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ABSTRACT 

The development of the high-order accuracy spectral difference (SD) method on 

hexahedral mesh and its applications in aeroacoustic and aerodynamic problems are carried 

out in this work. Two absorbing boundary conditions, the absorbing sponge zone and the 

perfectly matched layer, are developed and implemented for the SD method discretizing the 

Euler and Navier-Stokes equations on unstructured grids. The performance of both 

boundary conditions is evaluated and compared with the characteristic boundary condition 

for a variety of benchmark problems including vortex and acoustic wave propagations. The 

applications of the perfectly matched layer technique in the numerical simulations of 

unsteady problems with complex geometries are also presented to demonstrate its capability. 

Numerical simulations of the low-Reynolds number (Re ൌ 	10ସ	~	10ହ	) flows over a 

SD7003 airfoil at moderate incidences (൏ 10°) are performed. A low-frequency convective 

instability is observed to dominate the spectrum near the leading edge and be responsible 

for the growth of the disturbance in the attached boundary layer. The characteristic 

frequency, the growth rate and the wave shape are investigated based on the numerical 

results. The growth of the low-frequency instability is not in agreement with parallel flow 

stability theory, nor with leading edge receptivity theory. And it has a higher growth rate 

than the Tollmien-Schlichting (T-S) wave. The effects of the angle-of-attack (AoA), the 

Reynolds number and the airfoil geometry on the low-frequency instability are investigated 

and discussed.  

The mechanisms in the breakdown process are investigated and discussed. it is observed 

that the breakdown of the shedding vortices starts at approximately the location with the 

maximum negative streamwise flow velocity. And the reverse flow in the separation region 

directly triggers the generation of three dimensional disturbances and the streamwise 

vorticities. In addition, the secondary instability which initiates the breakdown process 

differs in cases at different AOAs. The elliptic and hyperbolic instabilities observed in 

bluff-body wakes are found to occur in the breakdown process of current cases. 

Furthermore, the sequence of breakdown states at various incidences is found to be similar 

to that of the bluff-body wakes at various Reynolds numbers. 
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A numerical investigation of passive LSB control techniques using roughness bumps on 

a low-Reynolds number wing is conducted as a further study. The previous case at ܴ݁ ൌ

6 ൈ 10ସ and ܣ݋ܣ ൌ 4° is used as the baseline (uncontrolled) case. In the controlled cases, 

roughness bumps are strategically placed near the leading edge of the wing for the purpose 

of improving aerodynamic performance in terms of the lift to drag ratio. The location, bump 

size, the number of bumps and the AoA are varied to study the effects. The pressure drag 

forces in the controlled cases are found to be reduced significantly when the LSB are 

reduced or avoided, resulting in much improved lift over drag ratio. 
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CHAPTER 1. General Introduction 

Introduction 

In the last two decades, there have been intensive research efforts on high-order 

methods for unstructured grids. Such methods provide unprecedented geometric flexibility 

and accuracy for real world applications. An incomplete list of notable examples includes 

the spectral element method [1], multi-domain spectral method [2,3], k-exact finite volume 

method [4], WENO methods [5], discontinuous Galerkin (DG) method [6,7,8], high-order 

residual distribution methods [9], spectral volume (SV) [10-14] and spectral difference (SD) 

methods [15-21]. Spectral difference method originated in the staggered grid multi-domain 

spectral method [2,3]. Thereafter it was generalized to simplex elements by Liu et al 

[16,22]. More recently, a weak instability was discovered by van Den Abeele et al. [23] and 

Huynh [24]. The use of Gauss quadrature points and the two ending points as the flux 

points fixes the problem, and it was proved to be stable by Jameson [25]. A high-order SD 

method for three dimensional Navier-Stokes equations on unstructured hexahedral grids 

developed by Sun et al. [18,19] is used in this paper. 

For the numerical simulations of fluid dynamic and aeroacoustic problems, a proper 

artificial computational boundary condition is needed to minimize the reflection of out-

going waves, which can contaminate the physical flow field. This boundary condition is 

usually called the non-reflecting boundary condition or absorbing boundary condition. It 

remains a critical component and a difficult challenge in the development of computational 

fluid dynamics (CFD) and computational aeroacoustics (CAA) algorithms. Significant 

progresses have been made in this research as reviewed extensively by Colonius et al. [26] 

and Hu [27].  

The non-reflecting boundary condition based on the characteristics of the Euler 

equations was developed as one of the first attempts to minimize the reflection of out-going 

waves, e.g., in [28-30]. The absorbing boundary condition (ABC) also receives much 

attention from the electromagnetic and acoustic communities. An innovative class of 

approaches of non-reflecting/absorbing boundary conditions uses extra artificial zones to 

reduce wave reflections. They are the loosely termed “zonal techniques” [27]. In this type 

of technique, additional zones surrounding the physical domain are introduced so that in the 
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added zones either the outgoing disturbances/waves are attenuated and thus the reflections 

are minimized, or the mean flow is altered gradually to be supersonic and thus all 

disturbances/waves are out-going. Two popular zonal techniques are the absorbing sponge 

zone (ASZ) technique [31] and perfectly matched layer (PML) technique [32]. In this work, 

both the ASZ and the PML techniques are extended and implemented for the SD method on 

hexahedral meshes. The performance and effectiveness are compared with the CBC based 

on one-dimensional Euler equations. Then a two cylinder case is employed to test the 

performance of three boundary conditions with complex geometries and vortex dominant 

flow.  

In the past decade, low-Reynolds-number flows and the associated laminar separation 

bubbles (LSBs) have been of great interest in the development of micro air vehicles (MAV), 

small scale wind turbines and low-pressure turbine/cascade. Since laminar boundary layers 

are less resistible to the significant adverse pressure gradient, LSBs are widely found over 

the suction side of low-Reynolds number airfoils/turbines at incidences. LSBs on an airfoil 

are classified into two types: a short bubble and a long bubble [33]. A short bubble is 

formed when the airfoil AoA  is relatively small. The flow quickly transitions into a 

turbulent one and reattaches downstream after the breakdown of LSBs. A long bubble is 

formed at higher AoAs near the stall condition. For airfoils, the behavior of the LSB affects 

the aerodynamic performance and typically causes the increase of the pressure drag. 

Meanwhile, the existence of a turbulent boundary layer induces higher friction force on the 

airfoil than a laminar flow, and therefore can cause the degradation of the lift-to-drag ratio. 

Early works on LSB and associated hydrodynamic instability mechanisms can be traced 

back to the 1950s [33] and 1960s [34-37]. With the rapid development of numerical 

methods, numerical simulations of laminar-separated flows have been used to investigate 

the LSB and the associated turbulent transition. The two-dimensional simulations of 

separation bubbles were first carried out and investigated by Pauley et al [38]. Pauley [39] 

and Rist [40] carried out three-dimensional studies of the primary instability later, but the 

transition was still not resolved due to the limitation of the computational resource and 

computer technology. More recently, direct numerical simulations (DNS) to fully resolve 

the transition of LSBs to turbulence were conducted by Alam & Sandham [41] and also 
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Spalart & Strelets [42]. With the development of experimental techniques, Laser-Doppler-

Anemometry (LDA) and Particle-Image-Velocity (PIV) technologies can provide the flow 

field measurements to quantify the evolution of the unsteady flow structure and investigate 

the dynamics of LSBs (see Marxen et al. [43]; Lang et al. [44]; Hu & Yang [45]; 

Yarusevych et al. [46]; Hain et al.[47]). In spite of considerable progresses in recent years, 

both the LSB and the transition mechanism still need further investigation. Distinct from 

the convective types of transition, the simultaneous presence of and the interaction between 

separation and transition make the problem highly complicated.  

In the present study, the numerical simulations of the low-Reynolds number flows over 

a SD7003 airfoil at incidences are carried out by using the high-order SD method for the 

three-dimensional Navier-Stokes equations on hexahedral grids. The simulations started 

with a uniform freestream initial condition and no incoming disturbances are added 

explicitly. The ‘short’ bubbles and transitional flows are observed on the suctions side of 

the airfoil under the present conditions. We study the primary growth of disturbances on a 

low-Reynolds number airfoil at moderate incidences when ‘short’ bubbles occur, and a 

low-frequency instability is found to be dominant near the leading edge and responsible for 

the growth of disturbances. The growth of the low-frequency instability is not in agreement 

with the parallel flow stability theory, nor with the leading edge receptivity theory. The 

AoA, Reynolds number and the geometry of the airfoil are varied to investigate their effects 

on the frequency and the growth rate of the low-frequency instability. 

The breakdown processes of the current ‘short’ LSBs at different incidences are 

investigated and discussed in this work. The breakdown to turbulent flow occurs more 

abruptly than the receptivity and disturbance-growth stages. In different flows, there are 

different possible scenarios for the breakdown process but it is generally accepted the 

breakdown is caused by the uncontrolled growth of unstable three dimensional waves. The 

so-called secondary instability in compare with the primary instability is responsible for the 

growth of the three dimensional disturbances. In the present cases, the secondary instability 

which initiates the breakdown process differs in cases at different AOAs. The elliptic and 

hyperbolic instabilities observed in bluff-body wakes are found to occur in the breakdown 

process of current cases. Furthermore, the sequence of breakdown states at various 
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incidences is found to be similar to that of the bluff-body wakes at various Reynolds 

numbers. 

Flow control, the technique to manipulate a flow field to achieve a desired change, is of 

immense technological importance, and thus is pursued by many scientists and engineers in 

various areas of fluid mechanics field for many years. The configuration lift, drag and L D⁄  

ratio are the principal considerations in the design and construction of air vehicles. The 

decrease in drag and increase in L D⁄  ratio can increase the range and reduce the required 

thrust, which result in improved fuel economy. Low-Reynolds number (Reୡ ൌ 10ସ~10ହ) 

flow has been of interest for many decades with the development of Micro Air Vehicles 

(MAV). In the low-Reynolds number flows over airfoils, the formation of a LSB has a 

dominant effect on the flow field and usually causes high pressure drag force on the airfoil. 

Reducing or avoiding the LSB on the surfaces of the airfoils is one way of achieving 

reduced drag. Because of this, aerodynamicists and aircraft designers have pursued the 

objective of separation control for many decades. 

A passive flow control technique using surface roughness (bumps) near the leading-

edge of the wing is numerically studied as a further study. High-order methods on 

unstructured grids are known for their advantages of accuracy and flexibility in the 

numerical simulation of multi-scale flow with complex geometries. The approach of SD 

method is capable of capturing the laminar separation and the vortex breakdown, and has 

been previously shown in the numerical simulation of the attached/detached laminar flow 

and the reattached turbulent flow. The roughness bumps can affect the formation of the 

LSBs and be used for the purpose of aerodynamic performance improvement. The flow 

over a SD7003 wing at AoA ൌ 4	deg, Reୡ ൌ 6 ൈ 10ସ and M ൌ 0.2 is used as the baseline 

model and the starting point for the controlled models. In the controlled cases, roughness 

bumps are strategically placed near the leading edge of the wing for the purpose of 

improving aerodynamic performance in terms of the lift to drag ratio. The location, bump 

size, the number of bumps and the angle-of-attack are varied to study the effects. The 

pressure drag forces in the controlled cases are found to be reduced significantly when the 

LSB are reduced or avoided, resulting in much improved lift over drag ratio. 
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Dissertation Organization 

The rest of this dissertation is organized as follows. 

Chapter 2, “Absorbing Boundary Conditions for the Euler and Navier-Stokes Equations 

with the Spectral Difference Method” is a paper published in Journal of Computational 

Physics. I am the primary author of the paper, responsible for most of the work and writing. 

Chapter 3, “A Low-Frequency Instability/Oscillation near the Airfoil Leading-Edge at 

Low Reynolds Numbers and Moderate Incidences” is a paper planned to submit to AIAA 

Journal. I am the primary author of the paper, responsible for most of the work and writing. 

 Chapter 4, “The breakdown of laminar separation bubbles on a low-Reynolds number 

airfoil at incidences” is a paper planned to submit to AIAA Journal. I am the primary author 

of the paper, responsible for most of the work and writing. 

Chapter 5, “Effects of Surface Roughness on Laminar Separation Bubble over a Wing 

at a Low-Reynolds Number” is a paper submitted to AIAA Journal and in revision process. 

I am the primary author of the paper, responsible for most of the work and writing. 

Chapter 6 is devoted to general conclusions. 
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CHAPTER 2. Absorbing Boundary Conditions for the Euler and 

Navier-Stokes Equations with the Spectral Difference Method 

A paper published in Journal of Computational Physics 

 

Ying Zhou and Z.J. Wang 

Abstract 

Two absorbing boundary conditions, the absorbing sponge zone and the perfectly 

matched layer, are developed and implemented for the spectral difference method 

discretizing the Euler and Navier-Stokes equations on unstructured grids. The performance 

of both boundary conditions is evaluated and compared with the characteristic boundary 

condition for a variety of benchmark problems including vortex and acoustic wave 

propagations. The applications of the perfectly matched layer technique in the numerical 

simulations of unsteady problems with complex geometries are also presented to 

demonstrate its capability. 

1. Introduction 

In the last two decades, there have been intensive research efforts on high-order 

methods for unstructured grids. Such methods provide unprecedented geometric flexibility 

and accuracy for real world applications. An incomplete list of notable examples includes 

the spectral element method [51], multi-domain spectral method [44,45], k-exact finite 

volume method [6], WENO methods [27], discontinuous Galerkin (DG) method [7,12,13], 

high-order residual distribution methods [1], spectral volume (SV) [49,56,64,65,66] and 

spectral difference (SD) methods [40,47,50,57,58,67,68]. Spectral difference method 

originated in the staggered grid multi-domain spectral method [43,44]. Thereafter it was 

generalized to simplex elements by Liu et al [47,48]. More recently, a weak instability was 

discovered by van Den Abeele et al. [63] and Huynh [41]. The use of Gauss quadrature 

points and the two ending points as the flux points fixes the problem, and it was proved to 

be stable by Jameson [42]. A high-order SD method for three dimensional Navier-Stokes 

equations on unstructured hexahedral grids developed by Sun et al. [57,58] is used in this 

paper. 
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For the numerical simulations of fluid dynamic and aeroacoustic problems, a proper 

artificial computational boundary condition is needed to minimize the reflection of out-

going waves, which can contaminate the physical flow field. This boundary condition is 

usually called the non-reflecting boundary condition or absorbing boundary condition. It 

remains a critical component and a difficult challenge in the development of computational 

fluid dynamics (CFD) and computational aeroacoustics (CAA) algorithms. Significant 

progresses have been made in this research as reviewed extensively by Colonius et al. [16] 

and Hu [34].  

The non-reflecting boundary condition based on the characteristics of the Euler 

equations was developed as one of the first attempts to minimize the reflection of out-going 

waves, e.g., in [21,54,61]. In the Godunov-type finite volume methods, the characteristic 

boundary condition (CBC) based on the linearized one-dimensional Euler equations 

[45,69,26] is widespread and works well in the numerical simulations of steady problems. 

For multi-dimensional problems, the performance of the CBC degrades if the wave 

propagation direction is not aligned with the boundary face normal direction. More efficient 

and accurate non-reflecting boundary conditions are needed to handle problems like vortex 

dominated flows and wave propagation problems.  

The absorbing boundary condition (ABC) also receives much attention from the 

electromagnetic and acoustic communities. Engquist and Majda [18] made a pioneering 

contribution to in this area. Their boundary conditions were constructed to minimize 

reflections of waves traveling in directions close to perpendicular to the boundary. Higdon 

[25] further developed the boundary conditions in a simpler and more general form. 

Another well-known ABC firstly proposed by Bayliss and Turkel [8,9] was developed in an 

asymptotic expansion of the solution in the far field and annihilate of the leading terms. 

This type of ABC is widely used in scattering problems to absorb the outgoing disturbances. 

In the present study, we consider flow problems with strong nonlinear viscous wakes. As a 

result, we did not pursue the above boundary conditions.  

An innovative class of approaches of non-reflecting/absorbing boundary conditions uses 

extra artificial zones to reduce wave reflections. They are the loosely termed “zonal 

techniques” [34]. In this type of technique, additional zones surrounding the physical 
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domain are introduced so that in the added zones either the outgoing disturbances/waves are 

attenuated and thus the reflections are minimized, or the mean flow is altered gradually to 

be supersonic and thus all disturbances/waves are out-going. Two popular zonal techniques 

are the absorbing sponge zone (ASZ) technique [19] and perfectly matched layer (PML) 

technique [39].  

The ASZ technique used in this paper was first proposed for the direct acoustic 

simulation by Colonius et al. [15]. It was further developed and theoretically analyzed by 

Freund [19] and Bodony [11]. Inside the ASZ domain, one source term െσሺQ െ Qഥሻ is 

added to the right-hand-side of the governing equations such that the solution Q is gradually 

tuned to the proposed solution Qഥ. In order to diminish the reflected error generated at the 

physical/ASZ interface, the absorbing coefficient σ increases smoothly from zero at the 

interface to a positive value at the end of the ASZ domain. This technique is widely used in 

the CAA community for its simplicity and effective performance.  

The PML technique was originally developed as an absorbing boundary condition for 

computational electromagnetic [10] in which the Maxwell equations are numerically solved, 

and quickly became the method of choice in the computational electromagnetic community 

[20,53]. The PML equations are formulated such that the amplitude of the out-going waves 

entering the PML domain can be exponentially reduced while causing as little numerical 

reflection as possible. It was also found to be a good choice for computational aeroacoustics 

and computational fluid dynamics [14,22,23,24,62]. The PML technique was firstly 

extended to the linearized Euler equations in [28]. However the direct adaption of the split 

formulation to the Euler equations was found to be unstable in the PML domain 

[28,29,2,3,4,5,60,70]. Hu [30,31,33,35,52] found that for the PML technique to yield stable 

absorbing boundary condition, the phase and group velocities of the physical wave 

supported by the governing equations must be consistent and in the same direction, and a 

stable formulation of a PML for the linearized Euler equations was proposed. It was proved 

in [36] that theoretically no reflection will be generated in the PML domain for linearized 

Euler equations. Further extension of the PML technique to nonlinear Euler and Navier-

Stokes equations was given in [37,39]. For nonlinear equations, though the conversion of 

the equations is not perfectly matched to the original equations due to the nonlinearity of 
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flux vectors, the results of the numerical examples show that the proposed absorbing 

equations are still effective [37,38,39]. 

In this paper, both the ASZ and the PML techniques are extended and implemented for 

the SD method on hexahedral meshes. The performance and effectiveness are compared 

with the CBC based on one-dimensional Euler equations. Then a two cylinder case is 

employed to test the performance of three boundary conditions with complex geometries 

and vortex dominant flow.  

The rest of the paper is organized as follows. In the next section, the formulation of the 

spectral difference method is briefly reviewed. In sections 3 and 4, the ASZ and PML 

approaches used in the spectral difference method are presented with the unstructured 

hexahedral mesh. In section 5, numerical tests are presented and discussed. Concluding 

remarks are given in section 6. 

2. Review of the Multi-domain Spectral Difference Method 

2.1 Governing equations 

Consider the three-dimensional compressible non-linear Navier-Stokes equations 

written in the conservation form as  

߲ܳ
ݐ߲

൅
ܨ߲
ݔ߲

൅
ܩ߲
ݕ߲

൅
ܪ߲
ݖ߲

ൌ 0																																																														ሺ2.1ܽሻ 

on domain ߗ ൈ ሾ0, ܶሿ and ߗ ⊂ ܴଷ with the initial condition 

ܳሺݔ, ,ݕ ,ݖ 0ሻ ൌ ܳ଴ሺݔ, ,ݕ  ሺ2.1ܾሻ																																																														ሻݖ

and appropriate boundary conditions on ߲ߗ . In (2.1), ݔ ݕ , , and ݖ  are the Cartesian 

coordinates and ሺݔ, ,ݕ ሻݖ ∈ Ω, ݐ ∈ ሾ0, ܶሿ denotes time. ܳ is the vector of conserved variables, 

and ܨ ܩ ,  and ܪ  are the fluxes in the ݔ ݖ and ݕ ,  directions, respectively, which take the 

following form 
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with the total energy written as 

ܧ ൌ
݌

ߛ െ 1
൅
1
2
ଶݑሺߩ ൅ ଶݒ ൅  ଶሻݓ

viscous stress terms written as 
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and heat transfer terms 

௫ݍ ൌ െ݇
߲ܶ
ݔ߲

, ௬ݍ ൌ െ݇
߲ܶ
ݕ߲

, ௭ݍ ൌ െ݇
߲ܶ
ݖ߲

 

where ሼߩ, ,ݑ ,ݒ ,ݓ  is ߤ ,ሽ are the primitive variables of density, velocities and pressure݌

coefficient of viscosity and ݇ is the coefficient of thermal. 

2.2 Coordinate transformation 
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Fig. 1. Transformation from a physical element to a standard element 

In the SD method, it is assumed that the computational domain is divided into non-

overlapping unstructured hexahedral cells or elements. In order to handle curved boundaries, 

both linear and quadratic isoparametric elements are employed, with linear elements used in 

the interior domain and quadratic elements used near high-order curved boundaries. In 

order to achieve an efficient implementation, all physical elements ሺx, y, zሻ are transformed 

into standard cubic element ሺξ, η, ςሻ ∈ ሾെ1,1ሿ ൈ ሾെ1,1ሿ ൈ ሾെ1,1ሿ as shown in Fig. 1.  

The transformation can be written as 

ቈ
ݔ
ݕ
ݖ
቉ ൌ෍ܯ௜ሺߦ, ,ߟ ߫ሻ

௄

௜ୀଵ

൥
௜ݔ
௜ݕ
௜ݖ
൩																																																														ሺ2.2ሻ 

where ܭ is the number of points used to define the physical element, ሺݔ௜, ,௜ݕ  ௜ሻ are theݖ

Cartesian coordinates of these points, and ܯ௜ሺߦ, ,ߟ ߫ሻ  are the shape functions. For the 

transformation given in (2.2), the Jacobian matrix ܬ takes the following form 

ܬ ൌ డሺ௫,௬,௭ሻ

డሺక,ఎ,చሻ
ൌ ൥

కݔ ఎݔ చݔ
కݕ ఎݕ చݕ
కݖ ఎݖ చݖ

൩. 

The governing equations in the physical domain are then transformed into the standard 

element, and the transformed equations take the following form 

߲ ෨ܳ

ݐ߲
൅
෨ܨ߲

ߦ߲
൅
෨ܩ߲

ߟ߲
൅
෩ܪ߲

߲߫
ൌ 0																																																														ሺ2.3ሻ 

where 

෨ܳ ൌ |ܬ| ∙ ܳ 
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൥
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௫ߟ ௬ߟ ௭ߟ
߫௫ ߫௬ ߫௭

቏ ∙ ൥
ܨ
ܩ
ܪ
൩ 

2.3 Spatial Discretization 

In the standard element, two sets of points are defined, namely the solution points and 

the flux points, illustrated in Fig. 2 for a 2D element. The solution unknowns (conserved 

variables Q) or degrees-of-freedoms (DOFs) are stored at the solution points, while fluxes 

are computed at the flux points. The solution points in 1D are chosen to be the Chebyshev-

Gauss points defined by 

ܺ௦ ൌ െܿݏ݋ ൬
ݏ2 െ 1
2ܰ

∙ ൰ߨ , ݏ ൌ 1,2,⋯ ,ܰ.																																												ሺ2.4ሻ 

 

Fig. 2. Distribution of solution points (circles) and flux points (squares) in a standard 

element for a 3rd-order SD scheme. 

With solutions at N  points, we can construct a degree ሺN െ 1ሻ  polynomial in each 

coordinate direction using the following Lagrange basis defined as 

݄௜ሺܺሻ ൌ ෑ ൬
ܺ െ ܺ௦
௜ܺ െ ܺ௦

൰

ே

௦ୀଵ,௦ஷ௜

																																																														ሺ2.5ሻ 

The reconstructed solution for the conserved variables in the standard element is just the 

tensor products of the three one-dimensional polynomials, i.e., 

ܳሺߦ, ,ߟ ߫ሻ ൌ ෍෍෍
෨ܳ௜,௝,௞
หܬ௜,௝,௞ห

ே

௜ୀଵ

ே

௝ୀଵ

ே

௞ୀଵ

݄௜ሺߦሻ ∙ ௝݄ሺߟሻ ∙ ݄௞ሺ߫ሻ																																									ሺ2.6ሻ 
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The flux points in 1D are chosen to be the ሺN െ 1ሻ Legendre-Gauss quadrature points 

plus the two end points, -1 and 1. With fluxes at ሺN ൅ 1ሻ points, a degree N polynomial can 

be constructed in each coordinate direction using the following Lagrange bases defined as 

݈௜ାଵ ଶ⁄ ሺܺሻ ൌ ෑ ቆ
ܺ െ ܺ௦ାଵ ଶ⁄

௜ܺାଵ ଶ⁄ െ ܺ௦ାଵ ଶ⁄
ቇ

ே

௦ୀ଴,௦ஷ௜

																																																	ሺ2.7ሻ 

Similarly, the reconstructed flux polynomials take the following form: 

,ߦ෨ሺܨ ,ߟ ߫ሻ ൌ ෍෍෍ܨ෨௜ାଵ ଶ⁄ ,௝,௞

ே

௜ୀ଴

ே

௝ୀଵ

ே

௞ୀଵ

݈௜ାଵ ଶ⁄ ሺߦሻ ∙ ௝݄ሺߟሻ ∙ ݄௞ሺ߫ሻ																															ሺ2.8ܽሻ 

,ߦ෨ሺܩ ,ߟ ߫ሻ ൌ ෍෍෍ܩ෨௜,௝ାଵ ଶ⁄ ,௞

ே

௜ୀଵ

ே

௝ୀ଴

ே

௞ୀଵ

݄௜ሺߦሻ ∙ ௝݈ାଵ ଶ⁄ ሺߟሻ ∙ ݄௞ሺ߫ሻ																															ሺ2.8ܾሻ 

,ߦ෩ሺܪ ,ߟ ߫ሻ ൌ ෍෍෍ܪ෩௜,௝,௞ାଵ ଶ⁄

ே

௜ୀଵ

ே

௝ୀଵ

ே

௞ୀ଴

݄௜ሺߦሻ ∙ ௝݄ሺߟሻ ∙ ݈௞ାଵ ଶ⁄ ሺ߫ሻ																															ሺ2.8ܿሻ 

Because the SD method is based on the differential form of the governing equations, the 

implementation is straightforward even for high-order curved boundaries. All the 

operations are basically one-dimensional in each coordinate direction and each coordinate 

direction shares the collocated solution points with others, resulting in improved efficiency. 

In summary, the algorithm to compute the inviscid flux and viscous flux and update the 

unknowns (DOFs) consists the following steps: 

1. Given the conserved variables ൛ܳ௜,௝,௞ൟ at the solution points, compute the conserved 

variables ൛ܳ௜ାଵ ଶ⁄ ,௝,௞ൟ at the flux points using polynomial (2.6). 

2. Note that inviscid flux is a function of the conserved solution and the viscous flux is 

a function of both the conserved solution and its gradient, taking flux ܨ෨ for example: 

ቐ

෨ܨ ൌ ෨௜ܨ െ ෨௩ܨ

෨௜ାଵܨ ଶ⁄ ,௝,௞
௜ ൌ ෨௜൫ܳ௜ାଵܨ ଶ⁄ ,௝,௞൯

෨௜ାଵܨ ଶ⁄ ,௝,௞
௩ ൌ ෨௩൫ܳ௜ାଵܨ ଶ⁄ ,௝,௞, ௜ାଵܳ׏ ଶ⁄ ,௝,௞൯

																																				ሺ2.9ሻ 

Compute the inviscid fluxes ൛ܨ෨௜ାଵ ଶ⁄ ,௝,௞
௜ ൟ at the interior flux points using the solution 

൛ܳ௜ାଵ ଶ⁄ ,௝,௞ൟ computed at Step 1. Compute the viscous fluxes ൛ܨ෨௜ାଵ ଶ⁄ ,௝,௞
௩ ൟ using the 
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solution ൛ܳ௜ାଵ ଶ⁄ ,௝,௞ൟ  computed at Step 1 and the gradient of the solutions  

൛ܳ׏௜ାଵ ଶ⁄ ,௝,௞ൟ computed based on ൛ܳ௜ାଵ ଶ⁄ ,௝,௞ൟ. 

3. Compute the common inviscid flux at element interfaces using a Riemann solver 

(2.11), such as the Roe solver [55] and Russanov solver [57].  

෨௜ܨ ൌ ,෨௜ሺܳ௅ܨ ܳோሻ																																																														ሺ2.11ሻ 

where ܳ௅ and ܳோ represent the solutions from the two elements beside the interface. 

Compute the common viscous flux at element interfaces using a viscous approach 

(2.12), such as the averaged approach and DG-like approach [57]. 

෨௩ܨ ൌ ,෨௩ሺܳ௅ܨ ܳோ, ,௅ܳ׏  ሺ2.12ሻ																																																						ோሻܳ׏

Then compute the derivatives of the fluxes at all the solution points by using (2.13). 

ቆ
෨ܨ߲

ߦ߲
ቇ
௜,௝,௞

ൌ෍ܨ෨௥ାଵ ଶ⁄ ,௝,௞

ே

௥ୀ଴

݈′௥ାଵ ଶ⁄ ሺߦ௜ሻ																																									ሺ2.13ܽሻ 

ቆ
෨ܩ߲

ߟ߲
ቇ
௜,௝,௞

ൌ෍ܩ෨௜,௥ାଵ ଶ⁄ ,௞

ே

௥ୀ଴

݈′௥ାଵ ଶ⁄ ൫ߟ௝൯																																									ሺ2.13ܾሻ 

ቆ
෩ܪ߲

߲߫
ቇ
௜,௝,௞

ൌ෍ܪ෩௜,௝,௥ାଵ ଶ⁄

ே

௥ୀ଴

݈′௥ାଵ ଶ⁄ ሺ߫௞ሻ																																									ሺ2.13ܿሻ 

 

4. Update the DOFs using a multistage TVD scheme for time integration of (2.14). 

߲ ෨ܳ௜,௝,௞
ݐ߲

ൌ െቆ
෨ܨ߲

ߦ߲
൅
෨ܩ߲

ߟ߲
൅
෩ܪ߲

߲߫
ቇ
௜,௝,௞

																																									ሺ2.14ሻ 

For more details about SD method on hexahedral mesh, the readers can refer to [57]. 

3. Formulation of the absorbing sponge zone (ASZ) 

The ASZ technique is a widely used absorbing boundary condition in the computational 

aeroacoustic community. In generalized coordinates, the conservative form of the Navier-

Stokes equations with additional source terms in ASZ domain can be expressed as 

߲ ෨ܳ

ݐ߲
൅
෨ܨ߲

ߦ߲
൅
෨ܩ߲

ߟ߲
൅
෩ܪ߲

߲߫
ൌ െ ሚܵ																																																														ሺ3.1ሻ 

where 

ሚܵ ൌ |ܬ| ∙ ܵ 
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ܵ ൌ ሺܳߪ െ തܳሻ ൌ ߪ

ە
ۖ
۔

ۖ
ۓ

ߩ െ ߩ̅
ݑߩ െ തതതതݑߩ
ݒߩ െ തതതതݒߩ
ݓߩ െ തതതതݓߩ
ܧ െ തܧ ۙ

ۖ
ۘ

ۖ
ۗ

 and ߪ is the absorbing coefficient. 

Basically, there are two choices for the proposed solution Qഥ in ASZ domain. One is to 

choose Qഥ to be the far field values, and the CBC is usually used at the boundary of the ASZ 

domain. In this paper, all the numerical cases with ASZ choose this one. The other one is to 

set Qഥ to be a supersonic uniform flow, and the boundary condition at the end of the ASZ 

domain can simply be the extrapolation boundary condition. 

The effectiveness of the ASZ can be roughly shown as follows. Take the 1st-order Euler 

method for example. Let Q୧,୨,୩
୬ାଵ and Q୧,୨,୩

୬ାଵ∗	 be the numerical solutions of the Navier-Stokes 

equation with and without the source term respectively, then 

ܳ௜,௝,௞
௡ାଵ ൌ ܳ௜,௝,௞

௡ െ ݐ∆ ൬ܵ ൅
ܨ߲
ݔ߲

൅
ܩ߲
ݕ߲

൅
ܪ߲
ݖ߲
൰
௜,௝,௞

௡

																																														ሺ3.2ሻ 

ܳ௜,௝,௞
௡ାଵ∗ ൌ ܳ௜,௝,௞

௡ െ ݐ∆ ൬
ܨ߲
ݔ߲

൅
ܩ߲
ݕ߲

൅
ܪ߲
ݖ߲
൰
௜,௝,௞

௡

.																																														ሺ3.3ሻ 

 There are three possible cases: 

1) If ܳ௜,௝,௞
௡ ൐ തܳ

௜,௝,௞
௡  then S=	ߪ൫ܳ௜,௝,௞

௡ െ തܳ
௜,௝,௞
௡ ൯ ൐ 0 such that ܳ௜,௝,௞

௡ାଵ ൏ ܳ௜,௝,௞
௡ାଵ∗.  

2) If ܳ௜,௝,௞
௡ ൏ തܳ

௜,௝,௞
௡  then S=	ߪ൫ܳ௜,௝,௞

௡ െ തܳ
௜,௝,௞
௡ ൯ ൏ 0 such thatܳ௜,௝,௞

௡ାଵ ൐ ܳ௜,௝,௞
௡ାଵ∗.  

3) If ܳ௜,௝,௞
௡ ൌ തܳ

௜,௝,௞
௡  then S=	ߪ൫ܳ௜,௝,௞

௡ െ തܳ
௜,௝,௞
௡ ൯ ൌ 0 such that ܳ௜,௝,௞

௡ାଵ ൌ ܳ௜,௝,௞
௡ାଵ∗.  

The source term S ൌ σሺQ െ Qഥሻ adjusts the solution Q gradually approaching to Qഥ as in 

case 1) and 2) till the solution Q is tuned to the proposed solution Qഥ inside the ASZ domain 

as in case 3). 

The coefficient σ is zero in the physical domain and grows smoothly in the ASZ domain 

to a specified value at the boundaries in order to minimize the reflection generated at the 

interfaces between the physical domain and the ASZ domain. Here, a basic sponge 

coefficient profile for a cuboid mesh with smooth blending over the corners can be given by 

ߪ ൌ ,ݔሺߪ ,ݕ ሻݖ ൌ ଴ߪ ሼ1 ൅ ሻሿሽݖሺܥሻݕሺܤሻݔሺܣߨሾݏ݋ܿ 2⁄ 																																					ሺ3.4ሻ 

where 

ݔ ∈ ሾݔ௠௜௡, ݕ	&	௠௔௫ሿݔ ∈ ሾݕ௠௜௡, ݖ	&	௠௔௫ሿݕ ∈ ሾݖ௠௜௡,  ௠௔௫ሿݖ
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ቐ
ሻݔሺܣ ൌ 1 െ݉ܽݔሾ1 െ ሺݔ െ ௠௜௡ሻݔ ⁄௫ܮ , 0ሿ െ ሾ1ݔܽ݉ െ ሺݔ௠௔௫ െ ሻݔ ⁄௫ܮ , 0ሿ
ሻݕሺܤ ൌ 1 െ݉ܽ1ൣݔ െ ሺݕ െ ௠௜௡ሻݕ ⁄௬ܮ , 0൧ െ 1ൣݔܽ݉ െ ሺݕ௠௔௫ െ ሻݕ ⁄௬ܮ , 0൧
ሻݖሺܥ ൌ 1 െ݉ܽݔሾ1 െ ሺݖ െ ௠௜௡ሻݖ ⁄௭ܮ , 0ሿ െ ሾ1ݔܽ݉ െ ሺݖ௠௔௫ െ ሻݖ ⁄௭ܮ , 0ሿ

 

and ܮ௫, ,௬ܮ  ௭ respresent the width of the ASZ domain in each coordinate directionܮ

4. Formulation of perfectly matched layer (PML) 

The PML technique is an effective absorbing boundary condition to truncate the 

physical domain [37,38,39]. The equations in the PML domain are formulated so that the 

amplitude of the out-going waves Qᇱ ൌ Q െ Qഥ  entering the PML domain can be 

exponentially reduced while causing as little numerical reflection as possible, thus the 

extrapolation boundary condition can be used at the end of PML domain. A mean state of 

flow Qഥ satisfies (4.1) is needed for the unsteady flow variables Q to reduce to. Equation (4.2) 

is obtained by subtracting the mean state equations (4.1) from the original Navier-Stokes 

Equations (2.1a).  

ሺܨ߲ തܳሻ
ݔ߲

൅
ሺܩ߲ തܳሻ
ݕ߲

൅
ሺܪ߲ തܳሻ
ݖ߲

ൌ 0																																																		ሺ4.1ሻ 

߲ܳ′
ݐ߲

൅
߲ሺܨ െ ሺܨ തܳሻሻ

ݔ߲
൅
߲ሺܩ െ ሺܩ തܳሻሻ

ݕ߲
൅
߲ሺܪ െ ሺܪ തܳሻሻ

ݖ߲
ൌ 0																												ሺ4.2ሻ 

A three-step transformation process to formulate the PML equations based on (4.2) is 

described in [39], assuming the mainstream is in x-direction: 

a. A proper space-time transformation 

̅ݐ ൌ ݐ ൅  ݔߚ

߲
ݐ߲

→
߲
̅ݐ߲
,

߲
ݔ߲

→
߲
ݔ߲

൅ ߚ
߲
̅ݐ߲
	 

b. A PML change of variables in the frequency domain 

߲
ݔ߲

→
1

1 ൅ ݅ఙೣఠഥ

߲
ݔ߲

,
߲
ݕ߲

→
1

1 ൅ ݅ఙ೤ఠഥ

߲
ݕ߲

,
߲
ݖ߲

→
1

1 ൅ ݅ఙ೥ఠഥ

߲
ݖ߲

 

c. A transformation from the frequency domain equation to the time domain 

equation 

The PML equations (4.3) are obtained by following the above steps. The detailed 

derivation and description of PML equations can be found in [39]. 
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߲ሺܳ െ തܳሻ
ݐ߲

൅
߲ሺܨ െ തሻܨ

ݔ߲
൅
߲ሺܩ െ ሻܩ̅

ݕ߲
൅
߲ሺܪ െ ഥሻܪ

ݖ߲
൅ ଵݍ௫ߪ ൅ ଶݍ௬ߪ ൅ ଷݍ௭ߪ ൅ ܨ௫ሺߪߚ െ തሻܨ

ൌ 0									ሺ4.3ܽሻ 

ଵݍ߲
ݐ߲

൅
߲ሺܨ െ തሻܨ

ݔ߲
൅ ଵݍ௫ߪ ൅ ܨ௫ሺߪߚ െ തሻܨ ൌ 0																																																ሺ4.3ܾሻ 

ଶݍ߲
ݐ߲

൅
߲ሺܩ െ ሻܩ̅

ݕ߲
൅ ଶݍ௬ߪ ൌ 0																																																																ሺ4.3ܿሻ 

ଷݍ߲
ݐ߲

൅
߲ሺܪ െ ഥሻܪ

ݖ߲
൅ ଷݍ௭ߪ ൌ 0																																																																ሺ4.3݀ሻ 

ଵݎ߲
ݐ߲

൅ ଵݎ௫ߪ ൌ
߲ሺܷ െ ഥܷሻ

ݔ߲
൅ ௫ሺܷߪߚ െ ഥܷሻ																																																						ሺ4.3݁ሻ 

ଶݎ߲
ݐ߲

൅ ଶݎ௬ߪ ൌ
߲ሺܷ െ ഥܷሻ

ݕ߲
																																																																ሺ4.3݂ሻ 

ଷݎ߲
ݐ߲

൅ ଷݎ௭ߪ ൌ
߲ሺܷ െ ഥܷሻ

ݖ߲
																																																																ሺ4.3݃ሻ 

݁ଵ ൌ
߲ܷ
ݔ߲

െ ଵݎ௫ߪ ൅ ௫ሺܷߪߚ െ ഥܷሻ																																																										ሺ4.3݄ሻ 

݁ଶ ൌ
߲ܷ
ݕ߲

െ  ሺ4.3݅ሻ																																																																									ଶݎ௬ߪ

݁ଷ ൌ
߲ܷ
ݖ߲

െ  ሺ4.3݆ሻ																																																																									ଷݎ௭ߪ

where  

തܨ ൌ ሺܨ	 തܳሻ, ܨത ൌ ሺܩ	 തܳሻ, ܪഥ ൌ ሺܪ	 തܳሻ 

and ܷ ൌ ሺݑ, ,ݒ ,ݓ ܶሻ are the variables whose spatial derivative are present in the viscous 

flux vectors. 

The PML Equations (4.3) are valid only in the PML region as shown in Fig. 3. In [39], 

the PML absorption coefficient in x direction is taken to be  

௫ߪ ൌ ௠௔௫ߪ ฬ
ݔ െ ଴ݔ
௫ܦ

ฬ
ఈ

 

௬ߪ ൌ ௠௔௫ߪ ቤ
ݕ െ ଴ݕ
௬ܦ

ቤ
ఈ

 

௭ߪ ൌ ௠௔௫ߪ ฬ
ݖ െ ଴ݖ
௭ܦ

ฬ
ఈ
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where ߪ௠௔௫  and ߙ are absorbing parameters, ሼݔ଴, ,଴ݕ  ଴ሽ are the locations of interfaceݖ

between the PML and physical domains, and ൛ܦ௫,, ,௬ܦ  ௭ൟ are the width of the PML domainܦ

as shown in Fig. 3. The absorption coefficients in the other two directions are defined in a 

similar way. And ߚ is given by a simple empirical formula [39],  

ߚ ൌ
଴ݑ

1 െ ଴ݑ
ଶ 

where 

଴ݑ ൌ
1

ܾ െ ܽ
න ሻݕതሺݑ
௕

௔
 ݕ݀

assuming the computational domain for ݕ  direction is ሾܽ, ܾሿ  and ݑതሺݕሻ  is the mean 

velocity in ݔ direction.  

 

Fig. 3. The schematics of the physical and PML domains. The sub-domains where the 

absorption coefficients are non-zero are indicated by arrows. 

As the PML equations (4.3) are derived and designed within Cartesian coordinates, the 

new unknowns ሼqଵ, qଶ, qଷሽ and ሼrଵ, rଶ, rଷሽ are actually split variables in ሼx, y, zሽ directions 

respectively. To apply the PML technique in the SD method with hexahedral mesh, the 

hexahedral mesh inside the PML domain is designed to be orthogonal such that the PML 

equation (4.3) can be used directly under transformation (4.4). 

ଵିܬ ൌ
߲ሺߦ, ,ߟ ߫ሻ

߲ሺݔ, ,ݕ ሻݖ
ൌ ቎

௫ߦ 0 0
0 ௬ߟ 0
0 0 ߫௭

቏																																																		ሺ4.4ሻ 
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In this way, the PML equation in the PML domain for SD method can be written as 

߲ሺ ෨ܳ െ തܳ෨ሻ
ݐ߲

൅
߲ሺܨ෨ െ ത෨ሻܨ

ߦ߲
൅
߲ሺܩ෨ െ ෨ሻܩ̅

ߟ߲
൅
߲ሺܪ෩ െ ഥ෩ሻܪ

߲߫
൅ ෤ଵݍ௫ߪ ൅ ෤ଶݍ௬ߪ ൅ ෤ଷݍ௭ߪ ൅ ௫ߪߚ ሚܵ଴

ൌ 0									ሺ4.5ܽሻ 

෤ଵݍ߲
ݐ߲

൅
߲ሺܨ෨ െ ത෨ሻܨ

ߦ߲
൅ ෤ଵݍ௫ߪ ൅ ௫ߪߚ ሚܵ଴ ൌ 0																																																							ሺ4.5ܾሻ 

෤ଶݍ߲
ݐ߲

൅
߲ሺܩ෨ െ ෨ሻܩ̅

ߟ߲
൅ ෤ଶݍ௬ߪ ൌ 0																																																															ሺ4.5ܿሻ 

෤ଷݍ߲
ݐ߲

൅
߲ሺܪ෩ െ ഥ෩ሻܪ

߲߫
൅ ෤ଷݍ௭ߪ ൌ 0																																																															ሺ4.5݀ሻ 

ଵݎ߲̃
ݐ߲

൅ ଵݎ௫̃ߪ ൌ
߲ሺ ෩ܷ െ ഥܷ෩ሻ

ߦ߲
൅ ௫ߪߚ ሚܵଵ																																																											ሺ4.5݁ሻ 

ଶݎ߲̃
ݐ߲

൅ ଶݎ௬̃ߪ ൌ
߲ሺ ෩ܷ െ ഥܷ෩ሻ

ߟ߲
																																																															 ሺ4.5݂ሻ 

ଷݎ߲̃
ݐ߲

൅ ଷݎ௭̃ߪ ൌ
߲ሺ ෩ܷ െ ഥܷ෩ሻ

߲߫
																																																															 ሺ4.5݃ሻ 

݁̃ଵ ൌ
߲ ෩ܷ

ߦ߲
െ ଵݎ௫̃ߪ ൅ ௫ߪߚ ሚܵଵ																																																														ሺ4.5݄ሻ 

݁̃ଶ ൌ
߲ ෩ܷ

ߟ߲
െ  ሺ4.5݅ሻ																																																																					ଶݎ௬̃ߪ

݁̃ଷ ൌ
߲ ෩ܷ

߲߫
െ  ሺ4.5݆ሻ																																																																					ଷݎ௭̃ߪ

where 

൫ ෨ܳ െ തܳ෨൯ ൌ |ܬ| ∙ ሺܳ െ തܳሻ 

ሚܵ଴ ൌ |ܬ| ∙ ሺܨ െ  തሻܨ

቎
෨ܨ െ ത෨ܨ

෨ܩ െ ෨ܩ̅

෩ܪ െ ഥ෩ܪ
቏ ൌ |ܬ| ቎

௫ߦ 0 0
0 ௬ߟ 0
0 0 ߫௭

቏ ∙ ൥
ܨ െ തܨ
ܩ െ ܩ̅
ܪ െ ഥܪ

൩ 

ሾݍ෤ଵ ෤ଶݍ ෤ଷሿݍ ൌ |ܬ| ∙ ሾݍଵ ଶݍ  ଷሿݍ

ሾ̃ݎଵ ଶݎ̃ ଷሿݎ̃ ൌ |ܬ| ∙ ሾݎଵ ଶݎ  ଷሿݎ

ሚܵଵ ൌ |ܬ| ∙ ሺܷ െ ഥܷሻ 
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In equation (4.5), the unknowns and the fluxes are discretized in the same way as in the 

SD method. As in Equations (4.5) the inviscid and viscous fluxes keep in the same forms as 

in the Navier-Stokes equations (2.1), the common inviscid flux and viscous flux at the 

interfaces between each two element in PML domain are computed in the same manner as 

the common SD method described in Section 2. 

5. Numerical test 

5.1 Isentropic vortex propagation 

A case of isentropic vortex propagation is employed here to verify the effectiveness of 

ASZ and PML techniques for nonlinear Euler equations. The two-dimensional nonlinear 

Euler equations support an advective solution of the form 

൮

ߩ
ݑ
ݒ
݌

൲ ൌ

ۉ

ۇ

′ߩ
ܷ଴ ൅ ′ݑ

଴ܸ ൅ ′ݒ
′݌ ی

 ሺ5.1ሻ																																																																								ۊ

where                                        

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ
ᇱߩ ൌ ቆ1 െ

1
2
ሺߛ െ 1ሻܷ௠௔௫

ଶ ݁
ଵିೝ

మ

ೝబ
మቇ

ଵ
ሺఊିଵሻൗ

ᇱݑ ൌ െݑ௥ߠ݊݅ݏ
ᇱݒ ൌ െݑ௥ܿߠݏ݋

ᇱ݌ ൌ
1
ߛ
ቆ1 െ

1
2
ሺߛ െ 1ሻܷ௠௔௫ଶ ݁

ଵିೝ
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The Euler equations are solved with the 4th-order SD method in space and an explicit 

3rd-order Runge-Kutta method in time. The entire computational domain is ሾെ1.5,1.5ሿ ൈ

ሾെ1.5,1.5ሿ , which includes the physical domain of ሾെ1.0,1.0ሿ ൈ ሾെ1.0,1.0ሿ  and the 

remaining absorbing domain. The number of elements in the physical domain is 160 

(resulting in 2,560 degrees-of-freedom), and in the absorbing domain 5 stretched elements 

are added in each direction. In this case, the mean flow Qഥ is,  
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The performance of both ASZ and PML depends on the size of the absorbing domain 

and the absorption coefficient. The reflection error can be reduced by extending the length 

of the absorbing domain [39,71]. Here, the length of the absorbing domain is fixed to be 0.5 

for both cases, and the effectiveness of the absorbing coefficient is tested. For both 

techniques, the choices of the optimal absorbing coefficient are definitely problem 

dependent. Tuning the absorption coefficients for the same problem, a bigger σ୫ୟ୶ usually 

generate more reflection at the interfaces for both ASZ and PML, while a smaller σ୫ୟ୶ may 

cause an incomplete absorbing process and the unabsorbed reflecting disturbances would 

also contaminate the physical domain.  

In this case, an optimal absorption coefficient is found to be σ୫ୟ୶ ൌ 0.5 for ASZ. And 

for PML, the optimal parameters of absorption coefficient in (15) are found be σ୫ୟ୶ ൌ 10 

and α ൌ 4. The absorption of the vortex in the absorbing domain is clearly demonstrated for 

ASZ in Figs. 4a-4c and for PML in Figs. 5a-5c. In Figs. 4d-4f and 5d-5f, the v-velocity 

profiles along y ൌ 0 at time t ൌ 2.0, 3.0 and 4.0, respectively are compared with the exact 

solution. It is shown that in the physical domain, the numerical solutions agree with the 

exact solution well for both cases. To the naked eyes, the velocity profile with PML appears 

to match perfectly with the analytical solution in the physical domain, while the profile with 

the ASZ shows a slight discrepancy. The absorbing processes are different for ASZ and 

PML techniques. Note that in the domain of ASZ, the vortex is attenuated gradually, and 

the strength of the vortex becomes very small at the end of the ASZ domain, where a CBC 

is applied. Obviously, outgoing waves will reflect at this boundary if the disturbance is not 

zero and of course the reflected error will experience the absorbing process again inside of 

the ASZ domain while propagating upstream. It is obvious that PML is more efficient in 

absorbing the disturbances. In the PML domain, the solution decays exponentially and 

reduces to the mean state of flow near the end of PML domain. Thus essentially no 

reflection is generated at the end of the PML domain with a simple extrapolation boundary 

condition. 
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Fig. 6 compares the Lஶ  error (maximum error) of pressure in the physical domain 

computed with ASZ, PML and CBC at different times of the simulations. It is shown that 

the error of the numerical results generated with PML is the smallest while the error with 

CBC is at least one order bigger than the error with PML. The error with ASZ is between 

those with PML and CBC. 

 

                                (a)                                                 (b)                                                (c) 

 

                                (d)                                                 (e)                                                (f) 

Fig. 4. The v-velocity contours (a, b c) and v-velocity profile along y ൌ 0 (d, e, f) with ASZ 

at time ݐ ൌ 2.0, 3.0 and 4.0 

 

(a)                                                 (b)                                                (c) 
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                                (d)                                                 (e)                                                (f) 

Fig. 5. The v-velocity contours (a, b, c) and v-velocity profile along y ൌ 0 (d, e, f) with 

PML at time ݐ ൌ 2.0, 3.0 and 4.0 

 

Fig. 6. Comparison of ܮஶ error (maximum error) of pressure 

5.2 3-D acoustic pulse 

The propagation of a three dimensional nonlinear acoustic pulse in a uniform mean flow 

is employed to test the performance and effectiveness of absorbing boundary conditions 

with non-linear Navier-Stokes equations. The absorbing domains are applied in all 

boundaries of the cubic physical domain. The computational results with the CBC are also 

presented here for comparison. The initial condition is as follows: 

ە
ۖ
۔

ۖ
ۓ ߩ ൌ 1 ൅ ܲ′௠௔௫݁ି௟௡ଶ൫௫

మା௬మା௭మ൯ ௥బ
మൗ

ݑ ൌ ܷ଴
ݒ ൌ 0
ݓ ൌ 0

ߩ ൌ 1 ⁄ߛ ൅ ܲ′௠௔௫݁ି௟௡ଶ൫௫
మା௬మା௭మ൯ ௥బ

మൗ

																																																								ሺ5.3ሻ 

where 

ߛ ൌ 1.4, ଴ݎ ൌ 1.0, ܷ଴ ൌ 0.5, ܲ′௠௔௫ ൌ 0.5. 

The Reynolds number in this case is 500. The proposed reference solution Qഥ in both the 

ASZ and PML is  
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The physical domain is ሾെ10,10ሿ ൈ ሾെ10,10ሿ ൈ ሾെ10,10ሿ with a uniform mesh of 20 

elements in each coordinate direction. For the zonal techniques, a stretched grid with 3 

elements is used in each coordinate direction. The 4th-order SD method and an explicit 3rd-

order Runge-Kutta method are used for spatial discretization and time integration 

respectively. Different absorbing coefficients are tested for both the ASZ and PML. 

 

(a)                                                 (b)                                                (c) 

 

(d)                                                 (e)                                                (f) 

 

(g)                                                 (h)                                                (i) 

Fig. 7. Pressure contours with CBC (a-c), ASZ (d-f) and PML (g-i) at time t ൌ 4.0, 8.0 and 

12.0 



28 
 

 

(a)                                                 (b)                                                (c) 

Fig. 8. Time history of pressure at point ሺݔ, ,ݕ ሻݖ ൌ ሺ8.5,0.5,0.5ሻ with CBC (a), ASZ (b) 

and PML (c)  

Fig. 7 shows the pressure contours in the X െ Y plane with CBC (a, b, c), ASZ (d, e, f) 

and PML (g, h, i) at time t ൌ 4.0, 8.0 and 12.0 respectively. The absorbing coefficients 

used here are σ୫ୟ୶ ൌ 0.5 for ASZ and σ୫ୟ୶ ൌ 20.0 for PML. In Fig. 7, the Z coordinate is 

the pressure, which gives a three dimensional illustration of the pressure distribution. With 

CBC, obvious reflections are generated at the outlet boundary and contaminate the 

numerical solution. In the results with ASZ technique, the pressure pulse is attenuated 

inside the ASZ domain but a small reflecting wave is generated at the interface. The PML 

technique gives the best performance among all the three presented boundary conditions. 

The pressure pulse is well absorbed after entering the absorbing domain and the reflecting 

disturbance is very small and invisible. 

Fig. 8 compares the pressure history at point ሺx, y, zሻ ൌ ሺ8.5,0.5,0.5ሻ with a reference 

solution. The reference solution is computed in a computational domain of ሾെ20,20ሿ ൈ

ሾെ20,20ሿ ൈ ሾെ20,20ሿ  with the same grid size. The comparisons agree well with the 

observations in Fig. 7. 

5.3 Viscous flow over two cylinders 

In the previous two numerical tests, it has been shown that PML gives the best 

performance in absorbing acoustic and vertical disturbances. In this example, the case of 

nonlinear vortices shed by a viscous low-Mach laminar flow over two side-by-side 

cylinders is presented to test the performance of the three boundary conditions with 

complex geometry inside the physical domain. Fig. 9 shows the computational mesh. The 

physical domain is ሾെ10,20ሿ ൈ ሾെ10,10ሿ with a total of 5,445 elements. The absorbing 
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domain is added around the physical domain and a stretched grid with 5 elements is used in 

each coordinate direction. The numerical method for the spatial discretization and time 

integration is the same as in the previous two cases.  

The Mach number of the uniform incoming flow is Ma ൌ 0.2 and the Reynolds number 

based on the diameter of the cylinder D is Re ൌ 200. The center-to-center spacing of the 

two cylinders is s ൌ 3D. The inlet flow and the initial condition of the flow field is set to be  

ܳ଴ ൌ ൮

ߩ
ݑ
ݒ
݌

൲ ൌ ൮

1.0
0.2
0.0
1 ⁄ߛ

൲																																																																								ሺ5.5ሻ 

Thus the proposed mean solution Qഥ in (4.1) is the uniform flow  Qഥ ൌ Q଴ as the natural 

choice for this problem. 

 

Fig. 9. Computational mesh of viscous flow over two cylinders 

Optimal parameters of absorption coefficient in (15) are found be σ୫ୟ୶ ൌ 10 and α ൌ 4 

for PML in this case. Fig. 10 shows the vorticity contours at different times in the case with 

PML. The absorbing process of the shedding vortices can be observed in this Fig. from 

t ൌ 280 to t ൌ 330 over roughly a period. The shedding vortices are gradually absorbed as 

they convect out of the physical domain and enter the PML domain. Fig. 11 shows the 
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history of v-velocity and pressure at point ሺx, yሻ ൌ ሺ19.0,3.0ሻ  from time t ൌ 300  to 

t ൌ 600 and compares with the reference result which is obtained in a reference physical 

domain ሾെ10,40ሿ ൈ ሾെ20,20ሿ with PML. Excellent agreement is found, which indicates 

that the performance of the PML domain in absorbing the shedding vortices is very 

effective. Very good results have been achieved with the relatively small domain. 

Fig. 12 shows the instantaneous vorticity contours in the cases with CBC and ASZ. It is 

noted that in current computational mesh with CBC, the boundary condition significantly 

affects the flow field of the physical domain and the shedding vortices lose the regular 

alignment as shown in Fig. 11. In the case with ASZ, the shedding vortices keep a similar 

pattern as the case with PML and are gradually absorbed after entering the absorbing 

domain. In this case, an optimal parameter of absorption coefficient is chosen to be 

σ୫ୟ୶ ൌ 0.1 for ASZ. 

 

(a)                                                                   (b) 

  

(d)                                                                   (e) 
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(f)                                                                   (g) 

Fig. 10. Vorticity contours at time ݐ ൌ 280, 290, 300, 310, 320 and 330 in the case with 

PML, from left to right, top to bottom 

  

(a)                                                                   (b) 

Fig. 11. Time history of v-velocity (a) and pressure (b) at point ሺݔ, ሻݕ ൌ ሺ19.0,3.0ሻ from 

time ݐ ൌ 300 to ݐ ൌ 600 in the case with PML 
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(a)                                                                   (b) 

Fig. 12. Instantaneous vorticity contours in the cases with CBC (a) and ASZ (b) 

Here, the authors try to investigate the effect of boundary conditions on the drag and lift 

forces on the wall of the cylinders. Fig. 13 shows the time history of the drag coefficients 

for the cases with different boundary conditions. It is shown that the Cୢ in the case with 

PML agrees well with the reference results, as shown in Fig. 13(a). The current 

computational domain is much smaller than those used in previously published paper 

[17,46], and with the current mesh the boundary condition significantly affects the drag and 

lift forces in the cases with CBC and ASZ, as shown in Fig. 13(b). The Cୢ with CBC is 

highly oscillatory owing to the high frequency disturbances generated at the outflow 

boundary, while the Cୢ with ASZ is smooth but much higher than the results with PML. In 

[17], the outflow boundary is set to be far downstream of the cylinders with much larger 

spaced grid to dissipate the disturbances. Table 1 compares the averaged Cୢ of the current 

cases with the result in [17,46]. The current results with PML agree well with the result of 

Liang et al. [17] and the SD method is also used in their case. 
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(a)                                                                   (b) 

Fig. 13. Time history of drag coefficients, (a) PML and the reference; (b) ASZ and CBC 

Table 1. Comparison of mean drag coefficients for flow over two cylinders at ܴ݁ ൌ 200 

and ݏ ൌ  ܦ3

 CBC ASZ PML Liang et al Ding et al 

1.530 ࢊ࡯ 1.650 1.492 1.496 1.548 

 

6. Conclusions 

Two popular absorbing boundary conditions, the absorbing sponge zone and perfectly 

matched layer, are implemented with the spectral difference method on hexahedral meshes 

for non-linear Euler and Navier-Stokes equations in this paper. The disturbances are 

gradually attenuated thus the reflection at the end of the absorbing domain is minimized by 

using the spectral difference method with both zonal techniques. Both the ASZ and PML 

perform very effectively in the vortex and acoustic propagation problems. The reflected 

errors with the two zonal techniques are much smaller than those with the CBC based on 

linearized one-dimensional Euler equations. The absorbing processes with the two 

techniques are different owing to the different design concepts. The formula of the ASZ is 

much simpler than the PML technique and therefore easier to implement. However, it is 

still somewhat reflective and generates visible reflections at the interface with the ASZ 

between the physical domain and the absorbing domain. PML is more efficient in absorbing 
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the disturbances. With the PML technique, the magnitude of the disturbances decreases 

exponentially in the absorbing domain and the solution finally reduces to the proposed 

mean solution at the end of the absorbing domain while the reflection generated at the 

interface between the physical domain and absorbing domain is almost invisible. In the case 

of low-Mach number laminar flow past two side-by-side cylinders, with complex 

geometries inside the physical domain the PML technique also performs well in absorbing 

the shedding vortices and accurately predicts the drag and lift forces on the wall with a 

relatively small computational domain. 
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CHAPTER 3. A Low-Frequency Instability/Oscillation near the 

Airfoil Leading-Edge at Low Reynolds Numbers and Moderate 

Incidences 

A paper submitted to AIAA Journal 
 

Ying Zhou and Z.J. Wang 

Abstract 

Numerical simulations of the low-Reynolds number (Re ൌ 	10ସ	~	10ହ	) flows over a 

SD7003 airfoil at moderate incidences (൏ 10°) are performed in the current paper. A low-

frequency convective instability is observed to dominate the spectrum near the leading edge 

and be responsible for the growth of the disturbance in the attached boundary layer. The 

characteristic frequency, the growth rate and the wave shape are investigated based on the 

numerical results. The growth of the low-frequency instability is not in agreement with 

parallel flow stability theory, nor with leading edge receptivity theory. And it has a higher 

growth rate than the Tollmien-Schlichting (T-S) wave. The effects of the angle-of-attack 

(AoA), the Reynolds number and the airfoil geometry on the low-frequency instability are 

investigated and discussed.  

Nomenclature 

AoA = angle of attack 

α୰ = wave number of the disturbances in x direction in linear stability theory 

α୧ = growth rate of the disturbances in linear stability theory 

β = wave number of the disturbances in z direction in linear stability theory 

c = chord length 

F, G, H = vector of fluxes  

i, j, k  = index of coordinates in x, y, z direction 

J  = Jacobian matrix 

M = Mach number 

p = nondimensional pressure 

Q, Q෩ = vector of conservative variables in Cartesian coordiantes and standard 

unstructured elements 
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Reୡ = Reynolds number based on chord length 

ρ = nondimensional density 

s = wave speed of the disturbance in linear stability theory, s ൌ ω α୰⁄  

St = Strouhal number, St ൌ fC sin AoA U⁄  in airfoil literature 

t = nondimensional time t ൌ t∗ ሺc Uஶ⁄ ሻ⁄  

t∗ = dimensional time 

u, v, w = nondimensional velocity in x, y, z direction 

Uஶ = freestream velocity 

u′, v′, w′ = nondimensional velocity fluctuation in x, y, z direction 

u୲, u୲ᇱ = nondimensional tangential velocity / fluctuation, normal to the wall surface 

x, y, z = nondimensional Cartesian coordinates 

ξ, η, ς = nondimensional coordinates in standard cubic 

ω = frequency of the disturbances  

∆xା,	 = cell size in wall units 

∆yା, ∆zା 

Ω = computational spatial domain 

1. Introduction 

In the past decade, low-Reynolds-number flows and the associated laminar separation 

bubbles (LSBs) have been of great interest in the development of micro air vehicles (MAV), 

small scale wind turbines and low-pressure turbine/cascade. Since laminar boundary layers 

are less resistible to the significant adverse pressure gradient, LSBs are widely found over 

the suction side of low-Reynolds number airfoils/turbines at incidences. LSBs on an airfoil 

are classified into two types: a short bubble and a long bubble [1]. A short bubble is formed 

when the airfoil AoA is relatively small. The flow quickly transitions into a turbulent one 

and reattaches downstream after the breakdown of LSBs. A long bubble is formed at higher 

AoAs near the stall condition. For airfoils, the behavior of the LSB affects the aerodynamic 

performance and typically causes the increase of the pressure drag. Meanwhile, the 

existence of a turbulent boundary layer induces higher friction force on the airfoil than a 

laminar flow, and therefore can cause the degradation of the lift-to-drag ratio. Early works 

on LSB and associated hydrodynamic instability mechanisms can be traced back to the 
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1950s [1] and 1960s [2-5]. With the rapid development of numerical methods, numerical 

simulations of laminar-separated flows have been used to investigate the LSB and the 

associated turbulent transition. The two-dimensional simulations of separation bubbles were 

first carried out and investigated by Pauley et al. [6]. Pauley [7] and Rist [8] carried out 

three-dimensional studies of the primary instability later, but the transition was still not 

resolved due to the limitation of the computational resource and computer technology. 

More recently, direct numerical simulations (DNS) to fully resolve the transition of LSBs to 

turbulence were conducted by Alam & Sandham [9] and also Spalart & Strelets [10]. With 

the development of experimental techniques, Laser-Doppler-Anemometry (LDA) and 

Particle-Image-Velocity (PIV) technologies can provide the flow field measurements to 

quantify the evolution of the unsteady flow structure and investigate the dynamics of LSBs 

(see Marxen et al. [11]; Lang et al. [12]; Hu & Yang [13]; Yarusevych et al. [14]; Hain et al. 

[15]). In spite of considerable progresses in recent years, both the LSB and the transition 

mechanism still need further investigation. Distinct from the convective types of transition, 

the simultaneous presence of and the interaction between separation and transition make the 

problem highly complicated.  

In the present study, the numerical simulations of the low-Reynolds number flows over 

a SD7003 airfoil at incidences are carried out. A high-order spectral difference (SD) 

method for the three-dimensional Navier-Stokes equations on hexahedral grids developed 

by Sun et al. [16] is used. The simulations started with a uniform freestream initial 

condition and no incoming disturbances are added explicitly. The ‘short’ bubbles and 

transitional flows are observed on the suctions side of the airfoil under the present 

conditions. In previous studies of the unforced flow over airfoils, the LSBs and the self-

sustained transition process were found owing to the global instability of the acoustic-

feedback loops (see Deng et al. [17]; Zhou & Wang [18]; Jones et al. [19]). In the acoustic-

feedback loop, the acoustic disturbances generated in the wake of the trailing edge act as 

the initial disturbances and the transition is triggered by the receptivity of the boundary 

layer to acoustic waves (Deng et al. [17]). Jones et al. [19] found that the amplitude of the 

trailing-edge noise is sufficient to promote transition via the receptivity process in the 
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vicinity of the leading edge and the feedback loop plays an important role in frequency 

selection of the vortex shedding that occurs in two dimensions.  

The growth of the primary instability takes over a much longer distance comparing with 

the subsequent breakdown to turbulence. During the primary instability stage, the 

disturbances are amplified inside the attached boundary layer before separation and then 

inside the detached shear layer. After separation, an inflection point appears in the 

streamwise velocity profile. And the inviscid/Kelvin-Helmholtz (K-H) instability plays the 

dominant role in the growth of the disturbances. The inviscid flow has been found to be 

more unstable in a two-dimensional mode than in a three-dimensional mode according to 

the Rayleigh stability problem as shown in Drazin [20]. The two-dimensional disturbances 

grow exponentially inside the detached shear layer and the shedding of the two-dimensional 

vortices or ‘rolling’ is usually observed afterwards and the vortices grow in size after 

shedding. Yarusevych et al. [21] investigated the behavior of the shedding vortices at 

different Reynolds numbers and angles of attack. It was found that the fundamental 

frequency of the roll-up vortices developing in the separated shear layer scales with the 

Reynolds number and the precise correlations depend on the angle of attack. In Hain et al. 

[15], a band of vortex shedding frequencies was found instead of a single frequency. 

Although the K-H instability is well accepted to be dominant after separation, the precursor 

of the K-H instability, which is responsible for the disturbance growth inside the attached 

boundary layer, is not clear yet. The well-known T-S instability is usually regarded as the 

dominant instability inside the attached boundary layer. Marxen et al. [11] and Hein et al. 

[15] conclude that transition was driven by convective amplification of a two-dimensional 

T-S wave. However, in Spalart & Strelets [10], the T-S wave was discarded as the causes of 

the transition but a low frequency and long wavelength ‘wavering’ shear layer (or 

‘flapping’) before separation was proposed because ‘the u′ profiles do not have the double-

peak pattern of T-S waves’. Yang & Voke [22] found in their study that the initial two-

dimensional instability waves grow downstream with an amplification rate usually larger 

than that of T-S waves. Watmuff [23] suggested that that the shear layer is viscously stable 

with respect to small-magnitude T-S disturbances while it remains attached.  
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The current study focuses on the primary growth of disturbances on a low-Reynolds 

number airfoil at moderate incidences when ‘short’ bubbles occur, and a low-frequency 

instability is found to be dominant near the leading edge and responsible for the growth of 

disturbances. The growth of the low-frequency instability is not in agreement with the 

parallel flow stability theory, nor with the leading edge receptivity theory. The AoA, 

Reynolds number and the geometry of the airfoil are varied to investigate their effects on 

the frequency and the growth rate of the low-frequency instability. The paper is organized 

as follows. In § 2, a high-order method for unstructured hexahedral meshes used for the 

numerical simulation and a numerical method for the linear stability theory (LST) are 

introduced. After that, the computational details are given. In §  3, a low-frequency 

instability observed in the attached boundary layer near the leading edge is discussed. The 

effects of the AoA, the Reynolds number and the geometry of the airfoil on the low-

frequency instability are studied. The computation results and associated details will be 

discussed in § 4, followed by the conclusions in § 5. 

2. Numerical Methods 

2.1 Review of Multidomain Spectral Difference (SD) Method 

We consider the unsteady three-dimensional compressible nonlinear Navier-Stokes 

equations written in the conservative form as 

∂Q
∂t

൅
∂F
∂x

൅
∂G
∂y

൅
∂H
∂z

ൌ 0																																																																																ሺ1ሻ 

on domain Ω ൈ ሾ0, Tሿ and Ω ⊂ Rଷ with the initial condition 

Qሺx, y, z, 0ሻ ൌ Q଴ሺx, y, zሻ																																																																																	ሺ2ሻ 

and appropriate boundary conditions on ∂Ω. 
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Figure 1. Transformation from a physical element to a standard element 

 

Figure 2. Distribution of solution points (circles) and flux points (squares) in a standard 

element for a 3rd-order SD scheme. 

In SD method, it is assumed that the computational domain is divided into non-

overlapping unstructured hexahedral cells or elements. In order to handle curved boundaries, 

both linear and quadratic isoparametric elements are employed, with linear elements used in 

the interior domain and quadratic elements used near high-order curved boundaries. In 

order to achieve an efficient implementation, all physical elements ሺx, y, zሻ are transformed 

into standard cubic element ሺξ, η, ςሻ ∈ ሾെ1,1ሿ ൈ ሾെ1,1ሿ ൈ ሾെ1,1ሿ as shown in Fig. 1.  

In the standard element, two sets of points are defined (Fig. 2), namely the solution 

points and the flux points. The solution unknowns or degrees-of-freedom (DOFs) are the 

conserved variables at the solution points, while fluxes are computed at the flux points in 

order to update the solution unknowns. At the interfaces between each two elements, a 

Riemann solver such as Roe flux [24] is used to compute the common inviscid flux, and the 

viscous flux at the interface is computed following the algorithm given in [25]. A detailed 

description of the space discretization and the algorithm in SD method to compute the 

inviscid flux and viscous flux derivatives can be found in [16]. 

2.2 Review of the linear stability theory 

In this paper, the linear stability theory (LST) is used to analyze the stability 

characteristics of the attached boundary layer and detached shear layer. The linear stability 

analysis of the velocity profiles are presented based on the time- and span-averaged flow 

field. Here, the flow is assumed compressible. The compressible LST used in this paper 
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follows the procedure of Malik [26]. Under the assumptions of parallel flow and small 

disturbances, and neglecting high order terms, the linearized governing equations can be 

derived from the non-linear N-S equations (1). By assuming the disturbances of the 

following travelling waves   

ϕ୧
ᇱ ൌ ϕ෡୧e୧

ሺ஑୶ାஒ୸ିன୲ሻ,																																																																																						ሺ3ሻ 

where α and β are the complex wavenumber in the x and z directions respectively, and ω is 

the complex frequency of the travelling wave. Substituting (3) into the linearized governing 

equation, we obtain the following system of ordinary differential equations 

ቆA
dଶ

dyଶ
൅ B

d
dy

൅ Cቇϕ෡ ൌ 0,																																																																															ሺ4ሻ 

where ϕ෡ ൌ ൛uො, vො, pො, T෡,wෝൟ and matrices A, B and C can be found in Malik [26]. The boundary 

conditions for equation (4) are  

y ൌ 0;	uො ൌ vො ൌ wෝ ൌ 0;	ୢ୘
෡

ୢ୷
ൌ 0 (adiabatic wall) 

y ൌ ∞;	uො, vො, T෡,wෝ → 0.0 

Equation (4) constitutes an eigenvalue problem, which can be solved to find the 

complex dispersion relation ω ൌ ωሺα, βሻ for the temporal mode, or α ൌ αሺω, βሻ for the 

spatial mode:  

1) Aഥϕ ൌ ωBഥϕ for temporal stability 

2) Aഥϕ ൌ αBഥϕ for spatial stability 

where ω or α is the eigenvalue and ϕ is the discrete representation of the eigenvector.  

For spatial stability, the eigenvalue is determined by the determinant condition 

Det|Aഥ െ αBഥ| ൌ 0																																																																																											ሺ5ሻ 

Equation (5) represents the dispersion relation of 	α ൌ αሺω, βሻ, and in this paper we 

employ the single domain spectral (SDSP) collocation method to discretize equation (5). 

The eigenvalue problem of the discretized equation can be solved with Linear Algebra 

PACKage (LAPACK) or Matlab software. The current code was verified through 

comparison with the LST results of viscous supersonic plane Couette flow in Hu & Zhong 

[27]. 
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2.3 Details of numerical simulations 

The numerical simulations are carried out at a Reynolds number based on the airfoil 

chord of Reୡ ൌ 6 ൈ 10ସ  and Mach number M ൌ 0.2 . The AoA of the baseline case is 

AoA ൌ 4°. All the variables in this paper are non-dimensional unless noted. Figure 3 shows 

the computational mesh for the current simulation. The mesh is refined near the wall and 

around the physically important region where the separation bubble and vortex breakdown 

occur. The smallest cell is located at the trailing edge with dimension (in wall units) 

∆yା ൌ 2.5 in the direction normal to the wall, ∆xା ൌ 25.0 along the chord and ∆zା ൌ 12.0 

in the spanwise direction. Noting that inside the cell each direction is discretized by the 

solution/flux points (Fig. 2), the effective grid size near the wall for 3rd and 4th-order SD 

method is close to the requirement of a direct numerical simulation (DNS). The total 

number of cells is 253,600, resulting in 6,847,200 and 16,230,400 degree-of-freedom (per 

equation) for the 3rd and 4th-order SD schemes respectively. The grid resolution has been 

verified in previously published papers28 and good agreements of the mean and statistical 

results were found in a p-type grid refinement study. 

In order to simulate an infinite wing, a periodic boundary condition is used in the 

spanwise direction. The span width of the wing is set to be 20% of the chord, which has 

been proved to be adequate long enough in [28]. A non-slip, adiabatic boundary condition 

is applied on the surface of the wing. Near the far-field of the computational domain, the 

absorbing sponge zone (ASZ) [29] is used to absorb the out-going disturbances.  

 

Figure 3. Computational mesh. 
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3. The growth of a low-frequency disturbance 

The current cases are in the regime of low-speed and low-Reynolds number flow, in 

which laminar separation and turbulent transition occur over the suction side of the wing 

with incidences. The amplitude of the disturbances needs to reach a certain level before the 

turbulent breakdown could happen, and the growth of the disturbances in the laminar flow 

is due to the so-called primary instability. Comparing with the abrupt breakdown stage, the 

primary instability growth region is much longer and dominates the entire transition process. 

Figure 4 shows the iso-surfaces and contour lines of the Q-criteria [30]. The primary 

growth stage ( x ൌ 0.0~0.55 ) appears mainly two-dimensional. Vortex shedding is 

observed on the suction side after separation. And vortex breakdown occurs at the end of 

the LSB. 

 

Figure 4. Iso-surface and contour line of Q-criteria at ۿ ൌ ૚.  

In order to find the major physical mechanisms of instabilities in the flow field, a series 

of probes are placed inside the shear layer of the flow filed to record the histories of flow 

variables as shown in Fig. 5. The spectra of velocity, derived through Fourier 

transformation based on the recorded flow variable histories for 20 non-dimensional time, 

are shown in Fig. 6. Probes 1-3 (Fig. 5) are placed inside the attached boundary layer in 

order to detect the instability of the boundary layer. The velocity spectrum at probe 2 is 

shown in Fig. 6.a, and a low-frequency mode (ωଵ) dominates the spectrum. The spectra at 

probes 1 and 3 are similar. Probes 4-6 (Fig. 5) are placed inside the detached shear layer to 

detect the instability of the shear layer. The velocity spectrum at point 6 is shown in Fig. 6.b, 

and a high-frequency mode (ωଶ) corresponding to the vortex shedding frequency takes the 
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dominant role in the velocity spectrum. The spectra at probes 4 and 5 are similar. In the 

current case, the frequencies of ωଵ and ωଶ are found to be 1.81 and 36.09 respectively. It 

should be noted that beside the dominances of ωଵ and ωଶ components in the spectra, the 

overall disturbances also contain the acoustic signals generated near the trailing edge and 

dominated by ωଷ (Fig. 6). The receptivity of the boundary layer to the acoustic signals and 

the triggering of the initial disturbances exceed the scope of the current paper, and thus are 

not discussed here. The readers interested in this aspect can refer to Deng et al. [17] and 

Jones et al. [19]. 

 

Figure 5. Probes in the flow filed. 

Figure 7.a&b show the overall time histories of the velocity disturbances and the ωଵ 

component derived through the inverse Fourier transformation at probe 2 and 3 (Fig. 5). 

The dominance of ωଵ component and the growth of its amplitude can be clearly seen in Fig. 

7.a&b from probe 2 to 3. Fig. 7.c&d show the time histories of the velocity disturbances 

and the ωଵ  component at probe 5 and 6. Beside the ωଵ  component, a high-frequency 

component corresponding to ωଶ appears in the overall histories of the velocity. The growth 

of the high-frequency ωଶ component can be seen in Fig. 7.c&d in comparison of the overall 

disturbances and the ωଵ component. Although the ωଵ mode is still quite important in the 

spectrum of Fig. 6.b, it is observed that the ωଶ component is more dominant at probe 6 (Fig. 

7.d).  
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a)                                                                b) 

Figure 6. Spectra of velocity at the probes a) Point-2 and b) Point-6 shown in Fig. 5. 

 
a)                                                                b) 

 
c)                                                                 d) 

Figure 7. Time histories of the velocity disturbances and the ૑૚ component derived through 

the inverse Fourier transformation at probe points (Fig. 5): a) Point-2; b) Point-3; c) Point-

5; d) Point-6. 
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Both the ωଵ and ωଶ components are convectively unstable as shown in Fig. 7. And it 

seems that the ωଵ component leads the growth of the overall disturbances in the attached 

boundary layer, while the ωଶ component dominates in the detached shear layer. Figure 8.a 

shows the normalized profiles of the mean tangential velocity at different locations and Fig. 

8.b shows the corresponding normalized profiles of RMS tangential velocity disturbances at 

the corresponding locations. The mean flow separates at x ൌ 0.225 and the development of 

the mean shear layer and the detachment can be seen in Fig. 8.a. The profiles of the RMS of 

tangential velocity disturbance u୲ᇱ change the shapes along the mean shear layer as shown in 

Fig. 8.b. It appears that due to the dominances of the ωଵ and ωଶ components at different 

locations, the shape of the disturbance profile has two difference patterns in the attached 

boundary layer and the detached shear layer. In the following, the two types of the profile 

are further investigated. In order the detect the characters of the instabilities, the LST is 

applied based on the mean flow field and the LST results are used for comparison with the 

numerical results. 

 
a)                                                                           b) 

Figure 8. Numerical results for Case-4: a) normalized profiles of the mean tangential 

velocity at different locations; b) normalized profiles of the RMS tangential velocity 

disturbances at different locations. 

 
a)                                                                           b) 
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Figure 9. Comparison of the RMS of the tangent velocity disturbances ܜܝᇱ  and the LST 

results at a) ܠ ൌ ૙. ૚ and b) ܠ ൌ ૙. ૞૞. 

Inside the attached boundary layer, a T-S wave is usually thought to be the dominant 

instability which causes the growth of the disturbances. However, in the present cases, the 

T-S wave does not appear to play a role here. Based on the mean profile at x ൌ 0.1, the 

most unstable T-S wave predicted by the LST appears at a frequency ω୘ିୗ ൌ 119.85, 

which is much higher than the dominant frequency ωଵ ൌ 	1.81. The profile of the RMS of 

u୲ᇱ in the current numerical simulation is presented in Fig. 9.a, and the profiles of the most 

unstable T-S wave at ω୘ିୗ ൌ 119.85 and the T-S wave corresponding to ωଵ ൌ 	1.81 are 

also shown for comparison. It is observed that the RMS of u୲ᇱ does not possess the two-peak 

feature of the normal T-S waves. Spalart and Strelets10 found a good agreement between 

the peak location of the RMS of u୲ᇱ  profile and the peak location of  du୲ dn⁄  (n being the 

wall normal direction) profile. Table 1 compares the wave speed and growth rate of the 

numerical and LST results. The wave speed and the growth rate of the numerical simulation 

are derived based on the numerical results, which can be seen in detail in the next section. It 

can be seen that at frequency ωଵ ൌ 1.81, the T-S wave is predicted to be stable. Meanwhile 

the growth rate of the low-frequency instability is much higher than that of the predicted 

most unstable T-S wave (also see Yang & Voke22). 

After separation, an inflection point is observed in the mean velocity profiles shown in 

Fig. 8.a and the K-H instability becomes more dominant. Figure 9.b shows the profiles of 

the disturbances at x ൌ 0.55. The LES curve denotes the profile of the overall disturbances, 

and the LST curve is the profile of the most unstable (has the highest growth rate) K-H 

mode. Although the curve of the numerical simulation contains all the modes, the LST 

curve predicts the peaks and valleys of the profile quite well, as at x ൌ 0.55 the vortex 

shedding frequency dominates the spectrum. Table 2 compares the wave speed and growth 

rate of the present numerical simulation and LST results and the agreement is quite good 

for this stage. The most unstable wave found in the LST based on the mean profiles at 

x ൌ 0.55  has been found to be ω୏ିୌ ൌ 39.85 , which is quite close to the frequency 

ωଶ ൌ 36.09 of the shedding vortices. Meanwhile, the growth rate of the most unstable 
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wave ω୳୬ୱ୲ୟୠ୪ୣ predicted with LST is α୧ ൌ 29.10 and is also in very good agreement with 

the growth rate of the shedding vortices α୧ 	ൎ 30.17 as shown in Table 2.  

The T-S wave component is not visible in the attached boundary layer near the leading 

edge. The K-H instability in the present cases is similar to but not a purely inviscid 

instability due to the viscous effects near the wall. From the LST, it is found that the K-H 

instability in the present cases belongs to the family of the T-S instability. In comparison 

with the LST results, the low-frequency instability seems not of the T-S wave type and 

appears to be an unusual mechanism to the authors, while the high-frequency instability 

agrees well with the LST results. For better understanding of the low-frequency instability, 

the AoA, Reynolds number and the airfoil geometry are varied to study the associated 

characters in the following sections. 

Table 1. Comparison between LES and LST results at ܠ ൌ ૙. ૚ 

 ω s α୧ 

LES 1.81 ൎ0.53 ൎ16.69

LST 119.85 0.63 3.30 

LST 1.81 0.18 stable 

 

Table 2. Comparison between LES and LST results at ܠ ൌ ૙. ૞૞ 

  Frequency ω s α୧ 

LES 36.09 ൎ0.55 ൎ30.17

LST 39.85 0.56 29.10 

 

3.1 Angle-of-attack effects 

In this section, the numerical simulations are carried out at AoA ൌ 2°  and 6°  for 

comparison with the baseline case and the AoA effects on the low-frequency instability are 

investigated based on the numerical results at all three AoAs. In the following text, each 

case is named after its AoA at which it has been carried out, i.e. Case-2 represents the case 

at AoA ൌ 2°  and so on so forth. In order to quantitatively study the growth of the 

disturbances, probes are placed at the locations of the velocity RMS peaks as shown in Fig. 

10.a-c to record the histories of flow variables in the primary growth region of all three 



53 
 

cases. The RMSs of u୲ᇱ recorded with the probes along the streamwise direction are shown 

in Fig. 10.d-f. Note that the shape of the growth curves is quite similar in all three cases. 

According to the rate of disturbance growth α, the overall growth of the disturbances can be 

divided into two major stages by a sign change of dଶα dxଶ⁄  and the region between the two 

stages is the transient region. dα dx⁄ , the changing of the growth rate measures the tendency 

of the instability and the sign change of dଶα dxଶ⁄  indicates the extremum of the tendency.  

As discussed above that the two frequencies ωଵ and ωଶ are found to be dominant in the 

attached and detached shear layers respectively, it is natural to find that the two major 

growth stages are caused by the two types of instabilities respectively. The dash line in Fig. 

10.e derived through the inverse Fourier transformation based on the recorded variable 

histories shows the contribution of disturbance growth from the ωଵ component for Case-4. 

Note that the overall growth of disturbances is dominated by the low frequency component 

(ωଵ) for a long distance from x ൌ 0.0 to x ൌ 0.5. The dash-dot line in Fig. 10.e shows the 

contribution of the disturbance growth from the K-H instability	ሺωଶሻ for Case-4. After 

x ൌ 0.5  the ωଵ  component decays and the ωଶ  component grows from a very small 

amplitude ~10ିସ after the separation point x ൌ 0.225. It can be seen in Fig. 10.e that the 

K-H instability leads to the second major growth of the overall disturbances in Case-4, and 

similar processes can be observed in the other two cases (Fig. 10.d and Fig. 10.e). The 

growth trend of the overall disturbances in Case-4 agrees well with the spectra shown in Fig. 

6 and the evolvement of the disturbance RMS profile shown in Fig. 7.b.  

The average growth rates of the instabilities in the two stages are labeled in Fig.s 10.d-f 

for all three cases. The growth rate of the low-frequency ωଵ instability is high near the 

leading edge and gradually decreases in the streamwise direction. And the average growth 

rate of the low-frequency instability increases with the AoA. Table 3 lists the frequencies of 

ωଵ and ωଶ for all three cases, and the frequency ωଵ decreases with the AoA. The Strouhal 

number lies around St ൎ 0.02 as shown in Table 3. It is interesting to find that the Strouhal 

number St ൎ 0.02 is close to that of the low-frequency oscillation of the LSB on airfoils 

near stall condition in the literatures31-34. Near stall condition the ‘long’ LSBs were found 

to oscillate at a very low frequency, and the Strouhal numbers of the low-frequency are 

reported to be ranging from St ൌ 0.005	~	0.02 in Ref. [31-34], which is much lower than 
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that of the oscillating wake of a bluff body (St	 ൎ 	0.2). Here, it seems the low-frequency 

oscillation also exists in current ‘short’ bubbles.  

Table 3. Characteristic frequencies and Strouhal number 

Case AoA ωଵ St ωଶ 

Case-2 2° 3.42 0.019 22.22 

Case-4 4° 1.81 0.020 36.09 

Case-6 6° 1.09 0.018 60.73 

 
   a)                                                   b)                                                   c) 

 
   d)                                                 e)                                               f) 

Figures 10. Numerical results of Case-2, Case-4 and Case-6 (left to right): a-c): location of 

probes in the flow filed; d-f): RMS tangential velocity disturbances at locations of probes. 

 

3.2 Effects of Reynolds number  

It has been seen previously that the low-frequency instability and the K-H instability are 

two-dimensional. For saving the computation time and being efficient, two-dimensional 

simulations are carried out in this section to investigate the Reynolds number effects on the 

low-frequency instability. Four cases in Reynolds number range Re ൌ 3 ൈ 10ସ	~	1.2 ൈ 10ହ 

at AoA ൌ 4° are performed by changing the viscosity as listed in Table 5. The baseline case 

at Re ൌ 6 ൈ 10ସ is also included here. The contour line of Q-criteria of the instantaneous 

flow field and the spanwise vorticity contour of the mean flow field are shown in Fig. 11 

for all cases. With the increase of the Reynolds number, the scale of the shedding vortices 

and the region of the separated flow decrease (Fig. 11). The separation is almost avoided at 
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Re ൌ 1.2 ൈ 10ହ. The low-frequency component is again observed to be dominant in the 

attached boundary layer of all cases. 

Table 5 lists the frequency, the corresponding Strouhal number and the mean growth 

rate of the ωଵ component for all the cases. Like the T-S and K-H instability, the frequency 

and growth rate can be largely affected by the Reynolds number. The frequency of ωଵ 

decreases with the increase of the Reynolds number, which results in the Strouhal number 

in a range of St ൌ 0.005	~	0.130. Although the Strouhal number at Re ൌ 	3 ൈ 10ସ is close 

to that of the oscillating wake of a bluff body, the rest Strouhal numbers locates in a similar 

range in which the near stall low-frequency oscillation was observed. The average growth 

rate of the ωଵ component does not have a monotone trend with the increase of the Reynolds 

number. And the baseline case has the highest growth rate among all the four cases. 

 
a) 

 
b) 

 
c) 

 
d) 
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Figure 11. The contour line of Q-criteria ۿ ൌ ૚ of the instantaneous flow field (left) and the 

spanwise vorticity contour of the mean flow field (right). a) Case-Re-1; b) Case-Re-2; c) 

Case-Re-3; d) Case-Re-4. 

Table 5. Characteristic frequency, Strouhal number and growth rate 

Case Re ωଵ St α୧ 

Case-Re-1 3 ൈ 10ସ 11.365 0.1262 ൎ1.672 

Case-Re-2 6 ൈ 10ସ 3.565 0.0396 ൎ18.230 

Case-Re-3 9 ൈ 10ସ 3.450 0.0383 ൎ13.438 

Case-Re-4 1.2 ൈ 10ହ 0.401 0.0045 ൎ11.920 

 

3.3 Effects of airfoil geometry 

The effects of airfoil geometry on the low-frequency instability are further tested in this 

section. By changing the camber length of the original SD7003 airfoil, two cases are carried 

out at the same condition as the baseline case at Re ൌ 	6 ൈ 10ସ, Ma ൌ 0.2 and AoA ൌ 4°. 

As listed in Table 6, the airfoil geometries in Case-G-1 and Case-G-2 are derived by 

decreasing and increasing the baseline camber length by 25% respectively. Again, two 

dimensional simulations are carried out for computation time saving and efficiency. The 2D 

baseline model Case-Re-2 is also included for comparison.  

Table 6 lists the frequency, the corresponding Strouhal number and the mean growth 

rate of the ωଵ  component for the three cases. Both the frequency and growth rate vary 

monotonically with the camber length. The low-frequency ωଵ increases with the increase of 

the camber length, and the Strouhal number varies slightly around 0.038. 

Table 6. Characteristic frequency, Strouhal number and growth rate 

Case ωଵ St α୧ 

Case-G-1 3.311 0.0368 ൎ9.436 

Case-Re-2 3.565 0.0396 ൎ18.230 

Case-G-2 3.723 0.0413 ൎ22.334 
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a) 

 

b) 

Figure 12. The contour line of Q-criteria ۿ ൌ ૚ of the instantaneous flow field (left) and the 

spanwise vorticity contour of the mean flow field (right). a) Case-G-1; b) Case-G-2. 

4. Discussions 

The present paper documents data on a phenomenon of two-dimensional low-frequency 

instability/oscillation of flow over an airfoil that is different in many ways from the well-

known T-S wave. The instability wave oscillates at a much lower frequency but has a much 

higher growth rate than the T-S wave. It was suggested by Jones et al. [19] that during the 

process of receptivity the Lam-Rott eigensolutions (Lam & Rott [35]) of the linearized 

boundary layer equation is excited near the leading edge and the wavelength is much larger 

than that of a T-S wave. The Lam-Rott disturbance which is caused by non-parallel flow 

effects was found to be excited in the boundary layer receptivity process. It decreases in 

both amplitude and wavelength in the streamwise direction, and finally continues as a T-S 

wave (also see Goldstein [36] and Ricco & Wu [37]). In addition, the leading effect of a 

non-zero pressure gradient is to introduce a purely oscillatory factor into the disturbances as 

discussed in Lam & Rott [35]. However, a similar process is not observed here in all three 

cases. Unlike the Lam-Rott eigensolutions, the low-frequency wave is unstable and the 

decreasing of its wavelength in streamwise direction to continue as a T-S wave is not 

observed in all present cases. The K-H disturbances grow from a small amplitude ~10ିସ 

instead of being excited by the low-frequency disturbances. Near the leading edge with the 

increase of the AoA, the pressure gradient and growth rate of the low-frequency instability 
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increase, but the frequency of the low-frequency decreases. However, since the airfoil flow 

is very complicated and usually nonlinear, the changes of the frequency and growth rate at 

different AoA are unlikely to be purely caused by the change of the pressure gradient. 

Although the pressure gradient effects are still not clear, the low-frequency instability 

seems unlikely to be the Lam-Rott disturbance suggested by Jones et al. [35]. 

Flapping of the laminar separated bubble (LSB) was observed in many previously 

published works of low-Reynolds number flows [10,38,39]. The flapping is an up-and-

down motion of the separated shear layer. However, the low-frequency instability/ 

oscillation dominant in the attached boundary layer does not appear to be caused directly by 

the downstream flapping of the LSB to the authors. Figure 13 shows histories of the ωଵ 

velocity component in the range of x ൌ 0.1	~	0.25 for the two dimensional baseline case 

Case-Re-2, which are derived using the inverse Fourier transformation based on the 

recorded velocity histories. It could be seen clearly through the peaks and valleys that the 

wave is downstream convective and unstable, rather than caused by the wavering of the 

shear layer associated with the flapping of the downstream LSB. The same conclusion can 

also be derived by comparing Fig. 7.a and Fig. 7.b. Spalart and Strelets [10] suggested that 

the transition mechanism involves the wavering/flapping of the shear layer and then K-H 

vortices. A wavering shear layer was defined to have a dependence of the type 

uሺx, y, z, tሻ ൌ u෤ሺx, y െ y෤ሻ, where y෤ሺx, z, tሻ is a statistical variable with small variations. The 

formula represents that the wave oscillates in y direction (normal direction). However, at 

the current Reynolds numbers the transverse viscosity wave is unlikely to sustain and thus 

their hypothesis of the wavering behavior of the shear layer seems inappropriate. The up-

and-down flapping motion of the separated shear layer seems more likely to be combination 

result of the low-frequency oscillation in the attached boundary layer upstream and the 

pressure change inside the bubble. 
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Figure 13. The histories of the ૑૚ velocity component in the range of ܠ ൌ ૙. ૚	~	૙. ૛૞ in 

Case-Re-2. 

5. Conclusions 

Various questions have remained unanswered but the following inferences have been 

clearly made: (1) A low-frequency oscillation in the attached boundary layer is observed in 

the present study. The low-frequency instability is found to be apparently two dimensional 

and convective unstable. (2) The primary growth of the disturbances before the turbulent 

breakdown over the suction side of the airfoil consists of two stages. The first stage is 

dominated by the low-frequency instability and the second growth stage is caused by the K-

H instability. (3) The phenomenon is hydrodynamic in nature. The low-frequency 

instability is neither the famous T-S instability nor the result of the Lam-Rott eigensolutions 

of the receptivity theory. And it seems not to be caused by the flapping of the downstream 

bubble and the detached shear layer. 

The low-frequency oscillation in the present cases occurs in the Strouhal number range 

of St ൌ 0.005	~	0.130, and the Strouhal numbers are in the same magnitude of the low-

frequency oscillation of the airfoil flow near stalling conditions as reported in several 

previously published papers. It is conjectured that the low-frequency instability in the 

present cases may be the same mechanism of the near stall low-frequency oscillation. It is 

interesting to find that the Strouhal number keeps almost constant at moderate AoA ൌ 2°, 4° 

and 6°. In the testing of the airfoil geometry effects, the frequency and growth rate vary 

monotonically with the camber length. However, unlike the low-frequency oscillation near 
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the stalling condition, the Strouhal number and the growth rate of the low-frequency 

instability change largely with the Reynolds number. 
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CHAPTER 4. The breakdown of laminar separation bubbles on a 

low-Reynolds number airfoil at incidences 

A paper submitted to AIAA Journal 

 

Ying Zhou and Z.J. Wang 

Abstract 

The present paper focuses on the study of breakdown processes of laminar separation 

bubbles on an SD7003 airfoil at Reynolds number ܴ݁ ൌ 60,000 at three angles of attack 

(AoAs) ൌ 2°, 4° and 6°. Extensive numerical simulations are performed to determine the 

transition mechanism for such flows. In an earlier paper (Zhou & Wang 2011), the primary 

growth in the boundary layer and the subsequent vortex shedding due to the Kelvin-

Helmholtz instability before the vortex breakdown are investigated. It is observed that the 

breakdown of the shedding vortices starts at approximately the location with the maximum 

negative streamwise flow velocity. We also found that the reverse flow in the separation 

region directly triggers the generation of three dimensional disturbances and the streamwise 

vorticities. In addition, the secondary instability which initiates the breakdown process 

differs for cases at different AOAs. The elliptic and hyperbolic instabilities observed in 

bluff-body wakes are found to occur in the breakdown process of current cases. 

Furthermore, the sequence of breakdown states at various incidences is found to be similar 

to that of the bluff-body wakes at various Reynolds numbers. 

1. Introduction 

In the past decade, low-Reynolds-number flows and the associated laminar separation 

bubbles (LSBs) have been of great interest in the development of micro air vehicles (MAV), 

small scale wind turbines and low-pressure turbine/cascade. Since laminar boundary layers 

are less resistible to the significant adverse pressure gradient (APG), LSBs are widely found 

over the suction side of low-Reynolds-number airfoils/turbines at moderate incidences. The 

flow quickly transitions into a turbulent one and reattaches downstream after the breakdown 

of LSBs. For airfoils, the behavior of the LSB affects the aerodynamic performance and 

typically causes the increase of the pressure drag. Meanwhile, the existence of a turbulent 

boundary layer induces higher friction force on the airfoil than a laminar flow, and 
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therefore can cause the degradation of the lift-to-drag ratio. Jones (1938) made the first 

observations of laminar separation bubbles. Early works on LSB and associated 

hydrodynamic instability mechanisms can be traced back to the 1950s (Owen & Klanfer 

1953) and 1960s (Gaster 1963, 1967; Horton 1968, 1969). At the current Reynolds number 

and incidences, the LSBs can all be classified as the ‘short’ bubbles according to Owen & 

Klanfer (1953). The general development of the separated and transitional ‘short’ bubble 

flow and the typical distribution were depicted by Horton (1968 & 1969). Distinct from the 

convective types of transition, the simultaneous presence of and the interaction between 

separation and transition make the problem highly complicated. 

With the rapid development of numerical methods, numerical simulations of laminar 

separated flows have been used to investigate the LSB and the associated turbulent 

transition. Two-dimensional simulations of separation bubbles were first investigated by 

Pauley et al. (1990). Pauley (1994) and Rist (1994) carried out three-dimensional studies of 

the primary instability later, but the transition was still not resolved due to the limitation of 

the computational resource and computer technology. More recently, direct numerical 

simulations (DNS) to fully resolve the transition of LSBs to turbulence were conducted by 

Alam & Sandham (2000) and also Spalart & Strelets (2000). With the development of 

experimental techniques, Laser-Doppler-Anemometry (LDA) and Particle-Image-Velocity 

(PIV) technologies can provide the flow field measurements to quantify the evolution of the 

unsteady flow structure and investigate the dynamics of LSBs (see Marxen et al. 2003; 

Lang et al. 2004; Hu & Yang 2008; Yarusevych et al. 2009; Hain et al. 2009). A review of 

the receptivity process in generating the initial disturbances, the primary growth of the 

disturbances and the possible absolute instability in the separated and transitional flows can 

be found in Zhou & Wang (2011). In spite of considerable progresses in recent years, both 

the LSB and the transition mechanism still need further investigation. In a previous paper of 

the authors (Zhou & Wang 2011), the primary instabilities which accounts for the growth of 

disturbances in the laminar flow region were investigated under the same initial conditions. 

A low-frequency instability was found in the attached boundary layer, which has a high 

growth rate than the Tollmien-Schlichting wave and could not be predicted by the linear 

stability theory (LST). The Kelvin-Helmholtz instability plays the dominant role in 
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disturbance growth after the flow separates, where both the disturbance growth rate and 

vortex shedding frequency were found in good agreement with the results of LST. 

  

FIGURE 1. Time-averaged laminar separation bubble (Horton 1968). 

This paper is concerned with the breakdown of the LSBs on a low-Reynolds number 

SD7003 airfoil at incidences. The breakdown to turbulent flow occurs more abruptly than 

the receptivity and disturbance-growth stages. In different flows, there are different possible 

scenarios for the breakdown process but it is generally accepted the breakdown is caused by 

the uncontrolled growth of unstable three dimensional waves. The so-called secondary 

instability in compare with the primary instability is responsible for the growth of the three 

dimensional disturbances. The counter-rotating vortex pairs (e.g. Λ -vortex and hairpin 

vortex) are widely observed in the breakdown process of various flows. The fundamental 

mode (K-type by Klebanoff et al. 1962) and the subharmonic mode (H-type by Herbert 

1984) are two types of breakdown identified in the early study of transition process. With 

the increase of the disturbance level, bypass transition would occur and the turbulent spot 

associated with the local breakdown triggers the fully turbulent flow by its own growth and 

merging with the laminar flow (e.g. Jacob & Durbin 2001 and Ovchinnikov et al. 2008). 

Obviously, the breakdown process occurring in nature does not limit to these types. 

For LSB flows, the breakdown process usually occurs in the separated turbulent shear 

layer region (figure 1) at where the perturbed velocity distribution is observed by Horton 

(1969). The separated flow reattaches to the wall after the process of breakdown and the 

LSBs are usually followed by turbulent flow. Alam & Sandham (2000) found that the 

separated shear layer undergoes transition via oblique modes and Λ -vortex induced 
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breakdown. The occurrence of counter-rotating vortex pairs was also observed in the 

breakdown of LSBs in Lang et al. (2004). Yang & Voke (2001) suggested that the 

breakdown is characterized by the irregular shedding of large-scale vortices associated with 

free shear-layer roll-up. After impinging on the wall and the formation of hairpin vortices a 

turbulent boundary layer forms rapidly. In McAuliffe & Yaras (2010), breakdown occurs in 

a time-periodic manner within the braid high-shear region between spanwise vortices. It 

was found by Jones et al. (2008) that the perturbations of a braid region are convected into 

the region of the upstream developing vortex and affects the vortex tube. The braid region 

was first observed in the breakdown of a mixing-layer flow (Moser & Rogers 1991), then 

later in the bluff-body wakes (Williamson 1996) and the flows over airfoils (Jones et al. 

2008). However, the streamwise vortices and braid region were not observed in the 

separated bubble of Spalart & Strelets (2000), instead a mechanism of ‘transition by contact’ 

due to flow reversal near the end of the separated bubble was proposed. In the separation 

bubble, the return flow brings turbulent fluid into contact with laminar fluid and the three 

dimensional disturbances are brought to the shedding vortices which trigger the breakdown 

process.  

Jones et al. (2008) observed that the elliptical and hyperbolic instabilities may have 

appeared during the breakdown process of the shedding vortex in the low-Reynolds number 

airfoil flow, and the instability in their case was found to be hyperbolic instability. In the 

context of bluff body-wakes, the generation and stretching of streamwise vortex pairs 

around the primary Karman vortex structures are commonly attributed to elliptic instability 

(Thompson, Leweke & Williamson 2001) and hyperbolic instability (Leweke  & 

Williamson 1998), which were denoted as mode-A and mode-B respectively (Williamson 

1996). Bayly et al. (1988) suggested that the elliptic instability is an important mechanism 

in the breakdown process of many flows. Elliptic and hyperbolic instabilities are the names 

given to the instability of elliptical and hyperbolic two-dimensional streamlines to three-

dimensional perturbations. It has been suggested that, elliptical instability is basically 

caused by the instability of the shedding vortex core (Williamson 1996; Thompson, Leweke 

& Williamson 2001), which occurs in conjunction with deformation of the cortex core and 

the streamwise vortices show an out-of-phase pattern. The spanwise wavelength of the most 
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amplified elliptical instability was suggested to be of the order ߣ ൌ ܦ3  by Williamson 

(1996) and Thompson, Leweke & Williamson (2001), where ܦ is the diameter of the region 

of elliptical core. Hyperbolic instability (Mode-B) involves instability of the braid shear 

layers (Leweke & Williamson 1998) associated with spanwise wavelength ߣ ൌ  which ,ܦ

occurs with no deformation of the vortex core and the streamwise vortices in braid region 

show an in-phase pattern (Williamson 1996). In bluff body wakes, Mode-A is first observed 

at ܴ݁ௗ ൐ 190  and Mode-B is first observed at ܴ݁ௗ ൐ 240 , where ܴ݁ௗ  is the Reynolds 

number based on cylinder diameter.  

As a continuous work of Zhou & Wang (2011), the current study focuses on the 

breakdown process of the current LSBs, and aims at providing the possible strategies of 

flow control and improving the aerodynamic design of airfoils. The paper is organized as 

follows. In §  2, the computational details are briefly introduced. §  3 presents the 

instantaneous and statistical numerical results. And the description and investigation of the 

breakdown process are then made based on the results. Discussion and conclusions are 

given in § 4 and § 5. 

2. Details of numerical simulations 

Spectral difference method on unstructured hexahedral mesh is used to solve the 

unsteady compressible Navier-Stokes equations in this paper, and an introduction of this 

method is introduced in detail in Zhou & Wang (2011). All the variables in this paper are 

non-dimensional unless specifically noted. Figure 2 shows the computational mesh for the 

present simulations. The mesh is refined near the wall and around the physically important 

region where the separation bubble and vortex breakdown occur. The smallest cell is 

located at the trailing edge with dimension (in wall units) ∆ݕା ൌ 2.5  in the direction 

normal to the wall, ∆ݔା ൌ 25.0 in the flow direction and ∆ݖା ൌ 12.0 in spanwise direction, 

noting that inside the cell each direction is discretized by the solution/flux points. The total 

number of cells is 253,600, resulting in 6,847,200 and 16,230,400 degree-of-freedom (per 

equation) for the 3rd-order and 4th-order SD schemes respectively. The numerical 

simulations are carried out at a Reynolds number based on the airfoil chord of ܴ݁௖ ൌ 6 ൈ

10ସ and Mach number ܯ ൌ 0.2. Three cases with different AoA are investigated in this 
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paper, as shown in Table 1. In the current simulation, no subgrid-scale model is used so the 

numerical simulations can be regarded as an Implicit Large Eddy Simulation (ILES). 

TABLE 1. Numerical simulation cases 

Case AoA

Case-2 2 

Case-4 4 

Case-6 6 

 

FIGURE 2. Computational mesh. 

The flow field is initiated with the freestream condition. In order to simulate an infinite 

wing, a periodic boundary condition is used in the spanwise direction and the span width of 

the wing is set to be 20% of the chord. A no-slip, adiabatic boundary condition is applied 

on the surface of the wing. The far-field boundary is set to be 5 times of the chord length. 

At the far-field of the computational domain, the absorbing sponge zone (ASZ) (Zhou & 

Wang 2010) is used to absorb the out-going disturbances.  

A polynomial order (p) refinement study is carried out in Zhou & Wang (2011) by 

increasing the order of the polynomial in each element cell from 2 (resulting in 3rd-order 

accuracy) to 3 (resulting in 4th-order accuracy). The averaged and statistical results 

computed with both the 3rd and 4th order schemes have been shown to be very close to each 

other (Zhou & Wang 2011), which indicates that the unsteady solution is nearly order 

independent on this mesh, and the mean flow has been order-independent and the spatial 

resolution provided by 4th-order method is capable of capturing the main flow features at 
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the current Reynolds number. In both Zhou & Wang (2011) and this paper, the mean flow 

field and the statistical results are obtained by averaging the instantaneous flow field at each 

time step and performed over 5 non-dimensional time ( ൌ ∗ݐ ሺܥ ܷஶ⁄ ሻሻ⁄  units. The 

numerical results shown in the rest of the paper are the results of 4th-order SD scheme 

unless specified. 

3. Breakdown of the shedding vortices 

The LSBs and turbulent transition are observed over the suction side of the airfoil in all 

the present cases. Figure 3 shows the iso-surfaces and contour lines of the Q-invariant 

(Dubeif and Delcayre 2000) for all three cases. Vortex shedding is observed on the suction 

side in all three cases after separation and the vortex breakdown occurs in a later stage. 

Turbulent boundary layer forms on the suction side at AoA ൌ 4° and 6°. At AoA ൌ 2° three 

dimensional structures appear on the suction side and pass the trailing edge without the 

formation of smaller turbulent structures. The separation moves upstream and the length of 

the LSB reduces with the increase of the AoA. 

 

(a)                                                                          (b) 
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(c) 

FIGURE 3. Iso-surface and contour line of Q-invariant: (a) Case-2; (b) Case-4; (c) Case-6. 

The averaged and statistical results of Case-4 are shown in figure 4. Figure 4.a shows 

the mean streamlines around the wing and the mean streamwise velocity field averaged in 

both time and spanwise direction. The mean separation bubble and the reattachment of the 

flow are clearly shown. In Figure 4.b, on the suction side of the airfoil, the low value of the 

mean spanwise vorticity (߱௭ ൎ െ20) at interval ݔ ൌ ሾ0.0,0.6ሿ displays the laminar shear 

layer before the flow transitions to turbulence. The interval ݔ ൌ ሾ0.0,0.6ሿ corresponds to the 

so-called primary instability region of the transition process. Shedding vortices due to the 

K-H instability are observed in the detached shear layer (figure 3). The LSB is closed after 

the breakdown of shedding vortices, and a turbulent boundary layer forms at ݔ ൌ ሾ0.7,1.0ሿ 

(figures 3.b and 4.b). Figure 4.c&d show the statistical distribution of the normalized 

turbulent kinetic energy ൫	ܶ. .ܭ .ܧ ൌ 1/2൫ݑ′ଶതതതത ൅ ଶതതതത′ݒ ൅ ଶതതതതത൯′ݓ ܷஶଶൗ ൯  and the normalized 

Reynolds stress ൫߬௫௬ ൌ െݒ′ݑ′തതതതത ܷஶଶൗ ൯, respectively. Both the ܶ. .ܭ  and Reynolds stress ߬௫௬ .ܧ

concentrate and reach the maximum around ݔ ൌ 0.65  where the shedding vortex 

breakdown occurs (figure 3.b). The above results of the other two cases are found quite 

similar to Case-4, thus are not shown here for briefness. 
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(a)                                                                         (b) 

 

(c)                                                                         (d) 

FIGURE 4. Mean and statistical results of Case-4: (a) mean streamlines around the 

wing and mean streamwise velocity field; (b) mean spanwise vorticity field; (c) normalized 

Reynolds stress ሺ߬௫௬ሻ distribution. 

The breakdown of the shedding vortices is the last stage of the transition process. 

Similar to the various types of transition in the attached boundary layer flow, the 

breakdown of the separated flows in current cases abrupts in a sudden and is much shorter 

than the primary instability stage. The breakdown of the shedding vortices is caused by the 

secondary instability, but the precise nature of the secondary instability mechanism is not 

fully understood. It is interesting to find that in all the current cases the breakdown stage 

occurs in the region where the separated flow reattaches to the wall and the separated 

bubble is closed. This region was previously labeled as separated turbulent shear layer 

associated with the reverse flow vortex in figure 1 by Horton (1968). In this section, the 

breakdown processes in the current cases are investigated and discussed. For comparison, 

2D simulations with the same initial condition and AoAs are also presented. 

Figure 5 shows the mean pressure coefficient ܥ௣  and mean friction coefficient ܥ௙  of 

both 3D and 2D simulations for Case-2, Case-4 and Case-6. The features and tendencies of 
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the ܥ௣ and ܥ௙ curves are quite similar between 2D and 3D results at the same incidence, 

which can be summarized as:  

Feature-1. A pressure plateau in the LSB region. 

Feature-2. A rapid increase/recovery of the pressure accompanied by a strong separation. 

Feature-3. Reattachment of the flow.  

Reattaching of the separated flow (feature-3) occurs in both 2D and 3D cases, and at the 

same incidence the mean flow reattaches the wall even a bit earlier in 2D cases than in 3D 

cases, as shown in figure 5. The pressure plateau (feature-1) has been widely declared in the 

low-Reynolds number airfoil flows at incidences, which implies that pressure keeps almost 

constant inside the LSBs. At all three incidences, the mean separation region appears to be 

of two stages. In the first stage (ݔ ൌ 0.23~0.55 in 3D Case-4), the separation is moderate 

and coincides to the pressure plateau region as shown in figure 5. In the second stage 

ݔ) ൌ 0.55~0.68 in 3D Case-4), the separation is much stronger (figure 5). It seems that the 

second separation region is always associated with a rapid increase/recovery of the pressure 

(feature-2), which can also be found in many low-Reynolds number airfoil/turbine flows, 

e.g. Fasel et al. (2008), Jones et al. (2008) and Zaki et al. (2010). In the current 3D 

simulations, the secondary instability and breakdown process are found to start in the same 

zone where feature-2 is observed and near the location with the maximum negative 

streamwise flow velocity. In the following of this paper, we call this zone the Recovery-

Separation (R-S) region, which should be distinguished from the leading-edge separation. 

The R-S region for 3D simulations refers to ݔ ൌ ሺ0.75, 0.90ሻ in Case-2, ݔ ൌ ሺ0.55, 0.68ሻ 

in Case-4 and ݔ ൌ ሺ0.33, 0.48ሻ in Case-6, as shown in figure 5.a. The similarity between 

2D and 3D results shows that the three features of ܥ௣ and ܥ௙ curves does not directly relate 

to the breakdown process. It will been seen later that in all 3D cases the flow becomes three 

dimensional after passing this region, and the R-S region is strongly associated with the 

secondary instability and the breakdown of the shedding vortices. The ܶ. .ܭ  and ߬௫௬ are .ܧ

also found to be concentrated in the same R-S region for 3D Case-4 as shown in figure 

4.c&d. 
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(a)                                                                          (b) 

FIGURE 5. Pressure coefficient ܥ௣ and friction coefficient ܥ௙ along the suction surface: (a) 

3D results; (b) 2D results. (dash line) Case-2, (solid line) Case-4, (dot line) Case-6  

The contours of the mean total pressure ்ܲ௢௧௔௟ ൌ
ଵ

ଶ
ଶܷߩ ൅ ܲ normalized by 

ଵ

ଶ
ஶܷஶଶߩ , the 

mean pressure coefficient ܥ௣ distribution and the pressure gradient magnitude |ܲߘ| for the 

3D Case-4 are shown in figure 6. Both the total pressure and the static pressure are almost 

constant inside the LSB region and are lower inside the LSB than those outside the LSB. In 

other words, in the averaged sense the LSBs persist a constant low pressure inside and are 

pressed by high-pressure outside. Around the location ݔ ൌ 0.65, there exists a region of 

high APG as shown in figure 6.c and the APG terminates the LSB. This area around 

ݔ ൌ 0.65 is exactly the R-S region where the breakdown and reattachment are observed in 

3D Case-4. In the sense of the mean flow field, the pressure difference is balanced by the 

friction force over the wall as shown in figure 5.a. The above characters illustrates that the 

breakdown process is highly related with feature-2 in the R-S region. The above tendencies 

and phenomena of the mean flow filed in the breakdown region are found to be quite 

similar in the other two cases. However, the instantaneous breakdown processes are quite 

different from case to case. The different breakdown processes are described and discussed 

in detail in the following sections. 
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(a)                                                            (b) 

 

(c) 

FIGURE 6. Averaged numerical results for Case-4: Contours of (a) normalized total 

pressure ்ܲ௢௧௔௟; (b) pressure coefficient ܥ௣; (c) pressure gradient magnitude |ܲ׏|. 

3.1 The breakdown process of Case-2 

Figures 7 and 8 show the side view of the contours of Q-invariant and spanwise 

vorticity ߱௭ in Case-2 for both the 2D and 3D simulations. For similarity and briefness, 

four phases for roughly a period of the shedding vortex are shown for the 2D simulation 

and only one instantaneous phase is shown for 3D simulation. These results are quite close 

between the 2D and 3D simulations, although three dimensional disturbances appear close 

to the trailing edge for 3D Case-2 (figure 3.a). The shedding vortices grow convectively in 

the detached shear layer. After entering the R-S region ݔ ൌ ሺ0.75, 0.90ሻ in both 2D and 

3D Case-2, the shedding vortex contacts with the wall and aggregates due to the slowdown 

of propagation. The vortex rotates in the clockwise direction, thus would gain the friction 

force which help the vortex propagate downstream. The slowdown of the shedding vortices 

in the R-S region is mainly due to the strong APG in the same region, as shown in figure 
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6.c for Case-4 and similarly for Case-2. Forced by the mainstream flow and the skin-

friction force, the vortex propagates from the low-pressure side towards the high-pressure 

side and finally escapes the R-S region (figures 7 and 8). After leaving this region, the 

vortex propagates towards the traling edge rapidly.  

The appearance of the three dimensional disturbances in 3D Case-2 is clearly illustrated 

in figure 9 by the instantaneous iso-surfaces of Q-invariant ܳ ൌ 0.25  and streamwise 

vorticity ߱௫ ൌ േ0.25  for four phases within one shedding cycle. Three dimensional 

disturbances appear after the shedding vortex passing through the R-S region. In figure 9, 

two periods of the spanwise wave are observed in the figures of ߱௫, and the corresponding 

skewness of the vortex core is shown by the iso-surfaces of Q-invariant (figure 9). Figure 

10 shows the side views of the spanwise vorticity and streamlines at phase ߶ ൌ 0. In the 

current case, the vortex core is perturbed at spanwise wavelength ߣ ൌ 0.1 (figure 9) and the 

diameter of the vortex core (ݔ ൌ 0.85) in the R-S region is approximately ܦ௦ ൎ 0.016 in 

wall normal direction and ܦ௅ ൎ 0.048 in wall tangential direction as shown in figure 10. 

The resulting ߣ ⁄ഥܦ ൎ 3.125  ሺܦഥ ൌ ሺܦ௦ ൅ ௅ሻܦ 2⁄ ሻ  is quite close to feature of the most 

amplified elliptical instability (Mode-A) ߣ ⁄ܦ ൎ 3 which was early identified in bluff-body 

wakes (Williamson 1996). As shown by the iso-surfaces of Q-invariant in figure 9, the 

deformation of the primary shedding vortex core can be seen clearly and no braid region 

between two consecutive shedding vortices is observed in the R-S region.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

FIGURE 7. Contours of Q-invariant (left) and spanwise vorticity (right) of the 2D Case-4 

for four phases in one shedding period: (a) ߶ ൌ 0, (b) ߶ ൌ గ

ଶ
, (c) ߶ ൌ ߶ (d) ,ߨ ൌ ଷగ

ଶ
. 

 

FIGURE 8. Contours of Q-invariant (left) and spanwise vorticity (right) of the 3D Case-4 at 

phase ߶ ൌ 0. 

                     

                     

(a)                                                                          (b) 
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(c)                                                                        (d) 

FIGURE 9. Iso-surface of Q-invariant (ܳ ൌ 0.25, upper) and streamwise vorticity (߱௫ ൌ

േ0.25, lower) for four phases in one shedding period: (a) ߶ ൌ 0, (b) ߶ ൌ గ

ଶ
, (c) ߶ ൌ  (d) ,ߨ

߶ ൌ ଷగ

ଶ
 

 

FIGURE 10. Spanwise vorticity and streamlines (side view) at ߶ ൌ 0. 

As shown in figure 9, in the R-S region the oncoming vortex tube is perturbed in an out-

of-phase pattern comparing with the previous shedding period. The out-of-phase pattern is a 

typical feature of the streamwise vortices in elliptic instability (Mode-A) in bluff body-

wakes. Williamson (1996) suggested that the out-of-phase symmetry of Model A is due to 

the elliptical instability of the core and the feedback/self-sustaining mechanism in the 

reversed flow. The origin of the three dimensional instability of either Mode-A or Mode-B 

is brought by the reversed flow behind the bluff body due to a feedback mechanism 

(Williamson 1996). In 3D Case-2, the feedback mechanism is also observed in the reserved 

flow of the R-S region. Figure 11 shows the contour of the mean streamwise velocity and 

the side view of ߱௫ iso-surface at phase ߶ ൌ 0. In the R-S region ݔ ൌ ሺ0.75, 0.90ሻ, the 

streamwise vorticity from the previous vortex tube stay closely attached to the surface 
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(figure 11.b). The reversed flow in the same R-S region (figure 11.a) brings the streamwise 

vorticities upstream. The next shedding vortex tube coming from upstream interacts with 

these near wall streamwise vorticities (figure 9). During the interaction between the vortex 

tube and these streamwise vorticities, the two-dimensional vortex tube first gets affected 

and new streamwise vorticities is induced and generated on the bottom part of the vortex 

tube. The whole oncoming vortex tube evolves to a three dimensional one through its own 

rotation and stretching and propagates downstream. Before leaving the R-S region, it passes 

the streamwise vorticities to the next vortex tube through the same process. In such a way, 

the feedback mechanism results in the self-sustaining secondary instability in the R-S 

region. Figure 12 shows streamwise vorticity contour slice at ݔ ൌ 0.75 at phase ߶ ൌ 0, and 

two layers of streamwise vorticity can be seen. The near wall vorticity layer is from the 

previous shedding vortex, and the second vorticity layer is the streamwise vorticities 

induced on the oncoming shedding vortex. An imprint mechanism occurs: a mirror-image 

of the previous streamwise vorticities appears on the bottom of the upstream oncoming 

vortex tube. The induced streamwise vorticities have the opposite signs of the near wall 

streamwise vorticities. The opposite signs between the original and induced streamwise 

vorticities explain the out-of-phase pattern observed in 3D Case-2. Based on the above 

features of the secondary instability occurs in 3D Case-2, the elliptic instability appears to 

occur in 3D Case-2 and the hyperbolic instability in the braid region is absent. 

After leaving the trailing-edge, the perturbed shedding vortices further interact with the 

vortices from the pressure side of the airfoil, and the generation and stretching of 

streamwise vortical tube can be found in figure 9. And the features and pattern of the 

streamwise vortices is more close to the elliptical instability (Mode-A) in bluff body-wakes 

(Williamson 1996).  
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FIGURE 11. 3D Case-2 (a) contour of the mean streamwise velocity and (b) Iso-surface of 

streamwise vorticity ߱௫ (side view) at ߶ ൌ 0. 

 

FIGURE 12. Streamwise vorticity contour on ݖ െ ݔ plane at ݕ ൌ 0.775 at ߶ ൌ 0. 

3.2 The breakdown process of Case-4 

In Case-4, the breakdown of the shedding vortices occurs in a different way. Figure 13 

shows the instantaneous contours of the side view of spanwise vorticity ߱௭ for the 2D and 

3D simulations in Case-4. As shown in figure 5, the separation and reattachment points 

move upstream as the AoA increases. The process of separation and reattachment of 2D 

Case-4 (figure 13.a) is close to those of 2D Case-2 described above and shown in figure 7. 

The 3D Case-4 (figure 13.b) shows different phenomena from 3D Case-2: small scale three-

dimensional structures are generated in the R-S region (ݔ ൌ ሺ0.55, 0.68ሻ), and a turbulent 

boundary layer forms after the vortex breakdown (also in figure 3.b). 

 

(a)                                                                          (b) 

FIGURE 13. Contour of spanwise vorticity ߱௭ : (a) 2D Case-4; (b) 3D Case-4. 

Four phases within one shedding cycle of the breakdown process in 3D Case-4 is shown 

in figure 14 by the instantaneous iso-surfaces of Q-invariant ܳ ൌ 1  and streamwise 

vorticity ߱௫ ൌ േ3. The breakdown of the vortex tube and the generation of the streamwise 
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vorticities can be clearly observed. Braid-like streamwise vorticities appear in the region 

between two shedding vortices (as shown inside the dash box, figure 14.b), and are then 

amplified in the interval region and inside the vortex tube (as shown inside the dash box, 

figure 14.c&d). Figure 15 shows the contours of streamwise velocity and streamwise 

vorticity at phase ߶ ൌ ߨ  on ݔ െ ݖ  plane extracted at ݕ ൌ 0.07 . The high streamwise 

velocity region corresponds to where the streamwise vorticities are generated in the R-S 

region (figure 15.a). Braid-like vorticities are generated in an alternative ‘peak’ and ‘valley’ 

pattern as shown in figure 18.b-d, in which a positive one appears next to a negative one 

(figure 15.b). As shown in figure 15, the flow in the region between two shedding vortices 

is perturbed at spanwise wavelength λ ൌ 0.025~0.03 and the diameter of the vortex core is 

approximately ܦ ൎ 0.03  as shown in figure 14, which results in ߣ ⁄ܦ ൎ 1 . The above 

features of the breakdown process in 3D Case-4 suggests that the dominant secondary 

instability occurring here is quite close to the instability of two-dimensional hyperbolic 

streamline (Mode-B) named by Williamson (1998). Hyperbolic instability (Mode-B) 

involves instability of the braid shear layers (Leweke & Williamson 1998b) which has a 

spanwise wavelength ߣ ൎ  In bluff body wake, the streamwise vorticities are produced .ܦ

and amplified in the braid region and the vortex core deforms uniformly (Williamson 1996). 

John et al. (2008) first suggested the appearance of the hyperbolic instability in the 

breakdown process on a NACA-0012 airfoil at ܴ݁௖ ൌ 5 ൈ 10ସ  and incidence 5° . The 

vortical structures and wave characters are found quite close to those in John et al. (2008). 

Again in Case-4, the secondary instability triggered breakdown is originated in the R-S 

region and similar to Case-2 the feedback mechanism seems to play the critical role in 

generating the three dimensional disturbances. Figure 16 shows the contour of the mean 

streamwise velocity and the side view of ߱௫  iso-surface at phase ߶ ൌ 0. Similar to 3D 

Case-2, the streamwise vorticities from the previous vortex tube stay closely attached to the 

surface in the R-S region ݔ ൌ ሺ0.55, 0.68ሻ (figure 16.b). The reversed flow in the same 

region (figure 16.a) brings the streamwise vorticities upstream. As shown in the dashed box 

of figure 14.d, the near wall streamwise vorticities extend in streamwise direction and 

overlaps with the oncoming shedding vortex. The bottom of the oncoming vortex gets 

affected by the near wall streamwise vorticities which triggers the secondary instability and 
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breakdown of the oncoming vortex. The circulation in the R-S region provides the 

necessary condition for the self-sustaining secondary instability. 

                     

                     

(a)                                                                          (b) 

                     

                     

(c)                                                                          (d) 

FIGURE 14. Iso-surface of Q-invariant ܳ ൌ 1 (upper) and streamwise vorticity ߱௫ ൌ േ3 

(lower) for four phases in one shedding period:  (a) ߶ ൌ 0, (b) ߶ ൌ గ

ଶ
, (c) ߶ ൌ ߨ , (d) 

߶ ൌ ଷగ

ଶ
. 
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FIGURE 15. Contours of (a) streamwise velocity U  and (b) streamwise vorticity ߱௫  at 

phase ߶ ൌ ݔ on ߨ െ slice at y ݖ ൌ 0.07. 

 

 

FIGURE 16. 3D Case-4 (a) contour of the mean streamwise velocity and (b) Iso-surface of 

streamwise vorticity (side view) at ߶ ൌ 0. 

3.3 The breakdown process of Case-6 

Figure 17 compares the instantaneous spanwise vorticity ߱௭ between the 2D and 3D 

simulations in Case-6. With the increase of AoA, the separation and reattachment points 

move further upstream for both 2D and 3D simulations. The result of 2D Case-6 shows a 

similar process as in the previous two 2D cases. Similar to 3D Case-4, small scale 

structures appear in the R-S region ݔ ൌ ሺ0.33, 0.48ሻ  in 3D Case-6 and a turbulent 

boundary layer forms after the turbulent breakdown (also in figure 3.c). 

The instantaneous iso-surfaces of Q-invariant ܳ ൌ 2 and streamwise vorticity ߱௫ ൌ േ5 

for four phases within the shedding cycle in 3D Case-6 are shown in figure 18. Unlike the 

previous two cases, the deformation of the shedding vortex and the generation of the 
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streamwise vorticities show an irregular and random pattern. It is neither periodic nor 

repeatable. As shown in figure 19.b, a layer of small three dimensional structures/eddies 

inside the circulation region and overlaps with negative mean streamwise velocity (figure 

19.a) exists attaching to the wall. The streamwise vorticity layer stays on the wall around 

ݔ ൎ 0.35 in the R-S region (figure 18). The oncoming shedding vortex enters the region of 

near wall streamwise vorticity layer, and the bottom part of the oncoming vortex interact 

with the three dimensional small scale eddies in the streamwise vortical layer. The 

breakdown of the oncoming vortex carries out by further interaction with small scale 

structures and the self-rolling. The feedback mechanism and process is again close to the 

previous two cases in triggering the self-sustain secondary instability. This type of 

breakdown is close to the “transition by contact” due to flow reversal proposed by Spalart 

(2000). In Spalart (2000), the transitional flow instantly becomes three-dimensional without 

pairing, and no primary Gortler vortices (braid region) are found. A similar type of 

transition can also be found in Fasel et al. (2004), in which the shedding vortex was found 

running into the turbulent region. 

 

FIGURE 17. Contour of spanwise vorticity ߱௭ : (a) 2D Case-6; (b) 3D Case-6. 

                    

                     

(a)                                                                          (b) 
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 (c)                                                                          (d) 

FIGURE 18. Iso-surface of Q-invariant ܳ ൌ 2 (upper) and streamwise vorticity ߱௫ ൌ േ5 

(lower) for four phases in one shedding period:  (a) ߶ ൌ 0, (b) ߶ ൌ గ

ଶ
, (c) ߶ ൌ ߨ , (d) 

߶ ൌ ଷగ

ଶ
. 

 

 

FIGURE 19. 3D Case-6 (a) contour of the mean streamwise velocity and (b) Iso-surface of 

streamwise vorticity (side view) at ߶ ൌ 0. 

Although the breakdown process shows a random manner, the hyperbolic instability 

observed in 3D Case-4 is also observed in some intermittent shedding cycle. Figure 20 

shows an instantaneous iso-surfaces of Q-invariant and streamwise vorticity in 3D Case-6. 

The braid-like streamwise vorticities are generated in the region between two shedding 

vortices and the sign of the streamwise vorticities appears the alternative pattern. However, 
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the elliptical instability observed in 3D Case-2 is not observed in 3D Case-6. In the current 

case, the breakdown process occurs mainly by contacting with the turbulent flow and 

appears of an irregular pattern. Thus we call this type of breakdown the contact instability. 

 

 

Figure 20. Iso-surface of Q-invariant (ܳ ൌ 2, upper) and streamwise vorticity (߱௫ ൌ േ5, 

lower) in 3D Case-6. 

4. Discussions 

The breakdown process occurs in different pattern at different AoA as described above. 

However, the feedback mechanism is found in all three cases and plays a critical role in 

triggering the breakdown process. In Williamson (1996), the reverse flow behind the bluff-

body was identified to cause the formation of the self-sustaining elliptical and hyperbolic 

instabilities due to the feedback mechanism. Here, the circulation of the separated flow on 

the suction side of the airfoil plays the same role in bringing the three dimensional 

disturbances upstream and keeping the breakdown process self-sustaining.  

Note that in low-Reynolds number airfoil and low-pressure turbine flows with moderate 

upstreaming disturbances (Fasel et al. 2008, Zhou & Wang 2011 & Zaki et al. 2010), the 

shedding vortex is more energetic and the R-S region moves upstream. Thus the separation 

region is reduced and the pressure recoveries smoothly. Although the R-S region is 

weakened, the feedback mechanism still dominates in triggering the breakdown process. So 

the feedback process in the R-S region usually occurs when the shedding vortex grows and 

makes contact with the near wall streamwise vorticities generated in the breakdown of the 

previous shedding cycle. The growth of the shedding vortices and the approaching to 

reattach the wall is a necessary condition for the breakdown process, but seems not a 
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sufficient one as the same process occurs in the 2D flows. By keeping increasing 

upstreaming disturbances, the R-S region can totally avoided and breakdown process occurs 

convectively (Zaki et al. 2010 and Zhou & Wang 2011). In such a case, the feedback 

process is avoided due to the absence of the separation.  

Table 2 lists the frequency of vortex shedding in all three cases. The frequency 

increases with the AoA. Figure 21 shows the tangential velocity profiles extracted at the 

location of the minima of ܥ௙ curve in the R-S region (figure 5.a) for the three cases. The 

velocity outside the boundary layer is higher at higher AoA, and the near wall shearing 

becomes stronger with the increase of the AoA. The elliptic instability, hyperbolic 

instability and contact instability appear gradually with the increase of AoA as shown 

above, in which the sheding frequency and local velocity also increases. A similar sequence 

of states was also observed in bluff-body wakes with the increase of Reynolds number. In 

bluff body wakes, the elliptical instability (Mode-A) is first observed at ܴ݁ௗ ൐ 190 and the 

hyperbolic instability (Mode-B) is first observed at ܴ݁ௗ ൐ 240 (Williamson 1996). Roshko 

(1954) found that for ܴ݁ ൌ 300	~	10,000 ൅  an ‘irregular’ regime is observed, where 

velocity fluctuations showed distinct irregular. A similar region was confirmed by Bloor 

(1964). With a fixed geometry of bluff body, increasing the Reynolds number by increasing 

the flow velocity also increases the vortex shedding frequency. Although the feedback 

process is different between the separated flows on the airfoil suction side and the bluff-

body wakes, the sequence of states is analogous between these two types of flows. With the 

increase of AoA in airfoil flows or with the increase of Reynolds number in bluff-body 

flows, the scenario of the breakdown occurs: elliptic instability → hyperbolic instability → 

contact instability. By further increasing the AoA to 8°, the authors carry out another 3D 

simulation. The breakdown process is found to quite close to 3D Case-6, and the 

breakdown of the shedding vortex is caused by the contact instability as shown in figure 22. 

Table 2. Frequency of vortex shedding 

Case ߱ 

Case-2 22.22 

Case-4 36.09 

Case-6 60.73 
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FIGURE 21. Tangential velocity profiles: (dash line) Case-2, (solid line) Case-4, (dot line) 

Case-6. 

 

 

FIGURE 22. Iso-surface of Q-invariant (upper) and streamwise vorticity (lower) at AoA = 

8°. 

5. Conclusion 

The unforced separated and transitional flows over a SD7003 wing at moderate 

incidences are numerically investigated in this paper. The averaged and statistical results 

agree well in a p-type grid refinement study. As a new generation numerical method, the 

SD method with unstructured hexahedral mesh captures the LSB and the transition process 

well over the suction side of the airfoil. 

The breakdown processes associated with the laminar separation bubbles are 

numerically investigated. The appearances of the separation and pressure gradient make the 
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transition of the LSBs highly non-linear and complicated. In the rear region of the laminar 

separation bubbles, a Recovery-Separation region with a rapid increase/recovery of the 

pressure and a strong separation is observed in all cases. The secondary instability is found 

to originate in the R-S region. And both the ܶ. .ܭ .ܧ  and Reynolds stress reach the 

maximum and concentrate in this region.  

It is shown in all three cases that the breakdown process mainly occurs in the Recovery-

Separation region and the feedback mechanism due to the flow circulation inside the LSB 

plays a critical role in passing the three dimensional disturbances from downstream to the 

upstream which causes the breakdown of the next shedding vortex. The secondary 

mechanism in the breakdown process appears differently at different AoAs. The oblique 

modes and Λ-vortex-induced breakdown were not observed in the current unforced LSBs. 

In Case-2 the breakdown is triggered by the elliptical instability of the vortex core; in Case-

4 the hyperbolic instability dominates in the breakdown process; and in Case-6 the 

breakdown is caused by the direct contact and interaction with circulated turbulent flow 

which shows an irregular pattern. With the increase of AoA in current cases, the sequence 

of states is analogous to the sequence of breakdown states observed in bluff-body wakes 

with the increase of the Reynolds number, which follows the scenario: elliptic instability → 

hyperbolic instability → contact instability.  
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CHAPTER 5.  Effects of Surface Roughness on Laminar 

Separation Bubble over a Wing at a Low-Reynolds Number 

A paper submitted to AIAA Journal (in revision process) 
 

Ying Zhou and Z.J. Wang 

Abstract 

Laminar separation bubbles (LSBs) are often found over the wing of micro air vehicles 

(MAV) at low Reynolds numbers, and strongly influence the lift, drag and other 

aerodynamic performance parameters. A numerical investigation of passive LSB control 

techniques using roughness bumps on a low-Reynolds number wing is conducted in the 

present study. A high-order spectral difference unstructured grid Navier-Stokes solver is 

employed in the simulations. The study of surface roughness on laminar separation and 

turbulent transition can provide insights into the design of future passive control devices on 

wings. The transitional flow with LSB past a SD7003 rectangular wing with Reynolds 

number of 60,000 is used as the baseline (uncontrolled) case. In the controlled cases, 

roughness bumps are strategically placed near the leading edge of the wing for the purpose 

of improving aerodynamic performance in terms of the lift to drag ratio. The location, bump 

size, the number of bumps and the angle-of-attack are varied to study the effects. The 

pressure drag forces in the controlled cases are found to be reduced significantly when the 

LSB are reduced or avoided, resulting in much improved lift over drag ratio.  

Nomenclature 

AoA = angle of attack 

α୰ = wave number of the disturbances in x direction in linear stability theory 

α୧ = growth rate of the disturbances in linear stability theory 

β = wave number of the disturbances in z direction in linear stability theory 

C୮ = pressure coefficient 

C୤ = skin friction coefficient 

Cୈ = drag coefficient 

Cୈ୤ = drag coefficient contributed by friction 

Cୈ୮ = drag coefficient contributed by pressure 
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C୐ = lift coefficient 

c = chord length 

F, G, H, F෨, G෩, H෩ = vector of fluxes in Cartesian coordiantes and standard unstructured 

elements 

F෨ ୧, F෨୴ = inviscid and viscous vector of fluxes in standard unstructured elements 

h୧, l୧ାଵ ଶ⁄  = coefficient of Lagrange polynomial interpolation at solution points and flux 

points 

H୉୊, L୆ୈ,W୅େ = height, length and width the of the roughness bump 

i, j, k  = index of coordinates in x, y, z direction 

J  = Jacobian matrix 

K = number of points in physical element 

L D⁄  = lift-to-drag ratio 

M = Mach number 

M୧ = shape function in coordinate transformation 

Nୠ୳୫୮ = number of roughness bumps  

p = nondimensional pressure 

P୘୭୲ୟ୪ = normalized mean total pressure, ቀଵ
ଶ
ρUଶ ൅ Pቁ ଵ

ଶ
ρஶUஶଶൗ   

  P| = magnitude of pressure gradient׏|

Q, Q෩ = vector of conservative variables in Cartesian coordiantes and standard 

unstructured elements 

Q୐, Qୖ = vector of conservative variables from the two elements beside the interface 

Reୡ = Reynolds number based on chord length 

ρ = nondimensional density 

s = wave speed of the disturbance in linear stability theory, s ൌ ω α୰⁄  

t = nondimensional time t ൌ t∗ ሺc Uஶ⁄ ሻ⁄  

t∗ = dimensional time 

T = nondimensional temperature 

T. K. E.	 = normalized turbulent kinetic energy, 	ଵ
ଶ
൫u′ଶതതതത ൅ v′ଶതതതത ൅ w′ଶതതതതത൯ Uஶଶൗ  

δ୉ = boundary layer thickness at the location of bump in uncontrolled case 
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u, v, w = nondimensional velocity in x, y, z direction 

Uஶ = freestream velocity 

u′, v′, w′ = nondimensional velocity fluctuation in x, y, z direction 

u୲, u୲ᇱ = nondimensional tangential velocity / fluctuation, normal to the wall surface 

x, y, z = nondimensional Cartesian coordinates 

ξ୶, η୶, ς୶, ξ୷, η୷, ς୷, ξ୸, η୸, ς୸ = metric coefficients of the coordinate transformation 

ω = frequency of the disturbances in linear stability theory 

Xୱ = solution points in spectral difference method 

Xୱାଵ ଶ⁄ = flux points in spectral difference method 

X୉ = location of the roughness bump 

τ୶୷ = normalized Reynolds stress, u′v′തതതതത Uஶଶൗ  

 Q = gradient of conservative variables׏

∆xା, ∆yା, ∆zା = cell size in wall units 

ϕ = vector of primitive variables 

Ω = computational spatial domain 

1. Introduction 

 Flow control, the technique to manipulate a flow field to achieve a desired change, is of 

immense technological importance, and thus is pursued by many scientists and engineers in 

various areas of fluid mechanics field for many years. The configuration lift, drag and L D⁄  

ratio are the principal considerations in the design and construction of air vehicles. The 

decrease in drag and increase in L D⁄  ratio can increase the range and reduce the required 

thrust, which result in improved fuel economy. Low-Reynolds number (Reୡ ൌ 10ସ~10ହ) 

flow has been of interest for many decades with the development of Micro Air Vehicles 

(MAV). In the low-Reynolds number flows over airfoils, the formation of a LSB has a 

dominant effect on the flow field and usually causes high pressure drag force on the airfoil. 

Reducing or avoiding the LSB on the surfaces of the airfoils is one way of achieving 

reduced drag. Because of this, aerodynamicists and aircraft designers have pursued the 

objective of separation control for many decades. 

 Since laminar boundary layers are less resistible to the significant adverse pressure 

gradient, LSBs are widely found over the suction side of low-Reynolds-number airfoils at 



95 
 

moderate incidences. At moderate AoAs, the laminar flow detaches from the suction wing 

surface near the leading edge and a LSB is formed. After separation, vortex shedding due to 

the Kelvin-Helmholtz (K-H) instability is usually observed within the LSB region. 

Thereafter, the separated laminar boundary layer rapidly transitions to turbulent flows and 

the turbulent boundary layer reattaches after the vortex breakdown.  

 Active flow control techniques have been widely adopted for the separation and 

transition control of flow over airfoils. Periodic air suction/blowing through a slot on the 

airfoil surface, which introduces momentum into the flow field, might be the most popular 

means of active control. With properly chosen frequency and magnitude of the 

suction/blowing speed, the technique is often found to be effective in reducing the 

separation region and improving performance. Plasma actuators are applied as another 

technique of active flow control. However, active control techniques such as 

suction/blowing usually require additional devices and power, and is less applicable to the 

separation control over a MAV wing, which should be light and small. The passive means 

of flow control involves ‘inert’ devices including changes to the wing shape and surface 

finish. By introducing the surface roughness, the laminar boundary layers can be perturbed 

or become turbulent, and thus are more resistible to the adverse pressure gradient. In such a 

way, the separation can be delayed or avoided. 

 Surface roughness has been adopted as a method of altering the flow pattern in 

various types of flows. Saric et al. [1, 2] used surface roughness as a means of passive flow 

control in experimental studies of transition flow over swept wings. White and Saric [3] 

examined roughness effects on transition and found that three-dimensional static roughness 

can be an effective tool in delaying the transition to turbulence on a swept wing by 

distributing roughness elements at a spacing approximately equal to one-half of the 

spanwise wavelength of the critical mode. Carpenter el al. [4, 5] continued the work of 

Saric et al. [1] and found that the flow is very sensitive to both the shape and height of the 

discrete roughness elements. In the experimental study of unsteady and transitional flows 

behind roughness elements in Ergin and White [6], it is found that with the increase of 

roughness height, the initial amplitudes of the steady disturbances and the growth rates of 

the unsteady disturbances increase. The surface roughness was also applied in altering the 
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supersonic flows, e.g. [7], [8]. At Mach 2.8 Latin and Bowersox [8] found as the roughness 

height was increased, the turbulence production relative to the frictional losses increased. 

Fransson et al. [9, 10] applied roughness elements on a flat plate in a wind-tunnel and found 

that this passive control technique can delay transition to turbulence. Zhang et al. [11] 

experimentally investigated the performance degradation of a low-Reynolds number airfoil 

with distributed leading edge roughness and found that the roughness height appears to be a 

more critical factor for roughness induced performance degradation than other factors such 

as distribution patterns. Honsaker and Huebsch [12] used a Prandtl transposition to model 

the surface roughness on airfoils and found that the dynamic surface roughness is effective 

on the stall separation control. Rizzetta and Visbal [13] employed a high-order overset-grid 

approach to model cylindrical roughness elements and studied the flow past an array of 

distributed roughness elements. More recently, Rizzetta et al. [14] performed a direct 

numerical simulation of discrete roughness on a swept-wing leading edge and studied the 

stability of crossflow with roughness. Redford et al. [15] studied the compressibility effects 

on boundary-layer transition induced by an isolated roughness element and suggested that 

the boundary layer near the roughness element is particularly receptive to external 

disturbances. 

 Surface roughness is also applied in controlling flow separation. Santhanakrishnan 

and Jacob [16] investigated the separation behavior with “large-scale” roughnesses on an 

airfoil surface and showed that the separation is delayed and the separation region is smaller 

for the perturbed airfoil case at moderate Re and higher angle of attack. Boiko et al. [17] 

experimentally applied surface humps for the control of laminar separated flows and 

suggested that the injection of stationary disturbances in the separation region followed by 

their transient amplification is a promising way of flow control. It was found that with a 

suitable size of the roughness elements placed close to separation line and span-wise 

spacing between them, it is possible to generate streamwise stationary disturbances subject 

to transient growth accompanied by secondary instability to unsteady disturbances 

promoting laminar flow breakdown. 

 High-order methods on unstructured grids are known for their advantages of 

accuracy and flexibility in the numerical simulation of multi-scale flow with complex 
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geometries. In the last two decades, there have been intensive research efforts on high-order 

methods for unstructured grids [18-30]. In this paper, a high-order SD method for the three 

dimensional Navier-Stokes equations on unstructured hexahedral grids developed by Sun et 

al. [30] is used. This approach is capable of capturing the laminar separation and the vortex 

breakdown, and has been previously shown in the numerical simulation of the 

attached/detached laminar flow and the reattached turbulent flow in the case of the 

uncontrolled baseline model [31]. 

 In this paper, a passive flow control technique using surface roughness (bumps) near 

the leading-edge of the wing is numerically studied. The roughness bumps can affect the 

formation of the LSBs and be used for the purpose of aerodynamic performance 

improvement. The flow over a SD7003 wing at AoA ൌ 4	deg, Reୡ ൌ 6 ൈ 10ସ and M ൌ 0.2 

is used as the baseline model and the starting point for the controlled models. The rest of 

the paper is organized as follows. In the next section, the spectral difference method on 

unstructured hexahedral mesh is briefly reviewed. In Section III, numerical results of the 

baseline model are presented and the flow features associated with LSBs are discussed. In 

Section IV, a series of cases with different bump size, bump number and AoAs  are 

numerical simulated. The numerical results of the controlled cases are compared with those 

of the baseline model and the detail effects of the surface roughness are investigated. 

Concluding remarks are given in Section V. 

2. Review of Multidomain Spectral Difference (SD) Method 

Governing equations 

 Consider the three-dimensional compressible non-linear Navier-Stokes equations 

written in the conservation form as  

∂Q
∂t

൅
∂F
∂x

൅
∂G
∂y

൅
∂H
∂z

ൌ 0																																																														ሺ1aሻ 

on domain Ω ൈ ሾ0, T଴ሿ and Ω ⊂ Rଷ with the initial condition 

Qሺx, y, z, 0ሻ ൌ Q଴ሺx, y, zሻ																																																														ሺ1bሻ 

and appropriate boundary conditions on ∂Ω.  
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Coordinate transformation 

 

Figure 1 Transformation from a physical element to a standard element 

 In the SD method, it is assumed that the computational domain is divided into non-

overlapping unstructured hexahedral cells or elements. In order to handle curved 

boundaries, both linear and quadratic isoparametric elements are employed, with linear 

elements used in the interior domain and quadratic elements used near high-order curved 

boundaries. In order to achieve an efficient implementation, all physical elements ሺx, y, zሻ 

are transformed into standard cubic element ሺξ, η, ςሻ ∈ ሾെ1,1ሿ ൈ ሾെ1,1ሿ ൈ ሾെ1,1ሿ as shown 

in Figure 1.  

 The transformation can be written as 

ቈ
x
y
z
቉ ൌ෍M୧ሺξ, η, ςሻ

୏

୧ୀଵ

൥
x୧
y୧
z୧
൩																																																														ሺ2ሻ 

For the transformation given in (2), the Jacobian matrix J takes the following form 

J ൌ பሺ୶,୷,୸ሻ

பሺஞ,஗,ணሻ
ൌ ൥

xஞ x஗ xண
yஞ y஗ yண
zஞ z஗ zண

൩. 

 The governing equations in the physical domain are then transformed into the 

standard element, and the transformed equations take the following form 

∂Q෩

∂t
൅
∂F෨

∂ξ
൅
∂G෩

∂η
൅
∂H෩

∂ς
ൌ 0																																																														ሺ3ሻ 

where 

Q෩ ൌ |J| ∙ Q 
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൥
F෨
G෩
H෩
൩ ൌ |J| ቎

ξ୶ ξ୷ ξ୸
η୶ η୷ η୸
ς୶ ς୷ ς୸

቏ ∙ ൥
F
G
H
൩ 

 

Spatial Discretization 

 In the standard element, two sets of points are defined, namely the solution points 

and the flux points, illustrated in Figure 2 for a 2D element. The solution unknowns (Q) or 

degrees-of-freedoms (DOFs) are stored at the solution points, while fluxes are computed at 

the flux points. The solution points in 1D are chosen to be the Gauss points defined by 

Xୱ ൌ cos ൬
2s െ 1
2N

∙ π൰ , s ൌ 1,2,⋯ , N.																																												ሺ4ሻ 

 

Figure 2 Distribution of solution points (circles) and flux points (squares) in a standard 

element for a 3rd-order SD scheme. 

 With solutions at N points, we can construct a degree ሺN െ 1ሻ polynomial in each 

coordinate direction using the following Lagrange basis defined as 

h୧ሺXሻ ൌ ෑ ൬
X െ Xୱ
X୧ െ Xୱ

൰

୒

ୱୀଵ,ୱஷ୧

																																																														ሺ5ሻ 

 The reconstructed solution for the conserved variables in the standard element is just 

the tensor products of the three one-dimensional polynomials, i.e. 

Qሺξ, η, ςሻ ൌ෍෍෍
Q෩୧,୨,୩
หJ୧,୨,୩ห

୒

୧ୀଵ

୒

୨ୀଵ

୒

୩ୀଵ

h୧ሺξሻ ∙ h୨ሺηሻ ∙ h୩ሺςሻ																																									ሺ6ሻ 
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 The flux points in 1D are chosen to be the ሺN െ 1ሻ Gauss quadrature points plus the 

two ending points. With fluxes at ሺN ൅ 1ሻ points, a degree N polynomial can be constructed 

in each coordinate direction using the following Lagrange bases defined as 

l୧ାଵ ଶ⁄ ሺXሻ ൌ ෑ ቆ
X െ Xୱାଵ ଶ⁄

X୧ାଵ ଶ⁄ െ Xୱାଵ ଶ⁄
ቇ

୒

ୱୀ଴,ୱஷ୧

																																																	ሺ7ሻ 

 Similarly, the reconstructed flux polynomials take the following form: 

F෨ሺξ, η, ςሻ ൌ෍෍෍F෨୧ାଵ ଶ⁄ ,୨,୩

୒

୧ୀ଴

୒

୨ୀଵ

୒

୩ୀଵ

l୧ାଵ ଶ⁄ ሺξሻ ∙ h୨ሺηሻ ∙ h୩ሺςሻ																															ሺ8aሻ 

G෩ሺξ, η, ςሻ ൌ෍෍෍G෩୧,୨ାଵ ଶ⁄ ,୩

୒

୧ୀଵ

୒

୨ୀ଴

୒

୩ୀଵ

h୧ሺξሻ ∙ l୨ାଵ ଶ⁄ ሺηሻ ∙ h୩ሺςሻ																															ሺ8bሻ 

H෩ሺξ, η, ςሻ ൌ෍෍෍H෩୧,୨,୩ାଵ ଶ⁄

୒

୧ୀଵ

୒

୨ୀଵ

୒

୩ୀ଴

h୧ሺξሻ ∙ h୨ሺηሻ ∙ l୩ାଵ ଶ⁄ ሺςሻ																															ሺ8cሻ 

Algorithm     

 Because the SD method is based on the differential form of the governing equations, 

the implementation is straightforward even for high-order curved boundaries. All the 

operations are basically one-dimensional in each coordinate direction and each coordinate 

direction shares the collocated solution points with others, resulting in improved efficiency. 

In summary, the algorithm to compute the inviscid flux and viscous flux and update the 

unknowns (DOFs) consists the following steps: 

1. Given the conserved variables ൛Q୧,୨,୩ൟ at the solution points, compute the 

conserved variables ൛Q୧ାଵ ଶ⁄ ,୨,୩ൟ at the flux points using polynomial (6). 

Note that inviscid flux is a function of the conserved solution and the viscous 

flux is a function of both the conserved solution and its gradient, taking flux F෨ for 

example: 

൞

F෨ ൌ F෨ ୧ െ F෨୴

F෨୧ାଵ ଶ⁄ ,୨,୩
୧ ൌ F෨ ୧൫Q୧ାଵ ଶ⁄ ,୨,୩൯

F෨୧ାଵ ଶ⁄ ,୨,୩
୴ ൌ F෨୴൫Q୧ାଵ ଶ⁄ ,୨,୩, Q୧ାଵ׏ ଶ⁄ ,୨,୩൯

																																																						ሺ9ሻ 
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2. Compute the inviscid fluxes ൛F෨୧ାଵ ଶ⁄ ,୨,୩
୧ ൟ at the interior flux points using the 

solution ൛Q୧ାଵ ଶ⁄ ,୨,୩ൟ computed at Step 1. Compute the viscous fluxes ൛F෨୧ାଵ ଶ⁄ ,୨,୩
୴ ൟ 

using the solution ൛Q୧ାଵ ଶ⁄ ,୨,୩ൟ  computed at Step 1 and the gradient of the 

solutions  ൛׏Q୧ାଵ ଶ⁄ ,୨,୩ൟ computed based on ൛Q୧ାଵ ଶ⁄ ,୨,୩ൟ. 

3. Compute the common inviscid flux at element interfaces using a Riemann 

solver (10), such as the Roe solver [32] and Russanov solver [30]. 

F෨ ୧ ൌ F෨ ୧ሺQ୐, Qୖሻ																																																														ሺ10ሻ 

Compute the common viscous flux at element interfaces using a viscous 

approach (11), such as the averaged approach and DG-like approach [30]. 

F෨୴ ൌ F෨୴ሺQ୐, Qୖ, ,Q୐׏  ሺ11ሻ																																																						Qୖሻ׏

Then compute the derivatives of the fluxes at all the solution points by using 

(12). 

ቆ
෨ܨ߲

ߦ߲
ቇ
௜,௝,௞

ൌ෍ܨ෨௥ାଵ ଶ⁄ ,௝,௞

ே

௥ୀ଴

݈′௥ାଵ ଶ⁄ ሺߦ௜ሻ																																									ሺ12ܽሻ 

ቆ
෨ܩ߲

ߟ߲
ቇ
௜,௝,௞

ൌ෍ܩ෨௜,௥ାଵ ଶ⁄ ,௞

ே

௥ୀ଴

݈′௥ାଵ ଶ⁄ ൫ߟ௝൯																																									ሺ12ܾሻ 

ቆ
෩ܪ߲

߲߫
ቇ
௜,௝,௞

ൌ෍ܪ෩௜,௝,௥ାଵ ଶ⁄

ே

௥ୀ଴

݈′௥ାଵ ଶ⁄ ሺ߫௞ሻ																																									ሺ12ܿሻ 

 

4.  Update the DOFs using a multistage TVD scheme for time 

integration of (13). 

߲ ෨ܳ௜,௝,௞
ݐ߲

ൌ െቆ
෨ܨ߲

ߦ߲
൅
෨ܩ߲

ߟ߲
൅
෩ܪ߲

߲߫
ቇ
௜,௝,௞

																																									ሺ13ሻ 

 For more details about SD method on hexahedral mesh, the readers can refer 

to [30]. 

3. Baseline model 

 The flow over the SD7003 wing at ܣ݋ܣ ൌ 4	݀݁݃, Reynolds number ܴ݁௖ ൌ 6 ൈ 10ସ 

and Mach number	ܯ ൌ 0.2 without surface roughness is used as the baseline model. This 
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case is chosen due to the variety of previously experimental and numerical results [33]. The 

baseline model is numerically simulated first and then the results are used to compare with 

and assess the performance of the controlled models in the next section. The computational 

grid and boundary conditions are introduced below, and a p-type grid resolution study is 

carried out. The statistical numerical results are presented. Then the features associated with 

the LSBs and the mechanisms of turbulent transition are discussed.  

 In this paper, the Reynolds number and Mach number are fixed for all the cases. 

The cases with different geometry and parameters are named according to the Aܣ݋, w/ or 

w/o bumps and the additional bump parameters, e.g. ‘AoA_4c’ represents the controlled 

case at ܣ݋ܣ ൌ 4	݀݁݃ and ‘AoA_4’ refers to the current case of the baseline model. 

a. Computational grid and boundary conditions 

 Figure 3 shows the computational grid for the case AoA_4. Fine grid cells are 

generated near the wall and around the physically important region where the separation 

bubble and vortex breakdown occur. The smallest cells are located at the trailing edge 

corner with dimensions (in wall units) ∆ݕା ൌ 2.5  in the direction normal to the wall, 

ାݔ∆ ൌ 25.0  in the flow direction and ∆ݖା ൌ 12.0  in the spanwise direction. The total 

number of cells used in the present study is 253,600 for the baseline model, resulting in 

6,847,200 and 16,230,400 degrees-of-freedom (DOFs) per equation for the 3rd-order and 

4th-order SD schemes respectively. In the SD method, extra DOFs are associated with each 

cell, so the resolution of the current mesh is close to what is required of a direct numerical 

simulation. 

 To model a wing with an infinite-span , a periodic boundary condition is used in the 

spanwise direction and the span width of the wing is chosen to be 20% of the chord, which 

was shown to be wide enough in [31, 33]. At the far-field of the computational domain, an 

absorbing sponge zone boundary condition [34] is imposed, and a no-slip, adiabatic 

boundary condition is applied on the surface of the wing.  
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Figure 3 Computational mesh 

Averaged and statistical results 

 In the present numerical simulations, the mean flow field and the statistical results 

are obtained by averaging the instantaneous flow field over 8 non-dimensional time units. 

In Figure 4, the mean pressure coefficient ܥ௣  and the mean skin friction coefficient ܥ௙ 

distributions on the wing surface are shown. A polynomial order (p) refinement study is 

carried out by increasing the order of the polynomial in each element from 2 (resulting in 

3rd-order accuracy) to 3 (resulting in 4th-order accuracy). A very good agreement between 

the 3rd-order method and 4th-order method has been found in Figure 4 for both the mean 

pressure coefficient and the mean skin friction coefficient on the wing surface, thus 

indicating that the mean flow is p-independent and the spatial resolution provided by the 

SD method is capable of capturing the main flow features at this Reynolds number.  

 Table 1 compares the locations of separation, transition and reattachment between 

the 3rd-order and the 4th-order results. The onset location of transition is defined by a 

critical value of 0.001 of the normalized Reynolds stress ߬௫௬ as used in [33, 35-38]. The 

differences between the above measurements of the 3rd-order and the 4th-order results are 

all less than 2%. The results from Galbraith and Visbal [33] are also listed here and the 

agreement is also good. 

Table 1 Separation, transition and reattachment locations 

Case Separation Transition Reattachment 
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3rd-order 0.223 0.515 0.675 

4th-order 0.227 0.521 0.685 

Galbraith and Visbal [33] 0.23 0.55 0.65 

  

(a)                                                                                    (b) 

Figure 4 Mean pressure coefficient (a) and mean skin friction coefficient (b) on the wing 

surface. Square symbols: 3rd-order result; solid line: 4th-order result. 

Flow features associated with the LSB and turbulent transition 

Figure 5a displays the mean streamlines around the wing and the mean streamwise 

velocity field averaged in both time and the spanwise direction. The mean separation 

bubble and the reattachment of the flow are clearly shown. In Figure 5b, the negative value 

of the mean spanwise vorticity on the suction surface of the wing at interval ݔ ൌ ሾ0.0,0.6ሿ 

represents the laminar shear layer before the flow transitions into turbulent flow. The 

amplitude of the disturbance inside this interval has been found to grow exponentially due 

to the Kelvin-Helmholtz instability after separation [31, 36-38]. The shear layer terminates 

around ݔ ൌ 0.65 at the end of the LSB (Figure 5a) where the vortex breakdown occurs. A 

turbulent boundary layer forms at interval ݔ ൌ ሾ0.75,1.0ሿ . Figs. 5c and 5d show the 

statistical distribution of the normalized turbulent kinetic energy 	ܶ. .ܭ .ܧ  and the 

normalized Reynolds stress ߬௫௬, respectively. Results of both 3rd-order and 4th-order SD 

schemes are shown and are quite close to each other. The concentration of both ܶ. .ܭ  and .ܧ

߬௫௬  around ݔ ൎ 0.65  is strongly related to the process of vortex breakdown, and is 

discussed later in this section. 
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(a)                                                                                    (b) 

 

(c)                                                                                    (d) 

Figure 5. Mean and statistical results of baseline model: (a) mean streamlines around the 

wing and mean streamwise velocity field; (b) mean spanwise vorticity field; (c) normalized 

turbulent kinetic energy ሺܶ. .ܭ .ܧ ሻ distribution (upper: 3rd-order SD scheme; lower: 4th-

order scheme); (d) normalized Reynolds stress ሺ߬௫௬ሻ  distribution (upper: 3rd-order SD 

scheme; lower: 4th-order scheme). 

Figure 6 shows the profiles of the mean tangential velocity u୲ at different locations and 

the corresponding profiles of RMS tangential velocity disturbance u୲ᇱ at the corresponding 

locations of the baseline model. The development of the mean shear layer from an attached 

layer to a detached one can be clearly seen. The profiles of RMS of u୲ᇱ vary along with the 

mean shear layer. After separation, the inflection point gradually shows in the mean 
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velocity profiles (Figure 6.a) and the K-H instability becomes dominant accompanied by 

the vortex shedding.  

 

(a)                                                                                    (b) 

Figure 6 Numerical results for baseline model: (a) normalized profiles of the mean 

tangential velocity at different locations; (b) normalized profiles of RMS tangential velocity 

disturbances at different locations 

Figure 7 shows the instantaneous contour lines of the Q-invariant [39] for about a 

shedding period. Inside the detached shear layer (Figure 5b), vortical tubes (rolls) are shed 

and grow convectively, as shown in Figure 7. The K-H instability is also called inviscid 

instability, in which the disturbance is more unstable in two dimensions than in three 

dimensions. The shedding vortices remain two-dimensional until entering the breakdown 

stage. 

It is observed that two-dimensional vortices break down to small scale structures rapidly 

in the region  x ൌ ሾ0.6, 0.7ሿ, as shown in Figure 7. And in the same region, the skin friction 

and the wall pressure increase suddenly (Figure 4). Finally the flow reattaches to the wall 

and the LSB is terminated by turbulent flow. As shown in Figure 7, the vortex breakdown 

process extends from the bottom to the top and the small scale structures close to the wall at 

interval x ൌ ሾ0.6, 0.7ሿ with upstream-going velocity play an important role in this process. 

A layer of small scale structures stay near the wall in this region right below the shedding 

vortices. As the layer remains within the separation bubble region, the small scale structures 

move upstream due to the reversed flow direction. When the shedding vortices pass the 

region, the bottom part of the shedding vortices meets and interacts with the upstream going 

small scale structures. The bottom part of the vortices breaks down to small scale structures 

first, then the upper part is affected and breaks down by the swirling motion of the vortices. 

In such a way, the vortex tube breaks down from the bottom to the top due to a feedback 
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mechanism [31]. After the breakdown of the large scale vortices into smaller scale eddies, 

the flow becomes turbulent. Spalart et al. [40] concluded this process as a simple 

mechanism of ‘transition by contact’. Jones et al. [41] attributed a similar process to be 

caused by the three dimensional absolute instability. 

(a)                                                                                    (b) 

(c)                                                                                    (d) 

Figure 7. Instantaneous contour line of ܳ ൌ 1 for about one shedding period 

 

(a)                                                  (b)                                                   (c) 

Figure 8. Averaged numerical results of case AoA_4: Contours of (a) normalized total 

pressure ்ܲ௢௧௔௟; (b) pressure coefficient െܥ௣; (c) pressure gradient magnitude |ܲߘ|. 

The contours of the normalized mean total pressure P୘୭୲ୟ୪, the mean pressure coefficient 

C୮ distribution and the pressure gradient magnitude |׏P| for the case AoA_4 are shown in 

Figure 8. Both the total pressure and the static pressure are almost constant inside the LSB 

region and are lower inside the LSB than those outside the LSB. In other words, in the 

averaged sense the LSB persists a constant low pressure inside and is pressed by high-

pressure outside. Around the location x ൌ 0.65 , there exists a region of high adverse-

pressure-gradient (APG) as shown in Figure 8c and a high pressure gradient terminates the 

LSB. This region around x ൌ 0.65 is exactly the same region where the breakdown and 
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reattachment are observed. In the sense of the mean flow field, the pressure difference is 

balanced by the friction force over the wall as shown in Figure 4. The T. K. E. and τ୶୷ are 

also found to be concentrated in the same region as shown in Figure 5c&d. The above 

features illustrate that this region is physically important to the formation of the LSB and 

the breakdown process thereafter, to which the attention should be paid when investigating 

the effects of the surface roughness. It will be shown later that the typical feature of the 

sudden recovery of pressure and the associated separation in region x ൌ ሾ0.6, 0.7ሿ on the 

suction side of the baseline model can be altered with the surface roughness. 

4. Effects of Surface Roughness 

The numerical simulations of the surface roughness effects are carried out in this 

section. The study can help improve the design of future passive control devices on the 

wing surface for separation control and drag reduction. 

By using the high-order SD method on unstructured hexahedral mesh, geometry of the 

roughness bumps are modeled as shown in Figure 9. The bump geometry is defined using 

the following parameters: the width W୅େ, the length L୆ୈ and the height H୉୊ of the bump. 

The surface edges of the bump are tangentially patched with the wing surface by high-order 

(Pଷ) polynomial curves and the curved surface on the top (at point F) of the bump is also 

tangential to the original wing surface at point E, as shown in Figure 9. In all cases, the 

discrete roughness bumps are equally spaced near the leading edge before the flow 

separates. Cases with different geometries, numbers of roughness bumps and AoAs are 

considered and numerically investigated, and the parameters are listed in Tables 2, 4 and 7, 

in which all the geometric parameters are normalized by the chord length c.  

  

(a)                                                                                    (b) 

Figure 9. (a) Roughness bump on the wing surface and (b) bump geometries 
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a. Effects of roughness bump size  

  

Table 2 Parameters of the roughness bumps 

Case ࢖࢓࢛࢈ࡺ ࡲࡱࡴ ࡰ࡮ࡸ ࡯࡭ࢃ ࡱࢄ  ࡱࢾ

AoA_4 N/A N/A N/A N/A N/A 0.0049 

AoA_4c 0.05 0.045 0.045 0.0035 2 N/A 

AoA_4c.w 0.05 0.090 0.045 0.0035 2 N/A 

AoA_4c.h 0.05 0.045 0.045 0.005 2 N/A 

 

Table 3 Mean lift coefficient, drag coefficient (per unit span) and lift-to-drag ratio 

Case ࡸ ࢌࡰ࡯ ࢖ࡰ࡯ ࡰ࡯ ࡸ࡯ ⁄ࡰ  

AoA_4 0.600 2.34e-2 1.38e-2 0.97e-2 25.6 

AoA_4c 0.593 2.05e-2 1.00e-2 1.05e-2 28.9 

AoA_4c.w 0.579 2.10e-2 0.94e-2 1.16e-2 27.6 

AoA_4c.h 0.579 2.07e-2 0.95e-2 1.12e-2 28.0 

 

Three cases with different roughness geometry are simulated and presented to test the 

effects of the bump size. The geometric parameters of the roughness bumps in all three 

cases are shown in Table 2. In order to affect the attached boundary layer profile before 

separation and also not induce too much viscous drag force, the location and dimension of 

the bumps in case AoA_4c are chosen after several tests. Through trial and error, the bump 

size and height were found to affect the flow more than the bump location. Here in all 

cases, the bumps are placed at a fixed location x ൌ 0.05 , where the boundary layer 

thickness for the baseline model AoA_4 is δ୉ ൌ 0.0049 . The cases AoA_4c.w and 

AoA_4c.h are variations based on case AoA_4c. The bumps in AoA_4c.w are twice as 

wide ሺW୅େሻ as in AoA_4c. In cases AoA_4c and AoA_4c.w, the height of the bumps is 

about 70% of the boundary layer thickness δ୉, while in case AoA_4c.h the height is set to 

close to 100% δ୉.  

The instantaneous iso-surfaces and side-views of the Q-invariant are shown in Figure 10 

for the baseline model and the cases with roughness bumps. The effectiveness of the bumps 
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in changing the flow field of the baseline model can be clearly seen. In case AoA_4c, 

vortex shedding in the separation bubble region is observed as in the baseline model 

AoA_4. However the shedding vortices are distorted as streamwise vorticities are generated 

behind the bumps. The shedding vortices are closer to the airfoil surface and the frequency 

of vortex shedding is higher than those in the baseline model, as shown in Figure 10b. It is 

found in both AoA_4c.w and AoA_4c.h that small scale vortex packets are generated 

behind the bumps and the pattern is periodic (Figure 10c&d). This implies that changing the 

width and height of the bumps can dramatically change the flow features, and the wider and 

taller bumps introduce stronger disturbances and significantly affect the laminar boundary 

layer flow. The perturbed region (periodic vortical packets) after the bumps grows in the 

flow direction, takes over the laminar region. Eventually the boundary layer becomes fully 

turbulent as shown in Figure 10c&d. Vortex shedding is also found in the laminar region of 

the flow, and the shedding vortical rolls interact with adjacent turbulent region. In cases of 

AoA_4c.w and AoA_4c.h, the roughness bump act like the turbulators, and the breakdown 

process is triggered by the vertical packets generated right behind the bumps, as shown in 

Figure 10c & d. 

The mean pressure coefficient and friction coefficient distributions on the suction 

surface of the controlled cases are shown in Figure 11, compared with the results of the 

baseline model. As shown in the friction coefficient plots, the separation region is smaller 

in case AoA_4c than in the baseline model. Disturbed by the upstream bumps, flow 

separation is delayed, while the breakdown and reattachment occur at an earlier location. In 

case AoA_4c, the features associated with the LSB, which include a pressure plateau and 

steep pressure recovery at the strong separation region, are also observed in x ൌ ሾ0.5, 0.6ሿ. 

This indicates the characteristics of the breakdown process in AoA_4c are quite similar to 

those in the baseline model AoA_4 even though the flow field is disturbed by the 

streamwise vorticity generated by the bumps. And the feedback mechanism of the 

circulation flow serves the same important role in the breakdown process of case AoA_4c 

as in the baseline model. With the increase of the width or height of roughness bumps, the 

LSBs are completely avoided in cases AoA_4c.w and AoA_4c.h as shown in the friction 

coefficient plot of Figure 11. A similar trend can be found in the cases of separation active 
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control by increasing the magnitude of suction/blowing [42] and also in the cases by 

increasing the free-stream turbulence level [43]. In cases AoA_4c.w and AoA_4c.h, the 

pressure recovers smoothly (Figure 11) without separation and the breakdown process 

occurs convectively (Figure 10 c&d). The pressure recovery and the associated strong 

separation region (x ൌ ሾ0.6, 0.7ሿ for case AoA_4 and x ൌ ሾ0.5, 0.6ሿ for case AoA_4c) seem 

to be closely related to the LSBs. Figure 12 shows the contours of the pressure gradient 

magnitude for cases AoA_4c and AoA_4c.h. With a reduced LSB in case AoA_4c, the 

severe APG region (Figure 12.a) can also be observed in x ൌ ሾ0.5, 0.6ሿ but is weaker than 

that in case AoA_4. In case AoA_4c.h, the severe APG region x ൌ ሾ0.5, 0.6ሿ disappears 

when the LSB is avoided (Figure 12.b). And in case AoA-4.w the situation is similar to 

case AoA_4.h.  

  

(a)                                                                                    (b) 
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(c)                                                                                    (d) 

Figure 10. Iso-surface of Q-invariant colored by streamwise velocity and side-view: (a) 

AoA_4, (b) AoA_4c, (c) AoA_4c.w, (d) AoA_4c.h 

Table 3 presents the mean lift and drag coefficients per unit span and the lift-to-drag 

ratio of all the cases. The drag coefficients decrease for all the controlled cases, and the lift 

coefficients also decrease slightly. It can be seen in Figs. 10 and 11 that roughness bumps 

generate a larger turbulent flow region and thus the friction drag increases. The contribution 

to the drag Cୈ from both pressure drag Cୈ୮ and friction drag Cୈ୤ are also listed in Table 3 

for all the cases. It is shown that with the reduction of the LSB, the pressure drag Cୈ୮ 

decreases and the friction drag Cୈ୤ increases. However, the pressure drag decreases by a 

larger amount than the increase of friction drag resulting in an overall drag reduction of 

over 10%. In addition, the lift-to-drag ratio is increased by at least 10% for all the 

controlled cases, as shown in Table 3.  
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Figure 11. Mean pressure coefficient and mean skin friction coefficient on the wing surface; 

AoA_4 (solid line, -), AoA_4c (dash line, - - -), AoA_4c.w (dash-dot line, -.-.-) and 

AoA_4c.h (dot line, ….)  

 

(a)                                                                                    (b) 

Figure 12. Contours of pressure gradient magnitude. (a) AoA_4c; (b)AoA_4c.h 

b. Effects of the number of bump 

 Case AoA_4c has two roughness bumps on the span width of 20% chord length and 

it is again used as the starting point for variations. Cases AoA_4c.1 and AoA_4c.4 have just 

1 and 4 bumps on the same span width with everything else remaining the same. Case 

AoA_4c.4n reduces the bump width ஺ܹ஼  by 50% and double the number of bumps from 2 

to 4, which is for further comparison with the cases AoA_4c and AoA_4c.4. Figure 13 

shows the instantaneous iso-surface and side-view of Q-invariant of all the cases. Similar to 

case AoA_4c (Figure 13.b), the attached boundary layer and the following shedding 

vortices are perturbed but still remain laminar for all the cases. Vortex shedding due to the 
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K-H instability occurs in all the cases and the turbulent vortical packet formed in cases 

AoA_4c.w and AoA_4c.h is not observed here. The number of bumps ௕ܰ௨௠௣ affects the 

spanwise wavelength of the disturbance. After separation, the K-H instability takes the 

dominant role of disturbance growth and the most unstable mode of K-H instability which 

is also called inviscid instability is two dimensional and the spatial growth rate of the 

disturbance decreases with the increase of the spanwise wave number [44]. Thus the 

physics and mechanisms are associated with the three dimensional instability in the 

detached shear layer and also possibly the elliptical instability [45, 41] of the shedding 

vortices.  

Table 4. Parameters of the roughness bumps 

Case ࢖࢓࢛࢈ࡺ ࡲࡱࡴ ࡰ࡮ࡸ ࡯࡭ࢃ ࡱࢄ  ࡱࢾ

AoA_4 N/A N/A N/A N/A N/A 0.0049 

AoA_4c.1 0.05 0.045 0.045 0.0035 1 N/A 

AoA_4c 0.05 0.045 0.045 0.0035 2 N/A 

AoA_4c.4 0.05 0.045 0.045 0.0035 4 N/A 

AoA_4c.4n 0.05 0.0225 0.045 0.0035 4 N/A 

Table 5 Mean lift coefficient, drag coefficient (per unit span) and lift-to-drag ratio 

Case ࡸ ࢌࡰ࡯ ࢖ࡰ࡯ ࡰ࡯ ࡸ࡯ ⁄ࡰ  

AoA_4 0.600 2.34e-2 1.38e-2 0.97e-2 25.6 

AoA_4c.1 0.581 2.25e-2 1.20e-2 1.04e-2 25.8 

AoA_4c 0.593 2.05e-2 1.00e-2 1.05e-2 28.9 

AoA_4c.4 0.572 2.20e-2 1.15e-2 1.05e-2 26.0 

AoA_4c.4n 0.593 2.09e-2 1.07e-2 1.02e-2 28.4 
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(a)                                                                                    (b) 

 

(c)                                                                                    (d) 

Figure 13 Iso-surface of Q-invariant colored by streamwise velocity and side-view: (a) 

AoA_4c.1, (b) AoA_4c, (c) AoA_4c.4, (d) AoA_4c.4n 

 Figure 14 shows the instantaneous contours of u-velocity and streamwise vorticity 

on the cutting plane at ݕ ൌ 0.065 for all the cases. It can be seen that high speed flow is 

induced behind the bumps. With narrower roughness bumps in case AoA_4c.4n, the 

influence region of the high speed flow is smaller than that in case AoA_4c.4 (Figure 14). 

The spanwise influences of the bumps on the laminar flow field and the development of the 

streamwise vorticity in the separation region can be clearly seen in Figure 14. The spanwise 

expansion of streamwise vorticities of case AoA_4c.1 is clearly shown in Figure 14.(1). 
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With multiple roughness bumps over the span of the wings, the interaction between the 

streamwise vorticities generated by the adjacent bumps are shown in Figure 14.(2-4). 

 

 

(a)                                                                                    (b) 

Figure 14 The instantaneous contours of u-velocity (a) and streamwise vorticity (b) on the 

sliced plane at ݕ ൌ 0.065: from top to bottom (1) AoA_4c.1, (2) AoA_4c, (3) AoA_4c.4, 

(4) AoA_4c.4n 

 The mean pressure coefficient and friction coefficient distributions are shown in 

Figure 15, in comparison with those of the baseline model AoA_4. The LSBs are reduced 

in all the cases with roughness bumps. The length of the LSB is shorter for case AoA_4c.1 

than that in case AoA_4c. However, further increasing the number of bumps ௕ܰ௨௠௣ does 

not further reduce the length of the LSBs. The mean pressure coefficient and friction 
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coefficient distributions of cases AoA_4c.4 and AoA_4c.4n are found very close to those of 

AoA_4c (Figure 15), and the separation region is even larger in case AoA_4c.4.  

 Table 5 presents the mean lift and drag coefficients per unit span and the lift-to-drag 

ratio of all the cases. With one roughness bump in case AoA_4c.1, both the drag coefficient 

and the pressure drag coefficient decrease. But the lift coefficient also decreases, such that 

only a little improvement of ܮ ⁄ܦ  ratio is achieved. The similar behavior of the mean 

pressure and friction on the wall in both controlled cases results in similar aerodynamic 

performances for cases AoA_4c and AoA_4c.4n, as listed in Table 5. With 4 bumps in case 

AoA_4c.4, the lift coefficient is degraded (5%) compared to the baseline model. Although 

the drag coefficient is reduced due to the decrease of the pressure drag, the ܮ ⁄ܦ  ratio 

improvement is less than those in cases AoA_4c and AoA_4c.4n. 

 

Figure 15 Mean pressure coefficient and mean skin friction coefficient on the wing surface; 

AoA_4 (solid line, -), AoA_4c (dash line, - - -) and AoA_4c.4n (dash-dot line, -.-.-) 

c. Effects of the Angle of Attack (AoA) 

 The effects of AoA are tested and investigated here by adjusting the incidence of the 

flow. ܣ݋ܣ ൌ 2	݀݁݃ and 6	݀݁݃ are considered and the same roughness configuration in case 

AoA_4c are used here. At a different ܣ݋ܣ, the boundary thickness ߜா is different, and the 

effects will be different. With the baseline model at different ݏܣ݋ܣ, the thickness ߜா of the 

boundary layer and the ratio of the bump height ܪாி to ߜா are listed in Table 6. Figure 16 

shows the instantaneous iso-surfaces and side-views of Q-invariant of cases AoA_2 and 

AoA_2c, and Figure 17 shows those of cases AoA_6 and AoA_6c. The mean pressure 
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coefficient and friction coefficient distributions on the suction surface are shown in Figure 

18 for both ݏܣ݋ܣ. The same results of cases AoA_4 and AoA_4c can be found Figure 10 

and Figure 11. The LSBs are diminished in cases AoA_2c and avoided in case AoA_6c as 

shown by the friction coefficient plots in Figure 18. With the roughness bumps, the 

recovery of the pressure on the wall for all the controlled cases is much smoother than in 

the baseline model.  

Table 6 Parameters of the roughness bumps 

Case ࢖࢓࢛࢈ࡺ ࡲࡱࡴ ࡰ࡮ࡸ ࡯࡭ࢃ ࡱࢄ ࡲࡱࡴ ࡱࢾ ⁄ࡱࢾ  

AoA_2c 0.05 0.045 0.045 0.0035 2 0.0046 76.1% 

AoA_4c 0.05 0.045 0.045 0.0035 2 0.0049 71.4% 

AoA_6c 0.05 0.045 0.045 0.0035 2 0.0056 62.5% 

Table 7 Mean lift coefficient, drag coefficient (per unit span) and lift-to-drag ratio 

Case ۱ۺ ܎۱۲ ܘ۱۲ ۱۲ ۺ ۲⁄ Benefit 

AoA-2 0.401 1.68e-2 0.78-2 0.90e-2 23.8 N/A 

AoA-4 0.600 2.34e-2 1.38e-2 0.97e-2 25.6 N/A 

AoA-6 0.786 3.14e-2 2.15e-2 0.99e-2 25.1 N/A 

AoA-2c 0.400 1.63e-2 0.68e-2 0.95e-2 24.5 3% 

AoA-4c 0.593 2.05e-2 1.00e-2 1.05e-2 28.9 13% 

AoA-6c 0.766 2.56e-2 1.37e-2 1.19e-2 29.9 19% 

 In case AoA_2c, the shedding vortices are found to be disturbed in a similar pattern 

as in case AoA_4c. In case AoA_6c, the periodic vortical packets are generated behind the 

bumps in the same pattern as in cases AoA_4c.h and AoA_4c.w. With the increase of AoA, 

the boundary layer thickness δ୉ at the bump location X୉ ൌ 0.05 increases (Table 6), thus 

the ratio H୉୊ δ୉⁄  decreases. It has been shown previously that at AoA ൌ 4	deg and the same 

location, taller bumps with higher H୉୊ δ୉⁄  ratio in case AoA_4c.h may generate larger 

disturbances and the vortical packets. However, here the situation is opposite and the 

vortical packets are generated behind the bumps in case AoA_6c with lower H୉୊ δ୉⁄  ratio. 

This shows that the effects of the roughness bumps on the flow field are not uniquely 

determined by the H୉୊ δ୉⁄  ratio, but also by the instability features of the flow field near 

the location of bumps. Figure 19.a shows the mean tangential velocity profiles at location 
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x ൌ 0.1, which is right behind the location of the bumps X୉ ൌ 0.05, for the baseline model 

at three AoAs. Figure 19.b shows the wave speed s and growth rate α୧ of the convective 

instability obtained by Linear Stability Theory (LST) [44, 46] based on the mean tangential 

velocity profiles as shown in Figure 19.a. In LST, the fluctuations of the primitive variables 

ϕ ൌ ሼu, v, w, p, T, ρሽ are assumed to take the harmonic wave form: ϕ ൌ ϕ෡ሺyሻe୧ሺ஑୶ାஒ୸ିன୲ሻ. 

For convective instability (spatial instability), β, ω are assumed to be real and  α ൌ α୰ ൅ iα୧ 

is complex. Thus the flow is convective unstable if α୧ ൏ 0, and vice versa. In case AoA_6c 

the location x ൌ 0.1  is close to the mean separation point (Figure 18) and the mean 

tangential velocity profile (Figure 19.a) generates the inflection point and separation. After 

separation, the K-H (inviscid) instability is usually more unstable, and has a higher growth 

rate than the Tollmien-Schlitchting (T-S) instability in the attached boundary layer. Both 

the unstable frequency range and the growth rate of the convective instability of AoA_6 are 

much larger than those in the other two cases (Figure 19.b). In cases AoA_2c and AoA_4c, 

the bumps locate further upstream from the mean separation points. The unstable frequency 

range and the growth rate of the convective instability of case AoA_4 are very small as 

shown in Figure 19.b, and it is even convectively stable in case AoA_2 at location x ൌ 0.1 

as predicted by LST. Thus the flow at x ൌ 0.1 in case AoA_6c is more unstable to be 

perturbed by the bump and causes the generation of the vortical packets, although the 

H୉୊ δ୉⁄  ratio is lower than these in cases AoA_2c and AoA_4c. 

 

(a)                                                                                    (b) 
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Figure 16 Iso-surface of Q-invariant colored by streamwise velocity at AoA ൌ 2deg; (a) 

AoA-2; (b) AoA-2c. 

 

(a)                                                                                    (b) 

Figure 17 Iso-surface of Q-invariant colored by streamwise velocity at AoA ൌ 6deg; (a) 

AoA_6; (b) AoA_6c. 

 

(a)                                                                                    (b) 

Figure 18 Mean pressure coefficient and mean skin friction coefficient on the wing surface; 

baseline model (solid line, -) and controlled case (dash line, - - -); (a) AoA ൌ 2deg, (b) 

AoA ൌ 6deg 

Table 7 lists the mean lift coefficient, drag coefficient and lift-to-drag ratio for both the 

baseline and controlled cases at different AoAs. In current cases, the roughness bumps are 

more effective on performance improvement at higher AoAs. Figure 20 plots the pressure 
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drag coefficient distributions and the lift-to-drag ratio for all the baseline and controlled 

cases at three AoAs. In the baseline cases, the lift and drag both increase with the increase 

of the AoA (Table 7). However, the pressure drag force increases dramatically as the LSB 

moves upstream with the increase of AoA (Table 7 and Figure 20.b), which causes the 

deficit of the lift-to-drag ratio at AoA ൌ 6	deg (Table 7 and Figure 20.a). In the controlled 

cases, the lift, the drag and the pressure drag decreases at all the AoAs, though the friction 

drag increases slightly because of the larger turbulent boundary layer flow region. The L D⁄  

ratio is improved in the controlled cases at each of the AoAs as listed in Table 7 and shown 

in Figure 20. Especially for case AoA_6c, the L D⁄  ratio increases significantly comparing 

with baseline case AoA_6 (Figure 20.a).  

 

(a)                                                                                    (b) 

Figure 19 (a) Tangential velocity profiles at x ൌ 0.1; (b) unstable frequency range and 

growth rate of the convective instability obtained by LST at x ൌ 0.1 
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(a)                                                                                    (b) 

Figure 20 (a) Lift-to-drag ratio and (b) pressure drag coefficient distributions at different 

AoAs 

5. Conclusion 

 The numerical simulations of a passive flow control technique using roughness 

bumps on a low-Reynolds number wing are presented in this paper. A high-order spectral 

difference Navier-Stokes solver is used in the simulations. The SD method with 

unstructured hexahedral mesh is capable of capturing the LSB and the transition process 

well over the suction side of the airfoil. The numerical results of the baseline cases and 

controlled cases are extensively investigated and discussed. 

 By introducing the roughness bumps near the leading edge, the LSBs are reduced or 

avoided depending on the bump geometric parameters. It is found that larger and taller 

bumps generate larger disturbances, which trigger the vortex breakdown, and delay or avoid 

flow separation. In addition, the flow also transitions into turbulent flow sooner. Although 

the friction drag increases slightly, the pressure drag is significantly reduced resulting in an 

overall drag reduction. The reduction of LSBs by roughness bumps also slightly reduces the 

lift. However, the lift-to-drag ratio is increased in the cases with carefully chosen surface 

roughness bumps.  

 The effects of the surface roughness are also dependent on the number of roughness 

bumps. The aerodynamic performance is improved by increasing the number of bumps 

from one to two. However, the performance is degraded by further doubling the number of 
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bumps. Reducing the width of the bumps by 50% regains the aerodynamic performance. 

The detailed physics is related with the three-dimensional K-H instability of the detached 

shear layer and possible the elliptical instability of the shedding vortices which worth future 

investigation. 

 With a fixed configuration of bumps, the effects of bumps are tested over three 

AoAs. It is found that the effects of roughness depend on multiple factors including the size 

of the bumps and the instability of the local flow behind the roughness bumps. In the 

baseline cases, the LSB causes a dramatic increase of the pressure drag which decrease the 

lift-to-drag ratio with the increase of AoA . In the cases with surface roughness, the 

aerodynamic performance has been largely improved with the diminishing of the LSB 

especially at higher AoAs. 
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CHAPTER 6. General Conclusion 

Two popular absorbing boundary conditions, the absorbing sponge zone and perfectly 

matched layer, are implemented with the spectral difference method on hexahedral meshes 

for non-linear Euler and Navier-Stokes equations. Both the ASZ and PML perform very 

effectively in the vortex and acoustic propagation problems. The reflected errors with the 

two zonal techniques are much smaller than those with the CBC based on linearized one-

dimensional Euler equations. The absorbing processes with the two techniques are different 

owing to the different design concepts. The formula of the ASZ is much simpler than the 

PML technique and therefore easier to implement. However, it is still somewhat reflective 

and generates visible reflections at the interface with the ASZ between the physical domain 

and the absorbing domain. PML is more efficient in absorbing the disturbances.  

In the numerical simulations of separated and transitional flow over a SD7003 airfoil at 

low-Reynolds numbers and moderate incidences, a low-frequency oscillation in the 

attached boundary layer is observed. The low-frequency instability is found to be 

apparently two dimensional and convective unstable. The primary growth of the 

disturbances before the turbulent breakdown over the suction side of the airfoil consists of 

two stages. The first stage is dominated by the low-frequency instability and the second 

growth stage is caused by the K-H instability.  

The breakdown processes associated with the laminar separation bubbles are 

numerically investigated. It is shown in all three cases that the breakdown process mainly 

occurs in the Recovery-Separation region and the feedback mechanism due to the flow 

circulation inside the LSB plays a critical role in passing the three dimensional disturbances 

from downstream to the upstream which causes the breakdown of the next shedding vortex. 

The secondary mechanism in the breakdown process appears differently at different AoAs. 

With the increase of AoA in current cases, the sequence of states is analogous to the 

sequence of breakdown states observed in bluff-body wakes with the increase of the 

Reynolds number, which follows the scenario: elliptic instability → hyperbolic instability → 

contact instability. 

By introducing the roughness bumps near the leading edge, the LSBs are reduced or 

avoided depending on the bump geometric parameters. It is found that larger and taller 
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bumps generate larger disturbances, which trigger the vortex breakdown, and delay or avoid 

flow separation. In addition, the flow also transitions into turbulent flow sooner. Although 

the friction drag increases slightly, the pressure drag is significantly reduced resulting in an 

overall drag reduction. The reduction of LSBs by roughness bumps also slightly reduces the 

lift. However, the lift-to-drag ratio is increased in the cases with carefully chosen surface 

roughness bumps.  
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