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ABSTRACT

Turbulent three-dimensional flow separation is more complicated than 2-D. The physics

of the flow is not well understood. Turbulent flow separation is nearly independent of the

Reynolds number, and separation in 3-D occurs at singular points and along convergence lines

emanating from these points. Most of the engineering turbulence research is driven by the need

to gain knowledge of the flow field that can be used to improve modeling predictions. This

work is motivated by the need for a detailed study of 3-D separation in asymmetric diffusers,

to understand the separation phenomena using eddy-resolving simulation methods, assess the

predictability of existing RANS turbulence models and propose modeling improvements. The

Cherry diffuser has been used as a benchmark. All existing linear eddy-viscosity RANS models

k−ω SST,k−ε and v2−f fail in predicting such flows, predicting separation on the wrong side.

The geometry has a doubly-sloped wall, with the other two walls orthogonal to each other and

aligned with the diffuser inlet giving the diffuser an asymmetry. The top and side flare angles

are different and this gives rise to different pressure gradient in each transverse direction. Eddy-

resolving simulations using the Scale adaptive simulation (SAS) and Large Eddy Simulation

(LES) method have been used to predict separation in benchmark diffuser and validated. A

series of diffusers with the same configuration have been generated, each having the same

streamwise pressure gradient and parametrized only by the inlet aspect ratio. The RANS

models were put to test and the flow physics explored using SAS-generated flow field. The

RANS model indicate a transition in separation surface from top sloped wall to the side sloped

wall at an inlet aspect ratio much lower than observed in LES results. This over-sensitivity

of RANS models to transverse pressure gradients is due to lack of anisotropy in the linear

Reynolds stress formulation. The complexity of the flow separation is due to effects of lateral

straining, streamline curvature, secondary flow of second kind, transverse pressure gradient on

turbulence. Resolving these effects is possible with anisotropy turbulence models as the Explicit



xiv

Algebraic Reynolds stress model (EARSM). This model has provided accurate prediction of

streamwise and transverse velocity, however the wall pressure is under predicted. An improved

EARSM model is developed by correcting the coefficients, which predicts a more accurate wall

pressure. There exists scope for improvement of this model, by including convective effects and

dynamics of velocity gradient invariants.
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CHAPTER 1. OVERVIEW

Aerodynamic flows are mostly streamlined and characterized by large irrotational regions,

in which motion is dictated by a balance between convection and pressure gradients and a

relatively thin rotational layer. Turbulent mechanisms play an important role only in the

highly sheared regions such as boundary layers, wakes and separated mixing layers. While the

fundamental turbulence mechanisms are complex even in attached flows, the engineer is only

interested in a few global manifestations of turbulence, that are dictated by a statistical tur-

bulence variables. This focus allows highly simplified turbulence modeling approaches, such as

the eddy viscosity. These models side-step the underlying physics and rely heavily on empirical

correlations and constants derived from basic idealized flows. Flows in which turbulence plays

a more influential role than in boundary layers require refined turbulence modeling. Among

these are turbulent flow separation and recirculation caused due to adverse pressure gradients.

Separations often occur at the limits of the design envelope and cause a loss in performance;

hence it is of much interest to turbulence modeling research.

Separation can be induced by adverse pressure gradient or by geometric singularity; the

former is discussed in this thesis. Turbulent separation is characterized by increased strain

rates and higher production-to-dissipation (P/ε) ratio. Two-dimensional separation is well

understood and most eddy-viscosity models produce accurate prediction of wall shear stress

and pressure in up to moderate strain rates. At high strain rates, the log region of the boundary

layer deviates from equilibrium, i.e. P/ε� 1, which makes the Reynolds stress-intensity ratio

to be greater than
√
Cµ, hence standard eddy-viscosity models fail. This shortcoming was fixed

in k-ω SST model by Menter (1994) using a stress limiter in the eddy-viscosity calculation.

Three-dimensional separation is more complicated than in 2-D.

Unlike two-dimensional flows, where separation occur at the zero wall shear stress, in 3-
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D separation can occur at singular points and along convergence lines emanating from these

points. Hence critical point theory using the wall-limiting streamlines (Tobak and Peake, 1982)

is a common way to describe 3-D separation. Moreover, the flow separation is nearly indepen-

dent of the Reynolds number. A number of experiments have been conducted to study 3-D flow

separation, notably are asymmetric diffuser (Cherry et al., 2008) and flow over a hill (Byun and

Simpson, 2006, NASA Fundamental Aerodynamic Investigation of The Hill experiment). These

are smooth wall separations, induced by APG and Reynolds stress anisotropy, unlike separa-

tion separation due to obstruction — as in wing-body junction or cross-flow separation over a

prolate spheroid or afterbody separation. In these flows, interacting 3-D turbulent boundary

layers play an important role in creating secondary flow effects of second kind. As opposed

to external flow, internal flow separation is more influenced by these secondary effects due to

Reynolds stresses and only models that resolve secondary effects succeed in accurately predict-

ing 3-D separation. Cherry’s diffuser has proven a challenge to linear eddy-viscosity models,

which predict separation on the wrong wall of the diffuser, hence topologically incorrect. Engi-

neering turbulence research today is driven by the need to gain knowledge that can be used to

improve modeling predictions. The thesis work is motivated by the need for a detailed study of

3-D separation in diffusers, to understand the separation phenomena and propose modifications

to improve the predictability of Reynolds-Averaged Navier Stokes (RANS) turbulence models.

1.1 Separation definition

Separation is the entire process of departure, or breakaway, of the boundary layer from

a wall; or the breakdown of the boundary layer assumption. The separation surface is the

surface that bounds the zone between the separated shear layer and the wall. Researchers

have studied turbulent separation over the years, but each with a different definition of the

separation surface/line. Hence there is need for a unified definition of separation line/surface.

A collection of these definitions presented in Törnblom (2006), are;

• recirculation region with dividing streamline connecting stagnation points on wall.

• curve/surface of zero Streamwise velocity
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• region with backflow more than 50% of the time (Simpson, 1989)

Here the locus of zero Streamwise velocity is adopted, as the average flow field is steady.

Turbulent flow separation is best identified at the wall, rather than within the flow field, as

the flow becomes two dimensional. Simpson (1996) defines the kind of separation from the

percentage of time the wall shear stress reverses sign. An intermittent transitory detachment

is when τwall reverses sign 20% of time and detachment is when τwall = 0, which is the case in

the diffusers studied. Only pressure-induced separation occurs in diffusers, due to the gradual

expansion.

1.2 Background

Though three-dimensional separated flow is highly chaotic and no straight forward extension

exists from 2-D separation concepts, there has been a number of efforts to develop a rational

approach to analyze these flows. Experimentalist rely more on wall stress signature (oil streaks)

to characterize separation, and the mean flow streamlines in the bulk flow to analyze the vortex

structures (Délery, 2001). Legendre (1956) proposed analyzing the wall stresses using the geo-

metric theory of two-dimensional smooth vector fields: one locates the zeros, singular/critical

points of the skin friction field, identifies their stability type, then constructs the phase portrait

of skin-friction trajectories. This critical point based approach has been adopted and extended

by Tobak and Peake (1982), Chapman and Yates (1991) and Chong et al. (1990). In a general

view, Lighthill (1963) proposed that convergence of skin friction lines is a necessary criterion

for separation. He went on to deduce that separation lines always start from saddle-type skin-

friction zeros and terminate at stable spirals or nodes. A review of terminologies and separation

topologies are given in Délery (2001). Haimes and Kenwright (1999) have used critical point

theory and extended it to analyze velocity gradient of the flow to extract features. Feature

extraction studies have been quite helpful in knowing separation flow features and topologies

and also the vortex cores though Eigen analysis of the vorticity tensor. Recently, an extended

description of three-dimensional steady flow separation has been developed by Surana et al.

(2006) using wall stress lines.
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All the methods used above have been quite helpful in computational studies of 3-D sep-

arated flows. Time-resolving simulations have also provided information about higher-order

statistics. Such studies are useful in understanding the mechanism of interaction between the

mean flow and Reynolds stresses. Studies in 2-D planar diffusers primarily use the data set

of Obi et al. (1993), which was repeated and extended by Buice and Eaton (2000). Obi et al.

(1993) used a high aspect ratio inlet to eliminate the 3-D effect.

However as the inlet aspect ratio is reduced to about 4:1, a 3-D separation bubble begins to

form. Experiments in 3-D asymmetric diffuser first performed by Cherry et al. (2008) indicate

the separation behavior to be very sensitive to minor geometric changes. In their work, two

doubly-sloped diffusers were tested at a Reynolds number of 10,000 based on inlet half height.

Both diffusers have the same inlet cross-sectional area and aspect ratio, and the the same

length and outlet areas that differed by less than 6%,; nevertheless, their separation bubbles

developed very differently. The first diffuser has been used as a benchmark at a workshop 1, as

RANS models fail miserably for this case. Most of the researchers studied the flow using eddy-

resolving simulations; Breuer et al. (2009) studied the flow using a Hybrid LES-RANS(HLR)

with EARSM formulation in RANS regions. A similar simulation approach was used by Abe

and Ohtsuka (2010); Gross and Fasel (2010), Uribe et al. (2010) used the SAS model. LES

using the dynamic Smagorinsky model performed by Terzi et al. (2010); Schneider et al. (2010)

have predicted separation accurately. Both these simulation have used wall functions to predict

the separation accurately. DNS results of Ohlsson et al. (2010) have provided high fidelity data

set for this diffuser.

1.3 Asymmetric diffuser

Three-dimensional diffusers having an asymmetric sloped wall in both transverse directions

are termed asymmetric. These diffusers have two adjacent walls that are sloped from the inlet

channel, while the other two walls that are adjacent remain orthogonal though the length of

diffuser. The configuration of the diffusers is as shown in Figure 1.1. Because two walls slope

linearly, the cross-sectional area increases quadratically with streamwise distance. The aspect

1ERCOFTAC workshop on Refined Turbulence modeling, Rome(2008) and Graz(2009)
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ratio of the cross section increases or decreases depending on the slope angles. The inlet to the

diffuser is a straight, rectangular cross-section duct and is sufficiently long to generate a fully

developed turbulent flow.

(a)
X

Y

(b)

Figure 1.1 Dimensions of Cherry’s diffuser 1 (Cherry et al., 2008)

Turbulent flow in rectangular channels is fundamentally complex. A delicate balance be-

tween the mean streamwise flow and gradients of Reynolds stress create secondary currents,

called Prandtl’s secondary flow of second kind. An analysis of the mechanism of fully-developed

flow in square ducts is presented by Huser et al. (1994). The turbulence anisotropy generates

secondary flow vorticity. Consider the streamwise mean vorticity equation

V ∂yΩx +W∂zΩx = ν(∂2
yΩx + ∂2

zΩx) + ∂y∂z(v2 − w2)− ∂2
yvw + ∂2

zvw (1.1)

where Ωx = ∂yW − ∂zV and y,z are the coordinates in transverse directions. In turbulent

flow, the last three terms become sources for mean streamwise vorticity. The first involves

normal stress anisotropy (v2 6= w2) and the next two terms involve secondary stress (vw),

‘secondary’ as they involve components in the secondary/transverse plane of flow. Near the

wall, a two-component limit is reached as v2 � u2. Due to anisotropy, two counter rotating

vortices are formed towards each of the corners of the duct. Fully-developed flow is in turbulent

equilibrium, and is supported by a constant mean streamwise pressure gradient that balances

the wall shear stress. However when the flow enters the diffuser, additional effects as lateral

straining, streamline curvature, transverse pressure gradients, non-linear streamwise pressure

gradient drive the flow away from turbulence equilibrium. These effects influence turbulence

anisotropy and eventually the reverse flow in the diffuser.

The presence of these effects in this diffuser configuration, has made it a suitable geometry
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to study the physics of turbulent 3-D separation and to benchmark, developed turbulence

modeling refinements.

1.4 Reynolds number dependence

The simulations for the Asymmetric diffuser were conducted at Reynolds numbers of 10,000

and 20,000 based on the inlet bulk velocity and channel half-height (y-direction). For a fully-

developed square duct, it is know that the stress anisotropy remains the same as the Reynolds

number is increased, however the near-wall velocity gradients increase. Délery (2001) reported

that 3-D separation is nearly independent of the Reynolds number, which is, in fact, the correct

scaling parameter in boundary-layer-like situations where viscous effects are confined within

thin layers. This allowed them to study separation in high-Re supersonic flows in water tunnels.

Experiments in a 3-D diffuser by Cherry et al. (2009) at Reynolds numbers of 10,000, 20,000 and

30,000 indicate the wall(y-minimum) pressure coefficient, Cp, to increase monotonically with

increase in Re, though the shape of the Cp curve remains the same. The effects of Reynolds

number in 3-D diffuser separation is outside the scope of this thesis.

1.5 Outline of the Thesis

The first chapter introduces the reader to the complexity of 3-D separation in diffuser flows

and configuration of diffusers that are considered for the study. In Chapter 2, the generation

of a series of diffusers is elaborated. The CFD codes used for RANS and eddy-resolving studies

are explained, their numerics and turbulence models. The computational model of the diffuser

explains the geometry and mesh used for steady and unsteady simulations. The quality of

the Eddy-resolving simulations is also assessed. The methods used for generating a fully-

developed flow also are presented. Chapter 3 presents observations from the Detached Eddy

and Large Eddy Simulations. Firstly, the simulations are validated against experiments and

DNS data sets for the diffuser of Cherry et al. (2008). Simulations of a series of diffusers are

then presented: the physics of the flow separation is analyzed though wall streamlines, vortex

dynamics, secondary flow and Reynolds stresses. In Chapter 4, the separation predicted in
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Cherry’s diffuser and series of diffusers using steady flow simulations of standard turbulence

models, both RANS and second-moment closure models are presented. Their shortcomings are

presented and modeling ideas discussed. The importance of anisotropy is explained and the

ability of a particular Explicit Algebraic Reynolds Stress Model(EARSM) to resolve the mean

flow of separation accurately is discussed. Variants and refinements of this model are used to

predict diffuser flows. The model coefficients for the standard pressure-strain rate term have

been calibrated. Using the diffuser series cases, the short comings observed in the EARSM

are listed. Anisotropy-resolving capabilities of the EARSM have been further explored in basic

non-separating flows. Modeling refinements proposed are presented in for future work.
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CHAPTER 2. DIFFUSER SERIES

Cherry et al. (2008) performed experiments on two diffusers, each having the walls sloped

differently. Both of the diffusers were used for validation of the present simulations. Diffuser 1

has an area expansion ratio of 4.8 and Diffuser 2 a ratio of 4.56; similar, though their wall flare

angles are different. The separation surface shows sensitivity to the wall angles, with Diffuser

1 separating on the top and Diffuser 2 separating on the side. A more accurate comparison

of diffusers can be made if they have the same pressure gradient (dp/dx) at every streamwise

(x) location. Thus the streamwise adverse pressure gradients will be the same and the effect

of transverse pressure gradients can be studied. This is the motivation for creating data on a

new series of diffusers.

2.1 Quasi 1-D analysis

A Quasi one-dimensional analysis using Bernoulli’s equation gives the pressure gradient:

dp

dx
=
ρQ2

A3

dA

dx
(2.1)

where, Q is the bulk flow rate and A the cross-sectional area. A series of diffusers is to be

defined with varying flare angles, but all having the same A(x) and same Reynolds number of

20,000, based on channel hydraulic diameter. They are parametrized by the inlet aspect ratio

A. A member of the family has a flared top wall defined by the coordinate y0 +αx and a flared

side wall with the coordinate z0 + βx, where subscript 0 refers to diffuser inlet and α & β are

tangets of top and side flare angles.

The Cherry et al. (2008) diffuser has a high pressure gradient at the inlet to diffuser as seen

in Figure 2.1(b); this momentum source strains the flow immediately on entering the diffuser

inducing separation. To reduce the incidence of inlet separation and to build a standardized
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geometry, a set of diffusers are generated having the same pressure gradient as that of Obi’s

2-D diffuser Obi et al. (1993). This 2-D diffuser has a milder pressure gradient.

A 3-D reference asymmetric diffuser is constructed to produce the same pressure gradient

of Obi et al. (1993). Other parameters of the reference geometry are an inlet Ar = 1 and

Reynolds number of 20, 000 based on hydraulic diameter. The family of diffusers only differ by

inlet A, as shown below. The cross-sectional area of the reference duct (r) and any duct in

the family are given by

A = (y0 + αx)(z0 + βx) = (yr + αrx)(zr + βrx) (2.2)

Equating coefficients of x defines the family

y0z0 = yrzr

y0β + αz0 = yrβr + αrzr

αβ = αrβr

which has the solution,

y0 = yr

√
Ar

A
, z0 = zr

√
A

Ar
,

α = αr

√
Ar

A
, β = βr

√
A

Ar
(2.3)

Thus the family is parametrized by the entrance A ≡ z0/y0 and the reference duct has

Ar = zr/yr = 1. The molecular viscosity of the fluid had to be modified for each of the cases

to maintain inlet Re = 20, 000. The ratio of the expansion angles is:

β

α
=
A

Ar

αr
βr

(2.4)

Increasing A increases the lateral straining.

It has been verified that RANS predictions are qualitatively correct at lower aspect ratios.

So the series will provide a systematic look at how discrepancies develop. The properties of

the diffusers which are simulated is given in Table 2.1.
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Aspect Ratio, A 1 1.5 2 2.5 3

Side angle θs,deg 2.56 3.13 3.6 4.04 4.43

Top angle θt,deg 11.3 9.27 8.04 7.2 6.58

Inlet c/s, w×h cm 1.34×1.34 1.64×1.09 1.89×0.95 2.12×0.85 2.32×0.77

Hydraulic dia. φ 1.34 1.31 1.26 1.21 1.16

Exit c/s, w×h cm 2.01×4.38 2.46×3.56 2.84×3.08 3.18×2.75 3.48×2.51

Kin. Visc. ν, m2/s 1.34e-5 1.31e-5 1.26e-5 1.21e-5 1.16e-5

Table 2.1 Family of diffusers generating same adverse pressure gradient
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Figure 2.1 Area distribution(a) and streamwise pressure gradient(b) used in generating the

diffuser series
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H
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Figure 2.2 Outline of the diffuser domain used for simulations. Shown in side and top view.

2.2 Computational model

The computational flow domain includes an inlet channel to the diffuser and an outlet

transition section after the diffuser. A typical flow domain is shown in Figure 2.2. The outlet

transition section consists of a nozzle and rectangular channel to recover the pressure and ensure

that no reverse flow exists at the domain outlet. A unidirectional flow would be suitable for a

pressure outlet boundary condition in the CFD solver used. A constant area outlet section of

30H length was also considered , however the diffuser flow field was not different from that using

a transition section. The experimental geometry has a filleted edge where the inlet channel

joins the diffuser flared walls. This portion has been neglected in the computational model. A

Diffuser 1 geometry with the filleting was constructed and simulated using LES, indicating no

difference in the flow field except very close to the inlet.

The computational domain is discretized with hexahedral cells. The grid distribution for the

RANS simulations uses a two surface mesh distribution with a Hermite interpolation method

to ensure orthogonal grids near the wall. The number of grid points is 296× 41× 61 along the

x, y and z coordinates, a grid stretching of 1.2 was ensured near wall and a y+ ≈ 0.5. The grid

is also clustered along the streamwise direction towards the diffuser inlet as shown in 2.3(a).

The grid resolution for the DES was determined by performing a study. Two grids are used as

below,

COARSE 357× 41× 61, Near-wall expansion=1.1, ∆y+ = 7, ∆x+ = 1640 and ∆z+ = 160
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FINE 296× 61× 101, Near-wall expansion=1.01, ∆y+ = 0.6, ∆x+ = 12 and ∆z+ = 36

The wall units for the diffuser were measured at the region of maximum shear stress in the

inlet channel. The flow predicted by the coarse mesh shows a separation over the top wall of

the diffuser, while experiments indicate a separation skewed towards the doubly-sloped edge.

The fine mesh predicts such a separation surface and hence was chosen for other simulations.

The grid distribution is quite uniform as seen in Figure 2.3(b) to maintain a cell aspect ratio

close to unity.

The LES also are sensitive to grid resolution as noticed by Schneider et al. (2010). A grid

of 3 Million cells is used (477×61×101) and quality checks are performed to assess the fidelity

of simulations. LES quality metric tests are described in the next section. The grid is about

43 times smaller than the DNS grid used by Ohlsson et al. (2010). The near-wall mesh had a

maximum of ∆y+ = 2, ∆x+ = 90 and ∆z+ = 10. A large number of cells were required along

the streamwise direction, to generate a fully-developed flow at the diffuser inlet channel.

(a) RANS grid (b) DES grid

Figure 2.3 Mesh distribution in the diffuser showing every 4th node.

2.2.1 Codes and Numerics

Two codes were used for the RANS and eddy-resolving simulations. SuMB is used to

perform the DES, while OpenFOAM is used for LES and RANS simulations. The turbulence

model was implemented and validated in OpenFOAM.
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2.2.1.1 SuMB

SuMB is a parallelized structured multi-block finite volume code (Van der Weide et al.,

2006). Only a fully compressible solver is available, hence a preconditioner is required to apply

it to low-Mach number flow. A few of the key parameter used for the solver are

• central with matrix dissipation for flux computations

• Roe’s Riemann solver with Van Albeda limiter

• 5-stage Runge Kutta smoother for flow variables and ADI smoother for turbulence quan-

tities

• 3W multigrid

• Turbulence production term only considers strain

• Maximum ratio of TKE-production/dissipation: 1e5

• Fractional Time-stepping method allows for CFL > 1

2.2.1.2 OpenFOAM

OpenFOAM is a parallelized unstructured finite volume code (www.openfoam.com). The

incompressible solver is used with the following salient parameters:

• Conjugate gradient linear solver for pressure

• Bi-conjugate gradient solver for momentum

• The PISO algorithm is used with two corrector steps.

• To improve convergence, a limited central differencing is used for convective terms

• central difference for gradient and Laplacian terms

• second-order backward scheme is used for time derivatives.

• For RANS simulations, the SIMPLE method is used with Gauss-Seidel smoother for

transport terms.
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2.2.2 Inflow profile generation

For the SuMB simulations, a precursor simulation of flow in a plane channel was performed

to generate the full-developed turbulent flow profile, to be used as an inlet to the diffuser flow.

A channel with periodic inlet-outlet boundary condition was used. For DES the turbulence

quantities are computed as,

ksgs =

√
2

Cµ
νsgs|S| ; ωsgs =

ε

k
=
√

2Cµ|S| (2.5)

from an LES of periodic channel. Using this a database of the fields U, V,W, ksgs and ωsgs is

stored in a 2-D plane, at equal intervals of time. This turbulence field is interpolated onto

the inlet of DES based on the time step of the simulation. This method does not need a

perturbed initial condition for the diffuser, as the inlet turbulence introduces that as flow

iterations progress.

The LES did not require a precursor simulation, as OpenFOAM contains a feature to

generate inflow for eddy resolving simulation. Data are mapped from a downstream plane

upstream of the diffusing section to the inlet. Thereby, the initial section develops a fully-

developed, turbulent profile. The mass flow through the mapping is fixed to the specified bulk

flow. A random perturbation of the flow field is required to induce turbulence. Baba-Ahmadi

and Tabor (2009) explain the flow mapping method. The length of the mapped domain is 10H

as shown in Figure 2.4.

Mapped Inlet

Figure 2.4 Flow domain with inlet mapping

The fully-developed flow predicted by the LES is shown in Figure 2.5. It also shows the

secondary flow caused by turbulence anisotropy. Though this secondary flow magnitude is

about 5% of Ubulk, it affects the separation structure.
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(a) (b)

Figure 2.5 Primary and Secondary velocity profile in the fully-developed rectangular channel

of A=3.33. Statistics were averaged over 50 flow-through times.

2.2.3 Computing resources

All the simulations were performed in parallel on Linux SMP clusters. The MPICH standard

is used for data transfer across compute nodes by both codes. SUMB required the number of

grid nodes along each coordinate direction to be a multiple of 4 for 3-level Multigrid to be used.

The DES was converged at every time level with 80 pseudo-time iterations, a large time step

(10 times larger than LES) was possible, as the numerical time integration method was not

limited by CFL criteria. The LES is most expensive as seen in Table 2.2, due to stringent near-

wall grid requirement. Moreover, statistical averaging was required over a large flow-through

times
(
TU∞
L

)
to converge the high-frequency fluctuations, increasing the simulation time. Table

2.2 summarizes the typical compute resources for each simulation. The RANS compute times

for both solvers were quite comparable. The EARSM simulations were initialized using SST-

predicted flow field and simulated for 400 CPU hours to convergence level.

Simulation Grid size (×106 cells) CPU’s Wall time CPU Hours

LES 3 128 27 days 83,944

DES 1.8 128 3.5 days 10,752

RANS – SUMB 1.2 64 17 hours 1,088

RANS – OpenFOAM 1 32 23 hours 736

Table 2.2 Computational resource for each Eddy-resolving and RANS simulation
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CHAPTER 3. EDDY-RESOLVING SIMULATIONS

Separation being a highly unsteady phenomena, time-resolved simulations of the flow field

were required to resolve the turbulent structures and the energy cascade. The LES and DES

simulation methods described in this chapter are collectively referred to as ‘eddy-resolving’.

This nomenclature is primarily to distinguish them from the RANS computations.

3.1 Detached Eddy Simulations

While LES is capable of resolving eddies and the turbulence spectrum, it requires a large

number of grid points in the near wall region. Most of the near wall structures need to be

resolved in order to compute the turbulent boundary layers. DES is a hybrid LES/RANS

model, introduced to alleviate the near-wall grid requirement. The boundary layer region is

solved with RANS and the separated region with eddy simulation. The basic DES model

switches from RANS to eddy simulation automatically, based on the distance to wall and local

grid spacing. However there is an issue: if the near wall mesh is too fine, the RANS model

can switch off. This was address by the Scale Adaptive Simulation (SAS) method of Menter

et al. (2003). Here the length scale is dependent on the local flow variables, rather than on grid

spacing. This allows the eddy resolved region to change dynamically, while preserving RANS

near the wall. The length scale parameter used is

Lνk = κ

∣∣∣∣ ∂U/∂y∂2U/∂y2

∣∣∣∣
The k-ω Shear Stress Transport (SST) model of Menter (1994) is used in the RANS region.

With the stress limiter, this RANS model has proved to predict 2-D separation accurately in

a variety of APG boundary layer flows. A fine near wall mesh (y+ ≈ 0.6) allows the RANS

model to be integrated to the wall, and no wall function is used.
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Due to the low Reynolds number of the channel flow, well resolved simulations could be

made with small sub-grid viscosity. The spectral resolution of the simulation is assessed by

probing the time-varying streamwise velocity in the bulk flow and analyzing the power spectral

density. From Figure 3.1 we notice 3 orders of frequency resolved, with the inertial range

following the -5/3 slope. The energetic spectral range widens and increases in magnitude as

the flow moves downstream. No periodic frequency is seen. Hence, the flow is statistically

stationary and Reynolds averaging is synonymous with time averaging.

(a) Probe 1, x/H=3 (b) Probe 2, x/H=6

(c) Probe 3, x/H=9 (d) Probe 4, x/H=12

Figure 3.1 Power spectrum of instantaneous streamwise velocity. The 4 probe points are

located at the centroid of cross-sectional planes that are equally spaced from inlet

to outlet. The -5/3 slope line is in red.

The resolution of the turbulent energy is shown in Figure 3.2. The ratio of the resolved-to-

total turbulent kinetic energy indicates that more than 50% of the energy is resolved. The eddy

viscosity ratio is lower than 50 in the bulk of domain, except at the core of flow downstream

where the mesh size is largest. These checks ensure the quality of DES results.
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(a) kRES
kRES+kSGS

(b) µT
µ

Figure 3.2 The ratio of the resolved-to-modeled turbulent energy in the baseline diffuser DES.

3.1.1 Validation

The Cherry et al. (2008) Diffuser 1 has been simulated and compared to experiments.

This case will hereafter be referred as the baseline diffuser. The mean flow is calculated by

averaging the flow over 10 flow-through (τ) times, with the averaging starting after 8τ . The

streamwise velocities at transverse planes show a decent agreement with experiments (Figure

3.3). DES results shows a separation in the top left corner, which is absent in experimental

data. The simulations predict the correct topology of separation on the top wall of the baseline

case, though the volume of reverse flow is over-predicted. Too large reverse flow has also been

predicted by hybrid LES-RANS simulations of Abe and Ohtsuka (2010) and SAS of Uribe et al.

(2010). A detailed plot of the velocity at streamwise and spanwise locations is shown in Figure

3.4. The DES predictions indicate a higher velocity gradient close to the wall, which causes

the pressure at the wall to be low, thus the pressure recovery in the diffuser is less than the

experiment.

In contrast, the SST model predictions are qualitatively incorrect, separating on the wrong

wall of the diffuser (Fig. 3.4). The secondary flow predictions did not agree with experiments

either, but, as the secondary flow magnitudes are quite low (≈ %10Ubulk), their measurement

accuracy are questionable.
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Figure 3.3 Streamwise velocity predicted using SAS and experimental measurements of

Cherry et al. (2006) at transverse planes. Contour lines are spaced 0.1 m/s apart.

The zero-streamwise-velocity contour line is thicker than the others.
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Figure 3.4 Variation of mean streamwise velocity along spanwise z-lines. B is the width of

the diffuser at that x-location. The solid lines are DES, and dashed k − ω SST

model compared with experimental data.
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3.1.2 Study of flow separation

The computed DES results predict the correct separation topology and decent quantitative

match with experiments. The wall-limiting streamlines on the baseline diffuser indicate where

the flow separates from the wall. A number of nodal points are seen in Figure 3.5 on the sloped

walls. Vortices originate from these singular points and convect through the boundary layer

and reverse flow region. A clockwise vortex originates from a focus on the top wall and convects

towards the side wall.

(a) (b)

Figure 3.5 Secondary flow in baseline diffuser predicted by DES. (a) The wall limiting stream-

lines indicate the separation structure. (b) secondary flow at transverse planes

having streamwise vortices, the separation line is in red.

All of the two-equation RANS models predicted a transition of separation from top to side

walls at aboutA2.5. A DES of the series of diffusers is analyzed to know the efficacy of RANS

models. These simulations indicated the averaged flow separation to be on the side wall for

both A2 and A2.5. The results of A2.5 are interesting as the flow is highly unsteady. In

order that flow averaging be a meaningful way of analyzing the flow field, the unsteadiness has

to be quantified. The flow intermittency is measured as the ratio of times the flow reverses to

that of the streamwise direction. In Figure 3.6, the flow is unidirectionally streamwise towards

the core of the diffuser, however values of 1 are observed towards the sloped corner and sides,

indicating reverse flow to always exist there. Hence though the separation surface indicates

partial separation on top, the separation is considered to be on the side wall. Movies of time-

evolution of the separation surface show the separation surface to be attached to the side wall
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consistently until half of the diffuser length, after which the separation moves between the top

and side asymmetric walls. Analysis of the secondary flow in the diffuser series show an increase

in secondary flow magnitude atA2.5 as seen in Figure 3.7. Downstream of this diffuser, there

exists a counter-clockwise churning, which convects flow from side to the top wall causing the

separation surface (U ≡ 0) to be unsteady.

(a) (b)

Figure 3.6 Separation bubble(a) and Intermittency(b) in the A2.5 diffuser predicted using

the DES model.

(a) A2 (b) A2.5

Figure 3.7 Secondary flow show a similarity in pattern at different inlet aspect ratios. The

foci is formed earlier in the A2.5 diffuser and moves downstream

3.1.3 Vortical flow features

While the secondary flow magnitudes are only about 5% of the bulk velocity, they provide

critical insight into the dynamics of the flow. The flow contains streamwise vortices that interact

downstream the diffuser. Resolving these vortices are a challenge to existing RANS models,
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as they dissipate faster and also overpredict turbulence production at the vortex core. The

limiting streamlines in Figure 3.8 identify the various singular points on the diffuser surface as

foci and saddle nodes. The identification and classification of these nodes is made by a visual

comparison of the nature of the streamlines at these critical points (Délery, 2001). The theory

behind classifying these points is described in the previous reference, which could be used in

automated classification of these points. The foci are identified by coiled streamlines that

converge at the core where τl(l,m) = τm(l,m) = 0, where l and m are wall coordinates. The

saddle nodes appear where streamlines converge or diverge by bending 90 deg. In A2.5 there

are 3 foci and one saddle node, the separation surfaces emanate from where the wall streamlines

converge and flow attachment at locations where streamlines diverge. The wall shear stress is

non-zero at separation/attachment surfaces, as there exists cross-flow along these surfaces.

From each of the focus vortices originate as shown in Figure 3.8 and interact downstream.

(a)
(b)

Figure 3.8 (a)Limiting streamlines for A2.5 diffuser on the wall show a steady separation

surface from the top wall, The side wall has a complex separation-attachment flow.

(b)The vortex cores show a vortex originating from foci F3 on left and multiple

vortices close to the double-sloped edge

The limiting steamlines on the diffuser cases A2 and A2.5 are identical, but the corre-

sponding secondary flow inside the diffuser develops quite differently. Hence vortex interactions

critically differentiate the flow in the series. For A2.5, the wall streamlines have the singular

points closer to the diffuser inlet than in A2 (Jeyapaul and Durbin, 2010), hence there is

more room for the vortices originating from them to develop along the APG boundary layer
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and interact; which is the reason for high unsteadiness. As the flow enters the diffuser, the

flow encounters transverse pressure gradients in addition to a much higher streamwise pressure

gradient, which leads to secondary flow. Figure 3.9 shows flow moving diagonally away from

the corner subjected to the APG. As the flow develops downstream, two vortices (at x/H=4)

are introduced from the foci F1 and F2. These vortices interact and unify creating one vortex

at x/H=5.8, this disintegrated downstream creating multiple vortex foci and a saddle node.

(a) x/H=1 (b) x/H=4

(c) x/H=5.8 (d) x/H=13.7

Figure 3.9 Secondary flow streamlines in transverse planes of A2 diffuser. The blue line

indicates the location of separation surface.

3.2 Large Eddy Simulations

LES are widely used to predict complex shear flows. The simulations were performed using

the dynamic Smagorinsky model, in the incompressible solver of OpenFOAM. A test filter

is performed on a larger size than the grid filter. The resolved Reynolds stresses in this ‘test

window’ is representative of the sub-grid stresses and is used to evaluate Cs locally. Due to this,

the model does not need near-wall damping. The effective SGS viscosity(ν + νt) is set to zero

in regions where the value becomes negative. The sub-grid stress is modeled by expression 3.1,
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where sub-grid viscosity is given by νt = (Cs∆
2)|S|, which is a linear eddy-viscosity assumption.

τij −
1

3
τkkδij = −2(Cs∆)2|S|Sij ; where |S| ≡

√
2SijSij (3.1)

Since filtered Navier-Stokes equations change for different grid resolutions, the way to check

the accuracy of the simulation is to compare the resolved first and second moments of the

primitive flow variables. Celik et al. (2009) has a list of assessment measures to ensure the

quality of LES. Errors in LES have the following sources: modeling, numerical and filtering.

In order to isolate the modeling and discretization errors, a minimum of two to three grid

calculations are necessary (Celik et al., 2009). In the interest of computational time, only a

single grid case was used to check for LES errors. From the grid refinement studies with DES,

the LES grid was arrived at with a refined near-wall grid with a cell expansion ratio of 1.05.

The grid used for the simulation has 3 Million cells.

Single grid estimator checks were performed on this grid for the baseline diffuser. The

spectrum of turbulence resolved by LES is indicated by a Fast Fourier analysis of data at point

probes located along the bulk of the flow. The data were collected over 75 flow though times;

the time required to converge mean flow statistics is shown in Figure 3.10. The frequency

resolved spectrum is five orders of magnitude wide, as compared to 3 orders by the DES. We

notice the inertial range to contain eddies whose energies cover by 3 orders of magnitude. The

slope of this range does not follow Kolmogorov’s scaling of -5/3. The reason for this higher

slope is due to the low Reynolds number of the diffuser and also the non-homogeneity of the

flow. The grid size used has a filter cut-off frequency of about 3× 104Hz, which is the location

where the spectrum changes slope. As this low energy region is relatively short, the error

introduced due to sub-grid models is small.

The accuracy of the simulations was verified by a quantitative check on the amount of

turbulent energy resolved:

kres
ktot

=
kres

kres + ksgs + |knum|

To evaluate the numerical error in the simulation, an LES on a different grid size would be

required; in our check, the numerical error was neglected. About 95% of the turbulent kinetic
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(a) Probe 1, x/H=3 (b) Probe 2, x/H=6

(c) Probe 3, x/H=9 (d) Probe 4, x/H=12

Figure 3.10 Power spectrum of instantaneous streamwise velocity predicted by LES. The 4

probe points are located at the centroid of cross-sectional planes that are equally

spaced from inlet to outlet. The -5/3 slope line is in red.
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energy is resolved (Figure 3.11), hence the flow is close to DNS resolution. Celik et al. (2009)

suggested the calculation of a relative sgs-viscosity index as;

LES IQν =
1

1 + αν

(
νeff
ν

)n
where, νeff = νsgs+νnum+ν and αν = 0.05, n=0.53. This quantity is the ratio of eddy-viscosity

and is close to 1 in the flow, which, hence, is well resolved.

(a) (b)

Figure 3.11 The quality of the LES assessed using the metric of (a) Ratio of resolved to total

Turbulent kinetic energy and (b) LES IQν parameter

While the overall quality of the flow was assessed to be of good quality, a validation exercise

is required for the flow variables predicted using this simulation.

3.2.1 Verification

The numerical stability of the LES was ensured by maintaining a CFL number less that 1,

which required a time step of ∆t ∼ 10−5s. The flow is initialized by random fluctuations and is

allowed to develop for about 27τave (flow throughs based on average bulk velocity in diffuser).

The averaging is later started and continued for 70τave, which was required to converge the

mean and second-moments of flow velocity. The actual averaging required differed from diffuser-

to-diffuser. Notably, Diffuser 2 of Cherry et al. (2008) required about 100τave to converge the

statistics.

With the availability of DNS data of Ohlsson et al. (2010) a more detailed comparison of

flow variables has been made. The mean streamwise velocity and the dominant Reynolds stress
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uu show a good agreement with DNS data as in Figure 3.12. Separation is formed towards

the double-sloped corner and midway through the diffuser it spreads across the whole top wall.

The LES predicts the top wall separation to be farther downstream than DNS; the volume

of separation is also under predicted. The results presented here use a sharp-edged diffuser

inlet, while the DNS used a filleted edge. A bulk of the turbulent kinetic energy comes from

the streamwise normal stress uu, and the values compare quite well. A high normal stress

is predicted at the sloped edges at inlet, than by DNS this is caused due to the high shear

introduced by the sharp edge. Downstream of the diffuser, the magnitudes and trends of uu

agree well.
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Figure 3.12 Contour lines of mean streamwise velocity and streamwise RMS velocity at various

transverse planes. The DNS is to the left and LES on the right on each of Figures

(a) and (b). Each line is spaced by 0.1 and the zero velocity line is bold.

A detailed comparison of separation predicted at different transverse planes is made. Figure
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3.13 compares the mean flow velocities and normal and shear stress quantities in the mid-plane

of the diffuser with DNS. Comparisons at other z-planes close to the asymmetric wall and the

parallel wall showed a similar good agreement, and are shown in Figures 3.14 - 3.16. The spike

in all the Reynolds stress is observed close to the diffuser inlet. This is only a local effect

due to the geometric difference and the flow develops downstream, giving a better comparison

to DNS. Near the bottom wall the velocity gradients are steep and have been captured by

the dynamic LES model. Resolving this gradient is critical to predicting the wall pressure

coefficient Cp accurately. At the inlet to the diffuser, the uiuj profile is similar to that of a fully

developed flow in a 2-D channel, with the uv changing signs at mid-channel. The effect of the

3-D separation deviates the flow from turbulence equilibrium causing the maximum Reynolds

stress to exist close to the centre of channel. In the straight section downstream of diffuser, the

flow does not show signs of relaxing to equilibrium from the mean velocity and stress profiles.
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The coefficient of pressure Cp in this diffuser is reported on the bottom wall, as the flow is

attached along that wall and along any streamwise section there is very little circumferential

variation of pressure. The Cp is calculated using the pressure at the diffuser inlet and the bulk

velocity at that location. Good agreement with experiments is shown in Figure 3.17. The wall

pressure follows the effects of separation manifesting as blocked cross-sectional flow area. Data

show a rapid rise in Cp near the inlet of the diffuser, followed by a gradual reduction in the

pressure gradient until the trend becomes nearly linear at about x/L=0.7. At this point, the

reverse flow region has spread almost uniformly across the top expanding wall. The pressure

profile contains an inflection point at about x/L=0.4, where separation is still at the sloped

corner. The pressure curve shows no change of slope at x/L=0.53, the position where the

separation bubble leaps across the top expanding wall of the baseline diffuser. Near the inlet,

the flow area expands rapidly and the separation bubble is small, resulting in a large expansion

of the potential flow area, hence a large pressure gradient. Farther downstream (0.2 < x/L <

1), the separated region grows rapidly and somewhat counteracts the growing cross-sectional

area of the diffuser by reducing area for forward flow. This results in a more gentle pressure

gradient. Downstream fo the diffuser outlet (x/L > 1) the flow reattaches recovering additional

pressure.

3.2.2 Diffuser series

The series of diffusers simulated using LES show separation to switch to the side wall at

about A3. As noticed in Figure 3.18 the volume of separated flow reduces as Aincreases,

which improves the efficiency of the diffuser as the wall pressure recovery reaches a maximum

of 80% for A> 2. The secondary flow are similar, each case having 4 major vortices located

at diffuser exit(x/H=15) transverse section. Figure 3.19 shows the vortex cores to be located

away from the reverse flow region, but towards the corners. In a sense, the major streamwise

vortices are displaced by the reverse flow region.
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Figure 3.13 Comparison of mean flow velocities, resolved kinetic energy, and Reynolds stresses

along z/B=1/2 by LES of baseline diffuser. DNS are solid and LES are dashed.
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Figure 3.14 Comparison of mean flow velocities, resolved kinetic energy, and Reynolds stresses

along z/B=1/4 by LES of baseline diffuser. DNS are solid and LES are dashed.
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Figure 3.15 Comparison of mean flow velocities, resolved kinetic energy, and Reynolds stresses

along z/B=3/4 by LES of baseline diffuser. DNS are solid and LES are dashed.
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Figure 3.16 Comparison of mean flow velocities, resolved kinetic energy, and Reynolds stresses

along z/B=7/8 by LES of baseline diffuser. DNS are solid and LES are dashed.
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Figure 3.17 Coefficient of pressure
(
Cp =

p−pref
0.5ρU2

bulk

)
variation along the bottom wall of base-

line diffuser predicted by LES, x/L is the non-dimensional diffuser length. The

experimental Cp has been shifted by -0.02 to provide a better comparison.

(a) A1 (b) A2 (c) A3

Figure 3.18 Separation surface predicted by LES for the diffuser series

3.3 Comparison of LES and DES

The motivation for using the DES was due to the reduced grid requirement than an LES.

The former provided a qualitative comparison with experiments, however a good quantitative

comparison is paramount to generate data needed for turbulence model development. The SAS

predicts a larger separation (Figure 3.20) than LES and separation spreads over the whole top

wall ahead of the streamwise location shown in experiments. The wall Cp predictions are much

lower due to the higher flow blockage. Similar observations of low Cp and larger separation are

observed by SAS simulations of Uribe et al. (2010) and hybrid LES-RANS of Abe and Ohtsuka



36

(a) A1 (b) A2 (c) A3

Figure 3.19 Secondary flow predicted by LES at the diffuser exit plane x/H=15 of the diffuser

series. The cross-sections are shown in different scale, in real the areas are same.

(2010). The main reason for the inaccuracy of the DES arises from the inability of the near

wall RANS, k − ω SST model in the SAS to predict Reynolds stress anisotropy that occur in

the corner flow of diffuser. This will be the subject of discussion in the next chapter.

The LES have been computationally intensive both in grid requirement and numerical

solution, however the flow predict compare well with DNS. The Reynolds stress budget terms

(Pij , εij ,Πij , Dij) are accurate and can be used for model development.
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Figure 3.20 Fraction of cross-sectional area separated predicted by DES and Experiments for

the baseline diffuser
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CHAPTER 4. SINGLE POINT CLOSURE MODELS

Turbulence modeling has been focused on single-point correlations for their tractability.

The cost of this assumption is that the whole spectrum of turbulence scales cannot be resolved

as possible by multi-point correlations. Statistical approach as Reynolds averaging is required

to simplify the analysis of Navier-Stokes equations, as given by the RANS equations in (4.1).

The mean is represented as U = U and fluctuation u = 0.

∂tUi + Uj∂jUi = −1

ρ
∂iP + ν∇2Ui−∂jujui (4.1)

∂iUi = 0

The Reynolds stress tensor (bold in 4.1) is unknown and needs the solution of second-moment

transport equations. Higher (n+1) moment terms occur in a n-moment equation, which lead to

the closure problem. Most engineering turbulence models solve for first-moment equations(4.1)

with a model for the stress term. The Boussinesq assumption is widely used to close the RANS

equation.

− uiuj = 2νTSij −
2

3
kδij (4.2)

In two-equation models, νT = Cµ
k2

ε = k
ω the former for the k− ε model and the later for k−ω

model. The algebraic expression in 4.2 has been successful in predicting a variety of flows.

However in complex flows with separation, streamline curvature, frame rotation, stagnating

flows, etc the Boussinesq assumption fails.

4.1 Linear eddy-viscosity models (LEVM)

A linear relation between Turbulent stress and mean-flow strain limits the ability to model

few flow effects. The stress anisotropy is defined as aij =
uiuj
k −

2
3δij , where k = 1

2uiui. Hence
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one can analyse the departures from isotopy (aij = 0) by looking at the 5 distinct elements of

this symmetric and trace-free matrix. In the eddy viscosity models the anisotropy is a function

of strain only, aij = −2νTSij . Due to this assumption the following are the drawbacks:

• Normal stress anisotropy is not accounted.

• Only accurate for equilibrium flows

• No streamline curvature effects included, as aij = Fij(Sij)

As mentioned earlier, secondary normal stress anisotropy (v2 6= w2) is required to predicting

secondary flow of second-kind. At the vicinity of stagnation point, the primary-secondary stress

anisotropy (u2 6= v2) needs to be resolved to predict the correct turbulence production and hence

kinetic energy. This was corrected by limiter on the turbulence timescale by Durbin (1996).

The model coefficients are most determined from idealized flow conditions, such as homo-

geneous shear and plane shear flow. The deviation of the flow from turbulence equilibrium is

measured by the ratio of Production-to-dissipation P/ε. Where;

Pij = −uiuk
∂Uj
∂xk
− ujuk

∂Ui
∂xk

; εij =
2

3
εδij

=⇒ P
ε

= −uluk
∂Ul
∂xk

1

ε
= −aij

(
Sijk

ε

)
In plane shear flow P/ε = −a12dyU(k/ε) and hence the accuracy of predicting the ratio

is only dependent on modeling fidelity of Reynolds shear stress. Most models are calibrated

based on this flow −uv
k =

√
Cµ(= 0.3). In two-dimensional APG and separated flows, this

fails, leading to over prediction of eddy-viscosity. Menter (1994) introduced a stress limiter

redefining νT .

4.1.1 Anomalies in predicting 3-D separation

Three-dimensional separation is nearly independent of the Reynolds number and is char-

acterized by two adjacent boundary layers subjected to APG. The modeling challenges are

rooted in the complexity of the strain and vorticity field. To predict separation in asymmetric

diffusers the model has to resolve the complex 3-D flow, lateral straining, stramline curvature,

streamwise vorticity, secondary flow of second kind, and effect of transverse pressure gradient.
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All LEVM fail to resolve these complex flow physics. The models that have been tested are

k − ε, k − ω SST,k − ω, Spalart-Allmaras and v2 − f . The LEVM predominantly used is the

k−ω SST of Menter (1994). The primary and secondary flow predicted in the baseline diffuser

are shown in Figure 4.1. The primary flow is formed initially along the top, but later switches

to the side sloped wall. The flow predicted at the first section in 4.1(b) compares well with the

SAS, both the primary and secondary flow with vortices and singular points. However down-

stream SST predicts the vortices to dissipate faster and separation is formed on the wrong wall.

A similar primary flow separation is predicted by the tested LEVM. The v2 − f predicts the

near-wall anisotropy accurately, however fails to predict the separation on the top wall, due to

the three-dimensional nature of the flow separation. A modified implementation of this model,

the ζ − f was tested by Ryon (2008) to produce the same error.

(a) (b)

Figure 4.1 Primary and secondary flow predicted using the k−ω SST model. The transverse

velocity in (b) is normalized by Ubulk

Flow separation in the diffuser series predicted by SST indicate a switching of separation

from top to side wall at about A2. However eddy-resolving simulations predict the switch to

happen at A2.5. The SST model responds to the increase in Amuch faster than LES, thus

are oversensitive to minor transverse pressure. Qualitatively a correct separation is predicted

by RANS for the rest of Aseries, but the separation volume is high and hence streamwise

velocities increase leading to a lower wall pressure coefficient predicted than by the LES.

In diffuser configurations, the SST model showed sensitivity to minor changes in geometry.

Few are;
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(a) A1 (b) A1.5

(c) A2 (d) A2.5

Figure 4.2 Separation surface predicted by SST model in the series of diffusers.

Side slope angle asymmetry

On the diffuser with sloping on one of the transverse direction only, the model predicts

separation on the sloped top wall. However even with an infinitesimal slope (0.02 deg), the

separation surface moves to the small-sloped side. This diffuser has the same A=3.33 of the

baseline. The physics of flow predicted by SAS shows the separation on the top wall. In the

top-only sloped geometry the area expansion increases linearly with x, and so is the streamwise

pressure gradient. However the introduction of secondary slope make the area expansion rate

with x quadratic and dp/dx follows the trend. This corroborates with the earlier observation

that the SST model is highly sensitive to transverse pressure gradients.

Higher symmetric side slope

A series of diffusers with a constant top slope and inlet Ais created, the side walls are

flared symmetrically with different angles. As the side slope angles increase, the dp/dx gets
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steeper close to the diffuser inlet. At lower symmetric side slopes the separation is formed

on the top wall, but at about 2.5 deg the separation becomes asymmetric (Figure 4.3). The

separation happens on either the left or right symmetric side, depending on the way the flow

was initialized, in a sense bistable.

(a) 1 deg (b) 2.56 deg

Figure 4.3 Anomalous separation surface predicted by SST in diffusers with symmetric side

slope angles.

Flow predicting by DES did not indicate an asymmetric flow at 2.56 deg, but a total sepa-

ration on the top wall. The Reynolds stress model of SSG showed a similar separation, but of

smaller reverse flow. The Spalart-Allmaras model predicted a symmetric side wall separation

at all angles. Hence there is a disparity in predictions among RANS models for this series, how-

ever incorrect. The SST model destabilize in predicting separation at high streamwise pressure

gradients.

4.2 Sensitizing Cµ to flow separation

The Cµ = 0.09 is calibrated for 2-D mild shear flows. Hence sensitizing the coefficient to

general 3-D shear flows would make the model accurate to predict flow separation. The effect

of increasing Cµ in the standard k−ω SST model causes separation to decrease in the Obi et al.

(1993) diffuser (Figure 4.4). The increase in the coefficient’s value leads to a direct increase in

eddy-viscosity which causes more dissipation and hence a smaller separation. As complex flows

are composed of a variety of fundamental flow physics, having Cµ change locally based on the

flow velocity would be required to resolve the local flow. Some of the modeling parameters are
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explored.

Cµ = 0.22 Cµ = 0.09 Cµ = 0.03

Figure 4.4 Sensitivity of 2-D diffuser flow separation to variations in Cµ value. The separation

line is in bold.

4.2.1 Modeling parameters

The modeling parameter for 3-D separation should satisfy these requirements, values should

vanish in 2-D flow, show proper sensitivity to the real physics of separation, and computationally

inexpensive. Galilean invariance is required to have the model applicable in moving inertial

frames. The velocity gradient tensor (∂jUi) has been largely used as a flow visualization tool

(Haimes and Kenwright, 1999), however recently studies have indicated the time evolution of

this tensor to resolve turbulence dynamics. The velocity gradient tensor can be decomposed

into a symmetric and antisymmetric part and into its Eigen values.

∂jUi = Sij + Ωij =


Ux Uy Uz

Vx Vy Vz

Wx Wy Wz

 =


λ1 0 0

0 λ2 0

0 0 λ3


The Eigen values reduce the number of variables to characterize the flow based on the local

velocity gradient. Three Eigen values(λ1, λ2r + iλ2i, λ2r − iλ2i) have one real and a complex

conjugate pair, except at critical points where all three values are real and distinct. Critical

point theory has been used by Haimes and Kenwright (1999) to classify the local flow condition

based on the distribution of λi in the Argand plane. The distribution of the λi shown in Figure

4.5, shows the SAS to have a much wider scatter along the real axis than the SST prediction.

Based on the classification of Haimes and Kenwright (1999), points on the positive Real(λi) are

accelerating and decelerating on the -ve direction. The flows is also spiraling out if the points

are in the I and IV quadrant and spiraling in if the the II and III quadrant. Hence the SAS
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predicts more accelerated spiraling flow than the SST, which corroborates with observation

that eddy simulations resolve multiple vortices in the diffuser. On the contrary SST predicts a

few high spiraling flow, as the vortices are dissipated. The field of λi in diffuser did not isolate

the regions of separation in the SST simulation, hence would not be a suitable variable for

making Cµ dependent on.

(a) SST (b) SAS

Figure 4.5 Scatter of Eigen values of Velocity gradient tensor predicted by SST and SAS

models for the baseline diffuser.

Helicity

Helicity(U · (∇× U)) is a fundamental flow kinematic variable which relates to linkages of

vortex lines in flow. In plane channel flow, helicity is generated by −uv. LEVM are only sensi-

tized to strain and hence including this term could improve modeling fidelity. The parameter

computed using the SST model does not isolate the regions of separation (Figure 4.6), as the

flow does not contain streamwise vortices by the time the separation spreads along the side wall.

In the SAS flow field, the parameter identifies the various streamwise vortices. It is notworthy,

that no vortices are observed in the separated region along the top wall. Helicity would serve

as a post-processing variable, but not as a dynamic variable to model eddy-viscosity.
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(a) SST (b) SAS

Figure 4.6 Contours of Helicity in transverse plane of baseline diffuser predicted by SST and

SAS models

WALE parameter

Nicoud and Ducros (1999) proposed a sub-grid model term that uses the velocity-gradient

tensor to estimate the turbulence dissipation at the sub-grid level. The term is designed to

predict the near-wall scaling correctly, hence needs both strain and vorticity tensor, as shown

below.

(SdijSdij)3/2

(SijSij)5/2 + (SdijSdij)5/4
where, Sdij =

1

2

(
(∂jUi)

2 + (∂iUj)
2
)
− 1

2
δij(∂kUk)

2

Larger values are observed in the high strain regions close to the diffuser, but the separated

regions along the side wall are not distinguished (Fig. 4.7).

Figure 4.7 WALE parameter evaluated using SST-predicted flow field of baseline diffuser.
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4.3 Importance of Anisotropy

The LEVM failure in predicting 3-D separation is mainly caused due to the inability to

adequately represent anisotropy. Analysis of the DNS data of Ohlsson et al. (2010) provides

insight into the anisotropy in the baseline diffuser. Lumley(1977) was the first to study the

turbulence anisotropy by a plot of second(IIa = aikaki) and third (IIIa = aikaklali) invariants.

The realizable values of anisotropy are bounded by a triangle, with the lower two sides caused

due to axisymmetric contraction/expansion and the upper by 2-component turbulence (near-

wall). For example, the stress at x/H=0.5 along mid-plane of diffuser is shown in Fig. 4.8b.

It is observed that the dominant stress are the diagonal terms. At this section, the trends of

stress are similar to that in a 2-D channel. a is computed for all points along this spanwise

line and along all lines in the mid-plane (z/B=0.5). This is shown in Fig. 4.9a, we notice

that most of the anisotropy is due to axisymmetric expansion, which is expected. Also it is

noticed that a bulk of the flow is close to isotropy, the highest anisotropy is fed from inlet (cyan

line, x2) and it reduces as the flow moves downstream. The flow anisotropy is characterized

by axisymmetric expansion near the inlet, but downstream (x/H >12) it becomes close to

axisymmetric contraction. The shift in anisotropy from expansion to contraction is quicker as

the flow moves downstream diffuser close to the side-sloped wall.

Local information on the nature of anistropy can be studied from the plot Fig. 4.10. Here

we notice again that the flow is farthest from isotropy at the inlet, as IIa and IIIa reach their

global maximum. In each of the profiles, we also notice that the local maxima is towards the

walls, and another maxima appears mid-span as the flow develops downstream. The IIa has a

smaller value in the top separated wall relative to the bottom, the IIIa in this region is much

higher in this separated region than the bottom wall. Hence the turbulence in the separated

region undergoes an axisymmetric contraction.

4.4 Anisotropy-resolving models

The model that can represent anisotropy realistically with its dynamics would be the differ-

ential Reynolds Stress Model (RSM). However these models need appropriate wall treatment
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Figure 4.8 DNS data reported for aij (a) Lumley invariant map for flow anistropy along

mid-plane of diffuser z/B=0.5(b) The complete Reynolds stress tensor uiuj plotted

at x/H=4 at diffuser midplane (z/B=0.5)
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Figure 4.9 A plot of aij invariants at various streamwise locations (x/H) from DNS results
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Figure 4.10 Variation of Reynolds stress anisotropy(aij) invariants along the span of the base-

line diffuser midplane (z=0.5B) from DNS results

and have numerical difficulties with convergence. For 3-D diffuser flows, the RSM under pre-

dict separation. The model used for the pressure-strain term Πij is the source of error, the

linear model by Launder et al. (1975) provide a better comparison with experiments than the

quadratic model of Speziale et al. (1991). The solution to the full RSM equation is:

K
Daij
Dt
−Diff

(a)
ij = −uiuj

K
(P − ε) + Pij − εij + Πij + εCaij (4.3)

The above 6 equations need to be solved with the mean flow equations 4.1. The turbulent

length and time scale is determined by solving the standard K and ε equations together. The

Diff
(a)
ij lumps together the diffusion terms of Reynolds stress(∂kuiujuk) and turbulent kinetic

energy. Pressure strain correlation Pij and dissipation rate tensor εij need modelling, while

the other terms can be directly evaluated from the Reynolds stress tensor.

The Algebraic Reynolds stress equation was first proposed by Rodi (1972), where the Diffu-

sive terms were neglected and each component in uiuj changes in time with the same rate as its

trace. The later assumption is well known as the moving or weak equilibrium, ( DDt

(
uiuj
K

)
= 0),

which implies Dtaij = 0. Equation 4.3 reduces to this form.

uiuj
K

(P − ε) = Pij − εij + Πij + εCaij (4.4)
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This is an implicit relation between the Reynolds stresses and the mean velocity gradient field

that replaces the Boussinesq hypothesis (4.2). The pressure-strain term is modeled separately

by a slow and a rapid part. The slow part is not affected by mean flow gradients and refers to

return to isotropy of homogeneous turbulence. Rotta(1975) modeled is term as Πs
ij = −c1εaij .

The rapid part is modeled using a generalized model. Few of the models for Πr
ij that are

considered are: Launder Reece Rodi(1975):

Πr
ij

ε
=

4

5
S +

9c2 + 6

11
(aS + Sa− 2

3
{aS}I) +

7c2 − 10

11
(aΩ−Ωa) (4.5)

Speziale, Sarkar & Gatski(1991):

Πij

ε
= −

(
C1

2
+
C∗1
2

P
ε

a

)
+

(
C3 −

C∗3
2

√
IIa

)
S +

C4

2
(aS + Sa− 2

3
{aS}I)

− C5

2
(aΩ−Ωa) +

C2

4
(a2 − 1

3
IIaI)

(4.6)

Bold fonts are used to refer to tensors and to the trace. For simplicity, the LRR model

has been chosen by Wallin and Johansson (2000) with a c2 = 5
9 . Representing the velocity

gradient tensor(∂jUi = S+Ω) by the symmetric strain and anti-symmetric vorticity tensor has

advantages, in a rotating reference frame only Ω need to be corrected, secondly, manipulation

of symmetric tensor is much convenient. The Coriolis contribution Caij is only considered in

rotating flows. Substituting terms into Equation 4.4 gives the algebraic RSM in terms of stress

anisotropy:(
c1 − 1 +

P
ε

)
a = − 8

15
S +

7c2 + 1

11
(aΩ−Ωa)− 5− 9c2

11
(aS + Sa− 2

3
{aS}I) (4.7)

This equation is nonlinear in a since P/ε ≡ −{aS}. The last term drops out when considering

c2 = 5
9 rather than using 0.4 as originally proposed by Launder et al. (1975). The effect of

this simplification by assuming c2 on flow separation is described later. Solving Eq. 5.1 is

computationally cumbersome since there is no diffusion or damping present.

4.5 Explicit Algebraic Reynolds Stress Model(EARSM)

The difficulty with solving for Equation 5.1 is the treatment of the implict term P/ε.

Pioneering work was done by Pope (1975) where an exact solution for 2-D flows was derived
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by treating P/ε implicitly. Taulbee (1992) and Gatski and Speziale (1993) have solved the

equation by assuming P/ε to be constant. An explicit solution has been derived by Wallin and

Johansson (2000) by assuming coefficients on the LHS of 5.1 to be constant and later solving for

P/ε. The systematic generalization presented explains the development of the model from the

first principles of tensor consistency and the assumptions are clear; making it straight-forward

to propose modeling refinements. This makes the model more attractive than Non-linear eddy-

viscosity model where phenomenological methods are used. Some of the pros and cons of the

model are:

+ Accounts for normal stress anisotropy

+ For rotating flows, material frame difference can be included by correcting Ω

- Streamline curvature and Coriolis contributions need to be included via. Ω

- only accurate for equilibrium flows

- Anisotropy is only sustained by local velocity gradients.

- Dynamics of stress anisotropy not included.

4.5.1 Formulation

In general, any isotropic tensor a which is a function of two isotropic tensors S and Ω

can be expressed as a tensorial polynomial, composed of basis terms up to order 5. Using

Cayley-Hamilton theorem (Pope, 1975) the constitutive relation for a can be derived to be as:

a =β1S + β2

(
S2 − 1

3
IIsI

)
+ β3(Ω2 − 1

3
IIΩI) + β4(SΩ−ΩS)

+ β5(S2Ω−ΩS2) + β6(SΩ2 + Ω2S− 2

3
IV I) + β7(S2Ω2 + Ω2S2 − 2

3
V I)

+ β8(SΩS2 − S2ΩS) + β9(ΩSΩ2 −Ω2SΩ) + β10(ΩS2Ω2 −Ω2S2Ω)

(4.8)

The invariants of the velocity gradient are IIs = {S2}, IIΩ = {Ω2}, IV = {SΩ2}, V = {S2Ω2}.

Here the stain and vorticity tensors are non-dimensionalized by the turbulence timescale K/ε.

Upon substitution of Equation 4.8 in 5.1, the β coefficients can be solved for explicitly in terms

of N =
(
c1 − 1 + P

ε

)
. Once the β coefficients are evaluated they can be substituted back into

5.1, which simplifies into a polynomial equation.
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In 2-D flows the anisotropy tensor basis reduces to the underlined terms in 4.8 and the N

equation is a cubic polynomial. In 3D flows, β1,3,4,6,9 are non-zero and N is a 6-order polynomial.

The EARSM can be thought as a correction to eddy viscosity (β1 = −2Cµ) in RANS models.

In 2D mean flows only two invariants matter IIS and IIΩ, the other invariants IV=0 and

V = IISIIΩ
2 .

4.5.2 Implementation and Numerics

A variant of this model, the baseline EARSM (BEARSM) developed by Menter et al. (2009)

has been implemented in OpenFOAM. The advantage of using this model is there is no near-

wall damping required, as it solves the k − ω equation in the boundary layer. The simulations

conducted has a y+ = 2, hence wall integration is performed. To handle generic near wall grids,

an automatic wall function has been used, the details are described in Menter and Esch (2001).

The tensor polynomial used in BEARSM is given below;

a =β1S + β3(Ω2 − 1

3
IIΩI) + β4(SΩ−ΩS) + β6(SΩ2 + Ω2S− 2

3
IV I− IIΩS )

+ β9(ΩSΩ2 −Ω2SΩ− 1

2
IIΩ(SΩ−ΩS) )

(4.9)

The tensor basis described in Wallin and Johansson (2000) has only 5 basis terms considered,

the simplification from the full 10 terms to 5 is due to the simplified Algebraic RSM that uses

the LRR pressure-strain model with c2 = 5/9. The same 5 tensor basis terms are used by

Menter et al. (2009), however with additional terms boxed in Equation 4.9. This essentially

means that the β’s evaluated using WJ and Menter’s decomposition would be different, however

the a would be same as the tensor basis are identical. This implies the fully consistent solution

of P/ε is a solution to N6 polynomial, same as WJ. For simplicity, the root of N3 has been

used for 3-D flow simulations. At a given S and Ω, the root of N3 was only 4% lower than the

root of N6 polynomial being sought.

The code allowed for symbolic operations on tensor algebra, hence simplifying the imple-

mentation. The eddy-viscosity is computed as νT = K/ω. A production limiter as in 4.10 is

used in k- and ω- equation. From simulations, it is noticed that the production is lower than
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10 times dissipation and the limiter is unused.

Pk = min (−uiuj∂jUi, 10CµKω) (4.10)

The discretization of the dissipative term in RANS Eq. 4.1 is performed as ∂j [ν∂jUi − ujui]

rather than ∂j [ν∂jUi]−∂j [ujui]. Evaluating the divergence of the former proved less stiff than

the other and amenable to convergence. The BEARSM were initialized with a converged SST

flow field and RMS residuals reduced by 8 orders. As the model relies on accurate evaluation of

the mean flow velocity gradients to compute anisotropy, the accuracy of the divergence scheme

affects the quality of predictions. The following are the two solver numerics that were used;

upwind • Gauss Seidel smoother

• Gradient scheme e.g. ∇p= Gauss linear (2-order accurate)

• Divergence scheme e.g.U ·∇(U) = Gauss upwind. (1-order accurate) similarly for K

& ω

• ∇ · uiuj = Gauss linear

• Laplacian schemes e.g. ∇ · (νEff∇U) = Gauss linear corrected (same for K & ω)

• pressure solver is GAMG with Gauss Seidel smoother

linear Divergence scheme e.g. U · ∇(U) = Gauss linear. (2-order accurate) similarly for K &

ω

The linear scheme was used for most of the simulations, but for few diffuser series cases, an

upwind convergence was only achievable.

4.5.3 Diffuser flow prediction

Simulation of the baseline diffuser using BEARSM predicts separation on the top wall.

The mapped inlet boundary condition was used to generate the fully-developed turbulent flow

profile. The profile compares well with the differential RSM predictions.
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4.5.4 Mean flow comparison

The mean flow in Figure 4.11 show a good comparison of flow separation at various sections

of the diffuser. The separation by the BEARSM is larger than DNS, however it spreads over

the top wall at the same location x/H=6. The model sustains a larger core flow velocity, mainly

due to the absence of relaxation effects on eddy-viscosity. As the flow is away from equilibrium

in the diffuser, this assumption makes the mean flow field to respond immediately to changes

in local anisotropy. The secondary flow magnitude and direction are accurately reproduced by

the model. There are two vortices at the bottom that stay though the length of the diffuser. A

saddle node is present at x/H>5 and stays at the centre of channel, however the 3 foci (vortex

core) that converge at this saddle change position relative to the walls. The secondary flow

magnitude is only about 5% of the average Ubulk. As the flow moves downstream, two vortices

close to the top wall approach each other. A closer look of the flow field at the diffuser exit

(Fig. 4.12) shows the vortices clearly. The model resolves 3 of the vortices. DNS indicates the

vortices to be more closer to the corner than the EARSM.

A modeling simplification was made by considering anisotropy a to be defined by the 2D

tensor basis. This simplifies the calculation, as only β1,4 terms are used and the fully consistent

N3 is solved to determine P/ε. This reduced basis is only dependent on two invariant of

strain IIs and vorticity IIΩ, the coupled invariants of IV and V are not used due to this 2-

D assumption. This velocity flow field is quite different from the 3-D tensor basis as see in

Fig.4.12, however topologically correct and an improvement over LEVM. The SΩ−ΩS tensor

term sensitizes the model to 3-D flow effects, though inadequate. The importance of 3-D effects

of mean flow on turbulence anisotropy can be visualized by looking at the other three invariants,

and their deviation from 2-D effects. Plots of IV = SΩ2 in Fig. 4.13a shows the bulk of the

flow to have no 3-D effect on anisotropy. Close to the top separated wall, sloped edge and

the diffuser core, these effects are dominant. The same is corroborated by visualization of V

parameter, a 4th order invariant. Hence in 2-D diffuser results presented, the separation surface

predicted is affected by this assumption.
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(a) DNS U (b) DNS VW

(c) EARSM U (d) EARSM VW

Figure 4.11 Secondary flow predicted by DNS and comparison to BEARSM. The magnitudes

of the Mean or secondary flow are colored. The streamlines do not show direction.

Figure 4.12 Secondary flow predicted by DNS and BEARSM at diffuser exist x/H=15. The

flow indicate the presence of 4 vortices.
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(a) IV (b)
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V − IISIIΩ
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Figure 4.13 Visualization of 3-D flow invariants from LES of baseline diffuser. Regions of 0

have no 3D influence on anisotropy.

4.5.5 Comparison of Reynolds stress

BEARSM predicts the Reynolds stress incorrectly in the diffuser flow, though the gradients

of stress (v2 − w2) and secondary shear stress vw are resolved well enough to calculate the

accurate momentum sources. As the EARSM is an algebraic model based on local velocity

gradient tensors, knowing their values from DNS or LES one could do an apriori study on

the explicit model’s accuracy. However it is noticed that this method is not effective, even for

simple corner flows, as the Reynolds stresses are tightly coupled to momentum transport.

4.5.6 Separation in the diffuser family

The sensitivity of the EARSM to transverse pressure gradient are studied using the diffuser

series. Separation transitions from top to side wall with increase inA, as predicted by LES in

4.14. Quantitatively, the model predicts the same trend, with transition at A2.5. While LES

predicts a transition to side wall at A3. From Figure 4.15 the reverse flow region is predicted

to be higher than that of LES. The model is affected by mild transverse pressure gradient,

at low A1 and 1.5, where the separation surface is larger towards the sloped side wall. The

diffuser series has a constant streamwise pressure gradient ∂p/∂x, which is much higher than

the transverse pressure gradients. The switching of separation is caused due to the gentle

interplay of ∂p/∂y and ∂p/∂z, which affects the lateral straining of turbulence and eventually

mean flow. The BEARSM model is able to sustain a higher shear distribution compared to
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LES prediction, as the algebraic stress approximation leads to high strain Sk/ε asymptotic

limit. The model’s oversensitivity to transverse pressure gradients is due to the inaccuracies

in the pressure-strain rate model. In this case, it is the LRR. The secondary flow predicted at

the diffuser exist resolves the major vortices indicated by LES results

The wall pressure predicted by LES in Fig. 4.16 shows Cp to decrease asAincreases, which

is due to the reduction in separated flow. The EARSM predicts the same trends, however the

values are quite low due to the larger reverse flow region. Moreover, the dCp/dx is steeper

at the inlet for LES than in EARSM. The spreading of the separation along the top wall is

accurately resolved by the model, as the inflection point in the Cp curves match with that of

LES.

4.5.7 General quasi-linear model

A generalized algebraic RSM can be written as:

Na = −A1S + (aΩ−Ωa)−A2(aS + Sa− 2

3
{aS}) (4.11)

where

N = A3 +A4
P
ε

The ARSM is linear in a and quasi-linear is the sense that terms as a{aS} can exist. Two

models were simulated, the original LRR and linearized SSG, the model coefficients are listed

in Table 4.1. The model is computationally intensive as it includes the last term in Eq.4.11

which is neglected in BEARSM. One would expect that with a more complicated formulation

for ARSM, the separation predicted would have higher fidelity. However it is observed that

separation is predicted only at the corners. The flow predicted is similar to the full RSM results

of the corresponding Πij models. From Fig. 4.17 we notice that the inlet profiles of Unorm do

not indicate effects of secondary flow that distort the U profiles towards the corners.

4.5.8 Square duct prediction

Simulation of a simpler flow, fully–developed turbulent flow in a square duct was performed

to verify the predictability of the EARSM formulation. This case was chosen as secondary



57

Figure 4.14 Separation topology in the family of diffusers predicted using an anisotropy-re-

solving BEARSM and LES
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Figure 4.15 Streamwise mean velocity contours in the family of diffusers predicted by

BEARSM and LES.



59

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

C
p

x/L

AR 1
AR 1.5

AR 2
AR 2.5

AR 3

(a) BEARSM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

C
p

x/L

AR 1
AR 1.5

AR 2
AR 2.5

AR 3

(b) LES

Figure 4.16 Pressure on bottom wall predicted by the BEARSM and LES. The abscissa is

non-dimensionalized by diffuser length.

A1 A2 A3 A4

EARSM-WJ2000(c1=1.8, c2=5/9) 1.2 0 1.8 2.25

Original LRR(c1=1.5, c2=0.4) 1.54 0.37 1.45 2.89

Linearized SSG 1.22 0.47 0.88 2.37

Table 4.1 ARSM coefficients for different linear Πr
ij models

(a) original LRR (b) linearized SSG

Figure 4.17 Separation predicted by two generalized linear EARSM.
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is only generated by turbulence anisotropy. On comparison with DNS data of (Huser and

Biringen, 1993), we notice the maximum turbulent kinetic energy to be under-predicted by

50%. Though the anisotropies are accurate, a weaker secondary flow is produced due to this

inaccuracy as seen in Figure 4.18. The secondary streamlines show the direction to be accurate,

however the V magnitudes are under-predicted.

(a) DNS V (b) EARSM V

(c) DNS k (d) EARSM k

Figure 4.18 Secondary flow magnitude (V) and Turbulent kinetic energy (k) predicted by

EARSM and compared with DNS data.
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4.5.9 EARSM variants

Owing to the shortcomings of the BEARSM, a number of improvements to the model have

been proposed. Each of them aimed at overcoming a particular simplification/assumption of

the model, yet keeping the model computationally inexpensive and tractable. Few of these

improvements have been implemented and tested for the baseline diffuser and their merits

evaluated.

4.5.9.1 Diffusion correction

In regions of low P/ε the convective and diffusion effects can be dominant. This is discussed

in section 5 of Wallin and Johansson (2000). The modified coefficient on the LHS of the ARSM

is modified to be;

c
′
1 =

9

4

(
C1 − 1− CD

ε

∂

∂x
(ν

∂

∂x
K)

)
Approximating the turbulent diffusion to be balanced by production and dissipation, and

approximating P/ε = β1IIs. The modification is only used in regions where production-

dissipation ratio is less than one. Hence the constant is:

c
′
1 =

9

4
(C1 − 1 + CDmax(1 + βeq1 IIs, 0))

Using this modified model, no major difference in the diffuser flow is noted(Fig.4.19. The

modification applies only at about the core of flow due to the limiter. The secondary flow

does capture the top left vortex which was seen in DNS, this top vortex was not resolved by

BSL-EARSM and other models we used. The magnitude of the secondary flow is only 1% of

Ubulk hence not a substancial improvement.

4.5.9.2 Calibration of Πij coefficients

The pressure-strain correlation Πij = p(∂iuj + ∂jui) is an important link is the accurate

modeling of stresses. An exact solution for the rapid part is possible only for homogeneous

flow, where equilibrium is considered. The coefficients for the widely used models Launder

et al. (1975) and Speziale et al. (1991) are based on this fundamental flow. The objective of

the calibration is to re-evaluate model coefficient for shear flows. The homogeneous parallel
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(a) Mean flow velocity and separation surface

(b) Secondary flow at x/H=15

Figure 4.19 Flow predicted in the baseline diffuser using the diffusion-corrected EARSM

shear flow is considered, as the P/ε is known and an exact solution to the anisotropy transport

equation exists (Durbin and Reif, 2000, Section 7.2). The existing models are used to predict

the anisotropy and compare with experimently determined anisotropy for homogeneous shear

given below; 
0.36 −0.32 0

−0.32 −0.22 0

0 0 −0.14


LRR(WJ used c=5/9,c1 = 1.8, c2 = (c+ 8)/11 = 0.777, c3 = (8c− 2)/11 = 0.222)

0.296296 −0.299977 0

−0.299977 −0.296296 0

0 0 0


For the calculations P/ε = 1.6 was used as given by experiments. LRR WJ does not predict any

a33 and the anisotropy of primary normal stress is under predicted. The SSG model assumes

c1 = 1.7+0.9P/ε, with this the modified normal stress anisotropies are calculated. The a12 has

an additional dependence on IIa, which is evaluated using the definition of second invariant.

Choosing
√
IIa = −0.438 gives the principle shear stress anisotropy.
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SSG(1991, c2 = 0.4125 and c3 = 0.2125)
0.395722 −0.257842 0

−0.257842 −0.28877 0

0 0 −0.106952


Calibrating LRR model coefficients

As a12 is the most important anisotropy component for shear flows, this value can be fixed

and rapid part coefficient ‘c’ can be found. This constraint gives c=0.505368, with this the

anisotropy tensor is:

LRR( a12 matched, c1=1.8)
0.28413 −0.32 0

−0.32 −0.26588 0

0 0 −0.01825


A better comparison with experiments can be brought if a11 is also constrained. Notice

that each of the components are dependent on only two coefficients for LRR, ‘c’ and ‘c1’. This

additional constraint will fix c1. As the coefficients are coupled, a simultaneous equation in

these 2 coefficients is solved to arrive as their value c=0.510289 and c1=1.30215 (A solution

was eliminated using the constraint c > -2/3, which makes b11 > 0). The anisotropy tensor

looks as:

LRR( a12 and a11 matched)
0.36 −0.32 0

−0.32 −0.339231 0

0 0 −0.0207689


It is noticed that a22 ' 16a33 which is 10 times the ratio found in experiments. This is

inherent to the LRR modeling incompressibility assumption of Mijkk = 0. It is interesting to

note that c=5/9=0.5555 (WJ and Taulbee’s assumption) is very close to the above predicted

c.

With the new set of Corrected LRR coefficients(Table 4.2) the Generalized EARSM is

solved for the baseline diffuser. The separation more accurately represents a total separation
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c1 c2 c3

LRR (WJ2000) 1.8 0.77 0.22

Original LRR 1.8 0.763 0.109

Corrected LRR 1.302 0.7739 0.189

Linearized SSG 1.7+0.9Pε 0.4125 0.2125

Table 4.2 ARSM coefficients for the calibrated LRR and other linear Πij models

on the top wall as seen in Figure 4.20, than a corner separation as shown in Fig. 4.17. The

accuracy of mean flow predicted is as good as the BEARSM approximation (A2 = 0) with the

inclusion of additional terms, however a more accurate Cp distribution is predicted with the

Corrected coefficients(Figure 4.21). The correction has the following coefficients in Equation

4.11 A1 = 1.28, A2 = 0.089, A3 = 0.72, A4 = 2.4. Though A2 is nearly zero, it has an influence

on the accurate prediction of wall pressure. The observation challenges the assumption of

c2=5/9, adopted by Taulbee (1992) and Wallin and Johansson (2000).

(a) Mean flow velocity

(b) Secondary flow at x/H=15

Figure 4.20 Flow predicted in the baseline diffuser using Generalized linear model with Cor-

rected LRR coefficients
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Figure 4.21 Wall Cp predicted by different Generalized EARSM models

4.5.9.3 Streamline curvature Correction

This correction is intended to predict the production accurately along a curved stream-

line. This modifies the vorticity tensor Ω, with the rest of algebraic expressions the same as

BEARSM. The Spalar-Shur(1997) model has been used to predict flow in the baseline flow,

but to no improvement. The effects of streamline curvature on turbulence are negligible in the

diffuser separation.
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CHAPTER 5. CONCLUSION

The subject of 3-D flow separation is indeed challenging as it needs a fundamental under-

standing of various flow structures that interact to create the separated flow. The 3-D separated

flow asymmetric diffusers is studied using the geometry of Cherry et al. (2008) as a reference.

The experimental data has been used to validate the DES and the flow in the diffuser is studied

using this eddy-resolving simulation. The linear eddy-viscosity RANS models fail to predict

separation on the correct wall of 3-D diffuser. A set of diffusers parametrized by the inlet aspect

ratio have been helpful in bringing out the flow and RANS model characteristics. The RANS

models have been oversensitive to transverse pressure gradients, as separation switches from

the one side wall to another with increasing aspect ratio, at lower aspect ratio than predicted

by LES. Basically the RANS models predict the flow singularities correctly close to the diffuser

inlet. However the secondary flow vortices dissipate faster downstream than is seen in SAS

computations.

High resolution LES are conducted on the diffuser series to generate accurate mean and

Reynolds stress predictions that can be used for model development. The LES of baseline

diffuser predict accurately the flow as verified with the DNS dataset of Ohlsson et al. (2010).

In order to predict the complex flow in diffusers, the effects of lateral straining, secondary

flow of second kind needs to be resolved. Sensitizing the coefficient of eddy-viscosity (Cµ) was

explored, however a more comprehensive model such as the Explicit algebraic RSM is found

to predict separation accurately. The key of this RANS model is the ability to resolve the

turbulence anisotropy from mean flow gradients. DNS data indicate the turbulence anisotropy

to undergo an axisymmetric contraction in the separated region, while the rest of the flow

undergoes axisymmetric expansion. An implementation of this model was used to predict the

flow in baseline diffuser. Good agreement of mean flow quantities was observed with reference
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to DNS data. The diffuser series showed the model to switch separation from top to side wall at

nearly sameAas observed in LES results, with the results more accurate than LEVM. As the

model is developed from successive generalization of the RSM, the assumptions are clear and

modeling improvements were done to improve prediction in diffusers. The EARSM predicts

quantitatively the mean flow field accurately, however the Reynolds stresses are incorrect and

wall pressure is under predicted. Recalibration of the pressure-strain tensor coefficients for

original LRR was performed and an improved generalized EARSM model is developed which

predicts a more accurate wall pressure coefficient. The effects of streamline curvature correction

and diffusion correction were included in the model and tested for the diffuser flow, with no

significant improvement in accuracy over the BEARSM of Menter et al. (2009).

5.1 Future work

Scope for improvement of the EARSM exists in enhanced modeling of the Pressure-strain

rate term Πij , both slow and rapid part. Stress-strain relaxation effects need to be included to

accommodate turbulence non-equilibrium. The model can also be adapted for the low range

of SK/ε, such a modification would include non-local effects. Currently most models rely on a

two-equation formulation for turbulence length scale, a novel approach is necessary to predict

the near-wall behavior of the stresses in 3-D APG boundary layers. The LES dataset can be

used to verify the Reynolds stress budgets and anisotropies predicted in the diffuser separation

flow. There are a few existing improvement to EARSM that need to be tested for their efficacy

in predicting 3D separated flows. A listing of the modeling enhancements that can be tested

are given below:

Non-linear Pressure-strain modeling Till now most of the EARSM have used linear mod-

els or quasi-linear models, as the linearized SSG model. Non-linear models such as the

Shih and Lumley (1985) and Fu et al (1987) can be used in the ARSM for Πij . An

explicit solution to ARSM cannot be sought with a non-linear model. An effort was

made by Gatski and Speziale (1993) to use a second-order model for Πij , however the

quadratic term a2 had to be dropped to get an explicit form for a. Regularization has
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to be performed to avoid singularity in EARSM formulation. If a high-order a is used in

the ARSM, the solution has to be numerically sought.

EARSM coefficients as functions of a The standard EARSM is given below with c2 a

constant. In the Wallin and Johansson (2000) model c2 = 5/9 simplifying considerably

the EARSM.(
c1 − 1 +

P
ε

)
a = − 8

15
S +

7c2 + 1

11
(aΩ−Ωa)− 5− 9c2

11
(aS + Sa− 2

3
{aS}I) (5.1)

c1 comes from the Rotta model and c2 from the model used for pressure-strain correla-

tion. The parameter c2 has been suggested by Taulbee et al. (1994) to be dependent on

invariants of a as

c2 =
2

3
[1− 2.2(1 + 0.8

√
F )]

where F = 1 + 27IIIa + 9IIa and IIa = −aklalk/8 and IIIa = aklalmamk/24. This

formulation is recommended in the context of nonlinear model for pressure-strain, however

it should be useful for linear models too.

Improved ARSM for low SK/ε An improvement to the standard ARSM was proposed by

Taulbee (1992), which accounts for convection of strain D
Dt
(√
IIS
)
. Improvements have

been shown for non-equilibrium flows. A fourth term is added to the LHS coefficient of

a in Equation 1. (
c1 − 1 +

P
ε

+
τ√
IIS

[
d(
√
IIS)

dt
+ uk

d(
√
IIS)

dxk

])
where τ is the turbulence timescale and IIS is the second invariant of non-dimensional

Strain. The EARSM can be solved using this modification.

Stress-strain lag model The model developed by Revell et al. (2006) accounts for lag by

solving for an additional transport equation for DDt
(P
ε

)
and uses it to limit νT and calcu-

late turbulence production P̃k(= −kPε ). The steps in this procedure are:

• calculate aij using the EARSM formulation

• Solve for Cas, which is P/ε√
2S2

. The boundary conditions for this term are 0 at wall.

The author of model has used a wall damping function.
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Figure 5.1 Stress-strain lag parameter Cas = − aijSij√
2SijSij

evaluated from LES flow field of

baseline diffuser.

• solve for k and ω using updated production P̃k

• update νT=k min
(

1
ω ,
P/ε
4S2

)
The lag parameter evaluated using LES (Fig. 5.1) indicates misalignment of stress and

strain close to the diffuser inlet and at the walls.
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