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ABSTRACT

This thesis is composed by three different studies on oligopolies. The first chap-

ter is on oligopolies with perfect complements; the second chapter studies oligopolies

with positive network effects and incompatible networks, and the last one deals with

a polluting duopoly subject to environmental regulation.

Specifically, the first chapter provides a thorough characterization of the prop-

erties of Cournot’s complementary monopoly model (or oligopoly with perfect com-

plements) in a general setting, including existence, uniqueness and the comparative

statics effects of entry. As such, this serves to unify various results from the extant

literature that have typically been derived with limited generality.

Several studies have suggested that Cournot’s complementary monopoly model

is the dual problem to the standard Cournot oligopoly model. This result crucially

relies on the assumption that the firms have no production costs. The first chapter

shows that if the production costs of the firms are different from zero, the nice duality

between these two oligopoly settings breaks down. One implication of this breakdown

is that, in contrast to the Cournot model, oligopoly with perfect complements can be

a game of strategic complements in a global sense even in the presence of production

costs.

The second chapter models symmetric oligopolies with positive network effects

where each firm has its own proprietary network. That is, each firm’s network is

incompatible with that of its rivals. This chapter provides minimal conditions for
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the existence of (non-trivial) equilibrium in a general setting; in this model, the

equilibria may be either symmetric or asymmetric. For the symmetric equilibria, this

chapter analyzes the comparative statics effects of entry. In addition, it compares

the equilibrium outcomes of oligopoly markets with compatible and incompatible

networks. It shows that firms with compatible networks produce higher quantities

than firms with incompatible networks. However, the relationship between prices,

profits and consumer surplus is ambiguous, but social welfare is always higher in

markets with completely compatible networks.

Finally, the third chapter analyzes the incentives to invest in R&D under

two environmental policy instruments: the emission and performance standards, in

a Cournot model of competition between two symmetric firms. These firms are sub-

ject to environmental regulations as their production of a homogeneous good entails

pollution. Unlike a few models of output market available in the literature, this ap-

proach does not measure the environmental incentives using firms’ aggregate cost

savings. Instead, it compares the levels of social welfare obtained under both policy

instruments. From the derived subgame perfect equilibria of the two games, each

game associated with a different instrument, this chapter shows that social welfare

under performance standard dominates that under emission standard. It also finds

that further comparisons, in particular, the comparison of the investment in R&D,

are ambiguous and not aligned with the welfare comparison.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

1 ON COURNOT’S THEORY OF OLIGOPOLY WITH PERFECT COM-
PLEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Some economic applications . . . . . . . . . . . . . . . . . 6

1.2 The Model and some basic results . . . . . . . . . . . . . . . . . 7
1.2.1 The Asymmetric Case . . . . . . . . . . . . . . . . . . . . 8
1.2.2 The Symmetric Case . . . . . . . . . . . . . . . . . . . . 14

1.3 On the effects of varying the number of components . . . . . . . 15
1.4 Multi-product monopoly as the integrated solution . . . . . . . . 21
1.5 Multi-product monopoly versus Oligopoly . . . . . . . . . . . . . 22

1.5.1 A summary of Buchanan and Yoon (2000) . . . . . . . . . 22
1.5.2 Adding production costs to the BY model . . . . . . . . . 26

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 ON OLIGOPOLY WITH POSITIVE NETWORK EFFECTS AND IN-
COMPATIBLE NETWORKS . . . . . . . . . . . . . . . . . . . . . . 37

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Oligopoly with positive network effects and complete incompatibility 42

2.2.1 The model and the assumptions . . . . . . . . . . . . . . 42
2.2.2 Existence of equilibrium and viability . . . . . . . . . . . 46
2.2.3 Entry of firms . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Complete compatibility versus complete incompatibility . . . . . 55
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 ENVIRONMENTAL REGULATION OF OLIGOPOLIES: EMISSION
VERSUS PERFORMANCE STANDARDS . . . . . . . . . . . . . . . 79

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.1 Emission Standards . . . . . . . . . . . . . . . . . . . . . 86
3.2.2 Performance Standards . . . . . . . . . . . . . . . . . . . 88

v



3.2.3 Comparison for fixed b = c = s = 1 . . . . . . . . . . . . . 90
3.2.3.1 Fixing parameter γ = 1.5 . . . . . . . . . . . . . 90
3.2.3.2 Fixing parameter a = 2.5 . . . . . . . . . . . . . 92
3.2.3.3 Making the standards e and h exogenous for a = 2.5 94
3.2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . 97

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vi



LIST OF TABLES

Table

1.1 Equilibrium total output (Q∗), equilibrium total price (P ∗) and equilib-
rium industry profit (Π∗) for different settings. . . . . . . . . . . . . . . . 24

3.1 SPE outcome for b = c = s = 1, γ = 1.5 and different values for a. . . . . 92

3.2 SPE outcome for b = c = s = 1, a = 2.5 and different values for γ. . . . 94

3.3 Outcome for b = c = s = 1, a = 2.5, different values for γ and exogenous
e and h = h∗ such that e = qph∗. . . . . . . . . . . . . . . . . . . . . . . 96

vii



1

CHAPTER 1
ON COURNOT’S THEORY OF OLIGOPOLY WITH PERFECT

COMPLEMENTS

1.1 Preliminaries

1.1.1 Introduction

It is well known that Cournot’s (1838) pioneering book set the stage for a

major paradigm shift in economic theory. In a more direct manner, it initiated the

formal study of imperfectly competitive markets and provided an overly precocious

foretaste of game theory. While his basic model of quantity competition amongst few

firms became a workhorse of applied microeconomics and remains one of the dominant

models of partial equilibrium analysis, his other oligopoly model has remained only

modestly known even to this day. Cournot’s complementary monopoly model refers

to a market with the following features. Consumers have a downward-sloping demand

for a final product or a system that can only be put together after the purchase of n

different components, each of which is sold exclusively by a monopoly supplier. Any

subset of components other than the full set has no value in itself for any consumer.

The n components constitute thus perfect complements, and none of them possesses

any substitutes. The only meaningful demand is thus for the overall system or final

product, and the relevant price for consumers is the sum of all the prices paid for all

the n components.

The presence of a group of monopolists selling goods that are perfect comple-

BASED ON JOINT WORK WITH RABAH AMIR.
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ments probably explains Cournot’s original name for the model. Nonetheless, along

the lines of modern game theory, this setting is more aptly referred to as oligopoly

with perfect complements, since this explicitly recognizes the strategic interdepen-

dence between the ”monopolists”. (In this paper, we shall use either terminology to

refer to this model.)

Two historical settings have motivated the conception of this model. The

first, put forth by Cournot (1838) himself is the production of brass, the production

of which requires two inputs, copper and zinc at the same time, each supplied by a

different monopolist. The demand function here stands for the input demand by the

producer for the two inputs (ordered in a one-to-one ratio). Another seminal work

in oligopoly with perfect complements was developed independently by Ellet in 1839

(Ellet, 1966). The setting that inspired him dealt with how two different individuals

who own consecutive segments of a canal decide their tolls to shippers. We shall

discuss a number of different applications of this model throughout the paper.

In an early study, Sonnenschein (1968) showed that Cournot’s two theories,

the standard Cournot oligopoly and oligopoly with perfect complements, are formally

equivalent theories when the costs of production of the firms are zero. Indeed, there

is a perfect duality between the revenue functions of the two models, with the deci-

sion variables being quantities for the former and prices for the latter. In Cournot

oligopoly, price is determined by the the sum of the quantities that the firms produce.

In oligopoly with perfect complements, the quantity produced is determined by the

sum of the prices of the perfect complements. Then, if the demand function and the
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inverse demand function are the same, quantities in Cournot’s oligopoly model lead

to precisely the same prices in oligopoly with perfect complements model and vice

versa. Thus the two revenue functions write in exactly the same way in terms of

the strategies of the players, which is the sense in which Sonnenschein (1968) meant

that the models are mathematically equivalent. However, as we shall demonstrate, if

one includes the cost structure of the firms in the model, the said equivalence breaks

down in general.

There is a fairly extensive literature in industrial organization that deals with

various facets of Cournot’s complementary monopoly theory. This simple model has

been applied to a variety of settings and has been used in multiple policy debates

in various areas, including corruption in government services (Shleifer and Vishny,

1993), patents and innovation policy (e.g., Shapiro, 2001), merger theory (Gaudet

and Salant, 1992), competition policy (e.g., Gilbert and Katz, 2001), among others.

In recent years, renewed and sustained attention to this topic has surfaced in the

law and economics literature (e.g. Heller, 1998 and Heller and Eisemberg, 1998) as

well as in the public choice literature dealing in particular with property rights (e.g.,

Buchanan and Yoon, 2000).

With remarkably few exceptions, these different studies share two common fea-

tures, First, not surprisingly, they typically restrict attention to the usual convenient

functional form of linear demand and costs, and thus work with close-form solutions.

Second, they put in evidence the main result concerning Cournot’s second theory,

namely that integrating the n different monopoly suppliers into a single decision-
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making entity would actually improve market performance in a win-win manner (for

all concerned, including consumers), despite the fact that the resulting entity would

then be what one may refer to as a super-monopoly.1

The main objectives of this paper may accordingly be described as follows.

The first is to provide a fairly extensive characterization of the general properties of

oligopoly with perfect complements, including basic theoretical preliminaries such as

existence and uniqueness of equilibrium points.2 In part, this amounts to a gener-

alization of the many related results that have appeared in separate contexts over a

long period of time. In addition, since the present paper is based on the methodology

of supermodular games, this exercise also serves to provide a unifying framework for

studies on this model.3 The second objective is to qualify some conclusions about this

model that have drawn close parallels between Cournot’s two theories. The duality

that Sonnenschein (1968) observed is actually valid only in the absence of produc-

tion costs. Similarly, based on a linear specification with nice closed form solutions,

Buchanan and Yoon (2000) also draw close analogies of both a qualitative and a quan-

titative sort between the standard Cournot oligopoly (reflecting the commons in a way

1Interestingly, this fundamental insight was already described quite clearly by Cournot
in his pioneering work. Cournot (1838) found that prices are lower and industry profits
higher when a multi-product monopoly produces all the goods instead of having n firms
producing the goods.

2Surprisingly, relative to the standard Cournot model where such studies have a long
history (e.g., Novshek, 1985), no general rigorous theoretic analysis of Cournot’s second
model is available in the microeconomics literature (to the best of our knowledge).

3In particular, we invoke basic results and insights that have appeared in the application
of these lattice-theoretic tools in industrial organization theory (see Vives, 1990, 1995; Amir,
1996a; and Amir and Lambson, 2000).
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to be made precise later) and Cournot’s complementary monopoly model (reflecting

the anticommons). Here again, it turns out that these rather striking analogies lack

robustness in an essential way: By incorporating linear costs of production into the

two models, we show that the parallels largely vanish.

In the overall presentation of the results of this paper, we discuss the re-

lationship between oligopoly with perfect complements and Cournot oligopoly. In

particular, we point out the divergences that are engendered by the incorporation

of the cost structures into the two models. One example of these differences is that

while strategic complementarity of output levels in the standard Cournot oligopoly

is not possible in the presence of non-trivial costs (Amir, 1996a), the prices charged

by the different monopolies in Cournot’s complementary monopoly model may well

constitute strategic complements to one another, albeit under general but restrictive

assumptions on demand and costs.

The rest of the paper is organized as follows. Section 1.2 provides a precise

definition of Cournot’s second model and the basic existence proofs for both the asym-

metric and the symmetric versions of the model. Section 1.3 conducts a comparative

statics analysis of market performance as the number n of components of the system

varies. Section 1.4 provides a generalization of the usual argument in the literature

about welfare and profit-enhancing integration. Finally, Section 1.5 deals with the

inclusion of production costs into the Buchanan and Yoon (2000) setting.
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1.1.2 Some economic applications

This subsection discusses some of the applications of the model at hand in

various areas of microeconomics. We provide only a short summary here, and refer

the reader to the studies themselves for further details and discussion.

One common application deals with patents (see Shapiro, 2001 and Lerner and

Tirole, 2004). This is clearly an application of oligopoly with perfect complements if

we think of a firm or consumer that wants to develop a new product but might infringe

on a number of different patents owned by different parties. Then, the developer has

to pay for the usage of all of the patents involved. The patents in this scenario are

perfect complements and the consumer needs to buy a license for each one of them.

In their study of corruption in government services, Shleifer and Vishny (1993)

discuss the common situation where a private developer needs different permits (e.g.,

from the fire, water and police departments) to open a new business. This scenario fits

into the present model if the officials are assumed to be fully corrupt bribe maximizers.

Feinberg and Kamien (2001) analyze the hold-up problem that can arise in

an oligopoly with perfect complements when the acquisition of the multiple parts is

sequential. For example, if the government wishes to buy land from different owners

in order to build a public project, one owner can wait until the other owners have set

prices for their land in order to get a higher benefit for her part of land given that

it is necessary for the project. Clearly, the small pieces of land owned by different

agents are perfect complements here.

Ellet (1966) uses the metaphor of two different owners of two sequential seg-
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ments of a road where there are no alternative routes or exits. Gardner, Gaston

and Masson (2002) bring this analogy to the real world and apply the oligopoly with

perfect complements model to analyze how the Rhine river was tolled in 12544.

A classical application of oligopoly with perfect complements is the anticom-

mons problem. This one arises when multiple agents have the right to exclude people

from consuming the good (anticommon good) that they own. This is modeled as

each owner choosing the price for the anticommon good that maximizes her profit,

with the consumers having to pay each of the owners their price in order to use the

anticommon good. Buchanan and Yoon (2000) use as an example to illustrate this

problem a vacant lot that can be used as a parking lot that has a lower capacity than

its open demand. We will return to this example in the last section of the paper.

As shown by the previous examples, oligopoly with perfect complements is a

model that has been widely invoked in the literature. Nonetheless, there is a gap in

terms of a general characterization of its equilibria, which this paper hopes to fill.

1.2 The Model and some basic results

This section lays out the basic model of Cournot’s complementary monopoly

and provides some basic existence and uniqueness results. The general asymmetric

case and the symmetric case are considered separately. The reason for this is that,

when insisting on minimal structural assumptions on the model, the existence ar-

4During the period 800-1800, 79 different locations served as toll stations along the Rhine
river. The rights to collect tolls were granted by the Emperor, who decided the number,
location and amount charged at the toll stations.
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guments are quite different across the two cases. In addition, beyond the issues of

existence and uniqueness, it is convenient to restrict attention to the symmetric case.

This is a key simplifying assumption of the analysis, which is further discussed later

on.

Recall that an important auxiliary purpose of this paper is to address and

partly correct a widespread but imprecise perception in the literature that the two

models that were put forward by Cournot himself in 1938 are duals of one another in

some fundamental ways. As the basic results relating to this model are derived, we

shall provide a brief comparison with the corresponding results for standard Cournot

oligopoly, and assess the similarities and the differences. To avoid confusion between

the two models, we shall for the most part refer to the present model as oligopoly

with perfect complements (instead of the historical and most commonly used name of

Cournot’s complementary monopoly). Therefore, we reserve the name of “standard

Cournot oligopoly model” for Cournot’s much more widely used model of quantity

competition.

1.2.1 The Asymmetric Case

Consider an n-firm oligopoly with perfect complements, i.e., a market situation

where each of n producers sells one different good as a monopolist, and these goods

are totally useless unless purchased together in a fixed ratio to form a final product.

W.l.o.g., we assume that this ratio is one-to-one, since we can always appropriately

re-normalize the quantities. In other words, consumers wish to purchase a single
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system with demand function D(·), composed of n different components, each of

which is produced and sold by a separate firm acting as a monopoly supplier for that

component. This situation is modeled by letting each of the n firms set the price of

its own good/component and each consumer buy one unit of each of the n goods,

paying the sum of all the prices set by the firms.

This oligopoly with perfect complements is described by (n,K,D,Ci), where

n is the number of firms (or goods), K is the maximum price than can be charged for

any of the goods in the complementary market5, D : [0,∞) → [0,∞) is the demand

function and Ci : [0,∞)→ [0,∞) is firm i’s cost function.

Denote the price that the firm under consideration charges by x and the sum

of the prices of the remaining (n−1) firms by y. Let z = x+y represent the total price

that a consumer has to pay in order to obtain the system (of all the complementary

goods).

Firm i chooses the price x ∈ [0, K] that maximizes its profit given by

πi(x, y) = xD(x+ y)− Ci[D(x+ y)]. (1.1)

Its reaction correspondence is

ri(y) = arg max{xD(x+ y)− Ci[D(x+ y)] : 0 ≤ x ≤ K}. (1.2)

Alternatively, we can think of the same firm as choosing z ∈ [y, y + K] given

y, in this case, it maximizes its profit given by

π̃i(z, y) = (z − y)D(z)− Ci[D(z)]. (1.3)

5The magnitude of K does not play any role in the proofs, so this is assumption is just
for convenience.
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Define

z∗i (y) = arg max{(z − y)D(z)− Ci[D(z)] : y ≤ z ≤ y +K}. (1.4)

Let ∆i(z, y) denote the cross-partial derivative of π̃i with respect to z and y,

then

∆i(z, y) = −D′(z), (1.5)

which turns out to be the same for all firms, so we can suppress the index i in equation

1.5.

Throughout the paper, we maintain the following standard assumptions.6

(A1) D(·) is continuously differentiable and D′(·) < 0, and

(A2) Ci(·) is twice continuously differentiable and C ′i(·) ≥ 0.

Under assumption (A1), ∆(z, y) > 0 on the lattice

ϕ=̂{(z, y) : 0 ≤ y ≤ (n− 1)K, y ≤ z ≤ y +K}.

All the proofs are collected in Section 1.7. The following elementary but key

result follows directly from the fact that the profit function π̃i in (1.3) satisfies (a

strong notion) of increasing differences on the lattice ϕ, since ∆ > 0 (under smooth-

ness assumptions).

Lemma 1.1. Assume that the standard assumptions (A1) and (A2) hold. Then, for

each n and i, every selection of ri(·) satisfies the slope condition ri(y
′)−ri(y)
y′−y > −1 for

all y′ 6= y.

6Due to the use of supermodularity techniques, the smoothness properties of the demand
and cost functions are not necessary for most of the results of this paper. Nevertheless,
smoothness is assumed for convenience and ease of interpretation.
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Thus, when a firm’s rivals all together raise their total price by some amount,

the firm may respond by raising or lowering its own price, but in the latter case never

by so much that total price ends up going down (relative to the starting point). This

property will play a central role throughout the paper.

The central question under consideration in this section is the characteriza-

tion of respective sufficient conditions on primitives that turn this oligopoly model

into a game of strategic substitutes or strategic complements. As will become clear

shortly, this issue naturally subsumes the key issue of existence of a pure-strategy

Nash equilibrium (henceforth, PSNE) for this model. This is also true in case the

game is submodular since it clearly has the aggregation property (defined by the fact

that each payoff depends only on own action and on the sum of all other players’

actions).7

As the model at hand may be viewed as a special case of Bertrand competition

with differentiated products, one would expect the prototypical case to satisfy the

strategic substitutes property since the goods are complements in demand.8 The

first result indicates that this expectation is essentially correct in that it is fulfilled

7A pure-strategy Nash equilibrium for this model might be referred to in a number of
different ways, either as a Cournot equilibrium since the concept goes all the way back to
the early book by Cournot (1838) or as a Bertrand equilibrium since it deals with a form
of price competition. Nonetheless, to avoid a potential for confusion, we shall retain the
neutral name of PSNE.

8In Singh and Vives (1984), where the case of Bertrand competition with linear demand
for differentiated products is considered in some detail, the properties of strategic substi-
tutes and strategic complements coincide exactly with the properties of the goods being
complements or substitutes in demand, respectively. However, for non-linear demands, this
is no longer true.
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under quite a broad scope in terms of the restrictions needed on demand and costs,

as captured by the following assumptions on demand and costs.

Theorem 1.2. Assume that the standard assumptions (A1) and (A2) hold. Then,

for each n ∈ N , if D(·) is log-concave and Ci(·) is convex for all i, the oligopoly

with perfect complements is a game of strategic substitutes and there exists a unique

PSNE.

The conditions of Theorem 1.2 are general enough as to capture most reason-

able specifications of Cournot’s complementary monopoly in applied settings, includ-

ing the widely used case of linear demand and costs (see below for such an example).

It follows that one can consider this case to represent the prototypical situation for

this model.

Despite the fact that the game at hand is a special case of Bertrand competition

with complementary products, it turns out that the scope for strategic complementar-

ity of this game is clearly non-trivial, as evidenced by the following (non-degenerate)

sufficient conditions.

Theorem 1.3. Assume that the standard assumptions (A1) and (A2) hold. Then,

for each n ∈ N , if D(·) is log-convex and Ci(·) is concave for all i, the oligopoly

with perfect complements is a game of strategic complements and there exists a (not

necessarily unique) PSNE.

Log-convexity of demand is a rather restrictive condition. Of the commonly

used examples, only hyperbolic demand D(z) = 1/zα with α > 0 is log-convex.
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The limit case of a log-convex demand function is the exponential demand, given by

D(z) = e−z, z ≥ 0, which is strictly convex, log-linear, thus (weakly) log-concave and

log-convex.

Observing that the assumptions in the previous results are all in their weak

form (as opposed to their strict form), it follows as a direct corollary of the two The-

orems that if demand is exponential (i.e., D(z) = e−z, z ≥ 0) and the cost function is

linear, then the resulting game must be of both strategic substitutes and of strategic

complements. In other words, the reaction curves of all players must be constant

functions. We report this formal Corollary in the form of an example.

Example 1. Consider an oligopoly with perfect complements with n firms/goods

and a demand function D(z) = e−z, z ≥ 0. Suppose that firm i faces a linear cost

function Ci(q) = ciq ≥ 0 for producing any output q ≥ 0. It is easy to derive the

reaction curve of firm i (when rivals’ total price is y ≥ 0) as

ri(y) = ci + 1 for any y ≥ 0.

In other words, each firm has a dominant strategy to price with a mark up of 1

(independent of the actions of the firm’s rivals), thus leading to a unique PSNE price

vector (c1 + 1, c2 + 1, ..., cn + 1). Consumers pay the total price of n +
∑n

i=1 ci and

each firm has equilibrium profit equal to e−(n+
∑n

i=1 ci). As mentioned, this example

serves as an illustration of Theorems 1.2-1.3 as well as Lemma 1.1.

With the general conditions for the existence of PSNE in hand, this ends

our consideration of the general case. Henceforth, we shall consider the symmetric
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case (with identical firms). In particular, this will allow us to conduct comparative

statics on the effects of exogenously changing the number of firms based on lattice

programming methods, with the number of firms being the relevant parameter.

Comparing these existence results to those for standard Cournot oligopoly,

many similarities exist, but also one major difference. The latter model can enjoy

strategic complementarities in a global sense only in the abscence of (non-trivial)

costs of production. In other words, while a similar duality as the one reflected in

the above results holds for the revenue function of Cournot firms, it does not quite

extend to the entire profit function. One consequence of this is that, when facing an

exponential inverse demand, Cournot firms have dominant strategies if and only if

there are no variable costs in production. For more details on these points, see Amir

(1996a).

1.2.2 The Symmetric Case

Since each firm faces one and the same demand function for its (firm-specific)

good or component, to make all firms identical entails only the standard requirement

for a symmetric oligopoly that the firms have the same cost function for the production

of their respective goods, denoted then by C : [0,∞) → [0,∞).9 However, since

these goods are not homogeneous in any way, the meaning of identical cost functions

is quite different from the standard one (say for Cournot oligopoly). It typically

does not entail access to the same technology, but rather that the different goods

9For ease of notation, whenever we refer to any of the variables or equations defining
this model for now on, we will drop the (firm) index i.
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or components cost the same to produce for the same number of units (given the

postulated one-to-one composition ratio).

The next Theorem establishes that the standard assumptions alone are suffi-

cient to guarantee the existence of at least one symmetric PSNE for the symmetric

oligopoly with perfect complements, and no asymmetric PSNEs.

Theorem 1.4. Assume that the standard assumptions (A1) and (A2) hold. Then,

for each n ∈ N , the oligopoly with perfect complements has at least one symmetric

equilibrium and no asymmetric equilibria.

When all firms are identical, the property captured in Lemma 1.1, that a

firm’s reaction curve has all of its slopes bounded below by −1, is alone sufficient to

yield existence of a (necessarily symmetric) PSNE. This has no counterpart in the

asymmetric version of the model.

Recall that a similar property holds in symmetric Cournot oligopoly in terms

of output adjustment following a change in rivals’ total output, but not universally

so. Indeed, in Amir and Lambson (2000), the corresponding property holds only

when production enjoys either decreasing returns to scale or a limited form of scale

economies.

1.3 On the effects of varying the number of components

A proper study of this oligopoly model requires a good understanding of the

effects that added or reduced competition would have on equilibrium prices, per-

firm output and profit. Although we are asking how changes in the number of firms
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n affect these equilibrium variables, as in Amir and Lambson (2000), the meaning

of the question is somewhat different here. Instead of simple entry or exit by one

firm, the issue here is a comparison between the two situations where the exact

same final product that consumers want can be produced with either n or (n + 1)

components, with each firm’s cost function for a component being the same in both

cases. Depending on the precise context, the actual economic interpretation of this

exercise may in fact reflect quite different scenarios. For instance, in the context

of a group of patents, it could be that one of the component patents expires (thus

implying a move from n to n− 1 patents) or that a new patent is added to the group

(a move from n to n+ 1 patents).10

While this specific question (involving intermediate values of n) has not really

been addressed in the literature on Cournot’s complementary monopoly, the com-

parison between monopoly and the n-firm oligopoly is frequently assessed in specific

formulations of this model (we shall have more on this below). The answers provided

here correspond to what one would expect, on the basis of the specific formulations

analyzed so far, in particular one with linear demand and costs.

As uniqueness of PSNE need not prevail for this model, we denote the equi-

librium set for each variable by its corresponding capital letter indexed by n. So with

10In the corrupt officials story of Shleifer and Vishny (1993), this might correspond to
the government requiring one extra permit (from a new official, say for hygiene) in addition
to the existing list of permits. In tolling the Rhine river, it could be that (for a variety of
reasons) one of the owning entities decides to offer passage through its own segment toll-free
(this then corresponds to a decrease of n by one). Finally, it may be that a policy maker
can choose between two technology standards, one involving n components and the other
(n + 1) components (with each component produced by a monopolist with the same cost
function).
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n firms, the equilibrium sets are Xn for per-firm price, Yn for the firm’s (n − 1) ri-

vals’ cumulative price, Zn for total price, Qn for per-firm output, and Πn for per-firm

output.

We say that an equilibrium set for a specific variable in the model is increasing

or decreasing in n, when the maximal and minimal points of the set are increasing or

decreasing in n, respectively.11 These are represented by an upper and a lower bar

on the relevant variable, respectively.

Theorem 1.5. Under standard assumptions (A1) and (A2), for each n ∈ N,

(a) The equilibrium total price Zn is increasing in n; hence equilibrium per-firm output

Qn is decreasing in n.

(b) The equilibrium per-firm profit Πn is decreasing in n.

In oligopoly with perfect complements, the addition of one component to the

system (or final product) that perfectly complements the existing ones always in-

creases the equilibrium total price. This is very intuitive since now, there is an

additional good that the consumer has to buy in order to enjoy all of them. Also not

surprisingly, the equilibrium profits of each of the existing firms decreases (though

the new monopolist increases from no profit to the same profit as all the others).

The results in Theorem 1.5 have been pointed out before in many particular

economic applications, often using particular functional forms. For instance, using

the ubiquitous linear demand and zero costs (see Section 1.5 below), Gardner, Gaston

11This is a well-known feature of comparative statics conclusions based on supermodu-
larity methods (see e.g., Milgrom and Roberts, 1990, 1994, and Echenique, 2002).
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and Masson (2002) show that if the number of segments in road tolling increases, the

total price of the tolls goes up while the use of the road and the individual profits

of the tolls fall. Moreover, they find that the aggregate profits of the tolls also fall.

(The latter result is proved in full generality later on in this paper by Theorem 1.7.)

Shleifer and Vishny (1993) assert that when there is completely free entry

of corrupt officials asking for a bribe to provide a service or good produced by the

government, the total bribe approaches infinity, driving the provision of the good and

the bribe revenues towards zero.

We now investigate the direction of change of the equilibrium per-firm price

Xn. As expected, it can take either direction of change depending on the slope of the

reaction curve with respect to rivals’ cumulative price. Theorem 1.6 gives sufficient

conditions for these directions of change. Notice that, as can be seen from the proofs,

it is an immediate consequence of Theorems 1.2-1.4 and Lemma 1.10 from Section

1.7, which states that the equilibrium cumulative price of the rest of the (n−1) firms

set is increasing in n.

Theorem 1.6. Assume that the standard assumptions (A1) and (A2) hold. Then,

for each n ∈ N,

(a) If D(·) is log-convex and C(·) is concave, the equilibrium per-firm price Xn is

increasing in n.

(b) If D(·) is log-concave and C(·) is convex, the (unique) equilibrium per-firm price

xn is decreasing in n.

As reported earlier, the prototypical case for oligopoly with perfect comple-
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ments is characterized by strategic substitutes, so that per-firm price will have a more

pronounced tendency in general to decrease with the number of components.

Now we turn to study what happens to the equilibrium consumer surplus,

total profit and social welfare sets when there is an exogenous change in the number

of components. By Theorem 1.5 part (a), the equilibrium total price increases with

the number of firms and the equilibrium quantity goes down. Thus, the equilibrium

consumer surplus set decreases with more firms in the market. Recall that by Theorem

1.5 part (b), the equilibrium individual profit decreases with the number of products

or firms. The following result tells us the stronger result that the equilibrium total

profit goes down as well. Combining these results, we conclude that equilibrium social

welfare is decreasing in n.

Theorem 1.7. Assume that the standard assumptions (A1) and (A2) hold, then, for

each n ∈ N,

(a) Equilibrium consumer surplus CSn is decreasing in n.

(b) Equilibrium total profit nΠn is decreasing in n.

(c) Equilibrium social welfare Wn is decreasing in n.

In the literature on intellectual property rights, many experts have raised the

concern that innovation will have a tendency to be stifled in many high-tech industrial

sectors by the increasing number of patents. For biomedical research, see Heller and

Eisemberg (1998) for more on this. In fact, various calls for a major overhaul of the

patenting system are being made both in the U.S. and in Europe.

In some real world examples that fit the setting of oligopoly with perfect com-
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plements, the effects captured in this section can lead to dramatically negative conse-

quences for commerce. Shleifer and Vishny (1993) report that, in Zaire, widespread

corruption increases the costs of transportation by land so much (due to the large

amount of bribes that have to be paid along the way) that it is cheaper to bring the

same goods from Europe by ship. In a different but related matter, the excessive num-

ber of tolls along the Seine in France around 1400 made shipping costs often more

expensive than the goods being transported themselves. In contrast, England was

toll free, which is often advanced as a key reason it became the center of commerce

(Heilbroner, 1962).

Finally, we extend this analysis to the equilibrium price-cost margin, mn,

defined by mn , xn −C ′[D(zn)]. In the empirical literature on market power, this is

most often taken as a measure of the level of competition in an industry.

For the model at hand, it turns out that it may increase or decrease with

the number of firms depending on whether the demand function is log-convex or

log-concave.

Theorem 1.8. Suppose that the standard assumptions (A1) and (A2) hold. Then,

for any n ∈ N , the equilibrium price-cost margin Mn is decreasing in n if D(·) is

log-concave but increasing in n if D(·) is log-convex.

From a comparison between the results in this section and those in Amir and

Lambson (2000), it is clear that Cournot oligopoly and oligopoly with perfect com-

plements are not mathematically equivalent theories when the firms are symmetric

and the production is costly.
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Section 1.5 provides an explicit illustration of this fact.

1.4 Multi-product monopoly as the integrated solution

In the literature, the main focus is on the comparison between n-firm oligopoly

with perfect complements and the corresponding integrated solution wherein one

multi-product monopolist offers the entire system (of the same n components) at one

overall price. Using the same notation as before, the objective function of this n-

product monopolist, who faces an n-fold cost of producing the same amount of each

component, is

Π(x) = xD(x)− nC[D(x)] (1.6)

It is important to observe that the concept of n-product monopolist is different from

special case n = 1 in the situation considered in the previous section, i.e., where

the entire system amounts to a single component. In other words, the n-product

monopolist of this section is not obtained when n = 1 is substituted in the model of

the previous section (indeed, the objective of the latter would then be maxx{xD(x)−

C[D(x)]} instead of (1.6).

The following result compares the market performances of the n-firm oligopoly

with perfect complements and of the multi-product monopolist (or the integrated

solution).

Proposition 1.9. Relative to the n-firm oligopoly with perfect complements, the

multi-product monopolist solution leads to

(a) higher total profits,
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(b) a lower total price (and thus higher consumer surplus), and

(c) higher social welfare.

This result is fully intuitive and has repeatedly been reported in different

settings, using specific functional forms. With linear demand, see e.g., Buchanan and

Yoon (2000) and Gardner, Gaston and Masson (2002).

1.5 Multi-product monopoly versus Oligopoly

This section considers the simple framework of Buchanan and Yoon (2000)

where Cournot’s original two models are compared in a variety of ways under linear

demand and costless production. The main purpose here it to establish that the

findings in Buchanan and Yoon (2000), which these authors invoked to claim a striking

symmetry between the commons and the anticommons, do not carry over to the case

of costly production.12

1.5.1 A summary of Buchanan and Yoon (2000)

Buchanan and Yoon (2000) (hereafter, BY, 2000) consider a vacant lot that

can be used as a (capacity-constrained) parking. If the vacant lot is a common good,

it will be used more than efficiently but if it is privatized, the new n > 1 owners will

sell permits that the potential users have to buy in order to park in the lot. Any

person who wants to park in the vacant lot has to buy one permit from each one of

12Costless production is a reasonable assumption in the context of the scenario analysed
by Buchanan and Yoon (2000), as well as in some of the other commonly used situations
that are captured by Cournot’s complementary monopoly model. However, the typical
situation will naturally feature production costs.
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the owners. The outcome is that the vacant lot will be used less than efficiently. The

first case illustrates the commons problem and the second one, the anticommons one.

The commons problem can be seen as a Cournot oligopoly with n > 1 firms

because the owners of the common good decide how much of it to use in order to

maximize their profits. Given that the owners cannot exclude others from the usage

of the common good, they maximize their profits given the choice of usage of the

other owners. The efficient level of usage of the good is equal to the output that a

monopolist would choose in this setting; thus, in this case, the relevant concept of

monopoly is given by the standard single-product monopolist.

On the other hand, the anticommons problem fits the setting of an oligopoly

with perfect complements with n > 1 firms. Firms are equivalent to “excluders” that

choose the price of their permits sold to the potential users in order for them to use

the anticommon good. In this case, the relevant concept of monopoly that provides

the efficient level of permits (and thus, usage) is a multi-product monopolist that sells

all the permits as a bundle (with perfect complements).

BY(2000) solve the equilibrium for the four cases of interest under a linear de-

mand and zero costs. With inverse demand P (q) = a−bq, a single-product monopoly

solves maxq q(a− bq) and each firm in Cournot oligopoly solves maxq q(a− b(q + q′))

where y′ is rivals’ total output.

With direct demandD(z) = a−z
b

, the multi-product monopolist solves maxx x(a−x
b

)

and a firm in the oligopoly with perfect complements solves maxx x(a−(x+y)
b

) (with y

defined as before).
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BY(2000) Present paper

(c=0) (c>0)

n > 1 Q∗BY P ∗BY Π∗BY Q∗ P ∗ Π∗

Single-product

monopoly

a
2b

a
2

a2

4b
a−c
2b

a+c
2

(a−c)2
4b

Cournot oligopoly, n

firms

na
b(n+1)

a
n+1

na2

b(n+1)2
n(a−c)
b(n+1)

a+nc
n+1

n(a−c)2
b(n+1)2

Loss in profit from 1 to

n firms

a2(n−1)2

4b(n+1)2
(a−c)2(n−1)2

4b(n+1)2

Multi-product

monopoly, n goods

a
2b

a
2

a2

4b
a−nc

2b
a+nc

2
(a−nc)2

4b

Oligopoly with perfect

complements, n firms

a
b(n+1)

na
n+1

na2

b(n+1)2
a−nc
b(n+1)

n(a+c)
n+1

n(a−nc)2
b(n+1)2

Loss in profit from 1 to

n firms

a2(n−1)2

4b(n+1)2
(a−nc)2(n−1)2

4b(n+1)2

Table 1.1: Equilibrium total output (Q∗), equilibrium total price (P ∗) and equilibrium

industry profit (Π∗) for different settings.
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The first three columns of Table 1.1 summarize the results in BY(2000), de-

noted by the subindex BY . From this table, we observe their main results listed

below.

(1) The single product monopolist and the multi-product monopolist produce the

same amount of output (a/[2b]) and thus, charge the same price (a/2) and earn the

same profit (a2/[4b]).

(2) Cournot oligopoly produces more than the single-product monopolist (na/[b(n+

1)] > a/[2b]) and thus, its price is lower (a/[n+ 1] < a/2).

(3) Oligopoly with perfect complements produces less than the multi-product monopoly

(a/[b(n+ 1)] < a/[2b]), hence, it charges a higher price (na/[n+ 1] > a/2).

(4) Cournot oligopoly and oligopoly with perfect complements earn the same profit

(na2/[b(n+ 1)2]).

(5) Each of the two monopolists earn more profit than each oligopolist (a2/[4b] >

na2/[b(n+ 1)2]).

(6) The losses in industry profit from changing from single-product monopoly to

Cournot oligopoly and from multi-product monopoly to oligopoly with perfect com-

plements are the same (a2(n− 1)2/[4b(n+ 1)2]).

Based on the similarity shown in items (1) and (4)-(6), BY(2000) conclude

that Cournot oligopoly and oligopoly with perfect complements lead to symmetric

tragedies. In particular, these tragedies are reflected in the profit losses of changing

from one to n firms having the same magnitude in both models.
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1.5.2 Adding production costs to the BY model

In line with the results of the present paper, we now show that the symme-

try in equilibrium industry profits easily breaks down with the inclusion of costs of

production. We consider linear costs of production given by C(q) = cq with c > 0.

Because the multi-product monopolist produces n goods that are different, it

needs n separated plants to produce them and since our setting is symmetric, it pays

n times the cost of producing the optimal amount of bundles. Then, the optimization

problem of the multi-product monopoly becomes choosing the price x of the bundle

that maximizes its profit given by (x − nc)(a−x
b

). The single-product monopolist, a

firm competing à la Cournot and a firm in the oligopoly with perfect complements

chooses x that maximizes its profit given by x(a − bx − c), x(a − b(x + y′) − c) and

(x− c)(a−(x+y)
b

), respectively, where y′ and y are defined as earlier.

The solutions and equilibria to the maximization problems and games listed

above are summarized in the last three columns of Table 1.1 (with a−nc > 0). With

c = 0, we recover the results of BY(2000). When c > 0, we have

(7) The single-product monopoly earns more profits than the Cournot oligopoly ((a−

c)2/[4b] > n(a− c)2/[b(n+ 1)2]).

(8) The multi-product monopoly earns more profits than the oligopoly with perfect

complements ((a− nc)2/[4b] > n(a− nc)2/[b(n+ 1)2]).

(9) The single-product monopoly earns more profits that the multi-product monopoly

((a− c)2/[4b] > (a− nc)2/[4b]).

(10) Cournot oligopoly earns more industry profits than the oligopoly with perfect
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complements (n(a− c)2/[b(n+ 1)2] > n(a− nc)2/[b(n+ 1)2]).

(11) The loss in industry profit of changing from single-product monopoly to Cournot

oligopoly is bigger than the loss in industry profit of having an oligopoly with perfect

complements instead of a multi-product monopoly ((a − c)2(n − 1)2/[4b(n + 1)2] >

(a− nc)2(n− 1)2/[4b(n+ 1)2]).

Thus, we have illustrated that the effects on industry profits of adding (n− 1)

firms to the single-product monopolist are in general, different from the effects on

industry profits when we have an oligopoly with perfect complements instead of a

multi-product monopoly.

The idea that the tragedies of the commons and anticommons are not symmet-

ric is discussed by Vanneste et. al. (2006). Using two experiments, a lab experiment

versus a scenario experiment, they conclude that the behaviors of the players facing

the same versions of a commons dilemma and an anticommons dilemma are different.

In particular, they find that the players act more aggressively (with higher decision

variables) when they face the anticommons dilemma. Although this might be ex-

plained through the specification of the demand function, this paper brings up the

concern that the commons and anticommons problems are not symmetric in general.

1.6 Conclusions

The results in this paper give conditions for the existence of equilibrium in

the more general setting of an oligopoly with perfect complements, i.e., when the

firms face different costs of production. In the symmetric case, when all the firms
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face the same cost of production function, at least one symmetric equilibrium exists

under our standard assumptions (A1) and (A2). The reason is that ∆(·, ·) defined in

equation (1.5) is always strictly greater than zero. Moreover, the paper characterizes

the symmetric equilibrium, i.e., it looks into the effects on the equilibrium variables

of interest when the number of goods in the market exogenously changes.

It is important to be careful when interpreting the comparative statics results.

Here, by entry of a firm, we mean the addition of a new good that perfectly com-

plements the existing ones in the market. In fact, the results in Theorem 1.5 do not

allow us to do comparative statics with respect to the number of firms/products when

at least one firm is producing more than one good. These results hold only if one firm

is producing exactly one good out of the n goods that are the perfect complements

in the market.

In addition, the paper enriches previous discussions about the similarities be-

tween Cournot oligopoly and oligopoly with perfect complements, showing that they

are different theories when the costs of production are non negligible. In general, the

characterization of the equilibrium and the comparative statics change, but these are

not the only differences that we find, as can be seen from the application in Section

1.5.

An extension of this model is to allow firms to produce more than one good

or merging, i.e., firms getting together to produce two or more goods and sell them

separately or in a bundle.

In conclusion, this paper characterizes the equilibria of an oligopoly with per-
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fect complements, starting from the asymmetric case, where the firms have different

cost structure. For that case, we give conditions such than an equilibrium exists.

In the symmetric case, where the firms have the same cost structure, a symmetric

equilibrium always exists and based on lattice-theoretic methods, we are able to do

comparative statics on these symmetric equilibria when the number of firms/goods

in the market changes.

1.7 Proofs

We begin by defining a key mapping for every n ∈ N , which can be thought of

as a normalized cumulative best-response correspondence. This mapping is analogous

to the one used by Amir and Lambson (2000) and is useful in dealing with symmetric

equilibria in the present context too.

Bn : [0, (n− 1)K] −→ 2[0,(n−1)K]

where

Bn(y) =
n− 1

n
(x′ + y). (1.7)

Here, x′ represents the firm’s best-response, i.e., the price that maximizes

its profit in (1.1) given the cumulative price y for the remaining (n − 1) firms. If

x′ ∈ [0, K] and y ∈ [0, (n− 1)K], then the (set-valued) range of Bn is as given. Also,

a fixed point of Bn, ŷ, clearly yields a symmetric PSNE where x̂′ = ŷ/(n − 1), i.e.,

each of the responding firms will set the same price as the other (n− 1) firms.
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Proof of Lemma 1.1.

Under (A1), the cross partial derivative of the maximand in (1.3), ∆(z, y), is strictly

positive on the lattice

ϕ = {(z, y) : 0 ≤ y ≤ (n− 1)K, y ≤ z ≤ y +K}.

The feasible set [y, y + K] is ascending in y. Then, by a strengthening of the basic

monotonicity theorem of Topkis (1978) due to Amir (1996c) and Edlin and Shannon

(1998), every selection of z∗i is strictly increasing in y as long as it is interior.

Since z∗i (y) = ri(y) + y, it follows directly that ri(·) has the given slope

property.�

Proof of Theorem 1.2.

By a dual argument to Theorem 1.3 (proved below), the profit πi(x, y) exhibits the

dual single-crossing property under the hypotheses of the Theorem. Since the game

at hand is an aggregative game of strategic substitutes, by Tarski (1955) and Novshek

(1985), an equilibrium exists.

To show that there is a unique PSNE, use Lemma 1.1 and the first part of

this proof to conclude that all the slopes (of all the selections) of ri(·) lie in (−1, 0].

Then, by a well known (contraction-like) argument, the equilibrium is unique (see

e.g., Amir, 1996b). �

Proof of Theorem 1.3. Milgrom and Shannon (1994) prove, for a Bertrand duopoly

with differentiated and complementary products, that if each demand function D̃i(x, y)
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is log-supermodular and the cost function is concave, then πi(x, y) satisfies the single-

crossing property in (x, y). Since log-supermodularity of D̃i(x, y) translates into the

log-convexity of D(x + y) in our setting, the proof of this Theorem follows as a spe-

cial case of their result. Hence, the game is a game of strategic complements and by

Tarski’s fixed-point Theorem (Tarski, 1955), an equilibrium exists. �

Proof of Theorem 1.4.

By the proof of Lemma 1.1, every selection of z∗ is increasing in y. Recall that x′

denotes the firm’s best-response to y, thus z∗(y) = x′+ y. This implies that for every

n ∈ N , every selection of Bn as defined by equation (1.7) is increasing in y. Then,

by Tarski’s fixed-point Theorem, (any selection of) Bn has a fixed-point that implies

the existence of a symmetric equilibrium of the oligopoly with perfect complements.

Next, we prove that no asymmetric equilibrium can exist. By the proof of

Lemma 1.1, every selection of z∗ is strictly increasing. This means that for each

z′ ∈ z∗ corresponds at most one y such that z′ = x′ + y (z′ is the best-response to

y); then, for each total equilibrium price z′, each firm must charge the same price

x′ = z′ − y, with y = (n− 1)x′, i.e., no asymmetric equilibrium exists. �

Before proceeding with the rest of the proofs, we need the following interme-

diate Lemmas.

Lemma 1.10. Assume that the standard assumptions (A1) and (A2) hold. Then,

for every number of firms n ∈ N , the equilibrium cumulative prices of (n − 1) firms
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set, Yn, is increasing in n.

Proof of Lemma 1.10.

By Topkis’s Theorem, the maximal and minimal selections of Bn, denoted by Bn

and Bn respectively, exist. Furthermore, the largest equilibrium cumulative price for

(n − 1) firms, yn, is the largest fixed-point of Bn. Bn(y) is increasing in n for every

fixed y. Hence, by Theorem A.4 in Amir and Lambson (2000), the largest fixed-point

of Bn, yn, is also increasing in n. Using an analogous argument with Bn shows that

the the smallest equilibrium cumulative price for (n−1) firms, y
n
, is increasing in n. �

Lemma 1.11. Assume that the standard assumptions (A1) and (A2) hold. Then,

for every number of firms n ∈ N , πn = π(xn, (n− 1)xn) ≥ πn = π(xn, (n− 1)xn).

Proof of Lemma 1.11.

We prove that πn = π(xn, (n− 1)xn), a similar argument shows that πn = π(xn, (n−

1)xn). To this aim, observe that π̃(z, y) is decreasing in y, then, π̃n = π̃(zn,
(n−1)
n
zn) =

π(xn, (n − 1)xn). Now, we show that πn = π(xn, (n − 1)xn). Suppose not, then it

exists x̃n ∈ Xn such that π(x̃n, (n−1)x̃n) > π(xn, (n−1)xn), then, π(x̃n, (n−1)x̃n) =

π̃(z̃n,
(n−1)
n
z̃n) > π(xn, (n − 1)xn) = π̃n, where z̃n = nx̃n, which contradicts the fact

that π̃n is the maximal element in the set Π̃n, thus, π(xn, (n− 1)xn) is the maximal

per-firm profit equilibrium. �

Proof of Theorem 1.5.

(a) From the proof of Lemma 1.1, we know that every selection of z∗ is increasing in
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y. Since yn is increasing in n (Lemma 1.10), we conclude that zn is increasing in n.

Using an analogous argument, zn is increasing in n.

(b) This follows as a direct corollary of the proof of Theorem 1.7(b) where the stronger

result nπn ≥ (n+ 1)πn+1 is proved.�

Proof of Theorem 1.6.

(a) By the proof of Theorem 1.3, the extremal selections from r(·) are increasing in

y. Then, xn = r̄(yn), and given that yn is increasing in n (by Lemma 1.10), so is xn.

A similar argument follows for xn.

(b) By Theorem 1.2, a unique equilibrium exists which is symmetric by Theorem 1.4.

Also, by the proof of Theorem 1.2 we know that every selection of r(·) is decreasing

in y. Since in equilibrium yn is increasing in n (by Lemma 1.10) and xn = r(yn), xn

is decreasing in n. �

Proof of Theorem 1.7.

(a) The consumer surplus, CS(·), at any total price z and for any n is given by

CS(z) =

∫ ∞
z

D(t) dt,

which is decreasing in z.

Then,

CSn − CSn+1 =
∫∞
zn
D(t) dt−

∫∞
zn+1

D(t) dt =
∫ zn+1

zn
D(t) dt ≥ 0.

The inequality follows by Theorem 1.5 part (a), zn+1 ≥ zn.

A similar argument using zn and zn+1 proves that CSn is decreasing in n.
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(b) We prove that nπn ≥ (n+ 1)πn+1. The result that nπn is decreasing in n follows

by a similar argument using xn. Consider the following relations:

πn = xnD(nxn)− C[D(nxn)]

≥ [(n+ 1)xn+1 − (n− 1)xn]D[(n+ 1)xn+1 − (n− 1)xn + (n− 1)xn]

−C[D[(n+ 1)xn+1 − (n− 1)xn + (n− 1)xn]]

≥
[
(n+ 1)xn+1 −

(n− 1)(n+ 1)

n
xn+1

]
D[(n+ 1)xn+1]− C[D[(n+ 1)xn+1]

=
(n+ 1)

n
xn+1D[(n+ 1)xn+1]− C[D[(n+ 1)xn+1]

=
(n+ 1)

n

[
xn+1D[(n+ 1)xn+1]− n

n+ 1
C[D[(n+ 1)xn+1]

]
≥ (n+ 1)

n

[
xn+1D[(n+ 1)xn+1]− C[D[(n+ 1)xn+1]

]
=

(n+ 1)

n
πn+1.

The first equality follows by Lemma 1.11 and the first inequality by the PSNE

property. The deviation (n+1)xn+1− (n−1)xn from the equilibrium price is positive

since it is equal to zn+1 − zn + xn, and by Theorem 1.5 part (a), zn+1 ≥ zn. The

second inequality follows also by Theorem 1.5(a), in particular using the fact that

(n+1)xn+1

n
≥ xn (from zn+1 = (n + 1)xn+1 ≥ zn = nxn). The last inequality is due to

n
n+1

< 1.

(c) It is clear that W n = CSn + nπn. Then

W n −W n+1 = [CSn − CSn+1] + [nπn − (n+ 1)πn+1] ≥ 0.

The inequality follows because both terms on the RHS of the equality are pos-

itive by parts (a) and (b). A similar argument proves that W n is decreasing in n. �
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Proof of Theorem 1.8.

Let us consider (say) the maximal point of the equilibrium price-cost margin set.

Since D(·) is log-concave (log-convex), we have D′(z)
D(z)
≥ (≤)D

′(z′)
D(z′)

for all z′ > z.

Thus,

−D(z′)

D′(z′)
+
D(z)

D′(z)
≤ (≥)0. (1.8)

Now, the first-order condition for the oligopoly with perfect complements can

be written as

D(zn) +mnD
′(zn) = 0,

which implies that

mn = −D(zn)

D′(zn)
.

If D(·) is log-concave (log-convex), mn is decreasing (increasing) in zn, then,

mn = − D(zn)

D′(zn)
(mn = − D(zn)

D′(zn)
).

Thus, mn+1 − mn = − D(zn+1)

D′(zn+1)
+

D(zn)

D′(zn)

(
mn+1 −mn = − D(zn+1)

D′(zn+1)
+ D(zn)

D′(zn)

)
,

which is negative (positive) if D(·) is log-concave (log-convex), by equation 1.8 and

Theorem 1.5 part (a), zn+1 ≥ zn (zn+1 ≥ zn). �

Proof of Proposition 1.9.

(a) This follows from a rather standard argument. Since the n-product monopolist

can replicate whatever price vector the oligopoly can use, it is obvious that the former

can achieve a higher total profit than the latter.

(b) The sum (across the n firms) of the first order conditions at a symmetric PSNE



36

is (where z stands for total price)

nD(z) + zD′(z)− nC ′[D(z)]D′(z) = 0. (1.9)

From equation (1.6), the first order condition for the n-product monopolist’s

solution is (where z stands for total price)

D(z) + zD′(z)− nC ′[D(z)]D′(z) = 0. (1.10)

Since for any n > 1, the LHS of (1.9) is an upward shift of the LHS of (1.10),

the extremal solutions (which are the extremal zeros of the LHS’s) of (1.9) are higher

than those of (1.10).

Hence, price is lower for the n-product monopolist. It follows that consumer

surplus is higher with the n-product monopolist.

(c) This follows directly from (a) and (b).�
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CHAPTER 2
ON OLIGOPOLY WITH POSITIVE NETWORK EFFECTS AND

INCOMPATIBLE NETWORKS

2.1 Introduction

It is very common to find industries with positive network effects, i.e., in-

dustries where the willingness to pay of the consumers increase with the number of

people that are purchasing the good. A widely used example in the literature is

telecommunications such as telephone and fax. A consumer will be more interested

in buying a cell phone if more people acquire a compatible cell phone, among other

reasons, the consumer will be able to communicate with more persons and in the case

of smart phones, the consumer expects more software to be developed if the good is

more popular.

In their seminal work about network effects, Katz and Shapiro (1985) identify

three kind of oligopolies with network effects; in all the cases, the firms produce goods

that are substitutes and compete in quantity. The first model is when all the goods

produced by the firms are completely compatible; in the second one, any two goods

produced by two different firms are incompatible, and finally, there is the partial

compatibility model, where there are groups of goods that are compatible among

them but incompatible with the goods outside of that group.

In this paper, we center our attention to the study of oligopolies with positive

network effects and complete incompatibility. An example of this industry is video

games (Church and Gandal, 1992). Several firms in the market produce different
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video game consoles that are not compatible among them, in the sense that a game

that is designed for a particular console cannot be played using a different one. Then,

every firm possesses their own network and the consumers benefit from the size of it,

which is known in the literature as demand-side economies of scale. If more consumers

purchase a particular console, they expect to have a bigger variety of games because

the software developers might have more incentives to create more if the number of

users increase, also, the agents benefit with a bigger size of the network because they

will have more people to play with.

Other common examples of industries with incompatible networks come from

diverse technologies in the 1980’s and 1990’s. For instance, personal computers,

when IBM and Macintosh were not compatible; video cassette recorders, that will be

discussed with more detail later on, and digital music systems such as digital compact

cassette and mini disc (see Church and Gandal, 1992; Cusumano, Mylonadis and

Rosenbloom, 1992 and Katz and Shapiro, 1986).

Specifically, this paper focuses in the study of the symmetric model, i.e., when

the firms face the same demand and same costs of production. One of the objectives of

this study is to find minimal conditions such that an equilibrium exists in these kind

of symmetric industries. The concept of equilibrium that we use is the one introduced

by Katz and Shapiro (1985), the fulfilled expectations Cournot equilibrium, where all

the firms maximize their profits and the consumers’ expectations are fulfilled, i.e., the

output of each firm equals the expected size of the consumers.

An interesting feature of this symmetric model is that besides symmetric equi-
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libria, asymmetric equilibria in all their possibilities can easily arise, as first acknowl-

edged by Katz and Shapiro (1985). First, it can be the case that some firms stay out

of the market by producing an output of zero while the firms producing a positive

output produce the same output among them, i.e., a symmetric equilibrium with less

than all the firms active. This equilibrium includes the natural monopoly equilib-

rium, where only one firm is active producing a strictly positive output. The other

possibility is when at least two firms produce a strictly positive but different amount

of output between them.

These asymmetric equilibria arise when some firms are more successful than

others with their products because the consumers expect so. An illustration of this

fact follows from the competition between Betamax and Video Home System (VHS)

in the 1970’s-1980’s. Betamax and VHS were two different and incompatible formats

of home video cassette recorders (VCRs). Not only the sizes of the cassettes for the

VCRs were different, also the tape-handling mechanisms and the technology to read

the tapes differed, which kept the two formats completely incompatible. Betamax

was introduced in 1975 by the Sony Corporation and VHS, just one year after by the

Victor Company of Japan (JVC). Although the sales of the Betamax kept increasing

until 1985, its market share was below the VHS by 1978. Finally, Sony and the firms

that adopted this format stopped producing the Betamax (see Cusumano, Mylonadis

and Rosenbloom (1992) for more details). Although in this market more than one

firm was producing the same format, this case helps us to illustrate the emergence

of asymmetric equilibria in the presence of firms that could be considered symmetric
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given the similarities between the two technologies. At the beginning of the 1980s,

VHS had a higher market share, and by the end of the decade, Betamax was out of

the market.

An important question in this industry is viability, i.e., whether a network will

succeed or not. This is a particularly important issue in our model since it allows

for pure networks good, i.e., for goods whose value for the consumers is zero if the

expected size of the network is zero, independently of the total production. Since

pure network goods are included in the model, it is possible that all or a subset of the

networks do not emerge, thus, besides existence of equilibria, we look for conditions

such that non trivial -symmetric or asymmetric- equilibria exist.

In their seminal work, Katz and Shapiro (1985) do not consider the viability

problem, since their separable demand function does not allow for pure network goods

and trivial equilibria are not a problem. In a later work, Katz and Shapiro (1986)

discuss the viability problem for a dynamic setting, where there are two periods and

success of a network mainly depends on whether it is sponsored or not. Other char-

acteristics that dictate the viability of a network are the differences in the technology

and second-mover advantages.

Church and Gandal (1992) study the viability problem from a different per-

spective. They look at viability as a consequence of the complementary goods sup-

pliers decisions. In other words, we can think of the firms in the industry producing

hardware, for example video game consoles, that require software to be enjoyed, video

games; in this case, the software is the complement to the hardware. Church and Gan-
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dal (1992) research the success of the hardware producers given the software suppliers

decisions, i.e., which hardware they decide to support (which network they decide to

join). In contrast to previous works on viability, the present paper looks on conditions

on the demand and costs structure to predict whether all the networks succeed or

only some of them, for a single period.

On a separate topic, we look at the effects on the extremal equilibria of adding

firms to the industry, including effects on the equilibrium consumer surplus, industry

profits and social welfare.

Finally, we compare the equilibria for the oligopolies with complete compat-

ibility and complete incompatibility. Several authors like Katz and Shapiro (1986),

Economides and Flyer (1997) and Chen, Doraszelski and Harrington (2009) have ad-

dressed this question which is closely related to viability. Typically, to study the

standardization problem (the incentives of a firm to adhere to an existing network or

to differentiate itself), the game is modeled in two stages. In the first one, the firms

choose the technology, and in the second one, they compete in price or quantity.

Chen, Doraszelski and Harrington (2009) extend this model to a dynamic stochastic

setting. Economides and Flyer (1997) and Chen, Doraszelski and Harrington (2009)

discuss the relevance of the strength of the network effects in their results, particulary

the former ones.

In this paper, we simplify the standardization problem by giving specific con-

ditions on the demand such that the firms, consumers and society are better off with

compatible products. The results are provided for a static game where the firms com-
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pete in quantity. We find out that the oligopoly with complete compatibility produces

more than the one with incompatible networks. Similarly, the first one generates a

higher social welfare. The comparison between consumer surplus and industry profit

is not clear, but in line with Economides and Flyer (1997), it strongly depends on

the size of the network effects. For instance, if the latter are big enough to offset

the market effect, the firms will prefer to have compatible networks because a bigger

network benefits them through a higher willingness to pay from the consumers. Since

social welfare is higher under compatible networks, we can conclude that at least one

group (consumers or firms) is always better off under this setting.

2.2 Oligopoly with positive network effects and complete

incompatibility

2.2.1 The model and the assumptions

In this section we describe the model, which is a static game of oligopolistic

competition with positive network effects and complete incompatibility. This is, we

describe a market situation where the firms produce substitute goods and the con-

sumers’ willingness to pay for any good is increasing in the number of agents that

purchase the good, also known in the networks literature as demand-side economies

of scale. In our model, the goods are substitutes but not compatible among the firms;

thus, every firm possesses its own network. This model is a generalization of the

oligopoly with network effects and complete incompatibility described by Katz and

Shapiro (1985). In equilibrium, every firm maximizes its profit given the production
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of the rest of the firms and their expected network size, which is fulfilled by their

production. This notion of equilibrium is know as fullfilled expectations Cournot

equilibrium (FECE) (Katz and Shapiro, 1985), and will be formally defined later on.

According to the description above, in this market structure we have n sym-

metric firms that produce substitute goods. Every firm in the market faces the inverse

demand given by the function P (z, s), where z denotes the total output in the market

and s, the expected size of the network. Since the goods produced by the firms are

totally incompatible, every firm has its individual network with expected size s, which

is not necessarily the same among the firms. If every consumer purchases at most

one unit of the good, s accounts for the expected number of agents to consume the

good.

We assume that the firms are identical, thus, they all face the same cost of

production given by the function C(·). Hence, for every s given, firm i chooses the

output that maximizes its profit given by

π(x, y, s) = xP (x+ y, s)− C(x),

where x is the firm’s output level and y is the joint output of the other (n− 1) firms.

Notice that the firm does not choose s, this is exogenous for the firm as well as y, i.e.,

the firm does not have the power to influence the consumers’ expectations about the

network size. Then, the firm’s best reaction correspondence is given by

x(y, s) = argmax{π(x, y, s) : x ≥ 0}.

Alternatively, one can think of firm i as choosing total output z = x+ y that
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maximizes

π̃(z, y, s) = (z − y)P (z, s)− C(z − y),

with best-reaction correspondence

z(y, s) = argmax{π̃(z, y, s) : z ≥ y},

given a particular y and s. Then, it should be the case that z(y, s) = x(y, s) + y.

As mentioned above, the equilibrium of this game is given by what Katz and

Shapiro (1985) called a “fulfilled expectations Cournot equilibrium” (FECE), i.e., the

equilibrium is given by a vector of individual outputs (x1n, x2n, ..., xnn) and a vector

of expected networks sizes (s1, s2, ..., sn) such that:

(1) xin ∈ argmax{xP (x+
∑

j 6=i xjn, si)− C(x) : x ≥ 0}, and

(2) xin = si,

for all i ∈ {1, 2, ..., n}. Throughout the paper, the subindex n denotes that the

variable in question is under equilibrium, when the subindex i is added, it means

that the variable in equilibrium is specific for firm i. Whenever possible in the paper,

for example, when the equilibrium is symmetric, the subindex i will be dropped for

simplicity in the notation.

The following assumptions will be assumed through all the paper:

(A1) P : [0,∞) × [0,∞) → [0,∞) is twice continuously differentiable, P1(z, s) < 0

and P2(z, s) > 0.

(A2) C : [0,∞)→ [0,∞) is twice continuously differentiable, increasing and C(0)=0.

(A3) xi ≤ K, for each firm i.



45

(A4) ∆1(z, y, s) , −P1(z, s) + C ′′(z − y) > 0 on ϕ , {(z, y, s) : z ≥ y, y ≥ 0, s ≥ 0}.

(A5) ∆2(z, s) , P (z, s)P12(z, s)− P1(z, s)P2(z, s) > 0 on ϕ.

The first two assumptions are standard in the literature, in particular, P2(z, s) >

0 reflects the positive network effects or demand-side economies of scale, i.e., the in-

crement in the willingness to pay of the consumers when more people is expected to

buy the good.

The capacity constraint assumption (A3) is needed for technical reasons but

the magnitude ofK does not affect the results. The fourth assumption guarantees that

every selection of the total output best-response correspondence, z(y, s), is increasing

in y for all s given. For a detailed discussion, see Amir and Lambson (2000).

The last assumption, (A5), implies that the inverse demand function is strictly

log-supermodular in (z,s) which implies that every selection of z(y, s) is increasing

in s for every y given. The latter result follows because (A5) guarantees that the

alternative profit function π̃(z, y, s) has strict increasing differences in (z,s) and by

Topkis (1998). Economically, (A5) tells us that the demand is more elastic when the

expected size of the network is bigger, which reflects the demand-side scale economies

discussed in the network industries literature. See Amir and Lazzati (2011) for a

deeper discussion.

Notice that there is no special restriction on the value of P (z, 0), i.e., it can

take values that are greater or equal than zero. This characteristic of the inverse

demand function allows the model to account for pure and and mixed network goods.

Pure networks good are those that do not have stand-alone value, i.e., P (z, 0) = 0,
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meaning that if the expected size of the good’s network is zero, no consumer will value

this good. On the other hand, P (z, 0) > 0 reflects a mixed network good, where the

consumers value the product even if the expected size of the network is zero.

2.2.2 Existence of equilibrium and viability

In their pioneering work on network externalities, Katz and Shapiro (1985)

noticed that the symmetric oligopoly modeled in this paper can lead to three differ-

ent kinds of equilibria: 1) symmetric equilibria where all the firms produce the same

output; 2) m-active-firm symmetric equilibria where m < n firms produce a positive

output that is the same among them and the rest of the n−m firms produce noth-

ing, and 3) asymmetric equilibria where m ≥ 2 firms produce positive but different

equilibrium outputs.

Networks externalities are the only responsible for the existence of asymmetric

equilibria. In a standard Cournot symmetric model, where there are no network

effects, asymmetric equilibria may only arise in the presence of strong economies of

scale. In other words, asymmetric equilibria in standard Cournot oligopoly model

may only arise when its corresponding ∆1 is negative, which in this paper is ruled

out by assumption (A4). Moreover, in standard Cournot model it cannot be the case

that two firms have positive but different production (Amir and Lambson, 2000).

The possibility of having asymmetric equilibria is not the only difference that

we find between Cournot oligopoly with and without network effects under assump-

tion (A4). As we will see in Section 2.2.3, in the presence of networks externalities,
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entry of firms may increase equilibrium prices and profits of the firms. According to

Amir and Lambson (2000), in Cournot oligopoly with no network effects and under

its corresponding (A4), the price and per-firm profits always decrease with the entry

of firms.

In this section, we state that under the assumptions (A1)-(A5), a symmetric

equilibrium always exist; nonetheless, the question whether asymmetric equilibria

exist, in any of the two ways described above, prevails. This paper covers this issue,

in particular, sufficient conditions are given such that an m-active-firm symmetric

equilibrium exists; these conditions will be discussed later on. All the proofs are

shown in Section 2.5 and assumptions (A1)-(A5) are assumed through all the paper.

Theorem 2.1. For each n ∈ N , The Cournot oligopoly with positive network effects

has (at least) one symmetric equilibrium.

In industries with network effects, it is common to face equilibria where none

of the networks emerge, i.e., where in equilibrium, all the firms stay out of the market

by producing nothing. The following lemma characterizes this kind of equilibrium,

moreover, it can be shown that the existence of the trivial equilibrium in the n-

oligopoly implies the existence of the trivial equilibrium for the (n+1)-oligopoly with

positive network effects and incompatible networks, as stated in Lemma 2.3. The

latter result implies that whenever a zero individual output (an thus, zero aggregated

output) is an equilibrium for the industry with n firms, an oligopoly with m > n

identical firms (among them and among the industry with n firms) will have it. Notice

that the converse is also true, the n-firms oligopoly having the trivial equilibrium
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implies that any identical industry differing only in having a less number of firms, say

m < n, will have the trivial equilibrium as well.

Lemma 2.2. The trivial outcome is an equilibrium if and only if xP (x, 0) ≤ C(x)

for all x ∈ [0, K].

Lemma 2.3. The trivial outcome is an equilibrium for n ∈ N firms if and only if the

trivial outcome is an equilibrium for (n+ 1) firms.

A consequence of Lemma 2.3, is that if the trivial equilibrium is not an equi-

librium for an industry with n firms, it will not be an equilibrium for the industry

with one more firm and viceversa. In this case, a non-trivial equilibrium will exist for

both industries, as a consequence of the existence theorem, Theorem 2.1. This result

is formalized later on, in Theorem 2.5.

One natural question to ask is under what conditions of the primitives defining

the industry, one can find a non-trivial equilibrium, i.e., an equilibrium where at least

one of the networks is successful so that the industry emerges through at least, one

firm. Theorem 2.5 gives conditions such that a symmetric equilibrium other than the

trivial one exists. It turns out that the conditions that guarantee the existence of a

non-trivial symmetric equilibrium for the n-firms oligopoly can be reinterpreted as

conditions that lead to a m-active-firm symmetric equilibrium. Before presenting the

result, we introduce Lemma 2.4 that leads to part (iii) in Theorem 2.5. In this paper,

xn(s) denotes the individual output symmetric equilibrium correspondence for each

of the i = 1, ..., n firms when there are n firms and s is exogenous.
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Lemma 2.4. If 0 ∈ xn(0), then xn(0) = 0. If in addition P (0, 0) = C ′(0), then x′n(0)

exists, it is also single-valued and right-continuous at 0, and

x′n(0) = − P2(0, 0)

(n+ 1)P1(0, 0)− C ′′(0)
. (2.1)

If P (0, 0) < C ′(0), then xn(0) = 0 and x′n(0) = 0.

Theorem 2.5. A non-trivial symmetric equilibrium exists if

(i) 0 /∈ xn(0), i.e., zero is not an equilibrium individual output (or xP (x, 0) > C(x)

for some x ∈ (0, K]);

A non-trivial symmetric equilibrium with m ≤ n active firms exists if

(iii) 0 ∈ xn(0), P (0, 0) = C ′(0) and P1(0, 0) + P2(0, 0) > −mP1(0, 0) + C ′′(0); or

(iv) 0 ∈ xn(0), C ′′(·) ≥ 0 and P (z, s) + z
m
P1(z, s) ≥ C ′(z/m) for some s ∈ (0, K] and

for all z ≤ ms.

The result in Theorem 2.5 part (i) is immediate because we know that at least

a symmetric equilibrium always exist (Theorem 2.1).

Theorem 2.5 is closely related to the viability conditions for firms with com-

patible networks in Amir and Lazzati (2011). These results are very powerful since

they are analogous for compatible and incompatible networks. Moreover, in the latter

case, parts (ii) and (iii) of Theorem 2.5 can be generalized in order to guarantee the

existence of a m-active-firm symmetric equilibrium, m < n. By Lemma 2.3, if zero is

an equilibrium for the oligopoly with n firms, then it will be for the oligopoly with

m < n firms. Thus, we find sufficient conditions such that a non-trivial equilibrium

exists for the industry with m < n firms; but we need to show that zero is a best-
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response for the rest of the n−m firms. The intuition is that if zero is a symmetric

equilibrium, zero will also be a best response for a firm that face positive produc-

tion by the rest of the firms. This argument is formalized in the proof and follows

immediately by Lemma 2.2 and (A1).

Now that we have discussed the existence of equilibria and more importantly,

of non-trivial equilibria, we are ready to do some analysis on the effects of entry. The

next section is of interest because the inclusion of demand-side economies of scale in

a Cournot model lead to unfeasible results in the standard Cournot model under the

same assumptions (in particular, under the corresponding (A4)). For instance, the

price might increase with the number of firms, even if the output increases as well.

Similarly, due to network effects, the firms might be able to increase their profits with

the entry of competitors.

2.2.3 Entry of firms

In this section, we analyze what happens to the symmetric equilibrium when

the number of firms exogenously increase in the market, i.e., we look at the changes in

the equilibrium variables of interest when the equilibrium is symmetric. The results

hold for the maximal and minimal equilibria, we cannot tell the direction of change of

all the points in the equilibrium sets when we increase the number of firms since the

comparative statics results in this paper are based on the results due to Milgrom and

Roberts (1990, 1994), that are valid only for the extremal equilibria of the games.

The results are listed for the maximal equilibria, denoted by the corresponding
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equilibrium variable (the variable sub-indexed by n) with an upper bar. The reader

should keep in mind that these results are true for the minimal equilibria as well,

denoted by a lower bar.

The following definitions will be useful in doing the comparative statics anal-

ysis.

∆3(z) = P1(z, z/n) + [1/n]P2(z, z/n), and

∆4(x) = P 2
1 (nx, x)− [P (nx, x)− C ′(x)]P11(nx, x).

In = [zn, zn+1].

Notice that ∆3(·) denotes the change in the market price with an increase in

the aggregate output along the fulfilled expectation path.

The use of the interval In relaxes the sufficient conditions, in the sense that

they do not have to hold globally but for the interval. As shown by Theorem 2.6,

the total output extremal equilibria are increasing in the number of firms, thus, the

interval In is well defined for the extremal outcomes.

Theorem 2.6. For any n ∈ N

(i) z̄n+1 ≥ z̄n; and

(ii) P̄n+1 ≤ P̄n if ∆3(·) ≤ 0 on In = [zn, zn+1].

In this market structure, more firms produce an equal or bigger aggregated

output under a symmetric equilibrium, like in the standard Cournot oligopoly game.

Nonetheless, the effect in the equilibrium market price is ambiguous given the net-

works effect. In equilibrium, the aggregated output affects the market price in a

direct way and in an indirect way through the network effect. If the network effect is
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not big enough to offset the direct effect, the price decreases in equilibrium. On the

other hand, if the network effect is big enough, the price might go up given that the

willingness to pay of the consumers increment is sufficiently large.

Notice that one implication of Theorem 2.6 is that if a non-trivial equilibrium

exists for n firms, then a non-trivial equilibrium must exist for n+ 1 firms, since now

this industry with more firms produces at least the same output than with a firm

less. This conclusion is highly related to the implications of Lemma 2.3 by taking its

negation, the difference is that the result does not follow directly by the non existence

of the trivial equilibrium, but by the existence of a non-trivial equilibrium.

The following proposition is a generalization of Katz and Shapiro’s (1985)

result. It follows from Theorems 2.1 and 2.6 and assumption (A1). Existence is

given by Theorem 2.1 with an increasing aggregated output in the number of firms

by Theorem 2.6. The clue is that if (n−m) firms best-respond by producing nothing

when they face a m-active-firm symmetric equilibrium, then zero is as well a best-

response when (m+ 1) firms play a symmetric equilibrium.

Proposition 2.7. Let m < n. If an m-active-firm symmetric equilibrium exists,

then an (m+ 1)-active-firm symmetric equilibrium exists with aggregated equilibrium

output greater than that for the m-active-firm symmetric equilibrium.

An interesting consequence of Proposition 2.7 is that if a monopolistic equi-

librium exists for n firms, i.e., when the industry emerges and one firm produces the

monopolistic output keeping the rest of the firms outside of the market, then a non-

trivial symmetric equilibrium exists for the n firms with bigger equilibrium industry
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output. Additionally, when the monopolistic outcome is an equilibrium, non-trivial

equilibria with only m firms active, 1 < m < n, will exist.

The following Theorem gives sufficient conditions for the direction of change

of the individual outputs. Notice that the results are stated for the case where the

extremal equilibria are interior. If they are not interior, i.e., the firms produce zero

or K in the presence of n firms, the result becomes trivial.

Theorem 2.8. At an interior equilibrium, per-firm outputs are such that

(i) x̄n+1 ≥ x̄n if ∆4(·) ≤ 0; and

(ii) x̄n+1 ≤ x̄n if ∆4(·) ≥ 0.

Based on the previous theorem, we can analyze what happens to the profit

of the firms when there is exogenous entry. As opposed to the standard Cournot

oligopoly model, it is possible for the firms to increase their profits with more compe-

tition as a consequence of the networks effects. If the latter is sufficiently large, the

price may increase enough to make the firms better off. The profits are evaluated at

the maximal equilibria.

Theorem 2.9. For any n ∈ N , per-firm profits are such that

(i) πn+1 ≥ πn if x̄n+1 ≥ x̄n and P (z̄n+1, x̄n+1) ≥ P (z̄n, x̄n);

(ii) πn+1 ≤ πn if x̄n+1 ≤ x̄n.

Notice that the conditions x̄n+1 ≥ x̄n and x̄n+1 ≤ x̄n can be replaced by

∆4(·) ≤ 0 and ∆4(·) ≥ 0 respectively, by Lemma 2.8. Nonetheless, the second pair

of conditions are more restrictive since they are sufficient conditions for x̄n+1 ≥ x̄n
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and x̄n+1 ≤ x̄n respectively, thus, we keep the conditions of the theorem in the most

relaxed way.

Now we turn to analyze how equilibrium consumer surplus, industry profit and

welfare change with exogenous entry of firms. Consumer surplus with total output z

and expected size of each network s is defined by CS(z, s) =
∫ z

0
P (t, s)dt− zP (z, s).

Social welfare when industry output is z, expected size of every network is s and all

the firms produce the same amount of output is given by W (z, s) =
∫ z

0
P (t, s)dt −

nC(z/n).

Proposition 2.10. At the highest equilibrium output, consumer surplus is increasing

in the number of firms, CSn+1 ≥ CSn, if at least one of the following assumptions

hold

(i) Pn+1 ≤ Pn;

(ii) x̄n+1 ≥ x̄n and P12(z, s) ≤ 0 for all z, s, or

(iii) x̄n+1 ≤ x̄n and P12(z, s) ≥ 0 for all z, s.

It is straightforward that condition (i) gives us the result given that total

output goes up (by Theorem 2.6 part (i)) and price goes down. As can be seen from

the proof, a more general condition than (ii) and (iii) is that P (t, x̄n+1)− P (t, x̄n) ≥

P (z̄n, x̄n+1)− P (z̄n, x̄n) for all t ∈ [0, zn], but conditions (i) and (ii) are sufficient for

this inequality to hold.

The following proposition gives conditions such that in equilibrium, the indus-

try profit increases with the number of firms. The first result follows directly from

Theorem 2.9 part (i). The second part is very intuitive, since the price increases
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more than the average cost with a new competitor, the firms earn a higher profit.

The function A(·) denotes the average cost function, i.e., A(x) = C(x)/x.

Proposition 2.11. At the highest equilibrium output, industry profit is increasing in

the number of firms, (n+ 1)πn+1 ≥ nπn, if one of the following assumptions hold

(i) x̄n+1 ≥ x̄n and P (z̄n+1, x̄n+1) ≥ P (z̄n, x̄n); or

(ii) P (z̄n+1, x̄n+1)− P (z̄n, x̄n) ≥ A(x̄n+1)− A(x̄n).

Industry profit is decreasing in the number of firms, (n+ 1)πn+1 ≤ nπn, if

(iii) x̄n+1 ≤ x̄n and A(n+1
n
x̄n+1) ≤ A(x̄n+1).

Finally, we look at the changes in social welfare when new firms enter the

market.

Proposition 2.12. At the highest equilibrium output, welfare is increasing in the

number of firms, Wn+1 ≥ Wn, if one of the following assumptions hold

(i) P (z, x̄n+1)− P (z, x̄n) ≥ A(x̄n+1)− A(x̄n) for all z, or

(ii) x̄n+1 ≥ x̄n.

2.3 Complete compatibility versus complete incompatibility

In this section, we compare equilibrium variables of interest between the

oligopolies with positive network effects under complete compatibility and complete

incompatibility. In particular, we look at the highest equilibrium individual outputs

and their corresponding market prices, profits, consumer surpluses and social welfare;

the results hold as well for the lowest equilibria.

An oligopoly with positive network effects and complete compatibility is de-
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fined in a similar way as the one with complete incompatibility, described in this

paper, except that in the first model, the goods produced by the firms are perfectly

compatible with each other, thus, there is only one network for the goods with ex-

pected size S. Hence, each one of the firms in the industry maximize their profit

given by

π(x, y, S) = xP (x+ y, S)− C(x),

where the primitives and variables of the previous equation are described as in Section

2.2.1.

It is crucial that the lector keeps in minds that although the profit functions

look identical for either model, they are fundamentally different by the interpretation

put on the parameters s and S. In oligopoly with incompatible networks, s denotes

the expected size of the firm’s own network1; in oligopoly with complete compatibility,

S denotes the size of the whole network, which in equilibrium matches the industry

production. Amir and Lazzati (2011) provide a throughout characterization of the

latter model.

Before proceeding with the results, we clarify the notation and introduce a

definition and two Lemmas that are useful in proving the main results. For the n-

firm equilibrium notation, we still use the variable sub-indexed by the number of firms

in the industry but now we add a super-index that denotes complete compatibility

(C) or complete incompatibility (I).

1One can think about it as being si for firm i, but we have dropped the sub-index along
this paper for simplicity in the notation.
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On the other hand, we define ∆5(·) by

∆5(z) = P1(z, z) + P2(z, z),

which denotes the change of the market price when aggregated output changes in an

industry with complete compatibility and along the equilibrium path.

Lemmas 2.13 and 2.14 deal with the comparison between individual output

equilibria when one of them is a corner solution, i.e., zero or K.

Lemma 2.13. xCn = 0 if and only if xIn = 0.

Lemma 2.14. If xIn = K, then, xCn = K.

Notice that the reverse of Lemma 2.14 is in general not true, this is, every

firm producing their maximum capacity, K, being an equilibrium for the oligopoly

with complete compatibility does not necessarily imply that it will be an equilibrium

for the oligopoly with complete incompatibility. Hence, in this hypothetical case,

a firm under complete incompatibility would produce K units of output or less. It

turns out that this is not the only case where in equilibrium, a firm under complete

incompatibility produces the same or less than a firm under complete compatibility;

this is a general result for the extremal equilibria of the models, as stated in the

following Theorem.

Theorem 2.15. At the highest equilibrium output and for every n ∈ N

(i) x̄Cn ≥ x̄In, and

(ii) PC
n ≥ P I

n if ∆5(·) ≥ 0 on [nx̄In, nx̄
C
n ].

It is straightforward that Theorem 2.15 part (i) implies that an industry with



58

complete compatibility will produce at last the same aggregated output than the in-

dustry with complete incompatibility in equilibrium (just multiply by n the inequality

in part (i)). This is a generalization of the result by Katz and Shapiro (1985) who

prove the same result for a linear and separable inverse demand function with costless

production.

Theorem 2.15 part (ii) says that if the network effect is sufficiently big to offset

the competitive effect, reflected by ∆5(·) ≥ 0, the consumers have a higher willingness

to pay if the goods are compatible, since the size of the network is bigger in this case.

This results in a higher equilibrium price for the compatible networks. Theorem 2.15

implies that a firm prefers complete compatibility when ∆5(·) ≥ 0; since the firms

can charge a higher price and the production is higher, the firms get a higher profit.

This is consistent with Economides and Flyer (1997), who argues that the welfare of

a firm depends on the strength of the network effect.

The previous result is summarized in the following theorem, together with

the analysis of consumer surplus and social welfare. Notice that society is always

better off under complete compatibility, by Theorem 2.16 part (iii), but we cannot

conclude in general that the firms or the consumers always prefer one kind of industry.

Nevertheless, we can conclude that complete compatibility always benefits at least

one group, consumers or firms.

Theorem 2.16. At the highest equilibrium outputs and for every n ∈ N

(i) πCn ≥ πIn if ∆5(·) ≥ 0;

(ii) CSCn ≥ CSIn if P I
n ≥ PC

n or P12(z, s) ≤ 0, and



59

(iii) WC
n ≥ W I

n .

Theorem 2.16 part (ii) relates to Church and Gandal (1992) in the sense that

consumer surplus cannot be compared in a global sense. Which setting gives the con-

sumers a higher surplus relies on the characteristics of the market, specifically, of the

demand. To see that consumer surplus can be bigger under complete incompatibility

than under complete compatibility at the highest equilibrium individual output, let

us revisit Example 3 in Amir and Lazzati (2011).

Example. Let P (z, s) = max{a−z/s3, 0} denote the inverse demand function

of an industry with n symmetric firms that face zero production costs. Assume that

a ≥ n/K2 and K > 1. As shown by Amir and Lazzati (2011), the reaction function

of a firm is given by

x(y, s) =


max{(as3 − y)/2, 0}, if (as3 − y)/2 < K,

K if (as3 − y)/2 ≥ K.

If the networks are completely compatible, the FECE industry output set is

given by zCn = {0,
√

(n+ 1)/na, nK}. Then, for the highest equilibrium zCn = nK,

the consumer surplus is CSCn = 1/(2nK).

Now, if the networks are completely incompatible, the FECE industry output

set is given by zIn = {0, n
√

(n+ 1)/a, nK}. Then, CSIn = n2/(2K) for the highest

FECE zIn = nK. Thus, in this setting, FECE consumer surplus is higher under

complete incompatibility than under complete compatibility.

Notice that PC
n = a− 1/(nK)2 is greater than P I

n = a−n/K2 and P12(z, s) =

3/s4 > 0, i.e., the sufficient conditions of Theorem 2.16 part (ii) are violated. A simple
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argument generalizes this result stated in the next Corollary, if K is a symmetric

FECE for the incompatible oligopoly and P12(z, s) ≥ 0, then CSIn ≥ CSCn .

Finally, we have that πCn = K(a − 1/(nK)2) ≥ K(a − n/K2) = πIn and

WC
n = anK − 1/(2nK) ≥ W I

n = anK − n2/(2K), as Theorem 2.16 parts (i) and (iii)

predicts given that ∆5(z) = P1(z, z) + P2(z, z) = 2/z3 > 0.

From the example above, it is apparent that a sufficient condition for the

consumers to prefer incompatible networks is that the incompatible firms produce

at their maximum capacity when the inverse demand function exhibits increasing

differences in (z, s). By Lemma 2.14, this implies that the compatible firms also

produce at their maximum capacity. As a more general result, it can be shown that

if both industries produce exactly the same output (including asymmetric equilibria

in the incompatible setting), the consumers will prefer incompatibility. The reason

is that the market output is the same, a smaller network decrease the price and by

supermodularity of the inverse demand function, the competitive effect is reinforced.

The previous result is summarized in the following corollary.

Corollary 2.17. At the highest equilibrium outputs and for every n ∈ N , if zIn = zCn

and P12(z, s) ≥ 0, then, CSIn ≥ CSCn .

2.4 Conclusions

This paper generalizes the theory in Katz and Shapiro (1985) on oligopolies

with positive network effects and complete incompatibility. In particular, it allows for

pure network goods, where the viability question becomes relevant since now, trivial
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equilibria where none of the firms produce is a possibility. A symmetric setting of this

model, where all the firms face the same demand and costs of production, becomes

particularly interesting because asymmetric equilibria may arise in any shape: it could

be that a subset of the firms is active and produce an equal amount of goods among

them or that at least two firms produce a positive and different level of output. Thus,

the viability question is covered for both the symmetric equilibrium with all the firms

active and with a subset of them active.

A challenge in the literature regarding this model has been to characterize

completely asymmetric equilibria, when two or more firms produce a positive and

different output. Future research may look towards this direction. This topic is

particularly relevant because it may explain the success of some networks over their

rivals, for example, the triumph of VHS over Beta in the late 80’s, despite their high

level of substitution and Beta being the precursor of VCRs and the leader in the

market by the middle 70’s.

The present paper also provides some interesting public policy implications. It

is shown that in a general setting with symmetric firms, social welfare is higher when

the networks are compatible; similarly, there is a higher production. The former result

implies that at least the consumers or the firms are better off with complete compati-

bility, but it is not certain that both groups simultaneously are. Sufficient conditions

such that the firms and the consumers prefer compatibility over incompatibility are

provided.

Intuitively, when the networks effect is high enough that it offsets the demand
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effect, a higher network generated by the complete compatibility of the firms’ networks

allows the industry to charge a sufficiently high price to obtain higher profits than

under complete incompatibility (since we already know that compatibility increases

production). On the contrary, if the firms charge a higher price under incompatibility,

the consumers will prefer the cheaper product in the compatible setting with a higher

output, that clearly leads to a higher consumer surplus. This is only one sufficient

condition that provides the consumers with a higher surplus under compatibility; in

fact, this paper presents an example were the consumers are better off with complete

incompatibility.

Summarizing, this paper provides a general framework for symmetric oligopolies

with positive network effects and complete incompatibility. It gives minimal condi-

tions for the existence of equilibrium with particular interest in non-trivial symmetric

and asymmetric equilibria. Similarly, it studies the effects of more competition in

the market and compares the equilibrium outcomes of this model with that when the

networks are totally compatible.

2.5 Proofs

First, we introduce the following lemmas that will be useful in the main proofs

of this paper.

Lemma 2.18. π̃(z, y, s) has the strict single-crossing property in (z, s).

Proof of Lemma 2.18. The proof follows by Amir and Lazzati (2011), Lemma

12. �
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Lemma 2.19. π(x, y, s) has the strict single-crossing property in (x, s), thus, every

selection of the best-response correspondence x(y, s) increases in s.

Proof of Lemma 2.19. Notice that π(x, y, s) = π̃(x+ y, y, s). By Lemma 2.18,

for any z > z′ and s > s′, π̃(z, y, s′) ≥ π̃(z′, y, s′)⇒ π̃(z, y, s) > π̃(z′, y, s). Let x > x′,

then x+y > x′+y and π̃(x+y, y, s′) ≥ π̃(x′+y, y, s′)⇒ π̃(x+y, y, s) > π̃(x′+y, y, s),

thus, π(x, y, s′) ≥ π(x′, y, s′) ⇒ π(x, y, s) > π(x′, y, s), which proves the first part of

the lemma. Notice that the feasible correspondence [0, K] is ascending in s, then, by

Topkis’s Theorem (1998), every selection of x(y, s) is increasing in s. �

Lemma 2.20. Every selection of the best-response correspondence z(y, s) increases

in both y and s.

Proof of Lemma 2.20. The proof follows by Amir and Lazzati (2011), Lemma

1. �

Proof of Theorem 2.1. Let the expected size of the network be s for each firm.

By Amir and Lambson (2000), a symmetric Cournot equilibrium exists and comes

from a fixed point of the correspondence

Bs : [0, (n− 1)K]→ 2[0,(n−1)K]

y → n− 1

n
z(y, s).

Now we need to prove that xn(s), the set of symmetric Cournot equilibrium

individual outputs for each firm i = 1, ..., n, has fixed points. By Lemma 2.20, every
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selection of z(y, s) is increasing in s. Then, by Milgrom and Roberts (1990), the

maximal and minimal fixed points of Bs(y), ȳ(s) and y(s) respectively, increase in

s. Hence, by symmetry and by Lemma 2.20, the extremal selections of the corre-

spondence xn : [0, K] −→ [0, K], x̄n(s) = ȳ(s)/(n− 1) and xn(s) = y(s)/(n− 1), are

increasing in s. Thus, by Tarski’s fixed point theorem (1955), x̄n(s) and xn(s) have

fixed points that can be seen as symmetric FECE’s. �

Proof of Lemma 2.2. By definition, an individual (and hence, industry) output of

0 is a symmetric FECE if and only if 0 ∈ xn(0), i.e., 0 ∈ x(0, 0). This holds if and

only if π(0, 0, 0) ≥ π(x, 0, 0) ∀x ∈ [0, K], i.e., 0 ≥ xP (x, 0)− C(x) ∀x ∈ [0, K]. �

Proof of Lemma 2.3. By proof of Lemma 2.2, 0 ∈ xn(0) if and only if π(0, 0, 0) ≥

π(x, 0, 0) ∀x ∈ [0, K] if and only if 0 ∈ xn+1(0). �

Lemma 2.21. Let x̃n(s) be an increasing selection of xn(s). Then x̃n(s) is differ-

entiable for almost all s, and, if x̃n(s) ∈ (0, K) for s > 0, its slope is given by (x̃n

stands for x̃n(s))

∂x̃n(s)

∂s
= − x̃nP12(nx̃n, s) + P2(nx̃n, s)

(n+ 1)P1(nx̃n, s) + nx̃nP11(nx̃n, s)− C ′′(x̃n)
. (2.2)

Proof of Lemma 2.21. If x̃n(s) is interior, it satisfies the first order condition

x̃n(s)P1(nx̃n(s), s) + P (nx̃n(s), s)− C ′(x̃n(s)) = 0. (2.3)
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Since x̃n(s) is increasing, it is differentiable almost everywhere w.r.t. Lebesgue

measure. Hence, differentiating both sides of equation (2.3) with respect to s on a

subset of full Lebesgue measure and reordering terms gives us the result. �

Proof of Lemma 2.4. To see that xn(0) is single-valued and equal to zero, notice

that 0 ∈ xn(0) imply, by Lemma 2.2, that xP (x, 0) ≤ C(x) for all x ∈ [0, K]. There-

fore, by (A1), xP (x + y, 0) < C(x) for all x, y > 0. This tell us that 0 is a strictly

dominant strategy with s=0 and thus, xn(0) = 0.

Now suppose that P (0, 0) = C ′(0), i.e., zero is an interior equilibrium, and

that x̃n(s) is an increasing selection of xn(s). Take a sequence sk ↓ 0 such that

a selection x̃n(s) is differentiable at sk for all k, this is possible because x̃n(s) is

an increasing function, moreover, limk→∞x̃n(sk) exists. By Fudenberg and Tirole

(1991), xn(s) is upper hemi-continuous, therefore, limk→∞x̃n(sk) ∈ xn(0) = {0}, i.e.,

limk→∞x̃n(sk) = 0.

Now, by (A1), (A2) and limk→∞x̃n(sk) = 0, the right-hand side of equation

(2.2) is right-continuous in s at 0. Doing s = sk and taking limit as k → ∞ in the

right-hand side of (2.2), it follows that limk→∞
∂x̃n(sk)
∂s

exists and it is given by the

right-hand side of equation (2.1). Because this argument is valid for all sequences (sk)

taken from the subset of full Lebesgue measure of the domain [0, K], ∂x̃n(s)/∂s |s=0

exists, is continuous at 0 and given by (2.1).

Notice that the previous argument holds for the extremal selections of xn(s),

x̄n(s) and xn(s), since they are increasing in s by the proof of Theorem 2.1. Thus,
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their derivatives at s = 0 are equal and given by the right-hand side of equation 2.1,

moreover, we have that max{∂xn(s)/∂s |s=0} = ∂x̄n(s)/∂s |s=0= ∂xn(s)/∂s |s=0=

min{∂xn(s)/∂s |s=0}, then, ∂xn(s)/∂s |s=0 exists, is single-valued, continuous and

given by the right-hand side of equation (2.1).

Finally, assume that P (0, 0) < C ′(0). Then, by (A1), P (0, s) < C ′(0) for s

sufficiently small and in consequence, xn(s) = 0 for all such s. Hence, x′n(0) = 0. �

Let Π(z, s) , n−1
n

[∫ z
0
P (t, s)dt− nC(z/n)

]
+ 1
n
[zP (z, s)−nC(z/n)], a weighted

average of welfare and industry profits when s is the same for all firms. Thus, we

have the following result.

Lemma 2.22. Suppose that C(·) is convex. If z∗ ∈ argmax{Π(z, s), 0 ≤ z ≤ nK},

then, x∗ ≡ z∗

n
∈ xn(s), for all n ∈ N and s ∈ [0, K].

Proof of Lemma 2.22. By Amir and Lazzati (2011), Lemma 14, for any n ∈ N

and s ∈ [0, K], if z∗ ∈ argmax{Π(z, s), 0 ≤ z ≤ nK}, then, z∗ ∈ zn(s), where zn(s)

is the total output equilibrium correspondence for a given s. Then, by symmetry,

z∗ ∈ zn(s) implies that x∗ ≡ z∗

n
∈ xn(s). �

Proof of Theorem 2.5.

(i) If the trivial outcome is not part of the equilibrium set, Theorem 2.1 guarantees

there is a symmetric FECE with strictly positive individual output.

(ii) Parts (ii) and (iii) use the following argument; for generality in the result, assume

for now that we have m ≤ n firms. By the proof of Theorem 2.1, the maximal se-
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lection of xm(s), x̄m(s), is increasing in s. Suppose that there exists s′ ∈ (0, K] such

that x̄m(s′) ≥ s′. The facts that x̄m(·) is increasing and x̄m(s′) ≥ s′ (by assumption)

imply that for all s ∈ [s′, K], x̄m(s) ∈ [s′, K]. Then, x̄m(s) is an increasing function

that maps [s′, K] into itself. By Tarski’s fixed point theorem (1955), there exists

s′′ ∈ [s′, K] such that x̄m(s′′) = s′′, which is a strictly positive FECE. Therefore, we

only need to show that there exists s ∈ (0, K] such that x̄m(s) ≥ s to prove that there

is a non-trivial symmetric equilibrium for m ≤ n firms. To this end, it suffices to show

that x′m(0) > 1 which implies that there is a small ε > 0 for which x̄m(ε) > ε. By

hypothesis, 0 ∈ xn(0) which implies by Lemma 2.3 that 0 ∈ xm(0) for all m ≤ n. By

Lemma 2.4, x′m(0) > 1 if P (0, 0) = C ′(0) and P1(0, 0)+P2(0, 0) > −mP1(0, 0)+C ′′(0),

which implies that a non-trivial symmetric equilibrium exists for m ≤ n firms. Now,

it remains to show that the rest of n − m firms best react by producing nothing.

Suppose that in equilibrium, the m firms produce a total output of zm > 0. By hy-

pothesis, 0 ∈ xn(0), which implies that xP (x, 0) ≤ C(x) for all x ∈ [0, K]. By (A1),

xP (x+ zm, 0) < C(x) for all x ∈ [0, K], which implies that 0 ∈ x(zm, 0). Moreover, 0

is a strictly dominant strategy and x(zm, 0) = 0, which is what we wanted to show.

(iii) For now, let us assume that there are m ≤ n firms. The condition in this part

implies that Π1(z, s) ≥ 0 for some s ∈ (0, K] and for all z ≤ ms, i.e., there exist

s ∈ (0, K] and z′ ≥ ms such that Π(z′, s) ≥ Π(z, s) for all z ≤ ms. Hence, the

largest argmax of Π(z, s), say z∗, must be grater or equal than ms, i.e., z∗ ≥ ms and

z∗/m ≥ s. By Lemma 2.22, z∗/m ∈ xm(s) so there is an s ∈ (0, K] such that an

element of xm(s) is greater or equal than s. By the argument in part (ii), it follows
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that a non-trivial symmetric equilibrium exists for m firms. The proof that the rest

of the n−m firms best react by staying out of the market corresponds to that of part

(ii). �

Proof of Theorem 2.6.

(i) By the proof of Theorem 2.1, we know that z̄n(s) = nx̄n(s) is increasing in s and

by Amir and Lambson (2000), increasing in n for every s. Thus, by Tarski’s fixed

point Theorem (1955) and Milgrom and Roberts (1990), its maximal fixed point, z̄n,

exists and is increasing in n. A similar argument is used to prove that zn exists and

is increasing in n.

(ii) First notice that ∆3(z) = dP (z, z/n)/dz, then, ∆3(z) ≤ 0 implies that P (z, z/n)

is decreasing in z. Thus we have, P̄n = P (zn, zn/n). Taking derivative with respect

to n and reordering terms, we have:

dP̄n
dn

= ∆3(zn)
dzn
dn
− P2(zn, zn/n)zn

n2
.

By assumption and part (i), the first term of the previous expression is nega-

tive on [zn, zn+1]. Similarly, the second term is negative by (A2), hence, the minimal

equilibrium price decreases with n. A similar argument shows that P n is decreasing

in n when ∆3(·) ≤ 0 on [z̄n, z̄n+1]. �

Proof of Proposition 2.7. If an m-active-firm symmetric equilibrium exists (with pos-

itive production), we know that a (non-trivial) m + 1 symmetric equilibrium exists

with z̄m ≤ z̄m+1, by Theorems 2.1 and 2.6. A m-active-firm symmetric equilibrium
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imply that 0 = π(0, z̄m, 0) ≥ π(x, z̄m, 0) for all x ∈ [0, K]. Hence, by (A1) and

z̄m ≤ z̄m+1, 0 ≥ xP (x + z̄m, 0) − C(x) ≥ xP (x + z̄m+1, 0) − C(x) for all x ∈ [0, K],

i.e., π(0, z̄m+1, 0) ≥ π(x, z̄m+1, 0) for all x ∈ [0, K], which implies that the rest of the

n−(m+1) firms best respond with zero production. Thus, a (m+1)-active-firm sym-

metric equilibrium exists with aggregated equilibrium output z̄m+1, which is greater

than that for the m-active-firm symmetric equilibrium, z̄m. �

Proof of Theorem 2.8. At any interior equilibrium, x̄n must satisfy the first order

condition

P (nx̄n, x̄n) + x̄nP1(nx̄n, x̄n)− C ′(x̄n) = 0,

which implies that it is the maximal fixed point of the function

F (x;n) = −P (nx, x)− C ′(x)

P1(nx, x)
.

Notice that

∂F (x;n)

∂n
= − x

P 2
1

∆4(x).

Thus, by Milgrom and Roberts (1990), the direction of change in x̄n when n

increases is given by the opposite sign of ∆4(x). �

Proof of Theorem 2.9.

(i) Consider the following inequalities

πn+1 = x̄n+1P (x̄n+1 + ȳn+1, x̄n+1)− C(x̄n+1)

≥ x̄nP (x̄n + ȳn+1, x̄n+1)− C(x̄n)
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≥ x̄nP (x̄n+1 + ȳn+1, x̄n+1)− C(x̄n)

≥ x̄nP (x̄n + ȳn, x̄n)− C(x̄n) = πn.

The first inequality follows by equilibrium. The second one, by (A1), P1(z, s) <

0, and x̄n+1 ≥ x̄n. The last one, by the assumption that P (x̄n+1 + ȳn+1, x̄n+1) ≥

P (x̄n + ȳn, x̄n).

(ii) Consider the following

πn = x̄nP (x̄n + ȳn, x̄n)− C(x̄n)

≥ x̄n+1P (x̄n+1 + ȳn, x̄n)− C(x̄n+1)

≥ x̄n+1P (x̄n+1 + ȳn, x̄n+1)− C(x̄n+1)

≥ x̄n+1P (x̄n + ȳn, x̄n+1)− C(x̄n+1)

≥ x̄n+1P (x̄n+1 + ȳn+1, x̄n+1)− C(x̄n+1) = πn+1.

The first inequality follows by equilibrium. The second one, by (A1), P2(z, s) >

0, and the assumption that x̄n+1 ≤ x̄n. The third one, by P1(z, s) < 0 and x̄n+1 ≤ x̄n;

the last one, by (A1) and Theorem 2.6 (i). �

Proof of Proposition 2.10.

(i) This part follows immediately from Theorem 2.6 part (i).

(ii) Consider the following inequalities

CSn+1 − CSn =
∫ z̄n+1

0
{P (t, x̄n+1)− P (z̄n+1, x̄n+1)}dt−

∫ z̄n
0
{P (t, x̄n)− P (z̄n, x̄n)}dt

≥
∫ z̄n

0
{P (t, x̄n+1)− P (z̄n+1, x̄n+1)− P (t, x̄n) + P (z̄n, x̄n)}dt

≥
∫ z̄n

0
{P (t, x̄n+1)− P (z̄n, x̄n+1)− P (t, x̄n) + P (z̄n, x̄n)}dt

≥ 0.
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The first inequality follows by P1(z, s) < 0 and z̄n+1 ≥ z̄n ((A1) and Theorem

2.6 (i), respectively). The same results lead to the second inequality. The last in-

equality holds by hypotheses of the theorem, x̄n+1 ≥ x̄n and P12(z, s) ≤ 0 for all z, s

gives us P (z̄n, x̄n)− P (t, x̄n) ≥ P (z̄n, x̄n+1)− P (t, x̄n+1) for all t ≤ z̄n, which leads to

the result.

(iii) The proof of this part is similar to that of part (ii). �

Proof of Proposition 2.11.

(i) This parts follows directly from Theorem 2.9 part (i).

(ii) Consider the following

(n+ 1)πn+1 − nπn = z̄n+1[P (z̄n+1, x̄n+1)− A(x̄n+1)]− z̄n[P (z̄n, x̄n)− A(x̄n)]

≥ z̄n[P (z̄n+1, x̄n+1)− A(x̄n+1)]− z̄n[P (z̄n, x̄n)− A(x̄n)]

= z̄n {[P (z̄n+1, x̄n+1)− P (z̄n, x̄n)]− [A(x̄n+1)− A(x̄n)]} ≥ 0.

The first inequality follows by Theorem 2.6 part (i) and P (z̄n+1, x̄n+1) −

A(x̄n+1) ≥ 0; the second one, by assumption.

(iii) Consider the following steps

πn = x̄n {P (nx̄n, x̄n)− A(x̄n)}

≥ n+1
n
x̄n+1

{
P
[
n+1
n
x̄n+1 + (n− 1)x̄n, x̄n

]
− A(n+1

n
x̄n+1)

}
≥ n+1

n
x̄n+1

{
P
[
n+1
n
x̄n+1 + (n− 1)n+1

n
x̄n+1, x̄n

]
− A(n+1

n
x̄n+1)

}
= n+1

n
x̄n+1

{
P [(n+ 1)x̄n+1, x̄n]− A(n+1

n
x̄n+1)

}
≥ n+1

n
x̄n+1 {P [(n+ 1)x̄n+1, x̄n+1]− A(x̄n+1)}

= n+1
n
πn+1.
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The first inequality follows by optimality. The second one, by (n + 1)x̄n+1 ≥

nx̄n (Theorem 2.6 part (i)) and (A1), P1(z, s) < 0. The last inequality holds by the

assumptions that x̄n+1 ≤ x̄n, A(n+1
n
x̄n+1) ≤ A(x̄n+1), and P2(z, s) > 0. �

Proof of Proposition 2.12.

(i) Consider the following relations

Wn+1 −Wn =
∫ z̄n+1

0
P (t, x̄n+1)dt− z̄n+1A(x̄n+1)−

∫ z̄n
0
P (t, x̄n)dt+ z̄nA(x̄n)

≥
∫ z̄n

0
{P (t, x̄n+1)− A(x̄n+1)}dt−

∫ z̄n
0
{P (t, x̄n)− A(x̄n)}dt

≥ 0.

The first inequality is given by the fact that P (t, x̄n+1) − A(x̄n+1) ≥ 0 for all

t ≤ z̄n+1, and z̄n+1 ≥ z̄n (Theorem 2.6). The second one, by hypothesis of the result.

(ii) First notice that the social welfare function at any production level x and expected

size of the network s, when there are n symmetric firms is given by

Vn(x, s) =

∫ nx

0

P (t, s) dt− nC(x).

Vn(x, s) is a concave function with respect to x since ∂2Vn(x,s)
∂x2

= n[nP1(nx, s)−

C ′′(x)] < 0, by (A1) and (A4). Now, consider the following relations

Wn+1 −Wn =
∫ (n+1)x̄n+1

0
P (t, x̄n+1)dt− (n+ 1)C(x̄n+1)−

[∫ nx̄n
0

P (t, x̄n)dt− nC(x̄n)
]

≥ πn+1 +
∫ nx̄n+1

0
P (t, x̄n+1)dt− nC(x̄n+1)−

[∫ nx̄n
0

P (t, x̄n+1)dt− nC(x̄n)
]

≥ Vn(x̄n+1, x̄n+1)− Vn(x̄n, x̄n+1)

≥ ∂Vn(x̄n+1,x̄n+1)
∂x

(x̄n+1 − x̄n)

= n [P (nx̄n+1, x̄n+1)− C ′(x̄n+1)] (x̄n+1 − x̄n)

≥ n [P ((n+ 1)x̄n+1, x̄n+1)− C ′(x̄n+1)] (x̄n+1 − x̄n)
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≥ 0.

The first inequality follows by
∫ (n+1)x̄n+1

0
P (t, x̄n+1)dt ≥

∫ nx̄n+1

0
P (t, x̄n+1)dt +

x̄n+1P (z̄n+1, x̄n+1), the assumption that x̄n+1 ≥ x̄n and (A1). The second one, by

πn+1 ≥ 0. The third inequality holds by concavity of Vn(·, s). The next one, by (A1);

and the last one, by the Cournot property and the assumption that x̄n+1 ≥ x̄n. �

Proof of Lemma 2.13. Producing zero is a FECE for the oligopoly with compati-

ble networks, 0 ∈ xCn (0), if and only if each firm is better off by producing nothing

than any positive output (less than K), i.e., if and only if 0 ≥ xP (x, 0) − C(x)

∀x ∈ [0, K], which is equivalent to 0 ∈ xIn(0). �

Proof of Lemma 2.14. If K is a symmetric equilibrium for the n-oligopoly with

complete incompatibility we have

KP (nK,K)− C(K) ≥ xP (x+ (n− 1)K,K)− C(x) for all x ∈ [0, K).

The facts that x < K, K < nK, for n > 1, and that the profit function π(x, s)

satisfies the single crossing property in (x, s), by Lemma 2.19, give us

KP (nK, nK)− C(K) ≥ xP (x+ (n− 1)K,nK)− C(x) for all x ∈ [0, K),

which implies that K is an equilibrium for the n-oligopoly with complete compatibil-

ity. �

Proof of Theorem 2.15.

(i) If x̄In = 0, the result trivially holds.
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Now suppose that x̄In is an interior equilibrium. The only possibility that

we have to rule out, is that the trivial equilibrium is the unique one for complete

compatibility. Suppose it is, then, 0 is a strictly dominant strategy for the game

with complete compatibility, i.e., xP (x + y, 0) < C(x) for all x, y > 0, but this

condition implies that 0 is also the unique equilibrium for the game with complete

incompatibility, which contradicts the assumption that x̄In is interior. Then, x̄Cn is

interior or K. Let us look at the interesting case when it is interior, otherwise, the

result trivially holds.

Any interior solution xCn must satisfy the first order condition

P (nxCn , nx
C
n ) + xCnP1(nxCn , nx

C
n )− C ′(xCn ) = 0.

Similarly, any interior solution xIn satisfies the first order condition

P (nxIn, x
I
n) + xInP1(nxIn, x

I
n)− C ′(xIn) = 0.

Let us define the following function Ft : [0, K]→ < by

F (x; t) = −P (nx, ntx)− C ′(x)

P1(nx, ntx)
,

where t ∈ < denotes a parameter. For this part, we focus on the values of x ∈ [0, K]

such that F (x; t) ≥ 0, thus, we have P (nx, ntx)− C ′(x) ≥ 0 by (A1).

Notice that when t = 1, a fixed point of the function F gives us a FECE for

the oligopoly with n firms and complete compatibility. Similarly, when t = 1/n, a

fixed point of F can be interpreted as a FECE for an oligopoly with n firms and

complete incompatibility. In fact, we know that in both cases, t = 1 and t = 1/n, we

have fixed points because we are in the case where solutions are interior.
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Moreover,

∂Ft(x)

∂t
= − nx

P 2
1 (nx, ntx)

{P1(nx, ntx)P2(nx, ntx)− [P (nx, ntx)− C ′(x)]P12(nx, ntx)}

= − nx

P 2
1 (nx, ntx)

{−[P (nx, ntx)P12(nx, ntx)− P1(nx, ntx)P2(nx, ntx)]

+C ′(x)P12(nx, ntx)} ≥ 0.

The previous result can be easily seen by cases. First, if P12(nx, ntx) ≥ 0, the

right hand side of the first equality gives us the result. By (A1),

P1(nx, ntx)P2(nx, ntx) < 0,

and because P (nx, ntx)− C ′(x) ≥ 0, we have that

[P (nx, ntx)− C ′(x)]P12(nx, ntx) ≥ 0,

thus, the derivative is grater or equal than zero.

Second, if P12(nx, ntx) ≤ 0, the result follows from the right hand side of the

second equality. By (A5), log supermodularity of P (z, s), we have that

P (nx, ntx)P12(nx, ntx)− P1(nx, ntx)P2(nx, ntx) > 0,

and by (A2), C ′(x) ≥ 0 which leads to the result.

The previous inequality implies that the extremal fixed points of F (·) increase

in t, by Milgrom and Roberts (1990), thus x̄Cn ≥ x̄In.

Finally, if K is the highest equilibrium for the n-oligopoly with complete in-

compatibility, K is also the highest equilibrium for the n-oligopoly with complete

compatibility, by Lemma 2.14.
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By the previous arguments, the proof for this part is complete.

(ii) Consider the following inequalities

PC
n = P (nxCn , nx

C
n )

≥ P (nxIn, nx
I
n)

≥ P (nxIn, x
I
n).

The first inequality follows by the assumption that ∆5(·) ≥ 0 and Theorem

2.15 part (i); the second one, by the assumption that P2(z, s) > 0. �

Proof of Theorem 2.16.

(i) Consider the following inequalities

πCn = x̄CnP (x̄Cn + ȳCn , x̄
C
n + ȳCn )− C(x̄Cn )

≥ x̄InP (x̄In + ȳCn , x̄
C
n + ȳCn )− C(x̄In)

≥ x̄InP (x̄Cn + ȳCn , x̄
C
n + ȳCn )− C(x̄In)

≥ x̄InP (x̄In + ȳIn, x̄
I
n + ȳIn)− C(x̄In)

≥ x̄InP (x̄In + ȳIn, x̄
I
n)− C(x̄In)

= πIn.

The first inequality follows by Cournot property; the second one, by (A1),

P1(z, s) < 0, and part (i) Theorem 2.15, x̄Cn ≥ x̄In; the third one is true by the

assumption that ∆5(·) ≥ 0 and x̄Cn ≥ x̄In, and the last one, by (A1), P2(z, s) > 0.

(ii) Consider the following inequalities

CSCn − CSIn =
∫ nx̄Cn

0
[P (t, nx̄Cn )− P (nx̄Cn , nx̄

C
n )] dt−

∫ nx̄In
0

[P (t, x̄In)− P (nx̄In, x̄
I
n)] dt

≥
∫ nx̄In

0
[P (t, nx̄Cn )− P (nx̄Cn , nx̄

C
n )] dt−

∫ nx̄In
0

[P (t, x̄In)− P (nx̄In, x̄
I
n)] dt
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≥
∫ nx̄In

0
[P (t, nx̄Cn )− P (nx̄Cn , nx̄

C
n )] dt−

∫ nx̄In
0

[P (t, x̄In)− P (nx̄Cn , x̄
I
n)] dt ≥ 0.

The first inequality follows by Theorem 2.15 part (i) and P1(z, s) < 0. Under

the assumption that P I
n ≥ PC

n at the highest equilibrium, the second line becomes

positive given that nx̄Cn ≥ x̄In and P2(z, s) < 0, which proves the first part of the

result. For the second part, notice that the second inequality follows from (A1),

P1(z, s) < 0, and the last one by the assumption that P12(z, s) ≤ 0. To see this, notice

that t ∈ [0, nx̄In] and nx̄Cn ≥ nx̄In imply that t ≤ nx̄Cn , thus, adding the assumption

that P12(z, s) ≤ 0 and the result that nx̄Cn ≥ x̄In imply that P (t, nx̄Cn ) − P (t, x̄In) ≥

P (nx̄Cn , nx̄
C
n )− P (nx̄Cn , x̄

I
n) for all t ∈ [0, nx̄In], which gives us the result.

(iii) Recall, by the proof of Proposition 2.12, that the social welfare function

at production level x and expected size of the network s, with n symmetric firms is

given by Vn(x, s) =
∫ nx

0
P (t, s) dt− nC(x), which is a concave function with respect

to x. Then, we have that at the highest equilibria

WC
n −W I

n =
{∫ nx̄Cn

0
P (t, nx̄Cn ) dt− nC(x̄Cn )

}
−
{∫ nx̄In

0
P (t, x̄In) dt− nC(x̄In)

}
≥
{∫ nx̄Cn

0
P (t, nx̄Cn ) dt− nC(x̄Cn )

}
−
{∫ nx̄In

0
P (t, nx̄Cn ) dt− nC(x̄In)

}
= Vn(x̄Cn , nx̄

C
n )− Vn(x̄In, nx̄

C
n )

≥ ∂Vn(x̄Cn ,nx̄
C
n )

∂x
(x̄Cn − x̄In)

= n[P (nx̄Cn , nx̄
C
n )− C ′(x̄Cn )](x̄Cn − x̄In) ≥ 0

The fist inequality follows by (A1), P2(z, s) > 0; the second one, by concavity

of Vn(·, s), and the last one, because P (nx̄Cn , nx̄
C
n ) ≥ C ′(x̄Cn ) and x̄Cn ≥ x̄In, by Theorem

2.15 part (i). �
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Proof of Corollary 2.17.

Amir and Lazzati (2011) show that under our assumptions, no asymmetric equilibria

exist in the compatible industry. Thus, the assumption that z̄Cn = z̄In implies that

z̄Cn = nx̄Cn =
∑n

i=1 x̄
I
in and z̄Cn ≥ x̄Iin for all i = 1, ..., n. Let us order the incompatible

firms by price, i.e., P I
1 ≥ P I

2 ≥ ... ≥ P I
n , and define x̄0n ≡ 0, then

CSIn−CSCn =
∑n

i=1

{∫ x̄Iin
x̄I
(i−1)n

[P (t, x̄Iin)− P (z̄In, x̄
I
in)] dt

}
−
∫ nx̄Cn

0
[P (t, z̄Cn )−P (z̄Cn , z̄

C
n )] dt

CSIn − CSCn =
∑n

i=1

{∫ x̄Iin
x̄I
(i−1)n

[P (t, x̄Iin)− P (t, z̄Cn )− P (z̄In, x̄
I
in) + P (z̄Cn , z̄

C
n )] dt

}
,

which is positive by the assumption that P12(z, s) ≥ 0. �



79

CHAPTER 3
ENVIRONMENTAL REGULATION OF OLIGOPOLIES: EMISSION

VERSUS PERFORMANCE STANDARDS

3.1 Introduction

The rapid growth of industrial production in the XX century has raised numer-

ous questions about its consequences for the natural environment. Only in the second

half of the same century, however, the issue of pollution has become sufficiently alarm-

ing to make the policy makers seek the means towards the efficient conservation of

the environment. With this purpose numerous environmental policy instruments have

been studied, providing foundations for the establishment of environmental rankings

comparing the performance of such instruments. In this study, we examine a partial

equilibrium model that analyzes the performance of two command-and-control policy

instruments: the emission and performance standards. Unlike the vast majority of

the models, we assess the incentives to invest in R&D under imperfectly competitive

conditions in the output market. In that way, our approach highlights the importance

that the strategic interactions of oligopolistic firms have for the R&D incentives. Ad-

ditionally, by considering the objective of the regulator, who seeks to maximize social

welfare, this analysis provides a welfare comparisons that, to our knowledge, have not

been offered previously.

The literature analyzing the performance of environmental policy instruments

tends to neglect the command-and-control apparatus. The reason behind it is that

BASED ON JOINT WORK WITH KATARZYNA WERNER.



80

the command-and-control instruments involve a presence of a regulatory authority

that imposes restrictions on the emission levels produced by firms, ipso facto, re-

stricting these firms’ freedom to decide about their abatement levels. As a result only

a few papers account for either the emission standard or the performance standard,

and even fewer make comparisons between both instruments. Among the former ones,

e.g., Milliman and Prince (1989) find that the emission standard is weaker at promot-

ing technological change than market based instruments such as subsidies, taxes and

permits. Requate (2005) obtains a different result and demonstrates that an emission

standard is not necessarily characterized by the lowest innovation incentives, despite

the opposing view presented in the literature. Strongly contrasting the latter, Wen-

ders (1975) shows that an emission standard may provide no economic inducement to

produce any innovations in pollution abatement. Neither of these authors, however,

considers the performance standard.

Despite being frequently applied by the regulators (see Bruneau, 2004, p.1194

and Requate, 2005, p. 178) so far the performance standard has been rarely ac-

counted for in the theoretical literature on emission reduction. One reason for this

shortcoming is the negligence of the output market in this literature. An example of

such negligence is given by Downing and White (1986), Malueg (1989), Milliman and

Prince (1989) and Jung et al. (1996) who assess environmental policy instruments

based on the incentives they provide to adopt less polluting technology. These au-

thors measure the incentives using the aggregate cost savings of the industry while

ignoring the output effect derived from the lower abatement costs (Montero, 2002;
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Bruneau, 2004; Requate, 2005). Discarding firms’ decisions on the quantity of out-

put being produced rules out the possibility of modeling the performance standard.

Parry (1998) recognizes this limitation and employs the analysis of R&D incentives

in the competitive output market. The results of his analysis comply with the ear-

lier findings highlighting the superiority of the market based instruments. Montero

(2002) obtains similar results investigating the model of perfect competition in which

firms can reduce their compliance costs by investing in the environmental R&D. In

the same framework he examines the R&D incentives under emission standard and

finds that this command-and-control instrument performs significantly better than

the performance standard. By deriving opposite implications Bruneau (2004) strongly

contradicts Montero’s findings. He explains that under the performance standard a

firm that has a higher initial output but attains the same level of emissions like under

the emission standard will have higher abatement costs. From this fact he immedi-

ately infers that the reduction in the abatement costs is larger under the performance

standard. Bruneau (2004), however, makes no comparison of both instruments under

imperfect output competition.

Montero (2002) fills this gap and investigates the Cournot duopoly model of

imperfect competition in the output market. Unlike under perfect competition, the

investigation focuses not only on the cost-minimizing (direct) effect of R&D invest-

ment, but on the strategic effect, too. The strategic effect is said to reflect the impact

of one firm’s choice of R&D level on the output decision of another firm. In the

two-stage model featuring both effects the level of emissions is taken as given and the
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marginal production cost is implicitly assumed to be constant. Solving for the profit

maximizing levels of R&D investment and output, Montero does not obtain a clear-

cut result of the intra-comparison between the standards. The reason for it is that the

cost savings from innovation (the direct effect) are larger under emission standard,

but the profits (the strategic effect) are higher under performance standard. Hence,

Montero conditions the final outcome of the comparison on the level of demand for

output and the cost of R&D. In particular, he shows that the higher the cost of R&D

and the less elastic output demand are, the more likely the performance standard

is to offer superior R&D incentives. Montero, however, does not verify whether this

result is robust also when the regulator chooses a socially optimal level of emission in

the first instance.

This is where we offer our contribution. Instead of adopting a given emission

target, our model incorporates a damage function, whose presence enables to deter-

mine a socially optimal level of emission. As a result, the game under consideration

involves three instead of two stages, with the regulatory body selecting the socially

optimal level of emissions in the first stage. The assumptions of imperfect competi-

tion in the output market and constant marginal production costs are maintained.

Additionally, following the paper of d’Aspremont and Jacquemin (1988), we adopt

a quadratic form of the R&D cost to account for diminishing returns to R&D ex-

penditures. To simplify the exposition further, particular functional forms have been

assigned to the remaining variables of interest, including demand and abatement cost.

In such a framework we find a symmetric subgame perfect equilibrium (SPE)
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under each policy instrument. This equilibrium is decomposed of the socially optimal

level of emission (or ratio of emissions per output under the performance standard),

the R&D investment, and the output level. Based on the comparison between both

equilibria we establish that social welfare is larger under performance standard for

the given set of primitives. This result may explain why the performance standard

is commonly applied in real life. From the theoretical point of view, however, this

result cannot be easily clarified. The reason is that in our model the conventional

link between the R&D investment and welfare level is missing. In fact, according to

our model, the level of welfare is independent of the R&D investment under both

regimes. Hence, the explanation relying on the simple argument positively relating

the level of welfare to the level of R&D investment fails.

We also find that the nature of a policy instrument is crucial in determining

the R&D incentives that this instrument provides. In particular, when the levels of

emissions are endogenous under both policy instruments (hence, when the welfare is

maximized), larger R&D incentives are obtained under emission standard. However,

when these levels are fixed to be equal, it is the performance standard that yields

larger incentives to invest in R&D. As a result, the comparison of R&D incentives

remains inconclusive. In that sense, our results resemble those of Montero (2002) -

despite using a different methodology than this author we find that the final result

of the comparison of R&D incentives is governed by the underlying assumptions.

The rest of the paper is organized as follows. The next section sets out the

basic model and clarifies the assumptions behind it. Sections 3.2.1 and 3.2.2 provide
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analysis of equilibrium under the emission and the performance standards, respec-

tively. Section 3.2.3 presents some comparative results, while Section 3.3 concludes.

All proofs are given in Section 3.4.

3.2 The model

Consider a duopoly market with three agents: two ex-ante symmetric firms

pursuing the profit maximizing objective and a regulator. The firms produce a ho-

mogenous good for which the (inverse) demand is given by function P, such that

P : [0,∞)→ [0,∞). A quantity produced by a single firm is denoted by q, while the

aggregate quantity produced in this market is given by Q. The production process it-

self is costless, but entails harmful emissions damaging the environment. The damage

takes the form of function D, where D : [0,∞)→ [0,∞). Function D is increasing in

the number of total emissions, E, such that D′(·) > 0.

Unlike firms, the environmental regulator is concerned with the maximization

of social welfare. Hence, it employs various policy instruments in order to control the

level of emissions. In this framework two such instruments are considered: the emis-

sion and performance standards. Emission standard constraints the level of emissions

generated by a single firm, e, while performance standard imposes a restriction on the

ratio of emissions per output, h. Once the chosen standard is exceeded, the emitting

firm becomes a subject to abatement cost C, where C : [0,∞) × [0,∞) → [0,∞).

The abatement cost C(y, x) increases in the number of units of emissions abated,

y = q − e for emission standard and y = q(1 − h) for performance standard, and
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decreases in the R&D investment, x, such that C1(·, ·) > 0 and C2(·, ·) < 0. The

cost can be reduced if the firm chooses to improve its abatement technology. This,

however, requires investing in R&D, which is also costly. In this framework the cost

of R&D investment is given by function g and is quadratic to reflect the diminishing

returns to R&D expenditures (see D’Aspremont and Jacquemin, 1988). Additionally,

market structure (P,C,D, g) is characterized as follows:

(A1) the inverse demand function is linear, P (Q) = a− bQ, where a, b > 0;

(A2) the abatement cost function is given by C(y, x) = (c− x)y, where c > 0;

(A3) the R&D cost function is g(x) = γx2/2, where γ > 0;

(A4) the damage function is given by D(E) = sE2/2, where s > 0;

(A5) 9bγ > 8, 9b+ 8s < 18bγs, 4a < 9bcγ, a < 2γs(a− c), 9bc < 8s(a− c) and

a > 9bcγ − 6γs(a− c).

In such a three-stage game the regulator concerned with the level of social

welfare moves first by imposing caps on the emission levels/ratio of emissions per

output for each firm. The firms move next by selecting simultaneously the level of

R&D investment in response to the imposed emission ceilings. Finally, these firms

compete in output (à la Cournot).

Using backwards induction we solve the subgame perfect equilibrium (SPE)

of the game, entailing optimal levels of e (Section 3.2.1) and h (Section 3.2.2).
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3.2.1 Emission Standards

In this model, the regulator establishes a cap on the number of emissions that a firm

can generate by its production. Since the firms are symmetric, we assume that the

regulator sets the same emissions ceiling, e, for both firms. In the last stage of the

game, firm i chooses its output, qi, and the final level of emissions (after abatement),

ei, such that it maximizes its profit given the level of e, xi < c, and its rival’s

production qj. In this way, the total number of emissions abated by the firm equals

qi − ei. Hence, the optimization problem of firm i in this stage is given by

max
qi,ei

qi[a− b(qi + qj)]− (c− xi)(qi − ei) s.t. ei ≤ e. (3.1)

Since the objective function in (3.1) is increasing in ei, the firm chooses ei = e and

the firm’s maximization problem reduces to

max
qi

qi[a− b(qi + qj)]− (c− xi)(qi − e), (3.2)

which leads to equilibrium individual outputs qi(xi, xj), for i, j ∈ {1, 2} and i 6= j1.

In the second stage, the firms simultaneously choose their levels of R&D, x1

and x2, given e and the equilibrium in the last stage. Thus, firm i solves the following

problem

max
xi

qi(xi, xj) [a− b(qi(xi, xj) + qj(xi, xj))]− (c− xi)[qi(xi, xj)− e]−
γx2

i

2
. (3.3)

Notice that an additional term is present in (3.3). This term denotes the cost that

1In a general setting, the equilibrium in this stage also depends on e, i.e., qi(xi, xj , e).
Our particular assumptions lead to an equilibrium that does not depend on e in this stage.
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firm i incurs when investing the amount of xi in R&D.

By symmetry of the game, this stage leads to symmetric equilibrium x(e) and q(e).

Finally, in the first stage, the regulator chooses the emission cap for each firm

given the symmetric equilibrium of the second stage. Hence, the regulator solves

max
e

∫ 2q(e)

0

P (t)dt− 2[c− x(e)][q(e)− e]− s(2e)2

2
− γ[x(e)]2, (3.4)

where the industry emissions are equal to E = 2e.

The first term in the welfare maximization problem corresponds to the con-

sumer surplus, while the second term reflects the costs of abatement incurred by both

firms. The remaining terms illustrate the damage cost for the society, s(2e)2

2
, and the

total cost of R&D, γ[x(e)]2.

Explicitly, in the first stage the regulator solves

max
e

{
e2(9b+ 8s− 18bγs) + e(18bcγ − 8a) + 4γ(a− c)2

9bγ − 4

}
.

Now we are ready for our first result. Since the equilibrium is symmetric, we drop

the sub-indexes in the variables of interest. The calculations are detailed in Section

3.4.

Proposition 3.1. Under assumptions (A1)-(A5), a symmetric SPE exists with out-

come e∗ = 4a−9bcγ
9b+8s−18bγs

, x∗ = 9bc−8s(a−c)
9b+8s−18bγs

and q∗ = 3a−6γs(a−c)
9b+8s−18bγs

. Moreover, 0 < x∗ < c

and 0 < e∗ < q∗.

In the next section, a similar game will be solved in the framework with the

performance standard instead of the emission standard. Due to the complexity of
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the model under performance standard no close form-solution of the SPE can be

computed. Instead, a numerical analysis is provided to emphasize the relevance of

the endogeneity of the instruments.

3.2.2 Performance Standards

Performance standard refers to the cap, say h, that the regulator imposes on the

proportion of emissions that a firm can emit per unit of production. For example, if

the regulator chooses h = 0.70, the firm can pollute at most 70% of its production.

Hence, if the production equals q = 100, the emissions must be reduced to 70, so that

q(1− h) = 30 units of emissions must be abated.

Therefore, in the last stage, firm i solves

max
qi

qi[a− b(qi + qj)]− (c− xi)qi(1− h), (3.5)

given h chosen by the regulator, xi from the second stage, and the production of its

rival, qj. The equilibrium in this stage is described by qi(xi, xj, h) for firm i ∈ {1, 2},

i 6= j.

In the second stage, firm i solves

max
xi

qi(xi, xj, h) [a− b(qi(xi, xj, h) + qj(xi, xj, h))]− (c− xi)qi(xi, xj, h)(1− h)− γx2
i

2
.

(3.6)

By symmetry, we obtain the equilibrium variables x(h) and q(h).

Under assumption 6, (A6), 8(1−h)2 < 9bγ, a > c(1−h) and 9bcγ > 4a(1−h),

so that the second stage equilibrium can be characterized in the following way:

Proposition 3.2. Assume (A1)-(A4) and (A6). For all 0 < h < 1, the equilibrium
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consists of x(h) = 4(1−h)[c(1−h)−a]
4(1−h)2−9bγ

and q(h) = 3γ[c(1−h)−a]
4(1−h)2−9bγ

, with 0 < x(h) < c and

q(h) > 0.

In the first stage, the regulator chooses 0 < h < 1 that solves the following optimiza-

tion problem

max
h

∫ 2q(h)

0

P (t)dt− 2[c− x(h)]q(h)(1− h)− s[2hq(h)]2

2
− γ[x(h)]2. (3.7)

Using the results in Proposition 3.2 and equation (3.7), the regulator problem becomes

max
h

2γ[a− c(1− h)]2[9γ(2b− h2s)− 8(h− 1)2]

[4(1− h)2 − 9bγ]2
.

The first-order conditions of the previous problem lead to two real roots2, out of which

one is irrelevant as it induces zero production. The remaining root is the solution to

our problem, however, it is analytically non-tractable. For this reason we present our

results for a particular set of primitives. Specifically, we compare the equilibria under

emission and performance standards for particular values of parameters a and γ,

which denote the level of demand and the cost of R&D, respectively. We enable each

of these parameters to vary, while the remaining variables b, c and s are normalized

to 1. First, we assume that a changes while γ is fixed (Section 3.2.3.1); second, we

vary the values of γ given a (Section 3.2.3.2).

Finally, in Section 3.2.3.3 we analyze the scenario in which one of the in-

struments is exogenous (is not chosen to maximize the social welfare function). In

particular, the allowed level of emissions under emission standard is set to be equal to

2There are four roots in total, but two of them are imaginary ones.
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the level of emissions endogenously generated under performance standard. Equaliz-

ing the levels of emissions under both policy instruments helps to compare our results

with those of Montero (2002). In particular, the idea is to highlight some crucial dif-

ferences in the equilibrium outcomes of the model when the standards are exogenous

(as in Montero (2002)) and when they are not (this paper). Section 3.2.3.4 provides

a deeper discussion of the results obtained in Sections 3.2.3.1-3.2.3.3.

3.2.3 Comparison for fixed b = c = s = 1

This section compares the equilibria of the two games for specific values of primitives.

In particular, throughout this section it is assumed that b = c = s = 1. All results are

obtained through a qualitative analysis of the equilibrium variables. Under emission

standard, the equilibrium variables are given by Proposition 3.1. Under performance

standard, the solutions and qualitative characteristics are obtained computationally.

In both models, the outcomes of the game are symmetric and carry the superscript

e or p, for the emission and performance standard, respectively. Further, W denotes

total welfare, e∗ stands for the equilibrium emission cap under emission standard

and h∗ denotes the equilibrium level of emission to output ratio under performance

standard.

3.2.3.1 Fixing parameter γ = 1.5

In order to compare the R&D incentives offered under both policy instruments

it is necessary to assess the impact of the R&D investment on output and welfare.

Proposition 3 provides such an assessment for the specified values of parameters.
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Proposition 3.3. Let b = c = s = 1 and γ = 1.5. Then

a) for 2.25 < a < 2.433, xp > xe and qp > qe;

b) for 2.433 < a < 2.979, xe > xp and qp > qe;

c) for 2.979 < a < 3.375, xe > xp and qe > qp;

d) W p > W e for all 2.25 < a < 3.375;

e) e∗ and h∗ are decreasing in a;

f) xe, xp, qe, qp, W p and W e are increasing in a for all 2.25 < a < 3.3753.

Interestingly, investing more in R&D does not lead to a larger output or a

larger social welfare. This conjecture applies equally to both policy instruments

under consideration. In fact, by Proposition 3.3 part (d), the social welfare is higher

under performance standard, irrespective of the level of R&D or output. In particular,

one can show that even when both, the levels of output and the R&D investment,

are smaller under performance standard, the level of social welfare still dominates

that under emission standard. For instance, when a ∈ (2.979, 3.375), performance

standard leads to a lower R&D investment (xe > xp) and lower level of individual

output (qe > qp). Yet, the level of welfare is higher (W p > W e).

Table 3.1 summarizes these results. The abbreviation e.s. stands for emission

standard and p.s. for performance standard.

The key assumption in Montero’s (2002) analysis is that the emission levels

under both policy instruments are equal, which significantly simplifies the comparison

3The condition that a > 2.25 is required for the optimal output under emission standard
to be greater than the emissions level, qe > e∗. Also, at a = 3.375, e∗ = h∗ = 0, xe = xp =
1 = c, qe = qp = 1.125 and W e = W p = 3.5625.
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Variable e.s. p.s. e.s. p.s. e.s. p.s.

(a = 2.3) (a = 2.5) (a = 3.1)

Standard 0.43 0.65 0.35 0.59 0.11 0.31

R&D per firm 0.14 0.21 0.30 0.27 0.78 0.57

Individual output 0.48 0.68 0.60 0.73 0.96 0.94

Welfare 1.26 1.37 1.55 1.67 2.80 2.84

Final emissions per firm 0.43 0.44 0.35 0.43 0.11 0.29

Emissions abated per firm 0.05 0.24 0.25 0.30 0.85 0.65

Table 3.1: SPE outcome for b = c = s = 1, γ = 1.5 and different values for a.

of other variables. Table 3.1 (fifth row) shows that this is not the case when the levels

of emissions are determined endogenously as to maximize social welfare. De facto,

the socially optimal levels of emissions under both policy instruments are different

from each other. This key implication of endogeneity in emission levels is shown to

apply also in the next section, where social welfare is maximized assuming a constant

value of parameter a.

3.2.3.2 Fixing parameter a = 2.5

As in previous section, Proposition 3.4 illustrates the relationship among equi-

librium levels of R&D, individual output and social welfare. This time, however, these

values are computed for a fixed a.

Proposition 3.4. Let b = c = s = 1 and a = 2.5. Then
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a) for 1.11 < γ < 1.18, xe > xp and qe > qp;

b) for 1.18 < γ < 1.67, xe > xp and qp > qe;

c) for 1.67 < γ, xp > xe and qp > qe;

d) W p > W e for all 1.11 < γ;

e) e∗ and h∗ are increasing in γ;

f) xe, xp, qe, qp, W p and W e are decreasing in γ for all 1.11 < γ4.

Table 3.2 illustrates the results of the comparison between emission and per-

formance standards for different values of γ. As emphasized previously, endogenizing

the level of emissions leads to the differences in the amount of emissions produced

under each policy instruments (fifth row of Table 3.2). In essence, however, the wel-

fare result remains unchanged - irrespective of the relationship between the R&D

investment and the level of output (part (d) of Proposition 3.4) the society is still

wealthier under performance standard. For instance, for γ = 1.80, performance stan-

dard induces a higher R&D (0.21 > 0.19), and a higher output (0.73 > 0.56). A drop

in the value of γ to 1.15 reverses this relationship: a considerably higher level of R&D

(0.81 > 0.43) and a higher level of output (0.77 > 0.74) is attained under emission

standard. Yet, the dominance of the welfare level under performance standard is

preserved.

4The condition γ > 1.11 is required by (A5), in particular, for e∗ > 0.
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Variable e.s. p.s. e.s. p.s. e.s. p.s.

(γ = 1.15) (γ = 1.20) (γ = 1.80)

Standard 0.09 0.50 0.17 0.52 0.40 0.62

R&D per firm 0.81 0.43 0.65 0.39 0.19 0.21

Individual output 0.77 0.74 0.72 0.74 0.56 0.73

Welfare 1.64 1.70 1.61 1.69 1.53 1.66

Final emissions per firm 0.09 0.37 0.17 0.38 0.40 0.45

Emissions abated per firm 0.68 0.37 0.55 0.36 0.16 0.28

Table 3.2: SPE outcome for b = c = s = 1, a = 2.5 and different values for γ.

3.2.3.3 Making the standards e and h exogenous for a = 2.5

To better compare the R&D incentives under (endogenous) emission and per-

formance standards with the incentives obtained in the exogenous setting of Montero’s

(2002) paper, we fix the levels of emission and performance standards to be e and

h respectively. Specifically, if qh is the equilibrium output under the exogenous per-

formance standard h, we assume that e = qhh, so that in equilibrium, the emissions

generated by the production process are the same regardless of the instrument.

In this section, we fix h such that h = h∗, i.e., such that it corresponds to

the endogenous level of the performance standard obtained in Section 3.2.3.2. This

gives us e = qph∗, which implies that the level of emissions will be that given by the

endogenous performance standard. Notice that we could fix e and h, so that e = qhh,
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for any arbitrary value of h, not necessarily the welfare maximizing h∗. The reason

we chose the particular value of h∗ is to maintain the relevance of endogeneity in

our model. In that way we are able to capture the effects that the alteration from

endogenous to exogenous e has on the R&D incentives. Hence, we take the outcome

of this model and contrast it with the equilibrium values of e and h derived from the

maximization of social welfare. We also discuss the relevant implications.

Hence, suppose that the regulator chooses a level of emissions allowed that

would optimally result from the three-stage-game under performance standard (all

the values in the fifth row of Table 3.2 denoted p.s.). The corresponding values of

R&D and output are shown in Table 3.3, where the assumptions regarding the values

of parameters b, c, s, and a are maintained.

Comparing Tables 3.3 and 3.2 yields interesting insights into the impact of

endogeneity in the level of emissions on the equilibrium values of output and R&D.

Observe that assuming the level of emissions equal to the one under (endogenous)

performance standard necessarily leads to the second, fourth and sixth columns of

Table 3.2 and Table 3.3 being identical. The same assumption implies that the first,

third and fifth columns of Tables 3.2 and 3.3 do not coincide. In fact, it is easy to

see, for instance, that the level of social welfare is (weakly) smaller in Table 3.3. The

reason is that e = qph∗ does not constitute the socially optimal level of emission

standard, hence, unlike the level of performance standard, it does not maximize the

welfare. In both cases, however, the level of output and the level of R&D investment

decreases in γ. The rising cost of R&D discourages the firms from investing into R&D,
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Variable e.s. p.s. e.s. p.s. e.s. p.s.

(γ = 1.15) (γ = 1.20) (γ = 1.80)

Standard (exogenous) 0.37 0.50 0.38 0.52 0.45 0.62

R&D per firm 0.42 0.43 0.37 0.39 0.16 0.21

Individual output 0.64 0.74 0.62 0.74 0.55 0.73

Welfare 1.59 1.70 1.58 1.69 1.53 1.66

Final emissions per firm 0.37 0.37 0.38 0.38 0.45 0.45

Emissions abated per firm 0.27 0.37 0.24 0.36 0.10 0.28

Table 3.3: Outcome for b = c = s = 1, a = 2.5, different values for γ and exogenous

e and h = h∗ such that e = qph∗.

which negatively influences the production of output. This effect combined with the

increase in the level of emissions ultimately leads to a lower amount of abatement.

The examination of the levels of R&D investment under both policy instru-

ments yields another interesting result. In particular, for γ = 1.15 and γ = 1.2 these

levels are no longer higher under emission standard. In fact, Table 3.3 demonstrates

that performance standard encourages larger investment in R&D for the entire range

of values between 1.15 and 1.80 associated with the cost of R&D, γ. As a result, the

amount of emissions abated under performance standard is larger than that under

emission standard.

In addition to alterations of the R&D level, the change in the level of emissions
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from the socially optimal one to e = qph∗ also affects the level of output. When the

emission levels are endogenous (Table 3.2), a larger output is produced under emission

standard assuming that γ = 1.15. However, for γ > 1.15 it is the performance

standard that induces more output. This reversal does not take place under the

assumption of exogenous e (Table 3.3). In fact the level of output under performance

standard hardly varies with γ and remains larger than the output level produced

under emission standard for all γ. Consequently, one can derive the conclusion that

fixing the level of emission standard to be e = qph∗ (the socially optimal level of

emissions under performance standard) is the reason why the induced level of output

is lower under emission standard 5.

Next, we contrast these results with those provided by Montero (2002).

3.2.3.4 Discussion

In his paper, Montero (2002) compares the incentives to invest in the environmental

R&D under emission and performance standards by assessing the induced direct and

strategic effects under each policy instrument. On one hand, he establishes that the

direct effect is larger under emission standard. This is because the investment in the

environmental R&D causes the level of output and emissions to increase less under

emission standard than under performance standard. Consequently, it is possible to

abate a larger amount with emission constraint that is fixed, than with a performance

standard that varies with the level of output. This is the direct or cost-minimizing

5In order to induce the level of output that is higher under emission standard than under
performance standard, the corresponding level of emissions per firm must be sufficiently low.



98

effect. On the other hand, the same increase in output is responsible for the domi-

nance of the strategic effect under performance standard. In particular, the flexibility

associated with the output variations under performance standard enables the level

of output to grow faster, which, subsequently, leads to the advantage in the value

of profit earned. Therefore, taking the direct and strategic effects together gives no

clear indication regarding which of the two instruments provides more incentives to

invest in the environmental R&D.

This paper extends Montero’s (2002) comparison of the R&D incentives under

emission and performance standards by accounting for welfare effects. As shown in

Tables 3.1 and 3.2, the maximization of social welfare entails endogenizing the levels

of emissions under each policy instrument. This endogeneity in the level of emissions

creates some similarities and differences with the model of Montero. We discuss the

similarities first.

The increase in the value of parameter γ (see Table 3.2) implies that the

marginal cost of R&D investment increases as well. The latter one, in turn, nega-

tively affects the level of production, which, subsequently, drops. This effect coupled

with simultaneous rise in the level of emissions allowed per firm leads to an overall

fall in the amount of the emissions abated. Since the level of emissions that is allowed

is considerably higher under performance standard, the number of emissions that re-

quire abatement is much lower. The reason for this is that, unlike emission standard,

performance standard enables a better adjustment of the emission to output level

leading to a lower emission abatement required under the latter policy instrument.
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This implies, however, that the compliance cost under emission standard is signifi-

cantly higher. Consequently, one has more incentive to invest in R&D and to reduce

the abatement cost under emission standard. Thus, this effect, known as the direct

effect in Montero’s framework, leads to the higher R&D incentives under emission

standard.

At first sight, it might seem that our analysis of R&D incentives supports

the findings of Montero (2002). However, no such claim can be made as long as the

underlying values of emissions are different in both models. Hence, we fix the level of

emission standard e (see Table 3.3) to match that of the socially optimal performance

standard, qph∗, where qp is the equilibrium output under the endogenous performance

standard h∗. In that way, we are able to compare the R&D incentives under both

policy instruments with those in Montero’s model.

For e = qph∗ performance standard provides a larger R&D investment. This

is different to the case where e is endogenous, in which more R&D is invested under

emission standard for γ = 1.15 and γ = 1.2. The fact that more R&D investment

is undertaken under performance standard raise a doubt about Montero’s (2002)

conclusion regarding the comparison of direct effects under both policy instruments.

Montero emphasizes that for positive values of R&D investment the direct effect is

larger under emission standard because the corresponding abatement level is greater.

It is clear from Table 3.3 that the contrasting result is obtained: for an equal level

of emissions in both regimes, the level of output is lower under emission standard

leading to a lower level of abatement. As a result, the R&D incentives under emission
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standard are lower. Thus, we establish that Montero’s direct effect has opposing

implications in our framework, where e = qph∗. In particular, the positive R&D

investment is neither sufficient to imply a higher level of abatement nor to imply

more R&D incentives.

Another important insight into the comparison of R&D incentives under both

policy instruments concerns the level of output. In Section 3.2.3.3 we have shown that

fixing e changes the qualitative implications regarding the level of output under both

standards. In particular, the level of output under performance standard becomes

consistently higher and hardly varies with parameter γ (Table 3.3, third row). This

observation contradicts earlier findings of Montero (2002), who recognizes that a rise

in R&D investment causes the output level to increase more rapidly under perfor-

mance standard. According to this description of the strategic effect, a decreasing

R&D investment should imply a more rapid decrease in the output level under perfor-

mance standard. This is neither the case when e is endogenous (Table 3.2) nor when

it is fixed (Table 3.3). Hence, the insensitivity of the output level under performance

standard to the alterations in the level of R&D indicate that the level of rival’s output

remains unaffected. Consequently, the strategic effect as defined by Montero (2002)

does not take place in the current analysis, leaving other effects to influence the R&D

incentives.

In summary, we provide the comparative analysis of R&D incentives under

emission and performance standards. Such analysis has been previously undertaken

by Montero (2002), who, however, did not account for the maximization of social
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welfare. As a result, his conclusions are derived for fixed values of emissions under

both policy instruments. We revisit the debate on R&D incentives in this model

by looking at the socially optimal levels of emissions under both policy instruments.

Unlike Montero, our method of comparison of R&D incentives is not based on the

assessment of the direct and strategic effects. In fact, we find little evidence for the

presence of these effects in our framework. For instance, we establish that performance

standard provides larger R&D incentives than emission standard (Table 3.3). This

contradiction to the results that Montero (2002) can be explained by noting that in

our model the level of output under performance standard is larger, implying a higher

level of emission abatement. As a result, in order to reduce the abatement cost a firm

has more incentive to invest in R&D under performance standard.

Our model provides even less evidence of the strategic effect. Marginal changes

in the quantity of output being produced under performance standard are insufficient

to justify the presence of strategic effect as defined by Montero (2002). In particular,

the change in output induced by the alteration in the cost of R&D is so small that it

affects the output of the rival to a minimal extent. Hence, the strategic component

of R&D in our model is absent.

By evaluating the results obtained in Tables 3.1, 3.2 and 3.3, only a single

unambiguous result can be identified - the level of social welfare under performance

standard is higher. This result holds irrespective of which instrument induces a higher

level of output, a higher level of emissions or a higher level of abatement. In fact,

this is the only result that does not depend on the investment in R&D. Nevertheless,
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the independence of the R&D investment, makes it no longer justifiable to claim

that the instrument which implies a higher level of social welfare is also the one that

provides larger R&D incentives. In particular, the comparison of R&D incentives

is driven by two contradicting effects. One is the effect of endogeneity of emission

levels under which emission standard dominates in the provision of R&D incentives

(Table 3.2). The other effect concerns the comparison of R&D incentives for the same

level of emissions (Table 3.3). With regards to the latter one, performance standard

is superior. Hence, the ultimate result of the comparison between R&D incentives

induced under emission and performance standards is the combination of the two

effects, whose closer form cannot be established.

3.3 Conclusion

This paper extends the analysis of R&D incentives under emission and per-

formance standards of Montero (2002) to account for welfare effects. In particular,

it examines which of the two policy instruments provides larger incentives to invest

in R&D in the model, in which social welfare is maximized. While larger welfare

is obtained under performance standard, the level of R&D incentives is driven by

two opposing effects. On one hand, emission standard is superior when the levels of

emissions under both policy instruments are determined endogenously. On the other

hand, performance standard dominates when the emissions levels are equal for both

standards. Consequently, determining which instrument yields larger R&D incentives

depends not only on the primitives on the model, but also on the nature of the emis-
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sions levels under emission and performance standards. Finding a way of comparing

these contradictory effects in a general setting would be an interesting avenue for

future research.

3.4 Proofs

Proof of Proposition 3.1. In the last stage, firm i solves the optimization problem

(3.2), which leads to the following first-order condition (FOC)

−2bqi + a− bqj − c+ xi = 0, (3.8)

thus, the reaction function of firm i is

qi(qj, xi) =


a−c+xi

2b
− qj

2
, if a−c+xi

b
≥ qj

0, otherwise.

Clearly, the objective function is strictly concave, thus, we have a maximum

(the second-order condition (SOC) is −2b < 0). Solving simultaneously the two

non-zero reaction functions of the firms we get that in equilibrium

qi(xi, xj) =
a− c+ 2xi − xj

3b
, (3.9)

for i 6= j.

In the second stage, firm i chooses its level of R&D, xi, given xj, e and qi(xi, xj)

in equation (3.9).

The FOC of (3.3) is then given by

2

3b
[−2bqi(xi, xj) + a− bqj(xi, xj)− c+ xi] +

4

3
qi(xi, xj)− e− γxi = 0. (3.10)
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Notice that the first term in the previous equation vanishes by FOC (3.8). By

(A5), 9bγ > 8, the SOC holds. Plugging equation (3.9) into equation (3.10) and using

the fact that the firms are symmetric and subject to the same standard e, we get that

every firm invests

x(e) =
4(a− c)− 9be

9bγ − 4
(3.11)

in R&D, with production

q(e) =
3γ(a− c)− 3e

9bγ − 4
. (3.12)

Finally, we solve the problem of the regulator, i.e., problem (3.4). Here, the

FOC is given by the following equation.

dq(e)

de
[a− 2bq(e)− c+ x(e)] +

dx(e)

de
[q(e)− e− γx(e)] + c− x(e)− 2se = 0. (3.13)

The SOC of this problem is 2(9b+8s−18bγs)
9bγ−4

, which is negative by (A5): 9bγ > 8

and 9b+ 8s < 18bγs. Using the FOC’s (3.8) and (3.10), equation (3.13) becomes

bq(e)
dq(e)

de
− 1

3
q(e)

dx(e)

de
+ c− x(e)− 2se = 0. (3.14)

Equations (3.11), (3.12) and (3.14) together, lead to the results in the propo-

sition. (A5) guarantees that in equilibrium, 0 < x∗ < c and 0 < e∗ < q∗. �

Proof of Proposition 3.2. The FOC of problem (3.5) is given by

a− 2bqi − bqj − (c− xi)(1− h) = 0, (3.15)

with SOC −2b < 0.

Solving simultaneously for the positive parts of the reaction curves of the firms,

leads to

qi(xi, xj, h) =
(2xi − xj − c)(1− h) + a

3b
. (3.16)
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Using equation (3.16) in problem (3.6) drives the following FOC.

2

3b
(1−h)[a−2bqi(xi, xj, h)−bqj(xi, xj, h)−(c−xi)(1−h)]+

4

3
qi(xi, xj, h)(1−h)−γxi = 0,

(3.17)

with SOC 8(1− h)2/(9b)− γ < 0, which holds by (A6).

The first term in the previous equation vanishes by FOC (3.15). Equations

(3.16) and (3.17), plus symmetry of the model imply the result. (A6) guarantees that

0 < x(h) < c and q(h) > 0. �
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