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𝑐  Airfoil chord length 
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𝑓2  Surface wave frequency of film flow over roughness array 

𝐾  Grid displacement to height parameter  

𝐻𝑟  Roughness peak height 

ℎ  Water film thickness 

ℎ̅  Time-averaged film thickness of film flow over flat plate 

ℎ𝑟
̅̅ ̅  Time-averaged film thickness of film flow over roughness array 

𝐿𝑊𝐶  Liquid water content 

𝑀  Water-air viscosity ratio 

〈𝑀𝑇〉̅̅ ̅̅ ̅̅   Averaged water mass trapped ratio 

𝑃/𝑝  Static pressure/unit width static pressure within film/rivulet flow 

𝑄/𝑞  Liquid flow rate/unit width liquid flow rate 

𝑅𝑒  Reynolds number 

𝑅𝑚  Initial radius of meandered rivulet curvature 

𝑇𝜎/𝑡𝜎     Surface tension/unit width surface tension at film/rivulet front 

𝑇𝑠𝜎/𝑡𝑠𝜎     Surface tension /unit width surface tension at the cross-section of meandered rivulet 

𝑢, 𝑣  Local instantaneous velocity 

𝑈, 𝑉  Local time averaged velocity 

𝑈∞  Free stream velocity 
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𝑊𝑒  Weber number 

 

Greek symbols 

𝛽  Impinging water droplet collection efficiency 

𝛿  Velocity boundary layer thickness 

𝜇  Dynamic viscosity 

𝜈  Kinematic viscosity 
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𝜌  Density 

𝜎  Water surface tension 

𝜃  Contact angle 

𝜏𝑎  Air shear stress 

 

Subscripts 

𝑎  Variables defined in air 

𝑓  Variables defined in film flow 

𝑟  Variables defined in rivulet flow 

𝑤  Variables defined in water 
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ABSTRACT 

Water transport behaviors will significantly influence the icing accretion process during glaze 

icing conditions. Many important micro-physical processes associated with water transport 

phenomena, such as film/rivulet formation on the flat and curve surface, surface waves 

generation, and interaction of runback liquid with local ice roughnesses, are still unclear. In order 

to elucidate the underlying physics of water transport behaviors under icing conditions, advanced 

experimental technique capable of providing accurate measurements on the wind-driven thin 

film/rivulet flows are highly desirable. A novel digital image projection (DIP) system is 

presented in this work. Using this new technique, a comprehensive experimental study was 

conducted to quantify the transient behaviors of the wind-driven surface water transport 

processes pertinent to aircraft icing problems. 

DIP technique is a further development of digital fringe projection (DFP) technique. In 

contrast to project sinusoidal patterns, the digital projector projects a grid pattern with known 

characteristics onto test objects (i.e., water droplet/rivulet flows over icing accreting surfaces). 

The heights of 3D objects are linear dependent on the grid point displacements between the 

measurement images of a 3D shape and the reference image of a zero height substrate. Compared 

with typical DFP measurement system, the DIP technique can significantly reduce the 

measurement error as well as decrease the requirement of the measurement image quality.  

After carefully calibrated and validated, the proposed DIP technique was applied to 

characterize the wind-driven water rivulet flows. Seen from measurement results, the transient 

motion of rivulet front was found to be significantly influenced by the surface waves’ behaviors. 

The Force Balance (FB) rivulet breaking criteria is further refined and evaluated by the 

reconstructed tiny rivulet flow structures. Rivulet meandering phenomena and the water mass 
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trapping induced by the meandered water-air contact line were observed. A model based on force 

balance analysis at the cross-section of meandering rivulet was built to illustrate the meandering 

instability of wind-driven rivulet flow.  

 In order to examine the effects of the roughness arrays on the surface film flow, i.e., trapped 

mass effects, which is pertinent to the surface water runback over airfoils/wings with ice 

roughness, the DIP technique was used to quantify the transient behavior of wind-driven film 

flow over a surface with roughness arrays. While surface water mass trapping was observed 

clearly right downstream of the roughness elements, some other interesting features about the 

water film flow within roughness elements were also revealed clearly from the quantitative DIP 

measurements, which were found to agree well with those previous numerical studies. 

The water runback process on an airfoil surface was reconstructed by the DIP technique. The 

measurement results clearly revealed that, after impinged on the leading edge of the NACA0012 

airfoil, the micro-sized water droplets would coalesce to form a thin water film in the region near 

the leading edge of the airfoil. The formation of rivulets was found to be time-dependent process 

and relies on the initial water runback flow structure. The film thickness scaling law is evaluated 

by the time-average measurements of the film thickness. The measurement results show good 

consistent with the analytical scaling predictions. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Aircraft icing is one of the most dangerous threatens to aviation safety. Icing accretion is due 

to the supercooled water droplets impinging and frozen on the exposed aircraft surfaces. There 

are two types of icing accretion processes: glaze icing and rime icing. In a dry regime, all the 

collected water in the impingement area freezes on impact to form rime ice. For a wet regime, 

only a fraction of the collected water freezes in the impingement area to form glaze ice and the 

remaining water runs back and can freeze outside the impingement area. Because of its wet 

nature, glaze ice is much more dangerous than rime ice. It causes airplane performance 

degradation (Bragg et al. 1986) and inhibits the control of airplane (Ranaudo et al. 1991).  

Water beads, rivulets and film flows were observed running back along the airfoil surface 

during glaze icing condition (Olsen and Walker 1987). Water runback also occurs at near frozen 

icing condition or ice particles melt by a thermal ice protection system. In those situations, no ice 

accretes near the stagnation, but the freezing water runback along the airfoil surface, causing ice 

accretion behind the protected areas of the wing (Ballough 2007). The water transport behaviors 

directly influence the icing accretion process by redistributing the super cooled water on the 

airfoil surface. Besides that, the film/rivulets flow will indirectly influence the ice accretion 

process by interacting with local ice roughnesses. This coupled effect will change the local heat 

transfer coefficient (Liu et al. 2015, Rothmayer and Hu 2012), moreover directly influence the 

water mass transport behavior by obstructing the liquid flow (Rothmayer and Hu 2014). Previous 

experimental investigations about surface water flows over aerodynamic shapes generally 

illustrated the macro water flow phenomena by analyzing videos taken in the experiments 

(Hansman and Barsotti 1985, Hansman and Craig 1987, Olsen and Walker 1987, Thompson and 
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Jang 1996). The important micro-physical processes such as film thickness distribution, contact 

line moving velocity, and wet surface area can not be well revealed in those videos. Advanced 

experimental techniques capable of providing accurate measurements to reveal the micro-

transient phenomena pertinent to surface water runback are highly desired.  

In chapter 2 of the current paper, a novel digital image projection (DIP) technique for 

measuring free surface deformation of wind-driven thin water film is presented. The ideas of DIP 

technique are inspired by Molecular tagging velocimetry (MTV) technique (Koochesfahani and 

Nocera 2007) and Digital Fringe Projection (DFP) technique (Gorthi and Rastogi 2010). For 

MTV technique, the velocity field is measured by the deformation of grid points which is 

generated by intersecting laser lines. Meanwhile, using DFP technique, 3D shapes are 

reconstructed by measuring the distortion of the sinusoidal patterns. The Key ideas of DIP 

technique are to replace the sinusoidal pattern with a grid line pattern using a digital projector; 

meanwhile replace the complex phase processing by cross-correlation calculation. The feasibility 

and implementation of the DIP system was preliminary demonstrated by a successfully 

reconstruction of a 3D sphere-head geometry and then further proved by measuring the film 

thickness distribution of wind-driven film flow over a flat plate surface. 

A simulated icing condition test at NASA Lewis (Glenn) research center revealed that the 

water runback flow on a airfoil can be divided into a fully wetted film flow range and a partly 

wetted rivulets range (Gelder and Lewis 1951). Rivulets stagnation will provide enough time and 

water mass for the initial formation of ice roughness. The early investigations on break-up of 

stagnated wind-driven film/rivulet fronts were focused on preventing the dry-patch formation 

within the water film cooling equipments. Hartley and Murgatroyd (1964) established two film 

break-up criteria to determine the minimum liquid layer thickness for a dry-patch rewetting.  One 
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of the criteria is based on the force balance (FB) analysis near the stagnation range of a dry-

patch. Since then the FB criterion has been widely used and developed by researchers (McAlister 

et al. 2005, Murgatroyd 1965, Penn et al. 2001, Thompson and Marrochello 1999). However, 

due to the limitation of experiment technique, the influences of micro-physical flow structures, 

such as surface waves, and irregular rivulet front shapes on the rivulet breaking are still unclear. 

Rivulet meandering is the other interesting phenomenon in this study. Especially the meandered 

rivulet contact line could trap a certain amount of freezing water, which also provides enough 

time and water mass for ice accretion. Although gravity-driven rivulets meandering had been 

investigated both experimentally and theoretically (Culkin and Davis 1984, Daerr et al. 2011, 

Drenckhan et al. 2004, Kim et al. 2004, Le Grand-Piteira et al. 2006, Nakagawa 1992, Tanner 

1960), to the author’s knowledge, research on wind-driven meandering is still blank. 

In chapter 3, the FB model is extended by adding one more force term, i.e., aerodynamic drag. 

Furthermore, the force terms in the FB model (i.e., inertia force, air shear stress and aerodynamic 

drag) were refined by the dynamic behaviors of wind-driven rivulet flows that were measured 

experimentally by DIP technique. The refined model was then validated by the measurement 

results. One more aerodynamic drag term is added to Grand-Piteira’s rivulet meandering model 

as well (Le Grand-Piteira, Daerr and Limat 2006). Scaling analysis is performed to further 

evaluate the relative importance of the force terms in the model. A rivulet meandering model was 

then established and used to predict the yaw angle of meander rivulets. Compared with the 

experimental measurements, the predicted results provide a reasonable well estimation. 

Semi-regular roughness elements are often observed during ice accretion process (Anderson 

and Ruff 1998, Shin 1996). Local ice roughness choke a certain amount of water mass in place 

near the roughness elements which was observed in Waldman and Hu’s (2015) high speed 
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imaging experiments. This phenomenon was referred as water mass trapping effect (Matheis and 

Rothmayer 2003). The water trapping effect was numerical investigated (Rothmayer and Hu 

2013, Rothmayer and Hu 2014, Wang and Rothmayer 2009). However, there is no direct 

experimental evidence to verify the numerical simulation results related to this micro-transient 

phenomenon. 

In chapter 4, the DIP technique is used to achieve time-resolved measurements to quantify the 

transient behaviors of the wind-driven surface water flows over a rough surface in order to 

examine the water mass trapped effect due to the presence of the roughness array. The airflow 

boundary layers were measured by PIV technique to investigation the possible reasons of the 

water trapping effect. Both the water mass trapping effect and the transient behaviors of surface 

waves are quantified based on the quantitatively DIP measurement results (i.e., film thickness, 

water mass trapped ratio, surface wave frequency, wave length). The mass trapping effect was 

found mainly occurs near the back side range of roughness elements. The water mass transport 

behavior revealed from present experimental study will be used to validate the numerical 

simulation results reported in previous studies.  

Wind-driven water runback flow significantly affects the final ice shape on the airfoil surface. 

Hansman and Turnock’s experiment showed that surface tension of a liquid significantly altered 

the glaze ice shape (Hansman and Turnock 1989). Kind (2001) claimed that one more parameter, 

i.e., Weber number based on the thickness of liquid film, should be considered as a critical 

scaling parameter in the glaze icing tunnel test. Anderson and Feo (2002) suggested that the non-

dimensional water film thickness itself might be a critical dimension that affects the ice 

accretion. The scaling law of film thickness near the stagnation line was established by 

experimental study (Feo 2000) and theoretical analysis (Rothmayer 2003). Nelson (1995) 
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showed that the water film thickness increases as flowing along a flat plate by a ¼ power law. 

However, in the previous studies, the film thickness on airfoil was measured by point 

measurement probes (e.g., conductance sensor in Feo’s experiment). The scaling law of a film 

thickness at the water runback range has not yet been demonstrated experimentally. Rivulets 

stagnation and formation on an airfoil surface are important phenomena during the ice accretion 

process. Rivulet models were developed to predict the final rivulet configuration (e.g., rivulet 

width, rivulet formation location). However, those models are origin from the rewetting problem 

of a dry-patch in film flows. The dry-patch surround by film flow is a steady flow whereas the 

formation of rivulets during runback motion is an unsteady process. A time-resolved, whole field 

measurement is needed to disclose the transient behaviors of the water runback flow and the 

measurement results can be used to evaluate film thickness scaling laws and rivulet formation 

models.  

In chapter 5, an experimental study was conducted to achieve water film/rivulets flow 

thickness measurements on a NACA0012 airfoil surface using the DIP system. The transient 

process of water runback was reconstructed with details. The formation of rivulets is found to be 

a time dependent process and highly relies on the initial flow structure.  Film thickness scaling 

laws are evaluated by the time-average film thickness profile along chord length. The 

measurements results show that the film scaling law works well for the water runback range. 

Chapter 6 presents the general conclusions of this dissertation. 
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CHAPTER 2 

 

DEVELOPMENT OF DIGITAL IMAGE PROJECTION TECHNIQUE TO MEASURE 

WIND-DRIVEN WATER FILM/RIVULET FLOWS 

Abstract: In this work, an innovative 3D shape measurement technique digital image projection 

(DIP), which is an improvement of digital fringe projection (DFP) technique, is proposed for 

accurate and fast thin film/rivulet flow measurement. Instead of projecting a sinusoidal fringe 

pattern, a grid pattern is used in the DIP technique. Free surface shape is reconstructed by 

analyzing the projected grid points’ displacements between a reference and measurement image. 

In comparison to the Fourier transformation based DFP system, The DIP system gives more 

accurate measurement result without rigid image quality requirement. This technique was 

applied to characterize of wind-driven thin film/rivulet flows that were formed in an open circuit 

wind tunnel. The film thickness and surface wave frequency were evaluated for variety of wind 

speeds and flow rates. The results show that this technique successfully revealed the dynamic 

motions of wind driven film/rivulets flows. Greater emphasis on the quantitative evaluation of 

the water film and rivulet flow over flat plate surface can be referred to the following chapter. 

1. Introduction 

Free surface flows are of interest in fundamental fluid dynamics research as well as in various 

practical applications. For example, Liu et al. (1995) performed experimental investigation to 

explore the three dimensional instabilities of film flows. Savelsberg et al. (2006) studied the 

interaction effect of free surface deformation and the turbulence channel flow. Kouyi et al. 

(2003) conducted experiment on the free surface of a storm overflow sanitation system. Pautsch 

and Shedd (2006) optimized a spray cooling system design by measuring the thickness 

distribution of FC-72 liquid film. Many experimental techniques have been applied to measure 

the thickness distribution of liquid free surfaces. Photo luminescent techniques have been 
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successfully applied in measuring the free surface thickness in the past. The principle of this kind 

of technique is straight forward. The instantaneous film thickness is directly related to the 

fluorescent intensity by a calibration process.  Liu et al. (1993) used a fluorescent imaging 

method to investigate the three dimensional instabilities of gravity-driven film flows. Johnson et 

al. (1997, 1999) also developed a fluorescent imaging system for detecting the dynamic moving 

contact line of film flowing over an inclined plate. Later, a laser induced fluorescence intensity 

method was used to measure wavy films (Lel et al. 2005, Schagen and Modigell 2007) and a 

heated liquid film (Chinnov et al. 2007). Recently, an LED fluorescence based imaging system 

had been applied to characterize thin films, droplets and rivulets (Hagemeier et al. 2012). 

Stereo vision based techniques are frequently used in the surface reconstruction of open water 

flow. In those techniques, multiple cameras are calibrated to map the cameras’ view to a physical 

coordinate space. The free surface location is determined by find the matching pattern of image 

pairs by using Digital Image Correlation (DIC) calculation. Surface waves on a lake were 

evaluated with a stereo vision system (Wanek and Wu 2006). During the measurement, the 

reflections from surface ripples were used as the image patterns to compute the cross-correlation. 

However, this kind of image pattern does not exist on smooth water surface. Seeding the flow 

with particles is an alternate approach to achieve an acceptable image pattern correlation. 

Tsubaki and Fujita (2005) developed a stereo vision measurement technique to investigate the 

wavy water surface and ripples generated in a shallow water box. A random image pattern was 

projected onto white-colored water surface using a LCD projector. Two digital cameras were 

installed in a stereo configuration. The projected pattern was not directly used in measurement 

process but provided adequate information for the pattern points matching process. Turney et al. 

(2009) proposed a stereoscopic method (3D-IPIV) which simultaneously measured the 
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topography and velocity of air-water interface. Fluorescent particles were used as air-water 

interface tracers to enable the cross-correlation calculation. Particle image sequences of each 

individual camera were used as PIV image pairs to obtain surface flow velocity. Gomit et al. 

(2013) presented a stereo-refraction method to evaluate a ship wake flow, which differs from the 

other stereo vision techniques that rely on reflected image patterns. In this method, the surface 

reconstruction was based on the analysis of apparent displacement between a reference and 

refracted images of the laser sheet viewed through a water-air interface from two cameras. 

Density-based techniques have also been a useful tool for mapping the free surface 

deformation. Zhang et al. (1996) developed a color encoding system to measure free surface 

vibration by mapping the free surface slope. Scheid et al. (2000) reported a reflectance schlieren 

method to profile the local heated vertical falling film flow. Moisy et al. (2009) developed a free-

surface synthetic schlieren method (FS-SS) and applied this method to reconstruct the wave 

pattern generated by impacting water droplets. 

Besides optical methods, single point  techniques like ultrasonic techniques (Li et al. 2010, 

Liu et al. 2014) and electrically-based methods (Burns et al. 2003, Yu et al. 2012) have long 

been used both in laboratories and in the open field. Those single point measurement techniques 

usually have higher time resolution and are robust in use. 

Recently, the digital fringe projection (DFP) technique, with the advantages of high-

resolution, whole-field 3D reconstruction of objects in a non-contact manner at video frame rates 

(Gorthi and Rastogi 2010), has been increasing use in free surface thickness measurements. Its 

applications include vertex shape reconstruction at a free surface (Zhang and Su 2002), free 

surface measurement of sanitation system  storm overflow (Kouyi et al. 2003), evaluation of  

surge’s free surface variation with time related to dam-break (Cochard and Ancey 2008) and 
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water-wave trapped modes investigation (Cobelli et al. 2011). All of those investigations used 

Fourier transform profilometry (FTP) system to reconstruct the shape of free water surface. This 

method requires projecting a precise sinusoidal fringe pattern, which is very hard if not 

impossible to achieve on a liquid surface. Additionally, the two-dimensional phase unwrapping 

integration is sensitive to the integral path and tends to accumulate errors. Shadowed regions 

appear when the highly distorted liquid surfaces block the projector light path or the camera 

view. The phase information will totally lost in the shadowed region. Hence, it is easily to 

contaminate the measurement result even a proper phase unwrapping algorithm is used to handle 

the problem.  

In this paper, a novel digital image projection (DIP) technique is used to measure free surface 

deformation of wind-driven thin water films/rivulets. In contrast to directly projecting sinusoidal 

patterns to 3D objects surface, a crossed line grid is used to reconstruct the 3D shape. The grid 

points’ displacements between a zero height reference image and the deformed liquid surface 

image are calculated by using cross-correlation. The relationship of grid displacement and object 

height is mapped by a calibration process. In order to demonstrate the advantages of the digital 

image projection measurement system, both the DIP technique and FTP based DFP measurement 

technique are used to reconstruct a spherical cap shape object with known profile. The result 

shows that the DIP system is more accurate and insensitive to image quality.  

The other particular interest of present paper is the water-air interface reconstruction of the 

wind-driven thin water film flows. Although there are some theoretical and numerical 

investigations on the shear stress-driven water film flows (Boomkamp et al. 1997, Rothmayer et 

al. 2002, Wang and Rothmayer 2009), experimental investigations on wind-driven thin film 

flows are seldom found (Marshall and Ettema 2004, Shaikh and Siddiqui 2010). In this study, 
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DIP measurement system was applied to measure the free surface of thin water film flows, which 

were generated by a small wind tunnel using different airflow velocities and different water flow 

rates. The thin film deformation process and traveling wave frequency were quantitatively 

studied. 

This chapter is organized in six sections as follows. Section 2 describes the principles of 

digital image projection technique. Section 3 compares the measurement accuracy of our DIP 

technique with FTP based DFP method. Section 4 illustrates the complete experiment set up for 

wind-driven thin water film flow thickness measurement. Section 5 shows the thin water film 

flows measurement results, such as film flow instantaneous and average thickness, traveling 

wave frequency, and wave deformation process. Finally, section 6 presents conclusions.   

2. Principles of the measurement method 

2.1 Key ideas of digital image projection (DIP) technique 

The basic principle of the digital fringe projection technique had been illustrated by the 

literature reviews (Gorthi and Rastogi 2010, Zhang 2010). A typical DFP system contains a 

projection unit, an image capture unit, and a data processing unit. The projector projects a known 

pattern onto the test object. Due to the 3D geometry of the object, the projected image will 

appear distorted in the camera view. By proper processing algorithm to compare the distorted 

image pattern with the reference image, the three dimensional profile of the object can be 

reconstructed.  

The key ideas of DIP technique are to replace the sinusoidal pattern with a grid pattern and to 

avoid the complex phase processing by use of cross-correlation calculation. Modern projectors 

provide a great flexibility in projecting any kind of fringe patterns. This feature permits 

researchers to design variety of patterns and associated processing algorithms for 3D shape 
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profile reconstruction (Gorthi and Rastogi 2010). Our new cross-correlation based system 

measurement techniques can be seen as a development of novel projection pattern and 

corresponding novel processing algorithm. In addition, the new technique is applied to wind-

driven film/rivulets flow free surface deformation measurement problems. 

The ideas of DIP technique are inspired by molecular tagging velocimetry (MTV) technique. 

For MTV, measurement of two components of the velocity field relies on a grid of intersecting 

laser lines that are generated by a pair of crossing laser beams. This kind of illumination provides 

spatial gradients along two orthogonal directions (Fig. 2-1a). Gendrich and Koochesfahani 

(1996) presented a spatial image correlation method that processes the displacement vector of the 

tagged grid points with high accuracy. As the displacements of fringes pattern are similar to 

molecular tagging velocimetry image deformations, it is straightforward to replace the projected 

fringe pattern with projected grid lines pattern (Fig. 2-1b) and process the displacement vectors 

of the grid pattern with the same algorithm developed by Gendrich and Koochesfahani (1996).  

(a)  (b)  

Figure 2-1 (a) Typical MTV image grid pattern(Gendrich et al. 1997). (b) Typical DIP image 

grid pattern 
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Figure 2-2 illustrates the flow chart of typical DFP measurement technique and DIP 

technique. As discussed above the setup of the DIP technique has the same projection unit and 

image recording unit as DFP technique. However there are four steps for a DFP measurement: 

sinusoidal pattern generation, phase detection, phase unwrapping and phase to height conversion. 

In order to get high quality measurement, all four steps must be treated properly. For example, 

nonlinear gamma correlation may be required in sinusoidal pattern generation step and integral 

path must be selected to avoid discontinuity area in phase unwrapping process. On the other 

hand, there are three steps for DIP measurement: grid pattern generation, displacement vector 

calculation, and displacement to height conversion. Unlike the sinusoidal pattern, no intensity 

relationship is required by grid patterns. Hence, high accuracy measurements can be achieved 

even when the projected pattern is distorted. Furthermore, the grid points are independent from 

each other. Therefore, local poor image quality does not influence the whole field measurement. 

In DIP technique, the chain of image distortion to phase difference and then convert to 3D object 

height is simplified to image distortion displacement to object height process. This makes the 

measurement principle much easier to understand. The sophisticated phase processing is replaced 

by spatial cross-correlation. According to Gendrich and Koochesfahani (1996), the cross-

correlation is insensitive to signal noise as long as the image has sufficient contrast (image 

contrast>50). As this feature was obtained by simulations of different illumination conditions, 

this benefit still applies for the DIP technique which means high quality measurement will be 

easier to achieve. The other benefit of cross-correlation calculation is it avoids the complex and 

difficult phase unwrapping problem. 2D unwrapping is the final and most challenging step in the 

phase extraction process. One difficulty of phase unwrapping is how to different between 

genuine phase and false phase. The other difficulty is the accumulative nature of unwrapping 
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process. One false phase may propagate throughout the test image. Ghiglia and Pritt’s (1998) 

book clear explain the difficulties in solving this problem.  

 
Figure 2-2 Comparison of DFP system and DIP system 

2.2 Principle of the digital image projection method 

Figure 2-3 illustrates the schematic of the optic principle of digital image projection (DIP) 

technique. To conduct a DIP measurement, a camera and a projector are located at same height s 

and separated by a distance d. An image of a reference plane without the measurement object is 

then recorded. 3D object image will be recorded as measurement image. Because of the 3D 

shape of the object, the projected grid will distort and grid points on the 3D object surface will 

translate a distance. Point M denotes the pupil center of a projector and point N denotes the pupil 

center of a camera. The projector projects a grid point D on the 3D object surface. Supposing 

that there is no 3D object in the reference plane, from projector’s perspective, grid point D 

should be projected to grid point A on the reference plane. From the camera’s view, point D is 
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the same pixel as point C in the reference image. The grid deformation displacement between 

point D and point A then can be expressed as: 

 
(C) ( ) ( ) ( )r r m rCA P P A P D P A     

(2.1) 

 Where CA denotes grid displacement, P denotes the grid point location, subscript r denotes 

the reference image, and subscript m denotes the measurement image. Displacement 

( ) ( )rCA P D P A   can be obtained by spatially correlating the reference image with the 

deformed object image. 

Because the triangle ADC is similar to triangle MDN, the relationship between the object 

height h and the deformed grid displacement CA  can be represented as: 

 ( , )
1

( , ) ( , )

d s h i j s

h i j h i jCA


    

(2.2) 

In equation (2.2), subscript 𝑖, 𝑗 denotes grid point location index on the deformed 

measurement image. The maximum height of measurement object is much smaller than the 

camera-projector plane height s, so that 1
( , )

s

h i j
.Note that s and d are constants determined 

by the configuration of the experiment. The equation can be simplified as: 

 
( , ) ( , )

s
h i j CA K i j CA

d
   

(2.3) 

Equation (2.3) defines a linear relationship between distorted displacement CA and 3D object 

height. K denotes the displacement-to-height conversion factor, and should be a constant value 

throughout the measurement field of view if the camera and the projector are at the same height. 

However, in reality, the projector height can not equal to the camera height exactly (the location 

of CCD sensor and the location of sensor within the projector are unknown). Even this height 

discrepancy only slightly affects the measurement accuracy; a displacement to height conversion 
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map is used to replace a single conversion value. Once the grid points displacement vector field 

and the displacement to height conversion map K are determined, the 3D shape can be 

reconstructed by multiplying them together. 

 
Figure 2-3 Optic principle of DIP measurement technique 

2.3 Principle of the digital image correlation method 

Digital image correlation (DIC) algorithms are widely used in particle image velocimetry 

(PIV) (Adrian 1991, Raffel et al. 1998). This method is used to compute and identify the peak 

correlation coefficient of a two-image sequence. As discussed in section 2.1, the spatial 

correlation algorithm developed by Gendrith and Koochesfahani (1996) is selected as the cross-

correlation method used in digital projection measurement technique. Figure 2-4 shows the 

sketch of correlation algorithm. The small red window ( rI ) refers to the source interrogation 

window located in the grid centers of reference image (image of zero height plane). 

Correspondingly, the small blue window  I  refers to the roam interrogation window in the 

measurement image. The big rectangular window is the searching window. The normalized 

correlation coefficient is computed by following formula: 
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


 

(2.4) 

Where I  and rI  represent the picture intensity within interrogation window of reference 

image and measurement image respectively, 
rI  and I are the corresponding mean intensity 

values of rI  and I , ( , )R r s  denotes the correlation coefficient , and ( , )r s  denotes the searching 

vector. The peak correlation coefficient ( , )R r s  location determines the displacement vector 

( , )x y  , where x direction denotes the axis parallel with camera-projection connection line and 

y normal to x direction. 

According to Gendrith and Koochesfahani (1996), sub-pixel accuracy can be achieved using a 

polynomial fit to the correlation coefficients. In this work, A 4
th

 order polynomial fitting with a 

5 5  pixels fitting window was used. The fitting function ( , )F i j  is expressed as: 

 4
0 1 1 0

,0 ,1 ,

0

( , ) ( ... )n n n

n n n n

n

F i j c i j c i j c i j



     
(2.5) 

In equation (2.5), ( , )i j denotes the local coordinate within fitting window. The origin point of 

the 𝑖, 𝑗 coordinate locates at the local cross line intersections of a reference image. ,0 ,1 ,, ...n n n nc c c  

denote fit coefficients. 

 

Figure2-4 Sketch of correlation algorithm 
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A typical reference and measurement images are shown in Fig. 2-5. The reference image was 

generated by projecting cross lines grid onto the substrate (Fig. 2-5a). An image identification 

algorithm was applied to recognize the cross line intersections in the reference image (Fig. 2-5b). 

To maximize the signal to noise ratio, the reference interrogation windows are centered at the 

grid points. Cross-correlation calculation was then performed to get the grid displacements, 

which is shown in Figure 2-5c.  

(a)  (b)  (c)  

Figure 2-5 Typical DIP images and resultant deformation vector field. (a) Reference image. (b) 

Cross line intersection detection image. (c) Calculated grid points displacement vector field  

2.4 Displacement to height conversion map 

The map of displacement-to-height coefficients can be determined by calibrating the DIP 

system. Figure 2-6 illustrates the schematic of the calibration set up. To conduct a calibration, a 

camera and a projector are roughly set at same height. The camera is set to be normal to the 

calibration target so that no camera calibration is need. 

Equation (2.3) represents a linear relationship between deformation displacement CA  and 

object height h. For current setup, the Y direction displacements approach zero. Thus X direction 

displacement is used to map the coefficients: 

 
( , ) ( , ) ( , ) h i j K i j X i j  

(2.6) 
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To accurately calibrate the DIP system, a vertical translation stage with micrometer is used to 

precisely adjust the vertical location of the calibration target. The calibration target is then 

moved to 8-10 heights. Image of grid pattern on the calibration target at each individual height is 

recorded. The initial plate location is selected as the zero height and its grid pattern image is 

taken as the reference image. Other images are spatial correlated with the reference image to 

obtain the grid points displacements. The linear displacement to height coefficients map is then 

determined by the least square fitting method. 

 

Figure 2-6 Sketch of DIP displacement to height calibration setup 

3. Technique verification 

Currently, most of the free surface measurements using DFP system are based on the Fourier 

transform profilometry method. In this section, we will compare the DIP method with the FTP 

based DFP method and demonstrate that the DIP system is advantageous for accurate 3D shape 

reconstruction. The sinusoidal fringe patterns, which are used in FTP based DFP system, are 
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obtained using defocused binary patterns (DBP). The defocused intensity profile is shown in Fig. 

2-7. The used pattern was verified with a sinusoidal fit to guarantee a high quality sinusoidal 

pattern was used in the comparison (Fig. 2-7b). However, there are still phase shifts and intensity 

differences between the projected image pattern and best-fit sinusoidal pattern (Fig. 2-7b). The 

Fourier transform method was used to obtain the wrapped phase map. For details about the data 

processing method, including phase separation algorithm, and high-order and fundamental 

frequency noise reduction, refer to our previous paper (Wang et al. 2012).  

(a)  (b)  

Figure2-7 (a) Projected image pattern. (b) Comparison of normalized image intensity with 

sinusoidal fitting profile, intensity value from the blue line of left image 

During the experiment, a Dell DLP projector (M109S) was used to project the defocused 

binary fringe patterns and grid patterns onto a spherical cap model with known profile. A CCD 

camera (DMKBU2104) with a Pentax C1614-M lens (F/1.4, f=16mm) was used for image 

acquisition. A digital pulse/delay generator (Standard research system, Model DG535) was 

employed to synchronize the CCD camera with the projector using the VGA vertical sync signal. 

The camera has a maximum frame rate of 60frames/s with a resolution of 640×480. The camera 

exposure time was set at 1ms. The projector has a resolution of 858×600. The spherical cap has a 

bottom circle radius of 10mm and 4mm height. This model was 3D printed with a rapid 

prototyping machine with typical accuracy of 20µm. To improve the diffuse reflectivity of the 

surface, the test model was coated with flat white paint.  
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Calibrations were performed to determine the phase-to-height coefficients map 1( , )K i j for the 

FTP based DFP system and to determine the displacement-t- height coefficients map 2 ( , )K i j for 

the DIP system. The results are shown in Figure 2-8. As seen from the figure, the phase-to-height 

conversion coefficients 1( , )K i j  are varied with each fringe, whereas the displacement-to-height 

conversion coefficients 2 ( , )K i j  are varied along the camera-projector direction. In Figure 2-8, 

( , )xi yj  represents the image coordinate system. 

(a)  (b)  

Figure2-8 Phase to height and displacement to height coefficient map: (a) Coefficient map for 

the FTP-based system; (b) Coefficient map for the DIP system 

Table 1 shows the average measurement errors and standard deviation of the two techniques. 

Note that the average measurement error was calculated from absolute differences between 

measured height distributions and the design shape of the spherical cap model. In addition, we 

only accounted for the measurement points on the spherical cap object surface. The 

manufacturing errors of the test model were not taken into account during this work. The average 

measurement error of the FTP-based DFP system is 0.12mm with a corresponding standard 

deviation of 0.08mm. The average measurement error of the DIP system is only 0.04mm with a 

corresponding standard deviation of 0.04mm. This shows that the DIP system is much more 
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accurate than the FTP-based measurement system. The measurement errors are halved by DIP 

system. 

Table1 Measurement error comparison of DFP and DIP 

 Mean error (mm) Standard deviation of errors (mm) 

FTP based DFP 0.12 0.08 

DIP 0.04 0.04 

Figure 2-9 shows the measured height distribution of the spherical cap model by FTP-based 

DFP system. Figure 2-9a displays that spherical cap shape was not precisely reconstructed. 

Distinct, uneven, fringe-shaped roughness is seen in the 3D reconstructed surface. Figure 2-9b 

shows the measurement errors distribution of the DFP system. As shown in Figure 2-9b, the 

measurement errors are also varied by individual fringe. The measurement error ranges from -

0.5mm-0.5mm. Those measurement errors are mainly caused by the discrepancy between the 

faultless sinusoidal intensity pattern and the experimental image pattern intensity profile. This 

inconsistency could be induced by many sources including projector interpolation blur 

(commercial projector usually provides higher resolution than its clip), non-uniform reflectivity 

of the object plane, camera lens distortion, etc. 

Figure 2-10 shows the measurement surface reconstruction and errors from the DIP system. 

As shown in Figure 2-10a, the reconstructed 3D object shape is much smoother with only some 

tiny distortions on the boundary of the test object. Figure 2-10(b) presents that the measurement 

error of our novel system is generally in the range -0.1mm-0.15mm. Some relatively large error 

variances appear at the edge of the spherical cap. Due to the nature of correlation calculation, a 

single measurement point is the spatial-average of an interrogation window (7 × 7 pixels). For 

those boundary points whose interrogation windows are partly on the substrate and partly on the 

3D object surface, measurement errors cannot be avoided. Because of the spatial filtering of the 
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correlation window, the DIP technique decreases the measurement’s spatial resolution compared 

with FTP based DFP system. The measurement results indicate that, at a cost of decreased spatial 

resolution, the new technique can conduct high accuracy measurements without rigid picture 

quality restrictions. 

 (a)  (b)  

Figure 2-9 Measurement results of FTP-based DFP system. (a) 3D shape reconstruction for 

R10mm, H4mm spherical cap model. (b) Measurement errors distribution of spherical cap model 

(a)  (b)  

Figure 2-10 Measurement results of DIP system. (a) 3D shape reconstruction for R10mm, 

H4mm spherical cap model. (b) Measurement errors distribution for spherical cap model 

4. Experiment set up and procedure 

Figure 2-11 illustrates the the experiment setup for wind-driven thin water film flows 

thickness measurements. The DIP system configuration is the same as the verification 

experiment configuration. Camera frame rate was set to 30FPS with a 2ms exposure time. The 
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field-of-view of the CCD camera is approximately 9𝑐𝑚 × 11𝑐𝑚. The projected grid size and the 

interrogation window size is 7 × 7 pixels. A micro digital gear pump (Cole-parmer 75211-30) 

and a small water tank were used to produce two steady water flow rate of 100ml/min and 

200ml/min. In order to generate a uniform film flow, an array of holes were drilled in the 

substrate that was coated with flat white paint. The width of holes array was measured D=6cm, 

the holes were spaced 5mm apart, the hole diameter was measured 2mm (Fig. 2-12). The overall 

dimension of substrate was 25cm×15cm. It should be noted that, during the experiment, water 

may run backward due to the surface tension force under low wind speed conditions (10m/s). A 

wedge edge plane may solve the problem in the future work.  

The experiments were conducted in an open circuit low-speed wind tunnel. The wind tunnel 

has a plexiglas test section with dimension of 20×14×30cm (W×H×L). Three different wind 

speeds 10m/s, 15m/s and 20m/s were used to investigate the behaviors of the thin film flow. Flat 

white latex paint was added to the water to enhance the diffusive reflection from the liquid 

surface. Note that latex paint affects the surface tension of the water,  and as a result, the film 

behavior in this work is different with pure water film flows. Some other coloring pigments may 

be used in the future work to avoid film flow contamination (Przadka et al. 2012). The other 

limitation of current experiment is that we did not investigate the errors caused by the diffusion 

effect as the projector light ray enters into the water surface.  
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Figure 2-11 Experiment set up for wind-driven thin water film/rivulet flow test 

The film flow measurement procedure was simple: first let the water overflow the substrate 

under test flow rate condition. Next adjust the wind speed to 20m/s to generate a uniform, thin 

water film flow. Then further reduce the wind speed to the test condition (i.e., 15m/s, 10m/s). For 

each measurement, 600 images (20s) were collected under steady-state condition. Cross-

correlation analysis of each snapshot with the reference image was performed and the image 

deformations were interpolated onto a regular grid. The measurement results are normalized by 

the width of the width of hole array. L denotes the distance that is away from the water holes 

array. W denotes the distance that is away from the centerline of the test plane along flow 

direction (Fig. 2-12). 

 
Figure 2-12 Schematic diagram of water outlet holes array and coordinate 



28 

 

 

 

5. Results and discussion 

Figure 2-13 shows the instantaneous and ensemble-average thin water film flow thickness 

distributions for the air speeds 10 / 20 /U m s m s    and at the flow rate 𝑞 = 16.7𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚. 

As displayed in Fig. 2-13(A), the instantaneous film shape was almost the same as the 

10 /U m s   time-averaged film shape. The water-air interface behaved like a calm water 

surface, which demonstrates that the surface tension is the dominant force and resists the water-

air interface displacement under low wind speed conditions. Water surface raise was observed 

near the end of the measurement field (more clearly in Fig. 2-15). It is because the surface 

tension at the vertical edge of the substrate end will block the film flow. As the flow speed 

increased to 15 /U m s  , water traveling waves were generated from the disturbance of air 

shear stress. We found that quasi-regular waves would emerge near the water outlet holes and 

gradually attenuate as they traveled downstream. We did identified quasi-period waves using 

spectral analysis, which be discussed later. The average thickness distribution for this case is 

generally the same with other flow speeds and flow rate cases except the 10 /U m s  , 𝑞 =

16.7𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚 one. The thickness distribution was a generally symmetric distribution with 

respect to the centerline and it decreased along flow direction. Figure 2-13(C) shows that water 

waves break into several segments at the very beginning of the thin film flow when the airflow 

velocity reaches 20m/s. Those waves further breakup and evolve into small pieces as they flow 

downstream. This indicates the air shear stress dominated the flow. The time-average thickness 

distribution exhibits a perfect thin film shape like a flat plate. 

Figure 2-14 shows the film thickness distribution under the flow rate 𝑞 = 33.3𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚. 

Compared with flow rate 𝑞 = 16.7𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚 cases, the disturbances from the water outlet 

holes was much more severe. Because of higher flow rate and flow rate unevenness of each hole, 
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the water-air interfaces displayed an irregular surge shape in the region close to water outlet 

holes (L/D<0.5). For the wind speed 10 /U m s   case, in the range L/D>0.75, the thin water 

film was generally flat (Fig. 2-14A). For wind speeds 15 /U m s   and 20m/s cases, in the range 

L/D>0.75, the displayed instantaneous water-air interfacial waves characteristics were roughly 

the same with the 𝑞 = 16.7𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚 ones. The flow rates of individual holes might be 

different, as a result, the time-averaged results showed that the film thicknesses were no longer 

uniform along the water holes’ array direction. However, the time-averaged film thicknesses 

distribution still exhibited a level surface shape. Both the instantaneous and ensemble-averaged 

results indicate that the flows are somewhat regulated by the combined effects of water surface 

tension, gravity force and air shear stress force. 

  

  

a. Instantaneous result b. Ensemble-average result 

A. 10 /U m s   

  

a. Instantaneous result b. Ensemble-average result 
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B. 15 /U m s   

  

a. Instantaneous result b. Ensemble-average result 

C. 20 /U m s   

Figure 2-13 DIP measurement results of different wind speeds at flow rate 

𝑞 = 16.7𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚 

  

a. Instantaneous result b. Ensemble-average result 

A. 10 /U m s   

  

a. Instantaneous result b. Ensemble-average result 

B. 15 /U m s   
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a. Instantaneous result b. Ensemble-average result 

C. 20 /U m s   

Figure2-14 DIP measurement results of different wind speeds at flow rate 𝑞 = 33.3𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚  

Figure 2-15 shows the ensemble-average film thickness profiles at the centerline of the film 

flow under the different wind speeds and flow rates. Seen from the figure, the profiles of the thin 

water film generally first increased and before decreasing to a steady height with the exception 

of the 𝑞 = 16.7𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚, 10 /U m s   case. The gradient of the curves varied slightly with 

wind speeds and flow rates. Seen from Fig. 2-13B, the water-air interfacial waves’ amplitude of 

case 𝑞 = 16.7𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚, 15 /U m s   were much higher. The film flows’ thicknesses of 

larger flow rate cases are much higher than the thickness of the lower flow rate cases within the 

range close to water outlet hole. Average thin film thicknesses vary from 0.05-0.35mm with 

decreasing thickness as wind speeds and water flow rates increase. Those time-averaged film 

thickness profiles can be considered as a reference of two dimensional undisturbed film flow 

water-air interfaces.  

Spectral analysis was performed to reveal the water waves evolution for case 15 /U m s  and 

𝑞 = 16.7𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚. Three points (L/D=0.25, W/D=0), (L/D=0.75, W/D=0) and (L/D=1.25, 

W/D=0) were chosen to do Fourier transform calculation. As mentioned above, our camera 

speed was set to 30FPS and 600 images (20s) were captured for each case, the theoretical 
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maximum identifiable frequency is 15Hz with a resolution of 0.05Hz. An interpolation 

calculation was used to get film thickness at those three points. As shown in the Fig. 2-16A, the 

dominant frequency at point (L/D=0.25, W/D=0) is 7Hz. If there are no damping effects, the 

wave frequency will be preserved as the waves propagate to downstream. However, the 

dominant frequency at point (L/D=0.75, W/D=0) is 3.5Hz (Fig. 2-16B) and there is no obvious 

dominant frequency at point (L/D=1.25, W/D=0) (Fig. 2-16C). We examined the animation of 

our measurement result and found that the water wave amplitude will attenuate as it travels 

downstream. Only one out of two waves can reach point (L/D=0.75, W/D=0) without significant 

reduction of wave amplitude. The waves that reach point (L/D=1.25, W/D=0) occurred 

randomly, which induces several low frequency signals in the Fig. 2-16C.  

 
Figure 2-15 Ensemble-averaged thin water film thickness profiles at film center line W/D=0 
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a. Time history of film thickness b. Frequency spectrum  

A. L/D=0.25D, W/D=0 

  

a. Time history of film thickness b. Frequency spectrum  

B. L/D=0.75D, W/D=0 
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a. Time history of film thickness b. Frequency spectrum  

C. L/D=1.25D, W/D=0 

Figure 2-16 Time history of film flow thickness and wave frequency analysis 

6. Conclusions 

A novel digital image projection (DIP) measurement system was developed to provide high 

accuracy measurement of wind-driven thin film flows. The new measurement method inherits 

most of the ordinary DFP technique merits such as simple set up, low cost, whole field and non-

contact measurement at video speed. Compared with FTP based DFP measurement systems, the 

new technique proved to be more precise with a less stringent image quality requirement. Both 

methods were used to reconstruct a spherical cap model. The average measurement error of the 

DIP system was 0.04mm with a standard deviation of 0.04mm. The average measurement error 

of the FTP-based DFP method was 0.12mm, with a standard deviation of 0.08mm.  

Wind-driven thin water film flows were measured using the DIP technique to demonstrate 

system’s capability. Both the instantaneous and ensemble-average thin film thickness 

distributions were successfully reconstructed. The dynamic motion of film flow was revealed. 

For wind speed 10m/s cases, the results show that the water surface tension dominates the flow 

and makes the water-air interface shape like a flat plane. As the wind speed increases to 15m/s 
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and 20m/s, water-air interfacial waves were observed. Those interfacial waves were generated at 

the range near the water outlet holes and they would attenuate and broke in to small pieces as 

they traveled downstream. The case of wind speed 15m/s and flow rate 16.67ml/min/cm was 

selected to do spectrum analysis for revealing the frequencies and transient features of those 

water waves. The results show that at the position L/D=0.25, the dominant wave frequency was 

7Hz. At location L/D=0.75, the dominant frequency is reduced to 3.5Hz. There is no noticeable 

dominant frequency at location L/D=1.25. The ensemble-average thin film profiles at the 

centerline of film flows were also plotted. The outcomes of wind-driven thin film flows 

measurement demonstrate that digital image projection technique is a useful tool to investigate 

unsteady water-air interface behavior.  
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CHAPTER 3 

 

AN EXPERIMENTAL STUDY ON WIND-DRIVEN RIVULET FLOWS RUN BACK 

ALONG FLAT PLATE 

Abstract: Under glaze icing condition, the icing accretion process is significantly influenced 

by the surface water transport behaviors. Water films, beads and rivulets are common 

phenomena of water runback flows. Rivulets and its subsequent icing will restrict the coming 

super cooled water and enhance the collection efficiency of impinging water droplets, which may 

cause continuous icing accretion near the rivulets. In the present study, an experimental 

investigation was conducted to characterize the surface wind-driven water rivulet flows over a 

horizontal plate. Instantaneous and time-average rivulets thicknesses were successfully 

reconstructed. The details of micro-structures like rivulet breaking, surface wave and rivulet 

meandering were clearly presented. The obtained rivulets thicknesses were further processed to 

get transient rivulet front velocities. A refined force-balance rivulet breaking criterion was 

evaluated by the measured instantaneous velocity of the rivulet fronts. The theoretical analysis 

qualitatively matches with the measurements. Trapped-mass effect induced by the restrain effect 

of meandering rivulet contact line was disclosed. A novel rivulet meandering instability 

threshold was developed and supported by experimental results.  

1. Introduction 

Rivulet flows subjected to external airflow are common features in daily life (e.g. rainwater 

flow on a wind shield of a vehicle) as well as in various engineering applications, such as water 

film heat exchangers like cooling towers, rain-wind-induced cable vibration (Chen et al. 2012, 

Taylor and Robertson 2011), and aircraft in heavy rain (Cao et al. 2014, Haines and Luers 1983). 

During glaze icing process, super cooled water beads, rivulets and film were observed by Olsen 

and Walker (1987). The importance of water transport behavior was disclosed by Hansman  and 
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Turnock’s experiments which showed that the surface tension of a liquid significantly alters the 

glaze ice shape (Hansman and Turnock 1989). The water transport behaviors directly influence 

the icing accretion process by redistributing the super cooled water on the airfoil surface. Besides 

that, the film/rivulets flow will indirectly influence the ice accretion process by interacting with 

local ice roughnesses. This coupled effect will change the local water droplets collection 

efficiency, alter the local heat transfer coefficient (Liu et al. 2015, Rothmayer and Hu 2012) and 

directly influence the water mass transport behavior itself by obstructing the liquid flow 

(Rothmayer and Hu 2014). Waldman and Hu (2015) qualitatively characterized the icing 

accretion process using high-speed imaging. The configuration that the rivulets would follow the 

leading edge film flow was clearly revealed by the high speed videos. According to the 

observation, the stagnated rivulets front and their subsequent icing performed as a barrier to 

block the coming surface water. The roughness ice range is highly suspected to be initiated by 

the icing accretion of stagnated film and rivulet fronts. One of the purposes of this study is to 

specify the rivulet/film front stagnation criterion under icing conditions.  

 The early investigations of the break-up of a wind-driven film/rivulet front were focused on 

preventing dry-patch formation on water film cooling equipments. Hartley and Murgatroyd 

(1964) established two film break-up criteria to determine the minimum required liquid layer 

thickness for dry-patch rewetting.  One of them is based on the force balance (FB) analysis near 

the stagnation range of a dry-patch. The dry-patch breaking occurs when the inertia force 

surpasses the surface tension at the stagnation point. The other criterion is based on the 

minimization of total energy (MTE) of a stable rivulet. Both of the FB and MTE criteria are 

widely used and developed by following researchers. Murgatroyd (1965) refined the FB model 

by adding the unbalanced shear stress between the solid-liquid and liquid-gas interfaces. A 
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character length was introduced to represent the length of unbalanced shear stress range. 

Murgatroy determined the shear unbalance length by fitting experimental data empirically. Penn 

et.al (2001) presented a work that determined the unbalanced shear length by CFD simulation. 

El-Genk and Sable (2001) refined the MTE model by precisely calculating the velocity 

distribution within the rivulets. The velocity profile was estimated by RITZ method (Finite 

Element Method). The refined MTE model was applied to predict the minimum film thickness of 

film flow on a vertical surface. El-Genk and Sable’s methodology was further extended to 

determine the breakup of film flow subject to interfacial shear (Saber and El-Genk 2004). FB and 

MTE criteria are also applied to estimate the threshold film thickness of film to rivulet breaking 

that occurs during the water runback flow on an airfoil surface. For instance, FB criterion was 

used to predict rivulet formation of water runback flow on a NACA4412 airfoil (Thompson and 

Marrochello 1999), Al-Khalil et.al (1990) developed an anti-icing runback model based on MTE 

criterion. 

Current FB and MTE criteria treat the stagnated rivulet front/dry patch as a smooth flat shape. 

In reality, hump shape rivulet front will cause an aerodynamic drag. This drag could be 

important, even a dominant force to overwhelm the surface tension restrain. McAlister et.al 

(2005) treated the wind-driven rivulet breakoff as a simple force balance between aerodynamic 

drag and surface tension. However, the inertia force of rivulet flow which comes from the shear 

stress of water-solid interface was not considered in McAlister’s work. Furthermore, the rivulet 

flow itself is complex. The influence of micro-physical flow structures on the rivulet breaking, 

such as surface waves and irregular rivulet front shape is still unclear. As a result, a rivulet 

breaking model includes rivulets inertia, air shear stress, aerodynamic drags and combines those 

force terms with the transient micro-physical features of rivulet flow is highly desirable. In 
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current study, we extend the FB rivulet model by adding the aerodynamic drag force. The micro-

transient phenomena of rivulet flow are measured experimentally by digital image projection 

(DIP) technique. The obtained flow features are used to refine the force terms in the FB criteria. 

For instance, the reconstructed rivulet front shape before breaking is a hump shape whereas a flat 

top rivulet front was observed after breaking. As a result, the area difference between the rivulet 

front and rivulet body, instead of the cross-section area of the rivulet front, was suggested to use 

to calculate the aerodynamic drag. Those refined force terms were then evaluated by the 

measured rivulet stagnation points. 

The other observation from current study is rivulet meandering behavior. A certain amount of 

water was trapped by the pinning force of the meander contact line. This water mass trapped 

effect directly influences the mass transport behavior during ice accretion process and provides 

both enough water mass and time interval for the onset of icing roughness. A quantitative model 

to predict meandering behavior of wind-driven rivulet flow is highly desired as well. 

Gravity-driven rivulet flow meandering had been observed and experimentally investigated in 

the laboratory for a long time (e.g. Tanner 1960, Gorycki 1973). The following rivulet 

meandering investigations were focus on experimentally determining the critical flow rate and 

plate inclination (Culkin and Davis 1984, Nakagawa 1992, Nakagawa and Scott 1984). The 

systematically theoretical studies on mechanism that disturbs a straight rivulet to meander are 

relative slow. Kim et al. (2004) reported that the rivulet meander occurs when the tangential 

velocity difference across the interface surpass the capillary force due to the meander curvature. 

Mechanisms for meandering instability of rivulets were investigated using a Hele-Shaw cell as 

well (Daerr et al. 2011, Drenckhan et al. 2004). In those two investigations, the threshold of 

meander instability was considered as the centrifugal force overwhelms the surface tension. The 
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centrifugal force was related to the square of the velocity difference between the rivulet mean 

velocity and the meander wave velocity. Grand-Piteira et al. (2006) claimed that the meandering 

rivulet is a simple outcome of force balance between inertia and capillarity. The onset of rivulet 

meandering was modeled as the force balance between the centrifugal force, capillary force (due 

to the meander curvature) and cross-section surface tension. Birnir et al. (2008) investigated the 

rivulet meandering behavior that is induced by the flow rate fluctuations. A -2/5 power-law 

scaling between the meander wave number and the power spectra of the deviation of rivulets 

from the center line was obtained experimentally and theoretically.    

To the authors’ knowledge, up to now, investigation on the wind-driven rivulet meandering is 

still blank. In this study, we present a modified model to predict the meandering behavior of 

wind-driven rivulet. One more aerodynamic drag term is added to the model of Grand-Piteira et 

al. (2006). Scaling analysis is performed to evaluate the relative importance of force terms. It is 

found that, under small Weber number, the capillary force due to meander curvature term and the 

centrifugal term can be neglected. The force balance of a stable rivulet was simplified as 

equilibrium between surface tension and aerodynamic drag. The new model was then used to 

predict the yaw angle of meander rivulet. Compared with the experimental measurement, the 

theoretical results provide a reasonably well estimation. 

This chapter is organized in five sections as follows. Section 2 describes the experiment setup. 

Section 3 exhibits the transient behavior of wind-driven rivulet flow. The novel FB rivulet 

breaking model is proposed and evaluated with the rivulet measurements. Section 4 illustrates 

the rivulet meandering analysis and presents the experimental evidences for the theory. Finally, 

section 5 summarizes the conclusions of the study.   
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2. Experiment setup 

The experiment setup of the rivulet flow measurements is generally the same as the film flow 

measurement experiment setup which was described in chapter2 (Fig. 2-11). The experiments 

were conducted in an open circuit low-speed wind tunnel. The wind tunnel has a plexiglas test 

section with dimensions of 20×14×30cm (W×H×L). Four different wind speeds 5m/s, 10m/s, 

15m/s and 20m/s and two different water flow rate 100ml/min and 200ml/min were used to 

investigate the different behaviors of the rivulet flows. The same DIP system was installed to 

quantitatively investigate the dynamics of rivulet flows. A Cross line grid pattern with 

1.1mm×1.1mm grid spacing was projected to flat plate model. The camera’s field of view was 

set to 11cm×8cm. The image capture frequency was 30Hz with an exposure time of 2ms. 600 

images (20s) of rivulet flow were captured for each case. The same flat plate model was used to 

generate the rivulet flows. The size of the flat plate was 25cm×15cm. The flat plate top surface 

was coated with write spray paint. A line of water outlet holes were drilled 25cm away from the 

leading edge. The water outlet hole has diameter 2mm. The distance between holes is 5mm. The 

total width of the water outlet hole array is 6cm. During the experiment, the ball valve was 

opened after the airflow reached steady state. The flat plate surface was kept in dry condition. 

The water flows were driven by the wind and rivulets were generated. The details of the 

experiment setup are described in chapter 2 section 4. 

3. Transient behavior of rivulet flow  

3.1. Transient phenomena of rivulet flows 

Figure 3-1 shows the instantaneous measurement results of rivulets flow the along flat plate 

with a flow rate 100 / minQ ml . The transient flow phenomena of the cases with a flow rate 

200 / minQ ml were basically the same. L denotes the direction along stream wise and W 



44 

 

 

 

denotes the direction along span wise. The stream wise and span wise location was normalized 

by the width of the water outlet holes array, which is D=6cm. The origin point of the coordinate 

is located in the center of the water outlet holes array (Fig. 2-12). Seen from Fig. 3-1A, under 

5 /U m s  condition, no rivulet flow appeared. After the valve was opened, the water 

overflowed to all directions. Besides flowing down stream, the water flowed along the span wise 

and upstream directions as well. The span wise and upstream water flow was restricted by the 

edges of the test plate. A uniform film front slowly flowed through the entire measurement 

windows. 

The film front was observed under a wind speed condition of 10 /U m s   as well (Fig. 3-

1B). However, instead of smooth forward movement, the film front was pushed forward by the 

coming surface wave crest. Sometimes, the surface wave could not break the film front contact 

line. The wave was then reflected backward and merged with the next coming surface wave. 

After that, the merged wave crest reached the film front again and broke the surface tension 

limitation. As a result, the film front movement was a pause-move process. As the height of the 

film front was not the same along the span wise direction, the local abrupt fronts would lead to a 

contact line push out. Then the coming water flow tend to flow in to the generated local 

extrusion which made the local extrusion range grew bigger. Once the contact line boundary of 

the extrusion became steep enough, the film flow broke in to a wide rivulet. After that, the 

surface wave amplitude decreased a lot and the rivulet flow became stable. 

Only a short film flow section was detected under wind speed 15 /U m s   (Fig. 3-1C). Two 

rivulets were generated at edges of the film front. The rivulet front was stagnated if the rivulet 

front was flat. The rivulets flowed downstream with ridge like rivulet fronts. It took a while for 

the rivulet head to raise high enough. Then the high-rise rivulet front suddenly broke and rivulet 
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flowed forward a certain distance. As the break of the rivulet front was similar to a spray 

phenomenon, the flow paths of each rivulet were kind of irregular. The flow configuration 

became stable within a short time (2s to flow out the measurement windows). Surface waves 

were clearly detected on both of the rivulets. The rivulet width decreased along the stream wise 

direction.  

The rivulets evolution process under wind speed 20 /U m s   is displayed in Fig. 3-1D. 

Right after the water value was opened, tiny rivulets were generated for every individual water 

outlet hole. Those tiny rivulets merged with each other as the rivulets head grew large enough to 

occupy the space between rivulets. The rivulet paths were much more irregular compared with 

the 15 /U m s  case. The rivulet width decreased as it flowed downstream too.  The quantitative 

discussion of the runback process of rivulet flow can be found in the following paragraphs.  
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c. t=14s d. t=20s 

A. 5 /U m s  , Q=100ml/min 

  
a. t=2s b. t=4s 

  

c. t=6s d. t=8s 

B. 10 /U m s  , Q=100ml/min 

  
a. t=0.5s b. t=1.0s 

L/D

0.5

1

1.5

W
/D

-0.5

0

0.5

H
,m

m 0
1
2

H,mm: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

L/D

0.5

1

1.5

W
/D

-0.5

0

0.5

H
,m

m 0
1
2

H,mm: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

L/D

0.5

1

1.5

W
/D

-0.5

0

0.5

H
,m

m 0
1
2

H,mm: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

L/D

0.5

1

1.5

W
/D

-0.5

0

0.5

H
,m

m 0
1
2

H,mm: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

L/D

0.5

1

1.5

W
/D

-0.5

0

0.5

H
,m

m 0
1
2

H,mm: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

L/D

0.5

1

1.5

W
/D

-0.5

0

0.5

H
,m

m 0
1
2

H,mm: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5



47 

 

 

 

  
c. t=1.5s d. t=2.0s 

C. 15 /U m s  , Q=100ml/min 

  

a. t=0.5s b. t=1.0s 

  
c. t=1.5s d. t=2.0s 

D. 20 /U m s  , Q=100ml/min 

Figure 3-1 Rivulet flows run back process under different wind speeds 

3.2. Rivulet/Film front moving process under low wind speed  

Figure 3-2 shows the transient process of rivulet flow under wind speed 5 /U m s  . The 

entire upper surface of the test model had been wetted due to the wind speed was low. As a result 
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the generated “rivulet” was actually film flow. As seen in Fig. 3-1A, the film front was an arc 

shape. The film front locations shown in Fig. 3-2A are the peak locations of the film front. As 

the film overflowed the whole test plate, the film width was 15cm. The corresponding unit width 

film flow rate was 6.7 / min/q ml cm  and 13.3 / min/q ml cm . The film front location profile 

is a linear curve under a flow rate condition 13.3 / min/q ml cm . For the 6.7 / min/q ml cm  

case, the film front is also a linear curve when 4t s . That indicates that the film front generally 

moved with a constant speed. Figure 3-2B displays the film thickness profiles. The plotted film 

thickness is the span wise average film thickness at a certain time. The film thicknesses are 

generally a constant value besides the range near the water outlet holes. The film thicknesses are 

about 2mm for both of the flow rates 6.7 / min/q ml cm  and 13.3 / min/q ml cm . It indicates 

that stable film flows were detected during the experiment (i.e. the film thickness and film front 

shape was not changed as it flowed downstream). A sixth order polynomial is used to fit the film 

front locations. The film front velocity and acceleration are 1
st
 and 2

nd
 order derivatives of the 

fitting curves. The average film front velocities of flow rate 6.7 / min/q ml cm and 

13.3 / min/q ml cm  are 0.0042m/s and 0.0127m/s respectively. Seen from Fig. 3-2C, the film 

front acceleration was less than 0.003m/s
2
 for most of the time. As a result, the moving film can 

be treated as uniform motion. 

The Reynolds number of the film flow base on the unit width flow rate is Re 11f   for flow 

rate 6.7 / min/q ml cm . By doing scaling analysis, the ratio of inertia component and viscous 

component can be written as: 

 
2

2

Re

w
w

w
f

w w
w

u
u

U H H Hx

u L L

y






 




 (3.1) 
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Where w  represents the water kinetic viscosity, x and y are local coordinates that are tangent 

and normal to the flow direction. wU , H and L denote the character value of film velocity, film 

thickness and stream wise length scale respectively. The film thickness is approximately 2mm. 

Character length L can be considered as 200mm, which is 100 times of the film thickness. 

According to (3.1), the inertia component is negligible for the current analysis. The momentum 

equation and boundary conditions to describe the film flow can be express as the following 

equations: 
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2

1w
w

w

u p

y x

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 
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 
 (3.2) 

 w
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u
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
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 (3.3) 

 
0

0w y
u


  (3.4) 

Equation (3.3) represents the shear stress is continuous at the air-water interface; where a  is 

the air shear stress at the air-water interface. Equation (3.4) is the no slip boundary condition. 

Suppose the pressure gradient is a constant value. The solution of equation (3.2) is a Poiseuille 

flow velocity profile: 

 21

2

a
w

w w w

p p H
u y y

x x



  

  
   

  
 (3.5) 

As the film surface is smooth, the unit width pressure difference is caused by the water static 

pressure difference. The unit width pressure difference can be expressed by: 

  x x x

w w f

h hp
g gS

x x
  

 
 

 (3.6) 

 Where g is the acceleration of gravity, fS  denotes the slope of film surface which is a 

negative value in this analysis. The unit width flow rate can be obtained by integrating the 

velocity profile: 
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Seen from equation (3.7), the flow rate induced by the pressure difference is proportional to 

the 3
rd

 order of film thickness and the slope of the film surface 
fS . That means a slight increase 

of the film thickness may result in a huge increase of flow rate. The flow rate is also linearly 

changed with the air shear stress a . Seen form Fig. 3-2B, the span wise average film thickness 

of 6.7 / min/q ml cm  at point t=20s, L=50mm is 2.0mm, meanwhile the span wise average film 

thickness at the same point of 13.3 / min/q ml cm  is 2.2mm. The flow rate is doubled. However 

the film thickness is just increased by 10%.  

Figure 3-2D shows the time history of film front contact angle. A 2
nd

 order polynomial was 

used to fit the film front profile at the leading point of the film front.  The contact angle is the 

angle between the polynomial tangent line and the bottom line of the test plate. The time average 

contact angle of 6.7 / min/q ml cm  was 040.0  . The time average contact angle of flow rate

13.3 / min/q ml cm  was 042.5  . The relationships between dynamic contact angle   and 

contact line speed cV  (note that surface tension and water dynamic viscosity are constants, cV  

represents the Capillary number) are generally empirical formulas (Bracke et al. 1989, Hoffman 

1975, Johnson et al. 1999). Those investigations showed that the dynamic contact angle increases 

with contact line speed. Compared with the contact line speed of those investigations, the contact 

line speed in current study is a small value. A small change in dynamic contact angle is 

predictable.  
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a. Q=100ml/min b. Q=200ml/min 

A. Film front location 

  
a. Q=100ml/min b. Q=200ml/min 

B. Span wise average film thickness profile 

  
a. Q=100ml/min b. Q=200ml/min 

C. Film front acceleration  
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a. Q=100ml/min b. Q=200ml/min 

D. Film front contact angle 

Figure 3-2 Transient process of film flow under wind speed 5 /U m s  .  

3.3. Force balance rivulet breaking criterion  

Hartley and Murgatroyd (1964) presented a criteria about the rivulet break-up. The criteria is 

aimed to predict the rewetting behavior of a dry patch formed in thin film flow. The criterion is 

from the force balance at the upstream location of a dry patch. The movement of the rivulet/film 

contact line can be considered as the same process as the dry-patch rewetting. In Hartley and 

Murgatroyd’s analysis, the dry patch will be rewetted when the static pressure force, which is 

induced by the water kinetic energy, exceeds the restrain force caused by the surface tension: 

 2

0

0.5

H

w w wt u dy p    (3.8) 

t  is the restraining force due to surface tension. Hartley and Murgatroyd simplified the three 

dimensional geometry to a two dimensional problem and assumed there is no hump shape at the 

dry patch front, as a result the restrain force due to the surface tension could be written as (Fig. 

3-4): 

 
(1 cos )t     (3.9) 

Supposing that the film flow was laminar and the linear liquid velocity profile hypothesis 

within the film was applied. The static pressure could be written as: 
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In equation (3.10), wp  is the water static pressure. 𝑢𝑤 is the water velocity within the rivulet 

flow. For three dimensional rivulet shapes, a bead shape head usually occurs at the rivulet front. 

This high rise hump will lead to a shape drag. McAlister et. al (2005) introduced a model for 

rivulet head break off. One of the objectives of their model was to describe the periodic breakoff 

of the rivulet heads they observed during their experiments. The rivulet head shape was 

simplified as a semi-ellipsoid shape with semi-axis length H and W, where H is the rivulet head 

height, W is the rivulet head width. The aerodynamic drag was then modeled as: 

 21
( )

2 2
d a dF U WH C


   (3.11) 

Where dC  is the drag coefficient for air flow past a bead shape. It depends on the rivulet head 

shape and the Reynolds number of the air flow. McAlister recommended 0.6dC   by 

performing a numerical computation on a rigid hemisphere shape. The surface tension force on 

the rivulet head was approximated by: 

 
(cos cos )    rT W  (3.12) 

Where r  denotes the receding contact angle. No static pressure induced by the rivulet main 

flow was considered in McAlister’s paper. As large bead shape rivulet front was assumed in 

McAlister’s analysis, the water static pressure may not be important. 

According to the observation of current experiments, the wind-driven rivulet flow exhibited 

complex phenomena like smooth film flow, oscillating rivulet front breakup, rivulet meandering 

and rivulet surface wave. The restrain force due to the surface tension T  and the advancing 

force from the aerodynamic drag are influenced by the rivulet head shape. Water static pressure

wp  is highly dependent on the velocity profile with in the rivulet flow (i.e. linear velocity 
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assumption may not hold when high amplitude surface waves appear).  As a result, it is very hard 

to establish a well-defined accurate model to describe the diverse motions of the rivulets. In this 

work, we try to refine the rivulet break up criteria. The balance of surface tension, aerodynamic 

drag due to the head shape of rivulet and water static pressure force is used in the new criterion. 

However the new criterion is only aimed to roughly predict the tendency of the rivulet behavior. 

The force terms in the new criteria are only an approximation of the forces acting on the rivulet. 

Seen from Fig. 3-2, there were three rivulet front structures: smooth film front shape, top flat 

bead shape ( / H 5W  ) and semi-ellipsoid shape. The rivulet front shape was significantly 

influenced by the Reynolds number. Obviously, the rivulet head changed from a smooth film 

front to a semi-ellipsoid shape as wind speed increased. The rivulet head shape was also affected 

by the rivulet Weber number which is defined as 
2

w wu H
We




 . The rivulet head would tend to 

be more three-dimensional for a larger Weber number. For instance, view from the top view plot, 

the rivulet front line displayed a larger radian arc for higher flow rate (Left column of Fig. 3-6).  

Equation (3.9) could be a good estimation of restrain force induced by surface tension. 

Equation (3.9) is built to give the restrain force due to surface tension for two dimensional 

smooth film front. For three-dimensional rivulet shape, the character length scale L is much 

larger than the rivulet height scale H, therefore the receding contact angle r  approachs zero. 

Suppose a semi-cylinder rivulet connects with a semi-sphere head shape, the restrain force 

caused by the surface tension at the rivulet front is cos
2

T W W


    . It is still the same 

order of (1 cos )T W    . 



55 

 

 

 

The water static pressure force at the stagnation point is come from the water kinetic energy 

difference between the rivulet head and the rivulet body. The linear velocity profile a
w

w

y
u




 is 

used to calculate the static pressure: 
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 
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 
  (3.13) 

Where yw  is the rivulet width at the y location (Fig. 3-3). yw  can be obtained by the average 

of the measured rivulet profiles. The integration of equation (3.13) needs to be calculated 

numerically.  Equation (3.13) did not consider the influence of rivulet profile on the velocity 

field within the rivulet. The two-dimensional velocity distribution within the rivulet can be 

determined by the x direction Laplace equation: 
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 





 (3.14d) 

Equation (3.14b) is the no-slip condition at the water-solid interface and (3.14c) assumes the 

velocity is symmetric with the rivulet centerline. (3.14d) indicates the shear stress at the air-water 

interface is continuous where the r  is radial direction (normal to local water-air interface). Al-

Khalil et. al (1990) presented a method to numerically solve equation (3.14). According to Al-

Khalil’s solution, the two-dimensional velocity distribution is generally the same as the linear 

velocity profile a
w

w

y
u




  for big rivulet width-height ratio (W/h>5). Seen from Fig. 3-1, the 

three-dimensional semi-ellipsoid shape only appeared at the rivulet front. The rivulet width was 
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generally much larger than the rivulet height at the rivulet body part. If big width-height ratio is a 

common feature of wind-driven rivulets, equation (3.13) can perform well.  

The aerodynamic force due to the front hump shape can be estimated by the following 

equation: 

 21

2
d a dF U AC    (3.15) 

In equation (3.15), A is the area difference between the rivulet body and the rivulet hump 

front (Fig. 3-3) which can be determined by the rivulet measurement result. Marshell and Ettema 

(2004) approximated the flow over the rivulet head by air flow over rigid hemi-ellipsoids with 

different aspect ratios (Marshall and Ettema 2004). They did numerical computations and the 

result showed that the Cd  value was around 0.6. The obtained air pressure distribution showed 

that the high pressure region occurred near the substrate of semi-ellipsoid shape.  Figure 3-4 

shows a typical rivulet break procedure. The flat rivulet front shape after the breaking process 

indicates that the aerodynamic force acted on the bottom part of the rivulet front. The 

measurement results qualitatively match with Marshell and Ettema’s work. We can see that the 

mean thickness of the rivulet body part account for 50% of the maximum thickness of the rivulet 

head. For low speed case, the smooth film front is driven by the shear stress at the water-air 

interface. Equation (3.15) gives a zero aerodynamic drag for that case. It is reasonable to use the 

area difference to evaluate the aerodynamic force. In sum, the neutral equilibrium of rivulet 

motion can be represented by: 
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 
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For two-dimensional film front shape and top flat bead shape rivulet, equation (3.16) can be 

reduced to two dimensional force balance: 
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In equation (3.17), Hrf
is the maximum rivulet front thickness and Hrb is the rivulet body 

thickness. 

 
Figure 3-3 sketch of force balance at the rivulet front 

(a)  (b)  

Figure 3-4 measurement result of rivulet front break, 15 / , 100 / minU m s Q ml   . (a) Rivulet 

front before breaking. (b) Rivulet front after breaking 

The obtained transient rivulet thickness distribution images were further processed to get 

transient rivulet contact line peak location and contact line speed. As the wind-driven rivulet 

flow path was random, the time-averaged rivulet thickness configuration was used to define the 

rivulet front capture windows. As displayed in Fig. 3-5, the time-averaged rivulet thickness is 

plotted as a gray scale map. Then rivulets were numbered based on the wetted area information 

at the outlet of the measurement windows. The width of each time-averaged rivulet was used as a 

rivulet front capture windows (Blue line in Fig. 3-5). The transient water-solid contact line (red 

line in Fig. 3-5) was found by searching for the points where the rivulet thickness was bigger 

than 0.05mm. The local rivulet front peak points were the maximum points within the capture 

windows. Notice that the phenomena like film fronts breaking into rivulets and rivulets 
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combination happened in the upstream range of the rivulets flow. Those phenomena will change 

the rivulet number. For the current study, this changing of rivulet number can not be represented. 

The capture windows size within the upstream range will be the width of the rivulets at the 

position of where the rivulet breaking or rivulet merging happened (Blue line and arrow in Fig. 

3-5). The peak points of transient water-solid contact line within the capture windows were 

considered as the rivulet peak points. Once the rivulets peak locations were determined, the 

rivulets velocities were approximated by the difference of two successive peak locations divided 

by the measurement time interval.   

 
Figure 3-5 sketch of how to find peak contact line location of rivulet flow 

The transient process of rivulet flow under wind speed  10 /U m s   is revealed in Fig. 3-6. 

The left column of Fig. 3.6 shows the snapshot of transient rivulet fronts. The rivulet front 

locations can be found in the second column of Fig. 3-6 and the rivulet velocities are shown in 

the third column of the figure. As discussed above, the rivulet front moving was a pause-move 

process. This process was significantly influenced by the surface wave behavior. The stalled 

water-solid contact line broke up when the surface wave crest reached the contact line. The 

moving of the dynamic contact line would also be accelerated when the wave crest reached to the 

contact line. The rivulet stagnation phenomenon is clearly revealed by the zero velocity points in 
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the velocity history profile shown in Fig. 3-6. The rivulet head break-up and accelerations are 

displayed as the velocity peak points in Fig. 3-6A.c. Seen from Fig. 3-6A.c, the stagnation period 

for the flow rate 200 / minQ ml case is much shorter than the 100 / minQ ml case. Although 

the rivulet flow is influenced by the surface waves and displays unsteady phenomena, the final 

rivulet front history shows a straight line shape. It indicates the tiny flow structures like surface 

wave and irregular rivulet front contact line will not influence the flow for a long time scale. The 

average rivulet velocities are 0.014m/s and 0.044m/s for flow rates of 100 / minQ ml  and 

200 / minQ ml  respectively.  

Seen from Fig. 3-6, the generated rivulet front during the experiment can be characterized as a 

wide two-dimensional film front shape for the 100 / minQ ml  case and top flat bead shape (

W/ H 6 ) for 200 / minQ ml . Equation (3.17) is used to do the force analysis near the rivulet 

front. In fact, the rivulet width of the 200 / minQ ml  case was doubled during its moving 

process. However, the rivulet front moving velocity was the same. It indicates the rivulet width-

depth ratio W/ H will not significantly influence rivulet flow process when rivulet width is much 

larger than rivulet depth. The time-average rivulet front contact angles were 53° and 54° for flow 

rates of 100 / minQ ml and 200 / minQ ml respectively. Then the restrain term due to the 

surface tension (1 cos )t     was roughly the same for both of the flow rates. Meanwhile, the 

typical rivulet body thickness for flow rate 100 /Q ml min  was 1.2mm and 1.5mm for flow rate 

200 /Q ml min . The typical maximum rivulet front thicknesses rfH  for both of the flow rates 

ranged from 2.5mm-3.5mm. The aerodynamic drags induced by the rivulet front shape were 

about the same for both of the flow rate. The height differences between rivulet front and rivulet 

body were H H 1rf rb mm . The shape drag coefficient dC  is around 0.6 from Marshall and 
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Ettema’s numerical calculation (Marshall and Ettema, 2004). The aerodynamic drag term was 

approximately 0.036 /df N m  and the surface tension restrain force was about 0.04 /t N m , 

which means the aerodynamic drag and surface tension restrain were roughly in a balanced 

condition. As water static pressure wp  is proportional to 3

rbH , the propulsion pressure from the 

dynamic energy of the rivulet body is two times higher for the flow rate 200 /Q ml mincase. 

This higher static pressure causes the rivulet front contact line keep moving forward. Due to the 

observation, for the flow rate 200 / minQ ml  case, the rivulet front contact line would only 

stagnate when the coming surface wave crest approached but did not yet reach the rivulet front 

(Fig. 3-6.B.a). At that moment, the rivulet head had a flat top surface; the aerodynamic drag at 

the rivulet head was significantly undermined and the force balance is under the moving criteria 

of equation (3.17). 

Figure 3-7 shows the rivulet fronts and velocities time history under wind speed 15m/s and 

20m/s.  The left column of Fig. 3-7 indicates the rivulets identifier; the rivulets are all numbered 

by the increase of the y axis in the image coordinate. The second and third column of Fig. 3-7 

shows the time history of rivulet front location and rivulet head velocity respectively. As the 

wind speed increases, a smaller rivulet head size will be enough to break the force balance 

criteria. Rivulets breaking and merging become common phenomena. Although the generated 

rivulets showed different behaviors under the same experimental condition, the results still prove 

that the rivulet velocity monotonically increases with wind speed and liquid flow rate. Seen from 

the second column of Fig. 3-7, the flow paths of rivulet #1, #2 under condition 

15 / , 200 / minU m s Q ml   , rivulet #2, #4 under condition 20 / , 100 / minU m s Q ml   , 

rivulet #5, #6 under condition 20 / , 200 / minU m s Q ml   are basically the same. Similar to 
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the moving rivulet head profiles of the 10 /U m s   cases, the moving profiles of those rivulet 

pairs are straight lines as well. As discussed in the 10 /U m s   cases, for long timescales, the 

rivulet front moving velocity is stable the other time, which supports that the micro-structures of 

rivulet flow will not turn the flow into a periodic motion. It seems the rivulet contact line moving 

process under-goes an energy balance process at the rivulet front that is the dynamic energy of 

the rivulet plus the energy absorbed from the air flow balance with the energy that is required to 

wet the surface. Meanwhile, the transient velocity histories of those rivulet pairs are quite 

different. The velocity profiles exhibit zig-zig shapes. It reveals the rivulet front velocity is 

accelerated by the wave crest and decelerated by the wave trough. The mismatch of rivulet front 

velocity indicates this acceleration and decelerations effect is random and makes the transient 

velocity unpredictable for a short timescales.   

   
(a) Rivulet front snapshot  (b) Rivulet head location (c) Rivulet head velocity 

(A) 10 /U m s  , Q=100ml/min 

   
(a) Rivulet front snapshot (b) Film front location (c) Film front velocity 

(B) 10 /U m s  , Q=200ml/min 

Figure 3-6. Rivulet front location and velocity under wind speed 10 /U m s  . 
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(a) Rivulet number indicator (b) Rivulet head location (c) Rivulet head velocity 

A. 15 / , 100 / min  U m s Q ml  

   
(a) Rivulet number indicator (b) Rivulet head location (c) Rivulet head velocity 

B. 15 / , 200 / min  U m s Q ml  

   
(a) Rivulet number indicator (b) Rivulet head location (c) Rivulet head velocity 

C. 20 / , 100 / min  U m s Q ml  

   
(a) Rivulet number indicator (b) Rivulet head location (c) Rivulet head velocity 

D. 20 / , 200 / min  U m s Q ml  

Figure 3-7 Rivulet head transient location and velocity history.  
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4. Wind-driven rivulet meandering behavior 

4.1. Theory of meandering stability of rivulet flow 

Figure 3-8 shows the time-average rivulet thickness distributions under different wind speeds 

and flow rates. After the steady-state rivulet configurations were formed, 500 measurements 

were taken to do the time-average rivulet thickness calculation. As shown in Fig. 3-8.a and 3-8.b, 

the rivulet surfaces were flat and smooth for wind speed 10 /U m s  . The rivulet thicknesses 

were uniform along the transverse direction and slightly decreased along the longitudinal 

direction. Unlike the straight cylindrical rivulets we observed on the an airfoil surface(Zhang and 

Hu 2014), meandering rivulets were observed for high wind speeds. Local rivulet humps were 

generated near the meandered rivulets. Similar to the film flow water trapping effect induced by 

the local roughness (Rothmayer and Hu 2014), a certain amount of water mass was held in place 

near the meandered rivulet contact lines as well.  This mass trapping effect dose not significantly 

affect the rate of the mass transport. However it directly holds a certain fraction of the water 

mass and may create a time lag as the trapped water accumulates near the meandered contact 

line. Local supper cold water supply and enough time for icing are the necessary conditions for 

local icing accretion. The meandering of rivulets provides both of the conditions and hence could 

be an onset perturbation of roughness ice generation during the aircraft icing process. 

Rivulet meandering behaviors can be revealed more clearly in Fig. 3-10. In Fig. 3-10, the 

maximum rivulets thickness lines are plotted on the plan view of the gray-scale time-average 

rivulet thickness contour maps. The maximum rivulet thickness lines were obviously detached 

from the centerlines of rivulets. Arc structures were shown even the rivulet edges were seemed 

straight. According to the observation, rivulets meandering were initiated by two effects: (i) 

rivulet front thickness is not uniform along the transverse direction, which cause the rivulet front 
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break at the local peak height location and generates an irregular rivulet head shape; (ii) Rivulets 

merge itself is a meandering behavior. Film to rivulet breaking can be considered as a special 

case of effect (i). It is easier to form a local hump for a wide rivulet. So the meandering behavior 

is easier to be initiated for wide rivulets. It is proved by Fig. 3-8.e and Fig. 3-8.f, where no 

meandering phenomenon is observed for thin rivulets. Le Grand-Piteira et al. (2006) modeled the 

onset of gravity driven rivulet meandering as a balance between inertia force and capillary force 

at a cross-section of rivulet: 

 
2 ( )

(cos( ) cos( ))w r a

m m

Q C W

AR R


        (3.18) 

  Where mR  denotes the initial radius of curvature (Fig. 3-9),  , a , r  denotes the average 

contact angle, advancing contact angle, receding contact angle of the transverse rivulet cross 

section respectively. (cos( ) cos( ))r af      is the surface tension force. 
2

c w

m

Q
f

AR
  is the 

centrifugal force. 
( )

m

C W
ts

R



  is the straightening force induced by the capillary force along 

the rivulet longitude direction (Fig. 3-9), ( ) cos
sin

C


 


   is a constant. Differ from the 

gravity-driven rivulet flow; the aerodynamic drag occurs in a wind-driven rivulet flow. Seen 

from Fig. 3-9,  ts  is always straighten the rivulet flow. cf  tends to force a rivulet flow 

transverse. The aerodynamic drag term stabilizes the rivulet flow when the rivulet flow away 

from the curvature center and destabilizes the rivulet flow when the rivulet flow toward the 

curvature center. It should be noticed that the aerodynamic term always pushes the rivulet flow 

along stream wise direction. This effect tends to regular the meandered rivulets back to the 

stream wise direction. The force balance for the wind-driven meander rivulet flow can be 

described by the following equations: 
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   In equation (3.19),  21

2
d a df U AC   is the aerodynamic drag, A  is the cross section area of 

the rivulet,   is the angle between rivulet and stream line. Scale analysis was performed to 

compare the terms in equation (3.19). The ratio of centrifugal force to capillary force induced by 

the curvature is: 

 
2

2( )
( ) 2 ( )c w w r

m m

Q C W
f ts Q A C W We C

AR R



         (3.20) 

In equation (3.20), the rivulet area was approximated by 0.5A WH . The obtained equation 

shows that the relative importance of centrifugal force to capillary force is determined by the 

rivulet Weber number and the average contact angle. The average contact angle of the rivuelt 

cross section can be estimated by 2 2arcsin(4 (4 ))HW H W   . Using / 5W H  , we get 

44  and ( ) 0.28C   . The actually measured rivulet width to height ratio was bigger than 5, 

typical ( )C  value was smaller than 0.28.  For the current work, the typical rivulet Weber 

number was 0.3-0.7. Hence, the centrifugal force was the same order as capillary force.  

The ratio of capillary force to surface tension at the rivulet cross section is: 

 
( ) (cos( ) cos( ))m r ats f C W R       (3.21) 

The meander curvature mR  was generally much larger than the rivulet width. The typical 

value of cos( ) cos( )r a   would be about 0.5 which is about twice of ( )C  . Then the capillary 

force term can be neglected. From (3.20), for a rivulet flow with a Weber number value smaller 

than 1, the centrifugal force is negligible as well. Then the rivulet flow is in a balance between 

aerodynamic drag and surface tension term.  The maximum meandered yaw angle   could be 

predicted by the following equation: 
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 2arcsin(2 (cos( ) cos( )) / )r a a dU HC        (3.22) 

For higher wind speeds, the aerodynamic drag is larger than the surface tension. The 

transverse component of aerodynamic drag is large enough to turn the meander rivulet back to 

streamwise direction. Comparable to the damping term in the oscillation system, meandering 

rivulets will flow back to the stream line due to the damping of the aerodynamic drag. The 

maximum meander yaw angle decreases with wind speed increases. Both of the aerodynamic 

damping phenomenon and yaw angle decreasing phenomenon are qualitatively shown in Fig. 3-

8.   

  

  
a. 100ml/min, 10 /U m s   b. 200ml/min, 10 /U m s   

  

c. 100ml/min, 15 /U m s   d. 200ml/min, 15 /U m s   
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e. 100ml/min, 20 /U m s   f. 200ml/min, 20 /U m s   

Figure 3-8 Time average result of rivulet flows 

(a)  (b)  

Figure 3-9 Force acting on a meander, in the plane of the plate. The meander curvature 

stabilize the rivulet both in (a) and (b). Aerodynamic drag affects rivulets along stream wise 

direction. It stabilizes the rivulets in (a) and destabilizes the rivulet in (b). But it always drives 

the rivulets flow along stream wise. 

4.2. Experiment evidences of meandering instability theory 

The meandering behavior of rivulet #1 under the condition 15 / , 100 / minU m s Q ml   was 

selected as an example to validate equation (3.19) and (3.22). The rivulet meander was initialized 

by the film-rivulets breaking process. The rivulet width was about 12W mm  and rivulet 

meandering curvature radius was about 45mR mm (suppose the meander rivulet was an arc 

line). The cross-section area and rivulet height decreased with stream wise distance. The typical 

value of the rivulet area and height were 20.03A cm  and 1H mm  respectively. The rivulet 
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Weber number was roughly estimated as 0.77We  . Under this Weber number, aerodynamic 

drag and cross-section surface tension acted to control the rivulet flow. The maximum yaw angle 

occurred near the film braking point (Fig. 3-10a). 

 The actual estimation of capillary term, centrifugal term, surface tension term were 

0.0052N/m, 0.005N/m and 0.035N/m respectively. Compare with the surface tension, the 

capillary force and centrifugal force were small values and could be neglected (Actually they 

canceled out each other in this case). Using equation (3.22), supposed 0.6dC  , the calculated 

maximum yaw angle   was 23.4
0
. The actual measured yaw angle based on the maximum 

rivulet thickness line was 24.5
0
.  The same process was used to calculate the maximum raw angle 

of rivulet #2 shown in Fig. 2-10a. The height difference at the rivulet hump was used to do the 

estimation, which was 0.5H mm  . The obtained maximum yaw angle was 41
0
 whereas the 

measured yaw angle was 36
0
. The comparisons prove that equation (3.22) can quantitatively 

predict the meander yaw angle.  

Figure 3-11 shows the rivulet profiles of rivulet #1 at locations L/D=0.35 and L/D= 1.2 (Fig. 

3-10). Ten successive measured rivulet profiles are plotted. As display in Fig. 3-11, the surface 

tension term f  at the rivulet cross-section was always opposite to the aerodynamic drag at the 

same location, hence the capillary term ts  and centrifugal term cf  must be small components at 

that point, which is confirmed with the scaling analysis. The f  term was not always stabilizing 

the meander rivulet, which is different from the common sense. 
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a. 100ml/min, 15 /U m s   b. 200ml/min, 15 /U m s   

Figure 3-10 Rivulet maximum height location    

(a)  (b)  

Figure 3-11 Influence of aerodynamic force on rivulet cross-section profile. (a) Rivulet profile of 

Rivulet #1 at L/D=0.35 (blue line in Fig.3-10). (b) Rivulet profile of Rivulet #1 at L/D=1.2(red 

line in Fig.3-10) Ten successive measurements are plotted. The flow condition is 

15 / , 100 / minU m s Q ml   . 

One more interesting phenomenon, transverse oscillation, was observed from the 

measurement results. This transverse oscillation is suspected to be related to the rivulet 

meandering. The time history of the rivulet thickness, the rivulet spanwise maximum thickness 

location, and the rivulet area, at the location L/D=1.0 are plotted in Fig. 3-12.  The oscillation 

frequencies were obtained by using spectral analysis. It was found that the oscillation frequencies 

of those three vibrations are the same 𝑓 = 7.44𝐻𝑧. Cross-correlation calculations were 

performed to check the relevance of those three vibrations. The result showed that the 

oscillations of the rivulet thickness and rivulet area were phase coherent, which proves the 

surface wave is vibration primary at vertical direction. Unfortunately, the correlation coefficient 
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of the rivulet thickness and rivulet transverse maximum rivulet thickness location was small 

(<0.1). However, it does not mean the transverse oscillation was irrelevant to the vertical 

vibration. Actually, due to the limitation of the measurement spatial resolution (1.2mm), only 

several transverse locations were recorded in Fig. 3-12. Correspondingly, only several separated 

phase values were recorded (Fig.3-12b) which may cause the low correlation coefficient. The 

possible reason of this transverse vibration is still unclear and needed to further investigate. 

   
(a)  (b)   (c)  

   
(d)  (e) (f) 

Figure 3-12. Spectrum analysis of rivulet #1 under wind speed 15 /U m s  , 

Q=100ml/min condition (Fig3-10.a). (a) Time history of rivulet thickness. (b) Time 

history of span wise maximum rivulet thickness location. (c) Time history of rivulet cross-

section area. (d) Frequency spectrum of rivulet thickness. (e) Frequency spectrum of 

span wise peak location. (f) Frequency spectrum of rivulet cross section area 

5. Conclusions 

An experimental study is reported to characterize the runback behaviors of the wind-driven 

rivulet flows on a flat plate. By using the DIP system, rivulet thickness measurements are 

achieved under a variety of wind speeds and flow rates. The time-resolved measurements 

including the time histories of rivulet front contact angles, locations and velocities were well 

performed. Micro-physical phenomena like rivulet breaking, surface wave and rivulet 
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meandering were clearly reconstructed. Those micro-structures were utilized to refine the force-

balance rivulet breaking criterion. Wind-driven rivulet meandering instability were observed and 

theoretically clarified. A novel rivulet meandering stability criterion is developed and supported 

by the experiment results. The conclusion derived from the experiments can be summarized as 

follows: 

 Using DIP system, the transient behaviors of wind-driven rivulet flows were 

characterized by the detailed measurement of multi-quantities including rivulet thickness, 

water-solid contact line, and the location, velocity and advancing contact angle of rivulet 

front. With wind speed increase, the rivulet front shape evolves from film front to flat top 

bead shape and then to ellipsoid bead shape. The steady-state rivulet body has a large 

height-to-width ratio.   

 For low wind speed ( 5 /U m s  ), film flow were observed. The film front 

underwent a uniform motion. The film thickness was influenced by the pressure gradient 

induced by the gravity. For wind speeds 10 /U m s   and 15 /U m s  , the moving of 

rivulet contact line was a pause-move process which was significantly influenced by the 

surface waves. The rivulet front stagnated and then rose to a hump shape. Once the 

rivulet front grew high enough, the rivulet front contact line suddenly broke and moved 

forward. For high wind speed 20 /U m s  , the rivulet motion accelerated as the wave 

crest reached the rivulet front and decelerated as the wave trough reached the rivulet 

front. 

 The obtained rivulet thickness was further processed to get transient rivulet front 

locations and velocities. The rivulet moving phenomena are distinctly reflected by the 
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obtained time history of rivulet front transient velocities. The zero rivulet front velocity 

represents the rivulet front stagnation whereas an abruptly velocity increase represents 

the rivulet front breaking. The zig-zig rivulet front velocity profile represents the 

acceleration and deceleration effects caused by surface waves. Although the transient 

velocities varied with time, the rivulets front location time histories are straight lines, 

which indicates for a relative long timescale, the wind-driven rivulets flows are uniform 

motions. The micro-flow structures like surface waves and irregular rivulet fronts will 

influence the transient behavior of a rivulet but have limit effect on the rivulet motion for 

a long timescale. 

 The behavior of transient rivulet flow subject to the external airflow had been 

modeled by a balance of surface tension, static pressure induced by the dynamic 

energy of rivulet flow, and aerodynamic drag due to shape of rivulet. The individual 

force term is evaluated by the flow features observed during the experiment. For 

instance, as the height-width ratio of steady-state rivulet body is large, linear velocity 

profile is accurate enough to present the velocity distribution within the rivulet. Flat 

rivulet top surfaces were observed after rivulets breaking which demonstrates the 

aerodynamic drag acts on the bottom of the rivulet front. The area different between 

the rivulet front and the rivulet body should be used to estimate the aerodynamic drag. 

The rivulet breaking criterion qualitatively matches with experiment result.   

 Time-average rivulet thickness distributions are determined after the steady-state 

rivulets configurations are formed. Mass-trapping effect induced by the rivulets 

meandering is revealed by the observed localize rivulet humps near the meandered 

contact line. The initial rivulets meandering are caused by two reasons: irregular 
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rivulet front contact line caused by the rivulet breaking, and rivulets merging. Rivulet 

meandering instability threshold is modeled as a simple force balance between  inertia, 

capillary force, and aerodynamic drag. If the Weber number of a rivulet flow is 

smaller than 1 and the width-to-height ratio of rivulet body is bigger than 5, the force 

balance of meandered rivulet is further simplified to a balance between surface tension 

at the rivulet cross-section and the aerodynamic drag. The theoretical analysis is 

consistency with experiment results. 

References 

AI-Khalil K, Keith Jr T, De Win K (1990) Development of an Anti-Icing Runback Model. 28
th

 

Aerospace sciences meeting, Reno, NV  

Birnir B, Mertens K, Putkaradze V, Vorobieff P (2008) Meandering fluid streams in the presence 

of flow-rate fluctuations. Physical review letters 101:114501 

Bracke M, De Voeght F, Joos P (1989) The kinetics of wetting: the dynamic contact angle 

Trends in Colloid and Interface Science III. Springer, pp. 142-149 

Cao Y, Wu Z, Xu Z (2014) Effects of rainfall on aircraft aerodynamics. Progress in Aerospace 

Sciences 71:85-127 

Chen W-L, Tang S-R, Li H, Hu H (2012) Influence of Dynamic Properties and Position of 

Rivulet on Rain–Wind-Induced Vibration of Stay Cables. Journal of Bridge Engineering 

18:1021-1031 

Culkin JB, Davis SH (1984) Meandering of water rivulets. AIChE journal 30:263-267 

Daerr A, Eggers J, Limat L, Valade N (2011) General mechanism for the meandering instability 

of rivulets of Newtonian fluids. Physical review letters 106:184501 

Drenckhan W, Gatz S, Weaire D (2004) Wave patterns of a rivulet of surfactant solution in a 

Hele-Shaw cell. Physics of Fluids (1994-present) 16:3115-3121 

Gorycki MA (1973) Hydraulic drag: a meander-initiating mechanism. Geological Society of 

America Bulletin 84:175-186 

Haines P, Luers J (1983) Aerodynamic penalties of heavy rain on landing airplanes. Journal of 

Aircraft 20:111-119 



74 

 

 

 

Hansman RJ, Turnock SR (1989) Investigation of surface water behavior during glaze ice 

accretion. Journal of Aircraft 26:140-147 

Hartley D, Murgatroyd W (1964) Criteria for the break-up of thin liquid layers flowing 

isothermally over solid surfaces. International Journal of Heat and Mass Transfer 7:1003-

1015 

Hoffman RL (1975) A study of the advancing interface. I. Interface shape in liquid—gas 

systems. Journal of Colloid and Interface Science 50:228-241 

Johnson M, Schluter R, Miksis M, Bankoff S (1999) Experimental study of rivulet formation on 

an inclined plate by fluorescent imaging. Journal of Fluid Mechanics 394:339-354 

Kim H-Y, Kim J-H, Kang BH (2004) Meandering instability of a rivulet. Journal of Fluid 

Mechanics 498:245-256 

Le Grand-Piteira N, Daerr A, Limat L (2006) Meandering rivulets on a plane: A simple balance 

between inertia and capillarity. Physical review letters 96:254503 

Liu Y, Waldman R, Hu H (2015) An Experimental Investigation on the Unsteady Heat Transfer 

Process over an Ice Accreting NACA 0012 Airfoil 53rd AIAA Science and Technology 

Forum and Exposition. Kissimmee, Florida  

Marshall JS, Ettema R (2004) Rivulet Dynamics with Variable Gravity and Wind Shear. In: 

No.440 ITr (ed).  

McAlister G, Ettema R, Marshall J (2005) Wind-driven rivulet breakoff and droplet flows in 

microgravity and terrestrial-gravity conditions. Journal of fluids engineering 127:257-266 

Murgatroyd W (1965) The role of shear and form forces in the stability of a dry patch in two-

phase film flow. International Journal of Heat and Mass Transfer 8:297-301 

Nakagawa T (1992) Rivulet meanders on a smooth hydrophobic surface. International journal of 

multiphase flow 18:455-463 

Nakagawa T, Scott JC (1984) Stream meanders on a smooth hydrophobic surface. Journal of 

Fluid Mechanics 149:89-99 

Olsen W, Walker E (1987) Experimental evidence for modifying the current physical model for 

ice accretion on aircraft surfaces. NASA TM-87184  

Penn DG, de Bertodano ML, Lykoudis PS, Beus SG (2001) Dry patch stability of shear driven 

liquid films. Journal of fluids engineering 123:857-862 

Rothmayer AP, Hu H (2012) Solutions for two-dimensional instabilities of ice surfaces 

uniformly wetted by thin films. 4th AIAA Atmospheric and Space Environments 

Meeting. New Orleans, LA  



75 

 

 

 

Rothmayer AP, Hu H (2014) On the numerical solution of three-dimensional condensed layer 

films. 6th AIAA Atmospheric and space environments conference. Atlanta, GA  

Saber HH, El-Genk MS (2004) On the breakup of a thin liquid film subject to interfacial shear. 

Journal of Fluid Mechanics 500:113-133 

Tanner WF (1960) Helicoidal flow, a possible cause of meandering. Journal of Geophysical 

Research 65:993-995 

Taylor IJ, Robertson AC (2011) Numerical simulation of the airflow–rivulet interaction 

associated with the rain-wind induced vibration phenomenon. Journal of Wind 

Engineering and Industrial Aerodynamics 99:931-944 

Thompson BE, Marrochello MR (1999) Rivulet formation in surface-water flow on an airfoil in 

rain. AIAA journal 37:45-49 

Waldman RM, Hu H (2015) High-speed imaging to quantify the transient ice accretion process 

on a naca 0012 airfoil.53
rd

 AIAA Aerospace sciences meeting, Kissimmee, Florida 

Zhang K, Hu H (2014) An experimental study of the wind-driven water droplet/rivulet flows 

over an airfoil pertinent to wind turbine icing phenomena. ASME 2014 4th Joint us-

european fluids engineering division summer meeting collocated with the asme 2014 

12th International conference on nanochannels, microchannels, and minichannels. 

american society of mechanical engineers, pp. v01dt39a001-v001dt039a001 

 

  



76 

 

 

 

CHAPTER 4 

 

AN EXPERIMENTAL STUDY OF WIND-DRIVEN WATER FILM FLOWS OVER 

ROUGHNESS ARRAY 

Abstract: Surface roughness is generated during an ice accretion process. The roughness over 

an ice accreting surface blocks the surface water film/rivulet flows and subsequently affects the 

surface water mass transport behavior. In the present study, an experimental investigation was 

conducted to quantify the transient behaviors of the surface water flows over rough surfaces in 

order to examine the water mass trapped effect due to the presence of roughness arrays. A novel 

digital image projection (DIP) system was developed and applied to achieve time-resolved 

measurements of the thickness distributions of the unsteady surface water film flows over the 

roughness array. PIV measurements were performed to characterize the airflow boundary layer 

over tested surfaces (i.e., flat plate surface, film flow surface, in front of and at back side of 

roughness). In comparison with the baselines of the film thickness distributions of film flow over 

a flat plate, the measurement results reveal clearly that, at relatively low wind speed, the mass 

trapped effect occurs in front of the roughness array where the roughness array would perform as 

a dam to block the wind-driven water film flow.  For the cases with higher wind speeds, the 

trapped water mass was found to stagnate mainly at the backside of the roughness array. The 

time-averaged mass trapping ratio was found to be sensitive to the wind speed, but less sensitive 

to the flow rate of the water film flow. A longer roughness area will decrease the water mass 

trapped effect. 

1. Introduction 

Aircraft icing occurs when a cloud of super-cooled droplets impinge and freeze onto the 

airplane surfaces during flight (Gent et al. 2000). In glaze icing conditions, water beads, rivulet 

and film flows run back along the airfoil surface (Olsen and Walker 1987). Semi-regular 
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roughness elements are often observed during ice accretion process (Anderson and Ruff 1998, 

Shin 1996). The behaviors of surface water runback flows will redistribute the impinging water 

mass and disturb the local flow filed, as a result, directly influence the ice accretion process. On 

the other hand, surface water flow will indirectly influence the ice accretion process due to its 

interaction with local ice surface roughness. Surface ice roughness will modify the local 

convective heat transfer coefficient. Furthermore, surface roughness will choke a certain amount 

of water mass in place near the roughness elements. Matheis and Rothmayer (2003) refer to such 

phenomena as the water mass trapping effects.  

Wang and Rothmayer (2009) presented a numerical work to simulate thin water films and 

beads flow through a small roughness field. Rothmayer and Hu (2013) reported two numerical 

algorithms to solve the weak and strong lubrication problems for three dimensional linearized 

condensed layer films. The transient phenomena of thin water film flows over a roughness array 

were simulated in order to compare those two algorithms. However, there is no direct 

experimental evidence to verify the numerical simulation results related to this micro-transient 

phenomenon. Advanced experimental techniques capable of providing accurate measurements to 

qualify the interaction effects of thin film flow and roughness elements are highly desirable.  

With this in mind, a novel digital image projection (DIP) system was developed and applied 

to achieve time-resolved measurements of the thickness distributions of the unsteady surface 

water film flows over a test surface for the cases with and without rough array. The DIP 

technique used in the present study is based on the principle of structured light triangulation in a 

similar manner as a stereo vision system but replacing one of the cameras for stereo imaging 

with a digital projector. The digital projector projects line patterns of known characteristics onto 

the test specimen (i.e., a water droplet/rivulet on a test plate for the present study). The pattern of 
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the lines is modulated from the surface of the test object. By comparing the modulated pattern 

and a reference image, the 3D profile of the test object with respect to the reference plane (i.e., 

the thickness distribution of the water droplet/rivulet flow) can be retrieved quantitatively and 

instantaneously. The fundamental principles and more details of the technique including image 

correlation algorithm, displacement to height calibration procedure, accuracy verification and 

sample measurements about wind-driven film flow over flat plate were described in our previous 

paper (Zhang et al. 2013).  

In order to quantitatively examine the water mass trapped effects due to the presence of the 

local ice roughness, in the present study, the DIP technique is used to achieve whole-field 

thickness measurement of the wind-driven surface water film flows over a rouged surface. The 

airflow boundary layers were measured by PIV technique to investigate the possible reasons of 

this trapped effect. Both the water mass trapping effect and the transient behaviors of surface 

waves are characterized based on the quantitative DIP measurement results (i.e., film thickness, 

water mass trapped ratio, surface wave frequency, wave length). The water mass transport 

behavior revealed from the present experimental study will be used to validate and verify the 

numerical simulation results reported in previous studies.  

2. Experiment setup  

Figure 4-1 illustrates the schematic of the DIP experiment setup used in the present study. The 

experiment was conducted in an open circuit low-speed wind tunnel. The wind tunnel has a 

Plexiglas test section with a dimension of 300×200×140mm (L×W×H). As shown in Fig. 4-2, a 

flat plate with a dimension of 250×150 mm (L×W) was flush mounted at the bottom of test 

section. The test models were 3D printed by using a rapid prototyping machine with white 

coating to enhance the diffuse reflectivity for the DIP measurements. The water film flow was 
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injected from a water outlet holes array, which has 23 uniformly distributed liquid outlet holes. 

The array is located of at the entrance of the test plate model. The water outlet holes have a 

dimension of a array width W=7.9cm, a hole distance 3.5mm, and a hole diameter 2.0 mm. The 

water flow was supplied to the test model from a water tank through a flow meter (Omega 

FLR1010T-D), which can provide a fine measurement of the water flow rate. Two guide vanes 

were mounted at two sides of the test plate in order to generate a uniform water film flow on the 

test plate. A rounded edge was designed at the end of the test plate to ensure a smooth outflow as 

the water film flow left the test plate.   

As suggested by (Cobelli et al. 2009), a small amount of flat white latex dye was added into 

the water in order to enhance the diffusive reflection on the liquid surface for the DIP 

measurements. It should be noted that, the addition of the dye might change the physical 

properties of water, which would affect the behavior of the water film flows over the test plate.  

However, for the present study, with a low concentration of dye premixed within water (<1.0% 

in volume), the effects of the added dye for DIP’s measurements on the physical properties of 

water and the dynamic behaviors of the unsteady wind-driven surface water flows over the test 

plate are believed to be relatively small.  In the present study, three different wind speeds 10m/s, 

15m/s, 20m/s and three flow rates 12.7ml/min/cm, 25.3ml/min/cm, 38.0ml/min/cm were 

employed during the experiments.  

For the test cases to study wind-driven water film flow over roughed surface, two insert 

blocks with roughness arrays, as shown in Fig. 4-2(b, c), were installed in the center of the test 

plate. One relatively short roughness array block has 5 rows of staggered roughness pattern 

whereas the longer roughness array block has 13 rows of staggered roughness pattern. The 

diameter of a roughness element is D=2mm. The spacing between roughness elements is 1.2D. 
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The height of the roughness is rH =1mm. The corresponding 𝐻𝑟 𝛿⁄  ranged from 0.18 to 0.26, 

where 𝛿 is the boundary layer thickness. As suggested in (Rothmayer and Hu 2013), the 

roughness height distribution of a single roughness element was defined by equation (4.1),  
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Where N is the number of roughness elements, rH  denotes the roughness peak height, R

denotes the radius of a roughness element, ir  denotes the distance from the center of 𝑖𝑡ℎ 

roughness element to the point (x, y), 6m   in the present study. The obtained single roughness 

geometry profile was used to generate the roughness array models by using Solidworks software.  

 
Figure 4-1 Experiment setup used in the present study  

(a)    
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(b)  (c)  

Figure 4-2 Models used in the present study. (a) Test plate geometry.  (b) Zoom-in view of the 

short roughness array. (c) Zoom-in view of long roughness array.  

In the present study, A Digital DLP projector was used to project grid cross line into the test 

plate. A CCD camera (1280×1024) with a M3514-MP lens (F/1.4, f=16mm) were used for the 

image acquisition. The CCD camera and the projector were synchronized by using a digital delay 

generator. The frame rate of the CCD camera was set to 60.0 Hz with 1.5ms exposure time. The 

measurement window was centered at the roughness array center with a window size of 

approximately 80mm×64mm. The projected grid size was about 15×15 pixels (i.e., 1×1mm in 

physical domain), which was also the interrogation window size of the cross-correlation 

calculation used during the data processing of the DIP measurements. The CCD camera and the 

projector were aligned along the spanwise direction in order to suppress the strong mirror 

reflection on the water film surfaces. 

During the experiments, a relatively low free stream velocity of the airflow (i.e., 𝑈∞ = 5𝑚/𝑠) 

and relatively high water flow rate (i.e., water flow rate of 𝑞 = 38.0𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚) were used to 

enable the water flow to wet the whole test plate at first.  Then, the wind speed was adjusted to 

20m/s to generate uniform thin water film flow on the test plate. Finally, the wind speed and 

water flow rate were set to the desired values. For each test case, 600 images (10s) were 

collected after the water film flow reached to the steady state condition. The DIP image 

processing was performed by correlating each acquired image with the reference image to 
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determine the film thickness distributions instantaneously. The obtained DIP measurement 

results were interpolated to regular grid points for further analysis. It should be noted that the 

wind-driven film thickness is very thin (<1mm). Although, the test plate was carefully adjusted 

to be leveled with the wind tunnel bottom, the obtained film thicknesses were not the same if the 

test plate was reinstalled in the wind tunnel. This inconsistency will cause a bias error for the 

values of water mass trapped ratio. The film flows over the flat plate without the roughness array 

were measured twice to guarantee that the comparison between film flow over the flat plate and 

over the short roughness array as well as the comparison between the film flow over the flat plate 

and over long roughness array are two measurement pairs. Due to the shadow effect caused by 

the roughness array, the DIP measurement results within the roughness range were not accurate. 

In the following section, those DIP measurement results are provided only as a reference.  

The water film flows over the test plate were driven by the airflow through the shear stress at 

the air-water interface.  In the present study, a high-resolution digital Particle Image Velocimetry 

(PIV) system was used to reveal the flow characteristics of the boundary layers over the film 

surface and over roughness arrays. Figure 4-3 shows the schematic of experimental setup used 

for the PIV measurements. During the PIV measurements, the airflow was seeded with ~1μm oil 

droplets by using a fog generator. Illumination was provided by a double-pulsed Nd:YAG laser 

(New wave Gemini 200) adjusted on the second harmonic and emitting two pulses of 200 mJ at 

the wavelength of 532 nm. A high-resolution 14-bit CCD camera (PCO. 2000) was used for PIV 

image acquisition with the axis of the camera perpendicular to the laser sheet. The CCD camera 

and the double-pulsed Nd:YAG laser were connected to a host computer via a digital delay 

generator (BNC565), which controlled the timing of the laser illumination. For the PIV image 

processing, flow velocity vectors were obtained using a frame-to-frame cross-correlation 
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technique involving successive frames of image patterns of particle in an interrogation window 

of 32×32 pixels. An effective overlap of 50% of interrogation windows was employed in the PIV 

processing. After the instantaneous velocity vectors were derived, time-averaged velocity 

distribution were obtained from a time sequence of 450 images of instantaneous PIV 

measurement results.  

In the present study, the characteristics of the airflow boundary layer were measured under the 

free stream velocities 𝑈∞ = 10𝑚/𝑠, 𝑈∞ = 15𝑚/𝑠 and 𝑈∞ = 20𝑚/𝑠. A small amount of flat 

white latex dye (<1% in volume) was added into the water as well, which kept the water flow 

conditions of PIV measurements consistent with DIP measurements. Only one film flow rate 

𝑞 = 25.3𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚 was tested which is thought to be the representation of airflow over film 

flows. Airflow boundary layers over the flat plate, in front of and behind the long/short 

roughness arrays were measured. For the flat plate boundary layer measurements, the PIV 

measurement windows were located in the center of the test plate (blue window in Fig. 4-3), 

which is 125mm away from the inlet of test plate. The size of the PIV measurement window is 

about 20×20mm with spatial resolution about 0.16×0.16mm. For roughness array boundary layer 

measurements, the PIV measurement windows were located in front of and behind the roughness 

array (red windows in Fig. 4-3). The laser sheet was carefully aligned to the center of the 

roughness arrays. In order to protect the camera, the measurement windows were set to about 

0.1-1mm above the film flow. Airflow boundary layers without film flow were also measured as 

reference boundary layers. 
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Figure 4-3 Schematic experimental set up used for PIV measurement 

3. Airflow boundary layer above the surface water film flows 

3.1. Effects of water film flow on the boundary layer profile 

Figure 4-4 shows the time-averaged flow velocity distribution within the airflow boundary 

layer over the flat plate model without water film flow. In Fig. 4-4, 𝑦 denotes the distance away 

from the flat plate surface. 𝑠 denotes the stream wise direction where 𝑠/𝑑 = 0 is the center of the 

measurement windows. As described in the experiment setup, the measurement window was 

located 125mm away from the leading edge of the test plate model. δ denotes the 0.99 boundary 

layer thickness. D denotes the diameter of the roughness element. The axes in Fig.4-4 were 

normalized by the boundary layer thickness and the roughness diameter respectively. The 

boundary layer thickness (at the location 𝑠/𝐷 = 0) of free stream velocity 𝑈∞ = 10𝑚/𝑠 was 

found to be about 2.8mm, while the boundary layer thickness of the airflow free stream velocity 

𝑈∞ = 20𝑚/𝑠 was about 2.2mm. Seen from Fig. 4-4, the boundary velocity distributions are 

similar to laminar flow velocity distribution. Laminar flow boundary layer was supposed and 

equation (4.2) was used to predict the value of 𝑥, which is the equivalent distance away from the 

leading edge of a semi-infinite flat plate.  
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The obtained x values were then used to calculate the 𝜂 value by the transform of 𝜂 =

𝑦√𝑈∞ 𝜈𝑎𝑥⁄ . By extracting the time-averaged PIV measurements data along the line of 𝑠/𝐷 = 0, 

the measurement airflow velocity profiles within the boundary layer were compared with the 

Blasius solution. The comparison is plotted in Fig. 4-4(d). The experimental curves are almost 

identical with the Blasius solution. On the other hand, the boundary layer shape factors were 

found around 2.7 for the current study (2.6 for laminar flow boundary). Obviously, the boundary 

layers of airflow over the flat plat without water film flow were laminar flow boundary layer. 

The transition of a semi-infinite flat plate occurs at a critical Reynolds number 𝑅𝑒𝑥,𝑐𝑟𝑖𝑡 ∼ 3.5 ×

105 − 106 (Schlichting and Gersten 2000). The Reynolds numbers of the current study based on 

the calculated distance x were about 𝑅𝑒𝑥 ∼ 1.6 − 4.0 × 105, which were close to the lower limit 

of the critical transition Reynolds number. The turbulence intensity of the tunnel used in the 

current study was about 0.35% (at the center of test section). The surface of the test plate was 

carefully wet-sanded to smooth finish using 2000 grit sandpaper. The obtained laminar flow 

boundary layer profile was predictable. In the following discussion, the measurement boundary 

layer profiles over the flat plate without film flow are used as the standard laminar boundary 

layer profiles. 
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(a)  (b)  

(c)  (d)  

Figure 4-4 Time-averaged PIV measurement results of the airflow boundary layer above flat 

plate without water film flow. (a) 𝑈∞ = 10𝑚/𝑠. (b) 𝑈∞ = 15𝑚/𝑠. (c) 𝑈∞ = 20𝑚/𝑠. (d) 

Comparison of velocity profile with Blasius solution  

Figure 4-5 shows the effects of the water film flow on the airflow boundary under low free 

stream velocity (i.e., 𝑈∞ = 10𝑚/𝑠). Figure 4-5(a) shows the instantaneous boundary layer 

velocity distribution over the flat plate without film flow. Figure 4-5(b) and (c) show the 

instantaneous airflow boundary layer velocity distribution at different times over the water film 

surface. Figure 4-5(d) shows the repeatability of the experiment by comparing three runs of 

measurements. As discussed above, Fig. 4-5(a) can be considered as a typical instantaneous 

laminar flow boundary layer velocity distribution. Figure 4-5(b) is generally the same as Figure 

4-5(a), whereas turbulence boundary layer features were observed in Fig. 4-5(c). The velocity 
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distributions shown in Fig. 4-5(b) and (c) were from snapshots of the same experiment (3
rd

 

experiment shown in Fig. 4-5(d)). The change of boundary layer style proves that the airflow 

boundary layer was sometimes a laminar boundary layer and sometimes a turbulent boundary 

layer, which is the typical intermittent behavior during the laminar to turbulent transition 

process. The boundary layer thicknesses on the film flow were much larger than the 

corresponding boundary layer thicknesses on the flat plate without film flow (e.g., 5.2mm vs 

2.8mm). The shape factors of the cases with film flow were around 1.8 which is a typical shape 

factor for transition flow. Those features all demonstrate the film flow could induce laminar to 

turbulent transition. Fig. 4(d) shows that the transition process is random and may not happen. 

Three repeated experiments were performed to check the transition behavior. Transition behavior 

only happens during one of the experiments. The time-average boundary layer profile of the 

transition one is in between laminar boundary layer profile and 1/7
th

 power law profile which is 

considered as fully developed turbulent.  

This transition behavior is believed to be induced at the upstream water outlet position where 

the water layer thickness was much larger than the local boundary layer thickness. The 

maximum Reynolds number of the current study is about 𝑅𝑒𝑥~4.0 × 105 which is just slightly 

larger than the lower limit of the critical transition Reynolds number  𝑅𝑒𝑥,𝑐𝑟𝑖𝑡 ∼ 3.5 × 105. The 

transition process was initialed randomly for all three free stream velocities. Figure 4-6 shows 

the time-averaged boundary velocity distributions over the flat plate with film flow. The 

distributions shown in Fig. 4-6 were obtained from the same experiment (the third experiment in 

Fig. 4-5(d)). For all three velocities, the velocity distribution is similar. However seen from the 

boundary layer profiles, the profile of the  𝑈∞ = 20𝑚/𝑠 case is closer to a fully turbulent profile. 

Once the transition was not happened, the effect of film flow was found to increase the 
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turbulence intensity within the boundary layer and increase the boundary layer thickness. 

However, both the turbulence intensity and boundary layer thickness were much smaller than the 

transition boundary case values. 

(a)  (b)  

(c)  (d)  

Figure 4-5 Intermittent phenomenon of boundary layer over film flow under free stream velocity 

𝑈∞ = 10𝑚/𝑠, estimated (a) Instantaneous laminar flow boundary layer over flat plate without 

film flow. (b) Instantaneous laminar flow like boundary over flat plate with film flow. (c) 

Turbulent boundary layer over flat plate with film flow (snapshot in the same experiment of case 

(b)). (d) Time-average boundary layer profiles over flat plate     
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(a)  (b)  

(c)  (d)  

Figure 4-6 Time-average airflow boundary layer over flat plate with film flow. (a) 𝑈∞ = 10𝑚/𝑠 

(b) 𝑈∞ = 15𝑚/𝑠 (c) 𝑈∞ = 20𝑚/𝑠 (d) Time-average velocity profiles over flat plate 

3.2. Effects of surface roughness on boundary layer 

Figure 4-7 shows the velocity distributions in front of and at the back side of the roughness 

array. In Fig. 4-7, 𝑠 is also the local coordinate along the stream wise direction but the origin 

point is located at the edge of the roughness array. In order to compare the flow features of both 

short and long roughness array, both 𝑠 and 𝑦 coordinate were normalized by the diameter of 

roughness array element (𝐷 = 2𝑚𝑚). The free stream velocity 𝑈∞ = 20𝑚/𝑠 is selected to 

reveal the influences of roughness shape on the boundary layer flow. Seen from Fig. 4-7, the 

boundary layer velocity distributions of the short roughness and the long roughness were similar. 

The first column of Fig. 4-7 shows the flow field in front of roughness arrays. It can be seen that 



90 

 

 

 

the roughness arrays can only influence the boundary layer flow at the range where the airflow 

approaches the roughness. The second column of Fig. 4-7 shows the flow field at the back side 

of the roughness arrays. Flow separations were detected right behind the roughness. The 

separation range can reach the downstream location at about 𝑠/𝑑 = 4. This observation is in 

agreement with Winkler and Braggair’s work (1996) where the flow separation behind a 

roughness element was detected as well. The boundary layer was raised up by the separation 

range and recovered to the laminar flow boundary at 𝑠/𝑑 = 4. The normalized turbulent kinetic 

energy (TKE) distributions behind the roughness arrays are given in Fig. 4-8. The TKE value of 

flow field behind long roughness array was much higher than the TKE value behind short 

roughness array, which is predictable.  

  
(a) In front of roughness (b) Back side of roughness 

A. Short roughness array 

  
(a) In front of roughness (b) Back side of roughness 

B. Long roughness array 

Figure 4-7 Time-averaged velocity distribution in front of and after the roughness array at free 

stream velocity 𝑈∞ = 20𝑚/𝑠 
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(a) In front of roughness (b) Back side of roughness 

B. Long roughness array 

Figure 4-8 Turbulence intensity distribution at the back side of the roughness array at free 

stream velocity 𝑈∞ = 20𝑚/𝑠 

  
(a) In front of roughness (b) Back side of roughness 

Figure 4-9 Time-average boundary layer velocity profiles in front of and at the back side of 

roughness for experiment case 𝑈∞ = 20𝑚/𝑠 without film flow. The location of the velocity 

profile is 𝑠/𝐷 = −8 in front of the roughness and 𝑠/𝐷 = 8 at the back side of roughness 

Figure 4-9 gives the boundary layer profiles far away from the roughness arrays. Fig. 4-9(a) 

exhibits the boundary layer profiles at location 𝑠/𝑑 = −9 which is in front of the roughness 

array whereas Fig. 4-9(b) shows the boundary layer profiles at location  𝑠/𝑑 = 9 which is at the 

back side of roughness array. For both short and long roughness array cases, the boundary layer 

profiles were matched with the laminar flow boundary profile. No transition behavior was 

observed during the tests. Actually for both short and long roughness case, when the boundary 

layer flow field were far away from the roughness arrays (|𝑠/𝑑| > 4), the boundary layer 

thickness in front of roughness were equal to the boundary layer thickness at the back side of the 

roughness array. However, compared with boundary layer thickness value without a roughness 
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array, the boundary layer thicknesses with the roughness arrays were about 20% thicker. The 

results indicate that the roughness array only influence the boundary at a limited range of  

0< 𝑠/𝑑<4.  Outside this range the boundary layer is similar to the boundary layer without 

roughness array. 

3.3. Boundary layer profiles in front and at back side of roughness with film flow 

The combination effects of the roughness array and film flow on the airflow boundary layer 

are illustrated in Fig. 4-10. The first column of Fig. 4-10 shows the boundary layer profiles at 

location 𝑠/𝑑 = −8 (in front of the roughness array). The second column of Fig. 4-10 shows the 

boundary layer profiles at location 𝑠/𝑑 = 8 (at back side of the roughness array). Seen from Fig. 

4-10(A), at low wind speed 𝑈∞ = 10𝑚/𝑠, the boundary profiles were generally laminar flow 

boundary layer profiles. For wind speed 𝑈∞ = 15𝑚/𝑠 cases, the boundary layer profiles in front 

of the roughness arrays were laminar boundary layer profiles as well. However, laminar to 

turbulent transition happened at the back side of the roughness arrays. Moreover, the boundary 

layer profile of the long roughness array case was closer to fully developed turbulent which 

means higher shear stress at water-air interface. The wind speed 𝑈∞ = 20𝑚/𝑠 cases exhibits the 

same trend as the  𝑈∞ = 15𝑚/𝑠 cases. In summary, the combination of roughness array and film 

flow could induce flow transition.   
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a. In front of roughness b. Back side of roughness 

A. 𝑈∞ = 10𝑚/𝑠 

  
a. In front of roughness b. Back side of roughness 

B. 𝑈∞ = 15𝑚/𝑠 

  
a. In front of roughness b. Back side of roughness 

C. 𝑈∞ = 20𝑚/𝑠 

Figure 4-10 Time-average boundary layer velocity profiles in front of and at the back side of 

roughness for experiment cases with film flow. The location of the velocity profile is 𝑠/𝐷 = −8 

in front of the roughness and 𝑠/𝐷 = 8 at the back side of roughness 
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4. Film flow over roughness and water mass trapped ratio 

4.1. Transient behavior of the water film flows over flat plate with and without the 

roughness array 

Figure 4-11 shows the instantaneous film thickness distributions of the cases that wind-driven 

water film flows over the test plates without the roughness array.  Water flow rate 𝑞 =

25.3𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚 is selected to represent the transient behaviors of the film flow. The 

measurement coordinate is normalized by the diameter of the roughness element 𝐷 = 2𝑚𝑚. L 

denotes the distance from the center of the roughness array along the stream wise direction. W 

denotes the distance away from the centerline of the test plate. The origin point of the coordinate 

is located at the center of the roughness array. The flow structures of the film flow over the flat 

plate without roughness can be considered as the reference to study the behaviors of the water 

film flows passing through roughness arrays. As shown in the Fig. 4-11, regular, long 

wavelength, 2D surface water waves were observed under free stream velocity 𝑈∞ = 10𝑚/𝑠. As 

the free stream velocity increases to 15𝑚/𝑠, the surface water waves were found to exhibit as 

sharp-crest shallow water waves, which demonstrates the free surface motion is disturbed by the 

bottom of the test plate. Meanwhile, the wave fronts broke along the spanwise direction. Figure 

4-11(b) shows the spanwise wave crest separation process at the free stream velocity 𝑈∞ =

15𝑚/𝑠. Tiny arc shape wave fronts were observed under free stream velocity 𝑈∞ = 20𝑚/𝑠. 

Those tiny waves were randomly distributed within the entire film flow range. The DIP 

measurements were also conducted at the water film flow rate 𝑞 = 12.7𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚 and 

𝑞 = 38.0𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚. Although the propagation speeds and frequencies of the water surface 

waves were found to decrease with increasing water flow rates, the behaviors of the wind-driven 

water film flows of cases 𝑞 = 12.7𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚 and 𝑞 = 38.0𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚 were found to be 
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very similar to behaviors of the 𝑞 = 25.3𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚 case in general.  In summary, the transient 

behaviors of the wind-driven water film flow over the flat plate seem to be more sensitive to the 

free stream speed of the airflow and less sensitive to the water film flow rate.  

The instantaneous film thickness distributions of the water film flow over the test plate with 

the short roughness array and long roughness array are displayed in Fig. 4-12 and 4-13 

respectively. The flow behaviors of the short roughness cases were similar to behaviors of the 

long roughness cases. As shown in Fig. 4-12, the roughness array performed as a dam for the 

water film flow when the free stream speed was relatively low (i.e., 𝑈∞ = 10𝑚/𝑠). The film 

thickness in front of the roughness array was found to be much thicker than the corresponding 

film thickness without the roughness array. For the cases under higher airflow free stream 

velocities, the surface water was found to accumulate downstream of the roughness array. As 

shown in Fig. 4-7, airflow separation was detected right after the roughness array. The water 

mass accumulation near the roughness array observed in the present study is believed to be 

closely related to the airflow separation behind the roughness elements. As shown in Fig. 4-12b 

and Fig. 4-12c, water tended to flow between the roughness elements, as a result, span wise 

humps could be observed along the downstream trapped water line. Surface wave structures 

exhibited similar behaviors as the cases of the water film flows over the flat plate without 

roughness. 2D regular waves showed up at the air-water interface at low wind speed as well. 

Those 2D waves were found to be interrupted by the roughness array, however, appeared again 

at the downstream range. Irregular sharp-crest waves were detected for the cases with higher 

wind speeds. 
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(a) 𝑈∞ = 10𝑚/𝑠 

 

(b) 𝑈∞ = 15𝑚/𝑠 

 

(c) 𝑈∞ = 20𝑚/𝑠 

Figure 4-11 Instantaneous film thickness measurement results of the wind-driven water film flow 

over flat plate at the water flow rate of q=25.3 ml/min/cm 
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(a) 𝑈∞ = 10𝑚/𝑠 

 

(b) 𝑈∞ = 15𝑚/𝑠 

 

(c) 𝑈∞ = 20𝑚/𝑠 

Figure 4-12 Instantaneous film thickness measurement results of the wind-driven water film flow 

over short roughness at the water flow rate of q=25.3 ml/min/cm 
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(a) 𝑈∞ = 10𝑚/𝑠 

 

(b) 𝑈∞ = 15𝑚/𝑠 

 

(c) 𝑈∞ = 20𝑚/𝑠 

Figure 4-13 Instantaneous film thickness measurement results of the wind-driven water film flow 

over long roughness at the water flow rate of q=25.3 ml/min/cm 

4.2. Power spectrum analysis of the water surface waves 

Based on the time sequences of the instantaneous DIP measurement results which were given 

in Fig. 4-11-4-13, a power spectrum analysis of the water film thickness was also performed to 

reveal the characteristics of the surface water waves under different test conditions. As shown in 
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Fig. 4-14, the DIP measurement results at three typical locations, Point #1 upstream of the 

roughness array (i.e., at 𝐿/𝐷 = −16, 𝑊/𝐷 = 0), Point#2 at the center of the roughness array 

(i.e., at 𝐿/𝐷 = 0, 𝑊/𝐷 = 0), and Point#3 downstream of the roughness array (i.e., at 𝐿/𝐷 =

16, 𝑊/𝐷 = 0), were chosen to carry out the power spectrum analysis through a Fast Fourier 

Transform (FFT) procedure.  It should be noted that, since the frame rate of the CCD camera was 

set to 60 Hz for the DIP measurements and 600 images were captured for each test case, the 

maximum identifiable frequency of the current measurement is 30Hz with a temporal resolution 

of 0.1Hz.   

 

 

   

c. 𝑈∞ = 10𝑚/𝑠 d. 𝑈∞ = 15𝑚/𝑠 e. 𝑈∞ = 20𝑚/𝑠 

Figure 4-14 Power spectra of the water film thickness at the point # 1 with the airflow free 

stream velocity changing from 𝑈∞ = 10𝑚/𝑠 to 𝑈∞ = 20𝑚/𝑠 and the water film flow rate being 

kept at 𝑞 = 25.3𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚.   

 

Figure 4-14 gives the power spectrum of the water film over the flat plate at the upstream 

location  point #1 (i.e., at L/D=-16, W/D=0) with airflow free stream velocity changing from 

 

 

 

Point #1  
Point #2  

Point #3  

Locations of the three compared points 
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𝑈∞ = 10𝑚/𝑠 to 𝑈∞ = 20𝑚/𝑠. The water film flow rate was kept constant at 𝑞 = 25.3𝑚𝑙/𝑚𝑖𝑛/

𝑐𝑚. As shown in Fig. 4-14(a), with the airflow free stream velocity being relatively low (i.e., 

𝑈∞ = 10𝑚/𝑠),  a well-defined peak at the dominant frequency of  𝑓1= 6.8 Hz can be identified 

from the power spectrum plot, which corresponds to the propagation frequency of the 2D regular 

water surface waves shown in Fig. 4-11(a). As the free stream velocity increased from 10m/s to 

15m/s, although the surface wave displayed as isolated long wave features, the generated wave 

was still periodic wave. The dominant frequencies of the water surface waves can still be 

identified from the power spectrum plot. The dominant wave frequency for the wind speed 

𝑈∞ = 15𝑚/𝑠 case was found to become 𝑓1= 4.9 Hz, which was much lower than the frequency 

of the  𝑈∞ = 10𝑚/𝑠 case. As the airflow free stream velocity further increased to 𝑈∞ = 20𝑚/𝑠, 

the wave broke along the spanwise direction and generated many local arc wave fronts. Those 

small wave fronts were considered as isolated waves as well. The dominant wave frequency was 

𝑓1= 9.0 Hz which is much larger than the wave frequencies of lower free stream conditions. 

Figure 4-15 gives the power spectrum plots of the water film flow over the test plate with and 

without the roughness array under condition of free stream velocity 𝑈∞ = 10𝑚/𝑠  and water 

film flow rate 𝑞 = 25.3𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚. It can be seen that, the dominant frequencies of the water 

surface waves were found to stay the same as the surface waves were propagating downstream. 

Very similar scenarios were found for the wind-driven water film flow passing through the 

roughness array. The result demonstrates that both short and long roughness array will not 

change the surface wave propagation frequency. Even at the center of the roughness array (e.g., 

at the point#2 with L/D=0, W/D=0), the dominant frequencies of the water surface waves are 

still the same, as shown clearly in Fig. 4-15.(B), (C).  
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(a) Point #1 (b) Point #2 (c) Point #3 

A. Wind-driven water film flow over the flat plate 

   
(a) Point #1 (b) Point #2 (b) Point #3 

B. Wind-driven water film flow over the flat plate with short roughness 

   
(a) Point #1 (b) Point #2 (b) Point #3 

C. Wind-driven water film flow over the flat plate with long roughness 

Figure 4-15 The power spectrum plots of the water film flow over the test plate with and without 

the roughness array with the airflow free stream velocity 10 / sU m   and water film flow rate  

𝑞 = 25.3𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚 

Table 1 The dominant frequencies of the water surface waves of short roughness condition 

𝑈∞ (m/s) 𝑞 (ml/min/cm) ℎ̅ (mm) ℎ𝑟
̅̅ ̅ (mm) 𝑓1 (Hz) 𝑓2 (Hz) 

10 12.7 0.34 0.44 6.0 6.1 

10 25.3 0.52 0.64 6.8 6.8 

10 38.0 0.67 0.82 7.3 7.4 

15 25.3 0.17 0.16 4.8 4.7 

15 38.0 0.21 0.20 5.4 5.3 
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Table 2 The dominant frequencies of the water surface waves of long roughness condition 

𝑈∞ (m/s) 𝑞 (ml/min/cm) ℎ̅ (mm) ℎ𝑟
̅̅ ̅ (mm) 𝑓1 (Hz) 𝑓2 (Hz) 

10 12.7 0.47 0.47 5.8 5.7 

10 25.3 0.7 0.69 6.8 6.7 

10 38.0 0.83 0.83 7.4 7.1 

15 25.3 0.15 0.21 4.9 4.6 

15 38.0 0.23 0.25 5.5 5.3 

20 25.3 0.07 0.07 9.0 8.6 

20 38.0 0.10 0.10 10.4 9.7 

 

Based on the power spectrum analysis results, the dominant frequencies of the wind-driven 

water surface waves at different test conditions can be obtained, which are listed in Table 1 and 

2. Table 1 shows the comparison of dominant frequencies between film flow over flat plate 

without roughness array and film flow over flat plate with short roughness array. Table 2 shows 

the comparison of dominant frequencies between film flow over flat plate without roughness 

array and film flow over flat plate with long roughness array. As discussed in the experiment 

setup section, the measurements on film flow over flat plate were performed twice. The first 

column and second column in Table 1 and 2 show the airflow free stream speed and the unit 

width flow rate of the water film flow, respectively. In Table 1 and 2, ℎ̅ denotes the time-

averaged film thickness of water film flow at the measurement point #1 (i.e., at 𝐿/𝐷 =

−16, 𝑊/𝐷 = 0) for the test cases without roughness array on the test plate,  ℎ𝑟
̅̅ ̅ denotes the time-

averaged film thickness of the water film flow at the same measurement point #1 for the test 

cases with the roughness array on the test plate. 𝑓1 is the dominant frequency of the water surface 

waves for the cases without the roughness array, 𝑓2 refers the dominant frequency of the water 
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surface waves for the cases with the roughness array on the test plate. Seen from Table 1, the 

discrepancies between the dominant frequencies of the driven surface waves on the flat plate and 

the frequencies of surface waves on the flat plate with short roughness was less than 0.1Hz, 

which indicates that the existence of the roughness array would have almost no effect on the 

propagation frequencies of the wind-driven surface waves.  It should also be noted that, for the 

same airflow free stream velocity 𝑈∞ = 10𝑚/𝑠 and the same water flow rates, the film thickness 

values of  ℎ𝑟
̅̅ ̅ were found to be about 30% higher than the corresponding ℎ̅  values.  It indicates 

that the propagation frequencies of the wind-driven surface waves seem to be less sensitive to 

film thickness.  

4.3. Time-averaged results and water mass trapped ratio 

Figure 4-16 shows the time-averaged film thickness distributions of the wind-driven water 

film flows over the test plate with the airflow free stream velocity changing from 𝑈∞ = 10𝑚/𝑠 

to 𝑈∞ = 20𝑚/𝑠. The water film flow rate was kept in constant at 𝑞 = 25.3𝑚𝑙/𝑚𝑖𝑛/𝑐𝑚.  As 

shown in those figures, the time-averaged film thickness distributions of the water film flow over 

the flat plate were found to be quite smooth for all three wind speeds. As the wind speed 

increases, the time-averaged film thickness was found to decrease from 0.4mm to 0.05mm.  

The time-averaged film thicknesses for the cases of the wind-driven water film flows over the 

roughness array are given in Fig. 4-17 and Fig. 4-18. Figure 4-17 shows the cases of the film 

flow over the short roughness array and Figure 4-18 shows the cases of the film flow over the 

long roughness array. For the same wind speed, the time-averaged film thickness distributions of 

film flow over both the short and long roughness were similar. A U-shaped film thickness 

distribution was found in front of the roughness array at relatively low wind speed 𝑈∞ = 10𝑚/𝑠 

(Fig. 4-17(a)). For the cases with relatively high wind speeds (i.e., the cases of 𝑈∞ = 15𝑚/𝑠 and 
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𝑈∞ = 20𝑚/𝑠), the time-averaged film thickness distributions of the water film flow over the 

roughness array were found to be smooth surfaces as well. In comparison with those of the cases 

without the roughness array, the main differences were found to be the trapped water mass at the 

downstream of the roughness array (Fig. 4-17(b), (c)). 

 

(a) 𝑈∞ = 10𝑚/𝑠 

 

(b) 𝑈∞ = 15𝑚/𝑠 

 

(c) 𝑈∞ = 20𝑚/𝑠 

Figure 4-16 Time average film thickness measurement results of the wind-driven water film flow 

over flat plate at the water flow rate of q=25.3 ml/min/cm 
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(a) 𝑈∞ = 10𝑚/𝑠 

 

(b) 𝑈∞ = 15𝑚/𝑠 

 

(c) 𝑈∞ = 20𝑚/𝑠 

Figure 4-17 Time average film thickness measurement results of the wind-driven water film flow 

over short roughness at the water flow rate of q=25.3 ml/min/cm 
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(a) 𝑈∞ = 10𝑚/𝑠 

 

(b) 𝑈∞ = 15𝑚/𝑠 

 

(c) 𝑈∞ = 20𝑚/𝑠 

Figure 4-18 Time average film thickness measurement results of the wind-driven water film flow 

over long roughness at the water flow rate of q=25.3 ml/min/cm 

Figure 4-19 and Figure 4-20 shows the time-averaged film thickness profiles at the centerline 

of the surface water film flow under different test conditions. Both  ℎ̅ and ℎ𝑟
̅̅ ̅  were found to 

increase with the increase of water film flow rate; however those two values were found to 

decrease with the increase of the airflow free stream velocity. As shown in first column of Fig. 4-
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19 and Fig. 4-20, for the cases of the water film flow over the flat plate without the roughness 

array, the time-averaged film thickness was found to decrease almost linearly along the stream 

wise direction. For the cases of the water film flow over the flat plate with the roughness array, it 

is observed that the roughness array would raise the film downstream of the roughness array. At 

the range upstream of the roughness array, the roughness was performed as a barrier to block the 

film flow at the low free stream velocity but had limited effects when the free speed velocity 

bigger than 15m/s. The influence range of the roughness array was found to decrease with the 

increase wind speed. As shown clearly in Fig. 4-19(A) and Fig. 4-20(A), due to the existence of 

the roughness array, the water film flow thicknesses downstream of the roughness array were 

raised up until 8D distance away from the roughness. However, for cases of the free stream wind 

speed increased to 𝑈∞ = 15𝑚/𝑠 and 𝑈∞ = 20𝑚/𝑠, the roughness array can only influence the 

downstream flow range 4D distance away from the roughness. The DIP measurement results are 

in agreement with the PIV measurement result shown in Fig. 4-7. 

As suggested by Rothmayer and Hu (2014) , the roughness induced trapped water mass was 

defined as the total water mass held in place about the roughness. The dimensionless trapped 

water mass ratio was given as: 

 *

3
( ) ( )t

t

water

m h y z
m d d

L L L L
    (4.3) 

Where 𝑚𝑡
∗ is the dimensionless water trapped mass, L is the characteristic length. As given in 

Equation (4.3), the trapped water mass ratio would be the ratio of the water mass held in place by 

the roughness array to the water mass that would be within the region of interest if the test plate 

is flat. Based on the DIP measurement results, the time-averaged water mass trapped ratio, 〈𝑀𝑇〉̅̅ ̅̅ ̅̅ , 

can be calculated by using the following equation: 
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Where  ℎ𝑟
̅̅ ̅ is the time-averaged film thickness of the water film flow over the roughness array, 

ℎ̅ is the time-average film thickness of the water film flow over the flat plate without the 

roughness array, subscript 𝑖 is the index of the measurement points along stream wise direction, j 

is the index of the measurement point along the span wise direction. As shown in Fig. 4-19 and 

Fig. 4-20, for the cases with relatively low wind speed, the water mass would be blocked by the 

roughness array and the water mass was found to be trapped mainly at the upstream of the 

roughness array. For the cases of higher wind speeds, the water mass was found to be trapped 

mainly at the downstream range of the roughness array. For the test cases with the same wind 

speed, the obtained mass trapped ratio curves were found to have similar distribution pattern, 

regardless of the water film flow rate. For film flow over short roughness cases, as the airflow 

free stream velocity increase from 𝑈∞ = 15𝑚/𝑠  to 𝑈∞ = 20𝑚/𝑠, the maximum value of the 

water mass trapped ratio 〈𝑀𝑇〉̅̅ ̅̅ ̅̅  for the 𝑈∞ = 20𝑚/𝑠 case was found to be about four times higher 

than the of the 𝑈∞ = 15𝑚/𝑠 case. The measurement results reveal clearly that, the water mass 

trapped ratio is very sensitive to the wind speed, but less sensitive to the flow rate of the water 

film flow over the test plate.  

The same trend was obtained from the result of the long roughness trapped ratio plots (Fig. 4-

20 (B), (C)). However, the trapped ratio of the film pass the long roughness array was much 

smaller than the trapped ratio of the film flow over the short roughness array. As the airflow 

turbulent kinetic energy was much higher for the long roughness cases. A small raise of the film 

thickness might help the airflow overcome the adverse pressure gradient and prevent flow 

separation, which decreased the mass trapped effect.  
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(a) Flat plate (b) Short roughness (c) Mass trapped ratio 

A. 10 /U m s   

   
(a) Flat plate (b) Short roughness (c) Mass trapped ratio 

B. 15 /U m s   

   
(a) Flat plate (b) Short roughness (c) Mass trapped ratio 

C. 20 /U m s   

Figure 4-19 Time-averaged film thickness profiles and the water mass trapped ratio of short 

roughness array cases 

   
(a) Flat plate (b) Long roughness (c) Mass trapped ratio 

A. 10 /U m s   
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(a) Flat plate (b) Long roughness (c) Mass trapped ratio 

B. 15 /U m s   

   
(a) Flat plate (b) Long roughness (c) Mass trapped ratio 

C. 20 /U m s   

Figure 4-20 Time-averaged film thickness profiles and the water mass trapped ratio of long 

roughness array cases 

5. Conclusions 

An experimental study was conducted to study the transient behavior of the wind-driven water 

film flows over a roughness surface.  A novel digital image projection (DIP) system was used to 

achieve time-resolved measurements of the film thickness distributions of the surface water film 

flows over a flat plate and roughness arrays. The water mass trapped effect induced by the 

roughness array was evaluated in details. The conclusions derived from the present experimental 

study can be summarized as follows: 

 PIV measurements were performed to characterize the boundary layer flow of the 

current study. The boundary layer over a flat plate with roughness and film flow was a 

laminar flow boundary layer. The water film flow could induce a laminar to turbulent 

boundary layer transition. This transition process occurred randomly. Airflow would 
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separate behind the roughness array. Boundary layer flow transition could be initiated 

by the combined effect of film flow and roughness as well. Compared with the short 

roughness array case, the boundary layer profiles after the airflow passed the long 

roughness array were closer to a fully developed turbulent boundary.  

 For the case with relatively low wind speed at 𝑈∞ = 10𝑚/𝑠, long wavelength, regular 

2D surface waves occurred on the wind-driven film flow. For the case with higher 

wind speed 𝑈∞ = 15𝑚/𝑠 and 𝑈∞ = 20𝑚/𝑠, irregular, sharp-crested surface waves 

were found to appear. The dominant frequencies of the surface waves were found to 

be more sensitive to the free stream velocity. The presence of the roughness array 

seems to have almost no effects on the frequencies of the surface waves. 

 The trapped effect of the roughness array on the water film flows exhibits two 

different behaviors. For the case with relatively low wind speed at 𝑈∞ = 10𝑚/𝑠, the 

trapped effect was found to be mainly in front of the roughness array, i.e., the 

roughness array was found to perform as a dam to the incoming surface water film 

flow. For the cases with higher wind speed at 𝑈∞ = 15𝑚/𝑠 and 𝑈∞ = 20𝑚/𝑠, the 

water mass trapped effect was located mainly at the back side of the roughness array. 

The water mass trapped effect was found to be very sensitive to the wind speed, but 

less sensitive to the flow rate of the water film flow over the test plate. Longer 

roughness array will decrease the mass trapped effect. 
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CHAPTER 5 

 

AN EXPERIMENTAL STUDY ON WIND-DRIVEN WATER RIVULET/FILM FLOWS 

OVER AN AIRFOIL PERTINENT TO AIRCRAFT ICING PHENOMENA 

Abstract: Aircraft icing is a serious threat to aviation safety. Icing accretion process usually 

interacts with surface water run back flow under glaze icing condition. Advancing the 

technology for safe and efficient aircraft operation in icing conditions requires a better 

understanding of the underlying physics of complicated thermal flow phenomena pertinent to 

aircraft icing phenomena, both for the icing itself as well as for the water runback along 

contaminated surfaces of wing surface. In the present study, an experimental investigation was 

conducted to characterize the surface wind-driven water film/rivulet flows over a NACA 0012 

airfoil in order to elucidate the underlying physics of the transient surface water transport 

behavior pertinent to aircraft icing phenomena. The experimental study was conducted in an 

icing research wind tunnel available at Aerospace Engineering Department of Iowa State 

University. A novel digital image projection (DIP) measurement system was developed and 

applied to achieve quantitative measurements of the thickness distributions of the surface water 

film/rivulet flow at different test conditions. The measurement results reveal clearly that, after 

impinged on the leading edge of the NACA0012 airfoil, the micro-sized water droplets would 

coalesce to form a thin water film in the region near the leading edge of the airfoil. The 

formation of rivulets was found to be a time-dependent process and relies on the initial water 

runback flow structure. The width and the spacing of the water rivulets were found to decrease 

monotonically with the increasing wind speed. The film thickness icing scaling law is evaluated 

by the time-average measurement film thickness. The measurement results show good 

consistency with the analytical scaling predictions. 
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1. Introduction 

  Aircraft icing is due to the supercooled water droplets impinging and subsequent icing in the 

surface of the airplane. There are two types of icing accretion processes: glaze icing and rime 

icing. In a dry regime, all the water collected in the impingement area freezes on impact to form 

rime ice. For a wet regime, only a fraction of the collected water freezes in the impingement area 

to form glaze ice and the remaining water runs back and can freeze outside the impingement 

area. Because of its wet nature, glaze ice is the most dangerous type of ice. It causes airplane 

performance degradation (Bragg et al. 1986) and inhibits the control of airplane (Ranaudo et al. 

1991). Water beads, rivulets and film flows run back along the airfoil surface during glaze icing 

condition (Olsen and Walker 1987). The behaviors of surface water run back flows will 

redistribute the impinging water mass and disturb the local flow filed, as a result, influence the 

icing accretion process and aerodynamic characteristics of the aircraft. In this work, an 

experimental investigation was conducted to quantify important micro-physical processes of 

water runback on an airfoil surface which are pertinent to aircraft icing. 

Wind-driven water thin films over airfoil surfaces and flat plates have been studied both 

theoretically and experimentally. Theoretical study on water film over an flat plate by Nelson 

(1995) provided steady smooth film thickness solution which increases along stream direction. 

Feo (2001) and Rothmayer (2003) suggested a scaling law that relates steady film thickness with 

Reynolds number and Liquid Water Content (LWC). The wave generation of wind-driven liquid 

films over flat plate had been examined for small disturbances (Craik 1966, Miesen and Boersma 

1995, Ueno and Farzaneh 2011). Tsao et al (1997) investigated the stability of a thin film over an 

airfoil surface. In those works, water-air interface becomes unstable and surface waves arise 

under certain film thickness conditions. Boundary layer theories were developed to describe the 



115 

 

 

 

more complex interfacial waves on thin liquid films (Rothmayer et al. 2002, Rothmayer and 

Tsao 2000).  The formation of local roughness and water beads were observed during airfoil 

icing tests (Anderson and Ruff 1998, Olsen and Walker 1987). The incipient motions of water 

beads and film flows over roughness had been examined by Rothmayer (Rothmayer and Hu 

2013, Rothmayer and Tsao 2001, Wang and Rothmayer 2009). The mechanism of initial 

roughness formation underneath wet surfaces was considered as the instability effect of ice 

surface (Otta and Rothmayer 2009, Rothmayer and Hu 2012). An spray water airfoil test at 

NASA Lewis (Glenn) research center revealed that the water runback flow on an airfoil can be 

divided into fully wetted film flow range and partly wetted rivulets range (Gelder and Lewis 

1951). A number of studies have been done to model the formation of rivulets (Al-Khalil et al. 

1990, Marshall and Ettema 2004, Thompson and Jang 1996, Thompson and Marrochello 1999). 

Previous experimental investigations about surface water flows over aerodynamic shapes 

generally illustrated the macro water flow phenomena by analyzing videos taken in the 

experiments (Hansman and Barsotti 1985, Hansman and Craig 1987, Olsen and Walker 1987, 

Thompson and Jang 1996). The important micro-physical processes such as film thickness 

distribution, contact line moving velocity and wet surface area can not be well revealed in those 

experiments. Advanced experimental techniques capable of providing accurate measurements to 

reveal the micro-transient phenomenon of surface water behavior like film thickness, wavy 

surface structure, rivulet width, and contact angle and rivulet front speed are highly desired.  

In the present study, a digital image projection (DIP) system is developed to achieve non-

intrusive thickness measurements of wind-driven water droplet/rivulet flows over a NACA0012 

airfoil in order to elucidate the mechanisms of the unsteady surface water transport process 

pertinent to icing and rain phenomena. The DIP technique is based on the principle of structured 
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light triangulation in a similar manner as a stereo vision system but replacing one of the cameras 

for stereo imaging with a digital projector. The digital projector projects line patterns of known 

characteristics onto the test specimen (i.e., a water droplet/rivulet on a test plate for the present 

study). The pattern of the lines is modulated from the surface of the test object. By comparing 

the modulated pattern and a reference image, the 3D profile of the test object with respect to the 

reference plane (i.e., the thickness distribution of the water droplet/rivulet flow) can be retrieved 

quantitatively and instantaneously. The fundamental principles and more details of the technique 

including image correlation algorithm, displacement to height calibration procedure, accuracy 

verification and sample measurements about wind-driven film flow over flat plate were 

described in Zhang et al., (2013).  

In the following sections, section 2 describes the complete experiment set up for 

measurements of wind-driven thin water rivulet/film flows over a NACA 0012 airfoil surface. 

Section 3 shows water film/rivulet thickness measurement results. The transient process of 

developing water runback flow is revealed. Average film thickness is obtained and agrees with 

theoretical analysis. Section 4 presents conclusion remarks. 

2. Experiment setup 

Figure 5-1 illustrates the schematic of the experiment setup for the thickness measurement of 

thin water rivulet/film flows over a NACA 0012 airfoil surface. The experiments were performed 

in ISU-Goodrich Icing Research Tunnel (IGIRT). The wind tunnel has a plexiglass test section 

with cross section dimension of 25.4×25.4cm (W×H). Three internal mix air atomization nozzles 

are installed in the upstream of the tunnel contract section. Pressure regulators were used to 

control the spray nozzle’s air and water supply incoming pressure. The spray water flow rate was 

monitored by a flow meter (Omega FLR1010ST-D). The Liquid Water Content (LWC) and 



117 

 

 

 

droplet Mean Volume Diameter (MVD) can be controlled by adjusting the spray nozzle water 

pressure and air supply pressure. In order to avoid spray water beads blocking the light paths of 

camera and projector, only two of the spray nozzles were used to generate a cloud of spray water 

droplets. The spray air supply pressure and spray water supply pressure for the nozzle are 45 and 

20 psi respectively. A small amount of flat white latex paint (1% volume fraction) was added 

into the spray water for enhancing the diffusive reflection on the liquid surface. A NACA0012 

airfoil model with chord length c=101mm was installed in the center of the test section. The 

model was 3D printed by a rapid prototyping machine. To improve the diffuse reflectivity of the 

model surface, the test model was coated with flat white paint. The painted surface of the test 

model was carefully sanded. In present study, all experiments were conducted with zero angle of 

attack (AOA=0º) at room temperature. Five different wind speeds 10m/s, 15m/s, 20m/s, 25m/s 

and 30m/s (𝑅𝑒 = 0.67 × 105 − 2.02 × 105) were employed. 

 
Figure 5-1 Experimental setup used in the present study 

The DIP system set up is generally the same as our previous experiments (Zhang et al 2013). 

Dell DLP projector (M109S) was used to project cross line grid to the upper surface of the airfoil 
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model. A CCD camera (DMKBU2104) with a Pentax C1614-M lens (F/1.4, f=16mm) were used 

for image acquisition. The CCD camera and the projector were synchronized by a digital delay 

generator. Camera speed was set to 30FPS with an exposure time of 2ms. For each measurement, 

1200 images (60S) were recorded after the spray nozzle was active. The field of view of the 

CCD camera is approximately 11cm×8cm. The projected grid size on the captured image is 7×7 

pixels (1.1×1.1mm), which is also the interrogation window size for the cross-correlation 

calculation. The relative location of camera and projector was aligned along the span wise 

direction to suppress the mirror reflection of the film/rivulet surface and avoid fake cross-line 

displacement due to the curvature surface of the model. Figure 5-2 shows the typical reference 

and deformed displacement images. The pictures of the projected cross grid pattern on the airfoil 

model surface were used as reference images, as shown in Fig. 5-2(a). Compared with a flat plate 

substrate, the grid crosses were pre-bended. Figure 5-2(b) shows the typical displacement vector 

field due to presence of film/rivulet flows. Those vectors were converted to actual film/rivulet 

thickness using the displacement-to-height parameter map that was obtained in the calibration 

process. 

   
                (a). Reference image             (b). Deformed image with water rivulets 

Figure 5-2 Typical acquired DIP images   
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3. Result and Discussion  

3.1. Initial developing process of water runback flow over an airfoil surface 

Figure 5-3 - 5-5 shows the time history results of thickness measurements of thin film and 

rivulet flows under wind speed from U =10m/s to U =20m/s. Seen from Fig. 5-3 to Fig. 5-5, 

DIP measurement system successfully characterized the whole process of water surface flows. 

The global structure of rivulet flows were well reconstructed, especially the irregular saw tooth 

like shape. Rivulets’ fronts, rivulets’ width, interfacial waves on the rivulets surface were clearly 

indicated. The results demonstrate the robustness and feasibility of DIP measurement system. 

The uniform film flow thickness near the leading edge region was well detected as well. 

However, the accuracy of the measurement needs to be verified because the film thickness close 

to the stagnation line is the same level as the typical background measurement error (0.1 pixel 

displacement in the raw picture or 20 micrometer). Note that these measurements were 

conducted with a camera field of view that covered the whole airfoil surface. Better 

measurement accuracy might be achieved by refined level of measurement window that focuses 

on the nose region of the airfoil. In the following section, the process of airfoil water run back 

flow, the mechanism of formation of rivulet flow and scaling laws pertinent to leading edge film 

thickness will be discussed in details. 

Figure 5-3 to Figure 5-5 illuminate the water runback flow procedure under different free 

stream wind speeds. As displayed in Fig.  5-3, under low wind speed condition (i.e., U =10m/s), 

several tiny rivulets were generated near the airfoil leading edge at the initial spray stage (Fig. 5-

3(a)). Then the impinging droplets wetted the whole airfoil surface and formed a uniform water 

film within the direct impinging range. At the same time, those tiny rivulet fronts merged with 

each other as they flowed downstream. A uniform film flow front that showed a hump shape was 
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detected (Fig. 5-3(b)). As the film flowed further downstream, surface waves appeared and the 

film front became unsteady and displayed saw tooth shape. At a certain point the film fronts edge 

broke into rivulets (Fig. 5-3(c)). As rivulets flowed back to the tail of the airfoil, the wetted area 

of the airfoil was stable and did not change any more (Fig. 5-3(d)). For higher wind speed cases 

(i.e., U =20m/s), tiny rivulets appeared and merged with each other at the initial spray stage 

(Fig. 5-5(a), and Fig. 5-5(b)). However spray water tended to flow into the rivulet paths. No 

hump shape film front was generated. Finally, the runback flow exhibited uniform film flow at 

the front of the airfoil surface and rivulets flowed beyond the film flow range (Fig. 5-5(d)). The 

water runback flow behavior under wind speed U =15m/s could be considered as an internal 

process between U =10m/s and U =20m/s. The film flow front was more irregular with small 

breakout shapes which displayed rivulet feature (Fig. 5-4(b)). The runback flow behavior was 

very similar for the cases of wind speed U >20m/s. The flow phenomena of U =25m/s and U 

=30m/s could be represented by the flow phenomena of U =20m/s. 

The surface water behaviors are controlled by surface tension, aerodynamic shear stress and 

pressure force. Notice that tiny rivulets appeared near the airfoil leading edge for all of the wind 

speeds. This phenomenon is consistent with Olsen and Walker’s observations of above freezing 

temperature condition experiments (Olsen and Walker, 1987). According to Olsen and Walker’s 

experiments, the impinging water will first form water beads. When the water beads grows large 

enough, the aerodynamic force overcome the surface tension force and water beads flow 

downstream along airfoil surface. Ueno and Farzaneh demonstrated the vertical and horizontal 

air shear stress force is negligible compared with surface tension under wind speed U = 5m/s 

(Ueno and Farzaneh, 2011). Near the stagnation line, the local wind speed is very small. As a 

result, even free stream wind speed is large, static water beads still form near the stagnation line 
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and generate tiny rivulets after they grow large enough. Those tiny rivulets/beads and their 

subsequent icing might cause the local ice thickness to increase. Otta and Rothmayer confirmed 

that a local increase in ice height leads to more cooling from the airflow and cause rapid ice 

accretion at that point (Otta and Rothmayer, 2009). So the tiny rivulets could be the start point of 

icing instability. 

Franc et al., (1999) presented the collection efficiency experiment results of a 2D NACA 

0012 airfoil with 0.9144m of chord. The experiment was performed with a free stream velocity 

44.4m/s, angle of attack 0º and spray droplets MVD=20µm. The results show the collection 

efficiency β of the airfoil surface with wrap distance S>2%c was smaller than 0.1. Similar 

numerical simulation result were presented by Da-Silveira et al. (2003). Papadakis et al., (1994) 

gave experimental collection efficiency coefficients of a swept wing with the NACA 0012 airfoil 

cross section. Papadakis et al. found that the area of collection efficiency β>0.25 was about 

within wrap distance S<3%c. The relative higher collection efficiency range was very narrow 

with impinging limit less than 20% of chord length. Based on the previous experiments, we 

assume that the direct impinging range of the model used in current study is small (<5%c). 

According to our observation, the thicknesses of the initial rivulets decreased after they 

flowed in to low collection efficiency range. The skin friction significantly decreases along the 

chord length as well (suppose no turbulence transition at the initial spray stage). Under low wind 

speed condition, those rivulets stagnated at a certain location xs on the upper surface of the airfoil 

(around 10% chord length). Meanwhile, the tiny rivulets continuously generated and flowed to 

the stagnation line. By this way, water accumulated near the stagnation line and formed hump 

shape film front (Fig. 5-3(b) and Fig. 5-4(b)). The sum of local pressure difference and 

aerodynamic shear stress exceeded the local surface tension restriction and hump film front 
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flowed back along the stream direction. As can be seen from Fig. 5-4(b), the film front was more 

instable for higher aerodynamic force. On the other hand, under higher free stream velocity 

conditions, initial tiny rivulets slowed down and merged with coming rivulets (Fig. 5-5(a) and 

Fig 5-5(b)). After the rivulets grew large enough, they accelerated again and the oncoming 

impinging water flowed into the rivulets path. There was no uniform film front generated. The 

rivulet width might depend on the acceleration rivulet thickness. 

         
a). t=1s                                                              b). t=5s 

 

         
c). t=15s                                                              d). t=20s 

Figure 5-3 DIP measurement results of wind speed U =10m/s. 
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a). t=0.5s                                                              b). t=3.0s 

 

         
c). t=6.0s                                                              d). t=12.0s 

Figure 5-4 DIP measurement results of wind speed U =15m/s. 

         
a). t=0.5s                                                              b). t=1.0s 

 

         
c). t=2.0s                                                              d). t=6.0s  

Figure 5-5 DIP measurement results of wind speed U =20m/s. 

3.2. Evaluation of rivulet formation models on airfoil surface  

Thompson and Jang (1996) and Tompson and Marrochello (1999) introduced a rivulet 

formation model which stated that the rivulets will be formed where the air shear stress surpasses 
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the restraining force due to surface tension. According to Thompson’s paper, rivulet formation 

occurs at the location where 

  2

,0.5 1f c airC U cos      (5.1) 

𝐶𝑓,𝑐 is the local skin friction coefficient, σ is the liquid surface tension, θ is the liquid-solid 

contact angle. Thompson’s model is based on the steady state theoretical analysis of rivulet 

formation. As discussed in the above paragraphs, the rivulet formation on the airfoil surface was 

a time-dependent process. For wind speed U =10m/s and U =15m/s, before the hump film front 

broke into rivulets, the hump front was getting thicker and surface waves occurred due to the 

block of film front. Figure 5-6 shows the film front break point at wind speed 10m/s and 15m/s. 

The left column of Fig. 5-6 shows the film/rivulet thickness distribution at the film flow break 

point. The right column of Fig. 5-6 displays the film thickness profile along the streamwise 

direction at the breaking point. Figure 5-6 revealed that rivulet formation was highly influenced 

by water surface waves under low wind speed condition. The wave crest thickness approached 

0.9mm which is 15% of maximum airfoil thickness. As a result the air pressure at the backside of 

the water wave was considerably strong. The sum of the pressure force and shear stress 

surpassed the surface tension restraining force and caused the rivulet front flow downstream. For 

higher wind speed conditions, rivulet fronts formed shortly after the beginning of impinging. The 

liquid contact line between the rivulets still moved downstream after the rivulets front formed. 

The final steady water contact line between rivulets displayed a wedge shape. The vector 

direction of the sum of surface pressure force, shear stress and surface tension must be along the 

wedge shape contact line edge as well. Instead of steady 2D analysis, 3D theory is needed to 

determine the stable water contact line and forecast rivulet configuration.  
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(a). 𝑈∞ = 10𝑚/𝑠, film front break point  (b). Film/rivulet thickness (red plane) 

  

  
(c). 𝑈∞ = 15𝑚/𝑠, film front break point (d). Film/rivulet thickness (red plane) 

Figure 5-6 DIP measurement result at film front break point 

Al-Khalil presented a rivulet model base on three criterions: mass flow rate of film and rivulet 

is equal, energy of film flow and rivulet is equal, rivulet energy is minimum at the steady rivulets 

configuration (Al-Khalil et al., 1990). The three criterions are modeled by the following 

equations in Al-Khalil’s paper: 

 
f rQ Q  (5.2) 

 
f rE E  (5.3) 

 
0rE

F 

  
   

 (5.4) 

Where F is the wetness factor and λ is the ratio of rivulet width to wetness factor. Wetness 

factor F is defined as the fraction of the surface that is wetted by runback flow at a particular 

downstream location. By applying those three criterions, Khalil introduced a critical 

dimensionless film thickness ℎ+ = ℎ𝑜
3 [6𝜇2𝜎 𝜌𝜏2⁄ ]⁄ , where ℎ𝑜 is dimensional local film 



126 

 

 

 

thickness, τ is shear stress, and ℎ+ is the minimum dimensionless thickness of an unbroken, 

stable film. Al-Khalis’s model considers the film thickness near the leading edge of an airfoil is 

thinner than the critical film thickness. Within the impinging limit, spray water force to wet the 

whole surface of airfoil. Rivulet immediately forms right behind the impinging limit. However, 

seen from Fig. 5-6(a), the hump film front is the thickest area of the whole film and the film flow 

region definitely exceeds the impinging limit (< 20%c). For higher wind speed, the formation of 

initial rivulets influences the stable rivulet configuration. In steady impinging droplets wetting 

the surface, the film-rivulet connection line moves down stream due to the blowing of air flow. 

Al-Khalis did not consider the dynamic balance of shear stress, surface pressure and surface 

tension at the stable contact line. The formation of rivulets is a time-dependent process as well. 

As a result, the steady state rivulets are not necessary to evolve to the minimum energy status. 

3.3. Average surface water distribution and steady state scaling law of water layer on 

airfoil  

Time average rivulet/film thickness distributions are shown in Fig. 5-7. The time-averaged 

thickness was calculated by 500 measurements after the steady wetted area was formed. It is 

displayed clearly that, as wind speed increase, film/rivulet thickness, leading edge film length, 

the spacing between rivulets and rivulets’ width all decreased. The leading edge film lengths 

changed from 40% chord to 20% chord as the free stream velocity changed from 10m/s to 30m/s. 

To elucidate the tendency of surface water distribution along chordwise direction, average 

surface water thicknesses at the centerline of rivulets are plotted in the right column of Fig. 5-7. 

Rivulets near the center of measurement windows are selected to extract the data and the data 

extraction lines are parallel with chord line. Because of the imperfect thin rivulet boundary and 

the limitation of measurement spatial resolution, the data extraction line can not stay in the center 
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of the selected rivulet. As a result, the thickness profile of cases U =25m/s and U =30m/s are 

different with other cases. Shown in Fig. 5-7, the surface water thickness kept increasing along 

the chord length of the airfoil for all the wind velocities. Because of surface tension effect, a 

sharp increasing of water thickness was detected near the trailing edge. The leading edge film 

thickness changed from 150 to 10 µm as the wind speed increase. From wind speed 10m/s to 

25m/s, The average rivulets’ width at streamwise location x=60mm (60%c) were 18.5mm, 

11.2mm, 5.6mm, 3.3mm respectively. It is interesting that the wetted factor (F=50%) was almost 

the same for wind speed 15m/s, 20m/s and 25m/s. Due to the limitation of measurement spatial 

resolution (1.1×1.1mm), the average rivulets’ width under  the condition 𝑈∞ = 30𝑚/𝑠 is not 

accurate , we establish the width is around 2mm. 

  
a). Average film thickness b). Film/rivulet thickness profile 

(a). Wind speed U =10m/s 

 

  
a). Average film thickness b). Film/rivulet thickness profile 

(b). Wind speed U =15m/s 
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a). Average film thickness b). Film/rivulet thickness profile 

(c). Wind speed U =20m/s 

  
a). Average film thickness b). Film/rivulet thickness profile 

(d). Wind speed U =25m/s 

  
a). Average film thickness b). Film/rivulet thickness profile 

(e). Wind speed U =30m/s 

Figure 5-7 Time-averaged water film/rivulet thickness result 

(Left column: contour plots of time-average film thickness distributions. Right column: 

film/rivulet thickness profile at the centerline of the rivulets along chordwise direction) 

Nelson presented a non-similar boundary layer theory for water film flow in flat plate driven 

by laminar airflow (Nelson et al., 1995). Nelson assumed the velocity profile within the water 

film is linear. Using two boundary conditions: (i) Flow rate of film is constant, (ii) Shear stress at 

the water-air interface is continuous, Nelson derived that film thickness is proportional to x
1/4

, 

where x denotes the distance away from the flat plate leading edge. Tsao et al. (1997) and Ueno 



129 

 

 

 

& Farzaneh (2011) obtained the same scaling law using similar but different methods. In Ueno & 

Farzaneh’s paper (2011), thin water film flow over flat surface was modeled. Water was supplied 

at the leading edge of flat plate with a constant flow rate. Ueno made the following 

approximations: (i). airflow and water flow are both laminar flows. (ii). The velocity profile 

within the water film is linear, in the other word, (i.e., film flow is dominated by viscous effect 

and the inertia force can be neglected). (iii). The obtained film thickness is steady state value. 

The influence of the presence of surface waves is ignored. (iv). The only water supply in 

Farzaeh’s simulation was at the leading edge of flat plate, no spray droplet impinging was 

considered.  

 Then, Blasius’s equation was used to model the undisturbed laminar air flow. For water film, 

Ueno assumed the following scaling: ho = C1xa, ula = C2xb. Where ula denotes the water-air 

interface horizontal velocity. The constants, 𝐶1, 𝐶2, a and b, were determined from the two 

boundary conditions. First, the volumetric water flow rate per width is constant: 

 
1

1 2 * *

0 0

/
oh

a b

w l lQ l u dy C C x u dy    (5.5) 

Where 𝑄/𝑙𝑤 is the unit width film flow rate, 𝑢𝑙∗, 𝑦∗ is normalized interfacial velocity and 

thickness. Second, the horizontal shear stress at interface is continuous: 
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 (5.6) 

Where 𝜇𝑙, 𝜇𝑎 is the viscosity of water and air, 𝑓𝑎 is the normalized stream function, 𝑓𝑎
′′ is a 

constant. From equation (5.6), 𝑏 − 𝑎 = −1/2. 𝑄/𝑙𝑤 is constant along streamwise direction, form 

Equation (5.5), 𝑎 + 𝑏 = 0. Consequently, 𝑎 = −1 4⁄ , 𝑏 = −3 4.⁄  𝐶1, 𝐶2 are also determined by 

equation (5.5), (5.6). The relationship between film thickness and film flow rate, wind speed, 

distance away from leading edge is expressed as: 
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 

1/2 3/4 1/4~ /o wh Q l U x


 (5.7) 

Feo (2001) and Anderson & Feo (2002)  measured water film thickness on a stagnation-point 

probe surface in INTA 2.8×1.7m wind tunnel. The geometry of the stagnation-point probe was a 

cylindrical shape with diameter d=120mm.  A single air-atomizing nozzle was installed in the 

open test section to generate water spray. However, three type of spray nozzles SUJ 12A, SUJ12, 

SUJ22B were used. Those nozzles were operated under different water and air pressure to obtain 

desired LWC and MVD. The tests covered the LWC range 3~14 g/m
3
, the MVD range 15-

160µm and free stream velocities 20~55 m/s. All of the tests were performed at ambient 

temperature. The experiment results are plotted in Fig. 5-8. By doing correlation of the measured 

film thickness, Feo (2001) suggested that the film thickness has a LWC and Reynolds number 

scaling: 

 1/2 1/4Reh d LWC 
 (5.8) 

 

Figure 5-8 Feo’s (2001) film thickness correlation 

This scaling law is verified analytically by Rothmayer (Rothmayer, 2003). Rothmayer 

assumed that the droplets impact uniformly and continuously on the surface of the stagnation 

probe. The ultimate equilibrium film thickness was determined from a balance between the water 
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mass that was added to the film due to spray droplets impact and the mass that transported by the 

film to the side wall of the probe. The rate of mass added to the surface element with streamwise 

arc length ds is proportional to LWC*ds. The mass flux within the film was modeled as 𝜌𝑙𝑉𝑙𝐴. 

Equating the above two mass flux gives: 

 
~ LWCdsl lV A  (5.9) 

Where 𝜌𝑙 is water density, 𝑉𝑙 denotes average streamwise direction velocity within film flow, 

A is the cross section area of the film flow.  

The average streamwise direction velocity within film flow 𝑉𝑙 was determined by the shear 

stress balance in the interface of water and air. For shallow water surface, the streamwise stress 

balance at air-water interface was given by (Rothmayer and Tsao, 2001): 

 1 1

l a

u u
Re M Re

y y

     
   

    
 (5.10) 

Where M denotes the water to air viscous ratio which is a constant for current work. Suppose 

the velocity profile in the film is linear, then (
𝜕𝑢

𝜕𝑦
)

𝑙
=

𝑢𝑙𝑎

ℎ𝑜
 . Near the bottom of boundary layer,  

(
𝜕𝑢

𝜕𝑦
)

𝑎
~𝑅𝑒1/2 (Rothmayer and Tsao, 2000). Substitute those two terms into equation (5.10), the 

average streamwise direction velocity can be expressed as 𝑉𝑙~𝑅𝑒1/2𝑀−1ℎ𝑜. Substitute 𝑉𝑙 into 

equation (5.9), the average local film thickness behaves like: 

 (1/2) ( 1/4) (1/2)/   ( )oh c LWC Re M  (5.11) 

Although equation (5.11) is used to compare with Feo’s experimental film thickness on a 

point-stagnation probe, it is not limited by the model shape. Furthermore, the scaling analysis is 

also not limited by the range where the impinging water mass rate equals the water mass flux 

within the film. For film flow over an airfoil surface beyond impinging limit, the water mass flux 
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is coming from the mass flow rate generated by the collected spray droplets within the impinging 

limit. The ultimate water mass flux balance can be rewrite as: 

 
~ LWCl l imV A s   (5.12) 

Where 𝑠𝑖𝑚 denotes the airfoil arc length within the impinging limit, β denotes the average 

collection efficiency. 𝑠𝑖𝑚 and β can be considered as constants under specific conditions (i.e. 

MVD, LWC, free stream velocity, temperature are fixed). By doing the same analysis, equation 

(5.11) still works for film flow propagation range. 

Actually, we find that Ueno’s work confirms with Feo’s scaling law. Suppose that the LWC 

distribution is uniform within the whole test section, then the LWC is proportional to 𝑄𝑠 𝑈∞⁄ , 

unit width film flow rate 𝑄 𝑙𝑤⁄  should be proportional to 𝑄𝑠, where 𝑄𝑠 denotes spray water flow 

rate. Substitute those two relations into equation (5.11), we have 

 
 

1/2 3/4 1/2/ ~ /o wh c Q l U M


 (5.13) 

This formula is generally the same as equation (5.7) except lack the 𝑥1/4 term. The derivation 

of the two scaling law are similar, the discrepancy is due to the different expressions for air 

streamwise shear stress.  

For the current work, the spray water flow rate 𝑄𝑠 is fixed. The unit width film flow rate is the 

same under different wind speed conditions. Figure 5.9 plots the film thickness versus the ¼ 

power of wrap distance s within film flow range. Wrap distance s is defined as the arc length that 

starts from the stagnation point. Seen from Fig. 5.9, the leading edge film thickness is 10-100µm. 

Whereas, the estimated laminar boundary layer thickness based on the chord length of airfoil is 

1-2mm. Film thickness is only a small fraction (5%) of the boundary layer thickness. The 

Couette flow approximation within the film is reasonable. The global profiles in the film flow 

region exhibit exponent growing trend. However, the film thickness profiles are generally linear 
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curve when the wrap distance s
1/4

>1.9 (s>13mm, x>11.5%). The results are encouraging and 

show a good agreement with Nelson’s theory (The 𝑥1/4 scaling is first introduced by Nelson). 

The thickness profile near the airfoil leading edge is not proportional to 𝑥1/4 due to three 

reasons: (i) Nelson’s theory assume a constant water flow rate near the leading edge, which leads 

to the theory failing near the leading edge. The film thickness proportional to 𝑥1/4  must start 

from certain point downstream. (ii) The leading edge of the NACA 0012 airfoil is a curvature 

shape. Flat plate analysis result is comparable with airfoil shape when the radian of the airfoil 

surface is small. (iii)  Note that the film thickness at the range s<13mm is less than 15 µm. 

Cross-correlation generally has sub-pixel accuracy, corresponding to 20 micrometers 

measurement uncertainty. Additionally, the project light ray may enter into the liquid and cause 

diffusion effect. Measurement error caused by this diffusion effect is still not clear. The 

inconsistency between current measurement and Nelson’s theory may be caused by the 

measurement error. 

   

(a). Wind speed  U =10m/s   (b). Wind speed U =15m/s 
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(c). Wind speed U =20m/s              (d). Wind speed U =25m/s 

 

(e). Wind speed U =30m/s 

Figure 5-9 Film thickness vs 𝑠1/4 power scaling 

Film thickness at streamwise location x=16, 18, 20, 22mm (16%-22%c) under different wind 

speed conditions were plotted in Fig. 5.10(a). The film flow at that range was far away from the 

direct impinging range, so the film flow propagated downstream. Additionally, the curvature of 

the airfoil surface is small as well. The experimental film thickness is comparable with Ueno’s 

analysis. Shown in the Fig. 5.10(a), film thickness profiles are similar. Film thickness 

monotonically decreases with free stream velocity except for U =15m/s whose film thickness is 
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almost the same as the film thickness of wind speed condition U =20m/s. This odd thickness 

might be caused by the influence of surface waves at the water-air interface. Due to our previous 

experimental study on the wind-driven film flow, nonlinear surface waves with wave height 

higher than the average film thickness were observed under free stream velocity condition 

𝑈∞ = 15𝑚/𝑠 (Zhang et. al., 2013). However, for free stream velocity 𝑈∞ = 10𝑚/𝑠, no surface 

waves were observed. For free stream velocity 𝑈∞ = 20𝑚/𝑠, shallow wave height surface 

waves were detected. Although, the wave pattern is also influenced by the water flow rate, due to 

our observation, higher crest height nonlinear wave is much more likely to generate under small 

water flow rate. We can predict that kind of nonlinear wave happened for free stream velocity 

𝑈∞ = 15𝑚/𝑠. However, for the free stream velocity larger or smaller than 15m/s, either 

moderate interfacial wave or no interfacial wave occurred in the film flow surface. Film flow 

with nonlinear waves is a highly unsteady flow, the steady linear velocity profile approximation 

within the film ceases to be valid. Additionally, the interfacial wave increase the mass flux 

within the film as well (Rothmayer and Tsao, 2000), as a result, film thickness decreases under 

condition 𝑈∞ = 15𝑚/𝑠. 

In order to evaluate the 𝑈∞
−3/4

 law, point x=20mm (20%c) was selected to compare the 

measurement ℎ𝑜 and ℎ𝑜 predicted by the scale law (Fig. 5.10(b)). The scaling law that predicts 

ℎ𝑜 is calculated by ℎ𝑜|𝑈∞
= (𝑈∞ 10⁄ )𝛼ℎ𝑜|𝑈∞=10. Where α is a scale parameter (e.g., 𝛼 = 0.75). 

As the icing tunnel does not have a honeycomb and screen structure, the airflow turbulence 

intensity is relatively higher. As discussed above, the continuity shear stress condition is used in 

Ueno’s derivation which leads to ℎ𝑜~𝜏−1/2, where 𝜏 is the skin fraction. In laminar flow, skin 

fraction τ is proportional to 𝑈∞
3/2

, as a result, ℎ𝑜~𝑈∞
−3/4

. For the current study, the Reynolds 

number ranges from 6.7×10
4
 to 2.0×10

5
. As described in Schlichting (2000), for turbulence flows 
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in this Reynolds number range, the velocity profile within the boundary layer follows the 1/7 

power law. The semi-empirical expression of the skin fraction coefficient of a flat plate is: 

 1/50.074fc Re  (5.14) 

Then, skin fraction is proportional to 𝑈∞
9/5

, so as ℎ~𝑈∞
−9/10

. We plot scaling parameter 

𝛼 = −0.75 and 𝛼 = −9/10 to exhibit the turbulence effect.  

In Fig. 5.10(b), for 𝑈∞ > 20𝑚/𝑠, both the -3/4 and -9/10 scaling film thickness is close to the 

measurement value. It proves that the thin film flow will not significantly influence the air 

boundary. The measurement ℎ𝑜 is thinner than the ℎ𝑜 forecasted by the -3/4 scaling and -9/10 

scaling is closer to the measurement result. The experimental film thickness is more consistent 

with turbulence scaling law analysis. There are inconsistencies for 𝑈∞=15m/s, as we discussed 

above, interfacial wave with deep wave height might generate on the film surface, which invalids 

the Couette flow approximation. As a result, the scaling analysis no longer works. 

 

(a) Film thickness profiles at streamwise location x=16, 18, 20, 22mm 
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 (b) Comparison of measurement film thickness with scaling law forecast film thickness at 

location x=20mm. 

Figure 5-10 Film thickness vs oncoming airflow velocity 

4. Conclusions 

An experimental study was conducted to achieve water film/rivulets flow thickness 

measurements on a NACA0012 airfoil surface at five different wind speeds by using a digital 

image projection (DIP) system. The whole process of surface water film/rivulet flow was well 

revealed from the time-resolved film/rivulet thickness distribution measurements. The formation 

of rivulets highly relies on the initial flow structure.  Film thickness scaling law is evaluated by 

the time-average film thickness profile. The conclusion derived from the experiments can be 

summarized as follows: 

 At the initial stage of the impingement of the water droplets, impinging water tends to 

generate tiny rivulets near the stagnation line of airfoil. For the case with relatively 

low wind speed at 𝑈∞= 10m/s and 15m/s, those tiny rivulets will stagnate and 

impinging water accumulate near the rivulets station line. A hump shape film front 

forms and run back slowly. Finally the film front breaks into rivulets. For the cases 

with relatively high wind speed (i.e., 𝑈∞  20 m/s), the initial tiny rivulets slow down 
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and merge with coming rivulets. The oncoming surface water flows tend to be 

transported only through formed rivulet paths. For all of wind speed, after the rivulets 

begin to shred from the trailing edge of the airfoil, the wetted area on the airfoil was 

found to be almost stable and does not change any more. 

 The rivulet formation procedure is found to be a time dependent process. The steady 

state rivulet configuration is influenced by the rivulets formed at the initial spray 

stage. Surface wave behaviors significantly influence the formation of rivulets when a 

hump film front appears.  

 Time-averaged surface water thickness distributions were determined after the water 

transport paths became stable. The measurement results illustrate that, the chordwise 

length of the water film near the airfoil leading edge, the spanwise spacing between 

the water rivulets and the width of each rivulet were all found to decrease 

monotonically with the increasing oncoming wind speed.  

 The propagation part of the leading edge uniform film thickness is proportional to s
1/4

 

and 𝑈∞
−9/10

.  
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CHAPTER 6 

GENERAL CONCLUSIONS 

A novel high-speed digital image projection (DIP) system is developed to achieve non-

instructive thickness measurements of water droplets and film/rivulet flows during the glaze 

icing process. The DIP technique can be considered as a further development of the DFP 

technique. In contrast to project sinusoidal patterns, grid line pattern, which is enlighten from the 

Molecular Tagging Velocimetry (MTV) technique, is used to reconstruct 3D shapes. By 

replacing the phase difference of sinusoidal patterns with displacement of grid points, the 

measurement bias error caused by the distortion of a projected sinusoidal pattern and the 

accumulated error generated by the two-dimensional phase unwrapping integration are totally 

avoided. The advantages of the DFP system, such as easy to set up, low cost, and non-contact 

whole field measurements at video speed, are persisted in the DIP technique. Moreover, the 

novel technique can achieve a more precise measurement with a lower requirement on the test 

image quality. The benefits of the novel technique were proved by reconstructing a spherical cap 

shape. The average measurement error of the DIP system was 0.04mm with a standard deviation 

of 0.04mm, which was much better than the average measurement error of the DFP system 

(0.12mm mean error with standard deviation of 0.08mm). The feasibility and implementation of 

the DIP system was then demonstrated by a series of experiment measurements of wind-driven 

film/rivulet flows over a flat plate, a roughness surface and an airfoil surface. The experiment 

results clearly reveal the dynamic features and transient micro-structures of those motions. Flow 

properties such as film/rivulet thickness, contact line angle and speed, and surface wave 

frequency and propagation speed, were quantitatively measured to elucidate the underlying 

physics of the water transport behaviors associated with aircraft icing. 
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Experimental study was performed to characterize the runback behavior of wind-driven 

rivulets under variety of wind speeds and water flow rates. The transient phenomena of wind-

driven rivulets front were exhibited. The instantaneous rivulets front contact line velocities were 

calculated by further processing the measured instantaneous rivulets thicknesses.  It is found that 

when the wind speed is low ( 𝑈∞ = 5𝑚/𝑠), a wide film front was generated. The film front was 

moved slowly but continuously. Further increased the wind speed ( 𝑈∞ = 10𝑚/𝑠,  𝑈∞ =

15𝑚/𝑠 ), the motion of rivulet fronts were pause-move process which was significantly 

influenced by the presence of surface waves. For the even higher wind speed ( 𝑈∞ = 20𝑚/𝑠), 

the rivulet front motion accelerated or decelerated as the surface wave crest or trough reached the 

rivulet front. However, the surface wave did not influence the rivulet motion for a long 

timescale. The Force Balance (FB) rivulet breaking criterion was evaluated and refined by the 

elucidated transient motion of rivulets and the instantaneous-micro structure of the rivulet flows. 

The height-width ratio of rivulet bodies was found to be a small value. As a result, the linear 

velocity distribution within rivulets’ body could be an well assumption to predict the inertia force 

of the rivulets. The aerodynamic force was found to apply on the bottom of the connection area 

between the rivulet front hump and the rivulet body. Therefore, the area difference between the 

rivulet front and rivulet body should be used to predict the aerodynamic drag. Rivulet 

meandering and the water mass trapping effect due to the meandered water-air contact line were 

revealed during the experiment. Wind-driven rivulet meandering instability threshold is modeled 

based on the force balance analysis between the inertia force, the capillary force and the 

aerodynamic drag. The relative importance of those force terms is determined by doing Scale 

analysis. It is found that the final rivulet meandering was a balance between the surface tension 
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and the aerodynamic drag. The deduced equation was then used to predict the yaw angles of 

meandered rivulets, which are in agreement with experimental results. 

The wind-driven water film flows over a flat/rough surface was quantified by the DIP 

technique. The air flow boundary layers over a film flow with roughness arrays were disclosed 

by the PIV measurements. The air boundary layer over the flat plate without the roughness array 

was found to be a laminar flow boundary. Although the air boundary separations were observed 

downstream of the roughness array, the influence area of the roughness array was found to be a 

limited range right behind the roughness element (𝑠/𝑑 < 4). The roughness itself would not 

disturb the air boundary layer at the region far away from the roughness array (𝑠/𝑑 > 8). 

Laminar to turbulent boundary layer transients were induced by the water film flow itself or 

combined effect of the film flow over a roughness surface. The DIP measurements show that the 

surface waves of the wind-driven film flow are sensitive the free stream velocity. Sinusoidal 

waves were observed for low wind speed (𝑈∞ = 10𝑚𝑠), whereas irregular sharp-crest surface 

waves were generated under higher wind speeds. The presence of roughness array will not 

change the propagation frequency of the film flow. The water mass trapped effect of roughness 

occurs right after the roughness. The trapped mass ratio due to the presence of roughness was 

obtained which shows that the trapped mass can be 10 times higher than the water mass of the 

original film flow. The trapping effect was found to be more sensitive to free stream velocity and 

less sensitive to film flow rate. The longer roughness array may decrease the mass trapping effect 

because of the higher turbulence intensity induced by the longer roughness surface.  

The DIP measurement system was used to investigate the wind-driven film/rivulet flows on 

an NACA0012 airfoil surface. The behaviors at the initial stage of water runback flow were 

disclosed in details. At the initial water runback stage, tiny rivulets occurred near the stagnation 
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line of airfoil. Under low wind speeds ( 𝑈∞ = 10𝑚/𝑠,  𝑈∞ = 15𝑚/𝑠), the rivulets stagnation 

period was long and the coming impinging water accumulated near the rivulets stagnation line. A 

hump shape film front was generated and ran back along airfoil slowly. Then the film front broke 

into rivulets and finally formed a steady film-rivulets surface water runback configuration. For 

higher wind speeds ( 𝑈∞ > 20𝑚/𝑠), the initial tiny rivulets slowed down and merged with 

coming tiny rivulets. Then the rivulets size grew bigger and started to flow along the airfoil 

surface. The impinging water followed the water paths of those bigger rivulets and finally 

evolved to a film-rivulets configuration. The initial water transport behavior clearly revealed that 

the rivulet formation on an airfoil surface is a time-dependent process. Time-averaged surface 

water thickness distributions were determined through DIP measurements. The film flow scaling 

laws were evaluated by the averaged leading edge film thickness which was found to be 

proportional to 𝑠1/4 and 𝑈∞
−9/10

. 
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