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Abstract 

Two experimental studies were conducted to investigate the use of surface actuation devices 

to suppress stall on a NACA 0012 airfoil by preventing the bursting of the low Reynolds 

number leading edge separation bubble.  Both a leading edge burst control plate and a 

leading edge dynamic roughness field were studied as actuation devices. Through the use of 

pressure measurements, force measurements, and particle image velocimetry (PIV) data, it is 

shown that these devices have the ability to suppress the leading edge separation bubble at 

higher angles of attack than an airfoil without such devices.  With the increased stall angle 

obtained through the use of these devices, lift performance is increased.  
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Chapter 1) Introduction 

Low Reynolds number airfoil aerodynamics has been an area of great interest as micro aerial 

vehicles (MAV) have been seen as a very useful next generation of unmanned aerial vehicle 

(UAV).  The extremely small size of these vehicles along with slow airspeeds places them in 

the low Reynolds number regime of 10
4
-10

5
.
1
  For flows of Reynolds number at this scale 

and smaller, the physics are very different than those of higher Reynolds number flows that 

traditional manned aircraft experience.  One of the predominant characteristics for this flow 

regime is the forming of a separation bubble near the leading edge of an airfoil at higher 

angles of attack.  

 

Figure 1:   Low Reynolds number performance transition3 

Many studies have been performed on the airfoil aerodynamics at low Reynolds numbers 

along with the correlation between the laminar boundary layer flow separation and the chord 
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Reynolds number as shown in Tani
1
, Carmichael

2
, Lissaman

3
, Mueller

4
, and Gad-el-Hak

5
.  

According to Lissaman
3
, a separation bubble occurs when the boundary layer detaches from 

the surface of the airfoil and then reattaches further downstream as a turbulent boundary 

layer.  The bubble size is predominantly influenced by the Reynolds number of the flow.  

Initially, a separation bubble can be relatively short, but any small disturbance such as an 

increase of the angle of attack can cause the bubble to burst and cover much of the upper 

surface of an airfoil causing a sudden stall and loss of performance.  For chord Reynolds 

numbers below 5.0 x 10
4
, the chord is too short for the separated boundary layer to reattach.  

At a chord Reynolds number of approximately 7.0 x 10
4
, the chord is long enough for the 

separated boundary layer to reattach and form the leading edge separation bubble.   Above a 

chord Reynolds number of 1.0 x 10
5
, the bubble length is approximately 30-40% of the chord 

length.  In general, the separation bubble‟s length is inversely proportional to the Reynolds 

number, thickness is proportional to its length, and the point of the laminar boundary layer 

separation is based on the angle of attack, not the Reynolds number.  Flow measurements of 

the laminar separation bubble have been performed using different techniques including 

point wise measurements using laser Doppler velocimetry
6-8 

and spatially resolved 

measurements such as PIV
9-12

. 
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Figure 2:   Leading edge separation bubble 

Many studies have experimented with different methods to control the separation bubble and 

increase the angle of attack at which an airfoil will stall in this low Reynolds number regime. 

Most of the methods have examined ways to turbulate the boundary layer. Some of these 

methods include suction or injection of air into the boundary layer, static surface roughness, 

vibrating the surface, heating or cooling of the surface, and the use of micro-electro-

mechanical systems.  Rinoie et al.
13 

suggested the use of a bubble burst control plate for the 

suppression of an airfoil stall.  Their study found that by attaching a stationary small plate 

near the leading edge of a low Reynolds number airfoil could suppress stall and increase the 

lift performance by preventing the small separation bubble from bursting and forming a large 

separation bubble and eventually stall the wing.  The first part of this thesis extends on the 

work of Rinoie et al.
13

 by performing a preliminary investigation on the effects of a dynamic 
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burst control plate on stall suppression and increased airfoil performance at low Reynolds 

numbers. 

Another study by Gall, Huebsch, and Rothmayer
14 

looked at a similar method of small surface 

perturbations near the leading edge with the concept of dynamic roughness.  Their study conducted 

both two-dimensional and three-dimensional simulations to show the effectiveness of dynamic 

roughness in breaking down a leading edge separation bubble.  Along with the simulations, they 

produced an experimental model that helped validate their computational simulations.  Key findings 

from their study were that the roughness heights could be as small as a few percent of the boundary 

layer thickness as long as the frequency was high enough, the dynamic roughness affects the flow 

similarly as static roughness when the frequency is too low, and that the roughness field does not 

need to start before the leading edge separation point to be able to still eliminate the separation 

bubble.  The second part of this thesis extends on the research of Gall et al.
14

 by performing further 

experimental studies on dynamic roughness through the use of PIV. 
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Chapter 2) Dynamic Burst Control Plate 

Experimental Setup 

This experimental study was conducted in the Bill James open-circuit wind tunnel located in 

the Aerospace Engineering Department of Iowa State University.  The tunnel is capable of 

wind speeds up to 180 mph and has a test section that is 3 feet wide by 2.5 feet tall (914 by 

762 mm).  There are 13 screens located at the inlet of the tunnel followed by a 22:1 

contraction ratio that help ensure laminar flow.  

Model 

The model tested was a straight, non-twisted wing with a NACA 0012 airfoil profile.  The 

chord was c = 300 mm and the span b = 585 mm which resulted in an aspect ratio AR ~ 2.  

The incoming air velocity was 7 m/s which resulted in a chord Reynolds number Rec = 1.3 x 

10
5
.  End plates were attached to each span wise end of the model in order to reduce effects 

from the wind tunnel walls and any other three dimensional flow effects.  An aluminum tube 

was installed through the half-chord of the model and was used for mounting the model in 

the center, both vertically and horizontally, of the test section.  The model was rotated about 

this tube through an angle of attack, α, of 0
o
 to 18

o
.  In following the optimal bubble burst 

control plate sizing of Rinoie et al.
13

 for a stationary burst control plate, an aluminum burst 

plate was located between x/c = 0.05 and x/c = 0.075 yielding a plate width wp = 7.5 mm for 

the current model.  Unlike Rinoie et al.
13

, the current model‟s burst control plate is hinged at 

the leading edge of the plate so that it remains at the surface of the airfoil profile and allows 

the trailing edge to rotate from no deflection (standard NACA 0012 airfoil shape) to a 

nominal height of hp = 0.005c (1.5 mm) as shown in Fig. 3.  An electric motor with an 
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elliptical cam shaft is mounted within the interior of the model to actuate the burst control 

plate.  A spring is attached to the solid burst control plate in the interior of the model in order 

to keep it in contact with the cam.  The elliptical shape of the cam produces a sinusoidal-like 

displacement. 

 

Figure 3:   Burst control plate actuation device 

 

Figure 4:   Actual burst control plate 
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Instrumentation 

Surface pressure data was collected at a total of 48 locations along the upper and lower 

surfaces.  Electrical pressure transducers (DSA3217) were used to sample the pressure data at 

a rate of 400.6 Hz over a 30 second interval and were then averaged.  Force measurements 

were also taken to verify the pressure data.  Two JR3 30E12 multi-axis force/torque sensors 

were secured to the model to collect the force data.  This data was obtained at a rate of 500 

Hz over a time interval of 30 seconds and was then time averaged. 

The experimental set-up is shown in Fig. 5 where the burst control plate model is mounted 

inverted to allow easy set-up of the laser for PIV data to be taken.  A single CCD camera was 

used at a time for taking the 2D PIV images. Initial experiments used a 1392 x 1040 

resolution CCD camera (PixelFly, Cooke Corp).  Phase locked experiments used a 2048 x 

2048 resolution CCD camera (PCO 2000, Cooke Corp).  The flow was seeded with 1~5 

micron oil droplets while illumination was provided by a double-pulsed Nd:YAG laser 

(NewWave Research Solo)  adjusted on the second harmonic and emitting two laser pulses at 

a wavelength of 532 nm at a repetition rate of 4-10 Hz. The laser sheet was created by 

passing the laser beam through a set of spherical and cylindrical lenses and aligned with a 

mirror.  The laser sheet was positioned near the center span of the model and had a thickness 

of approximately 2 mm.  The triggering of the laser and camera was controlled via a digital 

delay generator (Berkeley Nucleonics, Model 565).  

 

 



8 

 

 

Test Cases 

Preliminarily, five different test conditions were tested in which pressure, force, and both 

wide and zoomed view PIV data were taken.  A „smooth‟ case which represents the standard 

NACA 0012 airfoil profile, i.e. no deflection of the burst control plate, used as a control as 

the model is not a perfect NACA 0012 profile near the burst control plate, a „stationary‟ case 

that has the burst control plate held in the maximum deflection position, and three dynamic 

cases in which the plate was actuated at 30, 60, and 120 Hz.  A laser tachometer was used to 

measure the speed of the motor and thus, in turn, the frequency at which the burst control 

plate was actuated.  Due to instabilities on the load of the motor, the frequencies varied +/- 6 

Hz of their nominal value.  Although initial testing of the burst control plate yielded full 

deflection response (no deflection up to full deflection), testing within the wind tunnel did 

Mirror and Optics 

Nd:YAG Laser 

Figure 5:   Burst control plate experimental setup 
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not have the burst control plate returning to the no deflection position, instead it vibrated 

about a slightly deflected position. 

A „phase-locked‟ case was then tested at a vibration frequency of 20 Hz for an angle of 

attack of 13
o
.  A second digital delay generator was combined with the PIV system to trigger 

the data acquisition based on the position of the burst control plate.  As the plate was not 

vibrating at the exact frequency of the motor, an extension was attached to the burst control 

plate, next to the far end plate, which would magnify the moment arm and allow the laser 

tachometer to be triggered when the plate was fully deflected.  The laser tachometer then sent 

a trigger to the added delay generator which would then add a predetermined delay before 

triggering the PIV system in order to obtain images at eight different positions of the burst 

plate.  These eight positions, or phases that are 45
o
 apart with the minimal deflection (Φ=0

o
), 

three equally spaced phase angles up to full deflection (Φ=180
o
), and then three phase angles 

until returning to minimal deflection.  A frequency of 20 Hz was tested as it provided a larger 

change in burst control plate deflection height and reached a more stable vibrational 

frequency in comparison to the higher frequencies.  Pressure data was also collected at this 

lower frequency and verified that the forces produced matched those found at the higher 

frequencies for this angle of attack. 
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Figure 6:   Extension from burst control plate for triggering 
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Results and Discussion 

Pressure Distributions 

Pressure distribution plots are shown in Fig. 7 for angles of attack of 12
o
 to 15

o 
in increments 

of one degree.  From these plots, it can be seen that at 12
o
 the distributions for all cases 

overlap one another which is expected from the lift curve.  At 13
o
, the „smooth‟ and 

„stationary‟ cases both begin to stall while the dynamic cases do not. The dynamic cases at 

this angle show the traditional pressure distribution curve plateau near the leading edge due 

to a short separation bubble.  This trend continues for an angle of attack of 14
o
, before the 

dynamic burst plate effects start to deteriorate at 15
o
.  At 14

 o
, the 30 Hz case forms a 

pressure distribution profile similar to that of a long leading edge separation bubble before 

stalling at 15
o
.  

 

a) α = 12
o

 b) α = 13
o

 

c) α = 14
o

 d) α = 15
o

 

Figure 7:   Pressure coefficient distribution   a) α=12o, b) α=13 o, c) α=14 o, d) α=15 o 
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Lift Characteristics 

The lift characteristics are presented in lift coefficient (Cl) versus angle of attack (α) curves 

shown in Fig. 8 & 9.  Figure 8 was calculated from the integration of the pressure distribution 

while Fig. 9 was calculated from the force measurements which include three-dimensional 

effects.  The two methods agree well for the “smooth” case and for the increased 

effectiveness of a dynamic burst control plate at delaying stall and providing more lift over 

the „smooth‟ and „stationary‟ cases.  However, the force measurement results provide a much 

smoother stall region than that of the pressure measurement results.   

Unlike Rinoie et al.
 13

, the „stationary‟ case does not show much improvement in the 

maximum lift coefficient obtained over the standard airfoil, and neither does it delay the stall 

angle as much.  These differences can be accounted in that the „smooth‟ case that is used as 

the reference case in this study has slight perturbations from the standard NACA 0012 airfoil 

near the burst control plate which can act as a trip and turbulate the boundary layer.  For this 

reason, the exact lift performance increase of the dynamic burst control plate can not be 

compared to the standard NACA 0012 airfoil, but can only be compared to a stationary 

dynamic burst control plate. 



13 

 

 

``

 

  

a) b) 

Figure 9:   Lift curve based on force measurements   a) entire lift curve, b) magnified stall region 

Figure 8:   Lift curve based on pressure measurements   a) entire lift curve,   b) magnified stall region 
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Ensemble Average PIV Data 

The ensemble average PIV data is provided in the following three figures.  Figure 10 shows 

contours of the ensemble average normalized velocity magnitude (|V|) for the largest field of 

data recorded.  This figure serves simply as evidence of suppression of stall by the addition 

of dynamically operating the burst control plate over the use of a stationary burst control 

plate which has a large separation zone.  Large differences in the velocities near and far from 

the airfoil surface along with reflections that could not be removed in the captured images for 

these cases also cause these contours only to be used as basic evidence and that a more 

zoomed in view must be used for further examination. 
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a) Smooth 

b) Stationary Plate 

c) Dynamic (30 Hz) Plate 

Shadow Region 

Shadow Region 

Shadow Region 

Figure 10:   Wide view ensemble average normalized velocity magnitude contours.     a) smooth 

airfoil, b) stationary burst control plate, c) dynamic burst control plate operating at 30 Hz 
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b) Stationary Plate 

a) Smooth 

|V| 

c) Dynamic (30 Hz) Plate 

Figure 11:   Zoom view ensemble average normalized velocity magnitude contours.   a) smooth 

airfoil, b) stationary burst control plate, c) dynamic burst control plate operating at 30 Hz 
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b) Stationary Plate 

c) Dynamic (30 Hz) Plate 

a) Smooth 

T.K.E

. 

Figure 12:   Zoom view of normalized turbulent kinetic energy (T.K.E.) contours.   a) smooth 

airfoil, b) stationary burst control plate, c) dynamic burst control plate operating at 30 Hz 
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Figure 11 shows a magnified view of the flow in the vicintity of the burst control plate. 

(Note: The coordinate system has changed from x/c which is centered about the leading edge 

of the airfoil to x’/c which is centered about the front of the burst control plate for the 

zoomed in cases.)  From these contours, it can be clearly seen that the boundary layer 

separates ahead of the burst control plate and forms a shear layer for the stationary case while 

it reattaches just beyond the burst control plate in the dynamic case. 

To help understand the means in which the shear layer created by the leading edge separation 

bubble reattaches to the airfoil surface, contours of the normalized turbulent kinetic energy 

(T.K.E) are shown in Fig. 12.  It is evident in both cases that there is an area of strong T.K.E 

surrounding the burst control plate, but in the dynamic case, there is a much stronger portion 

just ahead of the plate.  This stronger area of T.K.E. seems responsible for a thinning of the 

shear layer and adding energy to cause reattachment.  

Phase Average PIV Data 

The phase average results from the PIV data were difficult to interpret what changes were 

happening in the flow.  To assist in gaining a better understanding of the flow differences 

between each phase, an ensemble average velocity contour was obtained from a non-phase 

locked case and was subtracted from each phases‟ average velocity contour to obtain the 

phase average induced velocity as well as the phase average induced vorticity.  The 

normalized induced vorticity (ω
i
z) contours and induced velocity vectors for the eight phases 

are found in Fig. 13. The first phase (Φ = 0
o
) represents the burst control plate in the lowest 

position.  The phase angle increases from this location in 45
o
 increments until it reaches the 
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maximum deflection point (Φ = 180
o
) at which point it changes direction and starts 

decreasing in deflection with an increasing phase angle until it reaches the minimum 

displacement point again.  

It can be seen from the normalized induced vorticity contours that at the maximum deflection 

position (Fig. 13e), the induced vorticity along the shear layer is the highest allowing for a 

strong reattachment.  In comparison to the rest of the phases, this phase, where the plate 

transitions from ascending to descending, seems to be the dominant mechanism in the 

reattachment process.  Although there is some correlation in the flow pattern from phase to 

phase, there is a lot of noise within these contours.  This noise could possibly be due to 

instability within the phase lock due to the vibrational frequency varying and errors in 

accurate triggering of the PIV system. 
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h) Φ = 315
o

 

g) Φ = 270
o

 

f) Φ = 225
o

 

e) Φ = 180
o

 d) Φ = 135
o

 

c) Φ = 90
o

 

b) Φ = 45
o

 

a) Φ = 0
o

 

ω
i
z 

Figure 13:   Phase average spanwise induced vorticity contours   a) Φ=0o (minimal deflection), b) Φ=45o (1/4 deflection on 

upstroke), c) Φ=90o (1/2 deflection on upstroke), d) Φ=135o (3/4  deflection on upstroke), e) Φ=180o (maximum deflection),  f) 

Φ=225o (3/4 deflection on downstroke), g) Φ=270o (1/2 deflection on downstroke), h) Φ=315o (1/4 deflection on downstroke) 
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Conclusion 

An experimental investigation was performed on the performance of a dynamic burst control 

plate compared to a stationary burst control plate.  It was found that the vibration added to 

the burst control plate increases the turbulent kinetic energy in the vicinity of it and forces the 

shear layer to reattach to the airfoil surface.  Phase averaged results of the induced vorticity 

possibly indicate that the transition between the upstroke and down stroke of the burst control 

plate is the leading force in creating the additional turbulence needed to reattach the shear 

layer to the airfoil surface. 
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Chapter 3) Dynamic Roughness 

Experimental Setup 

This experimental study was conducted in a closed-circuit wind tunnel located in the 

Aerospace Engineering Department of Iowa State University.  The tunnel is capable of wind 

speeds up to 150 mph and has a test section that has a 12 x 12 inch (304 x 304 mm) cross 

section with transparent walls.  Installed ahead of the test section are a series of screens and a 

honeycomb structure followed by a contraction section which help provide uniform, low 

turbulence flow to the test section.  The standard deviation of velocity fluctuations for the 

incoming flow was found to be 0.8% of the free stream velocity as measured by a hotwire 

anemometer.  

Model 

The model tested was a straight, non-twisted wing with a NACA 0012 airfoil profile.  The 

chord was c = 150 mm and the span b = 300 mm which resulted in an aspect ratio AR = 2.  

The incoming air velocity was set for 2.7, 5.3, 7.8, and 10.4 m/s which resulted in chord 

Reynolds numbers (Rec) of 2.5 x 10
4
, 4.9 x 10

4
, 7.3 x 10

4
, and 9.7 x 10

4
 respectively. 

The model (Fig. 14 & 15) was designed using the 3D CAD program SolidWorks and printed 

using the Objet Alaris 3D printer.  The printer‟s extremely high accuracy, fine resolution, 

very thin layer thickness (28 micron), and method of printing with continually curing layers 

produces a very accurate model with the ability for airtight pressure taps to be printed within 

it.  The high accuracy also allowed for the model to be printed in multiple sections and 

assembled.  It was chosen to print the model in three main sections: a leading edge dynamic 
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roughness section, an outer section that the leading edge mounts to, and the tunnel mounting 

section. 

 

Figure 14:   CAD rendering of dynamic roughness model 

 

Figure 15:   Finished dynamic roughness model 
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The leading edge dynamic roughness section has a span that is half of that of the entire model 

and has a width of only 30% chord.  Attached over the entire surface of the dynamic 

roughness section is a thin layer (.006 in) of latex rubber that is painted with a black rubber 

plastic for PIV measurements as shown in Fig. 17.  This section was printed in one piece so 

that the inside of the model could be a hollow airtight chamber with holes only where 

dynamic roughness elements are located.  With the latex covering these holes, when the 

chamber is pressurized, the latex forms a small round bump on the surface creating a 

roughness element. Cycles of pressurizing and depressurizing the chamber cause the 

roughness elements to form and flatten creating dynamic roughness.  The dynamic roughness 

region starts at 1.07% chord and ends at 10.76% chord.  The roughness elements (example 

shown in Fig. 18) are 2% chord (3 mm) diameter at the base and a max height of 0.15% 

chord (230 micron).  Elements are arranged so that they are spaced 1.46 diameters center-to-

center in the spanwise direction and aligned in the streamwise direction in such a manner that 

the front edge of a row of elements aligns with the back edge of the elements in front of it.  

Rows of elements are positioned in an alternating pattern as shown in Fig. 16.  Pressure taps 

were also printed within the model including throughout the dynamic roughness region (see 

smaller holes in Fig. 16).  There were a total of 35 pressure taps, of which 20 were located in 

the leading edge section, with diameters of 0.8 mm printed into the model.  
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Figure 16:   CAD rendering of leading edge roughness holes and pressure taps 

 

Figure 17:   Finished leading edge with latex covering 
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Figure 18:  Dynamic roughness elements fully deflected 

The leading edge section slid into a slot that aligned it with the outer section and held it into 

place.  The outer section was printed as an upper and lower half with internal ribbing and 

support structures.   Pressure taps were connected internally and then run out of the model.  

A threaded rod located at half chord was attached within the outer section of the model and 

extended outside of it on both ends.  On the side furthest from the mount, it was used as a 

pivot point for adjusting angle of attack and served as a structural support for securing the 

mount section of the model. 
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Figure 19:   Tunnel mount with angle of attack adjustment 

The mount side of the model connected the model to the back wall of the wind tunnel.  This 

section consisted of a quarter of the airfoil as well as a solid circular wall portion which 

served as part of the tunnel wall.  The circular wall portion of this section had a rabbet placed 

on it to align the model with a hole built into the tunnel wall.   Three capture screws were 

used to tighten this section to the tunnel wall and hold it in place.  Additionally there was an 

arm incorporated on the outside portion of this section that was aligned with the chord line of 

the airfoil.  This arm had ten holes located at different radii from the center of the airfoil.  A 

series of holes tapped in the tunnel wall in the pattern similar to a machinist indexing head 

allowed the model to be easily and accurately set to different angles of attack in half degree 

increments; this can be seen in Fig. 19. 
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Actuation Pump 

The dynamic roughness region‟s air chamber was pressurized and depressurized through the 

use of a novel pump which was created using COTS (commercial off the shelf) parts.  This 

system is shown in Fig. 20.  A two cycle 90 cubic centimeter remote control aircraft engine 

served as a pump while a ½ horsepower variable speed electric motor was used to drive the 

aircraft engine.  A set of pulleys and a belt were used to connect the motor to the engine.  

Copper pipe fittings were attached to the head of the motor.  These fittings allowed the 

pressure supplied to the model to be crudely controlled through the use of a needle valve 

which would siphon off some of the air before it would reach the hose that was attached to 

the model.  Controlling the pressure allowed control of the maximum height of the roughness 

elements.   A laser tachometer was used to verify the drive frequency of the engine which 

was controlled to the nearest 0.5 Hz.  The system was able to produce pumping frequencies 

up to 92 Hz. 

 

Figure 20:   Actuation pump system 
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Figure 21: Experimental set-up 

Instrumentation 

The experimental set-up with the same basic set-up as the burst control plate study is shown 

in Fig. 21 where the dynamic roughness model is mounted inverted to allow easy set-up of 

the laser for PIV data to be taken.  Two CCD cameras (Fig. 22) were used to take 2D PIV 

with one being used for a view of the entire airfoil and the other zoomed in on the leading 

edge.  Both cameras were 1600 x 1200 resolution CCD cameras (PCO 1600, Cooke Corp).  

The flow was seeded with 1~5 micron oil droplets while illumination was provided by a 

double-pulsed Nd:YAG laser (NewWave Research Solo)  adjusted on the second harmonic 

and emitting two laser pulses at a wavelength of 532 nm at a repetition rate of 3 Hz. The laser 
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sheet was positioned and created by passing the laser beam through a laser arm and 

cylindrical lens an aligned with a mirror.  The laser sheet was positioned near the center span 

of the model and had a thickness of approximately 2 mm.  The triggering of the laser and 

camera was controlled via a digital delay generator (Berkeley Nucleonics, Model 565).  

 

Figure 22:   Camera set-up   (left camera for leading edge zoom view, right camera for entire airfoil view) 

 

Test Cases 

Numerous test cases were run to better understand the extent in which dynamic roughness 

can be controlled.  A Reynolds number study was conducted in which the incoming flow was 

set to 4 different speeds (2.7, 5.3, 7.8, and 10.4 m/s) resulting in chord Reynolds numbers of 
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25,000, 49,000, 73,000, and 97,000.  This study showed how the angle of attack in which the 

clean (no dynamic roughness control activated) airfoil stalls and how much of an increase in 

angle of attack the dynamic roughness can achieve before stall.   

A frequency study was conducted at an angle of attack of 14 degrees for a Reynolds number 

of 49,000.  The pressure provided to the chamber was set to the highest possible which 

produced element heights of 195 when ran at a frequency of 30 Hz, 230 micron when ran at a 

frequency above 60 Hz, and heights between 195 and 230 micron between 30 and 60 Hz.  

The drive frequency was adjusted in 10 Hz increments down from 90 Hz until control was 

lost. 

A combination of a height and frequency study was conducted as well at an angle of attack of 

15 degrees for a Reynolds number of 73,000.  Three frequencies (90, 60, and 30 Hz) were 

used, and the pressure supplied to the chamber was adjusted to obtain different roughness 

element heights.  Due to the pressure being controlled by both the release valve and the drive 

frequency, it was difficult to obtain the same heights for each frequency, but enough were 

obtained to see how decreasing element height affects flow control. 

Unfortunately, pressure data has not currently been obtained as there were leaks found in the 

leading edge pressure taps caused by the heating of the pressure chamber.  A rebuild of the 

model and adding a heat exchanger to the actuation system will alleviate the problem in the 

future.  For this reason, only PIV data is used to verify the existence of flow control suggest 

the increase of lifting performance.  Most average cases of PIV data shown are based on 345 

image pairs, but for those in which turbulent kinetic energy and vorticity are examined, there 

were 900 image pairs used. 
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Results and Discussion 

Reynolds Number Study 

Results from the Reynolds number study are shown in Figures 23-26.  These contours of average 

velocity as well as arrows showing the average flow direction clearly show the ability for dynamic 

roughness to control flow in the low Reynolds number regime.  Figures 23, 24, and 26 each start at 

the angle in which flow starts to separate without the dynamic roughness actuated and stop at the 

angle in which dynamic roughness no longer can control the flow well enough for complete 

attachment.  Figure 25 starts at one angle of attack higher than the flow initially starts to separate.  In 

each figure, the left images have the dynamic roughness turned off (Clean) and the right images have 

the dynamic roughness turned on (DR On) with the actuation frequency being 90 Hz and roughness 

height 230 micron.  Preliminary numerical and computational results had shown that larger element 

height (as long as it is less than the boundary layer thickness) and higher actuation frequencies are 

more likely to control the flow; thus, it was decided to use the maximum drive frequency and 

roughness height possible. 

For the lowest Reynolds number case of 25,000 (Fig. 23), the flow is able to increase the angle of 

attack approximately 2 degrees, from 10 degrees to 12 degrees, before the airfoil stalls.  Even when 

the airfoil is in a deep stall, the dynamic roughness is able to thin the separation region in the vicinity 

of the leading edge.   The stalling of the airfoil at this speed appears to be similar to that of a thin 

airfoil stall. 

Approximately doubling the Reynolds number to 49,000 (Fig. 24) shows that the use of dynamic 

roughness increases the angle of attack range for attached flow by 3 degrees, from 13 to 16 degrees, 

before the airfoil goes into a deep stall.  At an angle of attack of 15 degrees, the dynamic roughness is 

still able to control the flow across the upper surface of the airfoil, but a leading edge separation 
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bubble is present.  For angles of attack below this, the flow is completely attached, and above 15 

degrees, the bubble bursts causing complete separation. 

At Reynolds numbers of 73,000 and 97,000 (Fig. 25 and 26 respectively), the dynamic roughness is 

able to increase the angle of attack range of attached flow by 3 degrees as well, but from 14 to 16 

degrees as opposed to 13 to 15 degrees for the Re = 49,000 case.  Comparing the two higher speed 

cases, they both have a relatively large separation bubble at 16 degrees, but the lower speed case (Fig. 

25) has a thicker bubble.  At 17 degrees, the lower Reynolds number case is in fully developed deep 

stall while the higher Reynolds number case has a very large separation bubble covering a distance of 

more than half the airfoil.  Any slight disturbances will burst this bubble which makes it a very 

unstable flow condition. 

In general, while within the low Reynolds number regime, the higher the Reynolds number, the 

higher the angle of attack at which a separation bubble will become present.   The higher the 

Reynolds number, the smaller the separation bubble and the easier it is control the flow.  These 

preliminary results have shown that at Reynolds numbers on the order of 50,000 to 100,000, dynamic 

roughness can generally increase the stall angle of a NACA 0012 airfoil by 3 degrees. 
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Velocity (m/s) 

Figure 23:   Average velocity contours for Rec = 25,000 
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Velocity (m/s) 

Figure 24:   Average velocity contours for Rec = 49,000 
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Velocity (m/s) 

Figure 25:   Average velocity contours for Rec = 73,000 
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Velocity (m/s) 

Figure 26:   Average velocity contours for Rec = 97,000 
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Frequency Study 

Results from the frequency study are shown in Figures 27 and 28 with the first figure showing the 

average velocity contours on the upper surface of the entire airfoil and the second being zoomed in on 

the leading edge.  From these figures, it can be seen that at this set flow condition (Reynolds number 

= 49,000 and angle of attack = 14 degrees) that without the dynamic roughness actuating, the airfoil is 

in a fully developed deep stall.  Once the roughness is actuated at or above a frequency of 50 Hz, the 

flow becomes reattached to the leading edge of the upper surface bringing the airfoil out of stall.   At 

actuation frequencies at or below 40 Hz, the flow becomes separated putting the airfoil back into a 

stall configuration.   

Examples of the average vorticity (Fig. 29 and 30) as well as turbulent kinetic energy (Fig. 31 and 32) 

were taken as part of the frequency study.  For these, both the clean airfoil and highest frequency case 

are shown.  From the vorticity images, it can be seen that when the flow is not controlled, there is a 

shear layer separating off of the leading edge.  When the dynamic roughness is engaged, the boundary 

layer is kept attached to the leading edge with a large amount of vorticity in the region of and just 

downstream of the dynamic roughness.  The TKE contours show that when the flow is separated from 

the airfoil, there is a large amount of TKE in the wake region of the airfoil as expected with very little 

near the leading edge.  With the dynamic roughness actuated, there is large amount of turbulence 

directly above the dynamic roughness region which is assisting in reattaching the flow.  This 

turbulence breaks down shortly after the dynamic roughness region, but reappears near the trailing 

edge.  When the dynamic roughness is reattaching the flow at the leading edge, the airfoil begins to 

stall at this angle from the trailing edge which is causing the high levels of turbulence near the trailing 

edge for the attached case. 
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Velocity (m/s) 

Figure 27:   Average velocity contours (wide view) for different dynamic roughness control frequencies.   

Angle of attack = 14o, Rec = 49,000 
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Velocity (m/s) 

Figure 28:   Average velocity contours (zoom view) for different dynamic roughness control frequencies.   

Angle of attack = 14o, Rec = 49,000 
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Vorticity (1/s) 

Figure 29:   Average vorticity contours for uncontrolled (clean) and controlled (90 Hz, 230 micron dynamic 

roughness) wide view 

Angle of attack = 14o, Rec = 49,000 
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Vorticity (1/s) 

Figure 30:   Average vorticity contours for uncontrolled (clean) and controlled (90 Hz, 230 micron dynamic 

roughness) zoom view 

Angle of attack = 14o, Rec = 49,000 
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T.K.E. 

Figure 31:   Turbulent kinetic energy contours for uncontrolled (clean) and controlled (90 Hz, 230 micron 

dynamic roughness) wide view 

Angle of attack = 14o, Rec = 49,000 
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Roughness Height Study 

 

 

T.K.E. 

Figure 32:   Turbulent kinetic energy contours for uncontrolled (clean) and controlled (90 Hz, 230 micron 

dynamic roughness) zoom view 

Angle of attack = 14o, Rec = 49,000 
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Roughness Height Study 

The results of the roughness height study are shown in Figure 33.  Due to the difficulties in obtaining 

the same roughness heights at all frequencies, only a select few at different frequencies were chosen 

which demonstrate the effect of roughness element height on flow control.  The frequency and height 

for each case are shown in the upper left corner of each image.   

For dynamic roughness running at 90 Hz and the highest possible element height of 230 micron that 

was able to be produced, the flow is attached to the airfoil.  Reducing the roughness height to 105 

micron at that height allowed the formation of a leading edge separation bubble.  Reducing the 

frequency to 60 Hz and increasing the roughness element height back to the maximum of 230 micron, 

produced similar results to that of the 90 Hz 105 micron case in which a leading edge separation 

bubble is present.  Remaining at 60 Hz and reducing the element height to 80 and 60 micron 

increased the leading edge separation bubble size slightly as flow control is deteriorating.   

Further reduction in the dynamic roughness actuation frequency to 30 Hz while maintaining element 

heights of 80 and 60 micron deteriorates the flow control until it is completely lost.  The 30 Hz 80 

micron case is slightly worse than the 60 Hz 60 micron case, but once the roughness height is 

decreased to 60 micron at this low of a frequency, all flow control is lost and the airfoil goes into a 

deep stall. In general, for a given frequency, increasing the roughness height will increase the ability 

for flow control as long as it is still shorter than the boundary layer thickness.  
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Velocity (m/s) 

Figure 33:   Average velocity contours for roughness element height and frequency study 

Angle of attack = 15o, Rec = 73,000 
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Conclusion 

An experimental investigation was performed on the performance of dynamic roughness as a 

flow control device to prevent the formation of a leading edge separation bubble at low 

Reynolds numbers.  It was found that the higher the frequency the further the dynamic 

roughness could be used as a flow control device.  At a given frequency, the taller the 

roughness element height the increased ability to obtain flow control as long as the roughness 

height is shorter than the local boundary layer thickness.  Dynamic roughness can greatly 

increase the angle at which an airfoil will stall and suggest an increase in the lifting 

performance.  Further research is needed to quantify how much more lift can be generated as 

well as the power consumption for dynamic roughness. 
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Chapter 4) Conclusion 

Two experimental investigations were performed on surface actuation devices which suppress the 

formation of the leading edge separation bubble at low Reynolds numbers.  These devices have 

shown that both two-dimensional (burst control plate) and three-dimensional (dynamic roughness) 

surface actuation devices are capable of delaying stall on a NACA 0012 airfoil.  The ability to delay 

stall through the use of these devices allows for a further increase in lift performance for lifting 

surfaces.   

It has been found that the higher the frequency an actuation device operates, the more likely it will be 

able to prevent flow separation.  Displacement height of the actuation device is a significant 

parameter in the ability to use such devices for flow control.  Displacement heights that are larger 

than the local boundary layer thickness will not work as well at reattaching a boundary layer as those 

that are a fraction of the size of the boundary layer thickness.  Displacement heights that are greatly 

shorter than that of the boundary layer thickness require much higher actuation frequencies than those 

that are taller. 

Further research is needed to investigate the feasibility of these surface actuation devices for flow 

control devices.  The increased amount of lift needs to be compared to the amount of power needed to 

operate these devices.  A study on the effects of drag at these higher angles of attack also needs to be 

conducted to ensure that the lift to drag ratio is not being greatly worsened.  Future work can also be 

performed on how much of an effect element arrangement, orientation, and whether 2D or 3D 

actuation devices are more effective.  The finding of a passive surface actuation system which would 

react to the need for flow control to be activated as well as not require any power input would be 

greatly beneficial for advancement of flight vehicles. 
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