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ABSTRACT 

New advanced phase field model of transformations between martensitic variants and multiple 
twinning within martensitic variants is developed for large strains and lattice rotations. It 
resolves numerous existing problems. The model, which involves just one order parameter for 
the description of each variant-variant transformation and multiple twinnings within each 
martensitic variant, provides a well-controlled description of variant-variant transformations and 
multiple twinning, including expressions for interface tension which are consistent with the sharp 
interface limit. The finite element approach is developed and applied to the solution of a number 
of examples of twinning and combined austenite-martensite and martensite-martensite phase 
transformations (PTs) and nanostructure evolution.  

In multiphase phase field theory, a critical outstanding problem on developing of phase field 
approach for temperature- and stress-induced phase transformations between arbitrary n phases 
is solved. Thermodynamic Ginzburg-Landau potential for temperature and stress-induced phase 
transformations (PTs) between n- phases is developed. It describes each of the PTs with a single 
order parameter without explicit constraint equation, which allows one to use analytical solution 
to calibrate each interface energy, width, and mobility; reproduces the desired PT criteria via 
instability conditions; introduces interface stresses, and allows controlling presence of the third 
phase at the interface between two other phases. A finite-element approach is developed and 
utilized to solve problem on microstructure formation for multivariant martensitic PTs. Results 
are in quantitative agreement with experiment. The developed approach is applicable to various 
PTs between multiple, solid, and liquid phases and grain evolution and can be extended for 
diffusive, electric, and magnetic PTs. 

       vii 
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VARIANT-VARIANT TRANSFORMATIONS IN MARTENSITE:

PHASE-FIELD APPROACH

Modified from a paper published in Physical Review B

Valery I. Levitas1, Arunabha M. Roy2 and Dean L. Preston3

1Iowa State University, Departments of Mechanical Engineering, Aerospace Engineering, and

Material Science and Engineering, Ames, Iowa 50011, U.S.A.
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Abstract

A phase field theory of transformations between martensitic variants and multiple twin-

ning within martensitic variants is developed for large strains and lattice rotations. It resolves

numerous existing problems. The model, which involves just one order parameter for the de-

scription of each variant-variant transformation and multiple twinnings within each martensitic

variant, allows one to prescribe the twin interface energy and width, and to introduce interface

stresses consistent with the sharp interface limit. A finite element approach is developed and

applied to the solution of a number of examples of twinning and combined austenite-martensite

and martensite-martensite phase transformations (PTs) and nanostructure evolution. A simi-

lar approach can be developed for reconstructive, electric, and magnetic PTs.

1.1 Introduction

Twinning is a mechanism for plastic deformation in crystalline materials whereby a region of

the crystal lattice is homogeneously sheared into a new orientation [1]. It is most pronounced at

low temperatures, high strain rates, and in small grains. Martensitic PTs are usually accompa-

nied by twinning which reduces the energy associated with internal elastic stresses. Martensitic
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PTs involve several martensitic variants Mi, i = 1, 2, ..., n, where n equals the ratio of the order

of the point group of the austenite A to that of the martensite. Since the Mi are usually in

a twin relation to each other, variant-variant transformations and twinning in martensite are

closely related. The sharp-interface approach to martensitic PTs and twinning [2, 3] was a

significant advance, but it is based on the optimization of crystallographic parameters of the

prescribed microstructure under stress-free conditions or applied homogeneous stresses. The

phase field approach is widely used for modeling microstructure evolution during multivariant

martensitic PTs and twinning [4–8]. Phase field models that incorporate the main features

of stress-strain curves, the correct instability conditions, a large strain formulation, and sur-

face tension were developed in [7, 9–12]; those models utilize order parameters based on the

transformation strain. Since it was shown in [9] that it is not possible to realize all of these

model features using total-strain order parameters, we will only consider order parameters

based on transformation strain. In this paper, we present a novel phase field model for variant-

variant transformations and multiple twinning within the martensite, which resolves numerous

problems outlined below. It also includes A↔Mi PTs. For each twinning system {T1, T2,

...,Tn}, where the Ti are crystallographically equivalent, the transformation-deformation gra-

dient FFF ti = III + γ(ηi)mmm
0
i ⊗nnn0

i transforms the parent (reference) lattice L into a twinned lattice

Ti by a simple shear γ in direction mmm0
i in the plane with normal nnn0

i in the reference state; here

ηi, the ith order parameter, varies between 0 for L and 1 for Ti, ⊗ designates a dyadic product

of vectors, and III is the unit tensor. It is usually assumed that twinning can be described by a

phase field model of PT for which the thermal part of the free energy does not change and the

transformation strain corresponds to the twinning shear [7–9]. However, this is not completely

consistent because of an essential difference between twinning and PTs: twinning does not

change the crystal structure, i.e. the unit cell of the twin is the same as that of the parent

crystal to within a rigid-body rotation. This fact introduces a symmetry requirement not

present in the PT theory: the thermodynamic potential and the transformation-deformation

gradient must be completely symmetric with respect to the interchange L↔Ti; thus, any twin

Ti can be considered as a parent reference lattice L. Our 2−3−4 Landau potential for marten-

sitic PT [9, 10] possesses this symmetry but our 2−4−6 potential [9, 10] does not. However, the

main theoretical complication is multiple twinning, that is, secondary and further twinnings
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of the primary twin Ti, which commonly occurs. Again, since the crystal lattice of any twin

Ti is indistinguishable to within rigid-body rotations from the parent lattice L, the thermody-

namic potential and transformation-deformation gradient must be completely symmetric with

respect to the interchanges L↔Ti and Tj↔Ti for all i and j. This condition was not satisfied

in any previous model of PTs and twinning but is satisfied in the present model for twinning

in martensite. Crystal lattice of the austenite A will be considered as the parent (reference)

lattice, independent of whether we consider PT A↔Mi or only Mi↔Mj transformations. Be-

low, we will not consider designation L anymore and designations Mi and Ti are equivalent.

Even for small strains, neither transformations between martensitic variants nor twinning in

any known theory is described as consistently as A↔Ti transformations. Indeed, the A↔Ti

transformation can be described by a single order parameter ηi, the temperature-dependence

of the stress-strain curve and the A-Ti interface energy and width are completely determined

by a small number of material parameters, and we obtained analytic solutions for the varia-

tion of ηi through both static and propagating interfaces [10, 12, 13]. In contrast, at a Ti-Tj

interface in any known theory, the order parameters ηi and ηj vary independently, and the

transformation path in the ηi − ηj plane and the interface energy and width have an unreal-

istic dependence on temperature, stresses, and a larger number of material parameters; these

dependencies can only be determined by numerical methods [11]. Thus, one cannot prescribe

a desired Ti-Tj interface energy and width. Consequently, the consistency of the expression

introduced in [11, 12] for the interface (surface) tension σσσst in the sharp-interface limit can

be proved for A−Ti interfaces but not for Ti-Tj interfaces; in fact, simulations show that σσσst

does not describe the sharp Ti-Tj interface limit. This shortcoming is rectified in the model

presented here. Also, in large strain theory [7, 8], in which each martensitic variant or twin

is characterized by the transformation deformation gradient FFF ti, the transformations Ti↔Tj

between FFF ti and FFF tj do not represent simple shears without additional rotations. There are an

infinite number of combinations of rotations and twinning parameters for which two marten-

sitic variants are twin related, e.g., zigzag twins [3]. Thus, it is impossible to parameterize all

simple shears between two martensitic variants with a single order parameter. In this paper,

we present a new phase field model of martensitic variant-variant (Ti↔Tj) transformations

and twinning within the variants which resolves all of the above problems. Each martensitic
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variant is characterized by the rotation-free deformation of the crystal lattice UUU ti. We define

a new minimal set of n order parameters for n martensitic variants. The key point is that

each Ti↔Tj transformation and all twinnings within them are described with a single order

parameter. This significantly simplifies the description of Ti↔Tj transformations and multiple

twinnings, and moreover, one can prescribe the Ti-Tj interface energy and width and introduce

interface stresses consistent with the sharp interface approach, which is completely analogous

to the description of A↔Ti PT. For the fully geometrically nonlinear theory (large strains and

material rotation), the twinning parameters and lattice rotations are not parameterized with

the order parameters but obtained from the solution of the coupled phase field and mechanics

boundary-value problem. Model problems on twinning in martensite and combined A↔Ti and

Tj↔Ti transformations and nanostructure evolution in a nanosize sample are solved by means

of the finite element method (FEM) COMSOL code [14]. We designate contractions of tensors

AAA = {Aij} and BBB = {Bji} over one and two indices as AAA···BBB = {Aij Bjk} and AAA:::BBB = Aij Bji,

respectively. The subscripts s, e and t mean symmetrization, and elastic and transformational

strains, the superscript T designates transposition, and ∇∇∇ is the gradient operator in the de-

formed states.

1.2 General model

The motion of the elastic material undergoing twinning will be described by a vector-valued

function rrr = rrr(rrr0, t) , where rrr0 and rrr are the positions of points in the reference Ω0 and

the deformed Ω configurations, respectively, and t is the time. The austenite A lattice will

be considered as the reference configuration, independent of whether we consider PT A↔Ti or

only Ti↔Tj transformations. The transformation deformation gradient UUU ti = III+εεεti transforms

the crystal lattice of A into the lattice of the ith martensitic variant Ti, i = 1, 2, ..., n, both in

the unloaded state. The multiplicative decomposition of the deformation gradient, FFF = FFF e···UUU t,

into elastic FFF e and transformational UUU t parts will be used. Since UUU t = UUUT
t , lattice rotation is

included in FFF e. We assume the martensitic variants are in twin relation with each other, hence

they satisfy the twinning equation QQQi · UUU ti − QQQj · UUU tj = γijmmm
0
ijnnn

0
ij for some twinning system

parameters γij , mmm0
ij, nnn

0
ij and rigid-body rotations QQQm. There are numerous solutions to the
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twinning equation for the same UUU ti and UUU tj and different QQQm. E.g., for zigzag twins [3], if

each of the pairs of variants {RRR ·UUU ti;UUU tj} and {QQQ ·UUU tj;RRR ·UUU ti} satisfies the twinning equations

for some specific rotations RRR and QQQ, then the pair of variants {QQQp ·RRR · UUU ti;QQQ
p · UUU tj} satisfies

the twinning equations as well for any integer number p of sequential rotations QQQ. Thus, it is

impractical (and unnecessary) to parameterize all simple shears between all pairs of martensitic

variants with a separate order parameter. Instead, we describe martensitic variant Ti with the

rotation-free transformation deformation gradient UUU ti, and all possible twinnings and variant-

variant transformations between two variants will be described with a single order parameter.

The twinning system parameters are not functions of the order parameters but are determined

via the solution of the coupled large-strain phase field and mechanics boundary-value problem.

In our n-dimensional order parameter space, the austenite A is located at the origin and

the ith martensitic variant Ti is located at the intersection of the positive ith axis with the

unit sphere. The radial coordinate, designated ΥΥΥ, describes A↔Ti transformations, while

the angular order parameters 0 ≤ ϑi ≤ 1, where π ϑi/2 is the angle between the radius

vector ΥΥΥ and the positive ith axis, describe twinning Tk↔Ti (variant-variant) transformations.

This geometric interpretation leads to the constraint
∑n

k=1 cos2
(
π
2
ϑk
)

= 1, which significantly

complicates the development of the thermodynamic potential. However, for each variant-

variant or twinning transformation Ti↔Tj (at Υ = 1, ϑk = 1 for k 6= i, j) this constraint

reduces to the linear constraint ϑj + ϑi = 1. In the general case we also employ a linear

constraint:
∑n

i=1 ϑi = n − 1. This slightly changes the geometric interpretation when more

than two order parameters ϑi deviate from 1 but it allows us to develop a potential that predicts

both A-Ti and Ti-Tj interface widths and energies. Then ϑn = n − 1 −
∑n−1

i=1 ϑi replaces all

occurrences of the parameter ϑn in all equations below. The Helmholtz free energy per unit

undeformed volume is given by the following expression:

ψ = ψe(BBB,Υ, ϑi, θ) +
ρ0

ρ
ψ̆θ + ψθ +

ρ0

ρ
ψ∇; (1)

ψ̆θ = (A0 (θ − θc) + 3∆s0(θ − θe))Υ2(1−Υ)2 + Ā

n∑
i,j=1;i6=j

(1− ϑi)2(1− ϑj)2q(Υ)

+D
n∑

i,j,k=1;i6=j 6=k

(1− ϑi)(1− ϑj)(1− ϑk)q(Υ); ψ∇ =
β

2
|∇∇∇Υ|2 + q(Υ)

βϑ
4

n∑
i=1

|∇∇∇ϑi|2; (2)

ψθ = −∆s0(θ − θe)q(Υ); q(Υ) = Υ2(3− 2Υ); (3)
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UUU t = III +
n∑
k=1

εεεtk
(
1− 3ϑ2

k + 2ϑ3
k

)
ϕ(Υ); ϕ(Υ) = aΥ2 + (4− 2a) Υ3 + (a− 3)Υ4. (4)

Here BBB = (VVV · VVV − III)/2 is the finite strain measure, VVV is the left stretch tensor, θ is the

temperature, θe is the equilibrium temperature, A becomes unstable at temperature θc, ρ and

ρ0 are the mass densities in the deformed and undeformed states, β and βϑ are gradient energy

coefficients, A0 and Ā characterize the barriers for A-Ti and Ti-Tj transformations, respectively,

the parameter a controls the transformation strain for A-Ti PT, and ψe is the elastic energy.

The term with D in Eq.(2) describes the interaction of three twins at their triple junctions; it

was not present in previous theories and it disappears for two variants. Thermodynamics and

Landau-Ginzburg kinetics (see, e.g. [11]) lead to

σσσ =
ρ

ρ0

VVV · ∂ψ
∂BBB
· VVV − ρ

ρ0

(
∇∇∇Υ⊗ ∂ψ

∂∇∇∇Υ

)
s

−
n−1∑
i=1

ρ

ρ0

(
∇∇∇ϑi ⊗

∂ψ

∂∇∇∇ϑi

)
s

; (5)

1

LΥ

∂Υ

∂t
= − ρ

ρ0

∂ψ

∂Υ
|BBB +∇∇∇ ·

(
ρ

ρ0

∂ψ

∂∇∇∇Υ

)
;

1

Lϑ

∂ϑi
∂t

= − ρ

ρ0

∂ψ

∂ϑi
|BBB +∇∇∇ ·

(
ρ

ρ0

∂ψ

∂∇∇∇ϑi

)
, (6)

where LΥ and Lϑ are kinetic coefficients, σσσ is the true Cauchy stress tensor, and ∂ψ/∂Υ and

∂ψ/∂ϑi are evaluated at constant finite strain BBB. Eqs.(1)-(4) satisfy all conditions for the

thermodynamic potential formulated in [9]. In particular, A and the variants Ti are homoge-

neous solutions of the Ginzburg-Landau equations (6) for arbitrary stresses and temperature;

the transformation strain for any transformation is independent of stresses and temperature;

the transformation criteria that follow from the thermodynamic instability conditions have the

same (correct) form as in [9]. The potential (1)-(4) is much simpler than those previously

used for martensitic PTs [7, 9–11] and does not require the introduction of sophisticated cross

terms, which has several important consequences. In particular, the potential does not possess

spurious minima (unphysical phases). All of our modeling goals are satisfied using a simple

fourth degree polynomial in Υ and ϑi. The variant-variant or twinning transformations Ti↔Tj

are described by a single order parameter ϑi (at Υ = 1, ϑk = 1 for k 6= i, j, and ϑj = 1− ϑi)

and are completely analogous to A↔Ti PTs. The ratio ρ0/ρ and the gradient with respect to

the deformed configuration are used in Eqs.(1)-(4) to introduce interface tension, as in [11, 12].

Since the Tj↔Ti transformations are here described in the same way as A↔Ti PT, it is now

trivial to demonstrate (see Section III) the consistency of the expression for the interface ten-

sion (obtained from Eq. (5) after subtracting the elastically-supported stress) with the sharp

6



interface limit, whereas this could be proved only for A−Ti interfaces in [12]. The thermody-

namic potential and UUU t are symmetric with respect to the interchanges Tj↔Ti; they need not

be symmetric with respect to the interchange A↔Ti because A↔Ti is not a twinning.

1.3 Equivalence of equations for L-Tk and Ti-Tj transformations

Let us simplify Eqs.(2)-(6) for the austenite-martensite phase transformation by putting

ϑ2 = 0, ϑi = 1 for i 6= 2. We also put a = 3, which leads to ϕ(Υ) = q(Υ). This is

necessary to make the transformation strain between the austenite and martensite symmetric

with respect to the interchanges A↔Ti, in the same sense as it is symmetric for variant-variant

transformation. Then

ψ̆θ = (A0 (θ − θc) + 3∆s0(θ − θe))Υ2(1−Υ)2; (7)

ψ∇ =
β

2
|∇∇∇Υ|2; (8)

UUU t = III + εεεt2q(Υ); (9)

σσσ =
ρ

ρ0

VVV · ∂ψ
∂BBB
· VVV − ρ

ρ0

(
∇∇∇Υ⊗ ∂ψ

∂∇∇∇Υ

)
s

; (10)

1

LΥ

∂Υ

∂t
= − ρ

ρ0

∂ψ

∂Υ
|BBB +∇∇∇ ·

(
ρ

ρ0

∂ψ

∂∇∇∇Υ

)
. (11)

Next, let us simplify Eqs.(2)-(6) for the T1↔T2 transformation but putting Υ = 1, ϑ = ϑ1,

ϑ2 = 1− ϑ, and ϑi = 1 for 2 < i ≤ n. Then

ψ̆θ = Āϑ2(1− ϑ)2; (12)

ψ∇ =
βϑ
2
|∇∇∇ϑ|2; (13)

UUU t = III + εεεt1 + (εεεt2 − εεεt1)q(ϑ); (14)

σσσ =
ρ

ρ0

VVV · ∂ψ
∂BBB
· VVV − ρ

ρ0

(
∇∇∇ϑ⊗ ∂ψ

∂∇∇∇ϑ

)
s

; (15)

1

Lϑ

∂ϑ

∂t
= − ρ

ρ0

∂ψ

∂ϑ
|BBB +∇∇∇ ·

(
ρ

ρ0

∂ψ

∂∇∇∇ϑ

)
. (16)

It is clear that Eqs.(7)-(11) are equivalent to Eqs.(12)-(16) after substituting Υ↔ ϑ with the
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following correspondence of parameters:

(A0 (θ − θc) + 3∆s0(θ − θe))↔ Ā; β ↔ βϑ; εεεt1 ↔ 0; LΥ ↔ Lϑ. (17)

For the austenite-martensite interface, the combination of Eq.(1) and Eqs.(7)-(11) resulted

in the desired expression for the interface (surface) tension σσσst [11, 12]. Since Eqs.(12)-(16)

for twinning are equivalent to Eqs.(7)-(11) for the austenite-martensite transformation, the

expression for the interface tension σσσst for the Ti-Tj interface has the same desired expres-

sion. This proves the advantage of the chosen order parameters and phase field formulation in

comparison with previous studies. Note that for the particular case considered in simulations,

A0 = −3∆s0, the term (A0 (θ − θc) + 3∆s0(θ− θe)) = A0(θe− θc) is temperature independent.

1.4 Analytical solutions

An analytical solution for a nonequilibrium plane austenite-martensite interface moving in

an infinite medium in x-direction under stress-free conditions (ψe = 0) is [10, 12]:

Υ = 1/
[
1 + e−p(x−vΥt)/δΥ

]
; δΥ = p

√
β/ [2 (A0 (θ − θc) + 3∆s0(θ − θe))];

vΥ = −6LΥδΥ∆s0(θ − θe)/p; EΥ =
√

2β (A0 (θ − θc) + 3∆s0(θ − θe))/6, (18)

where p = 2.667 [10], vΥ, δΥ, and EΥ are is the interface velocity, width, and energy, re-

spectively. Using the above equivalence, similar equations can be obtained for a stationary

variant-variant interface (since stresses are absent):

ϑ = 1/
[
1 + e−p(x−vϑt)/δϑ

]
; δϑ = p

√
βϑ/

(
2Ā
)
; Eϑ =

√
2βϑĀ/6. (19)

These equations allow us to calibrate material parameters β, A0, Ā, and L when the tempera-

ture dependence of the interface energy, width, and velocity is known. Explicit expression for

a variant-variant interface energy allows us to correctly define interface stresses at a variant-

variant interface.
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1.5 Complete system of equations for two martensitic variants

Below we enumerate the total system of equations for two martensitic variants used in our

simulations. Elastic strains are considered to be small, which simplifies significantly equations.

Transformation strains and rotations are finite.

Kinematic decomposition:

FFF = FFF e···UUU t; FFF e = VVV e···RRRe; VVV e = III + εεεe; εεεe � III, (20)

where VVV e is the elastic left stretch tensor, RRRe is the lattice rotation, εεεe is the small elastic

strains.

Transformation deformation gradient (ϑ = ϑ1, ϑ2 = 1− ϑ, and a = 3):

UUU t = III +
[
εεεt1
(
1− 3ϑ2 + 2ϑ3

)
+ εεεt2

(
3ϑ2 − 2ϑ3

)]
q(Υ). (21)

The Helmholtz free energy per unit undeformed volume:

ψ = ψe +
ρ0

ρ
ψ̆θ + ψθ +

ρ0

ρ
ψ∇; (22)

ψe =
1

2
Kε2

0e + µeeee : eeee; (23)

ψ̆θ = A0 (θe − θc) Υ2(1−Υ)2 + Ā(1− ϑ)2ϑ2q(Υ); (24)

ψ∇ =
β

2
|∇∇∇Υ|2 + q(Υ)

βϑ
2
|∇∇∇ϑ|2; (25)

ψθ = −∆s0(θ − θe)q(Υ); q(Υ) = Υ2(3− 2Υ), (26)

where ε0e and eeee are the volumetric and deviatoric parts of the elastic strain tensor.

Decomposition of the Cauchy stress σσσ into elastic σeσeσe and surface tension σstσstσst tensors:

σσσ = σeσeσe + σstσstσst; σeσeσe = Kε0eIII + 2µeeee;

σσσst = (ψ∇ + ψ̆θ)III − βΥ∇∇∇Υ ⊗ ∇∇∇Υ− q(Υ) βϑ∇∇∇ϑ ⊗ ∇∇∇ϑ. (27)

Ginzburg-Landau equations:

1

LΥ

∂Υ

∂t
= σσσe:::

(
RRRe ·

∂UUU t

∂Υ
·UUU−1

t ·RRR
t
e

)
s

− ρ

ρo

∂ψθ

∂Υ
− ∂ψ̆θ

∂Υ
− ∂ψ∇

∂Υ
+∇∇∇ ·

(
∂ψ∇

∂∇∇∇Υ

)
= σσσe:::

(
RRRe ·

∂UUU t

∂Υ
·UUU−1

t ·RRR
t
e

)
s

+
6∆s0(θ − θe)

1 + εo
Υ(1−Υ)− 6ĀΥ(1−Υ)ϑ2(1− ϑ)2 −

2A0 (θe − θc) Υ(1− 3Υ + 2Υ2)− 3βϑΥ(1−Υ)|∇∇∇ϑ|2 + βΥ∇∇∇2Υ; (28)
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1

Lϑ

∂ϑ

∂t
= σσσe:::

(
RRRe ·

∂UUU t

∂ϑ
·UUU−1

t ·RRR
t
e

)
s

− ∂ψ̆θ

∂ϑ
+∇∇∇ ·

(
∂ψ∇

∂∇∇∇ϑ

)
= σσσe:::

(
RRRe ·

∂UUU t

∂ϑ
·UUU−1

t ·RRR
t
e

)
s

− 2Āϑq(Υ)(1− 3ϑ+ 2ϑ2) + βϑq(Υ)∇∇∇2ϑ. (29)

Equilibrium equation:

∇∇∇ · σσσ = 0. (30)

In our example simulations we use the material parameters for the cubic to tetragonal PT

in NiAl found in [9, 10, 13]: a = 3, A0 = −3∆s0 = 4.4MPaK−1, Ā = 5320 MPa, θc = −183

K, θe = 215 K, LΥ = Lϑ = 2596.5m2/Ns, β = βϑ = 5.18 × 10−10N ; θ = 100K, unless

other stated. These parameters correspond to a twin interface energy ETT = 0.958J/m2

and width ∆TT = 0.832 nm. Isotropic linear elasticity is used for simplicity; bulk modu-

lus K = 112.8GPa and shear modulus µ = 65.1GPa. In the plane stress 2D problems,

only T1 and T2 are considered; the corresponding transformation strains in the cubic axes are

εεεt1 = (0.215,−0.078,−0.078) and εεεt2 = (−0.078, 0.215,−0.078). The FEM approach was de-

veloped and incorporated in the COMSOL code. All lengths, stresses, and times are given in

units of nm, GPa, and ps. All external stresses are normal to the deformed surface.

1.6 Benchmark problem: bending and splitting of martensite tips in NiAl alloy

Our goal here is to reproduce several nontrivial microstructures observed in experiments

for NiAl alloys [15, 16]. Since numerous alternative solutions exist, one has to carefully choose

initial conditions. We did this in several steps. Initial random distribution of order parameter

Υ in the range [0; 0.4] was prescribed in a square sample of 50× 50 with the austenite lattice

rotated by α = 45o. Initial value of ϑ = 0.5. For one horizontal and one vertical surfaces,

the roller support was used, i.e., normal displacements and shear stresses are zero. Homoge-

neous normal displacements at two other surfaces were prescribed and kept constant during

simulations, resulted in biaxial normal strain of 0.01. Shear stresses were kept zero at external

surfaces. Two dimensional problem under plane stress condition and temperature θ = 50K
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was studied. The evolution of 2Υ(ϑ−0.5) is presented in Fig. 1, demonstrating transformation

of the austenite into martensite and coalescence of martensitic units. Despite the symmetry in

geometry and boundary conditions, accidental asymmetry in the initial conditions led to for-

mation of alternating horizontal martensitic twin structure with austenitic regions near vertical

sides, in order to satisfy boundary conditions. Invariant plane conditions for the austenite-

martensite interfaces are consequence of a simplified plane-stress two-dimensional formulation.

The stationary solution from Fig. 1 was taken as an initial condition for the next problem

                   

         

a) t=0.3  b) 0.9  c) 1.3  d) 50  e) 90  

Fig. 1: Evolution of 2Υ(ϑ − 0.5) in a square sample of size 50 × 50 with an initial stochastic
distribution of order parameter Υ under biaxial normal strain of 0.01.

 

                            

                      
 

 

                                                                                                                             

a) t=100 b)105 c) 110  d)125  e)160  

f)190  h)225  i)235  j)250  g)210  

Fig. 2: Evolution of ϑ in a square sample of size 50× 50 under biaxial normal strain of 0.01
with an initial condition shown in Fig. 1(e), reduced temperature θ = 0K and parameter
βϑ = 5.18× 10−11N and changed transformation strain.
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with the following modifications: temperature was reduced to θ = 0K; parameter βϑ was

reduced to βϑ = 5.18 × 10−11 N , which led to twin interface energy EMM = 0.303J/m2 and

width ∆MM = 0.263nm; components of transformation strains have been changed to the values

UUU t1 = (k1, k2, k2) and UUU t2 = (k2, k1, k2) with k1 = 1.15 and k2 = 0.93 corresponding to NiAl

alloy in [15]. Then Υ was made equal to 1 everywhere and kept during the entire simulation.

Due to reduction in the interface energy, number of twins increased by splitting of the initial

twins (Fig. 2). Without austenite, rigid vertical boundaries led to high elastic energy. That is

why restructuring produced vertical twins near each of vertical sides in proportion, reducing

energy of elastic stresses due to prescribed horizontal strain. When microstructure transformed

to fully formed twins separated by diffuse interfaces, narrowing and bending of the tips of hor-

izontal T2 plates is observed (Fig. 2 and 3), similar to experiments [15]. Note, that since

invariant plane interface between T1 and T2 requires mutual rotation of these variants by the

angle ω = 12.1o (cosω = 2k1k2/(k
2
1 + k2

2) = 0.9778) [15], angle between horizontal and vertical

variants T2 is 1.5ω = 18.15o, which is in good agreement with our simulations. Thus, due

to lattice rotations, interface between horizontal and vertical variants T2 cannot be invariant

plane interface, and reduction in the internal stresses at this boundary leads to reduction of the

boundary area by narrowing and bending of the tips of one horizontal plates. Measured angles

between tangent to the bent tip and horizontal line in the experiment [15] and in calculations

(Fig. 3) are in good quantitative agreement.

             

T2 

θ=76.9o 

θ=77.1o 

T1 

T2 

T1 

T2 T1 
θ=77.2o 

θ=77o 

Fig. 3: Comparison of transmission electron microscopy image of a nanaostructure for NiAl
alloy from [15] and zoomed part of simulation results from Fig. 2(j). Simulations reproduce
well tip splitting and bending angel.
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T2 

T1 

T2 

(a) (b) (c) 

Fig. 4: (a) Stationary solution for 2Υ(ϑ− 0.5) in a sample and (b) its zoomed part near left
side of a sample; (c) transmission electron microscopy of a nanaostructure for NiAl from [15].
Crossing twins are observed in experiment and simulation.

Note that microstructure evolution occurs through intermediate values of ϑ in some regions

(see t = 125 and 160 in Fig. 2), i.e., when transformation strain of one twin penetrates in

to region of another one, producing crossed twins. Such crossed twins have been observed in

some experiments [16] and have been arrested (Fig. 4). In our simulations in Fig. 2, they

represent intermediate stage of evolution. However, if we reduce Ā to 0.532 GPa, the such

crossed twins represent stationary solutions (Fig. 4). Also, on the right side of the solution

in Fig. 2, an alternative way for stress relaxation is visible, when twins T2 are surrounded by

twins T1, which is also observed in experiments [15].

Thus, starting with a microstructure in Fig. 1, which is quite far from the final one, our

solution reproduced three types of nontrivial experimentally observed microstructures involv-

ing finite rotations, including tip splitting and bending, twins crossing, and good quantitative

agreement for the bending angle. Note that tip splitting and bending were also reproduced

in [5] utilizing strain-based phase field formulation and initial conditions closer to the final

solution than here.
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1.7 Phase transformation and twinning under applied load

1.7.A Nanoindentation: applied uniform pressure

Nanoindentation-induced twinning T2→T1 was studied in a T2 sample with a pre-existing

T1 embryo of radius 2 under the indenter (Fig. 5). The sample was obtained from a square A

sample of size 50× 50 by transforming it homogeneously to T2. The cubic axes and transfor-

mation strain were rotated by α = 31o with respect to the coordinate axes. Initial conditions

were: Υ = 1 everywhere; ϑ = 0.9 inside the embryo and ϑ = 0.999 in the rest of the sample. A

uniform pressure between the indenter of width 4 and the sample was increased linearly from

2 to 3 GPa over 110ps. The bottom sample surface was constrained by a roller support and

point F was fixed; all other surfaces are stress-free. With increasing load, a twin T1 appears

under the indenter and grows in a wedge shape with a sharp tip (Fig. 5a, b). Since the bottom

of the sample was constrained by the roller support, the twin T1 could not propagate through

the entire sample. In the same problem but with a stress-free section of length 20 at the bottom

(Fig. 5c-d), the twin propagated completely through the sample and widened with increasing

load. The load was then reduced to zero: the width of the twin then decreased to zero without

a change in length (Fig. 5e-f). These results are in qualitative agreement with experiments

[1] and previous simulations [8]. Since dislocation plasticity and interface friction [6, 13] are

neglected, there is no residual twin.

 

 
 

(a) p =2.007 (b) 2.05 (c) 2.60 (d) 2.90 (e) 3.00 (f) 2.10 F 

 

Fig. 5: Twinning T2 (red) →T1 (blue) under indentation with the rigid support (a)-(b), support

with the hole (c)-(e), and during unloading (f).

1.7.B Nanoindentation: applied uniform displacement

Nanoindentation of a square 50 × 50 A sample with α = 150 was modeled by prescribing

uniform vertical displacements growing from 2 to 2.5 over a section of width 4; friction was
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neglected (Fig. 6). Adjacent lateral surfaces of the sample were constrained by the roller

supports. In an initial embryo of radius 2 we set Υ = 0.1; Υ = 0.01 outside of the embryo.

The order parameter ϑ = 0.5 everywhere. The transformed twinned martensite first grew only

in the vertical direction; note the presence of a small non-transformed region under the indenter

(Fig. 6 (a)-(f)). When the stress concentration due to the indenter became smaller than the

internal stresses due to transformation strain and the bottom constraint, a morphological

transition occurred: the growth of T2 changed direction away from T1 toward a corner of the

sample, and ultimately reached the corner. The T2-T1 interface is curvilinear and consequently

cannot be described by crystallographic theories presented in e.g., [2, 3].

                                  

      
 

  (a) t =0.5  (b) 1.5 (f) 20.0   (e) 10.0    (c) 3.0   (d) 6.0 

Fig. 6: Evolution of 2Υ(ϑ− 0.5) for indentation of A (green) sample; T2: red and T1: blue.

1.7.C Biaxial stresses

A square A sample of size 100× 100 with α = 15o and an embryo of 2 nm radius in the center

of the sample was subjected to uniform vertical and horizontal stresses σy = 3 and σx = 0.1,

respectively (Fig. 7). Because of the reflection symmetry, only one-quarter of the sample

was directly simulated; roller supports were applied along the symmetry axes. The parameter

values Ā = 61.6MPa and βTT = 19.4× 10−12N were used, corresponding to ETT = 0.01J/m2

and ∆TT = 1nm. The initial conditions in the embryo were Υ = 0.1, and Υ = 0.001 outside

the embryo; ϑ = 0.5 everywhere. Within 1ps, A was transformed to a mixture of Ti twins,

which further evolve to produce a nontrivial stationary morphology. Note that varying the

ratio Lϑ/LΥ from 1 to 1000 with LΥ = 2596.5m2/Ns did not change the stationary solution

and only slightly affected the evolution.
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    t=0.6 
   5.0 60.0 

1.0 

-1.0 

0.0 

0.8 1.0      1.2 

Figure 7: Evolution of 2Υ(ϑ − 0.5) in a quarter of 100 × 100 sample with an initial embryo at the

center under homogeneous compressive stress of σy = 3 and σx = 0.1.

1.7.D Double indentation

Two indenters of width 4 nm were placed on adjacent sides of a square 50 × 50 A sample

with α = 450 (Fig. 8). At t = 0, there were uniform pressures p1 = p2 = 3 across the in-

denters. The remaining lateral surfaces of the sample were constrained by roller supports. In

two initial embryos of radius 2 under the indenters, Υ = 0.1; outside the embryos Υ = 0.01.

Again, ϑ = 0.5 everywhere. The complex evolution of the twinned nanostructure is shown in

Fig. 8a-i. Starting with state (h), p2 was slowly reduced to zero while keeping p1 = 3. The

quasi-stationary solutions in Fig. 8j-l show an initial reversal of the nanostructure (see Figs.

8j and g) followed by the predominance of T1.

      

                                             

           

(a) t =1.0 (b) 5.0 (c) 10.0 (d) 12.0 (e) 15.0 (f) 20.0 

(g) 30.0 (h) 50.0 (j) p2=2.1  (k) p2=1.8  (l) p2=0  

p1 

p2 

(i) p2=2.8  

Fig. 8: Evolution of 2Υ(ϑ − 0.5) in time (a-i) for double indentation of an A sample at
p1 = p2 = 3, followed by reduction of p2 to zero at p1 = 3 (j-l) from state (h).
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1.8 Concluding remarks

To summarize, a phase field model of transformations between martensitic variants and

multiple twinning in martensitic variants was developed. It accounts for large strains and

lattice rotations, and incorporates a new minimal set of order parameters. Each martensitic

variant is characterized by the rotation-free deformation of the crystal lattice UUU ti. The twin-

ning parameters and lattice rotations are not parameterized with the order parameters but

obtained from the solution of the coupled phase field and mechanics boundary-value prob-

lem. Each variant-variant transformation and all of the infinite number of possible twinnings

within them are described with a single order parameter. Despite this economy of order pa-

rameters, arbitrarily complex twin-within-a-twin martensitic microstructures can in principle

be described by the model. The energies and widths of the A−Ti and Tj−Ti interfaces can be

controlled (prescribed), and the corresponding interface stresses are consistent with the sharp

interface limit. A similar approach in terms of order parameters (Υ, ϑi) could be developed

for reconstructive, electric and magnetic PTs and for other phenomena described by multi-

ple order parameters. Problems on twinning in martensite and combined A↔Mi and Mj↔Mi

transformations and nanostructure evolution in a nanosize sample are solved utilizing FEM.

In particular, for thermally-induced transformation, we reproduced three types of nontrivial

experimentally observed microstructures involving finite rotations, including tip splitting and

bending, and twins crossing; good quantitative agreement for the bending angle is obtained.
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CHAPTER 2. DETAILED PHASE-FIELD THEORY OF

MULTIPLE TWINNING AND VARIANT-VARIANT

TRANSFORMATIONS IN MARTENSITE: ANALYTICAL

SOLUTION AND MICROSTRUCTURE EVOLUTION

Abstract

A phase field theory of transformations between martensitic variants and multiple twin-

ning within martensitic variants is developed for large strains and lattice rotations. It resolves

numerous existing problems. The model, which involves just one order parameter for the de-

scription of each variant-variant transformation and multiple twinnings within each martensitic

variant, provides a well-controlled (desired) description of variant-variant transformations and

multiple twinning, including expressions for interface tension which are consistent with the

sharp interface limit. The finite element approach is developed and applied to the solution of a

number of examples of twinning and combined austenite-martensite and martensite-martensite

phase transformations (PTs) and nanostructure evolution. A similar approach can be devel-

oped for electric and magnetic PTs.

2.1 Introduction

Twinning is a mechanism for plastic deformation in crystalline materials whereby a re-

gion of the crystal lattice is homogeneously sheared into a new orientation [1, 2]. It is most

pronounced at low temperatures, high strain rates, and in small grains. Martensitic PTs are

usually accompanied by twinning which reduces the energy associated with internal elastic

stresses. Martensitic PTs involve several martensitic variants Mi, i = 1, 2, ..., n, where n equals

the ratio of the order of the point group of the austenite A to that of the martensite. Since

the Mi are usually in a twin relation to each other, variant-variant transformations and twin-

ning in martensite are closely related. The phase field approach is widely used for modeling

microstructure evolution during multivariant martensitic PTs and twinning [3–10]. Phase field

models that incorporate the main features of stress-strain curves, large strain transformations,
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and include surface tension were developed in [8, 11–14, 20]. In this section, we present a phase

field model of variant-variant transformations and multiple twinning within the martensite.

2.2 Theory of twinning in martensite

For each twinning system {M1, M2, ...Mn}, where the Mi are crystallographically equivalent,

the transformation-deformation gradient FFF ti = III + γ(ηi)mmm
0
innn

0
i transforms the parent lattice

L into a twinned lattice Mi by a simple shear γ in direction mmm0
i in the plane with normal nnn0

i

in the reference state; here ηi, the ith order parameter, which varies between 0 for L and 1

for Mi, and III is the unit tensor. It is usually assumed that twinning can be described by a

phase field model of PT for which the thermal part of the free energy does not change and

the transformation strain corresponds to the twinning shear [8–10, 12, 16]. However, this is

not completely consistent. The main difference is that, in contrast to PTs, twinning does not

change the crystal structure: the unit cell of the twin is the same as that of the parent crystal

to within a rigid-body rotation. This fact introduces a symmetry requirement not present

in the PT theory: the thermodynamic potential and the transformation-deformation gradient

must be completely symmetric with respect to the interchange L↔Mi. Our 2− 3− 4 Landau

potential for martensitic PT [11, 12] possesses this symmetry but our 2 − 4 − 6 potential [13]

does not. However, the main theoretical complication is multiple twinning, that is, secondary

and further twinnings of the primary twin Mi, which commonly occurs. Again, since the crystal

lattice of any twin Mi is indistinguishable to within rigid-body rotations from the parent lattice

L, the thermodynamic potential and transformation-deformation gradient must be completely

symmetric with respect to the interchanges L↔Mi and Mj↔Mi for all i and j. This condition

is satisfied in the present model, but is not in any previous model of PTs and twinning.

Even for small strains, neither transformations between martensitic variants nor twin-

ning in any known theory is described as consistent as L↔Mi transformations. Indeed, the

L↔Mi transformation can be described by a single order parameter ηi, and the temperature-

dependence of the stress-strain curve, and the L-Mi interface energy and width are completely

determined by a small number of material parameters, and are well-controlled through analyt-

ical solutions for static and propagating interfaces [11–13]. In contrast, at a Mi-Mj interface in

any known theory, the order parameters ηi and ηj vary independently, and the transformation

path in the ηi − ηj plane and the interface energy and width have an unrealistic dependence
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on temperature, stresses, and a larger number of material parameters; these dependences can

only be determined by numerical methods [21]. Thus, one cannot prescribe a desired Mi-Mj

interface energy and width. Consequently, the consistency of the expression introduced in [20]

for the interface (surface) tension σσσst with the sharp-interface limit can be proved for L−Mi

interfaces but not for Mi-Mj interfaces; in fact, simulations show that σσσst does not describe

the sharp Mi-Mj interface limit. This shortcoming is rectified in the model presented here.

Also, in large strain theory [8–10], the transformations Mi↔Mj do not represent simple shears.

There are an infinite number of combinations of rotations and twinning parameters for which

two martensitic variants are twin related, e.g., zigzag twins [27], a situation that is to some

extent similar to that for reconstructive PTs [19, 26]. Thus, it is impossible to parameterize

all simple shears between two martensitic variants with a single order parameter.

2.3 New phase field theory of twinning in martensite

In this section, we present a new phase field model of martensitic variant-variant (Mi↔Mj)

transformations and twinning within the variants which resolves all of the above problems.

We define a minimal set of order parameters, each of them describes rotation-free deformation

of crystal lattice: just n order parameters are required for n martensitic variants. The key

point is that each Mi↔Mj transformation and all twinnings within them are described with a

single order parameter. This significantly simplifies the description of Mj↔Mi transformations

and multiple twinnings, including an expression for the interface tension, which is completely

analogous to the description of L↔Mi PT. One can prescribe a desired Mi-Mj interface energy

and width. For the fully geometrically nonlinear theory (large strains and material rotation),

the twinning parameters and lattice rotations are obtained from the solution of the coupled

phase field and mechanics boundary-value problem. Model problems on twinning and combined

L↔Mi and Mj↔Mi transformations and nanostructure evolution in a nanosize sample are

solved by means of the finite element method (FEM) COMSOL code.

We designate contractions of tensors AAA = {Aij} and BBB = {Bji} over one and two indices

as AAA···BBB = {Aij Bjk} and AAA:::BBB = Aij Bji, respectively. The subscripts s, e, and t mean sym-

metrization and elastic and transformational strains; III is the unit tensor;
◦
∇∇∇ and ∇∇∇ are the

gradient operators in the undeformed and deformed states; and ⊗ designates a dyadic product.
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2.3.A Advantages of current theory

In this theory, new advanced phase field model of transformations between martensitic variants

and multiple twinning within martensitic variants is developed. It resolves numerous existing

problems:

1. Large strain and rotation formulation is developed, which is not based on simple shears

along all numerous possible twinning systems. Instead, it is based on just n rotation-free

deformation tensors for each of n martensitic variants (e.g., n=3 for cubic-tetragonal trans-

formation); all twinning parameters and lattice rotations are obtained from the solution of

the coupled phase field and mechanics boundary-value problem. In such a way, the number

of order parameters is reduced from infinity (in general case) to the number of martensitic

variants.

2. With new order parameters, each twinning and variant-variant transformation is de-

scribed by a single order parameter, similar to the austenite-martensite transformation. This

allowed us to prescribe the desired values for the energies and widths of the variant-variant

interfaces through known analytical solutions.

3. The interface stresses for twinning (variant-variant) interfaces are introduced, which are

consistent with the sharp interface limit.

The finite element approach is developed and applied to the solution of a number of nontriv-

ial examples of twinning and combined austenite-martensite and martensite-martensite phase

transformations and nanostructure evolution. A similar approach in terms of our order param-

eters could be developed for electric and magnetic PTs and for other phenomena described by

multiple order parameters.

2.4 General equation for n martensitic variants

The motion of the elastic material undergoing twinning will be described by a vector-valued

function rrr = rrr(rrr0, t) , where rrr0 and rrr are the positions of points in the reference Ω0 and
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the deformed Ω configurations, respectively, and t is the time. The austenite A lattice will

be considered as the reference configuration, independent of whether we consider PT A↔Mi

or Mi↔Mj transformations only. The transformation deformation gradient UUU ti = III + εεεti

transforms the crystal lattice of A into the lattice of the ith martensitic variant Mi, i = 1, 2, ..., n,

both in the unloaded state. The multiplicative decomposition of the deformation gradient,

FFF = FFF e···UUU t, into elastic FFF e and transformational UUU t parts will be used [18]. Since UUU t = UUUT
t ,

lattice rotation is included in FFF e. We assume the martensitic variants are in twin relation

with each other, hence they satisfy the twinning equation QQQi · UUU ti − QQQj · UUU tj = γijmmm
0
ijnnn

0
ij

for some twinning system parameters γij , mmm0
ij, nnn

0
ij and rigid-body rotations QQQm. Since there

are numerous solutions to the twinning equation for the same i and j (which is to some

extent similar to that for reconstructive PTs [19, 26]), e.g., zigzag twins [27], it is impractical

(and unnecessary) to parameterize simple shear between each of them with a separate order

parameter. Instead, we describe all possible twinnings and variant-variant transformations with

only n order parameters. The solution of the coupled large-strain phase field and mechanics

boundary-value problem gives the twinning system parameters.

In our n-dimensional order parameter space, the austenite A is located at the origin and

the ith martensitic variant Mi is located at the intersection of the positive ith axis with the

unit sphere. The radial coordinate, designated rrr, describes A↔Mi transformations, while

the angular order parameters 0 ≤ ϑi ≤ 1, where π ϑi/2 is the angle between the radius

vector rrr and the positive ith axis, describe twinning Mk↔Mi (variant-variant) transformations.

Such geometric interpretation leads to the constraint
∑n

k=1 cos2
(
π
2
ϑk
)

= 1, which significantly

complicates the development of the thermodynamic potential. However, for each variant-

variant or twinning transformations Mi↔Mj (at r = 1, ϑk = 1 for k 6= i, j) this constraint

reduces to the linear one ϑj + ϑi = 1. That is why we accept a linear constraint
∑n

i=1 ϑi =

n − 1 for the general case, which slightly changes geometric interpretation when more than

two order parameters ϑi deviate from 1 but allow us to develop a desired potential. Then

ϑn = n− 1−
∑n−1

i=1 ϑi replaces all occurrences of the parameter ϑn in all equations below. The

Helmholtz free energy per unit undeformed volume is given by the following expression:

ψ = ψe(BBB, r, ϑi, θ) +
ρ0

ρ
ψ̆θ + ψθ +

ρ0

ρ
ψ∇; (1)
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ψ̆θ = A0(θe − θc)r2(1− r)2 + Ā

n∑
i,j=1;i6=j

(1− ϑi)2(1− ϑj)2q(r); (2)

ψ∇ =
β

2
|∇∇∇r|2 + q(r)

βϑ
4

n∑
i=1

|∇∇∇ϑi|2; (3)

ψθ = A0/3(θ − θe)q(r); q(r) = r2(3− 2r); (4)

UUU t = III +
n∑
k=1

εεεtk
(
1− 3ϑ2

k + 2ϑ3
k

)
ϕ(r); ϕ(r) = ar2 + (4− 2a) r3 + (a− 3)r4. (5)

Here BBB = (VVV · VVV − III)/2 is the finite strain measure, VVV is the left stretch tensor, θ is the

temperature, θe is the equilibrium temperature, A becomes unstable at temperature θc, ρ and

ρ0 are the mass densities in the deformed and undeformed states, β and βϑ are gradient energy

coefficients, A0, Ā, and a are material parameters, and ψe is the elastic energy (the same as in

[20]). Thermodynamics and Landau-Ginzburg kinetics (see, e.g. [20]) leads to

σσσ =
ρ

ρ0

VVV · ∂ψ
∂BBB
· VVV − ρ

ρ0

(
∇∇∇r ⊗ ∂ψ

∂∇∇∇r

)
s

−
n−1∑
i=1

ρ

ρ0

(
∇∇∇ϑi ⊗

∂ψ

∂∇∇∇ϑi

)
s

; (6)

1

λr

∂r

∂t
= − ρ

ρ0

∂ψ

∂r
|BBB +∇∇∇ ·

(
ρ

ρ0

∂ψ

∂∇∇∇r

)
;

1

λϑ

∂ϑi
∂t

= − ρ

ρ0

∂ψ

∂ϑi
|BBB +∇∇∇ ·

(
ρ

ρ0

∂ψ

∂∇∇∇ϑi

)
, (7)

where λr and λϑ are kinetic coefficients, σσσ is the true Cauchy stress tensor, and ∂ψ/∂r and

∂ψ/∂ϑi are evaluated at constant finite strainBBB. Eqs.(1)-(14) satisfy all conditions for the ther-

modynamic potential formulated in [11–13]. In particular, A and the variants Mi are homoge-

neous solutions of the Ginzburg-Landau equations (19) for arbitrary stresses and temperature;

the transformation strain for any transformation is independent of stresses and temperature;

the transformation criteria that follow from the thermodynamic instability conditions have the

same (correct) form as in [11–13]. The potential (1)-(14) is much simpler than those previously

used for martensitic PTs [8, 11–13, 20] and does not require the introduction of sophisticated

cross terms, which has several important consequences. In particular, the potential does not

possess spurious minima (unphysical phases). The variant-variant or twinning transformations

Mi↔Mj are described by a single order parameter ϑi (at r = 1, ϑk = 1 for k 6= i, j, and

ϑj = 1 − ϑi) and are controllable in the same way as A↔Mi PTs. The ratio ρ0/ρ and the

gradient with respect to the deformed configuration are used in Eqs.(1)-(14) to introduce in-

terface tension, as in [20]. Since the Mj↔Mi transformations are here described in the same

way as A↔Mi PT, it is now trivial to demonstrate the consistency of the expression for the in-
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terface tension (obtained from Eq. (15) after subtracting the elastically-supported stress) with

the sharp interface limit, whereas this could be proved only for A−Mi interfaces in [20]. The

thermodynamic potential and UUU t are symmetric with respect to the interchanges Mj↔Mi; they

need not be symmetric with respect to the interchange A↔Mi because A↔Mi is not a twinning.

2.5 Problem description and formulation for 2 martensitic variants

Helmholtz free energy and its contributions for 2 martensitic variants

ψ = ψe(ε0, r, ϑ1, θ) +
ρ0

ρ
ψ̆θ + ψθ +

ρ0

ρ
ψ∇; (8)

1. Elastic energy for equal elastic properties of phases

ψe =
1

2
Kε2

0e + µeeee : eeee; (9)

2. The thermal part of Helmholtz free energy responsible for the driving force for phase

transformation

ψθ = A0/3(θ − θe)q(r); q(r) = r2(3− 2r); (10)

3. Thermal Part of the Helmholtz free energy responsible for the barrier between phases

ψ̆θ = A0(θe − θc)r2(1− r)2 + Āϑ2
1(1− ϑ1)2q(r); (11)

4. Gradient Energy

ψ∇ =
βAM

2
|∇∇∇r|2 + q(r)

βMM

2

(
|∇∇∇ϑ1|2 + |∇∇∇ϑ2|2

)
; (12)

Transformation deformation gradient

UUU t = III + εεεt1
(
1− 3ϑ2

1 + 2ϑ3
1

)
ϕ(r) + εεεt2

(
1− 3ϑ2

2 + 2ϑ3
2

)
ϕ(r);

ϕ(r) = ar2 + (4− 2a) r3 + (a− 3)r4 (13)
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In terms on independent order parameter

UUU t = III + εεεt1
(
1− 3ϑ2

1 + 2ϑ3
1

)
ϕ(r) + εεεt2

(
3ϑ2

1 − 2ϑ3
1

)
ϕ(r) (14)

Expression for the Cauchy Stress

σσσ =
ρ

ρ0

VVV · ∂ψ
∂BBB
· VVV − ρ

ρ0

(
∇∇∇r ⊗ ∂ψ

∂∇∇∇r

)
s

−
2∑
i=1

ρ

ρ0

(
∇∇∇ϑi ⊗

∂ψ

∂∇∇∇ϑi

)
s

; (15)

σσσ = σeσeσe + σstσstσst (16)

Hook’s law for elastic stresses

σeσeσe =
∂ ψe

∂ εεε
= Kε0eI + 2µeeee (17)

Interface tension tensor for 2 martensitic variants

σσσst = (ψ∇ + ψ̆θ)III − βAM(∇∇∇r ⊗ ∇∇∇r)− q(r) βMM(∇∇∇ϑ1 ⊗ ∇∇∇ϑ1) (18)

Ginzburg-Landau Equations

1

λAM

∂r

∂t
= − ρ

ρ0

∂ψ

∂r
|BBB +∇∇∇ ·

(
ρ

ρ0

∂ψ

∂∇∇∇r

)
;

1

λMM

∂ϑ1

∂t
= − ρ

ρ0

∂ψ

∂ϑ1

|BBB +∇∇∇ ·
(
ρ

ρ0

∂ψ

∂∇∇∇ϑ1

)
,(19)

For two martensitic variants, G-L equation for Austenite to Martensitic variant transformation

1

λAM

∂r

∂t
=

ρ

ρo
σσσe:::

∂εεεt
∂r
− ρ

ρo

∂ψθ

∂r
− ∂ψ̆θ

∂r
− ∂ψ∇

∂r
+∇∇∇

(
ρ

ρo

∂ψ

∂∇∇∇r

)
(20)

In expanded form

1

λAM

∂r

∂t
=

1

1 + εo
[ (σσσ − σσσst)::: εεεt1(1− 3ϑ2

1 + 2ϑ3
1)− (σσσ − σσσst)::: εεεt2(3ϑ2

1 − 2ϑ3
1)][2ar + 3(4− 2a)r2

+4(a− 3)r3]− 6∆Gθ

1 + εo
r(1− r)− 6Ār(1− r)ϑ2

1(1− ϑ1)2 −

2Ar(1− 3r + 2r2)− 3βMMr(1− r)(|∇∇∇ϑ1|)2 + βAM∇∇∇2ϑ1(21)
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For two martensitic variants, G-L equations for Martensite to Martensite transformation

1

λMM

∂ϑ1

∂t
=

ρ

ρo
σσσe:::

∂εεεt
∂ϑ1

− ρ

ρo

∂ψθ

∂ϑ1

− ∂ψ̆θ

∂ϑ1

− ∂ψ∇

∂ϑ1

+∇∇∇
(
ρ

ρo

∂ψ

∂∇∇∇ϑ1

)
(22)

In expanded form

1

λMM

∂ϑ1

∂t
=

1

1 + εo
[ (σσσ − σσσst)::: εεεt1(6ϑ2

1 − 6ϑ1)− (σσσ − σσσst)::: εεεt2(6ϑ1 − 6ϑ2
1)][ar2 + (4− 2a)r3

+(a− 3)r4]− 2Āϑ1r
2(3− 2r)(1− 3ϑ1 + 2ϑ2

1) + r2(3− 2r)∇∇∇2ϑ1βMM (23)

Equilibrium equation

∇∇∇ · σσσ = 0 (24)

Boundary conditions for the order parameters

nnn · ∇∇∇ηi = 0 (25)

2.6 Equivalence of equations for austenite martensite and martensite-martensite

transformations

Let us simplify Eqs.(2)-(7) for the austenite-martensite phase transformation by putting

ϑ2 = 0, ϑi = 1 for i 6= 2. We also put a = 3, which leads to ϕ(r) = q(r). This is necessary to

make the transformation strain between the austenite and martensite symmetric with respect to

the interchanges L↔Ai, in the same sense as it is symmetric for variant-variant transformation.

Then

ψ̆θ = A0(θe − θc)r2(1− r)2; (26)

ψ∇ =
β

2
|∇∇∇r|2; (27)

UUU t = III + εεεt2q(r); (28)

σσσ =
ρ

ρ0

VVV · ∂ψ
∂BBB
· VVV − ρ

ρ0

(
∇∇∇r ⊗ ∂ψ

∂∇∇∇r

)
s

; (29)

1

λr

∂r

∂t
= − ρ

ρ0

∂ψ

∂r
|BBB +∇∇∇ ·

(
ρ

ρ0

∂ψ

∂∇∇∇r

)
. (30)
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Next, let us simplify Eqs.(2)-(7) for the M1↔M2 transformation but putting r = 1, ϑ = ϑ1,

ϑ2 = 1− ϑ, and ϑi = 1 for 2 < i ≤ n. Then

ψ̆θ = Āϑ2(1− ϑ)2; (31)

∇ =
βϑ
2
|∇∇∇ϑ|2; (32)

UUU t = III + εεεt1 + (εεεt2 − εεεt1)q(ϑ); (33)

σσσ =
ρ

ρ0

VVV · ∂ψ
∂BBB
· VVV − ρ

ρ0

(
∇∇∇ϑ⊗ ∂ψ

∂∇∇∇ϑ

)
s

; (34)

1

λϑ

∂ϑ

∂t
= − ρ

ρ0

∂ψ

∂ϑ
|BBB +∇∇∇ ·

(
ρ

ρ0

∂ψ

∂∇∇∇ϑ

)
. (35)

It is clear that Eqs.(26)-(30) are equivalent to Eqs.(31)-(35) after substituting r ↔ ϑ with the

following correspondence of constants:

A0(θe − θc)↔ Ā; β ↔ βϑ; εεεt1 ↔ 0; λr ↔ λϑ. (36)

For the austenite-martensite interface, the combination of Eq.(1) and Eqs.(26)-(30) resulted

in the desired expression for the interface (surface) tension σσσst [20, 21]. Since Eqs.(31)-(35)

for twinning are equivalent to Eqs.(26)-(30) for the austenite-martensite transformation, the

expression for the interface tension σσσst for the Mi-Mj interface has the same desired expres-

sion. This proves the advantage of the chosen order parameters and phase field formulation in

comparison with previous studies.

2.7 Gibbs Energy for 2 Martensitic Variants and Small Strains

In the 2-dimensional plane of order parameters, both martensitic variants are located on

the unit circle, and ϑ := ϑ1 = 1 − ϑ2 . Thus, Gibbs potentials can be developed using the

radial order parameters r and single angular order parameter ϑ. New Gibbs potentials in r

and ϑ1 can be derived from 2− 3− 4 and potentials G(r) for a single martensitic variant by

allowing for ϑ1 dependence in the transformation strain and including a term that introduces

ϑ1 -dependent barriers between all variants.
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Gibbs Potential for n martensitic variants is

G = −1

2
σσσ :::λλλ :::σσσ − σσσ :::

n∑
k=1

εεεtk
(
1− 3ϑ2

k + 2ϑ3
k

)
ϕ(r) + f(θ, r) + Ā

n∑
i,j=1;i6=j

(1− ϑi)2(1− ϑj)2q(r) ,(37)

where

ϕ (r) = a r2 + (4 − 2 a) r3 + (a − 3) r4 , 0 < a < 6 ,

f (θ, r) = Ar2 +
(
4 ∆ Gθ − 2A

)
r3 +

(
A − 3 ∆ Gθ

)
r4 , (38)

and

q (r) = 3 r2 − 2 r3 . (39)

Then for 2 martensitic variants it simplifies to

G = −1

2
σσσ :::λλλ :::σσσ − σσσ :::εεεt1

(
1− 3ϑ2

1 + 2ϑ3
1

)
ϕ(r)− σσσ :::εεεt2

(
1− 3ϑ2

2 + 2ϑ3
2

)
ϕ(r) + f(θ, r)

+Ā(1− ϑ1)2(1− ϑ2)2q(r) . (40)

Substituting ϑ2 = 1− ϑ1 to Eqs. (40) leads to

G = −1

2
σσσ :::λλλ :::σσσ − σσσ :::εεεt1

(
1− 3ϑ2

1 + 2ϑ3
1

)
ϕ(r)− σσσ :::εεεt2

(
3ϑ2

1 − 2ϑ3
1

)
ϕ(r) + f(θ, r)

+Āϑ2
1(1− ϑ2

1)q(r) . (41)

Differentiating G in Eq.(41) with respect to order parameter r , one obtains

∂ G

∂ r
= −σσσ :::εεεt1

(
1− 3ϑ2

1 + 2ϑ3
1

)
ϕ′(r)− σσσ :::εεεt2

(
3ϑ2

1 − 2ϑ3
1

)
ϕ′(r) + f r(θ, r)

+Āϑ2
1(1− ϑ2

1)q′(r) . (42)

where

ϕ′ (r) = 2a r + 3 (4 − 2 a) r2 + 4(a − 3) r3 , (43)

f r (θ, r) = 2Ar + 3
(
4 ∆ Gθ − 2A

)
r2 + 4

(
A − 3 ∆ Gθ

)
r3 , (44)

and

q′ (r) = 6 r − 6 r2 . (45)
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Similar, differentiating G in Eq.(41) with respect to order parameter ϑ1 , we obtain

∂ G

∂ ϑ1

= −σσσ :::εεεt1
(
6ϑ2

1 − 6ϑ1

)
ϕ(r)− σσσ :::εεεt2

(
6ϑ1 − 6ϑ2

1

)
ϕ(r) + f(θ, r)

+Ā(2ϑ1 − 6ϑ2
1 + 4ϑ3

1)q(r) (46)

It is easy to check that the austenite r = 0 and martensitic variants M1 (r = 1, ϑ1 = 0) and

M2 (r = 1, ϑ1 = 1) satisfy thermodynamic equilibrium conditions

∂ G

∂ r
=
∂ G

∂ ϑ1

= 0 (47)

for all stresses σσσ and temperature θ. For two variants, our new model reduces to the model in

[13].

2.8 Formulation for 3 Martensitic variants

For 3 martensitic variants, the constraints equation reduces to

3∑
k=1

ϑk = 2 ; ϑ1 + ϑ2 + ϑ3 = 2 (48)

Gibbs Potential for 3 Martensitic variants is

G = −1

2
σσσ :::λλλ :::σσσ − σσσ :::

3∑
k=1

εεεtk
(
1− 3ϑ2

k + 2ϑ3
k

)
ϕ(r) + f(θ, r) + (49)

Ā [ (1− ϑ1)2 (1− ϑ2)2 + (1− ϑ2)2 (1− ϑ3)2 + (1− ϑ1)2 (1− ϑ3)2]q(r) .

Here it is noted that we have 4 order parameters to describe the 3 Martensitic Variants. Out

of 4 order parameters, we have 3 independent order parameters and one dependent order

parameter (ϑ3 ), which is related to other order parameters through Eqs. (48).

Replacing ϑ3 = (2− ϑ1 − ϑ2) in Eq. (50), we get

G = −1

2
σσσ :::λλλ :::σσσ − σσσ :::εεεt1

(
1− 3ϑ2

1 + 2ϑ3
1

)
ϕ(r)− σσσ :::εεεt2

(
1− 3ϑ2

2 + 2ϑ3
2

)
ϕ(r) (50)

−σσσ :::εεεt3
[
1− 3 (2− ϑ1 − ϑ2)2 + 2 (2− ϑ1 − ϑ2)3

]
ϕ(r) + f(θ, r)

+Ā [ (1− ϑ1)2 (1− ϑ2)2 + (1− ϑ2)2 (ϑ1 + ϑ2 − 1)2 + (1− ϑ1)2 (ϑ1 + ϑ2 − 1)2]q(r) .

ϕ (r) = a r2 + (4 − 2 a) r3 + (a − 3) r4 , 0 < a < 6 ,

f (θ, r) = Ar2 +
(
4 ∆ Gθ − 2A

)
r3 +

(
A − 3 ∆ Gθ

)
r4 , (51)
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and

q (r) = 3 r2 − 2 r3 . (52)

Differentiating Eqs.(51) with respect to order parameter r , we obtain

∂ G

∂ r
= −σσσ :::

n∑
k=1

εεεtk
(
1− 3ϑ2

k + 2ϑ3
k

)
ϕ′(r) + f r(θ, r) + Ā [ (1− ϑ1)2 (1− ϑ2)2 (53)

+ (1− ϑ2)2 (ϑ1 + ϑ2 − 1)2 + (1− ϑ1)2 (ϑ1 + ϑ2 − 1)2]q′(r) .

where

ϕ′ (r) = 2a r + 3 (4 − 2 a) r2 + 4(a − 3) r3 ,

f r (θ, r) = 2Ar + 3
(
4 ∆ Gθ − 2A

)
r2 + 4

(
A − 3 ∆ Gθ

)
r3 , (54)

and

q′ (r) = 6 r − 6 r2 . (55)

Differentiating Eqs.(51) with respect to ϑ1, one derives

∂ G

∂ ϑ1

= −σσσ :::εεεt1
(
6ϑ2

1 − 6ϑ1

)
ϕ(r) + σσσ :::εεεt3[12− 6ϑ1 − 6ϑ2 − 6(2− ϑ1 − ϑ2)2 ] ϕ(r)

− Ā [2(1− ϑ2)2(ϑ1 + ϑ2 − 1)− 2(1− ϑ1)(ϑ1 + ϑ2 − 1)2

+2(1− ϑ1)2(ϑ1 + ϑ2 − 1)− 2(1− ϑ1)(1− ϑ2)2]q(r) . (56)

Similar, differentiating Eqs.(51) with respect to ϑ2

∂ G

∂ ϑ2

= −σσσ :::εεεt2
(
6ϑ2

2 − 6ϑ2

)
ϕ(r) + σσσ :::εεεt3[12− 6ϑ1 − 6ϑ2 − 6(2− ϑ1 − ϑ2)2 ] ϕ(r)

− Ā [2(1− ϑ2)2(ϑ1 + ϑ2 − 1)− 2(1− ϑ2)(ϑ1 + ϑ2 − 1)2

+2(1− ϑ1)2(ϑ1 + ϑ2 − 1)− 2(1− ϑ1)(1− ϑ2)2]q(r) . (57)

It is easy to check that the austenite (r = 0 and arbitrary ϑ) and martensitic variants M1

(r = 1, ϑ1 = 0, ϑ2 = 1, ϑ3 = 1), M2 (r = 1, ϑ2 = 0, ϑ1 = 1, and ϑ3 = 1), and M3 (r = 1,

ϑ0 = 0, ϑ1 = 1, and ϑ2 = 1) satisfy thermodynamic equilibrium conditions

∂ G

∂ r
=
∂ G

∂ ϑ1

=
∂ G

∂ ϑ2

= 0 (58)
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for all stresses σσσ and temperature θ.

2.9 Thermodynamics Stability in terms of Gibbs Potential

Differentiating Eqs.(54) with respect to r, one obtains

∂2G

∂ r2
= −σσσ :::εεεt1

(
1− 3ϑ2

1 + 2ϑ3
2

)
ϕ′′(r)− σσσ :::εεεt2

(
1− 3ϑ2

2 + 2ϑ3
2

)
ϕ′′(r) (59)

−σσσ :::εεεt3[1− 3 (2− ϑ1 − ϑ2)2 + 2 (2− ϑ1 − ϑ2)3] ϕ′′(r) + f rr(θ, r)

+ Ā [ (1− ϑ1)2 (1− ϑ2)2 + (1− ϑ2)2 (ϑ1 + ϑ2 − 1)2

+ (1− ϑ1)2 (ϑ1 + ϑ2 − 1)2]q′′(r) .

where

ϕ′′ (r) = 2a + 6 (4 − 2 a) r + 12(a − 3) r2 ,

f rr (θ, r) = 2A + 6
(
4 ∆ Gθ − 2A

)
r + 12

(
A − 3 ∆ Gθ

)
r2 , (60)

and

q′′ (r) = 6 − 12 r . (61)

Differentiating Eqs.(56) with respect to ϑ1, we receive

∂2G

∂ ϑ2
1

= −σσσ :::εεεt1 (12ϑ1 − 6) ϕ(r)− σσσ :::εεεt3 (18− 12ϑ1 − 12ϑ2) ϕ(r) + f(θ, r) (62)

+ Ā [2(1− ϑ1)2 + 4(1− ϑ2)2 − 8(1− ϑ1)(ϑ1 + ϑ2 − 1)

+2(ϑ1 + ϑ2 − 1)2]q(r) .

Differentiating Eqs.(57) with respect to ϑ2

∂2G

∂ ϑ2
2

= −σσσ :::εεεt2 (12ϑ2 − 6) ϕ(r)− σσσ :::εεεt3 (18− 12ϑ2 − 12ϑ1) ϕ(r) + f(θ, r) (63)

+ Ā [2(1− ϑ2)2 + 4(1− ϑ1)2 − 8(1− ϑ2)(ϑ1 + ϑ2 − 1)

+2(ϑ1 + ϑ2 − 1)2]q(r) .

Similar, we obtain all mixed derivatives:

∂2G

∂r ∂ ϑ1

= −σσσ :::εεεt1
(
6ϑ2

1 − 6ϑ1

)
ϕ′(r)− σσσ :::εεεt3[(12− 6ϑ1 − 6ϑ2)− 6(2− ϑ1 − ϑ2)2] ϕ′(r) (64)
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+ Ā [2(ϑ1 − 1)(1− ϑ2)2 + 2(1− ϑ1)2(ϑ1 + ϑ2 − 1) + 2(1− ϑ2)2(ϑ1 + ϑ2 − 1)−

2(1− ϑ1)(ϑ1 + ϑ2 − 1)2]q′(r) .

∂2G

∂r ∂ ϑ2

= −σσσ :::εεεt2
(
6ϑ2

2 − 6ϑ2

)
ϕ′(r)− σσσ :::εεεt3[(12− 6ϑ1 − 6ϑ2)− 6(2− ϑ1 − ϑ2)2] ϕ′(r) (65)

+ Ā [2(ϑ1 − 1)(1− ϑ2)2 + 2(1− ϑ2)2(ϑ1 + ϑ2 − 1) + 2(1− ϑ2)2(ϑ1 + ϑ2 − 1)

−2(1− ϑ1)(ϑ1 + ϑ2 − 1)2]q′(r) .

∂2G

∂ϑ1 ∂ ϑ2

= −σσσ :::εεεt3 (18− ϑ1 − ϑ2) ϕ(r) + Ā [2(1− ϑ1)2 + 4(1− ϑ1)(1− ϑ2) + 2(1− ϑ2)2 (66)

−4(1− ϑ1)(ϑ1 + ϑ2 − 1)− 4(1− ϑ2)(ϑ1 + ϑ2 − 1)]q(r) .

2.10 Thermodynamics Stability conditions for 3 Variants

Main Conditions that Simplifying the instability criteria

Let consider r = ϑ0 and the phase ϑ̂j will lose its stability if, for any perturbation ϑ̇k, the

following conditions are satisfied in terms of Gibbs energy

n−1∑
m=0;i,j,k

∂2 G(σσσ, ϑ̂j)

∂ ϑi ∂ ϑk
ϑ̇i ϑ̇k ≤ 0 (67)

Thus, the instability occurs when n×n matrix
∂2 G(σσσ, ϑ̂j)

∂ ϑi ∂ ϑk
first ceases to be negative definite.

Sylvester’s criterion states that a symmetric matrix B is negative-definite if and only if all the

following matrics have a negative determinant: the upper left 1- by-1 corner of B, the upper

left 2-by-2 corner of B, the upper left 3-by-3 corner of B i.e.,all of the leading principal minors

must be negative. Thus for three martensitic variants, the matrix B is

B =

 b11 b12 b13

b21 b22 b23

b31 b32 b33

 (68)

and the one of the following conditions should be fulfilled for instability of the phase ϑ̂j

bik :=
∂2 G(σσσ, ϑ̂j)

∂ ϑi ∂ ϑk
; b11 ≤ 0 (69)
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b11b22 − b2
12 ≤ 0 ;

b11(b22b33 − b2
23)− b12(b21b33 − b31b23) + b33(b12b32 − b22b31) ≤ 0.

General stability condition for Austenite

Consider r = 0 into Eqs.(54), we get the condition for loss of stability of Austenite

b11 =
∂2G(r = 0)

∂r2
= −2a σσσ :::εεεt1

(
1− 3ϑ2

1 − 2ϑ3
1

)
− 2a σσσ :::εεεt2

(
1− 3ϑ2

2 − 2ϑ3
2

)
(70)

−2a σσσ :::εεεt3[1− 3(2− ϑ1 − ϑ2)2 + 2(2− ϑ1 − ϑ2)3]

+6 Ā [(1− ϑ1)2(1− ϑ2)2 + (1− ϑ1)2(ϑ1 + ϑ2 − 1)2 + (1− ϑ2)2(ϑ1 + ϑ2 − 1)2] ≤ 0 .

and

b12 = b21 =
∂2G(r = 0)

∂r ∂ϑ1

= 0; b13 = b31 =
∂2G(r = 0)

∂r ∂ϑ2

= 0; (71)

b22 =
∂2G(r = 0)

∂ϑ2
1

= 0; b33 =
∂2G(r = 0)

∂ϑ2
2

= 0;

To find the the roots of b11 for corresponding minima which infer the loss of stability of Austen-

ite to others Martensitic variants, we put ∂b11
∂ϑ1

= 0 and ∂b11
∂ϑ2

= 0

Hence,

∂b11

∂ϑ1

= −2a σσσ :::εεεt1(6ϑ2
1 − 6ϑ)− 2a σσσ :::εεεt3[6(2− ϑ1 − ϑ2)− 6(2− ϑ1 − ϑ2)2] (72)

+6Ā[2(1− ϑ1)2(ϑ1 + ϑ2 − 1) + 2(1− ϑ2)2(ϑ1 + ϑ2 − 1)

−2(1− ϑ1)(ϑ1 + ϑ2 − 1)2 − 2(1− ϑ1)(1− ϑ2)2] = 0

and

∂b11

∂ϑ2

= −2a σσσ :::εεεt2(6ϑ2
1 − 6ϑ)− 2a σσσ :::εεεt3[6(2− ϑ1 − ϑ2)− 6(2− ϑ1 − ϑ2)2] (73)

+6Ā[2(1− ϑ1)2(ϑ1 + ϑ2 − 1) + 2(1− ϑ2)2(ϑ1 + ϑ2 − 1)

−2(1− ϑ1)(ϑ1 + ϑ2 − 1)2 − 2(1− ϑ1)(1− ϑ2)2] = 0

For further simplification lets subtract Eqs.(73) and Eqs.(74) and we get

−12[a σσσ :::(εεεt1(ϑ1 − 1)ϑ1 − εεεt2(ϑ2 − 1)ϑ2) + Ā[ϑ2
1 − ϑ3

1 + ϑ2
2(ϑ2 − 1)] = 0 (74)
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Its obvious that we have 3 set of solution of ϑ1, ϑ2 , which are

(ϑ1, ϑ2) = (0, 1); (ϑ1, ϑ2) = (1, 0); (ϑ1, ϑ2) = (1, 1); (75)

So put these solutions into Eqs.(74) we get possible conditions for loss of stability of Austen-

ite as follow

A→M1 : σσσ :::εεεt1 ≥
A

a
: (ϑ1, ϑ2) = (0, 1) (76)

A→M2 : σσσ :::εεεt2 ≥
A

a
: (ϑ1, ϑ2) = (1, 0) (77)

and

A→M3 : σσσ :::εεεt3 ≥
A

a
: (ϑ1, ϑ2) = (1, 1) (78)

Drawback of this approach is that we can have extra solutions of (ϑ1, ϑ2) which are difficult

to get analytically.

Case I: when σσσ = 0

Let assume σσσ = 0 then we can rewrite Eqs.(73) and Eqs.(74) as

∂b11

∂ϑ1

= 6Ā[2(1− ϑ1)2(ϑ1 + ϑ2 − 1) + 2(1− ϑ2)2(ϑ1 + ϑ2 − 1) (79)

−2(1− ϑ1)(ϑ1 + ϑ2 − 1)2 − 2(1− ϑ1)(1− ϑ2)2] = 0

and

∂b11

∂ϑ2

= 12Ā[2(1− ϑ1)2(ϑ1 + ϑ2 − 1) + 2(1− ϑ2)2(ϑ1 + ϑ2 − 1) (80)

−2(1− ϑ1)(ϑ1 + ϑ2 − 1)2 − 2(1− ϑ1)(1− ϑ2)2] = 0

Solving Eqs.(73) and Eqs.(74) we get following roots

(ϑ1, ϑ2) = (0, 1); (ϑ1, ϑ2) = (1, 0); (ϑ1, ϑ2) = (1, 1); (ϑ1, ϑ2) = (2/3, 2/3); (81)
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First 3 values of (ϑ1, ϑ2) gives the same condition in the equations Eqs.(76), Eqs.(77),

Eqs.(78)

Lets prove that (ϑ1, ϑ2) = (2/3, 2/3) corresponds to maxima of the function b11 and does

not contribute the instability of Austenite (A).

Consider all the second and cross derivative of b11 with respect to ϑ1 and ϑ2 from the

Eqs.(80) and Eqs.(81),

∂2b11

∂ϑ2
1

= 12Ā[8 + 6(ϑ1 − 2)ϑ1 − 10ϑ2 + 6ϑ1ϑ2 + 3ϑ2
2] (82)

∂2b11

∂ϑ2
2

= 12Ā[8 + 6(ϑ2 − 2)ϑ2 − 10ϑ1 + 6ϑ1ϑ2 + 3ϑ2
1] (83)

∂2b11

∂ϑ1∂ϑ2

= 12Ā(ϑ1 + ϑ2 − 2)(3ϑ1 + 3ϑ2 − 4) (84)

Lets consider Hessian matrix of all the partial derivatives of the function b11.

H =

(
h11 h12

h21 h22

)
=

(
∂2b11
∂ϑ12

∂2b11
∂ϑ1∂ϑ2

∂2b11
∂ϑ1∂ϑ2

∂2b11
∂ϑ22

)
(85)

Lets consider root (ϑ1, ϑ2) = (0, 1) and put into Eqs.(85) we get

H =

(
12Ā 12Ā
12Ā 24Ā

)
(86)

Here, h11 = 12Ā ≥ 0 and h11h22 − h12h21 = 144Ā2 ≥ 0 .Hence function b11 does have local

minima here.

Lets consider root (ϑ1, ϑ2) = (1, 0) and put into Eqs.(85) we get

H =

(
24Ā 12Ā
12Ā 12Ā

)
(87)
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Here, also h11 = 24Ā ≥ 0 and h11h22 − h12h21 = 144Ā2 ≥ 0 .Hence function b11 does have

local minima here.

Lets consider root (ϑ1, ϑ2) = (1, 1) and put into Eqs.(85) we get

H =

(
12Ā 0

0 24Ā

)
(88)

Here, h11 = 12Ā ≥ 0 and h11h22 − h12h21 = 144Ā2 ≥ 0 .Hence function b11 does have local

minima here.

Lets consider root (ϑ1, ϑ2) = (2/3, 2/3) and put into Eqs.(85) we get

H =

(
0 −24Ā

−24Ā 0

)
(89)

Here, h11 = 0 and h11h22−h12h21 = 576Ā2 ≥ 0 .Hence function b11 does have local Maxima

here. So it does not contribute anything to the instability conditions.

Case II: when σσσ :::εεεti = A
a

Lets assume σσσ :::εεεti = A
a

, then we can rewrite Eqs.(73)

∂b11

∂ϑ1

= 12(2ϑ1 + ϑ2 − 2)[Ā(2− 2ϑ1 + ϑ2
1) + A(ϑ2 − 1) + Ā(ϑ2

2 + ϑ1ϑ2 − 3ϑ2)] = 0 (90)

and

∂b11

∂ϑ2

= 12(2ϑ2 + ϑ1 − 2)[Ā(2− 2ϑ2 + ϑ2
2) + A(ϑ1 − 1) + Ā(ϑ2

1 + ϑ1ϑ2 − 3ϑ1)] = 0 (91)

Solving Eqs.(90) and Eqs.(91) we get following roots

(ϑ1, ϑ2) = (0, 1); (ϑ1, ϑ2) = (1, 0); (ϑ1, ϑ2) = (1, 1); (ϑ1, ϑ2) = (2/3, 2/3); (92)

(93)

(ϑ1, ϑ2) = (
2Ā− A

3Ā
,
2Ā+ 2A

3Ā
); (ϑ1, ϑ2) = (

2Ā− A
3Ā

,
2Ā− A

3Ā
);

(94)

(ϑ1, ϑ2) = (
2Ā+ 2A

3Ā
,
2Ā− A

3Ā
);
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First 3 values of (ϑ1, ϑ2) gives the same condition in the equations Eqs.(76), Eqs.(77),

Eqs.(78)

Consider all the second and cross derivative of b11 with respect to ϑ1 and ϑ2 from the

Eqs.(90) and Eqs.(91),

∂2b11

∂ϑ2
1

= 12[2A(ϑ2 − 1) + Ā(ϑ2
1 + 6ϑ1ϑ2 − 10ϑ2 + 3ϑ2

2 − 4)] (95)

∂2b11

∂ϑ2
2

= 12[2A(ϑ1 − 1) + Ā(ϑ2
2 + 6ϑ1ϑ2 − 10ϑ1 + 3ϑ2

1 − 4)] (96)

∂2b11

∂ϑ1∂ϑ2

= 12[A(2ϑ1 + 2ϑ2 − 3) + Ā(ϑ1 + ϑ2 − 2)(3ϑ1 + 3ϑ2 − 4)] (97)

Lets consider Hessian matrix of all the partial derivatives of the function b11.

H =

(
h11 h12

h21 h22

)
=

(
∂2b11
∂ϑ12

∂2b11
∂ϑ1∂ϑ2

∂2b11
∂ϑ1∂ϑ2

∂2b11
∂ϑ22

)
(98)

Lets consider root (ϑ1, ϑ2) = (0, 1) and put into Eqs.(98) we get

H =

(
12Ā 12Ā− 12A

12Ā− 12A 24Ā− A

)
(99)

Here, h11 = 12Ā and h = h11h22 − h12h21 = −144(A− Ā)(A+ Ā).

Here if h11, h ≥ 0, then function b11 does have local Minima here. From this condition we have

Ā ≥ 0, Ā ≥ A, which is true. Hence it has local mini ma for corresponding roots.

However from the condition of local maxima, i.e h11, h ≤ 0, we get Ā ≤ 0, Ā ≤ A, which is

not physical.So this root does not have local maxima here in any case.

Lets consider root (ϑ1, ϑ2) = (1, 0) and put into Eqs.(98) we get
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H =

(
24Ā− 24A 12Ā− 12A
12Ā− 12A 12Ā

)
(100)

Here, h11 = 24Ā− 24A and h = h11h22 − h12h21 = −144(A− Ā)(A+ Ā).

Here if h11, h ≥ 0, then function b11 does have local Minima here. From this condition we have

Ā ≥ A, which is true. Hence it has local minima for corresponding roots.

However from the condition of local maxima, i.e h11, h ≤ 0, we get Ā ≤ A, .So this root

can have local maxima here for case.

Lets consider root (ϑ1, ϑ2) = (1, 1) and put into Eqs.(98) we get

H =

(
12Ā 12A
12A 12Ā

)
(101)

Here, h11 = 12Ā and h = h11h22 − h12h21 = −144(A− Ā)(A+ Ā).

Here if h11, h ≥ 0, then function b11 does have local Minima here. From this condition we have

Ā ≥ 0, Ā ≥ A, which is true. Hence it has local mini ma for corresponding roots.

However from the condition of local maxima, i.e h11, h ≤ 0, we get Ā ≤ 0, Ā ≤ A, which is

not physical.So this root does not have local maxima here in any case.

Lets consider root (ϑ1, ϑ2) = (1, 1) and put into Eqs.(86) we get

H =

(
12Ā 12A
12A 12Ā

)
(102)

Here, h11 = 12Ā and h = h11h22 − h12h21 = −144(A− Ā)(A+ Ā).

Here if h11, h ≥ 0, then function b11 does have local Minima here. From this condition we have

Ā ≥ 0, Ā ≥ A, which is true. Hence it has local mini ma for corresponding roots.

However from the condition of local maxima, i.e h11, h ≤ 0, we get Ā ≤ 0, Ā ≤ A, which is

not physical.So this root does not have local maxima here in any case.

Lets consider root (ϑ1, ϑ2) = (2/3, 2/3) and put into Eqs.(86) we get
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H =

(
−8A −4A
−4A −8A

)
(103)

Here, h11 = −8A and h = h11h22 − h12h21 = 48A2.

Here if h11, h ≥ 0, then function b11 does have local Minima here. From this condition we have

A ≤ 0,, which is unphysical. Hence it does not have local minima for corresponding root for

any case.

However from the condition of local maxima, i.e h11, h ≤ 0, we get A ≥ 0.

For all 3 other remaining roots we have following h11 = 12A
2

Ā
and h = h11h22 − h12h21 =

144A2(A
2

Ā
− 1).

2.11 Simplified instability criteria

For general thermodynamic expression for loss of stability of any phase corresponding ϑ for

3 variants as follows

∂2G

∂ r2
ṙ2 + 2

∂2G

∂ r ∂ ϑ1

ṙϑ̇1 + 2
∂2G

∂ r ∂ ϑ2

ṙϑ̇2 +
∂2G

∂ ϑ2
1

ϑ̇2
1 +

∂2G

∂ ϑ2
2

ϑ̇2
2 + 2

∂2G

∂ ϑ1 ∂ ϑ2

ϑ̇1ϑ̇2 ≤ 0 (104)

Stability condition for A↔M1

Let , ϑ2 = 1 and any general values of r, ϑ1, ϑ3 , and ϑ̇2 = 0 Considering all the cross

derivatives in the Eqs.(104)

∂2G

∂ r2
ṙ2 + 2

∂2G

∂ r ∂ ϑ1

ṙϑ̇1 +
∂2G

∂ ϑ2
1

ϑ̇2
1 ≤ 0 (105)

For the loss of stability of A, consider r = 0 and we get following expression from

∂2G (r = 0)

∂ r2
= 2A− 2 aσσσ :::εεεt1 (106)
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∂2G (r = 0)

∂ r ∂ϑ1

= 0 (107)

∂2G (r = 0)

∂ ϑ2
1

= 0 (108)

Replacing Eqs.(105), Eqs.(106) and Eqs.(107) into Eqs.(??) we get for the loss of Austenite

A, (A→M1)

A→M1 : σσσ :::εεεt1 ≥
A

a
(109)

Similarly,

For the loss of stability of M1, we consider r = 1 and we get following expression from

∂2G (r = 1)

∂ r2
= 2A− 12∆G− (2a− 12)σσσ :::εεεt1 (110)

∂2G (r = 1)

∂ r ∂ϑ1

= 0; (111)

∂2G (r = 1)

∂ ϑ2
1

= −2Ā+ 6σσσ :::εεεt1 − 6σσσ :::εεεt3 (112)

Replacing Eqs.(110), Eqs.(111) and Eqs.(112) into Eqs.(107) we get for the loss of Martensite

M1

[2A− 12∆G− (2a− 12)σσσ :::εεεt1]ṙ2 + [−2Ā+ 6σσσ :::εεεt1 − 6σσσ :::εεεt3]ϑ̇2
1 ≤ 0 (113)

case I:

Condition for loss of stability of (M1 → A)

[2A− 12∆G− (2a− 12)σσσ :::εεεt1] ≤ 0 (114)
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Hence,

(M1 → A) : σσσ :::εεεt1 ≥
6∆G− A

6− a
(115)

case II:

Condition for loss of stability of (M1 →M3)

[−2Ā+ 6σσσ :::εεεt1 − 6σσσ :::εεεt3] ≤ 0 (116)

Hence

(M1 →M3) : σσσ :::(εεεt3 − εεεt1) ≥ Ā

a
(117)

Stability condition for A↔M2

Let , ϑ1 = 1 and any general values of r, ϑ2, ϑ3 , and ϑ̇1 = 0 Considering all the cross

derivatives in the Eqs.(104)we get

∂2G

∂ r2
ṙ2 + 2

∂2G

∂ r ∂ ϑ2

ṙϑ̇2 +
∂2G

∂ ϑ2
2

ϑ̇2
2 ≤ 0 (118)

For the loss of stability of A, consider r = 0 and we get following expression from

∂2G (r = 0)

∂ r2
= 2A− 2 aσσσ :::εεεt2 (119)

∂2G (r = 0)

∂ r ∂ϑ2

= 0 (120)

∂2G (r = 0)

∂ ϑ2
2

= 0 (121)

Replacing Eqs.(119), Eqs.(120) and Eqs.(121) into Eqs.(118) we get for the loss of Austenite

A, (A→M2)

A→M2 : σσσ :::εεεt2 ≥
A

a
(122)

Similarly,
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For the loss of stability of M2, we consider r = 1 and we get following expression from

∂2G (r = 1)

∂ r2
= 2A− 12∆G− (2a− 12)σσσ :::εεεt2 (123)

∂2G (r = 1)

∂ r ∂ϑ2

= 0; (124)

∂2G (r = 1)

∂ ϑ2
2

= −2Ā+ 6σσσ :::εεεt2 − 6σσσ :::εεεt3 (125)

Replacing Eqs.(123), Eqs.(124) and Eqs.(125) into Eqs.(118) we get for the loss of Martensite

M2

[2A− 12∆G− (2a− 12)σσσ :::εεεt2]ṙ2 + [−2Ā+ 6σσσ :::εεεt2 − 6σσσ :::εεεt3]ϑ̇2
2 ≤ 0 (126)

case I:

Condition for loss of stability of (M2 → A)

[2A− 12∆G− (2a− 12)σσσ :::εεεt2] ≤ 0 (127)

Hence,

(M2 → A) : σσσ :::εεεt2 ≥
6∆G− A

6− a
(128)

case II:

Condition for loss of stability of (M2 →M3)

[−2Ā+ 6σσσ :::εεεt2 − 6σσσ :::εεεt3] ≤ 0 (129)
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Hence

(M2 →M3) : σσσ :::(εεεt3 − εεεt2) ≥ Ā

a
(130)

Stability condition for A↔M3

Let , ϑ1 = 1 and any general values of r, ϑ2, ϑ3 , and ϑ̇1 = 0 Considering all the cross

derivatives in the Eqs.(104)we get

∂2G

∂ r2
ṙ2 + 2

∂2G

∂ r ∂ ϑ2

ṙϑ̇2 +
∂2G

∂ ϑ2
2

ϑ̇2
2 ≤ 0 (131)

For the loss of stability of A, consider r = 0 and we get following expression from

∂2G (r = 0, ϑ2 = 1)

∂ r2
= 2A− 2 aσσσ :::εεεt3 (132)

∂2G (r = 0, ϑ2 = 1)

∂ r ∂ϑ2

= 0 (133)

∂2G (r = 0, ϑ2 = 1)

∂ ϑ2
2

= 0 (134)

Replacing Eqs.(132), Eqs.(133) and Eqs.(134) into Eqs.(131) we get for the loss of Austenite

A, (A→M3)

A→M3 : σσσ :::εεεt3 ≥
A

a
(135)

Similarly,

For the loss of stability of M3, we consider r = 1 and we get following expression from

∂2G (r = 1, ϑ2 = 1)

∂ r2
= 2A− 12∆G− (2a− 12)σσσ :::εεεt3 (136)

∂2G (r = 1, ϑ2 = 1)

∂ r ∂ϑ2

= 0; (137)
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∂2G (r = 1, ϑ2 = 1)

∂ ϑ2
2

= −2Ā+ 6σσσ :::εεεt2 − 6σσσ :::εεεt3 (138)

Replacing Eqs.(136), Eqs.(137) and Eqs.(138) into Eqs.(131) we get for the loss of Martensite

M3

[2A− 12∆G− (2a− 12)σσσ :::εεεt3]ṙ2 + [−2Ā+ 6σσσ :::εεεt3 − 6σσσ :::εεεt2]ϑ̇2
2 ≤ 0 (139)

case I:

Condition for loss of stability of (M3 → A)

[2A− 12∆G− (2a− 12)σσσ :::εεεt3] ≤ 0 (140)

Hence,

(M3 → A) : σσσ :::εεεt3 ≥
6∆G− A

6− a
(141)

case II:

Condition for loss of stability of (M3 →M2)

[−2Ā+ 6σσσ :::εεεt3 − 6σσσ :::εεεt2] ≤ 0 (142)

Hence

(M3 →M2) : σσσ :::(εεεt2 − εεεt3) ≥ Ā

a
(143)
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2.12 Examples for martensitic microstructure evolution and twinning

In our example simulations we use the material parameters for the cubic to tetragonal

PT in NiAl found in [12, 13, 29]: a = 3, Ā = 5320 MPa, θc = −183 K, θe = 215 K, λr =

λϑ = 2596.5m2/Ns, β = βϑ = 5.18 × 10−10N ; θ = 100K, unless other stated. These

parameters correspond to a twin interface energy EMM = 0.958J/m2 and width ∆MM = 0.832

nm. Isotropic linear elasticity is used for simplicity; Young’s modulus E = 177.034GPa and

Poisson’s ratio ν = 0.238. The equilibrium equation ∇∇∇ · σσσ = 0 is utilized. In the plane stress

2D problems, only M1 and M2 were considered; the corresponding transformation strains in

the cubic axes are εεεt1 = (0.215,−0.078,−0.078) and εεεt2 = (−0.078, 0.215,−0.078). The FEM

approach was developed and incorporated in the COMSOL code. All lengths, stresses, and

times are given in units of nm, and GPa, and ps. All external stresses are normal to the

deformed surface.

Example 1

Benchmark problem: bending and splitting of martensite tips in NiAl alloy

Initial random distribution of order parameter Υ in the range [0; 0.4] was prescribed in a square

sample of 50 × 50 with the austenite lattice rotated by α = 45o. Initial value of ϑ = 0.5. For

one horizontal and one vertical surfaces, the roller support was used. Homogeneous normal

displacements at two other surfaces were prescribed and kept constant during simulations,

resulted in biaxial normal strain of 0.01. Shear stresses were kept zero at external surfaces. Two

dimensional problem under plane stress condition and temperature θ = 50K was studied with

the material parameters described in the main text. The evolution of 2Υ(ϑ− 0.5) is presented

in Fig. S1, demonstrating transformation of the austenite into martensite and coalescence of

martensitic units. Despite the symmetry in geometry and boundary conditions, accidental

asymmetry in the initial conditions led to formation of alternating horizontal martensitic twin

structure with austenitic regions near vertical sides, in order to satisfy boundary conditions.

Invariant plane conditions for the austenite-martensite interfaces are consequence of a simplified

plane-stress two-dimensional formulation.

The stationary solution from Fig. S1 was taken as an initial condition for the next problem

with the following modifications: temperature was reduced to θ = 0K; parameter βϑ was
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a) t=0.3 b) 0.9 c) 1.3 d) 50 e) 90

Fig. S 1: Evolution of 2Υ(ϑ− 0.5) in a square sample of size 50× 50 with an initial stochastic
distribution of order parameter Υ under biaxial normal strain of 0.01.

a) t=100 b)105 c) 110 d)125 e)160

f)190 h)225 i)235 j)250g)210

Fig. S 2: Evolution of ϑ in a square sample of size 50× 50 under biaxial normal strain of 0.01
with an initial condition shown in Fig. S1(e), reduced temperature θ = 0K and parameter
βϑ = 5.18× 10−11N and changed transformation strain.
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reduced to βϑ = 5.18 × 10−11 N , which led to twin interface energy EMM = 0.303J/m2 and

width ∆MM = 0.263nm; components of transformation strains have been changed to the values

UUU t1 = (k1, k2, k2) and UUU t2 = (k2, k1, k2) with k1 = 1.15 and k2 = 0.93 corresponding to NiAl

alloy in [23]. Then Υ was made equal to 1 everywhere and kept during the entire simulation.

Due to reduction in the interface energy, number of twins increased by splitting of the initial

twins (Fig. S2). Without austenite, rigid vertical boundaries led to high elastic energy. That

is why restructuring produced vertical twins near each of vertical sides in proportion, reducing

energy of elastic stresses due to prescribed horizontal strain. When microstructure transformed

to fully formed twins separated by diffuse interfaces, narrowing and bending of the tips of

horizontal T2 plates is observed (Figs. S2 and S3), similar to experiments [23, 24]. Note, that

since invariant plane interface between T1 and T2 requires mutual rotation of these variants

by the angle ω = 12.1o (cosω = 2k1k2/(k
2
1 + k2

2) = 0.9778) [23], angle between horizontal

and vertical variants T2 is 1.5ω = 18.15o, which is in good agreement with our simulations.

Thus, due to lattice rotations, interface between horizontal and vertical variants T2 cannot

be invariant plane interface, and reduction in the internal stresses at this boundary leads to

reduction of the boundary area by narrowing and bending of the tips of one horizontal plates.

Measured angles between tangent to the bent tip and horizontal line in the experiment [23]

and in calculations (Fig. S3) are in good quantitative agreement.

T2 

θ=76.9o 

θ=77.1o 

T1 

T2 

T1 

T2 T1 
θ=77.2o 

θ=77o 

Fig. S 3: Comparison of transmission electron microscopy image of a nanaostructure for
NiAl alloy from [23, 24] and zoomed part of simulation results from Fig. S 2(j). Simulations
reproduce well tip splitting and bending angel.
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Note that microstructure evolution occurs through intermediate values of ϑ in some regions

(see t = 125 and 160 in Fig. 2), i.e., when transformation strain of one twin penetrates in

to region of another one, producing crossed twins. Such crossed twins have been observed in

some experiments [25] and have been arrested (Fig. S4). In our simulations in Fig. S2, they

represent intermediate stage of evolution. However, if we reduce Ā to 0.532 GPa, the such

crossed twins represent stationary solutions (Figs. S4). Also, on the right side of the solution

in Fig. S2, an alternative way for stress relaxation is visible, when twins T2 are surrounded by

twins T1, which is also observed in experiments [24].

T2 

T1 

T2 

(a) (b) (c) 

Fig. S 4: (a) Stationary solution for 2Υ(ϑ− 0.5) in a sample and (b) its zoomed part near left
side of a sample; (c) transmission electron microscopy of a nanaostructure for NiAl from [23].
Crossing twins are observed in experiment and simulation.

Thus, starting with a microstructure in Fig. S1, which is quite far from the final one, our

solution reproduced three types of nontrivial experimentally observed microstructures involving

finite rotations, including good quantitative agreement for bending angle.

Example 2

1 Indentation Problem

(Under dynamic Pressure)

Nanoindentation-induced twinning M2→M1 was studied in a M2 sample with a pre-existing

M1 embryo of radius 2 under the indentor (Fig. 1-3). The sample was obtained from a

square A sample of size 50× 50 by transforming it homogeneously to M2. The cubic axes and

transformation strain were rotated by α = 31o with respect to the coordinate axes. Initial
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conditions were: r = 1 everywhere; ϑ = 0.9 inside the embryo and ϑ = 0.999 in the rest of

the sample. A uniform pressure between the indentor of width 4 and the sample was increased

linearly from 2 to 3 GPa over 110ps. The bottom sample surface was constrained by a roller

support (zero normal displacements and zero shear stresses) and point F was fixed; all other

surfaces are stress-free. With increasing load, a twin M1 appears under the indenter and grows

in a wedge shape with a sharp tip (Fig. 1a, b). Since the bottom of the sample was constrained

by the roller support, the twin M1 could not propagate through the entire sample. In the

same problem but with a stress-free section of length 20 at the bottom (Fig.1c-d), the twin

propagated completely through the sample and widened with increasing load. The load was

then reduced to zero: the width of the twin then decreased to zero without a change in length

(Fig.1e-f). These results are in qualitative agreement with experiments [1, 2] and previous

simulations [10]. Since dislocation plasticity and interface friction [5, 29] are neglected, there

is no residual twin.

(a) p =2.007 (b) 2.05 (c) 2.60 (d) 2.90 (e) 3.00 (f) 2.10F 

Figure 5: Twinning M2 (red) →M1 (blue) under indentation with the rigid support (a)-(b),
support with the hole (c)-(e), and during unloading (f).
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 ϑ  σy σx - σy

(a) p=2.007 GPa 

(b) p=2.05 GPa 

(c) p=2.70 GPa

Figure 6: Evolution of twin microsture under dynamic pressure in an intial M2 sample.Left
Column: ϑ; second and third columns: σy and σx − σy; right column:σxy. Twinning M2 (red)
→M1 (blue) under indentation with the rigid support (a)-(b), support with the hole (c).
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 ϑ  σy σx - σy

   `  

(d) p=2.90 GPa

(e) p=3.00 GPa

(f) p=2.50 GPa

(g) p=2.10 GPa

Figure 7: (continue) Evolution of twin microsture under dynamic pressure in an intial M2 sam-
ple.Left Column: ϑ; second and third columns: σy and σx−σy; right column:σxy. Twinning M2

(red) →M1 (blue) under indentation when support with the hole (d)-(e) and during unloading
(f)-(g).
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Example 3

1 Indentation Problem

(Under dynamic displacement)

Nanoindentation of a square 50 × 50 A sample with α = 150 was modeled by prescribing

uniform vertical displacements growing from 2 to 2.5 over a section of width 4; friction was

neglected (Fig. 4-6). Adjacent lateral surfaces of the sample were constrained by the roller

supports. In an initial embryo of radius 2 we set r = 0.1; r = 0.01 outside of the embryo. The

order parameter ϑ = 0.5 everywhere. The transformed twinned martensite first grew only in

the vertical direction; note the presence of a small non-transformed region under the inden-

ter (Fig. 4 (a)-(f)). When the stress concentration due to the indenter became smaller than

the internal stresses due to transformation strain and the bottom constraint, a morphological

transition occurred: the growth of M2 changed direction away from M1 toward a corner of

the sample, and ultimately reached the corner. The M2-M1 interface is curvilinear and conse-

quently cannot be described by pure crystallographic theory presented in e.g., [27].

(a) t =0.5 (b) 1.5 (f) 20.0(e) 10.0(c) 3.0 (d) 6.0

Figure 8: Evolution of 2r(ϑ− 0.5) for indentation of A (green) sample; M2: red and M1: blue.
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             2ϓ( ϑ-0.5) σx σx - σy

(a) t=0.5 ps 

(b) t=1.5 
 

(c) t=3.0 ps 

Figure 9: Evolution of twin martensitic microsture under dynamic displacement in an intial A
sample.Left Column: 2r(ϑ−0.5); second and third columns: σx and σx−σy; right column:σxy.
Here M2 (red),M1 (blue)and A(green) under double indentation from t = 0.5ps(a) to t = 3.0ps
(c).
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(d) t=6.0 ps 

(e) t=10.0 ps 

(f) t=20 ps 

Figure 10: (continue) Evolution of twin martensitic microsture under dynamic displacement in
an intial A sample.Left Column: 2r(ϑ− 0.5); second and third columns: σx and σx − σy; right
column:σxy. Here M2 (red),M1 (blue)and A(green) under double indentation from t = 6.0ps
(d) to t = 20ps (f).
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Example 4

2 Indentation Problem

Two indentors of width 4 nm were placed on adjacent sides of a square 50 × 50 A sample

with α = 450 (Fig. 7-10). At t = 0, there were uniform pressures p1 = p2 = 3 across the

indentors. The remaining lateral surfaces of the sample were constrained by roller supports.

In two initial embryos of radius 2 under the indentors, r = 0.1; outside the embryos r = 0.01.

Again, ϑ = 0.5 everywhere. The complex evolution of the twinned nanostructure is shown in

Fig. 7a-i. Starting with state (h), p2 was slowly reduced to zero while keeping p1 = 3. The

quasi-stationary solutions in Fig. 7j-l show an initial reversal of the nanostructure (see Figs.

7j and g) followed by the predominance of M1.

(a) t =1.0 (b) 5.0 (c) 10.0 (d) 12.0 (e) 15.0 (f) 20.0

(g) 30.0 (h) 50.0 (i) 80.0 (j) p2=2.8 (k) p2=1.8 (l) p2=0

p1 

p2 

Figure 11: Evolution of 2r(ϑ − 0.5) in time (a-i) for double indentation of an A sample at
p1 = p2 = 3, followed by reduction of p2 to zero at p1 = 3 (j-l) from state (h).
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             2ϓ( ϑ-0.5) σx σx - σy

(a) t=1.0 ps 

(b) t=5.0 

(c) t=10 ps 

Figure 12: Evolution of Evolution of 2r(ϑ − 0.5) under double indentors in an intial A sam-
ple.Left Column: 2r(ϑ − 0.5); second and third columns: σx and σx − σy; right column:σxy.
Here M2 (red),M1 (blue)and A(green) in time (a-c) for double indentation of an A sample at
p1 = p2 = 3GPa
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(d) t=12.0 ps 

(e) t=25  ps 

(f) t=50  ps 

Figure 13: (continue) Evolution of Evolution of 2r(ϑ−0.5) under double indentors in an intial A
sample.Left Column: 2r(ϑ−0.5); second and third columns: σx and σx−σy; right column:σxy.
Here M2 (red),M1 (blue)and A(green) in time (d-f) for double indentation of an A sample at
p1 = p2 = 3GPa
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(g) p=2.8 GPa 

(h) p=1.8 GPa 

(i) p=0 GPa 

Figure 14: (continue) Evolution of Evolution of 2r(ϑ−0.5) under double indentors in an intial A
sample.Left Column: 2r(ϑ−0.5); second and third columns: σx and σx−σy; right column:σxy.
Here M2 (red),M1 (blue)and A(green) in time (d-f) for double indentation of an A sample at
reduction of p2 to zero at p1 = 3 (g-i) from state (f).
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Example 5

Homogeneous Loading Problem with initial Austenite

A square A sample of size 100× 100 with α = 15o and an embryo of 2 nm radius in the center

of the sample (Fig. 11-13) was subjected to uniform vertical and horizontal stresses σy = 3

and σx = 0.1, respectively. Because of the reflection symmetry, only one-quarter of the sample

was directly simulated; roller supports were applied along the symmetry axes. The parameter

values Ā = 61.6MPa and βMM = 19.4×10−12N were used, corresponding to EMM = 0.01J/m2

and ∆MM = 1nm. The initial conditions in the embryo were r = 0.1, and r = 0.001 outside

the embryo; ϑ = 0.5 everywhere. Within 1ps, A was transformed to a mixture of Mi twins,

which further evolve to produce a nontrivial stationary morphology. Note that varying the

ratio λϑ/λr from 1 to 1000 with λr = 2596.5m2/Ns did not change the stationary solution and

only slightly affected the evolution.

t=0.6 
   5.0 60.0 0.8 1.0  1.2 

Figure 15: Evolution of 2r(ϑ− 0.5) in a quarter of 100× 100 sample with an initial embryo at
the center under homogeneous compressive stress of σy = 3 and σx = 0.1.
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            2ϓ( ϑ-0.5)  σx σx - σy

(b) t=1.0 ps 

(a) t=0.7 ps 

(c) t=2 ps 

Figure 16: (continue)Evolution of Evolution of 2r(ϑ−0.5) under homogenous compressive load
in an intial A sample.Left Column: 2r(ϑ − 0.5); second and third columns: σx and σx − σy;
right column:σxy. Here M2 (red),M1 (blue)and A(green) in time from t=0.7ps (a) to t=2ps (c).
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(d) t=8.0 ps 

(e) t=20 ps 

(f) t=60 ps 

Figure 17: (continue) Evolution of Evolution of 2r(ϑ − 0.5) under homogenous compressive
load in an intial A sample.Left Column: 2r(ϑ−0.5); second and third columns: σx and σx−σy;
right column:σxy. Here M2 (red),M1 (blue)and A(green) in time from t=8 ps (d) to t=60 ps
(f).
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Example 6

Homogeneous Loading Problem with initial Martensite

A square M1 sample of size 100 × 100 with α = 31o and an embryo of 2 nm radius in the

center of the sample (Fig. 14-15) was subjected to uniform vertical stresses σy = 100N/m2.

Because of the reflection symmetry, only one-quarter of the sample was directly simulated;

roller supports were applied along the symmetry axes. The initial sample was M1, so order

parameter, ϑ was 0.1 inside the embryo and ϑ was 0.01 outside the sample, with parameter

r = 1 everywhere.The results are shown in Fig. 14-15:the first column shows the evolution

of 2r(ϑ − 0.5), the second and third columns show the stresses σx and σx − σy( since the

thermodynamic driving force is proportional to σx − σy, and the last column depicts the

shear stress (σxy) distribution with time. Here the part of M1 transformed to M2 to get

sophisticated twinning plane at the end. The evolution starts with nucleation in the zone of

stress concentration (a-b) and part of M1 get converted to M2. A complex multi connected

nanostructure passes through the coalescence stage(c-d) and finally produce nice twinning

plane (e-f). The stationary solution is not a homogeneous solution due to boundary constraints

and with the evolution of time martensitic variants cycle between two type(e and f) of micro

structures.
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ϑ  σx σx - σy

(a) 0.7 ps 

(b) 1.0 ps 

(c) 2.0 ps 

Figure 18: Evolution of martensitic variants due to external loading of an A sample in time
(a-c) . Left Column: 2r(ϑ− 0.5); second and third columns: σx and σx−σy; right column:σxy.
Here M2 (red),M1 (blue)and A(green) in time (a-c).
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(d) 10 ps 

(e ) 30 ps 

(f) 60 ps 

Figure 19: Evolution of martensitic variants due to external loading of an A sample in time
(d-f). Left Column: 2r(ϑ− 0.5); second and third columns: σx and σx − σy; right column:σxy.
Here M2 (red),M1 (blue)and A(green) in time (d-f).
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Example 7

Stochastic Problem

Initial random distribution of order parameter r was studied in square 50× 50 sample with

α = 15o under homogeneous initial starin (Fig.16-17). Here initial distribution of order param-

eter r , varies between 0.0 to 0.4 randomly throughout the sample and ϑ was 0.5 throughout.

We consider homogeneous initial strain of magnitude 0.1 to all four free surfaces.The sample

is under plane stress condtion and temperature is θ = 50K which is below critical martensitic

start temperature to faciliate twinning. The results are shown in Fig. 16-17:the first column

shows the evolution of 2r(ϑ − 0.5), the second and third columns show the stresses σx and

σx−σy( since the thermodynamic driving force is proportional to σx−σy, and the last column

depicts the shear stress (σxy) distribution with time.The initial perturbation exicted the sys-

tem and intial martensite variants emarged initially (a) and they get connected to each other

(b).They rapidly grows in horizontal direction (c-d) and formed nice martensitic plane prodom-

inant in horizontal direction. At the end we get stationary very sophisticated microsture in

which martensitic variants from nice twinning plan (f).
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  2ϓ(ϑ-0.5) σx σy

a) 0.3 ps 

b)0.9 ps 

c)1.3 ps 

Figure 20: Evolution of twinning microsture in time (a-c) for randomly distributed order
parameter r of an A sample. Left Column: 2r(ϑ − 0.5); second and third columns: σx and
σx − σy; right column:σxy. Here M2 (red),M1 (blue)and A(green) in time (a-c).
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d) 25 ps 

e) 50 ps 

f)90 ps 

Figure 21: (Continue)Evolution of twinning microsture in time (d-f) for randomly distributed
order parameter r of an A sample. Left Column: 2r(ϑ − 0.5); second and third columns: σx
and σx − σy; right column:σxy. Here M2 (red),M1 (blue)and A(green) in time (d-f).

68



Example 8

Homogeneous Loading Problem

In our last problem, we consider a square sample of size 60×60nm2 with a preexisting embryo

of 2 nm radius in the middle of the sample subjected to homogenous loding of σx = σy = 20

GPa with α = 310.Temperature θ = 100K were used. Because of the reflection symmetry,

only one-quarter of the sample was directly simulated; roller supports were applied along the

symmetry axes. Inside the embryo, order parameter r considered as 0.1 and outside it was 0.01.

Order parameter ϑ was 0.5 throughout the sample.The results are shown in Fig. 18-19:the first

column shows the evolution of 2r(ϑ− 0.5), the second and third columns show the stresses σx

and σx − σy( since the thermodynamic driving force is proportional to σx − σy, and the last

column depicts the local driving force,∂G
∂ϑ

, for the evolution of ϑ with time.The evolution of

2r(ϑ−0.5) started with the spiting with of the embryo into two martensitic variants separated

by Austenite (a-b). A complex multiconnected nanostructure passed through the coalescence

stage(c-e) and finally ended in a single variant homogeneous state (f) as a stationary solution

at the end. Here different ratio of λMM to λAM (200 to 1000) were used to compare the rate

of evolution of order parameter and different magnitude of biaxial load (3Gpa to 30GPa) in

two lateral surfaces to check the difference in evolution pattern in martensitic variants in the

sample. It is noted that evolution pattern in the micro structure are quite same for different

magnitude of pressure. Also different ratio of λMM

λAM
indifferent to evolution of microstructure

pattern.

2.13 Future Scope

To summarize, a phase field model of transformations between martensitic variants and

multiple twinning in martensitic variants was developed. It accounts for large strains and lat-

tice rotations, and incorporates only a minimal set of order parameters, one for each martensitic

variant. Each variant-variant transformation and all of the infinite number of possible twin-

nings within them are described with a single order parameter. Despite this economy of order

parameters, arbitrarily complex twin-within-a-twin martensitic microstructures can in princi-

ple be described by the model. The energies and widths of the A−Mi and Mj−Mi interfaces

can be controlled (prescribed), and the corresponding interface stresses are consistent with
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           2ϓ(ϑ-0.5) σx σx - σy σxy

a) 0.6 ps 

b)0.8 ps 

c) 1 ps 

d)1.25 ps 

Figure 22: Evolution of martensitic variants due to homogenous loading in time (a-d) of an
initial A sample. Left Column: 2r(ϑ − 0.5); second and third columns: σx and σx − σy; right
column:σxy. Here M2 (red),M1 (blue)and A(green) in time (a-c).
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h)50 ps 

g)35 ps 

f)25 ps 

e)3 ps 

Figure 23: Evolution of martensitic variants due to homogenous loading in time (a-c) of an
initial A sample. Left Column: 2r(ϑ − 0.5); second and third columns: σx and σx − σy; right
column:σxy. Here M2 (red),M1 (blue)and A(green) in time (e-h).
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the sharp interface limit. A similar approach in terms of order parameters (r, ϑi) could be

developed for electric and magnetic PTs and for other phenomena described by multiple order

parameters.
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Abstract

Thermodynamic Ginzburg-Landau potential for temperature- and stress-induced phase

transformations (PTs) between n phases is developed. It describes each of the PTs with a

single order parameter without an explicit constraint equation, which allows one to use an an-

alytical solution to calibrate each interface energy, width, and mobility; reproduces the desired

PT criteria via instability conditions; introduces interface stresses, and allows for a controlling

presence of the third phase at the interface between the two other phases. A finite-element

approach is developed and utilized to solve the problem of nanostructure formation for mul-

tivariant martensitic PTs. Results are in a quantitative agreement with the experiment. The

developed approach is applicable to various PTs between multiple solid and liquid phases and

grain evolution and can be extended for diffusive, electric, and magnetic PTs.

3.1 Introduction

One of the unresolved problems of the phase field approach (PFA) for PTs is a non-contradictory

description of PTs between an arbitrary number of phases. One of the directions is related

to the description of PTs between the austenite (A) and any of the n martensitic variants

Mi and between martensitic variants [1]. It is described with the help of n independent order

parameters ηi, each for every A↔Mi. This approach was significantly elaborated in [2, 3] by im-

posing additional physical requirements to the Landau potential. In particular, the desired PT
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conditions for A↔Mi and Mj ↔Mi PTs follow from the material instability conditions. Also,

the thermodynamically equilibrium transformation strain tensor is stress- and temperature-

independent, as in crystallographic theories. Each order parameter ηi encodes variation of

atomic configuration along A↔Mi transformation path; it is equal to 0 for A and 1 for Mi. In

[2, 3] and here ηi is unambiguously related to transformation strain through some polynomial

(see Eqs. (3) and (8)).

This theory was generalized for large strain and lattice rotations [4, 5] and interface stresses

consistent with a sharp interface approach have been introduced for A-Mi interfaces [5–7].

However, the description of Mi-Mj is still not satisfactory. The A↔Mi PT is described by a

single order parameter ηi and analytic solutions for ηi for nonequilibrium interfaces [3, 5–7] allow

one to calibrate interface energy, width, and mobility, as well as the temperature-dependence

of the stress-strain curve. At the same time, at a Mi-Mj interface ηi and ηj vary independently

along some transformation path in the ηi− ηj plane connecting Mi (ηi = 1 and ηj = 0) and Mj

(ηi = 0 and ηj = 1), see Fig. 1.

The interface energy, width, and mobility have an unrealistic dependence on temperature,

stresses, and a number of material parameters, which cannot be determined analytically. Con-

sequently, one cannot prescribe the desired Mi-Mj interface parameters, and also the expression

for Mi-Mj interface stresses cannot be strictly derived [5, 6].

Other n-phase approaches are based on introducing n + 1 order parameters ηi obeying

constraint
∑
ηi = 1, similar to concentrations [8, 10, 11]. The idea is that each of the PTs

should be described by a single order parameter; then interface parameters can be calibrated

with the help of the analytical solution. However, a single constraint cannot ensure this and,

in general, an undesired in this community third phase often appears at the interface between

two phases. PT criteria in terms of instability conditions are not considered. In [10] special

conditions are imposed for a three-phase system that guarantee that the third phase can never

appear at the interface between two phases. This created some artifacts in the theory (e.g.,

the necessity of equal kinetic coefficients for all PTs). All homogeneous phases are stable or

metastable independent of the driving force (temperature); i.e., thermodynamic instability,

which is the source of the PT criteria, is impossible. On the other hand, for different materials

and conditions, the third phase is observed in experiments [12] and conditions when it is present
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or not are found within more advanced models [13]. Some drawbacks of imposing constraint

with the help of Lagrangian multipliers are presented and overcame in [11]. However, again,

instability conditions were not discussed in [11]. All of our attempts to formulate a theory

with constraint to find polynomials (up to the tenth degree) in order to reproduce the proper

PT criteria (which are known from two-phase treatment) from the thermodynamic instability

conditions have been unsuccessful. This led us to the conclusion that utilizing constraint∑
ηi = 1 prevents a noncontradictory formulation of the PFA.

PFA in [3] is based on a potential in hyperspherical order parameters, in which one of the

phases, O (e.g., A or melt), is at the center of the sphere, and all others, P i (e.g., Mi or solid

phases), are located at the sphere. Hyperspherical order parameters represent a radius Υ in the

order-parameter space and the angles between radius vector ΥΥΥ and the axes ηi corresponding

to P i.

Due to some problems found in [14], the nonlinear constraint for the hyperspherical order

parameters was substituted with the linear constraint of the type
∑
ηi = 1, which, however,

does not include A or melt [13, 14]. For three phases, when constraint is explicitly eliminated,

the theory in [3, 13, 14] is completely consistent with the two-phase theory and produces proper

PT criteria. However, due to the constraint, for more than three phases, these theories cannot

produce correct PT criteria. Thus, noncontradictory PFA for more than three phases or two

martensitic variants is currently lacking.

In the letter, we develop PFA, which with high and controllable accuracy satisfy all the

desired conditions for arbitrary n phases. We utilize the same order parameters ηi like for

martensitic PT and, instead of explicit constraints, include in the simplest potential the terms

that penalize the deviation of the trajectory in the order parameter space from the straight

lines connecting each two phases. These penalizing terms do not contribute to the instability

conditions and the correct PT criteria strictly follow from the instability conditions for O↔P i

PT only. However, when the magnitude of the penalizing term grows to infinity and imposes

the strict constraint ηi + ηj = 1 and ηk = 0 for all k 6= i, j, correct PT conditions for P i↔P j

PTs do follow from the instability conditions. Because for a finite magnitude such a constraint

is applied approximately only, there is some deviation from the ideal equilibrium phases and PT

conditions. However, numerical simulations for the almost worst cases demonstrate that these
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deviations are indeed negligible. This PFA allows for an analytical solution for the interfaces

between each of the two phases, which can be used to calibrate interface width, energy, and

mobility; it allows for the first time for a multiphase system to include a consistent expression

for interface stresses for each interface; it includes or excludes the third phase within the

interface between the two phases based on thermodynamic and kinetic consideration similar

to those in [13].

We designate contractions of tensors AAA = {Aij} and BBB = {Bji} over one and two indices

as AAA···BBB = {Aij Bjk} and AAA:::BBB = Aij Bji, respectively. The subscript s means symmetrization,

the superscript T designates transposition, the sub- and superscripts e, th, and t mean elastic,

thermal, and transformational strains, III is the unit tensor, and ∇∇∇ and ∇∇∇0 are the gradient

operators in the deformed and undefromed states.

3.2 General model

Model for n order parameters. For simplicity and compactness, the small strains will be

considered but with some minimal geometric nonlinearities required to introduce interface

stresses [5–7]. Generalization for large strain is straightforward [4, 5] (see Appendix) and the

model problem will be solved in large strain formulation. The Helmholtz free energy ψ per

unit undeformed volume has the following form:

=
ρ0
ρt
ψe(εεεe, ηi, θ) +

ρ0
ρ
ψ̆θ + ψ̃θ +

ρ0
ρ

∇ + ψp; (1)

ψ̆θ =
∑

Ai(θ)η
2
i (1− ηi)2 +

∑
Āijη

2
i η

2
j ; (2)

ψ̃θ =
∑

∆Gθ
i (θ)q(ηi); q(ηi) = η2i (3− 2ηi); (3)

ψp =
∑

Kij (ηi + ηj − 1)2 ηliη
l
j +
∑

Kijkη
2
i η

2
j η

2
k; l ≥ 2; (4)

ψe = 0.5εεεe:::EEE(ηi):::εεεe; EEE(ηi) = EEE0 +
∑

(EEEi −EEE0)q(ηi); (5)

∇ =
∑

0.5βij∇∇∇ηi · ∇∇∇ηj; (6)
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εεε = (∇∇∇0uuu)s = εεεe + εεεt + εεεθ;
ρ0
ρ

= 1 + εv; εv = εεε:::III;
ρ0
ρt

= 1 + (εεεt + εεεθ):::III; (7)

εεεt =
∑

εεεtiq(ηi); εεεθ = εεεθ0 +
∑

(εεεθi − εεεθ0)q(ηi). (8)

Here θ is the temperature, uuu is the displacements, εεε is the strain tensor, ∆Gθ
i is the difference

in the thermal energy between P i and O, Ai and Āij are the double-well barriers between

P i and O and between P i and P j, ρ, ρ0, and ρt are the mass densities in the deformed,

undeformed, and stress-free states, respectively; βij are the gradient energy coefficients, each

coefficient, Kij, Āij, and Kijk, is equal to zero if two subscripts coincide. Despite small strain

approximation, we keep some geometrically nonlinear terms (ρ0/ρt, ρ0/ρ, and gradient ∇∇∇ with

respect to deformed state) in order to correctly reproduce interface and elastic stresses [5–7].

The application of the thermodynamic laws and linear kinetics (see, e.g. [5–7]) results in

σσσ = σσσe + σσσst; σσσe =
ρ

ρ0

∂ψe

∂εεεe
; (9)

σσσst = (ψ∇ + ψ̆θ)III −
∑

βij∇∇∇ηi ⊗∇∇∇ηj. (10)

η̇i =
∑

LijXj =
∑

Lij

(
σσσe:::

∂(εεεt + εεεθ)

∂ηj
− ∂ψ

∂ηj
+
∑

βjk∇∇∇2ηk

)
; Lij = Lji, (11)

where Xi is the thermodynamic driving force to change ηi, Lij are the kinetic coefficients, and

σσσ is the true Cauchy stress tensor. We designate the set of the order parameters η̂0 = (0, ..., 0)

for O and η̂i = (0, ..., ηi = 1, ..., 0) for P i. It is easy to check that O and P i are homoge-

neous solutions of the Ginzburg-Landau equations (11) for arbitrary stresses and temperature;

consequently, the transformation strain and for any PT and elastic moduli are independent of

stresses and temperature [2–4].

Without the term ψp, the local part of free energy is much simpler than in [2, 3] and does

not contain complex interaction between phases. The terms with Kijk penalize the presence

of the three phases at the same material point. By increasing Kijk one can control and, in

particular, completely exclude the third phase within the interface between the two other

phases. For homogeneous states, this term always excludes the presence of the three phases at

the same point, because it increases energy compared with a two-phase state. The terms with

Kij penalize deviations from hyperplanes ηk = 0 and ηi + ηj = 1 and exponent l determines
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relative weight of these penalties. In combination with the penalization of more than two

phases, this constraint penalizes deviation from the desirable transformation paths: along

coordinate lines ηi along which O↔P i PTs occur, and lines ηi +ηj = 1, ηk = 0 ∀k 6= i, j, along

which P i ↔P j PTs occur. In such a way, we do not need to impose the explicit constraint∑
ηi = 1 and will be able to (approximately) satisfy all desired conditions, including instability

conditions. Note that there is no need for penalizing ηi = 0; however, for l = 0 the term with

Kij produces an undesired contribution to ψ for ηi = 0.

Thermodynamic instability conditions. For compactness, instability conditions will be pre-

sented for the case with the same elastic moduli of all phases and ρ0 ' ρ. Since ∂Xi(η̂k)/∂ηj =

0, instability conditions for thermodynamically equilibrium homogeneous phases result in the

following PT criteria:

O→ Pi : ∂Xi(η̂0)/∂ηi ≥ 0→ σσσe:::(εεεti + εεεθi − εεεθ0)−∆Gθ
i ≥ Ai(θ)/3; (12)

Pi → O : ∂Xi(η̂i)/∂ηi ≥ 0→ σσσe:::(εεεti + εεεθi − εεεθ0)−∆Gθ
i ≤ −Ai(θ)/3; (13)

Pj → Pi : ∂Xi(η̂j)/∂ηi ≥ 0→ σσσe:::(εεεti + εεεθi − εεεθ0)−∆Gθ
i ≥ (Ai(θ) + Ā)/3 ⇒ wrong. (14)

While conditions for O↔P i PTs are logical (work of stress on jump in transformation and

thermal strains exceeds some threshold), condition for P j → P i does not contain information

about phase P j, which is contradictory even at zero stresses. Since first and second derivatives

of ψp are zero for O and P i, ψp does not change phase equilibrium and instability conditions

for homogeneous phases. However, as we will see below, it plays a key role in the development

of noncontradictory and flexible PFA.

O↔ P i phase transformations. If O↔ P i PT is considered only with all other ηj = 0, Eqs.

(2)-(6) simplify:

ψ̆θ = Ai(θ)η
2
i (1− ηi)2; ψ̃θ = ∆Gθ

i (θ)q(ηi); ψp = 0; ∇ = 0.5βii∇∇∇ηi · ∇∇∇ηi. (15)

EEE(ηi) = EEE0 + (EEEi −EEE0)q(ηi); εεεt = εεεtiq(ηi); εεεθ = εεεθ0 + (εεεθi − εεεθ0)q(ηi). (16)

σσσst = (ψ∇ + ψ̆θ)III − βii∇∇∇ηi ⊗∇∇∇ηi. (17)
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η̇i = Lii

(
σσσe:::(εεεti + εεεθi − εεεθ0)

dq

dηi
− ∂ψ

∂ηi
+ βii∇∇∇2ηi

)
. (18)

These equations possess all desired properties [2–4] of two-phase models.

P j↔ P i phase transformations. Next, we consider how to make the description of P j →

P i PTs completely similar to that of O↔ P i PTs. Let us increase parameters Kij and Kijk to

very high values so that they impose constraints ηi + ηj = 1 and ηk = 0 ∀k 6= i, j. Substituting

these constraints in Eq. (1) and taking into account the following properties of function q,

q (1− ηi) = 1−q (ηi) (which is crucial for our PFA), we reduce all equations to the single order

parameter:

ψ̆θ = Aij(θ)η
2
i (1− ηi)2; Aij = Ai + Aj + Āij; (19)

ψ̃θ = ∆Gθ
j + ∆Gθ

ij(θ)q(ηi); ∆Gθ
ij = ∆Gθ

i −∆Gθ
j ; (20)

EEE = EEEj + (EEEi −EEEj)q(ηi); (21)

∇ = 0.5bij∇∇∇ηi · ∇∇∇ηi; bij = βii + βjj − 2βij; (22)

εεεt = εεεtj + (εεεti − εεεtj)q(ηi); εεεθ = εεεθj + (εεεθi − εεεθj)q(ηi); (23)

σσσst = (ψ∇ + ψ̆θ)III − bij∇∇∇ηi ⊗∇∇∇ηi; lij = (LiiLjj − L2
ij)/(Ljj + Lij); (24)

η̇i = lij

(
σσσe:::(εεεti + εεεθi − εεεtj − εεεθj)

dq

dηi
− ∂ψ

∂ηi
+ bij∇∇∇2ηi

)
. (25)

Pj → Pi : ∂Xi(η̂j)/∂ηi ≥ 0→ σσσe:::(εεεti + εεεθi − εεεtj − εεεθj)−∆Gθ
ij ≥ Aij(θ)/3. (26)

It is evident that Eqs.(19)-(26) for P j → P i PTs are non-contradictory (i.e., contain an ex-

pected combination of parameters of P j and P i) and coincide to within constants and desig-

nations with Eqs.(15)-(18) for O↔ P i PTs, i.e., they are as good as the equations for O↔ P i

PTs. Thus, our goal is achieved.

Energy landscape and Pj↔ Pi instability conditions for finite Kij. Note that instability

condition (26) works in the limit Kij → ∞; for finite Kij it is imposed approximately only.
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To better understand the interaction between instability conditions (14) and (26), we consider

some examples. We consider the case when PT conditions for O↔ P i PTs (12), (13) and for

P j → P i PT (26) are not met, but when the wrong condition (14) is fulfilled with quite large

deviation from the stability region. Under such conditions, P j loses its stability, but instead

of transforming to P i, the local energy minimum slightly shifts from η1 = 1; η2 = 0 to a close

point η1 = 0.989; η2 = 0.019 (Fig. 1). There is an energy barrier (saddle point) between P j

and P i and until it disappears (i.e., correct condition (26) for P j → P i PT is met), P j →

P i PT is impossible. Thus, an approximate character of the imposed constraint through the

penalty term exhibits itself in a slight shift of the local minimum from P j to some very close

point, which should essentially not affect the accuracy of the simulations. If PT conditions for

a) b) 

Figure 1: Energy level plot of the free energy at zero stresses for A1 + 3∆Gθ
1 = 1000, A1 −

3∆Gθ
1 = 400, A2 + 3∆Gθ

2 = 230, A2 − 3∆Gθ
2 = 2570, Ā + A1(θ) + 3∆Gθ

1 = −250 and
A21(θ)− 3Gθ

21 = 150, all in J/m3. Gi are the points of the local minimaxes. (b) The zoomed
part of the plot near P1.

O↔ P i and P j↔ P i PTs (13) and (14) are not fulfilled but the correct condition (26) for

P j → P i PT is met, then these equations result in Ā < 0. It is easy to show that in this case

the wrong P j → P i PT condition (14) should be also fulfilled. Thus, if the correct P j → P i

PT condition is met, this PT will occur.
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3.3 Parameter identification

Due to equivalence of all equations for O↔ P i and P j → P i PTs, the analytical solution

for a propagating with velocity c interface is [8]:

η = 0.5 tanh [3(x− ct)/δ] + 0.5; δ =
√

18β/Ai(θ); c = Lδ∆Gθ(θ); γ = β/δ, (27)

where δ and γ are the interface width and energy. In contrast to solutions for other interpolating

functions q [5–7], interface width and energy are independent of ∆Gθ(θ). That is why ψ̆θ and

interface stresses σσσst are also independent of ∆Gθ(θ). All material parameters for each bulk

phase can be determined based on thermodynamic, experimental, and atomistic data as it

was done, e.g., in [2, 3] for NiAl. Eqs.(27) allow calibration for each pair of phases the three

interface-related parameters Ai(θ), β, and L when width, energy, and mobility of interfaces

between each pair of phases are known.

The obtained system of equations has been solved with the help of the finite element code

COMSOL for various problems. Here we solved exactly the same problem on the evolution

of two-variant nanostructure in a NiAl alloy during martensitic PT including tip bending and

splitting in martensitic variants as in [14]. Note that the theory in [14] for two variants satisfies

all required conditions exactly but cannot be generalized for more than two variants. Some

material parameters (like EEE,εεεti, ∆Gθ(θ), θe, ∆s) here have been chosen the same as in [14];

other (Aij(θ), βij(θ), Lij, θc) are chosen to get the temperature dependence of the energy,

width, and mobility of all interfaces, and temperature for the loss of stability of P like in [14].

Note that all thermodynamic properties of martensitic variants M1 and M2 are the same; they

differ by the transformation strain only.

We have the following definition of parameters: ∆Gθ
1 = ∆Gθ

2 = −∆s(θ − θe), where ∆s =

si−s0 is the jump in entropy between phases Mi and A, and θe is the thermodynamic equilibrium

temperature for phases Ti and A. We express the coefficients A1(θ) = A2(θ) = A∗(θ−θ∗). Here

parameter A∗ and the characteristic temperature θ∗ are related to the critical temperatures for

barrierless A→ Pi (θ0ic ) and Pi → A (θi0c ) PTs by the equations θ01c := (A∗θ∗ − 3∆sθe)/(A∗ −

3∆s) and θ10c := (A∗θ∗+ 3∆sθe)/(A∗+ 3∆s), which follow from the thermodynamic instability

conditions.
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θ01c = −183 K, θ10c = −331.65 K, θ∗ = −245.75 K, A∗ = 28MPaK−1 β01 = β02 = 5.31× 10−10

N, β12 = 5.64 × 10−10 N, L0i = L12 = 2596.5m2/Ns. These parameters correspond to a twin

interface energy EP1P2
= 0.543J/m2 and width ∆P1P2

= 0.645nm. Isotropic linear elasticity

was utilized for simplicity; bulk modulus K = 112.8GPa and shear modulus µ = 65.1GPa.

In the 2D plane stress problems, only P1 and P2 are considered. The components of the trans-

formation strains were UUU t1 = (k1, k2, k2) and UUU t2 = (k2, k1, k2) with k1 = 1.15 and k2 = 0.93

corresponding to the NiAl alloy in [15]. In addition, Kijk = 0 and two values of K12 = 1.5×1012

and K12 = 7.25× 1013 J/m3 have been used. All lengths, stresses, and times are given in units

of nm, GPa, and ps, respectively. All external stresses are normal to the deformed surface.

3.4 Evolution of martensitic nanostructure

Numerical procedure. We used Lagrange quadratic triangular elements with 5-6 elements

per interface width to achieve a mesh-independent solution, see [16]. This resulted in 165601

mesh points and 329760 elements with 1982883 degrees of freedom. Adaptive mesh generation

was utilized. The time-dependent equations were solved using the segregated time-dependent

solver and backward Euler integration technique [17] for 250 ps. Integration time steps were

chosen automatically such that a relative tolerance of 0.001 and absolute tolerance of 0.0001

are held.

Nanostructure. Because numerous alternative solutions exist, one has to carefully choose

the initial conditions. We did this using the following steps. An initial random distribution

of the order parameters η1 and η2 in the range [0.4; 0.8] were prescribed in a square sample

sized 50 × 50 with the austenite lattice rotated by α = 45o. The roller support was used

for one horizontal and one vertical surface, i.e., the normal displacements and shear stresses

are zero. Homogeneous normal displacements at two other surfaces were prescribed and kept

constant during simulations, which resulted in a biaxial normal strain of 0.01. Shear stresses

were kept zero at external surfaces. A two-dimensional problem under plane stress condition

and temperature θ = 100K was solved. The stationary solution for θ = 100K shown in Fig.

2a (which is practically the same as presented in [14]) was taken as an initial condition for

the next stage of simulation with the following modifications: temperature was reduced to
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θ = 0K; parameter β12 was reduced to β12 = 5.64×10−11N , which led to twin interface energy

EP1P2
= 0.371J/m2 and width ∆P1P2

= 0.363nm. The final solution evolution of η1 − η2 is

presented in Fig. 2b.

Results of the current simulations for both K12 practically coincide with those in [14] (Fig.

2c); they resemble the experimental nanostructure from [15] and quantitatively reproduce the

bending angle (Fig. 2d). Thus, we proved that for two variants our theory does not work

worse than the theory [14], which strictly satisfies all desired conditions for two variants.

However, in contrast to [14], the current theory can be applied for an arbitrary number of

variants. Since our theory splits the general n−phase case into a set of independent three-

phase formulations, this means that it will work equally well for arbitrary n as well. An

important point also is that such a complicated nanostructure was obtained from a completely

different initial nanostructure (Fig. 2a). For example, the splitting and bending of the tips

were also reproduced in [18] utilizing strain-based phase-field formulation. However, the initial

conditions in [18] were very close to the final solution, because probably otherwise the solution

converges to the primitive alternating twins. Note that the strain based order parameters are

not as universal as ηi (e.g., they cannot be used for melting or grain evolution) and as was

written in [2, 3], they do not allow one to satisfy the required conditions even for a single order

parameter. Interface stresses also were not introduced for strain-based order parameters.

Stresses. Components of the stress fields, including interface stresses, are shown in Fig. 3.

They are seldom presented in literature because of large artificial oscillations. Here, oscillations

are absent, and stress concentration has a regular character, which underlines the advantages

of the current simulations. Since twin boundaries represent invariant plane, it is generally

assumed in a sharp interface approach that they are stress-free and do not generate elastic

energy. Here, we unexpectedly observe large shear stress σxy, which changes the sign across

the twin interface. Shear stress appears due to the accommodation of large alternating shears

across a finite-width interface in a constraint sample.

3.5 Concluding remarks

To summarize, as a solution of a critical outstanding problem, we developed PFA for mul-

tiphase materials, which with high and controllable accuracy satisfy all the desired conditions

for arbitrary n phases. Instead of explicit constraints, we included in the simplest potential
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Figure 2: Initial conditions (a) and stationary solution for two-variant martensitic nanostruc-
ture exhibiting bending and splitting martensitic tips based on the current theory (b) and
theory in [14] (c); experimental nanostructure from [15] (d). Green color is for austenite, blue
and red are for martensitic variants P1 and P2.

 

σy  σx     σxy 

a) b) c) 

Figure 3: Stationary stress fields (in GPa) for K12 = 1.5× 1012 J/m3.
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the terms that penalize the deviation of the trajectory in the order parameter space from the

straight lines connecting each of the two phases. It describes each of the PTs with the single or-

der parameter, which allows us to use an analytical solution to calibrate each interface energy,

width, and mobility. It reproduces the desired PT criteria via instability conditions; introduces

interface stresses, and allows us to control the presence of the third phase at the interface be-

tween the two other phases. Finite-element simulations exhibit very good correspondence with

results based on the exact three-phase model in [14] (which, however, cannot be generalized

for n > 3) and with nontrivial experimental nanostructure. The developed approach unifies

and integrates approaches developed in different communities (in particular, solidification and

martensitic PTs) and is applicable to various PTs between multiple solid and liquid phases

and grain evolution, and can be extended for diffusive, electric, and magnetic PTs.
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CHAPTER 4. MULTIPHASE PHASE FIELD THEORY FOR

TEMPERATURE-INDDUCED PHASE TRANSFORMATION

Abstract

Main conditions for the the thermodynamic potential for two- and multiphase Ginzburg-

Landau theory are formulated for temperature-induced phase transformations. Theory which

satisfies all these conditions exactly for two-phase materials and approximately (but with con-

trolled accuracy) for n−phase material is developed. to the Thermodynamic Ginzburg-Landau

potential for temperature- and stress-induced phase transformations (PTs) between n phases

is developed. It describes each of the PTs with a single order parameter without an explicit

constraint equation, which allows one to use an analytical solution to calibrate each inter-

face energy, width, and mobility; reproduces the desired PT criteria via instability conditions;

introduces interface stresses, and allows for a controlling presence of the third phase at the

interface between the two other phases. A finite-element approach is developed and utilized

to solve the problem of nanostructure formation for multivariant martensitic PTs. Results are

in a quantitative agreement with the experiment. The developed approach is applicable to

various PTs between multiple solid and liquid phases and grain evolution and can be extended

for diffusive, electric, and magnetic PTs.

4.1 Introduction

While in this section we focus on the temperature-induced multiphase PTs, we will mention

some works which include stresses as well, because these theories reduce to the temperature-

induced PTs at zero stresses. The main focus is on the description of the first-order PTs

for the case when PT completes and there are no structural changes after completing PT,

like for melting, martensitic PTs, and some reconstructive PTs. The main problem is to

develop a consistent phase field approach (PFA) for PTs between an arbitrary number of

phases. There are two very different approaches with different goals developed by two different

communities. The first one is developed within community working on the description of PTs

between the austenite (A) and any of the n martensitic variants Mi and between martensitic
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variants Mj ↔Mi (which represents in most cases twinning) [1–8]. It utilizes n independent

order parameters ηi, each of which describes A↔Mi PTs between n+1 phases. In most papers,

researches work within this approach at the actual spatial scales, rather than coarse-grained

theories for microscale. Thus, typical actual interface width is on the order of nanometers

and detail of distribution of all parameters within interface are of interest. That is why all

simulations are limited to submicron samples.

The second multiphase approach is developed within community working on multiphase

solidification (e.g., in eutectic and peritectic systems) and grain growth [9–18]. It operates with

n + 1 order parameters ηi satisfying constraint
∑
ηi = 1, similar to phase concentrations. In

most of these theories interface width artificially increased by several orders of magnitude (see,

e.g., [10, 16, 17] or microscale theories [19, 20]), and detail of variation of material parameters

and fields across an interface are unrealistic but this is not important for the chosen objectives.

This is done in order to be able to treat much larger samples comparable to that relevant for

studying solidification of actual materials.

Each of these approaches satisfies some important requirements formulated to achieve some

specific goals and have their advantages and drawbacks. They will be analyzed in Section ???

and it will be shown that none of them meets all the desired requirements. Two of the

requirements, which were imposed in the second approach and ignored in the first approach,

are that each of the two-phase PTs should be described by a single order parameter and that

interface between any of two phases should not contain the third phase [16–18]. The first

of these conditions is required in order to have possibility to obtain analytical solution for

an propagating interface, which can be used to calibrate parameters of the thermodynamic

potential in terms of interface energy, width, and mobility that assumed to be known. In the

coarse-grained approach computational interface width is usually used, which may be larger

than the physical width by several orders of magnitude, but keeps the same (i.e., independent

of the interface width) energy and mobility. If the order parameter corresponding to the third

phase appears within an interface between two other phases, then (as it follows from the thin-

interface consideration [16, 17, 21, 22]) results of solution depend on the interface width, which

due to unphysical width leads to wrong results. Thus, PT between each two phases should

occur along the straight line (or any line, which is independent on temperature, e.g., circle
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[8, 23–25]) in the order parameter space. Since a single constraint
∑
ηi = 1 does not lead to

such a transformation paths, additional efforts are made to satisfy these two conditions [16–18].

These efforts, however, does not completely solve the problem either.

Different order parameters and nonlinear constraint were suggested in [8] for multivariant

martensitic PTs. A thermodynamic potential in hyperspherical order parameters is developed,

in which A is at the center of the sphere, and all martensitic variants Mi are located at the

hypersphere.

Because of impossibility to satisfy some of requirements, namely to obtain consistent PT

criteria from the thermodynamic instability conditions, the nonlinear constraint for the hy-

perspherical order parameters was substituted in [26] with the linear constraint of the type∑
ηi = 1, which, however, does not include A. Still, PT criteria could not be obtained in a

consistent way for more than three phases. Only for three phases, when constraint is explicitly

eliminated, the theory in [8, 23–26] is completely consistent with the two-phase theory and

produces proper PT criteria. Note that requirements that PT criteria should follow from the

thermodynamic instability conditions was never used for the second approach [9, 10, 16–18].

In the paper, we explicitly formulate all requirements which we want to satisfy, first for

two-phase PFA, then for arbitrary number of phases. Then we develop theory which satisfies

all these requirements. One of these requirements, that consistent PT criteria for all PTs

should follow from the thermodynamic instability conditions, could be satisfied approximately

only. Namely, instead of imposing constraints on the order parameter, we introduce simple

terms penalizing deviation of the paths in the order parameter space from the straight lines

connecting each two phases. By controlling these terms, we can either fully avoid third phase

within an interface between two other phases or allow it in order to describe actual physical

situation [23–25, 27, 28]. Comparison with previous requirements is performed. A number of

model problems for three-phase PTs including problems on a solid-solid PT via intermediate

melting in HMX energetic materials are solved and compared to solution based on different

theory [23–25], in which all requirements are satisfied exactly but which cannot be generalized

for more than three phases. Note that similar approach but with proper justification and with

emphases on stress-induced PTs and twinning was presented in [29].
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4.2 Two-phase model

4.2.A Ginzburg-Landau equation

The free energy ψ, dissipation rate D, and Ginzburg-Landau equation for a single order pa-

rameter η have the form

= ψθ(θ, η) + 0.5β|∇∇∇η|2; D = Xη̇ ≥ 0; (1)

η̇ = LX = −Lδψ
δη

= L

(
−∂ψ

θ

∂η
+ β∇∇∇2η

)
, (2)

where ψθ is the local thermal (chemical) energy, β > 0 and L > 0 are the gradient energy and

kinetic coefficients, X is the thermodynamic driving force conjugate to η̇, and δ
δ

is the vari-

ational derivative. Our goal is to formulate requirements to ψθ(θ, η) and some interpolation

functions and find the simplest function that satisfies these requirements. Since all require-

ments are for homogeneous states, gradient-related term in X can be omitted.

4.2.B Conditions for free energy

1. We would like to enforce that η = 0 corresponds to the phase P0 and η = 1 corresponds

to the phase P1. If any physically defined values of the order parameters are known, one can

always arrive at these values by shifting and normalizing them. It is convenient to express

any material property M (energy, entropy, specific heat, mass density, and when mechanics is

included, also elastic moduli and thermal expansion) in the form

M(η, θ) = M0(θ) + (M1(θ)−M0(θ))ϕm(η), (3)

where M0 and M1 are values of the property M in phases P0 and P1, respectively, and

ϕm(η) is corresponding interpolation function, which satisfies evident conditions

ϕm(0) = 0, ϕm(1) = 1. (4)

91



In application to free energy, we obtain

ψθ(θ, 0) = ψθ0(θ), ψθ(θ, 1) = ψθ1(θ), (5)

where ψθ0(θ) and ψθ1(θ) are the free energies of the bulk phases P0 and P1. However, it is not

sufficient to verbally impose that η = 0 corresponds to the phase P0 and η = 1 corresponds to

the phase P1. This should directly follow from the thermodynamic equilibrium conditions, be-

cause bulk phases should be thermodynamically equilibrium solutions of the Ginzburg-Landau

equations (2).

2. Values η = 0 and η = 1 should satisfy the thermodynamic equilibrium conditions

X = −∂ψ
θ(θ, 0)

∂η
= −∂ψ

θ(θ, 1)

∂η
= 0 (6)

for any temperature θ. Otherwise, thermodynamically equilibrium values of the order parame-

ters obtained from condition X = 0 will depend on temperature. Substituting them in Eq.(3)

will introduce artificial temperature dependence of the property M and will not allow to obtain

known properties M0 and M1 for bulk phases P0 and P1. It also follow from Eq.(6) that for

any material property which participates in ψθ one has

dϕp(0)

dη
=
dϕp(0)

dη
= 0. (7)

3. The free energy should not possess unphysical minima for any temperature. Any minimum

in the free energy that does not correspond to the desired minima for phase P0 and P1 represents

spurious (unphysical) phase. It cannot be interpreted as a ”discovery” of a new phase, because

it is just consequence of chosen polynomial approximation rather than any physical knowledge.

In particular, one can ”discover” as many new phases as he/she wishes, if some periodic function

of the order parameters is added to the potential.

The smallest degree potential potential that satisfies all these properties is the fourth degree.

Thus, starting with the full fourth degree polynomial ϕ = h+gη+aη2 +bη3 +cη4 and applying

conditions 1-3, one obtains:

ϕ (a, η) := a η2 + (4 − 2 a) η3 + (a − 3) η4 = aη2(1− η)2 + η3(4− 3η), (8)

where a is a parameter. If properties vary monotonously between phase, i.e., the function

ϕ (a, η) does not have an extremum on the interval 0 ≤ η ≤ 1 , then one has to impose for
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0 ≤ a ≤ 6 . Similar, starting with ψθ = H +Gη+Aη2 +Bη3 +Cη4, and applying conditions

1-3, we derive

ψθ(θ, η) = ψθ0 (θ ) + ∆ψθ(θ)η3(4− 3η) + Aη2(1− η)2, ∆ψθ = ψθ1 (θ )− ψθ0 (θ ) , (9)

Here A is the material parameter, which depends or may depend on temperature (similar is

true for a ), ∆ψθ is the negative thermal driving force for P0→P1 phase transformation. The

first two terms in ψθ represent smooth interpolation between ψθ0 and ψθ1, and the last one is

a double-well barrier. Eq.(9) can make wrong impression that the function η3(4 − 3η) is the

only interpolation function for ∆ψθ. However, A may include ∆ψθ in some way as well. Eq.(9)

was obtained by excluding parameters B and C while imposing our constrains. However, if we

exclude A and B or A and C, we obtain two different expressions:

ψθ(θ, η) = ψθ0 (θ ) + ∆ψθ(θ)η2(3− 2η) + Cη2(1− η)2;

ψθ(θ, η) = ψθ0 (θ ) + ∆ψθ(θ)η2(2− η2)− 0.5Bη2(1− η)2, (10)

satisfying the same conditions. To avoid this multiplicity of presentations, we define ψθ as the

sum of double-barrier function (which is the same in all presentations) and the most general

monotonous interpolation between ψθ0 and ψθ1 satisfying conditions 1-3:

ψθ(θ, η) = ψθ0 (θ ) + ∆ψθ(θ)ϕ (a, η) + Aη2(1− η)2. (11)

Now we can exclude dependence of A on ∆ψθ without loss of generality. For different a we

can obtain Eqs.(9)-(10).

4. Conditions for thermodynamic instability of equilibrium phases P0 and P1 should give

specific instability temperatures, which are temperatures for barrierless PT or spinodal tem-

peratures. Critical temperature should be below phase equilibrium temperature θe for high-

temperature phase P0 and above θe for low temperature phase P1.

As we will see, this condition imposes some restrictions for the free energy (11), but it cannot

be satisfied for some of popular fifth-degree potentials used in [16, 17, 30]. Thermodynamic

instability conditions are

P0 → P1 : ∂X(θ, 0)/∂η = −∂2ψθ(θ, 0)/∂η2 = −2(A+ a∆ψθ) ≥ 0→ −∆ψθ ≥ A(θ)/a; (12)

P1 → P0 : ∂X(θ, 1)/∂η = −∂2ψθ(θ, 1)/∂η2 = −2(A+ (a− 6)∆ψθ) ≥ 0→ −∆ψθ ≤ A(θ)/(a− 6),(13)
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where we took into account that a < 6. Thus, barrierless direct PT P0 → P1 occurs when the

driving force −∆ψθ exceeds some positive threshold and barrierless reverse PT P1 → P0 occurs

when the driving force −∆ψθ is smaller than some negative threshold; there is a hysteresis,

which is logical and agrees with condition 4. Let us assume that A and ∆ψθ are linear functions

of temperature: A(θ) = A∗θ − B∗ and ∆ψθ = −∆s(θ − θe), where A∗ and B∗ are parameters

and ∆s = s1 − s0 is the jump in entropy between phases P1 and P0. The linear temperature

dependence of ∆ψθ implies neglecting the difference between specific heats of phases. Then

instability conditions (12)-(13) reduce to

P0 → P1 : θ < θ0
c ; θ0

c := (a∆s θe −B∗)/(a∆s− A∗); (14)

P1 → P0 : θ > θ0
c ; θ1

c := (a∆s θe +B∗)/(a∆s+ A∗), (15)

where θ0
c and θ1

c are the critical temperatures for the loss of stability of phases P0 and P1. The

required conditions θ0
c < θe and θ1

c > θe lead to

??? (16)

For the case when θe = 0.5(θ0
c + θ1

c ) one has A∗ = 0 and A is temperature independent.

5. Interpolating functions ϕ (a, η) should satisfy the following antisymmetry condition:

ϕ (a, 1− η) = 1− ϕ (a, η). (17)

This condition is not required for a single order parameter but will be required for consistent

description for multiphase system and multiple order parameters. This condition is satisfied

for a = 3 only. Thus, interpolating function reduces to

φ(η) = ϕ (3, η) = η2(3− 2η) (18)

and instability conditions to

P0 → P1 : −∆ψθ ≥ A(θ)/3; P1 → P0 : −∆ψθ ≤ −A(θ)/3. (19)

The critical temperatures are

θ0
c := (3∆s θe −B∗)/(3∆s− A∗); θ1

c := (3∆s θe +B∗)/(3∆s+ A∗), (20)
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and for the case when θe = 0.5(θ0
c + θ0

c ) one has A∗ = 0 and A is temperature independent..

Condition 5 means complete equivalence of phases P1 and P0 in the following sense. If we

consider the order parameter η̄ = 1− η, which is zero for P1 and 1 for P0, then

φ(η̄) = φ(1− η) = 1− φ(η) = 1− φ(1− η̄). (21)

Plot of functions φ(η) and φ(η̄) is symmetric with respect to the vertical mirror at η = η̄ = 0.5.

Substituting η = 1− η̄ in Eq.(4), we obtain

M(η, θ) = M0 + (M1 −M0)φ(1− η̄) = M0 + (M1 −M0)(1− φ(η̄)) = M1 + (M0 −M1)φ(η̄).(22)

Thus, all material properties, and consequently entire theory are invariant with respect to

exchange (P0, η)↔(P1, η̄). Eq.(11) simplifies to

ψθ(θ, η) = ψθ0 (θ ) + ∆ψθ(θ)φ (η) + Aη2(1− η)2. (23)

Condition 5 is definitely not a fundamental property and may not be true for various phase

transformations. It is restrictive but this is a price that one must pay to be able to develop a

multiphase PFA within given framework.

4.3 Model with n order parameters

4.3.A Ginzburg-Landau equations

We consider n+1 phases P0 and Pi (i = 1, 2, ..., n) described by n order parameters ηi. Each

PT P0 ↔Pi is described by a single order parameter ηi. We designate the set of the arbitrary

order parameters as η̃ = (η1, ..., ηi, ..., ηn) with η̄i = (0, ..., ηi, ..., 0) for one nonzero parameter

only. The reference phase P0 corresponds to η̂0 := (0, ..., 0) and phase Pi is designated as

η̂i = (0, ..., ηi = 1, ..., 0). The generalization of Eqs.(1) and (2) for the free energy ψ, dissipation

rate D, and Ginzburg-Landau equation is

= ψθ(θ, ηi) +
∑

0.5βij∇∇∇ηi · ∇∇∇ηj; βij = βji; D =
∑

Xiη̇i ≥ 0; (24)

η̇i = LijXj = Lij

(
− ∂ψ
∂ηj

+
∑

βjk∇∇∇2ηk

)
; Lij = Lji, (25)
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where βij and Lij are positively defined gradient energy and kinetic coefficients, Xi is the

thermodynamic driving force conjugate to η̇i.

4.3.B Conditions for thermodynamic potential.

1n. Any material property M can be expressed in the form

M(ηi, θ) = M0(θ) +
∑

(Mi(θ)−M0(θ))φ(ηi); φ(ηi) = η2
i (3− 2ηi). (26)

We used the simplest linear combination without interaction effects and with interpolation

function which satisfies all requirements Eqs.(4), (7), and (21), i.e., φ(0) = 0, φ(1) = 1,

dφ(0)
dη

= dφ(0)
dη

= 0, and φ(1− η) = 1− φ(η). Thus, condition 5 is met.

2n. For the homogeneous states, the sets of constant order parameters for the phase P0

η̃ = η̂0 and for phase Pi η̃ = η̂i should satisfy the thermodynamic equilibrium conditions

Xi = −∂ψ
θ(θ, η̂j)

∂ηi
= 0, i = 1, 2, ..., n; j = 0, 1, 2, ..., n (27)

for any temperature θ.

3n. The free energy should not possess unphysical minima for any temperature.

This condition is not simple to prove for multiple order parameters, that is why one has to

keep potential as simple as possible.

4n. Theory should be invariant with respect to the exchange of phases Pi ↔Pj for any i

and j, including i = 0 and j = 0. Also, for some material parameters and temperature, which

provide PT Pi ↔Pj without involvement any other phase Pk, description of this PT should be

the same if we choose one of the phase as P0.

It is clear that this condition does not have a counterpart for two-phase system. When we

consider Pi ↔Pj PT alone, we can use theory for two phases described in the previous Section,

in which one of the phases will be chosen as P0. That means that we know all equations for

this PT. Condition 4n requires that the same equations should be obtained for this PT within

general n-phase theory for phases Pi and Pj for i 6= 0 and j 6= 0.

As we will see, each P0 ↔Pj PT is described with the help of a single order parameter

and does not differ essentially from the two-phase theory (provided that the third phase is not

involved). However, Pi ↔Pj PT involves simultaneous change of two order parameters along

some trajectory in ηi − ηj plane, which depends on temperature. In order to make description of

Pi ↔Pj PT equivalent to description of P0 ↔Pj PT, this trajectory should be controlled.
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5n. Conditions for thermodynamic instability of homogeneous equilibrium phases that lead

to criteria of barrierless PTs between phases Pi and Pj in the general theory for n-phase system

should coincide with those for two-phase system.

Thermodynamic equilibrium state η̂j loses its stability when condition

∂Xi(θ, η̂j)

∂ηk
η̇i η̇k = −∂

2ψθ(θ, η̂j)

∂ηi∂ηk
η̇i η̇k ≥ 0 (28)

is fulfilled for the first time for some η̇i. Thus, the instability occurs when n × n matrix

∂Xi/∂ηk first ceases to be negative definite or equivalently, n× n matrix
∂2ψθ(θ,η̂j)

∂ ηi ∂ ηk
first ceases

to be positive definite. According to Sylvester’s criterion, the one of the following conditions

should be fulfilled for instability of the phase η̂j:

Bik :=
∂2ψθ (σσσ , η̂j)

∂ ηi ∂ ηk
; B11 ≤ 0; B11B22 −B2

12 ≤ 0;

B11(B22B33 −B2
23)−B12(B21B33 −B31B23) +B33(B12B32 −B22B31) ≤ 0. (29)

In general, it is quite difficult to design a potential for which such sophisticated conditions are

reduced to simple conditions for each of P0 ↔ Pi or Pj ↔ Pi transformations, when they are

considered separately. Also, when we considered just two phases, when one of them loses its

stability, transformation occurs to another one. In the general case, if, e.g., the third condition

Eq.(29) is met, it is not clear to which phase it will transform. Thus, it would be difficult

even to compare general results with results for a two-phase case. It is clear that additional

simplifications are necessary.

It is natural to assume that if the instability condition Eq. (28) is met for one specific i

only, the transformation from the phase η̂j will occur toward this η̂i phase. Our main point is

that in thermodynamic approaches for a sharp interface, transformation conditions from the

phase Pj to Pi are independent of any other phase Pk (including η̂0). It is reasonable to assume

the same for our PFA. That is why we accept the following additional condition.
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equilibrium phase η̂j:

∂Xi (θ, η̂j)

∂ηk
=
∂2 ψθ (θ, η̂j)

∂ηi∂ηk
= 0 ∀k 6= i, (30)

In this case, the instability conditions Eqs.(28) or (29) reduce to

−∂Xi (θ, η̂j)

∂ηi
=

∂2 ψθ (θ, η̂j)

∂ η2
i

≤ 0 . (31)

Condition 6n significantly simplifies instability criteria and allows one to analyze them and

apply to the choice of the specific expression for ψθ (θ, η̃j). Also, it leads to a much simpler

expression for this function, for which one can determine all material parameters and have much

more confidence that some artificial minima are absent. Thus, the transformation conditions

between phases read as

P0 → Pi : −∂Xi (θ, η̂0)

∂ηi
=

∂2 ψθ (θ, η̂0)

∂ η2
i

≤ 0 ;

Pi → P0 : −∂Xi (θ, η̂i)

∂ηi
=

∂2 ψθ (θ, η̂i)

∂ η2
i

≤ 0 . (32)

Pj → Pi : −∂Xi (θ, η̂j)

∂ηi
=

∂2 ψθ (θ, η̂j)

∂ η2
i

≤ 0 ;

Pi → Pj : −∂Xj (θ, η̂i)

∂ηj
=

∂2 ψθ (θ, η̂i)

∂ η2
j

≤ 0 . (33)

4.3.C Multiphase model.

The simplest expression for the local free energy ψθ that includes all what we derived for

a single order-parameter theory and can satisfy all the desired conditions is accepted in the

following form:

ψθ = ψ̆θ + ψ̃θ + ψp; (34)

ψ̆θ =
∑

Ai(θ)η
2
i (1− ηi)2 +

∑
Āijη

2
i η

2
j ; Āii = 0; (35)

ψ̃θ = ψθ0(θ) +
∑

∆ψθi (θ)φ(ηi); ∆ψθi = ψθi − ψθ0; (36)

ψp =
∑

Kij(ηi + ηj − 1)2ηliη
l
j +
∑

Kijkη
2
i η

2
j η

2
k; l ≥ 2; Kii = Kiik = Kikk = Kiji = 0. (37)
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Here Ai is proportional to the magnitude of the double-well barriers between phases P0 and Pi,

Āij contributes to the magnitude of the double-well barriers between phases Pi and Pj, and the

term ψp containing coefficients Kij ≥ 0 and Kijk ≥ 0 penalizes deviation of the trajectory of the

order parameters in n-dimensional space ηi from some lines and planes. Without ψp, the local

part of free energy is much simpler than in [1, 2, 8] and does not contain complex interaction

between phases. The term with η2
i η

2
j η

2
k is nonnegative for any three nonzero order parameters,

i.e., it penalizes the presence of the three phases at the same material point. This term gives

additional means to control the presence of the third phase within the interface between the

two other phases, especially, when it is desired to completely exclude it. It also contributes to

the energy of triple junctions. For homogeneous states, this term always excludes the presence

of the three phases at the same point, because it increases energy compared with a two-phase

state. When one wants to study the third phase within the interface between the two other

phases [23–25], one can set Kijk = 0, which will simplify analysis. For homogeneous states, the

positive terms in ψ̆θ and ψ̃θ exclude appearance of two and three phases at the same point. The

the first terms in ψp penalizes deviations from hyperplanes ηi = 0 orthogonal to the coordinate

axes ηi in the order parameter space and hyperplanes ηi + ηj = 1 passing trough two phases

Pi and Pj. The exponent l allows one to control relative contribution of these penalties. Since

more than two phases, say Pi and Pj, are forbidden by other terms, the term (ηi + ηj − 1)2

penalizes deviation from the straight lines ηi + ηj = 1, ηk = 0 ∀k 6= i, j, connecting phases Pi

and Pj within plane ηi − ηj. The term with ηi penalizes deviation from the coordinate axes

in ηj space, i.e., from straight lines connecting phases P0 and Pi. Thus, evolution of ηi is (at

least approximately) constrained to occur along the desired transformation paths. Note that

we do not need to use additional constraints to impose evolution of ηi along the coordinate

axes, because for the chosen potential even without them PTs between phases P0 and Pi occur

along straight line connecting these phases. However, without the multiplier ηliη
l
j, the first

term in ψp will artificially penalize free energy along the coordinate axes in ηi space and spoil

the thermodynamic potential.

For P0 ↔Pi PTs described by a single order parameter ηi, ψp and the second term in ψ̆θ

disappear and Eqs.(24)-(25) and (34)-(36) reduce to equations for two-phase system (1)-(2)

and (23).
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4.3.D Thermodynamic instability conditions.

Direct application of the instability conditions (32)-(33) to free energy (34)-(37) for thermo-

dynamically equilibrium homogeneous phases produces the following PT criteria:

P0 → Pi :
∂2 ψθ (θ, η̂0)

∂ η2
i

≤ 0→ −∆ψθi ≥ Ai(θ)/3;

Pi → P0 :
∂2 ψθ (θ, η̂i)

∂ η2
i

≤ 0→ −∆ψθi ≤ −Ai(θ)/3; (38)

Pj → Pi :
∂2 ψθ (θ, η̂j)

∂ η2
i

≤ 0→ −∆ψθi ≥ (Ai(θ) + Ā)/3 ⇒ wrong;

Pi → Pj :
∂2 ψθ (θ, η̂i)

∂ η2
j

≤ 0→ −∆ψθj ≥ (Aj(θ) + Ā)/3 ⇒ wrong. (39)

Criteria for P0 ↔Pi PTs coincide with PT criteria (19) for the two-phase system, i.e. they

satisfy condition 4n. In contrast, condition for Pi ↔Pj PTs are contradictory and do not meet

condition 4n. Indeed, they do not depend on difference in energy between phases Pi and Pj,

depend on the energy of phase P0 (which does not participate in this PT) and contain the

barrier Ai for one phase only. In addition, since the first and second derivatives of ψp vanish

for all equilibrium phases Pi, the term ψp does not alter phase equilibrium conditions and PT

criteria for homogeneous phases. Still, we will demonstrate below that this term is a key player

in the development of consistent PFA for multiphase system, namely, in making the equations

for Pi ↔Pj PTs fully equivalent to equations for P0 ↔Pi PTs.

Constrained model for Pi ↔Pj transformations.

We increase parameters Kij (and, if required, Kijk) to very high values so that they impose

constraints ηi + ηj = 1 and ηk = 0 ∀k 6= i, j with any required accuracy. Implementing

these constraints in Eqs.(24)-(25) and (34)-(36), we express them in terms of the single order

parameter ηi:

ψ̆θ = Aij(θ)η
2
i (1− ηi)2; Aij = Ai + Aj + Āij = Aji; (40)

ψ̃θ = ∆ψθj + ∆ψθij(θ)φ(ηi); ∆ψθij = ∆ψθi −∆ψθj ; (41)

∇ = 0.5bij|∇∇∇ηi|2; bij = βii + βjj − 2βij = bji > 0; (42)

η̇i = lij

(
−∂ψ
∂ηi

+ bij∇∇∇2ηi

)
; lij = (LiiLjj − L2

ij)/(Ljj + Lij) = lij > 0. (43)
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Thermodynamic instability conditions look like

Pj → Pi : −∆ψθi ≥ Aij(θ)/3; Pi → Pj : −∆ψθj ≥ Aji(θ)/3 → −∆ψθi ≤ −Aij(θ)/3.(44)

It is clear that Eqs.(40)-(44) for Pj →Pi PTs coincide to within constants and designations

with equations for two-phase system (1)-(2) and (23) and consequently for P0 → Pi PTs, as it

was required in condition 4n. Note that we explicitly took into account condition (21), without

which Eqs.(40)-(43) will not look like for two-phase model.

Let ∆ψθi = −∆si(θ−θie), where ∆si = si−s0 is the jump in entropy between phases Pi and

P0 and θie is the thermodynamic equilibrium melting temperature of phases Pi and P0. The

linear temperature dependence of ∆ψθi implies neglecting the difference between specific heats

of phases. Then by definition ∆ψθji = ∆ψθj−∆ψθi = −∆sj(θ−θje)+∆si(θ−θie) = −∆sji(θ−θjie ),

where ∆sji = ∆sj −∆si and θjie = (∆sjθ
j
e −∆siθ

i
e)/∆sji.

We express coefficients Ai(θ) = Ai∗θ − B∗, where Ai∗ is some characteristic value which

will expressed in terms of the critical temperature at which phase P0 loses its stability toward

Pi and B∗ is constant. A similar coefficient between phases Pj and Pi is accepted in a more

general form Aji(θ) = Ā∗ji(θ) +Aji∗ θ −Bji
∗ . For phases Pi with different thermal properties we

can put Ā∗ji(θ) = 0 without loss of generality, like for any P0-Pi and Pj-Pi PT. Then, instability

conditions Eqs.(38) and (44) transform to

P0 → Pi : θ < θi0c ; θi0c := (3∆si θ
i
e −B∗)/(3∆si − Ai∗); (45)

Pi → P0 : θ > θi0c ; θ0i
c := (3∆si θ

i
e +B∗)/(3∆si + Ai∗), (46)

Pi → Pj : θ < θjic ; θjic := (3∆sji θ
ji
e −Bji

∗ )/(3∆sji − Aji∗ ), (47)

Pj → Pi : θ > θjic ; θijc := (3∆sji θ
ji
e +Bji

∗ )/(3∆sji + Aji∗ ), (48)

where θi0c and θ0i
c are the critical temperatures for barrierless P0 → Pi and Pi → P0 PTs.

Similarly, θjic and θijc are the critical temperatures for barrierless Pi → Pj and Pj → Pi PTs.

For the case when θie = 0.5(θi0c +θ0i
c ) and θjie = 0.5(θjic +θijc ) one has Ai∗ = 0, Aji∗ = 0 and Ai, Aji

are temperature independent. If we assume that the equilibrium temperature is the average
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of critical temperatures, then we obtain Ai = 3∆si(θ
i0
c − θie) and Aji = 3∆sji(θ

ji
c − θjie ). In the

next subsection, it will be shown that this choice of parameters makes the interface energy and

width to be temperature independent.

4.3.E Analytical Solution

In contrast to the other multiphase models [1-5], in the developed model each of the PTs can

be described by a single order parameter without constraints. It allows us to utilize analytical

solutions [9] for the interface between two phases propagating in the x− direction, including

its profile, energy γ, width δ, and velocity c. Due to equivalence of all equations for P0↔ P i

and P j → P i PTs, the analytical solution for a propagating with velocity c interface [9] for

the PiPj interface solutions are:

ηji = 0.5 tanh [3(x− cjit)/δji] + 0.5; δji =
√

18βji/Aji(θ); cji = Ljiδji∆ψ
θ
ji(θ); γji = βji/δji,(49)

and for P0Pi they are presented below

ηi0 = 0.5 tanh [3(x− ci0t)/δi0] + 0.5; δi0 =
√

18βi0/Ai0(θ); ci0 = Li0δi0∆ψθi0(θ); γi0 = βi0/δi0,(50)

Energy of the nonequilibrium interfaces is defined as an excess energy, with respect to bulk

phases, assuming that the Gibbs dividing surface is located where the corresponding order

parameter is equal to 0.5 (see justification in [57]). Thus,

E21 =

xϑ=0.5∫
−∞

(ψ − ψ1)dx+

∞∫
xϑ=0.5

(ψ − ψ2)dx; Es0 =

xΥ=0.5∫
−∞

(ψ − ψ0)dx+

∞∫
xΥ=0.5

(ψ − ψs)dx.(51)

Here, xϑ=0.5 and xΥ=0.5 define the locations where ϑ = 0.5 and Υ = 0.5, respectively. For

the particular case Aijc = −3∆sij, the interface energies and width became temperature-

independent:

γji =
√
βji
[
∆sji(θ

ji
c − θjie )

]
/6; δji =

√
6βji/

{[
∆sji(θ

ji
c − θjie )

]}
; (52)

γi0 =
√
βi0 [∆si0(θi0c − θi0e )] /6; δi0 =

√
6βi0/ {[∆si0(θi0c − θi0e )]}. (53)

Equations (49)-(50) and (52)-(53) allow us to calibrate material parameters βji, βi0, Aji, Ai0,

θjic , θi0c , Lji, and Li0 when the temperature dependence of the interface energy, width, and

velocity are known, along with the thermodynamic parameters ∆sij and θije . The ratios of

PiPj to PiP0 interface energies and widths, kjiE and kjiδ , play the key role in determining the
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material response. Using the equations (52) and (53), kE and kδ are:

kjiE =
γji
γio

=

√
βji
βi0

∆sji(θ
ji
c − θjie )

∆si0(θi0c − θi0e )
; (54)

kjiδ =
δji
δi0

=

√
βji
βi0

∆ss0(θi0c − θi0e )

∆sji(θ
ji
c − θjie )

. (55)

which are temperature independent.

4.4 Effect of finite Kij.

It is necessary to stress that the PT criteria (44) are valid in the limit Kij → ∞. For

finite Kij, wrong PT criteria (39) hold and one need to analyze how this affects the position of

thermodynamically equilibrium phases Pj and Pi and transformation path between them. Let

us consider typical examples.

1. In the first one, we analyze the case when none of PT criteria (38), 39) and (44) is met.

show me such example.

2. The second example is for more critical but rare situation when instability conditions

for P0 →Pi (38) and correct criteria for Pj →Pi PT (44) are not fulfilled, but the wrong

(unconstrained) Pj →Pi PT criterion (39) is meet with significant deviation from the stability

region. Thus, accepting positive A1 + 3∆Gθ
1 = 1000, A1 − 3∆Gθ

1 = −400; A2 + 3∆Gθ
2 = 230,

A2−3∆Gθ
2 = 2570 (all energies are in J/m3), we are making barrierless PTs P0 →Pi impossible.

Also accepting positive A21(θ) − 3Gθ
21 = 150, we do not meet the correct instability criterion

for Pj →Pi PT. Finally, setting negative Ā + A1(θ) + 3∆Gθ
1 = −250 we fulfill wrong Pj →Pi

PT condition. In this case while phase Pj loses its stability, but it does not transform to the

phase Pi. Instead, the local free energy minimum slightly shifts from η1 = 1; η2 = 0 to a close

point η1 = 0.989; η2 = 0.019 (Fig. 5). The energy barrier between phases Pj and Pi does not

allow further transformation toward Pi. When the correct PT criterion (44) Pj → P i PT is

satisfied, this energy barrier disappears and Pj →Pi PT will occur. Consequently, inaccuracy

for finite Kij insignificant even for such an extreme case.

3. Let us consider the opposite case, when correct PT criterion (44) for Pj → Pi PT is

fulfilled, but wrong criterion (39) for Pj → Pi PT is not met. If criteria (38) for P0 ↔ Pi PTs

are not fulfilled then these equations result in Ā < 0 (show). It is easy to show show detail

that in this case the wrong Pj → Pi PT condition (39) should be also fulfilled. Thus, there is
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a) b) 

Figure 1: Free energy landscape for example 2. Gi are the points of the local minimaxes.

no contradiction between correct and wrong Pj → Pi PT conditions: if the correct Pj → Pi

PT criterion (44) is fulfilled, this PT will occur.

4.5 Comparison with existing potentials

4.5.A Single order parameter

For a single order parameter, the formal theory for the Landau potential of practically arbitrary

degree based on group theoretical (symmetry) consideration is presented in [31, 32]. Analysis,

including phase diagrams, was performed in terms of coefficients of Landau potentials. Such

potentials exhibit multiple minima corresponding to multiple phases. When PTs between

two phases are considered, especially polymorphic PTs in solids, thermodynamic potentials

ψθ = āη2 + b̄η3 + c̄η4 or ψθ = āη2 + b̄η4 + c̄η6 were used without any general requirements, except

that they should have two minima separated by an energy barrier [3–7, 31–37]. In most works

ā = ā0(θ− θc) was assumed, which defines θc as the critical temperature when thermodynamic

instability occurs, i.e., energy minimum at η = 0 disappears. Thermodynamically equilibrium

value of the order parameter at the second minimum was dependent on the temperature,

similar to the continuous second-order PTs. This means that PT does not have the end point

and structural changes occur continuously. Order parameter is assumed to be small, like in

Landau theory of the second-order PTs [38], which justifies Taylor expansion for the energy

with limited number of terms. There are no specifically introduced interpolation functions
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and variation of material properties, like in Eq.(3). Variation of all material properties follows

directly from the chosen potential and in many cases they correspond to experiments [33] for

the second order and close to the second order PTs.

For the description of the first-order PTs, which have end point and further structural

changes do not occur after completing of PT (like melting and martensitic phase transforma-

tions in steels and shape memory alloys), the order parameter should not change after PT.

Then the order parameters for bulk phases can be taken as 0 and 1. It cannot be considered

as a small number and higher degrees of η make similar contributions as the lower degrees.

This condition as well as thermodynamic consistency, which are very similar to conditions

1 and 2, were formulated and satisfied in [30, 39, 40] for melting. Since interaction between

communities working on melting and martensitic PTs, twinning, and dislocations was very

limited, such conditions were not used and satisfied in these fields for a long time, even now

(see, e.g., [3–7] for martensitic PT, including twinning, and [41–44] for dislocations). Also, for

twinning and dislocations these conditions are related to transformation strain and Burgers

vector rather than to change in free energy, which is zero. Conditions 1-4 were formulated

and satisfied in [1, 2, 8, 45, 46] for martensitic PTs and twinning, and in [8, 47] for disloca-

tions, where they were motivated by correctness of the stress-strain curve, which also lead

to conditions for the free energy and interpolating functions for all parameters. For melting

thermodynamic stability condition was imposed (i.e., the pre-factor of a double-well barrier

must be positive) [16, 17, 30, 39, 40] instead of condition 4. We believe that the main reason for

this is the following. To increase interface width by a factor of k without changing interface

energy and velocity (see Eq.(64)), one has to increase β by a factor of k and reduce A and

L by a factor of k. Thus, the magnitude of the double well barrier significantly reduces (k

may be as large as 1000) and correct description of thermodynamic instability and barrierless

nucleation is impossible. For such a small double well barrier, thermodynamic instability may

occur quite close to the thermodynamic equilibrium temperature, which will lead to artificial

barrierless nucleation of a (meta)stable phase within unstable one. To avoid this, one has to

insure satisfaction of stability condition for any temperature, i.e., instability criterion should

not be affected by the thermodynamic driving force. This was done by choosing interpolating
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function

ϕ̄(η) = η3(10− 15η + 6η2), (56)

which satisfies all desired conditions (ϕ̄(0) = ϕ̄′(0) = ϕ̄′(1) = 0, and ϕ̄(1) = 1, and ϕ̄(1− η) =

1− ϕ̄(η)). It also satisfies conditions ϕ̄′′(0) = ϕ̄′′(1) = 0, which eliminates participation of any

material parameter or function multiplied by ϕ̄(η) from the instability condition. Thus, for

the energy

ψ̄θ(θ, η) = ψθ0 (θ ) + ∆ψθ(θ)ϕ̄(η) + Aη2(1− η)2 (57)

accepted in [16, 17, 30] instability conditions (12) and (13) reduce to

P0 → P1 : ∂2ψ̄θ(θ, 0)/∂η2 = 2A ≤ 0;

P1 → P0 : ∂2ψ̄θ(θ, 1)/∂η2 = 2A ≤ 0. (58)

Such instability conditions are contradictory because both phases simultaneously loose their

stability. That is why interpolation function (57) is not suitable for our purposes. However, if

stability conditions were imposed instead of instability [16, 17, 30], function (57) is very conve-

nient because the system is stable for A > 0 independent of the driving force (temperature).

In contrast, the thermodynamic instability was included in consideration in [1, 2, 8], which

resulted in PT criteria. This allows one to consider problems on the actual physical space

scale where thermodynamic instability is important, e.g., for very fast heating much above

the melting and even solid instability temperatures [48, 49], as well as for barrierless surface-

induced melting, especially for nanoparticles [50, 51], and for melting within interface between

two solids [23–25, 27, 28], which all may occur significantly below melting and melt instability

temperatures. The interpolation function (18) that satisfies all conditions have been used for

various applications for a long time [1, 2, 30, 39, 40, 45, 46].

Within even six-degree potential (2-4-6 potential), we obtained [8] that the interpolating

function

ϕ6(η) = 0.5aη2 + (3− a)η4 + 0.5(−4 + a)η6 (59)

satisfies conditions 1-4. However, it does not satisfy condition ϕ6(1 − η) = 1 − ϕ6(η). That

means that it cannot be used not only in our multiphase system but also for a two-phase
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system when both phases are equivalent. The same is true for the function (8) for a 6= 3.

In particular, it cannot be used for twinning, while cases a 6= 3 were studied exploratory for

twinning in [52].

Note that for larger-scale theories one can waive the requirement of differentiability of

thermodynamic (and consequently, interpolation) functions. Thus, it was accepted in [19, 20]

ψθ(θ, η) = ψθ0 (θ ) + ∆ψθ(θ)η + Aη(1− η), (60)

where 0 ≤ η ≤ 1 was interpreted as the concentration of phase 1. Similar barrier term was

used in the double obstacle potential [10] but with different smooth interpolating function for

∆ψθ.

4.5.B Multiple order parameter

Theories without a constraint. They are mostly devoted to the description of multivariant

martensitic PTs [3–7]. They are based of the fourth or six degrees polynomials in terms

of order parameters ηi that describe PTs austenite A - martensitic variants Mi and satisfy

the required symmetry conditions. Since all martensitic variants are symmetry-related and

have the same thermal (chemical) free energy, these theories represent particular case of the

general theory for multiphase system. None of the above requirements to the free energy is

imposed and met in [3–7], i.e., thermodynamically equilibrium order parameter for each Mi

ηi 6= 1 and depends on temperature (and stresses), thermodynamic instability conditions are

not considered, and PTs Mj ↔Mi occur along some temperature dependent path within ηi−ηj
plane. No specific interpolating function have been introduced, i.e., they directly follow from

the chose polynomial. This is similar to the description of the second-order and close to the

second order continuous PTs in [33] but was applied to the strongly first-order PTs. Also,

matrixes Lij and βij are reduced to the unit matrix multiplied by a scalar. Since theories [3–7]

possess minima corresponding to A and all martensitic variants Mi, they reproduce evolution

of complex multivariant microstructure. However, it could not quantitatively correspond to a

chosen specific material because material properties were not properly interpolated between

their values in the bulk phases and thermodynamically equilibrium order parameters were

not constant but depended on temperature (and stress tensor). Conditions close to 1-4 and

1n-6n have been formulated and satisfied in [1, 2, 8], but without condition 5, i.e., still PTs
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Mj ↔Mi were not properly described and parameters of Mj−Mi interfaces could not be properly

calibrated and controlled. Matrix form of βij, i.e., additional material parameters, have been

introduced in [53, 54], which in particular allowed us to introduce and study the effect of the

energy of Mj ↔Mi interface independent of the energy of A-Mi interfaces.

Theories with hyperspherical order parameters. In order to describe Mj ↔Mi PTs in the

same way as A↔Mi Pts, a thermodynamic potential in hyperspherical order parameters is

developed [8], in which A is at the center of the sphere, and all martensitic variants Mi are

located at the hypersphere. Belonging to the hypersphere represents a nonlinear constraint,

which was substituted in [26] with the linear constraint of the type
∑
ηi = 1, which, however,

does not include A. Still, PT criteria could not be obtained in a consistent way for more than

three phases. For three phases the constraint is linear for both models [8] and [26] and in polar

order parameters this theory is completely consistent with the two-phase theory and produces

proper PT criteria. It was generalized for three arbitrary phases in [23–25]. Thus, theory

in [23–25] is currently the only theory that satisfies exactly all requirements for three-phase

material. Due to polar order parameters, it does not need to satisfy condition 5, that is why

it can utilize interpolation function Eq.(8) with arbitrary 0 ≤ a ≤ 6 for each pair of phases.

However, we fail to generalize it for more than three phases. In this case, constraint should

be used which does not allow to derive consistent PT criteria from thermodynamic instability

conditions.

Theories with a constraint. Traditional multiphase theories [9–18] include constraint
∑
ηi =

0 applied to all phases. It can be explicitly excluded for two phases only, in contrast the case

with three phases for polar order parameters [8, 23–25]. This means that the problem to derive

consistent PT criteria from thermodynamic instability conditions exists even for three phases.

The first theory [9] does not make special efforts that the PT between any two phases occurs

along the fixed line in the order parameter space. That is why the third phase may appear at

the interface between two phases. This does not allow one to use analytical solution to calibrate

material parameters in terms of interface energy, mobility, as well as width (if kept physical

rather than computational). Also, potential in [9] does not include products of more than two

order parameters, which however, is easy to correct. If a computational interface width is much

larger than the actual one, presence of the third phase contributes to the width-dependence

108



of the solution, which is desirably to avoid. That is why in [16, 17] equations are derived in

a way enforcing that PTs always occur along the straight line connecting two phases. With

the choice of interpolating function generalizing (56) for multiple phases, all bulk phases are

stable or metastable independent of the driving force or temperature. It is not clear how to

generalize theory for more than three phases. Also, kinetic coefficients must be scalar and equal

for all PTs. While in [9] constraint was imposed by excluding one of the order parameters,

in [11, 16, 17] method of Lagrangian multipliers was used. When a Lagrangian multiplier was

used, the Ginzburg-Landau equations for n phases take the form

η̇i = L(Xi − Λ) = L

(
− δψ
δηi
− Λ

)
. (61)

Adding all equations and using constrain, we obtain Λ =
∑
Xj/n and substituting it in Eq.(61)

it transforms to

η̇i = L(Xi −
∑

Xj/n) = LijXj; Lij = Lji = δij − Uij/n, (62)

where δij is the Kronecker delta and all components of the matrix Uij are equal to one. With

such a matrix Lij, constraint
∑
η̇i = 0 is fulfilled automatically. It was, however, stated in

[18] that the use of Lagrangian multiplier method gives results different from direct exclusion

of one of the order parameter, even for two phases. Let us analyze this statement for two

order parameters obeying constraint η1 + η2 = 1. The dissipation rate is D1 = X1η̇1 +X2η̇2 =

(X1 −X2)η̇1 when η2 is directly excluded and D2 = X1η̇1 +X2η̇2 −Λ(η̇1 + η̇2) = (X1 −Λ)η̇1 +

(X2 − Λ)η̇2 when Lagrangian multiplier is used. Then, using the same kinetic coefficient, the

linear relationship between thermodynamic force and rates for both cases are:

η̇1 = L(X1 −X2); η̇1 = L(X1 − Λ) = L(X1 −X2)/2, (63)

which lead to conclusion that ”the Lagrange multiplier approach does not reduce to the single

phase formulation,” see [18]. The main reason for this discrepancy is that the thermodynamic

forces and rates in different representations should not be connected by the same kinetic

coefficient. If, e.g., in Eq.(63)2 we would chose the kinetic coefficient L2 different from L

in Eq.(63)1, we would not have problem, and from equivalence of both kinetic equations we

can conclude that L = L2/2. This is getting more clear if we substitute expression for Λ =

(X1+X2)/2 in D2: D2 = 0.5(X1−X2)η̇1−0.5(X1−X2)η̇2. It is evident that using constraint we
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obtain D1 = D2. However, thermodynamic force 0.5(X1−X2) cannot be connected to η̇1 by the

same kinetic coefficient as (X1−X2). For multiple order parameters, even if force obtained by

direct exclusion of one of the order parameters can be connected to the conjugate rate using a

single scalar, one may need matrix connection between all forces and rates for the Lagrangian

multiplier method to obtain equivalent result. Primary expressions for the thermodynamic

forces and rate should be taken from the expression for the dissipation rate expressed in terms

of independent rates, i.e., after direct exclusion of one of the order parameters.

It is claimed in [18] that the relationships η̇i = LijXj that ensure that PTs between each

pair of phases without the presence of the third phase for arbitrary n can be achieved by a

special choice of the matrix Lij, which is quite sophisticated nonlinear function of the order

parameters. This matrix is ill-defined in the vicinity of each single phase and is substituted

with other matrixes. Here, we achieved similar goal by using a simple penalizing term, which

allows us to control (if it is observed in experiment [27, 28]) and, if necessary, avoid appearance

of the third phase.

4.6 Parameter Identification

Let us consider such material parameters and temperature ranges, for which interfaces

between any two phases do not contain the third one. For different pairs of phases, temperature

intervals may be different. Then for any of these pairs, one can apply system of equation for

two phases (1)-(2) and (23). The analytical solution for a propagating with velocity c interface

is [10]:

η = 0.5(tanh [3(x− ct)/δ] + 1); δ =
√

18β/A; c = Lδ∆Gθ(θ); γ =
√
βA/18 = β/δ, (64)

where δ and γ are the width and energy of the nonequilibrium interface. Note that in [10]

the equilibrium interface energy was given; here we derived an expression for the energy of

the propagating interface, which requires definition of the Gibbsian dividing surface [55]. This

can be done using methods developed in [56, 57]. However, due to complete equivalence of

both phases in our theory, dividing surface is located at the point corresponding to η = 0.5.

Then we found that the energy (and width) of the nonequilibrium interface are independent of
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∆Gθ(θ) and coincide with those for the equilibrium interface. This is in contrast to solutions 

for other interpolating functions [56–59]. All material parameters for each bulk phase can be

determined based on thermodynamic, experimental, and atomistic data as it was done, e.g., in

[1, 2, 8] for NiAl. Eqs.(64) allow calibration for each pair of phases the three interface-related

parameters Ai(θ), β, and L when width, energy, and mobility of interfaces between each pair

of phases are known.

The obtained system of equations has been solved with the help of the finite element code

COMSOL for various problems. Here we solved exactly the same problem on the evolution

of two-variant nanostructure in a NiAl alloy during martensitic PT including tip bending and

splitting in martensitic variants as in [26]. Note that the theory in [26] for two variants satisfies

all required conditions exactly but cannot be generalized for more than two variants. Some

material parameters (like EEE,εεεti, ∆Gθ(θ), θe, ∆s) here have been chosen the same as in [26]; 

other (Aij (θ), βij (θ), Lij , θc) are chosen to get the temperature dependence of the energy,

width, and mobility of all interfaces, and temperature for the loss of stability of P like in [26].

Note that all thermodynamic properties of martensitic variants M1 and M2 are the same; they

differ by the transformation strain only.

Since temperature dependence of the interface width and energy are unknown, we assume

θe = 0.5(θc
0 + θc0) and consequently B∗ = 0, which makes them temperature independent.

We have the following definition of parameters: ∆Gθ
1 = ∆Gθ

2 = −∆s(θ − θe), where ∆s = 

si−s0 is the jump in entropy between phases Mi and A, and θe is the thermodynamic equilibrium

temperature for phases Ti and A. We express the coefficients A1(θ) = A2(θ) = A∗(θ−θ∗). Here

parameter A∗ and the characteristic temperature θ∗ are related to the critical temperatures for

barrierless A → Pi (θc0i) and Pi → A (θic0) PTs by the equations θc01 := (A∗θ∗ − 3∆sθe)/(A∗ − 

3∆s) and θc10 := (A∗θ∗ + 3∆sθe)/(A∗ + 3∆s), which follow from the thermodynamic instability 

conditions.

In the current simulation we used the following values: ∆s = −1.467MP aK−1, θe = 215 K, 

θc
01 = −183 K, θc10 = −331.65 K, θ∗ = −245.75 K, A∗ = 28MP aK−1 β01 = β02 = 5.31 × 10−10 

N, β12 = 5.64 × 10−10 N, L0i = L12 = 2596.5m2/Ns. These parameters correspond to a twin 

interface energy EP1P2 = 0.543J/m2 and width ∆P1P2 = 0.645nm. In addition, Kijk = 0 and two 

values of K12 = 1.5 × 1012 and K12 = 7.25 × 1013 J/m3 have been used. 
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4.7 Results and Discussion

The SM interface is considered to be coherent with vanishing shear modulus for melt,

µ0 = 0. For simplicity, all transformation strains are pure volumetric. Properties of melt,

δ phase (S1) and β phase (S2) of energetic material HMX (C4H8N8O8) will be used (when

available), for which IM was considered. It is assumed that all a = 3; all phases have K =

15GP a, solid phases posses µ = 7GP a and βs0(ϑ) = const; LΥ = 2 Lϑ = 2596.5m2/(Ns), 

∆s10 = −793.79kJ/m3K, ∆s20 = −935.45kJ/m3K, melting temperatures θ10
e = 550K and

θ20
e = 532.14K; θ21

e = 432K, ε10
0t = −0.067, ε20

0t = −0.147 (i.e., ε21
0t = −0.08); Ã21

c = 0,

Aijc = −3∆sij (such a choice corresponds to the temperature-independent interface energies

and widths E21 = 1J/m2 and δ21 = 1nm. A 24 × 8nm2 rectangular sample with a roller

boundary condition on the left side and fixed lower left point is modeled. Two initial conditions

are considered: (a) equilibrium SS interface and (b) equilibrium S1M and MS2 interfaces with

quite a broad melt region between two solids.

Stress-free IM — First, we will consider the case without mechanics. In Fig. [2], minimum

value of (η1 + eta2) is plotted for θ = θ21
e = 432K (i.e., 100 K below θme ), and different kE, kδ,

K12 and initial conditions. Note that the effect of temperature is similar to the effect of kδ.

For small kδ, there is only a single stationary solution independent of the initial conditions,

corresponding to barrierless premelting and melting within SS interface. Degree of melting

(disordering) continuously increases with increasing kE and temperature. There is not any

hysteresis while increasing/decreasing temperature. While for kE ≥ 2.7 increase in kδ promotes

IM (reduces Υmin), for kE ≤ 2.5, dependence Υmin(kδ) is surprisingly nonmonotonous, with

disappearance of IM above critical kδ. In contrast, for larger kδ, different initial conditions

result in two different stationary nanostructures. For SS initial condition, premelting does

not start up to some quite large critical value kE (e.g., kE = 3.39 for kδ = 1), above which

jump-like (i.e., first-order) premelting or complete melting occurs. For SMS initial conditions,

almost complete melt is stabilized at kE = 1.94 (for kδ = 1), i.e., even below the critical

value kE = 2 for pre-melting at θme . While for kE ≥ 2.7, increase in kδ promotes IM (similar

to SS initial state), for kE ≤ 2.5, dependence Υmin(kδ) is very nontrivial, with IM gap
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(i.e., lack of IM) in some range of kδ, which increases with decreasing kE. Outside the IM

gap, with increasing/decreasing temperature, discontinuous first-order phase transformations

to and from melt occur at different temperatures, exhibiting significant hysteresis. Increase

in kδ increases value of kE for melting from SS state and reduces critical kE for keeping melt

from SMS state. Thus, at kδ = 1.2, almost complete melt can be kept within SS interface for

kE = 1.58. Increasing kδ increases the width of the hysteresis loop and also shifts melting to

higher temperatures.

(a) (b) 

Figure 2: (a) Minimum stationary value of η1 + η2. for both SMS and SS initial interface for
different K12 values,; (b) distribution of η1; (c) distribution of η2 for some specific case of K12

values.

Presence of two stable stationary nanostructures indicates that there is one more unstable

nanostructure between them, which represents a critical nucleus. If the difference between

energy of the critical nucleus and SS (or SMS) interfaces is smaller than (40− 80)kBθ, where

kB is the Boltzmann constant, then melting (or solidification) within SS interface will occur

due to thermal fluctuations. Finding critical nucleus and kinetic studies will be performed

elsewhere.
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(a) (b) 

Figure 3: (a,d,g )Total energy distribution; (b,e,h )local Energy distribution; (c,f,i) gradient
energy distribution for both SMS and SS initial interface for different K12 values,

(a) (b) (c) 

Figure 4: Distribution of minimum of (η1 + η2) vs kδ for both SMS and SS initial interface for
different K12 values.
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Figure 5: Distribution of minimum of (η1 + η2) vs kE for both SMS and SS initial interface for
different K12 values.
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interface energy, interface width, and velocity were studied for kE = 4 and kδ = 1 (Fig. ??).

The width of IM , δ∗, is defined as the difference between locations of two SM interfaces where

Υ = 0.5. Note that almost complete melt of the width exceeding 1nm exists at 0.65θ21
e , i.e.,

240K below the melting temperature. For any a0, increasing temperature promotes melting,

i.e., reduces Υmin and the SMS interface energy, and increases δ∗ and interface velocity (for

θ/θ21
e > 1). When temperature approaches the melting temperature of β phase, Υmin ' 0 and

the width of IM is determined by ∂E∗/∂δ∗ = 0, which results in δ∗ =
√

0.5β21a0/(G0 −Gs);

δ∗ diverges when θ → θme and G0 → Gs. The energy of IM tends to the energy of two SM

interfaces, which is 0.5E21 for our case. Velocity of SMS interface is below the velocity of SS

interface (even for LΥ = 500Lϑ), is zero at θ21
e , and varies linearly with deviation from θ21

e with

some acceleration close to the melting temperature. At very small a0, interface velocity tends

to zero. Since for very small a0, SS interface width within melt tends to zero, a very large

number of finite elements is required to obtain mesh-independent results.

4.8 Results and Discussion

To summarize, as a solution of a critical outstanding problem, we developed PFA for mul-

tiphase materials, which with high and controllable accuracy satisfy all the desired conditions

for arbitrary n phases. Instead of explicit constraints, we included in the simplest potential

the terms that penalize the deviation of the trajectory in the order parameter space from the

straight lines connecting each of the two phases. It describes each of the PTs with the single or-

der parameter, which allows us to use an analytical solution to calibrate each interface energy,

width, and mobility. It reproduces the desired PT criteria via instability conditions; introduces

interface stresses, and allows us to control the presence of the third phase at the interface be-

tween the two other phases. Finite-element simulations exhibit very good correspondence with

results based on the exact three-phase model in [26] (which, however, cannot be generalized

for n > 3) and with nontrivial experimental nanostructure. The developed approach unifies

and integrates approaches developed in different communities (in particular, solidification and

martensitic PTs) and is applicable to various PTs between multiple solid and liquid phases

and grain evolution, and can be extended for diffusive, electric, and magnetic PTs.
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CHAPTER 5. DETAILED PHASE FIELD THEORY FOR

MULTIPHASE PHASE FIELD THEORY FOR TEMPERATURE-

AND STRESS-INDUCED PHASE TRANSFORMATION:

GENERAL MODEL, STABILITY CONDITIONS AND

SIMULATIONS

Abstract

Thermodynamic Ginzburg-Landau potential for temperature and stress-induced phase trans-

formations (PTs) between n phases is developed. It describes each of the PTs with a single

order parameter without explicit constraint equation, which allows one to use analytical solu-

tion to calibrate each interface energy, width, and mobility; reproduces the desired PT criteria

via instability conditions; introduces interface stresses, and allows to control presence of the

third phase at the interface between two other phases. A finite-element approach is developed

and utilized to solve problem on microstructure formation for multivariant martensitic PTs.

Results are in quantitative agreement with experiment. The developed approach is applica-

ble to various PTs between multiple, solid, and liquid phases and grain evolution and can be

extended for diffusive, electric, and magnetic PTs.

5.1 Introduction

One of the unresolved problems of the phase field approach (PFA) to PTs is non-contradictory

description of PTs between arbitrary number of phases. One of the directions is related to the

description of PTs between the austenite (A) and any of the n martensitic variants Pi and be-

tween martensitic variants [1]. It is described with the help of n independent order parameters

ηi, each for every A↔Pi. This approach was significantly elaborated in [2, 3] by imposing addi-

tional physical requirements to the Landau potential. In particular, the desired PT conditions

for A↔Pi and Pj ↔Pi PTs follow from the material instability conditions. Also, the thermo-

dynamically equilibrium transformation strain tensor is stress- and temperature-independent,

like in crystallographic theories. This theory was generalized for large strain and lattice rota-

tions [4, 9] and interface stresses consistent with sharp interface approach have been introduced

for A-Pi interfaces [6, 8, 9]. However, description of Pi-Pj is still not satisfactory. The A↔Pi

PT is described by a single order parameter ηi and analytic solutions for ηi for nonequilibrium
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interfaces [3, 6, 8, 9] allows one to calibrate interface energy, width, and mobility, as well as the

temperature-dependence of the stress-strain curve. At the same time, at a Pi-Pj interface ηi

and ηj vary independently along some transformation path in the ηi − ηj plane; the interface

energy, width, and mobility have an unrealistic dependence on temperature, stresses, and a

number of material parameters, which cannot be determined analytically. Consequently, one

cannot prescribe the desired Pi-Pj interface parameters. Due to the same reasons, expression

for Pi-Pj interface stresses cannot be strictly derived [6, 9]. Approach to multivariant marten-

sitic PTs with total strain-related order parameters is also quite popular [10, 11]. In addition

to the critique of this approach in [2], it also cannot describe Pi-Pj interface with the single

order parameter and is not applicable to multiphase system for which strain is not a relevant

parameter.

5.2 Drawback to other multiphase approaches

Other multiphase approaches are based on introducing n + 1 order parameters ηi obeying

constraint
∑
ηi = 1, similar to concentrations [12–15]. The idea is that each of PTs should be

described by a single order parameter; then interface parameters can be calibrated with the

help of the analytical solution. However, in general, undesired third phase often appears at the

interface between two phases. PT criteria in terms of instability conditions are not considered.

In [14] special conditions are imposed for three-phase system that guarantee that the third

phase can never appear at the interface between two phases. This casused some artifacts in

the theory (e.g., necessity of equal kinetic coefficients for all PTs). All homogeneous phases

are stable independent of the driving force (temperature). Also, in many cases, third phase is

observed in experiments [16] and conditions when it is present or not are found within more

advanced model [17]. Some drawbacks of imposing constraint with the help of Lagrangian

multipliers are presented in [15]. They are claimed to be overcome in [15]. Again, instability

conditions were not discussed in [15]. All our attempts for a theory with constraint to find

polynomials (up to tenth degree) to reproduce proper PT criteria (which are known from two-

phase treatment) from the thermodynamic instability conditions have been unsuccessful. This

led us to conclusion that utilizing constraint
∑
ηi = 1 prevents noncontradictory formulation

of the PFA. Also, these approaches do not include mechanics.
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5.2.A Drawback in Folch Paper

In [14],a free-energy functional was introduced in the following form

F =

∫
v

fdv, (1)

where, the volume integral of free- energy density defined as:

f(~p, ~∇~p, c, T ) = Kfgrad(~∇~p) +Hfp(~p) +Xfc(~p, c, T ), (2)

Where, pi is the volume fraction. H and X are constants with dimensions of energy per unit

volume. fgrad is the gradient energy, fp contains the analoge of the double well potential of

single-phase solidification, fc couples the phase fields to concentration. Additionally, a fifth

order antisymmetric polynomial function is introduced as (gi ). For two phases(i, j) polynomial

reduced to using the constraint (pi + pj = 1)as following:

gi = p3
i (10− 15pi + 6p2

i ), (3)

The function fp, called as triple-well (fTW ) potential as a sum of equal double-well potentials

fDW (p) for all the phases as following:

fp = fTW =
∑
i

fDW (pi), (4)

For two phases, fp can be written explicitly :

fp = (1− pi)2p2
i + (1− pj)2pj, (5)

If we ignore the contribution from concentration part, we can write fc as following:

fc = X (giBi + gj Bj), (6)

Further, ignoring gradient term, only considering bulk phase field enegy (F) :

F = H fp +X (giBi + gj Bj) (7)
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Normalize the above equation with respect to X :

f =
F

X
=
H

X
fp + (giBi + gj Bj) (8)

Now, we evaluate ∂2f/∂p2
i to find the transformation conditions:

∂2f

∂p2
i

= 4
H

X
(1− 6pi + 6p2

i ) + 15 (Bi −Bj) pi (1− 3pi + 2p2
i ). (9)

pj → pi :
∂2 f(θ, pi = 0)

∂p2
i

≤ 0 → 4
H

X
≤ 0; (10)

pi → pj :
∂2 f(θ, pi = 1)

∂p2
i

≤ 0 → 4
H

X
≤ 0; (11)

Eq.(10) to Eq.(11) are phase transformation conditions for pi ↔ pj respectively. Here we

see the instability conditions are independent on driving force, which is not good. Now , we

substitute pj = 1− pi in Eq.(8) and use following parameter value:H,X = 1. Now we consider

following three cases:

CASE I:

Here, we consider Bi = 10 and Bj = 11, i.e phase i should loose its stability. We plot

Eq.(8) with respect pi in Fig.(1a). But local barrier at point (B) corresponding pi = 0.112 in

Fig.(1b) is noticed. So we have small barrier in pi → pj transformation , even though criteria

of loss of stability of pi is already satisfied, which is not a desired condition.

CASE II:

Here, we consider Bi = 15 and Bj = 10, i.e phase j should loose its stability. We plot Eq.(8)

with respect pi in Fig.(2a). Here also we noticed a local barrier at point (B) corresponding

pi = 0.972 in Fig. (2b). So we also have undesired barrier in pj → pi transformation, even

though criteria of loss of stability of pj is already satisfied.

CASE III:

To confirm the drawback, we consider Bi = 10 and Bj = 100, i.e phase i should definitely

loose its stability.But surprisingly we again noticed a local barrier at point (B) corresponding

pi = 0.0015 in Fig.(3b). So we have small barrier in pj → pi transformation which is not

satisfactory.
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Figure 1: Plot of function F/X vs pi for Bi = 10, Bj = 11; (b) is the zoomed plot of F/X
vicinity of local barrier (B).
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Figure 2: Plot of function F/X vs pi for Bi = 15, Bj = 10; (b) is the zoomed plot of F/X
vicinity of local barrier (B).
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Figure 3: Plot of function F/X vs pi for Bi = 10, Bj = 100; (b) is the zoomed plot of F/X
vicinity of local barrier (B).

5.2.B Drawback in Hyperspherical Order Parameter

PFA in [3] are based on a potential in hyperspherical order parameters, in which one of the

phases, O, at the center of the sphere, and all other, P i, are located at the sphere. Thus,

A (or it can be melt) is located at the center and Mi (or solid phases) are located at the

sphere. Correct PT criteria have been derived. However, it was done in terms of cartesian

order parameters ηi, with assumption that they then are true for any order parameters. This

is unfortunately not the case for the hyperspherical order parameters, because the Jacobian of

transformation from one set of order parameters to another is singular at some points and the

first derivatives of energy tends to infinity at these points. Due to this, nonlinear constraint

for the hyperspherical order parameters was substituted with the linear constraint of the type∑
ηi = 1, which, however, does not include A or melt [7, 17]. For three phases, when strain is

explicitly eliminated, the theory in [7, 17] is completely consistent with two-phase theory and

produces proper PT criteria. However, for more than three phases, due to constraint, these

theories cannot produce correct PT criteria. Thus, noncontradictory PFA for more than three

phases or two martensitic variants is currently lacking.
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5.2.C Advantage of current theory

In this theory, a critical outstanding problem on developing of phase field approach for temperature-

and stress-induced phase transformations between arbitrary n phases is solved. This theory

has the following advantages:

1. It describes each of the phase transformations with a single order parameter, in contrast to

all known theories for multivariant martensitic transformations and multiple twinning. This

allows one to use analytical solution to calibrate each interface energy, width, and mobility.

2. In contrast to all theories for multiphase materials, this is achieved without explicit

constraint equation. As it was demonstrated, imposing explicit constraint produces significant

problems in the theory, in particular, does not allow introducing the desired transformation

criteria via thermodynamic instability conditions.

3. The problem is resolved by combining our previous theory for multivariant martensitic

transformations with the terms that penalize deviation of the trajectory in the order parameter

space from the desired straight lines connecting each two phases. It is demonstrated that this

approximately (but with controlled accuracy) reproduces all the desired constraints.

4. The developed theory satisfies all the desired conditions. It introduces the desired phase

transformation criteria via thermodynamic instability conditions.

5. It allows for the first time for a multiphase system to include consistent expression for

interface stresses for each interface.

6. It allows controlling presence of the third phase at the interface between two other

phases.

126



The developed approach is applicable to various phase transformations between multiple

solid and liquid phases and grain evolution and can be extended for diffusive, electric, and

magnetic transformations. Till recently, several communities, which develop and apply phase

field modeling to various fields, practically did not interact and had quite different priorities,

requirements, and degree of strictness. Main point was to reproduce the desired microstructure

with the simplest models containing minimum physics. Currently, such interaction started (in

particular, at the International Symposium on Phase-field Method, State College, PA, 2014) and

there are definite needs for much more physically advanced and unified theories, which are

imbedded in the framework of nonlinear continuum mechanics and satisfy extra physical

requirements. Current work gives a general framework for the phase field approach for various

communities.

5.3 Specification of the Gibbs energy for two order parameters

5.3.A Two stress-free martensitic phases

First, let us present the expression for Gibbs potential for two different martensitic phases,

neglecting stress:

G( θ, η1, η2) = f1 (θ , η1) + f2 (θ , η2) + Ā η2
1 η

2
2 + Zp(η1, η2) +

1

2

∑
βi |∇ηi|2. (12)

where, f1 and f2 corresponds to the parts of thermal (chemical) energy related to thermal

driving force for phase transformation and the double-well barrier between P1 ↔ A and

P2 ↔ A , respectively. In more general form:

fi (θ, ηi) = Ai(θ) q( ηi) + ∆ Gθ
i g( ηi) . (13)

where,

q( ηi) = η2
i (1− ηi)2; (14)

g( ηi) = η2
i (3− 2 ηi). (15)

Here, the terms ∆Gθ
i η

2
i (3 − 2ηi) and A(θ) η2

i (1 − ηi)
2 are parts of the thermal (chemical)

energy, related to the thermal driving force for phase transformation and double-well barrier,
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respectively. ∆Gθ
i is the difference between the thermal parts of the Gibbs energies of Pi and

A . Ai are the double-well energy coefficients between Pi and A . Again, here fourth degree

term Ā η2
1 η

2
2 is the barrier between two phases. The sixth degree polynomial Zp(η1, η2) is the

penalty term which gives the correct transformation condition between P1 ↔ P2 along the

diagonal. The function Zp(η1, η2) have the following form:

Zp(η1, η2) = K η2
1 η

2
2 (1− η1 − η2)2 . (16)

The goal of this function is to penalize deviations of the order parameters from three desirable

transformation lines in η1η2 plane: η1 = 0; η2 = 0, and diagonal η1 + η2 = 1. In this way, we

do not need to impose explicit constraint η1 + η2 = 1 and have chance to satisfy all desired

conditions, including instability conditions. Here instead of using η2
1 η

2
2; (n = 2), we can use

higher order polynomial like η3
1 η

3
2; (n = 3), η4

1 η
4
2; (n = 4). For higher degree, it reduces

the barrier inside the P1 ↔ P2 path, which facilitate to from triple junction, higher order

polynomial less restrained to existence of all phases. In Figure 1. we consider η1 = η2, and we

notice as polynomial degree increases the barrier reduces. Its easy to check that if we substitute

η2 = 1− η1 in Eq.(16), it vanishes along the diagonal, which is the proper transformation path

between P1 ↔ P2 . Additionally, this term does not contribute the stability conditions for

different phases. Here, thermal part of energy developed such a way that it only affects along

the transformation path between P1 ↔ A and P2 ↔ A and interfaces between two phases

remain unaffected. This require gi( ηi) = η2
i ( 3 − 2 ηi) to be anti-symmetric with respect to

the saddle point of double well barrier A(θ) η2
i (1− ηi)2 at ηi = 1

2
,

gi ( 1− ηi ) = 1− gi ( ηi) . (17)

This requirement is necessary to avoid undesirable thin-interface correction in the matching to

the free-boundary problems and to adjust surface tension independently of the phase diagram

and is hence important. We formulate G such a way, it gives the free energies of P1 and P2

at η1 = 1 and η2 = 0 , respectively, the followings :

f1(1, 0) = ∆Gθ
1 , f2(1, 0) = 0 , Zp(1, 0) = 0 . (18)

Similarly, at η1 = 0 and η2 = 1 , it produce the following :

f1(0, 1) = 0 , f2(0, 1) = ∆Gθ
2 , Zp(0, 1) = 0 . (19)

128



n2

n3

n4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 1

0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014

Zp
K

T1 

Figure 4: Plot of function Zp(η1)/K vs η considering different degree of polynomial,i.e
ηn1 η

n
1 f(η1);n = 2, 3, 4, where f(η1) = (1− 2η1)2

To satisfy proper stability conditions, we require the derivative of G(η1, η2) to vanish at the

origin, A(η1 = 0, η2 = 0), P1(η1 = 1, η2 = 0) and at P2(η1 = 0, η2 = 1) . Our potential

satisfies all the required conditions, which are the followings :

∂ G(0, 0)

∂ η1,2

= 0 ⇒ ∂ f1,2(0, 0)

∂ η1,2

=
∂ Zp(0, 0)

∂ η1,2

= 0; (20)

∂ G(1, 0)

∂ η1,2

= 0 ⇒ ∂ f1,2(1, 0)

∂ η1,2

=
∂ Zp(1, 0)

∂ η1,2

= 0; (21)

∂ G(0, 1)

∂ η1,2

= 0 ⇒ ∂ f1,2(0, 1)

∂ η1,2

=
∂ Zp(0, 1)

∂ η1,2

= 0. (22)

5.3.B Thermodynamic equilibrium and its stability conditions for two phases

without using constraint

Explicit expressions for the first derivatives of the thermodynamic potential, which will be used

in GL equations, for homogeneous states are:
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∂ G (η1, η2)

∂ η1

= 6 ∆Gθ
1 η1 (1− η1) + 2A1

(
η1 − 3η2

1 + 2η3
1

)
+ 2 Ā η1 η

2
2

−2K η1 η2 (1− η1 − η2) [η1 η2− η2(1− η1 − η2)] ; (23)

∂ G(η1, η2)

∂ η2

= 6 ∆Gθ
2 η2 (1− η2) + 2A2

(
η2 − 3η2

2 + 2η3
2

)
+ 2 Ā η2

1 η2

−2K η1 η2 (1− η1 − η2) [η1 η2− η1(1− η1 − η2)] . (24)

It is clear that both derivatives are zero at any temperature (θ) for each of the phases for

A (η1 = 0, η2 = 0), P1 (η1 = 1, η2 = 0) and at P2 (η1 = 0, η2 = 1) . To determine the stability

conditions, we require second and mixed derivatives, which are given in the explicit form :

∂2G(η1, η2)

∂ η2
1

= 6 ∆Gθ
1 (1− 2η1) + 2A1

(
η1 − 6η1 + 6η2

1

)
+ 2 Ā η2

2 + 2K η2
1 η

2
2

−8Kη1 η
2
2 (1− η1 − η2) + 2Kη2

2 (1− η1 − η2)2 ; (25)

∂2G(η1, η2)

∂ η2
2

= 6 ∆Gθ
2 (1− 2η2) + 2A2

(
η2 − 6η2 + 6η2

2

)
+ 2 Ā η2

1 + 2K η2
1 η

2
2

−8Kη2
1 η2 (1− η1 − η2) + 2Kη2

1 (1− η1 − η2)2 ; (26)

∂2G(η1, η2)

∂ η1∂ η2

= 2Kη2
1η

2
2 − 4K η2

1 η2 (1− η1 − η2)− 4K η1 η
2
2 (1− η1 − η2)

+4K η1 η2 (1− η1 − η2)2 + 4 Ā η1 η2. (27)

In this case, the conditions for the loss of stability of each phase or phase transformation

criteria, simplify to:

A→ P1 :
∂2G(θ, η1 = 0, η2 = 0)

∂η2
1

≤ 0 → A1(θ) + 3∆Gθ
1 ≤ 0; (28)

P1 → A :
∂2G(θ, η1 = 1, η2 = 0)

∂η2
1

≤ 0 → A1(θ)− 3∆Gθ
1 ≤ 0; (29)

A→ P2 :
∂2G(θ, η1 = 0, η2 = 0)

∂η2
2

≤ 0 → A2(θ) + 3∆Gθ
2 ≤ 0; (30)

P2 → A :
∂2G(θ, η1 = 0, η2 = 1)

∂η2
2

≤ 0 → A2(θ)− 3∆Gθ
2 ≤ 0; (31)
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P1 → P2 :
∂2G(θ, η1 = 1, η2 = 0)

∂η2
2

≤ 0 → Ā+ A2(θ) + 3∆Gθ
2 ≤ 0; (32)

P2 → P1 :
∂2G(θ, η1 = 0, η2 = 1)

∂η2
1

≤ 0 → Ā+ A1(θ) + 3∆Gθ
1 ≤ 0; (33)

Eq.(28) to Eq.(31) are desired phase transformation conditions for A ↔ P1 and A ↔ P2

respectively. Other two conditions, Eq.(32) and Eq.(33) for P1 ↔ P2 PT just follow from the

potential and are non-contradictory. But they does not represent proper PT criteria. At this

moment, we designate them as ‘Unconstrained PT condition’ (UC) as following:

[P1 → P2] UC ⇒ Ā+ A1(θ) + 3∆Gθ
1 ≤ 0; (34)

[P2 → P1] UC ⇒ Ā+ A2(θ) + 3∆Gθ
2 ≤ 0. (35)

5.3.C Thermodynamic equilibrium and its stability conditions for two phases

using constraint

If we assume that the P1 ↔ P2 PT occurs along the straight path between the points P1(η1 =

1, η2 = 0) and P2(η1 = 0, η2 = 1), i.e along the constrain η2 = 1 − η1, we can get desired

criterion for P1 ↔ P2 PT. We substitute η2 = 1 − η1 into Eq.(12) to get Gibbs potential as

function of single order parameter η1 as follows :

G( θ, η1) = A1(θ)
(
η2

1 − 2η3
1 + η4

1

)
+ ∆ Gθ

1

(
3η2

1 − 2η3
1

)
+ Ā η2

1(1− η1)2

+A2(θ)
[

(1− η1)2 − 2(1− η1)3 + (1− η1)4
]

+ ∆ Gθ
2

[
3(1− η1)2 − 2(1− η1)3

]
. (36)

Eq.(36) can be written in the following compact form:

G( θ, η1) = A12(θ) q( η1) + ∆ Gθ
2 + ∆ Gθ

12g( η1). (37)

where

A12(θ) = A1(θ) + A2(θ) + Ā; (38)

∆ Gθ
12 = ∆ Gθ

1 − ∆ Gθ
2. (39)
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Explicit form of first and second derivatives:

∂ G(θ, η1)

∂ η1

= η1 (1− η1)
[
A12(θ) (1− 2η1) + 3 ∆ Gθ

12

]
; (40)

∂2G(θ, η1)

∂ η2
1

= 2(A12 + 3 ∆ Gθ
12 − 6A12η1 − 6 ∆ Gθ

12η1 + 6A12η
2
1). (41)

In this case, the conditions for the loss of stability of all phases–i.e., phase transformation of

criteria, simplify to:

P1 → P2 :
∂2G(θ, ϑ1 = 1)

∂ϑ2
1

≤ 0 → A12(θ)− 3Gθ
12 ≤ 0

→ A1(θ) + A2(θ) + Ā− 3∆Gθ
1 + 3∆Gθ

2 ≤ 0; (42)

P2 → P1 :
∂2G(θ, ϑ1 = 0)

∂ϑ2
1

≤ 0 → A12(θ) + 3Gθ
12 ≤ 0

→ A1(θ) + A2(θ) + Ā− 3∆Gθ
2 + 3∆Gθ

1 ≤ 0; (43)

Eq.(42) to Eq.(43) are desired phase transformation conditions for P1 ↔ P2 respectively. We

designate them as ‘constrained PT condition’:

P1 → P2 ⇒ A12(θ)− 3∆Gθ
12 ≤ 0; (44)

P2 → P1 ⇒ A12(θ) + 3∆Gθ
12 ≤ 0. (45)

Let ∆Gθ
i = −∆si(θ− θie), where ∆si = si− s0 is the jump in entropy between phases Pi and A

and θi is the thermodynamic equilibrium melting temperature of phases Pi and A. The linear

temperature dependence of ∆Gθ
12 implies neglecting the difference between specific heats of

phases. Then by definition ∆Gθ
12 = ∆Gθ

1−∆Gθ
2 = −∆s1(θ−θ1

e)+∆s2(θ−θ2
e) = −∆s12(θ−θ12

e ),

where ∆s12 = ∆s1 −∆s2 and θ12
e = (∆s1θ

1
e −∆s2θ

2
e)/∆s12.

We express coefficients Ai(θ) = Ai∗(θ − θi∗), where θi∗ is some characteristic temperature

which will expressed in terms of the critical temperature at which phase Ai loses its stabil-

ity toward Pi. A similar coefficient between phases Pi is accepted in a more general form

A12(θ) = Ā∗12(θ) +A∗12(θ− θ∗12) with the temperature θ∗12 related below to the critical tempera-

ture of the loss of stability of the phase P1 towards P2. This equation together with definition of

Ā(θ) (Eqs.(??)) defines temperature dependence of Ā(θ). For phases Pi with different thermal
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properties we can put Ā∗12(θ) = 0 without loss of generality, like for A-Pi PT. If critical tem-

perature does not exist and instability can be caused by stresses only, e.g., for two martensitic

variants, which possess the same thermal properties, one has to skip the term with θ∗12 and

accept A12(θ) = Ā∗12(θ). Then, instability conditions Eqs.(28)-(29) transform to

A→ P1 : 0 < (A1
∗ − 3∆s1)θ ≤ A1

∗θ
1
∗ − 3∆s1θ

1
e → θ ≤ θ01

c :=
A1
∗θ

1
∗ − 3∆s1θ

1
e

A1
∗ − 3∆s1

; (46)

P1 → A : 0 > (A1
∗ + 3∆s1)θ ≤ A1

∗θ
1
∗ + 3∆s1θ

1
e → θ ≥ θ10

c :=
A1
∗θ

1
∗ + 3∆s1θ

1
e

A1
∗ + 3∆s1

, (47)

where θ01
c and θ10

c are the critical temperatures for barrierless A → P1 and P1 → A PTs.

Inequalities A1
∗ − 3∆s1 > 0 and A1

∗ + 3∆s1 < 0 are accepted from the conditions that A→ P1

PT occurs at cooling and P1 → A PT occurs at heating. In a similar way we obtain

A→ P2 : 0 < (A2
∗ − 3∆s2)θ ≤ A2

∗θ
2
∗ − 3∆s2θ

2
e → θ ≤ θ02

c :=
A2
∗θ

2
∗ − 3∆s2θ

2
e

A2
∗ − 3∆s2

; (48)

P2 → A : 0 > (A2
∗ + 3∆s2)θ ≤ A2

∗θ
2
∗ + 3∆s2θ

2
e → θ ≥ θ20

c :=
A2
∗θ

2
∗ + 3∆s2θ

2
e

A2
∗ + 3∆s2

. (49)

For phases Pi with different thermal properties (Āc12(θ) = 0), Eqs.(42)-(43) transform to

P1 → P2 : 0 < (A12
∗ − 3∆s12)θ ≤ A12

∗ θ
12
∗ − 3∆s12θ

12
e → θ ≤ θ12

c :=
A12
∗ θ

12
∗ − 3∆s12θ

12
e

A12
∗ − 3∆s12

; (50)

P2 → P1 : 0 > (A12
∗ + 3∆s12)θ ≤ A12

∗ θ
12
∗ + 3∆s12θ

12
e → θ ≥ θ12

c :=
A12
∗ θ

12
∗ + 3∆s12θ

12
e

A12
∗ + 3∆s12

, (51)

where the accepted inequalities A12
∗ − 3∆s12 > 0 and A12

∗ + 3∆s12 < 0 assume that P1 → P2

PT occurs at cooling and P2 → P1 PT takes place at heating. If phases P1 and P2 have the

same thermal properties, than instability cannot be caused by changing temperature. Note

that each of the characteristic temperatures, θ1
∗, θ

2
∗, and θ12

∗ , can be determined from Eqs.(46),

(48), and (50) in terms of each critical temperatures θ01
c , θ02

c , and θ12
c .

5.3.D Interface energy for 2 phases

For isotropic interface energies for two phases one has following explicit form:

∇ =

(
β10

2
|∇η1|2 +

β20

2
|∇η2|2 + b∇η1∇η2

)
. (52)
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where, β10, β20, β12 are the mobility coefficients of A − P1, A − P2 and P1 − P2 interfaces

respectively. Now, from the constrain equation η2 = 1− η1, we get:

∇η2 = −∇η1. (53)

Substitute Eq.(53) into Eq.(52), gives:

∇ =
1

2
(β10 + β20 − 2 b) |∇η1|2 =

1

2
β12 |∇η1|2. (54)

where, β12 is the effective mobility coefficient of P1 − P2 interface. Is to be noted β12 ≥ 0. So

constraint on b is following :

b ≤ β10 + β20

2
. (55)

5.3.E Kinetic equations

As in customary in irreversible thermodynamics, one has to assume a general, nonlinear

kinetic equation η̇i = f(Xj), connecting the i th flux with j th force-i.e., including cross effects.

In the linear approximation η̇i = Lij f(Xj), where Lij are positive definite kinetic coefficients,

for which Lij = Lji according to Onsager reciprocal relationship. The kinetic equation for P1

and P2 are :

η̇1 = L11X1 + L12X2; (56)

η̇2 = L12X1 + L22X2; (57)

from Onsager reciprocal relationship, L12 = L12. Now, from the constrain equation η2 =

1− η1,we get:

η̇2 = −η̇1. (58)

Substitute Eq.(58) into Eq.(57), we get:

X2 = − η̇1 + L12X1

L22

; (59)
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Substitute Eq.(59) into Eq.(56), we get :

η̇1 =

(
L11 L22 − L2

12

L22 + L12

)
X1; (60)

For P1 ↔ P2 PT, we can write kinetic equation in the following form:

η̇1 = l12X1; (61)

Where,

l12 =

(
L11 L22 − L2

12

L22 + L12

)
; (62)

5.3.F Numerical Analysis of stability condition

As we have mentioned earlier, we received different PT criterion for P1 ↔ P2 for considering

without constraint and with constraint. In the following discussion we analyze which condi-

tions hold good. For this analysis, we always make A1(θ) − 3∆Gθ
2 ≥ 0, so that PT can only

occure between P1 and P2. We have following cases to analyze :

Case :I When Ā+ A1(θ) + 3∆Gθ
1 < 0; A12(θ)− 3Gθ

12 > 0 :

First we consider, A2(θ) + 3∆Gθ
2 = 230, Ā+ A1(θ) + 3∆Gθ

1 = −50 and A12(θ)− 3Gθ
12 =

350, we get one minima at the vicinity of P1 from numerical solution, which is (η1, η2) =

(0.999, 0.005). It indicates that there is a local minima exist, which is metastable [Fig .2]. In

this case transformation from P1 → P2 initiate, but stuck on metastable point and transfor-

mation is not complete.

Then we consider A2(θ)+3∆Gθ
2 = 230, Ā+A1(θ)+3∆Gθ

1 = −250 and A12(θ)−3Gθ
12 =

150, again we found minima at (η1, η2) = (0.989, 0.019), vicinity of P1[Fig .3]. If we further

decrease Ā + A1(θ) + 3∆Gθ
1 to −500 and keep A12(θ) − 3Gθ

12 = 500, again we found lo-

cal minima at (η1, η2) = (0.989, 0.02)[Fig .4]. So we conclude that though PT condition for

P1 → P2 satisfy for unconstrained case, the transformation is not possible, because we have

local metastable phase exist which produce local energy barrier between P1 → P2 PT. The

position of this local minima does not change significantly with driving force. Here it is also

noted that we did not satisfy PT condition for constrained case.
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(a) (b) 

Figure 5: Counter plot of Gibbs energy for Ā+A1(θ)+3∆Gθ
1 = −50 and A12(θ)−3Gθ

12 = 350
; (b) is the enlarged plot of energy vicinity of P1

Case :II When Ā+ A1(θ) + 3∆Gθ
1 < 0; A12(θ)− 3Gθ

12 < 0 :

Here we satisfy PT criterion of P1 → P2 for both without constraint and with constraint. For

example, we set Ā+A1(θ) + 3∆Gθ
1 = −805 and A12(θ)− 3Gθ

12 = −5 . We observe no local

minima vicinity of P1 and transformation occurs along the diagonal line (Fig. 1 (a)-(c)). So

we can conclude that Eq.(44) is the proper transformation criterion for P1 → P2 PT. Similarly,

we can show that Eq.(45) is the correct condition for reverse phase transformation.

5.3.G Solution to the Ginzburg-Landau equation for a propagating interface

Traveling wave solution for the double well potential

Here we consider phase transformation of A to P1 describe by single order parameter η1. Here

the phase-field equation is presented in one dimensional form and the corresponding functional.

The temperature will be treated as constant. Total Gibbs functional over the domain Ω.

GΩ =

∫
Ω

[
A1(θ) η2

1 ( 1− η1)2 + ∆ Gθ
1

(
3η2

1 − 2η3
1

)
+

1

2
β|∇ η1|2

]
dx, (63)
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(a) (b) 

Figure 6: Counter plot of Gibbs energy for Ā+A1(θ)+3∆Gθ
1 = −250 and A12(θ)−3Gθ

12 =
150 ; (b) is the enlarged plot of energy vicinity of P1

(a) (b) (c) 

Figure 7: Counter plot of Gibbs energy for Ā+A1(θ)+3∆Gθ
1 = −500 and A12(θ)−3Gθ

12 =
500 ; (b)and (c) are the enlarged plots of energies vicinity of P1
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The thermodynamic driving force ∆ Gθ
1 (3η2

1 − 2η3
1 ) is directly related to the Gibbs free energy

difference ∆ Gθ
1 = G(η1 = 1)−G(η1 = 0) between the bulk phases. Then from From Eq.(63),

the simplest Ginzburge-Landau equation reads:

Lη̇1 =
[
A1(θ) η1(1− η1)(1− 2η1) + ∆ Gθ

1 η1 (1− η1) + β∇ · ∇ η1

]
(64)

The steady state solution of Eq.(64) has the form of a hyperbolic tangent profile of width δ

marking the transition zone between 5% and 95% traveling with constant speed c

η1(x, t) =
1

2
tanh

[
3(x− ct)

δ

]
+

1

2
(65)

Lets calculate the derivatives

∂η1

∂x
=

6

δ
η1 (1− η1) (66)

∂2η1

∂x2
=

72

δ2
η1 (1− η1)

(
1

2
− η1

)
(67)

Inserting Eq.(66) and Eq.(67) into Eq.(64)we have:

L η̇1 = L c
∂η1

∂x
= c

6L

δ
η1 (1− η1) =

(
β

72

δ2
− 4A1

)
η1(1− η1)

(
η1 −

1

2

)
+6 ∆ Gθ

1 η1(1− η1) (68)

Eq.(68) becomes independent of η1 if the term (β 72
δ2
− 4A1) vanishes and we have:

c =
δ

L
∆ Gθ

1 (69)

From the condition β 72
δ2
− 4A1 = 0 we have :

δ =

√
18 β

A1

(70)

With the interface mobility µ as the proportionality constant between velocity and driving

force ∆ Gθ
1 the time scale became L = δ/µ. The fixation of the length scale δ follows form the

definition of interfacial energy. At equilibrium ∆ Gθ
1 = 0 the only energy contribution in the

system is the interfacial energy per unit area γ :

γ =

∫ ∞
−∞

[
A1(θ) η2

1 ( 1− η1)2 +
1

2
β|∇ η1|

]
dx
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=

∫ 1

−1

[(
β

δ2
+

72β

δ2

)
η2

1 ( 1− η1)2 dx

dη

]
dη1

=

∫ 1

−1

[
6β

δ
η1 ( 1− η1) dη1

]
=
β

δ
=

Ā δ

4
(71)

It is to be noted that both gradient term proportional to β and the term proportional to

Ā contribute to equal parts to the interfacial energy. This is the equivalent of law of equal

partitioning of kinetic and potential energy in stationary mechanical system. Summarizing,

we find the relations between the model parameters and the physical parameters that are valid

close to steady state solutions

β = γ δ, Ā = 4
γ

δ
, L =

δ

µ
. (72)

5.3.H Energy of a propagating interface

For the neglected strains and stresses, propagation of the nonequilibrium plane interface

moving in an infinite space along axes x is described by closed-form solution to Eq.(65):

η1(x, t) =
1

2
tanh

[
3(x− ct)

δ

]
+

1

2
(73)

Here, c = δ
L

∆ Gθ
1/k is the interface velocity, defines the interface width, δ. Now we get explicit

equation of gradient energy (ψ∇) for propagating interface:

∇ =
β

2
|∇∇∇ηin|2 =

β

2

(
dηin
dx

)2

=
18β

δ2
η2
in(1− ηin)2. (74)

By the definition of the interface energy under the non equilibrium condition, it is equal to

the excess energy with respect to austenite in the austenitic region x ≤ xi and with respect to

martensite in the martensitic region x > xi:

γ :=

∫ xi

−∞
ρ0 (ψ − ψA)dx+

∫ ∞
xi

ρ0 (ψ − ψP1)dx, (75)

where xi is the interface position, at which we assume η1 = 0.5. We have: ψA = 0, ψP1 = ∆Gθ
1,

and it follows from the condition η1 = 0.5. Let us first evaluate the gradient energy contribution

to γ:

Ψ∇ :=

∫ ∞
−∞

ρ0ψ
∇dx =

ρ0 β

2

∫ ∞
−∞

(
dηin
dx

)2

dx
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=
3ρ0 β

δ

∫ 1

0

ηin(1− ηin)dη =
ρ0 β

2δ
. (76)

From Eq.(75)we can see that total interface energy has two parts:

Interface energy w.r.t austenite (γA):

γA :=

∫ xi

−∞
ρ0 (ψ − ψA)dx =

∫ xi

−∞
ρ0 ψdx (77)

γA :=
δρ0

6

∫ 0.5

0

[
∆Gθ

1 g(ηin) + A1 q(ηin) +
β

2

(
dηin
dx

)2
]

1

ηin(1− ηin)
dη

=
ρ0

4

(
β

δ
+
A1 δ

18
+

2∆Gθ
1δ

7

)
(78)

Interface energy w.r.t martensite phase (γP1):

γP1 :=

∫ −∞
xi

ρ0 (ψ − ψP1)dx =

∫ −∞
xi

ρ0 (ψ −∆Gθ
1)dx (79)

γP1 :=
δρ0

6

∫ 1

0.5

[
(∆Gθ

1 − 1) g(ηin) + A1 q(ηin) +
β

2

(
dηin
dx

)2
]

1

ηin(1− ηin)
dη

=
ρ0

4

(
β

δ
+
A1 δ

18
− 2∆Gθ

1δ

7

)
(80)

Hence,

γ =
ρ0 β

2δ
+
ρ0A1 δ

36
= 2Ψ∇. (81)

From Eq.(76):

γ =
ρ0 β

δ
= 2Ψ∇. (82)

Thus, an important result is that for the non-equilibrium interface the total energy is twice

the gradient energy.

5.3.I Final expression for free energy

To obtain biaxial interface tension for the propagating interface, one has to define for the

general case (i.e., for arbitrary distribution of η)

ψ̆θ := A1(θ)η2
1(1− η1)2. (83)
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For the non equilibrium interface ψ̆θ = ψ∇ = β10
2ρ0
|∇∇∇ηin|2. It is clear that for the propagating

interface, the function ψ̆θ is localized at the diffuse interface, as required. Substituting this in

the general expression for the interface tension, we obtain for the propagating interface

σσσst = β10|∇∇∇η1|2 (III − nnn⊗ nnn) = 2ρ0ψ̆
θ (III − nnn⊗ nnn) = σst (III − nnn⊗ nnn) , (84)

where σst is the magnitude of the biaxial interface stresses. Since ψ∇ > 0, interface stress

σst > 0, i.e., it is always tensile. Then for the solution for the propagating interface, the

magnitude of the force per unit interface length is equal to∫ ∞
−∞

β10|∇∇∇ηin|2 dx = 2

∫ ∞
−∞

ρ0ψ̆dx = 2Ψ∇ = γ, (85)

5.4 Two stress-induced martensitic phases

If we substitute ∆ Gθ
i with ∆ Gθ

i −σσσ ::: εεεti , we can reproduce the potential for stress induced

two martensitic phase correctly. We can rewrite Eq.(13) for stress induced case:

fi (θ, ηi) = Ai(θ) q( ηi) +
(

∆ Gθ
i − σσσ ::: εεεti

)
g( ηi), (86)

where εεεti is the transformation strain for Pi.

5.4.A Thermodynamic equilibrium and its stability conditions without using

constraint for stress-induced case

In this case, the conditions for the loss of stability of each phase-i.e., phase transformation

criteria, simplify to:

A→ P1 :
∂2G(θ, η1 = 0, η2 = 0)

∂η2
1

≤ 0 → σσσ ::: εεεt1 ≥
A1(θ) + 3∆Gθ

1

3
; (87)

P1 → A :
∂2G(θ, η1 = 1, η2 = 0)

∂η2
1

≤ 0 → σσσ ::: εεεt1 ≥
A1(θ)− 3∆Gθ

1

3
; (88)

A→ P2 :
∂2G(θ, η1 = 0, η2 = 0)

∂η2
2

≤ 0 → σσσ ::: εεεt2 ≥
A2(θ) + 3∆Gθ

2

3
; (89)
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P2 → A :
∂2G(θ, η1 = 0, η2 = 1)

∂η2
2

≤ 0 → σσσ ::: εεεt2 ≥
A2(θ)− 3∆Gθ

2

3
; (90)

P1 → P2 :
∂2G(θ, η1 = 1, η2 = 0)

∂η2
2

≤ 0 → σσσ ::: (εεεt2 − εεεt1) ≥ Ā+ A2(θ) + 3∆Gθ
2

3
; (91)

P2 → P1 :
∂2G(θ, η1 = 0, η2 = 1)

∂η2
1

≤ 0 → σσσ ::: (εεεt1 − εεεt2) ≥ Ā+ A1(θ) + 3∆Gθ
1

3
; (92)

Eq.(87) to Eq.(90) are desired phase transformation conditions for A ↔ P1 and A ↔ P2

respectively. Other two conditions, Eq.(91) and Eq.(92) for P1 ↔ P2 PT just follow from the

potential and are non-contradictory. But they does not represent proper PT criteria. At this

moment, we designate them as ’Unconstrained PT condition’ (UC) as following:

[P1 → P2] UC ⇒ σσσ ::: (εεεt2 − εεεt1) ≥ Ā+ A2(θ) + 3∆Gθ
2

3
; (93)

[P2 → P1] UC ⇒ σσσ ::: (εεεt1 − εεεt2) ≥ Ā+ A1(θ) + 3∆Gθ
1

3
; ; (94)

5.4.B Thermodynamic equilibrium and its stability conditions using constraint

If we assume that the P1 ↔ P2 PT occurs along the straight path between the points

P1(η1 = 1, η2 = 0) and P2(η1 = 0, η2 = 1), i.e along the constrain η2 = 1 − η1, we can get

desired criterion for P1 ↔ P2 PT. We substitute η2 = 1−η1 into Eq.(12) to get Gibbs potential

as function of a single order parameter η1 in the following compact form :

G( θ, η1) = A12(θ) q( η1) + ∆ Gθ
2 − σσσ ::: εεεt2 + ∆ Gθ

12g( η1) (95)

where

A12(θ) = A1(θ) + A2(θ) + Ā; (96)

and

∆ Gθ
12 = ∆ Gθ

1 − ∆ Gθ
2 − σσσ ::: (εεεt1 − εεεt2) (97)
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In this case, the conditions for the loss of stability of all phases -i.e., phase transformation of

criteria, simplify to:

P1 → P2 :
∂2G(θ, ϑ1 = 1)

∂ϑ2
1

≤ 0 → σσσ ::: (εεεt2 − εεεt1) ≥ A12(θ)− 3Gθ
12

3
; (98)

P2 → P1 :
∂2G(θ, ϑ1 = 0)

∂ϑ2
1

≤ 0 → σσσ ::: (εεεt2 − εεεt1) ≥ A12(θ) + 3Gθ
12

3
; (99)

Eq.(98) to Eq.(99) are desired phase transformation conditions for P1 ↔ P2 respectively.

At this moment, we designate them as ’Constrained PT condition’ as following:

P1 → P2 ⇒ σσσ ::: (εεεt2 − εεεt1) ≥ A12(θ)− 3Gθ
12

3
; (100)

P2 → P1 ⇒ σσσ ::: (εεεt2 − εεεt1) ≥ A12(θ) + 3Gθ
12

3
; (101)

5.5 Three stress-free martensitic phases

For three stress free phases, we can generalized our potential Eq.(12) as

G( θ, η1, η2, η3) =
n=3∑
i=1

fi (θ , ηi) +
n=3∑

i,j=1;i6=j

Āij η
2
i η

2
j +

1

2

n=3∑
i=1

βi |∇ηi|2 + Zp(η1, η2, η3)

+ Z̄p(η1, η2, η3) , (102)

where,

Zp(η1, η2, η3) =
n=3∑

i,j=1;i6=j

Kij η
2
i η

2
j (1− ηi − ηj)2 , (103)

and

Z̄p(η1, η2, η3) = K̄123 η
2
1 η

2
2 η

2
3, (104)

Here, Z̄p(η1, η2, η3) is the term introduced for n > 2, which will restrict any spurious growth of

additional phases at binary phases. Consequently, at a triple point, where three phases meet,
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the dynamics of the system would be governed by the three, two-phase interfaces stretching

out from the triple point. It means formation of 2 phases are independent of third phase

interface energy. It is also noted that this new term does not affect any stability conditions

and transformation conditions. It eliminates problems in all other earlier formulations. Here

we consider η1 = η2 = η3 and plot Zp/K for different degree of polynomial of η1 (Fig.5). Here,

n corresponds to ηni η
n
j term. If we increase the n, the barrier between A, P1, P2 and P3 get

reduced, which gives more flexibility to Pi ↔ A↔ Pj PT.

n 2

n 3

n 4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 1

0.001

0.002

0.003

0.004

Zp
K

T1 

Figure 8: Plot of function Zp(η1)/K vs η considering different degree of polynomial,i.e
ηn1 η

n
1 f(η1);n = 2, 3, 4, where f(η1) = 3(1− 2η1)2

5.5.A Thermodynamic equilibrium and its stability conditions for three phases

without using constraint

In this case, the conditions for the loss of stability of each phase-i.e., phase transformation

criteria, simplify to:

A→ P1 :
∂2G(θ, η1 = 0, η2 = 0, η3 = 0)

∂η2
1

≤ 0 → A1(θ) + 3∆Gθ
1 ≤ 0; (105)
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P1 → A :
∂2G(θ, η1 = 1, η2 = 0, η3 = 0)

∂η2
1

≤ 0 → A1(θ)− 3∆Gθ
1 ≤ 0; (106)

A→ P2 :
∂2G(θ, η1 = 0, η2 = 0, η3 = 0)

∂η2
2

≤ 0 → A2(θ) + 3∆Gθ
2 ≤ 0; (107)

P2 → A :
∂2G(θ, η1 = 0, η2 = 1, η3 = 0)

∂η2
2

≤ 0 → A2(θ)− 3∆Gθ
2 ≤ 0; (108)

A→ P3 :
∂2G(θ, η1 = 0, η2 = 0, η3 = 0)

∂η2
3

≤ 0 → A3(θ) + 3∆Gθ
3 ≤ 0; (109)

P3 → A :
∂2G(θ, η1 = 0, η2 = 0, η3 = 1)

∂η2
2

≤ 0 → A3(θ)− 3∆Gθ
3 ≤ 0; (110)

P1 → P2 :
∂2G(θ, η1 = 1, η2 = 0, η3 = 0)

∂η2
2

≤ 0 → Ā12 + A2(θ) + 3∆Gθ
2 ≤ 0; (111)

P2 → P1 :
∂2G(θ, η1 = 0, η2 = 1, η3 = 0)

∂η2
1

≤ 0 → Ā12 + A1(θ) + 3∆Gθ
1 ≤ 0; (112)

P2 → P3 :
∂2G(θ, η1 = 0, η2 = 1, η3 = 0)

∂η2
3

≤ 0 → Ā23 + A3(θ) + 3∆Gθ
3 ≤ 0; (113)

P3 → P2 :
∂2G(θ, η1 = 0, η2 = 0, η3 = 1)

∂η2
2

≤ 0 → Ā23 + A2(θ) + 3∆Gθ
2 ≤ 0; (114)

P1 → P3 :
∂2G(θ, η1 = 1, η2 = 0, η3 = 0)

∂η2
3

≤ 0 → Ā13 + A3(θ) + 3∆Gθ
3 ≤ 0; (115)

P3 → P1 :
∂2G(θ, η1 = 0, η2 = 0, η3 = 1)

∂η2
1

≤ 0 → Ā13 + A1(θ) + 3∆Gθ
1 ≤ 0; (116)

Eq.(105) to Eq.(110) are desired phase transformation conditions for A↔ P1 and A↔ P2

respectively. Other conditions, Eq.(111) to Eq.(116) for P1 ↔ P2, P2 ↔ P3 and P1 ↔ P3 PT

just follow from the potential and are non-contradictory. But they does not represent proper

PT criteria.
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5.5.B Thermodynamic equilibrium and its stability conditions for three phases

using constraint

If we assume that the Pi ↔ Pj PT occurs along the straight path between the points Pi and

Pj, i.e along the constrain ηj = 1− ηi, while ηk = 0, we can get desired criterion for Pi ↔ Pj

PT. For Pi ↔ Pj PT, we substitute ηj = 1 − ηi and ηk = 0 into Eq.(102) to get following

generalized conditions for the loss of stability :

Pi → Pj :
∂2G(θ, ηi = 1)

∂η2
i

≤ 0 → Aji(θ)− 3∆Gθ
ji ≤ 0; (117)

Pj → Pi :
∂2G(θ, ηi = 0)

∂η2
1

≤ 0 → Aji(θ) + 3∆Gθ
ji ≤ 0; (118)

where

Aji(θ) = Ai(θ) + Aj(θ) +
n=3∑

i,j=1;i6=j

Āij (119)

and

∆ Gθ
ji = ∆ Gθ

i − ∆ Gθ
j (120)

In explicit form

P1 → P2 :
∂2G(θ, η1 = 1)

∂η2
1

≤ 0 → A12(θ)− 3∆Gθ
12 ≤ 0

→ A1(θ) + A2(θ) + Ā12 + Ā13 + Ā23 − 3∆Gθ
1 + 3∆Gθ

2 ≤ 0; (121)

P2 → P1 :
∂2G(θ, η1 = 0)

∂η2
1

≤ 0 → A12(θ) + 3∆Gθ
12 ≤ 0

→ A1(θ) + A2(θ) + Ā12 + Ā13 + Ā23 − 3∆Gθ
2 + 3∆Gθ

1 ≤ 0; (122)

P2 → P3 :
∂2G(θ, η2 = 0)

∂η2
2

≤ 0 → A32(θ)− 3∆Gθ
32 ≤ 0

→ A2(θ) + A3(θ) + Ā12 + Ā13 + Ā23 − 3∆Gθ
3 + 3∆Gθ

2 ≤ 0; (123)

P3 → P2 :
∂2G(θ, η2 = 1)

∂η2
2

≤ 0 → A32(θ) + 3∆Gθ
32 ≤ 0

→ A2(θ) + A3(θ) + Ā12 + Ā13 + Ā23 − 3∆Gθ
2 + 3∆Gθ

3 ≤ 0; (124)
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P1 → P3 :
∂2G(θ, η1 = 1)

∂η2
1

≤ 0 → A31(θ)− 3∆Gθ
31 ≤ 0

→ A1(θ) + A3(θ) + Ā12 + Ā13 + Ā23 − 3∆Gθ
1 + 3∆Gθ

3 ≤ 0; (125)

P3 → P1 :
∂2G(θ, η1 = 0)

∂η2
1

≤ 0 → A31(θ) + 3∆Gθ
31 ≤ 0

→ A1(θ) + A3(θ) + Ā12 + Ā13 + Ā23 − 3∆Gθ
3 + 3∆Gθ

1 ≤ 0; (126)

Eq.(121) to Eq.(122) are desired phase transformation conditions for all Pi ↔ Pj respec-

tively. At this moment, we designate them as ’Constrained PT condition’ as following:

Pi → Pj ⇒ Aji(θ)− 3Gθ
ji ≤ 0; (127)

Pj → Pi ⇒ Aji(θ) + 3Gθ
ji ≤ 0; (128)

5.6 n-stress induced martensitic phases

We can immediately generalized our theory for n-th martensitic phases as following:

G =
n∑
i=1

fi (θ , ηi) +
n∑

i,j=1;i6=j

Āij η
2
i η

2
j +

n=3∑
i,j=1;i6=j

Kij η
2
i η

2
j (1− ηi − ηj)2

+K̄12...n η
2
1 η

2
2... η

2
n +

1

2

n∑
i=1

βi |∇ηi|2, (129)

where

fi (θ, ηi) = Ai(θ) q( ηi) +
(

∆ Gθ
i − σσσ ::: εεεti

)
g( ηi), (130)

and the generalized PT condition :

A→ Pi :
∂2G

∂η2
i

≤ 0 → σσσ ::: εεεti ≥
Ai(θ) + 3∆Gθ

i

3
; (131)

Pi → A :
∂2G

∂η2
i

≤ 0 → σσσ ::: εεεti ≥
Ai(θ)− 3∆Gθ

i

3
; (132)
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Pi → Pj :
∂2G

∂η2
i

≤ 0 → σσσ ::: (εεεtj − εεεti) ≥
Aji(θ)− 3∆Gθ

ji

3
; (133)

Pj → Pi :
∂2G

∂η2
i

≤ 0 → σσσ ::: (εεεtj − εεεti) ≥
Aji(θ) + 3∆Gθ

ji

3
; (134)

5.7 Specification of the Helmholtz energy of a single order parameter

First, let us present the expression for the Helmholtz free energy for one phase potential

Eq.(12) in terms of η1, which neglects the interface tension:

ψ̄0(εεε, η1, θ,∇∇∇η1) = ψe(εεε− εεεt(η1)− εεεθ(θ, η1), η1, θ) + f1(θ, η1) + ∇; (135)

f1(θ, η1) = ∆Gθ
1η

2
1(3− 2η1) + A1(θ)η2

1(1− η1)2; ∇ =
β10

2ρ0

|∇∇∇0η1|2. (136)

Here, ψe is the elastic energy and ψ∇ is the simplest gradient energy; the terms ∆Gθ
1η

2
1(3 −

2η1) and A1(θ)η2
1(1 − η1)2 are parts of the thermal (chemical) energy f1(θ, η1) related to the

thermal driving force for phase transformation and double-well barrier, respectively, ∆Gθ
1 is

the difference between the thermal parts of the Gibbs energies of P1 and A ; A1 and β10 are the

double-well energy and gradient energy coefficients. To introduce interface tension, we accept

the free energy in the following form:

ψ̄(εεε, η1, θ,∇∇∇η1) = ψe(εεε− εεεt(η1)− εεεθ(θ, η1), η1, θ) +
ρ0

ρ
ψ̆θ + ψ̃θ +

ρ0

ρ
∇; (137)

ψ̃θ + ψ̆θ = f1(θ, η1);
ρ0

ρ
= 1 + ε0; ∇ =

β10

2ρ0

|∇∇∇η1|2, (138)

where the proper division of f1(θ, η1) into two functions, ψ̃θ and ψ̆θ, is to be determined and

ε0 is the volumetric strain. Note that the material constants and functions in terms without

ρ0/ρ are defined per unit mass or (since ρ0 = const) per unit undeformed volume. The terms

with ρ0/ρ are multiplied by dmρ0/ρ = ρ0dV ; then the material constants and functions (β10

and A1) are defined per unit deformed volume dV . The reason why the two terms, ψ̆θ and ψ∇,
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are multiplied by ρ0/ρ to reproduce surface stress correctly. While usually in the small strain

approximation it is assumed ρ0/ρ ' 1, since ρ0/ρ is a linear function of volumetric strain ε0,

keeping ρ0/ρ results in additional contribution to stress even at infinitesimal strains. Indeed,

since

ρ0/ρ = 1 + ε0 = 1 + III:::εεε, then d(ρ0/ρ)/dεεε = III. (139)

Also,
∂ ψ̄

∂ εεε
=
∂ ψ̄

∂ εεεe
:::
∂ εεεe
∂ εεε

=
∂ ψ̄

∂ εεεe
. (140)

Now, constitutive equations for the stress tensor and an evolution equation for ηi from :

σσσ = ρ
∂ψ̄

∂εεε
− ρ

(
∇∇∇ηi ⊗

∂ψ̄

∂∇∇∇ηi

)
s

+ σσσd; Xi = −ρ∂ψ̄
∂ηi

+∇∇∇ ·
(
ρ
∂ψ̄

∂∇∇∇ηi

)
, (141)

Then it follows from Eqs.(137), (138), and (141)

σσσ = ρ0
∂ ψ̄

∂ εεε
− ρ ∂ψ̄

∂∇∇∇η1

⊗∇∇∇η1 + σσσd = ρ0
∂ ψe

∂ εεεe
+ ρ0(ψ̆θ + ∇)III − β10∇∇∇η1 ⊗∇∇∇η1 + σσσd. (142)

In the first term, we used the simplification ρ ' ρ0. Let us introduce nnn1 = ∇∇∇η1/|∇∇∇η1|, which

for the solution representing diffuse interface defines the unit normal to the diffuse interface.

Substituting Eq.(138) for ψ∇ in Eq.(142), we further specify

σσσ = σσσe + σσσst + σσσd; σσσe = ρ0
∂ ψe

∂ εεεe
; (143)

σσσst = (ρ0ψ̆
θ +

β10

2
|∇∇∇η1|2)III − β10∇∇∇η1 ⊗∇∇∇η1 = β10|∇∇∇η1|2 (III − nnn1 ⊗ nnn1)

+(ρ0ψ̆
θ − β10

2
|∇∇∇η1|2)III, (144)

Thus, we obtained decomposition of the stress tensor into an elastic part, σσσe (which looks ex-

actly the same as without surface tension), dissipative part, and a surface tension contribution,

which should be localized at the diffuse interface and equal to zero in the bulk, i.e., for η1 = 0

and η1 = 1. This implies the requirement that the function ψ̆θ should be localized at the diffuse 

interface. To obtain desired biaxial surface tension, the last term must be identically zero for

the solution representing propagating interface.
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1. Kinematics

1.1. Decomposition of the strain tensor εεε; volumetric strain ε0

εεε = (
◦
∇∇∇ uuu)s; εεε = εεεe + εεεt(η1) + εεεθ(θ, η1);

ρ0

ρ
= 1 + ε0; ε0 = εεε:::III. (145)

1.2. Transformation εεεt and thermal εεεθ strains

εεεt = ε̄εεt g(η1); εεεθ = εεεθA + (εεεθP1 − εεεθA) g(η1);

g(η1) = η2
1(3− 2η1). (146)

2. Helmholtz free energy per unit mass and its contributions

ψ̄(εεε, η1, θ,∇∇∇η1) = ψe(εεε− εεεt(η1)− εεεθ(θ, η1), η1, θ) +
ρ0

ρ
ψ̆θ + ψ̃θ +

ρ0

ρ
∇; (147)

ψ̆θ = A1(θ)η2
1(1− η1)2; ψ̃θ = ∆Gθ

1η
2
1(3− 2η1);

ψe =
1

2ρ0

εεεe:::EEE(η1):::εεεe; EEE(η1) = EEEA + (EEEP1 −EEEA)ϕ(aE, η1); ∇ =
β10

2ρ0

|∇∇∇η1|2.(148)

3. Stress tensor

σσσ = σσσe + σσσst + σσσd; (149)

σσσe = ρ0
∂ ψe

∂ εεεe
= EEE(η1):::εεεe; σσσst = (ρ0ψ̆

θ +
β10

2
|∇∇∇η1|2)III − β10∇∇∇η1 ⊗∇∇∇η1; σσσd = BBB:::ε̇εε. (150)

4. Ginzburg–Landau equation

η̇1 = LX = L

(
ρ

ρ0

σσσe:::
∂εεεt
∂η1

+
ρ

ρ0

σσσe:::
∂εεεθ
∂η1

− ρ∂ψ
e

∂η1

∣∣∣
εεεe
− ρ0

∂ψ̆θ

∂η1

− ρ∂ψ̃
θ

∂η1

+ β10∇∇∇2η1

)
. (151)

5. Momentum balance equation

∇···σσσ + ρfff = ρv̇vv . (152)

6. Boundary conditions for the order parameter

nnn1 ·
∂ψ

∂∇∇∇η1

= H. (153)

While the above equations are derived for an arbitrary nonlinear elasticity rule and relationship

for dissipative stresses σσσd, we specified them for linear anisotropic constitutive with EEE and BBB
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for fourth rank elastic moduli and viscosity tensors. Expressions for εεεt(η), εεεθ(θ, η), and EEE(η)

are derived in [2], where a, aθ, and aE are the material parameters and subscript A and P

designate austenite and martensite.

5.7.A Specification of the Helmholtz energy for two order parameters

Here, we present the expression for the Helmholtz free energy for two phase potential

Eq.(12) in terms of η1,η2 which neglects the interface tension:

ψ̄0(εεε, η1, η2, θ,∇∇∇η1,∇∇∇η2) = ψe(εεε0, e, ηi, θ) + f1(θ, η1) + f2(θ, η2) + Āη2
1η

2
2

+Zp(η1, η2) + ψ∇; (154)

f1(θ, η1) = ∆Gθ
1η

2
1(3− 2η1) + A1(θ)η2

1(1− η1)2;

f2(θ, η2) = ∆Gθ
2η

2
2(3− 2η2) + A2(θ)η2

2(1− η2)2;

∇ =
β10

2ρ0

|∇∇∇0η1|2 +
β20

2ρ0

|∇∇∇0η2|2 + b∇∇∇0η1∇∇∇0η2. (155)

To introduce interface tension, we accept the free energy in the following form:

ψ̄(εεε, η1, η2, θ,∇∇∇η1,∇∇∇η2) = ψe(εεε0, e, ηi, θ) +
ρ0

ρ
ψ̆θ + ψ̃θ +

ρ0

ρ
∇; (156)

ψ̃θ + ψ̆θ = f1(θ, η1) + f2(θ, η2) + Āη2
1η

2
2 + Zp(η1, η2);

ρ0

ρ
= 1 + ε0; ∇ =

β10

2ρ0

|∇∇∇0η1|2 +
β20

2ρ0

|∇∇∇0η2|2 + b∇∇∇0η1∇∇∇0η2., (157)

More explicitly :

ψ̆θ = A1(θ)η2
1(1− η1)2 + A2(θ)η2

2(1− η2)2 + Āη2
1η

2
2; (158)

ψ̃θ = ∆Gθ
1η

2
1(3− 2η1) + ∆Gθ

2η
2
2(3− 2η2) + Zp; (159)

ρ0/ρ = 1 + ε0 = 1 + III:::εεε, then d(ρ0/ρ)/dεεε = III. (160)

Also,
∂ ψ̄

∂ εεε
=
∂ ψ̄

∂ εεεe
:::
∂ εεεe
∂ εεε

=
∂ ψ̄

∂ εεεe
. (161)

Now, constitutive equations for the stress tensor and an evolution equation for ηi from :

σσσ = ρ
∂ψ̄

∂εεε
−
∑

ρ

(
∇∇∇ηi ⊗

∂ψ̄

∂∇∇∇ηi

)
s

+ σσσd; Xi = −ρ∂ψ̄
∂ηi

+
∑
∇∇∇ ·
(
ρ
∂ψ̄

∂∇∇∇ηi

)
, (162)
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Then it follows from Eqs.(156), (157), and (162)

σσσ = ρ0
∂ ψ̄

∂ εεε
−
∑

ρ
∂ψ̄

∂∇∇∇ηi
⊗∇∇∇ηi + σσσd = ρ0

∂ ψe

∂ εεεe
+ ρ0(ψ̆θ + ∇)III

−β10∇∇∇η1 ⊗∇∇∇η1 − β20∇∇∇η2 ⊗∇∇∇η2 − 2b∇∇∇η1 ⊗∇∇∇η2 + σσσd. (163)

In the first term, we used the simplification ρ ' ρ0. Let us introduce nnn1 = ∇∇∇η1/|∇∇∇η1|, which

for the solution representing diffuse interface defines the unit normal to the diffuse interface.

Substituting Eq.(155) for ψ∇ in Eq.(163), we further specify

σσσ = σσσe + σσσst + σσσd; σσσe = ρ0
∂ ψe

∂ εεεe
; (164)

σσσst = (ρ0ψ̆
θ +

β10

2
|∇∇∇η1|2 +

β20

2
|∇∇∇η2|2 + b∇∇∇η1∇∇∇η2)III − β10∇∇∇η1 ⊗∇∇∇η1

−β20∇∇∇η2 ⊗∇∇∇η2 − 2b∇∇∇η1 ⊗∇∇∇η2; (165)

Lets consider P1 -P2 interface and using the condition ∇∇∇η1 = −∇∇∇η2, we can rewrite

Eq.(165):

σσσst =

(
ρ0ψ̆

θ +
1

2
(β10 + β20 − 2b)|∇∇∇η1|2

)
III − (β10 + β20 − 2b)∇∇∇η1 ⊗∇∇∇η1; (166)

Earlier, we have β12 = β10 + β20 − 2b, substituting in Eq.(166)we get:

σσσst =

(
ρ0ψ̆

θ +
1

2
β12|∇∇∇η1|2

)
III − β12∇∇∇η1 ⊗∇∇∇η1; (167)

which similar to A -P interface stress.

Thus, we obtained decomposition of the stress tensor into an elastic part, σσσe (which looks

exactly the same as without surface tension), dissipative part, and a surface tension contribu-

tion, which should be localized at the diffuse interface and equal to zero in the bulk, i.e., for

η1 = 0 and η1 = 1. This implies the requirement that the function ψ̆θ should be localized at the

diffuse interface. To obtain desired biaxial surface tension, the last term must be identically

zero for the solution representing propagating interface.
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5.8 Complete system of equations for two order parameters

Below we collect the final complete system of equations for two order parameters.

1. Kinematics 1.1. Decomposition of the strain tensor εεε; volumetric strain ε0

εεε = (
◦
∇∇∇ uuu)s; εεε = εεεe +

∑
εεεt(ηi) +

∑
εεεθ(θ, ηi);

ρ0

ρ
= 1 + ε0; ε0 = εεε:::III. (168)

1.2. Transformation εεεt and thermal εεεθ strains

εεεt =
∑

ε̄εεti g(ηi); εεεθ = εεεθA +
∑

(εεεθPi
− εεεθA) g(ηi);

g(ηi) = η2
i (3− 2ηi). (169)

2. Helmholtz free energy per unit mass and its contributions

ψ̄(εεε, η1, η2, θ,∇∇∇η1,∇∇∇η2) = ψe(εεε0, e, ηi, θ) +
ρ0

ρ
ψ̆θ + ψ̃θ +

ρ0

ρ
∇; (170)

ψ̆θ =
∑

Ai(θ)η
2
i (1− ηi)2 + Āη2

1η
2
2; ψ̃θ =

∑
∆Gθ

i η
2
i (3− 2ηi) + Zp;

ψe =
1

2ρ0

∑
εεεe:::EEE(η1):::εεεe; EEE(ηi) = EEEA + (EEEPi −EEEA)ϕ(aE, ηi); . (171)

∇ =
β10

2ρ0

|∇∇∇η1|2 +
β20

2ρ0

|∇∇∇η2|2 +
b

ρ0

∇∇∇η1∇∇∇η2; (172)

3. Stress tensor

σσσ = σσσe + σσσst + σσσd; (173)

σσσe = ρ0
∂ e

∂ εεεe
= EEE(ηi):::εεεe; σσσd = BBB:::ε̇εε. (174)

σσσst = (ρ0ψ̆
θ +

β10

2
|∇∇∇η1|2 +

β20

2
|∇∇∇η2|2 + b∇∇∇η1∇∇∇η2)III − β10∇∇∇η1 ⊗∇∇∇η1

−β20∇∇∇η2 ⊗∇∇∇η2 − 2b∇∇∇η1 ⊗∇∇∇η2; (175)

4. Ginzburg–Landau equation

η̇i = LX = L

(
ρ

ρ0

σσσe:::
∂εεεt
∂ηi

+
ρ

ρ0

σσσe:::
∂εεεθ
∂ηi
− ρ∂ψ

e

∂ηi

∣∣∣
εεεe
− ρ0

∂ψ̆θ

∂ηi
− ρ∂ψ̃

θ

∂ηi
+
∑

βi0∇∇∇2ηi

)
. (176)
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5. Momentum balance equation

∇···σσσ + ρfff = ρv̇vv . (177)

6. Boundary conditions for the order parameter

nnni ·
∂ψ

∂∇∇∇ηi
= H. (178)

While the above equations are derived for an arbitrary nonlinear elasticity rule and relationship

for dissipative stresses σσσd, we specified them for linear anisotropic constitutive Eqs with EEE and

BBB for fourth rank elastic moduli and viscosity tensors. Expressions for εεεt(η), εεεθ(θ, η), and EEE(η)

are derived in [2], where a, aθ, and aE are the material parameters and subscript A and M

designate austenite and martensite.

5.8.A Explicit Ginzburg-Landau equation for P1 – P2 PT

For stress induced case, We can rewrite Eq.(86) for stress induced case:

G( θ, η1) = A12(θ) q( η1) + (∆ Gθ
2 − σσσ ::: εεεt2) + ∆ Gθ

12g( η1)

−(σσσ ::: εεεt1 − σσσ ::: εεεt2)g( η1) +
1

2
β12 |∇η1|2 (179)

where,

∆ Gθ
12 = ∆ Gθ

1 − ∆ Gθ
2

A12(θ) = A1(θ) + A2(θ) + Ā

β12 = (β10 + β20 − 2 b) (180)

g( η1) = η2
1 (3− 2 η1)

q( η1) = η2
1 (1− η1)2

(181)

For two variants:

η̇1 = LX = L

(
ρ

ρ0

σσσe:::
∂εεεt
∂η1

− ρ0
∂ψ̆θ

∂η1

− ρ∂ψ̃
θ

∂η1

+ β12∇∇∇2η1

)
. (182)

154



Here 1st term ,

ρ

ρ0

σσσe:::
∂εεεt
∂η1

= 6
ρ

ρ0

(σσσe:::εεεt1 − σσσe:::εεεt2) η1 (1− η1). (183)

2nd term ,

ρ0
∂ψ̆θ

∂η1

= 2ρ0A12η1 (1− 3η1 + 2η2
1). (184)

3rd term ,

ρ
∂ψ̃θ

∂η1

= 6ρ (∆Gθ
1 −∆Gθ

2) η1 (1− η1). (185)

Complete G-L equation :

η̇1

L
= 6

ρ

ρ0

(σσσe:::εεεt1 − σσσe:::εεεt2) η1 (1− η1)− 2ρ0A12η1 (1− 3η1 + 2η2
1)

−6ρ (∆Gθ
1 −∆Gθ

2) η1 (1− η1) + β12∇∇∇2η1. (186)

5.8.B Explicit Ginzburge-Lindau equation for A1 – P1 and A1 – P2 PT

For stress induced case We can rewrite Eq.(12) for stress induced case:

G(σσσ, θ, η1, η2) = (∆ Gθ
1 − σσσ ::: εεεt1) g( η1) + (∆ Gθ

2 − σσσ ::: εεεt2) g( η2)

+A1(θ) q( η1) + A2(θ) q( η2) + Āη2
1 η

2
2 +K12 η

2
1 η

2
2 (1− η1 − η2)2

+
1

2

(
β10 |∇η1|2 + β20 |∇η2|2 + 2b∇η1.∇η2

)
; (187)

Where

g( η) = η2 (3− 2 η)

q( η) = η2 (1− η)2

(188)

Complete system of equations for A1 – Pi PT

Below we collect the final complete system of equations for a A1 – Pi PT.

1. Kinematics

1.1. Decomposition of the strain tensor εεε; volumetric strain ε0

εεε = (
◦
∇∇∇ uuu)s; εεε = εεεe + εεεt(η1, η2);

ρ0

ρ
= 1 + ε0; ε0 = εεε:::III. (189)
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1.2. Transformation strain εεεt

εεεt = εεεt1 η
2
1(3− 2η1) + εεεt2 η

2
2(3− 2η2). (190)

2. Helmholtz free energy per unit mass and its contributions

ψ̄(εεε, η1, η2, θ,∇∇∇η1,∇∇∇η2) = ψe(εεε0, e, η1, η2, θ) +
ρ0

ρ
ψ̆θ + ψ̃θ + ψ̃p +

ρ0

ρ
∇; (191)

Barrier between phases:

ψ̆θ = A1 η
2
1 (1− η1)2 + A2 η

2
2 (1− η2)2 + Ā η2

1 η
2
2; (192)

Driving force for phase transformation:

ψ̃θ = ∆Gθ
1 η

2
1(3− 2η1) + ∆Gθ

2 η
2
2(3− 2η2); (193)

Penalty contribution:

ψ̃p = K12 η
2
1 η

2
2 (1− η1 − η2)2; (194)

Gradient energy:

∇ =
1

2

(
β10 |∇η1|2 + β20 |∇η2|2 + 2b∇η1 .∇η2

)
; (195)

3. Stress tensor

σσσ = σσσe + σσσst; (196)

σσσe =
∂ ψe

∂ εεεe
= EEE:::εεεe. (197)

Surface tension:

σσσst = (ψ̆θ + ∇)III − β10∇∇∇η1 ⊗∇∇∇η1 − β20∇∇∇η2 ⊗∇∇∇η2 − 2b∇∇∇η1 ⊗∇∇∇η2

= [A1 η
2
1 (1− η1)2 + A2 η

2
2 (1− η2)2 + Ā η2

1 η
2
2 +

1

2
β10 |∇η1|2

+
1

2
β20 |∇η2|2 + 2b∇η1 .∇η2] III − (β10∇∇∇η1 ⊗∇∇∇η1

+β20∇∇∇η2 ⊗∇∇∇η2 + 2b∇∇∇η1 ⊗∇∇∇η2); (198)

4. Ginzburg–Landau equation

For two variants:
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A – P1 PT:

η̇1 = L1X1 = L1

(
ρ

ρ0

σσσe:::
∂εεεt
∂η1

− ρ0
∂ψ̆θ

∂η1

− ρ∂ψ̃
θ

∂η1

− ρ∂ψ̃
p

∂η1

+ β10∇∇∇2η1 + 2b∇∇∇2η2

)
. (199)

Here 1st term ,

ρ

ρ0

σσσe:::
∂εεεt
∂η1

= 6
ρ

ρ0

(σσσe:::εεεt1) η1 (1− η1). (200)

2nd term ,

ρ0
∂ψ̆θ

∂η1

= 2ρ0

(
A1η1 (1− 3η1 + 2η2

1) + Āη1η
2
2

)
. (201)

3rd term ,

ρ
∂ψ̃θ

∂η1

= 6ρ (∆Gθ
1) η1 (1− η1). (202)

.

4th term ,

ρ
∂ψ̃p

∂η1

= 2ρK12 η1η2 (1− η1 − η2) [η2(1− η1 − η2)− η1η2] (203)

Complete G-L equation A1 – P1 PT:

η̇1

L1

= 6
ρ

ρ0

(σσσe:::εεεt1) η1 (1− η1)− 2ρ0

(
A1η1 (1− 3η1 + 2η2

1) + Āη1η
2
2

)
−6ρ (∆Gθ

1) η1 (1− η1)− 2ρK12 η1η2 (1− η1 − η2) [η2(1− η1 − η2)− η1η2]

+β10∇∇∇2η1 + 2b∇∇∇2η2 (204)

A – P2 PT:

η̇2 = L2X2 = L2

(
ρ

ρ0

σσσe:::
∂εεεt
∂η2

− ρ0
∂ψ̆θ

∂η2

− ρ∂ψ̃
θ

∂η2

− ρ∂ψ̃
p

∂η2

+ β20∇∇∇2η2 + 2b∇∇∇2η1

)
. (205)

Here 1st term ,

ρ

ρ0

σσσe:::
∂εεεt
∂η2

= 6
ρ

ρ0

(σσσe:::εεεt2) η2 (1− η2). (206)

2nd term ,

ρ0
∂ψ̆θ

∂η2

= 2ρ0

(
A2η2 (1− 3η2 + 2η2

2) + Āη2η
2
1

)
. (207)
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3rd term ,

ρ
∂ψ̃θ

∂η2

= 6ρ (∆Gθ
2) η2 (1− η2). (208)

. 4th term ,

ρ
∂ψ̃p

∂η2

= 2ρK12η1η2(1− η1 − η2) [η1(1− η1 − η2)− η1η2] (209)

Complete G-L equation A – P2 PT:

η̇1

L
= 6

ρ

ρ0

(σσσe:::εεεt2) η2 (1− η2)− 2ρ0

(
A2η2 (1− 3η2 + 2η2

2) + Āη2η
2
1

)
−6ρ (∆Gθ

2) η2 (1− η2)− 2ρK12η1η2(1− η1 − η2) [η1(1− η1 − η2)− η1η2]

+β20∇∇∇2η2 + 2b∇∇∇2η1 (210)

5. Momentum balance equation

∇···σσσ + ρfff = ρv̇vv . (211)

6. Boundary conditions for the order parameter

nnni ·
∂ψ

∂∇∇∇ηi
= H. (212)

5.9 Generalized theory for multivarient transformation

We will use the following expression for the isotropic gradient energy [5]:

ρ0ψ
∇ =

n∑
i=1

βi0
2
|∇∇∇ηi|2 + b

n∑
i=1

n∑
j=1,i6=j

∇∇∇ηi · ∇∇∇ηj. (213)

the expression for stress tensor:

σσσ = ρ0
∂ ψ̄

∂ εεε
−

n∑
i=1

(βi0∇∇∇ηi ⊗∇∇∇ηi + b∇∇∇ηi ⊗
n∑

j=1,i6=j

∇∇∇ηj) + σσσd. (214)

driving force for change in ηi, and then in the simplest Ginzburg-Landau equation η̇j = LjiXi,

leads to

η̇j = Lji

(
−ρ∂ψ̄

∂ηi
+ (βi0∇∇∇2ηi + b

n∑
k=1,k 6=i

∇∇∇2ηk)

)
, Lji = Lij; j = 1, ..., n. (215)
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Thus, the kinetic equations for the order parameters for b 6= 0 are coupled through Laplacians

in addition to traditional coupling through the local energy terms and transformation strain.

The expression for the Helmholtz free energy in the form :

ψ̄(εεε, ηi, θ,∇∇∇ηi) = ψe(εεε− εεεt(ηi)− εεεθ(θ, ηi), ηi, θ) +
ρ0

ρ
ψ̆θ + ψ̃θ +

ρ0

ρ
∇. (216)

where,

ψ̆θ =
n∑
i=1

Ai(θ)η
2
i (1− ηi)2 +

n−1∑
i=1

n∑
j=i+1

Āijη
2
i η

2
j . (217)

ψ̃θ =
n∑
i=1

∆Gθ
i (θ)η

2
i (3− 2ηi)) +

n−1∑
i=1

n∑
j=i+1

Zij. (218)

Zij = Kij (ηi + ηj − 1)2 η2
i η

2
j . (219)

Similarly, we obtain for the stress tensor and its elastic and interface tension components:

σσσ = σσσe + σσσst + σσσd; σσσe = ρ0
∂ψe

∂εεεe
. (220)

σσσst = ρ0(ψ∇ + ψ̆θ)III −
n∑
i=1

(βi0∇∇∇ηi ⊗∇∇∇ηi + b∇∇∇ηi ⊗
n∑

j=1,i6=j

∇∇∇ηj). (221)

At the Pi – Pj diffuse interface, all ηk = 0 for k 6= i and k 6= j. Also, nnni = ∇∇∇ηi

|∇∇∇ηi|
= −nnnj =

− ∇∇∇ηj

|∇∇∇ηj |
. Consequently, at the Pi – Pj diffuse interface one has

ρ0ψ
∇ =

βi0
2
|∇∇∇ηi|2 +

βj0
2
|∇∇∇ηj|2 + b∇∇∇ηi · ∇∇∇ηj =

(βi0 + βj0 − 2b)

2
|∇∇∇ηi|2 =

βji
2
|∇∇∇ηi|2. (222)

σσσst = ρ0(ψ∇ + ψ̆θ)III − (βi0∇∇∇ηi ⊗∇∇∇ηi + βj0∇∇∇ηj ⊗∇∇∇ηj + 2b∇∇∇ηi ⊗∇∇∇ηj) (223)

Thus, at the structure of the expression for surface tension for the Pi – Pj diffuse interface is

completely similar to that for the A – P interface .

After substitution of all contributions in the Ginzburg-Landau equation, one obtains

η̇j = Lji

(
ρ

ρ0

σσσe:::
∂εεεt
∂ηi

+
ρ

ρ0

σσσe:::
∂εεεθ
∂ηi
− ρ∂ψ

e

∂ηi

∣∣∣
εεεe
− ρ0

∂ψ̆θ

∂ηi
− ρ∂ψ̃

θ

∂ηi
+ (βi0∇∇∇2ηi + b

n∑
k=1,k 6=i

∇∇∇2ηk)

)
.(224)

Similar to the single-variant case.

In this section, we develop PFA, which with high and controllable accuracy satisfy all

the desired conditions for arbitrary n phases. We utilize the same order parameters ηi like
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for martensitic PT and, instead of explicit constraints, include in the simplest potential the

terms that penalize deviation of the trajectory in the order parameter space from the straight

lines connecting each two phases. These penalizing terms do not contribute to the instability

conditions and strictly speaking correct PT criteria follow from the instability conditions for

O↔P i PT only. However, when the magnitude of the penalizing term grows to infinity and

impose strict constraint ηi+ηj = 1 and ηk = 0 for all k 6= i, j, correct PT conditions for P i↔P j

PTs do follow from the instability conditions. Since for a finite magnitude such a constraint is

applied approximately only, there is some deviation from the ideal equilibrium phases and PT

conditions. However, numerical simulations for the almost worst cases demonstrate that these

deviations are indeed small. This PFA allows analytical solution for interfaces between each

two phases, which can be used to calibrate interface, width, energy, and mobility; it allows

for the first time for a multiphase system to include consistent expression for interface stresses

for each interface; it includes or excludes the third phase within interface between two phases

phased thermodynamic and kinetic consideration.

We designate contractions of tensors AAA = {Aij} and BBB = {Bji} over one and two indices

as AAA···BBB = {Aij Bjk} and AAA:::BBB = Aij Bji, respectively. The subscript s mean symmetrization,

the superscript T designates transposition, the sub- and superscripts e, th, and t mean elastic,

thermal, and transformational strains, and∇∇∇ and∇∇∇0 are the gradient operators in the deformed

and undefromed states.

For simplicity and compactness, the small strains will be considered but with some minimal

geometric nonlinearities required to introduce interface stresses [6, 8, 9]. Generalization for large

strain is straightforward [4, 9] and the model problem will be solved in large strain formulation.

The Helmholtz free energy per unit undeformed volume has the following form:

=
ρ0

ρt
ψe(εεεe, ηi, θ) +

ρ0

ρ
ψ̆θ + ψ̃θ +

ρ0

ρ
∇ + p. (225)

ψ̆θ =
∑

Ai(θ)η
2
i (1− ηi)2 +

∑
Āijη

2
i η

2
j ; (226)

ψ̃θ =
∑

∆Gθ
i (θ)q(ηi); q(ηi) = η2

i (3− 2ηi); (227)

ψp =
∑

Kij (ηi + ηj − 1)2 ηliη
l
j +
∑

Kijkη
2
i η

2
j η

2
k; l ≥ 2. (228)

ψe = εεεe:::EEE(ηi):::εεεe; EEE(ηi) = EEE0 +
∑

(EEEi −EEE0)q(ηi); (229)
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∇ =
∑

0.5βij∇∇∇ηi · ∇∇∇ηj. (230)

εεε = (∇∇∇0uuu)s = εεεe + εεεt(ηi) + εεεθ(θ, ηi);
ρ0

ρ
= 1 + ε0; ε0 = εεε:::III;

ρ0

ρt
= 1 + (εεεt + εεεθ):::III.(231)

εεεt =
∑

εεεtiq(ηi); εεεθ = εεεθ0 +
∑

(εεεθi − εεεθ0) q(ηi). (232)

Here θ is the temperature, uuu is the displacements, ∆Gθ
i is the difference in the thermal energy

between P i and O, Ai and Āij are the double-well barriers between P i and O and between

P i and P j, εεεti and εεεθi are the transformation and thermal strains of P i, εεεθ0 is the thermal

strains of O ; ρ, ρ0, and ρt are the mass densities in the deformed, undeformed, and stress-free

states, βij are the gradient energy coefficients, respectively, and ψe is the elastic energy; each

coefficient, Āij, Āij, and Kijk, is equal to zero if two subscripts coincide. Despite small strain

approximation, we keep some geometrically nonlinear terms (ρ0/ρt, ρ0/ρ, and gradient ∇∇∇ with

respect to deformed state) in order to correctly reproduce interface and elastic stresses.

Application of the thermodynamic laws and linear kinetics (see, e.g. [6, 8, 9]) results in

σσσ = σσσe + σσσst; σσσe =
ρ

ρ0

∂ψe

∂εεεe
. (233)

σσσst = (ψ∇ + ψ̆θ)III −
∑

βij∇∇∇ηi ⊗∇∇∇ηj; (234)

η̇i = LijXj = Lij

(
σσσe:::

∂(εεεt + εεεθ)

∂ηj
− ∂ψ

∂ηj
+
∑

βij∇∇∇2ηj

)
; Lij = Lji, (235)

where Xi is the thermodynamic driving force to change ηi, Lij are the kinetic coefficients, and

σσσ is the true Cauchy stress tensor. We designate the set of the arbitrary order parameters

as η̃ = (η1, ..., ηi, ..., ηn), with η̂0 = (0, ..., 0) for O and η̂i = (0, ..., ηi = 1, ..., 0) for P i, and

with η̄i = (0, ..., ηi, ..., 0) for one nonzero parameter only. It is easy to check that O and P i

are homogeneous solutions of the Ginzburg-Landau equations (235) for arbitrary stresses and

temperature; consequently, the transformation strain for any PT is independent of stresses and

temperature.

Without the term ψp, the local part of free energy is much simpler than in [2, 3] and does

not contain interaction between phases. The terms with Kijk penalize presence of three phases

at the same material point. By increasing Kijk one can control and, in particular, completely

exclude the third phase within interface between two other phases. For homogeneous states,

this term always excludes presence of three phases at the same point, because it increases energy

in comparison with two-phase state. The terms with Kij penalize deviations from hyperplanes
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ηi = 0 and ηi + ηj = 1 and exponent l determines relative weight of these penalties. In

combination with penalization of more than two phases, this constraint penalizes deviation

from the desirable transformation paths: along coordinate lines η̄i along which O↔P i PTs

occur, and lines ηi + ηj = 1, ηk = 0 ∀k 6= i, j, along which P i ↔P j PTs occur. In such a way,

we do not need to impose explicit constraint
∑
ηi = 1 and will be able to (approximately)

satisfy all desired conditions, including instability conditions. Note that there is no need for

penalizing ηi = 0; however, for l = 0 the term with Kij produces undesired contribution to ψ

for ηi = 0.

For compactness, instability conditions will be presented for the case with the same elastic

moduli of all phases and ρ0 ' ρ. Since ∂Xi/∂ηj(η̂k) = 0, instability conditions for thermody-

namically equilibrium homogeneous phases result in the following PT criteria:

O→ Pi : ∂Xi(η̂0)/∂ηi ≥ 0→ σσσe:::(εεεti + εεεθi − εεεθ0)−∆Gθ
i ≥ Ai(θ)/3; (236)

Pi → O : ∂Xi(η̂i)/∂ηi ≥ 0→ σσσe:::(εεεti + εεεθi − εεεθ0)−∆Gθ
i ≤ −Ai(θ)/3; (237)

Pj → Pi : ∂Xi(η̂j)/∂ηi ≥ 0→ σσσe:::(εεεti + εεεθi − εεεθ0)−∆Gθ
i ≥ (Ai(θ) + Ā)/3 ⇒ wrong. (238)

While conditions for O↔P i PTs are logical (work of stress on jump in transformation and

thermal strains exceeds some threshold), condition for P j → P i does not contain information

about phase P j, which is contradictory. Since first and second derivatives of ψp are zero for

O and P i, these terms do not change phase equilibrium and instability conditions for homo-

geneous phases. However, as we will see below, these terms play key role in the development

of noncontradictory and flexible PFA.

If O↔ P i PT is considered only with all other ηj = 0, Eqs. (226)-(230) simplify:

ψ̆θ = Ai(θ)η
2
i (1− ηi)2; ψ̃θ = ∆Gθ

i (θ)q(ηi); ψp = 0; ∇ = 0.5βii∇∇∇ηi · ∇∇∇ηi. (239)

EEE(ηi) = EEE0 + (EEEi −EEE0)q(ηi); εεεt = εεεtiq(ηi); εεεθ = εεεθ0 + (εεεθi − εεεθ0)q(ηi). (240)

σσσst = (ψ∇ + ψ̆θ)III − βii∇∇∇ηi ⊗∇∇∇ηi; (241)

η̇i = Lii

(
σσσe:::(εεεti + εεεθi − εεεθ0)

dq

dηi
− ∂ψ

∂ηi
+
∑

βii∇∇∇2ηi

)
. (242)

These equations possess all desired properties [2–4] of two-phase models.
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Next, we consider how to make description of P j → P i PTs completely similar to that of

O↔ P i PTs. Let us increase parameters Kij and Kijk to very high value so that they impose

constraints ηi + ηj = 1 and ηk = 0 ∀k 6= i, j. Substituting these constraints in Eq. (225) and

taking into account the following properties of function q, q (1− ηi) = 1 − q (ηi) (we could

not find any other low-degree polynomial that satisfies this condition, which is crucial for our

PFA), we reduce all equations to the single order parameter:

ψ̆θ = Aij(θ)η
2
i (1− ηi)2; Aij = Ai + Aj + Āij; (243)

ψ̃θ = ∆Gθ
j + ∆Gθ

ij(θ)q(ηi); ∆Gθ
ij = ∆Gθ

i −∆Gθ
j ; (244)

EEE(ηi) = EEEj + (EEEi −EEEj)q(ηi); (245)

∇ = 0.5bij∇∇∇ηi · ∇∇∇ηi; bij = βii + βjj − βij. (246)

εεεt = εεεtj + (εεεti − εεεtj)q(ηi); εεεθ = εεεθj + (εεεθi − εεεθj)q(ηi). (247)

σσσst = (ψ∇ + ψ̆θ)III − βij∇∇∇ηi ⊗∇∇∇ηi; lij = (LiiLjj − L2
ij)/(Ljj + Lij); (248)

η̇i = lij

(
σσσe:::(εεεti + εεεθi − εεεtj − εεεθj)

dq

dηi
− ∂ψ

∂ηi
+
∑

βii∇∇∇2ηi

)
. (249)

Pj → Pi : ∂Xi(η̂j)/∂ηi ≥ 0→ σσσe:::(εεεti + εεεθi − εεεtj − εεεθj)−∆Gθ
ij ≥ Aij(θ)/3. (250)

It is evident that Eqs.(243)-(250) for P j → P i PTs are non-contradictory (i.e., contain an

expected combination of parameters of P j and P i) and coincide to within constants and des-

ignations with Eqs.(239)-(242) for O↔ P i PTs, i.e., they are as good as equations for O↔ P i

PTs. Thus, our goal is achieved.

Note that instability condition (250) works in the limit Kij →∞; for finite Kij it is imposed

approximately only. To better understand interaction between instability conditions (238) and

(250), we consider some examples. We consider the case when PT conditions for O↔ P i

PTs (238), (238) and (250) for P j → P i PT are not met, but when wrong condition (238)

is fulfilled with quite large deviation from stability region. Under such conditions, P j loses

its stability, but instead of transforming to P j, the local energy minimum slightly shifts from

η1 = 1; η2 = 0 to close point η1 = 0.989; η2 = 0.019 (Fig. 9). There is an energy barrier (saddle

point) between P j and P i and until it disappears (i.e., correct condition (250) for P j → P i PT

is met), P j → P i PT is impossible. Thus, approximate character of the imposed constraint
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through the penalty term exhibits itself in slight shift of the local minimum from P j to some

very close point, which should essentially not affect accuracy of simulations. If PT conditions

a) b) 

Figure 9: Energy level plot of the free energy at zero stresses for A1 + 3∆Gθ
1 = 1000, A1 −

3∆Gθ
1 = 400, A2 + 3∆Gθ

2 = 230, A2 − 3∆Gθ
2 = 2570, Ā + A1(θ) + 3∆Gθ

1 = −250 and
A21(θ)− 3Gθ

21 = 150, all in J/m3 ; (b) the zoomed part of the plot near P1 .

for O↔ P i PTs (238) and (238) are not fulfilled but correct condition (250) for P j → P i PT

is met, then these equations results in Ā < 0. It is easy to show that in this case the wrong

P j → P i PT condition (238) should be also fulfilled. Thus, if correct P j → P i PT condition

is met, this PT will occur.

Due to equivalence of all equations for O↔ P i and P j → P i PTs, analytical solution for

any propagating with velocity c interface is [12]:

η = 0.5 tanh [3(x− ct)/δ] + 0.5; δ =
√

18β/Ai(θ); c = δ∆Gθ(θ)/L; γ = β/δ, (251)

where δ and γ are the interface width and energy. In contrast to solutions for other interpolating

functions q [6, 8, 9], interface width and energy are independent of ∆Gθ(θ). That is why ψ̆θ

and interface stresses σσσst are also independent of ∆Gθ(θ). Eq.(251) allow to calibrate for each

phase Ai(θ), β, and L when width, energy, and mobility of interfaces between each pair of

phases are known.
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5.10 Simulation Results

Obtained system of equations have been solved with the help of finite element code COM-

SOL for various problems. We solved exactly the same problem on evolution of two-variant

microstructure in NiAl alloy during martensitic PT including tip bending and splitting in

martensitic variants as in [7]. Note that the theory in [7] for two variants satisfies all required

conditions exactly but cannot be generalized for more than two variant. Some material pa-

rameters (like EEE, εεεti, ∆Gθ(θ), θe, ∆s) here have been chosen the same as in [7]; other (Aij(θ),

βij(θ), Lij, θc) are chosen in way to get the temperature dependence of the energy, width,

and mobility of all interfaces, and temperature for the loss of stability of P like in [7]. In

our example simulations, we use the material parameters for the cubic to tetragonal PT in

NiAl found in [2]: ∆s0 = 1.46MPaK−1, θe = 125 K, unless other stated. These parameters

correspond to a twin interface energy E12 = 0.978J/m2 and width ∆12 = 0.927 nm. Isotropic

linear elasticity is used for simplicity; Young’s modulus E = 177.034GPa and Poisson’s ratio

ν = 0.238. The equilibrium equation ∇∇∇ · σσσ = 0 is utilized. In the plane stress 2D problems,

only P1 and P2 are considered; the corresponding transformation strains in the cubic axes

are εεεt1 = (0.125,−0.078,−0.078) and εεεt2 = (−0.078, 0.125,−0.078). The FEM approach was

developed and incorporated in the COMSOL code. All lengths, stresses, and times are given

in units of nm, GPa, and ps. All external stresses are normal to the deformed surface

Example 1

P1 ↔ P1 Interface Problem

Here, we consider P1 ↔ P1 interface problem and investigate the effect of K12 on order

parameter distribution (Figs.6, 7). Ideally, 1 − η1 − η2 should be equal to zero. But we

observed as we increase the value of K12 , the quantity 1−η1−η2 goes to zero. That’s validate

the correctness of the formulation.

Levitasetal-PRB-twin-13
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Figure 10: Distribution of 1−η1−η2 along the mid section of sample for P1↔ P1 transformation.
K12 varies from 1.0× 108 to 20.0× 108

Figure 11: Distribution of 1−η1−η2 along the mid section of sample for P1↔ P1 transformation.
K12 varies from 20.0× 108 to 300.0× 108
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The solution to a benchmark problem is described in [7] and main results are presented here.

We consider a square 50×50 sample with the austenite lattice rotated by α = 45o at θ = 50K.

On one horizontal and one vertical surface, a roller support (zero normal displacements and zero

shear stresses) was used. Homogeneous normal displacements at the other two surfaces were

prescribed and held constant during the simulations, resulting in a biaxial normal strain of 0.01.

Shear stresses were kept at zero on the external surfaces. The stationary solution from Fig.3 [7]

was taken as an initial condition for the problem with the following modifications: temperature

was reduced to θ = 0K; the parameter β12 was reduced to β12 = 5.18 × 10−11 N , which led

to a twin interface energy E12 = 0.303J/m2 and width ∆12 = 0.263nm; the components

of the transformation strain have been changed to the values UUU t1 = (1.15, 0.93, 0.93) and

UUU t2 = (0.93, 1.15, 0.93) corresponding to NiAl alloy in [18]; . Due to the reduction in the

interface energy, the number of twins increased by splitting of the initial twins (Figs. 14, 15).

Without austenite, the rigid vertical boundaries led to a high elastic energy. That is why

restructuring produced vertical twins near each of the vertical sides in proportion, reducing

the energy of elastic stresses due to the prescribed horizontal strain. When the microstructure

transformed to fully formed twins separated by diffuse interfaces, narrowing and bending of

the tips of the horizontal P2 plates was observed (Figs. 8c and 9c), as in experiments [?] and

strain-based simulations [11]. Since the invariant plane interface between P1 and P2 requires

mutual rotation of these variants by the angle ω = 12.1o (cosω = 2k1k2/(k
2
1 + k2

2) = 0.9778)

[18], the angle between the horizontal and vertical P2 variants is 1.5ω = 18.15o, which is

in good agreement with our simulations. Measured angles between the tangent to the bent

tip and the horizontal line in the experiment [18] and calculations (Fig. 14c,15c) are in good

quantitative agreement.Here we consider two cases correspondingK12 = 1.5×1012 (Fig. 14) and

K12 = 7.25× 1013 (Fig. 15), where we get same evolution of micro-structure.Since, we always

get same evolution, so its independent of K12. This is very important conclusion . Additionally,

large value of K12 helps to reach final micro-structure faster and its induced less stress (Figs.

14,15).In addition, Kijk = 0 and two values of K12 = 1.5×1012 and K12 = 7.25×1013 J/m3 have

been used. Results of the current simulations for both K12 practically coincide with those in

[7]; they resemble experimental microstructure from [18, 19] and reproduce quantitatively the

bending angle (Fig. 12). Corresponding stress fields, including interface stresses is presented
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in Fig. 13.

 

T2 

θ=76.9o 

θ=77.1o 
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T1 T2 
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θ=77.2o 

θ=77o 
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T2 

T2 

(c) (b)  (a) 

Figure 12: Stationary solution for two-variant martensitic microstructure exhibiting bending
and splitting martensitic tips based on the current theory (a) and theory in [7] (b); experimental
microstructure from [18, 19] (c).
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η1 –η2 σy  σx - σy

(a) t = 10 ps 

(b) t = 85  ps 

(c) t = 150  ps 

Figure 14: Evolution of bending and splitting microsture in time (a-c) for initial randomly
distributed order parameter η1, η2 and K12 = 1.5× 1012 of an A sample. Left Column: η1− η2;
second and third columns: σx and σx − σy; right column:σxy. Here P2 (red),P1 (blue)and
A(green) in time (a-c).
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η1 –η2 σy  σx - σy

(a) t = 0 ps 

(b) t = 95  ps 

(c) t = 180  ps 

Figure 15: Evolution of bending and splitting microsture in time (a-c) for initial randomly
distributed order parameter η1, η2 and K12 = 7.25 × 1013 of an A sample. Left Column:
η1 − η2; second and third columns: σx and σx − σy; right column:σxy. Here P2 (red),P1

(blue)and A(green) in time (a-c).
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Nanoindentation-induced twinning P2→P1 was studied in a P2 sample with a pre-existing

P1 embryo of radius 2 under the indentor (Fig. 16-17). The sample was obtained from a

square A sample of size 50× 50 by transforming it homogeneously to P2. The cubic axes and

transformation strain were rotated by α = 31o with respect to the coordinate axes. The value

K12 = 5 × 1011 was used. Initial conditions were: η1 = 0 everywhere; η2 = 0.9 inside the

embryo and η1 = 0.999 in the rest of the sample. A uniform pressure between the indentor

of width 4 and the sample was increased linearly from 2 to 3 GPa over 110ps. The bottom

sample surface was constrained by a roller support (zero normal displacements and zero shear

stresses) and point F was fixed; all other surfaces are stress-free. With increasing load, a

twin P1 appears under the indenter and grows in a wedge shape with a sharp tip (Fig. 16a,

b). Since the bottom of the sample was constrained by the roller support, the twin P1 could

not propagate through the entire sample. In the same problem but with a stress-free section

of length 20 at the bottom (Fig.17d-e), the twin propagated completely through the sample

and widened with increasing load. The load was then reduced to zero: the width of the twin

then decreased to zero without a change in length (Fig.17f-g). These results are in qualitative

agreement with experiments [21] and previous simulations [?]. Since dislocation plasticity and

interface friction [20, 22] are neglected, there is no residual twin.

To summarize, we developed PFA for multiphase materials, which with high and control-

lable accuracy satisfy all the desired conditions for arbitrary n phases. Instead of explicit

constraints, we included in the simplest potential the terms that penalize deviation of the

trajectory in the order parameter space from the straight lines connecting each two phases. It

describes each of the PTs with the single order parameter, which allows us to use analytical

solution to calibrate each interface energy, width, and mobility. It reproduces the desired PT

criteria via instability conditions; introduces interface stresses, and allows to control presence

of the third phase at the interface between two other phases.

A finite-element simulations exhibit very good correspondence with results based on exact

three-phase model in [7] (which, however, cannot be generalized for n > 3) and with nontrivial

experimental microstructure. Developed approach is applicable to various PTs between mul-

tiple, solid and liquid phases and grain evolution and can be extended for diffusive, electric,

and magnetic PTs.
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η1 –η2 σy σx - σy

(a) p=2.007 GPa 

(b) p=2.05 GPa 

(c) p=2.70 GPa

Figure 16: Evolution of twin microsture under dynamic pressure and K12 = 5×1011 in an intial
P2 sample.Left Column: η1− η2; second and third columns: σy and σx− σy; right column:σxy.
Twinning P2 (red) →P1 (blue) under indentation with the rigid support (a)-(b), support with
the hole (c).
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   `  

(d) p=2.90 GPa

(e) p=3.00 GPa 

(f) p=2.50 GPa 

(g) p=2.10 GPa 

Figure 17: (continue) Evolution of twin microsture under dynamic pressure and K12 = 5×1011

in an intial P2 sample.Left Column: η1 − η2; second and third columns: σy and σx − σy; right
column:σxy. Twinning P2 (red) →P1 (blue) under indentation when support with the hole
(d)-(e) and during unloading (f)-(g).
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