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ABSTRACT

Why some countries are so much richer than others is a question of central

interest in economics. Low aggregate income per worker in poor countries is mostly

accounted for by low labor productivity and high employment in agriculture. This

thesis attempts to understand cross-country income difference through examining

productivity differences at the sector level - in agriculture and in non-agriculture.

Between rich and poor countries, there is a 45-fold difference in agricultural

output per worker and a 34-fold difference in mean farm size. In the first chapter, I

argue farmer’s skill as a plausible explanation for these differences. The model features

heterogeneity in innate agricultural skill, on-the-job skill accumulation, and span-of-

control in agricultural production. I show that low total factor productivity (TFP)

in poor countries not only induces more individuals with low innate skill to choose

farming, but also reduces the incentive to accumulate skill. Between rich and poor

countries, the model generates substantial difference in farmer’s skill, which translates

into differences in agricultural productivity and farm size distribution. Quantitatively,

the calibrated model explains half of the cross-country differences in agricultural

output per worker, and successfully replicates the size distribution of farms in both

rich and poor countries.

Cross-country productivity differences are asymmetric across sectors. The

labor productivity gap between rich and poor countries in agriculture is twice as

large as that in the aggregate, and ten times larger than that in non-agriculture. The
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second chapter shows that these sectoral productivity differences can arise solely from

difference in aggregate TFP. I extend the framework in the first chapter to allow for

different skill in non-agricultural production as well. Low TFP distorts the allocation

of skills across sectors and discourages skill accumulation on the job. To discipline

the initial skill distribution and skill accumulation, the model is calibrated to match

earnings distribution and age-earnings profiles in both agriculture and non-agriculture

in the U.S. The model’s implications are then examined using a sample of 70 countries

that covers a wide range of development. Between rich and poor countries, the model

accounts for most of the productivity differences at the sector level - productivity

difference in agriculture in the model is 1.8 times larger than those in the aggregate

and 6 times larger than those in non-agriculture. As in the data, the share of farmer

in the labor force in the model declines from 85 percent in the poorest countries to

less than 2 percent in the richest countries. These results suggest that policy aiming

at improving overall efficiency should be prioritized.
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CHAPTER 1

FARM SIZE DISTRIBUTION AND AGRICULTURAL

PRODUCTIVITY ACROSS COUNTRIES

1.1 Introduction

This paper is about explaining two observations across countries: 1) cross-

country differences in labor productivity in agriculture are enormous; and productiv-

ity differences in agriculture are larger than those in other sectors of the economy;

2) the size distribution of farms differs systematically across levels of development.

Small farms (as measured by land size) account for most of the farms, as well as most

of the land in developing countries.

The first observation is not exactly new. Kuznets (1971) documents this em-

pirical feature for a small set of countries. Later on Caselli (2005) and Restuccia,

Yang, and Zhu (2008) do so for a larger sample of countries. As of 1985, the differ-

ence in real output per worker in agriculture between rich and poor countries exceeds

a factor of 45, which is 10 times larger than that in non-agriculture.1 On the other

hand, most of the labor force is absorbed in the least productive agricultural sector

in developing countries. Hence, understanding low agricultural productivity is key to

understand aggregate income differences.

The second observation is less well known. Data on farm size distribution is

made available by the Food and Agriculture Organization (FAO) through its release of

1Gollin, Lagakos, and Waugh (2011) attempt to correct measurement errors in sectoral
productivity series. They find that, given the best available information, large productivity
gap remains.
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the World Census of Agriculture. FAO collects and processes national agriculture cen-

sus and presents key summary information in an internationally comparable format.

There are two reasons why this paper focuses on farm size. First, labor in agriculture

is mostly self-employed. Hence, scale and production of a farm is closely related to

the productivity of individuals operating it. Second, there is ample evidence suggest-

ing a robust positive correlation between farm size and labor productivity. Cornia

(1985) found a positive correlation between farm size and labor productivity for a set

of developing countries.2 For the U.S., I provide strong evidence showing that larger

farms exhibit higher productivity. As a result, understanding differences in farm size

distribution across countries can be informative about labor productive differences in

agriculture.

This paper reconciles these two observations in a model in which unmeasured

skill of farmers plays a key role. Low labor productivity and small-scale production in

agriculture reflect poor farming skill of farmers in low income countries. Differences in

skill of farmers arise endogenously in the model, given exogenous differences in total

factor productivity (TFP) and land endowment. In particular, an economy with low

TFP or poor land endowment features a large labor force in agriculture with poor

skill in farming.

I construct a lifecycle model where each cohort consists of a continuum of

heterogeneous agents. Individuals differ in their skill in agricultural production when

2See also Clark (1991), Byiringiroa and Reardon (1996), Fan and Chan-Kang (2005) for
studies of individual countries.
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born. The initial skills are modeled as random draws from a fixed distribution.

However, individuals can improve their skill over lifecycle by allocating time away

from production. Individuals choose either to become a farmer or a worker. Their

skill is useful as a farmer but irrelevant as a worker. This occupational choice is made

at the first date and assumed to be irreversible over lifecycle. In such an environment,

labor productivity in agriculture depends critically on both the initial skills of farmers

and their skill accumulation over lifecycle.

A key feature of the model is that preferences are non-homothetic, i.e., there is

a minimum consumption of agricultural good. Non-homothetic preferences give rise

to two implications. The first one is that the share of labor in agriculture decreases

with income. This feature is standard in the literature of structural change, e.g.,

Laitner (2000), Kongsamut, Rebelo, and Xie (2001), Gollin, Parente, and Rogerson

(2007). Importantly, this standard feature has another dimension when individu-

als have heterogenous skills. Specifically, as more individuals enter agriculture the

marginal farmer also moves further down the distribution of initial skill. In other

words, in low income countries many of the farmers do not have comparative advan-

tage in agriculture. The second implication is that the inter-temporal elasticity of

substitution is low when income is low. The marginal utility from consumption of

agricultural good (and hence, the marginal cost of investment in skill improvement)

is high precisely when income is low. Skill accumulation is hence discouraged in

low income countries. As a result, the average farmer in low income countries not

only have low initial skill, they also experience little skill growth over time. Between
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rich and poor countries, there are potentially large differences in unmeasured skill of

farmers. Consequently, these differences in skill lead to differences in measured labor

productivity and scale of production in agriculture.

To explore the quantitative implications of the model, I first calibrate it to

the U.S. The model is parameterized to reproduce the size distribution of farms, time

allocation of farmers, and other macroeconomic statistics in the U.S. I test the model

using a sample of 50 countries, covering a wide range of development. Since the

question of interest is why cross-country productivity differences in agriculture are

larger than those in non-agriculture, I compute country-specific TFP such that the

model matches real output per worker in non-agriculture for each country. Hence,

the model is silent on the sources of productivity differences in non-agriculture. As

implications, the model speaks to the allocation of labor between sectors, output

per worker in agriculture, and also endogenously generates a non-degenerate size

distribution of farms. I examine these predictions against data. I find that the model

explains roughly 50 percent of the cross-sectional differences in real output per worker

in agriculture. I also find the model successfully captures cross-country differences in

farm size distribution: 1) mean farm size increases with agricultural productivity. In

the data, the correlation between PPP output per worker in agriculture and mean

farm size is 0.45. In the model, it is 0.6; and 2) the size distribution of farms is heavily

skewed to the left in developing countries. For the poorest 5 percent countries, for

example, the share of farms with less than 5 hectares of land is 89 percent in the data.

The model predicts a share of 87 percent. For many countries, the model actually
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matches the empirical farm size distribution fairly well, which I consider a success

given the simple structure of the model.

This paper fits into an expanding literature that emphasizes the key role of

agriculture in understanding cross-country productivity differences. Some focus on

the implication about aggregate TFP such as Cordoba and Ripoll (2005), Chanda

and Dalgaard (2008), Vollrath (2009). Others attempt to quantify the effect various

distortions have on sector productivity such as Gollin, Parente, and Rogerson (2004),

Restuccia, Yang, and Zhu (2008), Adamopoulos (2011) and Gollin and Rogerson

(2010). As in Lagakos and Waugh (2010), this paper does not appeal to distortions

geared specifically towards agriculture, but instead focuses on the efficiency of work-

ers in agriculture. However, difference in efficiency of workers result also from skill

accumulation in this paper. On the prediction of cross-country size distribution of

farms, this paper is related to Adamopoulos and Restuccia (2011), who offer an alter-

native, and interesting, application of the span-of-control framework. In particular,

they do not consider the division of heterogeneous family members into different oc-

cupations. Such specification allows them to isolate the effect of idiosyncratic policy

distortions on total output in agriculture. As a result, the origins of productivity

differences are not the same in these two papers. In their paper, productivity is low

in agriculture because the most productive farms are not operating at the optimal

scale, due to distortions. In the current paper, low productivity is due to a large

share of unproductive farmers who do not invest to enhance their skill. All farmers,

productive or not, are producing at their optimal scale. Secondly, these two papers
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also differ in their implications of the farm size distribution. In Adamopoulos and

Restuccia (2011), the size distribution of farms is used to infer the distribution of

idiosyncratic policy distortions. In this paper, the size distribution is a mapping

from the distribution of farmer’s skill. Hence the difference in the size distribution of

farms reveals information about the difference in the skill composition of farmers. On

stressing the role of unmeasured skill, this paper also relates to Assuncao and Ghatak

(2003). However, their paper mainly focuses on the link between farm size and land

productivity.

The remaining of the paper is organized as follows. Section 1.1 presents the

facts that motivate this paper. Section 2 describes the economic environment. Sec-

tion 3 explains the calibration strategies and presents the main results. Section 4

concludes.

1.1.1 Facts

Fact 1: farm size distribution varies systematically with income

First of all, mean farm size tends to increase with agricultural productivity. This

is clear from Figure 1.1, which plots on the horizonal axis real output per worker

in agriculture (relative to the U.S.), and on the vertical axis average farm size (as

measured by land area in hectares). For the poorest 10 percent of countries, mean

farm size is merely 2.6 hectares.3 The average farm is almost 60 times larger (130

hectares) in the richest 10 percent of countries.4 There is a factor of 50 differences

3Burkina Faso, Uganda, Nepal and Senegal

4U.S., Canada, Switzerland, Norway
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in the average size of farms. Figure 1.2 plots two empirical farm size distributions.

One for the poorest 10 percent of countries in the sample, and one for the richest 10

percent of countries. Most of the farms in poor countries are small in size. In fact,

73 percent of the farms are smaller than 5 hectares, and nearly all of the farms are

less than 20 hectares. In contrast, the majority of farms exceed 20 hectares in size in

rich countries, and 50 percent of the farms are over 50 hectares in size.
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Figure 1.1: Cross-country distribution of mean farm size

Fact 2: larger farms exhibit higher labor productivity in the U.S.

I measure labor productivity for a cross-section of farms in 2007. Two measures of

productivity are used. The first one is sales per worker, and the second one is value

added per worker. In both cases, the productivity of the smallest farm is normalized
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Figure 1.2: Farm size distribution in rich and poor Countries

to unity. Figure 1.3 plots the relative productivity against size classes. In either

measure, labor productivity increases almost monotonically with size. Compare, for

example, farm over 1000 hectares with farms less than 50 hectares. Value added per

worker can differ up to a factor of 10.

Fact 3: age-productivity profile of U.S. farmers exhibits a hump shape

I show that productivity exhibits a hump shape over the lifecycle of U.S. farmers. I

first measure farmer’s productivity as output (net of government transfer) per farmer.

This measured is labeled as “Measure I” in Table 1.1. I find that the productivity

gain between age 25 and age 45 can be as large as a factor of 3. To verify whether

these productivity differences simply reflect differences in other inputs, I compute

a Solow-type residual using information on quantity of four factors of production:
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of agriculture.

intermediate inputs, land, capital, and hired labor.5 This is labeled as “Measured II”

in Table 1.1. The elasticity of each factor of production is calculated from Table 5

and 6 in Valentinyi and Herrendorf (2008). I find that between age 25 and 45, there

remains a large increase in productivity of roughly 35 percent.

5Intermediate inputs include feed, seed, chemical and fertilizers. Capital includes
machinery, equipments, and buildings. Solow residual of operator i is computed as
yi/(k

αk

i xαx

i ℓαℓ

i hαh

i ), where y is output per operator. Factors of production j = k, x, ℓ, h
denotes, respectively, capital, intermediate, land and labor. αj is the respective elasticity.
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Table 1.1: Age-productivity profile of U.S. farmers

Age < 25 25− 34 35-44 45-54 55-64

Measure I 1 2.02 3.00 2.88 1.96

Measure II 1 1.24 1.35 1.28 0.87

Note: data is from 2007 U.S. census of agriculture,
Table 63.

1.2 Model

1.2.1 Environment

Each period a continuum (of measure one) of individuals are born, and live for

T periods. Individuals of the same cohort form a household, with all decisions made

by a hypothetical household head. The representative household derives utility from

consumption of two consumption goods according to

U(ca, cn) = η · log(ca − ā) + (1− η) · log(cn),

where ca is an agricultural good, and cn is a non-agricultural good. Preferences are

non-homothetic with ā > 0, in which case two implications follow. Firstly, the share

of income spent on agricultural consumption declines with the level of income. This,

of course, conforms with the “Engel’s curve”. Secondly, the inter-temporal elasticity

of substitution is low when income is low. As will become clear later, these two

implications are central to the results in this paper.

Each member within a household is endowed with one unit of time each period.
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The economy has a fixed stock of land, denoted by L̄, which is equally owned by

households. There is no population growth or lifetime uncertainty. As a result, T is

also the measure of the population size at any point in time.

1.2.2 Endogenous Skill Accumulation

Within a household, individuals differ in their skill in agricultural production.

At age 1, individuals draw their skill type, z ∈ ℜ+, from a known distribution G(z).

These draws are i.i.d across individuals and over time. Throughout the paper, an

individual with an initial draw z is referred to as type z. Over the life cycle, individuals

can increase their level of skills through skill accumulation. Hence, the age-profile of

skill is endogenously determined within the model. Specifically, the level of skill

evolves over time according to

zt+1 = f(zt, st) = zt + zt · s
θ
t , st ∈ [0, 1], (1.1)

where st is the fraction of time allocated to skill accumulation. Equation (1.1) maps

into an array of actions farmers undertake to improve productivity, such as experi-

menting with different seeds/crops/fertilizers, updating on the most recent available

technologies, learning new equipments etc. Just like any other type of learning, these

actions consume time. The process of human capital accumulation is the same as the

one in Ben-Porath (1967), except that I do not consider goods input. While arguably

certain skill-enhancing tasks may require input other than time - e.g., purchasing

a new computer, I abstract from these considerations for the benefits of closed-form

solutions and clearer expositions. Moreover, I use data on time allocations of farm op-
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erators to discipline relevant parameters, while generally information on other types

of investment made by farm operators in skill accumulation are limited, if available

at all.

1.2.3 Production

The production of agricultural good combines three inputs: skill, labor, and

land, using a constant returns to scale technology:

ya = A · (z(1 − s))1−γ (hα
a · ℓ1−α

)γ
. (1.2)

In (1.2), ha is labor, ℓ is land, and A is total factor productivity (TFP). Note that

since skill is endogenous, the amount of skill used in production is discounted by the

fraction of production hours, (1-s). The production of non-agricultural good, on the

other hand, requires labor as a sole input in a linear fashion.

yn = A ·Hn. (1.3)

Note that skill does not matter in the production of non-agricultural good. In equi-

librium, this implies a common wage rate for workers in non-agriculture.

1.2.4 Household Problems

There are two occupations in this economy. Each household member can either

become a farmer or a worker. This occupation choice is assumed to be fixed over the

life cycle.6 The problem of a worker is simpler, and hence, is discussed first. The

6This assumption is not restrictive. Under zero skill depreciation, individuals will opti-
mally not switch between occupations in a stationary equilibrium.
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production technology in (1.3) dictates a common wage rate for all workers. Let w

denote the market wage rate. Furthermore, since skill is not rewarded in the non-

agriculture sector, it follows that workers do not accumulate skill over the life cycle.

A farmer operates the production technology in (1.2), rents labor and land

from the market, and retain profit. The maximized profit, π(z, s), depends on both

the level of skill and hours devoted to production, i.e.,

π(z, s) = max
{ha,ℓ}

p · ya − w · ha − q · ℓ,

where p is the price of agricultural output, and q is the rental price of land. Through-

out the paper, non-agricultural output is used as a numéraire.

It is straightforward to show that π(z, s) is linear in both z and s. Furthermore,

the skill accumulation technology satisfies the Inada condition, i.e., fs(z, s) = ∞ when

s = 0. It follows that a farmer will always find it profitable to accumulate skill over the

life cycle, until the last period. A closer look at technology reveals that the marginal

return of time investment is linear in the current level of skill. This, combined with

the fact that the profit function π(z, s) is linear in z, leads to the following lemma.

Lemma 1. Optimal time investment is independent of initial skill draw

Lemma 1 implies that the lifetime discounted income of a farmer is a linear

function in initial skill type. For a worker, it is independent of skill type. Hence, the

division of household members between occupations is characterized by a threshold

skill level z̄. Members with initial skill type above z̄ will work as farmers, and those

with skill type below z̄ will become workers. Each period, household income consists
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of farm profit, labor income, and land rental income. The household head then divides

income between consumption and saving. Formally, the household problem is

max
{ca,τ ,cn,τ ,sτ ,aτ ,z̄}

:

T∑

τ=1

βτ−1U(ca,τ , cn,τ)

s.t : pca,τ + cn,τ + aτ+1 = aτR + Yτ ,

where R is the return on saving and Yτ =
∫∞

z̄
π(z, sτ )dG(z) + w · G(z̄) + q · L̄/T is

the period household income. Households are assumed to born with zero assets, and

do not die in debt, i.e., a0 = 0, aT+1 > 0.

1.2.5 Equilibrium

I focus on stationary equilibria. A stationary competitive equilibrium is de-

fined as a collection of prices (w, p, q, R), consumption and investment allocations

{ca,τ , cn,τ , sτ , aτ}
T
τ=1, a skill threshold z̄, factor demand ha(z, s), ℓ(z, s), Hn such that:

(1) given prices, {ca,τ , cn,τ , sτ , aτ}
T
τ=1 and z̄ solve household’s maximization problem;

(2) given prices, ha(z, s), ℓ(z, s) solve farmer’s profit maximization, and Hn solve

non-agricultural firm’s profit maximization; (3) all markets clear.

To solve for equilibrium, it is convenient to first define the following variable.

xτ =







1, τ = 1

xτ−1 · (1 + sθτ−1), τ = 2, ..., T

{xτ}
T
τ=1 summarize the level of skill at time τ relative to the initial draw. Since

{xτ}
T
τ=1 is independent of skill levels, it allows convenient characterization of aggre-

gate variables. To solve the model, I begin by solving price of agricultural good (p)
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and land rental (q). Equation (1.4) below states the indifference condition for the

marginal farmer with skill type z̄. Specifically, it states that the marginal farmer

earns the same discounted lifetime income as a farmer or as a worker. Equation (1.5)

below states the land market clearing condition, which utilizes the fact that land

demand is linear in skill input.

π(z̄) ·

T∑

t=1

{xt · (1− st) · R
1−t} =

T∑

t=1

{w · R1−t}, (1.4)

∫

z̄

ℓ(z)dG(z) ·
T∑

t=1

{xt · (1− st)} = L̄. (1.5)

Dividing (1.4) by (1.5) yields an expression for the rental price of land:

q =

[ ∑T
t=1{xt · (1− st)}

∑T
t=1{xt · (1− st) · R1−t}

]

·




γ · (1− α) ·

(
∑T

t=1{w ·R1−t}
)

(1− γ) · L̄



 ·

∫

z̄
zdG(z)

z̄
.

(1.6)

Substituting (1.6) into (1.5) yields the relative price of agricultural good:

p =

[ ∑T
t=1{w · R1−t}

z̄ · (1− γ) ·
∑T

t=1{xt · (1− st) · R1−t}

]1−γ

·

(

γ
(α

w

)α
(
1− α

q

)1−α
)−γ

·
1

A
.

(1.7)

Solving for optimal consumption bundles and aggregating over generations

yields the aggregate demand of two consumption goods:

Ca =
T∑

t=1

cat =

[
T∑

t=1

(βR)t−1

]

·

[

Y − p · ā
∑T

t=1 R
1−t

∑T
t=1 β

t−1

]

·
η

p
+ T · ā, (1.8)

Cn =
T∑

t=1

cnt =

[
T∑

t=1

(βR)t−1

]

·

[

Y − p · ā
∑T

t=1R
1−t

∑T
t=1 β

t−1

]

· (1− η), (1.9)

where

Y = wG(z̄)
T∑

τ=1

R1−τ +
T∑

τ=1

xτ (1− sτ )R
1−τ

∫

z̄

π(z)dG(z) + qL̄/T
T∑

τ=1

R1−τ
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is the discounted income of a household. Given the threshold skill type z̄, the measure

of workers within a household is G(z̄). Hence, the total measure of worker in the

economy is simply T ·G(z̄). The aggregate demand of workers in agriculture is given

by

Ha =

[
T∑

τ=1

xτ (1− sτ )

]

·

∫

z̄

ha(z)dG(z).

Imposing labor market clearing, the measure of workers in the nonagricultural sector

is Hn = T · G(z̄)−Ha. The aggregate output in agriculture and non-agriculture are

then given by

Ya =

[
T∑

τ=1

xτ (1− sτ )

]

·

∫

z̄

ya(z)dG(z),

Yn = A · (T ·G(z̄)−Ha).

Goods market clearing conditions require Ca = Ya, Cn = Yn. Loan market clears by

Walras’ law.

Finally the linear technology in non-agriculture implies w = A. Hence, the

two goods market clearing conditions constitute two equations with two unknowns

(z̄, R) that can be solved numerically. Once the cut-off skill and interest rates are

known, rest of the equilibrium variables can be recovered easily.

1.2.6 Farm Size and Agricultural Productivity

Recall that this paper is about explaining two stylized facts: 1) productivity

differences in agriculture are larger than those in non-agriculture; 2) mean farm size

increases with income level. Before moving to the quantitative results, I discuss how
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the simple model constructed so far can deliver these two implications simultaneously.

First note that total output in agriculture can be written as

Ya = A ·

(
T∑

τ=1

xτ (1− sτ )

∫

z̄

zdG(z)

)1−γ
(
Hα

a L̄
1−α
)γ

.

The measure of the labor force in agriculture is T [1−G(z̄)]+Ha. It then follows that

labor productivity in agriculture is

yala =
Ya

T [1−G(z̄)] +Ha

= A
︸︷︷︸

TFP

·

(
T∑

τ=1

xτ (1− sτ )/T

)1−γ

︸ ︷︷ ︸

Skill Growth

· (E(z|z > z̄))1−γ

︸ ︷︷ ︸

Occupation Choice

·Π, (1.10)

where

Π =

(
L̄
)(1−α)γ

(Ha)
αγ (T [1−G(z̄)])1−γ

T [1−G(z̄)] +Ha

Equation (1.10) highlights two important forces that affect labor productivity in agri-

culture, other than exogenous TFP. The first one, labeled “Skill Growth”, summarizes

the increase in productivity due to skill accumulation. The second one, labeled “Oc-

cupation Choice”, summarizes the average initial skill of farmers. Other things equal,

labor productivity in agriculture is lower if farmers on average have low initial skill,

or invest very little to improve productivity over the life cycle.

How does skill accumulation and occupation choice vary with exogenous TFP?

This paper argues that when aggregate TFP is low, more individuals become farmers

even though they have low initial skill draws. Meanwhile, farmers invest very little

to improve their skill over the life cycle. These equilibrium allocations are direct
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implications of non-homothetic preferences. When TFP is low, on the one hand,

a large fraction of income is spent on agricultural good; on the other hand, the

technology for producing agricultural good is inferior. The price of agricultural good

(relative to non-agricultural good) is hence higher. More individuals choose the sector

with high price and the marginal farmer is moving further down the skill distribution.

The result is a larger pool of farmers with lower average initial skill.

Over the life cycle, individuals save less when TFP is low. This is because

the inter-temporal elasticity of substitution is low when income is low. The marginal

utility from a unit of consumption when is much higher precisely when income is low.

Hence, the marginal cost of skill accumulation is much higher in a low TFP economy,

rendering such investment less preferable.

Low aggregate TFP not only directly decreases labor productivity in agricul-

ture, but also does so indirectly through reducing the average initial skill of farmers

and limiting skill accumulation. Note that TFP in this economy also maps into output

per worker in non-agriculture because of the linear technology in that sector. Hence,

the model is able to generate larger productivity differences in agriculture than in

non-agriculture.

In the model economy, a farm is essentially consists of a farmer and a piece

of land that she rents. Mean farm size (MFS) is simply the ratio of land to the

measure of farmers, i.e., MFS = L̄
T [(1−G(z̄)]

. As discussed above, more individuals

choose farming in a low TFP economy. Equivalently, the threshold skill type z̄ is

lower in a low TFP economy. Given the same amount of land, it is straightforward
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to see that mean farm size increases with the level of income, as in the data.

1.3 Quantitative Analysis

I calibrate the model to the U.S. In particular, the model reproduces the

size distribution of farms and time allocation of farmers in the U.S. I explore the

quantitative predictions of the model using a sample of 50 countries. TFP and land

endowment are exogenous to the model and are directly inferred from the data. The

model speaks to labor productivity in agriculture, the size distribution of farms, the

allocation of labor between sectors, and the relative price of agricultural good. These

implications are compared with those in the data.

1.3.1 Calibration

I begin with parameters whose values can be chosen without solving the model.

I set the model period to be 10 years. Individuals start at the age 25, and live for

5 model periods. Hence, T = 5. Assuming an annual discount rate of 0.96, I set

β = (0.96)10. For the U.S., TFP is normalized to be 1.7 Arable land per worker

in the U.S. is 1.62 hectares. Correspondingly I set L̄ = 1.62. In the agriculture

technology, γ dictates the income share accruing to farmers and αγ is income share

accruing to labor. I use value added data from U.S. census of agriculture. Over the

period 1980-1999, the average share of agricultural output accruing to farm operators

7In a strict sense, this normalization is not free because of the subsistence term in the
utility function. However, the model is homogenous with respect to (ā, A). Hence, as long
as ā is chosen correspondingly, the model predictions does not change with different values
of A for the US.
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is 40 percent. Hence, I set 1− γ = 0.6. Then α is chosen such that labor share (αγ)

is consistent with estimates in Hayami and Ruttan (1970).8

The distribution of initial skill type is assumed to take a log-normal form with

mean µ and standard deviation σ. Together with two preferences parameter (η, ā)

and skill accumulation technology parameter (θ), there are five parameters that are

chosen simultaneously to match the following moments in U.S. data. From the World

Development Indicator, agriculture employs 3 percent of the labor force. I also target

a long run employment share of 0.5 percent in agriculture.9 This corresponds to the

asymptotic agricultural employment share when the subsistence consumption share

of income is effectively zero.

Within the model, farmers divide time between production and skill accumu-

lation. However, direct observation on the time split between these two activities

are not available in the data. Instead, I use cross-sectional distribution of hours of

farmer operators, which are available from the Census of Agriculture. Specifically, I

calculate the number of hours supplied by farm operators in five age groups: 25-34,

35-44, 45-54, 55-64, 65+. These numbers give rise to a age distribution of hours of

farm operators. The corresponding distribution in the model is given by 1−si∑T
i=1

1−si
.

This is because farmers of the same age allocate time between production and skill

8Existing estimates of the span-of-control parameter are mostly for manufacturing or
the aggregate economy, e.g., Atkeson and Kehoe (2005), Guner, Ventura, and Yi (2008),
Restuccia and Rogerson (2008), Gollin (2008), and the value typically falls in the ballpark
of 0.85. To my best knowledge, there is no consensus on the range of this parameter for
agriculture. A value of 0.6 is nevertheless a conservative choice as a higher γ tends to
strengthen the quantitative results.

9A similar strategy is used in Restuccia, Yang, and Zhu (2008).



21

accumulation in an identical way. I target the the fraction of hours supplied by farmer

aged 35-45. Finally, I target the first two moments of the empirical size distribution

of farms, which are available from census of agriculture. Table 2.1 offers a summary

of parameter values and how they are selected.

Table 1.2: Parameter description, value, and source of Identification

Parameter Description Value Source

A TFP 1 Normalization

T Life cycle 5 Born 25, die 75

β Discount Rate (0.96)10 Common value

L̄ Land endowment 1.62 Arable land per worker

γ Span-of-control 0.6 Income share, farm operator

α Labor share, agriculture 0.8 Hayami and Ruttan (1970)

η Preferences 0.01 Long run labor share, agr.

ā Subsistence 0.2 Current labor share, agr.

θ Time elasticity 0.33 Hour distribution of farmers

µ Skill distribution, mean −2.45 Farm size distribution, mean

σ Skill distribution, stdv 4.16 Farm size distribution, stdv

Figure A.1 plots the calibrated size distribution against data. The match is

quite good even though I only target the first two moments of the distribution. In
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addition, as depicted in Figure A.2, the model also implies a land distribution that

fits the data very well, even though it is not targeted. Table A.2 presents the age

distribution of hours for farm operators. Although in the calibration I only target the

hour of farm operators aged 35-44, the model actually matches the entire distribution

pretty well.

1.3.2 Results

I explore the quantitative implication of the model using a sample of 50 coun-

tries, with a wide range in the degree of development. GDP per worker ranges from

less than 700 (Ethiopia) to more than 30,000 (United States) in 1985 international

dollars. Countries differ in their total factor productivity (A) and land endowment

(L̄), and are otherwise identical. In particular, countries face the same distribution

of skill types ex-ante. Land per worker is directly available from data. Utilizing the

linear technology in non-agriculture, I infer TFP of country i as Ai =
ynlni

ynlnus
, where

ynlni is PPP non-agricultural GDP per worker of country i. Non-agricultural output

per worker is directly available from Restuccia, Yang, and Zhu (2008).

I first look at model’s prediction on agricultural productivity. To ease compar-

ison with data, I compute two statistics. Following Caselli (2005), I first compute the

ratio of log-variance of model generated productivity series to that of the data. This

ratio is 0.45, suggesting that the model explains about 45% of the cross-country vari-

ation in agriculture output per worker. As an alternative, I perform OLS regression

of model productivity series on their data counterpart. The R2 is 0.49. Figure 1.4
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plots agriculture output per worker (relative to the U.S.) in the data on the horizonal

axis, and those in the model on the vertical axis. The model does pretty well ex-

plaining productivity differences across countries. A visual outlier is Nepal, for which

the model over-predicts its agricultural productivity by a lot. The reason is that

Nepal, despite a very high employment share in agriculture, has a very productive

non-agricultural sector. This maps into high TFP, and leads to a counterfactually

high productivity in agriculture.
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Figure 1.4: Output per worker in agriculture: model and data

Low agricultural productivity is mainly due to low total factor productivity,

as opposed to small land endowment. Consider, for concreteness, the poorest country

in the sample (Burkina Faso). Relative to the U.S., Burkina Faso is 4.8 times less
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productive overall and has 2.6 times less land per worker. Imagine that Burkina Faso

has the U.S. land endowment, but its own TFP. This can not help Burkina Faso catch

up with US in agricultural productivity - the gap shrinks from a factor 28 to 22. In

contrast, if Burkina Faso has the U.S. level of TFP and its own land endowment, its

productivity in agriculture is increased big time - the gap shrinks to merely a factor of

1.2. Productivity differences across countries are mainly a story of TFP differences.

This is true not only at the aggregate level as highlighted in Prescott (1998), Hall

and Jones (1999) and Caselli (2005), but also in agriculture.10

The model generates endogenously a size distribution of farms. There is a

unique mapping between the equilibrium distribution of skills and the size distribution

of farms. In an economy with low TFP, the average farmers possess lower initial skill

and invest less in skill accumulation. It follows that in poor countries, average farm

size is smaller; and small farms constitute a larger share of all farms. Figure 1.5

plots on the horizontal axis mean farm size in the data, and on the vertical those

in the model. The model successfully captures the increase in mean farm size with

income level as in the data. In the Appendix, the size distributions of some selected

countries are plotted against their empirical counterparts. In fact, the model does

even better,i.e., the model reproduces the empirical farm size distributions fairly

well. In appendix, I plot the endogenous size distributions along with their empirical

counterparts. For countries in different levels of development, the endogenous size

10Using measures at the sector level, Caselli (2005) concludes that TFP differences are
larger in agriculture than in the aggregate.
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distributions closely resemble the empirical ones. This feature of the model offers

discipline on the key hypothesis of the paper, namely, skill differences are important

sources of labor productivity differences in agriculture.
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Figure 1.5: Mean farm size: model and data

1.3.3 Other Implications

I explore other implications of the model here. In addition to low productivity,

agriculture absorbs most of the labor force in poor countries. As income rises, labor

moves from agriculture to the other sectors of the economy. This process is known as

“structural change”. The model is able to capture the decrease in the share employ-

ment in agriculture as income rises. This aspect of the model is depicted in Figure
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1.6. It is notable that, for low income countries, the model generally under-predicts

the share of employment in agriculture. This suggests other forces might be at work,

that are not captured by differences in aggregate TFP. In the current environment,

labor is perfectly mobile. This might be a poor description of the labor market in

developing countries. Barriers to labor movement, especially those restricting individ-

uals moving from rural to urban sectors, are known to prevail in developing countries.

A frequently cited example is the hukou system in China. Quantitatively, Restuc-

cia, Yang, and Zhu (2008) show that these barriers are important for understanding

cross-country differences in productivity and labor allocation.
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Figure 1.6: Share of employment in agriculture: model and data

In addition to labor, agriculture’s share of total output declines as income rises



27

- a macroeconomic implication of Engel’s Law. The model is consistent with this

empirical regularity as well. Agriculture’ share of GDP falls from 70% in the poorest

10 percent of countries to less than 10 percent in the richest 10 percent of countries.

In the data, the value is 30% and 3%, respectively. One possible explanation is that

the model overshoots the relative price of agricultural output, resulting in a higher

agriculture share of GDP when measured at domestic prices. Using data from the

International Comparison Program (ICP) of the World Bank, I compute the relative

price between “agricultural consumption” and “nonagricultural consumption” for all

available countries.11 I find that the relative price is in fact higher in poor countries

than that in rich countries - a fact that the model is consistent with. Quantitatively,

the relative price is around 2.3 times higher in the 10th percentile country, compared

to the 90th percentile country. In the model, this relative price ratio is 2.8, which is

roughly in line with the data.

1.4 Conclusion

Agriculture in developing countries exhibits two salient features. First, it is

unproductive. Second, farms are predominantly small. The exact reverse were found

in developed countries. This paper presents an explanation of these stylized facts.

The model features endogenous skill accumulation in a life-cycle version of Lucas’s

span-of-control model. I use the calibrated model to evaluate the role economy-wide

11“Agricultural consumption” is defined as food, non-alcoholic beverage, alcoholic bev-
erage and tobacco. “Nonagricultural consumption” is defined as the rest of individual
consumptions plus capital consumption. A similar calculation is done also in Lagakos and
Waugh (2010)
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efficiency has on agricultural productivity. I found that, because of the interaction

between endogenous skill accumulation of farmers and economy-wide efficiency, the

model generates much larger differences in agricultural productivity for a given or-

der of differences in economy-wide efficiency. Quantitatively, the model is able to

account for 50 percent of the cross-country differences in agricultural productivity,

while matching the data in terms of productivity outside agriculture. Moreover, the

model successfully accounts for the differences in the size distribution of farms and

productivity growth of farmers observed in the data between developing and devel-

oped countries.

The agricultural sector characterized in this paper is “poor but efficient”, as

articulated in Schultz (1964). In this aspect, this paper complements existing research

that focus on agriculture-specific distortions as explanations of low productivity in

agriculture of developing countries. Nonetheless, distortions such as barriers to sec-

toral labor movements, and implicit government taxation on agriculture as discussed

in Krueger, Schiff, and Valdes (1988) and Anderson (2009), might be key to un-

derstand the coexistence of high employment and low productivity in agriculture of

developing countries.
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CHAPTER 2

SKILL ACCUMULATION AND SECTORAL PRODUCTIVITY

DIFFERENCES ACROSS COUNTRIES

2.1 Introduction

Between rich and poor countries, differences in output per worker in agriculture

are twice as large as the differences in aggregate GDP per worker, and ten times larger

than the differences in output per worker in non-agriculture (Caselli (2005), Restuccia,

Yang, and Zhu (2008)). Even after accounting for physical capital, cross-country

productivity differences in agriculture remain much larger than those in the aggregate

and in non-agriculture.1 Because agriculture employs most of the labor force in

poor countries, much of the observed differences in aggregate income per worker

can be attributed to differences in output per worker in agriculture. Consequently,

understanding labor productivity differences in agriculture and non-agriculture is key

to understanding world income inequality.

This paper presents a model that accounts for sectoral productivity differ-

ences across countries. The model features skill accumulation in a two-sector, life-

cycle model of self-selection. Aggregate TFP interacts with individual’s occupational

choices and skill accumulation decisions. These interactions generate implications

for the quality of labor in each sector. Labor quality, together with TFP, produces

sectoral labor productivity differences across countries.

My model builds on Lagakos and Waugh (2010). The model economy is pop-

1See appendix B.1 for calculating capital stock at the sector level.
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ulated by a large number of individuals who live for finite periods. When born, in-

dividuals draw a pair of skills from an exogenous distribution, which determine their

initial productivity in agriculture and non-agriculture. Conditional on the draws, in-

dividuals make an irreversible decision whether to become farmers or workers. Each

occupation utilizes only one component of an individual’s skills. Farmers have access

to a Lucas’s span-of-control technology while workers work for a wage. While on the

job, both farmers and workers can accumulate skills specific to their occupations, and

increase future productivity. Accumulating skills requires time away from production,

and reduces current period income. Span-of-control in agriculture and on-the-job skill

accumulation are two key features that separate this paper from Lagakos and Waugh

(2010).

In equilibrium, the labor force in each sector comprises a cross-sectional dis-

tribution of individuals with different skills and of different ages. These distributions

depend on the level of TFP. In an economy with low TFP, the labor force comprises

many farmers with poor agricultural skill, and few workers who highly specialize in

non-agricultural production. Importantly, the poor skill of farmers is a joint result

of low initial skill and low investment in skill accumulation. First, low TFP dictates

that more individuals, including those with low initial agricultural skill, produce in

agriculture to meet the minimum consumption requirement. Second, low level1 of

TFP reduces skill accumulation through an income effect. Because of the minimum

consumption constraint, diverting an extra unit of time from production to skill ac-

cumulation is associated with more loss in utility precisely when TFP (and, hence,
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income) is low.

The model is calibrated to match both macroeconomic statistics and cross-

sectional features of the labor force in the U.S. I make parametric assumptions on the

distribution of initial skills, and posit a skill accumulation function similar to that in

Ben-Porath (1967). The relevant parameters are chosen such that the model matches

the cross-sectional distribution of earnings in agriculture and non-agriculture, as well

as the age-earnings profile of farm operators and non-agriculture workers in the U.S.

The central question of interest is whether the model can reproduce the ob-

served cross-country productivity differences in agriculture and in non-agriculture.

For this purpose, countries are assumed to be identical except for their levels of ag-

gregate TFP. For each country, its level of TFP is chosen such that aggregate real

GDP per worker in the model exactly matches that in the data. The model’s predic-

tions of output per worker in agriculture and non-agriculture are then compared to

the data.

Between the 90th percentile country and the 10th percentile country in the

world income distribution, there is a factor of 22 difference in aggregate GDP per

worker, which the model matches by construction. The model generates a difference in

agricultural productivity that is 1.8 times larger than the difference in aggregate GDP

per worker, and 5.7 times larger than the difference in non-agricultural productivity.

This ratio is 2 and 10, respectively, in the data.2

2With externality in skill accumulation, the model can account for most of the labor
productivity differences in agriculture and non-agriculture. See Section 5 for a detailed
discussion.
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Quantitatively, the model is consistent with the data in other dimensions.

First, the model predicts that 75 percent of the labor force are farmers in the 10th

percentile country, which is close to the 80 percent observed in the data. As income

rises, the share of farmers in the labor force declines to less than 3 percent in the 90th

percentile country, both in the model and in the data.

Second, using farm size as a proxy for productivity, I compute productivity

growth of a farmer between the age 25 and 45 in a poor country, Nepal, and in a

rich country, United States. The data suggests that the growth of productivity is 19

percent lower in Nepal, relative to that in the U.S., which is close to the 13 percent

predicted by the model.3

Third, the model explains the prevalence of small farms in low income coun-

tries. Consider the poorest 10 percent of the countries in the sample. The model

generates endogenously a farm size distribution that has the following features: 1) 89

percent of all farms are below 5 hectares, and only 2.5 percent exceed 10 hectares;

2) 84 percent of farm land is in farms below 5 hectares, and only 5.1 percent is in

farms above 10 hectares. These statistics closely resemble those in the data. The

reason is that farms start small and stay small in poor countries due to limited skill

accumulation by farmers. This explanation contrasts with that in Adamopoulos and

Restuccia (2011). They suggest that farm level distortions that prevent large farms

3The productivity growth of a U.S. farmer between age 25 and 45 has been increasing
over time as well. In 1964, a farmer’s productivity grew by as little as 10 percent between
age 25 and 45. The productivity gain increased to 40 percent in 1982, and 60 percent in
2007.
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from operating at the optimal scale, is the reason why farms are small in poor coun-

tries.

This paper fits into a growing body of recent literature that develops quanti-

tative explanations for cross-country productivity differences in agriculture and non-

agriculture. Chanda and Dalgaard (2008) and Vollrath (2009) find that differences

in factors of production cannot account for the differences in productivity. Gollin,

Lagakos, and Waugh (2011) find that while part of the differences are due to mea-

surement errors, a large gap remains after adjusting for such errors.4 Previous work

has focused on specific barriers. Examples are barrier to capital accumulation in

Gollin, Parente, and Rogerson (2004), barrier to intermediate inputs in Restuccia,

Yang, and Zhu (2008), distortions limiting farm size in Adamopoulos and Restuccia

(2011), and high transportation costs in Adamopoulos (2011). This paper instead fo-

cuses on aggregate barriers such as low TFP, and their effects on the quality of labor

in agriculture and non-agriculture. My approach complements that of Lagakos and

Waugh (2010) by introducing skill accumulation into a Roy model of self-selection,

and highlights the role of aggregate TFP.

The rest of the paper is organized as follows. Section 2 describes the model.

Section 3 explains the calibration strategy. Section 4 presents the main results from

the benchmark model. Section 5 extends the benchmark model to include externality,

and discusses the implications. Section 6 concludes.

4See also Herrendorf and Schoellman (2011) for an investigation on the productivity gap
between agriculture and non-agriculture in the U.S. using state level data.
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2.2 Model

Each date, a continuum (of mass one) individuals are born. Individuals live

for T periods, and maximize discounted utility from consumption

T∑

τ=1

βτ−1U(ca,τ , cm,τ ),

where ca is an agriculture consumption good, and cm is an non-agriculture con-

sumption good. I adopt the following instantaneous utility function U(ca, cm) =

ηlog(ca − ā) + (1 − η)log(cm). The parameter ā is the minimum level of agriculture

consumption that each individual must maintain. When ā > 0, two implications

follow. First, expenditure on agriculture consumption as a share of income declines

with income. Second, the inter-temporal elasticity of substitution in agriculture con-

sumption is low when income is low.

Individuals are initially endowed with a pair of skills (za,1, zm,1). These initial

skills are i.i.d draws from a joint distribution G(za,1, zm,1). Skill za,1 determines an

individual’s initial productivity in agriculture, and zm,1 determines an individual’s

initial productivity in non-agriculture. At age 1, individuals choose to become either

workers or farmers. Regardless of occupation, individuals are endowed with one unit

of time in each period. A worker supplies her non-agricultural skill to the market

in exchange for a wage. Each period, a worker decides the time allocation between

market work and skill accumulation, and splits income between consumption and

saving. A farmer produces output combining her agricultural skill and land rented

from the market, and retains residual profits. A farmer’s problem in each period is

three-fold: the quantity of land to rent, time allocation between skill accumulation
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and production, and the division of profits between consumption and saving. Note

that while the initial endowment of skill (za,1, zm,1) is exogenous, skills at age τ > 1,

(za,τ , zm,τ ), are endogenous.

The economy is endowed with a fixed stock of land that is equal to L, which

is equally owned by all individuals. There is no lifetime uncertainty or population

growth. So population at any point in time is T . Hence, each individual owns ℓ̄ = L/T

quantity of land.

There are competitive markets of land rental, two consumption goods, and

inter-temporal loans.

2.2.1 Technology

2.2.1.1 Production

In non-agriculture, there is a representative firm that hires labor and produces

output with the following technology:

Ym,t = A ·Hm,t, (2.1)

where A is total factor productivity (TFP), and Hm,t is the composite of skill weighted

labor hours supplied by non-agriculture workers of all ages at time t. Let zm,τ,t denote

the skill level of an age-τ worker, and (1 − sτ,t) her fraction of time allocated to

production at time t. Given the set of age-τ workers at time t, Ωm,τ,t, we have

Hm,t =
T∑

τ=1

[
∫

j∈Ωm,τ,t

zjm,τ,t(1− sjτ,t)dG
j

]

. (2.2)

Implicitly, skills of different workers are assumed to be perfect substitutes in produc-

tion. As a result, there is a single wage rate per unit of skill-hour.
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Each farmer has access to the following Lucas (1978) span-of-control technol-

ogy

ya = A · (za(1− s))1−γ ℓγ, (2.3)

where za(1 − s) is skill weighted labor hours allocated to production and ℓ is the

quantity of land. TFP in agriculture is the same as that in non-agriculture, and is

common to all farmers.

Individuals working in agriculture are self-employed farmers, or farm man-

agers. Nobody works for wage in agriculture. In other words, hired labor is not

an essential input in agricultural production. In the appendix, I document evidence

supporting this specification. In a nutshell, I find that self-employment is a dominant

form of employment in agriculture across all income levels.

2.2.1.2 Endogenous Skill Accumulation

Individuals can increase future productivity over the life cycle by allocating

time to skill accumulation. Because of the sector-specificity of skill, individuals only

accumulate skills specific to the sector they choose at the first date. The law of motion

for skill from age τ to τ + 1 is given by

zi,τ+1 = (1− δi,τ )zi,τ + f(zi,τ , sτ) i = a, m, (2.4)

where sτ ∈ [0, 1] is the fraction of time allocated to skill accumulation, δi,τ is the

depreciation of skill from age τ to τ + 1. The skill production function, f(zi,τ , sτ ),
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has the following parametric form:

f(zi,τ , sτ ) = zφi

i,τs
θi
τ .

This production function satisfies the following properties: f(zi, 0) = 0, f(0, s) =

0, fs(zi, 0) = ∞. The first two properties imply that both skill and time are essential

inputs in skill accumulation. The last property guarantees that accumulation of skills

is always profitable given a positive (finite) price of skill. The parameters φi and θi

control the relative importance of current skill and time in skill accumulation. Finally,

I restrict θi < 1 to ensure there are diminishing returns to investment.

Several remarks on the technologies are in order. First, individual skills are

sector-specific, i.e., production in a sector requires only one type of skill. It is more

appropriate to interpret these skills as representing knowledge or know-how that

are unique to production in agriculture or non-agriculture. Examples of such skills

are optimal combination of seed and fertilizer in crop production, or efficient ways

of writing computer codes in software engineering. As such, it is less appropriate

to interpret skill as summarizing one’s intelligence, health, or general knowledge.

Second, TFP is sector neutral. Hence, a priori agriculture is not assumed to be less

productive than non-agriculture within a country.

Lastly, the skill accumulation process is the same as in Ben-Porath (1967),

except that I do not have goods input in skill accumulation. It is now a standard

result that when human capital production requires physical goods as an input, TFP

has a stronger effect on the stock of human capital (Manuelli and Seshadri (2005),

Erosa, Koreshkova, and Restuccia (2010)). The reason is that low TFP directly
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increases the price of human capital investment. In this paper, the level of TFP

affects skill accumulation through an income effect. Three ingredients of the model

are central to this result. First, individuals live finite periods. Second, there is

no physical capital. Therefore, the interest rate in a stationary equilibrium is not

pinned down by preference parameters, and, hence, can vary with the level of TFP.

Third, individual preferences feature a minimum consumption constraint. When TFP

(and, hence, income) is low, an extra unit of time diverted from production to skill

accumulation is associated with higher utility loss in the current period. This renders

skill investment more costly and individuals optimally reduce time allocated to skill

accumulation.

2.2.2 Optimization

In the quantitative analysis, I focus on model implications in the steady state.

To save on notation, I state the optimization problems in a stationary environment,

where the price of agriculture consumption (p), rental price of land (q), rental price of

skill-hour in non-agriculture (w), and gross interest rate (R) are all constant. These

prices are expressed relative to the price of output in non-agriculture, which is used

as the numeraire.

2.2.2.1 Individual

Consider the problem facing an individual with initial skills (za,1, zm,1), who

chooses to be a worker. She decides the sequence of time allocation {sτ}, consumption

{ca,τ , cm,τ}, and asset holdings {aτ} to maximize her life time utility. Her period
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income consists of wage income, return from asset holdings, and rental income from

her share of land (ℓ̄). There is no borrowing constraint, as long as she does not die

in debt. A worker’s utility maximization problem is

max

T∑

τ=1

βτ−1U(ca,τ , cm,τ ) (2.5)

s.t : pca,τ + cm,τ + aτ+1 ≤ wzm,τ (1− sτ ) + aτR + qℓ̄

zm,τ+1 = (1− δm,τ )zm,τ + zφm

m,τsτ
θm

0 ≤ sτ ≤ 1, aT+1 ≥ 0, a1 = 0

If the individual chooses to be a farmer, she has to decide the profit maximizing

quantity of land each period in addition to consumption, saving, and skill accumula-

tion decisions. Under complete markets, farmers’s utility maximization problem can

be separated from her profit maximization problem. The period profit of a farmer

with skill za who allocates (1− s) hours to production is given by

π(za, s) = max
ℓ

: A · p · (za(1− s))1−γ ℓγ − qℓ,

It is straightforward to show that both the demand for land and period profit are

linear in skill.

π(za, s) = (1− γ)za(1− s)(pA)
1

1−γ

(
γ

q

) γ
1−γ

,

ℓ(za, s) = za(1− s) ·

(
pAγ

q

) 1

1−γ

.



40

The utility maximization problem of a farmer is

max
T∑

τ=1

βτ−1U(ca,τ , cm,τ ) (2.6)

s.t : pca,τ + cm,τ + aτ+1 ≤ π(za,τ , sτ ) + aτR + qℓ̄

za,τ+1 = (1− δa,τ )za,τ + zφa

a,τsτ
θa

0 ≤ sτ ≤ 1, aT+1 ≥ 0, a1 = 0

Let Va(za,1) denote the supremum associated with the maximization problem in

(2.5), and Vm(zm,1) denote the supremum associated with the maximization problem

in (2.6). Because of the sector specificity of skills, the value of a worker does not

depend on her agricultural skill, and the value of a farmer does not depend on her

non-agricultural skill. At the first date, an individual’s occupational choice problem

is

max
Υ={0,1}

ΥVa(za,1) + (1−Υ)Vm(zm,1)

Correspondingly, the set of age-1 workers is given by Ωm,1 = {j|Υj = 0}, and the set

of age-1 farmers is given by Ωa,1 = {j|Υj = 1}.

2.2.2.2 Firm

The representative firm in non-agriculture solves the following profit maxi-

mization problem

max
Hm

: AHm − wHm.

The first order condition implies a wage per unit of skill-hour w = A.
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2.2.3 Equilibrium

A stationary competitive equilibrium is defined as as a collection of prices (p,

q, R, w), decision rules {ca,τ , cm,τ , sτ , aτ}
T
τ=1, ℓ(za, s), Υ, Hm such that: (1) given

prices, {ca,τ , cm,τ , sτ , aτ}
T
τ=1, and Υ solve individuals’ occupational choice problem,

and ℓ(za, s) solves farmers’ profit maximization problem; (2) Hm solves the non-

agriculture firm’s profit maximization problem; and (3) markets clear:

T∑

τ=1

[
∫

j∈Ωa,τ

yja,τdG
j

]

=
T∑

τ=1

∫

cja,τdG
j,

A ·Hm =

T∑

τ=1

∫

cjm,τdG
j,

T∑

τ=1

[
∫

j∈Ωm,τ

zjm,τ (1− sjτ )dG
j

]

= Hm,

T∑

τ=1

[
∫

j∈Ωa,τ

ℓ(zja,τ , sτ
j)dGj

]

= L.

Lemma 2. If φa = φm = 1, then time investment over the life cycle is independent

of initial skill.

Lemma 1 implies a common slope of the age-earnings profile for all individuals

working in the same sector. Between sectors, the slope differs up to elasticity of time

in skill accumulation and depreciation. Moreover, the cross-sectional average of skill

within a sector can be conveniently decomposed into two orthogonal components.

One summarizes the average initial skill within a sector and the other one captures

the growth of skill over time. I exploit this feature in Section 4.
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2.2.4 TFP and Skill Accumulation in a Two-Period Model

The interaction between TFP and skill accumulation can be most clearly seen

in a simplified two-period model. Consider the case of a farmer with initial agricultural

skill za. In a stationary equilibrium, her skill accumulation problem is

max
sa

: za(1− sa) +R−1
[
(1− δa)za + zφa

a sθaa
]

Assume that φa = φm = 1, then the optimal time investment is given by

s∗a =

(
θa
R

)1/(1−θa)

.

The sum of skill weighted labor hours in production is za · [2− δa + s∗a
θa − s∗a] .

5 The

increase in output generated through skill accumulation is captured by

Λa =

(
θa
R

)θa/(1−θa)

−

(
θa
R

)1/(1−θa)

.

At the heart of this paper is that Λa increases with the level of total factor productiv-

ity. To see this, I first state two equilibrium conditions without proving. First, gross

interest rate must exceed the discount rate in equilibrium, i.e., R > 1/β > 1. Second,

because of the minimum consumption constraint, individuals have stronger motives

to borrow and finance consumption in the first period when TFP is low. As a result,

equilibrium interest is a decreasing function of TFP, i.e., ∂R
∂A

< 0. Differentiating Λa

5Obviously it is not optimal to allocate any time to skill accumulation in the second
period.
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with respect to TFP yields

∂Λa

∂A
=

∂Λa

∂R

∂R

∂A

=
1

1− θa

[

R
2−θa
θa−1θ

1

1−θa
a − θaR

1

θa−1θ
θa

1−θa
a

]
∂R

∂A

=

(
1

1− θa

)

θ
1

1−θa
a

[

R
2−θa
θa−1 −R

1

θa−1

] ∂R

∂A
> 0. (2.7)

The last inequality follows from the assumption 0 < θa < 1 and the equilibrium

condition R > 1.

2.3 Calibration

I calibrate the model to match the U.S. macroeconomic statistics and cross-

sectional features of the labor force in agriculture and non-agriculture. I first describe

a set of parameters that are either standard in the literature or whose values can be

determined without solving the model. The values of the remaining parameters are

chosen simultaneously by solving the model.

A model period is equal to 10 calendar years. Individuals start at the age of

25 and live 5 model periods. Discount rate β = (0.96)10. The level of TFP for the

U.S. is normalized to be 1. Herrendorf and Valentinyi (2005) estimate γ, the income

share of land in agriculture, to be between 11% and 18%. In an effort to make results

conservative, I set γ = 0.11.

I assume the marginal distributions of G(za,1, zm,1) are Fréchet. However, I do

not assume any correlation between the za,1 and zm,1, i.e., G(za,1, zm,1) = G(za,1) ×
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G(zm,1), where

G(zi,1) = exp(−z−λi

i,1 )

is the cumulative Fréchet distribution. The parameter λi controls the dispersion of

initial skill in sector i for a given age group. The dispersion of earnings across age

groups within a sector, however, depends both on the value of λi and the accumula-

tion of skill over time. A smaller λi in general increases the dispersion of earnings,

but more so with skill accumulation.

In the benchmark, I restrict φa = φm = 1. Instead of having a different

depreciation rate for each age, I assume the following

δi =







δ1i if τ <= 3

δ2i if τ > 3

with 0 < δ1i < δ2i < 1.

I am left with 11 parameters (λa, λm, θa, θm, δa1, δa2, δm1, δm2, η, ā, L) to be cho-

sen simultaneously to match the following targets: dispersion of earnings in agricul-

ture and non-agriculture, ratio of mean earnings between farmers and non-agriculture

workers, age-earnings profile of farmers and non-agriculture workers, the share of

farmers in the labor force, the share of income on minimum agriculture consumption,

and mean farm size.

I use cross-sectional data from the 2007 Current Population Survey (CPS). My

sample includes individuals 25-65 with non-missing income and hours. Observations
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with weekly hours less than 35 or annual hours less than 1750 are excluded. I calculate

earnings as the sum of wage and salary income, farm income and business income.

Observations with earnings less than federal minimum wage are also dropped. Obser-

vations are then grouped into agriculture and non-agriculture based on their assigned

occupation codes. See appendix A.1 for a detailed discussion of mapping occupations

to sectors. The standard deviation of log normalized hourly earnings in agriculture

is 0.48. In non-agriculture, it is 0.58. The mean earnings in agriculture is 69 percent

of that in non-agriculture.

I construct the age-earnings profile in non-agriculture using the cross-sectional

data from 2007 CPS. For agriculture, I use farm operator balance sheet data from 2007

Census of Agriculture. The variation in operator income over time is a more accurate

measure of the changes in a farmer’s endogenous skill. Changes in farmers’ earnings

in CPS, on the other hand, might reflect variations in off-farm employment and other

business income. Government payments are not in the model. Correspondingly, I

calculate farm operator income net of government payments.

I calculate the share of farmers in the labor force to be 1.74 percent.6 The min-

imum consumption parameter is chosen such that a country with 7.5 percent of U.S.

per capita GDP spends 34 percent of its income to meet the minimum consumption

requirements.7 The mean farm size in the U.S. is 169 hectares. Note that matching

6The share of employment in agriculture in the U.S. is 2.9 percent. In 2007 CPS, 60
percent of the agriculture labor force are farmers, ranchers, and farm/ranch managers.
Therefore, the share of farmers in the labor force is 1.74 percent.

7The same strategy is used in Lagakos and Waugh (2010). This evidence is based on
studies of India. See Atkeson and Ogaki (1996), Rosenzweig and Wolpin (1993).
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the mean farm size and the share of farmers in the labor force implies L = 14.7.8

Panel A of Table 2.1 summarizes the values of parameters that are determined

without solving the model. Panel B lists the jointly calibrated parameters, and the

corresponding targets to match.

The calibrated model is able to match the targets well. Figure B.5 plots

the aggregate earnings distribution from the model, along with those in the data.

Figure B.6 and Figure B.7 plots the distribution in agriculture and non-agriculture,

respectively. While the parameters are calibrated to match only the dispersion of

earnings, the model actually captures the earnings distributions fairly well. The

model also generates an mean earnings ratio between agriculture and non-agriculture

that is equal to 0.69. Figure B.8 and Figure B.9 demonstrates that the calibrated

model matches the age-earnings profile in each sector very well.

Although not targeted, the implied size distribution of farms from the model

captures two features of U.S. data: large farms (>200 hectares) account for about 20

percent of all farms; and more than 80 percent of all farm land is in farms above 100

hectares. The calibrated model implies that agricultural output is 1.4 percent of U.S.

GDP, which is consistent with the data.

8Mean farm size in the model is simply the stock of land divided by the measure of
farmers, i.e., L/(5 ∗ 0.0174) = 169 → L = 14.7.
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Table 2.1: Parameter values and targets

Parameter Value Targets

Panel A

A 1 Normalization

(φa, φm) (1,1) Assumption

β (0.96)10 Standard value

γ 0.11 Land share

Panel B

λa 3.85 Dispersion, hourly earnings in agriculture

λm 2.34 Dispersion, hourly earnings in non-agriculture

θa 0.35 Age-earnings profile, agriculture

θm 0.25 Age-earnings profile, non-agriculture

(δ1a, δ
2
a) (0.26, 0.8) Age-earnings profile, agriculture

(δ1m, δ
2
m) (0.40, 0.65) Age-earnings profile, non-agriculture

L 14.7 Mean farm size

η 0.0046 Share of employment in agriculture

ā 0.07 Minimum consumption expenditure



48

2.4 Results

The question this paper is designed to answer is why cross-country productivity

differences in agriculture are larger than those in the aggregate and in non-agriculture.

I use the calibrated model to answer this question for a sample of 79 countries. Data

on GDP per worker, real output per worker in agriculture and non-agriculture are

from Caselli (2005). Data on arable land per worker is from Restuccia, Yang, and

Zhu (2008).

Countries are assumed to be identical except for their land endowment and

their levels of total factor productivity. In particular, they face the same distribution

of initial skills, and the same technology for skill accumulation. Land endowment

for each country is chosen such that their land endowment relative to the U.S. is the

same as that in the data. I vary country-specific TFP such that real GDP per worker

(measured at international prices, relative to the U.S.) in the model is the same as

that in the data. Then I assess the model’s implications for output per worker in

each sector against those in the data.

2.4.1 Sectoral Productivity Differences

I present my results as follows. First I calculate the productivity gaps in

agriculture, in the aggregate, and in non-agriculture, respectively, between the 90th

percentile country and the 10th percentile country. Then I calculate how large is the

gap in agriculture relative to that in the aggregate and that in non-agriculture. I
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repeat the same calculations when I compare the 90th percentile country with the

25th percentile country and the 50th percentile country.

Table 2.2 demonstrates that between the 90th percentile country and the 10th

percentile country, the productivity gap in agriculture is 1.8 times larger than that

in the aggregate, and 5.7 times larger than that in non-agriculture. In the data, this

ratio is 2 and 10, respectively. Furthermore, my model performs better relative to the

benchmark model in Lagakos and Waugh (2010): in their model, the corresponding

numbers are 1.6 and 4.3.

Table 2.2: Labor productivity gap between

90th and 10th percentile country

Ratio of Productivity Gap Model Data

Agriculture/Aggregate 1.77 2

Agriculture/Non-Agriculture 5.67 10

Next I examine the model implied sectoral productivity for other countries in

the sample. Table 2.3 presents the comparison between the 90th percentile country

and the 25th percentile country. The comparison between the 90th percentile country

and the 50th percentile country is summarized in Table 2.4. The model performs less

well when we compare high and intermediate income countries (25th percentile and
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Table 2.3: Labor productivity gap between

90th and 25th percentile country

Ratio of Productivity Gap Model Data

Agriculture/Aggregate 2.3 3.6

Agriculture/Non-Agriculture 2.9 11.5

50th percentile). The reason is that the minimum consumption constraint becomes

increasingly less binding as income increases. On the one hand, intermediate income

countries only have a slightly higher share of farmers in the labor force, compared

to high income countries. Since individuals in all countries draw from the same

distribution of initial skills, similar divisions of labor imply small differences in the

endowed skills of farmers and workers. On the other hand, as economies move above

the minimum consumption level, equilibrium interest rate varies only marginally with

income, and so does skill accumulation. Hence, the model fails to generate large

differences in labor productivity.

2.4.2 The Importance of Skill Accumulation

How important is skill accumulation in generating the productivity differences?

I address this question here. From Lemma 1, all individuals in a sector choose the

same sequence of time investment, and enjoy the same growth in efficiency over time.

Exploiting this fact, I rewrite aggregate production in agriculture and non-agriculture
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Table 2.4: Labor productivity gap between

90th and 50th percentile country

Ratio of Productivity Gap Model Data

Agriculture/Aggregate 1.67 3.6

Agriculture/Non-Agriculture 1.67 5.8

as

Ya = A ·

[
T∑

τ=1

za,τ
za,1

(1− sa,τ )

]1−γ

·

[
∫

j∈Ωa,1

zja,1dG
j

]1−γ

· Lγ, (2.8)

Ym = A ·

[
T∑

τ=1

zm,τ

zm,1
(1− sm,τ )

]

·

[
∫

j∈Ωm,1

zjm,1dG
j

]

. (2.9)

Recall that at any point in time the measure of population is T. In a stationary

equilibrium, the measure of farmers is given by Na = T ·
∫

j∈Ωa,1
dGj . Similarly, the

measure of workers in non-agriculture is Nm = T ·
∫

j∈Ωm,1
dGj. Now real output per

worker in each sector can be expressed as

Ya

Na
= A
︸︷︷︸

TFP

·

[
T∑

τ=1

za,τ
za,1

(1− sa,τ )/T

]1−γ

︸ ︷︷ ︸

Accumulation

·E[zja,1|j ∈ Ωa,1]
1−γ

︸ ︷︷ ︸

Specialization

·

(
L

Na

)γ

︸ ︷︷ ︸

Land−per−farmer

(2.10)

Ym

Nm
= A
︸︷︷︸

TFP

·

[
T∑

τ=1

zm,τ

zm,1
(1− sm,τ )/T

]

︸ ︷︷ ︸

Accumulation

·E[zjm,1|j ∈ Ωm,1]
︸ ︷︷ ︸

Specialization

(2.11)

The model mechanisms are revealed in equations (2.10) and (2.11). Low TFP reduces

output per worker in both sectors directly, and affects the quality of labor indirectly.

The term E[zja,1|j ∈ Ωa,1] is the average initial agricultural skill of farmers. Similarly,
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E[zjm,1|j ∈ Ωm,1] is the average initial non-agricultural skill of workers. The “special-

ization” effect dictates that E[zja,1|j ∈ Ωa,1] increases with TFP, but E[zjm,1|j ∈ Ωm,1]

decreases with TFP. The reason is the following. Because of the minimum consump-

tion constraint, an exogenous reduction in TFP raises the relative price of output in

agriculture. More individuals with low initial skill in agriculture move out of non-

agriculture into agriculture, leaving in non-agriculture those who are truly talented in

it. As a result, the average farmer has lower initial skill in agriculture, but the average

worker has higher initial skill in non-agriculture. This “specialization” effect, as high-

lighted in Lagakos and Waugh (2010), is the main reason the model generates labor

productivity differences that are larger in agriculture and smaller in non-agriculture,

compared to differences in aggregate income per worker.

The other two indirect effects of TFP, “accumulation” and “land-per-farmer”

are unique to this paper. The “accumulation” effect, as captured by the term

∑T
τ=1

zi,τ
zi,1

(1 − si,τ ), summarizes the growth of skill over the life cycle. As illustrated

in section 2.4 using a simpler two-period model, such productivity growth increases

with TFP (see equation (2.7)). In agriculture, the farmers in low TFP economies

have on average low initial skill. The accumulation effect further implies that they

also invest little over the life cycle to improve their skills. This leads to larger differ-

ences in output per worker in agriculture. Low TFP also reduces the optimal scale of

production in agriculture. In equation (2.10), L
Na

is the average quantity of land per

farmer, which can also be interpreted as the average farm size because one farm is

associated with a single farmer in the model. The minimum consumption constraint
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necessitates a larger measure of farmers when TFP is low, leading to reduced farm

size and lowered labor productivity in agriculture.

To quantify the contribution of each of these forces, I perform the following

decomposition exercise. Starting from a model with homogenous labor, I ask if such

a model can explain the sectoral productivity differences, given exogenous differences

in land endowment.9 The fist row of Table 2.5 demonstrates that such a model would

not be able to explain observed sectoral productivity differences. When exogenous

differences in TFP is incorporated, the model generates productivity differences in

agriculture that are larger than those in the aggregate and in non-agriculture. How-

ever, quantitatively, these productivity differences are inconsistent with the data.

Next, I introduce individual heterogeneity in their initial skills (of both agri-

culture and non-agriculture production). However, they do not accumulate skills over

the life cycle.10 As discussed before, the differences in TFP affect the allocation of

skills across sector. Hence, the model generates productivity differences in agriculture

that are twice as large as those in the aggregate, and 4 times larger than those in

non-agriculture. When individuals are further allowed to accumulate skills, the ratio

of agricultural productivity gap to aggregate productivity gap drops to 1.8, but the

ratio of agricultural productivity gap to non-agricultural productivity gap increases

to 5.7.

9This corresponds to the case za = zm = z. The technology in agriculture is Ya =
AZ̄1−γLγ , and in non-agriculture is Ym = AZ̄, where Z̄ =

∫
zdG(z).

10This is done by setting θa = θm = 0.
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Table 2.5: Decomposing productivity gap be-

tween 90th and 10th percentile coun-

try

Agriculture
Aggregate

Agriculture
Non-agriculture

+ Land endowment 1.01 1.01

+ TFP 1.15 1.33

+ Specialization 2.16 4.25

+ Accumulation 1.77 5.67

2.4.3 The Size Distribution of Farms

A salient feature of farming in poor countries is the dominance of small farms

(less than 5 hectares). For the poorest 10 percent of the countries in my sample, I cal-

culate the farm size distributions using data from 1990 World Census of Agriculture,

administered by the Food and Agriculture Organization (FAO).11 In these countries,

90 percent of the farms are smaller than 5 hectares. Moreover, 61 percent of farm

land is in these small farms. These statistics contrast sharply for example with those

for the U.S., where less than 10 percent of all farms are below 5 hectares, and the

land in these farms is a negligible share of total farm land.

11The poorest 10 percent countries are Ethiopia, Burkina Faso, Nepal, Mozambique,
Uganda, Malawi, Mali and India.
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I compare the farm size distributions generated from the model with those

in the data for the poorest 10 percent of the countries in my sample. Table 2.6

demonstrates that the model is able to capture the key features of the farm size

distribution in those poor countries, relying only on differences in aggregate TFP.

In terms of the size distribution of farms, the model predicts that 89 percent of all

farms are less than 5 hectares (91 percent in the data), and only 2.5 percent of farms

exceed 10 hectares in size (2.7 percent in the data). In terms of the distribution of

farm land, the model predicts that 84 percent of all farm land is in farms less than 5

hectares (62 percent in the data), and only 5.1 percent of farm land is in farms over

10 hectares (12.6 percent in the data).

In contrast to small scale farming in poor countries, farms in rich countries

are gigantic.12 Table 2.7 shows that the model replicates the large scale production

in agriculture of rich countries fairly well. For example, both in the model and in the

data, large farms (> 100 hectares) account for roughly one third of all farms; these

large farms also account for one third of all farm land.

What explains the stark differences in farm size distribution between rich and

poor countries? In a recent paper, Adamopoulos and Restuccia (2011) argue that

these differences in the size distribution of farms are a result of farm level distortions

in poor countries. Here I offer an alternative interpretation. Instead of size-dependent

distortions, the prevalence of small farms in poor countries is a joint result of insuf-

12The richest 10 percent countries are Norway, Australia, Italy, Canada, Netherlands,
Switzerland and United States.
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Table 2.6: Size distribution of farms in the poorest 10

percent of countries: model and data

Data Model

Share of Farmers in the Labor Force 0.85 0.74

Mean Farm Size (Hectares) 1.46 2.49

Size Distribution (%)

Farms < 5 Hectares 90.7 89.1

Farms > 10 Hectares 2.7 2.48

Land Distribution (%)

Farms < 5 Hectares 61.5 84.2

Farms > 10 Hectares 12.6 5.1
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Table 2.7: Size distribution of farms in the richest 10

percent of countries: model and data

Data Model

Share of Farmers in the Labor Force 3.8% 2.5%

Mean Farm Size (Hectares) 524 140

Size Distribution (%)

Farms < 20 Hectares 48.6 31.2

Farms > 100 Hectares 32.9 33.6

Land Distribution (%)

Farms < 20 Hectares 33.4 26.1

Farms > 100 Hectares 30.0 37.6
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ficient specialization and limited skill accumulation. In a nutshell, farms are small

because farmers have low skill to begin with; farms stay small because farmers do not

invest to improve productivity.13

2.4.4 Other Implications

In this section, I examine other implications of the model. These implications

include sectoral labor allocation, the relative price of agriculture output, and the

life-cycle productivity growth of farmers.

The model speaks to the division of labor between farmers and non-agriculture

workers. I compute the share of farmers in the labor force in the data as follows. The

share of employment in agriculture is directly available from the 2004 Statistical Year

Book published by the Food and Agriculture Organization. However, agriculture

employment consists of both self-employed farmers and wage workers in agriculture.

To separate the two, I use national labor surveys compiled by the International Labor

Organization (ILO).14 Figure 2.1 plots on the horizontal axis PPP GDP per worker

relative to that of the U.S., and on the vertical axis the share of farmers in the labor

force in the model and in the data. The scatter plot is the data and the smooth curve

13Bhattacharya (2009) shows that a standard Lucas’s span-of-control model with man-
agerial skill investment accounts for bulk of the cross-country differences in establishment
size distribution. Bhattacharya, Guner, and Ventura (2011) argue that when there is en-
dogenous managerial skill accumulation, size-dependent distortions have amplified effects
on aggregate output and plant size distribution.

14The labor survey classifies employment in agriculture into four categories: employer
and own account, unpaid family member, employee, and unclassified. I treat the first two
categories as equivalent to farmers in the model. In poor countries, farmers make up more
than 90 percent of the agriculture labor force. See appendix B.2.



59

refers to the model. The share of farmers in the model declines from 90 percent in

the poorest country to less than 3 percent in the richest country as observed in the

data.
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Figure 2.1: The share of farmers in the labor force: model and data

In the model, TFP alters the allocation of skills across sectors by changing the

relative price of output in agriculture. Therefore, the model implies that the price

of output in agriculture relative to that in non-agriculture decreases with the level of

income. To verify this implication, I compute the price of food consumption relative

to that of non-food consumption using data from the 2005 International Comparison

Program of the World Bank. The relative price in the data is about 2.3 times higher

in the 10th percentile country, relative to that in the 90th percentile country. The



60

model overstates this price difference; the relative price is about 5 times higher in the

10th percentile country.

One of the implication from the model is that skill accumulation is discouraged

when income is low. Consider the comparison between Nepal and U.S. There is a

factor of 22 difference in aggregate income per worker. The model predicts that the

productivity growth (measured by growth in farm size) of a farmer between age 25

and 45 is about 13 percent lower in Nepal, relative to that in the U.S. In the data, I

find that the size growth is 19 percent lower in Nepal, relative to that in the U.S.

2.5 A Model with Skill Externality

It is hard to argue that the state of technology in agriculture is the same in

developing and developed countries. The mechanized, large-scale agricultural pro-

duction in developed countries contrasts sharply with the labor-intensive, small-scale

family production that typifies agriculture in developing countries. In this paper,

these technological differences have been summarized using an exogenous TFP term.

However, much of the technological differences are due to slow adoption of new tech-

nology (Evenson and Gollin (2003), Restuccia, Yang, and Zhu (2008)). In a very

stylized way, adopting a new technology is very similar to accumulating skill. Both

require existing knowledge (current skill) and learning (time investment). This in-

terpretation is particularly suitable if a new technology represents continuous im-

provements of current practices. The question is what has prevented the adoption

of productive technology in developing countries? Or using the very stylized inter-
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pretation, what has prevented the farmers from accumulating (technology embodied)

skill?

The answer given in this paper so far is that aggregate barriers like low TFP

have discouraged the accumulation of skills. Here I consider the importance of learn-

ing from others. Farmers’ decisions to adopt new technologies is shown to critically

depend on existing knowledge of the technology their neighbors possess (Foster and

Rosenzweig (1995), Conley and Udry (2010)). In this section, I propose a simple way

to incorporate this learning externality into my model. Under parameterizations that

are exploratory in nature, I assess the importance of such externality in understanding

cross-country productivity differences.

To incorporate the effect of learning from others, I modify the skill accumula-

tion technology. In particular, the return to investment in skill accumulation depends

also on the average skill within the sector. Specifically, the law of motion for skill

from age τ to τ + 1 is

zi,τ+1 = (1− δi)zi,τ + Z̄ζ
i zi,τs

θi
τ , (2.12)

where Z̄i is the average sector-specific skill in sector i. The parameter ζ controls the

extent of skill externality. The technology in the benchmark model corresponds to

the case of ζ = 0. Empirically estimating the magnitude of human capital externality

is an object of ongoing research. Existing estimates of human capital externality fall

in the range of 0 to 10 percent. I experiment with two different values: ζ = 0.05 and

ζ = 0.1.

Individuals solve the optimization problems as outlined in section 2.2. They
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have full information about the effects average skill has on the marginal return to

their own investments; however, they do not internalize the positive externality their

investments have on the average skill within a sector. Individuals have rational ex-

pectations about the evolution of sectoral average skill over time. In a stationary

equilibrium, the following two conditions have to be satisfied.

Z̄a =

[
T∑

τ=1

za,τ
za,1

/T

]

·

∫

j∈Ωa,1

zja,1dG
j, (2.13)

Z̄m =

[
T∑

τ=1

za,τ
za,1

/T

]

·

∫

j∈Ωm,1

zjm,1dG
j. (2.14)

As before,
∫

j∈Ωi,1
zji,1dG

j is the average initial skills of age-1 individuals in

sector i. These expressions follow from Lemma 1 and the fact that population is

constant. Equations (2.13) and (2.14) define a system of non-linear equations in two

unknowns (Z̄a, Z̄m).

Given the magnitude of externality, I recalibrate the model to the U.S., match-

ing the targets explained in section 3. In an effort to isolate the extra effects coming

from externality, I assume the same distribution of initial skills as in the model with-

out externality. The cost is that in some cases, the model is no long able to match

the relative mean earnings between agriculture and non-agriculture. Then I again

vary country-specific TFP to match real GDP per worker in the data, and compare

model’s predictions of output per worker in agriculture and non-agriculture against

those in the data.

Table 2.8 demonstrates that a model with externality performs better account-

ing for cross-country productivity differences in agriculture and non-agriculture. In
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Table 2.8: Productivity gap between 90th and 10th percentile with

different magnitudes of externality

Ratio of Productivity Gap ζ = 0 ζ = 0.05 ζ = 0.1 Data

Agriculture/Aggregate 1.8 1.86 1.9 2

Agriculture/Non-agriculture 5.6 7 9.7 10

Relative Mean Earnings

Agriculture/Non-agriculture 0.69 0.69 0.7 0.69

fact, when the externality is strong enough (ζ = 0.1), the model accounts for almost

all of the differences in output per worker in both agriculture and non-agriculture.

Since I use the same distribution of initial skills as in the model without external-

ity, the improved performance most likely reflects the increased importance of skill

accumulation.

2.6 Conclusion

I developed a life cycle model of occupational choice and on-the-job skill ac-

cumulation to quantitatively explain sectoral productivity differences across coun-

tries. The calibrated model reproduces both cross-sectional and life-cycle features

of earnings in U.S. data. Even though countries differ only in sector-neutral TFP,

the model generates productivity differences in agriculture and non-agriculture that

are quantitatively consistent with data. Moreover, the model captures other stylized
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observations in poor countries including the high share of farmers in the labor force

and the prevalence of small farms.

I have chosen TFP to reproduce observed disparity in real GDP per worker.

The implied cross-country disparity in TFP is much larger than those from standard

development accounting exercises (Hall and Jones (1999), Caselli (2005)). This is

because I do not have physical capital in my model. The differences in TFP in my

model reflect, at least partially, the differences in physical capital across countries.

A natural extension is to introduce physical capital into the current framework. In

particular, if capital and skills are complements, the model might be able to account

for more of the productivity differences across countries.



65

APPENDIX A

CHAPTER 1

A.1 Data Description

• World Census of Agriculture This is an archive of national agriculture

censuses from a wide range of developing and developed countries. FAO pro-

cesses these national censuses and presents key summary statistics in a com-

mon, internationally comparable format. The unit of observation in WCA

is a holding - defined as “an economic unit of agricultural production un-

der single management comprising all livestock kept and all land used wholly

or partly for agricultural production purposes, without regard to title, legal

form, or size”. Throughout this paper, I view a holding as identical to a farm.

http://www.fao.org/economic/ess/ess-data/ess-wca

• World Development Indicator http://data.worldbank.org/indicator

• Factor Shares in U.S. Farming Data are from National Agriculture Statistics

Services administrated by the Department of Agriculture, and can be accessed

through http://www.ers.usda.gov/Data/FarmIncome/FinfidmuXls.htm.

• Working Days by Age of Farm Operator The data is calculated from 2007

U.S. census of agriculture. Panel A reports the number of days off the farm.

I assume 250 working days a year, and use the midpoint of the interval as the

interval average. Panel B reports the fraction of time off the farm by age group.
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Table A.1: Working days by age of farm operator

Panel A

25-34 35-44 45-54 55-64 65+ Total

None 52,938 104,375 110,380 158,629 249,512 675,834

1-99 days 18,015 29,804 25,428 27,061 19,267 119,575

100-199 days 7,872 14,648 14,308 12,423 6,169 55,420

200 days + 10,028 15,565 14,681 11,082 5,087 56,443

Panel B

Work Days (1000s) 17875 33908 34478 46589 66975

% Days 0.09 0.17 0.17 0.23 0.34

A.2 Proof

Proof of Lemma 1:

Recall that profit function is linear in skill, i.e.,

π(z) =z(1 − s) · (1− γ) · (P · A)
1

1−γ

(

γ
(α

w

)α
(
1− α

q

)1−α
) γ

1−γ

In a stationary equilibrium, the optimal sequence of skill investment is the solution

to the following problem:

max
st

:

T∑

t=1

R1−t · zt · (1− st)

s.t : zt+1 = zt(1 + sθt ).
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The optimal path of investment can be solved using backward induction. Clearly,

sT = 0. The problem at period T-1 can be written as

max
sT−1

: zT−1(1− sT−1) + zT−1(1 + sθT−1) · R
−1

the optimal time is given by sT−1 = (θ/R)1/(1−θ). Now define dT−1 = (1 − sT−1) +

(1 + sθT−1)/R, the problem at period T-2 can be written as

max
sT−2

: zT−2(1− sT−2) + zT−2(1 + sθT−2) · dT−1 · R
−1

The solution has a recursive structure

ST = 0, dT = 1

st−1 = (θdt/R)
1

1−θ , dt−1 = (1− st−1) + (1 + sθt−1)/R, t = 2, ..., T.

A.3 Numerical Analysis

Table A.2: Age-hour profile: model and data

Age 25-34 35-44 45-54 55-64 65+

Data 0.09 0.17 0.17 0.23 0.34

Model 0.08 0.17 0.20 0.26 0.29
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Figure A.1: Size distribution of farms: model and data
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Figure A.2: Land distribution of farms: model and data
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Figure A.3: Size distribution of farms in low income countries: model and data
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Figure A.4: Size distribution of farms in median income countries: model and data
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Figure A.5: Size distribution of farms in high income countries: model and data
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APPENDIX B

CHAPTER 2

B.1 Data Description

• Cross-Country Productivity Differences Real output per worker in agri-

culture and non-agriculture is available from Caselli (2005). Table B.1 presents

productivity differences between the 90th percentile country and the 10th per-

centile country in the world income distribution.

Table B.1: Cross-country productivity differences: the role of capital

Labor Productivity Gap Unadjusted for Capital Adjusted for Capital

Agriculture 45 11.5

Aggregate 22 4.5

Non-agriculture 4 2.3

The message to take away from the table is that labor productivity differences in

agriculture are much larger than those in the aggregate and in non-agriculture.

A legitimate concern is that labor productivity differences are due to differences

in physical capital. Addressing this concern requires data on sectorial capital,

which is not available for a larger set of countries. I instead follow the approach
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in Caselli (2005) and infer the capital stock in each sector indirectly. More

specifically, I assume the following sectorial technology

Ya = TFPa ·K
γ
aN

β
aL

1−γ−β ,

Ym = TFPm ·Kα
mN

1−α
m .

I also assume perfect mobility of capital across sectors, which implies the fol-

lowing optimality condition

γ
PaYa

Ka
= α

PmYm

Km
,

and the resources constraint that Ka + Km = K. Aggregate capital stock K,

and sectorial output at domestic prices, PaYa and PmYm, are directly available

from Penn World Tables and World Development Indicator. I hence can infer

the sectorial capital stock by solving the system of equations. I also obtain L as

stock of arable land per worker from data. Given (Ka, Km, L), and sectorial la-

bor allocation (Na, Nm), I back out the sectorial TFP measures (TFPa, TFPm).

The table below summaries the dispersion of TFP across countries at the ag-

gregate as well as the sectorial levels.

Even after accounting for physical capital differences, productivity dispersion

remains much larger in agriculture compared to those in the aggregate and in

non-agriculture.

• U.S. Cross-sectional Earnings The cross-sectional data is extracted from

2007 Current Population Survey, available in IPUMS-CPS (King, Ruggles,
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Alexander, Flood, Genadek, Schroeder, Trampe, and Vick (2010)). I restrict our

sample to include only individuals 25-65 with non-missing income and hours,

who work at least 35 hours per week and at least 1750 hours per year. Earn-

ings are computed as the sum of wage and salaries income, business income,

and farm income. Individuals earning less than Federal minimum wage are also

excluded. My sample consists of 52,152 observations, of which 534 are working

in the agriculture sector, and 51,618 are working in the non-agriculture sector.

In assigning sectors, I label individuals with occupation code 20, 21, 600, 604,

605, 600, 612 as working in agriculture, and the individuals with other occu-

pation codes as working non-agriculture. Within agriculture, I further group

individuals with code 20, 21, and 600 as farmers, and the rest as workers.1

– Mean and Dispersions of Earnings

Average hourly earnings are 17 in agriculture, and 25 in non-agriculture,

both expressed in 2007 U.S. dollars. Earnings are less dispersed in agricul-

ture, relative to non-agriculture. The standard deviation of log normalized

hourly earnings is 0.48 in agriculture, and 0.58 in non-agriculture. Within

agriculture, the mean hourly earnings of wage/salaries workers are 13, and

for farmers are 20. The standard deviation of normalized log hourly earn-

ings of wage/salaries workers is 0.39, which is substantially lower than that

of farmers (0.56).

1Occupations code 20, 21, 600 corresponds to farm/ranch managers, farmers and ranch-
ers, and first line supervisor/managers of fishing and forestry workers.
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– Age-Earnings Profile

I compute the mean hourly earnings of different age groups in agriculture

and non-agriculture. In agriculture, I also construct age-earnings profiles

separately for farmers and wage/salaries workers. The main message is

that the age-earnings profile displays a well-known hump-shape in non-

agriculture as well as for farmers in agriculture. For wage/salaries workers

in agriculture, the age-earnings profile is essentially flat.

Table B.2: Mean hourly earnings by age group, in

agriculture and non-agriculture

Age Non-agriculture Agriculture

Farmer Wage Worker

<= 25 16 13 12

26− 34 21 17 14

35− 44 26 20 13

45− 54 27 21 12

55− 60 26 20 10

Note: numbers reported are in 2007 U.S. dollars.
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• Labor Force Composition in Agriculture Self-employment is a predom-

inant form of employment in agriculture, both in developed and developing

countries. For the US, farmers make up 59 percent of total employment in agri-

culture, and wage/salary workers make up 41 percent. These shares are consis-

tent with that reported by The Bureau of Labor Statistic (BLS (2010)BLS).

Across countries, I use national labor surveys complied by the International La-

bor Organization (ILO). I compute the fraction of individuals characterized as

one of the following types: employers and own account workers, employees, un-

paid family members, and unclassified. Figure B.1 plots the share of employers,

own account worker and unpaid family members on the vertical axis, and PPP

per capita income on the horizontal axis. Two observations are immediate: 1)

most of the labor force in agriculture are employers, own account workers, and

unpaid family members; 2) the composition of employment in agriculture does

not vary systematically with income levels.

• Productivity Growth of Farmers: U.S. Cross Section While the age-

earnings profile constructed from CPS data suggests productivity growth over

farmer’s life cycle, I note the following concerns. First, the earnings data in CPS

contains non-farm wage and business income. Hence the variation in earnings

might reflect changes in off-farm employment and asset income, rather than the

changes in the farmer’s productivity in agricultural production. Second, it is

well known that government payments and transfers are an important source

of farm income. In CPS, it is not possible to adjust for government payments.
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Figure B.1: Share of self-employed farmers in agriculture labor force

Keeping these concerns in mind, I turn to balance sheet data from Census of

Agriculture. These data pertain to farm operators whose primary occupation is

farming, and have rich information about production expenses and government

payments. I present three measures of farm operator’s productivity. The first

one is the land size of a farm. The second one is operational income net of gov-

ernment transfers. The last one is a Solow-type residual, which is computed us-

ing information on gross output and factors of production (intermediate goods,

physical capital, land and hired labor). All three measures point to significant

productivity gain over the life-cycle of farm operators.

• Productivity Growth of Farmers: International Comparison Interna-

tional data on productivity growth is limited. Here I provide a case study of
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Table B.3: Productivity growth of farmers in 2007 U.S. cross-

section

Age < 25 25− 34 35-44 45-54 55-64

Farm Size 1.00 1.43 2.00 2.19 1.87

Operation Income 1.00 2.03 3.21 3.10 1.99

Solow Residual 1.00 1.24 1.35 1.28 0.87

Note: productivity of farm operator less than 25 is normal-
ized to be 1 in all three cases.

three countries: United States, Nepal and Sri Lanka.2 I find that productivity

gain by farmers, as measured by the increase in farm size over the life cycle, is

much less pronounced in poor countries like Nepal and Sri Lanka, relative to

that in the U.S. Figure B.2 plots the age-size profiles in these three countries.

The slope of the profile is much steeper in the U.S., relative to that in the two

less developed countries.

• Productivity Growth of Farmers: U.S. Historical Facing limited interna-

tional data, I turn to U.S. historical census data from 1964 to 2007. From each

census, I construct the age-size profile from the current cross-section of farm

operators. I find that the slope of the profile increases with the level of income.

2Data for Nepal is from Nepal National Census of Agriculture, 2000/2001, available
through http://www.cbs.gov.np/nada/index.php/catalog/8. For Sri Lanka, data is
from 2002 Census of Agriculture, available through http://www.statistics.gov.lk/

agriculture/AGC2002.
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Figure B.2: Productivity growth of farmers in U.S., Nepal and Sri Lanka

This observation is demonstrated in panel (a) of Figure B.4.

I note that this way of constructing age-size profile, while informative, could

be misleading as well. The reason is that in each census year, observations at

different nodes of the age-size profile represent different cohorts. As a result,

the variation in size over age can simply reflect cohort specific information such

as education. To overcome this problem, I compute the change in farm size by

creating synthetic cohorts. For example, I compute the increase in size between

the age 25-34 group in 1969 census and the under 25 group in 1964 census.

This increase is a reasonable proxy of the productivity growth experienced by

the 1964 cohort between 1964 and 1969. I compute the productivity growth

between age 20 and 25, and between age 25 and 35 using this method. The
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resulting time series is plotted on panel (b) of Figure B.4.
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Note: number on the horizontal axis depicts the level of productivity relative
to that at age 25.

Figure B.3: Productivity growth of farmer in historical U.S.
cross section

B.2 Proof

Proof of Lemma 1. First note that earnings of farmers and workers are linear in

the relevant skill. Their skill accumulation problem is

max
sτ

T∑

τ=1

zτ (1− sτ ) · R
1−τ

Skill investment is not optimal in the last period, so the problem in the second last

period is

max
s

z(1 − s) +R−1
[
(1− δ)z + zsθ

]
,
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Figure B.4: Productivity growth of farmer in U.S. time series
using synthetic cohorts

and optimal investment is s =
(
θ
R

)1/(1−θ)
. Discounted income can be written as zΛ,

where

Λ =

[

1−

(
θ

R

)1/(1−θ)
]

+R−1

[

(1− δ) +

(
θ

R

)θ/(1−θ)
]

Now the problem one period before can be written in a similar way as

max
s

z(1 − s) + ΛR−1
[
(1− δ)z + zsθ

]
,

the optimal decision is given by s =
(
θΛ
R

)1/(1−θ)
, and does not depend on beginning

of period skill. We can write discounted income as Λ′z, where Λ′ is a function of

only θ, δ and R. Repeating these steps yields a sequence of time investment that is

independent of initial skill.
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B.3 Calibration and Model Implications
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Figure B.5: Distribution of hourly earnings in the aggregate: model and data
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Figure B.6: Distribution of hourly earnings in agriculture: model and data
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Figure B.7: Distribution of hourly earnings in non-agriculture: model and data
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Figure B.8: Age-earnings profiles in agriculture: model and data
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Figure B.9: Age-earnings profiles in non-agriculture: model and data
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Figure B.10: Time allocated to skill accumulation: model and
data
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Figure B.11: Output per worker in agriculture: model and data
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Figure B.12: Output per worker in non-agriculture: model and data
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