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ABSTRACT

A method for predicting damage in ceramic body armor using pressure sensitive dye-

indicator film (PSF) is presented. Results from impact experiments using impactors of various

masses onto ceramic armor panels, employing the use of a CPR manikin to model the hu-

man torso are presented. Trends of increasing impactor acceleration and force as a function

of increasing impact energy are shown. Differing acceleration profiles between damaged and

undamaged armor panels is seen. Experiments employing the pressure sensitive film are pre-

sented. Indication on the PSF show good correlation to the measured force of the impact.

Correlation extends for each impactor through a wide range of impact energies. A simplified

numerical model was developed that captures the general trends of the experimental data. An

analytical model is shown to accurately predict the maximum acceleration values for each im-

pactor through a range of impact energies. Also presented are the results of ballistics testing

performed on both undamaged and damaged armor panels.
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CHAPTER 1. INTRODUCTION

Advances in personnel body armor over the past 60 years have led to its wide spread

usage today [Matchen (1996)]. Most current threats to which soldiers are exposed can only

be defeated by the use of hard armor. Ceramic-based hard armor has always been preferred

because it provides good ballistic defeat properties for a relatively low weight [Gooch (2002),

Sujirote et al. (2008)]. Government standards require personnel armor to be damage-free

to guarantee effectiveness. Studies by the U.S. and England have shown that while cracked

plates are still able to defeat a threat, their ballistic performance is degraded [Dulay et al.

(2006), Horsfall et al. (1993)]. The high cost of individual ceramic armor leads to the need for

nondestructive evaluation (NDE) techniques that can readily detect damage in ceramic armor.

Current NDE techniques used on ceramic armor rely on some form of imaging using x-rays,

ultrasonics, or microwaves. Equipment to perform such techniques may be setup on location,

but require a trained operator. New advances in the field of NDE have led the way for some

automated systems that require no experienced operator or personnel to interpret results.

Haynes et al. (2009) have described and assessed an automated x-ray scanner developed by the

Army and Schimdt et al. (2009, 2010) have detailed a portable microwave scanner that does

not require an operator to interpret results. These systems still require expensive electronic

equipment and for a soldier to surrender their armor for an extended period. Efficient methods

to determine damage in ceramic armor that reduces the time a soldier is without their armor

and requires little experience or training to perform are desirable.

The purpose of this thesis is to validate experimentally the use of a pressure sensitive dye

indicator film (PSF) as a viable means of detecting subcritical damage in personal ceramic

body armor. Damage is considered subcritical when it occurs from a non-ballistic, low velocity

impact such that the armor is visibly undamaged. Application of PSF eliminates the need for
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any electronic device to measure damage or interpret test result. Elimination of electronics

and the need for trained operators provides a simple, fast, and effective in-field evaluation of

possible impact damage.

This thesis presents the experimental testing of a damage detection system for personal

ceramic body armor using PSF. In Chapter 2, a historical background of personal body armor

will be given along with current NDE techniques used to detect subcritical damage. Chapter

3 will detail the experimental setup used and numerical analysis performed, together with the

analytical methods that have been used to model subcritical impacts. In Chapter 4, the results

of the experiments and numerical analysis are discussed. Finally, a summary and conclusions

are presented in Chapter 5.
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CHAPTER 2. REVIEW OF LITERATURE

This chapter provides a description of personnel ceramic body armor and covers a brief

background of the development of ceramic armor that has led to its favored and prominent use

and why the critical need to keep the armor damage free exists. Also discussed are current

NDE techniques available and widely used to detect damage in ceramic body armor. Finally,

the use of pressure sensitive dye indicator film as an NDE technique for damage detection in

ceramic armor is presented.

2.1 Personnel ceramic body armor

Personnel ceramic body armor is used primarily when high velocity, full metal jacket or

hard-core rounds are the primary threat. Typical ceramic body armor consists of a monolithic

ceramic plate bonded to a composite type backing material made of high strength fibers such

as Kevlar, Twaron, or Spectra, and wrapped in ballistic nylon; in some cases, soft metallic

materials may be used as the backing material [Medvedovski (2006)]. Most ceramic armors

in use today employ alumina (Al2O3) as the ceramic material. When weight reduction is

a primary concern, silicon carbide (SiC3) and boron carbide (B4C3) ceramics may be used;

however, their high cost as compared to alumina limits their current use. The purpose of the

ceramic material is to blunt and degrade the bullet. As the ceramic fractures and the bullet

penetrates the material, ceramic pieces shred off parts of the bullet reducing its kinetic energy

and blunting the bullet nose. The composite layer then absorbs the remaining energy of the

bullet and fractured ceramic pieces, in much the same as a standard flexible (e.g. Kevlar) vest,

preventing penetration of the person being protected.
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2.2 Development of ceramic armor

The credit for the first 20th century use of body armor goes to the Germans during World

War I (WWI) [Viechnicki et al. (1991)]. They applied hard-faced enamel coatings to their tanks

to protect against small arms fire. Soon thereafter and throughout World War II (WWII),

German researchers began to study impact penetration into glass [Skaggs (2003)]. During

WWII, nonmetallic armors were tested on aircraft to prevent against small arms fire and shell

fragments. During the Korean War work started on siliceous cord armors (metal armor cast

around a silicate core) to protect tanks against kinetic energy threats [Viechnicki et al. (1991)].

U.S. research programs were first instituted in the 1960s. Body armor was desired for

soldiers in Vietnam who were standing guard at night and needed protection from sniper fire

[Skaggs (2003)]. Eventually armor plates made of alumina were used. The armor was heavy,

approximately 60-lbs for a front and back plate, and only practical for sentry use. During

Vietnam, helicopter pilots also required armor to protect against small arms fire. They first

used flak vests from WWII bombers but the vests were only designed to protect against shell

fragments, and they provided no protection against small arms and machine gun fire. Owing

to weight constraints, ceramics were viewed as a possible armor material. Eventually alumina

plates were developed and added to aircraft. With the addition of these plates, a reduction in

injuries from small arms and machine gun fire was observed. Both of these early armors were

composed of sintered alumina plates bonded to a backing material made of either a ductile

metal (e.g. aluminum or soft steel) or fiberglass-reinforced plastic [Matchen (1996)].

Many key design points for ceramic armor were discovered during research in the 1970s.

Mark Wilkins at Lawrence Livermore National Laboratory (LLNL) put together a set of em-

pirical rules for ceramic armor design based on his work in the 1960s and 70s [Skaggs (2003)].

The basic design points Wilkins listed, which he expanded on for armor contractors and man-

ufacturers, include:

1) The armor needs to be as hard as the bullet (or harder) to defeat the bullet.

2) The armor layer needs to be at least 1/2 the bullet diameter in thickness to

successfully defeat the bullet.
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3) The front ceramic needs to be about 1/3 the thickness of the total plate and the

backing material needs to be about 2/3 of the total.

4) The basic characteristics of the composite plate are that the front armor material

needs to break and turn the bullet and the backing material needs to be ductile to

catch the penetrating products without failing.

5) Understanding the fracture/cracking/breakup of the ceramic is only important

for thick ceramics.

Wilkins’s guidelines are still regarded as the basic layout for designing an effective ceramic-

based hard armor. Large research programs continued through the 1980s when DARPA issued

requests for proposals for new vehicle and body armor designs. During this time, through

extensive investigation, five materials were identified as being the most promising for ceramic

body armor. These materials include alumina (Al2O3), silicon carbide (SiC3), boron carbide

(B4C3), titanium diboride (TiB2), and aluminum nitride (AlN). Today these materials are

still the most widely used and researched for ceramic armor. It was discovered by Carl Cline

at LLNL in the 1970s [Skaggs (2003)] that diberyllium boride (Be2B) was by far the lightest

ceramic that had ballistic stopping capabilities, however beryllium is toxic if inhaled and the

Army listed it as an unacceptable material for armor.

In the late 1980s the phenomenon of dwell was discovered as remarked by Skaggs (2003).

As the bullet entered a strongly confined target, it seemed to stall in the penetration

process at the surface of the ceramic. Upon careful examination it was found

that the penetrator spread out radially at a 90 degree angle with respect to the

penetration axis . . . [dwell] was observed to take place in all of the strongly confined

ceramic targets during the first 10 microseconds of the penetrator passing into the

target.

Further research since the first observance of dwell has revealed that delaying the fracture of

the ceramic and increasing the length of the dwell time of the bullet by only a minimal amount

of time can considerably increase the ballistic performance of a ceramic material [Skaggs (2003)].
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Armor research began to diminish in the 1990s until most armor programs were stopped.

During the 1990s, most research advances were in the realm of computer modeling. Skaggs

(2003) has summarized much of the computing advances that took place during the 1990s.

Anderson and Walker at Southwest Research Institute have developed newer and

more closely coupled first principles models for the behavior of penetrators into

armors of all kinds, but specifically the multilayered composite armors of ceramics

and high strain/strain rate backing materials. In addition, they have created a

database of materials tested for armor applications. . . Sandia National Laboratory

has maximized the use of the CHT code to study many different types of armors and

the interactions of penetrators with these armors. Frank Adessio at Los Alamos has

attacked the problem of modeling fiber reinforced plastics on a microscale. . . Shocket

et al at SRI International have attempted to rationalize all of the engineering models

extant into one that would be very beneficial to the military services. . . Holmquist

and Johnson at the US Army Supercomputing Center at the Univ. of Minnesota

have continued to refine the EPIC model by incorporating newer cell configurations

and continue to develop the model to account for damage to the material during

the penetration.

Skaggs (2003) also notes that currently no armor in use today has been designed by com-

puter. Along with computer advances, advances have occurred in armor materials. Following

the five monolith ceramics recognized as best suited for armor, ceramic matrix composites, ce-

ramic fibers embedded in a ceramic matrix, are recognized as having desirable ballistic qualities

and are the most researched armor materials.Viechnicki et al. (1991) lists the following ceramic

matrix composites as potential armor materials: Al2O3/SiC whiskers, Ni/TiC, borosilicate

glass/SiC or C fibers, TiB2/B4C particulates,TiB2/SiC particulates, and Al/B4C particulates.

A particularly undesirable quality monolithic ceramics have is the amount of damage they

sustain during a single impact, making it difficult for current armor to provide multiple-hit

protection. Owing to the material properties of ceramic matrix composites, their fracture me-

chanics properties in particular, damage they sustain from ballistic impacts is localized. While
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not as developed and researched as monolithic ceramics, the damage localization effect of ce-

ramic matrix composites has armor produced from these materials showing promising results

for multiple-hit protection [Viechnicki et al. (1991)].

A high expense has always been associated with ceramic armor. Two prominent reasons

contribute to the high cost of ceramic armor seen today. Manufacturing contributes the largest

cost to ceramic armors, owing to the requirement that most armor ceramics require hot pressing

to be fully bonded, made pure enough, and free of any internal discontinuities [Matchen (1996)].

The shapes desired for personnel armor add in additional complications to the manufacturing

process that increases costs. Another reason contributing expense to ceramic armor is the

amount of raw materials available. Alumina has always been the least expensive armor material

due to the many other industrial uses that it has; thus, alumina is produced in millions of pounds

per year [Skaggs (2003)]. Other armor materials, especially B4C3, have minimal industrial uses,

resulting in only small quantities of their raw materials to be produced each year, contributing

to high costs of ceramic armor employing them [Skaggs (2003)].

Initially silicon carbide and boron carbide were favored materials for use in ceramic armor,

primarily for their high hardness/strength to weight ratio [Skaggs (2003)]. The high cost

associated with these material has not allowed for their wide spread use in ceramic armor.

Research during the 1970s and 80s showed that if alumina can be made to a high purity of

an Al2O3 content of 96% or greater, and the grain size can be minimized, the ceramic armors

produced from such alumina are comparable in terms of ballistic performance and the amount

of material needed (thickness of ceramic plate) to prevent penetration with those of silicon

carbide and boron carbide [Medvedovski (2002), Skaggs (2003)]. Alumina is currently the

preferred material for all ceramic armor, personnel and vehicle, with silicon carbide and boron

carbide only implemented when weight reduction is a high priority.

The bullet defeat process of ceramic armor has three general stages that apply to any

ballistic threat and ceramic armor design [Matchen (1996), Gooch (2002)]. The first stage,

referred to as the shattering stage, involves the initial impact of the bullet against the ceramic

material in the armor. The high hardness and compressive strength of the ceramic as compared

to that of the bullet initiates fracture in the bullet. The fracturing of the bullet is followed by
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damage accumulation in the ceramic as stress waves propagate through the ceramic material.

In the second stage, referred to as erosion, cracks develop in the ceramic material and pieces

of the ceramic aid in eroding parts of the bullet as it moves through the material. The third

stage, catching, occurs as the bullet and pieces of the ceramic impact the backing material,

where their remaining kinetic energy is absorbed. Figure 2.1 shows the three stages of the

bullet defeat process.

Figure 2.1 Three stages of the bullet defeat process. (A) First (shattering) stage, (B) second

(erosion) stage, (C) third (catching) stage.

While the bullet defeat process may be generalized for any given ballistic threat and ceramic

armor design, the particulars of an individual impact depend on the velocity of the ballistic

threat. Skaggs (2003) has described the velocity dependence of the bullet defeat process.
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The response of armor ceramics to impact can be divided into the three velocity

regimes: low velocity, V < 700 m/s; intermediate velocity, 700 m/s < V < 3000

m/s; and hypervelocity, V < 3000 m/s. At low velocities mechanical properties,

either quasi-static or dynamic, govern penetration. At hypervelocities, the velocities

of shaped charged jets, the materials behave as fluids or hydrodynamically during

penetration. Penetration in the intermediate regime, where military kinetic energy

threats fall, is governed by dynamic material properties and hydrodynamic flow.

Penetration in the intermediate velocity regime consists of at least four stages which

include (1) initial impact with hydrodynamic flow of penetrator and armor ceramic;

(2) breakup and continued flow of penetrator and high-speed jetting of ceramic

debris; (3) ceramic fracture, formation of Hertzian cone crack, and tensile crack

on the back face, with continued penetrator breakup and flow; and (4) erosion of

penetrator and wide spread fracture of ceramic.

The first standard ballistic performance criterion developed, and in continued use presently,

is referred to as the V50 [Viechnicki et al. (1991)]. The V50 is the velocity at which 50% of the

bullets will penetrate the armor. Still a primary means of characterizing ballistic performance,

the V50 provides only a broad indication of the ballistic performance of a ceramic armor.

Horsfall et al. (1993) summarizes the testing procedure involved in determining an armor’s V50

as detailed by NATO.

[NATO procedure] dictates that the [V50 ballistic] limit velocity is the mean of 6

shots, the three highest velocities must lie within a range of 40 m/s. If the range

of velocities is greater than the average is taken over 10 shots, which must then be

within a range of 50 m/s.

Owing to the destructive nature of determining an armor’s V50 and the cost associated with

individual ceramic armor pieces, many have attempted to relate a specific material property

of the ceramic used in a particular armor to the ballistic performance of that given armor,

allowing for both a simple evaluation of a ceramic armor’s ballistic performance and for the

comparison of separate ceramic armor designs. Currently no individual material property of a
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ceramic has been correlated directly to the ballistic performance of a particular ceramic armor

design. The absence of a material property/ballistic performance relationship is attributed to

the complicated dynamic fracture process that occurs during a ballistic impact. An unexplained

phenomenon exists regarding a ceramic armor’s V50, remarked by Skaggs (2003), which has

added to the desire for a new ballistic performance criterion.

For a specific armor, there exists two V50
′s. As the velocity increased the intact

bullet penetrated the armor to define the first V50. But upon further increase

the bullet shattered into many small pieces and no longer penetrated the armor.

Continuing to increase the velocity produced another V50 above which the bullet

fragments penetrated the armor again. This phenomenon has been observed by

nearly everyone who tests armor, but it has never been fully explained.

Horsfall et al. (1993) describes an additional measure of ballistic performance for ceramic

armor that, while it is not currently a standard, may provide a better measure of a particular

armor’s ballistic performance and is more readily understood.

An alternative measure of armour performance is to determine the highest velocity

at which a projectile can strike with a negligible probability of penetration, the V0

ballistic limit velocity. It has been suggested [Tobin (1993)] that the V0 ballistic

limit velocity, may be a better measure of performance as it is more indicative in

real terms of the ability of an armour to defeat a given threat and is a more readily

understood concept to potential users.

While no individual material property of a ceramic may provide an indication of ballistic

performance, a set of material properties has been identified that are common to all well

performing ceramic armors. Viechnicki et al. (1991) and Medvedovski (2005) detail specific

material properties of ceramics and the properties’s corresponding influence on the ballistic

performance of a piece of ceramic armor. Particular ceramic material properties of importance

are the hardness and density. The ceramic is required to be as hard as or harder than the threat

(bullet or bullet-core) it is meant to defeat and the density should be kept to a minimum else the



11

armor becomes a hindrance to the soldier. The ceramic should have a high sonic velocity to help

match its acoustical impedance to that of the bullet as best as possible. The transmission of

energy through shockwaves becomes important as the velocity of the bullet increases. Fracture

of the ceramic in the transgranular mode is desirable. Other properties include minimal porosity

(water absorption must be less than 0.02%), high elastic modulus, low Poissons ratio, and high

mechanical strength. For a given armor design, the material properties must be balanced based

on the primary threat the particular piece of armor is meant to defeat. James (2002) details the

importance of the adhesive used to bond the ceramic and composite backing. The acoustical

impedance of the adhesive should match that of the ceramic as best possible. Even a minimal

mismatch can lead to strong tensile waves being reflected back through the ceramic and the

joining surface causing extensive cracking of the ceramic and possibly reducing the ability of

the ceramic to stop the bullet.

2.3 Current NDE

Limited data exists on the effects of cracks in ceramic armor and their effect on the ballistic

performance of the armor. Horsfall et al. (1993) and Dulay et al. (2006) note the degrada-

tion observed in a ceramic armor’s ballistic performance when cracks are present. Horsfall et

al. (1993) describes the possible reasons why ceramic armors with cracks have lower ballistic

performances.

If there is a pre-existing large crack in the ceramic in the impact area then it might

be expected to reduce the performance of the armour. The unconfined material at

the fracture surfaces would fail prematurely under a compressive load and commin-

uted material could flow into the crack allowing premature compressive collapse.

Additionally the stiffness of the armour structure might be reduced, leading to

increased radial cracking due to the bending of the armour panel.

Horsfall et al. (1993) performed a series of ballistic tests on ceramic armor panels with

through thickness cracks in the ceramic material. They noted a minimal but statistically

significant drop in the ballistic performance of the cracked armor panels.
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. . . therefore it can be seen that the introduction of a full width, through-thickness,

pre-crack reduces the V50 ballistic limit velocity from 764 m/s to 740 m/s, a drop

of 3% . . . The Students t-test was then used to determine the significance of the

difference in the [V50s] of the standard and pre-crack samples. This difference was

determined to be statistically significant to a level of better than 1%. Therefore it

is possible to conclude that the pre-crack does significantly reduce the V50 ballistic

limit.

Owing to the statistically significant drop in the ballistic performance of ceramic armor

with cracks present, the ability to determine the condition of the ceramic material in the armor

once the armor has been assembled, ceramic and composite bonded and wrapped in ballistic

nylon, is necessary. The NDE tests available to detect damage in assembled ceramic armors

are limited. Ultrasonics are not readily used owing to the requirement that the armor needs

to be partially disassembled and ceramic surface prepared for the techniques to be applicable.

The first standard NDE technique developed for in field use, and still in prevalent use, was the

torque test described by Haynes et al. (2009).

This is a process which an individual grabs opposing corners of a plate and tries to

twist the plate listening for crunching or cracking. When this test works, adjoining

surfaces of a crack rub and create the sound that reveals the crack. Unfortunately,

this easily-performed field test is not always reliable.

Depending on the size, location, and severity of cracks in the armor, damage can go unde-

tected. False positives and false negatives are common [Haynes et al. (2009)].

Haynes et al. (2009) has detailed an automated NDE system using x-rays developed by

the Army. The system requires an operator only to load and unload the armor panels. Image

processing algorithms handle the damage analysis and automatically determine the accepting

or rejecting of armor panels and isolates damaged panels. The automation of the computer

algorithms require that the systems be calibrated for a specific armor design, but once completed

the systems may process up to 240 armor panels an hour [Haynes et al. (2009)]. Green et al.

(2009) and Brennan et al. (2010) have also detailed development of damage detection systems
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using CT scans. These systems are not readily employed in field owing to the need for a trained

operator and time needed to scan an individual panel [Brennan et al. (2010)]. CT scan can

potentially reveal greater information about the particular damage in a given armor panel than

a standard x-ray; however, CT scans do not have a better accuracy rate at detecting damage

and based on the requirement that any damage in an armor panel renders it defective, the extra

time and operator expense associated with CT scans does not warrant the use of them. X-ray

systems have high accuracy rates, but the expense and requirements of the machines dictate

they are setup in a centralized location for in field use, requiring soldiers to relinquish their

armor for a period [Haynes et al. (2009)].

Schimdt et al. (2009, 2010) have detailed the development of a damage detection system

based on microwave interference scanning. Systems they have described produce images similar

to x-ray images. The images are not as clear and require a trained technician to interpret test

results. The authors have also presented work on the development of a portable system that

may be carried and used directly in-field without the need for a soldier to turn over their armor

to a centralized testing facility.

2.4 Pressure sensitive dye indicator film

The work presented in this thesis is based on the use of pressure sensitive dye indicator

film (PSF) as a method of damage detection. PSF employed is manufactured by the Fujifilm

Corporation and distributed by Sensor Products Inc. From the website of Sensor Products Inc.

on the make up and use of PSF:

PSF is a mylar based film that contains a layer of tiny microcapsules. The ap-

plication of force upon the film causes the microcapsules to rupture, producing

an instantaneous and permanent high resolution topographical image of pressure

variation across the contact area. PSF is between 4 to 8 mils thick allowing it to

conform to curved surfaces . . . Like litmus paper, the color intensity of the film is

directly related to the amount of pressure applied to it. The greater the pressure,

the more intense the color.
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Figure 2.2 shows the makeup of PSF (obtianed from information provided on Sensor Prod-

ucts Inc. website).

Figure 2.2 Layer by layer make up of PSF.

PSF is produced for a variety of pressure ranges. Research was conducted employing three

separate pressure ranges: Medium (1400 – 7100 psi), High (7100 – 18500 psi), and Super

High (18500 – 43200 psi). For each pressure range, an applied pressure that does not reach

the minimum pressure value listed, produces no indication on the film. The intensity of the

indication increases as the applied pressure increases within the pressure range of the film.

Once the applied pressure is greater than the maximum pressure the film can measure, the film

is said to be saturated. A indication is present on the film but no corresponding pressure value

may be obtained. Figure 2.3 shows a sample of PSF with varying levels of indication.

Figure 2.3 PSF samples. (left to right) unimpacted film, impact that resulted in a pressure

in the middle range of the film, impact that resulted in film being over saturated.

PSF would be attached to the front (impact) face of a ceramic armor panel and then placed

inside the vest. Following a sub-critical impact, the soldier would remove the armor panel

and visually inspect the PSF for an indication. The absence of an indication would imply the
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ceramic armor sustained no damage. The presence of an indication would imply the possibility

the armor sustained damage and at which point could proceed to a testing facility for further

evaluation.

PSF would not be an absolute measure of damage sustained but would provide a reliable

way to determine if more intensive and accurate but time-consuming inspection should proceed,

reducing the amount of time a soldier would have to relinquish their armor. PSF would provide

a method to reveal if the impact sustained had the potential to damage the armor and prevent

unnecessary testing after impacts that did not have the potential to cause damage. PSF may

be produced in a variety of pressure ranges and based on the damage tolerance of a particular

ceramic employed in an armor, an appropriate pressure range would be selected such that

the minimum pressure limit of the film would correspond to the minimum impact that could

potentially damage the ceramic armor.
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CHAPTER 3. EXPERIMENTAL SETUP AND PROCEDURE

A series of impact experiments were performed on samples of ceramic body armor panels

employing PSF. An impact test was designed and constructed along with three impactors of

differing masses. In addition, ballistics tests were performed on a sampling of both undamaged

and damaged ceramic armor panels. The following chapter describes the experimental setup

used to perform the impact testing on the ceramic body armor and the method for which

experiments were carried out. Also described is a simplified numerical model and an analytical

model. Finally, the procedure followed for ballistics testing is presented.

3.1 Impact experiments and testing

To permit repeatable impact drop test to be conducted on the ceramic body armor panels, a

10-ft PVC pipe was mounted vertically along a wall to act as a guide for one of three impactors

designed for these experiments, Fig. 3.1 depicts the experimental setup. The three impactors

were machined out of steel and had Teflon spacers attached to them to reduce friction in the

PVC pipe and to guide the masses straight down. A half inch diameter hole was machined out

of the bottom (contact surface) of each impactor to allow for the insertion of a force transducer.

Additionally an accelerometer was attached to the top of the transducers. Figure 3.2 shows

the impactors with Teflon spacers and the machined hole for the force transducer. The final

masses (weights) of the impactors were: Small impactor, 2.336-kg (5.15-lb); medium impactor,

4.245-kg (9.36-lb); and large impactor, 5.680-kg (12.52-lb). Table 3.1 lists the properties of the

attainable impacts using afore mentioned experimental setup. Listed are the impact velocity,

impact energy, and impact momentum for each impactor at each drop height.
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Figure 3.1 Setup for drop test experiments.
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Figure 3.2 Impactors used in impact experiments. Top, left to right: small impactor, medium

impactor, large impactor. Bottom: hole for force transducer.
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Figure 3.3 CPR manikin employed during impact testing. Left: manikin without vest. Right:

manikin with carrying vest and armor plate.

A CPR manikin was employed to simulate the effects of a human torso during impact

experiments. Ceramic armor panels were placed inside a carrying vest that was then fitted

around and secured to the manikin. Figure 3.3 shows the CPR manikin employed during

impact testing with and without the carrying vest and ceramic armor plate. Figure 3.1 shows

a close up of the experimental setup with CPR manikin in place under drop test tube.

Figure 3.4 shows a comparison of the chest deflection of a 90% male, a CPR manikin, and

a hybrid III crash test dummy. It is shown that the force-deflection curve of the CPR manikin

deviates minimally from that of the 90% male. Thus, the CPR manikin provides an accurate

representation of the human torso during drop test experiments.

To perform experiments employing the PSF, 2”x 2” square pieces of film from three separate

pressure ranges were cut and placed under the carrying vest, on top of the ceramic armor panel
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Figure 3.4 Chest deflection for 90% male, CPR manikin, and hybrid III dummy for compari-

son.

at the location where the impact would take place. The three pressure ranges used for impact

testing were: Medium, 1400-7100 psi; high, 7100-18500 psi; and super high, 18500-43500 psi.

The PSF was then scanned to acquire a computer image. The computer images were then

further processed using a built in image processor in MATLAB to obtain digital contour plots

of the PSF for further evaluation. All ceramic body armor panels studied were rated NIJ threat

level IV [NIJ (2008)], standalone and measured approximately 10”x 12”.

Further detailing of the experimental procedure including details of equipment employed

and exact procedures followed for impact experiments may be found in Appendix H.

3.2 Numerical modeling

ANSYS LS-DYNA was employed to numerically model the impacts on the ceramic body

armor/CPR manikin system. Figure 3.5 shows the model developed. A linear elastic material

with an elastic modulus of 85000 psi was used to represent the human torso. Average material
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properties of 50x106 psi and 4x104 psi were used of the elastic moduli for the alumina plate

and Kevlar composite respectively.

Figure 3.5 Ansys model.

Numerical analysis was performed setting the impactor mass in the numerical model to

correspond to the small, medium, and large impactors ( 5.15-lb, 9.36-lb, 12.52-lb). In the

numerical model the impactor resides 0.05-in above the ceramic armor plate and is given an

initial velocity corresponding to a particular drop height.

3.3 Analytical modeling

Equation 3.1 was used to analytically model the acceleration of the impactor during an

impact event.

−mÿ = Cyαẏβ + kyα ÿ(0) = 0, ẏ(0) = v0 (3.1)

In Eq. 3.1, m is the combined mass of the ceramic armor panel and impactor, C is a damping

coefficient, k is a spring constant, v0 is the impact velocity, and ÿ, ẏ, and y are the vertical

acceleration, velocity, and displacement of the impactor respectively. The β term captures the
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Table 3.2 Constants used in analytical model for each impactor.

Impactor α β C [N/(m/s)] k [N/m]

Small 1.27 3
2 1.0x106 1.75x108

Medium 1.20 3
2 1.0x106 1.03x108

Large 1.21 3
2 1.0x106 1.25x108

velocity-dependent effects due to visco-elastic behavior. The α term equals 3
2 for a completely

elastic collision between a flat plate and a sphere (Lieberman et al. (1994) developed equa-

tion 3.1 originally to model golf ball impacts). Table 3.2 shows the values of the constants used

in equation 3.1 to model each impactor.

3.4 Ballistic experiments

Several ceramic body armor panels with and without initial damaged were subjected to

ballistic impacts. Panels were damaged using the small and large impactors dropped from

heights between 48” and 96”. Damaged panels were x-rayed prior to ballistic testing and marked

for crack locations. Ballistic impacts on the damaged panels occurred at differing locations

relative to the panels cracks. After ballistics testing, panels were x-rayed again for analysis.

An undamaged panel was x-rayed and ballistically tested for comparison. The approximate

weight, muzzle velocity, and impact energy of the ballistics test were 130 grains, 720 m/s, and

2180 J respectively. Panels were damaged using drop test setup.
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CHAPTER 4. RESULTS AND DISCUSSION

4.1 Impact experiments

Figure 4.1 shows acceleration profiles for impacts onto undamaged ceramic armor panels

employing the small, medium, and large impactors respectively.1 From Fig. 4.1, it is shown that

for each impactor the peak value of the acceleration profile increases with an increase in impact

energy. Also shown is that the duration of the impact, the time at which the acceleration profile

increase from and drops back to zero, decreases with an increase in the impact energy.

Figure 4.2 plots, for the small and large impactors from 12” and 36” drop heights, the

force profile of the impacts together with the acceleration profiles multiplied by the impactors

mass. It is shown that multiplying the acceleration profile of an impact with the impactors

mass recovers the force profile. The small variation present between the two profiles may be

attributed to the force transducer not contacting the armor evenly owing to the impactor being

flat and the armor panel being curved and that the armor was not always perfectly normal to

the impactor.2

Figure 4.3(a) plots the peak value of the acceleration profiles for each impactor as a function

of impact energy. Figure 4.3(b) plots the trend lines for the data of figure 4.3(a). For all

impactors, each impact energy corresponds to a drop height of 6” to 48” by intervals of 6”. Ten

impacts were performed at each impact energy. Figure 4.3(a) clearly shows that the maximum

acceleration of an impact increases with an increase in impact energy. It is shown in Fig. 4.3(b)

that the slope of the trend lines are greatest for the small impactor and lowest for the large

impactor. It is also shown in Fig. 4.3 that for a given impact energy, the maximum acceleration

1All acceleration, velocity, and displacement profiles are that of the impactor unless stated otherwise.
2Owing to the direct relationship of the force profile and the acceleration profile (i.e. the force profile may be

recovered from the acceleration profile and thus they follow the same trends), henceforth the acceleration profile
is used as a comparison for the data.
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is greatest for the small impactor and lowest for the large impactor.

Figure 4.4 shows the displacement profiles for the small and large impactors from 12” and

48” drop heights. Zero displacement corresponds to the surface of the manikin’s chest with

negative displacement corresponding to chest compression. It is shown for both impactors that

the displacement increases as the drop height (impact energy) increases and that for a given

drop height the displacement is greater for the large impactor than the small impactor. The

increase in chest compression at a given impact energy with the large impactor as compared

to the small impactor leads to the large impactor producing a lower acceleration profile as

compared to the small impactor that is shown in Fig. 4.1 and Fig. 4.2.

The displacement profiles were obtained by integrating the acceleration profiles twice using

the impact velocity and setting the displacement of the armor panel to be zero at the start of

the impact. The displacement profiles flat line approximately where the acceleration reduces

back to zero. Extending the profiles further in time reveals that they increase corresponding

to the manikin chest expanding to its original position.

For reference, Fig. 4.5 shows an x-ray image of a damaged armor panel and an undamaged

armor panel. Through thickness cracks radiate out from the point of impact that caused that

damage to the edges of the panel. Cracks are only present in the ceramic material of the armor.

Figure 4.6 shows a comparison of acceleration profiles for an undamaged armor panel and

a damaged armor panel for the small and large impactors from two separate drop heights of

12” and 36”. A clear distinction is present in the profiles. The undamaged panel produces an

acceleration profile with a single peak while the damaged panel produces an acceleration profile

with two distinct peaks. Also shown is that the maximum acceleration for a given impactor at

a given drop height is greater on the undamaged panel than the damaged panel. The duration

of the impacts on the damaged panels is greater than that of the undamaged panels leading to

the lower maximum acceleration seen on the damaged panels.
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(a) Accelerations for small impactor.

(b) Accelerations for medium impactor.

(c) Accelerations for large impactor.

Figure 4.1 Acceleration data for each impactor at drop heights ranging from 6” to 48”.
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(a) Small impactor, 12” drop. (b) Small impactor, 36” drop.

(c) Large impactor, 12” drop. (d) Large impactor, 36” drop

Figure 4.2 Comparison of data from force transducer and data from accelerometer multiplied

by the impactor mass.
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(a) Peak experimental accelerations.

(b) Trend lines for peak experimental accelerations.

Figure 4.3 Peak acceleration values and their trend lines for experimental data.
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(a) Small impactor, 12” drop. (b) Small impactor, 48” drop.

(c) Large impactor, 12” drop. (d) Large impactor, 48” drop

Figure 4.4 Impactor displacement profiles for selected impactors and drop heights.
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(a) Undamaged armor panel. (b) Damaged armor panel.

Figure 4.5 Comparison of an undamaged and damaged ceramic armor panel. Bright lines in

panel on the right indicate through thickness cracks in the ceramic. Damaged in

this panel was caused by an impact of approximately 68J.
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(a) Small impactor, 12” drop. (b) Small impactor, 36” drop.

(c) Large impactor, 12” drop. (d) Large impactor, 36” drop

Figure 4.6 Comparison of accelerations from impacts on undamaged and damaged armor

panels. Dashed curves: acceleration profile from undamaged panel. Solid curves:

acceleration profile from damaged panel.
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4.2 PSF experiments

Figure 4.7(a) shows the amount of indication that appears on the PSF for a given saturation

level.1 Figure 4.7(b) is a digital contour image of the indication levels of Fig. 4.7(a). The

indication scale in Fig. 4.7(a) was converted to a gray scale image and then a built in function

in MATLAB was used to evaluate the pixel values of the gray scale image and convert them

to a contour plot.2 Table 4.1 lists the pressure values corresponding to a given saturation level

for the medium, high, and super high PSF.3

Figures 4.8 – 4.15 are PSF with indications and their corresponding digitized images for

impacts employing the small and large impactors for drop heights of 12”, 24”, 36”, and 48”.

Indications on the medium, high, and super high PSF are shown for each impact. Table 4.2 lists

pressure values obtained using the maximum force applied during a given impact as measured

by the force transducer and the force transducer area. Table 4.3 lists the pressure values

obtained by evaluating the digitized PSF images using Fig. 4.7 and Table 4.1.

Table 4.1 Pressure values corresponding to PSF saturation levels.

Pressure values per saturation level [psi]

Saturation level Medium PSF High PSF Super High PSF

0.1 Below film range Below film range Below film range

0.2 1400 7100 Below film range

0.3 2100 8500 Below film range

0.4 2450 10600 18500

0.5 2900 12800 20100

0.6 3550 15000 23000

0.7 4000 16800 25000

0.8 4500 18500 32000

0.9 5000 20000 435000

1.0 5500 Over saturated Over saturated

1.1 6200 Over saturated Over saturated

1.2 6800 Over saturated Over saturated

1.3 7900 Over saturated Over saturated

1.4 Over saturated Over saturated Over saturated

1.5 Over saturated Over saturated Over saturated

1Information provided with PSF from manufacturer.
2Throughout this section, any image referred to as digitized underwent this same process.
3Data provided with PSF from manufacturer.
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(a) PSF indication levels. (b) Digitized PSF indication levels.

Figure 4.7 Saturation scale for PSF. Left: raw PSF indications. Right: digitized indications.
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(a) Medium PSF (b) Medium PSF: digitized

(c) High PSF (d) High PSF: digitized

(e) Super High PSF (f) Super High PSF: digitized

Figure 4.8 Pressure film with indication and corresponding digitized image from an impact

using small impactor from 12”.
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(a) Medium PSF (b) Medium PSF: digitized

(c) High PSF (d) High PSF: digitized

(e) Super High PSF (f) Super High PSF: digitized

Figure 4.9 Pressure film with indication and corresponding digitized image from an impact

using small impactor from 24”.
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(a) Medium PSF (b) Medium PSF: digitized

(c) High PSF (d) High PSF: digitized

(e) Super High PSF (f) Super High PSF: digitized

Figure 4.10 Pressure film with indication and corresponding digitized image from an impact

using small impactor from 36”.
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(a) Medium PSF (b) Medium PSF: digitized

(c) High PSF (d) High PSF: digitized

(e) Super High PSF (f) Super High PSF: digitized

Figure 4.11 Pressure film with indication and corresponding digitized image from an impact

using small impactor from 48”.
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(a) Medium PSF (b) Medium PSF: digitized

(c) High PSF (d) High PSF: digitized

(e) Super High PSF (f) Super High PSF: digitized

Figure 4.12 Pressure film with indication and corresponding digitized image from an impact

using large impactor from 12”.



39

(a) Medium PSF (b) Medium PSF: digitized

(c) High PSF (d) High PSF: digitized

(e) Super High PSF (f) Super High PSF: digitized

Figure 4.13 Pressure film with indication and corresponding digitized image from an impact

using large impactor from 24”.



40

(a) Medium PSF (b) Medium PSF: digitized

(c) High PSF (d) High PSF: digitized

(e) Super High PSF (f) Super High PSF: digitized

Figure 4.14 Pressure film with indication and corresponding digitized image from an impact

using large impactor from 36”.
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(a) Medium PSF (b) Medium PSF: digitized

(c) High PSF (d) High PSF: digitized

(e) Super High PSF (f) Super High PSF: digitized

Figure 4.15 Pressure film with indication and corresponding digitized image from an impact

using large impactor from 48”.
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Comparing both the PSF indications and digitized images for the small impactor in Fig. 4.8

– 4.11 it is shown that as the impact energy increases, the indication level on the PSF increases.

As the impact energy increases the force of the impact increases and as expected the pressure

applied to the armor increase. The same trend follows for the large impactor. For both

impactors at the low impact energies little to no indication appears on the high and super high

PSF while at the high impact energies the medium PSF becomes over saturated and indications

arise on the high and super high PSF.

Comparing the indications produced by the small and large impactors from a 12” drop

height (Fig. 4.8 and Fig. 4.12) shows that the indication level on the PSF from the impact

using the small impactor is greater than that of the indication level on the PSF from the

impact using the large impactor. This trend is visible in the PSF for each drop height which

follows with the experimental acceleration data showing a larger acceleration for the small

impactor than the large impactor at the same drop height (Fig. 4.3).

Table 4.3 shows the trend of the small impactor producing a higher pressure indication

than the large impactor at a given drop height. Comparing the pressure values in Tables 4.2

and 4.3 shows that the pressure values obtained from the indications on the PSF align well

with those obtained from the experimental force data. The indications obtained from the PSF

are minimally higher than those from the force data.

4.3 Numerical modeling

Figure 4.16 plots acceleration profiles obtained from the numerical model together with

experimental profiles for the small and large impactor at drop heights of 6” and 48” (see

Appendices A-C for a comparison of all experimental and numerical acceleration profiles for

each impactor at each drop height). Figure 4.17 shows a comparison of the experimental and

numerical acceleration profiles for the large impactor at all impact energies (see Appendices A

and B for similar figures of the small and medium impactor). Figure 4.18 shows a comparison of

selected displacement profiles from the numerical model and experiemental data. Figure 4.19

shows the maximum acceleration values obtained from the numerical model along with the

trend lines of the maximum acceleration values obtained from the experimental data.
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(a) Small impactor: 6” drop (b) Small impactor: 48” drop

(c) Large impactor: 6” drop (d) Large impactor: 48” drop

Figure 4.16 Comparison of accelerations for numerical model and experimental data. Dashed

curves: acceleration profiles from experimental data. Solid curves: acceleration

profiles from numerical data.
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(a) Experimental acceleration profiles.

(b) Numerical acceleration profiles.

Figure 4.17 Comparison of experimental and numerical acceleration profiles for the large im-

pactor at all impact energies.
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(a) Small impactor, 12” drop. (b) Small impactor, 48” drop.

(c) Large impactor, 12” drop. (d) Large impactor, 48” drop

Figure 4.18 Comparison of numerical and experimental impactor displacement profiles for

selected impactors and drop heights. Dashed curves: displacement profiles from

experimental data. Solid curves: displacement profiles from numerical data.
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Figure 4.19 Peak acceleration values from numerical models compared with trend lines of

peak accelerations from experimental data.

From Fig. 4.16 it is seen that the numerical model captures the general trends of the

acceleration profiles for the experimental data. As shown in Fig. 4.17, while the time duration

of the impacts for the experimental tests decreases as the impact energy increases, the time

duration of the impacts for the numerical model stays the same for all impact energies, this

follows for each impactor. This may be attributed to the absence of any nonlinearity or visco-

elastic behavior in the numerical model as the manikin chest was modeled as a linear elastic

material.

From Fig. 4.18 also shows, by comparison of the numerical and experimental displacement

profiles, that the numerical model captures the same trends present in the experimental data.

Maximum dispacement values are larger for the large impactor than for the small impactor

from a given drop height and maximum displacement values increase with an increase in the

impact energy of a given impactor. Both are trends that are present in the experimental data.

From Fig. 4.19, the maximum acceleration values obtained from the numerical model are
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greater than those of the experimental data for each impactor at every impact energy. Similar

to the experimental impacts, in the numerical model the small impactor produces the largest

accelerations with shorter impact durations per a given impact energy while the large impactor

produces the smallest accelerations with the longest impact durations. Table 4.4 lists the

slopes of the trend lines for both the numerical model and experimental data and there percent

difference while Table 4.5 lists the maximum accelerations for both the numerical model and

experimental data and their percent difference. The numerical model of the small impactor has

the highest percent difference for the maximum acceleration values at approximately 50% while

the numerical model of the large impactor has an average percent difference of approximately

30%. The material properties used in the numerical model have a strong influence on both the

maximum acceleration and the time duration of the impact. Average material properties were

used for the numerical model and the difference between the values used and the values for

the ceramic armor employed in experimental testing may have contributed to the error present

between the numerical model and the experimental data.

Table 4.4 Comparison of trend line slopes of peak accelerations for numerical and experimen-

tal data.

Slopes of peak acceleration trend lines

Impactor Experimental Numerical % Difference

Small 133.91 173.04 29.2

Medium 59.394 80.685 35.8

Large 45.442 53.964 18.8
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Table 4.5 Comparison of peak acceleration values for numerical and experimental data.

Peak acceleration values [m
s2

]

Impactor Drop Height [in] Exp. (Avg.) Numerical % Difference

Small

6 1371 2346 71

12 2157 3310 54

18 2621 4047 54

24 2925 4649 59

30 3440 5166 50

36 4041 5642 40

42 4050 6057 50

48 4947 6480 31

Medium

6 774 1449 87

12 1286 2041 59

18 1637 2478 51

24 2221 2855 29

30 2380 3162 33

36 2634 3448 31

42 3044 3706 22

48 3590 3956 10

Large

6 751 1130 51

12 1328 1585 19

18 1637 2045 25

24 2221 2525 14

30 2369 3001 27

36 2628 3455 31

42 3069 3887 27

48 3626 4355 20

4.4 Analytical modeling

Figure 4.20 shows a comparison of acceleration profiles from experimental impacts and the

analytical model for the small and large impactor at drop heights of 6” and 48” (see Appendices

D-F for a comparison of all experimental and analytical accelerations for each impactor at each

drop height). For each impactor, through a range of drop heights, the analytical model captures

the general trends of the acceleration profiles. The analytical model adheres to the same time

scale and approximates the maximum acceleration of the experimental data with a minor error.

The errors between the analytical model and the experimental data may be attributed to the
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complexity of the system being model.

Owing to the armor plate not being directly connected to the chest, the impactor hits the

armor plate and proceeds to compress the manikin, during which small lateral movements of the

armor occurs, along with the nonlinearity present in the manikin, these produce an event that

does not directly compare to what a typical impact the analytical model is capable of capturing

[Lieberman et al. (1994)]. The error present in the prediction of the maximum acceleration is

minimal enough that analytical acceleration may be used to obtain an impact force that would

in turn be able to predict an approximate pressure value for a given impact.

(a) Small impactor: 6” drop (b) Small impactor: 48” drop

(c) Large impactor: 6” drop (d) Large impactor: 48” drop

Figure 4.20 Comparison of accelerations for analytical model and experimental data.Dashed

curves: acceleration profiles from experimental data. Solid curves: acceleration

profiles from numerical data.
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4.5 Ballistic experiments

Figures 4.22(a) – 4.22(d) are x-ray images of a damaged ceramic armor panel (henceforth

referred to as panel B) prior to and post-ballistics impact. Figure 4.22(a) shows cracks induced

in ceramic portion of armor by drop tests. Figure 4.22(b) is the same image with initial

damaged in the ceramic marked, the point where the crack lines meet was the location where

the impact that induced the damaged occurred. Figure 4.22(c) is an x-ray image of panel B

post-ballistics impact and Fig. 4.22(d) is the same image with the location of the initial cracks

marked for comparison. Figures 4.21(a) and 4.21(b) are x-ray images of an initially undamaged

armor panel prior to and post-ballistics testing. Sets of x-ray images for other initially damaged

panels prior to and post-ballistics testing may be found in Appendix G.

The damage caused by the ballistic impact to the panel that had no initial damage,

Fig. 4.21(b), covers a circular area with a radius of approximately 3.5 cm. Beyond that radius

minimal damage appears in the ceramic panel with the exception of approximately 12 through

thickness cracks that radiate out from the point of impact. The contrast between the radial

cracks and the surrounding armor reduces as the cracks radiate out suggesting that the cracks

become more tightly closed as they reach the edge of the armor panel. Horsfall et al. (1993)

noted that if cracks in the ceramic portion of an armor plate may be considered closed, they

will have a minimal to negligible effect on the ballistics performance of the armor panel. In

comparison, the radial cracks in panel B that were present prior to ballistics testing, as evidence

by the contrast difference of the pre and post ballistics images, appear to have opened further

post-ballistics testing. Cracks induced in panel B due to ballistics impact appear to be opened

wider than compared to those of the cracks induced from ballistics testing in the panel with

no initial damage.

Damage at the impact site in the panels with pre-existing cracks is not uniform from panel

to panel. In contrast to the armor panel with no pre-existing cracks, the damage at the impact

site in the panels with pre-existing cracks follows the crack structure that was initially present.

The damage does not spread out in a radially uniform manner. The behavior of the damage

accumulation in the panels with pre-existing cracks is not easily predictable as compared to the



52

damage accumulation in panels with no pre-existing cracks and could lead to an unanticipated

loss in ballistic performance that would not be expected if the panels were not initially damaged.

Visible in the post-ballistic impact x-ray images of panel B but absent in the initially

undamaged panel are cracks extending between the radial cracks. The crack structure of panel

B post-ballistics impact appears chaotic compared to that of the initially undamaged panel.

The cracks connecting the radial cracks cause the ceramic around the impact site to be divided

into small pieces. A high number of small pieces may allow for movement of the ceramic

upon another ballistic impact potentially reducing the ballistic performance and multiple hit

effectiveness of the armor panel. Figures G.1 and G.2 in Appendix G also show chaotic crack

patterns with cracks connecting radial cracks and the ceramic surrounding the ballistic impact

site being divided into small pieces.

(a) Undamaged panel prior to ballistics impact. (b) Undamaged panel post-ballistics impact.

Figure 4.21 X-rays of a damaged and undamaged ceramic armor panel after ballistic impact

(scale in centimeters).



53

(a) Damaged panel B prior to ballistic impact (b) Damaged panel B prior to ballistic impact (cracks
marked)

(c) Damaged panel B post-ballistic impact (d) Damaged panel B post-ballistic impact (pre-
existing cracks marked

Figure 4.22 X-rays of a damaged ceramic armor panel prior to and post-ballistic impact (scale

in centimeters).



54

CHAPTER 5. CONCLUSIONS

Impact experiments have been performed on ceramic armor panels with impactors of varying

mass, instrumented with a force transducer and accelerometer, and employing a CPR manikin

to model a human torso. Experiments have shown that as the impact energy of the mass

increased the resulting acceleration of the impactor and force of impact increased. Maximum

acceleration values for the small impactor were larger than those of the large impactor for a

given impact energy. The amount of deflection in the manikin’s chest on impact was greater

for the large impactor as compared to the small impactor resulting in impact events of longer

time duration and leading to lower acceleration and force profiles. Multiplying the acceleration

profile of a given impact by the mass of the impactor recovered the force profile of the impact.

A minor discrepancy was seen which may be attributed to the force transducer not impacting

the armor at normal incidence.

Impacts onto damaged armor panels revealed force and acceleration profiles that were dis-

similar to the profiles from impacts onto undamaged panels. Profiles resulting from impacts

onto damaged armor panels had a lower maximum force and acceleration value as compared to

impacts onto undamaged panels at a given impact energy. Cracks in the ceramic material of

a damaged panel caused the armor panel to become more flexible as the composite material is

left supplying the stiffness to the armor plate allowing greater deformation of the armor plate

during impact, increasing the duration of the impact event and producing lower accelerations

and forces.

Impact experiments employing the PSF showed that the indication level present on the PSF

post impact relates to the measured force of the impact. Impacts with higher impact energies

produced indications with saturation levels higher than those of indications from impacts of

lower impact energy levels. Impacts from employing the small impactor produced indications
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with higher saturation levels than indications from impacts employing the large impactor at the

same impact energy. Good agreement was shown between pressure values obtained from PSF

and those calculated from the force data and force transducer area for a given impact event.

Digitized images of PSF provided a clear distinction of the saturation levels of an indication

and provided an accurate pressure reading.

The numerical model captured the general trends of the experimental data for each im-

pactor through a range of impact energies. Discrepancies arose between the model results and

the experimental data for, the maximum acceleration values, the maximum displacement val-

ues, and the time duration of the impacts. The model does predict that the small impactor

produces larger accelerations than the large impactor for a given impact energy and that the

time duration of the impact for the small impactor is shorter than that of the large impactor,

both results seen experimentally. Also a larger displacement of the impactor during the impact

event was seen for the large impactor as compared to the small impactor which follows with

experimental data.

Contributing to the error of the model was the use of a linear elastic material used to model

the human torso, neglecting the nonlinear and visco-elastic properties of an actual human chest.

The results of the numerical model were also highly dependent on the material properties of

both the ceramic and the composite. Average material properties for the two were used in

the model but a slight change in either results in significant changes in the magnitude of the

acceleration profiles. The numerical model also did not incorporate the adhesive layer between

the two materials. For the armor panels employed in the experimental tests, the adhesive was

very compliant and relatively thick and its absence from the model may have led to error in

the results.

The analytical model captured the general trends of the experimental acceleration profiles

for each impactor through a range of impact energies. Peak values of acceleration along with

the time duration of the impact events were recovered with minimal error. The error present

between the analytical model and the experimental data stems from the highly complex nature

of the system being modeled. Contributing extensively to the complexity of modeling the

system is the armor plate not being completely constrained to the manikin. Upon impact
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lateral movement may occur in the armor panel relative to the manikin. The intensity of the

impact may also cause movement in the manikin. Both effects deviate from the constrained

direct impacts that the analytical model was developed to handle [Lieberman et al. (1994)].

The minimal error present in the analytical models suggests that they may be used to

predict acceleration profiles, and thus forces and pressures, for impact events employing a

range of impactor masses and impact energies. Assuming the average maximum pressure the

ceramic material in the armor panels could withstand is known, the model could be used to

predict at which impact energies a given mass may produce a pressure that has the potential

to cause damage. Experimental data is needed to determine the constants in the analytical

model for a particular mass but once the constants are set they may be used for that mass

through a wide range of impact energies.

Ballistics testing was performed on both damaged and undamaged armor panels. All armor

panels tested defeated the ballistic threat and prevented penetration of the armor. Damage

due to ballistic impact appears more extensive in the armor panels that had initial cracks in

them. X-ray images of the armor panels prior to and post ballistics impact show that the initial

cracks in the damage panels open wider after ballistics impact at a distance from the impact

site. Cracks bridging occcured between the cracks that radiate out from the impact site, for

both radial cracks that were initially present and created from the ballistics impact, for all

initially damaged armor panels post ballistics impact. These bridging cracks did not appear in

the initially undamaged armor panel post ballistics impact. Damaged acquired post ballistics

impact in the initially undamaged armor panel was isolated to the impact site out to a radius

of approximately 3.5 cm. Radial cracks also extended out from the impact site to the edge

of the armor but remain closed compared to the radial cracks in the initially damaged armor

panels post ballistics impact. While the initially damaged armor panels retained their ability

to defeat a ballistics threat, the extensive damage they acquired as compared to the initially

undamaged armor panel post ballistics impact may lead to a loss in their ability to provide

multiple hit protection.

Pressure sensitive dye-indicator film has been shown to provide an accurate estimate of

the pressure applied to a piece of ceramic body armor due to an impact. The PSF has been
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shown accurate for a range of impactor masses and through a range of impact energies from

lower energies through energy levels that produced forces with the potential to damage the

ceramic armor. While the PSF does not provide a direct measure of damage sustained on a

piece of ceramic through an impact, it does reveal the approximate maximum pressure applied

by the impact. Knowing the maximum applied pressure allows an individual to quickly tell

if the impact was enough to cause possible damage to the armor and eliminates the need to

examine the armor after every sustained impact, cutting down on the time and expense needed

to inspect the armor.
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APPENDIX A. NUMERICAL RESULTS: SMALL IMPACTOR

Figure A.1 Experimental accelerations for the small impactor.

Figure A.2 Numerical accelerations forthe small impactor.
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Figure A.3 Comparison of experimental and

numerical accelerations for the

small impactor from a 6” drop.

Figure A.4 Comparison of experimental and

numerical accelerations for the

small impactor from a 12” drop.

Figure A.5 Comparison of experimental and

numerical accelerations for the

small impactor from a 18” drop.

Figure A.6 Comparison of experimental and

numerical accelerations for the

small impactor from a 24” drop.

Figure A.7 Comparison of experimental and

numerical accelerations for the

small impactor from a 30” drop.

Figure A.8 Comparison of experimental and

numerical accelerations for the

small impactor from a 36” drop.
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Figure A.9 Comparison of experimental and

numerical accelerations for the

small impactor from a 42” drop.

Figure A.10 Comparison of experimental and

numerical accelerations for the

small impactor from a 48” drop.

Figure A.11 Numerical acceleration for the

small impactor from a 54” drop.

Figure A.12 Numerical acceleration for the

small impactor from a 60” drop.

Figure A.13 Numerical acceleration for the

small impactor from a 66” drop.

Figure A.14 Numerical acceleration for the

small impactor from a 72” drop.
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APPENDIX B. NUMERICAL RESULTS: MEDIUM IMPACTOR

Figure B.1 Experimental accelerations for the medium impactor.

Figure B.2 Numerical accelerations for the medium impactor.
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Figure B.3 Comparison of experimental and

numerical accelerations for the

medium impactor from a 6” drop.

Figure B.4 Comparison of experimental and

numerical accelerations for the

medium impactor from a 12” drop.

Figure B.5 Comparison of experimental and

numerical accelerations for the

medium impactor from a 18” drop.

Figure B.6 Comparison of experimental and

numerical accelerations for the

medium impactor from a 24” drop.

Figure B.7 Comparison of experimental and

numerical accelerations for the

medium impactor from a 30” drop.

Figure B.8 Comparison of experimental and

numerical accelerations for the

medium impactor from a 36” drop.
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Figure B.9 Comparison of experimental and

numerical accelerations for the

medium impactor from a 42” drop.

Figure B.10 Comparison of experimental and

numerical accelerations for the

medium impactor from a 48” drop.

Figure B.11 Numerical acceleration for the

medium impactor from a 54” drop.

Figure B.12 Numerical acceleration for the

medium impactor from a 60” drop.

Figure B.13 Numerical acceleration for the

medium impactor from a 66” drop.

Figure B.14 Numerical acceleration for the

medium impactor from a 72” drop.
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APPENDIX C. NUMERICAL RESULTS: LARGE IMPACTOR

Figure C.1 Experimental accelerations for the large impactor.

Figure C.2 Numerical accelerations for the large impactor.
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Figure C.3 Comparison of experimental and

numerical accelerations for the

large impactor from a 6” drop.

Figure C.4 Comparison of experimental and

numerical accelerations for the

large impactor from a 12” drop.

Figure C.5 Comparison of experimental and

numerical accelerations for the

large impactor from a 18” drop.

Figure C.6 Comparison of experimental and

numerical accelerations for the

large impactor from a 24” drop.

Figure C.7 Comparison of experimental and

numerical accelerations for the

large impactor from a 30” drop.

Figure C.8 Comparison of experimental and

numerical accelerations for the

large impactor from a 36” drop.
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Figure C.9 Comparison of experimental and

numerical accelerations for the

large impactor from a 42” drop.

Figure C.10 Comparison of experimental and

numerical accelerations for the

large impactor from a 48” drop.

Figure C.11 Numerical acceleration for the

large impactor from a 54” drop.

Figure C.12 Numerical acceleration for the

large impactor from a 60” drop.

Figure C.13 Numerical acceleration for the

large impactor from a 66” drop.

Figure C.14 Numerical acceleration for the

large impactor from a 72” drop.
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APPENDIX D. ANALYTICAL RESULTS: SMALL IMPACTOR

Figure D.1 Comparison of experimental and

analytical accelerations for the

small impactor from a 6” drop.

Figure D.2 Comparison of experimental and

analytical accelerations for the

small impactor from a 12” drop.

Figure D.3 Comparison of experimental and

analytical accelerations for the

small impactor from a 18” drop.

Figure D.4 Comparison of experimental and

analytical accelerations for the

small impactor from a 24” drop.
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Figure D.5 Comparison of experimental and

analytical accelerations for the

small impactor from a 30” drop.

Figure D.6 Comparison of experimental and

analytical accelerations for the

small impactor from a 36” drop.

Figure D.7 Comparison of experimental and

analytical accelerations for the

small impactor from a 42” drop.

Figure D.8 Comparison of experimental and

analytical accelerations for the

small impactor from a 48” drop.
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APPENDIX E. ANALYTICAL RESULTS: MEDIUM IMPACTOR

Figure E.1 Comparison of experimental and

analytical accelerations for the

medium impactor from a 6” drop.

Figure E.2 Comparison of experimental and

analytical accelerations for the

medium impactor from a 12” drop.

Figure E.3 Comparison of experimental and

analytical accelerations for the

medium impactor from a 18” drop.

Figure E.4 Comparison of experimental and

analytical accelerations for the

medium impactor from a 24” drop.
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Figure E.5 Comparison of experimental and

analytical accelerations for the

medium impactor from a 30” drop.

Figure E.6 Comparison of experimental and

analytical accelerations for the

medium impactor from a 36” drop.

Figure E.7 Comparison of experimental and

analytical accelerations for the

medium impactor from a 42” drop.

Figure E.8 Comparison of experimental and

analytical accelerations for the

medium impactor from a 48” drop.
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APPENDIX F. ANALYTICAL RESULTS: LARGE IMPACTOR

Figure F.1 Comparison of experimental and

analytical accelerations for the

large impactor from a 6” drop.

Figure F.2 Comparison of experimental and

analytical accelerations for the

large impactor from a 12” drop.

Figure F.3 Comparison of experimental and

analytical accelerations for the

large impactor from a 18” drop.

Figure F.4 Comparison of experimental and

analytical accelerations for the

large impactor from a 24” drop.
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Figure F.5 Comparison of experimental and

analytical accelerations for the

large impactor from a 30” drop.

Figure F.6 Comparison of experimental and

analytical accelerations for the

large impactor from a 36” drop.

Figure F.7 Comparison of experimental and

analytical accelerations for the

large impactor from a 42” drop.

Figure F.8 Comparison of experimental and

analytical accelerations for the

large impactor from a 48” drop.
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APPENDIX G. X-RAYS OF ARMOR PANELS PRIOR TO AND

POST-BALLISTICS IMPACT
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(a) Damaged panel A prior to ballistics impact. (b) Damaged panel A (cracks marked) prior to ballis-
tics impact.

(c) Damaged panel A post-ballistics impact. (d) Damaged panel A (pre-existing cracks marked)
post-ballistics impact.

Figure G.1 X-rays of a damaged ceramic armor panel prior to and post-ballistic impact.

(Scales in cm)



75

(a) Damaged panel C prior to ballistics impact. (b) Damaged panel C (cracks marked) prior to ballis-
tics impact.

(c) Damaged panel C post-ballistics impact. (d) Damaged panel C (pre-existing cracks marked)
post-ballistics impact.

Figure G.2 X-rays of a damaged ceramic armor panel prior to and post-ballistic impact.

(Scales in cm)
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(a) Damaged panel H prior to ballistics impact. (b) Damaged panel H (cracks marked) prior to bal-
listics impact.

(c) Damaged panel H post-ballistics impact. (d) Damaged panel H (pre-existing cracks marked)
post-ballistics impact.

Figure G.3 X-rays of a damaged ceramic armor panel prior to and post-ballistic impact.

(Scales in cm)
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APPENDIX H. DETAILED OUTLINE OF EXPERIMENTAL

PROCEDURE

H.1 Equipment

The force transducer and accelerometer employed in the impact experiments were both sen-

sors from PCB Piezotronics. Figures H.1 and H.2 are of the force transducer and accelerometer

respectively. The force transducer had a diameter of 0.5” and was rated for up to 5000-lb

(22200-N). The accelerometer measured the acceleration in a single axis and was rated for up

to 500-g (4900-m
s2

). The force transducer had a voltage output corresponding to 1 mv
lb and the

accelerometer had a voltage output corresponding to 10 mv
g .

Figure H.1 Force transducer employed in impact experiments.

Figure H.2 Accelerometer employed in impact experiments.
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Both the force transducer and the accelerometer required the use of a signal conditioner

(from PCB Piezotronics). Figure H.3 is a image of the signal conditioner employed. Both

instruments connected to a separate signal conditioner and the signal conditioner was connected

to an oscilloscope. The oscilloscope employed was a LeCroy Waverunner LT224. Software

provided by LeCroy and available from their website free of charge, Scope Explorer v2.25, was

used to collect data from the oscilloscope and save on a computer as data files. Data files

contained from the oscilloscope contained two columns, a time value and a voltage values, for

50002 data points.

Figure H.3 Signal conditioner intruments connected to.

H.2 Experimental procedure

2x2-in square pieces of medium, high, and super high PSF were cut and placed on a panel

of ceramic armor at a location that corresponded to the location of the center of the CPR

manikins chest once the armor panel was placed in the carrying vest. Prior to experiments the

carrying vest had been fitted such that a location 1
3 of the way down from the top of the armor

panel was located approximately at the center of the manikins chest (as the armor would be

positioned if worn by a soldier). The three squares of PSF were stacked on each other and then

Scotch Tape was placed on the edges of the PSF to prevent them from moving on the armor

panel. The armor panel was then placed inside the carrying vest.

The manikin with armor panel in carrying vest was then placed under the drop tube. The
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drop tube had been set such that the spacing between the bottom of the tube and armor panel

on the manikin was approximately 1
4 -in. Marks were placed on the outside of all sides of the

carrying vest locating the center of the PSF squares. Those markings were used along with

markings on the drop tube to align the manikin such that the location on the armor panel with

the PSF squares was centered under the drop tube.

The accelerometer was attached to the top of an impactor by applying a small amount

of wax to the bottom of the accelerometer and then firmly pressing it to the impactor. This

was the recommended way of adhering the accelerometer as per procedures provided by PCB

Piezotronics, wax was provided with the accelerometer. After the accelerometer was attached,

a small layer of rubber cement was placed around the edge of the accelerometer and allowed

to dry. This was done to prevent the accelerometer from popping off of the impactor over

repeated impacts. The force transducer was placed inside the machined hole and the bottom

of the impactor. The cable connection to the force transducer was placed in a groove that ran

along the side of each impactor to keep it out of the way. Pieces of tape were placed on the

edge of the force transducer, off of the sensor area, to ensure that it did not come loose from

the hole. Figures H.4 and H.5 show the mounting of the accelerometer and force transducer

respectively.

Each impactor had an I-bolt screwed into the top of it. Fishing line was attached to the I-

bolt which came out the top of the drop tube, around a pulley, and then down the wall to allow

for the impactors to be raised and lowered once they were placed in the drop tube. Fishing

line was used as it had a high strength but a negligible mass compared to the impactor. For a

given drop test, the impactor was raised to a specific height marked on the outside of the drop

tube. From that point the impactor was released and impact occurred.

To capture the impact data with the force transducer and accelerometer, the oscilloscope was

set to trigger off the accelerometer. An acceleration greater that 20-g triggered the oscilloscope

to capture data from both the force transducer and accelerometer. The oscilloscope was offset

so it would capture the full profile of the impact event. The Scope Explorer program was then

used to obtain data files for the impact.
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Figure H.4 Impactor with accelerometer attached.

Figure H.5 Impactor with embedded force transducer.
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