.01

for the covariance parameter. These were obtained by running the respective Gibbs

sampler 50 times with overdispersed starting values of the parameters of the model

(10 values were chosen manually to insure that extreme values were covered, the

remaining 40 runs were started at values drawn from a normal distribution centered

at zero with a very large variance). These values are within the usual 1.2 cut-off value

suggesting that the samplers converged well.

2.3.3 Identification

The system of equations (2.1), (2.2) is non-parametrically unidentified. Tech-

nically, the identification can be achieved by using a non-linear transformation from

L∗i to Li, which we do by employing a censored version of the underlying latent index.

Nevertheless, it has long been noted in the literature that it is preferable to achieve

identification through exclusion restrictions. Finding appropriate instruments for the

effect of capital structure on performance, however, has proved to be quite difficult.
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As we already mentioned, there are only a few papers recognizing potential endo-

geneity of capital structure. Bitler, Moskowitz, and Vissing-Jorgensen (2005) use the

following to instrument for the effect of capital structure on effort (which is assumed

to be related to performance): (1) a dummy for whether the business was inherited

or given to the present owner, (2) a dummy for whether the business was started

by the present owner. The omitted category in their analysis consists of those en-

trepreneurs who bought their current business. In addition, Bitler, Moskowitz, and

Vissing-Jorgensen (2005) use the initial investment by entrepreneur as an instrument.

Since we do not model effort in our specification, we have to justify the use of similar

instruments in our model. It is arguable that all three are fairly weak instruments.

The way in which the business was acquired may tell a lot about the (latent) type

of entrepreneur, which in turn may play an important role in determining whether a

start-up will be successful. The size of initial investment can be linked to the per-

ception by the owner of the risk involved, which in turn may affect her effort and,

thus, performance. We have data on whether the business start-up was inherited or

started up by the entrepreneur herself. We, therefore, include a dummy for whether

an entrepreneur started the business herself. The omitted category includes those

who inherited their businesses, were brought in by other owners, promoted, or pur-

chased it. We found that the initial capital investment is a very strong predictor of

both performance and our measures of capital structure.

We propose several new instruments for the effect of capital structure on per-

formance. These variables are related to the access to credit by small businesses. We
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argue that the differences in the ability of small businesses to obtain bank loans affect

their capital structure decisions. At the same time, access to credit should not affect

performance directly.

Our first instrument is the homestead exemption amount (the value of housing

equity that a person can keep in case she declares bankruptcy) for the state where

the business is located as an instrument in the capital structure equation. Berkowitz

and White (2004) study the effect of state bankruptcy laws on small firms’ access to

credit. They find that in states with high homestead exemptions, small businesses

(both non-corporate and incorporated) are more likely to be credit rationed and face

higher interest rates. Following Berkowitz and White (2004), for those states with

unlimited homestead exemption we assign the highest observed homestead exemption

level, and we include a dummy variable taking the value 1 for these states.11 We

also include the Herfindahl index of the concentration of banking industry for the

state of each firm’s location.12 This variable measures the competitiveness of the

banking industry in each state. In addition to these two supply-side instruments, we

11In 1985, the year of the first interview, eight states had unlimited homestead exemption:
Arkansas, Florida, Iowa, Kansas, Minnesota, Oklahoma, South Dakota, and Texas. The
highest homestead examption was $90,000 in Nevada.

12Herfindahl index is calculated as a sum of squared market shares of each institution
in the state. Here we have to note that it is possible to define an institution as any type
of establishment – branch or main office. Alternatively, we can count each bank holding
corporation as an institution. The Federal Deposit Insurance Corporation (FDIC) routinely
collects data on all lending institutions (branches and main offices). However, the data on
these is only available to us starting from 1992, which is too long of a period after the
first interview year, 1985. We do have data on the assets of all banks in 1985 grouped by
bank. Therefore, our Herfindahl index is based on assets of each bank and not counting
each branch as a separate institution.
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include the median debt-to-assets ratio of firms in each industry and state to account

for dependence of small firms in each industry on bank loans.13 This demand-side

variable is introduced to control for “standard” leverage levels in each industry/state.

Cetorelli and Strahan (2004) use this variable to study the effect of competition in the

banking sector on market structure of other sectors. It is, however, possible to argue

that different industries in different states may also differ in their inherent ability to

survive and succeed. We address this problem by including the change in number of

firms in each industry/state from 1985 (year of the first interview) to 1987 (year of

the last interview) in the performance equation. This variable should control for the

average ability to survive in each industry/state over the sample period.

2.4 Data

The primary data source used in this paper is the national survey of business

start-up firms called New Business in America: The Firms and Their Owners. This

survey was first fielded in 1985 by the National Federation of Independent Business

(NFIB). There were two more waves fielded in 1986 and 1987, respectively. The

sample is drawn from a national sample of new business owners that were members

of the NFIB. Given that there does not exist a benchmark national sample of new

businesses, this survey arguably provides close coverage to a nationally representative

population of new businesses. Moreover, the characteristics of small businesses based

on the NFIB survey closely match other business surveys (that include new and old

13We use the first two digits of the Standard Industrial Classification (SIC) code to define
industry.
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firms).14 The survey has some very attractive features, which make it particularly

suitable for our research. First, it targets new businesses – the majority of the firms

in the sample are younger than two years. We restrict our sample to firms that were

created since January 1983. The average firm age is just above 14 months. Other

major data sets involving small businesses have considerably “older” samples.15 We

hypothesize that in small new businesses the informational problems we study are

especially pronounced. In addition, survivorship bias becomes an important con-

sideration in any survey of mature businesses (which survived until the day of the

survey). Second, the survey is longitudinal. Although the response rate is greatly

reduced by the third (and final) survey year, it still allows us to study the perfor-

mance of new start-ups within the next three years after the first wave was fielded.

Third, the survey collects an array of important information related to the personal

characteristics of entrepreneurs themselves. It has been noted in the literature that

these characteristics are important in determining both financial structure and per-

formance of business start-ups (Cassar (2004)). Last, the survey contains state and

industry identifiers, which allows easy matching to other ancillary data sets. The

survey, however, has several drawbacks. Probably the biggest one has to do with the

fact that the individual item non-response rate is quite high, which makes it costly

for us to include large numbers of controls in our equations. Moreover, it does not

contain direct (from balance sheets) measures of leverage and outside financing. In-

14Cooper, Dunkelberg, Woo, and Dennis (1990).

15The average age of a firm sampled by the National Survey of Small Business Finances
(NSSBF) is equal to 13.4 years (Bitler, Moskowitz, and Vissing-Jorgensen (2005)).
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stead, we have information on the percentage of total capital invested prior to the

first sale coming from different sources, including bank loans and outside investors.

We now describe the ancillary data sets used in this paper. The information on

the change of the number of institutions by state/industry over the period 1985-1987

was obtained from the U.S. Census Bureau’s County Business Patterns data set.16 We

follow Cooper, Dunkelberg, Woo, and Dennis (1990) to control for general economic

activity in the states by including the change in unemployment rates by state over the

period 1985-1987 as an additional control variable in the performance equation. The

data were obtained from the Bureau of Labor Statistics.17 The median debt-to-assets

ratio in each industry/state were computed using the Federal Reserve’s National

Survey of Small Business Finances (NSSBF).18 This data set was collected in 1987.

Ideally, we would want to have this information for the year 1985. However, the 1987

wave of this survey is the closest match available. Dependence on external financing

is not likely to change very much over the two-year period. The Herfindahl index

reflecting the banking concentration in each state was computed using the Report

of Condition and Income data available at the Chicago Federal Reserve Bank’s web-

site.19 The data contain information on all banks regulated by the Federal Reserve

16The data set itself is also available in easy-to-download electronic form at the
University of Virginia Library’s web-page: http://fisher.lib.virginia.edu/collections/stats/
cbp/state.html.

17Available on the web at: http://www.bls.gov/lau/home.htm.

18The data set is available on the web at: http://www.federalreserve.gov/pubs/oss/oss3/
nssbf87/nssbf87home.html.

19http://www.chicagofed.org/economic research and data/commercial bank data.cfm
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System, FDIC, and the Comptroller of the Currency. The market share of each bank

was calculated based on total assets of this bank divided by total assets of all banks

in the state. Finally, information on the bankruptcy homestead exemptions that were

in effect in 1985 were obtained from Kosel (1985).

It should be noted that despite a significant non-response rate by the third

wave of the survey, we have information on which firms survived, which is generally

available whether or not the respondent actually supplied information in the third

wave (1987).

Thus, we are able to use the full sample when analyzing survival. The sample

sizes used to explain change in total employment and sales per worker in the last

survey year are substantially smaller. Additionally, we lose a number of observa-

tions when evaluating the effects of different forms of outside financing compared to

inside equity (because some businesses were started using only outside financing).

After deleting all observations with missing data we arrive at the sample size of 2,820

businesses for analysis of survival (the sample size falls to 2,487 for specifications

with ratios of outside financing to inside equity). Similarly, we have 1,522 (1,342)

businesses in employment change specifications and 1,489 (1,310) businesses in sales

per employee specifications. The samples for employment growth and sales per em-

ployee specifications include businesses that responded to the respective questions in

the third interview and also failed businesses (we assign zero values of employment

growth and sales per employee variables to such firms). Tables 2.1 and 2.2 list the

variables (most of variables are based on responses in the first interview) used in
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Table 2.1: Variable Definitions and Descriptive Statistics

Variable Description Mean St.dev. Min Max
outjob4 Devotes full-time to the business: 1-no

outside employment, 0-any outside job
0.843 0.364 0 1

start1 Form of entry: 1- started it, 0-took over
existing firm

0.659 0.474 0 1

age1 Age when became principal
owner/manager

36.08 9.45 0 68

moved1 Moved residence to go into business: 1-
moved, 0-didn’t move

0.208 0.406 0 1

partners Number of full-time business partners 0.418 0.796 0 8
managexp Any supervisory/managerial experience:

1- yes, 0-no
0.782 0.413 0 1

firequit Was fired/quit without specific plans: 1-
yes, 0-no

0.170 0.376 0 1

diffprod Product is very different from previous
job: 1- yes, 0-no

0.376 0.485 0 1

parenown Parents owned a business: 1- yes, 0-no 0.443 0.497 0 1
educlev Highest level of education: 1- less high

school, 9-advanced degree
4.34 1.72 1 9

totjobs The total number of full-time jobs held
prior to business formation

4.48 4.25 0 99

bs11 Percentage of business strategy ”lower
prices”

11.82 16.85 0 100

bs21 Percentage of business strategy ”better
service”

29.55 21.37 0 100

bs61 Percentage of business strategy ”target
missed/poorly served customers”

7.39 11.87 0 80

opercont Strongly agree(1) to strongly disagree(5)
with ”business operating controls in writ-
ing”

2.73 1.12 1 5

sex Owner’s sex: 1-female, 0-male 0.196 0.397 0 1
race Owner’s race: 1-racial minority, 0-not a

minority
0.058 0.233 0 1

capinv Total capital invested prior to the first
sale, categorical: 1− ≤ $5, 000, 8− ≥
$500, 000

3.38 1.70 1 8
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Table 2.2: Other Variable Definitions and Descriptive Statistics

Variable Description Mean St.dev. Min Max
invest Percentage of capital from outside

investors (not family or friends) and
investment companies (/100)

4.70 17.74 0 100

loans Percentage of capital from bank and
government loans (/100)

31.78 38.44 0 100

outside Percentage of capital from both
loans and outside investors (/100)

36.48 39.46 0 100

oddsyr The self-perceived chances of suc-
cess, categorical: 0-no chance, 10-
certain success

8.15 2.04 0 10

survive Survived: 1-yes, 0-no 0.783 0.412 0 1
homestead Homestead exemption in the state,

in $1,000
37.10 34.48 0 90

h unlimited 1-Unlimited homestead exemption,
0-otherwise

0.268 0.443 0 1

unemp change Change (difference) in unemploy-
ment in state over period 1985 to
1987

-0.736 1.20 -2.6 1.7

HH Herfindahl index in the state 725.6 697.9 65.8 3243.7
est change Change in the number of establish-

ments by state/SIC code from 1985
to 1987

0.101 0.092 -0.388 0.671

debt 2 assets Median debt-to-assets ratio for the
SIC code

0.245 0.099 0.055 0.841

agef Age of the firm, in months 14.4 6.8 1 29
changemp Ratio of total employment in the

firm in 1987 to total employment in
1985

1.201 6.568 0 176.7

lgl form1 2 1-if partnership, 0-otherwise (pro-
prietorship – omitted category)

0.113 0.316 0 1

lgl form1 3 1-if corporation, 0-otherwise (pro-
prietorship – omitted category)

0.320 0.467 0 1

sales-per-emp Sales per Employee in Year 3 (in
thousands)

.083 .511 0 12.92

loans2inside Ratio of capital from bank and gov-
ernment loans to inside equity

1.665 5.912 0 99.00

invest2inside Ratio of capital from outside indi-
vidual investors to inside equity

.157 .985 0 19

outside2inside Ratio of capital from loans and out-
side investors to inside equity

1.822 5.972 0 99.00
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this study along with a brief description and summary statistics based on the largest

available sample.

2.5 Results

Tables 2.3-2.5 summarize our findings. As shown in Table 2.3, none of the

capital structure variables affect survival when the capital structure measures are as-

sumed to be exogenous. However, when we control for endogeneity, the outside equity

has significant negative effect on the survival probability. One possible explanation

of the estimated negative effect is that external equity induces entrepreneurs to exert

lower effort, which in turn leads to lower survival chances (Hypothesis 2). Neither

debt nor our measure of overall external finance had any statistically significant effect

on survival. The results of our employment growth specifications are shown in Table

2.4. The outside equity was estimated to have a positive statistically significant effect

on the employment growth. The positive relationship between the outside equity and

the employment growth is consistent with Hypothesis 3, which predicts that outside

equity is preferred to debt because it provides better risk incentives and monitoring.

Outside equity financing does not have any effect on employment growth if we do

not control for endogeneity of financial structure. In contrast, the effects of debt and

total outside financing disappear when we control for endogeneity. This is consistent

with the findings of Dessi and Robertson (2003). They show that after accounting

for capital structure endogeneity, debt does not affect the performance. They suggest

that this is consistent with the trade-off theory of capital structure: If the level of
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Table 2.3: Model I Results Summary: Survival

Treatment Coefficient
Capital Structure Measures Exogenous Endogenous
Loans 0.030 -0.054

(0.074) (0.182)
Outside Equity -0.183 -0.957 ***

(0.156) (0.356)
External F inance -0.011 -0.054

(0.072) (0.272)
Loans/Inside Equity 0.005 0.001

(0.006) (0.010)
Outside Equity/Inside Equity -0.009 -0.050

(0.029) (0.043)
External F inance/Inside Equity 0.004 -0.001

(0.005) (0.010)
Note: The sample size is 2,820 for the first three capital
structure measures and 2,487 for the last three. Standard
errors are displayed in parentheses below coefficients; ∗∗∗ -
significant at 1%, ∗∗ - significant at 5%.

debt is chosen optimally it should not influence the performance.

The selection effect of outside equity was also statistically significant. Firms

with better growth expectations had significantly lower proportions of outside equity

to initial capital investments. This result is consistent with Hypothesis 1. Successful

entrepreneurs are less willing to share their returns with outside investors and prefer

less outside equity in their businesses. The results of our sales per employee speci-

fications are shown in Table 2.5. Neither of our capital structure measures had any

effect on this measure of performance without controlling for endogeneity of financing

decisions. However, all six financial structure variables have positive and statistically
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Table 2.4: Model II Results Summary: Change in Employ-
ment

Treatment Coefficient
Capital Structure Measures Exogenous Endogenous
Loans 1.636 *** 1.560

(0.609) (1.021)
Outside Equity -0.842 10.356 ***

(1.248) (0.704)
External F inance 1.352 ** 1.297

(0.590) (1.057)
Loans/Inside Equity 0.193 *** 0.183 ***

(0.036) (0.052)
Outside Equity/Inside Equity -0.090 1.728 ***

(0.180) (0.122)
External F inance/Inside Equity 0.185 *** 0.183 ***

(0.035) (0.054)
Note: The sample size is 1,522 for the first three capital
structure measures and 1,342 for the last three. Standard
errors are displayed in parentheses below coefficients; ∗∗∗ -
significant at 1%, ∗∗ - significant at 5%.

significant effects on sales when we allow for endogeneity.

When we use the various ratios of outside financing to inside financing, we

find that the positive relationship between the performance and those measures of

capital structure run contrary to the predictions of private information models. These

models imply that the higher the proportion of inside capital, the more aligned are

the incentives for the owner. This should lead to a greater performance. However, the

results in Tables 2.4 and 2.5 suggest the opposite. The results signify that the young

firms experience capital constraints. The firms that have access to outside financing

relax these constraints. That is why we observe that firms with outside financing are
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more likely to expand in terms of employment and have higher sales per employee

(which approximates marginal product of labor). The consistent result emerging

Table 2.5: Model III Results Summary: Sales/Employee

Treatment Coefficient
Capital Structure Measures Exogenous Endogenous
Loans -0.057 1.387 ***

(0.049) (0.056)
Outside Equity -0.025 1.148 ***

(0.109) (0.077)
External F inance -0.059 1.451 ***

(0.048) (0.056)
Loans/Inside Equity -0.002 0.075 ***

(0.003) (0.004)
Outside Equity/Inside Equity -0.002 0.142 ***

(0.015) (0.012)
External F inance/Inside Equity -0.002 0.084 ***

(0.003) (0.004)
Note: The sample size is 1,489 for the first three capital
structure measures and 1,310 for the last three. Standard
errors are displayed in parentheses below coefficients; ∗∗∗ -
significant at 1%, ∗∗ - significant at 5%.

from Tables 2.3-2.5 is that outside equity has both selection and incentive effects

on performance of business start-ups. At the same time the results differ depending

on which performance measure we use. It is possible to speculate that risk-sharing

and profit-sharing concerns induce entrepreneurs to select different optimal capital

structures. It may be that entrepreneurs care more about outside equity when it

comes to survival as opposed to growth. This might explain why many new firms
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first acquire outside equity and later shift into debt financing.

Our results also suggest that private information about survival chances plays

an important role in the outside equity decisions. Business start-ups with higher

survival chances had higher levels of outside equity financing relative to the overall

amount of capital invested. This result is not consistent with Hypothesis 1, which

predicts that firms with better prospects would prefer outside debt because it does

not dilute ownership. This suggests that outside investors might be able to more

successfully overcome informational problems associated with business start-ups. At

the same time, it is likely that survival is a crude measure of performance, which does

not properly capture the underlying propensity for long-term success.

There is very little theoretical research dealing with incentive structures facing

business start-ups as opposed to large publicly traded firms. This study suggests

directions for future research needed to fully understand the differences among various

measures of performance and how they are influenced by capital structure choices in

entrepreneurial firms. In particular, it is necessary to explicitly differentiate between

risk-sharing and profit-sharing incentives of entrepreneurs. Given the nature of small

business start-ups, which rarely rely on any outside capital, more work is needed to

differentiate between questions related to whether to use any outside capital versus

questions related to what kind of outside capital to use.
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2.6 Concluding Remarks

This paper is the first to examine the relationship between capital structure

and performance of new business start-ups in the presence of imperfect information.

We explicitly control for endogeneity when estimating the effects of capital struc-

ture on performance. We find that controlling for endogeneity leads to qualitatively

different results.

Our results suggest that debt has an effect only on some measures of per-

formance of business start-ups. In contrast, both selection and incentive effects are

present in the case of outside equity, indicating that outside investors are able to both

overcome informational asymmetries associated with business start-ups and provide

better incentives for performance.

Our results differ depending on which measure of performance we use. In par-

ticular, we find that firms with higher levels of external financing tend to experience

higher employment growth and sales per employee. This finding is inconsistent with

the theoretical predictions from asymmetric information models. Our results suggest

that most of the the young firms experience significant capital constraints. The firms

that have access to outside financing (and are able to relax these constraints) are

more likely to expand in terms of employment and have higher sales per employee.

These findings also suggest that providers of external finances have more experience

with picking the firms that are likely to perform well. As a result, the firms with

more outside finance also tend to perform better.
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APPENDIX

POSTERIOR DISTRIBUTIONS

Conditional on the parameters of the model, the likelihood can be expressed

as:

p (y|β,Ω) = (2π)−
2n
2 |In ⊗H−1|−

1
2 exp (−1

2
(y −Xβ)′(In ⊗H−1)−1(y −Xβ))

∝ (|In|2|H−1|n)−
1
2 exp (−1

2
(y −Xβ)′(In ⊗H)(y −Xβ))

∝ |H|
n
2 exp (−1

2

n∑
i=1

η′iHηi)

∝ |H|
n
2 exp (−1

2

n∑
i=1

(yi −Xiβ)′H(yi −Xiβ))

∝ |H|
n
2 exp (−1

2
tr[

n∑
i=1

(yi −Xiβ)′H(yi −Xiβ)]).

Since we specify the independent priors for β and H−1, the conditional poste-

rior for β is proportional to:

p
(
β|data,H−1

)
∝ exp (−1

2
[
n∑
i=1

(yi −Xiβ)′H(yi −Xiβ) + (β − β0)
′V −1

0 (β − β0)])

∝ exp (−1

2
[
n∑
i=1

(y′iHyi − 2β′X ′iHyi + β′X ′iHXiβ)

+ (β′V −1
0 β − 2β′V −1

0 β0 + β′0V
−1
0 β0)])

∝ exp (−1

2
[β′(

n∑
i=1

X ′iHXi + V −1
0 )β − 2β′(

n∑
i=1

X ′iHyi + V −1
0 β0)])

∝ exp (−1

2
[β′V −1

1 β − 2β′V −1
1 β1])

∝ exp (−1

2
[β′V −1

1 β − 2β′V −1
1 β1 + β′1V

−1
1 β1 − β′1V −1

1 β1])

∝ exp (−1

2
[(β − β1)

′V −1
1 (β − β1)]).
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The conditional posterior distribution of β is also normal:

p (β|data,H) = N (β1, V1)

V1 = (
n∑
i=1

X ′iHXi + V −1
0 )−1

β1 = V1(
n∑
i=1

X ′iHyi + V −1
0 β0).

When deriving the posterior of H−1, we first consider continuous Yi. Indepen-

dence of prior distributions leads to the following conditional posterior distribution

of H:

p (H) ∝ |H|
n
2 exp (−1

2
tr[

n∑
i=1

(yi −Xiβ)′H(yi −Xiβ)])×

|H|
ν0−2−1

2 exp (−1

2
tr(H−1

0 H))

∝ |H|
ν0−n−2−1

2 exp (−1

2
tr[

n∑
i=1

(yi −Xiβ)(yi −Xiβ)′H +H−1
0 H]).

Therefore, the conditional posterior distribution of H is also Wishart:

p (H|data, β) = W (ν1, H1)

ν1 = ν0 + n

H1 =

(
n∑
i=1

(yi −Xiβ)(yi −Xiβ)′ +H−1
0

)−1

.

The other case that we will consider is of a binary dependent variable Yi. The

conditional posterior of ρ is given by:
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p (ρ|data, β, h) ∝ exp (−1

2

n∑
i=1

(η2
1ihρ

2 − 2η1iη2ihρ)) exp (− 1

2Vρ0
(ρ2 − 2ρρ0))

∝ exp (−1

2
(ρ2(V −1

ρ0 + h

n∑
i=1

η2
1i))− 2ρ(ρ0V

−1
ρ0 + h

n∑
i=1

η1iη2i))

∝ exp (− 1

2Vρ1
(ρ− ρ1)

2).

Thus, the conditional posterior of ρ is normal:

p (ρ|data, β, h) = N (ρ1, Vρ1)

Vρ1 = (V −1
ρ0 + h

n∑
i=1

η2
1i)
−1

ρ1 = Vρ1(ρ0V
−1
ρ0 + h

n∑
i=1

η1iη2i).

The conditional posterior of h is given by:

p (h|data, β, ρ) ∝ h
ν0−2

2 exp (−hν0

2h0

)h
n
2 exp (−1

2

n∑
i=1

(η2
1i

(
1 + hρ2

)
− 2η1iη2ihρ+ η2

2ih))

∝ h
ν0+n−2

2 exp (−h[
ν0

2h0

+
1

2

n∑
i=1

(η2
1iρ

2 − 2η1iη2iρ+ η2
2i)])

∝ h
ν0+n−2

2 exp (−h(ν0 + n)

2
[

ν0

h0(ν0 + n)
+

∑n
i=1 (η1iρ− η2i)

2

(ν0 + n)
])

∝ h
ν1−2

2 exp (−hν1

2h1

).

Thus, the conditional posterior of h is given by:

p (h|data, β, ρ) = G (ν1, h1)

ν1 = ν0 + n

h1 = [
ν0

h0(ν0 + n)
+

∑n
i=1 (η1iρ− η2i)

2

(ν0 + n)
]−1.
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The tables below present the posterior distributions of parameters.The first columns

are the parameter names, the second column and third columns are the mean and

standard deviations for exogenous capital structure model, and the last four columns

are the results for the endogenous capital model.
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Table A.1: Model I: Survival - Loans

Survival Survival Loans
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.741 *** 0.227 -0.739 *** 0.241 0.061 0.131
age1 0.010 *** 0.003 0.010 *** 0.003 -0.006 *** 0.002
totjobs -0.023 *** 0.006 -0.023 *** 0.006 -0.007 * 0.004
bs11 -0.004 ** 0.002 -0.004 ** 0.002 0.000 0.001
bs21 0.003 * 0.001 0.003 * 0.001 0.000 0.001
bs61 -0.005 ** 0.002 -0.005 ** 0.002 0.000 0.001
race -0.356 *** 0.108 -0.352 *** 0.108 -0.061 0.064
outjob4 0.135 * 0.074 0.134 * 0.074 -0.027 0.040
unemp− change -0.077 *** 0.023 -0.076 *** 0.023
est− change 0.415 0.317 0.419 0.316
sex -0.197 *** 0.069 -0.198 *** 0.070 0.137 *** 0.037
moved1 -0.001 0.070 0.001 0.072 -0.134 *** 0.037
partners 0.032 0.038 0.032 0.037 -0.028 0.020
managexp -0.050 0.069 -0.049 0.070 -0.058 0.036
firequit -0.056 0.073 -0.055 0.073 -0.061 0.040
diffprod -0.266 *** 0.059 -0.264 *** 0.058 -0.017 0.031
parenown 0.079 0.056 0.080 0.056 -0.051 * 0.029
educlev 0.016 0.017 0.016 0.017 -0.003 0.009
opercont 0.075 *** 0.025 0.074 *** 0.025 0.009 0.013
capinv 0.055 *** 0.018 0.054 ** 0.024 0.132 *** 0.010
oddsyr 0.086 *** 0.013 0.086 *** 0.013 0.001 0.007
agef 0.009 ** 0.004 0.009 ** 0.004 0.001 0.002
lgl − form1− 2 -0.068 0.090 -0.068 0.090 -0.055 0.049
lgl − form1− 3 -0.072 0.068 -0.070 0.072 -0.198 *** 0.036
homestead -0.003 ** 0.001
hunlimited 0.285 *** 0.098
HH 0.000 ** 0.000
debt2assets 0.014 0.151
start1 -0.048 0.031
Loans 0.030 0.074 0.048 0.263
Sigma -0.005 0.073
Note: The sample size is 2,820; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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Table A.2: Model I: Survival - Invest

Survival Survival Invest
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.715 *** 0.225 -0.662 *** 0.226 -1.706 *** 0.367
age1 0.010 *** 0.003 0.010 *** 0.003 -0.003 0.004
totjobs -0.023 *** 0.006 -0.022 *** 0.006 0.011 0.008
bs11 -0.004 *** 0.002 -0.004 *** 0.002 -0.005 * 0.002
bs21 0.003 * 0.001 0.002 * 0.001 -0.002 0.002
bs61 -0.005 ** 0.002 -0.005 ** 0.002 0.002 0.003
race -0.353 *** 0.108 -0.340 *** 0.107 0.215 0.152
outjob4 0.135 * 0.073 0.133 * 0.073 -0.003 0.111
unemp− change -0.076 *** 0.023 -0.075 *** 0.023
est− change 0.407 0.319 0.390 0.314
sex -0.198 *** 0.069 -0.204 *** 0.068 -0.177 0.111
moved1 -0.003 0.070 0.001 0.070 0.085 0.093
partners 0.038 0.038 0.065 * 0.039 0.299 *** 0.042
managexp -0.051 0.069 -0.051 0.068 0.039 0.101
firequit -0.059 0.073 -0.063 0.073 -0.119 0.114
diffprod -0.269 *** 0.058 -0.281 *** 0.058 -0.255 *** 0.088
parenown 0.076 0.056 0.068 0.056 -0.157 ** 0.078
educlev 0.017 0.017 0.016 0.017 0.010 0.023
opercont 0.073 *** 0.025 0.067 *** 0.025 -0.083 ** 0.035
capinv 0.058 *** 0.018 0.064 *** 0.018 0.103 *** 0.024
oddsyr 0.086 *** 0.013 0.083 *** 0.013 -0.023 0.019
agef 0.009 ** 0.004 0.008 * 0.004 -0.008 0.006
lgl − form1− 2 -0.064 0.092 -0.047 0.091 0.400 *** 0.123
lgl − form1− 3 -0.068 0.068 -0.045 0.068 0.433 *** 0.093
homestead -0.001 0.003
hunlimited 0.144 0.253
HH 0.000 0.000
debt2assets 0.285 0.384
start1 0.159 * 0.086
Invest -0.183 0.156 -0.981 *** 0.342
Sigma 0.303 *** 0.117
Note: The sample size is 2,820; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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Table A.3: Model I: Survival - Outside

Survival Survival Outside
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.725 *** 0.226 -0.705 *** 0.248 0.164 0.118
age1 0.010 *** 0.003 0.010 *** 0.003 -0.005 *** 0.001
totjobs -0.023 *** 0.006 -0.023 *** 0.006 -0.004 0.003
bs11 -0.004 ** 0.002 -0.004 ** 0.002 -0.001 0.001
bs21 0.003 * 0.001 0.003 * 0.001 0.000 0.001
bs61 -0.005 ** 0.002 -0.005 ** 0.002 0.000 0.001
race -0.358 *** 0.108 -0.355 *** 0.109 -0.021 0.057
outjob4 0.135 * 0.073 0.133 * 0.074 -0.025 0.036
unemp− change -0.076 *** 0.023 -0.075 *** 0.024
est− change 0.410 0.318 0.402 0.315
sex -0.194 *** 0.068 -0.191 *** 0.070 0.100 *** 0.034
moved1 -0.003 0.070 -0.006 0.072 -0.112 *** 0.033
partners 0.033 0.038 0.032 0.038 0.047 *** 0.017
managexp -0.052 0.069 -0.053 0.069 -0.047 0.033
firequit -0.057 0.073 -0.059 0.074 -0.072 ** 0.036
diffprod -0.265 *** 0.058 -0.266 *** 0.059 -0.044 0.028
parenown 0.078 0.056 0.077 0.057 -0.076 *** 0.026
educlev 0.016 0.017 0.016 0.017 -0.002 0.008
opercont 0.075 *** 0.025 0.074 *** 0.025 -0.006 0.012
capinv 0.058 *** 0.019 0.060 ** 0.025 0.128 *** 0.009
oddsyr 0.086 *** 0.013 0.086 *** 0.013 -0.002 0.006
agef 0.009 ** 0.004 0.009 ** 0.004 0.000 0.002
lgl − form1− 2 -0.070 0.091 -0.068 0.091 0.006 0.044
lgl − form1− 3 -0.077 0.068 -0.079 0.069 -0.113 *** 0.032
homestead -0.002 ** 0.001
hunlimited 0.276 *** 0.088
HH 0.000 * 0.000
debt2assets 0.046 0.137
start1 -0.022 0.028
Outside -0.011 0.072 -0.051 0.265
Sigma 0.011 0.069
Note: The sample size is 2,820; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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Table A.4: Model I: Survival - Loans/Inside

Survival Survival Loans/Inside
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.710 *** 0.241 -0.704 *** 0.239 -5.156 ** 2.133
age1 0.010 *** 0.003 0.010 *** 0.003 -0.091 *** 0.027
totjobs -0.022 *** 0.006 -0.021 *** 0.006 -0.065 0.062
bs11 -0.004 ** 0.002 -0.004 ** 0.002 -0.015 0.015
bs21 0.002 0.001 0.002 0.001 0.002 0.012
bs61 -0.003 0.002 -0.003 0.002 -0.010 0.022
race -0.343 *** 0.115 -0.343 *** 0.116 -0.070 1.070
outjob4 0.139 * 0.078 0.140 * 0.079 0.057 0.676
unemp− change -0.061 ** 0.025 -0.061 ** 0.025
est− change 0.530 0.340 0.536 0.338
sex -0.216 *** 0.074 -0.214 *** 0.074 1.278 ** 0.636
moved1 0.009 0.074 0.008 0.075 -2.075 *** 0.614
partners 0.081 * 0.043 0.082 * 0.042 -0.307 0.336
managexp -0.101 0.075 -0.107 0.075 -1.701 *** 0.594
firequit -0.056 0.077 -0.058 0.078 -1.046 0.674
diffprod -0.242 *** 0.063 -0.242 *** 0.063 -0.075 0.522
parenown 0.094 0.060 0.094 0.059 0.032 0.487
educlev 0.019 0.018 0.019 0.018 0.000 0.146
opercont 0.077 *** 0.027 0.077 *** 0.026 0.104 0.220
capinv 0.059 *** 0.020 0.060 *** 0.020 1.870 *** 0.168
oddsyr 0.086 *** 0.014 0.086 *** 0.014 0.096 0.121
agef 0.009 ** 0.004 0.009 ** 0.004 0.025 0.036
lgl − form1− 2 -0.104 0.099 -0.101 0.099 0.158 0.841
lgl − form1− 3 -0.094 0.072 -0.094 0.072 -2.138 *** 0.598
homestead -0.032 0.020
hunlimited 3.820 ** 1.622
HH 0.000 0.000
debt2assets -0.107 2.509
start1 -0.215 0.528
Loans/Inside 0.005 0.006 0.001 0.010
Sigma 0.280 0.634
Note: The sample size is 2,487; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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Table A.5: Model I: Survival - Invest/Inside

Survival Survival Invest/Inside
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.705 *** 0.241 -0.688 *** 0.239 -8.928 *** 2.128
age1 0.010 *** 0.003 0.010 *** 0.003 -0.018 0.026
totjobs -0.021 *** 0.006 -0.021 *** 0.006 0.061 0.050
bs11 -0.004 ** 0.002 -0.004 ** 0.002 -0.023 0.015
bs21 0.002 0.001 0.002 0.001 -0.012 0.012
bs61 -0.003 0.002 -0.003 0.002 0.013 0.019
race -0.342 *** 0.116 -0.342 *** 0.116 0.844 0.945
outjob4 0.142 * 0.079 0.140 * 0.079 -0.312 0.666
unemp− change -0.061 ** 0.025 -0.061 ** 0.025
est− change 0.532 0.340 0.530 0.337
sex -0.216 *** 0.074 -0.219 *** 0.074 -1.619 ** 0.736
moved1 0.007 0.075 0.007 0.075 0.384 0.573
partners 0.082 * 0.043 0.083 ** 0.042 1.484 *** 0.257
managexp -0.108 0.074 -0.110 0.075 -0.037 0.621
firequit -0.058 0.077 -0.059 0.077 -0.250 0.676
diffprod -0.241 *** 0.063 -0.244 *** 0.063 -0.886 * 0.526
parenown 0.093 0.060 0.089 0.060 -1.285 *** 0.490
educlev 0.019 0.018 0.019 0.018 0.016 0.142
opercont 0.077 *** 0.027 0.076 *** 0.027 -0.462 ** 0.217
capinv 0.062 *** 0.020 0.063 *** 0.019 0.637 *** 0.154
oddsyr 0.086 *** 0.014 0.085 *** 0.014 -0.149 0.115
agef 0.009 ** 0.004 0.009 ** 0.004 -0.021 0.035
lgl − form1− 2 -0.101 0.100 -0.095 0.099 2.002 *** 0.746
lgl − form1− 3 -0.094 0.072 -0.090 0.072 2.007 *** 0.563
homestead 0.002 0.018
hunlimited -0.166 1.486
HH 0.000 0.000
debt2assets 0.489 2.391
start1 0.769 0.536
Invest/Inside -0.009 0.029 -0.050 0.043
Sigma 0.636 0.513
Note: The sample size is 2,487; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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Table A.6: Model I: Survival - Outside/Inside

Survival Survival Outside/Inside
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.712 *** 0.239 -0.707 *** 0.240 -3.655 * 1.949
age1 0.010 *** 0.003 0.010 *** 0.003 -0.082 *** 0.025
totjobs -0.021 *** 0.006 -0.021 *** 0.006 -0.029 0.055
bs11 -0.004 ** 0.002 -0.004 ** 0.002 -0.019 0.013
bs21 0.002 0.001 0.002 0.001 0.001 0.011
bs61 -0.003 0.002 -0.003 0.002 -0.004 0.019
race -0.344 *** 0.117 -0.341 *** 0.116 0.194 0.959
outjob4 0.140 * 0.078 0.141 * 0.079 -0.068 0.618
unemp− change -0.061 ** 0.025 -0.061 ** 0.025
est− change 0.529 0.338 0.540 0.338
sex -0.214 *** 0.075 -0.214 *** 0.074 0.866 0.583
moved1 0.009 0.075 0.005 0.076 -1.843 *** 0.560
partners 0.081 * 0.042 0.081 * 0.043 0.367 0.291
managexp -0.101 0.074 -0.106 0.075 -1.501 *** 0.547
firequit -0.056 0.078 -0.058 0.077 -1.017 * 0.610
diffprod -0.241 *** 0.062 -0.241 *** 0.063 -0.188 0.476
parenown 0.094 0.059 0.094 0.059 -0.378 0.447
educlev 0.019 0.018 0.019 0.018 -0.009 0.133
opercont 0.077 *** 0.027 0.077 *** 0.027 -0.035 0.201
capinv 0.059 *** 0.020 0.061 *** 0.020 1.736 *** 0.150
oddsyr 0.086 *** 0.014 0.086 *** 0.014 0.057 0.110
agef 0.009 ** 0.004 0.009 ** 0.004 0.014 0.033
lgl − form1− 2 -0.105 0.100 -0.098 0.101 0.894 0.753
lgl − form1− 3 -0.093 0.072 -0.094 0.072 -1.250 ** 0.534
homestead -0.025 0.018
hunlimited 3.257 ** 1.466
HH 0.000 0.000
debt2assets -0.307 2.322
start1 -0.068 0.483
Outside/Inside 0.004 0.005 -0.001 0.010
Sigma 0.364 0.618
Note: The sample size is 2,487; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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Table A.7: Model II: Changemp - Loans

Changemp Changemp Loans
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.459 1.404 -0.452 1.414 -0.440 ** 0.188
age1 0.006 0.021 0.006 0.020 -0.001 0.002
totjobs -0.016 0.048 -0.016 0.048 -0.010 * 0.006
bs11 0.009 0.012 0.008 0.012 -0.001 0.001
bs21 -0.009 0.010 -0.009 0.010 0.001 0.001
bs61 -0.012 0.016 -0.012 0.016 0.001 0.002
race -0.608 0.763 -0.613 0.759 -0.040 0.089
outjob4 0.119 0.507 0.121 0.509 0.056 0.058
unemp− change 0.018 0.168 0.019 0.167
est− change 1.043 1.789 1.037 1.785
sex -0.495 0.495 -0.488 0.498 0.120 ** 0.055
moved1 -0.528 0.483 -0.529 0.487 -0.113 ** 0.054
partners 0.549 ** 0.264 0.549 ** 0.264 -0.017 0.029
managexp 0.320 0.489 0.319 0.491 -0.084 0.053
firequit 0.328 0.510 0.330 0.511 -0.020 0.058
diffprod -0.610 0.409 -0.616 0.407 0.001 0.045
parenown 0.099 0.386 0.094 0.385 -0.027 0.043
educlev -0.037 0.113 -0.037 0.113 -0.001 0.012
opercont 0.140 0.170 0.141 0.170 0.007 0.019
capinv 0.009 0.128 0.013 0.136 0.143 *** 0.015
oddsyr 0.112 0.092 0.112 0.092 0.007 0.010
agef 0.001 0.028 0.001 0.029 0.002 0.003
lgl − form1− 2 -0.511 0.643 -0.512 0.637 -0.142 * 0.073
lgl − form1− 3 0.189 0.456 0.181 0.462 -0.215 *** 0.052
homestead -0.003 0.002
hunlimited 0.275 * 0.148
HH 0.000 *** 0.000
debt2assets 0.068 0.231
start1 0.006 0.046
Loans 1.636 *** 0.609 1.560 1.021
Sigma 0.022 0.213
Note: The sample size is 1,522; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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Table A.8: Model II: Changemp - Invest

Changemp Changemp Invest
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.268 1.407 -1.054 1.423 -1.302 *** 0.483
age1 0.004 0.020 0.010 0.021 0.000 0.007
totjobs -0.018 0.048 -0.040 0.049 0.003 0.016
bs11 0.008 0.012 0.010 0.012 -0.004 0.004
bs21 -0.008 0.010 -0.005 0.010 0.002 0.003
bs61 -0.011 0.016 -0.013 0.016 0.007 0.005
race -0.661 0.763 -0.425 0.777 0.089 0.244
outjob4 0.150 0.507 0.229 0.521 -0.164 0.159
unemp− change 0.016 0.166 -0.045 0.112
est− change 0.776 1.795 0.744 1.220
sex -0.416 0.494 -0.313 0.509 -0.153 0.169
moved1 -0.580 0.483 -0.719 0.494 0.180 0.149
partners 0.551 ** 0.265 0.309 0.271 0.078 0.075
managexp 0.259 0.487 0.327 0.500 0.040 0.159
firequit 0.328 0.513 0.292 0.526 -0.178 0.170
diffprod -0.622 0.411 -0.461 0.420 0.151 0.129
parenown 0.061 0.384 0.212 0.395 -0.090 0.120
educlev -0.038 0.113 -0.024 0.116 0.018 0.035
opercont 0.142 0.171 0.219 0.175 -0.078 0.054
capinv 0.101 0.125 0.013 0.126 0.025 0.038
oddsyr 0.114 0.091 0.134 0.094 -0.032 0.029
agef 0.004 0.028 0.001 0.029 0.015 0.009
lgl − form1− 2 -0.521 0.642 -1.012 0.655 0.336 * 0.192
lgl − form1− 3 0.091 0.457 -0.169 0.467 0.103 0.142
homestead 0.002 0.003
hunlimited -0.159 0.238
HH 0.000 0.000
debt2assets 0.188 0.382
start1 0.156 * 0.085
Invest -0.842 1.248 10.356 *** 0.704
Sigma -12.348 *** 1.327
Note: The sample size is 1,522; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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Table A.9: Model II: Changemp - Outside

Changemp Changemp Outside
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.522 1.402 -0.522 1.404 -0.302 * 0.169
age1 0.006 0.020 0.006 0.020 -0.002 0.002
totjobs -0.019 0.048 -0.019 0.048 -0.003 0.005
bs11 0.009 0.012 0.009 0.012 -0.001 0.001
bs21 -0.008 0.010 -0.008 0.010 0.001 0.001
bs61 -0.012 0.016 -0.012 0.016 0.002 0.002
race -0.590 0.760 -0.587 0.760 -0.074 0.080
outjob4 0.132 0.509 0.136 0.509 0.027 0.052
unemp− change 0.016 0.167 0.016 0.168
est− change 0.990 1.793 0.993 1.793
sex -0.468 0.492 -0.462 0.498 0.085 * 0.050
moved1 -0.556 0.481 -0.558 0.482 -0.071 0.048
partners 0.518 * 0.265 0.518 * 0.265 0.035 0.026
managexp 0.318 0.486 0.315 0.489 -0.074 0.049
firequit 0.327 0.515 0.325 0.511 -0.017 0.052
diffprod -0.596 0.407 -0.592 0.411 -0.018 0.041
parenown 0.110 0.387 0.112 0.385 -0.057 0.039
educlev -0.035 0.113 -0.036 0.113 -0.003 0.011
opercont 0.152 0.170 0.151 0.170 -0.010 0.017
capinv 0.015 0.128 0.017 0.141 0.140 *** 0.013
oddsyr 0.115 0.092 0.115 0.092 0.001 0.009
agef 0.001 0.028 0.001 0.028 0.003 0.003
lgl − form1− 2 -0.583 0.640 -0.574 0.638 -0.020 0.065
lgl − form1− 3 0.132 0.458 0.136 0.461 -0.136 *** 0.046
homestead -0.002 0.002
hunlimited 0.235 * 0.134
HH 0.000 ** 0.000
debt2assets 0.164 0.210
start1 0.046 0.042
Outside 1.352 ** 0.590 1.297 1.057
Sigma 0.013 0.211
Note: The sample size is 1,522; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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Table A.10: Model II: Changemp - Loans/Inside

Changemp Changemp Loans/Inside
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.236 1.398 -0.210 1.400 -5.347 *** 2.015
age1 0.007 0.020 0.007 0.020 -0.038 0.033
totjobs -0.020 0.047 -0.020 0.047 -0.130 0.087
bs11 0.010 0.011 0.010 0.011 -0.020 0.018
bs21 -0.009 0.009 -0.009 0.010 0.008 0.015
bs61 -0.012 0.016 -0.012 0.016 0.003 0.026
race -0.588 0.753 -0.595 0.758 -0.737 1.207
outjob4 0.117 0.505 0.119 0.504 0.333 0.803
unemp− change 0.019 0.166 0.020 0.165
est− change 0.764 1.785 0.775 1.785
sex -0.448 0.491 -0.449 0.492 0.828 0.770
moved1 -0.454 0.479 -0.456 0.481 -1.927 ** 0.767
partners 0.548 ** 0.263 0.548 ** 0.262 -0.237 0.416
managexp 0.416 0.488 0.408 0.485 -1.686 ** 0.749
firequit 0.313 0.509 0.312 0.507 -0.206 0.821
diffprod -0.613 0.406 -0.619 0.406 -0.072 0.645
parenown 0.042 0.381 0.041 0.382 0.031 0.604
educlev -0.048 0.112 -0.049 0.112 -0.002 0.179
opercont 0.108 0.170 0.109 0.169 0.177 0.268
capinv 0.052 0.123 0.054 0.124 1.442 *** 0.208
oddsyr 0.093 0.091 0.092 0.091 0.142 0.146
agef 0.001 0.028 0.001 0.028 0.015 0.046
lgl − form1− 2 -0.807 0.638 -0.793 0.635 0.270 1.003
lgl − form1− 3 0.111 0.449 0.109 0.449 -2.027 *** 0.727
homestead -0.014 0.023
hunlimited 1.325 1.781
HH -0.001 *** 0.000
debt2assets 0.244 2.289
start1 -0.321 0.649
Loans/Inside 0.193 *** 0.036 0.183 *** 0.052
Sigma 0.787 2.583
Note: The sample size is 1,342; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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Table A.11: Model II: Changemp - Invest/Inside

Changemp Changemp Invest/Inside
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.271 1.411 -1.573 1.375 -2.538 ** 1.260
age1 0.004 0.021 0.017 0.021 -0.011 0.019
totjobs -0.020 0.048 -0.028 0.049 0.032 0.042
bs11 0.008 0.012 0.007 0.012 -0.014 0.011
bs21 -0.008 0.010 -0.007 0.010 0.003 0.009
bs61 -0.011 0.016 -0.011 0.017 0.019 0.014
race -0.663 0.759 -0.376 0.773 -0.011 0.693
outjob4 0.156 0.509 0.176 0.520 -0.550 0.455
unemp− change 0.015 0.168 -0.036 0.101
est− change 0.788 1.786 0.493 1.100
sex -0.419 0.498 -0.211 0.510 -0.332 0.466
moved1 -0.586 0.483 -0.706 0.499 0.591 0.432
partners 0.536 ** 0.266 0.440 0.273 0.177 0.224
managexp 0.248 0.488 0.485 0.502 -0.054 0.452
firequit 0.332 0.514 0.246 0.526 -0.390 0.482
diffprod -0.619 0.410 -0.464 0.423 0.247 0.373
parenown 0.065 0.384 0.262 0.399 -0.406 0.350
educlev -0.037 0.114 -0.009 0.117 0.024 0.101
opercont 0.144 0.172 0.216 0.176 -0.304 * 0.157
capinv 0.098 0.125 0.030 0.128 0.128 0.111
oddsyr 0.116 0.092 0.138 0.094 -0.106 0.083
agef 0.003 0.028 0.007 0.029 0.030 0.026
lgl − form1− 2 -0.531 0.643 -1.089 * 0.659 1.424 ** 0.563
lgl − form1− 3 0.078 0.455 -0.048 0.472 0.498 0.416
homestead 0.005 0.008
hunlimited -0.207 0.615
HH 0.000 0.000
debt2assets 0.644 0.955
start1 0.510 ** 0.223
Invest/Inside -0.090 0.180 1.728 *** 0.122
Sigma -38.625 *** 3.424
Note: The sample size is 1,342; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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Table A.12: Model II: Changemp - Outside/Inside

Changemp Changemp Outside/Inside
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.323 1.398 -0.314 1.397 -4.544 ** 1.915
age1 0.008 0.020 0.008 0.020 -0.047 0.030
totjobs -0.021 0.047 -0.021 0.048 -0.045 0.075
bs11 0.010 0.011 0.009 0.011 -0.017 0.017
bs21 -0.009 0.010 -0.009 0.010 0.006 0.014
bs61 -0.012 0.016 -0.012 0.016 0.012 0.023
race -0.563 0.750 -0.569 0.754 -0.927 1.101
outjob4 0.120 0.502 0.115 0.505 0.138 0.730
unemp− change 0.019 0.166 0.018 0.166
est− change 0.775 1.786 0.768 1.781
sex -0.426 0.490 -0.427 0.490 0.408 0.708
moved1 -0.469 0.477 -0.475 0.480 -1.418 ** 0.701
partners 0.537 ** 0.262 0.537 ** 0.262 0.312 0.369
managexp 0.431 0.483 0.431 0.486 -1.547 ** 0.690
firequit 0.308 0.509 0.304 0.508 -0.155 0.749
diffprod -0.605 0.407 -0.604 0.404 -0.145 0.588
parenown 0.057 0.381 0.060 0.384 -0.314 0.559
educlev -0.047 0.112 -0.047 0.112 -0.017 0.162
opercont 0.116 0.169 0.115 0.168 0.020 0.244
capinv 0.048 0.123 0.047 0.125 1.387 *** 0.188
oddsyr 0.094 0.091 0.095 0.091 0.114 0.133
agef 0.001 0.028 0.001 0.028 0.023 0.042
lgl − form1− 2 -0.856 0.637 -0.851 0.642 1.428 0.895
lgl − form1− 3 0.094 0.451 0.097 0.451 -1.253 * 0.656
homestead -0.007 0.021
hunlimited 0.981 1.662
HH -0.001 *** 0.000
debt2assets 0.946 2.177
start1 0.139 0.599
Outside/Inside 0.185 *** 0.035 0.183 *** 0.054
Sigma 0.149 2.571
Note: The sample size is 1,342; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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Table A.13: Model III: Sales/Employee - Loans

Sales/Employee Sales/Employee Loans
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.019 0.126 -0.147 0.161 -0.192 0.168
age1 0.000 0.002 0.002 0.002 -0.003 0.002
totjobs -0.004 0.004 0.001 0.005 -0.007 0.005
bs11 -0.001 0.001 -0.001 0.001 0.001 0.001
bs21 0.000 0.001 -0.001 0.001 0.001 0.001
bs61 -0.001 0.001 -0.001 0.002 0.001 0.002
race 0.007 0.063 0.043 0.081 -0.072 0.083
outjob4 0.052 0.041 0.025 0.053 -0.001 0.054
unemp− change 0.022 0.014 0.000 0.010
est− change 0.116 0.176 0.019 0.126
sex -0.019 0.040 -0.095 * 0.052 0.136 *** 0.052
moved1 -0.038 0.039 0.023 0.050 -0.033 0.051
partners -0.005 0.021 0.011 0.027 -0.013 0.028
managexp 0.051 0.040 0.109 ** 0.051 -0.075 0.051
firequit -0.017 0.041 -0.022 0.053 0.010 0.054
diffprod 0.010 0.033 0.011 0.042 -0.033 0.043
parenown -0.015 0.031 0.006 0.040 -0.019 0.040
educlev -0.001 0.009 0.000 0.012 0.001 0.012
opercont 0.010 0.014 0.004 0.018 -0.011 0.018
capinv 0.019 * 0.010 -0.063 *** 0.013 0.100 *** 0.013
oddsyr 0.007 0.007 0.004 0.010 0.005 0.010
agef -0.003 0.002 -0.006 ** 0.003 0.005 * 0.003
lgl − form1− 2 -0.028 0.052 0.016 0.067 -0.061 0.068
lgl − form1− 3 -0.035 0.037 0.078 0.048 -0.117 ** 0.049
homestead 0.000 0.001
hunlimited 0.016 0.075
HH 0.000 * 0.000
debt2assets -0.002 0.120
start1 -0.030 0.024
Loans -0.057 0.049 1.387 *** 0.056
Sigma -0.430 *** 0.023
Note: The sample size is 1,489; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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Table A.14: Model III: Sales/Employee - Invest

Sales/Employee Sales/Employee Invest
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.022 0.126 -0.121 0.130 -1.437 *** 0.487
age1 0.000 0.002 0.001 0.002 -0.003 0.006
totjobs -0.003 0.004 -0.006 0.004 0.013 0.013
bs11 -0.001 0.001 -0.001 0.001 0.000 0.003
bs21 0.000 0.001 0.000 0.001 -0.001 0.003
bs61 -0.001 0.001 -0.001 0.001 0.003 0.004
race 0.008 0.063 0.033 0.065 -0.157 0.246
outjob4 0.051 0.041 0.060 0.043 -0.151 0.150
unemp− change 0.022 * 0.014 0.013 0.012
est− change 0.129 0.175 0.057 0.150
sex -0.022 0.040 -0.013 0.042 -0.181 0.161
moved1 -0.035 0.039 -0.052 0.041 0.165 0.136
partners -0.004 0.021 -0.029 0.022 0.229 *** 0.066
managexp 0.053 0.040 0.065 0.041 -0.030 0.151
firequit -0.017 0.041 -0.022 0.043 -0.017 0.158
diffprod 0.010 0.033 0.028 0.035 -0.070 0.120
parenown -0.015 0.031 0.004 0.032 -0.060 0.112
educlev -0.001 0.009 0.001 0.009 -0.004 0.032
opercont 0.010 0.014 0.018 0.014 -0.082 0.050
capinv 0.017 * 0.010 0.007 0.010 0.060 * 0.036
oddsyr 0.007 0.007 0.010 0.008 -0.034 0.027
agef -0.003 0.002 -0.003 0.002 0.018 ** 0.008
lgl − form1− 2 -0.025 0.052 -0.070 0.054 0.274 0.176
lgl − form1− 3 -0.030 0.037 -0.057 0.038 0.277 ** 0.133
homestead 0.002 0.004
hunlimited -0.201 0.301
HH 0.000 0.000
debt2assets 0.265 0.475
start1 0.151 0.108
Invest -0.025 0.109 1.148 *** 0.077
Sigma -0.636 *** 0.068
Note: The sample size is 1,489; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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Table A.15: Model III: Sales/Employee - Outside

Sales/Employee Sales/Employee Outside
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.013 0.126 -0.269 0.165 -0.056 0.155
age1 0.000 0.002 0.003 0.002 -0.004 * 0.002
totjobs -0.004 0.004 -0.002 0.005 -0.002 0.005
bs11 -0.001 0.001 -0.001 0.001 0.000 0.001
bs21 0.000 0.001 -0.001 0.001 0.001 0.001
bs61 -0.001 0.001 -0.002 0.002 0.001 0.002
race 0.005 0.063 0.075 0.084 -0.088 0.077
outjob4 0.052 0.042 0.034 0.055 -0.016 0.051
unemp− change 0.022 0.014 0.001 0.010
est− change 0.116 0.175 0.030 0.119
sex -0.020 0.040 -0.087 0.053 0.109 ** 0.049
moved1 -0.037 0.039 0.005 0.052 -0.004 0.047
partners -0.003 0.021 -0.020 0.028 0.025 0.026
managexp 0.050 0.040 0.123 ** 0.052 -0.073 0.048
firequit -0.017 0.041 -0.026 0.055 0.011 0.051
diffprod 0.010 0.033 0.033 0.044 -0.044 0.040
parenown -0.016 0.031 0.028 0.041 -0.042 0.038
educlev -0.001 0.009 0.002 0.012 -0.001 0.011
opercont 0.010 0.014 0.015 0.018 -0.022 0.017
capinv 0.020 * 0.011 -0.077 *** 0.014 0.102 *** 0.012
oddsyr 0.007 0.008 0.008 0.010 0.001 0.009
agef -0.003 0.002 -0.006 ** 0.003 0.005 * 0.003
lgl − form1− 2 -0.027 0.052 -0.036 0.069 0.008 0.064
lgl − form1− 3 -0.033 0.037 0.048 0.049 -0.064 0.045
homestead 0.000 0.001
hunlimited -0.006 0.065
HH 0.000 * 0.000
debt2assets -0.022 0.104
start1 -0.017 0.021
Outside -0.059 0.048 1.451 *** 0.056
Sigma -0.425 *** 0.022
Note: The sample size is 1,489; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.



129

Table A.16: Model III: Sales/Employee - Loans/Inside

Sales/Employee Sales/Employee Loans
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.026 0.126 -0.053 0.139 -2.822 1.809
age1 0.000 0.002 0.002 0.002 -0.047 * 0.028
totjobs -0.003 0.004 -0.002 0.005 -0.066 0.069
bs11 -0.001 0.001 0.000 0.001 0.000 0.016
bs21 0.000 0.001 -0.001 0.001 0.015 0.013
bs61 -0.001 0.001 -0.001 0.002 0.010 0.022
race 0.008 0.063 0.030 0.075 -0.853 1.035
outjob4 0.051 0.042 0.044 0.050 -0.135 0.694
unemp− change 0.022 0.014 -0.001 0.010
est− change 0.129 0.174 -0.090 0.126
sex -0.022 0.041 -0.032 0.049 1.201 * 0.670
moved1 -0.037 0.039 0.021 0.048 -0.672 0.657
partners -0.004 0.021 0.001 0.026 -0.107 0.362
managexp 0.052 0.040 0.121 ** 0.048 -1.415 ** 0.658
firequit -0.017 0.041 -0.022 0.051 0.146 0.701
diffprod 0.011 0.033 0.010 0.040 -0.398 0.557
parenown -0.014 0.031 -0.026 0.038 0.115 0.525
educlev 0.000 0.009 -0.003 0.011 0.055 0.153
opercont 0.010 0.014 -0.004 0.017 0.001 0.232
capinv 0.017 * 0.010 -0.003 0.012 0.811 *** 0.173
oddsyr 0.007 0.008 0.000 0.009 0.130 0.125
agef -0.003 0.002 -0.004 0.003 0.053 0.039
lgl − form1− 2 -0.024 0.053 -0.122 * 0.063 0.976 0.864
lgl − form1− 3 -0.031 0.037 -0.009 0.045 -0.802 0.626
homestead 0.000 0.012
hunlimited 0.247 0.986
HH -0.001 ** 0.000
debt2assets -0.256 1.453
start1 -0.341 0.323
Loans/Inside -0.002 0.003 0.075 *** 0.004
Sigma -5.386 *** 0.265
Note: The sample size is 1,310; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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Table A.17: Model III: Sales/Employee - Invest/Inside

Sales/Employee Sales/Employee Invest/Inside
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.022 0.126 -0.169 0.125 -4.220 ** 1.707
age1 0.000 0.002 0.002 0.002 -0.030 0.027
totjobs -0.003 0.004 -0.004 0.004 0.068 0.056
bs11 -0.001 0.001 -0.001 0.001 0.000 0.015
bs21 0.000 0.001 0.000 0.001 -0.011 0.012
bs61 -0.001 0.001 0.000 0.001 0.014 0.019
race 0.009 0.063 0.030 0.065 -0.956 1.038
outjob4 0.051 0.041 0.057 0.043 -0.821 0.639
unemp− change 0.022 * 0.014 0.015 0.012
est− change 0.130 0.175 0.047 0.147
sex -0.023 0.040 -0.005 0.041 -0.830 0.684
moved1 -0.035 0.039 -0.046 0.040 0.786 0.584
partners -0.004 0.021 -0.011 0.022 1.033 *** 0.294
managexp 0.053 0.040 0.077 * 0.041 -0.415 0.639
firequit -0.017 0.042 -0.023 0.043 -0.086 0.673
diffprod 0.010 0.033 0.023 0.034 -0.507 0.518
parenown -0.015 0.031 0.005 0.032 -0.496 0.492
educlev -0.001 0.009 0.003 0.009 -0.062 0.139
opercont 0.010 0.014 0.017 0.014 -0.494 ** 0.224
capinv 0.016 0.010 0.011 0.010 0.315 ** 0.159
oddsyr 0.007 0.008 0.011 0.008 -0.203 * 0.115
agef -0.003 0.002 -0.003 0.002 0.065 * 0.035
lgl − form1− 2 -0.025 0.052 -0.062 0.054 1.645 ** 0.748
lgl − form1− 3 -0.030 0.037 -0.040 0.038 1.360 ** 0.577
homestead 0.005 0.015
hunlimited -0.416 1.246
HH 0.000 0.000
debt2assets 0.906 1.761
start1 0.784 * 0.460
Invest/Outside -0.002 0.015 0.142 *** 0.012
Sigma -2.789 *** 0.272
Note: The sample size is 1,310; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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Table A.18: Model III: Sales/Employee - Outside/Inside

Sales/Employee Sales/Employee Outside/Inside
Parameter Posterior Posterior Posterior Posterior Posterior Posterior

Mean Std. Mean Std. Mean Std.
Intercept -0.024 0.126 -0.078 0.146 -1.902 1.700
age1 0.000 0.002 0.002 0.002 -0.049 * 0.026
totjobs -0.003 0.004 -0.003 0.005 -0.018 0.062
bs11 -0.001 0.001 0.000 0.001 0.001 0.015
bs21 0.000 0.001 -0.001 0.001 0.012 0.012
bs61 -0.001 0.001 -0.001 0.002 0.013 0.020
race 0.007 0.063 0.043 0.079 -0.923 0.957
outjob4 0.051 0.041 0.042 0.053 -0.227 0.640
unemp− change 0.022 * 0.014 -0.001 0.010
est− change 0.130 0.174 -0.073 0.117
sex -0.023 0.040 -0.027 0.052 0.866 0.624
moved1 -0.037 0.039 0.022 0.050 -0.379 0.606
partners -0.004 0.021 -0.003 0.027 0.167 0.329
managexp 0.051 0.040 0.140 *** 0.051 -1.393 ** 0.614
firequit -0.017 0.041 -0.028 0.053 0.182 0.648
diffprod 0.011 0.033 0.015 0.043 -0.419 0.516
parenown -0.015 0.031 -0.018 0.040 -0.094 0.484
educlev -0.001 0.009 -0.003 0.012 0.043 0.142
opercont 0.010 0.014 -0.004 0.018 -0.063 0.214
capinv 0.017 * 0.010 -0.009 0.013 0.755 *** 0.159
oddsyr 0.007 0.008 -0.001 0.010 0.107 0.115
agef -0.003 0.002 -0.005 0.003 0.053 0.036
lgl − form1− 2 -0.023 0.052 -0.156 ** 0.066 1.631 ** 0.793
lgl − form1− 3 -0.031 0.037 -0.013 0.048 -0.316 0.577
homestead 0.004 0.010
hunlimited -0.013 0.816
HH 0.000 ** 0.000
debt2assets -0.172 1.250
start1 -0.122 0.270
Outside/Inside -0.002 0.003 0.084 *** 0.004
Sigma -5.464 *** 0.252
Note: The sample size is 1,310; ∗∗∗ - significant at 1%, ∗∗ - significant at 5%.
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