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CHAPTER 1. INTRODUCTION

The problem of orbital prediction is not new to the field of orbital mechanics, however the

results of the orbital prediction problem could be more important now than ever before. The

threat from asteroids, and other interplanetary bodies, that Earth faces everyday is very real

and ever-present. In most cases, the objects are too small to do any damage on the surface

because they burn up in the atmosphere, but there are the rare instances where an object does

make landfall. Despite the lack of a known immediate impact threat from an asteroid or comet,

historical, scientific evidence suggests that the potential for a major catastrophe created by an

asteroid or comet impacting Earth is very real. Fortunately, the human race is in a unique

position to do something about those threats to mitigate and/or eliminate them and therefore

must be prepared to deal with such an event that could otherwise cause a regional or global

catastrophe. Spurred by the Chelyabinsk meteorite airburst event that occurred in Russia on

February 15, 2013 and the near miss by asteroid 367943 Duende (2012 DA14), approximately

40 m in size, on the same day, there is now growing national and international interest in

developing a global plan to protect the Earth from a catastrophic impact by a hazardous

near-Earth object (NEO).

NASA, as well as other organizations, have put a lot of effort into the detection/tracking of

all near-Earth objects - threatening and non-threatening. Given all that effort and knowledge, a

variety of NEO deflection/disruption technologies, such as nuclear explosions, kinetic impactors,

and slow-pull gravity tractors (GTs), have been investigated by planetary defense researchers

during the past two decades [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Through all the study and

investigation however, there is no concensus on how to reliably deflect or disrupt hazardous

NEOs in a timely or efficient manner. All the non-nuclear techniques studied found that

they will require mission lead times much longer than 10 years, even for a relatively small
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NEO. When the time-to-impact with the Earth exceeds a decade, the velocity perturbation

needed to alter the target’s orbit sufficiently is relatively small (approximately 1 to 2 cm/s).

Thus, most non-nuclear options as well as a nuclear standoff explosions can be implemented

for deflection missions when sufficiently long warning times exist. It is important to note

and emphasize that any NEO deflection effort must produce an actual orbital change much

larger than predicted orbital perturbation uncertainties from all sources in order to ensure

mission success. Likewise, any NEO deflection/disruption approach must be robust against

the unknown material properties of a given target NEO. At the Asteroid Deflection Research

Center (ADRC), there has been a lot of research work done on the mitigation of near-Earth

asteroids with short warning times (< 10 years) by studying potential mission designs to disrupt

hazardous asteroids.

Kinetic impactors and nuclear explosions may be considered as the most mature technologies

for asteroid deflection or disruption, as concluded in the 2010 NRC report [17]. As impulsive

and energy-rich approaches, the final momentum change can be considerably more than that

present in the original impactor, or in the expanded vaporization layer (from a nuclear standoff

explosion). Both impulsive methodologies are expected to eject some debris which depends

on surface material properties, where high porosity affects the ability to convert the excess

energy into additional momentum. Some asteroids like Itokawa have been determined to have

densities (and thus porosities) comparable to terrestrial material with well-characterized shock

propagation properties, while others appear to have very low porosity that may absorb excess

energy without the hydrodynamic rebound that can amplify the original impulse.

Since nuclear energy densities are nearly a million times higher than those possible with

chemical bonds, a nuclear explosive device (NED) is the most mass-efficient means for storing

energy with today’s technology. The mass and energy efficiency of an NED enables a wider

range of mission designs to be possible and could prove the difference between an asteroid being

reachable and unattainable. However, deflection methods with sufficiently high energy density

are often preferred over a nuclear disruption approach due to the implied risk of putting a

nuclear explosive on a launch vehicle and sending it through Earth’s atmosphere on route to

its interplanetary target. Nuclear standoff explosions however, are assessed to be much more
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effective than any other non-nuclear alternatives, especially for larger asteroids. This deflection

method utilizes a nuclear explosion at a specified standoff distance from the target NEO, to

effect a large velocity change by ablating and blowing off a thin layer of the NEO’s surface. The

precise outcome of a NEO deflection attempt using a nuclear standoff explosion is dependent

on a myriad variables, with critical factors including the shape and composition of the target

NEO. Ideally, a separate mission would be launched prior to a successful nuclear deflection

attempt, in order to characterize these critical target properties. Other techniques involving

the use of surface or subsurface nuclear explosives are assessed to be more efficient than the

nuclear standoff explosion, although they may cause an increased risk of fracturing the target

asteroid [17].

Given the various uncertainties and constraints in asteroid detection and tracking, the

warning time or mission lead time prior to a potential impact can be very short. With no

warning at all, an 18-m diameter meteor exploded with the energy of 30 Hiroshima nuclear

bombs, 30 km above the city of Chelyabinsk, Russia on February 15, 2013. Asteroid 367943

Duende (2012 DA14) had a near miss of the Earth on the same day as the Chelyabinsk event,

and it was initially discovered on February 23, 2012. That is, we would have had only one

year of warning time to deal with the threat, if the 40 m 2012 DA14 was going to collide with

Earth. Another recent example of a near miss by an asteroid on the Earth is asteroid 2014

RC, which had a close encounter with Earth on September 7, 2014. This 20-m asteroid was

initially discovered on August 31, 2014 by the Catalina Sky Survey near Tucson, Arizona, and

was independently detected the next night by the Pan-STARRS 1 telescope, located on the

summit of Haleakala on Maui, Hawaii. If 2014 RC was going to collide with Earth, there would

only be one week of warning time for a mitigation strategy to be constructed and enacted.

If a NEO on an Earth-impacting trajectory is detected with a short warning time (e.g., much

less than 5 years), the challenge becomes how to mitigate its threat with the amount of time

given prior to the potential impact. For a small asteroid impacting in a sufficiently unpopulated

region, mitigation may simply involve evacuation [17]. However, for larger asteroids, or asteroids

impacting sufficiently developed regions, the threat may be mitigated by either disrupting the

asteroid (i.e. destroying or fragmenting the target with substantial orbital dispersion), or by
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altering its trajectory such that it will either avoid impacting the predicted impact location, or

ideally miss the Earth entirely. It’s not difficult to understand that when the time to impact

with Earth is short, the velocity change required to deflect an NEO becomes extremely large.

Thus, for the most probable mission scenarios, in which the warning time is shorter than 5

years, the use of high-energy nuclear explosives in space will become inevitable [17]. Figure 1.1

shows the results of a Near-Earth asteroid survey conducted by NASA in 2010. It can be

 

Figure 1.1 A graphic representation of the known and predicted Near-Earth asteroid popula-

tion, according to size.

seen that a large majority of the asteroid bodies, 500 meters or more in diameter are known,

while less than 40% of the asteroids between 300 and 500 meters in diameter and far fewer

asteroids with diameters less than 300 meters are known. A scenario in which a small (e.g., 50

to 150 m) Earth-impacting NEO is discovered with short warning time is considered the most

probable scenario because smaller NEOs greatly outnumber larger NEOs, and smaller NEOs

are more difficult to detect. Most direct intercept missions with a short warning time will result

in arrival closing velocities of 10 to 30 km/s with respect to the target asteroid. A rendezvous

mission to a target asteroid that requires such an extremely large arrival ∆V is not feasible.
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The problem looking to be solved through the work done in this dissertation is the con-

struction of a tool that can analyze the future propagation of a target asteroid’s orbit, assess

the future risk the asteroid possesses with respect to the Earth, design a mission to the target

that could help further evaluate the orbit or deflect/disrupt the body in its orbit, and finally

evaluate the deflection/disruption attempt in terms of the risk posed by the asteroid, or as-

teroid fragments, on the current encounter and future encounters with the Earth. Techniques

such as a high-precision gravitational simulator, encounter geometry, B-plane mapping, and

gravitational keyholes are used to quantitatively evaluate the orbital characteristics of an as-

teroid and its associated impact risk. Using state information about the asteroid, a high-fidelity

gravitational model can be used to propagate the body into the future to see if and when it

would come in close proximity to a planet, particularly Earth. These planetary encounters

would change the asteroid’s orbit, in shape and/or orientation. From the encounter geometry,

the post-encounter heliocentric orbit of the asteroid could be in a resonance with that planet

resulting in another encounter, or potentially an impact. Taking advantage of keyhole theory

and the encounter’s B-plane, an estimate of the current and future impact probability of the

asteroid can be made.
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CHAPTER 2. ORBIT PROPAGATION

2.1 Introduction

One of the main challenges in Orbital Mechanics, that needs to be dealt with before work

can truly begin on any problem, is the propagation of a body through space. Orbit propagation

has two distinct components, the propagation model and the propagation method. The model

used dictates the fidelity and accuracy of the expected solution. Low-fidelity models such as

kepler’s equation and the two-body equations of motion are very simple models that can be

incorporated easily and produce results in a very efficient amount of time. More moderate-

fidelity models like the universal variable formulation can produce results that are a bit more

accurate, but will require more time to produce those results. High-fidelity models like the

so-called Standard Dynamical Model (SDM) incorporate third-body perturbations and non-

conservatives effects into the model to enable a high accuracy result. The only drawback to

the SDM is that with so many extra terms to be added, the propagation method would require

more time to build the orbit solution.

When dealing with the ordinary differential equations (ODEs) that describe the equations of

motion (EOMs) of the body of interest, there are several propagation methods that exist to find

their solutions at any point in time. The complexity of the propagation method determines the

accuracy of the solution that can be found. Simpler methods like the use of a state transition

matrix (STM) linearize the equations of motion and allow a solution to be found quickly,

while sacrificing some of the accuracy from the nonlinearity of the EOMs. More commonly

used methods for solving the EOMs are numerical integration schemes that vary from low-

order schemes like Runge-Kutta second (RK2) and fourth (RK4) order schemes to higher-order

ones like Runge-Kutta-Fehlberg seventh eighth order (RKF78) schemes, and even predictor-
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corrector, double integration, and Adams-Bashforth methods. Most of these methods involve

several EOM function calls and include variable time-step numerical integration techniques

that minimize the local error for each time-step in an attempt to minimize the absolute error

over the period of propagation.

The simulations conducted over the course of the studies discussed throughout this work

include two-body, three-body, and n-body equations of motion presented within the Standard

Dynamical Model. The schemes used to find solutions to the EOMs were state transition

matrix state progation and numerical integration using a Runge-Kutta-Fehlberg 7(8) method.

The details of these models and schemes are presented below.

2.2 Orbit Propagation Models

2.2.1 Two-Body Equations of Motion

Consider a system of two bodies of mass M and m. Let an inertial set of cartesian coor-

dinates (X ′, Y ′, Z ′) exist, and a set of non-rotating coordinates (X,Y, Z) that are parallel to

the inertial axes and have an origin that is coincident with the body of mass M , as seen in

Figure 2.1. Also, let the position vectors of bodies M and m with respect to the inertial

 

Figure 2.1 Illustration of the reference frame and associated vectors for a system with two

bodies.
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coordinate system are ~rM and ~rm, respectively. The position vector of the body of mass m

with respect to mass M is defined as

~r = ~rm − ~rM (2.1)

Applying Newton’s laws in the inertial frame, we obtain

m~̈rm = −GMm

r2

~r

r
(2.2)

and

M~̈rM =
GMm

r2

~r

r
(2.3)

Rewriting Eq. 2.2 and Eq. 2.3 and subtracting Eq. 2.3 from Eq. 2.2, the resulting equation

takes the following form

~̈r = −G(M +m)

r3
~r (2.4)

Eq. 2.4 is the vector differential equation of the relative motion for the two-body problem. Given

that the (X,Y, Z) coordinate system is non-rotating in relation to the (X ′, Y ′, Z ′) coordinate

system, the magnitudes and directions of ~r and ~̈r will be equal with respect to either coordinate

system. So, despite having assumed the existence of an inertial coordinate system, it can be

discarded and just measure relative position, velocity, and acceleration in the non-rotating, non-

inertial coordinate system with its origin at the central body [18]. Since the body of interest is

a near-Earth asteroid, and the central body that the asteroid will be measured with respect to

will either be the Sun or a planet, then it can be approximated that G(M +m) ≈ GM . And,

for convenience, µ is defined as µ = GM , so that Eq. 2.4 becomes

~̈r = − µ
r3
~r (2.5)

Eq. 2.5 is the more iconic form of the two-body equations of motion displayed in most Orbital

Mechanics texts.

2.2.2 N-Body Equations of Motion

The standard two-body equations form the relations that underlie much of the general work

done in Orbital Mechanics, but sometimes there is the need for a more realistic model that
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includes other bodies. First, let’s consider a three-body system that includes the Sun, Earth,

and satellite orbiting the Earth, as illustrated in Figure 2.2. For this three-body system in

 

Figure 2.2 Illustration of the reference frame and associated vectors for a system with three

bodies.

an inertial (XYZ) reference frame, we examine the individual forces between the Earth and the

satellite.

~rEsat = ~rsat − ~rE → ~̈rEsat = ~̈rsat − ~̈rE (2.6)

Based on Newton’s Second Law and the Law of Gravitation, the sum of the forces acting on

the Earth is ∑
~FgE = mE~̈rE =

GmEmsat~rEsat
r3
Esat

+
GmEmS~rES

r3
ES

(2.7)

where ~̈rE is the acceleration an observer would see from the origin of the inertial XYZ system,

mE is the mass of the Earth, msat is the mass of the satellite, mS is the mass of the Sun, G

is the universal gravitational constant, ~rEsat and rEsat are the vector and magnitude of the

distance between Earth and the satellite, and ~rES and rES are the vector and magnitude of the

distance between Earth and the Sun. The first term in Eq. 2.7 is the gravitational pull of the

satellite on the Earth, and the second term is the gravitational pull of the Sun on the Earth.



10

The sum of the gravitational forces acting on the satellite, shown in Eq. 2.8, can be expressed

in the form ∑
~Fgsat = msat~̈rsat = −GmEmsat~rEsat

r3
Esat

− GmSmsat~rSsat
r3
Ssat

(2.8)

where the terms represent the pull of the Earth and Sun, respectively, on the satellite. Both

forces are negative because they are in a direction opposite that of the vectors to the satellite.

Plugging Eq. 2.7 and Eq. 2.8 into Eq. 2.6, the resulting equation takes the form

~̈rEsat = −GmE~rEsat
r3
Esat

− GmS~rSsat
r3
Ssat

− Gmsat~rEsat
r3
Esat

+
GmS~rES
r3
ES

. (2.9)

Using the fact that ~rsatS = −~rSsat, Eq. 2.9 simplifies to

~̈rEsat = −G (mE +msat)~rEsat
r3
Esat

+GmS

(
~rsatS
r3
satS

− ~rES
r3
ES

)
. (2.10)

This form of Eq. 2.10 is sometimes referred to as the “relative” form of the equations of

motion. This is however a bit misleading as the only thing that has been done is transform

the acceleration to a different origin. The first term is the two-body acceleration of the Earth

acting on the satellite. The second term has two parts and it represents the perturbation, or

the additional forces beyond simple two-body motion, acting on the satellite. The left-hand

term is called the direct effect because it’s the acceleration of the Sun (or third body) directly

on the satellite. The right-hand term is called the indirect effect because it’s the acceleration

of the Sun (third body) on the Earth. The finite sum for the total acceleration of the ith body

due to the gravitational attraction from n bodies takes the form

~̈ri = −G
n∑

j=1,j 6=i

mj

r3
ji

~rji, ~rji = ~ri − ~rj , i = 1, ..., n. (2.11)

The three-body problem is a special case where n = 3. The general series representation of the

relative acceleration equation shown in Eq. 2.10, where 1 is the primary body and 2 is replaced

with the satellite, is

~̈rEsat = −G (m1 +msat)~r1sat

r3
1sat

+G

n∑
j=3

mj

(
~rsatj
r3
satj

− ~r1j

r3
1j

)
. (2.12)

This general series representation is useful in real world applications because it is more conve-

nient to reference the primary body’s center [19].
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In order for an orbit to be defined, it must be parameterized. The National Aeronautics

and Space Administration (NASA) and the NASA Jet Propulsion Laboratory (JPL) choose

to parameterize orbits in terms of six classical Keplerian orbital elements: eccentricity (e),

perihelion distance (q), time of perihelion passage (Tp), right ascension of the ascending node

(Ω), argument of perihelion (ω), and inclination to the ecliptic (i). There are many choices of

how to parameterize the orbit of a body and throughout this work most of the same orbital

elements will be used, with two exceptions: the perihelion distance will be replaced with the

semi-major axis length (a) and the time of perihelion passage will be replaced by the true

anomaly angle (ν). There can be an issue using a instead of q due to the singularity that can

arise with parabolic orbits (which long period comets very closely follow), but since the focus

of this work is on near-Earth asteroids, the substitution is made with no trepidation. The

equations of motion, in the form of the Standard Dynamical Model, are most easily computed

in terms of heliocentric postion and velocity vectors (~r and ~v respectively) within the inertial-

frame. The Newtonian n-body EOMs used for the free-space propagation of the asteroid bodies,

takes the form [20]

d2~r

dt2
= − µ

r3
~r +

n∑
k=1

µk

(
~rk − ~r
|~rk − ~r|3

− ~rk
r3
k

)
+ ~f (2.13)

where µ = GM is the gravitational parameter of the Sun, n is the number of perturbing bodies,

µk and ~rk are the gravitational parameter and heliocentric position vector of perturbing body

k, respectively, and ~f represents other non-conservative orbital perturbation acceleration. The

three most well-known are solar radiation pressure (SRP), relativistic effects, and the Yarkovsky

effect, the former two being the most prevalent effects. Solar radiation pressure provides a radial

outward force on the asteroid body from the interaction of the Sun’s photons impacting the

asteroid surface. The SRP model is given by

~aSRP = (K)(CR)

(
AR
M

)(
LS

4πcr3

)
~r (2.14)

where ~aSRP is the solar radiation pressure acceleration vector, CR is the coefficient for solar

radiation, AR is the cross-sectional area presented to the Sun, M is the mass of the asteroid, K

is the fraction of the solar disk visible at the asteroid’s location, LS is the luminosity of the Sun,

c is the speed of light, and ~r and r is the distance vector and magnitude of the asteroid from the
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Sun, respectively. The relativistic effects of the body are included because for many objects,

especially those with small semi-major axes and large eccentricities, those effects introduce

a non-negligible radial acceleration toward the Sun. One form of the relativistic effects is

represented by

~aR =
k2

c2r3

[
4k2~r

r
−
(
~̇r · ~̇r

)
~r + 4

(
~r · ~̇r

)
~̇r

]
(2.15)

where ~aR is the acceleration vector due to relativistic effects, k is the Gaussian constant, c

is the speed of light, ~r is the position vector of the asteroid, and ~̇r is the velocity vector of

the asteroid [21]. In the case of near-Earth asteroids, the acceleration term due to relativistic

effects is not necessary, but is included in this discuss for completeness.

In the case when the Earth is considered the central body, as is done when dealing with the

flyby of the asteroid, another perturbation must be added to the model in order to maintain

accuracy. The extra perturbation would be due to the Earth’s oblateness, known as the J2

gravity perturbation. This perturbation has to be taken into account for orbits about Earth

because of the non-uniformity of Earth’s surface, which is assumed when dealing with the

equations of motion. For most circumstances, the equations of motion are fine as given above

because the distances between the simulated body and any other body is large enough that

they can be assumed to be a point mass. During planetary flybys, particularly flybys with the

Earth, the simulated body can pass close enough to the planet that it can’t be assumed to be

a uniform sphere that can mathematically be represented as a point mass. When considering

orbits about Earth, an additional potential energy term must be added to the overall potential

energy of the planet, as shown in Eq. 2.16,

V (x, y, z) =
µ

r
+

c

r3

[
3
(z
r

)2
− 1

]
(2.16)

where

c =
J2µR

2
⊕

2
(2.17)

r =
√
x2 + y2 + z2, with µ being the Earth’s gravitational constant, J2 = 1.082617 × 10−3 is

the second zonal harmonic, and R⊕ is the mean equatorial radius of the Earth. So, to describe

the motion of a body with respect to the Earth, incorporating the J2 gravitational perturbation



13

- represented by the additional term on the right-hand side of the equations, the equations of

motion from Eq. 2.5 become

ẍ =
∂V

∂x
= −µx

r3
+ 3c

( x
r5

)(
1− 5z2

r2

)
, (2.18)

ÿ =
∂V

∂y
= −µy

r3
+ 3c

( y
r5

)(
1− 5z2

r2

)
, (2.19)

z̈ =
∂V

∂z
= −µz

r3
+ 3c

( z
r5

)(
3− 5z2

r2

)
. (2.20)

The coordinate system is fixed to the xy plane that is defined by the Earth’s equatorial plane

[22].

2.3 Orbit Propagation Schemes

2.3.1 State Transition Matrix

The state transition matrix is a linearization of the dynamics of a system, such that it

is assumed that a solution is known for one trajectory and we are interested in finding the

solution to a neighboring trajectory. The linearization allows for the development of a simplified

approximation to compute the differences between the trajectories over a limited time interval.

The only major constraint to this type of formulation is that the differences between the two

trajectories need to remain small so that the higher order terms in Eq. 2.21

Ẏ = ~f (X) +
∂ ~f (X)

∂X
δx +

∂ ~f2 (X)

2!∂X2
δx2 + ... (2.21)

can be neglected. The two trajectories are X and Y, where the expressions of the initial

conditions and derivatives of the states are

X (t0) = X0 Ẋ = ~f (X) (2.22)

Y (t0) = Y0 Ẏ = ~f (Y) (2.23)

where f denotes a function of the state and δx is the difference between the two trajectories

given by

Y = X + δx (2.24)
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The resulting expression, stemming from the simplification of Eq. 2.21, results in an expression

of the form

δẋ =
∂ ~f (X)

∂X
δx + u = F (t) ∂x + u (2.25)

where u represents the neglected terms of second order and higher, and F (t) is the matrix of

partial derivatives (also known as the Jacobian matrix) of the state rates. Eq. 2.25 represents

the linearized dynamics of the equations of motion and its solution is the time-varying difference

between the original trajectory and the nearby trajectory [19].

The more detailed the force model, the more complex F becomes. Its primary use is to find

the error state transition matrix and that can be done using various different techniques like

analytical, numerical, or finite difference. The state used for orbit propagation is comprised of

position and velocity vectors. The state vectors are taken from an inertial reference frame, and

the accelerations are applied in that frame. The states and derivative of the states are

X2−body =

 ~r

~v

 and Ẋ2−body =

 ~v

−µ~r
r3

 (2.26)

The two-body contribution is obtained from the partial derivatives of the two-body accelerations

∂Ẋ2−body
∂X

= F =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

− µ
r3

+
3µr2I
r5

3µrIrJ
r5

3µrIrK
r5

0 0 0

3µrIrJ
r5

− µ
r3

+
3µr2J
r5

3µrJrK
r5

0 0 0

3µrIrK
r5

3µrJrK
r5

− µ
r3

+
3µr2K
r5

0 0 0


(2.27)

The equations for the F matrix are exact for the given two-body acceleration. Analytic methods

for calculating either the error state transition matrix (Φ) or the state transition matrix (ΦS)

assume analytic expressions for the state as functions of the time and epoch elements, as shown

below for the position and velocity vector states
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~r (t) = ~r0 + ~v0∆t+
1

2

d~v

dt
|t=t0∆t2 + ... (2.28)

≈ ~r0 + ~v0∆t− µ~r0

2r3
0

∆t2 (2.29)

~v (t) = ~v0 +
d~v

dt
|t=t0∆t+ ... (2.30)

≈ ~v0 −
µ~r0

r3
0

∆t+

(
µ~v0

r3
0

+
µ~r0v0

r4
0

)
∆t2

2
(2.31)

= ~v0 −
µ~r0

r3
0

∆t (2.32)

(2.33)

Ignoring the higher-order terms, the error state transition matrix comes to be

∂X
∂X0

Φ

}
2−body

∼=



1 +
3µ∆t2r2I

2r50
− µ∆t2

2r30

3µ∆t2rIrJ
2r50
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(2.34)

To find the state transition matrix, it is approached as with the derivation of the error state

transition matrix. The position and velocity vector Taylor series expansion are taken and put

in matrix form (no partials derivatives need be taken). This finds the state transition matrix

for state propagation directly.

ΦS
∼=


[
1− µ∆t2

2r30

]
[∆t][

−µ∆t
2r30

]
[1]

 (2.35)

In Eq. 2.35, the common diagonal elements of each 3x3 diagonal submatrix are shown [19], and

it is expected that the results of the entire matrix can be obtained independently using the

outlined information shown.
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2.3.2 Numerical Integration

The problem of orbit propagation requires the solution to a system of differential equa-

tions that change over time. Specifically, the problem requires the solution to an initial-value

problem, and the solution to the differential equations must satisfy a given set of initial condi-

tions. The differential equations that are used within the Standard Dynamical Model are too

complicated to solve exactly, so an approach is taken to approximate the solution. Numerical

integration is a method for approximating the solution to original differential equations, and

these methods give more accurate results and realistic error information [23]. The numerical

integration method that is used to find the solution to the SDM equations of motion is the

Runge-Kutta-Fehlberg 7(8) (RKF78) scheme.

The RKF78 method is an adaptive variable time-stepping routine that approximates the so-

lution of the differential equation ẏ = f(x, y) with the initial condition y(x0) = c. When applied

to the equations of motion for the SDM, the differential equations look closer to ẋ = f(t,x)

where x(t0) = x0 are the initial conditions to the differential equations. The implementation of

this scheme requires the evaluation of f(t,x) thirteen times per time step using an embedded

seventh and eighth order Runge-Kutta estimates that not only estimate the solution but also

the error at time t. The next step size is calculated using a preassigned tolerance value and

error estimate [24].

For the problem of orbit propagation, we let x = [x, y, z, ẋ, ẏ, ż]T , x0 = [x0, y0, z0, ẋ0, ẏ0, ż0]T ,

and h = ti+1 − ti. At step i+ 1,

x(ti+1) = x(ti) + h

[
41

840
k1 +

34

105
k6 +

9

35
k7 +

9

35
k8 +

9

280
k10 +

41

840
k11

]
(2.36)

where the equations for the k(n) equations can be found to be in terms of the previous k(n)

equations
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k1 = f(t,x), (2.37)
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The error at every step of the integration process is estimated to be

err = − 41

840
h (k1 + k11− k12− k13) (2.50)

Within the RKF78 numerical integration scheme, a fixed or variable step size can be used to

forward propagate the target body’s state. A fixed step size allows for a more standard forward

propagation that can be used without the need for checking the local error after every step. If

the step size is allowed to vary, in order to reduce the local error at every time step, then a more

accurate solution can be obtained. As long as the local error that is estimated for the given,

current step size is below a certain threshold, the integration process is allowed to continue
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as normal. If the error estimate is larger than the defined threshold value, then a smaller

step size has to be calculated such that the error is reduced to an appropriate level. Efficient

implementation of such a numerical integration scheme, along with a high-fidelity model, allows

for an accurate estimation of a body’s state over long time intervals.

2.3.3 Scheme Validation

Establishing a high-fidelity model to describe the motion of a body in space, along with

a good numerical integration scheme, is good in principle but has to be validated against an

accepted true compilation of body states in order to ensure its accuracy over time. Given that

the topic of this dissertation relates to near-Earth asteroids, it fits that the validation of the

SDM including the added perturbations of all eight planets, Pluto, Earth’s Moon, and the three

largest asteroids in the Main Belt (Ceres, Pallas, and Vesta) using the Runge-Kutta-Fehlberg

7(8) numerical integration scheme is done using a well-known near-Earth asteroid such as 99942

Apophis.

Near-Earth objects (NEOs) are asteroids and comets with perihelion distance (q) less than

1.3 astronomical units (AU). The vast majority of NEOs are asteroids, which are referred to

as Near-Earth Asteroids (NEAs). NEAs are divided into three groups (Aten, Apollo, Amor)

based on their perihelion distance, aphelion distance (Q), and semi-major axes (a). Atens are

Earth-crossing NEAs with semi-major axes smaller than Earth’s (a < 1.0 AU, Q > 0.983 AU).

Apollos are Earth-crossing NEAs with semi-major axes larger than Earth’s (a > 1.0 AU, q <

1.017 AU). Amors are Earth-approaching NEAs with orbits exterior to Earth’s but interior to

Mars’ (a > 1.0 AU, 1.017 < q < 1.3 AU) [1]. Figure 2.3 shows representative orbits for the

three class of asteroids in reference to Earth’s orbit. Apophis is an Aten class asteroid which

up until recently posed a real threat to Earth.

Upon discovery in 2004, Apophis was briefly predicted to have a 2.7% impact probability

with the Earth in April 2029. With the addition of more observations and measurements, it

was determined that the approximately 325 meter diameter object posed no impact risk to

Earth at that time, but would have a close encounter with the Earth. At that time, there

was an estimated risk of about 4-in-one million chance that after the 2029 close encounter
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Figure 2.3 Typical Orbits of Apollo, Aten, and Apollo Asteroids.

Apophis would impact Earth in 2036. Taking into account more observations including those

as late as 2013, as well as extensions to the Standard Dynamical Model, particularly in the

time frame around the April 2029 close encounter, the potential impact in 2036 was also ruled

out [1]. Given that the time near planetary flybys are highly dynamical periods for asteroids,

where non-conservative effects such as a planet’s oblateness and errors in the estimation of the

asteroid’s spin and surface temperature can cause large deviations in the simulated state of the

asteroid body [1], the near 7 year period between May 2029 (a month after the close approach)

to March 2036 (a month prior to the non-existent flyby) seems to be a good time period to use

for a validation simulation case.

All test cases conducted are compared against the orbital data obtained from NASA JPL’s

Horizons system. The first test case conducted was to simply look at the radial error between

the results obtained between the in-house propagator as compared to Horizons, which can be

seen in Figure 2.4. While the numerical integration scheme is a variable step size integrator,

there is the ability to control when data is presented back to the user by telling the integrator

that every 6 hours, for example, of simulated time report the asteroid state and continue using

the reported data as the initial conditions for the next integration step. The more often that

data would be reported back, the longer the propagation process would take. However, it

is necessary to see if there would need to be a trade-off between the amount of time that

it would take to complete the full asteroid propagation versus the accuracy of the solution.
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Table 2.1 shows the amount of time required to complete the propagation of the asteroid state

as compared to the frequency with which results were asked to be reported. Looking at

Table 2.1 Results of time study comparing the difference in time to complete state propagation

of the asteroid compared to the frequency with which the results were to be reported.

Frequency Time (sec)

1 minute 888.392

5 minutes 173.155

10 minutes 86.605

1 hour 14.775

6 hours 2.771

the results from Table 2.1 and Figure 2.4, it can be seen that while there were differences

in the amount of time required to complete the numerical integration of the states from the

start date to the end date, there is no significant difference in the radial error between the

results and Horizons. This implies that given any reasonable reporting frequency, free-space

propagation (propagation of the asteroid body far from the direct influence of any other major

body besides the Sun) is independent of the reporting frequency as far as the numerical results

are concerned, the only thing to be concerned about is the amount of time required to complete

the propagation.

Looking a little closer at the results from Figure 2.4, it can be seen that the error of the

estimated states of Apophis between the in-house propagator and Horizons grows as time pro-

gresses. At first the error is fairly small, but as time continues to move towards the beginning

of 2036, the error has grown to [−127.63 102.395] km relative to the Horizons estimates. It

is important to keep in mind here that the results were obtained using the Standard Dynami-

cal Model with the additional perturbations of the eight planets, Pluto, Earth’s Moon, Ceres,

Pallas, and Vesta, propagated forward in time using a Kunge-Kutta-Fehlberg 7(8) numeri-

cal integrator. As a point of comparison, a study conducted within the ADRC [25] also

propagated the state of Apophis over the same time period, using the same exact initial condi-

tions, to find the impact probability between Earth and Apophis in 2036. The two main tools

used in the study were AGI’s Satellite Toolkit (STK) version 9.2 and NASA General Mission

Analysis Tool (GMAT) R2011a. The STK program was run using the same RKF78 numeri-
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Figure 2.4 Radial error between data from the ADRC’s in-house propagator and JPL’s Hori-

zons system for asteroid Apophis. All traces indicated in the legend are very

close to each other and therefore lie on top of one another, implying that during

free-space propagation the solutions to the EOMs are the various timesteps are

consistent.

cal integrator incorporating third-body gravitational effects from DE-421 (planetary and lunar

ephemeris data), and also included a solar radiation pressure model. The GMAT program was

run using a Runge-Kutta 8(9) numerical integrator incorporating third-body gravitational ef-

fects from DE-405, and included a solar radiation pressure model. Both commercial programs,

while making use of similar order numerical integrators, had higher-fidelity planetary and lunar

ephemeris data when dealing with third-body gravitational effects and also took into account

the additional perturbation from solar radiation. Even with these similarities and advantages

however, they did not out-perform the in-house propagator. The error towards the beginning

of 2036 had become [−538.15 611.004] km for GMAT and over [−4000 5000] km for STK, far

exceeding the numbers given by the in-house propagator. The results of the study had shown

that GMAT was able to be used to find a good estimate for the impact probability of Apophis

with the Earth in 2036 of 4.2E-06, and STK was not able to obtain an impact probability given

the large radial error in the results. After a later discussion with other experts who have done

similar studies in the past, it was concluded that there must have been an error on the part of

the team from the ADRC in terms of what was being done with STK because those kinds of
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erroneous results are not common for the commercial program, even though no evidence of an

error could be found. Regardless, the results from the in-house propagator in comparison to

Horizons were very encouraging and when compared to the commercial programs of STK and

GMAT only more confidence could be placed in the capabilities of the in-house propagator to

be able to accurately estimate the state of a body over a given time interval.

Simply looking at the radial error does not give enough information about where the radial

error is actually coming from. Figure 2.5 shows the positional error (in all three coordinate

directions) for the in-house propagator. For comparison, the radial position error is shown on

the plot, as well as the position magnitude error. It can be seen that the propagator remained

 

Figure 2.5 Comparison of positional error, in all three directions, between in-house propagator

and JPL’s Horizons data for asteroid Apophis.

pretty accurate when it came to the out-of-plane position of the asteroid, while the in-plane

components error grew at a faster rate, implying that the position magnitude error can be

mostly attributed to the error in the in-plane components of Apophis’ trajectory. The reasons

for difference between the estimated trajectory obtained from the in-house propagator and the

Horizons trajectory could be due to a difference in model or the effects of additional perturba-

tions that are not present in the in-house propagator. Nevertheless, the results of the validation

study have shown that the in-house propagator can provide a relatively accurate solution, in a

fair small amount of time, thus allowing for its use in more complicated simulations.
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CHAPTER 3. ASTEROID MISSION DESIGN SOFTWARE TOOL

3.1 Introduction

As the number of identified potentially hazardous near-Earth asteroids increases, the ability

to design and plan for deflection/disruption missions to these target bodies ceases to be a simple

exercise but a necessity. Previous research activities at the ADRC have included target selection

and spacecraft system design, as well as preliminary mission designs that have looked at launch

vehicle selection and initial mission orbit determination. Asteroid target selection and mission

designs, along with general mission analysis, are components of an overall, complete mission

design concept, previously let separate to focus on the individual components themselves. In

this chapter, they are shown to be components of an overall NEO mission design tool developed

at the ADRC, known as the Asteroid Mission Design Software Tool (AMiDST).

3.2 Overview of Existing Mission Design Tools

This section contains a brief discussion of the existing mission design tools used by NASA,

developed by The Aerospace Corporation, and the AMiDST program developed at the ADRC,

as well as a comparison of the capabilities of these tools.

3.2.1 An On-line Tool by The Aerospace Corporation

The Aerospace Corporation has been developing an on-line tool to aid in the design and

understanding of deflection impulses necessary for guarding against objects that are on an

Earth-impacting trajectory. Using several variables to characterize the target NEO (warning

time, size/density, orbit parameters, etc.) and mitigation mission design parameters (∆V

impulse vector, number of days before impact to launch, number of days before impact to
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deflect, etc.), users can simulate the designed mission transfer from Earth to the target NEO

and deflected NEO orbit. After the applied deflection and propagation time, the Earth miss

distance would be determined on the Earth B-plane in Earth radii. As of 2012, this on-line

tool was still under development, with the hopes of incorporating several more design variables

and limitations to only allow feasible mission designs based on current launch and mission

capabilities [26].

3.2.2 NASA’s Mission Design Software Tools

Through the In-Space Propulsion Technologies Program, in the Space Science Projects

Office at NASA Glenn Research Center, several optimization tools have been developed for

trajectory and mission optimization, such as MALTO, COPERNICUS, OTIS, Mystic, and

SNAP. [27]

3.2.2.1 COPERNICUS

Originally developed by the University of Texas at Austin, under the technical direction of

Johnson Space Center, Copernicus is a generalized trajectory design and optimization program

that allows the user to model simple to complex missions using constraints, optimization vari-

ables, and cost functions. Copernicus can be used to model simple impulsive maneuvers about

a point mass to multiple spacecraft with multiple finite and impulse maneuvers in complex

gravity fields. The models of Copernicus contain an n-body tool and as a whole is considered

high fidelity.

3.2.2.2 OTIS

The Optimal Trajectories by Implicit Simulation (OTIS) program was developed by the

NASA Glenn Research Center and Boeing. OTIS is named for its original implicit integration

method, but includes capabilities for explicit integration and analytic propagation. Earlier

versions of OTIS have been primarily been launch vehicle trajectory and analysis programs.

Since then, the program has been updated for robust and accurate interplanetary mission

analyses, including low-thrust trajectories. OTIS is a high fidelity optimization and simulation
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program that uses SLSQP and SNOPT to solve the nonlinear programming problem associated

with the solution of the implicit integration method.

3.2.2.3 Mystic

Mystic, developed at the Jet Propulsion Laboratory (JPL), uses a Static/Dynamic optimal

control (SDC) method to perform nonlinear optimization. The tool is an n-body tool and can

analyze interplanetary missions as well as planet-centered missions in complex gravity fields.

One of the strengths of Mystic is its ability to automatically find and use gravity assists, and

also allows the user to plan for spacecraft operation and navigation activities. The mission

input and post processing can be performed using a MATLAB based GUI.

3.2.3 NASA’s General Mission Analysis Tool

Developed by NASA Goddard Space Flight Center, the General Mission Analysis Tool

(GMAT) is a space trajectory optimization and mission analysis system. Analysts use GMAT

to design spacecraft trajectories, optimize maneuvers, visualize and communicate mission pa-

rameters, and understand mission trade space. GMAT has several features beyond those that

are common to many mission analysis systems, features that are less common or unique to

GMAT. Its main strength over other software choices is GMAT’s versatility. Its scripting abil-

ity is easy to use and edit without knowledge of computer languages. And, the MATLAB

plug-in allows an expansion of the user’s ability to personalize each mission. [28]

3.2.4 AMiDST Overview

An in-house design tool name The Asteroid Mission Design Software Tool (AMiDST) is

used to conduct the mission and trajectory design for near-Earth asteroid missions. While it

does not have the high-fidelity as some of the existing trajectory and mission optimization tools

(such as Mystic, MALTO, Copernicus, SNAP, OTIS, and GMAT), it focuses instead on the

launch and terminal phases of a NEO mission. AMiDST looks into several launch vehicle and

spacecraft configurations based upon several evaluation criteria such as launch vehicle mass

capacity and mission ∆V requirements, as well as relative approach velocity and approach
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angle. In addition to these features, it also provides an estimated total mission cost, used as a

final determination factor between mission configurations.

 Asteroid Mission Design Software Tool 
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Custom Mission Design 
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Figure 3.1 Flowchart Illustration of the AMiDST.

Figure 3.1 shows a flow-chart illustration of the AMiDST. The design tool begins with

a choice between analyzing a pre-determined list of target NEOs to design a mission for or

build a custom mission design for a personally selected target NEO. With the pre-determined

NEO target list, the software follows the Pre-Mission Design Algorithm to analyze all launch

configurations for a pre-determined target list, shown in Table 3.1 [29]. These asteroids are

Amor class asteroids, their orbits do not cross the Earth’s path, and therefore pose no threat

to the planet. Due to the non-existant threat that these asteroids possess towards Earth,

the pre-determined target list option is meant more as an introduction to some of AMiDST’s
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Table 3.1 A list of target NEOs selected for planetary defense technology demonstration missions. [1]

Target NEO Estimated Diameter (m) a (AU) e i (deg) ω (deg) Ω (deg)
2003 GA 300 1.28153 0.19124 3.84189 66.76837 192.93186
2006 SJ198 1200 2.08969 0.45631 2.43325 212.25852 266.89138
2009 TB3 300 1.31863 0.21926 12.22404 249.57728 22.17938
2007 FS35 620 1.92244 0.38986 0.31887 107.40624 183.00756
2003 QC 400 2.57094 0.53140 7.85444 37.43616 321.68183
2004 GY 480 1.44817 0.21804 23.43610 182.87114 50.88706
2001 SX269 280 1.88042 0.34613 4.02404 29.53738 320.17092
1998 SB15 330 1.22609 0.16126 15.62791 67.63148 67.93695
2004 KE1 240 1.29867 0.18079 2.88387 283.67731 42.77468
2011 BX10 1000 2.82541 0.64134 9.73567 348.36692 79.118387

capabilities. A launch date is given for each individual asteroid, leaving no need for too much

user input. With the launch date determined and the target defined then the spacecraft’s

orbital trajectory is well-defined and no longer a concern. The AMiDST analyzes all the

possible launch configurations available to complete the mission, the arrival at the target NEO,

and the estimated mission costs. The outputs are then made available for the user to examine

and understand the results of the NEO mission design analyses [30].

For custom mission designs, the user begins by entering information about the target NEO

of interest and various mission criteria, including launch date, mission duration, spacecraft

mass, and desired arrival speed and angle range. For further design customization, the user

is able to select the important mission variables to judge the potential mission design options

against through an intrinsically defined cost function. More detailed information regarding the

trajectory and mission design optimization will be provided later in this chapter. After all the

potential mission design options are evaluated, the top 10 missions are presented to the user

in full detail for final selection of the desired mission.

3.2.5 Mission Design Program Comparisons

The trajectory and mission optimization tools developed through the In-Space Propulsion

Technologies Program are all rather high fidelity programs. One of the common denominators

of all these tools is that they primarily look at the intermediate stage of a mission, the spacecraft

trajectory from one target to another. The other two mission stages are more or less overlooked

in comparison to the spacecraft’s mission trajectory. The AMiDST does not possess the high-

fidelity trajectory optimization of Copernicus, Otis, or Mystic, but instead focuses on the launch
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and terminal phase of an NEO mission. Looking into several launch vehicle and spacecraft

configurations to complete a given mission design to a designated target NEO, the mission

design software evaluates the possible combinations based upon several evaluation criteria such

as space in the launch vehicle fairing, mission ∆V requirements, and excess launch vehicle

∆V. A staple of this mission design tool is the evaluation of estimated total mission cost, the

determining factor between mission configurations in the cases where more than one launch

configuration can result in a successful mission. Using the impact angle and arrival velocities of

both the spacecraft and target NEO, along with both masses, the trajectory of the perturbed

asteroid can be tracked in order to find how much the trajectory is altered from the previous

unperturbed orbit [30, 31].

3.3 AMiDST Components

In this section a discussion will be provided regarding the major portions of the AMiDST

program: launch vehicle selection, mission cost estimation, and trajectory optimization.

3.3.1 Launch Vehicles

The mission design studies conducted using this tool considered three classes of launch

vehicle: i) Delta II, ii) Delta IV, and iii) Atlas V. Originally, the payload capacity of the indi-

vidual launch vehicles and the cost associated with launching a given rocket only certain launch

vehicle classes where considered for different size NEDs and target asteroids - Delta II class

launch vehicles for 300-kg NED missions, Delta IV and Atlas V class launch vehicles for 1000-kg

NED missions, and the Delta IV Heavy launch vehicle for 1500-kg NED missions. The launch

vehicles would be carrying specially designed HAIV spacecrafts, comprised of an impactor and

follower spacecraft, with the NED payload contained within the follower spacecraft.

3.3.1.1 Delta II Launch Vehicles

The Delta II launch vehicles have a 98% reliability record, with capabilities to launch from

either the East or West coast. The vehicles can be configured with two or three stages with up

to nine strap-on graphite-epoxy motors, and two sizes of payload fairings [2]. The versatility
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Figure 3.2 Delta II launch vehicle configurations [2].

and the low cost of the Delta II launch vehicles makes it ideal for target bodies that are easer to

reach. The types of Delta II launch vehicles considered are the Delta II 732X, Delta II 742X,

Delta II 792X, and Delta II 792XH, where X can be 0 (no third stage), 5 (STAR-48B third

stage), or 6 (STAR-37FM third stage). The major differences between the two and three stage

configurations of the Delta II are the payload and orbit injection capabilities. Two-stage Delta

II rockets can really only take payloads into low Earth orbits (LEOs), while the three-stage

configurations have the ability to inject payloads into hyperbolic C3 orbits.

As mentioned, the three-stage configuration of the Delta II launch vehicle is capable of

placing its payload into a C3 orbit - an Earth escape trajectory. The C3 value is defined by

the energy of the orbit that the payload is placed in, expressed as

C3 = v2
∞ (3.1)

where v∞ is the hyperbolic excess speed of the spacecraft.

3.3.1.2 Delta IV and Atlas V Launch Vehicles

The Delta IV class of launch vehicles are much larger launch vehicles, capable of not only

taking large payloads to LEO but directly injecting them into higher C3 orbits. The

Atlas V launch vehicles are also rather powerful rockets, with comparable if not better payload
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Figure 3.3 Delta IV (left) and Atlas V (right) launch vehicles [3, 4].

capabilities to that of their equivalent Delta IV rocket counterparts, with the exception of the

Delta IV Heavy launch vehicle. The currently available rockets for use from either of these two

launch vehicle classes are: Delta IV Medium, Delta IV M+(4,2), Delta IV M+(5,4), Delta IV

Heavy, Atlas V 401, Atlas V 431, and Atlas V 551.

3.3.2 Spacecraft Selection

In order to run the AMiDST program, the user must input the type of spacecraft that

will be used to conduct the mission. While technically the spacecraft type does not really

have much bearing on the way the program runs, the only difference to the program is the

type of information that is expected to be entered. The user has two possible spacecraft

configurations, a single-body kinetic impactor and a two-body Hypervelocity Asteroid Intercept

Vehicle (HAIV) spacecraft. The kinetic impactor option, which is designed simply as another

spacecraft with the full-suite of instruments, requires only the total mass of the spacecraft that

will be impacting the asteroid body. The HAIV option requires a couple additional inputs.

Since the spacecraft is broken down into two separable portions, the program asks for the mass

of the fore and aft body, as well as the mass of the nuclear explosive device (NED) housed in

the aft-body.

The desire to use a spacecraft concept like the HAIV comes from the fact that most direct

intercept mission with a short warning time (7-10 years) will result in relative arrival velocities
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of 10 to 30 km/s. If there is a desire to conduct a rendezvous mission to the target asteroid,

at any time during that timespan, is not practically feasible because of those relative arrival

speeds. However, a nuclear subsurface explosion can deliver enough energy into the target

body so that there is a likelihood of totally disrupting the asteroid. However, the current

nuclear subsurface penetrator technology limits the impact velocity to less than about 300

m/s, due to the fact that higher impact speeds prematurely destroy the fusing mechanisms of

the NEDs [17, 6]. The HAIV concept was developed in order to overcome these technological

limitations. As previously mentioned, the HAIV is a two-body spacecraft that consists of a

fore-body (leader) and an aft-body (follower), as illustrated in Figures 3.4 and 3.5.

Figure 3.4 (a) View of the HAIV spacecraft in the payload fairing of a launch vehicle. (b)

View of the interior of the HAIV, showing the location of the NED as well as the

various spacecraft instruments [5].

After detachment, or separation, of the leader and follower spacecrafts, the leader spacecraft

creates a kinetic-impact crater that the follower spacecraft carries the NED into and makes a

robust and effective subsurface explosion of the target asteroid body [6], as seen in Figure 3.6.

The HAIV configuration depicted in Figure 3.5 utilizes a deployable Astro-Mast boom that

will provide the necessary separation between the impactor and follower during the terminal

arrival phase. This optional configuration ensures that the two parts of the spacecraft remain

collinear prior to impact, customized to the desired length for the particular mission scenario

such that there is an appropriate delay between when the leader creates a crater on the NEO

and when the follower arrives in the crater and detonates. More details regarding the trade-off
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Figure 7. Detail view of the follower portion of the HAIV showing selected subsystem components.

VI.A. Mission Overview

For launch vehicles, the MDL considered the United Launch Alliance (ULA) Atlas V 400/500 Evolved
Expendable Launch Vehicle (EELV) Series, the SpaceX Falcon 9, and the Boeing Delta IV series. All of
these launch vehicles provide su�cient mass capability at the desired Earth departure C3 but the Atlas V is
the only EELV currently covered under the NASA Launch Services Program II contract. As such, the Atlas
V 401 with a 4 m fairing was selected as the primary launch vehicle for the MDL study. The HAIV launch
configuration in the Atlas V 401 payload fairing is shown in Figure 8. Accordingly, the HAIV will launch
from Cape Canaveral Air Force Station (CCAFS).

Figure 8. HAIV launch configuration.

Figure 9(a) presents the overall mission timeline, beginning with launch on August 2nd, 2019. Launch
is followed by two weeks of on-orbit checkout (during the Earth departure trajectory), which leads into
approximately 121 days of outbound cruise towards the target NEO. Although the flight validation mission
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Figure 3.5 Potential configuration of the HAIV developed by the Mission Design Lab at NASA

Goddard Space Flight Center [6].

studies that went into the design of the HAIV spacecraft and the terminal phase approach of

the mission can be found in the ADRC’s NASA NAIC Phase II Report [6].

3.3.3 Mission Cost Estimation

Mission cost estimation to design and fabricate the missions is an important task necessary

for an early assessment of the mission viability and feasibility. The final total cost of each

mission is given as a combination of the cost for the launch vehicle, the HAIV spacecraft,

and mission operations. A cost estimation algorithm was developed to determine the costs

associated with constructing the HAIV, based on a number of previous spacecraft missions

with similar goals and parameters. Spacecraft such as Deep Impact, Stardust, and Dawn were

researched to find the cost of developing their spacecraft and a linear polynomial fit was applied

to the data to come up with an analytic formula relating spacecraft mass and cost. Before the

results of the cost estimation algorithm are discussed, it is important to note that the mass/cost

of the NED was not included when the estimations were made. In addition, the total mass

margin of the spacecraft was left intact when estimating the cost of the HAIV development, in

order for the estimate to be thought of as a relative maximum. As a comparison, the initial

mission cost estimates were run through NASA’s Advanced Mission Cost Model (AMCM) [32],

to get a rough order of magnitude approximation. The estimates form the AMCM came out to
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Figure 1. HAIV spacecraft closing in on target NEO.

Figure 2. Separated HAIV system creates crater on NEO and detonates NED within.

disrupting the target NEO than a surface or stando↵ detonation. Figure 3 shows simplified 2-D computational
modeling and simulation of a penetrated, 70 kiloton nuclear explosion for a 70 m asymmetric reference target
body.1,3

Figure 3. Simulated disruption of a small asymmetrically shaped NEO by a subsurface NED detonation.

The enhanced e↵ectiveness of the subsurface detonation reduces the yield (mass) of the NED required
to deal with a given NEO, all else being equal, and that improves responsiveness by not over-burdening the
launch vehicle. Responsiveness is important because one of the primary objectives of the HAIV design is to
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Figure 3.6 Depiction of HAIV on final approach to target asteroid, shown in the detached

configuration.

be rather rough, mostly due to the fact that the HAIV spacecraft designs don’t exactly fit into

a single mission category from the available choices. However, the spacecraft cost estimates

from the NASA AMCM did verify that the spacecraft cost estimates from AMiDST are in the

appropriate cost range. And finally, AMiDST incorporates the mission operations costs by

adding 30% of the estimated total cost of the launch vehicle and spacecraft design.

3.3.4 Trajectory Optimization

For custom mission designs, the user begins by entering information about the target NEO of

interest and the low-Earth orbit (LEO) departure radius. Then the choice is given between two

types of spacecraft to be used for the mission, the ADRC’s Hypervelocity Asteroid Intercept

Vehicle (HAIV) concept or a Kinetic Impactor (KI). For the HAIV spacecraft, information

about the mass of the impactor, follower, and NED are obtained from the user, while in the KI

spacecraft case the total mass of the satellite is needed. In either case, the user is prompted

with a decision between three mission types: a direct intercept, a direct intercept at a relative

speed of 10 km/s, or rendezvous. For direct intercept missions, the arrival speed is taken as
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the relative speed difference between the asteroid body and the spacecraft when the two are

considered to be at the same location. For direct intercept missions at a relative speed of 10

km/s the program is instructed to add an impulsive arrival burn to the mission requirements

such that the relative speed between the asteroid body and the spacecraft at arrival is equal to

10 km/s. And for rendezvous missions, the impulsive arrival burn being added to the mission

requirements is such that at arrival the spacecraft has the same velocity magnitude and direction

as the asteroid. Regardless of the decision, the user then enters mission parameter data related

to the dates in which they would like the mission to be conducted between, as well as the upper

and lower bound mission duration - being the amount of time the spacecraft can take traveling

from Earth to the target. Given only this information, the AMiDST constructs a porkchop

plot (graph of launch date and mission duration evaluated in terms of total mission ∆V ) over

the defined time period. The porkchop plot is filled by taking every possible pair of mission

duration and launch duration and finding the corresponding mission ∆V by solving Lambert’s

Problem. After all solutions have been found and the porkchop plot is constructed the entire

grid space is analyzed using a customizable cost function, to find the optimal mission trajectory

defined by the appropriate state variables which encompass parameters at the beginning and

end of the mission trajectory. With all missions evaluated, the mission design options are

sorted based on the cost function scores, where the best missions have the lowest cost function

values due to the lack of penalty accumulation because they are closer to the desired mission

parameter values set by the user. Finally, the top 10 missions are presented to the user for the

final decision of the desired mission design, where the AMiDST will accept the selection and

create an executable m-file for the user to run and be given all the desired data for the chosen

mission design.

3.3.5 Lambert’s Problem

Lambert’s Problem is characterized by two position vectors and a time of flight between

them, so in this context is an initial orbit-determination technique. While the two position

vectors and the time of flight between them is known, the orbit between the two endpoint vectors

is not yet fully known. There exist several formulations of this problem such as the minimum
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energy method, Gauss’s solution, the universal variable approach, and Battin’s method. The

technique used to obtain the results shown throughout this work is the Lambert-Battin method

which uses continued fractions to guarantee convergence and does not suffer from the 180deg-

transfer difficulty of most Lambert routines [19, 31]. The solution to Lambert’s Problem allows

for the examination of several useful situations. For initial orbit determination, the Lambert

techniques result in velocity vectors from sets of observed position vectors. The problem could

also be two positions in one orbit, known as a transfer orbit, used to plan maneuvers of a body

between two separate positions. Another application of Lambert’s Problem is the case where

the two position vectors lie in two separate orbits [19]. The latter case is the application to

which Lambert’s Problem is being used to solve, where the spacecraft begins in an orbit about

the Earth (more generally, in Earth’s solar orbit) and ends in the target asteroid’s orbit. The

solutions from Lambert’s Problem, in the case of finding a transfer orbit between two different

orbits given the starting and ending position vectors and the transfer time, are the two velocity

vectors within the transfer orbit. Removing the speed that the spacecraft would be traveling

at insertion into the transfer orbit and only taking into account the speed change necessary

for arrival at the asteroid’s orbit, the total change in velocity (∆V ) to connect the two orbits

is left. Mapping a set of those ∆V s against the corresponding spacecraft departure dates and

mission durations creates a porkchop plot [31].

3.3.5.1 Initial Problem Formulation

The solution to Lambert’s Problem is based on the given information of an initial and final

radius vector and the time-of-flight given as ~r1, ~r2,∆t, respectively. Two additional values are

needed for the solution to be found, the chord (c) and the semiperimeter (s). The chord is

simply defined as the distance between the initial and final radius vectors and the semiperimeter

is half the sum of the sides of the triangle that is formed from the radius vectors and the chord,

represented as

c =
√
r2

1 + r2
2 − 2r1r2 cos ∆ν (3.2)

s =
r1 + r2 + c

2
(3.3)
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The transfer angle within the orbit connecting the initial and final radius vectors (∆ν) can

be determined fairly simply

cos ∆ν =
~r1 · ~r2

r1r2
(3.4)

However, taking the inverse cosine of the resulting value from the right-hand side of the equation

can result in a quadrant ambiguity that can lead to incorrect solutions. A solution to the

quadrant ambiguity issue when solving for ∆ν is presented below [33]. Normally, the solution

to Lambert’s Problem requires the indication of the direction that the solution to take, being

either a short-way or long-way trajectory, instead the decision to be made is between a prograde

or retrograde orbit. For a prograde orbit, the transfer angle ∆ν is determined as follows

∆ν =

 cos−1
(
~r1·~r2
r1r2

)
: (~r1 × ~r2)k ≥ 0

2π − cos−1
(
~r1·~r2
r1r2

)
: (~r1 × ~r2)k < 0

(3.5)

where the subscript k indicates the out-of-plane component of the vector cross product. In the

case of a retrograde orbit, the transfer angle can similarly be determined as follows

∆ν =

 cos−1
(
~r1·~r2
r1r2

)
: (~r1 × ~r2)k < 0

2π − cos−1
(
~r1·~r2
r1r2

)
: (~r1 × ~r2)k ≥ 0

(3.6)

The time to traverse the arc between the two vectors is related to the transfer orbit by

Kepler’s time-of-flight equation. From Kepler’s equation, Lagrange developed a proof of Lam-

bert’ theorem. Lagrange’s equation removes the orbit eccentricity from Kepler’s time-of-flight

equation and is only a function of r1 + r2, c, and the semi-major axis (a)√
µ

a3
∆t = (α− β)− (sinα− sinβ) (3.7)

The two angular parameters (α and β), are defined in terms of the physical parameters c, s,

and a, as follows:

sin
α

2
= ±

√
s

2a
(3.8)

sin
β

2
= ±

√
s− c
2a

(3.9)

The quadrant abiguities for the α and β parameters can be resolved by making the following

restrictions

0 ≤ α ≤ 2π, 0 ≤ β ≤ π : ∆ν ≤ π

0 ≤ α ≤ 2π, −π ≤ β ≤ 0 : ∆ν ≥ π
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3.3.5.2 Battin’s Method

Lambert’s Problem is described as two-point boundary value problem that states that the

time-of-flight is a function of a, r1 + r2, and c. Therefore, if these three physical parameters

are held constant, the resulting orbit can be transformed into any conic section (circle, ellipse,

parabola, or hyperbola). The solution can be transformed such that the semi-major axis of

the resulting orbit is perpendicular to the chord (c), which by definition connects the initial

and final radius vectors [34]. The transformed ellipse is shown in Figure 3.7, and further

P2

P1

F0F0
* r0

c1
2
_

c1
2
_

1 2(r  + r  )1
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1 2(r  + r  )1
2
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Figure 3.7 Transformed ellipse used in Lambert-Battin solution of Lambert’s Problem [7].

explanation of the transformed orbit can be found in [34]. What follows is a discussion of the

Lambert-Battin method of solving Lambert’s Problem, more detail regarding other methods of

solving Lambert’s Problem (including Battin’s method) can be found in [7], and for full details

of the Battin solution methodology can be seen in [19, 34].

Battin formulates the problem in such a way by defining two non-dimensional parameters (l

and m), which are functions only of the problem geometry. First, a non-dimensional Lambert

parameter (λ)

λ =

√
r1r2

s
cos

∆ν

2
= ±

√
s− c
s

(3.10)

is introduced in order to describe the geometry of the problem, where λ ∈ (−1, 1). The potential

sign ambiguity in the square root can be resolved as follows: λ > 0 for 0 < ∆ν < π and λ < 0

for π < ∆ν < 2π. The dimensionless time-of-flight parameter used in the algorithm is
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T =

√
8µ

s3
∆t (3.11)

Using this transformation, the equation for the pericenter radius (r0) is described as

r0 = a (1− e0) = r0p sec2 1

4
(E2 − E1) (3.12)

where e0 is the eccentricity of the transformed orbit and r0p is the mean point of the parabolic

orbit from P1 to P2. The mean point of the parabolic radius (r0p) is expressed as

r0p =
1

4

(
r1 + r2 + 2

√
r1r2 cos

θ

2

)
=

1

4
s (1 + λ)2 (3.13)

Battin then defines the dimensionless parameters l and m, which are always positive and solely

dependent on the problem geometry

l =

(
1− λ
1 + λ

)2

(3.14)

m ≡ µ∆t2

8r3
0p

=
T 2

(1 + λ)6 (3.15)

Utilizing the dimensionless parameters to transform Kepler’s time-of-flight equation, the

final result takes the following form

y3 − (1 + h1) y2 − h2 = 0 (3.16)

where y is a function of the problem parameters l, x, and m, defined as

y2 ≡ m

(l + x) (1 + x)
(3.17)

The independent variable (x) is then determined from y for all orbit types

x =

√(
1− l

2

)2

+
m

y2
− 1 + l

2
(3.18)

The flattening parameters (h1 and h2) are functions of l, m, x, and the continued fraction ξ(x),

defined as

h1 =
(l + x)2 (1 + 3x+ ξ(x))

(1 + 2x+ l) [4x+ ξ(x) (3 + x)]
(3.19)

h2 =
m (x− l + ξ(x))

(1 + 2x+ l) [4x+ ξ(x) (3 + x)]
(3.20)
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The function ξ(x), which is needed for the computation of the flattening parameters, is defined

by a continuous fraction

ξ(x) =
8
(√

1 + x+ 1
)

3 +
1

5 + η +

9
7η

1 +
cηη

1 +
cηη

1 + ...

(3.21)

where η and cη are represented by the following expressions

η =
x(√

1 + x+ 1
)2 , η ∈ (−1, 1) (3.22)

cη =
η2

(2n)2 − 1
, η = 4, 5, ... (3.23)

respectively.

The non-dimensional Kepler time-of-flight equation shown in Eq. 3.16 is a third order

polynomial in y, and its largest root must be found in order to proceed. Several methods exist

to solve a third order polynomial, including analytic and numerical approaches, the method

suggested by Battin utilizes a successive substitution algorithm that solves for the largest root

of y and determines the new value of x through its definition in Eq. 3.18. The first step in the

successive substitution algorithm is to calculate B and u using the following equations

B =
27h2

4 (1 + h1)3 (3.24)

u =
B

2
(√

1 +B + 1
) (3.25)

To determine the final solution of y, Battin defines a second continued fraction expansion K(u)

K(u) =

1
3

1 +

4
27u

1 +

8
27u

1 +

2
9u

1 +

22
81u

1 +
. . .

(3.26)
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The odd and even coefficients of the K(u) continued fraction expansion are determined accord-

ing to the following two respective expressions

γ2n+1 =
2 (3n+ 2) (6n+ 1)

9 (4n+ 1) (4n+ 3)
(3.27)

γ2n =
2 (3n+ 1) (6n− 1)

9 (4n− 1) (4n+ 1)
(3.28)

Then, the largest positive real root of the cubic equation is found using

y =
1 + h1

3

(
2 +

√
1 +B

1 + 2u (K(u))2

)
(3.29)

Once the solution to Eq. 3.16 is found and the value of x has converged, the semi-major

axis of the transfer orbit can be found. With a value for the semi-major axis of the transfer

orbit calculated

a =
µ (∆t)2

16r2
0pxy

2
(3.30)

the initial and final velocities can be easily calculated using the standard Lagrange coefficients

f , g, ḟ , and ġ using the following equations

~v1 =
1

g
(~r2 − f~r1) (3.31)

~v2 =
1

g
(ġ~r2 − ~r1) (3.32)

The initial conditions for x that guarantee convergence are

x0 =

 0, parabola, hyperbola

l, ellipse
(3.33)

The dimensionless parabolic time-of-flight, which is a function of the Lambert parameter,

needed to assign the initial condition x0 is defined as

Tp =
4

3

(
1− λ3

)
(3.34)

Basically, Battin’s method to determine the transfer orbit that fits two given radius vectors

and a time-of-flight is outlined simply below. All continued fractions are always calculated to

at least 20 total fraction levels, because this provides sufficient numerical accuracy, typically
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within a small margin of error (less than 10−8) when compared to their Lambert solution

algorithms.

Using the solution formulation of Lambert’s Problem described above, the steps to find the

initial and final velocity vectors for the transfer orbit are as follows:

1. Compute the dimensionless parameters l, m, and r0p.

2. From the parabolic time-of-flight, Tp, determine x0.

3. Calculate: η, ξ, h1, h2, B, u, K(u), in that order.

4. Compute the solution for y from Eq. 3.29 and the updated value of x from Eq. 3.18.

5. Go to step 3 and repeat the calculations until the value of x converges to the desired

tolerance, or the maximum number of iterations is exceeded.

6. Output the converged semi-major axis (a), the Lagrange coefficients, and the initial and

final velocity vectors.

3.3.6 Cost Function Formulation

As previously mentioned, the entire design space of mission durations and launch dates is

analyzed using a customizable cost function according to user defined mission parameters. The

potential design variables are

X = [JD,∆V,C3, disp, dur, varr, αarr, αLOS , αSun] (3.35)

where JD represents the Julian date at mission departure, ∆V is the total mission change

in velocity required, C3 is the associated mission hyperbolic excess energy at departure from

Earth’s sphere of influence, disp is the dispersion time after disruption, dur is the mission

duration, varr is the relative arrival velocity between the asteroid and the spacecraft, αarr is

the relative arrival angle between the asteroid and spacecraft at intercept, αLOS is the line-of-

sight angle between Earth and the asteroid at the time of intercept, and αSun is the approach

angle of the spacecraft to the asteroid with respect to the Sun. The overall cost function used
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to quantitatively compare the various potential NEO mission designs is constructed in the

following manner

C(X) = f(X) + g(X) (3.36)

where f(X) is a constant cost attributed to every mission trajectory and g(X) is a variable

cost that is dependent on the state variables used within the trajectory optimization [35]. The

components of the overall cost function f(X) and g(X) take the form

f(X) = ∆v +
√
C3 (3.37)

and

g(X) = g(JD) + g(disp) + g(dur) + g(varr) + g(αarr) + g(αLOS) + g(αSun) (3.38)

The exact penalty functions used to construct the various components of g(X) are described

below. The component cost functions are defined based on the user defined upper and lower

bounds for the state variables used in the cost function evaluation of the mission design space.

If the user would like to define a desired launch window within the potential launch timespan,

then the algorithm will penalize launch dates that are either below the launch date lower bound

or above the launch date upper bound

g(JD) =

 0, JDlower < JD < JDupper

100, JD < JDlower, JD > JDupper

(3.39)

Similarly, if the user chooses to include the dispersion time after impact or the mission duration

in the cost function, the penalty functions take the same form as that of the launch date

g(disp) =

 0, displower < disp < dispupper

100, disp < displower, disp > dispupper

(3.40)

g(dur) =

 0, durlower < dur < durupper

100, dur < durlower, dur > durupper

(3.41)

Given that the launch date, dispersion time, and mission duration are a bit more subjective

user-defined parameters, the penalty functions are simple conditional arguments that if true

don’t penalize the mission but heavily penalize the mission if any of the three conditions are
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violated, virtually ensuring that the given mission could not be best mission design given

the established cost function. Constructing a mission to a hazardous, near-Earth asteroid

utilizing the HAIV concept spacecraft that the ADRC has created requires the knowledge of

the expected relative arrival velocity. The two-body configuration of the spacecraft requires

knowing the speed that the spacecraft would be approaching the target so that the distance

and timing between the two parts of the vehicle can be considered a given, making the arrival

velocity to target an extremely important state variable with regards to the overall mission.

So, the penalty function for the relative arrival velocity is as follows

g(varr) =

 0, varr,lower < varr < varr,upper

|varr − varr,b|, varr < varr,lower, varr > varr,upper

(3.42)

where varr,b is short-hand notation signifying the arrival velocity bound (either the upper or

lower bound). Another important parameter to consider when making the final approach

to a target is the relative arrival angle between the spacecraft and the target. With kinetic

impactor missions, the angle that the spacecraft and the target would collide is important as far

as determining the how much the target is perturbed due to the impact, so if the user would

want define a range of arrival angles for the spacecraft to impact the target, the associated

penalty function for missions that don’t have arrival angles within the range is defined as

g(αarr) =

 0, αarr,lower < αarr < αarr,upper

exp
(
− 1

1−α2
arr

)
, else

(3.43)

During critical portions of the mission, communication with Earth is a must, so a line-of-sight

angle during the final terminal impact phase can be included to help ensure mission feasibility.

Communication between Earth and the spacecraft during that terminal phase is the only way

to determine mission success. The line-of-sight angle is found as

αLOS = arccos

(
~R⊕ · ~Rast
R⊕Rast

)
(3.44)

where ~R⊕ and ~Rast are the Earth and asteroid radius vectors at the time of impact, respectively

[35]. To ensure that the line-of-sight angle is in the correct quadrant, the z component of the

cross product between the two radius vectors is used

~c = ~R⊕ × ~Rast (3.45)
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αLOS = 2π − αLOS , c(3) ≤ 0 (3.46)

The user may define an angle range for the line-of-sight angle if they desire a particular view of

the impact, otherwise the penalty function penalizes missions that have a value for αLOS near

π, as follows

g(αLOS) =

 0, αLOS,lower < αLOS < αLOS,upper

exp
(
− 1

1−(αLOS−π)2

)
, else

(3.47)

The final potentially added penalty function is again more used to ensure mission feasibility

and penalizes missions according to the relative asteroid velocity vector with respect to the

asteroid’s position vector relative to the Sun. The reason for this is so that the spacecraft

arrives on the sunlight side of the asteroid, resulting in conditions that are favorable for the

terminal guidance of the spacecraft. To avoid numerical scaling issues due to the difference in

magnitude of the vectors, unit vectors are used in the calculation of the Sun angle.

αSA = arccos (~er · ~ev) (3.48)

Different than the line-of-sight angle penalty, here all angles greater than 0 (indicating that the

approach is directly along the asteroid-Sun line from the sunward side) are penalized using a

linear function [35].

g(αSA) =

(
1

π

)
αSA (3.49)

The penalty functions can be altered, or others can be added, to shape the solution as the

user desires. Given a defined cost function for the desired mission type, the optimal mission

trajectories will be found by the algorithm and the top 10 mission design results will be reported,

along with their state variable values, for the user to select the desired mission design.

3.4 Sample Mission Designs using AMiDST

Before the implementation of the trajectory optimization, the customizable cost function,

the AMiDST program was a little more user-dependent. Once the user defines the target

asteroid, the program would construct the porkchop plot and present it to the user in order

for the user to select any number of points from the contour plot as design points (pairs of
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launch dates and mission durations) for the program to analyze and report the results back to

the user. This lower fidelity mission design gave the user more control of the initial conditions

for the potential mission designs, without knowing anything about the mission parameters at

the back-end of the mission trajectory. In order to show the capabilities and output from the

AMiDST program, results of three asteroid case studies (1999 RQ36, 2011 AG5, 2012 DA14)

will be shown from lower-fidelity versions of the AMiDST program [31] and results from the

higher-fidelity version will be provided on different target asteroids later in this work.

3.4.1 Asteroid 1999 RQ36

The selected design point for this HAIV disruption mission is chosen to occur at a late

launch date within the given launch window. The cross-hairs and black box on Figure 3.8 show

the region from which the design point was chosen from. The selected launch date comes

 

Figure 3.8 Selection of launch date and mission duration for 1999 RQ36 disruption mission.

out to be December 6, 2022 with a mission duration of 233 days. Given the launch date and

mission duration pair, the resulting departure ∆V from the 185-km circular low-Earth orbit

is just over 4 km/s. From these mission parameters, the spacecraft’s trajectory is plotted in

red along with the Earth’s path (green line) and 1999 RQ36’s trajectory (blue line) over the

mission timespan in Figure 3.9 on the left. The HAIV would depart from Earth (red triangle)

on December 6, 2022 and travel for 233 days until it would encounter the target NEO on July

27, 2023 (red circle).
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Figure 3.9 Left: Orbit diagram of transfer trajectory from Earth to 1999 RQ36. Right: Speeds

and angle between spacecraft and 1999 RQ36 at impact.

On the right side of Figure 3.9, there is a depiction of the arrival conditions for the HAIV

with respect to 1999 RQ36. Arriving at 1999 RQ36 on July 27, 2023 the HAIV would be

travelling at about 26.5 km/s at a 16.1 degree angle to the target NEO’s 28.7 km/s velocity,

resulting in about an 8-km/s velocity difference. Thanks to the large spacecraft mass and

required departure ∆V, the only launch vehicle capable of completing the given mission, from

the Delta II, Atlas V, and Delta IV class vehicles analyzed, is the Delta IV Heavy. With such

a powerful launch vehicle and massive spacecraft comes a large price tag as well, the estimated

mission cost for this nuclear disruption mission is nearly $1.8B. Since only the Atlas V class

of launch vehicles are currently able to be launched, due to the decommissioning of the Delta

II and Delta IV launch vehicles, a new launch date and/or mission duration would have to be

found for a feasible mission design. Based upon the given mission parameters, Table 3.2 gives

all the pertinent HAIV mission results. [30, 31]
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Table 3.2 Mission design parameters for intercept with Asteroid 1999 RQ36.

Mission Parameter Value

Asteroid 1999 RQ36

Asteroid Mass (kg) 1.4E+11

LEO altitude (km) 185

Spacecraft Designation HAIV

NED Mass (kg) 1500

Impactor Mass (kg) 670

Follower Mass (kg) 3550

Total HAIV Mass (kg) 5720

Departure ∆V (km/s) 4.002

C3 (km2/s2) 17.669

Launch Vehicle Delta IV Heavy

Departure Date December 6, 2022

Mission Duration (days) 233

Arrival Angle (deg) 16.104

Impact Velocity (km/s) 8.03

Arrival Date July 27, 2023

Estimated Mission Cost ($) 1797.66M

3.4.2 Asteroid 2011 AG5

If asteroid 2011 AG5 were deemed a realistic threat to the survival of the planet, a deflec-

tion/disruption mission would need to be launched. The case study for this direct intercept

mission has a departure date April 15, 2027 and a mission duration of 350 days. Figure 3.10

shows the contour plot for a direct intercept mission with 2011 AG5. The cross-hairs and black

box in the diagram show the selected launch date and mission duration, which are used to

design the disruption mission. With nearly a full year of transit time, the HAIV would not

arrive to the target NEO until March 30, 2028, about 12 years before the estimated impact

date. The orbit plot on the left of Figure 3.11 shows the impact between the HAIV and the

target to occur inside the Earth’s orbital radius. The spacecraft will depart from Earth on

April 15, 2027, represented by the red triangle, and travel for 350 days until its encounter with

asteroid 2011 AG5 on March 30, 2028, shown as the red circle. The spacecraft, asteroid, and

Earth’s orbits are depicted by the red, blue, and green lines, respectively.

The right side of Figure 3.11 shows the anticipated encounter between the HAIV and target
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Figure 3.10 Selection of launch date and mission duration for 2011 AG5 disruption mission.

NEO. Arrival at 2011 AG5 from the given trajectory will result in an impact angle of about

14.3 degrees, the angle between the asteroid and spacecraft’s velocity vectors at the time of

impact. Such an arrival angle results in a relative velocity between the asteroid and the HAIV

of over 9 km/s. High relative impact velocities, similar to the one present in this mission,

are the reasons why the ADRC has been developing the HAIV concept. The pertinent

mission parameters for this direct intercept disruption mission are given in Table 3.3. The

departure ∆V for this case study is rather high, at just under 6 km/s. Given such a large ∆V,

an Atlas V 551 launch vehicle is smallest launch vehicle from the Delta II, Atlas V, and Delta

IV classes capable of imparting the required change in velocity from low-Earth orbit. And,

since the decommissioning of the Delta II and Delta IV launch vehicles, the Atlas V 551 is

the only launch vehicle available, and capable, of completing the aforementioned mission. The

estimated mission cost for this particular mission design is nearly $1B. It is interesting to note

that while there are several regions where a feasible mission can be designed, there are many

more design points where there is no feasible launch configuration that will apply enough ∆V

to inject the spacecraft into the required direct transfer orbit. [30, 31]

3.4.3 Asteroid 2012 DA14

Asteroid 2012 DA14 is an Aten class near-Earth asteroid with an estimated mass of about

30 meters. The NEO was discovered on February 23, 2012 in Spain. Upon initial observation,
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Figure 3.11 Left: Orbit diagram of transfer trajectory from Earth to 2011 AG5. Right: Speeds

and angle between spacecraft and 2011 AG5 at impact.

the odds of 2012 DA14 impacting Earth between 2026 and 2069 were about 1-in-3000, with

no possibility of the asteroid hitting Earth during its close-encounter in 2013. Table 3.4 shows

the orbital elements of the asteroid. Let’s assume that the current date is around the

end of February 2012, and asteroid 2012 DA14 was just discovered, it has a high likelihood of

impacting Earth on February 15, 2013, and that we are launch ready at this point in time.

These pieces of information are/were not true, but we assume them to be true for the sake of

the problem that they establish.

With the impact date set with respect to the discovery date, a mission window is established

where the spacecraft has to be launched after discovery, travel to meet the asteroid, and allow

time for the disrupted pieces of the asteroid to disperse before the anticipated impact date.

This mission timeline is much more stringent than the one for 2013 A1 since everything has to

occur within one year. Given that the asteroid is a near Earth object, there should be more

options for missions to it, either long-term or short-term. Figure 3.12 depicts a contour plot of

total mission ∆V in terms of launch date and mission flight time. The porkchop plot agrees

with the earlier assessment that upon initial views there are plenty of feasible mission options.
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Table 3.3 Mission design parameters for intercept with Asteroid 2011 AG5.

Mission Parameter Value

Asteroid 2011 AG5

Asteroid Mass (kg) 4.1E+9

LEO altitude (km) 185

Spacecraft Designation HAIV

NED Mass (kg) 300

Impactor Mass (kg) 360

Follower Mass (kg) 1183

Total HAIV Mass (kg) 1843

Departure ∆V (km/s) 5.961

C3 (km2/s2) 67.709

Launch Vehicle Atlas V 551

Departure Date April 15, 2027

Mission Duration (days) 350

Arrival Angle (deg) 14.277

Impact Velocity (km/s) 9.231

Arrival Date March 30, 2028

Estimated Mission Cost ($) 860.340M

Due to the wide range of mission possibilities within the one year time line that has been

established for 2012 DA14, three mission case studies were analyzed. The three mission case

studies included: (1) an early launch, short-term mission, (2) an early launch, long-term mis-

sion, and (3) a late launch, short-term mission. Each case study was analyzed from the stand

point of the mission parameters that make the mission feasible and the resulting orbital pa-

rameters [30, 31].

3.4.3.1 Early launch, short-term mission

One of the big assumptions made for this exercise is that we are launch ready at the time of

discovery of asteroid 2012 DA14. If the main point of the mission design process is to maximize

the dispersion time, with the lowest mission ∆V , by keeping the mission flight time to 60 days

or less, then this course of action would indicate an early mission launch with a short flight

time. Because a longer mission duration would result in lower ∆V ′s, the mission duration
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Table 3.4 The orbital elements of asteroid 2012 DA14 at an epoch of April 18, 2013. [1]

Orbital Element Value Units

a 0.91032 AU

e 0.0894

i 11.6081 deg

ω 195.5346 deg

Ω 146.996 deg

M 231.097 deg

tends towards its upper bound. The resulting early launch date and short mission flight time

parameters are shown in Table 3.5.

Table 3.5 Optimal constrained mission parameters for early launch, short-term impact mission

to asteroid 2012 DA14.

Parameter Value

Departure Date February 24, 2012

Flight Time (days) 60

Departure ∆V (km/s) 5.036

Dispersion time (days) 297

Given the long dispersion time associated with this mission architecture, a smaller spacecraft

can be used to impact the asteroid body. Using the associated mission parameters, the overall

mission construction can be summarized in Table 3.6. With the small size of asteroid 2012

DA14, the spacecraft type that would be used in these situations would be a kinetic impactor.

But, with the small relative impact velocity a kinetic impactor may not be able to disrupt the

asteroid enough, if at all, to be effective. So, a smaller scaled version of the ADRC’s HAIV

would be the spacecraft of choice for this mission. Due to the higher departure ∆V for this

mission, a midsize Delta IV launch vehicle is chosen for this mission. With the spacecraft

intercepting the asteroid on April 24, 2012, there would be almost 300 days for the fragments

of the disrupted body to disperse before February 15, 2013.
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Figure 3.12 Mission contour plot of total ∆V in terms of launch date and mission flight time

for asteroid 2012 DA14.

3.4.3.2 Early launch, long-term mission

Again, assuming that we are launch ready from the time of discovery for an early launch

date, but lower mission ∆V is valued over dispersion time, then the mission construction

would lean toward a longer mission duration. So, the constraint on dispersion time is relaxed

with respect to the constraints put in place for the first case study. The transfer trajectory

parameters for this early launch, long-term mission design are shown in Table 3.7.

By allowing a longer mission flight time, the departure ∆V drops to about 3.6 km/s to

inject into an orbit to intercept asteroid 2012 DA14. With such a low departure velocity a

smaller launch vehicle can be used to conduct the mission. Launching on April 27, 2012 with

a 263 day flight time results in asteroid intercept on January 15, 2013 - allowing for 31 days of

dispersion time for the disrupted asteroid.

3.4.3.3 Late launch, short-term mission

In the case where there is no possibility for an early launch, there are still feasible missions

to disrupt the threatening body and allow for at least a little time for the fragments to disperse.
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Table 3.6 Mission design parameters for a early launch, short-term intercept mission to as-

teroid 2012 DA14.

Mission Parameter Value

Asteroid 2012 DA14

LEO altitude (km) 185

Spacecraft Designation HAIV

Total HAIV Mass (kg) 1000

Departure ∆V (km/s) 5.036

C3 (km2/s2) 43.121

Launch Vehicle Delta IV M+(4,2)

Departure Date February 24, 2012

Mission Duration (days) 60

Arrival Angle (deg) 2.001

Impact Velocity (km/s) 0.9571

Arrival Date April 24, 2012

Estimated Mission Cost ($) 601.376M

Table 3.7 Optimal constrained mission parameters for early launch, long-term impact mission

to asteroid 2012 DA14.

Parameter Value

Departure Date April 27, 2012

Flight Time (days) 263

Departure ∆V (km/s) 3.602

Dispersion time (days) 31

If the mission flight time is limited to 30 days or less and dispersion time of 15 days or more,

the situation that arises is the worst case scenario for Earth in which something can still be

done to the threatening body. Given these constraints to the mission design, the following

mission parameters are obtained: While there is a limited amount of time for the disrupted

pieces of the body to scatter before the expected impact date, that time would allow for some

fragments to miss the planet and only a subset of the entire body to impact the Earth, hopefully

resulting in most of the smaller pieces burning up in Earth’s atmosphere. The complete mission

architecture for such a scenario is summarized in Table 3.10. This mission scenario results

in the largest relative impact velocity of the case studies discussed, despite the small departure
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Table 3.8 Mission design parameters for a early launch, long-term intercept mission to asteroid

2012 DA14.

Mission Parameter Value

Asteroid 2012 DA14

LEO altitude (km) 185

Spacecraft Designation Kinetic Impactor

Total Spacecraft Mass (kg) 1400

Departure ∆V (km/s) 3.602

C3 (km2/s2) 8.383

Launch Vehicle Delta IV Medium

Departure Date April 27, 2012

Mission Duration (days) 263

Arrival Angle (deg) 10.901

Impact Velocity (km/s) 6.049

Arrival Date January 15, 2013

Estimated Mission Cost ($) 717.658M

Table 3.9 Optimal constrained mission parameters for late launch, short-term impact mission

to asteroid 2012 DA14.

Parameter Value

Departure Date December 31, 2012

Flight Time (days) 30

Departure ∆V (km/s) 3.789

Dispersion time (days) 16

∆V . The reason for this is because of where the asteroid is being intercepted. The asteroid is

approaching its perihelion, meaning that its speed is increasing as it crosses Earth-orbit, and

since there is not a long flight time for the spacecraft, it would not have lost a lot of its launch

energy, making for a more energetic collision.

3.4.3.4 Asteroid 2014 DA14 Case Study Conclusions

While all three missions are completely feasible and would probably result in the salvation

of the planet, each mission has its own time and place. The early launch, short term mission

scenario should always be the first option. Making an attempt on the threatening body as
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Table 3.10 Mission design parameters for a late launch, short term intercept mission to aster-

oid 2012 DA14.

Mission Parameter Value

Asteroid 2012 DA14

LEO altitude (km) 185

Spacecraft Designation Kinetic Impactor

Total Spacecraft Mass (kg) 1800

Departure ∆V (km/s) 3.789

C3 (km2/s2) 12.6798

Launch Vehicle Delta IV Medium

Departure Date December 31, 2012

Mission Duration (days) 30

Arrival Angle (deg) 17.481

Impact Velocity (km/s) 9.371

Arrival Date January 30, 2013

Estimated Mission Cost ($) 842.26M

early as possible would give some time afterwards in case something were to go wrong and the

mission were to fail. But, this mission construction makes the assumption that we are ready to

launch a spacecraft upon discovering a threat, if not, then this scenario is worthless. It would

be this author’s opinion that the second option mission scenario would be an early launch,

with a longer mission flight time. In the event that the body threatening Earth were similar to

Comet 2013 A1 with a highly energetic and inclined orbit, launching early and intercepting the

body as far from Earth as possible would be the best option, and that would likely require a

longer mission duration. If neither of the first two options are available, or fail, the last option

should be a late launch with a short flight time mission scenario. This mission construction

would be a last resort option, and should not be thought of as the first choice in hopes that

new data would prove the NEO is no longer a threat. Regardless of the option chosen given

the situation, any action would be better than inaction [30, 31].
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CHAPTER 4. PLANETARY ENCOUNTERS

4.1 Introduction

When a body undergoes an encounter with a planet, there are a number of ways that its

orbit will be affected. The environment around a planet is very dynamic in nature, and small

inaccuracies in modeling can result in drastic differences between the simulated trajectories and

the actual trajectory. Getting a good understanding behind the geometry of planetary close-

approaches and the effect that they have on the orbital elements of the bodies that undergo

them should assist with the task of predicting the resulting orbital trajectory after a close flyby

of a planet [36]. In this chapter, there will be a discussion of various orbital theories associated

with planetary flyby encounters: encounter geometry, planetary flybys, target B-planes, and

keyhole theory.

4.2 Encounter Geometry

The dynamical system under consideration in the following analysis consists of the Sun, a

planet orbiting the Sun on a circular orbit, and an asteroid, viewed as a particle, that is on an

eccentric and inclined orbit around the Sun that crosses the orbit of the planet. Assume the

planet has an orbital radius R = 1, the product k
√
M = 1, where k is the Gaussian constant

and M is the mass of the Sun, and the asteroid has orbital parameters (a, e, i, ω,Ω). In order

to have the asteroid cross the orbital path of the planet, the asteroid must meet the following

criteria: a(1−e) < 1 < a(1+e). The frame of reference established for this analysis is centered

on the planet, the x-axis points radially opposite to the Sun, the y-axis is the direction of

motion of the planet itself, and the z-axis completes the right-handed system by pointing in

the direction of the planet’s angular momentum vector - illustrated in Figure 4.1. The three
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φ 

θ 

Figure 4.1 Reference frame of ~U . The origin is placed at the planet’s center, the positive x-axis

is opposite the direction of the Sun, the y-axis is in the direction of the planet’s

motion, and the z-axis is parallel to the planet’s angular momentum vector. The

angles φ and θ define the direction of ~U .

most important orbital elements used in the analysis are the semi-major axis a, the eccentricity

e, and the inclination i.

4.2.1 Relationship Between Orbital Parameters a, e, i and U , φ, θ

Let ~U = (Ux, Uy, Uz) and U be the relative velocity vector and magnitude between the

planet and the asteroid [37], defined as

U =

√
3−

[
1

a
+ 2
√
a(1− e2) cos i

]
(4.1)

Ux = U sin θ sinφ (4.2)

Uy = U cos θ (4.3)

Uz = U sin θ cosφ (4.4)

where θ and φ are the angles that define the direction of U by

φ = tan−1

[
±

√
2a− 1

a2(1− e2)
− 1

1

sin i

]
(4.5)

θ = cos−1

[
1− U2 − 1/a

2U

]
(4.6)
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where θ may vary between 0 and π, and φ between -π/2 and π/2.

In terms of a, e, and i, the components of ~U are given by

Ux =

[
2− 1

a
− a(1− e2)

]1/2

(4.7)

Uy =
√
a(1− e2) cos i− 1 (4.8)

Uz =
√
a(1− e2) sin i (4.9)

and, inversely, we have

a =
1

1− U2 − 2Uy
(4.10)

e =
[
U4 + 4U2

y + U2
x(1− U2 − 2Uy) + 4U2Uy

]1/2
(4.11)

i = sin−1
√
U2
z /[U

2
z + (1 + Uy)2] (4.12)

Within the scope of potential impacting bodies, one of the most important regions of the

planetocentric system defined by the body’s orbital elements is the B-plane (discussed in detail

in Appendix A). Looking back at Figure 4.1, it can be seen that the angles φ and θ are defined

within the planetocentric reference frame (X, Y , Z) with respect to the relative velocity vector

U . So, if a reference frame (ξ, η, ζ) is defined on the B-plane of the encounter, then the

angles θ and φ can be used to transform between the two reference frames. This coordinate

transformation is accomplished by first rotating through an angle −φ about Y and then rotating

through an angle −θ about ξ (perpendicular to the old Y -axis and to ~U). In matrix notation,

the coordinate transformation can be written as
ξ

η

ζ

 = Rξ(−θ)RY (−φ)


X

Y

Z

 (4.13)

and the inverse transformation can be accomplished by rotating through the positive angles in

reverse order [37].
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4.2.2 Post-Keyhole Geometry

After the asteroid has an encounter with the target planet, the ~U vector is rotated by an

angle γ in the direction ψ, where ψ is the angle measured counter-clockwise from the meridian

containing the ~U vector, as seen in Figure 4.2. The deflection angle γ is related to the
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ϕ ϕ' 
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θ 

Figure 4.2 Reference frame of ~U and ~U ′. After the body’s encounter with the planet, the

vector ~U is rotated by an angle γ in the direction of ψ.

encounter parameter b by

tan
1

2
γ =

m

bU2
(4.14)

where m is the mass of the planet, in units of the Sun’s mass. The angle θ after the encounter,

denoted by θ′, is calculated from

cos θ′ = cos θ cos γ + sin θ sin γ cosψ (4.15)

and, defining χ = φ− φ′, we have

sinχ = sinψ sin γ/ sin θ′ (4.16)

cosχ = (cos γ sin θ − sin γ cos θ cosψ)/ sin θ′ (4.17)

tanχ = sinψ sin γ/(cos γ sin θ − sin γ cos θ cosψ) (4.18)

tanφ′ = (tanφ− tanχ)/(1 + tanφ tanχ) (4.19)



60

Evaluating for the post-encounter variables θ′ and φ′, the values of a′, e′, and i′ can be obtained

accordingly [37].

4.2.3 Post-Keyhole Orbital Elements

In order to get a better understanding of what kind of insight can be gained by the encounter

geometry, applying the established theory to an asteroid like 2011 AG5 can prove to be a

learning exercise to show how the approach and post-encounter geometries relate to each other

in the context of an Earth-threatening asteroid. The important orbital parameters to the

analysis are given in Table 4.1.

Table 4.1 Orbital elements of asteroid 2011 AG5 prior to an Earth encounter.

Orbital Element Value

a 1.43065

e 0.390126

i 1.39408◦

4.2.3.1 Post-Keyhole Semi-major Axis

Given that |~U | is constant, the variation in the semi-major axis ∆a depends only on the

parameters θ and θ′ as

∆a =
a′ − a
a

=
1− U2 − 2U cos θ

1− U2 − 2U cos θ′
− 1 (4.20)

Figure 4.3 shows the variation in the semi-major axis a. The colors on the mesh depict the

value of the variation, and the black dotted line depicts the resulting semi-major axis variation

of 2013 PDC-E from its Earth encounter. From the figure, it can be seen that the asteroid is

susceptible to having its semi-major axis increased or decreased, depending on the values of

γ and ψ. Preliminary observations show that values of ψ between about π/2 and 3π/2 will

cause 2013 PDC-E to have a smaller post-encounter semi-major axis than its pre-encounter

value, and a larger post-encounter semi-major axis for values of ψ less than π/2 and greater

than 3π/2. As far as the turn value γ, the closer the value is to π/2 means the more drastic

an effect the encounter will have on the orbit, either by enlarging it or shrinking it.
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Figure 4.3 Surface plot of variation of semi-major axis for asteroid 2011 AG5.

4.2.3.2 Post-Keyhole Inclination

The tangent of inclination is defined as

tan i =
cosφ sin θ

1/U + cos θ
=

Uz
1 + Uy

(4.21)

and after the rotation of the relative velocity vector by the deflection angle γ in the direction

of ψ, it becomes

tan i′ =
cosφ sin θ cos γ − cosφ cos θ sin γ cosψ + sinφ sin γ sinψ

1/U + cos θ cos γ + sin θ sin γ cosψ
(4.22)

The variation in inclination can be described by ∆i = tan i′−tan i [37]. Figure 4.4 depicts the

variation of the inclination of the orbits of asteroid 2013 PDC-E. The black dotted line on the

meshed grid shows the resulting variation of the inclination after the encounter with the Earth.

The plot of post-encounter inclination variation has two distinct sections to it. When ψ is less

than π the post-encounter inclination would be greater than the pre-encounter inclination, and

when ψ is greater than π the inclination would decrease. The largest change in inclination

seems to occur at ψ values of π/2 and 3π/2.

4.2.3.3 Post-Keyhole Eccentricity

Recalling that

e2 = U4 + 4U2
y + U2

x(1− U2 − 2Uy) + 4U2Uy (4.23)
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Figure 4.4 Surface plot of variation of inclination for asteroid 2011 AG5.

the expression for the pre-encounter eccentricity of the asteroid orbit can be expressed in

terms of the relative velocity magnitude and its components. Making a substitution for the

corresponding post-encounter terms, the value of the eccentricity after the encounter with the

target planet can be calculated as

e′ =
√
U ′4 + 4U ′2y + U ′2x (1− U ′2 − 2U ′y) + 4U ′2U ′y (4.24)

Taking the difference between the post- and pre-encounter eccentricities shows the variation

in the orbital eccentricity (∆e = e′ − e) based on the planetary encounter. Figure 4.5

 

Figure 4.5 Surface plot of variation of eccentricity for asteroid 2011 AG5.

depicts the variation of the eccentricity of asteroid 2011 AG5. The black dotted lines shown
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in the figure indicate the level of variation between the pre- and post-encounter eccentricities

of the asteroid. The plot of eccentricity variation has a bit more complicated structure for this

asteroid than the semi-major axis or inclination. Asteroid 2011 AG5 would have more eccentric

post-encounter orbits for values of ψ that approach the ends of the feasible domain [0, 2π] and

values near π. The magnitude of the change in eccentricity however, is not as great for values

of ψ near π as they are towards 0 and 2π. Values of ψ near π/2 and 3π/2 seem to have a

negative effect on the orbital eccentricities of the body.

A closer look at the variation equations of (∆a, ∆i, ∆e) reveals cases where these equations

can be further simplified, or interesting results become more apparent. Such an analysis is

omitted in this discussion, as the simplifications do not have a direct effect to the calculations

of the orbital variations or how they are used later on in the encounter analysis. As is, this

analysis only enables us to understand the potential variations in the orbital elements of a body

having an encounter with the planet, to get a firm grasp of the exact variation in the orbital

elements would require either an analytic or numerical analysis of the encounter to find the ψ

and γ values.

4.3 Planetary Flybys

Based on the encounter geometry analysis, the orbital variations for a body are shown via

surface plots like the ones in the previous section. The amount of the orbit change depends on

the speed the body has relative to the planet and how close it gets, but it is possible to find the

varied orbital trajectory of the body after encounter. Short of using a high-fidelity gravitational

model to track the progress of the body through numerical integration, the encounter phase

can be modeled as two-body motion governed by the planet as the central body.

During a flyby of a planet, the incoming and outgoing v-infinity vectors and the pre- and

post-encounter heliocentric velocities connect at the flyby planet through the following rela-

tionships

~v−∞ = ~vfb,pre − ~vpre (4.25)

~v+
∞ = ~vpost − ~vfb,post (4.26)
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where ~v−∞ and ~v+
∞ are the incoming and outgoing v-infinity vectors, respectively, ~vfb,pre and

~vfb,post are the velocities of the flyby planet upon entry and exit of the planetary sphere of

influence, and ~vpre and ~vpost are the heliocentric velocity vectors entering and leaving the

sphere of influence of the planet, respectively. During the encounter, the planet will turn body

through an angle φ, determined by

φ = 2 arcsin
1

1 + rpv2
∞/µ

(4.27)

where rp is the periapse radius of the flyby hyperbola, v∞ is the magnitude of the incoming

v-infinity vector, and µ is the gravitational parameter of the flyby planet [38].

The heliocentric speed gained by the body through the planetary encounter and the he-

liocentric delta-v vector caused by the flyby can be determined through the following two

equations

δv = 2v∞/e (4.28)

δ~v = ~vpre − ~vpost (4.29)

where e is the eccentricity of the flyby hyperbola [38]. Numerically, the following nonlinear

equality path constraint must be true to ensure that no laws of physics are violated.

|~v−∞| − |~v+
∞| = 0 (4.30)

The resulting difference from the constraint may not necessarily be zero, however, a small

tolerance of error can be allowed.

Regardless of the analysis conducted here being done analytically or numerically, the results

should be rather similar. Thus, given the pre- and post-encounter heliocentric velocity vectors

of the body, along with their respective heliocentric position vectors, the orbital elements of

the heliocentric orbits can be found and compared to see just how much the orbit of the body

has changed. Beyond seeing just how much the heliocentric trajectory would be changed due

to the planetary close encounter, the data on orbital variations can be used to find resonance

orbits.



65

The key parameter for resonant return orbits is the post-encounter semi-major axis. Scaling

everything so that the Earth-Sun distance and the Sun’s gravitational constant are equal to 1

T 2/a3 ≈ 4π2 (4.31)

where T and a are the period and semi-major axis of the body, respectively, in nondimensional

units. Given that Earth’s orbital period is 2π, the encountering body’s post-encounter orbital

period is 2π(a′)3/2, where a′ is the post-encounter semi-major axis. If the Earth and post-

encounter body’s periods are commensurable, then after h periods of the asteroid and k periods

of the Earth have passed, where k and h are integers, a new encounter will take place as

(a′)3/2 = k/h (4.32)

Picking a number of Earth orbits to elapse, and an acceptable tolerance for the orbital ratio

(k/h), the number of asteroid orbits can be found that would correspond to a resonance orbit

existing between the asteroid and Earth from a given post-encounter semi-major axis.

4.4 Target B-planes

A target plane is defined as a geocentric plane oriented to be normal to the asteroid’s

geocentric velocity vector. By observing the point of intersection of an asteroid trajectory

with the target plane can lend significant insight into the nature of a future encounter. In

general, there are two distinct planes and several coordinate systems that can be used in such

a framework. The classical target plane is referred to as the B-plane, which has been used

in astrodynamics since the 1960s. The B-plane is oriented normal to the incoming asymptote

of the geocentric hyperbola, or normal to the unperturbed relative velocity ~v∞. The plane’s

name is a reference to the so-called impact parameter b, the distance from the geocenter to the

intercept of the asymptote on this plane, known as the minimum encounter distance along the

unperturbed trajectory [39]. Figure 4.6 depicts the relationship between the target B-plane

and the trajectory plane of the asteroid.

The B-plane parameters (such as the impact parameter b or the vectors that define the

B-plane) can be computed by making the following assumptions: (1) the spacecraft has arrived
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Figure 4.6 Representation of the target B-plane of a planet with respect to the incoming

approach of a body on the trajectory plane.

at the target planet sphere of influence (SOI), (2) two-body theory can be used to determine

the resulting ~b, and (3) if perturbations to the spacecraft or target planet are included, the

B-plane targeting can be accomplished by numerical integration of the equations of motion. In

order to derive the B-plane and the B-vector, the incoming asymptote Ŝ needs to be calculated.

First, the spacecraft’s orbit normal unit vector (n̂) from the position (~r) and velocity (~v) at

periapse

n̂ =
~r × ~v
|~r × ~v|

(4.33)

The calculation of n̂ fixes the body’s orbit plane orientation in space. Next, the eccentricity

vector is calculated

ê =

(
v2

µ
− 1

r

)
~r − (~r · ~v)

µ
~v (4.34)

and thus fixes the direction of periapse. Next, the semi-major (a) and semi-minor (b) axes

values are calculated

a =

(
2

r
− v2

µ

)−1

(4.35)

b = −a
√
e2 − 1 (4.36)
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The semi-major axis is obtained from the energy expression, keeping in mind that the orbit

of the body with respect to the planet is hyperbolic meaning that the value of a is negative

and the energy of the orbit is positive. The semi-minor axis is computed from the equations

b2 = a2 + c2 and e = c/a. Now that the body’s orbit has been characterized, the direction

of Ŝ can be determined. Since the incoming asymptote lies in the orbit plane itself, only two

orthonormal vectors within the orbit plane are needed to uniquely determine the position of Ŝ.

The eccentricity vector (ê) forms a natural X-axis, and the cross product of ê and n̂ forms the

Y-axis. The incoming asymptote unit vector (~S) can then be calculated as

Ŝ = cosαê+ sinα (n̂× ê) (4.37)

where α is the hyperbolic asymptote angle, or the half bend angle, and is calculated from

α = cos−1

(
1

e

)
(4.38)

In order to calculate the unit vectors that define the B-plane, another vector (N̂) is constructed

that is centered on the planet and generally not perpendicular to Ŝ. Normally, one of two

vectors is chosen, either the body’s polar vector or its orbit normal. For the analyses discussed

and conducted in this work, the orbit normal is the vector used for N̂ . Crossing N̂ with Ŝ, a

perpendicular vector (T̂ ) is formed

T̂ =
Ŝ × N̂
|Ŝ × N̂ |

(4.39)

The final vector needed to define the B-plane is the R̂ vector, and it is obtained from Ŝ and T̂

R̂ = Ŝ × T̂ (4.40)

Finally, based on this formulation the B-vector is given by

~b = b
(
Ŝ × n̂

)
(4.41)

where ~b exist on the B-plane. If desired, ~b can be expressed in terms of the B-plane coordinate

system as well, where bT and bR are the components of ~b [40, 41].

bT = ~b · T̂ (4.42)

bR = ~b · R̂ (4.43)
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4.4.1 Target Plane Coordinates

Generally it is conventional to place the origin of the B-plane’s coordinate system at the

geocenter, but the orientation of the coordinate axes on the plane is arbitrary. The system

has been fixed at times by aligning the axes in a way so that one of the nominal target plane

coordinates is zero, or by aligning one of the coordinate axes with either the projection of the

Earth’s polar axis or the projection of the Earth’s heliocentric velocity.

One of the most important functions of the target plane is to determine whether a collision is

possible, and if not, how deep the encounter will be. With the B-plane, we obtain the minimum

distance of the unperturbed asteroid orbit at its closest approach point with the Earth - the

impact parameter b. That single variable however does not tell whether the asteroid’s perturbed

trajectory will intersect the image of the Earth on the following encounter, but the information

can be extracted by scaling the Earth radius R⊕ according to the following relationship

b⊕ = R⊕

√
1 +

v2
e

v2
∞

(4.44)

where ve is the Earth escape velocity

ve =

√
2GM⊕
R⊕

(4.45)

With this formulation a given trajectory impacts the Earth if b < b⊕, and would not otherwise.

Alternatively, the impact parameter could be scaled while leaving the image of the Earth on

the B-plane unchanged. The two scalings are equivalent for a single orbit, but when computing

the coordinates for different asteroids with different ~v∞, the scaling is not uniform [42].

A convenient and common target plane coordinate system (ξ, η, ζ) is obtained by aligning

the negative ζ-axis with the projection of the Earth’s heliocentric velocity ~V⊕, the positive

η-axis with the geocentric velocity (normal to the B-plane), and the positive ξ-axis in such a

way that the reference frame is positively oriented, expressed by the following

~η =
~U

U
(4.46)

~ξ =
~η × ~V⊕

|~η × ~V⊕|
(4.47)

~ζ = ~ξ × ~η (4.48)
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where ~U and U are the geocentric velocity vector and magnitude of the asteroid, respectively.

With this reference frame, it can be seen that ~ξ and ~ζ are on the B-plane itself, where (ξ, ζ)

are the target plane coordinates that indicate the cross track and along track miss distances,

respectively. That way, ζ is the distance in which the asteroid is early or late for the minimum

possible encounter distance. The early or late timing of the asteroid crossing the target plane

(η = 0) is given by

∆t =
ζ

V⊕ sin θ
(4.49)

where θ is the angle between ~v∞ and ~V⊕. The ξ coordinate, on the B-plane, refers to the

minimum distance achieved by altering the timing of the encounter between the asteroid and

the Earth, known as the Minimum Orbital Intersection Distance (MOID). It is important

to note that this particular interpretation of the coordinates of the B-plane is only valid as a

linear approximation, and is considered unusable for planetary encounters beyond several lunar

distances.

Such a formulation of the problem gives rise to the thought that an asteroid can avoid

impact if either the timing of the encounter is off or by being in an orbit that does not even

intersect the Earth’s orbit. Therefore, to have an impact occur the asteroid must have a small

enough MOID and be on time for the encounter. So, an encounter can be well-defined given

only the MOID and the ∆t. The manner in which the encounters are characterized in this

paper are according to the analytic theory developed by Valsecchi et al. [42].

4.5 Keyhole Theory

Bodies that can potentially impact the planet, known as virtual impactors (VI), are normally

found through numerical simulations, due to the fact that a physically realistic model of their

motion is rather complex and difficult to duplicate. Exploring the problem of virtual impactors

through analytic methodologies can lend knowledge to the approximate location and states of

those that could exist [42]. To begin the discussion, the simple case of a VI whose impact takes

place on a resonant return orbit is considered.

A resonant return orbit is a consequence of an encounter with Earth, such that the asteroid
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is perturbed into an orbit of period P ′ ≈ k/h years, with h and k integers. After h revolutions

of the asteroid and k revolutions of the Earth, both bodies are in the same region of the first

encounter, causing a second encounter between the asteroid and the Earth.

The analytic theory of resonant returns that has been developed by Valsecchi et al.[42] treats

close encounters with an extension of Opik’s theory, adding a Keplerian heliocentric propagation

between the encounters. The heliocentric propagation establishes a link between the outcome

of the first encounter and the initial conditions of the next one. During the Earth encounter,

the motion of the asteroid is assumed to take place on one of the asymptotes of the encounter

hyperbola. The asymptote is directed along the unperturbed geocentric encounter velocity ~v∞,

crosses the B-plane at a right angle, and the vector from the Earth to the intersection point is

denoted by ~b [39].

According to Opik’s theory, the encounter of the asteroid with the Earth consists of the

instantaneous transition, when the body reaches the B-plane, from the pre-encounter velocity

vector ~v∞ to the post-encounter velocity vector ~v′∞, such that v′∞ = v∞. And, the angles θ′

and φ′ are simple functions of v∞, θ, φ, ξ, and ζ, where θ is the angle between ~v∞ and the

Earth’s heliocentric velocity ~V⊕ and φ is the angle between the plane containing ~v∞ and ~V⊕

and the plane containing ~V⊕ and the ecliptic pole. The deflection angle γ is the angle between

~v∞ and ~v′∞, described by

tan
γ

2
=
c

b
(4.50)

where c = GM⊕/v
2
∞. In addition, simple expressions relate (a, e, i) to (v∞, θ, φ), and (ω, Ω, ν)

to (ξ, ζ, t0), where t0 is the time at which the asteroid passes the node closer to the encounter

[42, 39].

A resonance orbit corresponds to certain values of a′ and θ′, that can be denoted by a′0 and

θ′0. If the post-encounter is constrained in such a way that the ratio of periods between the

Earth and the asteroid is k/h, then we have

a′0 =

(
k

h

)2/3

(4.51)

cos θ′0 =
1− U2 − 1/a′0

2U
(4.52)

= cos θ
b2 − c2

b2 + c2
+ sin θ

2cζ

b2 + c2
(4.53)
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Thus, for a given U , θ, and θ′0 in the pre-keyhole B-plane, the locus of points leading to a given

resonant return can be found, using the following expression

cos θ′0 = cos θ cos γ + sin θ sin γ cosψ (4.54)

If we solve for cosψ and use ζ = b cosψ we get

ζ =
(b2 + c2) cos θ′0 − (b2 − c2) cos θ

2c sin θ
(4.55)

Replacing b2 with ξ2 + ζ2 and rearranging we obtain

ξ2 + ζ2 − 2c sin θ

cos θ′0 − cos θ
ζ +

c2(cos θ′0 + cos θ)

cos θ′0 − cos θ
= 0 (4.56)

Equation (4.56) is that of a circle centered on the ξ-axis. If we say that R is the radius of the

circle and D is the value of the ξ-coordinate of its center, then Eq. (4.56) becomes

ξ2 + ζ2 − 2Dζ +D2 = R2 (4.57)

Thus, the circle is centered at (0, D) with

D =
c sin θ

cos θ′0 − cos θ
(4.58)

and has a radius

R =

∣∣∣∣ c sin θ′0
cos θ′0 − cos θ

∣∣∣∣ . (4.59)

The circle intersects the ζ-axis at the values

ζ = D ±R =
c(sin θ ± sin θ′0)

cos θ′0 − cos θ
(4.60)

which represents the extreme values that b can take for a given a′. The circle intersects the

ξ-axis at

ξ = ±c

√
cos θ + cos θ′0
cos θ − cos θ′0

, (4.61)

and the maximum value of |ξ| for which a given θ′0 is accessible is R. The maximum value of a′

accessible for a given U is for θ′0 = 0, and is obtained for a value of ζ expressed as

ζ =
c sin θ

1− cos θ
(4.62)
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and the minimum value of a′ is for θ′0 = π, and is obtained for a value of ζ expressed as the

negative of Eq. 4.62

ζ = − c sin θ

1 + cos θ
(4.63)

In both cases we must have ξ = 0, meaning that this occurs for zero local MOID.

Asteroids that are viewed as potentially Earth hazardous bodies tend to have more than

one encounter with the planet and can be used for resonance analyses. An asteroid that has

an encounter with the planet has the possibility to be sent into a resonance orbit that would

result in the body coming back to have another encounter with the planet in the future. Taking

asteroid 1999 AN10 as an example, a resonance analysis can be conducted to see the location

and size of the resonance circles, described above, for the body on the initial encounter’s B-

plane.

Table 4.2 Resonance circles size and location using analytic theory for asteroid 1999 AN10.

Asteroid Orbits Earth Orbits Circle Radius (Earth Radii) Circle Center (Earth Radii)

7 4 43.3796 -43.4043

9 5 16.5996 16.5752

11 6 8.8116 8.7875

12 7 11.7312 -11.7562

16 9 42.1116 42.0871

17 10 9.0265 -9.0517

19 11 16.0366 -16.0616

20 11 11.1728 11.1485

Table 4.2 shows a variety of resonance orbits between the 1999 AN10 and Earth, along with

the location and size of the resonance circles. Just looking at these numbers doesn’t really

give a good idea as to what they represent. Looking at the resonance circles on the B-plane of

asteroid 1999 AN10 with Earth will give a better depiction of their meaning and reveal a few

subtle details about potential keyhole locations.

Figure 4.7 gives a few of the resonance circle sizes and locations of asteroid 1999 AN10

on the B-plane of its August 2027 encounter with Earth. The small green circle at the

origin of the figure is the depiction of the Earth on the target plane. The purple, red, and
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Figure 4.7 Depiction of the size and location of the potential resonance circles of 1999 AN10.

blue circles are the 7:13, 10:17, and 11:19 resonance circles for asteroid 1999 AN10. Finally,

the yellow vertical line represents the local minimum orbital intersection distance (MOID) for

the asteroid, about 5.8 Earth radii for this particular encounter. The intersection between the

MOID and the resonance circles is a location for potential keyholes that could result future

Earth impacts. Depending on the asteroid’s arrival conditions, the asteroid could be put into

one of those resonance orbits. It is important to note that if the resonance circle does not

extend out far enough to intersect the MOID, then the potential of the asteroid entering into

such a resonance orbit upon encounter can be neglected.

The term ‘keyhole’ is used to indicate small regions of the B-plane of a specific close en-

counter so that if the asteroid passes through one of those regions, it will hit the Earth on the

next return. An impact keyhole is one of the possible pre-images of the Earth’s cross section

on the B-plane tied to the specific value for the post-encounter semi-major axis that allows the

subsequent encounter at the given date [39].
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To obtain the size and shape of an impact keyhole we can model the secular variation of

the MOID as a linear term affecting ξ′′ (the value of ξ at the next encounter)

ξ′′ = ξ′ +
dξ

dt
(t′′0 − t′0), (4.64)

where t′0 and t′′0 are the times of passage at the node, on the post-first-encounter orbit that

are closest to the first and second encounter, respectively. The time derivative of ξ can be

calculated either by a secular theory for crossing orbits or by deduction from a numerical

integration scheme. To compute the size and shape of the size and shape of the impact keyhole

we start from the image of the Earth on the B-plane of the second encounter, and we denote

the coordinates axes in this plane as ξ′′, ζ ′′. The circle is centered on the origin and has a

radius b⊕. The points on the target plane of the first encounter that are mapped to the points

of the Earth image circle on the second encounter B-plane constitute the Earth pre-image that

we are looking for [42].

To answer the question of the size and shape of the impact keyhole, we must examine

the submatrix of partial derivatives ∂(ξ′′, ζ ′′)/∂(ξ, ζ). Finding the structure of this submatrix

requires the understanding of the evolution from before the first encounter to before the second

encounter, depicted by

∂(U ′′, θ′′, φ′′, ξ′′, ζ ′′, t′′0)

∂(U, θ, φ, ξ, ζ, t0)
=
∂(U ′′, θ′′, φ′′, ξ′′, ζ ′′, t′′0)

∂(U ′, θ′, φ′, ξ′, ζ ′, t′0)
· ∂(U ′, θ′, φ′, ξ′, ζ ′, t′0)

∂(U, θ, φ, ξ, ζ, t0)
(4.65)

where the second encounter derivatives matrix is regarded as a function of the pre-first-

encounter variables (U, θ, φ, ξ, ζ, t0). The first derivatives matrix, with the post-first-encounter

variables related to the pre-first-encounter variables, shows the relationship obtained from the

asteroid’s first encounter with the Earth, depicted by

∂(U ′, θ′, φ′, ξ′, ζ ′, t′0)

∂(U, θ, φ, ξ, ζ, t0)
=



1 0 0 0 0 0

∂θ′

∂U
∂θ′

∂θ 0 ∂θ′

∂ξ
∂θ′

∂ζ 0

∂φ′

∂U
∂φ′

∂θ
∂φ′

∂φ
∂φ′

∂ξ
∂φ′

∂ζ 0

∂ξ′

∂U
∂ξ′

∂θ
∂ξ′

∂φ
∂ξ′

∂ξ
∂ξ′

∂ζ 0

∂ζ′

∂U
∂ζ′

∂θ
∂ζ′

∂φ
∂ζ′

∂ξ
∂ζ′

∂ζ 0

∂t′0
∂U

∂t′0
∂θ

∂t′0
∂φ

∂t′0
∂ξ

∂t′0
∂ζ 1


(4.66)
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and, for the second derivatives matrix, with the pre-second-encounter variables related to the

post-first-encounter variables, calculated from a purely Keplerian heliocentric propagation be-

tween encounters,

∂(U ′′, θ′′, φ′′, ξ′′, ζ ′′, t′′0)

∂(U ′, θ′, φ′, ξ′, ζ ′, t′0)
=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

∂ζ′′

∂U ′
∂ζ′′

∂θ′
∂ζ′′

∂φ′
∂ζ′′

∂ξ′
∂ζ′′

∂ζ′ 0

∂t′′0
∂U ′

∂t′′0
∂θ′

∂t′′0
∂φ′

∂t′′0
∂ξ′

∂t′′0
∂ζ′ 1


(4.67)

so the composite matrix relating the pre-second-encounter variables to the pre-first-encounter

variables has the following structure

∂(U ′′, θ′′, φ′′, ξ′′, ζ ′′, t′′0)

∂(U, θ, φ, ξ, ζ, t0)
=



1 0 0 0 0 0

∂θ′

∂U
∂θ′

∂θ 0 ∂θ′

∂ξ
∂θ′

∂ζ 0

∂φ′

∂U
∂φ′

∂θ
∂φ′

∂φ
∂φ′

∂ξ
∂φ′

∂ζ 0

∂ξ′

∂U
∂ξ′

∂θ
∂ξ′

∂φ
∂ξ′

∂ξ
∂ξ′

∂ζ 0

∂ζ′′

∂U
∂ζ′′

∂θ
∂ζ′′

∂φ
∂ζ′′

∂ξ
∂ζ′′

∂ζ 0

∂t′′0
∂U

∂t′′0
∂θ

∂t′′0
∂φ

∂t′′0
∂ξ

∂t′′0
∂ζ 1


. (4.68)

As previously mentioned, the submatrix of particular interest is that of ∂(ξ′′, ζ ′′)/∂(ξ, ζ), which

gives the derivatives of the second encounter B-plane coordinates with respect to the first

encounter B-plane coordinates. It is important to note that the Keplerian propagation between

encounters does not effect the MOID (ξ′′ = ξ′), so the first row of the matrix is

∂ξ′′

∂ξ
=

∂ξ′

∂ξ
(4.69)

∂ξ′′

∂ζ
=

∂ξ′

∂ζ
(4.70)

showing that the ξ dimension of the Earth’s pre-image is essentially unchanged. The Keplerian

propagation affects ζ only through a′, given that U is invariant in this type of motion. Therefore,

the second row of the submatrix has the following structure



76

∂ζ ′′

∂ξ
=

∂ζ ′′

∂θ′
∂θ′

∂ξ
+
∂ζ ′

∂ξ
(4.71)

∂ζ ′′

∂ζ
=

∂ζ ′′

∂θ′
∂θ′

∂ζ
+
∂ζ ′

∂ζ
(4.72)

Now, what we want is the pre-image of the point (ξ′′, ζ ′′ = 0) on the second-encounter

B-plane that takes place h revolutions after the first-encounter. To begin, we find the images of

two points, with coordinates (ξ1, ζ1) and (ξ2, ζ2) on the first-encounter B-plane, on the second-

encounter B-plane (ξ′′1 , ζ
′′
1 ) and (ξ′′2 , ζ

′′
2 ). We choose ξ1 and ξ2 such that ξ1 = ξ2 - note that

generally ξ′′1 will be slightly different than ξ′′2 , by a very small amount, since ξ′′ is a slowly varying

function of ζ. Next, we check if ζ ′′1 ζ
′′
2 < 0. If the product of the two second-encounter terms

is not negative, we choose another pair of values for ζ1 and ζ2 until the condition is satisfied.

Now, we find the pre-image of a point ζ such that ζ ′′ = 0 by using regula falsi iterations, or a

similar method, we can call the coordinates of that point (ξ0, ζ0) and the coordinates of that

point’s image (ξ′′0 , 0). The basis for this procedure is that while the distance along the ξ-axis

on the B-plane remains essentially the same between the encounters, the distance along the

ζ-axis is stretched by a large factor that is mostly a consequence of the Keplerian propagation

between encounters. The pre-image of the Earth on the first-encounter B-plane, preceeding the

collision, will look like a thickened arclet. The small size of the impact keyholes is attributed

to the non-area-preservation nature of the Keplerian propagation [42].

Look to Appendix A for a more detailed, analytic discussion of the computational details

regarding how the pre-encounter orbit is mapped to the current target B-plane and then mapped

to the next encounter B-plane [42].

4.6 Application to 2012 DA14

In order to test this analysis, an asteroid is selected to be analyzed - 2012 DA14. Asteroid

2012 DA14 is a well-known asteroid because of its surprisingly close encounter with Earth

occurred on February 15, 2013 [31].

The orbital elements before the encounter in February of 2013 are given in Table 4.3. From

the pre-encounter orbital elements, the post-encounter orbital element distributions can be
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Table 4.3 Orbital elements of asteroid 2012 DA14 for its pre-encounter trajectory.

Pre-Encounter

a 1.00502 AU

e 0.10867

i 10.338◦

 

Figure 4.8 Surface plot of variation of semi-major axis for asteroid 2012 DA14.

found and shows how the approach and post-encounter geometries relate to each other in the

context of an Earth-threatening asteroid.

Given that |U| is constant, the variation in the semi-major axis ∆a depends only on the

parameters θ and θ′ as

∆a =
a′ − a
a

=
1− U2 − 2U cos θ

1− U2 − 2U cos θ′
− 1 (4.73)

Figure 4.8 shows the variation in the semi-major axis a. The colors on the mesh depict the

value of the variation, and the black dotted line depicts the line of zero variation in semi-major

axis for 2012 DA14 from its Earth encounter. From the figure, it can be seen that the asteroid

is susceptible to having its semi-major axis increased or decreased, depending on the values

of γ and ψ. Preliminary observations show that values of ψ between about π/2 and 3π/2

will cause 2012 DA14 to have a smaller post-encounter semi-major axis than its pre-encounter
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Figure 4.9 Surface plot of variation of inclination for asteroid 2012 DA14.

value, while a value of ψ outside that region will result in a larger semi-major axis after the

Earth encounter.

The tangent of inclination is defined as

tan i =
cosφ sin θ

1/U + cos θ
=

Uz
1 + Uy

(4.74)

and after the rotation of the relative velocity vector by the deflection angle γ in the direction

of ψ, it becomes

tan i′ =
cosφ sin θ cos γ − cosφ cos θ sin γ cosψ + sinφ sin γ sinψ

1/U + cos θ cos γ + sin θ sin γ cosψ
(4.75)

The variation in inclination can be described by ∆i = tan i′ − tan i [37]. Figure 4.9 depicts

the variation of the inclination of the orbits of asteroid 2012 DA14. The black dotted line on

the meshed grid shows the line of zero variation of the inclination after the encounter with the

Earth. The plot of the post-encounter inclination variation shows that the assumed inclination

of the asteroid after the encounter will mostlikely decrease - the question being by how much.

There is a small region of the surface that would result in a small increase in inclination, very

small deflection angles and values of ψ around π/2.

Recalling that

e2 = U4 + 4U2
y + U2

x(1− U2 − 2Uy) + 4U2Uy (4.76)
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Figure 4.10 Surface plot of variation of eccentricity for asteroid 2012 DA14.

the expression for the pre-encounter eccentricity of the asteroid orbit can be expressed in

terms of the relative velocity magnitude and its components. Making a substitution for the

corresponding post-encounter terms, the value of the eccentricity after the encounter with the

target planet can be calculated as

e =
√
U ′4 + 4U ′2y + U ′2x (1− U ′2 − 2U ′y) + 4U ′2U ′y (4.77)

Taking the difference between the post- and pre-encounter eccentricities shows the variation in

the orbital eccentricity (∆e = e′ − e) based on the planetary encounter. Figure 4.10 depicts

the variation of the eccentricity of asteroid 2012 DA14. The black dotted lines shown in the

figure indicate the level of zero variation between the pre- and post-encounter eccentricities

of the asteroid. The plot of eccentricity variation has a bit more complicated structure for

this asteroid than semi-major axis or inclination, and shows the opposite outcome than the

inclination variation - showing a post-encounter eccentricity greater than the pre-encounter

value. Asteroid 2012 DA14 would have more eccentric post-encounter orbits for values of ψ

that approach the ends of the feasible domain [0, 2π] and values near π. Values of ψ near π/2

and 3π/2 seem to have a negative effect on the orbital eccentricities of the body, especially

with small or large turning angles.
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Before finding the potential orbital resonances that exist for 2012 DA14 after its encounter

with Earth, it would be helpful to first see what the resulting post-encounter orbital parameters

are for the asteroid. Using the encounter analysis described in the Post-Encounter Orbital

Table 4.4 Orbital elements of asteroid 2012 DA14 for its post-encounter trajectory.

Orbital Element Value

a 0.9108 AU

e 0.0888

i 11.75◦

Trajectory section, the orbital elements of the post-encounter heliocentric orbit are calculated,

as shown in Table 4.4. It can be seen based on the resulting orbital elements that the inclination

of the asteroid is predicted to increase and both the eccentricity and semi-major axis would

decrease. These results seem to agree with the variations shown in Figures 4.8, 4.9, and 4.10.

Now that we know the expected post-encounter semi-major axis of 2012 DA14, the potential

orbital resonances can be searched through to find any that the asteroid could fall into. Using

a small two percent error tolerance for the orbital ratio (k/h), 2012 DA14 doesn’t fall into an

orbital resonance that would come back to impact the Earth in the next 10 years. There are

orbital resonances that have similar semi-major axes however, as shown in Table 4.5. Despite

Table 4.5 Potential orbital resonances for asteroid 2012 DA14.

Earth orbits Asteroid orbits a′ lower bound (AU) a′ upperbound (AU)

6 7 0.9013 0.9035

7 8 0.9138 0.9161

8 9 0.9241 0.9252

the fact that the estimated post-encounter semi-major axis is close to these orbital resonance

regions, it will be shown later on why there are no keyholes on the February 2013 B-plane of

2012 DA14.

Using the conditions, with respect to the Earth, at sphere of influence entrance as the

initial conditions for the orbital simulations, a field of virtual asteroids is created by putting
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some small error (σ = 1000 km, 0.1 km/s in each direction) onto those intial conditions. The

distribution of the virtual asteroids orbital elements are shown in Figure 4.11. Propagating

 

Figure 4.11 Orbital element initial condition distribution.

that set of initial conditions through the original asteroid’s B-plane gives a region where 2012

DA14 can be expected to cross.

The distribution of the crossing locations of the virtual asteroids, on the original asteroid’s

B-plane, can tell a lot about the possibility of the asteroid impacting the planet on that pass or

in the future by passing through a keyhole on that B-plane. If the resonances given in Table 4.5

are mapped against the crossing points of the virtual asteroids on the target B-plane, such as

in Figure 4.12, an understanding can be gained about the likelihood of an Earth impact and

potential keyhole crossings on this encounter. The green circle centered on the origin of the

plot represents the projection of the Earth on the asteroid’s B-plane. The purple, red, and

blue circles represent 7:6, 8:7, 9:8 orbital resonances, respectively, for 2012 DA14 with Earth.

The vertical yellow line on the B-plane represents the anticipated ξ location of the Earth in

the next encounter on the current encounter B-plane, based on analytic keyhole theory. The

distribution of cyan and black stars on the figure show the crossing points of the simulated

virtual asteroids on the B-plane obtained via numerical integration and state transition matrix

propagation, giving a sense of consistency for the gathered results. As mentioned previously,
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Figure 4.12 Encounter B-plane for February 2013 encounter of 2012 DA14 with Earth.

the shown resonance circles do not intersect the yellow line at any point, implying that no

keyhole exists on this plane for those particular orbital resonances. Given no resonance circle

intersections, focus can be drawn to the potential of an Earth impact on this encounter, rather

than the possibility of a keyhole passage. In either case, a potential Earth impact or keyhole

passage, an assessment of those events occurring must be developed in order to quantize the

current and future threats.
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CHAPTER 5. RISK ASSESSMENT

5.1 Introduction

As a follow-up to the question of how to predict the future trajectory of a body in space

over a long period of time, it is logical to ask what the likelihood of bodies in space impacting

each other. In the previous chapter, a discussion of analytic keyhole theory was presented as

a means of identifying the possibility of a NEO impact with Earth within a given time-period.

The probability of objects colliding in space, or conjunction probability, can be simplified when

considered over short-term encounters. Most conjunction probability theory is concerned with

the likelihood of spacecraft, satellite, or asteroid collisions with each other. Within the context

of this work, the events of interest are the potential collision between an asteroid or asteroid

fragments with a planet (in particular, Earth), and the likelihood of an asteroid/fragment

passing through a gravitational keyhole.

5.2 Orbital Conjunction Analyses

Early formulations of spacecraft collision were based on the Poisson distribution and used

concepts from kinetic theory of gases where the molecules move linearly and their numerical

density is statistically uniform. More current formulations, being more realistic, are based on

positional Gaussian distributions, and uses the concept of covariance matrices which can be

obtained from orbit determination of the encountering bodies. In general terms, there are four

main models used for conjunction probability analysis, developed by Foster [43], Chan [44],

Patera [45], and Alfano [46]. In this section, a brief discussion of previous methodologies used

for calculating conjunction probabilities.
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5.2.1 Early Orbital Collision Model

5.2.1.1 Kessler’s Collision Probability Between Orbiting Bodies

The equations derived by Kessler [47, 48] relate orbital parameters to the probability of

collision between orbiting objects. The situation that is created is analogous to the kinetic

models of a gas

F = SV (5.1)

where F is the number of impacts per unit cross-sectional area per unit time, S is the spatial

density, or the number of objects found within a unit volume, and V is the velocity of the

objects relative to the detection area. The average number of collisions (N) on an object of

cross-sectional area σ in time t would be given by

N = Fσt (5.2)

The cross-sectional area between two randomly oriented objects of average radii r1 and r2 and

masses m1 and m2 respectively, is represented by

σ = π (r1 + r2)2 (1 + V 2
e /V

2
)

(5.3)

where the escape velocity given by

Ve = [2 (m1 +m2)G/ (r1 + r2)]1/2 (5.4)

and G is the universal gravitational constant. In general, the value of S for a single object is

found from

S = ∆t/T∆U (5.5)

where ∆t is the time spent in the volume element ∆U over time T .

The distribution of Ω and ω for sporadic meteors, asteroids, comets, or artificial satellites

around the Earth are nearly random, and the base assumption made is that all values of the two

parameters are equally probable. With this assumption, the spatial density around a central

body will not vary with longitude, and will only be a function of the distance from the body

and the latitude. It is assumed that the latitude dependence is a function of the inclination of
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the encountering body’s orbit, and the distance dependence is assumed to be a function of the

periapse and apoapse distances. So, it can be written that

S(R, β) = f(β) · s(R) (5.6)

where s(R) is the spatial density at a distance R from the central body averaged over all

latitudes, and f(β) is the ratio of the spatial density at latitude β to the spatial density

average over all latitudes.

For the radial dependence, it is assumed that there exists a spherical shell of radius R and

thickness ∆R, between the periapse q and the apoapse q′ distances of an orbit. So, the volume

of the shell is

∆U = 4πR2∆R (5.7)

For each revolution of an object in the orbit, the object passes through the shell twice. The

time in the shell for one orbital period is

∆t = 2∆R/Vr (5.8)

where Vr is the radial velocity component of the object velocity vector relative to the central

body. The orbital period is given by T = 2π
(
a3/µ

)1/2
. The velocity of an orbiting object

relative to its central body is

Vc = µ1/2 (2/R− 1/a)1/2 (5.9)

where µ is the gravitational parameter of the central body and a is the semi-major axis length

of the orbiting body. The radial velocity can be found from

Vr = Vc sin γ (5.10)

where γ is the angle between the object velocity vector and the tangent of the spherical shell.

Conservation of angular momentum requires that

cos2 γ =
qq′

R (2a−R)
(5.11)

Thus, the radial velocity is

Vr =

[
µ

(
2

R
− 1

a

)(
1− qq′

R (2a−R)

)]1/2

(5.12)
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The spatial density averaged over all latitudes at a distance R from the central body can now

be expressed as

s(R) =
1

4π2Ra [(R− q) (q′ −R)]1/2
(5.13)

where q < R < q′, and when R < q or R > q′ then s(R) = 0.

The latitude dependence of the spatial density is assumed to be due entirely to the incli-

nation (i) of the orbit and the secular change in the argument of periapse. The spatial density

averaged over all the latitudes is simply one divided by the volume of the spherical shell

s′(R1) =
1

4πR2
1∆R

(5.14)

The spatial density between latitudes β and β + ∆β is given by Equation 5.5, where the value

of ∆t is now the time the object spends between those two latitudes during one revolution of

the argument of periapse, T is the time for the argument of periapse to make one revolution,

and ∆U is the volume between the given latitudes. If the argument of periapse is moving at

an angular velocity θ̇, then

∆t1 = 2∆β/θ̇ sinα (5.15)

where α is the angle between the path of the encountering body and the line of constant

latitude. From geometry, T1 = 2π/θ̇ and

∆U1 = 2πR2
1 cosβ∆β∆R (5.16)

so

S′(R1, β) =
∆t1

T1∆U1
=

1

2π2R2
1 sinα cosβ∆R

(5.17)

where 0 < β < i. S′(R1, β) is the spatial density at R1 and β, given a unit probability that the

object is between R1 and R1 + ∆R. By definition,

f(β) = 2/π sinα cosβ (5.18)

where the value of α is found from spherical geometry

cosα = cos i/ cosβ (5.19)
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The spatial density at any particular distance and latitude is dependent on the size and orien-

tation of the orbit, expressed as

S(R, β) =
1

2π2Ra
[(

sin2 i− sin2 β
)

(R− q) (q′ −R)
]1/2 (5.20)

where q < R < q′ and 0 < β < i.

So, assume a spacecraft is located for a time t at a distance R from the central body at a

latitude β, and assume that an orbiting object has orbital parameters q, q′, i, an equally prob-

able longitude of the node and argument of periapse, and velocity V relative to the spacecraft.

Then, the probability of a collision between the spacecraft and the orbiting object is

N =
V σt

2π3Ra
[(

sin2 i− sin2 β
)

(R− q) (q′ −R)
]1/2 (5.21)

5.2.2 Modern Orbital Collision Models

5.2.2.1 General Probability Computation

Space object collision probability analysis (COLA) is typically conducted by modeling the

objects as spherical bodies, therefore eliminating the need to keep track of the attitude of the

encountering bodies. The relative motion between the bodies is considered to be linear by

assuming the effect of the relative acceleration is small compared to that of the velocity. The

positional errors of the encountering bodies are assumed to be zero-mean, Gaussian, uncorre-

lated, and constant during the encounter. The assumption that the object covariance matrices

are uncorrelated, allows for them to simply be summed to form one large, combined covariance

ellipsoid centered on the primary object. It is also assumed that the relative velocity at the

point of closest approach is sufficiently large to ensure a brief encounter time and static co-

variance. The region in which the encounter between the two objects will take place is defined

when one object is within n standard deviations of the combined covariance ellipsoid. The

value of n is user-defined, three-dimensional, and centered on the primary object of interest.

If the secondary body passes through the ellipsoid, it creates a tube-shaped path that is re-

ferred to as a collision tube. The probability of collision is obtained by evaluating the integral

of the three-dimensional probability density function (pdf) within the long circular collision
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tube, and it can be shown that it is equivalent to evaluating the integral of a two-dimensional

pdf within a circle on a plane perpendicular to the relative velocity at closest approach. The

two-dimensional probability equation on that encounter plane in Cartesian space is

P =
1

2πσxσy

∫ OBJ

−OBJ

∫ √OBJ2−x2

−
√
OBJ2−x2

exp

[
−1

2

[(
x− xm
σx

)2

+

(
y − ym
σy

)2
]]

dydx (5.22)

where OBJ is the combined object radius, x lies along the minor axis, y lies along the major

axis, xm and ym are the respective components of the projected miss distance, and σx and σy are

the corresponding standard deviations. The four methods express Equation 5.22 numerically

(Foster, Patera, Alfano) or by analytic approximation (Chan) [49].

5.2.2.2 Foster’s Method

The Foster formulation of a collision probability model uses polar coordinates in the en-

counter (U-W) plane where R0 and φ define the combined object center’s location, OBJ is the

combined object radius, σu and σw are standard deviations along the principal axes, and r and

θ define the relative position of the segmented object.

P =
1

2πσuσw

∫ OBJ

0

[∫ 2π

0
exp

[
−1

2

[(
R0 sinφ− r sin θ

σu

)2

+

(
R0 cosφ− r cos θ

σw

)2
]]

rdθ

]
dr

(5.23)

When numerically implemented, Foster measured angle φ from the W-axis, the angle θ step

size is 0.5◦, and the radius r step size is OBJ/12. This model is used by NASA to assess

on-orbit risk for the International Space Station and shuttle missions, and can also be found

in The Aerospace Corporation’s Collision Vision Tool [49].

5.2.2.3 Chan’s Method

Chan developed an approximation to Equation 5.22 as an analytic series expression. The

transformation takes the two-dimensional Gaussian pdf to a one-dimensional Rician pdf and

uses the concept of equivalent areas. In the encounter plane, OBJ is the combined object radius

centered at (xm, ym), with associated standard deviations of (σx, σy). The series expression is

represented as

P = exp
(
−v

2

) ∞∑
m=0

[
vm

2m ·m!

(
1− exp

(
−u

2

) m∑
k=0

uk

2k · k!

)]
(5.24)
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u =
OBJ2

σxσy
(5.25)

v =
x2
m

σ2
x

+
y2
m

σ2
y

(5.26)

This series formulation of the collision probability formula has the added benefit of being easily

differentiated for other types of probability analysis, and is implemented in Analytical Graphics,

Inc., Satellite Tool Kit [49].

5.2.2.4 Patera’s Method

The equivalent model to Equation 5.22, developed by Patera, is set as a one-dimensional

line integral where r is the distance to the hardbody perimeter and θ is the covariance-centric

angular position measured from the x-axis. The probability density symmetrically enables the

two-dimensional integral to be reduced to a one-dimensional path integral

P = − 1

2π

∮
ellipse

exp
(
−αr2

)
dθ (5.27)

if the miss distance exceeds the combined object radius, and

P = 1− 1

2π

∮
ellipse

exp
(
−αr2

)
dθ (5.28)

if the combined object radius exceeds the miss distance. The computation of the α term

and the numerical implementation of Patera’s equation involves coordinate rotation, scaling,

and trigonometric functions as explained in Patera’s paper. This method is employed in The

Aerospace Corporation’s Collision Vision Tool and Satellite Orbit Analysis Program (SOAP),

and is also used by various government and civil organizations [49].

5.2.2.5 Alfano’s Method

Alfano developed a series expression to represent Equation 5.22 as a combination of error

functions and exponential terms. In the encounter plane, the object’s center is located (xm, ym)

with associated standard deviations σx and σy and combined object radius OBJ , expressed as

P =
2 ·OBJ√

8πσxn

n∑
i=0

[
erf

[
ym + 2·OBJ

n

√
(n− i) · i

σy
√

2

]
+ erf

[
−ym + 2·OBJ

n

√
(n− i) · i

σy
√

2

]]
· exp

−
[
OBJ·(2i−n)

n + xm

]2
2σ2

x


(5.29)



90

The method breaks the series into m-even and m-odd components and makes use of Simp-

son’s one-third rule. An expression that can be used to determine a sufficiently small number

of terms is given by

m = int

 5 ·OBJ

min
(
σx, σy,

√
x2
m + y2

m

)
 (5.30)

with a lower bound of 10 and an upper bound of 50. The method is implemented in Analytical

Graphics, Inc., Satellite Tool Kit [49].

5.2.3 Analytic Collision Probability

The method by Bombardelli [50] et al. is a fully analytic formulation that computes the

miss distance between the encountering bodies and their collision probability. The formulation

establishes two objects S1 and S2 with an expected closest approach relative position re. It is

assumed that a collision will occur when

|~r| = |~r1 − ~r2| < SA (5.31)

where ~r1 and ~r2 are the randomly distributed positions of their respective objects, and SA can

be taken as the sum of the radii of the spherical envelopes centered at S1 and S2. It is also

assumed that the two objects follow Keplerian orbits.

In general terms, the probability of a collision between objects S1 and S2 as the the triple

integral of the probability distribution function fr(~r) of the relative position of S1 with respect

to S2 over the volume swept over the volume V , depicted by the sphere of radius SA centered

at S2.

P =

∫
V

fr(~r)d~r (5.32)

When the fr(~r) is Gaussian, then it can be written as

fr(~r) =
exp

(
−1

2 (~r − ~re)T C−1
r (~r − ~re)

)
(2π)3/2

√
det (Cr)

(5.33)

where Cr is the covariance matrix of ~r, which corresponds to the sum of the individual covari-

ance matrices of ~r1 and ~r2 (expressed in the same orthonormal base) when the two quantities

are statistically independent.
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The S2-centered B-plane reference system, expressed in the B-plane coordinates (ξ, η, ζ),

is defined with

~uξ =
~v2 × ~v1

|~v2 × ~v1|
(5.34)

~uη =
~v1 − ~v2

|~v1 − ~v2|
(5.35)

~uζ = ~uξ × ~uη (5.36)

Under a rectilinear approximation, V becomes a cylinder along the η-direction, and the

collision probability can now be written in the (ξ, η, ζ) system and integrated for −∞ < η <∞,

resulting in the following expression

P =

∫
A

1

2πσξσζ
√

1− ρξζ
exp

−

(
ξ−ξe
σξ

)2
+
(
ζ−ζe
σζ

)2
− 2ρξζ

(
ζ−ζe
σζ

)(
ξ−ξe
σξ

)
2
(

1− ρ2
ξζ

)

 dξdζ (5.37)

where ~re = (ξe, 0, ζe)
T is the expected closest approach relative position in B-plane axes, A

is the circular domain of radius SA, and σξ, σζ , and ρξζ can be extracted from the relative

position covariance matrix in B-plane axes

Cξζ =

 σ2
ξ ρξζσξσζ

ρξζσξσζ σ2
ζ

 (5.38)

Computation of the collision probability can be made equivalent to integrating a properly-

scaled isotropic Gaussian distribution function over an elliptical cross-section. If the elliptical

cross-section is approximated as a circular cross-section of equal area, then the collision prob-

ability computation reduces to a Rician integral that can be computed with the convergent

series

P (u, v) = e−v/2
∞∑
m=0

vm

2mm!

(
1− e−u/2

m∑
k=0

uk

2kk!

)
(5.39)

where

u =
S2
A

σξσζ
√

1− ρ2
ξρ

(5.40)

v =

(
ξe
σξ

)2

+

(
ζe
σζ

)2

− 2ρξζ
ξe
σξ

ζe
σζ

(5.41)

The collision probability decreases exponentially for increasing V (as the size of the ellipse

increases) [50].
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5.3 Asteroid Risk Assessment

One of the simplest ways, in theory not necessarily computationally, of calculating an impact

probability of an asteroid and a planet is to simply construct a fiels of virtual asteroids about

the reference trajectory of the asteroid, propagate them all through the anticipated encounter

date, and calculate the impact probability by dividing the number of virtual asteroids that hit

the planet, known as virtual impactors, by the total number of virtual asteroids used in the

computation. A drawback of this method is that it can be computationally expensive, and the

number of virtual asteroids that would need to be used needs to be at least equal to the inverse

of the impact probability [39]. Alternative methods of impact probability computation have

been developed in the literature by using an impact probability model of the form

IP =

∫ ∫ ∫
V⊕

PDF (x, y, z)dxdydz (5.42)

To simplify the calculation, the three-dimensional PDF can simplified to one-dimensional by

converting the (x, y, z) position data to spherical coordinates (r, θ, φ), and the triple integral

would turn into a single integral over the radius of Earth,

IP =

∫ r⊕

0
PDF (r) dr = CDF (r⊕)− CDF (0) (5.43)

where CDF denotes the cumulative density function resulting from the radial PDF. It has been

shown previously [51, 52]

IP =
1

2

[
erf

(
r⊕ − µ
σ
√

2

)
− erf

(
0− µ
σ
√

2

)]
(5.44)

that the difference between the CFD value at zero and at Earth’s radius results in a difference

in the error function, in terms of the mean (µ) and standard deviation (σ) of the virtual asteroid

close-approach radii.

This formulation is incorrect in that analysis however, particularly Equation 5.44. If the

initial variations in (x, y, z) position are normally distributed about their own means and as-

sociated standard deviations, then the the resulting error function stemming from the radial

PDF would be incorrect. The probability density function of the error function is a normal

distribution, meaning that the radius values of the close-approach values would have to be nor-

mally distributed, which is not true given that (x, y, z) are normal and r =
√
x2 + y2 + z2. The
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radial distribution would be Rayleigh or shifted Rayleigh, using two normally distributed, in-

dependent variables (x, y), or even two planar orthogonal coordinates ( e.g. (ξ, ζ)). The vector

magnitude of the crossing points would be a Rayleigh distribution, assuming the components

are uncorrelated with equal variance and zero mean. The crossing data will not necessarily have

equal variance or zero mean, so a distribution can be fit to the data using the true component

means and covariance matrix in order to find a better estimate of the impact probability. The

formulation results in a number between 0 and 1, corresponding to the probability of impact.

Having a larger pool of virtual asteroids used in the computation increases the computation

time, but should yield a more accurate impact prediction.

5.3.1 Asteroid 2012 DA14

Recalling Figure 4.12, through the use of close encounter geometry, the variation in orbital

elements between pre-encounter and post-encounter heliocentric orbits were calculated. Using

those orbital variations, potential orbital resonances between the asteroid and Earth were found.

The concept of B-plane mapping enabled the construction of the asteroid’s encounter B-plane,

which was used to ascertain the crossing points of virtual asteroids propagated through the B-

plane. Applying analytic keyhole theory to the potential orbital resonances found, the location

of keyholes on the encounter B-plane could be found.

Let’s assume that a mission was carried out to disrupt the asteroid in its orbit on October

1, 2012, about four and a half months before its anticipated encounter with Earth in the middle

of February of 2013. The result of the disruption mission is 2012 DA14 becoming 21 pieces,

20 fragmented pieces of the asteroid and a piece that represents the original asteroid, still on

a potential collision course with Earth. Even with the disruption of the asteroid body, the

center of mass of the fragmented asteroids will still be on the same original orbit as the original

asteroid. The fragments however, will have small deviations in their position and velocity

from the original asteroid. With each fragment having a different state vector, every set of

initial conditions is propagated from the initial epoch to encounter with the Earth’s sphere

of influence, or through a few days after the expected encounter date if the fragment doesn’t

cross the Earth’s path. Each fragment has a 6-dimensional hypersphere margin of error as to
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its orbital position and velocity as it approaches Earth, so each fragment represents an orbital

region where the fragment could actually reside in. To account for this orbital uncertainty,

each fragment will be simulated by 1001 virtual asteroids about the fragment’s orbital path.

To simulate the fragmentation of the asteroid body, a fragmentation model was created to

add a certain amount of radial velocity to the asteroid fragments, as follows

∆vi =
∆vnominal ∗ ri
1 + (rmax − ri)

(5.45)

where ∆vi is the velocity added to the ith fragment, ∆vnominal is the desired amound of velocity

to be added, ri is the relative radius of the ith fragment from the original asteroid’s position,

and rmax is the maximum radial distance of a fragment from the original asteroid’s position

after the fragmentation. The equation is an exponential decay function set up in such a way

that the further the fragment is from the original asteroid position, the less radial velocity

has been added to the fragment. Figure 5.1 shows the distribution of the asteroid fragment

velocity additions using the above fragmentation model. After each fragment has had its

 

Figure 5.1 Histogram showing the distribution of the added velocity from the fragmentation

to each asteroid fragment.

fragmentation velocity added, the new states of the asteroids are created and propagated along

their orbital paths. Figures 5.2 and 5.3 visually show the representative scattering of the

asteroid fragements from the center of mass of the original asteroid and a cross-section of the

fragment cloud on a collision course with Earth on the approach trajectory of the asteroid.
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Figure 5.2 Depiction of the relative position of the asteroid fragments to the asteroid’s original

position/fragments’ center of mass.

Before getting into the analysis of the fragments and their encounters, or lack thereof, with

the Earth, there is one thing that is important to keep in mind at this point. With the simulated

fragmentation of asteroid 2012 DA14, used an example to develop the computational tool being

discussed in this paper, each fragment now has a different state vector (position and velocity

state) than the original asteroid, therefore in the analysis conducted here each fragment is

considered to be its own “new” asteroid and is treated as such. With that said, again there are

assumed to be 21 equal sized pieces of the original asteroid after the fragmentation event. Each

piece of the asteroid has two possible outcomes for its approach trajectory, either the fragment

will cross into the Earth’s SOI and have an encounter with the planet, or it will miss the

SOI and continue on its path without much influence from the Earth. Given this simulation,

it happens that one of the fragments doesn’t encounter the Earth’s SOI, meaning that the

fragmentation has successfully dismissed one of the 21 asteroid pieces. That one fragment

would have to be monitored to make sure that it wouldn’t come back in the future, but for this

analysis we assume that it doesn’t have any future encounters with the planet. The remaining

20 pieces have some kind of encounter with the Earth, and Figure 5.4 shows the distributions of

the asteroid fragment’s orbital elements. Looking at all the distributions of orbital elements

for all the encountering fragment’s clouds it can be seen that the asteroid fragments will have
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Figure 5.3 Collision cross-section of the asteroid fragment cloud.

various kinds of encounters with the Earth. Therefore, it would be expected that the fragment

clouds would have crossing points spread across the B-plane, rather than centrally located like

in the example of the nominal trajectory of 2012 DA14 .

5.3.1.1 Fragment Analysis

Figure 5.5 shows a composite B-plane of all the encountering asteroid fragments with Earth

to show how the pieces could end up dispersing after the given fragmentation. The green

circle represents the Earth’s cross-section on the B-plane, and the blue stars represent the

various fragment fields of the asteroid fragments. It is easy to see how the added velocity from

the fragmentation has caused some of the fragment clouds to drift away from the Earth in the

B-plane.

Now looking back at Figure 4.12, the reader will recall that each encounter with a planet

there are potential resonances that the body can fall into after the encounter, in addition to the

potential that the asteroid can impact the planet on the current encounter. So, there are four

categories that any given asteroid encounter can fall into: (1) impact and resonance potential,

(2) impact and no resonance potential, (3) resonance and no impact potential, and (4) no

resonance or impact potential. Even with the relatively small number of asteroid fragments

simulated, there is a representative fragment for each of these four groups. Therefore, instead
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Figure 5.4 Histogram showing the distribution of the fragment clouds upon entering the

Earth’s sphere of influence.

of talking about the larger picture, which can get convoluted due to the number of particles

and number of potential resonances for the fragmented asteroids, an analysis will be given of

an asteroid fragment in each group and all other fragments can be assumed to fall into one of

the four groups.

5.3.1.2 Impact and Resonance Potential

For the first case, the asteroid fragment to be looked at is one that has an impact risk

on the first encounter with Earth and a potential for a resonant return impact encounter in

the future. As can be seen in Figure 5.6, where the red dots show the crossing points of the

fragment field and the green circle indicating the location of the Earth, this fragment turns out

to have a small, but non-zero, impact probability with the Earth on its first encounter. The

estimated impact probability of this fragment is about 1.15E-55, so small that it has virtually

no chance of impacting the planet on this first encounter. The significance of this particular

fragment field is not in its small impact potential, but in its resonance potential. Looking

closely at the figure, it can be seen that there are six potential Earth resonances based on the

fragment’s simulated encounter with the Earth. And, according to the analytic keyhole theory
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Figure 5.5 Composite B-plane of all the encountering asteroid fragment fields.

described earlier, the intersections between the vertical black line in the figure and the blue

resonance circles indicate locations where keyholes may exist on this target B-plane. Given the

clustering of the fragment field, the three cyan circles encompass the locations where a keyhole

could exist. The other intersection points could also have keyholes associated with them, but

they are not looked at based on the location of the fragment field’s crossing points.

It is worth noting at this point, that the size and shape of these cyan circles do not reflect

the size and shape of keyholes based on the analytic theory. The analytic theory says that

the width of a given keyhole is approximately 2b⊕ and has a maximum width that is dictated

by the ratio of the resonance circle. The cyan circles are being used to show a region where

if the asteroid fragment would pass through could result in an impact or at least very deep
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Figure 5.6 B-plane of an asteroid fragment that has potential to impact the Earth on the

original encounter and has a potential for a future resonance encounter.

future orbital encounter. The probability of having the asteroid fragment pass through a given

cyan circle in Figure 5.6 is calculated. Going from the top down, the probability that the

fragment passes through the cyan circles on the target B-plane is 7.57E-5, 0.0045, and 0.0330,

respectively. Again, these probabilities are fairly small, but are not small enough to ignore. If

the probabilities are found to be large enough that they are worrisome, a more refined study

can be done with larger fragment fields and/or using a long-term precision propagator to find

the true potential and depth of any future encounters. However, for this study, this particular

fragment field shows the capabilities of this analysis tool to find a relatively quick and robust

solution to the current and future impact risk.

5.3.1.3 Impact and No Resonance Potential

Let’s now look to a fragment that has a potential to impact the planet on its first encounter,

but does not appear to fall into a resonance orbit with Earth within the next 10 years. In Fig-
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Figure 5.7 B-plane of an asteroid fragment that has potential to impact the Earth on the

original encounter and has no potential for a future resonance encounter.

ure 5.7, the fragment field passes a lot closer to the planet than the field depicted in the Impact

and Resonance Potential example. The impact probability of this particular field is estimated

to be 0.000081%. This impact probability is much larger than in the previous example, but

still fairly small and much smaller than that of the original asteroid. No resonance is said to

exist between this fragment and the Earth because the multiple resonance circles shown on the

target B-plane do not intersect the black, vertical line. Without that intersection, the analytic

theory states that there is no existing keyhole on the plane for that kind of resonance orbit.

That does not however mean that no keyhole exists on this particular B-plane, but there would

be no way to find said keyhole without conducting an analysis of the fragment cloud via a

high-fidelity numerical propagation scheme from the current encounter to a given point in the

future. So based on the mix of analytic and numerical techniques used through this analysis

this fragment is deemed to be a small threat to the Earth on its current encounter, and no

threat in the near future.
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5.3.1.4 Resonance and No Impact Potential

The asteroid fragment used as a representative of the group that can fall into resonance

orbits while having no chance of impacting Earth on their current encounter is rather harmless.

Based on the analysis, Figure 5.8 clearly reinforces the lack of a threat posed by this fragment

field. The red dots that represent the crossing points of the fragment field are about 35 Earth

 

Figure 5.8 B-plane of an asteroid fragment that has a potential for a future resonance en-

counter and no impact potential on the current encounter.

radii from Earth, so calculating the impact probability on this encounter of this fragment field

doesn’t require the use of an equation but is found to be zero. In addition to the lack of

impact risk on this encounter, there is no chance of the fragment to fall into a resonant return

orbit after this Earth encounter. Of the four resonance circles shown in Figure 5.8, only one

resonance circle intersects the black, vertical line - only one of those intersections is shown

in the figure. The fragment field crosses the B-plane far from that intersection point where

the keyhole would exist, so the probability of the fragment passing through that keyhole is

presumed to be zero. However, if the timing of the fragment field crossing the B-plane were

earlier than what it turned out to be, that fragment field would drift further down that black,
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vertical line and the possibility of the fragment passing through the corresponding keyhole and

making a resonant return to Earth would go up.

5.3.1.5 No Resonance or Impact Potential

The last type of encounter that an asteroid fragment could have with Earth is one where

there is no threat to the Earth on the current encounter or in the near future. This would be the

category where we would hope a large majority of asteroid fragments after a fragmentation event

would end up, but whether that would be reality or not would depend on the effectiveness of the

fragmentation and the resulting states of the fragments. The representative asteroid fragment

 

Figure 5.9 B-plane of an asteroid fragment that has no potential to impact the Earth on the

original encounter or on any future resonance encounter.

of this group has its fragment field crossing the encounter B-plane on average about 21 Earth

radii from the planet, so the estimated impact probability for this fragment is zero. Figure 5.9

shows that there are six resonance circles on the encounter B-plane, meaning there exist six

potential resonances for the fragment after this encounter, but because none of these resonance
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circles intersect the black, vertical line for this fragment there are again no analytically defined

keyholes on this fragment’s B-plane. Therefore, there is no chance of a resonant return for this

fragment in the near future, implying no chance of a future impact during that period of time

from this fragment.

5.4 Impact and Keyhole Passage Risk Assessment

To illustrate the way that the impact and keyhole passage risk assessment, a representative

asteroid fragment from the fragmentation of 2012 DA14 is selected. For this example, the

asteroid fragment shown with an impact and resonance risk is utilized.

Figure 5.6 shows the asteroid fragment cloud on the encounter B-plane, along with the

Earth, resonance circles, and keyholes. Based on the figure, an estimate could be made on the

impact potential and the keyhole passage risk posed by the asteroid fragment. As discussed

previously, a quick and easy method to calculate an impact risk is to count the number of

simulated virtual fragments that fall inside the outline of the Earth on the B-plane, divided by

the total number of virtual fragments simulated. However, this does not really help when the

asteroid or fragment cloud is not close enough to the Earth. So, in this case a histogram of the

close-approach radii of the simulated virtual asteroid fragments is constructed to get an idea

of the types of distances from the Earth that the cloud has, shown in Figure 5.10. Looking

at the data, it can be seen that the histogram appears nearly normal, but with a slight bias

towards the higher radial distances. Two types of distributions were fit to the data, normal

and gamma. The normal distribution gave a higher impact probability value than the gamma

distribution due to the fact that it would over estimated the probabilities on the left end of

the distribution. The gamma distribution fit the distribution a bit better overall, and gave

a better probability value in the important regions. The probability values using the normal

distribution and the gamma distribution, for an Earth impact by this fragment, are calculated

to be 2.23E-14 and 1.15E-55 respectively. Both probabilities are very small, implying that

there is virtually no risk of an Earth impact from this fragment. Given the fairly small range

of radial distances and the steep slope on the left side of the histogram, it is more believable

that the impact probability value provided by the gamma distribution is more correct.
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Figure 5.10 Histogram showing the radial position distribution of the virtual asteroid frag-

ments.

When looking for the possibility of passing through a keyhole on the target B-plane, looking

simply at the radial distribution of the data does not distinguish between data points that are

in the correct region of the B-plane and those that have the component combinations that

would result in the radial distance associated with a keyhole. A multitude of methods exist to

answer that question, such as long-term orbital simulations tracking the asteroids or asteroid

fragments or analytic keyhole theory to find the regions in an encounter B-plane that would

result in a resonant return with the planet. Each method has a cost associated with it, the

long-term orbital simulations can take a large amount of computation time but are fairly high-

fidelity, while the analytic theory takes a significantly smaller amount of computation time

while proving lower-fidelity results. Taking advantage of the semi-analytic protocol discussed

in this paper, as stated in the introduction, can produce reliable results while not requiring a

tremendous amount of computation time.

Looking back to Figure 4.12, it can be seen that no keyhole existed on the 2013 B-plane of

2012 DA14 that would result in a resonant return of the asteroid within the next 10 years. The

evidence for the existance of such a region in the B-plane would be indicated by the intersection

of the vertical yellow line and any one of the resonance circles. That intersection tells us that

a keyhole exists in that region of space, but not the size of that keyhole. Because a keyhole
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is the projection of the Earth’s future position on the current encounter B-plane, the shape

of the keyhole closely follows the resonance circle, making it look like an arclet. That being

said, given that each asteroid fragment is taken to be a point mass with no discernable size or

shape, it would be difficult to assess the likelihood that any one fragment would actually pass

through the keyhole, so instead of counting the number of fragments that would pass through

that region and dividing by the number of total virtual fragments simulated, the area method

for keyhole passage is constructed and employed to find the potential for a fragment to fall

through that region of the encounter B-plane.

5.4.1 Area Method for Keyhole Passage Assessment

The virtual fragments constructed through the orbital uncertainty of a single asteroid frag-

ment propagated through the encounter B-plane occupy a fraction of the B-plane’s area. The

keyhole on the same encounter B-plane also occupies a fraction of the B-plane area, however,

not necessarily the same or even overlapping areas of the B-plane. This method claims no

accuracy, only that it can be a way to quickly evaluate the risk potential of an asteroid and/or

its fragments, and the method does not hold for instances where the keyhole region and the

virtual fragment cloud region are too far removed from each other, where the keyhole passage

probability would be assumed to be zero.

Consider the case where the keyhole region resides near the virtual fragment cloud of the

asteroid fragment: how do we effectively evaluate the potential of the fragment to fall within

the keyhole region? This question is answered using an area method that attempts to capture

a majority of the virtual fragments within a bounding box and is proportional to the ratio of

the area of the keyhole region and the bounding box. The example presented here is only to

show the methodology employed, it is not intended to describe an accurate, real-life scenario.

Assume that an asteroid has a virtual asteroid cloud, comprising of 10000 virtual asteroids,

passing through the Earth’s encounter B-plane such as that indicated by the blue stars and the

red stars showing the position of the same virtual asteroid cloud on the next encounter B-plane

in Figure 5.11. The yellow stars in each cloud indicate the virtual asteroids that pass within

1.1 Earth radii on the second encounter B-plane. It is worth mentioning that the crossing
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Figure 5.11 Example composite encounter B-plane for successive encounters of an asteroid

with Earth.

points on the first encounter B-plane were created such that the probability of an impact with

the planet on the first pass is zero. Before discussing the first encounter crossing point data,

let’s look at the second encounter data. Of the 10000 virtual asteroids, 66 fall within 1.1 Earth

radii of Earth’s surface on that particular encounter, making the impact probability for the

encounter 0.66%. Calculating the impact probability using a radial position density function,

the resulting impact probability is estimated to be about 0.71%, showing strong agreement

between the statistical approximation and the simulated results.

Now, let’s look back to the first encounter crossing data, it can be seen that there is a

black box and ellipse over the crossing point data. The box is constructed to have dimensions

large enough to encompass at least 90% of the data points, and the ellipse is constructed with

dimensions such that 95% of the data points fall within the prescribed area. The precentage

values given are simply chosen to capture a large majority of the crossing points within each

region and hold no special significance. When implemented using a simulated asteroid fragment,
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the dimensions of the keyhole region will be established based on the theory, so the proportion

of the crossing points falling within the area will be simply the number within the region divided

by the simulated fragments.

So, to construct the impact risk assessment for the asteroid based on its virtual asteroid

field

IP =

[
Aellipse
Abox

]
pbox pellipse (1− pellipse) (5.46)

where Aellipse and Abox are the areas of the ellipse and box encompassed by those shapes on the

encounter B-plane, respectively, and pbox and pellipse are the proportion of the crossing points

that fall within the box and ellipse, respectively. With the resulting formula, the probability of

an impact by the asteroid on its second encounter with Earth is evaluated to be about 0.5%.

Looking at the result, it is easy to see that it is not the same value as those found using

either the statistical approximation or the simulated results on the second encounter B-plane

crossing data. The results shouldn’t be expected to be the same, or even necessarily in the

same ballpark, because depending on the amount of time between encounters the field of virtual

asteroids can disperse quite a bit leaving the impact probability on the second encounter plane

to be essentially zero. As previously stated, this formula is not guaranteeing the accurate

assessment of the impact probability of a body on future encounters, but is simply being used

to find a solution so as to give an evaluation of whether or not the asteroid would need to be

studied further.

So, the expression described by Equation 5.46 needs to be revised a bit to find the proba-

bility of the asteroid/fragment passing through the keyhole on the B-plane. Originally, pellipse

represented the proportion of the virtual cloud on the first encounter B-plane that would im-

pact the Earth on the second encounter B-plane. Now, it represents the proportion of the cloud

that falls within the keyhole region because in the case of a simulated asteroid fragment cloud,

unless the cloud is simulated through to the second encounter B-plane, the number that would

impact the Earth would be unknown and the size of the keyhole on the first encounter B-plane

would be known (or at least established). In order to deal with the varying potential keyhole

locations on the encounter B-planes, a term has to added to the expression to represent the

proportion of the cloud that makes an encounter with the Earth after the fragmentation event.
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The resulting equation used to calculate the probability of an asteroid, or asteroid fragment,

passing through a keyhole now takes the form

KP = pencounter

[
Aellipse
Abox

]
pbox pellipse (1− pellipse) (5.47)

where pencounter is the proportion of the asteroid/fragment cloud that encounters the Earth,

Aellipse is the area of the ellipse that represents the keyhole region of the B-plane, Abox is the

area of the bounding box that encompasses a sizable portion of the virtual cloud, pbox is the

proportion of the cloud that is encompassed by the bounding box, and pellipse is the proportion

of the virtual cloud that falls within the elliptical representation of the keyhole.

If the keyhole exists in a high density region of the virtual cloud, then the resulting keyhole

passage probability from Equation 5.47 is representative based on the population. A problem

arises when the keyhole falls in a low density region of the virtual cloud. In the case where a

handful or so of the virtual asteroids/fragments fall into or near the keyhole region, the keyhole

passage probability can drop dramatically. So something to keep in mind when looking at the

resulting probability values from Equation 5.47 is the spread of the data and if the number

of data points used is sufficiently large to accept the reported answer. A study could be done

to find the number of sufficient bodies, which is not done within this work’s scope, but every

asteroid/fragment cloud used in the analyses to follow contains at least 10000 virtual bodies.
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CHAPTER 6. APPLICATIONS TO TARGET NEAR-EARTH

ASTEROIDS

6.1 Asteroid 2013 PDC-E

In this section, the hypothetical asteroid 2013 PDC-E is considered for an impact scenario.

The goal of the exercise was to see how different groups (media, UN, space agencies, general

public, etc.) with different perspectives would respond and develop their perspective of the

situation created by the potential asteroid threat. The tabletop exercise staged for the 2013

Planetary Defense Conference began with asteroid 2013 PDC-E being discovered on the last

day of the conference - April 19, 2013. It was determined to be a stony Earth-threatening

asteroid of 200 to 300 meter diameter, with an initial impact probability of 0.8% in 2028. If

the impact velocity of the asteroid were to be about 12.4 km/s, the energy released from the

impact would be equivalent to about 300 MT of TNT. Through further analysis of the asteroid

orbit, it was determined that there was a 1.2 km keyhole during a 2023 Earth close-approach.

If the asteroid were to pass through the keyhole on the 2023 encounter B-plane, then the

asteroid would impact Earth in 2028. However, given that the impact probability is only 0.8%,

the likelihood of an impact occurring is not certain. The first update to the status of the

threatening asteroid comes in 2019, where the asteroid’s size was known to be 300 meters and

the impact probability rose to 28%. In that same update, the risk corridor for the asteroid

on the Earth was known to span across the globe, with a potential impact in regions like the

United Kingdom, France, Northeast Africa, and the east coast of Asia. The next update came

in 2022, where based on the most recent observations the probability of impact is 100%, and

the impact location has been narrowed down to a region spanning from the United Kingdom to

Egypt. The final update, presented at the conclusion of the exercise (2023), where the impact
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location and date was completely determined - in the Mediterranean, off the south coast of

France, on November 21, 2028.

6.1.1 Pre-Keyhole Mission Designs

With asteroid 2013 PDC-E, the existence of a gravitational keyhole on the 2023 encounter

B-plane allows for the unique opportunity to launch an early action mission to attempt to

deflect the asteroid away from the keyhole. Despite the low probability of a keyhole passage

upon discovery of the asteroid, missions launched closer to the anticipated close-approach date

will not allow enough time for the deflection mission to take significant effect. So, prior to

the 2023 encounter, long-dispersion missions are designed to find possible missions that can

be launched not long after discovery, sparing the Earth the risk of a future Earth-impacting

trajectory.

The constant contribution to the cost function used to evaluate the various mission options,

depicted by Equation 3.36, comes from the total mission ∆V for the mission and the mission

v∞, illustrated by Figures 6.1 and 6.2. Looking at both the mission ∆V and v∞, it can be

 

Figure 6.1 Contour plot of total mission ∆V for an intercept mission to asteroid 2013 PDC-E

before its 2023 keyhole encounter.

seen that there are plenty of opportunities for missions to be launched from Earth to the target

body. The date that mission would be launched on does not appear to be a limiting factor, but
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depending on the launch date there are regions of mission durations that allow for a feasible

trajectory to be achieved. For this pre-2023 encounter asteroid trajectory, two different

 

Figure 6.2 Contour plot of mission V∞ for an intercept mission to asteroid 2013 PDC-E before

its 2023 keyhole encounter.

mission designs were conducted: a long-duration, long-dispersion mission and a short-duration,

long-dispersion mission. These two mission design types will optimize the spacecraft trajectory

in a way that will allow for the asteroid to have as much time as possible between its impact

with the spacecraft and the 2023 Earth encounter for the deflection to have an effect.

6.1.1.1 Long-duration, Long-dispersion Mission

In addition to the constant contributing components to the mission design cost function,

a long-duration, long-dispersion mission optimization requires that the mission duration and

dispersion time parameters are a part of the cost function evaluation. The bounds set for this

long-duration, long-dispersion time mission optimization are 200 to 365 days for the mission

duration and at least one year for the dispersion time. The results given are based on these

parameters, and if altered can result in different optimal mission possibilities. Table 6.1 shows

the top ten missions based on the prescribed mission cost function.
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Table 6.1 Top 10 mission designs for a long-duration, long-dispersion mission to asteroid 2013

PDC-E before its 2023 keyhole encounter.

Rank Launch (JD) ∆VTotal (km/s) C3 (km2/s2) tdisp (days) tdur (days) varr (km/s) αarr (rad) αLOS (rad) αSun (rad) Jscore
1 2459646.5 3.23146 0.0755 365 259 4.7805 0.16226 0.1362 1.59769 5.14739
2 2459645.5 3.23146 0.0756 365 260 4.7788 0.16220 0.1362 1.59774 5.14758
3 2459647.5 3.23147 0.0758 365 258 4.7821 0.16232 0.1362 1.59765 5.14784
4 2459644.5 3.23148 0.0761 365 261 4.7770 0.16214 0.1362 1.59779 5.14850
5 2459648.5 3.23149 0.0763 365 257 4.7836 0.16237 0.1362 1.59761 5.14880
6 2459649.5 3.23152 0.0770 365 256 4.7850 0.16242 0.1362 1.59757 5.15015
7 2459643.5 3.23152 0.0770 365 262 4.7751 0.16208 0.1362 1.59785 5.15027
8 2459650.5 3.23156 0.0779 365 255 4.7864 0.16247 0.1362 1.59754 5.15180
9 2459642.5 3.23159 0.0785 365 263 4.7731 0.16201 0.1362 1.59790 5.15298
10 2459651.5 3.23161 0.0789 365 254 4.7876 0.16251 0.1362 1.59750 5.15361



113

The table shows a number of the important mission design parameters at the front and back-

end of the asteroid intercept mission: launch date, total mission ∆V , mission C3, dispersion

time, mission duration, relative arrival velocity, relative arrival angle, the line-of-sight angle,

the Sun angle, and the mission cost function score, respectively. As would be expected, there

is a launch window where the optimal mission resides, March 4, 2022 to March 13, 2022,

and the mission ∆V s and C3s are all very similar over that window. The optimal mission,

regardless of the launch date, pushed the dispersion time as low as possible (365 days) and

had similar mission durations (254 to 263 days). Given that the optimal launch window is

large enough to encompass all the top ten mission designs, the cost function evaluation for the

missions are nearly the same, meaning that there is very little difference between the mission

designs. Figure 6.3 shows the spacecraft mission trajectory for the first ranked mission design

in Table 6.1. The green line represents the Earth’s orbital track over the time that it takes

 

Figure 6.3 Trajectory plot for a long-duration, long-dispersion intercept mission to asteroid

2013 PDC-E.

the spacecraft (blue line) to travel from Earth to the target body, depicted by the red line. The

figure shows the departure of the spacecraft from Earth, deviating slightly from the Earth’s

orbital plane and meeting up with asteroid 2013 PDC-E 259 days later, one year before the

anticipated Earth encounter.
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6.1.1.2 Short-duration, Long-dispersion Mission

The only difference between the formulation of the short-duration, long-dispersion mission

design and its long-duration counterpart are the bounds placed on the acceptable mission

duration. The long-duration bounds were between 200 and 365 days, for the short-duration

missions the acceptable mission duration is between 7 and 90 days. With the modification to

the mission cost function, Table 6.2 shows the resulting optimal mission design parameters for

an intercept mission to asteroid 2013 PDC-E. In the case of this mission design, it can be seen

that the launch window for the optimal trajectory is limited to a five day window. Instead

of a wider launch window, more optimal missions occur on the same launch dates as other

missions, but with a shorter mission duration (89 days rather than 90 days). Given the new

bounds set on the mission duration, the optimal mission trajectory results show that AMiDST

tried to keep the mission duration as large as possible, running into the upper bound limit

set by the user. Looking closely at the mission duration and dispersion time combinations

between the two pre-2023 encounter mission designs, there seems to exist a trade-off between

the mission duration and the dispersion time. When a longer mission duration is favored, it

appeared that the associated dispersion time ran closer to its lower bound. As opposed to

when a shorter mission duration is set, a longer dispersion time resulted in a more optimal

mission design. Regardless of the mission duration and dispersion time combination, for either

mission type, the mission ∆V and C3 are fairly similar and small, implying mission feasibility.

One other interesting bit of information comes from the relative arrival speed between the

spacecraft and the target asteroid. Either the long-duration or short-duration mission designs

resulted in relative arrival speeds that were smaller than 10 kilometers per second. The impact

between the spacecraft and asteroid is still a hypervelocity impact in nature, but it is not quite

as fast as what the HAIV spacecraft was designed to be able to handle, making the targeting

and acquisition of the body prior to the final approach stage easier because the slower speed

means more time on approach. Once again, given the similarities between the top 10 missions,

the resulting cost function evaluations are close to one another, implying that there is little

difference between the optimal mission options.
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Table 6.2 Top 10 mission designs for a short-duration, long-dispersion mission to asteroid

2013 PDC-E before its 2023 keyhole encounter.

Rank Launch (JD) ∆VTotal (km/s) C3 (km2/s2) tdisp (days) tdur (days) varr (km/s) αarr (rad) αLOS (rad) αSun (rad) Jscore
1 2458549.5 3.25701 0.6396 1631 90 6.4259 0.2107 0.0526 1.5919 5.6877
2 2458550.5 3.25715 0.6426 1630 90 6.2872 0.2067 0.0538 1.5875 5.6884
3 2458548.5 3.25742 0.6486 1632 90 6.5662 0.2148 0.0512 1.5964 5.6950
4 2458551.5 3.25779 0.6569 1629 90 6.1502 0.2027 0.0550 1.5832 5.6967
5 2458550.5 3.25809 0.6634 1631 89 6.4279 0.2108 0.0526 1.5920 5.7035
6 2458551.5 3.25825 0.6670 1630 89 6.2884 0.2067 0.0538 1.5876 5.7046
7 2458549.5 3.25848 0.6721 1632 89 6.5692 0.2149 0.0512 1.5965 5.7105
8 2458547.5 3.25840 0.6704 1633 90 6.7082 0.2188 0.0496 1.6010 5.7107
9 2458552.5 3.25892 0.6818 1628 90 6.0150 0.1986 0.0561 1.5790 5.7118
10 2458552.5 3.25893 0.6821 1629 89 6.1506 0.2026 0.0550 1.5832 5.7132
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So, since there are only small differences between the various mission design options, the

first ranked mission is chosen to show as an example in Figure 6.4. The spacecraft mission

trajectory for this short-duration, long-dispersion mission doesn’t have much to show given the

short arcs that the Earth (green), asteroid (red), and spacecraft (blue) travel in their respective

orbits. The resulting spacecraft trajectory for this asteroid intercept mission to 2013 PDC-E

 

Figure 6.4 Trajectory plot for a short-duration, long-dispersion intercept mission to asteroid

2013 PDC-E.

shows a very short spacecraft orbit, that goes slightly out of the Earth’s orbit plane, but does

not go very far from Earth, allowing for very easy communication with the Earth throughout

the terminal phase of the mission.

6.1.2 Post-Keyhole Mission Designs

After passing through a keyhole on the 2023 Earth encounter, asteroid 2013 PDC-E is said

to fall into a 4:5 resonance with the Earth, where asteroid completes four complete revolutions

about the Sun in the time it takes the Earth to complete five. Once those orbits are complete,

the Earth and 2013 PDC-E will find each other together again for another encounter in 2028,

with the result being an impact rather than a close flyby if nothing is done to perturb or disrupt

the asteroid.



117

Looking at Figure 6.5, an understanding of the mission required ∆V to reach the target as-

teroid in its orbit during its post-2023 Earth encounter orbit, prior to its 2028 Earth encounter.

Before any in-depth analysis is done, it can be seen that there are regions of the contour plot

where an intercept mission from Earth to asteroid 2013 PDC-E would be a fairly simple en-

deavor, particularly the times immediately following the asteroid’s 2023 encounter and as the

2028 Earth impact gets closer. It is also easy to see that there is a stretch of time where an

 

Figure 6.5 Contour plot of total mission ∆V for an intercept mission to asteroid 2013 PDC-E

before its 2028 Earth encounter.

intercept mission to 2013 PDC-E would be very difficult to achieve, due to the large amount

of ∆V needed to be imparted to the spacecraft in order to reach the asteroid. About one year

removed from the 2023 Earth encounter, asteroid 2013 PDC-E enters a period of about two

years where a very large launch vehicle and/or small spacecraft would be required to make a

feasible mission to intercept the asteroid body. The total mission ∆V , which based on this

mission design scenario is simply the departure ∆V required to leave LEO and enter a C3

orbit that would place the spacecraft in an interplanetary trajectory that would result in the

interception of the target body, is around 8-10 km/s at least. The implication of such a large

departure ∆V would be that the orbit v∞ and C3 would large as well, and would eliminate

mission possibilities due to their infeasibility. This claim is further enhanced by looking at

Figure 6.6. In that same region of the contour plot discussed previously, the v∞ values are
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Figure 6.6 Contour plot of mission V∞ for an intercept mission to asteroid 2013 PDC-E before

its 2028 Earth encounter.

up towards 10-12 km/s, which based on the established cost function for the following mission

designs (C3 ≤ 25km2/s2) would automatically rule them out as feasible, potential mission

designs. Given that the asteroid is now confirmed to be on an Earth-impacting trajectory, four

types of mission designs are looked at in order to safe guard the Earth from 2013 PDC-E: (1)

a long-duration, long-dispersion mission, (2) a long-duration, short-dispersion mission, (3) a

short-duration, long dispersion mission, and (4) a short-duration, short-dispersion mission.

6.1.2.1 Long-duration, Long-dispersion Mission

Within the makings of the cost function for a long-duration, long-dispersion mission, the

allowable mission durations are between 200 and 365 days and the dispersion time has to be at

least 365 days. Table 6.3 shows the missions that fit the criteria set by the cost function, and

result in the smallest overall cost function evaluation. Looking at the results, a relatively small

launch window exists around July 3, 2024 where a spacecraft can travel to asteroid 2013 PDC-E

with a C3 of about 3.1 km2/s2. All of the top 10 mission designs resulted in mission durations

near a full year in length and had dispersion times of about 3.4 years. The relative arrival

speed for this mission type is over 9 km/s, the fastest closing speed between the spacecraft and

asteroid of any missions looked at to this point.
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Table 6.3 Top 10 mission designs for a long-duration, long-dispersion mission to asteroid 2013

PDC-E before its 2028 Earth encounter.

Rank Launch (JD) ∆VTotal (km/s) C3 (km2/s2) tdisp (days) tdur (days) varr (km/s) αarr (rad) αLOS (rad) αSun (rad) Jscore
1 2460494.5 3.36726 3.0884 1242 360 9.0987 0.3119 5.0401 1.6644 7.1225
2 2460496.5 3.36710 3.0848 1241 359 9.1387 0.3143 5.0387 1.6659 7.1230
3 2460495.5 3.36711 3.0851 1241 360 9.1388 0.3143 5.0387 1.6659 7.1231
4 2460493.5 3.36738 3.0910 1242 361 9.0984 0.3119 5.0401 1.6644 7.1234
5 2460495.5 3.36749 3.0934 1242 359 9.0997 0.3119 5.0401 1.6644 7.1242
6 2460492.5 3.36786 3.1017 1243 361 9.0554 0.3094 5.0415 1.6629 7.1253
7 2460497.5 3.36744 3.0924 1241 358 9.1394 0.3143 5.0387 1.6659 7.1255
8 2460494.5 3.36750 3.0936 1241 361 9.1396 0.3143 5.0387 1.6659 7.1259
9 2460497.5 3.36730 3.0892 1240 359 9.1759 0.3166 5.0371 1.6673 7.1262
10 2460493.5 3.36801 3.1050 1243 360 9.0567 0.3095 5.0415 1.6629 7.1264
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Figure 6.7 shows the trajectory taken by the spacecraft (blue) with respect to the Earth

(green) and the target asteroid (red) for the first ranked mission in the table. Looking closely

at the trajectory plot, it can be seen that the spacecraft has to leave the plane of Earth’s orbit

in order to intercept 2013 PDC-E a little less than a year later. This out-of-plane trajectory

is the reason for the larger C3 value. Even with the required out-of-plane motion required

 

Figure 6.7 Trajectory plot for a long-duration, long-dispersion intercept mission to asteroid

2013 PDC-E.

by the spacecraft, the missions shown in Table 6.3 are still very feasible because the energy of

the Earth-centered hyperbolic orbit is not large enough that a launch vehicle and/or spacecraft

can’t compensate.

6.1.2.2 Long-duration, Short-dispersion Mission

For the long-duration, short-dispersion mission the same criteria are applied for the mission

duration (between 200 and 365 days), but the allowed dispersion time for the desired missions

would be between 7 and 90 days. So, given the potential combinations of mission durations

and dispersion times, expected mission results will all be within that last year and a half to

a year before the asteroid would impact the Earth. As seen in Table 6.4, the top 10 missions

occur over a 10 day long launch window, centered around April 1, 2028.
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Table 6.4 Top 10 mission designs for a long-duration, short-dispersion mission to asteroid

2013 PDC-E before its 2028 Earth encounter.

Rank Launch (JD) ∆VTotal (km/s) C3 (km2/s2) tdisp (days) tdur (days) varr (km/s) αarr (rad) αLOS (rad) αSun (rad) Jscore
1 2461862.5 3.23778 0.2150 7 227 5.8973 0.1833 0.0040 1.5777 5.3234
2 2461863.5 3.23779 0.2152 7 226 5.9025 0.1835 0.0040 1.5776 5.3236
3 2461861.5 3.23780 0.2154 7 228 5.8921 0.1832 0.0040 1.5779 5.3239
4 2461864.5 3.23783 0.2161 7 225 5.9078 0.1837 0.0040 1.5774 5.3245
5 2461860.5 3.23784 0.2163 7 229 5.8869 0.1830 0.0040 1.5781 5.3249
6 2461865.5 3.23789 0.2175 7 224 5.9130 0.1839 0.0040 1.5772 5.3260
7 2461859.5 3.23790 0.2176 7 230 5.8816 0.1828 0.0040 1.5782 5.3264
8 2461866.5 3.23799 0.2196 7 223 5.9183 0.1841 0.0040 1.5771 5.3283
9 2461858.5 3.23798 0.2193 7 231 5.8764 0.1826 0.0040 1.5784 5.3284
10 2461857.5 3.23807 0.2213 7 232 5.8711 0.1824 0.0040 1.5786 5.3307
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Given the trajectory that the asteroid is on, prior to its anticipated impact with Earth later

in the year, it is interesting to see that the best mission designs all have dispersion times that are

7 days long and mission durations between 220 and 230 days. As can be seen in Figure 6.8, the

spacecraft trajectory (blue) follows that of the Earth’s (green) (albeit a little out of the ecliptic)

before intercepting asteroid 2013 PDC-E. The departure ∆V s for the optimal missions are

 

Figure 6.8 Trajectory plot for a long-duration, short-dispersion intercept mission to asteroid

2013 PDC-E.

a little under 3.24 km/s and the C3 values are a little less than 0.22 km2/s2. These missions

also result in the spacecraft arriving at the target with a relative speed of about 5.9 km/s.

Overall, the entire group of missions for the long-duration, short-dispersion design are very

feasible missions and relatively easy to accomplish.

6.1.2.3 Short-duration, Long-dispersion Mission

A short-duration, long-dispersion mission design for the post-keyhole orbit of asteroid 2013

PDC-E has an allowable mission duration of up to 90 days and must have a dispersion time

of at least 365 days. Recalling Figure 6.5, the parameter bounds on the mission duration and

dispersion time, as well as the mission ∆V (∆V < 7 km/s) and mission C3 (C3 ≤ 25 km2/s2),

the location of the optimal mission design is the bottom left corner of the contour plot.
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Table 6.5 Top 10 mission designs for a short-duration, long-dispersion mission to asteroid

2013 PDC-E before its 2028 Earth encounter.

Rank Launch (JD) ∆VTotal (km/s) C3 (km2/s2) tdisp (days) tdur (days) varr (km/s) αarr (rad) αLOS (rad) αSun (rad) Jscore
1 2460395.5 4.26128 23.8429 1611 90 5.8582 0.1875 6.1513 1.2343 10.6692
2 2460394.5 4.26166 23.8521 1612 90 5.8914 0.1870 6.1581 1.2328 10.6693
3 2460396.5 4.26263 23.8753 1610 90 5.8237 0.1879 6.1444 1.2358 10.6751
4 2460393.5 4.26370 23.9013 1613 90 5.9234 0.1865 6.1649 1.2314 10.6753
5 2460392.5 4.26733 23.9889 1614 90 5.9541 0.1859 6.1716 1.2300 10.6867
6 2460397.5 4.26578 23.9514 1609 90 5.7879 0.1883 6.1376 1.2374 10.6872
7 2460391.5 4.27251 24.1137 1615 90 5.9835 0.1854 6.1784 1.2286 10.7035
8 2460398.5 4.27083 24.0732 1608 90 5.7510 0.1887 6.1307 1.2390 10.7060
9 2460390.5 4.27917 24.2746 1616 90 6.0115 0.1848 6.1851 1.2273 10.7254
10 2460399.5 4.27787 24.2432 1607 90 5.7129 0.1891 6.1237 1.2406 10.7316
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Table 6.5 shows the optimal results for a short-duration, long-dispersion mission. The

launch window for the optimal mission to intercept asteroid 2013 PDC-E is centered on March

26, 2024, only four months after the keyhole passage on the 2023 encounter B-plane. The

departure mission ∆V for these missions are about 4.3 km/s, and have very large C3 energies

(≈ 24km2/s2). These types of missions are to be expected given that the asteroid has just

had its close-approach with the Earth and is near the periapse of its orbit, implying that the

asteroid is traveling rather fast, and means that the spacecraft has to “catch/keep up” with the

asteroid after it has launched from Earth. The plot in Figure 6.9 doesn’t really lend any new

information about the spacecraft trajectory, relative to the asteroid and Earth. All of the

 

Figure 6.9 Trajectory plot for a short-duration, long-dispersion intercept mission to asteroid

2013 PDC-E.

top 10 mission designs have 90 day mission durations, and dispersion times that are dependent

on the launch date of the mission. The high C3 energy of the mission orbit results in a relative

arrival speed of near 6 km/s in all the top 10 missions. These missions can be made feasible

with either a small spacecraft and/or large launch vehicle.
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6.1.2.4 Short-duration, Short-dispersion Mission

A short-duration, short-dispersion mission is taken as a last attempt to deflect/disrupt the

Earth-threatening asteroid. The mission duration and dispersion time are limited to no more

than 90 days each. This means that the best scenario is the mission is launched six months prior

to the predicted impact date, and the worst case 2 weeks ahead of time. Table 6.6 shows the

optimal mission results for this last-minute deflection/disruption mission. The optimal mission

launch window is centered on August 19, 2028, about three months before the anticipated

impact date. Given that the time when the mission is launched, the spacecraft trajectory is

very short, as can be seen in Figure 6.10, and doesn’t require a lot of ∆V from LEO to be

put into the necessary C3 orbit to intercept 2013 PDC-E. The cost function evaluated that

 

Figure 6.10 Trajectory plot for a short-duration, short-dispersion intercept mission to asteroid

2013 PDC-E.

the most optimal mission designs had dispersion times of 7 days, and mission durations that

approach the parameter’s upper bound. The relative arrival speed of the spacecraft, even for

this short-duration, short-dispersion mission design would still result in a hypervelocity impact

of approximately 6.5 km/s, requiring the use of a HAIV type spacecraft for mission success.
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Table 6.6 Top 10 mission designs for a short-duration, short-dispersion mission to asteroid

2013 PDC-E before its 2028 Earth encounter.

Rank Launch (JD) ∆VTotal (km/s) C3 (km2/s2) tdisp (days) tdur (days) varr (km/s) αarr (rad) αLOS (rad) αSun (rad) Jscore
1 2462002.5 3.23591 0.1737 7 87 6.4263 0.2035 0.0040 1.5568 5.2680
2 2462001.5 3.23592 0.1740 7 88 6.4222 0.2033 0.0040 1.5570 5.268412
3 2462003.5 3.23593 0.1741 7 86 6.4305 0.2036 0.0040 1.5567 5.268415
4 2462000.5 3.23596 0.1749 7 89 6.4181 0.2031 0.0040 1.5571 5.2695
5 2462004.5 3.23598 0.1753 7 85 6.4347 0.2038 0.0040 1.5565 5.2699
6 2461999.5 3.23601 0.1760 7 90 6.4140 0.2030 0.0040 1.5573 5.2709
7 2462005.5 3.23608 0.1774 7 84 6.4389 0.2039 0.0040 1.5564 5.2724
8 2462006.5 3.23621 0.1804 7 83 6.4432 0.2041 0.0040 1.5562 5.2760
9 2462007.5 3.23638 0.1841 7 82 6.4475 0.2043 0.0040 1.5560 5.2805
10 2462008.5 3.23658 0.1886 7 81 6.4520 0.2044 0.0040 1.5559 5.2858
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6.1.3 Fragmentation of Asteroid 2013 PDC-E

Asteroid 2013 PDC-E has two distinct portions to its trajectory between the date it was

discovered and its impact with Earth - a pre-keyhole trajectory that results in a 2023 keyhole-

encounter with Earth and a post-keyhole encounter that results in an Earth impact in 2028.

Since it is known that the asteroid poses no immediate threat to the Earth prior to the 2023

encounter, an attempt to fragment the asteroid could prove more hazardous than simply at-

tempting to deflect the body from its keyhole encounter. Therefore, a fragmentation analysis

of asteroid 2013 PDC-E is restricted to the time period prior to its expected impact date in

late November 2028.

6.1.3.1 Post-Keyhole Passage Fragmentation

Given the restriction of a fragmentation mission to asteroid 2013 PDC-E coming after its

expected close approach in 2023, the analysis presented here assumes a fragmentation mission

was launched and arrived to the target body one year prior to the anticipated impact date

in late November 2028. So, one year before the impact date means the fragmentation of the

asteroid body would occur in late November 2027, allowing only one year for the asteroid

fragments to disperse from the asteroid’s nominal impacting trajectory. Due to the lack of

a complete, rigorous fragmentation model, the example outlined in this section assumes a

fragmentation in which the fragments have applied radial velocity perturbations (maximum of

10 cm/s) and the mass of the original body is uniformly distributed to the fragment cloud.

While the number of fragments born from the fragmentation event is subjective and based

upon the density, porosity, and the energy input into the target body, the number of asteroid

fragments simulated for the purpose of this example is 10001, where the first 10000 are newly

constructed asteroid fragments and the last one is representative of the original asteroid and

its impact trajectory. All 10001 asteroid fragments are propagated using the same dynamical

model, and no intra-fragment gravitational forces, from the fragmentation date through their

encounter with the Earth, and the resulting composite B-plane map (Figure 6.11) shows the

close approach locations of the 2013 PDC-E’s fragment cloud. Simply by looking at the
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Figure 6.11 Composite encounter B-plane showing the crossing locations of asteroid 2013

PDC-E’s fragments.

composite B-plane, it can be seen that the fragments, over the one year dispersion time, have

scattered across the Earth’s encounter B-plane. The wide range of fragment crossing locations,

from the early arriving fragments in the top half the B-plane to the later arriving fragments

in the bottom half of the B-plane, span such a large breadth of the B-plane that the Earth’s

cross-section (green circle) at the origin of the map, as reference, can only barely be seen.

While the type of fragmentation used in for this example can be thought of as unrealistic, it

is merely meant to exhibit one of the many possibilities arising from a fragmentation event.

From the given example, asteroid fragments from this type of fragmentation can fall pretty

much anywhere along the indicated corridor in Figure 6.11, including potentially impacting

Earth. By observing the region of the B-plane around the origin, it can be seen that the Earth
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is a fairly populated section of the fragment cloud, meaning that even after this fragmentation

event the Earth is still at risk of being hit by a number of fragments.

Ignoring the asteroid fragments that run the risk of impacting the Earth on the current

encounter, let’s look at an asteroid fragment that does not have an immediate threat to the

planet but could have one in the near future. Taking the fragment’s state vector as the nominal

trajectory for that fragment, and constructing a cloud of virtual fragments normally distributed

about the nominal state, the fragment cloud is propagated through the Earth’s encounter B-

plane. The resulting asteroid fragment cloud on the B-plane is shown in Figure 6.12. The

 

Figure 6.12 Asteroid 2013 PDC-E fragment cloud crossing locations on close-encounter B–

plane.

original fragment crossing location is somewhere in the middle of this dense, linear clustering,

at about (-56, 100) Earth radii. And given a small standard deviation of 10 meters and 1
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meter per second in all three coordinate directions, on the fragmentation date one year prior

to this close encounter, it can be seen how the cloud has dispersed and banded as it made its

approach towards Earth. As previously mentioned, the fragment has virtually no chance of

impacting the Earth, as is evident by plot in Figure 6.12 and the radial distribution histogram

of the cloud crossing locations shown in Figure 6.13. One of the original assumptions made

 

Figure 6.13 Histogram of asteroid 2013 PDC-E’s fragment cloud radial crossing locations.

prior to the propagation of the asteroid/fragment propagation, is that the normal distribution

of state components about the nominal states. The point is reiterated because the assumption

that the B-plane crossing locations would still be normally distributed are shown to be untrue,

based upon the results from the cloud distribution of this particular fragmentation event.

Therefore, the use of a statistical approximation for the impact probability of the form of

Equation 5.44 is irresponsible without first looking at the resulting radial (Figure 6.13) and

component (Figure 6.14) distributions. It is easy to see that the distributions of the radial

and B-plane components are highly skewed. In the case of this particular asteroid fragment,

there is no need for the use of a statistical approach to assess the likelihood of this fragment

impacting the Earth. Based on the skewness of the 10000 virtual asteroid fragment cloud, it

is very safe to say that the fragment will not be impacting the Earth on this encounter. The

question that needs to be asked and answered is the possibility of another future encounter

between Earth and this fragment that could result in an impact.
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Figure 6.14 Top: Histogram of asteroid 2013 PDC-E’s fragment cloud ξ components. Bot-

tom: Histogram of asteroid 2013 PDC-E’s fragment cloud ζ components.

In order to assess the risk posed by this fragment to the Earth in the future, there must

be an understanding of the resonance potential of this asteroid fragment. Figure 6.15 starts

to lend an understanding of the situation the Earth is in, with respect to this asteroid 2013

PDC-E fragment. The situation is as follows: based upon the possible post-Earth-encounter

orbital parameters that this fragment could have there are 6 potential post-Earth-encounter

orbital resonances that the fragment could fall in (4 are shown because two of those resonances

result in the same size resonance circle because they are a factor larger), the estimated posi-

tion of the fragment’s crossing on the next encounter B-plane has four intersections with the

resonance circles indicating the existence of keyholes on the B-plane, and the crossing location

of the nominal fragment trajectory occurs not too far from one of those potential keyhole loca-

tions. Upon further examination, the keyhole location that the red star, indicating the B-plane

crossing location of the nominal fragment trajectory, is near is for a 9:7 Earth to asteroid orbit

resonance and the keyhole is a very wide arclet with a small thickness, centered between the

two vertical black lines in Figure 6.15. Combining the fragment cloud crossing points with

the resonance circles on the encounter B-plane, and placing a bounding box about 95% of the

crossing data and a bounding circle around the significant keyhole region, the resulting B-plane

plot takes the form of Figure 6.16. Unfortunately, the figure encompasses too large an area to
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Figure 6.15 Depiction of asteroid 2013 PDC-E’s fragment resonance circles. The black verti-

cal lines depict the corridor where the fragment’s crossing location on the next

encounter B-plane. The red star depicts the fragment’s crossing location on the

current encounter B-plane.

adequately show what is going on in the important region of the B-plane where the keyhole is

located. So, Figure 6.17 narrows in on that important region of the B-plane to show a portion

of the bounding box about the virtual fragment crossing points and the small relative size of

the established keyhole region. What is hard to tell in this figure is the size of the keyhole

itself, in reference to the Earth for example. The keyhole width, based on the analytic the-

ory is a fraction of that of the Earth, and the keyhole itself is represented by the cyan circle

whose radius is the same as the keyhole thickness. The problem with this representation of the

keyhole on the B-plane is the misrepresentation of the entire keyhole region. It is known from
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Figure 6.16 Depiction of asteroid 2013 PDC-E fragment’s encounter B-plane, complete with

cloud crossing locations, resonance circles, and keyhole region.

the analytic theory that a keyhole on the encounter B-plane is an arclet that follows near the

resonance circle, but given the small width of the keyhole itself, the outer reaches of the arclet

would not catch many more crossings than the circle representation of the keyhole. Regardless,

the decision has been made to represent the keyhole region as an appropriately size circle, so

the area of the keyhole circle will be used to evaluate the keyhole passage probability. So, using

the area of the keyhole circle, bounding box, proportion of the crossings in the bounding box

and the keyhole circle, as well as the proportion of the virtual fragments that encounter the

Earth (≈ 75%) in Equation 5.47, the resulting keyhole passage probability comes to be about

7.13E-06. The keyhole passage probability is highly dependent on the size of the keyhole cir-

cle, especially in this particular case where the virtual crossing locations are so linearly dense.

Therefore, to a certain extent, increasing the size of the keyhole would increase the likelihood

of the fragment passing through the keyhole.
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Figure 6.17 Zoomed in depiction of the keyhole region with respect to the fragment cloud

crossing locations on the encounter B-plane.

At the beginning of this discussion attention was drawn to Figure 6.11 and the fact that the

Earth is still at risk of being hit by a number of asteroid fragments. Common sense indicates

that by simply looking at the figure, and recalling that all 10001 fragments have uniformly

distributed masses, the mass impacting the Earth after the fragmentation event is substantially

smaller than that of the entire asteroid mass which would have impacted the Earth had nothing

been done. In fact, based on this fragmentation model of asteroid 2013 PDC-E, of the 10001

fragments simulated about 64% of the fragments had an encounter with the Earth on this close

approach, and about 0.25% of those encountering fragments passed within 1.1 Earth radii of

the center of the planet. So, only 0.16% of the total asteroid’s mass would impact the planet.

Meaning that if asteroid 2013 PDC-E had a total mass of 1.0E08 kg, the impacting asteroid

mass after the fragmentation would be about 1.6E05 kg and would cause very localized damage

from the potential landfall of the asteroid fragments.
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6.2 Asteroid 2015 PDC

The 2015 PDC hypothetical asteroid impact scenario is considered in this section. As

described in [53], the scenario begins as follows: The asteroid is discovered on April 13, 2015,

the first day of the conference, at magnitude 20.9, declination -39 degrees and heading south.

It is assigned the designation “2015 PDC” by the Minor Planet Center, and classified as a

Potentially Hazardous Asteroid (PHA) based on its orbit. The asteroid’s orbital elements are

known fairly accurately even in the first few days. Its mean distance from the Sun (semi-

major axis) is 1.77 AU, and the orbital eccentricity is 0.49. Its perihelion distance is 0.90

AU and aphelion distance is 2.65 AU; the orbital period is 864 days (2.37 years). The orbital

inclination is fairly small: 5.35 deg. The asteroid’s orbit comes very close to the Earth’s orbit

on its outbound leg, much like the Chelyabinsk impactor, but unlike Chelyabinsk, this asteroid

impacts at its ascending node. Very little is known about the object’s physical properties. Its

absolute magnitude is estimated to be about H = 21.3 ± 0.4, which puts the asteroid’s size at

roughly 100 to 500 meters. The large size uncertainty is due to uncertainties in both albedo

and H value. At discovery, the asteroid is quite distant from the Earth, about 0.34 AU (51

million kilometers or 32 million miles). It is approaching our planet and slowly brightening,

but it peaks at only magnitude 20.3 on May 4. It reaches a closest approach of about 0.19 and

it peaks at only magnitude 20.3 on May 4. It reaches a closest approach of about 0.19 AU

(28 million km or 18 million miles) from Earth on May 12. It never gets within range of the

Goldstone radar and it’s too far south at close approach for the Arecibo radar. The JPL Sentry

system and University of Pisa’s CLOMON system both identify many potential impacts for this

object at several future dates. The most likely potential impact date is September 3, 2022, but

the impact probability for that date is still low in the first week after the asteroid is discovered.

Nevertheless, as the object is tracked over the next few weeks, the impact probability for

2022 starts to climb, reaching 0.2% a month after discovery. Even as the asteroid fades past

magnitude 22 in early June, it continues to be observed and tracked since the chance of impact

just keeps rising. The first part of the scenario ends in mid-June 2015, when the probability of

Earth impact in 2022 has reached 1% and will likely continue to rise as time progresses. It is
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clear that the object will be observable through the rest of 2015, although it will be quite faint

(22nd and 23rd magnitude) and observers will require fairly large (2-meter- class) telescopes

to track it. In December 2015 and January 2016, the asteroid will fade through 24th and 25th

magnitudes, requiring very large aperture telescopes such as the 4- and 8-meter class facilities of

CFHT, Keck, Gemini, Subaru, VLT, etc. In the spring of 2016, the asteroid will move too close

to the Sun to be observed, and it will remain unobservable for about 7 months. The asteroid’s

uncertainty region at the time of the potential impact is much longer than the diameter of the

Earth, but its width is much less. The intersection of the uncertainty region with the Earth

creates the so-called “risk corridor” across the surface of the Earth. The corridor wraps more

than halfway around the globe.

6.2.1 Pre-Encounter Mission Designs

The situation with asteroid 2015 PDC is the same as that for the post-2023 encounter

of asteroid 2013 PDC-E, where the asteroid is believed/known to be on an Earth-impacting

trajectory and any type of mission should be looked at in order to deflect/disrupt the potentially

hazardous body.

 

Figure 6.18 Contour plot of total mission ∆V for an intercept mission to asteroid 2015 PDC

before its potential Earth impact in 2022.
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Before looking at the different mission design types ((1) long-duration, long-dispersion,

(2) long-duration, short-dispersion, (3) short-duration, long-dispersion, and (4) short-duration,

short-dispersion), the total mission ∆V (Figure 6.18) and v∞ (Figure 6.19) contours can be

analyzed to understand how accessible asteroid 2015 PDC is from Earth between 2015 and

2022. Examining Figure 6.18, it can be seen that short-durations missions (less than 100

days) would be very difficult to be feasibly constructed for a spacecraft, before a few months

before the expected impact date. When looking at mission durations of more than 100 days,

it appears that there are periodic regions of the contour plot where a an intercept mission can

be launched to asteroid 2015 PDC. The v∞ contour in Figure 6.19 validates the notion that

 

Figure 6.19 Contour plot of mission V∞ for an intercept mission to asteroid 2015 PDC before

its potential Earth impact in 2022.

short-duration missions would be hard to come by before the few months prior to the expected

impact. Observing the remaining portion of Figure 6.19, it can be seen that the accessible

regions of the contour plot are smaller than what they appeared to be in ∆V contour plot.

Based on the v∞ contour plot, the easiest times to launch a mission would be soon after its

discovery (around the 2015/2016 time frame) and within a year of the anticipated impact date.
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6.2.1.1 Long-duration, Long-dispersion Mission

Based on the assessment of the mission contours, it does not come as much of a surprise

that the optimal long-duration, long-dispersion missions are soon after the asteroid’s discovery.

Looking at Table 6.7, it can be seen that there a small optimal launch window of about 5

days, centered around December 30, 2016, where year long missions can be launched from

Earth that would easily reach asteroid 2015 PDC. Given the limited window that exists in

which to launch, the majority of the last five optimal missions have the same launch date as

their preferable counterparts, with a slightly smaller mission duration (364 days versus 365

days). The benefit of such an early launch would be that there is plenty of time to observe

the effect of a deflection/disruption mission prior to the anticipated impact date, so if another

mission needs to be launched there is time to do so. Figure 6.20 shows the trajectory that the

spacecraft (blue) needs to take with respect to the Earth (green) and 2015 PDC (red) in order

to accomplish the mission prescribed by the parameters in the first row of Table 6.7.

 

Figure 6.20 Trajectory plot for a long-duration, long-dispersion intercept mission to asteroid

2015 PDC.
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Table 6.7 Top 10 mission designs for a long-duration, long-dispersion mission to asteroid 2015

PDC before its 2023 Earth encounter.

Rank Launch (JD) ∆VTotal (km/s) C3 (km2/s2) tdisp (days) tdur (days) varr (km/s) αarr (rad) αLOS (rad) αSun (rad) Jscore
1 2457752.5 3.49554 5.9680 1708 365 16.4705 0.5286 1.7000 1.7307 9.0174
2 2457753.5 3.49361 5.9245 1707 365 16.5462 0.5338 1.7023 1.7320 9.0219
3 2457751.5 3.49926 6.0522 1709 365 16.3904 0.5233 1.6978 1.7293 9.0244
4 2457754.5 3.49344 5.9207 1706 365 16.6177 0.5389 1.7049 1.7332 9.0376
5 2457750.5 3.50483 6.1780 1710 365 16.3060 0.5179 1.6958 1.7280 9.0428
6 2457753.5 3.50041 6.0780 1708 364 16.4760 0.5288 1.7000 1.7310 9.0448
7 2457754.5 3.49794 6.0222 1707 364 16.5501 0.5339 1.7023 1.7322 9.0462
8 2457752.5 3.50466 6.1740 1709 364 16.3975 0.5235 1.6978 1.7297 9.0546
9 2457755.5 3.49721 6.0058 1706 364 16.6199 0.5390 1.7049 1.7334 9.0588
10 2457755.5 3.49498 5.9556 1705 365 16.6848 0.5439 1.7076 1.7345 9.0644
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The spacecraft has to leave the Earth’s ecliptic plane, resulting in the larger C3 value indi-

cated in the optimal mission designs. Due to the time that the spacecraft would be encountering

the asteroid (near periapse), the relative impact speed between the two would be rather large -

over 16 km/s based on the results shown in the table. The resulting mission designs would be

feasible and easy to achieve, but a failure in any aspect of the mission would prove devastating

because of the amount of time that would have to pass before another mission could feasibly

be constructed.

6.2.1.2 Long-duration, Short-dispersion Mission

Assuming that the long-duration, long-dispersion mission failed, or did not result in a

substantial deflection/disruption event, a back-up mission option would be to design a long-

duration, short-dispersion mission. Trying to keep the mission duration as long as possible

should reduce the necessary amount of mission ∆V needed to get into the required orbit. A

short dispersion time is assumed because of the desire to gain as much knowledge of how much

the previous failed missions effected the orbit of the body, if at all.

 

Figure 6.21 Trajectory plot for a long-duration, short-dispersion intercept mission to asteroid

2015 PDC.
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Table 6.8 Top 10 mission designs for a long-duration, short-dispersion mission to asteroid

2015 PDC before its 2023 Earth encounter.

Rank Launch (JD) ∆VTotal (km/s) C3 (km2/s2) tdisp (days) tdur (days) varr (km/s) αarr (rad) αLOS (rad) αSun (rad) Jscore
1 2459573.5 3.27303 0.9939 7 245 10.3424 0.2558 6.2553 1.5911 5.8983
2 2459572.5 3.27304 0.9942 7 246 10.3291 0.2553 6.2553 1.5907 5.8984
3 2459571.5 3.27310 0.9955 7 247 10.3159 0.2549 6.2553 1.5903 5.898976
4 2459574.5 3.27307 0.9949 7 244 10.3556 0.2562 6.2553 1.5914 5.898980
5 2459570.5 3.27321 0.9979 7 248 10.3027 0.2544 6.2553 1.5900 5.9001
6 2459575.5 3.27318 0.9973 7 243 10.3690 0.2567 6.2553 1.5918 5.9004
7 2459569.5 3.27335 1.0010 7 249 10.2894 0.2539 6.2553 1.5896 5.9017
8 2459576.5 3.27335 1.0011 7 242 10.3823 0.2572 6.2553 1.5921 5.9026
9 2459568.5 3.27352 1.0049 7 250 10.2762 0.2535 6.2553 1.5892 5.9037
10 2459577.5 3.27359 1.0064 7 241 10.3958 0.2576 6.2553 1.5925 5.9056
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Unlike the long-duration, long-dispersion mission which had to leave the plane of Earth’s

orbit, the top mission trajectory for a long-duration, short-dispersion mission to asteroid 2015

PDC does not have to deviate from the ecliptic as much, shown in Figure 6.21 and made evident

by the results listed in Table 6.8. Again, it is interesting to note that even with the allowance

for the dispersion time to be as long as 90 days and the mission duration to be as long as a full

year, the optimal mission parameters include dispersion times of 7 days and mission durations

around 250 days. Also, with an expected spacecraft encounter one week prior to Earth impact,

the relative arrival speed between the spacecraft and the asteroid is over 10 km/s, meaning

that the guidance algorithms would need to be spot on because there is no room for failure.

6.2.1.3 Short-duration, Long-dispersion Mission

As was discussed earlier, by the definition of a short-duration mission (7 - 90 days), the

mission contour plots showed that other than with a short-dispersion time, no long-dispersion

mission could be feasibly launched to asteroid 2015 PDC. The required mission ∆V and C3

orbit would be too large for any launch vehicle currently in operation to place even a small

spacecraft into the necessary orbit to intercept the target body.

 

Figure 6.22 Trajectory plot for a short-duration, long-dispersion intercept mission to asteroid

2015 PDC.
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Table 6.9 Top 10 mission designs for a short-duration, long-dispersion mission to asteroid

2015 PDC before its 2023 Earth encounter.

Rank Launch (JD) ∆VTotal (km/s) C3 (km2/s2) tdisp (days) tdur (days) varr (km/s) αarr (rad) αLOS (rad) αSun (rad) Jscore
1 2457740.5 13.8587 347.335 1995 90 34.7221 1.3926 5.8222 0.6328 33.872
2 2457739.5 13.8623 347.492 1996 90 35.0224 1.3935 5.8355 0.6305 33.877
3 2457741.5 13.8667 347.685 1994 90 34.4230 1.3918 5.8090 0.6350 33.893
4 2457738.5 13.8776 348.153 1997 90 35.3238 1.3944 5.8489 0.6283 33.908
5 2457742.5 13.8866 348.546 1993 90 34.1251 1.3909 5.7957 0.6371 33.939
6 2457737.5 13.9043 349.311 1998 90 35.6261 1.3953 5.8622 0.6260 33.962
7 2457743.5 13.9183 349.919 1992 90 33.8286 1.3901 5.7825 0.6392 34.010
8 2457736.5 13.9422 350.959 1999 90 35.9294 1.3963 5.8756 0.6236 34.042
9 2457744.5 13.9616 351.804 1991 90 33.5335 1.3894 5.7693 0.6413 34.107
10 2457735.5 13.9912 353.092 2000 90 36.2334 1.3972 5.8890 0.6212 34.145
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From the results in Table 6.9, it can be seen that while AMiDST will list out the optimal

mission results, none of the top 10 missions are feasible: the mission ∆V is nearly 14 km/s from

LEO and the required orbit C3 is about 350 km2/s2. The trajectory depicted in Figure 6.22,

gives justification for the highly energetic orbit required by the spacecraft to leave Earth and

meet 2015 PDC. The optimization process tried to push the mission duration as high as possible,

in an attempt to reduce the required ∆V and C3, but the restriction of a maximum mission

duration of 90 days did not allow for more feasible missions to be considered in this analysis.

Alternate definitions of short-duration could result in better mission designs, but for the sake

of consistency between this example asteroid and to show the capabilities of AMiDST, the

definition is unaltered.

6.2.1.4 Short-duration, Short-dispersion Mission

Assuming that it is too late for all other options, or even worse they have all failed, to

diminish the threat posed by asteroid 2015 PDC, a short-duration, short-dispersion mission

design is constructed to deal with the on-coming target.

 

Figure 6.23 Trajectory plot for a short-duration, short-dispersion intercept mission to asteroid

2015 PDC.
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Table 6.10 Top 10 mission designs for a short-duration, short-dispersion mission to asteroid

2015 PDC before its 2023 Earth encounter.

Rank Launch (JD) ∆VTotal (km/s) C3 (km2/s2) tdisp (days) tdur (days) varr (km/s) αarr (rad) αLOS (rad) αSun (rad) Jscore
1 2459728.5 3.2915 1.4036 7 90 11.9674 0.3036 6.2553 1.6446 6.1216
2 2459729.5 3.2922 1.4195 7 89 11.9848 0.3041 6.2553 1.6450 6.1292
3 2459730.5 3.2929 1.4350 7 88 12.0023 0.3045 6.2553 1.6454 6.1365
4 2459731.5 3.2936 1.4501 7 87 12.0200 0.3050 6.2553 1.6458 6.1436
5 2459732.5 3.2943 1.4646 7 86 12.0379 0.3055 6.2553 1.6463 6.1504
6 2459733.5 3.2949 1.4787 7 85 12.0560 0.3060 6.2553 1.6467 6.1570
7 2459734.5 3.2955 1.4921 7 84 12.0742 0.3065 6.2553 1.6471 6.1632
8 2459735.5 3.2961 1.5051 7 83 12.0926 0.3069 6.2553 1.6476 6.1693
9 2459736.5 3.2967 1.5176 7 82 12.1112 0.3074 6.2553 1.6480 6.1751
10 2459737.5 3.2972 1.5298 7 81 12.1299 0.3079 6.2553 1.6485 6.1807
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The late launch window, short mission duration, and short dispersion time implies that the

asteroid has now entered the terminal phase of its orbit with respect to the Earth and reaching

the body from Earth should be a much simpler task. Figure 6.23 shows the simplicity of the

orbit needed by the spacecraft to leave Earth and intercept the asteroid. The results from

Table 6.10 show that the longer the mission duration and the longer the dispersion time for

the desired intercept mission would produce a more manageable design. Low total mission ∆V

and C3 values allow for larger spacecraft and/or smaller launch vehicles to be used, but the

hypervelocity relative arrival speed between the spacecraft and the asteroid mandates the use

of a spacecraft similar to the HAIV for any attempted fragmentation mission. Despite the ease

of this type of mission design, it should be noted that this type of mission should be considered

as a last resort when all other attempts have failed, and not considered only when there are no

other options able to be taken.

6.2.2 Fragmentation of Asteroid 2015 PDC

A similar analysis is done now with asteroid 2015 PDC, as was done to asteroid 2013 PDC-

E. Since the work described throughout this dissertation focuses on short warning times, the

time from the disruption event to the asteroid fragments encountering the planet is set to be

one year. Assuming the fragment states are normally distributed about the nominal asteroid

trajectory’s states, before the radial perturbation is applied, the fragments are then propagated

over that year time span through to their individual encounters with the Earth. The resulting

crossing points of the 10001 virtual asteroid fragments on the encounter B-plane are shown in

Figure 6.24. It can be seen from the composite B-plane that the asteroid fragments are spread

across a wide portion of the map. For reference, a small circular cross-section of the Earth

can be seen centered at the origin with a unit radius.

The asteroid 2013 PDC-E fragment that was selected for analysis had a very shallow en-

counter with the Earth, crossing the B-plane over 110 Earth radii from the center of the planet.

For asteroid 2015 PDC, the asteroid fragment selected crosses the B-plane a lot closer to Earth

(about 9 Earth radii from the center of the planet. Using the same state standard deviations

of 10 meters and 1 meter per second, normally distributed about the nominal asteroid states,
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Figure 6.24 Composite encounter B-plane showing the crossing locations of asteroid 2015

PDC’s fragments.

a field of 10000 virtual asteroid fragments is created and propagated through the encounter

B-plane, including the nominal asteroid fragment’s trajectory. Figure 6.25 shows the crossing

locations of the virtual fragment field on the encounter B-plane. Unlike the 2013 PDC-E

fragment that was selected, where the fragment cloud did not reach the Earth on the B-plane,

the 2015 PDC fragment cloud encompasses the Earth. In fact, about 2.9% of the 10001 simu-

lated virtual fragments pass within 1.1 Earth radii of the center of the planet. Looking closely

at the span of the crossing locations, it is easy to see that there are larger portion of the virtual

fragments that cross the B-plane farther from the planet (in the first quadrant of the plane,

implying a late encounter) as opposed to the third quadrant (earlier encounter). A histogram

of the radial distances of the fragment cloud crossing positions is shown in Figure 6.26. The
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Figure 6.25 Asteroid 2015 PDC fragment cloud crossing locations on close-encounter B-plane.

radial position histogram shows a skewed distribution, with a large portion of the data be-

ing between 0 and about 12 Earth radii. Fitting a gamma distribution to the radial position

data, the calculated probability that the asteroid fragment would fall within 1.1 Earth radii is

approximately 2.4%. Looking back to the representative fragment from the fragmentation

of asteroid 2013 PDC-E, which also had a skewed radial histogram, the B-plane component

distributions were also skewed. That is not the case however for the selected 2015 PDC asteroid

fragment, as indicated by Figure 6.27. The B-plane component distributions for the 2015 PDC

asteroid fragment appear to be nearly normal. But, as previously stated, it cannot be assumed

that just because the initial fragment field states are normally distributed that the resulting

B-plane components would be normally distributed. The histograms in Figure 6.27 show the
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Figure 6.26 Histogram of asteroid 2015 PDC’s fragment cloud radial crossing locations.

distributions of the fragment cloud’s B-plane components. Looking at the ξ-component, the

distribution appears to be pretty normal, with a mean a bit larger than one Earth radius. The

ζ-component however, appears to be comprised of two different normal distributions (one for

the left portion of the distribution and one for the right portion).

Switching focus back to the current and future risk posed by the asteroid fragment to the

Earth, Figure 6.28 is used to better understand the future risk imposed by the chosen fragment.

The plot shows three potential resonances that the asteroid fragment could fall into given

its encounter with the Earth and the crossing location of the fragment’s nominal trajectory,

with respect to the cross-section of the Earth on the B-plane. However, this fragment’s post-

encounter trajectory does not fall into one of those resonance orbits. The calculated, expected

crossing position of the asteroid fragment on the next encounter B-plane is at a ξ-value of

about 120 Earth radii from the center of the Earth, nowhere near the small resonance circles.

According to analytic keyhole theory, the resonances represented by the blue resonance circles

have no keyholes on the depicted 2022 B-plane, due to there being no intersections between

the resonance circles and the expected ξ-value line on the future encounter. Just because this

fragment does not present a risk to the Earth in the near future, does not mean that the threat

from this fragment is non-existent. There could be potential dangers to the Earth that go

beyond the 10 year future that was looked at in this analysis, a different methodology must
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Figure 6.27 Top: Histogram of asteroid 2015 PDC’s fragment cloud ξ components. Bottom:

Histogram of asteroid 2015 PDC’s fragment cloud ζ components.

be used to adequately evaluate those potential risks because of the length of time between the

encounters and the perturbations that could sufficiently effect the orbit over that timespan.

Even though there has been an assessment of the likelihood of the fragment from aster-

oid 2015 PDC impacting the planet on its 2022 encounter, the keyhole passage probability

equation (Equation 5.47) can be used to find another estimate for the impact probability. For

this particular fragment cloud, all 10001 simulated virtual fragments had an encounter with

the planet, which makes pencounter equal to one. Instead of putting a bounding box around

the simulated crossing locations an ellipse would fit the distribution better, leaving a smaller

proportion of the data outside of the bounding area while including less extraneous areas of the

B-plane. Compiling the appropriate values and plugging them into the formula, the resulting

impact probability comes to be about 0.011% - about two orders of magnitude smaller than the

numbers listed previously. The reason for the discrepancy can attributed to a number of rea-

sons: (1) the value obtained from Equation 5.47 is made assuming that the crossing locations

on the B-plane are evenly distributed throughout the bounded areas used in the calculations,

(2) the estimated impact probability calculated from the fitted distribution is dependent on

how well the distribution fits the data, and (3) the calculated impact probability using the

number of simulated virtual impacts and virtual asteroid fragments is dependent on the num-
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Figure 6.28 Depiction of asteroid 2015 PDC’s fragment resonance circles. The red star depicts

the fragment’s crossing location on the current encounter B-plane.

ber of simulated asteroid fragments, where the resulting impact probability should approach

the true value as the number of values increases. What can be done with the various impact

probabilities from the fragment cloud is that they can be used as bounds for what the true

impact probability would be for the asteroid.

Looking back at Figure 6.24, it seems that the Earth is sitting in a region of the B-plane

map where there is a non-negligible chance of it getting hit by more than one asteroid fragment,

given the modeled fragmentation event. If it is assumed that the fragmentation only produces

the 10001 asteroid fragments simulated in this example, only about 5200 of the 10001 virtual

asteroid fragments ended up having an immediate encounter with Earth, and only 15 of those
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passed with 1.1 Earth radii of the planet center. What that means is that given this type

fragmentation event, with a year timespan for the asteroid fragments to disperse from the

original asteroid’s impact trajectory, the Earth would only be impacted with about 0.15% of the

total asteroid mass, rather than the full asteroid mass if nothing were done to deflect/disrupt the

target body. And, if the assumption is made that the mass of the asteroid is evenly distributed

among the simulated asteroid fragments, the 15 impacting virtual asteroid fragments would

only cause localized damage to the parts of the Earth they impact (if they make landfall),

rather than the potential regional or global damage that could be caused by the full asteroid

impacting the planet.
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CHAPTER 7. CONCLUSIONS

7.1 General Summary

The work discussed in this dissertation centers around the assessment of the current and

future risk posed by an asteroid or asteroid fragment with respect to the Earth. Using an

in-house N-body gravitational propagator, an asteroid’s trajectory is tracked over time and

through planetary encounters. The interactions between the target asteroid body and the

Earth are evaluated to understand the change that the orbit will undergo, in order to gain

perspective on the future potential of that body to impact the planet. Given the evaluated

threat of the asteroid, an in-house mission design tool (AMiDST) can be used to construct

three mission scenarios (intercept, intercept at 10 km/s, and rendezvous) to help assess or deal

with the threatening asteroid body.

In the past, when it comes to gauging the threat that a foreign body carries in regards

to the planet there are two schools of thought: numerical simulation and analytic evaluation,

with both approaches having their pros and cons. With the understanding of the limitations

regarding the numerical and analytic methodologies, the purpose of this work was to develop

an efficient, semi-analytic, computational tool that would be able to assess the risk imposed by

those bodies before and after a deflection/disruption event. Beyond the simple assessment of

the immediate impact probability, an estimate was constructed of the likelihood of the body

impacting the Earth in potential future encounters. The current and future impact risk is only

a small part of the problem however. If it is found that the impact risk is too large to ignore and

the decision is made that something has to be done about the threat, the AMiDST component

of the tool can optimize a feasible deflection, disruption, or rendezvous mission to the target.

Other computational tools look at a part of the asteroid risk assessment problem. Trajectory



154

design algorithms mostly attempt to optimize the interplanetary portion of the mission trajec-

tories, neglecting the feasibility of launching a spacecraft that can enter into such trajectory

or the approach of the spacecraft with respect to the target. Impact probability calculations

either require large, high-fidelity simulations to be run or use analytic algorithms that make

so many assumptions and deal with very short timescales. While useful to an extent, there is

always something missing these algorithms are used individually.

The AMiDST program uses a fast, efficient grid-based search, along with a cost function

evaluation method to find the optimal mission from launch to target acquisition that will fulfill

the imposed mission requirements. The impact risk assessment tool takes advantage of the

precision and high-fidelity modeling of an N-body gravitational propagator to diminish the

drawbacks of incorporated analytic methods like planetary encounter geometry, B-plane tar-

geting, and analytic keyhole theory. Drawbacks like two-body, unperturbed Keplerian orbit

propagation in the analytic methodologies reduce the accuracy and overall fidelity of the com-

puted results. When the AMiDST and impact risk assessment tools are merged, the result is an

efficient, semi-analytic, computational tool that can be used to design and assess a threatening

near-Earth asteroid mission from launch to post-deflection/disruption orbit propagation.
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APPENDIX A. ANALYTIC KEYHOLE THEORY: COMPUTATIONAL

DETAILS

In this appendix, the full analytic theory of keyhole computation is presented.

A.1 Pre-Encounter State Vector

Using the heliocentric orbital elements (a, e, i,Ω, ω, ν) of the asteroid body, the pre-encounter

state vector (U, θ, φ, ξ, ζ, t0) is computed. In order to do this, where the encounter takes place

must be considered. Let λP be the longitude of the encountered planet at time t0. If at t = t0

ν = −ω, then the encounter takes place at the ascending node of the asteroid’s orbit, in the

post-perihelion portion of the orbit if π < ω < 2π, and in the pre-perihelion portion otherwise.

If at t = t0 ν = π − ω, then the encounter takes place at the descending node of the asteroid’s

orbit, in the post-perihelion portion of the orbit if 0 < ω < π, and in the pre-perhelion portion

otherwise.

Neglecting higher order terms in the miss distance at the node of the encounter, the values

of ξ and ζ at the ascending node can be calculated as follows

ξ = cosφ

[
a
(
1− e2

)
1 + e cosω

− 1

]
(A.1)

ζ = ξ cos θ tanφ− sin θ

(
1 +

ξ

cosφ

)
tan (Ω− λP ) (A.2)

with 0 < φ < π
2 if 0 < ν < π, π < ω < 2π, or 3π

2 < φ < 2π if π < ν < 2π, 0 < ω < π, whereas

if the encounter took place at the descending node ξ and ζ are formulated as follows

ξ = cosφ

[
a
(
1− e2

)
1− e cosω

− 1

]
(A.3)

ζ = ξ cos θ tanφ− sin θ

(
1 +

ξ

cosφ

)
tan (Ω− λP − π) (A.4)
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with π
2 < φ < π if 0 < ν < π, 0 < ω < π, or π < φ < 3π

2 if π < ν < 2π, π < ω < 2π. The

remaining components of the state vector U , θ and φ can be found directly from the heliocentric

orbital elements

U =

√
3− 1

a
− 2
√
a (1− e2) cos i (A.5)

cos θ =

√
a (1− e2) cos i− 1

U
(A.6)

tanφ =
±
√

2− 1/a− a (1− e2)

±
√
a (1− e2) sin i

(A.7)

where the quadrant of φ is determined based on the considerations stated above. And, the node-

crossing time t0 can be computed by standard two-body formulas. Finally, the heliocentric state

vector components a, e, and i can also be calculated from U , θ, and φ

a =
1

1− U2 − 2U cos θ
(A.8)

e = U

√
(U + 2 cos θ)2 + sin2 θ sin2 φ (1− U2 − 2U cos θ) (A.9)

i = tan−1

(
U sin θ cosφ

1 + U cos θ

)
(A.10)

The computations depicted above assume that the encounter between the planet and the

asteroid body takes place at a distance r = 1. However, the non-zero planetocentric distance of

the asteroid body affects the computation of U , θ, and φ from a, e, and i if r 6= 1. If r = 1 + ε,

then the explicit formulation of Uε, θε, and φε (the corresponding values of U , θ, and φ in the

given scenario), to first-order in ε are

Uε = U − ε · 2U3 cos θ + 4U2 cos2 θ + U2 + 1

U2 + 2U cos θ + 1
(A.11)

cos θε = cos θ+ε·
U3
(
2 cos2 θ + cos θ

)
+ U2

(
4 cos3 θ + 2 cos2 θ + cos θ + 1

)
+ U cos θ + cos θ − 1

U3 + 2U2 cos θ + U

(A.12)

sinφε = sinφ+ε·
U3
(
1− sin2 θ sin2 φ

)
+ 2U2 cos θ

(
2− sin2 θ sin2 φ

)
+ U

(
1 + 4 cos2 θ + sin2 θ sin2 φ

)
+ 2 cos θ

U sin2 θ sinφ (U2 + 2U cos θ + 1)

(A.13)

cosφε = cosφ

(
1 + ε · U

2 + 2U cos θ − 1

U2 + 2U cos θ + 1

)
(A.14)

where U , θ, and φ are the values calculated when ε = 0, and

ε = ζ cos θ sinφ+ ξ cosφ (A.15)
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Also, if given a generic ~U applied at r = 1 + ε, aε, eε, and iε can be calculated from the

components of ~U , to first-order in ε,

1

aε
≈ 1

a
− 2ε (A.16)

aε ≈
a

1− 2aε
≈ a (1 + 2aε) for a <<

1

ε
(A.17)

eε = e+ ε · U
(
2U − U sin2 θ sin2 φ+ 4 cos θ

)
(A.18)

tan iε = tan i ·
(

1− ε

1 + Uy

)
(A.19)

where a, e, and i are the values calculated when ε = 0.

A.2 Post-Encounter State Vector

The planetary encounter, within this formulation of the problem, can be seen as an operator

that maps the pre-encounter state vector (U , θ, φ, ξ, ζ, t0) to the post-encounter state vector

(U ′, θ′, φ′, ξ′, ζ ′, t′0). The components of the post-encounter state vector, given as functions of

the pre-encounter state vector components and the impact parameter (b =
√
ξ2 + ζ2), are as

follows

U ′ = U (A.20)

θ′ = cos−1

(
b2 − c2

)
cos θ + 2cζ sin θ

b2 + c2
= sin−1

√
[(b2 − c2) sin θ − 2cζ cos θ]2 + 4c2ξ2

b2 + c2
(A.21)

φ′ = cos−1

[(
b2 − c2

)
sin θ − 2cζ cos θ

]
cosφ+ 2cξ sinφ

sqrt[(b2 − c2) sin θ − 2cζ cos θ]2 + 4c2ξ2
= sin−1

[(
b2 − c2

)
sin θ − 2cζ cos θ

]
sinφ+ 2cξ cosφ√

[(b2 − c2) sin θ − 2cζ cos θ]2 + 4c2ξ2

(A.22)

ξ′ =

(
b2 + c2

)
ξ sin θ√

[(b2 − c2) sin θ − 2cζ cos θ]2 + 4c2ξ2

(A.23)

ζ ′ =

(
b2 − c2

)
ζ sin θ − 2b2c cos θ√

[(b2 − c2) sin θ − 2cζ cos θ]2 + 4c2ξ2

(A.24)

t′0 = t0 +
2c
[
ξ sinφ (2ζ cos θ − ξ tanφ)− cosφ

(
ξ2 sin2 θ + ζ2

)]
U sin θ [[(b2 − c2) sin θ − 2cζ cos θ] cosφ+ 2cξ sinφ]

(A.25)

where c = m/U2 and m is the mass of the encountered planet.
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A.3 Propagation to the Next Encounter

Due to the analytic nature of the problem set up, the pure Keplerian propagation between

the first encounter and the next encounter (the post-encounter state vector and the pre-next-

encounter state vector, respectively) can also be seen as an operator mapping from one vector

to the other. The transformation is as such

U ′′ = U ′ (A.26)

θ′′ = θ′ (A.27)

φ′′ = φ′ (A.28)

ξ′′ = ξ′ (A.29)

ζ ′′ = ζ ′ −
[

mod
(
h · 2πa′3/2 + π, 2π

)
− π

]
sin θ′ (A.30)

t′′0 = t′0 + h · 2πa′3/2 (A.31)

where a′ is the post-encounter semi-major axis. According to classical theory, that assumes

the position of the small encountering body coincides with that of the encountered planet, the

post-encounter semi-major axis can be calculated from

a′ =
b2 + c2

(b2 + c2) (1− U2)− 2U [(b2 − c2) cos θ + 2cζ sin θ]
(A.32)

For finite miss distances, the first order correction to Opik’s expression would be

1

a′ε′
=

1

a′
− 2ε′ (A.33)

with

ε′ =
2b2c sin θ sinφ+

(
b2 − c2

)
(ζ cos θ sinφ+ ξ cosφ)

b2 + c2
(A.34)

A.4 Derivatives

Since the evolution of the asteroid body’s orbit from before the first encounter to before the

second encounter can be seen as a series of transformations from one state vector to another,

assuming Keplerian propagation during the major sequences, a matrix of derivatives can be
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constructed to go directly from the first pre-encounter state vector to the pre-next-encounter

state vector

∂(U ′′, θ′′, φ′′, ξ′′, ζ ′′, t′′0)

∂(U, θ, φ, ξ, ζ, t0)
=
∂(U ′′, θ′′, φ′′, ξ′′, ζ ′′, t′′0)

∂(U ′, θ′, φ′, ξ′, ζ ′, t′0)
· ∂(U ′, θ′, φ′, ξ′, ζ ′, t′0)

∂(U, θ, φ, ξ, ζ, t0)
(A.35)

where the propagation derivatives matrix is considered to be a function of the pre-first encounter

state (U ,θ,φ,ξ,ζ,t0). For encounters computed with the extended Opik theory

∂(U ′, θ′, φ′, ξ′, ζ ′, t′0)

∂(U, θ, φ, ξ, ζ, t0)
=



1 0 0 0 0 0

∂θ′

∂U
∂θ′

∂θ 0 ∂θ′

∂ξ
∂θ′

∂ζ 0

∂φ′

∂U
∂φ′

∂θ
∂φ′

∂φ
∂φ′

∂ξ
∂φ′

∂ζ 0

∂ξ′

∂U
∂ξ′

∂θ
∂ξ′

∂φ
∂ξ′

∂ξ
∂ξ′

∂ζ 0

∂ζ′

∂U
∂ζ′

∂θ
∂ζ′

∂φ
∂ζ′

∂ξ
∂ζ′

∂ζ 0

∂t′0
∂U

∂t′0
∂θ

∂t′0
∂φ

∂t′0
∂ξ

∂t′0
∂ζ 1


(A.36)

and, for a purely Keplerian heliocentric propagation between the two encounters

∂(U ′′, θ′′, φ′′, ξ′′, ζ ′′, t′′0)

∂(U ′, θ′, φ′, ξ′, ζ ′, t′0)
=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

∂ζ′′

∂U ′
∂ζ′′

∂θ′
∂ζ′′

∂φ′
∂ζ′′

∂ξ′
∂ζ′′

∂ζ′ 0

∂t′′0
∂U ′

∂t′′0
∂θ′

∂t′′0
∂φ′

∂t′′0
∂ξ′

∂t′′0
∂ζ′ 1


(A.37)

so the composite propagation matrix has the following structure

∂(U ′′, θ′′, φ′′, ξ′′, ζ ′′, t′′0)

∂(U, θ, φ, ξ, ζ, t0)
=



1 0 0 0 0 0

∂θ′

∂U
∂θ′

∂θ 0 ∂θ′

∂ξ
∂θ′

∂ζ 0

∂φ′

∂U
∂φ′

∂θ
∂φ′

∂φ
∂φ′

∂ξ
∂φ′

∂ζ 0

∂ξ′

∂U
∂ξ′

∂θ
∂ξ′

∂φ
∂ξ′

∂ξ
∂ξ′

∂ζ 0

∂ζ′′

∂U
∂ζ′′

∂θ
∂ζ′′

∂φ
∂ζ′′

∂ξ
∂ζ′′

∂ζ 0

∂t′′0
∂U

∂t′′0
∂θ

∂t′′0
∂φ

∂t′′0
∂ξ

∂t′′0
∂ζ 1


. (A.38)

The computation of the propagation matrix can give a lot of information about the evolution

of the orbit in terms of the encounter variables, however the ∂(ξ′′, ζ ′′)/∂(ξ, ζ) submatrix is of
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particular interest. The Keplerian heliocentric propagation does not affect the MOID (ξ′′ = ξ′),

so the first row of the submatrix comes out to be

∂ξ′′

∂ξ
=
∂ξ′

∂ξ
=
∂X ′0
∂ξ

cosφ′ +X ′0
∂ cosφ′

∂ξ
(A.39)

∂ξ′′

∂ζ
=
∂ξ′

∂ζ
=
∂X ′0
∂ζ

cosφ′ +X ′0
∂ cosφ′

∂ζ
(A.40)

Unlike ξ, ζ is affected by the Keplerian heliocentric propagation through a′, and U is invariant

through that motion. So, the structure of the derivatives of ζ ′′ with respect to ξ and ζ have

the following structure

∂ζ′′

∂ξ = ∂ζ′′

∂θ′
∂θ′

∂ξ + ∂ζ′

∂ξ

= h · 2πa′5/2[U ′ cos2 θ′+cos θ′(1−U ′2)−3U ′]
sin θ′ · ∂ cos θ′

∂ξ

+h · 10πa′7/2[U ′ cos2 θ′+cos θ′(1−U ′2)−3U ′](ζ′ cos θ′ sinφ′+ξ′ cosφ′)

sin θ′ · ∂ cos θ′

∂ξ

−h · 2πa′5/2[2ξ′ cos θ′ cosφ′+ζ′ sinφ′(2 cos2 θ′+3 sin3 θ′)]
sin θ′ · ∂ cos θ′

∂ξ + ∂ζ′

∂ξ

(A.41)

∂ζ′′

∂ζ = ∂ζ′′

∂θ′
∂θ′

∂ζ + ∂ζ′

∂ζ

= h · 2πa′5/2[U ′ cos2 θ′+cos θ′(1−U ′2)−3U ′]
sin θ′ · ∂ cos θ′

∂ζ

+h · 10πa′7/2[U ′ cos2 θ′+cos θ′(1−U ′2)−3U ′](ζ′ cos θ′ sinφ′+ξ′ cosφ′)

sin θ′ · ∂ cos θ′

∂ζ

−h · 2πa′5/2[2ξ′ cos θ′ cosφ′+ζ′ sinφ′(2 cos2 θ′+3 sin3 θ′)]
sin θ′ · ∂ cos θ′

∂ζ + ∂ζ′

∂ζ

(A.42)

where the derivatives of ζ ′ with respect to ξ and ζ are

∂ζ ′

∂ξ
=
∂X ′0
∂ξ

cos θ′ sinφ′ +X ′0
∂ cos θ′

∂ξ
sinφ′ +X ′0 cos θ′

∂ sinφ′

∂ξ
+
∂Y ′0
∂ξ

sin θ′ + Y ′0
∂ sin θ′

∂ξ
(A.43)

∂ζ ′

∂ζ
=
∂X ′0
∂ζ

cos θ′ sinφ′ +X ′0
∂ cos θ′

∂ζ
sinφ′ +X ′0 cos θ′

∂ sinφ′

∂ζ
+
∂Y ′0
∂ζ

sin θ′ + Y ′0
∂ sin θ′

∂ζ
(A.44)

The second and third terms in the derivatives of the Keplerian propagation are first order in

ξ′ and ζ ′, so they are much smaller than the first term and can be ignored for many practical

situations of interest.

The derivatives that appear in the previous expressions are

∂X ′0
∂ξ

=
∂X ′(tb)

∂ξ
− Z ′(tb)

U ′z

∂U ′x
∂ξ
− U ′x

(
1

U ′z

∂Z ′(tb)

∂ξ
− Z ′(tb)

U ′2z

∂U ′z
∂ξ

)
(A.45)

∂X ′0
∂ζ

=
∂X ′(tb)

∂ζ
− Z ′(tb)

U ′z

∂U ′x
∂ζ
− U ′x

(
1

U ′z

∂Z ′(tb)

∂ζ
− Z ′(tb)

U ′2z

∂U ′z
∂ζ

)
(A.46)
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∂Y ′0
∂ξ

=
∂Y ′(tb)

∂ξ
− Z ′(tb)

U ′z

∂U ′x
∂ξ
− U ′y

(
1

U ′z

∂Z ′(tb)

∂ξ
− Z ′(tb)

U ′2z

∂U ′z
∂ξ

)
(A.47)

∂Y ′0
∂ζ

=
∂Y ′(tb)

∂ζ
− Z ′(tb)

U ′z

∂U ′x
∂ζ
− U ′y

(
1

U ′z

∂Z ′(tb)

∂ζ
− Z ′(tb)

U ′2z

∂U ′z
∂ζ

)
(A.48)

∂U ′x
∂ξ

= U

(
∂ sin θ′

∂ξ
sinφ′ + sin θ′

∂ sinφ′

∂ξ

)
(A.49)

∂U ′x
∂ζ

= U

(
∂ sin θ′

∂ζ
sinφ′ + sin θ′

∂ sinφ′

∂ζ

)
(A.50)

∂U ′y
∂ξ

= U
∂ cos θ′

∂ξ
(A.51)

∂U ′y
∂ζ

= U
∂ cos θ′

∂ζ
(A.52)

∂U ′z
∂ξ

= U

(
∂ sin θ′

∂ξ
cosφ′ + sin θ′

∂ cosφ′

∂ξ

)
(A.53)

∂U ′z
∂ζ

= U

(
∂ sin θ′

∂ζ
cosφ′ + sin θ′

∂ cosφ′

∂ζ

)
(A.54)

∂X ′(tb)

∂ξ
=

4c2ξ sinφ (ζ cos θ + c sin θ) +
(
b4 − c4

)
cosφ

(b2 + c2)2 (A.55)

∂X ′(tb)

∂ζ
=

4c2ζ (c sin θ sinφ+ ξ cosφ) +
(
b4 − c4 + 4c2ζ2

)
cos θ sinφ

(b2 + c2)2 (A.56)

∂Y ′(tb)

∂ξ
=

4c2ξ (c cos θ − ζ sin θ)

(b2 + c2)2 (A.57)

∂Y ′(tb)

∂ζ
=

4c2ζ (c cos θ − ζ sin θ) +
(
c4 − b4

)
sin θ

(b2 + c2)2 (A.58)

∂Z ′(tb)

∂ξ
=

4c2ξ cosφ (c sin θ + ζ cos θ)−
(
b4 − c4 + 2c2ξ2

)
sinφ

(b2 + c2)2 (A.59)

∂Z ′(tb)

∂ζ
=

4c2ζ (c sin θ cosφ− ξ sinφ)−
(
b4 − c4 + 4c2ξ2

)
cos θ cosφ

(b2 + c2)2 (A.60)

∂tb
∂ξ

= − tanφ

U sin θ
(A.61)

∂tb
∂ζ

=
1

U tan θ
(A.62)

∂t′0
∂ξ

=
∂tb
∂ξ
− 1

U ′z

∂Z ′(tb)

∂ξ
+
Z ′(tb)

U ′2z

∂U ′z
∂ξ

(A.63)

∂t′0
∂ζ

=
∂tb
∂ζ
− 1

U ′z

∂Z ′(tb)

∂ζ
+
Z ′(tb)

U ′2z

∂U ′z
∂ζ

(A.64)

∂a′

∂ξ
=

8Ucξ (c cos θ − ζ sin θ)

[(b2 + c2) (1− U2)− 2U [(b2 − c2) cos θ + 2cζ sin θ]]2
(A.65)
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∂a′

∂ζ
=

8Ucζ (c cos θ − ζ sin θ) + 4U
(
b2 + c2

)
c sin θ

[(b2 + c2) (1− U2)− 2U [(b2 − c2) cos θ + 2cζ sin θ]]2
(A.66)

∂ε

∂ξ
= cosφ (A.67)

∂ε

∂ζ
= cos θ sinφ (A.68)

∂ε′

∂ξ
=

4c2ξ (c sin θ sinφ+ ε) +
(
b4 − c4

)
cosφ

(b2 + c2)2 (A.69)

∂ε′

∂ζ
=

4c2ξ (c sin θ sinφ+ ε) +
(
b4 − c4

)
cos θ sinφ

(b2 + c2)2 (A.70)

∂a′ε′

∂ξ
=
∂a′

∂ξ
+ 2a′2 · ∂ε

′

∂ξ
+ 4ε′a′ · ∂a

′

∂ξ
(A.71)

∂a′ε′

∂ζ
=
∂a′

∂ζ
+ 2a′2 · ∂ε

′

∂ζ
+ 4ε′a′ · ∂a

′

∂ζ
(A.72)

∂t′′0
∂ξ

=
∂t′0
∂ξ

+ 3hπ
√
a′ε′
∂a′ε′

∂ξ
(A.73)

∂t′′0
∂ζ

=
∂t′0
∂ζ

+ 3hπ
√
a′ε′
∂a′ε′

∂ζ
(A.74)

∂ cos θ′

∂ξ
=

4cξ (c cos θ − ζ sin θ)

(b2 + c2)2 (A.75)

∂ cos θ′

∂ζ
=

2c
[(
b2 + c2

)
sin θ + 2ζ (c cos θ − ζ sin θ)

]
(b2 + c2)2 (A.76)

∂ sin θ′

∂ξ
= −

(
b2 − c2

)
cos θ + 2cζ sin θ√

[(b2 − c2) sin θ − 2cζ cos θ]2 + 4c2ξ2

· ∂ cos θ′

∂ξ
(A.77)

∂ sin θ′

∂ζ
= −

(
b2 − c2

)
cos θ + 2cζ sin θ√

[(b2 − c2) sin θ − 2cζ cos θ]2 + 4c2ξ2

· ∂ cos θ′

∂ζ
(A.78)

∂ cosφ′

∂ξ = 2(ξ sin θ cosφ+c sinφ)√
[(b2−c2) sin θ−2cζ cos θ]2+4c2ξ2

−2ξ[(b2−c2) sin2 θ−2c(ζ sin θ cos θ−c)][[(b2−c2) sin θ−2cζ cos θ] cosφ+2cξ sinφ]√
[[(b2−c2) sin θ−2cζ cos θ]2+4c2ξ2]

3

(A.79)

∂ cosφ′

∂ζ = 2 cosφ(ζ sin θ−c cos θ)√
[(b2−c2) sin θ−2cζ cos θ]2+4c2ξ2

−2[[(b2−c2) sin θ−2cζ cos θ](ζ sin θ−c cos θ)][[(b2−c2) sin θ−2cζ cos θ] cosφ+2cξ sinφ]√
[[(b2−c2) sin θ−2cζ cos θ]2+4c2ξ2]

3

(A.80)

∂ sinφ′

∂ξ = 2(ξ sin θ sinφ+c cosφ)√
[(b2−c2) sin θ−2cζ cos θ]2+4c2ξ2

−2ξ[(b2−c2) sin2 θ−2c(ζ sin θ cos θ−c)][[(b2−c2) sin θ−2cζ cos θ] sinφ+2cξ cosφ]√
[[(b2−c2) sin θ−2cζ cos θ]2+4c2ξ2]

3

(A.81)
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∂ sinφ′

∂ζ = 2 sinφ(ζ sin θ−c cos θ)√
[(b2−c2) sin θ−2cζ cos θ]2+4c2ξ2

−2[[(b2−c2) sin θ−2cζ cos θ](ζ sin θ−c cos θ)][[(b2−c2) sin θ−2cζ cos θ] sinφ+2cξ cosφ]√
[[(b2−c2) sin θ−2cζ cos θ]2+4c2ξ2]

3

(A.82)

There also exist approximations for all the previously mentioned equations and derivatives

for both small and large deflections. A discussion of those equations and scenarios is not

included in this work in order to avoid redundancy. For a full discussion of those equations and

more details related to analytic keyhole theory I would direct readers to the works of Valsecchi,

Milani, Chesley, Gronchi, and Chodas [39, 42].
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APPENDIX B. ALGORITHM FOR ANALYTIC KEYHOLE THEORY

This appendix contains the code used to validate the algorithms necessary for analytic

keyhole theory. The provided code comes with no guarantees. If any of the codes in this

appendix are used in another project, the author simply asks that this thesis be referenced in

any published works.

All the included subroutines and programs have been tested to work with the gfortran

compiler.

PROGRAM test_analytic_keyhole_theory

IMPLICIT NONE

REAL(KIND=8) :: U,theta,phi,a,ecc,incl,lomega,bOMEGA,ksi,eta,tol

INTEGER :: h,k,ntrials

REAL(KIND=8) :: deg,rad,pi,AU,DU,mass_E,mass_S,m_ratio,factor

REAL(KIND=8) :: zeta1,zeta2,zeta_a,ksi_dprime_a,zeta_dprime_a

REAL(KIND=8) :: dzetadp_dksi_a,dzetadp_dzeta_a

REAL(KIND=8) :: dksip_dksi_a,dksidp_dksi_a,dksidp_dzeta_a,R_a,D_a,ksi_a

REAL(KIND=8) :: t0,zeta,ksi_dprime,zeta_dprime,dzetadp_dksi,dzetadp_dzeta

REAL(KIND=8) :: dksip_dksi,dksidp_dksi,dksidp_dzeta,R,D

REAL(KIND=8) :: submatrix_falsi(2,2),submatrix_key(2,2)

REAL(KIND=8) :: b,c,r_Earth,b_Earth,width,max_thickness

REAL(KIND=8) :: input1,input2,input3,input4,input5,input6,input7

REAL(KIND=8) :: output1,output2,output3,output4,output5,output6,output7

pi = 4.0d0*datan(1.0d0)

deg = pi/180.0d0 ! converts deg to rad

rad = 180.0d0/pi ! converts rad to deg

! Asteroid: 1999 AN10

U = 0.884

theta = 105.3*pi/180 ! rad

phi = 41.3*pi/180 ! rad

!a = 0

!ecc = 0

!incl = 0

ksi = 0.000246
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eta = 0

h = 7 ! asteroid orbits

k = 13 ! Earth orbits

ntrials = 10000

! Constants

AU = 149597870.700d0 ! km

DU = 6378.145d0 ! km

mass_E = 5.972D24 ! kg

mass_S = 1.9891D30; ! kg

m_ratio = mass_E/mass_S

factor = AU/DU

zeta1 = -0.03d0

zeta2 = 0.03d0

input1 = U

input2 = theta

input3 = phi

input4 = a

input5 = ecc

input6 = incl

input7 = ksi

CALL regula_falsi(input1,input2,input3,input4,input5,input6,lomega,bOMEGA, &

zeta1,zeta2,input7,eta,t0,k,h,tol,ntrials, &

zeta_a,ksi_dprime_a,zeta_dprime_a,dzetadp_dksi_a, &

dzetadp_dzeta_a,dksip_dksi_a,dksidp_dksi_a, &

dksidp_dzeta_a,R_a,D_a,output1,output2,output3,output4, &

output5,output6,output7)

U = output1

theta = output2

phi = output3

a = output4

ecc = output5

incl = output6

ksi = output7

CALL analytic_keyhole_development(input1,input2,input3,input4,input5,input6,lomega, &

bOMEGA,zeta_a,input7,eta,k,h, &

tol,t0,ksi_dprime,zeta_dprime,dzetadp_dksi, &

dzetadp_dzeta,dksidp_dksi,dksidp_dzeta,R,D, & output1,output2,output3,output4,output5,output6,output7)

WRITE(*,*) ’OUTPUT VARIABLES FROM ANALYTIC KEYHOLE DEVELOPMENT’

WRITE(*,*) ’AFTER REGULA FALSI METHOD CALL’

WRITE(*,*) ’zeta_a:’,zeta_a

WRITE(*,*) ’ksi_dprime:’,ksi_dprime

WRITE(*,*) ’zeta_dprime:’,zeta_dprime

WRITE(*,*) ’dzetadp_dksi:’,dzetadp_dksi

WRITE(*,*) ’dzetadp_dzeta:’,dzetadp_dzeta
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WRITE(*,*) ’dksidp_dksi:’,dksidp_dksi

WRITE(*,*) ’dksidp_dzeta:’,dksidp_dzeta

WRITE(*,*) ’R:’,R

WRITE(*,*) ’D:’,D

WRITE(*,*) ’ ’

! Double prime submatrix

submatrix_falsi(1,1) = dksidp_dksi_a

submatrix_falsi(1,2) = dksidp_dzeta_a

submatrix_falsi(2,1) = dzetadp_dksi_a

submatrix_falsi(2,2) = dzetadp_dzeta_a

submatrix_key(1,1) = dksidp_dksi

submatrix_key(1,2) = dksidp_dzeta

submatrix_key(2,1) = dzetadp_dksi

submatrix_key(2,2) = dzetadp_dzeta

! Parameters

WRITE(*,*) ’PARAMETERS OF EARTH PRE-IMAGE ON TARGET B-PLANE’

b = dsqrt(ksi*ksi + zeta_a*zeta_a)

WRITE(*,*) ’b:’,b

c = m_ratio/(U*U)

WRITE(*,*) ’c:’,c

r_Earth = 1.0d0 ! Earth radii

b_Earth = r_Earth*dsqrt(1.0d0 + (2.0d0*c)/r_Earth)

WRITE(*,*) ’b_Earth:’,b_Earth

width = 2.0d0*b_Earth ! ksi axis, in Earth radii

WRITE(*,*) ’width:’,width

max_thickness = (2.0d0*b_Earth)/submatrix_falsi(2,2) ! 2*b_Earth/dzetadp_dzeta, R_E

WRITE(*,*) ’max_thickness:’,max_thickness

END PROGRAM test_analytic_keyhole_theory

SUBROUTINE regula_falsi(input1,input2,input3,input4,input5,input6,lomega,bOMEGA, &

zeta1,zeta2,input7,eta,t0,k,h,tol,ntrials,zeta, &

ksi_dprime,zeta_dprime,dzetadp_dksi,dzetadp_dzeta, &

dksip_dksi,dksidp_dksi,dksidp_dzeta,R,D, &

output1,output2,output3,output4,output5,output6,output7)

IMPLICIT NONE

REAL(KIND=8),INTENT(IN) :: input1,input2,input3,input4,input5,input6,input7

REAL(KIND=8),INTENT(IN) :: lomega,bOMEGA,zeta1,zeta2,eta,t0,tol

INTEGER,INTENT(IN) :: k,h,ntrials

REAL(KIND=8),INTENT(OUT) :: zeta,ksi_dprime,zeta_dprime,dzetadp_dksi

REAL(KIND=8),INTENT(OUT) :: dzetadp_dzeta,dksip_dksi,dksidp_dksi,dksidp_dzeta,R,D

REAL(KIND=8),INTENT(OUT) :: output1,output2,output3,output4,output5,output6,output7

INTEGER :: j

REAL(KIND=8) :: val_a_old,val_b_old,f_a_old,f_b_old,c_old,f_c_old,num1,num2,num3

REAL(KIND=8) :: val_a_new,val_b_new,f_a_new,f_b_new,c_new,f_c_new,s

REAL(KIND=8) :: U,theta,phi,a,ecc,incl,ksi
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j = 1

val_a_old = zeta1

val_b_old = zeta2

U = input1

theta = input2

phi = input3

a = input4

ecc = input5

incl = input6

ksi = input7

CALL analytic_keyhole_development(U,theta,phi,a,ecc,incl,lomega,bOMEGA,zeta1,ksi,eta, &

k,h,tol,t0,ksi_dprime,zeta_dprime,dzetadp_dksi, &

dzetadp_dzeta,dksidp_dksi,dksidp_dzeta,R,D, &

output1,output2,output3,output4,output5, &

output6,output7)

f_a_old = zeta_dprime

CALL analytic_keyhole_development(U,theta,phi,a,ecc,incl,lomega,bOMEGA,zeta2,ksi,eta, &

k,h,tol,t0,ksi_dprime,zeta_dprime,dzetadp_dksi, &

dzetadp_dzeta,dksidp_dksi,dksidp_dzeta,R,D, &

output1,output2,output3,output4,output5, &

output6,output7)

f_b_old = zeta_dprime

c_old = val_a_old - ((val_b_old - val_a_old)*f_a_old)/(f_b_old - f_a_old)

zeta = c_old

CALL analytic_keyhole_development(U,theta,phi,a,ecc,incl,lomega,bOMEGA,zeta,ksi,eta, &

k,h,tol,t0,ksi_dprime,zeta_dprime,dzetadp_dksi, &

dzetadp_dzeta,dksidp_dksi,dksidp_dzeta,R,D, &

output1,output2,output3,output4,output5, &

output6,output7)

f_c_old = zeta_dprime

num1 = 1.0d0

num2 = 1.0d0

num3 = 1.0d0

DO WHILE (j < ntrials)

IF (f_a_old .GE. 0.0d0) THEN

s = 1.0d0

num1 = dabs(f_a_old/f_a_old)*s

ELSE

s = -1.0d0

num1 = dabs(f_a_old/f_a_old)*s

END IF
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IF (f_b_old .GE. 0.0d0) THEN

s = 1.0d0

num2 = dabs(f_b_old/f_b_old)*s

ELSE

s = -1.0d0

num2 = dabs(f_b_old/f_b_old)*s

END IF

IF (f_c_old .GE. 0.0d0) THEN

s = 1.0d0

num3 = dabs(f_c_old/f_c_old)*s

ELSE

s = -1.0d0

num3 = dabs(f_c_old/f_c_old)*s

END IF

IF (num2 == num3) THEN

val_b_new = c_old

val_a_new = val_a_old

ELSEIF (num1 == num3) THEN

val_a_new = c_old

val_b_new = val_b_old

END IF

CALL analytic_keyhole_development(U,theta,phi,a,ecc,incl,lomega,bOMEGA,val_a_new, &

ksi,eta,k,h,tol,t0,ksi_dprime,zeta_dprime,dzetadp_dksi, &

dzetadp_dzeta,dksidp_dksi,dksidp_dzeta,R,D, &

output1,output2,output3,output4,output5, &

output6,output7)

f_a_new = zeta_dprime

!PAUSE

CALL analytic_keyhole_development(U,theta,phi,a,ecc,incl,lomega,bOMEGA,val_b_new, &

ksi,eta,k,h,tol,t0,ksi_dprime,zeta_dprime,dzetadp_dksi, &

dzetadp_dzeta,dksidp_dksi,dksidp_dzeta,R,D, &

output1,output2,output3,output4,output5, &

output6,output7)

f_b_new = zeta_dprime

c_new = val_a_new - ((val_b_new - val_a_new)*f_a_new)/(f_b_new - f_a_new)

zeta = c_new

CALL analytic_keyhole_development(U,theta,phi,a,ecc,incl,lomega,bOMEGA,zeta, &

ksi,eta,k,h,tol,t0,ksi_dprime,zeta_dprime,dzetadp_dksi, &

dzetadp_dzeta,dksidp_dksi,dksidp_dzeta,R,D, &

output1,output2,output3,output4,output5, &

output6,output7)

f_c_new = zeta_dprime

IF (dabs(zeta_dprime) < tol .and. j < ntrials) THEN



169

!index = j + 1

EXIT

END IF

j = j + 1

val_a_old = val_a_new

val_b_old = val_b_new

f_a_old = f_a_new

f_b_old = f_b_new

f_c_old = f_c_new

c_old = c_new

END DO

zeta = c_new

END SUBROUTINE regula_falsi

SUBROUTINE analytic_keyhole_development(input1,input2,input3,input4,input5,input6, &

lomega,bOMEGA,zeta,input7,eta,k,h, &

tol,t0,ksi_dprime,zeta_dprime,dzetadp_dksi, &

dzetadp_dzeta,dksidp_dksi,dksidp_dzeta,R,D, &

output1,output2,output3,output4,output5, &

output6,output7)

IMPLICIT NONE

REAL(KIND=8),INTENT(IN) :: input1,input2,input3,input4,input5,input6,input7

REAL(KIND=8),INTENT(IN) :: lomega,bOMEGA,zeta,eta,tol,t0

INTEGER,INTENT(IN) :: k,h

REAL(KIND=8),INTENT(OUT) :: ksi_dprime,zeta_dprime,dzetadp_dksi,dzetadp_dzeta

REAL(KIND=8),INTENT(OUT) :: dksidp_dksi,dksidp_dzeta,R,D

REAL(KIND=8),INTENT(OUT) :: output1,output2,output3,output4,output5,output6,output7

REAL(KIND=8) :: ksi,U,theta,phi,a,ecc,incl,pi,mass_E,mass_S,m_ratio,AU,r_Earth

REAL(KIND=8) :: R_SOI_km,R_SOI_rE,DU,factor

REAL(KIND=8) :: epsilon,a_eps,ecc_eps,incl_eps,U_eps,num_costheta_eps

REAL(KIND=8) :: den_costheta_eps,theta_eps,phi_eps,b,c,Ux,Uy,Uz,X0,Y0

REAL(KIND=8) :: X,Y,Z,gamma,U_prime,t_b,theta_prime,phi_prime,ap,eccp,inclp

REAL(KIND=8) :: Ux_prime,Uy_prime,Uz_prime,ksi_prime,zeta_prime,bprime_vec(3)

REAL(KIND=8) :: b_prime,numerator,denominator,t0_prime,a0_prime,a_prime

REAL(KIND=8) :: cos_theta0p,theta0p,X0_prime,Y0_prime,Z0_prime

REAL(KIND=8) :: Xprime_tb,Yprime_tb,Zprime_tb,t0_dprime,mod_time,dY0

REAL(KIND=8) :: D_t0_dprime,Ux_dprime,Uy_dprime,Uz_dprime

REAL(KIND=8) :: U_dprime,theta_dprime,phi_dprime,X0_dprime,Y0_dprime,tb_dprime

REAL(KIND=8) :: dcosthetap_dksi,dcosthetap_dzeta,dsinthetap_dksi,dsinthetap_dzeta

REAL(KIND=8) :: dcosphip_dksi,dcosphip_dzeta,dsinphip_dksi,dsinphip_dzeta,dXptb_dksi

REAL(KIND=8) :: dXptb_dzeta,dYptb_dksi,dYptb_dzeta,dZptb_dksi,dZptb_dzeta

REAL(KIND=8) :: dUxp_dksi,dUxp_dzeta,dUyp_dksi,dUyp_dzeta,dUzp_dksi,dUzp_dzeta

REAL(KIND=8) :: dX0p_dksi,dX0p_dzeta,dY0p_dksi

REAL(KIND=8) :: dY0p_dzeta,dzetap_dksi,dzetap_dzeta,dksip_dksi,dksip_dzeta

! Analytic Keyhole Theory
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! Inputs: {a, e, i} or {r_rel, v_rel}, m (mass of planet)

! distance from planet to the Sun = 1

! circular orbit, period of planet = 2*pi

! m_sun = 1, mu_sun = 1, v_planet = 1

! planetocentric velocity vector U: [Ux; Uy; Uz]

pi = 4.0d0*datan(1.0d0)

mass_E = 5.972D24 ! kg

mass_S = 1.9891D30 ! kg

m_ratio = mass_E/mass_S

AU = 149597870.70d0 ! km

r_Earth = 6378.145d0 ! km

R_SOI_km = AU*(m_ratio**(2.0d0/5.0d0)) ! km

R_SOI_rE = R_SOI_km/r_Earth ! r_Earth

DU = 6378.145d0 ! km

factor = AU/DU

U = input1

theta = input2

phi = input3

a = input4

ecc = input5

incl = input6

ksi = input7

!! Pre-encounter state vector

epsilon = 0.0d0 ! Should be set as an input

IF (a /= 0.0d0 .and. ecc /= 0.0d0 .and. incl /= 0.0d0) THEN

U = dsqrt(3.0d0 - 1.0d0/a - 2.0d0*(dsqrt(a*(1.0d0 - ecc*ecc)))*dcos(incl))

theta = dacos((dsqrt(a*(1.0d0 - ecc*ecc))*dcos(incl) - 1.0d0)/U)

phi = datan2(dsqrt(2.0d0 - 1.0d0/a - a*(1.0d0 - ecc*ecc)), &

dsqrt(a*(1.0d0 - ecc*ecc))*dsin(incl))

IF (epsilon /= 0.0d0) THEN

a_eps = a/(1.0d0 - 2.0d0*a*epsilon)

IF (a*epsilon < tol) THEN

a_eps = a*(1.0d0 + 2.0d0*a*epsilon)

END IF

ecc_eps = ecc + epsilon*U*(2.0d0*U - U*((dsin(theta))*(dsin(theta)))* &

((dsin(phi))*(dsin(phi))) + 4.0d0*dcos(theta))

incl_eps = datan(dtan(incl)*(1.0d0 - epsilon/(1.0d0 + Uy)))

U_eps = U - epsilon*((2.0d0*U*U*U*dcos(theta) + &

4.0d0*U*U*dcos(theta)*dcos(theta) + U*U + 1.0d0)/ &

(U*U + 2.0d0*U*dcos(theta) + 1.0d0))

num_costheta_eps = (U*U*U)*(2.0d0*dcos(theta)*dcos(theta) + dcos(theta)) + &

(U*U)*(4.0d0*dcos(theta)*dcos(theta)*dcos(theta) + &

2.0d0*dcos(theta)*dcos(theta) + &

dcos(theta) + 1.0d0) + U*dcos(theta) + dcos(theta) - 1.0d0
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den_costheta_eps = U*U*U + 2.0d0*U*U*dcos(theta) + U

theta_eps = dacos(dcos(theta) + epsilon*(num_costheta_eps/den_costheta_eps))

phi_eps = dacos(dcos(phi)*(1.0d0 + epsilon* &

((U*U + 2.0d0*U*dcos(theta) - 1.0d0)/(U*U + &

2.0d0*U*dcos(theta) + 1.0d0))))

END IF

ksi = dcos(phi)*((a*(1 - ecc*ecc))/(1.0d0 - ecc*dcos(lomega)) - 1.0d0)

ELSEIF (U /= 0.0d0 .and. theta /= 0.0d0 .and. phi /= 0.0d0) THEN

a = 1.0d0/(1.0d0 - U*U - 2.0d0*U*dcos(theta))

ecc = U*dsqrt((U + 2.0d0*dcos(theta))*(U + 2.0d0*dcos(theta)) + &

dsin(theta)*dsin(theta)*dsin(phi)*dsin(phi)*(1.0d0 - U*U - 2.0d0*U*dcos(theta)))

incl = datan((U*dsin(theta)*dcos(theta))/(1.0d0 + U*dcos(theta)))

IF (epsilon /= 0.0d0) THEN

a_eps = a/(1.0d0 - 2.0d0*a*epsilon)

IF (a*epsilon < tol) THEN

a_eps = a*(1.0d0 + 2.0d0*a*epsilon)

END IF

ecc_eps = ecc + epsilon*U*(2.0d0*U - U*dsin(theta)*dsin(theta)* &

dsin(phi)*dsin(phi) + 4.0d0*dcos(theta))

incl_eps = datan(dtan(incl)*(1.0d0 - epsilon/(1.0d0 + Uy)))

U_eps = U - epsilon*((2.0d0*U*U*U*dcos(theta) + &

4.0d0*U*U*dcos(theta)*dcos(theta) + U*U + 1.0d0)/ &

(U*U + 2.0d0*U*dcos(theta) + 1.0d0))

num_costheta_eps = (U*U*U)*(2.0d0*dcos(theta)*dcos(theta) + dcos(theta)) + &

(U*U)*(4.0d0*dcos(theta)*dcos(theta)*dcos(theta) + &

2.0d0*dcos(theta)*dcos(theta) + &

dcos(theta) + 1.0d0) + U*dcos(theta) + dcos(theta) - 1.0d0

den_costheta_eps = U*U*U + 2.0d0*U*U*dcos(theta) + U

theta_eps = dacos(dcos(theta) + epsilon*(num_costheta_eps/den_costheta_eps))

phi_eps = dacos(dcos(phi)*(1.0d0 + epsilon*((U*U + 2.0d0*U*dcos(theta) - 1.0d0)/ &

(U*U + 2.0d0*U*dcos(theta) + 1.0d0))))

END IF

END IF

b = dsqrt(ksi*ksi + zeta*zeta)

c = m_ratio/(U*U)

IF (epsilon /= 0.0d0) THEN

a = a_eps

ecc = ecc_eps

incl = incl_eps

U = U_eps

theta = theta_eps

phi = phi_eps

END IF

Ux = U*dsin(theta)*dsin(phi)
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Uy = U*dcos(theta)

Uz = U*dsin(theta)*dcos(phi)

X0 = ksi/dcos(phi)

Y0 = (ksi*dcos(theta)*dtan(phi) - zeta)/dsin(theta)

X = X0 - (X0*dsin(theta)*dsin(phi) + Y0*dcos(theta))*dsin(theta)*dsin(phi)

Y = -(X0*dcos(theta)*dsin(phi) - Y0*dsin(theta))*dsin(theta)

Z = -(X0*dsin(theta)*dsin(phi) + Y0*dcos(theta))*dsin(theta)*dcos(phi)

D = X*X + Y*Y + Z*Z

gamma = 2.0d0*datan(c/b)

U_prime = U

t_b = t0 - (X0*dsin(theta)*dsin(phi) + Y0*dcos(theta))/U

theta_prime = dacos(((b*b - c*c)*dcos(theta) + 2.0d0*c*zeta*dsin(theta))/(b*b + c*c))

phi_prime = dacos((((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta))*dcos(phi) + &

2.0d0*c*ksi*dsin(phi))/dsqrt((((b*b - c*c)*dsin(theta) - &

2.0d0*c*zeta*dcos(theta))*((b*b - c*c)*dsin(theta) - &

2.0d0*c*zeta*dcos(theta)) + 4.0d0*c*c*ksi*ksi)))

ap = 1.0d0/(1.0d0 - U_prime*U_prime - 2.0d0*U_prime*dcos(theta_prime))

eccp = U_prime*dsqrt((U_prime + 2.0d0*dcos(theta_prime))*(U_prime + &

2.0d0*dcos(theta_prime)) + dsin(theta_prime)*dsin(theta_prime) &

*dsin(phi_prime)*dsin(phi_prime)*(1.0d0 - U_prime*U_prime - &

2.0d0*U_prime*dcos(theta_prime)))

inclp = datan((U_prime*dsin(theta_prime)*dcos(phi_prime))/ &

(1.0d0 + U_prime*dcos(theta_prime)))

Ux_prime = U*dsin(theta_prime)*dsin(phi_prime)

Uy_prime = U*dcos(theta_prime)

Uz_prime = U*dsin(theta_prime)*dcos(phi_prime)

ksi_prime = ((b*b + c*c)*ksi*dsin(theta))/ &

dsqrt(((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta))* &

((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta)) + 4.0d0*c*c*ksi*ksi)

zeta_prime = ((b*b - c*c)*zeta*dsin(theta) - 2.0d0*b*b*c*dcos(theta))/ &

dsqrt(((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta))* &

((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta)) + 4.0d0*c*c*ksi*ksi)

bprime_vec(1) = ksi_prime

bprime_vec(2) = 0.0d0

bprime_vec(3) = zeta_prime

b_prime = dsqrt(ksi_prime*ksi_prime + zeta_prime*zeta_prime)

numerator = 2.0d0*c*(ksi*dsin(phi)*(2.0d0*zeta*dcos(theta) - ksi*dtan(phi)) - &
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dcos(phi)*(ksi*ksi*dsin(theta)*dsin(theta) + zeta*zeta))

denominator = U*dsin(theta)*(((b*b - c*c)*dsin(theta) - &

2.0d0*c*zeta*dcos(theta))*dcos(phi) + 2.0d0*c*ksi*dsin(phi))

t0_prime = t0 + numerator/denominator

a0_prime = (real(k*k)/real(h*h))**(1.0d0/3.0d0)

a_prime = a0_prime

cos_theta0p = (1.0d0 - U*U - 1.0d0/a0_prime)/(2.0d0*U)

theta0p = dacos(cos_theta0p)

theta_prime = theta0p

R = dabs((c*dsin(theta0p))/(cos_theta0p - dcos(theta)))

D = (c*dsin(theta))/(cos_theta0p - cos(theta))

! Xprime_t0prime = X0_prime

X0_prime = Ux_prime*(t0_prime - t0) + X0

! Yprime_t0prime = Y0_prime

Y0_prime = Uy_prime*(t0_prime - t0) + Y0

! Zprime_t0prime = Z0_prime

Z0_prime = Uz_prime*(t0_prime - t0)

Xprime_tb = Ux_prime*(t_b - t0_prime) + X0_prime

Yprime_tb = Uy_prime*(t_b - t0_prime) + Y0_prime

Zprime_tb = Uz_prime*(t_b - t0_prime)

t0_dprime = t0_prime + h*2.0d0*pi*a_prime**(3.0d0/2.0d0)

mod_time = (t0_dprime - t0_prime + pi) - INT((t0_dprime - t0_prime + pi)/ &

(2.0d0*pi))*(2.0d0*pi)

dY0 = -(mod_time - pi)

D_t0_dprime = dsqrt(X0_prime*X0_prime + (Y0_prime + dY0)*(Y0_prime + dY0))

Ux_dprime = Ux_prime

Uy_dprime = Uy_prime

Uz_dprime = Uz_prime

U_dprime = U_prime

theta_dprime = theta_prime

phi_dprime = phi_prime

X0_dprime = X0_prime

Y0_dprime = Y0_prime + dY0

tb_dprime = t0_dprime - (X0_dprime*dsin(theta_prime)*dsin(phi_prime) + &

Y0_dprime*dcos(theta_prime))/U

ksi_dprime = X0_dprime*dcos(phi_prime)

zeta_dprime = X0_dprime*dcos(theta_prime)*dsin(phi_prime) - Y0_dprime*dsin(theta_prime)

! Derivatives of cos(thetap) and sin(thetap)

denominator = (b*b + c*c)*(b*b + c*c)



174

dcosthetap_dksi = (4.0d0*c*ksi*(c*dcos(theta) - zeta*dsin(theta)))/denominator

dcosthetap_dzeta = (2.0d0*c*((b*b + c*c)*dsin(theta) + 2.0d0*zeta*(c*dcos(theta) - &

zeta*dsin(theta))))/denominator

numerator = -((b*b - c*c)*dcos(theta) + 2.0d0*c*zeta*dsin(theta))

denominator = dsqrt(((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta))* &

((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta)) + 4.0d0*c*c*ksi*ksi)

dsinthetap_dksi = (numerator/denominator)*dcosthetap_dksi

dsinthetap_dzeta = (numerator/denominator)*dcosthetap_dzeta

! Derivatives of cos(phip) and sin(phip)

dcosphip_dksi = (2.0d0*(ksi*dsin(theta)*dcos(phi) + c*dsin(phi)))/ &

(dsqrt(((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta))* &

((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta)) + &

4.0d0*c*c*ksi*ksi)) - (2.0d0*ksi*((b*b - c*c)*dsin(theta)*dsin(theta) - &

2.0d0*c*(zeta*dsin(theta)*dcos(theta) - c))* &

(((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta))*dcos(phi) + &

2.0d0*c*ksi*dsin(phi)))/(dsqrt((((b*b - c*c)*dsin(theta) - &

2.0d0*c*zeta*dcos(theta))*((b*b - c*c)*dsin(theta) - &

2.0d0*c*zeta*dcos(theta)) + 4.0d0*c*c*ksi*ksi)**3))

dcosphip_dzeta = (2.0d0*dcos(phi)*(zeta*dsin(theta) - c*dcos(theta)))/ &

dsqrt(((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta))* &

((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta)) + &

4.0d0*c*c*ksi*ksi) - (2.0d0*(((b*b - c*c)*dsin(theta) - &

2.0d0*c*zeta*dcos(theta))*(zeta*sin(theta) - c*cos(theta)))* &

(((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta))*dcos(phi) + &

2.0d0*c*ksi*dsin(phi)))/dsqrt((((b*b - c*c)*dsin(theta) - &

2.0d0*c*zeta*dcos(theta))*((b*b - c*c)*dsin(theta) - &

2.0d0*c*zeta*dcos(theta)) + 4.0d0*c*c*ksi*ksi)**3)

dsinphip_dksi = (2.0d0*(ksi*dsin(theta)*dsin(phi) - c*dcos(phi)))/ &

dsqrt(((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta))* &

((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta)) + &

4.0d0*c*c*ksi*ksi) - (2.0d0*ksi*((b*b - c*c)*dsin(theta)*dsin(theta) - &

2.0d0*c*(zeta*dsin(theta)*dcos(theta) - c))* &

(((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta))*dsin(phi) - &

2.0d0*c*ksi*dcos(phi)))/dsqrt((((b*b - c*c)*dsin(theta) - &

2.0d0*c*zeta*dcos(theta))*((b*b - c*c)*dsin(theta) - &

2.0d0*c*zeta*dcos(theta)) + 4.0d0*c*c*ksi*ksi)**3)

dsinphip_dzeta = (2.0d0*dsin(phi)*(zeta*dsin(theta) - c*dcos(theta)))/ &

dsqrt(((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta))* &

((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta)) + &

4.0d0*c*c*ksi*ksi) - (2.0d0*(((b*b - c*c)*dsin(theta) - &

2.0d0*c*zeta*dcos(theta))*(zeta*dsin(theta) - c*dcos(theta)))* &

(((b*b - c*c)*dsin(theta) - 2.0d0*c*zeta*dcos(theta))*dsin(phi) - &

2.0d0*c*ksi*dcos(phi)))/dsqrt((((b*b - c*c)*dsin(theta) - &

2.0d0*c*zeta*dcos(theta))*((b*b - c*c)*dsin(theta) - &

2.0d0*c*zeta*dcos(theta)) + 4.0d0*c*c*ksi*ksi)**3)
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! Derivatives of Xp_tb, Yp_tb, and Zp_tb

denominator = (b*b + c*c)*(b*b + c*c)

dXptb_dksi = (4.0d0*c*c*ksi*dsin(phi)*(zeta*dcos(theta) + c*dsin(theta)) + &

(b*b*b*b - c*c*c*c)*dcos(theta))/denominator

dXptb_dzeta = (4.0d0*c*c*zeta*(c*dsin(theta)*dsin(phi) + ksi*dcos(phi)) + &

(b*b*b*b - c*c*c*c + 4.0d0*c*c*zeta*zeta)* &

dcos(theta)*dsin(phi))/denominator

dYptb_dksi = (4.0d0*c*c*ksi*(c*dcos(theta) - zeta*dsin(theta)))/denominator

dYptb_dzeta = (4.0d0*c*c*zeta*(c*dcos(theta) - zeta*dsin(theta)) + &

(c*c*c*c - b*b*b*b)*dsin(theta))/denominator

dZptb_dksi = (4.0d0*c*c*ksi*dcos(phi)*(c*dsin(theta) + zeta*dcos(theta)) - &

(b*b*b*b - c*c*c*c + 2.0d0*c*c*ksi*ksi)*dsin(phi))/denominator

dZptb_dzeta = (4.0d0*c*c*zeta*(c*dsin(theta)*dcos(phi) - ksi*dsin(phi)) + &

(b*b*b*b - c*c*c*c + 4.0d0*c*c*zeta*zeta)*dcos(theta)*dcos(phi))/ &

denominator

! Derivatives of Ux_prime, Uy_prime, and Uz_prime

dUxp_dksi = U*(dsinthetap_dksi*dsin(phi_prime) + dsin(theta_prime)*dsinphip_dksi)

dUxp_dzeta = U*(dsinthetap_dzeta*dsin(phi_prime) + dsin(theta_prime)*dsinphip_dzeta)

dUyp_dksi = U*dcosthetap_dksi

dUyp_dzeta = U*dcosthetap_dzeta

dUzp_dksi = U*(dsinthetap_dksi*dcos(phi_prime) + dsin(theta_prime)*dcosphip_dksi)

dUzp_dzeta = U*(dsinthetap_dzeta*dcos(phi_prime) + dsin(theta_prime)*dcosphip_dzeta)

! Derivatives of Xp_0 and Yp_0

dX0p_dksi = dXptb_dksi - (Zprime_tb/Uz_prime)*dUxp_dksi - &

Ux_prime*((1.0d0/Uz_prime)*dZptb_dksi - &

(Zprime_tb/(Uz_prime*Uz_prime))*dUzp_dksi)

dX0p_dzeta = dXptb_dzeta - (Zprime_tb/Uz_prime)*dUxp_dzeta - &

Ux_prime*((1.0d0/Uz_prime)*dZptb_dzeta - &

(Zprime_tb/(Uz_prime*Uz_prime))*dUzp_dzeta)

dY0p_dksi = dYptb_dksi - (Zprime_tb/Uz_prime)*dUyp_dksi - &

Uy_prime*((1.0d0/Uz_prime)*dZptb_dksi - &

(Zprime_tb/(Uz_prime*Uz_prime))*dUzp_dksi)

dY0p_dzeta = dYptb_dzeta - (Zprime_tb/Uz_prime)*dUyp_dzeta - &

Uy_prime*((1.0d0/Uz_prime)*dZptb_dzeta - &

(Zprime_tb/(Uz_prime*Uz_prime))*dUzp_dzeta)

! Derivatives of zeta_prime

dzetap_dksi = dX0p_dksi*dcos(theta_prime)*dsin(theta_prime) + &

X0_prime*dcosthetap_dksi*dsin(phi_prime) + &

X0_prime*dcos(theta_prime)*dsinphip_dksi + &

dY0p_dksi*dsin(theta_prime) + Y0_prime*dsinthetap_dksi

dzetap_dzeta = dX0p_dzeta*dcos(theta_prime)*dsin(phi_prime) + &

X0_prime*dcosthetap_dzeta*dsin(phi_prime) + &

X0_prime*dcos(theta_prime)*dsinphip_dzeta + &

dY0p_dzeta*dsin(theta_prime) + Y0_prime*dsinthetap_dzeta
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! Derivatives of ksi_prime

dksip_dksi = dX0p_dksi*dcos(phi_prime) + X0_prime*dcosphip_dksi

dksip_dzeta = dX0p_dzeta*dcos(phi_prime) + X0_prime*dcosphip_dzeta

! Derivatives of zeta_dprime

dzetadp_dksi = h*((2.0d0*pi*a_prime**(5.0d0/2.0d0)* &

(U_prime*dcos(theta_prime)*dcos(theta_prime) + &

dcos(theta_prime)*(1.0d0 - U_prime*U_prime) - 3.0d0*U_prime))/ &

dsin(theta_prime))*dcosthetap_dksi + &

h*((10.0d0*pi*a_prime**(7.0d0/2.0d0)* &

(U_prime*dcos(theta_prime)*dcos(theta_prime) + &

dcos(theta_prime)*(1.0d0 - U_prime*U_prime) - 3.0d0*U_prime)* &

(zeta_prime*dcos(theta_prime)*dsin(phi_prime) + &

ksi_prime*dcos(phi_prime)))/dsin(theta_prime))*dcosthetap_dksi - &

h*((2.0d0*pi*a_prime**(5.0d0/2.0d0)*(2.0d0*ksi_prime* &

dcos(theta_prime)*dcos(phi_prime) + zeta_prime*dsin(phi_prime)* &

(2.0d0*dcos(theta_prime)*dcos(theta_prime) + &

3.0d0*dsin(theta_prime)*dsin(theta_prime)* &

dsin(theta_prime))))/dsin(theta_prime))*dcosthetap_dksi + dzetap_dksi

dzetadp_dzeta = h*((2.0d0*pi*a_prime**(5.0d0/2.0d0)* &

(U_prime*dcos(theta_prime)*dcos(theta_prime) + &

dcos(theta_prime)*(1.0d0 - U_prime*U_prime) - &

3.0d0*U_prime))/dsin(theta_prime))*dcosthetap_dzeta + &

h*((10.0d0*pi*a_prime**(7.0d0/2.0d0)*(U_prime* &

dcos(theta_prime)*dcos(theta_prime) + dcos(theta_prime)* &

(1.0d0 - U_prime*U_prime) - 3.0d0*U_prime)* &

(zeta_prime*dcos(theta_prime)*dsin(phi_prime) + &

ksi_prime*dcos(phi_prime)))/dsin(theta_prime))*dcosthetap_dzeta - &

h*((2.0d0*pi*a_prime**(5.0d0/2.0d0)*(2.0d0*ksi_prime* &

dcos(theta_prime)*dcos(phi_prime) + zeta_prime*dsin(phi_prime)* &

(2.0d0*dcos(theta_prime)*dcos(theta_prime) + &

3.0d0*dsin(theta_prime)*dsin(theta_prime)* &

dsin(theta_prime))))/dsin(theta_prime))*dcosthetap_dzeta + dzetap_dzeta

! Derivatives of ksi_dprime

dksidp_dksi = dksip_dksi

dksidp_dzeta = dksip_dzeta

! Necessary output variables

output1 = U

output2 = theta

output3 = phi

output4 = a

output5 = ecc

output6 = incl

output7 = ksi

END SUBROUTINE analytic_keyhole_development
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