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Abstract 

The development of a dynamic unstructured grid high-order accurate spectral difference 

(SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its 

applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is 

achieved via an algebraic blending strategy to save computational cost. The Geometric 

Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the 

flow physics. A low Mach number preconditioning procedure is conducted in the developed 

solver to handle the bio-inspired flow. The capability of the low Mach number 

preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three 

dimensional (3D) simulations of the unsteady vortex dominated flow.  

Several topics in the flapping wing aerodynamics are numerically and experimentally 

investigated in this work. These topics cover some of the cutting-edge issues in flapping 

wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics 

effects on the aerodynamic performances, vortex structure analysis around 3D flapping 

wings and the kinematics optimization. Wake structures behind a sinusoidally pitching 

NACA0012 airfoil are studied with both experimental and numerical approaches. The 

experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake 

transition processes, namely the transition from a drag-indicative wake to a thrust-indicative 

wake and that from the symmetric wake to the asymmetric wake are distinguished. The 

numerical results from the developed SD solver agree well with the experimental results. It is 

numerically found that the deflective direction of the asymmetric wake is determined by the 

initial conditions, e.g. initial phase angle. 

As most insects use thin wings (i. e., wing thickness is only a few percent of the chord 

length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically 

investigated by simulating the flow fields around a series of plunging NACA symmetric 

airfoils with thickness ratio ranging from 4.0% to 20.0% of the airfoil chord length. The 

contribution of viscous force to flapping propulsion is accessed and it is found that viscous 

force becomes thrust producing, instead of drag producing, and plays a non-negligible role in 

thrust generation for thin airfoils. This is closely related to the variations of the dynamics of 

the unsteady vortex structures around the plunging airfoils. 
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As nature flyers use complex wing kinematics in flapping flight, kinematics effects on the 

aerodynamic performance with different airfoil thicknesses are numerically studied by using 

a series of NACA symmetric airfoils. It is found that the combined plunging and pitching 

motion can outperform the pure plunging or pitching motion by sophisticatedly adjusting the 

airfoil gestures during the oscillation stroke. The thin airfoil better manipulates leading edge 

vortices (LEVs) than the thick airfoil (NACA0030) does in studied cases, and there exists an 

optimal thickness for large thrust generation with reasonable propulsive efficiency. With the 

present kinematics and dynamic parameters, relatively low reduced frequency is conducive 

for thrust production and propulsive efficiency for all tested airfoil thicknesses. In order to 

obtain the optimal kinematics parameters of flapping flight, a kinematics optimization is then 

performed. A gradient-based optimization algorithm is coupled with a second-order SD 

Navier-Stokes solver to search for the optimal kinematics of a certain airfoil undergoing a 

combined plunging and pitching motion. Then a high-order SD scheme is used to verify the 

optimization results and reveal the detailed vortex structures associated with the optimal 

kinematics of the flapping flight. It is found that for the case with maximum propulsive 

efficiency, there exists no leading edge separation during most of the oscillation cycle. 

In order to provide constructive suggestions to the design of micro-air-vehicles (MAVs), 

3D simulations of the flapping wings are carried out in this work. Both the rectangular and 

bio-inspired wings with different kinematics are investigated. The formation process of two-

jet-like wake patterns behind the finite-span flapping wing is found to be closely related to 

the interaction between trailing edge vortices and tip vortices. Then the effects of the wing 

planforms on the aerodynamics performance of the finite-span flapping wings are elucidated 

in terms of the evolution and dynamic interaction of unsteady vortex structures. 
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General Introduction 
 

Introduction 
Unstructured grid based high-order (order of accuracy ≥3) methods have received ever 

increasing research interest in the Computational Fluid Dynamics (CFD) community due to 

their potential of delivering higher accuracy with less computational cost than the low order 

methods for problems involving complex physics and geometry, such as aero-acoustic flow 

and vortex dominated flow. Several reviews on the high-order methods for the Navier-Stokes 

equations can be found in [1, 2]. Despite the many attractive properties of high-order 

methods, in order to gain further popularity in even larger engineering context, which is 

currently dominated by their low-order counterparts, robust, easy-to-use and efficient high-

order schemes are greatly desired.  

The spectral difference (SD) method [3] is an unstructured grid based high-order method 

for solving hyperbolic conservation laws. Its precursor is the conservative staggered-grid 

Chebyshev multi-domain method [4]. The general formulation of the SD method was first 

described in [3] for the simplex element. It is then extended to two dimensional (2D) Euler [5] 

and N-S equations [6, 7]. After that, the SD method was implemented for three dimensional 

(3D) N-S equations on unstructured hexahedral grids [8]. Later, a weak instability in the 

original SD method was found independently by Van den Adeele et al. [9] and Huynh [10].  

Huynh [10] further found that the use of Legendre-Gauss quadrature points as flux points 

resulted in a stable SD method. This was later proved by Jameson [11] for the one 

dimensional linear advection equation under an energy stable framework.  In Ref. [12], the 

SD method was extended to handle the deformable dynamic grid and its ability to cope with 

complex vortex dominated bio-inspired flow was demonstrated as well. A parallel 

development of the dynamic unstructured grid based SD method was reported in [13].  

    Unsteady flapping-wing aerodynamics has witnessed great prosperity in the last three 

decades. This prosperity is not only attributed to the human being’s continuous curiosity on 

the effective propulsion exhibited by fascinating nature flyers, but also is due to the 

increasing interest in the design of Micro Air Vehicles (MAVs), which have been considered 

to have the potential to open up new opportunities for surveillance-like missions and to 
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revolutionize the sensing and information gathering technologies in the near future. A large 

amount of experimental and computational research has been conducted on flapping-wing 

related topics and many comprehensive reviews and book chapters [14, 15, 16, 17, 18, 19, 20, 

21] have systematically summarized these works from different aspects. These topics include 

kinematics of flapping flight, wing/foil geometry and aero-elasticity, multiple wing/foil 

configuration, unsteady flow structure analyses, especially on the wake structures, leading 

edge vortices (LEVs) dynamics and vortex interactions, and aerodynamic forces and 

propulsion efficiency analyses, etc. Great progress has been made on the unsteady flapping-

wing aerodynamics due to the appearance of advanced flow diagnostic technologies and the 

development of high-fidelity computational fluid dynamics (CFD). Before moving forward, 

previous studies on some of the aforementioned topics, which will be further investigated in 

the present thesis, are briefly reviewed as follows. 

    It is well known that flapping motions can effectively generate thrust at low Reynolds and 

Mach numbers.  The explanation for the thrust generation with oscillating airfoils was given 

by Knoller [22] and Betz [23] independently based on the inviscid assumption and the 

effective angle of attack (AOA) concept. This was experimentally confirmed by Katzmayr 

[24] through mounting a stationary wing in an oscillating flow. After that, von Karman and 

Burgers [25] showed a thought-provoking way to explain the thrust or drag production by 

checking momentum surfeit or deficit in the wake based on the wake vortices orientation and 

location. This has gradually become a qualitative principle to judge whether an oscillating 

mechanism generate thrust or drag. The aforementioned wake structure analyses originate 

from this work and have attracted intensive research attentions. 

    In this branch, some interesting wake vortices phenomena have been discovered and their 

impact on the aerodynamic performance of the oscillating foils/wings has been discussed. 

Freymuth [26] experimentally documented the vortex street of the thrust-indicative type for 

pure plunging or pitching motion of NACA0015 airfoil. Koochesfahani [27] found that the 

wake pattern after a pitching airfoil can be controlled by adjusting the pitching frequency, 

amplitude and the shape of the oscillation wave. After that, Triantafyllou et al. [28] found 

that the optimal thrust development in oscillating foils can occur at Strouhal number ranging 

from 0.25 to 0.35 by performing stability analyses of measured average velocity profiles. 
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Jones et al. [29] used the water-tunnel experiments and inviscid flow simulations to study the 

evolution of wake structures behind a plunging airfoil. A comprehensive classification of 

wake types was summarized in their results. Lai and Platzer [30] further studied the jet 

characteristics behind a plunging NACA0012 airfoil with the dye flow visualization and laser 

Doppler velocimetry (LDV) measurements. Wang [31] confirmed that the optimal flapping 

was closely related to the interaction between leading edge vortices (LEVs) and trailing edge 

vortices (TEVs) for the pure plunging motion. Lewin and Haj-Hariri [32] numerically 

classified the wake patterns behind a plunging airfoil and discussed the LEVs’ effects on the 

wake pattern and propulsive efficiency. Young and Lai [33] studied different types of wake 

structures behind a plunging airfoil and the associated aerodynamic forces. They found that 

the aerodynamic forces relied more on the dynamic behaviors of LEVs while the wake 

structures were mainly controlled by the TEVs. Recently, Schnipper et al. [34] performed a 

systematic study on the wake patterns behind a pitching foil in the vicinity of the drag-thrust 

transition region in order to reveal the connection between wake structures and aerodynamic 

force generation.  As a continuation of previous work, Bohl and Koochesfahani [35] studied 

the wake structures behind a sinusoidally pitching NACA0020 airfoil of various reduced 

frequencies using molecular tagging velocimetry (MTV).   

All the aforementioned studies on wake structures are tied to simple airfoil kinematics, 

namely pure plunging or pitching motions. As reported by many researchers, a combined 

plunging and pitching motion is a more elaborate modeling of the flapping wing kinematics. 

This forms another branch of the flapping-wing aerodynamics studies. Jones and Platzer [36] 

argued that the combined plunging and pitching motion could adjust the effective angle of 

attack (AOA) of the airfoil, enhancing the thrust generation or power extraction performance. 

Anderson et al. [37] experimentally examined the propulsive performance of a NACA0012 

airfoil with a combined plunging and pitching motion, and showed the parameters for 

optimal thrust production. Isogai et al. [38] concluded from their results of a NACA0012 

airfoil undergoing combined pitching and plunging motion that a high propulsive efficiency 

could be obtained when pitching lead plunging by 90 degrees and no apparent leading edge 

separation appears. Similarly, Tuncer and Platzer [39] found that high propulsive efficiency 

came with an attached flow over the full period of the oscillatory cycle for a NACA0012 
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airfoil. Note that in both cases the free stream Mach number was 0.3, which may be a bit 

large for the flapping wing simulations. Ramamurti and Sandberg [40] used a finite element 

incompressible flow solver to study an oscillating NACA0012 airfoil and investigated the 

effect of the phase difference between pitching and plunging motions on the thrust generation 

and propulsive efficiency. Kang et al. [41] used a Reynolds-Averaged Navier-Stokes (RANS) 

approach to study the flow over an oscillating SD7003 airfoil, and discussed the effects of 

turbulence model on the prediction of flow features. 

Also, there has been long-standing research interest in optimizing the kinematics of a 

flapping wing to achieve optimal aerodynamic performance in different scenarios. Jones [42] 

calculated the optimum load distribution along the wing for a given wing-root bending 

momentum during the pure flapping motion, and found that the optimum loading was able to 

generate thrust more efficiently compared with an elliptic loading, which was suggested to be 

optimal for steady flight. Hall and Hall [43] computed the optimal circulation distribution 

along the span of flapping wings in fast forward flight using a 1D integral solution for small-

amplitude motions and vortex-lattice techniques for large-amplitude motions. Ito [44] 

utilized vortex lattice method in conjunction with a hybrid optimization algorithm combining 

genetic algorithm and sequential quadratic programming to optimize the flapping wing 

motion. Vortex lattice model was also adopted by other research groups [45, 46] as a suitable 

compromise between computational cost and accuracy, but it might fail to provide 

appropriate level of complexity of the motion when viscous effects became non-negligible 

[45]. In addition, Hamdaoui et al. [47] optimized the efficient flapping kinematics using a 

multi-objective evolutionary algorithm coupled with flapping flight physics models. Tuncer 

and Kaya [48] optimized the weighted sum consisted of thrust and propulsive efficiency of 

an flapping airfoil in combined plunging and pitching motion by coupling gradient-based 

optimization method with 2D Navier-Stokes solver supporting moving overset grid. Willis et 

al. [49] exploited a collection of computation tools with multiple fidelity level in the design 

of effective flapping wing vehicles. In 2009, Pesavento and Wang [50] further confirmed that 

2D flapping flight can be aerodynamically more efficient than the optimal steady motion. 

Recently, Culbreth et al. [51] presented several optimization results for flapping airfoils and 

wings obtained from an optimization framework constructed by a gradient-based 
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optimization algorithm and a low-dissipation kinetic energy preserving (KEP) finite volume 

Navier-Stokes solver. They found that the maximum propulsive efficiency appeared to occur 

right before the incipience of leading edge separation. 

There is a growing awareness in the community that the wing/foil geometry can affect 

thrust generation and propulsive efficiency in cruise flight. Some research on the airfoil 

thickness effects on the aerodynamic performances is briefly reviewed as follows. Lentink 

and Gerritsma [52] compared the performances of several plunging airfoils with different 

thickness at Reynolds number 150, and concluded that airfoils with larger thickness could 

generate greater thrust than the airfoils with small thickness. An et al. [53] found that 

thickness ratio was a crucial parameter for thrust production and their results indicated that 

there existed an optimal thickness ratio for the thrust generation at Reynolds number 185. 

Ashraf et al. [54] systematically studied the thickness effects on the propulsive performances 

of flapping airfoils at different Reynolds numbers ranging from 200 to 2 × 10�. They found 

that for low Reynolds numbers, thin airfoils outperformed thick airfoils, while for high 

Reynolds numbers there existed an optimal thickness for the thrust production and propulsive 

efficiency. These results were different from Cebeci et al.’s [55] conclusion based on an 

unsteady panel code simulation that thickness had a negligible effect on the propulsive 

efficiency. This might be due to the fact that the inviscid analysis could not handle the 

dynamic behaviors of LEVs, which play a vital role in the aerodynamic performance 

evaluation. 

Another vigorous and important branch of the flapping-wing aerodynamic studies is the 

investigation of the flow structures around 3D finite-span wings with or without wing-body 

interactions. According to the study in Ref. [19], wings with low aspect ratios (ARs), which 

are adopted by most insects [56], are beneficial for the agile locomotion. Therefore, many 

studies [17, 18, 19, 57, 58, 59, 60, 61] have been concentrated on the aerodynamic 

performances of low AR wings. Ellington et al. [59] first discovered that the intense leading 

edge vortex (LEV) created by dynamic stall is the reason for the high-lift forces generation 

during the hovering flight of the hawkmoth. They also pointed out that the spanwise flow is 

essential for the stability of such leading edge vortex. However, Birch and Dickinson [57] 

found that even there does not exist the spanwise flow, the LEV can still be stabilized for the 
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flapping wings of the fruit fly. They confirmed that the downwash effect of the wing tip 

vortex can explain the stability of the LEV. In fact, according to Ref. [61], under the regime 

of high Reynolds numbers, the spanwise flow can enhance the stability of the LEV, while for 

lower Reynolds numbers, wing tip vortex and wake vorticity play a vital role on prolonging 

the attachment of the LEV. Recently, Shyy et al. [61] further confirmed that the wing 

kinematics can greatly affect the wing tip effects on the aerodynamic performance of a low 

AR wing. Von Ellenrieder et al. [62] and Parker et al. [63] have studied the 3D vortex 

structures after a finite-span flapping wing with two free ends. Their research was restricted 

to the effects of aerodynamic parameters and the wing motion kinemics on the wake 

structures. Blondeaux et al. [64] numerically investigated the wake structures produced by a 

flapping foil and found that there existed strong interaction among the adjacent rings shed in 

one oscillating cycle when the Strouhal number was large. Buckholtz and Smits [65] used the 

dye visualization to interrogate the wake structure behind a low-aspect-ratio pitching panel. It 

was observed that a 3D von Karman vortex street was formed behind the panel and the 

vortex skeleton model was proposed based on the visualization. Dong et al. [58] found that 

the flow fields behind a low-aspect-ratio flapping foil with two free ends are characterized by 

two oblique jets and such wake topology is dominated by two sets of interconnected vortex 

loops. Similar phenomena were reported by Hu et al. [60] experimentally and Yu et al. [66] 

numerically for a fixed-root flapping wing and Dewey et al. [67] experimentally for a batoid-

inspired flexible fin. Dewey et al. [67] also built up the connection between the propulsive 

efficiency and the wake structures. In Spentzos et al.’s [68] work, the wing tip effects on the 

dynamic stall are studied. They confirmed that different wing planforms could have similar 

flow topology.  

As aforementioned, the high-order CFD method can be more accurate and efficient for the 

vortex-dominated flow simulations than the traditional second order method, which can be 

too dissipative to resolve the elaborate vortex structures. Therefore there is a trend in the 

CFD community to develop high-order viscous flow solvers to resolve the vortex dominated 

bio-inspired flow recently. Visbal et al. [69] have successfully utilized a high-order compact 

method to simulate the flow field around a SD7003 airfoil. Persson et al. [70] have developed 

a dynamic unstructured grid based discontinuous Galerkin (DG) method for a finite-span 



7 
 

wing simulation and compared the results with other numerical methods. Liang et al. [13] 

have successfully used a 2D SD method for a plunging NACA0012 airfoil simulation. 

Several applications for 2D and 3D SD method in the bio-inspired flow have been reported 

by Yu et al. [12, 66]. Their results demonstrated the effectiveness of the dynamic 

unstructured grid based SD method for some challenging bio-inspired flow simulations. Ou 

et al. [71] recently developed a 3D SD solver for the finite-span flapping wing simulations. 

Results from the paper confirmed the potential of using high order methods as an efficient 

tool for the full scale flapping wing aerodynamics studies. 

In the present study, the development of the dynamic unstructured grid based SD method 

is presented at first. The geometric conservation law [72] during the time-dependent 

coordinate transformation is discussed in detail and the grid deformation strategy is well 

specified. Then high-fidelity numerical simulations of the flapping-wing aerodynamics are 

carried out by using the developed solver. The 2D topics covered in the numerical 

simulations include the wake structure analyses of oscillating airfoils, the airfoil thickness 

and kinematics effects on the aerodynamic performances, and the optimization of the airfoil 

kinematics for maximum propulsive efficiency. The effects of wing planforms and 

kinematics on the aerodynamic performance of 3D thin finite-span flapping wings are also 

investigated using numerical simulations. A particle image velocimetry (PIV) based 

experimental study is carried out to visualize the wake structures behind a sinusoidally 

pitching NACA0012 airfoil. Two types of wake transition processes, namely the transition 

from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to 

the asymmetric wake are thoroughly investigated. 

 

Dissertation Organization 
The rest of this dissertation is organized as follows. 

Chapter 2, “A High-Order Spectral Difference Method for Unstructured Dynamic Grids” 

is a paper published in Computers & Fluids. I am the primary author of the paper, 

responsible for most of the work and writing. 

Chapter 3, “Experimental and Numerical Investigations on the Asymmetric Wake Vortex 

Structures around an Oscillating Airfoil” is a paper published in the 50th AIAA ASM 
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conference proceedings. I am the primary author of the paper, responsible for most of the 

work and writing. 

Chapter 4, “Airfoil Thickness Effects on the Thrust Generation of Plunging Airfoils” is a 

paper published in Journal of Aircraft. I am the primary author of the paper, responsible for 

most of the work and writing. 

Chapter 5, “A High-Fidelity Numerical Study of Kinematics and Airfoil Thickness Effects 

on the Thrust Generation of Oscillating Airfoils” is a paper published in the 42nd AIAA Fluid 

Dynamics Conference and Exhibit. I am the primary author of the paper, responsible for most 

of the work and writing. 

Chapter 6, “High-Fidelity Optimization of Flapping Airfoils for Maximum Propulsive 

Efficiency” introduces the framework of the optimization of the flapping wing kinematics 

and discusses the optimization results. 

Chapter 7, “The Effects of Wing Planforms on the Aerodynamic Performance of Thin 

Finite-Span Flapping Wings” is a paper published in the 50th AIAA ASM conference 

proceedings. I am the primary author of the paper, responsible for most of the work and 

writing. 

Chapter 8 is devoted to general conclusions. 
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CHAPTER 2. A High-Order Spectral Difference Method for 

Unstructured Dynamic Grids 
A paper published in Computers & Fluids 

 

Meilin Yu, Z. J. Wang and Hui Hu 

Abstract 
    A high-order spectral difference (SD) method has been further extended to solve the three 

dimensional compressible Navier-Stokes (N-S) equations on deformable dynamic meshes. In 

the SD method, the solution is approximated with piece-wise continuous polynomials. The 

elements are coupled with common Riemann fluxes at element interfaces. The extension to 

deformable elements necessitates a time-dependent geometric transformation. The Geometric 

Conservation Law (GCL), which is introduced in the time-dependent transformation from the 

physical domain to the computational domain, has been discussed and implemented for both 

explicit and implicit time marching methods. Accuracy studies are performed with a vortex 

propagation problem, demonstrating that the spectral difference method can preserve high-

order accuracy on deformable meshes. Further applications of the method to several moving 

boundary problems including bio-inspired flow problems are shown in the paper to 

demonstrate the capability of the developed method. 
 

Keywords 
High order; Unstructured dynamic grids; Spectral difference; Navier-Stokes; Bio-inspired 

flow. 
 

1.  Introduction 
Computational fluid dynamics (CFD) has attracted a surge of research activities during the 

last three decades, and it has become a routine tool in the aerodynamic design of aircraft, 

wind turbines, and centrifugal pumps, etc. For general engineering applications, nearly all 

production flow solvers are based on at most second-order numerical methods. Although they 

proved very useful, the second-order methods may not be accurate enough for problems 
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requiring high accuracy, such as vortex dominated flows, and acoustic noise predictions. 

Therefore, there has been a growing interest in the development of high-order methods for 

unstructured grids in recent years. The reasons for this are obvious. High-order methods 

enjoy remarkably high accuracy with low numerical dissipations, and unstructured grids can 

provide flexibility in handling complex geometries. A review of the high-order methods for 

the Euler and Navier-Stokes equations can be found in [31].  

The spectral difference (SD) method [12] is a recently developed high-order method to 

solve compressible flow problems on simplex meshes. Its precursor is the conservative 

staggered-grid Chebyshev multi-domain method [11]. The general formulation of the SD 

method was first described in [12] and applied for computational electromagnetic problems. 

It is then extended to 2D Euler [33] and Navier-Stokes equations [14,34]. After that, Sun et 

al. [22,23] implemented the SD method for 3D N-S equations on unstructured hexahedral 

meshes. Later, a weak instability in the original SD method was found independently by Van 

den Adeele, et al. [26] and Huynh [8]. Huynh [8] further found that the use of Legendre-

Gauss quadrature points as flux points results in a stable SD method. This was later proved 

by Jameson [9] for the one dimensional linear advection equation. The present study is based 

on Sun et al. [22,23] and further extends the method to 3D deformable meshes. The basic 

idea to achieve high-order accuracy in the SD method is to use a high degree polynomial to 

approximate the exact solution in a standard element (a local cell). However, unlike the 

discontinuous Galerkin (DG) [3] method and spectral volume (SV) method [32], the SD 

method is in the differential form, which is efficient and simple to implement. As all the 

computations are performed on the fixed standard element in the computational domain, it is 

reasonable to expect that the SD method can preserve high-order features for moving 

boundary problems in the physical domain.  

Since a time-dependent curvilinear transformation from the physical domain to the 

standard element is needed in the SD method, the Geometric Conservation Law (GCL), first 

discussed in [25], should be strictly enforced in order to eliminate the grid motion induced 

errors. For high-order methods, an approach to guarantee GCL for the finite difference 

method has been proposed in [27]. It is straightforward to extend this approach to the present 

SD method. In addition, a GCL compliant high-order time integration method is developed 
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for the implicit scheme with a similar method used in [13]. Note that there is an alternative 

way to deal with moving boundary problems, which is called the arbitrary Lagrangian-

Eulerian (ALE) method [4]. In that approach, a mapping from a fixed reference configuration 

to the physical domain is needed. In the mapping, a time dependent GCL is introduced for 

the reference domain [17-19]. It is quite similar to the coordinate transformation approach 

aforementioned in the SD or the finite difference methods in [24,27]. It can be shown that the 

final form of the time dependent GCL is exactly the same for both approaches.  

The remainder of the paper is organized as follows. In Section 2, the SD method is briefly 

reviewed including both the space discretization procedure and time integration approach. 

The GCL of the transformation from the physical domain to the computational one is then 

discussed in detail. After that, the implementation of GCL into the numerical schemes is 

described for different time marching methods. An algebraic grid deformation method 

together with the corresponding blending strategy is given in Section 2 as well. Then several 

numerical test cases are presented in Section 3. For a single flapping airfoil, the numerical 

results are obtained with both a rigid moving grid and a deformable grid. The comparisons of 

these results with experimental data are also presented. Moreover, some superior features of 

high-order methods over the lower ones are also illustrated in Section 3. Section 4 briefly 

concludes the paper. 
 

2.  Numerical Method 
2.1  Governing Equations 

We consider the unsteady compressible Navier-Stokes (N-S) equations in conservation 

form in the physical domain (�, �, �, �) 

                                              0Q F G H
t x y z

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
,                                          (2.1) 

where � is the vector of conservative variables, and 	, 
, � are the total fluxes including 

both the inviscid and viscous flux vectors. 

After introducing a time-dependent coordinate transformation (Fig. 1(a)) from the physical 

domain (�, �, �, �) to the computational domain (�, , �, �), Eq. (2.1) can be rewritten as 
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� � � �

0,Q F G H
τ ξ η ζ

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
                                           (2.2) 

where  

�

�

�

�

( )

( )

( )

t x y z

t x y z

t x y z

Q J Q

F J Q F G H

G J Q F G H

H J Q F G H

ξ ξ ξ ξ

η η η η

ζ ζ ζ ζ

 =


= + + +


= + + +


= + + +

.                                 (2.3) 

Herein, � = �, and (, �, �) ∈ [−1,1]�, are the local coordinates in the computational domain. 

In the transformation shown above, the Jacobian matrix � takes the following form 

( , , , )
( , , , )

0 0 0 1

x x x x
y y y yx y z tJ
z z z z

ξ η ζ τ

ξ η ζ τ

ξ η ζ τξ η ζ τ

 
 ∂  = =
 ∂
 
 

.                              (2.4) 

For a non-singular transformation, its inverse transformation must also exist, and the 

transformation matrix is  

1 ( , , , )
( , , , )

0 0 0 1

x y z t

x y z t

x y z t

J
x y z t

ξ ξ ξ ξ
η η η ηξ η ζ τ
ζ ζ ζ ζ

−

 
 ∂  = =
 ∂
 
 

.                            (2.5) 

It should be noted that all the information concerning grid velocity ������� = (�� , �� , ��) is 

related with (�, ��, ��) by 

t g

t g

t g

v

v

v

ξ ξ

η η

ζ ζ

 = − ×∇
 = − ×∇


= − ×∇

���

���

���
.                                                    (2.6) 

 

2.2  Space Discretization 

A brief review of the SD method is given here for completeness. A more detailed 

description of this numerical method is available at [22]. In the SD method, two sets of points 

are given, namely the solution and flux points, as shown in Fig. 1(b). Conservative variables 
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are defined at the solution points, and then interpolated to flux points to obtain local fluxes. 

In this study the flux points are selected to be the Legendre-Gauss points plus both end points 

-1 and 1.  

The fluxes are computed at the flux points using Lagrange interpolation polynomials. It 

should be pointed out that this solution polynomial is only continuous within a standard 

element, but discontinuous at the cell interfaces. Therefore, for the inviscid flux, a Riemann 

solver is necessary to compute a common flux on the interface. For a moving boundary 

problem, since the eigenvalues of the Euler equations are different from those for a fixed 

boundary problem by the grid velocity, the design of the Riemann solver should consider the 

grid velocity. Taking the Rusanov flux [22] as an example, the reconstructed fluxes in three 

directions can be written as 

� � �

� � �

� � �

1 [ ( ) ( ) ] ( )
2
1 [ ( ) ( ) ] ( )
2
1 [ ( ) ( ) ] ( ),
2

i i i
L R n gn R L

i i i
L R n gn R L

i i i
L R n gn R L

F F F V v c Q Q J sign n

G G G V v c Q Q J sign n

H H H V v c Q Q J sign n

ξ ξ

η η

ζ ζ

 = + − − + − ∇ ∇

 = + − − + − ∇ ∇

 = + − − + − ∇ ∇

�
i i i i

�
i i i i

�
i i i i

         (2.7) 

where superscript ‘i’ indicates the inviscid flux, subscript n indicates the normal direction of 

the interface. It should be noted that �, ��� and ���  are included in the inviscid fluxes. The 

reconstruction of the viscous flux can be found in [22]. 

 

  
  (a)                                                            (b) 

Fig. 1. (a) Transformation from a moving physical domain to a fixed computational domain; (b) Distribution of 

solution points (as denoted by circles) and flux points (as denoted by squares) in a standard quadrilateral 

element for a third-order SD scheme. 
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2.3  Geometric Conservation Law (GCL) 

The GCL for the metrics of the transformation from the physical domain to the 

computational one can be expressed as  

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0.

x x x

y y y

z z z

t t t

J J J

J J J

J J J

J
J J J

t

ξ η ζ
ξ η ζ

ξ η ζ
ξ η ζ

ξ η ζ
ξ η ζ

ξ η ζ
ξ η ζ

∂ ∂ ∂ + + =∂ ∂ ∂


∂ ∂ ∂ + + =∂ ∂ ∂
 ∂ ∂ ∂ + + =

∂ ∂ ∂
∂ ∂ ∂ ∂ + + + =
 ∂ ∂ ∂ ∂

                     (2.8) 

It is obvious that the first three formula of the GCL only depend on the accuracy of the 

space discretization, while the last one is related to the time evolution of the moving grid. 

Since the spatial metrics are computed exactly, the first three equations are automatically 

satisfied. If the mesh undergoes rigid-body motion without deformation, |�|is independent of 

time. Due to the discretization error, the time dependent GCL may not be strictly satisfied if 

one does not pay attention to how the mesh velocity is computed. However, for a dynamic 

mesh, spurious flows can be induced if the GCL is not strictly enforced. Therefore, GCL is a 

critical element for dynamic meshes.  

In the present study, the GCL error in the numerical simulation is canceled by adding a 

source term to the N-S equations in the computational domain. In [17-19], the enforcement of 

GCL is achieved by using the same time integration form for the Jacobian as the conservative 

variables. An extra equation for the Jacobian needs to be solved iteratively. However, the 

present approach calculates the Jacobian directly, and then eliminates the errors generated by 

the disagreements between Jacobian and the corresponding grid velocity through a source 

term. Herein, treatments of the GCL are introduced separately for explicit and implicit 

schemes due to their different characteristics. 

 

Explicit Scheme 

    The semi-discrete form of the N-S equation in the computational domain reads 
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�
�

� � �

( ) ( )
n F G HQ R Q

t ξ η ζ
∂ ∂ ∂

+
∂

= = −
∂

+
∂ ∂ ∂

.                                  (2.9) 

The equation is solved with a multi-stage strong-stability-preserving (SSP) Runge-Kutta 

scheme. 

    The following equation is obvious by the chain rule, 

� J Q JQ QJ Q
t t t t

∂ ∂∂ ∂
= = +

∂ ∂ ∂ ∂
                                     (2.10) 

Substitute the last formula of Equations (2.8) into Equation (2.10), we obtain 
�

( ) ( ) ( )t t t
Q QJ Q J J J
t t

ξ η ζ
ξ η ζ

 ∂ ∂ ∂ ∂ ∂
= − + + ∂ ∂ ∂ ∂ ∂ 

               (2.11) 

    Thus Equation (2.9) is changed to the following form, 

� � �

� � �

1 ( ) ( ) ( )

1

t t t
Q F G H Q J J J
t J

F G H source
J

ξ η ζ
ξ η ζ ξ η ζ

ξ η ζ

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ = − + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂    
  ∂ ∂ ∂ = − + + +  ∂ ∂ ∂   

     (2.12) 

where  

( ) ( ) ( )t t tsource Q J J Jξ η ζ
ξ η ζ

 ∂ ∂ ∂
= + + ∂ ∂ ∂ 

.                  (2.13) 

    Note that 
� � �F G H
ξ η ζ

∂ ∂ ∂
+ +

∂ ∂ ∂
 contains a term as ( ) ( ) ( )t t tQ J J Jξ η ζ

ξ η ζ
 ∂ ∂ ∂

+ + ∂ ∂ ∂ 
. It is 

clear that GCL is satisfied strictly as this term will be canceled by the ‘source’ term when � 

is a constant (i.e. the free stream flow). The benefits of this method are that the source term is 

easy to compute and implement for the original solver for stationary grids and the calculation 

of �|�| ��⁄  can be avoided, which might generate additional errors and increase the 

computational cost. 

 

Implicit Scheme 

    At each cell ‘c’, using the backward Euler scheme for the time derivative,  

� �
� � �

1
1

( ) ( ) ( )
n n

n n nc c
c c c

Q Q R Q R Q R Q
t

+
+−  − − =  ∆

,                          (2.14) 
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further performing the Taylor expansion and keeping the first-order term, we obtain  

� �
�

�
�
�

1
( ) ( )

n n c c
c c c nb

nb cc nb

R RR Q R Q Q Q
Q Q

+

≠

∂ ∂
− = ∆ + ∆

∂ ∂
∑ ,                          (2.15) 

where ∆�!" = �!"#$% − �!"#, ‘nb’ indicates all the neighboring cells contributing to the residual 

of cell ‘c’.  

Combining (2.14) and (2.15), we obtain 

�
�

�
� �( ) ( )

nc c
c nb c

nb cc nb

R RI Q Q R Q
t Q Q≠

∂ ∂
− ∆ − ∆ =

∆ ∂ ∂
∑ .                               (2.16) 

However, it is expensive in memory to store the full LHS implicit Jacobian matrices. 

Therefore, a preconditioned LU-SGS scheme is adopted in the development of the implicit 

scheme. Herein, we just introduce a preconditioning matrix as 

�
( )c

c

RID
t Q

∂
= −

∆ ∂
,                                                    (2.17) 

and the iterative scheme becomes 

�
�

� �
�
�

( 1) ( 1) *
( ) ( )

k k nc c
c c c nb

nb cc nb

R RID Q Q R Q Q
t Q Q

+ +

≠

∂ ∂
∆ = − ∆ = + ∆

∆ ∂ ∂
∑ ,               (2.18) 

where superscript (k+1) is an iterative index, and * indicates the most recently updated 

solutions. It should be noted that ∆�!"
(&$%) can be written as 

� � � � � � �
( 1) ( 1) ( 1) ( ) ( )

( ) ( )
k k n k k k n

c c c c c c cQ Q Q Q Q Q Q
+ + +

∆ = − = − + − , with � �
( ) *k

c cQ Q= .      (2.19) 

Since we do not want to store the matrices �'" ��!#(⁄ , (2.18) is further manipulated as 

follows. 

�
�
� � �

�
�

� � � �
�

�

�
�

� �
�

�

* *

** * *

* ( )* *

( ) ( ,{ } )

( ,{ } ) ( ,{ } )

( ) ( )

n n nc c
c nb c nb c nbc nb

nb c nb cnb nb

n c
c nb c c nb c cc nb c nb

c

kc c
c c c c

c c

R RR Q Q R Q Q Q
Q Q

RR Q Q R Q Q Q
Q

R RR Q Q or R Q Q
Q Q

≠
≠ ≠

≠ ≠

∂ ∂
+ ∆ = + ∆

∂ ∂
∂

≈ ≈ − ∆
∂

 ∂ ∂
= − ∆ − ∆ 

∂ ∂ 

∑ ∑

           (2.20) 

In (2.20), note that both approximations can be obtained using the first-order Taylor series 

expansion. Combining (2.18-20), we obtain 
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� �
�

� � �
�

*
( 1) ( ) ( 1) ( ) *

( ) ( ) ( )
k k k kc c

c c c c c
c

R QID Q Q Q Q R Q
t tQ

+ + ∂ ∆
− = − − = − 

∆ ∆∂ 
,         (2.21) 

Since matrix ) merely serves as a preconditioner, the accuracy of the iteration will be 

determined by the right-hand side (RHS) of the equation (2.21). 

Note that 

� ( )

( )

t x y z

x y zt
t

J Q F G HF

J F G HJ QQ J

ξ ξ ξ ξ

ξ ξ

ξ ξ ξξ
ξ

ξ ξ ξ

 ∂ + + +∂  =
∂ ∂

 ∂ + +∂ ∂  = + +
∂ ∂ ∂

,            (2.22) 

which is contained in '(�!). 

Thus, the GCL is introduced in the RHS as follows. 

�
� � �

�
* *

( 1) ( ) * * * ** * * *( ) ( ) ( ( ) ( ) ( ))
k kc c

c c c c t t t
c

JR QI Q Q R Q Q J J J
t t tQ

ξ η ζ
ξ η ζ

+  ∆∂ ∆ ∂ ∂ ∂
− − = − + + + + 

∆ ∆ ∆ ∂ ∂ ∂∂ 
(2.23) 

It should be noted that in the above equation the discrete form of ∆|�|∗ ∆�⁄  is exactly the 

same as ∆�!"∗	 ∆�⁄ . This consistency can help minimize the errors induced by discretization 

schemes. For example, the second-order backward difference scheme (BDF2) for the two 

derivatives can be written as below, 

� � � �
* 1 * * 13 43 4 ,

2 2

n n n n
c c c c J J J JQ Q Q Q
t t t t

∗ − −∆ − +∆ − +
= =

∆ ∆ ∆ ∆
                  (2.24) 

 

2.4  General Grid Deformation Strategies 

    In order to solve problems with moving grids, it is necessary to design a grid moving 

algorithm. As the first step, the boundary motion of the physical domain is specified 

according to the physical problem. Then traditionally two methods can be used to manipulate 

the rest of the mesh nodes. The first one is to use the algebraic procedure to smooth the 

whole field [5,17-19,30]. Another approach is to solve differential equations (usually elliptic, 

like equations of linear elasticity) with the specified boundary conditions [21,30]. For the 

sake of computational efficiency, an algebraic methodology is performed in the present study, 

which has been widely used by other researchers [17-19]. 
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    The first implementation of the algebraic method is to make the whole physical domain 

perform a rigid-body motion. Obviously, this approach cannot handle relative motions among 

several components. Another implementation is to use blending functions to reconstruct the 

whole physical domain. In the present study, a fifth-order polynomial blending function 

proposed in [19],  
3 4 5

5( ) 10 15 6 , [0,1]r s s s s s= − + ∈                                      (2.25) 

is adopted. It is obvious that ,-.(0) = ,-.(1) = 0, which can generate a smooth variation at 

both end points during the mesh reconstruction. Herein, ‘s’ is a normalized arc length, which 

reflects the ‘distance’ between the present node and the moving boundaries. Specifically, s=0 

means that the present node will move with the moving boundary, while s=1 means that the 

present node will not move. Therefore, for any motion (transition, rotation), the change of the 

position vector 0�1 is 

5(1 )present rigidP r P∆ = − ∆
�� ��

.                                         (2.26) 

After these manipulations, a new set of mesh nodes can be calculated based on ∆0�1. In the 

present study, for the deformable grid approach, in order to maintain the grid quality near the 

wall boundaries, rigid motions are enforced in the vicinity of the wall boundaries. The outer 

boundaries far from the wall are specified as stationary reference. Between the rigidly 

displaced grid and the stationary grid, the blending function (2.25) is used to interpolate and 

smooth the grid motion. 

It should be mentioned that the same smoothing method can also be used in problems with 

two or more objects with relative motions. In the present study, a tandem airfoil problem is 

investigated using this approach, as will be discussed in the next section. In that case, the 

change of the position vector 0�1 can be written as 

[ ] [ ]

1 1

2 2

2 1
1 25 1 5 2

1 2 1 2

, 0

, 0

1 ( ) 1 ( ) ,

present rigid

present rigid

n n

present rigid rigidn n n n

P P if s

P P if s
s sP r s P r s P otherwise

s s s s

∆ = ∆ =

∆ = ∆ =

∆ = − ∆ + − ∆
+ +

�� ��

�� ��

�� �� ��

 (2.27) 

and it is made sure that there is no region with both 2% = 0 and 23 = 0. 

    Another point is that if ‘s’ in the blending function (2.25) is set to be 0 at any grid point, 



23 
 

then a rigidly moving grid approach is achieved. In this case, the whole domain will have the 

same motion. Generally speaking, a rigid grid is only suitable for simple motions of one 

object. For the case of multiple objects with relative motions, it will generate overset cells. 

From a numerical perspective, the Jacobian of the transformation from the physical domain 

to the computational domain will be the same all the time, and theoretically this will 

introduce less error when performing simulations, as Jacobian needs to be calculated only 

once. On the other hand, a deformable grid is desirable in more general cases. But extra 

efforts are needed to calculate the changing Jacobian as the grid evolves. 

It is clear that for systems with complex relative motions, the algebraic algorithm for the 

grid motion can be hard to design. However, for many cases this method enjoys its 

remarkable simplicity and efficiency. Several examples will be shown in the next section. 
 

3.  Numerical Results 
3.1  Accuracy Study Using an Isentropic Vortex Propagating Problem 

In order to verify that the SD method can preserve its high-order accuracy for deformable 

meshes, a 2D Euler vortex propagation case is performed in the present study. SSP third-

order Runge Kutta (SSP-RK3) time integration is used for this study. The definition of the 

isentropic vortex and its evolution process can be described as [7] 
2

2
1 (1 )

max 2( )
r
bUu r re

b
−′

= , 
2

22
ma

1 1/(
x

1)1( ) (1 ( 1) )
2

r
br eU γρ γ

−
−′= − − ,

2

22
max

1 /( 1)1( ) (1 ( 1) )
2

r
bp r eU γ γγ

−
−= − − ′ , 

and 

0

0

( , , ) 0 ( )
( , , ) ( )sin
( , , ) ( ) cos
( , , ) 0 ( )

x y t r
u x y t U u r
v x y t V u r
p x y t p r

ρ ρ
θ
θ

     
     −     = +
     
     
     

, 

where 4(,), 5(,), 6(,)  are the velocity, density and pressure distribution of the vortex 

respectively; 78 and 98 are the advection velocities of the main stream in x and y directions; 

2 2
0 0( ) ( )r x U t y V t= − + − , = :(� − 78�)3 + (� − 98�)3  is the radial distance from the 

vortex center; b is a constant.  

The isentropic vortex was originally centered at (0,0), with the initial condition given by 
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(78, 98) = (0.5,0), 7>?@
. = 0.578, A = 0.2. The physical domain of this problem is set to be 

[−2,2] × [−2,2] with one cell in z direction. The grid deformation strategy follows [13], 

which analytically defines the grid motion as 

( ) ( ) ( )x t x t d x t= +
� � �

 

with 

max

max

( ) / sin( ) sin( ) sin( )

( ) / sin( ) sin( ) sin( )
x x n x y

y y n x y

dx t A L dt t f t f x f y

dy t A L dt t f t f x f y

=

=
 

for 2D problems. Herein, D@,E is the amplitude in x and y directions; F@,E and �>?@ depict the 

reference length and time; G� is the time step, and  

max/ , / , /n t x x x y y yf n t f n L f n Lπ π π= = = . 

The motion control parameters of the deformable grid are set as F@ = FE = 4, �>?@ = 0.1 

and I@ = IE = 2 , I� = 1 and D@ = DE = 0.2 . Since at � = 0.1  the grid has the largest 

deformation, the errors are analyzed at that instance. In order to ensure that the time 

integration errors have no effects on the accuracy analyses, a fixed time step is chosen as 

∆� = 5 × 10J-. Pressure coefficient (defined as KL = (6 − 6M) (0.557M3 )⁄ ) distribution of 

the vortex is displayed in Fig. 2(a) at	� = 0.1. From Fig. 2(b), it is obvious that the analytical 

result agrees well with the numerical one. Results of the grid refinement study are displayed 

in Fig. 3, which demonstrate the accuracy of the SD method for the deformable domain. The 

errors are measured with both F3  and FM  norms, and an optimal convergence has been 

achieved in all cases. It is also found that the schemes with and without GCL for the 

isentropic vortex propagation tests almost obtain the same error values and accuracy. 

However, for the free stream preservation test, it is obvious from Fig. 4 that for both explicit 

(SSP-RK3) and implicit (BDF2) schemes, if the GCL is not enforced, the error level can 

reach up to nine orders larger than machine zero. But with a GCL compliant scheme, 

machine zero can be achieved. In this test, the 4th order scheme is used on the grid with 

19×19×1 cells, and the errors are computed at � = 0.1 as well.  
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(a)                                                                                           (b) 

Fig. 2. (a) Pressure coefficient distribution and grid deformation; (b) comparison between numerical and 

analytical solutions of pressure coefficient along y=0 at t=0.1. The solid line denotes the analytical result, and 

the dash-dot line with triangles indicates the numerical result. 

  
(a)                                                                                            (b) 

Fig. 3. The convergence of the vortex propagation problem using the deformable grid with and without GCL 

correction, as well as for the stationary grid. Figure (a) and (b) displays results from the 3rd-order and 4th-order 

SD methods respectively. In both cases, four mesh sizes are used and error representations in both 2-norm (as 

denoted by F3) and infinity-norm (as denoted by FM) are given. 
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(a)                                                                                           (b) 

Fig. 4. The convergence of the free stream preservation test using the deformable grid with and without GCL 

correction. Results from the 4th-order SD method with (a) explicit SSP-RKS and (b) implicit BDF2 time 

integration schemes are displayed. In both cases, four time steps are used and error representations in both 2-

norm (as denoted by F3) and infinity-norm (as denoted by FM) are given. 

 

3.2  Bio-inspired Flow Simulations 

    Recently, there is a growing interest in the study of bio-inspired flows in the fluid 

dynamics community. One of the major objectives is to investigate the wake structures after 

flapping airfoils or wings [1,2,6,10,15,16,20,28,29,35]. The reason is that based on the 

evolution of these wake structures, the thrust and lift generation mechanism in agile flight 

can be clearly revealed. As mentioned before, such flows are unsteady vortex dominated 

flows. In order to resolve the subtle vortex structures, a high-order method is necessary, as 1st 

and 2nd order flow solvers may dissipate the unsteady vortices quickly. Moreover, these 

problems all involve moving boundaries. Therefore, several numerical simulations of the 

flapping-related motions are carried out to examine the performance of the high-order SD 

method for deformable meshes.  Unless otherwise noted, the default numerical scheme used 

in the simulations is the 3rd order SD scheme. For the two dimensional simulations, the 

implicit BDF2 time integration is used; and for the three dimensional simulations, the explicit 

SSP-RK3 time integration is employed. For all the simulations presented in this section, the 

free stream Mach number is chosen as 0.1. 
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3.2.1  Flat Plate Pitch-up Process 

A series of canonical unsteady experimental studies on the flat plate pitch-up problem was 

conducted in [15,16]. This problem is also studied using the high-order SD method. The aim 

of the study is to investigate the aerodynamic responses of maneuvering flights, such as 

perching. The main features of these problems can be generalized as high-frequency and 

high-amplitude pitching processes, which can be used to verify the efficiency of the SD 

method for deformable meshes. In order to compare the numerical results with the 

experimental ones, the functions and parameters used in the present study are defined to be 

consistent with the experiment. 

The maximum pitching angle N> is set to be 40O, and α  is computed according to 

( )( )
( ( ))m

G TT
Max G T

α α= , 

with a smoothing function defined in [6] as 

1 4

2 3

cosh( ( )) cosh( ( ))( ) ln
cosh( ( )) cosh( ( ))

a T T a T TG T
a T T a T T

 − −
=  − − 

, 

where P is a function shape parameter, which is set to be 11.0, Q% = ∆QR, Q3 = Q% + ∆QLS, 

Q� = Q3 + ∆QT and QU = Q� + ∆QLV as shown in Fig. 5. Herein, Q is a non-dimensional time 

with respect to K 7M⁄ , where ‘K’ stands for the chord length. The start-up interval ∆QR is set 

to be 1.0, the reduced pitch rate W = (KN> ∆QLS,V⁄ ) 27M⁄  is specified as 0.2, and the hold 

interval ∆QT  is set to be 0.05. The Reynolds number based on the plate chord length is 

10,000. The non-dimensional time step used for the simulations is ∆�7M K⁄ = 7.5 × 10J-. 

Fig. 6 shows the details of the deformable grid and the rigidly displaced grid. The grid has 

77×78×1 cells, and the minimum cell size normalized by the plate chord length in the 

transverse direction is 0.0015. The numerical results for two instances during the pitch-up 

process, namely �7M K⁄ = 1.8725  (corresponding pitch angle 20O ) and �7M K⁄ = 2.745  

(corresponding pitch angle 40O), are compared with the experimental results.  From Fig. 7 

and 8, it is obvious that the computed instantaneous vorticity and velocity fields agree well 

with the experimental data. The corresponding force histories for both deformable and rigidly 

moving grids are displayed in Fig. 9. Note that the results with different grid deformation 
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algorithms are nearly identical. 
 

 
Fig. 5. Pitching angle evolution during the hold, pitch-up, hold and pitch-down process. 

  
                                             (a)                                                                                 (b) 
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                                                                        (c) 

Fig. 6. (a) Overview of the deformable grid; (b) close-up view of the deformable grid near the moving 

boundary; (c) overview of the rigidly moving grid. 

 
a. Experimental results (courtesy of OL [15]). From left to right: flow visualization with dye; u velocity contour 

(PIV); vorticity contour in the spanwise direction (PIV). 

  
b. Numerical results with deformable grids. Left: u velocity contour ( /u U∞

); right: vorticity contour in the 



30 
 

spanwise direction. 

  
c. Numerical results with rigidly moving grids. Left: u velocity contour; right: vorticity contour in the spanwise 

direction. 

Fig. 7. Comparison between numerical and experimental results for Re=10000, k=0.2, 20α = �  when 

1.8725tU C∞ = . 

 

 
a. Experimental results (courtesy of OL [15]). From left to right: flow visualization with dye; u velocity contour 

(PIV); vorticity contour in the spanwise direction (PIV). 

  
b. Numerical results with deformable grids. Left: u velocity contour ( /u U∞

); right: vorticity contour in the 
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spanwise direction. 

  
c. Numerical results with rigidly moving grids. Left: u velocity contour; right: vorticity contour in the spanwise 

direction. 

Fig. 8. Comparison between numerical and experimental results for Re=10000, k=0.2, 40α = �  when 

2.745tU C∞ = . 

  
                                            (a)                                                                                          (b) 

Fig. 9. (a) Drag coefficient history and (b) lift coefficient history for Re=10000, k=0.2, calculated using both the 

rigidly moving grid (as denoted by the solid line) and the deformable grid (as denoted by the dash-dot line with 

triangles). 

 

3.2.2  Flow over a Sinusoidally Pitching Airfoil 

An experimental investigation of the flow over a NACA-0012 airfoil performing a 

pitching motion with small amplitude and high reduced frequency has been conducted in [2]. 

The aim of the study is to find the critical point at which the von Karman vortex street turns 
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into a reverse von Karman street and to study the parameter dependencies of the thrust 

generation during the pitching motion. Following this experimental study, a numerical 

research is completed with the same parameter setting. And some cases are verified both with 

rigidly moving and deformable grid strategies.  

In the present study, the airfoil performs a pitching motion expressed as  

0( ) sin( )mt tα α α ω φ= + + , 2 fω π=  

where N>  is the mean angle of attack, N8 is the amplitude of the pitching angle, Z is the 

initial phase. Also, the reduced frequency [  and the Strouhal number \�  are defined 

respectively as 

2
Ck

U
ω

∞

= , 
fASt

U∞

= , 

where K is the chord length of the airfoil, D is the pitching amplitude. The Reynolds number 

based on the airfoil chord length for all the simulations in this section is 12,600. The non-

dimensional time step used for the two dimensional simulations is ∆�7M K⁄ = 1 × 10JU ; 

while that for the three dimensional simulations is ∆�7M K⁄ = 1 × 10J-.  

For the rigidly moving grid approach, the computational grid moves with the body and is 

updated using 

( )cos( ) ( )sin( )

( )sin( ) ( )cos( )
present c former c former c

present c former c former c

x x x x y y
y y x x y y

α α

α α

− = − ∆ − − ∆
 − = − ∆ + − ∆

, 

where (�" , �") is the pitching center, and ΔN = N8(sin(a(� + G�) + Z8) − sin	(a� + Z8)). 

The deformable grid and the rigidly moving grid at maximum displacements for the 

St=0.33 case are displayed in Fig. 10. There the grid with 341×47×1 cells for the two 

dimensional simulations and that with 341×47×10 cells for the three dimensional simulations 

are shown. The minimum cell size normalized by the airfoil chord length in the transverse 

direction is 0.001 and that in the spanwise direction for the three dimensional simulations is 

0.02. A grid refinement study has been performed in [35] to determine this grid setup. The 

initial conditions for all simulations on the dynamic grids in the present section are set as the 

steady solutions of the flow fields under the same Reynolds number (Re=12600) and inlet 

Mach number (Ma=0.1). The effects of initial conditions on the bio-inspired flow simulations 

are discussed in [35], and it is found that the present initial conditions can best imitate the 
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general experimental setups. The convergence history of the steady flow over the stationary 

NACA 0012 airfoil and the pressure coefficient (KL) contour are shown in Fig. 11.  

The phase-averaged vorticity field from the experiment [2] and the corresponding 

instantaneous vorticity fields from the numerical simulations with different grid deformation 

algorithms are displayed in Fig. 12. In addition, the experimental and numerical results for 

the time-averaged vorticity and velocity fields are shown in Fig. 13. The numerical results 

are found to agree well with the experimental results. Thrust and lift coefficient histories for 

both deformable and rigidly moving grids are plotted in Fig. 14. According to [2], the mean 

thrust coefficient for the case Re=12600, k=11.5, St=0.19 is around 0.024. In the present 

study, the mean thrust coefficient is calculated to be 0.031, and it is obtained by averaging the 

data in the continuous four cycles after twenty-four cycles. In addition, an interesting 

phenomenon discovered in the numerical simulation is that if the pitching amplitude is 

further increased, which means that the Strouhal number is increased, an asymmetric wake 

structure appears during the pitching motion. This was first reported in [10] for the plunging 

motion and has been experimentally studied in [29]. The vorticity fields with both 

deformable and rigidly moving grid are described in Fig. 15. The initial phase Z is set to be 

180o. A three dimensional simulation is then conducted using the same parameters as that of 

the two dimensional simulations, except that in the spanwise direction, periodic boundary 

conditions are specified. From Fig. 15(c), (d) and Fig. 16, it can be found that results from 

the 3D simulation are almost the same as those from the 2D simulations. This demonstrates 

that under the flow conditions specified in the present study, the flow is laminar and 2D 

simulations can predict the flow features well. The vortex structures in Fig. 15(d) are 

indicated by Q-criterion, which is described by 

1 1( )
2 2

ji
ij ij ij ij

j i

uuQ R R S S
x x

∂∂
= − =

∂ ∂
, 

where 'bc =
%
3
(dSe
d@f

−
dSf
d@e
) is the angular rotation tensor, and \bc =

%
3
(dSe
d@f

+
dSf
d@e
) is the rate-of-

strain tensor. It also can be discovered from Fig. 16(a) that the thrust generation process 

appears certain unsteady features accompanying with the asymmetric wake structures. Again, 

it can be found from Fig. 16 that the numerical results do not depend on the grid deformation 
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algorithms.  

 

  
                                           (a)                                                                                          (b) 

  
                                           (c)                                                                                           (d) 

Fig. 10. Grids used for the simulations of the sinusoidally pitching airfoil. (a) Overview of the deformable grid; 

(b) close-up view of the deformable grid near the moving boundary; (c) overview of the rigidly moving grid; (d) 

airfoil surface grid for the 3D simulations. 
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                                 (a)                                                                                (b) 

Fig. 11. (a) Convergence history of the energy error for the steady solution of the flow over a stationary 

NACA0012 airfoil with implicit (LU-SGS) time integration; (b) pressure coefficient contours for the converged 

steady flow. 

 

  
(a) 

  
              (b)                                                                                          (c) 

Fig. 12. Vorticity field for Re=12600, k=11.5, St=0.19. (a) Phase-averaged experimental results (courtesy of 

Bohl and Koochesfahani [2]); (b) Instantaneous numerical results with deformable grid; (c) Instantaneous 

numerical results with rigidly moving grid. 
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(a)                                                                                (b) 

   
(c)                                                                                (d) 

Fig. 13. Averaged flow fields for Re=12600, k=11.5, St=0.19. (a) vorticity field, experimental results, (courtesy 

of Bohl and Koochesfahani [2]); (b) vorticity field, numerical results; (c) u velocity field, experimental results, 

(courtesy of Bohl and Koochesfahani [2]); (d) u velocity field, numerical results. 

 

  
                                             (a)                                                                                          (b) 

Fig. 14. (a) Thrust coefficient history and (b) lift coefficient history for Re=12600, k=11.5, St=0.19, calculated 

using both the rigidly moving grid (as denoted by the solid line with squares) and the deformable grid (as 

denoted by the dash-dot line with triangles). 
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                                          (a)                                                                                           (b) 

  
                                           (c)                                                                                           (d) 

Fig. 15. Instantaneous spanwise vorticity field for Re=12600, k=11.5, St=0.33. (a) 2D simulation with the 

deformable grid; (b) 2D simulation with the rigidly moving grid; (c) 3D simulation with the rigidly moving 

grid; (d) Iso-surface of Q colored by the spanwise vorticity from the 3D simulation results. 

 

  
                                             (a)                                                                                          (b) 
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                                              (c)                                                                                         (d) 

Fig. 16. (a) Thrust coefficient convergence history and (b) lift coefficient convergence history for Re=12600, 

k=11.5, St=0.33, for 2D simulations using the rigidly moving grid (as denoted by the solid line with squares) 

and the deformable grid (as denoted by the dash-dot line with triangles) and 3D simulations using rigidly 

moving grid (as denoted by the dash line with diamonds). (c) and (d) are the corresponding close-up views of 

(a) and (b). 

 

3.2.3  Flow over Tandem Airfoils with Inverse Initial Plunging Phases 

In order to enhance the thrust or lift generation and increase the propulsive efficiency, the 

tandem airfoil configuration has been studied by some researchers [1,20]. In these problems, 

the two airfoils have relative motions, which can be utilized to verify the grid deformation 

strategy for the SD method. Two flat plates performing plunging motions are studied here. 

The Reynolds number based on the plate chord length is 10,000. The motions of the two 

plates are specified as follows. 

Fore plate:     1sin( )y h tω φ= +  

Hind plate:     2sin( )y h tω φ= +  

where ℎ K⁄ = 0.2 , the reduced frequency [ = 1.5 , Z% = 0O  and Z3 = 180O . The non-

dimensional time step used for the simulations is ∆�7M K⁄ = 2 × 10JU. 

 The deformable grid is displayed in Fig. 17. In order to compare the performances of 

high-order methods and their low-order counterparts, two sets of grids with almost the same 

degrees of freedom (DOFs) for the 3rd and 2nd order schemes are used in the simulations. A 
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grid with 46,270 cells (185,080 DOFs) is designed for the 2nd order scheme; while another 

grid with 20,056 cells (180,504 DOFs) is designed for the 3rd order scheme. The computed 

vorticity fields from both 3rd and 2nd order accuracy schemes are shown in Fig. 18, and 

remarkable differences of small vortex structures near the moving wall boundaries can be 

observed for different accuracy approaches. Further, Fig. 19 displays the different 

aerodynamic force convergence histories for methods of different accuracy. The 2nd order 

scheme shows certain quasi-steady features after several cycles, which is not found from the 

results of the 3rd order scheme. This can be explained as follows. Due to the relatively high 

numerical dissipation, the 2nd order scheme can only capture the large vortex structures as 

seen from Fig. 18. As a comparison, the 3rd order scheme can resolve fine vortex structures 

near the wall boundaries with the same DOFs. These observations further demonstrate the 

necessity of high-order methods in vortex dominated flows. 
 

  
                                                     (a)                                                                  (b) 

Fig. 17. (a) Overview of the deformable grid; (b) close-up view of the deformable grid between the two moving 

boundaries. 
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                                          (a)                                                                                (b) 

  
                                          (c)                                                                                (d) 

Fig. 18. Instantaneous vorticity fields of a tandem airfoil configuration. (a) and (c) display the vorticity fields 

calculated at the phase of the fore plate up and hind plate down position using the 3rd order and 2nd order 

accuracy schemes respectively; (b) and (d) display the vorticity fields calculated at the phase of the fore plate 

down and hind plate up position using the 3rd order and 2nd order accuracy schemes respectively. 
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                                             (a)                                                                                         (b) 

Fig. 19. (a) Thrust coefficient convergence history and (b) lift coefficient convergence history calculated using 

both the 3rd order scheme (as denoted by the dash-dot line with triangles) and the 2nd order scheme (as denoted 

by the solid line with squares). 

 

4.  Conclusions 
A high-order spectral difference method has been extended to solve compressible Navier-

Stokes equations on deformable meshes. Since the present method is based on unstructured 

grids, it can handle complex geometries. Moreover, the differential form of the SD method 

makes the implementation straightforward even for high-order curved boundaries. Because a 

time-dependent transformation from the physical domain to the computational one has been 

made in the application of the method, the Geometric Conservation Law (GCL) has been 

carefully considered during the process and implemented for both the explicit and implicit 

time integration methods. It has been demonstrated that the developed algorithm preserved 

the high-order accuracy and works efficiently for several bio-inspired flow problems. 

Numerical tests clearly show that the high-order method with low numerical dissipation can 

resolve much more elaborate vortex structures than the low-order method, and can then help 

better illuminate the underlying physics of the vortex-dominated flow. 
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CHAPTER 3. Experimental and Numerical Investigations on 

the Asymmetric Wake Vortex Structures around an Oscillating 

Airfoil   
A paper published in the 50th AIAA ASM conference proceedings 

 

Meilin Yu, Hui Hu and Z. J. Wang 

Abstract 

    Wake structures behind a sinusoidally pitching NACA0012 airfoil have been studied 

with both experimental and numerical approaches. The results from Particle Image 

Velocimetry (PIV) measurements and those from the high-order unstructured dynamic 

grid based spectral difference (SD) compressible Navier-Stokes (NS) solver agree well 

with each other. Two types of wake transition processes, namely the transition from a 

drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the 

asymmetric wake are experimentally investigated. Asymmetric wake phenomena have 

been emphasized in the study. The deflected wake is found to appear at approximately 

Strouhal number 0.31 and reduced frequency 15.1 for the pitching amplitude 5�. As the 

Strouhal number increases, the dipole mode of the vortex pair becomes more apparent, 

which is considered to be a vital element to form the asymmetric wake. Besides, the 

dependency of the deflective directions of the asymmetric wake on other parameters, e. g. 

initial phase angle, reduced frequency, has been analyzed both experimentally and 

numerically. 

Nomenclature 

AoA = angle of attack 

a = speed of sound ��  = lift coefficient ��  = thrust coefficient 

c = chord length 
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E = total energy 

F,G = vectors of fluxes in the physical domain ��, 	� = vectors of fluxes in the computational domain 

i,j = index of coordinates in x, y direction 

J = Jacobian matrix 

K = reduced frequency 

M = Mach number 
�  = mass flow rate 

p = non-dimensional pressure �, ��  = vectors of conservative variables in the physical and computational domains 

Re = Reynolds number based on the chord length � = fifth-order polynomial blending function 

St = Strouhal number 

s = normalized arc length �, � = time in the physical and computational domain 

u,v = non-dimensional velocity in x, y direction ��� = grid velocity 

x,y = non-dimensional Cartesian coordinates in the physical domain � = pitch angle of the airfoil �, � = Cartesian coordinates in the computational domain � = non-dimensional density � = phase angle �� = spanwise (z) vorticity 

 

1.  Introduction 

  Bird-sized and insect-sized Micro-Air-Vehicles (MAVs) have opened up new 

opportunities for surveillance missions. Their miniaturized size and versatile functionality 

offers a significant advantage over conventional approaches in high-density or bio-
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harmful environments. MAVs can be designed with fixed, rotary or flapping wings. 

Among them, the flapping wing motion, which has been widely used by natural flyers, is 

attractive due to its high efficiency and excellent maneuverability. It is observed that in 

natural flights within the Reynolds number range of 103 to105, a thrust can be generated 

from flapping motions due to the generation of the reverse von Karman vortex street 

behind the flapping wing. However, it is challenging to fully understand the 

aerodynamics exhibited by natural flapping wing flyers considering the intricacies behind 

them. Therefore, it is reasonable to simplify the complicated system by substituting it 

with appropriate models at different complexity levels. With these simplified models, one 

can study the underlying physics behind the bio-inspired unsteady flow piece by piece 

and in turn, to apply them in the design of MAVs. Readers who are interested in these 

topics can refer to two comprehensive reviews by Shyy et al. [1,2]. 

    Among all research directions, wake structure analyses have attracted much attention, 

as the evolution of the vortex street reveals the flapping wing dynamics. Myriads of 

experiments and numerical simulations have been carried out for both two dimensional 

(2D) and three dimensional (3D) wake structure analyses. Koochesfahani [3] studied the 

wake patterns for a pitching NACA0012 airfoil with the small pitching amplitude but 

relatively large pitching frequency through the dye visualization and laser Doppler 

velocimetry (LDV) measurement. They concluded that the wake pattern can be controlled 

by adjusting the frequency, amplitude and the shape of the oscillation wave form. In a 

successive work, Bohl and Koochesfahani [4] studied the flow over a sinusoidally 

pitching NACA0012 airfoil of various reduced frequencies using molecular tagging 

velocimetry (MTV). In that research, they reported the transition point to change from a 

von Karman vortex street to a reverse von Karman vortex street for the pitching motion 

with small pitching amplitude (2o) but relatively large reduced frequency. Through the 

linear stability analyses of the wake structures, Triantafyllou et al. [5] obtained the 

optimal wake width based Strouhal number for oscillating foils in the range 0.25 to 0.35. 

Anderson et al. [6] experimentally confirmed that the propulsion efficiency at the optimal 

Strouhal number 0.3-0.4 can be up to 87%. Based on the numerical studies of a heaving 
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airfoil, Wang [7] also obtained that the optimal Strouhal number is around 0.3 and 

showed certain criteria to achieve the optimal performance. Lai and Platzer [8] 

experimentally studied the wake features after a plunging NACA0012 airfoil, and 

confirmed that a plunging foil could generate a jet-like wake structure. Further, based on 

the dye visualization, they showed schematically the processes for the generations of 

different wake patterns. Later, extensive numerical simulations have been performed by 

Young and Lai [9], focusing on the relationships between flow features and the 

aerodynamic parameters. Godoy-Diana et al. [10] experimentally studied the 

aerodynamic parameter dependency of the transition from the drag-generation wake to 

the thrust-generation one for a teardrop like pitching foil based on the wake visualization 

and displayed the parameter map for different wake types. Compared with 2D wake 

structures, 3D wake patterns are more complex and fewer results are reported.   

Ellenrieder et al. [11] analyzed the Strouhal number and plunge/pitch phase lag effects on 

the wake vortex structures behind a translating finite-span wing through dye 

visualizations. Dong et al. [12] numerically confirmed that the performance of a low-

aspect-ratio flapping foil is closely related to the wake vortex evolutions. Besides, from 

the aspect of the optimal vortex formation, Dabiri [13] displayed the ubiquitous existence 

of this phenomenon in the biological propulsion and suggested that the optimal Strouhal 

number could be one consequence of the optimal vortex formation process. Therefore, it 

is still an open question to specify whether aerodynamic parameters other than the present 

popular ones, such as Strouhal number, reduced frequency and advanced ratio, etc. exist, 

which can better describe the flapping systems, and to resolve the dependency of the bio-

inspired flow on these aerodynamic parameters.  

    Investigating the wake visualization results from experiments and numerical 

simulations, researchers found an interesting asymmetric wake vortex shedding mode 

which deserves to be further studied. The key problem originated from the asymmetric 

wake phenomenon can be stated like this. Intuitively, if an axis-symmetric airfoil 

oscillates around the balancing position of zero angle of attack (AoA) using a symmetric 

motion algorithm, e.g. sinusoidal pitch or plunge, the wake direction should always 
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follow the stream wise direction. This is true under the small Strouhal number as has been 

confirmed by many experimental and numerical results [3,4,6,7,9,10]. However, it is 

found that as the Strouhal number increases, a deflected wake can be observed behind an 

oscillating foil. It is an open question to answer the originality of the asymmetric wake. 

Furthermore, since the deflected wake is usually accompanied with larger thrust and lift 

generation, it seems that to fully understand the characteristics of this phenomenon might 

be vital for the design and control of MAVs. As reported by Jones et al. [14], a deflected 

wake occurs generally with a relative larger wake width based Strouhal number (around 

0.48). Beside, during the experiment, they found that the direction of the deflected wake 

pattern can alter somewhat arbitrarily due to some reasons that were not clear. Through a 

numerical simulation with an inviscid panel code, the asymmetric wake can be predicted 

in their research. Platzer et al. [15] suggested that for flow with large Strouhal numbers, a 

viscous flow solver is necessary to provide a complete picture of the occurrence of the 

deflected wake structure. Lewin and Haj-Hariri [16] used an incompressible viscous flow 

solver to study the aerodynamic parameter dependency of thrust generation for a heaving 

airfoil. From their research, wake patterns are categorized in detail, and deflected wakes 

those can alter directions are reported. The possible reason can be attributed to the 

intensive interactions between leading edge vortices (LEVs) and trailing edge vortices 

(TEVs). Heathcote and Gursul [17] found that the period of the jet switching during their 

experiment is two orders of magnitude greater than the plunging period of the foil. They 

also showed that the jet switching period closely depends on the Strouhal number and the 

stiffness of the airfoil. Godoy-Diana et al. [10] showed the watershed for the symmetric 

reverse von Karman vortex street and the asymmetric jet-like wake in a frequency-

amplitude map. From the diagram, the authors concluded that asymmetric wake patterns 

can even fall into the optimal Strouhal number region. Later, Godoy-Diana et al. [18] 

modeled the asymmetric wake phenomenon by using a dipole model, which has been 

termed as a dual mode in Jone et al.’s [14] work. A similar approach has been used to 

model the asymmetric wake for a semi-infinite vortex array by Yu et al. [19]. Ellenrieder 

and Pothos [20] experimentally verified the onset of the deflected wake and the 
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corresponding flow features. They claimed that when Strouhal number exceeds 0.434, a 

deflected wake will appear for a plunging NACA0012 airfoil. Liang et al. [21] 

numerically found that the deflective angle decreases when the Reynolds number 

decreases for a fast plunging airfoil. As suggested by some researchers, the 3D 

counterpart of the 2D asymmetric wake might be the two jet-like wake patterns behind a 

free-end finite-span wing, as shown in Ref. 0. Recently, Hu et al. [22] have 

experimentally verified that for a fixed-root wing, the two jet-like wake patterns can also 

be observed. Whether these flow structures can be related to the 2D asymmetric wake 

pattern still needs more investigations.  

    Obviously, the aforementioned unsteady bio-inspired flows are dominated by moving 

vortices, which play a critical role in the wake pattern analyses. As 1st and 2nd order flow 

solvers may dissipate the unsteady vortices, a high-order dynamic grid based spectral 

difference (SD) method is used in tackling these unsteady vortex-dominated flows. As the 

high order method means possible high cost, an efficient high-order method needs to be 

developed for the bio-inspired flow simulations. The SD method [23,24] is used in the 

present study to make compromise between these two competing factors.. It has been 

demonstrated that the dynamic grid based SD method works well for the bio-inspired 

flows. The basic approach to achieve high-order accuracy in the SD method is to use a 

high degree polynomial to approximate the exact solution in a local element (a standard 

cell). However, unlike the discontinuous Galerkin (DG) method [25] and spectral volume 

(SV) method [26], the SD method is in differential form, which is efficient and simple to 

implement. Furthermore, the SD method can use larger time steps than the DG type 

method, which might make it more competitive for the potential engineering use. 

Recently, all kinds of high-order methods have been used for the bio-inspired flows. 

Visbal [27] has successfully utilized a high-order method (a compact finite-difference 

approach) to simulate the flow field around a SD7003 airfoil. Persson et al. [28] have 

developed a dynamic DG method for a finite-span wing simulation and compared the 

results with other numerical methods. Liang et al. [21] have successfully used SD method 

for a plunging NACA0012 airfoil simulation. In their research, the asymmetric wake has 
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been reported under large Strouhal number and the relationship between the deflected 

direction and Reynolds number has been studied. Several potential applications for SD 

method in the bio-inspired flow have been reported by Yu et al. [24]. They also 

discovered that the asymmetric wake phenomena can appear under Strouhal number 0.33 

with no leading edge separation. Ou et al. [29] developed a 3D SD solver for the finite-

span flapping wing simulations, and verified the effectiveness of the method for the bio-

inspired flow simulations. 

Based on the above discussions, the present paper endeavors to further study the 

conditions for the occurrence of the deflected wake and how these conditions affect the 

dynamic behaviors of the deflected wake. The remaining paper is organized as follows. In 

section 2 and 3, the experimental setup and the numerical method will be introduced. The 

numerical simulation setup is also specified in section 3. Then experimental and 

numerical results are displayed in section 4. Two wake transition processes are discussed 

there and the asymmetric wake phenomenon is analyzed through both experimental and 

numerical approaches. Finally, conclusions are summarized in section 5. 

 

2.  Experimental Setup 

The experimental study was performed in a closed-circuit low-speed wind tunnel 

located in the Aerospace Engineering Department of Iowa State University. A plexiglass-

walled test section is mounted on this wind tunnel, and the interior dimensions of the test 

section are of 2.5m × 0.3m × 0.3m. The tunnel has a 40:1 contraction section upstream of 

the test section and has honeycombs, screen structures and a cooling system installed 

ahead of the contract section. A uniform incoming flow with low turbulent intensity can 

then be provided for the test section. For the present study, the free stream velocity for the 

test section is maintained at 0.5m/s.  

The NACA0012 airfoil used in the present study has a chord length of 4 inch and 

spanwise length of 11.5 inch. The airfoil model was manufactured with an in-house 3D 

printer. A linkage mechanism, which is driven by a servo-controlled DC motor, is used to 



51 
 

provide the sinusoidal pitching motion � = �����	(�� + ��) of the airfoil as shown in 

Fig. 1(a). The experimental setup for the phase-lock PIV measurement is schematically 

displayed in Fig. 1(b). During the experiment, the flow was seeded with 1-5 micro-meter 

oil droplets.  A double-pulsed Nd:YAG laser (NewWave Research Solo) adjusted on the 

second harmonic and emitting two laser pulses at a wavelength of 532 nm at a repetition 

rate of 2Hz was used to illuminate the wake region behind the airfoil via the reflection of 

a mirror mounted under the test section. The laser sheet was created from a laser beam by 

inserting a set of spherical and cylindrical lenses between the laser and mirror. The laser 

sheet was positioned near the middle span of the airfoil and had a thickness of 

approximately 1mm. A high-resolution 12-bit (1,600 × 1,200 pixel) CCD camera (PCO 

1600, CookeCorp) was used for PIV image acquisition. The time sequence for the trigger 

of laser and camera was controlled by the Digital Delay Generator (Berkeley Nucleonics, 

Model 565). For the phase-lock measurement, the delay generator was linked to a digital 

pulse generator to provide a trigger signal. A tachometer is used to capture the phase 

information and supply the signal to the digital pulse generator.  

For the post processing, instantaneous PIV velocity vectors were obtained by using a 

frame to frame cross-correlation technique involving successive frames of patterns of 

particle images in an interrogation window of 32×32 pixels with an effective overlap of 

50% of the interrogation windows. The spanwise vorticity was then calculated from the 

velocity field. 
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                                             (a)                                                                                      (b) 

Figure 1. Sketch of (a) the experimental setup for the PIV measurement and (b) the linkage system used to 

generate a sinusoidal pitching motion for the airfoil. 

 

3.  Numerical Method 

3.1  Governing Equations 

    Numerical simulations are performed with an unsteady compressible Navier-Stokes 

solver using dynamic unstructured grid based high-order spectral difference (SD) method 

developed in Ref. 0. The 2D unsteady compressible Navier-Stokes equations in 

conservation form read, 

 			%�%� + %�%& + %	%' = 0. (1)  

Herein, � = 	 (�, �*, ��, +)�	are the conservative variables, and F,	G	 are the total fluxes 

including both the inviscid and viscous flux vectors, i.e.,	F	=�. − �0	and	G	=	. − 	0 , 

which takes the following form 

 �. = 4 �*5 + �*6�*�*(+ + 5)7,  	. = 4 ���*�5 + ��6�(+ + 5)7, (2)  
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�0 =
89:
9; 0�<<�=<*�<< + ��=< + >?@ABCA D<E9F

9G,  	0 =
89:
9; 0�<=�==*�<= + ��== + >?@ABCA D=E9F

9G
 

   In Eq. (2), �	is the fluid density, *	and �	are the Cartesian velocity components, 5 is the 

pressure, and +  is the total energy, H is dynamic viscosity, �IJK  is the specific heat at 

constant pressure, LJ is the Prandtl number, and  D is the temperature. The stress tensors 

in Eq.(2) take the following form 

 
																						�<< = 2H N*< − *< + �=3 P , �== = 2H N�= − *< + �=3 P,	 

	�<= = �=< = HQ�< + *=R 
(3)  

    On assuming that the fluid obeys the perfect gas law, the pressure is related to the total 

initial energy by	E = TUVW + W6 ρ(u6 + v6) with a constant ratio of the specific heats γ, 

which closes the solution system. 

   To achieve an efficient implementation, a time-dependent coordinate transformation 

from the physical domain (�, &, ') to the computational domain	(�, �, �), as shown in Fig. 

2(a), is applied on Eq. (1), which is 

 
%��%� + %��%& + %	�%' = 0, (4)  

where  

 4 �� = |]|�																																	�� = |]|Q��^ + ��< + 	�=R	� = |]|Q��^ + ��< + 	�=R.	 (5)  

Herein, � = �  and (�, �) ∈ `−1,1b6 , are the local coordinates in the computational 

domain. In the transformation shown above, the Jacobian matrix ] takes the following 

form 

 	] = %(&, ', �)%(�, �, �) = c&d 	&e 	&^'d 	'e 	'̂0 0 1 f. (6)  
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It should be noted that the grid velocity ��ggggh = (&i, 'i) is related with (�^, �^) by 

 	j�^ = −��ggggh ∙ ∇��^ = −��ggggh ∙ ∇�. (7)  

 

3.2  Space Discretization 

    The SD method is used for the space discretization. In the SD method, two sets of 

points are given, namely the solution and flux points, as shown in Fig. 2(b). Conservative 

variables are defined at the solution points (SPs), and then interpolated to flux points to 

calculate local fluxes. In the present study, the solution points are chosen as the 

Chebyshev-Gauss quadrature points. A weak instability for the choice of the flux points in 

the original SD method was found independently by Van den Abeele, et al. [30,31] and 

Huynh [32]. Huynh [32] further found that the use of Legendre-Gauss quadrature points 

as flux points results in a stable SD method.  It is then proved mathematically in Ref. 0 

that the adoption of the Legendre-Gauss quadrature points as the flux points can ensure 

the stability of the SD method. Therefore, the flux points are selected to be the Legendre-

Gauss points with both end points as -1 and 1.  

    Then on using Lagrange polynomials we reconstruct all the fluxes at the flux points. It 

should be pointed out that this reconstruction is only continuous within a standard 

element, but discontinuous on the cell interfaces. Therefore, for the inviscid flux, a 

Riemann solver is necessary to reconstruct a common flux on the interface. Since the 

eigenvalues of the Euler equations with moving boundaries are different from those with 

fixed boundaries due to the grid velocity, the design of the Riemann solver should 

consider the grid velocity. Furthermore, since the flow regime for flapping flight is almost 

incompressible and the present governing equations are compressible Navier-Stokes 

equations, the Riemann solver should provide good performance at low Mach numbers. 

The AUSM+-up Riemann solver [34] for all speed is selected for the present simulation 

and is proved to behave well at low Mach numbers. The procedure to reconstruct the 

common fluxes for the AUSM+-up Riemann solver can be specified as follows. 

Suppose the face normal of arbitrary interface denotes as mg�, then the interface mass 
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flow rate 
� W 6⁄  reads  

 
� W 6⁄ = oW 6⁄ pW 6⁄ q�� 					rs	pW 6⁄ > 0�u							��ℎwxr�w,  (8)  

where the subscript ‘1/2’ stands for the interface, o and p are speed of sound and Mach 

number respectively. It should be noted that the grid velocity has been included in the 

interface Mach number p.  The numerical normal fluxes ��. and 	� . can then be specified 

as 

 8:
;��. = N
� W 6⁄ qy�					rs	
� W 6⁄ > 0yu					��ℎwxr�w		 + LW 6⁄ P |]||∇�|�rzm(mg� ∙ ∇�)

	� . = N
� W 6⁄ qy�					rs	
� W 6⁄ > 0yu					��ℎwxr�w		 + LW 6⁄ P |]||∇�|�rzm(mg� ∙ ∇�) (9)  

where y = (1, *, �, (+ + 5) �⁄ )� , L = Q0, 5m<, 5m= , 5��,{R�
,  with m< , m=  and ��,{ 

specifying the face normal components in & and ' direction and the grid velocity in the 

face normal direction respectively. The superscript ‘i’ indicates the inviscid flux. The 

reconstruction of the viscous flux is based on a simple average of the ‘left’ and ‘right’ 

fluxes. The detailed reconstruction procedures are well stated in previous work [0].  

 

  
(a)                                                             (b) 

Figure 2. (a) Transformation from a moving physical domain to a fixed computational domain; (b) 

Distribution of solution points (circles) and flux points (squares) in a standard quadrilateral element for a 

third-order accurate SD scheme. 

 

3.3  Grid Deformation Strategy and Simulation Parameters 

  A snapshot of the deformation grid is displayed in Fig. 2. Herein, the pitching motion of 

the airfoil is controlled by a cosine algorithm described as 



56 
 

 �(�) = �| + �� cos(�� + ��) , � = 2�s (10) 

where �| is the mean angle of attack, �� is the amplitude of the pitching angle, and �� is 

the initial phase of the airfoil.  

  The rigid-body motion for the wall can be expressed as 

 j&IJK�K{i − &� = Q&��J|KJ − &�R cos(Δ�) − Q'��J|KJ − '�Rsin	(Δ�)'IJK�K{i − '� = Q&��J|KJ − &�R sin(Δ�) + Q'��J|KJ − '�Rcos	(Δ�) (11) 

where (&� , '�) is the pitching center, and � = �����	(�� + ��). 

  Then by using a fifth-order polynomial blending function proposed in Ref. 0, 

 �(�) = 10�� − 15�� + 6��, � ∈ `0,1b (12) 

the motion of the boundary is interpolated to the whole inner grids. More details for the 

grid deformation strategy used in this study can be found in Ref. 0. 

    The chord length based Reynolds number (�K = ���� H⁄ ) for the experiment is 3,340. 

The Strouhal number (�i), which is the ratio of the characteristic velocity of the flapping 

wing to the free stream velocity, defined by �i = 2s� ��⁄ , varies from 0.1 to 0.37 for the 

experimental study and some higher Strouhal numbers out of the aforementioned range 

are also tested in the numerical study. The reduced frequency (�), which is a measure of 

flapping frequency with respect to the intrinsic frequency of the flow over the airfoil, 

defined by � = 2�s� ��⁄ , varies from 5.0 to 17.6 in the experiments and some higher 

values are also used in the numerical simulations. Note that the parameter variation range 

is large for both the experimental and numerical studies. In the present study H-

refinement (grid refinement) and p-refinement studies were conducted at first to 

determine the suitable grid and numerical accuracy. Based on the investigations, a 3rd 

order accurate scheme with a medium mesh was chosen as shown in Fig. 3. Details about 

these studies can be found in the Ref. 0. 
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                                              (a)                                                                                         (b) 

Figure 3. Snapshot of the deformable grid. (a) is an overview of the grid and (b) is a close-up view near the 

wall boundary. 

 

4.  Results and Discussions 

Both experimental and numerical results on wake structures behind a pitching 

NACA0012 airfoil are analyzed in this section. The schematic of the geometry and 

kinematics of the NACA0012 airfoil is shown in Fig. 4. The comparison between 

numerical and experimental spanwise vorticity fields at �i = 0.31 , 	� = 15.1  and the 

pitching amplitude �� = 5� is shown in Fig. 5. The velocity vectors at six downstream 

locations are displayed in Fig. 5 as well. It is clear that numerical results bare good visual 

agreements with the experimental results. Other validation of the numerical results 

against experimental data with different flow conditions and airfoil kinematics is 

available at Ref. 0.  

    The vorticity decay profiles of the first two vortices from both experiments and 

numerical simulations, as indicated with the dashed line in Fig. 6, are compared with each 

other. Note that in this study the assemble average of the magnitude of the vorticity |�| 
which is not smaller than 50% |�||�< in a domain centered at the point with |�||�< is 

used as a measure of the vortex strength. |��| is defined as the vortex strength of the 

vortex nearest to the airfoil trailing edge at the phase angle � = 0�  based on the 
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aforementioned definition. From the comparison it is observed that the vorticity decay of 

the numerical results follows a power law, while that of the experimental results follows 

an error function curve. This implies that in the experiment the vortex near the airfoil 

trailing edge exhibits a lower decaying rate than the numerical simulations. The vortex 

decay profile discrepancies between the numerical and experimental results may be due to 

wall effects of the wind tunnel. 

 

4.1  Experimental Results on the Wake Vortex Structure Transition Process 

In this section, two types of wake vortex structure transitions processes are displayed 

for the pitching amplitude �� = 5�, namely the transition from a drag-indicative wake to 

a thrust-indicative wake, and the transition from a symmetric thrust-indicative wake to an 

asymmetric (deflective) thrust/lift-indicative wake. The asymmetric wake phenomenon in 

the present study is categorized as follows. The oscillating airfoil’s shape and kinematics 

are symmetric with respect to a baseline. For the pitching motion, the baseline is the 

horizontal line passing through the axis of symmetry of the NACA0012 airfoil with a zero 

AoA, as shown in Fig. 4. It is found that the center line of the wake vortex street 

generated by the pitching motion has a deflective angle with respect to the baseline. This 

is why it is called the asymmetric wake phenomenon. As discussed in the first section, 

this phenomenon is counterintuitive in the sense that both the geometric and dynamic 

parameters of the airfoil are symmetric about the baseline but the wake vortex street can 

be asymmetric with respect to the base line as the Strouhal number and reduced frequency 

increase. The wake symmetry breakdown mechanism will be explained shortly. 

 

4.1.1  Wake Transition from a Drag-Indicative Type to a Thrust-Indicative Type 

The wake transition from a drag-indicative type to a thrust-indicative type has been 

reported by many researchers for plunging or pitching airfoils. Herein, this typical 

transition process is reproduced for the pitching NACA12 airfoil and serves as a 

verification of the present experimental setup. 

The vorticity fields behind the oscillating airfoil at four phases(i.e. 0� , 90� , 180� and 
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270� ) during the wake transition process from a drag-indicative type to a thrust-

indicative type, are shown in Figs. 7-9. The corresponding velocity vectors for each phase 

are also plotted in these figures. Note that only a quarter of the total vectors are displayed 

here for clarity. From Fig. 7, it is clear that the vortex row with negative vorticity is on 

top of the vortex row with positive vorticity, resulting in a momentum deficit between the 

two rows. These vortex configurations form a drag-indicative wake. The Strouhal number 

and the reduced frequency for this case are 0.1 and 5.0 respectively.  When the Strouhal 

number and the reduced frequency increase to 0.12 and 5.7 respectively, a ‘neutral’ wake 

appears. It features that the vortices with alternating signs are almost aligned along a 

straight line as shown in Fig. 8. A thrust-indicative wake is generated when the Strouhal 

number and the reduced frequency further increase to 0.29 and 13.8 respectively. From 

Fig. 9, it is obvious that the vortex row with positive vorticity is on top of the vortex row 

with negative vorticity, resulting in a momentum surplus between the two rows. Note that 

all vortices in these three cases are equally spaced in the streamwise direction.  

The time-averaged velocity fields and spanwise vorticity fields for these three cases 

are shown in Fig. 10. The three different wake types can be clearly distinguished from the 

time-averaged velocity fields. Also, it is observed that when the geometric and kinematic 

parameters of the airfoil are symmetric about the baseline, the drag-indicative wakes are 

also symmetric about the same baseline. 

 

4.1.2  Wake Transition from a Thrust-Indicative Type to a Thrust/Lift-Indicative Type 

The wake transition processes from the symmetric thrust-indicative type to the 

asymmetric thrust/lift-indicative type are displayed in Figs. 9, 11 and 12 with the 

spanwise vorticity fields. Note that the wake in Fig. 11 is slightly deflected from the 

baseline. The Strouhal number and the reduced frequency for this case are 0.31 and 15.1 

respectively. From the figure it is also found that the two vortices shed in one pitching 

cycle have the tendency to move closer with each other. The Strouhal number of this 

transition point is smaller than the proposed threshold �i = 0.434 of the deflected wake 

in Ref. 0. The reasons might be attributed to that the threshold proposed in Ref. 0 is for a 
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plunging airfoil oscillating at a lower reduced frequency ( ≈ 6.3 ). It becomes more 

apparent that when the Strouhal number and the reduced frequency reach up to 0.37 and 

17.6 respectively, ‘dipole’ like vortex structures appear as shown in Fig. 12, and the 

dipole is made up of the two vortices with different signs shed in one pitching cycle.  

The corresponding time-averaged velocity and spanwise vorticity fields are shown in 

Fig. 13. From the time-averaged velocity field it is clear that for the case with �i = 0.31 

and � = 15.1, the wake slightly goes up and for the case with �i = 0.37 and � = 17.6 

the wake has a large deflective angle with the baseline. Also note that jet-like wakes can 

be observed from the time-averaged velocity and vorticity fields.  

 

4.2  Experimental and Numerical Results on the Deflective Wake Phenomenon 

One of questions floating around in the discussions is: Can the deflective direction of 

the wake be changed? If so, which factors will determine the deflective direction? As 

reviewed in the introduction part, different researchers found different features of the 

asymmetric wake. Some found that the deflective direction of the wake can change during 

one shoot of the experiment [17] or the numerical simulation [16]; some found that the 

deflective direction of the wake may alternate somewhat arbitrarily in the experiment 

[14]; some confirmed that the wake deflective direction is determined by the initial 

conditions of the numerical simulations [19,21]. In the present studies, different features 

of the asymmetric wakes have been found. The results are displayed as below. 

 

4.2.1  Deflective Direction 

 From the experimental study, it is found that the deflection of the asymmetric wake is 

not sensitive to the airfoil geometry, airfoil mounting method, linkage system, or airfoil 

motion, but is sensitive to the alignment of the wind tunnel. At this point, it is still unclear 

what determines the wake deflective direction, but the reflective direction had very good 

repeatability in duplicated experiments. Wakes with different deflective directions were 

captured in the experiments. The vorticity fields for two wakes with opposite deflective 

angles at �i = 0.33 and � = 15.7  are shown in Fig. 14. It appeared that the asymmetric 
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wake was sensitive to some unknown disturbances from the alignment of the wind tunnel, 

and these unknown disturbances are amplified when the aerodynamic parameters, like the 

Strouhal number and the reduced frequency, exceed certain range (here �i = 0.31 and � = 15.1). And the amplified disturbances may induce the deflective direction of the 

wake. 

The wake deflective directions in the numerical simulations are found to be determined 

by the initial pitching directions of the airfoil. The spanwise vorticity fields with the 

initial phases �� = 	 0�  and 180� are shown in Fig. 15. The Strouhal number and the 

reduced frequency for this case are 0.75 and 18.0 respectively. From the results shown in 

Fig. 15, it is found that the asymmetric wakes with different initial phases can have 

different deflected angles. Meanwhile, since the initial phases chosen in these two cases 

make the initial positions of the airfoil symmetric to the horizontal axis of the airfoil, the 

wake shown at the same time is anti-symmetric. It can be inferred that the thrust 

coefficient histories should be the same for the two cases, while the lift coefficient 

histories should be of the same absolute values but the opposite signs. This has been 

confirmed by the thrust and lift histories shown in Fig. 16.  

Note that from Fig. 15 and 16, when the wake is deflected upward, it will induce a low 

pressure region on the top surface of the airfoil, which could result in a positive lift. This 

has previously been reported by Cleaver et al. [36]. Since leading edge vortices (LEVs) 

appear in this case, they will bring in disturbances into the flow fields. Whether or not 

these disturbances are major factors to trigger the asymmetric wake still needs to be 

further examined. The results for the spanwise vorticity fields with the initial phases �� = 	 0� and 180�  at �K = 12,600, �i = 0.33, � = 23.0 and �� = 2�are shown in Fig. 

17. It is clearly observed that even if there exists no LEVs, the asymmetric wake can 

occur. This has been reported by the same authors in Ref. 24. Therefore, it is quite 

possible that the asymmetric wake phenomenon is intrinsically an inviscid phenomenon 

and the vortex dynamics will dominate the formation of the vortex street structure, 

although at high Strouhal numbers LEVs will introduce large disturbances to the wake 

structures and even affect the vortex structures [16]. 
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4.2.2  Reduced Frequency and Strouhal Number Effects 

As discussed in Ref. 0, the threshold of the asymmetric wake could vary with the 

Strouhal number and the reduced frequency. Here three cases at the same Strouhal 

number (0.31) but different reduced frequencies(i.e. 15.1, 7.5 and 5.0) are numerically 

studied. The pitching amplitudes for these three cases are 5�, 10�and	15� respectively. 

From the spanwise vorticity fields and the corresponding time-averaged velocity fields 

displayed in Fig. 18, it is found that the asymmetric wake is more apparent for the case 

with a larger reduced frequency. The deflective point for the case with � = 15.1  is 

roughly two-chord length downstream of the airfoil. This point is shifted to the position 

which is about three-chord length downstream of the airfoil for the case with � = 7.5. 

However, it is hard to distinguish the deflective point for the case with � = 5.0 even after 

five-chord length downstream of the airfoil. These phenomena can be explained as 

follows. At the same Strouhal number, the vortex streets should have similar 

configurations (i.e. the ratio between the distance of the two vortex rows and the distance 

of the adjacent two vortices with opposite sign of vorticity). However, if the reduced 

frequency is large, the strength of the shedding vortices will become large and the 

distance between the adjacent two vortices shed in one pitching cycle becomes small. 

This increases the chance for the interaction between these two vortices. Therefore, for 

the flow with a large reduced frequency, the vortices with different signs shed in one 

pitching cycle have the tendency to form a dipole mode and then change the configuration 

of the whole vortex street. If the reduced frequency is small, the strength of the shedding 

vortices will become small and the distance between the adjacent two vortices shed in one 

pitching cycle becomes large. Both effects will reduce the chance for the formation of the 

asymmetric wake.  

The thrust and lift coefficient histories are displayed in Fig. 19. It is clear that with the 

present parameters, a relatively large reduced frequency is beneficial for the thrust 

generation. An interesting observation of the lift generation is that although an 

asymmetric wake is generated after the oscillating airfoil, almost no net lift is generated. 
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This might be attributed to the fact that the deflective angle of the asymmetric wake is so 

small that its effects on the aerodynamic force are not apparent.  

Note that all the three cases discussed above in this section have thrust-indicative 

wakes, as the Strouhal number is fixed at 0.31, which falls into the ‘thrust-indicative’ 

wake type0,0. Here three cases at the same reduced frequency (15.1) but different Strouhal 

numbers (i.e. 0.19, 0.31 and 0.41) are further studied to illuminate the effects of the 

Strouhal number on the wake structures. The normalized spanwise vorticity fields for 

Strouhal number 0.19 and 0.41 are displayed in Fig. 20 and that for Strouhal number 0.31 

is shown in Fig. 18 (a). When the Strouhal number equals 0.19, even though that the 

reduced frequency is large, the wake is almost of the ‘neutral’ type and symmetric about 

the baseline (horizontal line). From Fig. 21, it is confirmed that under this condition no 

net thrust and lift is generated. But when the Strouhal number increases to 0.41, an 

apparent asymmetric ‘thrust/lift-indicative’ wake appears. From the thrust and lift 

coefficient histories shown in Fig. 21, it is clear that both net thrust and lift are generated. 

The direction of the net lift is upwards, which aligns with the wake direction. This further 

validates the analyses of the correlations between the lift direction and the wake direction 

in section B. 1. On comparing the aerodynamic force histories for the fixed Strouhal 

number as shown in Fig. 19 and those for fixed reduced frequency as shown in Fig. 21, it 

is concluded that the aerodynamic force is more sensitive to the change of Strouhal 

number than that of the reduced frequency. Interestingly, based on the vorticity fields 

shown in Figs. 18 and 20, it seems that the asymmetric wake phnomenon is affected more 

by the Strouhal number as well. 

 

5.  Conclusions 

PIV measurements have been performed for the wake structure analyses behind a 

sinusoidally pitching NACA0012 airfoil. A high-order unstructured dynamic grid based 

SD compressible solver has been used to study the same wake structures. The 

experimental and numerical results agree qualitatively with each other. Two types of wake 
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transition processes (i.e. the transition from a drag-indicative wake to a thrust-indicative 

wake and that from the symmetric wake to the asymmetric wake) are experimentally 

studied. Using the present geometric and dynamic parameters, the wake transition point 

from the drag-indicative type to the thrust-indicative type is found to be �i = 0.12; the 
transition point from the symmetric type to the asymmetric type is at �i = 0.31. The 

asymmetric wake is believed to be closely related to the formation of a dipole-like vortex 

pair shed in one pitching cycle and can be treated as an inviscid phenomenon. In 

numerical simulations, the deflective angle of the asymmetric wake is determined by the 

initial phase angle, whereas in the experiments, what determines the wake deflective 

direction is still unclear at this point. The reduced frequency and the Strouhal number will 

affect the strength of the shedding vortices and further affect the formation of the 

asymmetric wake. Based on the present cases studied, both aerodynamic forces and the 

asymmetric wake structures are more sensitive to the Strouhal number than the reduced 

frequency. 
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Figure 4. Schematic of the pitching kinematic of the NACA0012 airfoil.  

 

  

                                                  (a)                                                                                               (b) 
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Figure 5. Comparison between the phase-locked spanwise vorticity fields from PIV (a) and the 

instantaneous numerical vorticity fields (b) with S� = 0.31,	K = 15.1 and the pitching amplitude α� = 5�at 

the same phase. 

 

 

Figure 6. The vortex strength decay in the wake versus downstream distance in both experiments and 

numerical simulations with S� = 0.31,	K = 15.1 and the pitching amplitude α� = 5�. The decay profile for 

the numerical simulations follows the power law while that for the experiments falls into an error function 

curve. 

       



69 
 

      

Figure 7. Phase-locked spanwise vorticity fields from PIV with S� = 0.1 , 	K = 5.0  and the pitching 

amplitude α� = 5�at four different phases, namely 0�, 90�,	180� and 270�. 

      

      

      

Figure 8. Phase-locked spanwise vorticity fields from PIV with S� = 0.12 , 	K = 5.7  and the pitching 
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amplitude α� � 5
�at four different phases, namely 0�, 90

�,	180
� and 270

�. 

 

 

Figure 9. Phase-locked spanwise vorticity fields from PIV with S� � 0.29 , 	K � 13.8  and the pitching 

amplitude α� � 5
�at four different phases, namely 0�, 90

�,	180
� and 270

�. 
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                      (a)                                                            (b)                                                            (c) 

Figure 10. Time-averaged velocity (up) and vorticity (down) fields from the PIV measurements with the 

pitching amplitude α� � 5
�. (a) S� � 0.1,	K � 5.0; (b) S� � 0.12,	K � 5.7; (c) S� � 0.29,	K � 13.8. 

 

 

           

Figure 11. Phase-locked spanwise vorticity fields from PIV with S� � 0.31,	K � 15.1 and the pitching 

amplitude α� � 5
�at four different phases, namely 0�, 90

�,	180
� and 270

�. 
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Figure 12. Phase-locked spanwise vorticity fields from PIV with S� � 0.37,	K � 17.6 and the pitching 

amplitude α� � 5
�at four different phases, namely 0�, 90

�,	180
� and 270

�. 

 

 

                                                     (a)                                                             (b) 
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Figure 13. Time-averaged velocity (up) and vorticity (down) fields from the PIV measurements with the 

pitching amplitude α� = 5�. (a) S� = 0.31,	K = 15.1; (b) S� = 0.37,	K = 17.6. 

 

      

                                   (a)                                                                                                  (b) 

Figure 14. Phase-locked spanwise vorticity fields from PIV for two asymmetric wakes with different 

deflective directions at S� = 0.37,	K = 17.6 and the pitching amplitude α� = 5�. 

 

 

 

                                     (a)                                                                                                  (b) 

Figure 15. Spanwise vorticity fields from numerical simulations with S� = 0.75,	K = 18.0 and the pitching 

amplitude α� = 10� at the same time. The initial phase angles are (a) ϕ� = 180� and (b) ϕ� = 0�. 

 



74 
 

 
                                   (a)                                                                                             (b) 

Figure 16. Aerodynamic force coefficient histories for the pitching airfoil with S� = 0.75,	K = 18.0 and the 

pitching amplitude α� = 10� and different initial phase angles 0� and 180�. (a) Thrust coefficient histories; 

(b) lift coefficient histories. 

 

 

(a)                                                                                                      (b) 

Figure 17. Spanwise vorticity fields from numerical simulations with Re = 12,600,  S� = 0.3, K = 23.0 

and the pitching amplitude α� = 2� at the same time. The initial phase angles are (a) ϕ� = 180� and (b) 

ϕ� = 0�. 
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(a) 

 

(b) 

 

(c) 

Figure 18. Instantaneous spanwise vorticity fields and time-averaged velocity fields with S� = 0.31. (a) 

K = 15.1 and the pitching amplitude α� = 5�; (b) K = 7.5 and the pitching amplitude α� = 10�; (c) K = 5 

and the pitching amplitude α� = 15�. The phase angle for the three vorticity fields is 0�. 
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                                    (a)                                                                                             (b) 

Figure 19. Aerodynamic force coefficient histories for the pitching airfoil with S� = 0.31 but different 

reduced frequencies and pitching amplitudes. (a) Thrust coefficient histories; (b) lift coefficient histories. 

 

                                       (a)                                                                                                 (b) 

Figure 20. Instantaneous spanwise vorticity fields with K = 15.1. (a) S� = 0.19 and the pitching amplitude 

α� = 3�; (b) S� = 0.41 and the pitching amplitude α� = 6.5�. The phase angle for both vorticity fields is 

0�. 
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                                         (a)                                                                                   (b) 

Figure 21. Aerodynamic force coefficient histories for the pitching airfoil with K = 15.1 but different 

Strouhal numbers and pitching amplitudes. (a) Thrust coefficient histories; (b) lift coefficient histories. 
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of Plunging Airfoils  
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Abstract  

    A numerical study was conducted to investigate the effects of airfoil thickness on the thrust 

generation of plunging airfoils and to assess the contributions of pressure and viscous forces 

in flapping propulsion.  A series of NACA symmetric airfoils with thickness ratio ranging 

from 4.0% to 20.0% of the airfoil chord length were used in the present study to undertake a 

same sinusoid plunging motion at a low Reynolds number of Re =1,200 with the plunging 

Strouhal number Str = 0.45 and reduced frequency k = 3.5.  It was found that the thickness of 

the airfoils would affect the evolution of the unsteady vortex structures around the plunging 

airfoils significantly, even though the airfoils were set to undertake the same plunging 

motion. The different behaviors of the unsteady vortex structures shedding from the airfoils 

with different thickness cause dramatic changes to the resultant aerodynamic force acting on 

the plunging airfoils.  For a thick plunging airfoil with its thickness ratio greater than 9.0%, 

pressure force was found to play a dominate role in the thrust generation, and viscous force 

would be almost negligible and contribute mainly to drag production.  It confirms that 

traditional inviscid model of Knoller–Betz effect (i.e., ignoring viscous effect) can be used to 

explain many phenomena associated with flapping propulsion.  A new finding of the present 

study is the substantial contribution of viscous force to the thrust generation for thin plunging 

airfoils (i.e., the thickness ratio less than 8.0%).  Viscous force was found to become thrust 

producing, instead of drag producing, and play a non-negligible role in the thrust generation 

for the thin airfoils (i.e., viscous force would produce up to 20.5% of the total thrust for 

NACA0004 airfoil in the present study). The role change of viscous force in the thrust 

generation of the plunging airfoils was found to be closely related to the variations of the 

dynamics of the unsteady vortex structures around the plunging airfoils. 
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1.  Introduction 
    Micro-Air-Vehicles (MAVs) have been one of the most active research topics in aerospace 

engineering community in recent years. The miniaturized aircraft is expected to open up new 

opportunities for surveillance-like missions, especially in hazardous environments 

inaccessible to ground vehicles. Among different MAV designs, flapping-wing-based designs 

stand out with high efficiency and excellent maneuverability, as demonstrated by the natural 

fliers such as birds and insects.  It has long been realized that steady-state aerodynamics does 

not accurately account for the aerodynamic forces produced in flapping flight. This has 

prompted extensive studies to elucidate the fundamental mechanism of flapping flight to 

produce enough aerodynamic forces needed for propulsion and maneuvering.  Knoller [1] 

and Betz [2] are among the first to propose an invisid theory, which is known as the Knoller–

Betz effect, to explain why a flapping wing can generate thrust in flapping motion.  

Katzmayr [3] provided the first experimental verification of the Knoller–Betz effect by 

placing a stationary wing into a sinusoidally oscillating airflow. Ober [4] provided additional 

theoretic explanations and calculations to confirm Katzmayr’s experimental results. Much 

progress has been made since then to uncover the underlying physics of flapping propulsion 

[5-15].  

    While many important findings have been derived through those previous studies, much 

work is still needed for a better understanding of flapping propulsion for the optimum design 

of flapping-wing-based MAVs.   For example, while birds and insects flap their thin wings to 

fly (i. e., wing thickness is only a few percent of the chord length), much thicker airfoils 

(airfoil thickness > 10% of chord length) were usually used in previous studies to reveal the 

underlying physics of flapping flight [6-12]. Although numerous experimental and numerical 

studies have been conducted recently to investigate the effects of kinematic parameters of 

flapping motions, such as the flapping frequency, amplitude and phase difference between 

plunging and pitching motions, on the thrust generation and propulsive efficiency, the 

influence of airfoil thickness on flapping propulsion has not yet been fully explored [10]. 

Furthermore, while the inviscid model of Knoller–Betz effect (i.e., ignoring viscous effect) 

has been used widely to explain many phenomena associated with flapping propulsion [8-
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10], the role of viscous force in flapping propulsion is still poorly understood. Many 

fundamental questions, such as “are viscous effects negligible for flapping propulsion under 

all conditions?” and “while viscous force is known to be usually drag producing, can it ever 

make a positive contribution to the thrust generation in flapping propulsion?”,  still remain to 

be answered. 

    In this short paper, we report a numerical study to investigate the effects of airfoil 

thickness on the thrust generation of plunging airfoils and to assess the contribution of 

viscous force to the thrust generation in flapping propulsion.  A series of commonly-used 

symmetric NACA airfoils with thickness ranging from 4% to 20% of the chord length were 

used to undertake the same plunging motion at a low Reynolds number of Re = 1,200. The 

behaviors of the unsteady vortex structures around the plunging airfoils and the resultant 

aerodynamic forces acting on the plunging airfoils were compared quantitatively in order to 

reveal the underlying physics related to flapping propulsion. The contribution of viscous 

force on the thrust generation in flapping propulsion was also examined in detail based on the 

quantitative comparison. 

 

2.  Numerical Method and Studied Parameters  
    In the present study, a high-order spectral difference (SD) method with dynamic 

unstructured grids was used for the numerical simulation. The governing equations for the 

fluid flow are the unsteady Navier-Stokes equations in a conservation form, which can be 

expressed as, 

 					���� + ���� + ���	 + �
�� = 0. (1) 

Herein, � = 	 ��, ��, ��, ��, ���	 are the conservative variables, ρ	 is the fluid density, �, �	and � are the Cartesian velocity components, and � is the total initial energy. F, G, H  

are the total fluxes including both the inviscid and viscous flux vectors, i.e.,  F =�� −��, G =�� − ��	and H =
� − 
�.  Detailed formulas for the fluxes can be found in Yu et al. 

[15]. With the assumption that the fluid obeys the perfect gas law, the pressure is related to 

the total initial energy by	E = ��� +  !ρ�u! + v! +w!�, which closes the solution system. 

   To achieve an efficient implementation, a time-dependent coordinate transformation from 
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the physical domain ��, �, 	, �� to the computational domain	�%, &, ', (� is applied on Eq. (1), 

which is 

 
��)�% + ��)�� + ��)�	 + �
*�� = 0, (2) 

where  

 

+,-
,. �) = |0|�																																														�) = |0|1�&2 + �&3 + �&4 +
&56	�) = |0|1�'2 + �'3 + �'4 + 
'56
* = |0|1�(2 + �(3 + �(4 +
(56

.	 (3) 

Herein, % = � and �&, ', (� ∈ 8−1,1:;, are the local coordinates in the computational domain. 

In the transformation shown above, the Jacobian matrix 0 takes the following form  

 0 = ���, 	, �, ����&, ', (, %� = <�= 		�>		�? 		�2	= 			> 			? 			2�= 		�>		�? 		�20				0				0				1 @. (4) 

Note that the grid velocity �ABBBBC = ��D, 	D , �D� is related with �&2 , '2 , (2� by 

 E&2 = −�ABBBBC ∙ ∇&'2 = −�ABBBBC ∙ ∇'(2 = −�ABBBBC ∙ ∇( 	. (5) 

    In the present study H-refinement (grid refinement) and p-refinement studies were 

conducted at first to determine the suitable grid and numerical accuracy. Based on the 

investigations, a 3rd order accurate scheme with a medium mesh was chosen. A time 

refinement study was also performed to determine a reasonable non-dimensional time step as ∆� ∙ I JK⁄ = 8 × 10�O, where I is the chord length and V∞ the free stream velocity. Further 

information about the implementation of the method described above for the numerical 

simulation of the unsteady flows around flapping airfoils as well as the validation of the 

simulation results against experimental data is available in reference [15].   

    The airfoils used in the present study are a series of symmetric NACA airfoils, i.e., 

NACA0004, NACA0006, NACA0009, NACA0012 and NACA0020 airfoils. The airfoils 

were set to undertake a plunging motion, which can be expressed as 	 = PQRS�2UV��, where 

f is the flapping frequency, A is the plunging amplitude. The Reynolds number (Re) based on 

the airfoil chord length, C, and the free stream velocity, V∞, was set to be 1,200 for the 
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present study, i.e., Re=ρV∞C/µ=1,200, which is well within the insect flight regime.  Strouhal 

number, Str = 2fA/V∞, and reduced frequency, k = 2πfC/V∞, are the most commonly used 

non-dimensional parameters to characterize the kinematics of flapping airfoils/wings. In the 

present study, the Strouhal number of the plunging airfoils was chosen to be 0.45, i.e., Str = 

0.45.  The reduced frequency of the plunging motion was set to be 3.5, i.e., k =3.5.  It has 

been suggested that the wake flow downstream of a flapping airfoil/wing can be 

characterized as drag producing, neutral, or thrust-producing depending on the flapping 

frequency and stroke amplitude [6-14].  Based on the findings of the previous work of Jones 

et al. [8] and Lewin & Haj-Hariri [12], with the kinematic parameters used in the present 

study, the wake flows downstream the plunging airfoils should be thrust-producing, which 

was confirmed by the numerical simulation results of the present study.   

 

3.  Results and Discussions 

Figure 1 and Figure 2 display the typical behaviors of the unsteady vortex structures 

around a thick airfoil (e.g., NACA0020) and a thin airfoil (e.g., NACA0004) in a plunging 

cycle.  The flow pattern around the plunging airfoils at such a relatively large Strouhal 

number (i.e., Str=0.45) was found to be featured mainly by the periodic shedding of Leading 

Edge Vortice (LEVs) and Trailing Edge Vortices (TEVs) as well as the interactions among 

LEVs, TEVs and plunging airfoils, which agrees with those reported by Lewin & Haj-Hariri 

[12].  It is clearly observed that, even though the airfoils were set to undertake the same 

plunging motion, the evolutions of the unsteady LEVs and TEVs around the plunging airfoils 

were found to vary significantly due to the thickness differences of the airfoils.  As shown in 

Fig. 1, for the thick airfoil case, the LEVs shed from the airfoil leading edge traveled 

downstream along with the free stream continuously, and then interacted with the TEVs 

further downstream. Similar behavior of the LEVs was also reported by Ashraf et al. [10] in 

their study of the vortex structures around a plunging NACA0012 airfoil. However, for the 

thin airfoil (e.g. NACA0004) as shown in Fig. 2, instead of traveling downstream along with 

the free stream continuously, the LEVs over the lower (or upper) surface of the airfoil stayed 

close to the airfoil leading edge during the entire down strokes (or upstrokes) of the plunging 
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motion. After being stretched seriously, the LEVs were found to move against the free stream 

around the sharp airfoil leading edge, and shift to the upper (or lower) side of the airfoil 

during the subsequent upstrokes (or down strokes).  Such phenomena were also found by 

Lewin and Haj-Hariri [12] and were named as LEV circumnavigation. Associated with the 

different behaviors of the LEVs around thick and thin airfoils, the flow patterns and the 

resultant aerodynamic forces acting on the plunging airfoils were also found to vary 

dramatically.  

Figure 3 shows the pressure distributions and velocity vector fields (only 2% of the vectors 

were shown) around NACA0020 and NACA0004 airfoils at the same plunging phase angle 

of Φ = 180 deg. It can be found that, for a thick airfoil such as NACA0020, corresponding to 

the rolling up of the LEVs on the airfoil upper (or lower) surface during the down strokes (or 

upstrokes) of the plunging motion, a region with relatively low pressure was found on the 

airfoil upper (or lower) surface near the airfoil leading edge as shown in Fig. 3(a), which is 

favorable for the thrust generation.  The region with relatively low pressure was found to 

separate from the airfoil surface and move downstream as the LEVs shed from the airfoil 

leading edge and travel downstream.  However, for a thin airfoil as shown in Fig. 3(b), 

associated with the LEV circumnavigation described above, low pressure regions were found 

to exist on both the upper and lower surfaces, and the low pressure regions would remain 

near the airfoil leading edge during almost the whole plunging cycle.  Furthermore, the LEV 

circumnavigation was also found to induce strong reversed flows on both the upper and 

lower surfaces near the leading edge of the thin airfoils. Corresponding to the strong reversed 

flows near the airfoil leading edge, the viscous force acting on the upper and lower surfaces 

of the thin airfoil could actually be thrust-producing, instead of being drag-producing. The 

interesting finding can be revealed more quantitatively in the analysis of the resultant 

aerodynamic forces acting on the plunging airfoils. 

Based on the distributions of pressure and viscous forces on the surfaces of the plunging 

airfoils, the resultant aerodynamic forces acting on the plunging airfoils in the term of thrust 

coefficient, CT = Thrust/(0.5ρV∞2S), were determined. Figure 4 shows the histories of the 

thrust coefficients of the five plunging airfoils investigated in the present study. It is clear 

that, while the thrust coefficients of the plunging airfoils were found to fluctuate greatly in 
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each plunging cycles, the fluctuating amplitude of the thrust coefficients decreases as the 

thickness of the plunging airfoil decreases.  While all the airfoils were set to undertake the 

same periodic plunging motion, only the thrust coefficients of the thicker airfoils (e.g., 

NACA0020 and NACA0020 airfoils) were found to be periodic, as expected. The thrust 

coefficients of the thinner airfoils (e.g., NACA0004 and NACA0006 airfoils) were found to 

become aperiodic even though the plunging motion of the airfoils is periodic.  The aperiodic 

behavior of the flow field around a plunging airfoil was also reported by Lewin & Haj-Hariri 

[12] with an elliptical airfoil plunging at a similar Strouhal numbers (e.g., Str ≈ 0.48) as that 

of the present study.   It should also be noted that, for the thicker airfoils (e.g., NACA0012 or 

NACA0020), while the resultant aerodynamic force acting on the plunging airfoils were 

found to be thrust producing for most of the time in each plunging cycles (i.e., thrust 

coefficient being positive), the resultant aerodynamic force could also become drag 

producing (i.e., thrust coefficient becoming negative) at some phase angles.  However, the 

thrust coefficients of the thinner airfoils (e.g., NACA0004 or NACA0006) were found to be 

positive almost in the entire plunging cycles, indicating that almost no drag was experienced 

by the thinner airfoils during the plunging motion. This is believed to be closely related to the 

LEV circumnavigation to maintain low pressure regions and reverse flows near the leading 

edges of the thinner airfoils. 

In order to assess the role of viscous force in the thrust generation of flapping propulsion, 

the total thrusts acting on the plunging airfoils were decomposed into two parts, i.e., one part 

contributed from pressure force (WX = YZS3[Q ) and the other from the viscous force 

(W� = Y1\33S3 + \34S4 + \35S56[Q, where \ denotes the viscous stress). Figure 5 shows 

the comparisons of the total thrust coefficients (i.e., considering the contributions from both 

pressure and viscous forces) and the thrust coefficients based on the contribution from 

pressure force only (i.e., ignoring the viscous forces) for NACA0020 and NACA0004 

airfoils. The profiles in solid lines represent the total thrust coefficients, and the profiles in 

dashed lines indicate the results based on the contribution from pressure force only. The 

differences between the solid and dashed lines would represent the contribution of viscous 

force on the thrust generation.  It can be seen clearly that, compared with viscous force, 

pressure force was found to play a dominant role in the thrust generation of flapping 
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propulsion.  It is also observed that, the differences between the solid and dashed lines were 

found to become larger for the thinner airfoil (e.g., NACA0004), compared with those for the 

thicker airfoil case (e.g., NACA0020). This indicates that the effects of viscous force on the 

thrust generation in flapping propulsion would become stronger for the thinner airfoils.   

In order to reveal the contribution of viscous force on the thrust generation of the plunging 

airfoils more clearly and quantitatively, the averaged total thrust coefficients of the plunging 

airfoils, <CT>, and the contributions from pressure force, <CT_P>, and viscous force, <CT_V>, 

over plunging cycles were calculated. As revealed clearly from the results listed in Table 1, 

the averaged thrust coefficients of the plunging airfoils vary significantly as the airfoil 

thickness changes.  With the plunging kinematic parameters and the airfoil thickness range 

used in the present study, a thicker airfoil was found to generate a larger averaged thrust 

when undertaking a same plunging motion. The finding was found to agree with the 

conclusion reported by Ashraf et al. [10].  The results shown in Table 1 also confirmed that 

pressure force would play a dominant role in the thrust generation of flapping propulsion. For 

the thicker airfoils (e.g., NACA0012 and NAC0020 airfoils), viscous force was found to be 

mainly drag producing, and its effect was found to be very small (~ 2.0%), which is 

negligible.  The finding can be used to explain why the traditional inviscid model of Knoller–

Betz effect (i.e., ignoring the viscous effect) can be used to explain many phenomena 

associated with flapping propulsion. The drag-producing nature of viscous force for thick 

airfoils was found to agree with the results reported in Wang (2000).  More interestingly, as 

revealed from the results given in Table 1, viscous force becomes thrust producing, instead of 

drag producing, for the thinner airfoils (e.g., NACA0006 and NACA0004).  The contribution 

of viscous force to the thrust generation in flapping flight was found to become more and 

more substantial as the thickness of the plunging airfoil decreases (i.e., 13.6% for 

NACA0006 and up to 20.5% for NACA0004).  This is believed to be closely related to the 

existence of reverse flows near the leading edges on both sides of the airfoil surfaces during 

almost whole plunging cycles for the thinner airfoils, as shown clearly in Fig. 3. 

 

4.  Conclusions 

A numerical study was conducted to investigate the effects of airfoil thickness on the thrust 
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generation of plunging airfoils and to assess the contribution of viscous force to flapping 

propulsion.  A series of commonly-used NACA symmetric airfoils were used in the present 

study to undertake a same plunging motion at a low Reynolds number of Re =1,200 with the 

plunging Strouhal number Str = 0.45 and reduced frequency k = 3.5.  It was found that, even 

though the airfoils were set to undertake the same plunging motion, the evolutions of the 

vortex structures around the plunging airfoils and the resultant aerodynamic forces acting on 

the airfoils could vary dramatically due to the difference in airfoil thickness.   

While the Leading Edge Vortices (LEVs) of the thicker airfoils (e.g., > 9.0% thickness 

ratio for the present study) were found to shed periodically and travel downstream along with 

the free stream continuously, LEV circumnavigation was found for the thinner airfoils (e.g., < 

9.0% thickness ratio) with LEVs stretched and remaining near the airfoil leading edges for 

most of time in the plunging cycles.  Associated with the LEV circumnavigation, low 

pressure regions and reverse flows were found to remain near the leading edge on both sides 

of the airfoils during almost whole plunging cycles for the thinner airfoils.  The different 

behaviors of the LEVs for the thick and thin airfoils can affect the resultant aerodynamic 

force acting on the plunging airfoils dramatically.  While the thrust generation of the 

plunging airfoils with larger thickness was found to be periodic as expected, the thrust 

generation of the thin airfoils can become aperiodic even though the plunging motion is 

periodic. 

The present study also revealed that, pressure force plays a dominate role in the thrust 

generation of the plunging airfoils. As expected, viscous force contributes mainly to drag 

production, and its effect is almost negligible for the airfoils with relatively large thickness, 

which explains why the traditional inviscid model of Knoller–Betz effect (i.e., ignoring the 

viscous effect) can be used to explain many phenomena associated with flapping propulsion. 

Another important finding of the present study is the substantial contribution of viscous force 

to the thrust generation for thin airfoils. The viscous force was found to become thrust 

producing, instead of drag producing, and play a non-negligible role in the thrust generation 

for the thin airfoils (i.e., producing up to 20.5% of the total thrust for NACA0004 airfoil in 

the present study).  The role change of viscous force in the thrust generation of the plunging 

airfoils was found to be closely related to the dynamics of the unsteady vortex structures 
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around the plunging airfoils. 

Note that in the present study, the reduced frequency is defined as k = 2πfC/V∞  based on 

the chord length C. Since the airfoil thickness effects on the aerodynamic performances are 

the main interest in the short paper, it makes sense to define the reduced frequency based on 

the airfoil thickness. Then it is clear that if we want to keep the reduced frequency the same 

for all airfoils, the thinner airfoil must maneuver with a larger frequency. Under such 

conditions, if the Strouhal number is kept the same for all airfoils, the thinner airfoil will 

plunge with a smaller plunging amplitude. These cases can be interesting and will be 

compared and analyzed in future publications. 
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Fig. 1. Evolution of the unsteady vortex structures around NACA0020 airfoil in a plunging 

cycle. 
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Fig. 2. Evolution of the unsteady vortex structures around NACA0004 airfoil in a plunging 

cycle. 
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Fig. 3: Comparison of the pressure distributions and velocity fields around NACA0020 and 

NACA0004 airfoils at the phase angle of Φ = 180 deg. in the plunging motion. 

 

 
Fig. 4. Histories of the thrust coefficients of the NACA symmetrical airfoils in plunging 

motion.  
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Fig. 5. Comparison of the total thrust coefficients of the plunging airfoils and the 

contributions from pressure force only. 

 

Table 1: Averaged total thrust coefficients < CT > and the contributions from the pressure 

force < CT_P > and viscous force < CT_v > 

Airfoil < CT > < CT_P > <CT_V > <CT-V>/< CT > 

NACA0004 0.261 0.208 0.053 20.5% 

NACA0006 0.384 0.332 0.052 13.6% 

NACA0009 0.410 0.421 -0.011 -2.6% 

NACA0012 0.573 0.584 -0.011 -1.9% 

NACA0020 0.920 0.937 -0.017 -1.9% 
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CHAPTER 5. A High-Fidelity Numerical Study of Kinematics 

and Airfoil Thickness Effects on the Thrust Generation of 

Oscillating Airfoils 
A paper published in the 42nd AIAA Fluid Dynamics Conference and Exhibit 

 

Meilin Yu, Z. J. Wang and Hui Hu 

Abstract 
    High-fidelity numerical simulations with the spectral different (SD) method are performed 

to investigate the flow over a series of oscillating NACA 4-digit airfoils. Kinematics and 

airfoil thickness effects on the aerodynamic performances are highlighted. It is found that the 

combined plunging and pitching motion can outperform the pure plunging or pitching 

motions by sophisticatedly adjusting the airfoil gestures during the oscillation stroke. Also, 

the leading edge vortices (LEVs) manipulation during the gesture adjustment will vary with 

the airfoil thickness. The thin airfoil (NACA0006) better manipulates LEVs than the thick 

airfoil (NACA0030) does in our cases, and there exists an optimal thickness for large thrust 

generation with reasonable propulsive efficiency. At the same Strouhal number (0.3), the 

trends of the airfoil thickness effects on the thrust generation and propulsive efficiency are 

similar for the investigated reduced frequencies, namely 1 and 3.5. For all airfoil thicknesses, 

relatively low reduced frequency is conducive to the thrust production and propulsive 

efficiency. As the Strouhal number increases to 0.45, larger thrust can be generated with the 

same kinematics, but the propulsive efficiency will suffer if the kinematics is not optimal for 

the chosen aerodynamic parameters. 

 

Nomenclature ��� = angle of attack � = speed of sound �� = pressure coefficient, �� − �	
 �0.5��	� 
⁄  �� = specific heat at constant pressure 〈������〉 = time averaged power coefficient, 
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                           − �� � ���� � 
!"� 
 + $%&'( � 
)" � 
*+ ,-.�,- �0.5��	/ �
0  ��  = thrust coefficient, 1ℎ345 �0.5��	� �
⁄  〈��〉 = time averaged thrust coefficient, �� � ��� 
+ ,-.�,-  〈��_�〉 = time averaged thrust coefficient calculated from the pressure force 〈��_7〉 = time averaged thrust coefficient calculated from the viscous force � = chord length 8 = total energy 9, ; = vectors of fluxes in the physical domain 9<, ;< = vectors of fluxes in the computational domain � = oscillation frequency => = plunging amplitude �, ? = index of coordinates in x, y direction @ = Jacobian matrix A = reduced frequency, 2C�� �	⁄  $� = Mach number $�	 = Mach number of the free stream &"  = mass flow rate (D , (E = face normal components in F, ! direction, respectively G3 = Prandtl number � = pressure �	 = pressure of the free stream H,H< = vectors of conservative variables in the physical and computational domains I' = Reynolds number based on the chord length, ��	� J⁄  K 3 = Strouhal number,	2�=> �	⁄   , M = time in the physical and computational domain 4, N = non-dimensional velocities in F, ! direction NOP = grid velocity F, ! = non-dimensional Cartesian coordinates in the physical domain FQ , FR , FS, = metrics coefficients of the time-dependent coordinate transformation 
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!Q , !R , !S T = ratio of specific heats  〈∆�〉 = averaged pressure differences in the streamwise direction,  

                          (Frontal Area)pdS
∂Ω∫  

V�����  = propulsive efficiency, 〈��〉 〈������〉⁄  ) = pitching angle of the airfoil )> = pitching amplitude J = dynamic viscosity W, V = Cartesian coordinates in the computational domain � = density MXY = viscous stress tensors, �, ? can be F or ! Z = phase lag between pitching and plunging motions 
 

 

1.  Introduction 
    Unsteady flapping-wing aerodynamics has witnessed great prosperity in the last three 

decades. This prosperity is not only attributed to the human being’s continuous curiosity on 

the effective propulsion exhibited by fascinating nature flyers, but also is due to the 

increasing interest in the design of Micro Air Vehicles (MAVs), which have been considered 

to have the potential to open up new opportunities for surveillance-like missions and to 

revolutionize the sensing and information gathering technologies in the near future. A large 

amount of experimental and computational research has been conducted on flapping-wing 

related topics and many comprehensive reviews and book chapters [1, 2, 3, 4, 5, 6, 7, 8] have 

systematically summarized these works from different aspects. Although great progress has 

been made on the unsteady flapping-wing aerodynamics due to the appearance of advanced 

flow diagnostic technologies and the development of high-fidelity computational fluid 

dynamics (CFD), a more thorough understanding which can reliably guide the design and 

control of MAVs suitable for different environmental surroundings is still needed.   

    It is well known that flapping motions can effectively generate thrust at low Reynolds and 

Mach numbers.  The explanation for the thrust generation with oscillating airfoils was given 
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by Knoller [9] and Betz [10] independently based on the inviscid assumption and the 

effective angle of attack (AOA) concept. This was experimentally confirmed by Katzmayr 

[11] through mounting a stationary wing in an oscillating flow. After that, von Karman and 

Burgers [12] showed a thought-provoking way to explain the thrust or drag production by 

checking momentum surfeit or deficit in the wake based on the wake vortices orientation and 

location. This has gradually become a qualitative principle to judge whether an oscillating 

mechanism generate thrust or drag. Moreover, some interesting wake vortices phenomena 

have been discovered and studied by many researchers and their impact on the aerodynamic 

performance of the oscillating foils/wings have been discussed. Freymuth [13] 

experimentally documented the vortex street of the thrust-indicative type for pure plunging or 

pitching motion of NACA0015 airfoil. Koochesfahani [14] found that the wake pattern after 

a pitching airfoil can be controlled by adjusting the pitching frequency, amplitude and the 

shape of the oscillation wave. After that, Triantafyllou et al. [15] found that the optimal thrust 

development in oscillating foils can occur at Strouhal number ranging from 0.25 to 0.35 by 

performing stability analyses of measured average velocity profiles. Jones et al. [16] used the 

water-tunnel experiments and inviscid flow simulations to study the evolution of wake 

structures behind a plunging airfoil. A comprehensive classification of wake types was 

summarized in their results. Lai and Platzer [17] further studied the jet characteristics behind 

a plunging NACA0012 airfoil with the dye flow visualization and laser Doppler velocimetry 

(LDV) measurements. Wang [18] confirmed that the optimal flapping was closely related to 

the interaction between leading edge vortices (LEVs) and trailing edge vortices (TEVs) for 

the pure plunging motion. Lewin and Haj-Hariri [19] numerically classified the wake 

patterns behind a plunging airfoil and discussed the LEVs’ effects on the wake pattern and 

propulsive efficiency. Young and Lai [20] studied different types of wake structures behind a 

plunging airfoil and the associated aerodynamic forces. They found that the aerodynamic 

forces relied more on the dynamic behaviors of LEVs while the wake structures were mainly 

controlled by the TEVs. Recently, Schnipper et al. [21] performed a systematic study on the 

wake patterns behind a pitching foil in the vicinity of the drag-thrust transition region in 

order to reveal the connection between wake structures and aerodynamic force generation.  

As a continuation of previous work, Bohl and Koochesfahani [22] studied the wake structures 
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behind a sinusoidally pitching NACA0020 airfoil of various reduced frequencies using 

molecular tagging velocimetry (MTV).   

All the aforementioned studies on wake structures are tied to simple airfoil kinematics, 

namely pure plunging or pitching motions, and relatively large airfoil thickness ratio. As 

reported by many researchers, a combined plunging and pitching motion is a more elaborate 

modeling of the flapping wing kinematics. Jones and Platzer [23] argued that the combined 

plunging and pitching motion could adjust the effective angle of attack (AOA) of the airfoil, 

enhancing the thrust generation or power extraction performance. Anderson et al. [24] 

experimentally examined the propulsive performance of a NACA0012 airfoil with a 

combined plunging and pitching motion, and showed the parameters for optimal thrust 

production. Isogai et al. [25] concluded from their results of a NACA0012 airfoil undergoing 

combined pitching and plunging motion that a high propulsive efficiency could be obtained 

when pitching lead plunging by 90 degrees and no apparent leading edge separation appears. 

Similarly, Tuncer and Platzer [26] found that high propulsive efficiency came with an 

attached flow over the full period of the oscillatory cycle for a NACA0012 airfoil. Note that 

in both cases the free stream Mach number was 0.3, which may be a bit large for the flapping 

wing simulations. Ramamurti and Sandberg [27] used a finite element incompressible flow 

solver to study an oscillating NACA0012 airfoil and invesigated the effect of the phase 

difference between pitching and plunging motions on the thrust generation and propulsive 

efficiency. Kang et al. [28] used a Reynolds-Averaged Navier-Stokes (RANS) approach to 

study the flow over an oscillating SD7003 airfoil, and discussed the effects of turbulence 

model on the prediction of flow features. 

There is a growing awareness in this community that the airfoil thickness can affect thrust 

generation and propulsive efficiency. Lentink and Gerritsma [29] compared the performances 

of several plunging airfoils with different thickness at Reynolds number 150, and concluded 

that airfoils with larger thickness could generate greater thrust than the airfoils with small 

thickness. An et al. [30] found that thickness ratio was a crucial parameter for thrust 

production and their results indicated that there existed an optimal thickness ratio for the 

thrust generation at Reynolds number 185. Ashraf et al. [31] systematically studied the 

thickness effects on the propulsive performances of flapping airfoils at different Reynolds 
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numbers ranging from 200 to 2 × 10] . They found that for low Reynolds numbers, thin 

airfoils outperformed thick airfoils, while for high Reynolds numbers there existed an 

optimal thickness for the thrust production and propulsive efficiency. These results were 

different from Cebeci et al.’s [32] conclusion based on an unsteady panel code simulation 

that thickness had a negligible effect on the propulsive efficiency. This might be due to the 

fact that the inviscid analysis could not handle the dynamic behaviors of LEVs, which play a 

vital role in the aerodynamic performance evaluation.               

Numerical simulations continue to be a powerful tool in the flapping-wing community. 

Moreover, high order CFD methods appear to be more accurate than their low order 

counterparts for simulations of vortex-dominated flow [33]. Some recent work on the 

numerical simulations of bio-inspired flow with high-order methods has provided impressive 

results for the community and demonstrated the potential of the high-order numerical 

simulation in unsteady flapping-wing aerodynamics. Visbal et al. [34, 35] successfully 

utilized a high-order method (a compact finite-difference approach) to simulate the flow field 

around a SD7003 airfoil. Persson et al. [36] developed a dynamic Discontinuous Galerkin 

(DG) method for a finite-span wing simulation and compared the results with other 

numerical methods. Liang et al. [37] used a 2D spectral difference (SD) method for a 

plunging NACA0012 airfoil simulation. Several applications for 2D and 3D SD method in 

the bio-inspired flow have been reported by Yu et al. [38].Their results demonstrated the 

effectiveness of the dynamic unstructured grid based SD method for some challenging bio-

inspired flow simulations. Ou et al. [39] recently developed a 3D SD solver for the finite-

span flapping wing simulations. Results from their research showed the potential of using 

high order methods as an efficient tool for the full scale flapping wing aerodynamics studies.  

    Although all nature flyers use complex 3D wing kinematics in the flapping flight, some 

intrinsic principles of unsteady aerodynamics do fall into the 2D frameworks and 

understanding these basic physics can help researchers make progress on the study of the 3D 

flapping-wing aerodynamics. Therefore, this study is restricted to 2D flapping-wing 

simulations and possible 3D work will be presented in future publications. The remainder of 

this paper is organized as follows. In Section II, the dynamic unstructured grid based SD 

method is introduced. The implementation of the AUSM+-up Riemann solver [40] for all 
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speeds is then introduced and the simulation parameters are presented at the end of this 

section. Numerical results are displayed and discussed in section III. Section IV briefly 

concludes this work. 
 

2.  Numerical Method and Simulation Parameters 
2.1  Governing Equations   

Numerical simulations are performed with an unsteady compressible Navier-Stokes (N-S) 

solver using dynamic unstructured grid based high-order SD method developed in [38, 41]. 

The 2D unsteady compressible N-S equations in conservation form read, 

 		^Ĥ + ^9^F + ^;^! = 0. (1)  

Herein, H = 	 ��, �4, �N, 8
�	are the conservative variables, and F,	G	  are the total fluxes 

including both the inviscid and viscous flux vectors, i.e., 	F	=9X − 97	and	G	=;X − ;7 , 

which takes the following form 

 

9X = e �4� + �4��4N4�8 + �
f,  ;X = e �N�4N� + �N�N�8 + �
f, 

97 =
ghi
hj 0MDDMED4MDD + NMED + klm�� 1Dnho

hp,  ;7 =
ghi
hj 0MDEMEE4MDE + NMEE + klm�� 1Enho

hp
 

(2)  

   In Eq. (2), �	is the fluid density, 4	and N	are the Cartesian velocity components, � is the 

pressure, and 8 is the total energy, J is dynamic viscosity, �� is the specific heat at constant 

pressure, G3 is the Prandtl number, and  1 is the temperature. The stress tensors in Eq. (2) 

take the following form 

 MDD = 2J q4D − 4D + NE3 s , MEE = 2J qNE − 4D + NE3 s , MDE = MED = JtND + 4Eu (3)  

    On assuming that the perfect gas law is obeyed, the pressure is related to the total initial 

energy by	E = wxy� + �� ρ�u� + v�
 with constant γ, which closes the solution system. 
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   To achieve an efficient implementation, a time-dependent coordinate transformation from 

the physical domain � , F, !
 to the computational domain	�M, W, V
, as shown in Fig. 1. (a), is 

applied to Eq. (1). And we obtain 

 
^H<^M + ^9<^F + ^;<^! = 0, (4)  

where 

 eH< = |@|H																																	9< = |@|tHWQ + 9WD + ;WEu;< = |@|tHVQ + 9VD + ;VEu.	 (5)  

Herein, M =   and �W, V
 ∈ �−1,1��, are the local coordinates in the computational domain. In 

the transformation shown above, the Jacobian matrix @ takes the following form  

 	@ = ^�F, !,  
^�W, V, M
 = �FR 	FS 	FQ!R 	!S 	!Q0 0 1 �. (6)  

    Note that the grid velocity NP����� = �F,, !,
 is related with �WQ , VQ
 by 

 	�WQ = −NP����� ∙ ∇WVQ = −NP����� ∙ ∇V. (7)  

 

2.2  Space Discretization 

    The SD method is used for the space discretization. In the SD method, two sets of points 

are given, namely the solution and flux points, as shown in Fig. 1. (b). Conservative variables 

are defined at the solution points (SPs), and then interpolated to flux points to calculate local 

fluxes. In this study, the solution points are chosen as the Chebyshev-Gauss quadrature 

points. It has been proved in [42] that the adoption of the Legendre-Gauss quadrature points 

as the flux points can ensure the stability of the SD method. Therefore, the flux points are 

selected to be the Legendre-Gauss points with end points as -1 and 1.  

    Then using Lagrange polynomials, we reconstruct all the fluxes at the flux points. It is 

worth to point out that this reconstruction is continuous within a standard element, but 

discontinuous on the cell interfaces. Therefore, for the inviscid flux, a Riemann solver is 
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necessary to reconstruct a common flux on the interface. For a moving boundary problem, 

since the eigenvalues of the Euler equations are different from those for a fixed boundary 

problem by the grid velocity, the design of the Riemann solver should consider the grid 

velocity. Furthermore, since the flow regime for flapping flight is almost incompressible and 

the present governing equations are compressible N-S equations, the Riemann solver should 

provide good performance at low Mach numbers. The AUSM+-up Riemann solver [40] for 

all speed is selected for the present simulation and is proved to behave well at low Mach 

numbers. The procedure to reconstruct the common fluxes for the AUSM+-up Riemann 

solver can be specified as follows. 

Denote the face normal of arbitrary interface as (�O. Then the interface mass flow rate &" � �⁄  

reads 

 &" � �⁄ = �� �⁄ $�� �⁄ ���					��	$�� �⁄ > 0��									% ℎ'3��5' ,  (8)  

where the subscript ‘1/2’ stands for the interface, � and $� are speed of sound and Mach 

number respectively. Note that the grid velocity has been included in the interface Mach 

number $�.  The numerical normal fluxes 9<X and ;< X can then be specified as 

 gi
j9<X = q&" � �⁄ ���					��	&" � �⁄ > 0�� 					% ℎ'3��5'		 + G� �⁄ s |@||∇W|5��(�(�O ∙ ∇W

;< X = q&" � �⁄ ���					��	&" � �⁄ > 0�� 					% ℎ'3��5'		 + G� �⁄ s |@||∇V|5��(�(�O ∙ ∇V
 (9)  

where � = �1, 4, N, �8 + �
 �⁄ 
� , G = t0, �(D , �(E , �NP,�u�
,  with (D , (E  and NP,� 

specifying the face normal components in F and ! direction and the grid velocity in the face 

normal direction respectively. Note that in the implementation of the dynamic grid based 

Riemann solver, the last term of the flux needs to be corrected by NP���/�  times by the 

corresponding metrics, where NP� = F,(D + !,(E is the surface grid velocity and ��/� is the 

surface pressure. The superscript ‘i’ indicates the inviscid flux and the subscripts ‘L’ and ‘R’ 

denote the left and right states on the cell interface. The reconstruction of the viscous flux is 

based on the average of the ‘left’ and ‘right’ fluxes. The detailed reconstruction procedures 

can be found in [41].  
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2.3  Simulation Parameters  

In this study, the kinematics of the airfoil is specified as follows.  

Plunging motion:  ! = =>5�(�2C� 
; 
Pitching motion: ) = )>5�(�2C� + Z
. 

Herein, !  and )  are the plunging displacement and pitching angle of the airfoil 

respectively, � is the chord length of the airfoil, and => is the plunging amplitude, � is the 

oscillation frequency, )> is the pitching amplitude, and Z is the phase lag between pitching 

and plunging motions. In view of the optimal thrust generation conditions suggested in [24], 

the pivot point for the pitching motion is located at the one-third chord length from the 

leading edge and Z is fixed at 75�. The sketch of the airfoil kinematics is displayed in Fig. 2. 

 The aerodynamic parameters are specified as follows. The Reynolds number (I') based 

on the airfoil chord length and the free stream velocity is I' = ��	� J⁄ = 1,200, well 

within the insect flight regime. According to the optimal Strouhal number suggested in [15], 

the Strouhal number K 3 (a measure of the characteristic velocity of the object with respect to 

the free stream velocity) based on the plunging amplitude => is chosen as 0.3. The reduced 

frequency A (a measure of flapping frequency with respect to the intrinsic frequency of the 

flow over the airfoil) is assigned as 3.5 or 1.0. As reported by many researchers, the inlet 

Mach number $�	  is crucial for the aerodynamic performance of a flapping wing if a 

compressible solver is adopted for the simulation. In the present study, $�	 is set to be 0.05, 

which is in accordance with the value specified in [20]. 
 

3.  Results and Discussions 
The performance of the developed solver for low Mach number flow is firstly tested by 

computing the steady inviscid flow over a NACA0012 airfoil at $�	 = 0.05 and zero angle 

of attack (AOA) with a 3rd order accurate scheme and an implicit LU-SGS time integration 

[38] on a coarse mesh. The residual convergence history, pressure coefficient (��) contour, 

and the Mach number ($�) contour are displayed in Fig. 3. (a)-(c) respectively. Then a 

steady viscous flow over the NACA0012 airfoil at I' = 5,000, $�	 = 0.05 and zero AOA 

is simulated with the same scheme on the same mesh. The residual convergence history, 

pressure coefficient (��) contour, and the Mach number contour ($�) are displayed in Fig. 3. 
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(d)-(f) respectively. From Fig. 3 it is obvious that both the Euler and N-S solvers work well 

at low Mach number as no oscillation of the flow field is observed. Then H-refinement (grid 

refinement) and p-refinement studies are conducted to determine the suitable grid and 

numerical accuracy for the present study. The time histories of the thrust for the oscillating 

NACA0006 airfoil with the combined plunging and pitching motions at K 3 = 0.3, A = 3.5 

are shown in Fig. 4. It is found that the time histories of thrust coefficient �� for the 3rd order 

scheme with both coarse and fine grids and the 4th order scheme with the coarse grid agree 

well with each other, while for the 2nd order scheme with the coarse mesh, the curve shows 

marked deviation. Based on these observations, a 3rd order accurate scheme with a coarse 

mesh is chosen. 
 

3.1  Thickness Effects with Different Kinematics 

      Three kinds of oscillation motions are studies, namely the pure plunging motion, the pure 

pitching motion and the combined plunging and pitching motion. The time histories of the 

thrust coefficient for NACA0006 and NACA0030 with different oscillation motions at K 3 = 0.3, A = 1 are displayed in Fig. 5. Note that here the combined motion is a linear 

superposition of the plunging and pitching motions as stated in Section II.C. But from Fig. 5, 

it is clear that the aerodynamic force generated from the combined motion is not the linear 

superposition of the aerodynamic forces generated from the plunging and pitching motion. 

This is also confirmed by the time averaged thrust coefficients as shown in Table 1. This can 

be attributed to the nonlinear effects of the unsteady vortex flow. Specifically, from both the 

instantaneous and time averaged thrust coefficients it is found that both airfoils only generate 

drag when pure pitching motion is adopted. This infers that the pitching motion is not 

powerful enough to generate thrust in present cases. Instead, the plunging motion plays a 

major role in generating thrust. However, for pure plunging motion the averaged thrust 

generated by both airfoils, especially NACA0006, appears to be small, as shown in Table 1. 

Before moving forward, we introduce the concept of ‘frontal area’, which is defined as the 

projection of the airfoil in the free stream direction as shown in Fig. 2. Obviously, when the 

airfoil is parallel to the free stream, the frontal area is nothing but the airfoil thickness. From 

Table 1 we find that the drastic change in the thrust coefficient from the pure plunging 
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motion to the combined motion is mainly due to the change in pressure force. This can be 

explained as follows. When a suitable pitching motion is added to the plunging motion, the 

frontal area can be effectively adjusted to enhance the thrust generation from pressure force. 

Thus, the performance in terms of thrust generation is significantly improved with the 

combined flapping motion. 

    The above discussions can be further verified by examining the flow fields.  The 

instantaneous vorticity and pressure fields for NACA0006 with different oscillation motions 

are shown in Fig. 6 and 7; while those for NACA0030 are shown in Fig. 8 and 9. The flow 

visualizations are extracted at four different phases, namely 0, C 2⁄ , C and 3C 2⁄ , based on 

the plunging cycle. From the comparisons of the flow fields with different kinematics for a 

certain airfoil, it is clear that at phases 0 and C, with the combined motion, the pitching 

motion can adjust the gesture of the plunging airfoil to better maneuver the LEVs and 

meanwhile provide a larger frontal area to enhance the pressure force contribution on the 

thrust generation. Note that as the kinematics is not optimized here, the combined motion 

does not entirely eliminate the formation of the LEVs. And the propulsive efficiency might 

not have reached the maximum value in the studied cases.  

By comparing the time histories of the thrust coefficient in Fig. 5 and time averaged thrust 

coefficients in Table 1, it is found that NACA0006 can generate larger thrust than 

NACA0030 under the combined motion. But for the pure plunging motion, NACA0030 

outperforms NACA0006. It seems that the pitching motion did not help significantly enhance 

the aerodynamic performance of the plunging NACA0030 airfoil, but it extensively increases 

the thrust generation of NACA0006. The inferior performance of the NACA0006 airfoil with 

pure plunging motion can be attributed to the small frontal area. Specifically, if we assume 

that the averaged pressure differences 〈∆�〉 in the streamwise direction are the same for both 

NACA0006 and NACA0030 airfoils, the time averaged pressure dominated thrust coefficient 〈��_�〉  of NACA0030 should be five times (the ratio beween the thicknesses of the 

NACA0030 and NACA0006 airfoils) of that of NACA0006. However, from the results it is 

observed that the time averaged pressure dominated thrust coefficient 〈��_�〉  of the 

NACA0030 airfoil is only twice, but not five times of that of the NACA0006 airfoil. This is 

largely due to the performance degradation of the NACA0030 airfoil. As can be observed 
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from Fig. 8 (i) and (k), at phases 0 and C , the LEVs are almost entirely located in the 

rearward part of the airfoil. This will induce a low pressure region there and hinder the thrust 

generation.  

The reason that the pitching motion does not intensively enhance the thrust generation of 

the plunging NACA0030 airfoil can be given as follows. On examining Fig. 8. (a) and (c), it 

is observed that although the pitching motion helps enlarge the frontal area of the plunging 

NACA0030 airfoil at phases 0 and C, e.g.  1⁄ = 3 and 3.5 in Fig. 5. (b), the LEVs is still 

located in the rearward part of the airfoil. This vortex configuration does not contribute much 

to the thrust generation. Moreover, at phases C 2⁄  and 3C 2⁄ , e.g.  1⁄ = 3.25 and 3.75, the 

airfoil with the combined motion experiences larger drag peak than that with the plunging 

motion as displayed in Fig. 5. (b). This is due to the interaction between the propagating 

LEVs and the forming TEVs during the plunging stroke. Specifically, in the combined 

motion, parts of the TEVs are trapped on the trailing edge as shown in Fig. 8. (b) and (d), 

inducing a low pressure region there as shown in Fig. 9. (b) and (d). However, in the 

plunging motion, the TEVs are not trapped on the trailing edge, as displayed in Fig. 8. (j) and 

(l). Thus there does not exist a low pressure region in the rearward part of the airfoil.  

The better performance of the NACA0006 airfoil with the combined motion can be 

attributed to the LEVs dynamics as well. From Figs. 6 and 7, it is observed that for the 

NACA0006 airfoil the pitching motion can better control the LEVs and ensure that the low 

pressure region is located in the forward part of the airfoil at phases 0 and C, and no low 

pressure region is located in the rearward part of the airfoil at phases C 2⁄  and 3C 2⁄ . From 

Fig. 5. (a), it is found that in contrast to NACA0030, the NACA0006 airfoil with the 

combined motion does not experience larger drag peak than that with the plunging motion. 

This is due to the fact that no TEVs are trapped on the trailing edge for both the combined 

and plunging motions. 
 

3.2  Thickness Effects at Different Reduced Frequencies and Strouhal Numbers  

As aforementioned, a suitable combined motion can enhance the aerodynamic 

performances of the oscillating airfoil. In this section, the kinematics of the airfoils is chosen 

as a combined motion with the pitching motion leading the plunging motion by 75�. The 
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thickness effects with different reduced frequencies but the same Strouhal number are 

compared at first. The flow fields, namely the spanwise vorticity fields and the corresponding 

pressure fields of NACA0020 at K 3 = 0.3 and A = 1 are displayed in Fig. 10. Note that the 

flow fields of NACA0012 are similar to those of NACA0006, and are not shown for 

conciseness. By comparing the flow fields of NACA0006 (Fig. 6. (a)-(d)), NACA0020 (Fig. 

10. (a)-(d)) and NACA0030 (Fig. 8. (a)-(d)), it is observed that at K 3 = 0.3 and A = 1, as 

the airfoil becomes thicker, at the end of the plunging strokes, i.e. at phases C 2⁄  and 3C 2⁄ , 

more parts of the forming TEVs will be trapped on the trailing edge of the airfoil, inducing 

an low pressure region on the rearward part of the airfoil. This process results in larger drag 

peaks at phases C 2⁄  and 3C 2⁄  on thicker airfoils as shown in Fig. 11. Moreover, it is also 

observed from the vorticity fields that as the airfoil thickness increases, the LEVs will be 

pushed further towards the trailing edge of the airfoil. This degrades the positive control of 

the pitching motion on thrust generation during the plunging motion. The pressure coefficient �� distributions on different phases are displayed in Fig. 12. From this figure it is clear that 

the pressure distributions on the NACA0006 and NACA0012 airfoils are similar to each 

other, while those on other airfoils departure from them a lot, especially on the surface with 

LEVs. At phases 0 and C, it is found that a low pressure region with large suction peaks 

exists on the forward part of the NACA0006 or NACA0012 airfoil. But for thick airfoils, the 

low pressure regions with small suction pressure spread out almost over the entire surface. As 

aforementioned, the pressure distribution features of NACA0006 and NACA0012 are 

beneficial for the thrust generation, but the same is not true for NACA0020 and NACA0030. 

At phases C 2⁄  and 3C 2⁄ , it is observed that on the suction surfaces, thicker airfoils 

experience larger suction pressure, while on the pressure surfaces, thick airfoils experience 

excessive pressure on the forward part and wide-spread suction pressure on the rearward part. 

All these features dramatically increase the drag on thick airfoils at phases C 2⁄  and 3C 2⁄ .  

Similar trends can be concluded for the oscillating airfoils using a combined motion at K 3 = 0.3 and A = 3.5. However, there exist some distinct aerodynamic features for these 

cases with present parameters. From the flow fields shown in Figs. 13-15, it is found that for 

thin airfoils, the wake vortices formed during the upstroke or downstroke consist of two 

vortices of the same sign. One of the vortices is from LEVs while the other is from TEVs. 
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For thick airfoils, only one vortex is shed during the upstroke or downstroke.  However at K 3 = 0.3 and A = 1, the wake vortices shed during the upstroke or downstroke consist of 

two vortices of the opposite sign. It is also observed that the LEVs formed at the beginning of 

a certain cycle are shed off from the airfoil at the end of the cycle. However at K 3 = 0.3 and A = 1, the LEVs formed at the beginning of a certain stroke are shed off from the airfoil at 

the end of the stroke. Note that one stroke corresponds to half the oscillating cycle. From the 

surface pressure distributions displayed in Fig. 16, it is found that there exist distinct 

differences in pressure distributions on the forward part of airfoils with different thicknesses 

at phases 0 and C. But at phases C 2⁄  and 3C 2⁄ , the pressure distributions are similar for all 

airfoils. These features suggest that at K 3 = 0.3 and A = 3.5, the thrust peaks of oscillating 

airfoils with different thicknesses will exhibit apparent differences but the drag peaks will not 

be of large discrepancy. The time histories of thrust coefficients shown in Fig. 11. (b) confirm 

the above analyses. The differences of aerodynamic features between the cases at A = 1 and 3.5 are inherently related to the dynamics of LEVs as discussed before. 

The propulsive efficiency and time averaged thrust coefficient 〈��〉 for several NACA 4-

digit airfoils at K 3 = 0.3, A = 1 and 3.5 are displayed in Fig. 17. (a). Following the work in 

[31, 23], the propulsive efficiency is defined as 

V����� = 〈��〉〈������〉, 
where 〈������〉 is the time averaged power coefficient. From Fig. 17. (a), it is found that thin 

airfoils perform well for thrust generation and can achieve relatively high propulsive 

efficiency at both A = 1 and 3.5, K 3 = 0.3. The variation trends of the time-averaged thrust 

coefficient and propulsive efficiency versus the airfoil thickness are similar at A = 1 and 3.5. 

For the same airfoil thickness, both the time-averaged thrust coefficient and propulsive 

efficiency are larger at lower reduced frequency than that at higher reduced frequency. From 

the time histories of thrust coefficient for NACA0006 with different reduced frequencies 

shown in Fig. 17. (b), it is obvious that during one oscillating cycle, the airfoil with small 

reduced frequency experiences larger thrust but less drag compared with that with large 

reduced frequency. Also, the pressure force dominates the thrust/drag generation. In Fig. 17. 

(b) the variation of the frontal area normalized by its maximum value is plotted as well. It is 
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clear that when the frontal area reaches a maximum, the airfoil experiences a thrust peak; 

when the frontal area reaches a minimum, the airfoil experiences a drag peak. Thus, for thin 

airfoils, the flapping motion skillfully manipulates the pressure force on the airfoil to enhance 

the thrust generation and weaken the drag generation.  

    The vorticity fields around the NACA0006 airfoil at A = 3.5, K 3 = 0.45 are displayed in 

Fig. 18. Note that the kinematics at K 3 = 0.45 is the same as that at K 3 = 0.3. Comparing 

the vorticity fields with those shown in Fig. 13. (a)-(d), it is found that as the Strouhal 

number increases, the vortex structures of the flow field do not change much. The time 

histories of the thrust coefficient for the two cases at A = 3.5,  K 3 = 0.3 and 0.45 are shown 

in Fig. 19. The time averaged thrust coefficients and propulsive efficiencies are 0.249 and 

27.9% at A = 3.5,  K 3 = 0.3, and 0.779 and 24.1% at A = 3.5,  K 3 = 0.45. In a word, the 

propulsive efficiency is traded off against the thrust generation. 
  

4.  Conclusions 
    A dynamic unstructured grid based high-order spectral difference compressible Navier-

Stokes solver is adopted in the present study to perform high-fidelity simulations on the flow 

fields over several oscillating airfoils with different thickness ratios. It is found that the 

combined plunging and pitching motion can outperform the pure plunging and pitching 

motions by sophisticatedly adjusting the airfoil gestures during the oscillation stroke. 

However, the LEVs manipulation during the gesture adjustment will vary with the airfoil 

thickness ratio. For the present aerodynamic and kinematic parameters, thin airfoils 

outperform thick airfoils. Furthermore, at the same Strouhal number (0.3), reduced frequency 

can dramatically affect the aerodynamic performance because of different LEVs’ behaviors 

associated with different reduced frequencies. The trends of the thickness effects on the thrust 

generation and propulsive efficiency are similar for the studied two reduced frequencies, 

namely 1 and 3.5. For all airfoil thicknesses, relatively low reduced frequency is conducive 

to the thrust production and propulsive efficiency. As the Strouhal number increases to 0.45, 

larger thrust can be generated with the same kinematics, but the propulsive efficiency will 

suffer if the kinematics is not optimal for the chosen aerodynamic parameters. 
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  (a)                                                              (b) 

Fig. 1. (a) Transformation from a moving physical domain to a fixed computational domain; (b) Distribution of 

solution points (as denoted by circles) and flux points (as denoted by squares) in a standard quadrilateral 

element for a third-order SD scheme. 

 

 
Fig. 2. Sketch of the kinematics of the NACA0012 airfoil. 
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(a)                                                              (b)                                                                        

 
(c)                                                              (d)                                                                         

 
                                                      (e)                                                              (f)                                                                         

Fig. 3. (a) Convergence history of the energy residual for the steady solution of the inviscid flow over a 

stationary NACA0012 airfoil with implicit (LU-SGS) time integration at $�	 = 0.05; (b) pressure coefficient 
contours for the converged steady inviscid flow; (c) Mach number contours for the converged steady inviscid 

flow; (d) Convergence histories of the energy residual of the steady solution of the viscous flow over a 

stationary NACA0012 airfoil with implicit (LU-SGS) time integration at I' = 5,000 , $�	 = 0.05 ; (e) 
pressure coefficient contours of the converged steady viscous flow; (f) Mach number contours of the converged 

steady viscous flow. 
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Fig. 4. hp refinement study for the flow over NACA0006 airfoil with the combined plunging and pitching 

motion at K 3 = 0.3, A = 3.5.  

 

  
                                                             (a)                                                                              (b) 

Fig. 5. Time histories of the thrust coefficients for the NACA0006 (a) and NACA0030 (b) airfoils with different 

motions at K 3 = 0.3, A = 1.  
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 NACA0006 NACA0030 

Plu. Pit. Com. Plu. Pit. Com. 〈��〉 0.0085 -0.240 0.418 0.020 -0.399 0.105 〈��_�〉 0.032 -0.198 0.453 0.056 -0.327 0.166 〈��_�〉 -0.0235 -0.042 -0.035 -0.036 -0.075 -0.061 

Table 1. Time averaged thrust coefficients for the NACA0006 and NACA0030 airfoils with different motions at K 3 = 0.3, A = 1 . 〈��〉 denotes the total time averaged thrust coefficient; 〈��_�〉 denotes the time averaged 

thrust coefficient based on the contribution from the pressure force; 〈��_�〉 denotes the time averaged thrust 

coefficient based on the contribution from the viscous force. 

 

 
(a)                                                    (b)                                                     

 
(c)                                                    (d) 

 
(e)                                                     (f)                                                     
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(g)                                                    (h) 

 
(i)                                                     (j)                                                      

 
(k)                                                    (l) 

Fig. 6. Vorticity fields for the NACA0006 airfoil with different motions at K 3 = 0.3, A = 1.  (a)-(d) combined 

plunging and pitching motion at phases 0, C 2,⁄ C, 3 C 2⁄  respectively; (e)-(h) pitching motion at phases 0, C 2,⁄ C, 3 C 2⁄  respectively; (i)-(l) plunging motion at phases 0, C 2,⁄ C, 3 C 2⁄  respectively.  
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(a)                                                     (b)                                                     

 
(c)                                                    (d) 

 
(e)                                                     (f)                                                      

 
(g)                                                   (h) 
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(i)                                                      (j)                                                      

 
(k)                                                    (l) 

Fig. 7. Pressure fields for the NACA0006 airfoil with different motions at K 3 = 0.3, A = 1. (a)-(d) combined 

plunging and pitching motion at phases 0, C 2,⁄ C, 3 C 2⁄  respectively; (e)-(h) pitching motion at phases 0, C 2,⁄ C, 3 C 2⁄  respectively; (i)-(l) plunging motion at phases 0, C 2,⁄ C, 3 C 2⁄  respectively.  

 

 

 
(a)                                                      (b)                                                     
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(c)                                                    (d) 

 
(e)                                                     (f)                                                      

 
(g)                                                    (h) 

 
(i)                                                      (j)                                                      
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(k)                                                     (l) 

Fig. 8. Vorticity fields for the NACA0030 airfoil with different motions at K 3 = 0.3, A = 1. (a)-(d) combined 

plunging and pitching motion at phases 0, C 2,⁄ C, 3 C 2⁄  respectively; (e)-(h) pitching motion at phases 0, C 2,⁄ C, 3 C 2⁄  respectively; (i)-(l) plunging motion at phases 0, C 2,⁄ C, 3 C 2⁄  respectively.  

 

 
(a)                                                     (b)                                                     

 
(c)                                                     (d) 
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(e)                                                     (f)                                                      

 
(g)                                                    (h) 

 
(i)                                                      (j)                                                      

 
(k)                                                    (l) 

Fig. 9. Pressure fields for the NACA0030 airfoil with different motions at K 3 = 0.3, A = 1. (a)-(d) combined 

plunging and pitching motion at phases 0, C 2,⁄ C, 3 C 2⁄  respectively; (e)-(h) pitching motion at phases 
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0, C 2,⁄ C, 3 C 2⁄  respectively; (i)-(l) plunging motion at phases 0, C 2,⁄ C, 3 C 2⁄  respectively. 

 

 
(a)                                                     (b)                                                      

 
(c)                                                    (d) 

 
(e)                                                    (f)                                                       

 
(g)                                                    (h) 
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Fig. 10. Vorticity and pressure fields for the NACA0020 airfoil with the combined motion at K 3 = 0.3, A = 1.  

(a)-(d) vorticity fields at phases 0, C 2,⁄ C, 3 C 2⁄  respectively; (e)-(h) pressure fields at phases 0, C 2,⁄ C, 3 C 2⁄  

respectively. 

 

  
                                                           (a)                                                                                   (b) 

Fig. 11. Time histories of the thrust coefficients for a series of NACA 4-digit airfoils with the combined 

plunging and pitching motion at (a) K 3 = 0.3, A = 1, and (b) K 3 = 0.3, A = 3.5. 

 

  
                                                           (a)                                                                                   (b) 

Fig. 12. Surface pressure coefficienct �� distributions for a series of NACA 4-digit airfoils with the combined 

motion at K 3 = 0.3, A = 1.  (a) phases: 0 and 	C; (b) phases:  C 2⁄  and 3C 2⁄ . 
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(a)                                                     (b)                                                     

 
(c)                                                    (d) 

 
(e)                                                    (f)                                                      

 
(g)                                                    (h) 

Fig. 13. Vorticity and pressure fields for the NACA0006 airfoil with the combined motion at K 3 = 0.3, A =3.5 .  (a)-(d) vorticity fields at phases 0, C 2,⁄ C, 3 C 2⁄  respectively; (e)-(h) pressure fields at phases 
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0, C 2,⁄ C, 3 C 2⁄  respectively. 

 

 
(a)                                                     (b)                                                     

 
(c)                                                    (d) 

 
(e)                                                     (f)                                                      

 
(g)                                                    (h) 
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Fig. 14. Vorticity and pressure fields for the NACA0012 airfoil with the combined motion at K 3 = 0.3, A =3.5 .  (a)-(d) vorticity fields at phases 0, C 2,⁄ C, 3 C 2⁄  respectively; (e)-(h) pressure fields at phases 0, C 2,⁄ C, 3 C 2⁄  respectively. 

 

 
(a)                                                     (b)                                                      

 
(c)                                                    (d) 

 
(e)                                                     (f)                                                      
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(g)                                                    (h) 

Fig. 15. Vorticity and pressure fields for the NACA0030 airfoil with the combined motion at K 3 = 0.3, A =3.5 .  (a)-(d) vorticity fields at phases 0, C 2,⁄ C, 3 C 2⁄  respectively; (e)-(h) pressure fields at phases 0, C 2,⁄ C, 3 C 2⁄  respectively. 

 

  
                                                                  (a)                                                                                    (b)  

Fig. 16. Surface pressure coefficienct �� distributions for a series of NACA 4-digit airfoils with the combined 

motion at K 3 = 0.3, A = 3.5.  (a) phases: 0 and 	C; (b) phases:  C 2⁄  and 3C 2⁄ . 
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                                                                 (a)                                                                                     (b)  

Fig. 17. (a) Time averaged thrust coefficients and propulsive efficiencies for a series of NACA 4-digit airfoils; 

(b) Time histories of the thrust coefficients for the NACA0006 with combined plunging and pitching motions at 

different reduced frequencies 1 and 3.5. ‘_Total’ means that the thrust is calculated from both pressure and 

viscous forces; and ‘_Pressure’ means that the thrust is calculated only from the pressure forces. 

   

 
(a)                                                     (b)                                                     

 
(c)                                                     (d) 

Fig. 18. Vorticity fields for the NACA0006 airfoil with the combined motion at K 3 = 0.45, A = 3.5.  (a)-(d) 

vorticity fields at phases 0, C 2,⁄ C, 3 C 2⁄  respectively. 
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Fig. 19. Time histories of the thrust coefficients for the NACA0006 airfoil with the combined motion at K 3 = 0.3, A = 3.5 and K 3 = 0.45, A = 3.5.  
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CHAPTER 6. High-Fidelity Optimization of Flapping Airfoils for 

Maximum Propulsive Efficiency 

A paper submitted to the 51st AIAA ASM conference proceedings 

 

Meilin Yu, Z. J. Wang and Hui Hu 

1.  Introduction 
    Unsteady flapping-wing aerodynamics has attracted considerable research efforts in the 

past years partially due to the increased interest in designing Micro Air Vehicles (MAVs) for 

a variety of missions, including reconnaissance and surveillance, targeting and sensing. 

Comprehensive reviews [1, 2, 3, 4, 5, 6, 7, 8] are available for the latest progress in this area, 

but there are still many missing pieces to this puzzle. One of them is to find flapping wing 

kinematics with maximum efficiency and adequate aerodynamics performance for MAV 

flight. 

    Flapping motions can effectively generate thrust at low Reynolds and Mach numbers, and 

many research efforts have been devoted to shed light on the mechanism of efficient flapping 

flight. Jones and Platzer [9] argued that the combined plunging and pitching motion of 

flapping flight could adjust the effective angle of attack (AOA) of the airfoil, thus enhancing 

the thrust generation or power extraction performance. Anderson et al. [10] experimentally 

examined the propulsive performance of a NACA0012 airfoil with a combined plunging and 

pitching motion, and showed the parameters for an optimal thrust production. Isogai et al. 

[11] concluded from their results for a NACA0012 airfoil undergoing combined pitching and 

plunging motion that a high propulsive efficiency could be obtained when the pitching lead 

plunging by 90 degrees and no apparent leading edge separation appeared. At the same time, 

Tuncer and Platzer [12] similarly found that high propulsive efficiency came with an 

attached flow over the full period of the oscillation cycle for an NACA0012 airfoil. Note that 

in both cases the free stream Mach number was 0.3, which may be a bit large for the flapping 

wing simulations. Ramamurti and Sandberg [13] used a finite element incompressible flow 

solver to study an oscillating NACA0012 airfoil and investigated the effect of the phase 

difference between pitching and plunging motions on the thrust generation and propulsive 
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efficiency. Kang et al. [14] used a Reynolds-Averaged Navier-Stokes (RANS) approach to 

study the flow over an oscillating SD7003 airfoil and examined the effects of turbulence 

model on the prediction of flow features. 

    Also, there has been long-standing research interest in optimizing the kinematics of a 

flapping wing to achieve optimal aerodynamic performance (lift, lift to drag ratio, thrust, 

propulsive efficiency, power consumption, etc.) in different scenarios. Jones [15] calculated 

the optimum load distribution along the wing for a given wing-root bending momentum 

during the pure flapping motion, and found that the optimum loading was able to generate 

thrust more efficiently compared with an elliptic loading, which was suggested to be optimal 

for steady flight. Hall and Hall [16] computed the optimal circulation distribution along the 

span of flapping wings in fast forward flight using a 1D integral solution for small-amplitude 

motions and vortex-lattice techniques for large-amplitude motions. Ito [17] utilized vortex 

lattice method in conjunction with a hybrid optimization algorithm combining genetic 

algorithm and sequential quadratic programming to optimize the flapping wing motion. 

Vortex lattice model was also adopted by other research groups [18, 19] as a suitable 

compromise between computational cost and accuracy, but it might fail to provide 

appropriate level of complexity of the motion when viscous effects became non-negligible 

[18]. In addition, Hamdaoui et al. [20] optimized the efficient flapping kinematics using a 

multi-objective evolutionary algorithm coupled with flapping flight physics models. 

    The growing sophistication of computation hardware and simulation tools now allows for 

direct coupling between optimization algorithms and high-fidelity Navier-Stokes solvers for 

purpose of flapping motion optimization. Tuncer and Kaya [21] optimized the weighted sum 

consisted of thrust and propulsive efficiency of an flapping airfoil in combined plunging and 

pitching motion by coupling gradient-based optimization method with 2D Navier-Stokes 

solver supporting moving overset grid. Willis et al. [22] exploited a collection of 

computation tools with multiple fidelity level in the design of effective flapping wing 

vehicles. In 2009, Pesavento and Wang [23] further confirmed that 2D flapping flight can be 

aerodynamically more efficient than the optimal steady motion. Recently, Culbreth et al. [24] 

presented several optimization results for flapping airfoils and wings obtained from an 

optimization framework constructed by a gradient-based optimization algorithm and a low-
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dissipation kinetic energy preserving (KEP) finite volume Navier-Stokes solver. They found 

that the maximum propulsive efficiency appeared to occur right before the incipience of 

leading edge separation. 

     In the study, we propose to take a cost-effective multi-level optimization approach to 

provide further insights into flapping motions with maximum propulsive efficiency. At the 

first stage, a gradient-based optimization algorithm is coupled with a second-order spectral 

difference (SD) Navier-Stokes solver to search for the optimal kinematics of a NACA0012 

airfoil undergoing a combined plunging and pitching motion. Since it is evidenced that high-

order methods can be more accurate than the low-order counterparts for simulations of 

vortex-dominated flows (e.g. bio-inspired flows) [25], at the final stage, a high-order Navier-

Stokes solver is used to verify the optimization results and reveal the detailed vortex 

structures associated with the optimal kinematics of the flapping flight with high-fidelity to 

help better understand the physics.  

    The remainder of this paper is organized as follows. In Section II, the optimization 

framework will be introduced. Some preliminary numerical results are displayed and 

discussed in section III. Section IV briefly concludes the preliminary work. 

 

2.  Optimization Framework 
2.1  Governing Equations   

Numerical simulations are performed with an unsteady compressible Navier-Stokes solver 

using dynamic unstructured grid based high-order spectral difference (SD) method developed 

in [26]. The 2D unsteady compressible Navier-Stokes equations in conservation form read, 

 0.Q F G
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (1)  

Herein, � =	 ��, ��, ��, 	
�	are the conservative variables, and F, G  are the total fluxes 

including both the inviscid and viscous flux vectors, i.e., F =� − ��	and G =� − ��, which 

takes the following form 
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(2)  

   In Eq. (2), �	is the fluid density, �	and �	are the Cartesian velocity components, � is the 

pressure, and 	 is the total energy, � is dynamic viscosity, �� is the specific heat at constant 

pressure, �� is the Prandtl number, and  � is the temperature. The stress tensors in Eq. (2) 

take the following form 

 ( ) 2 , 2 ,
3 3

x y x y
xx x yy y xy yx x y

u v u v
u v v uτ µ τ µ τ τ µ

+ +   
= − = − = = +   

   
. (3)  

    On assuming that the perfect gas law is obeyed, the pressure is related to the total initial 

energy by	E = �

���
+ �

!
ρ�u! + v!
 with constant %, which closes the solution system.  

  To achieve an efficient implementation, a time-dependent coordinate transformation from 

the physical domain �&, ', (
 to the computational domain	�), *, +
, as shown in Fig. 1. (a), is 

applied to Eq. (1). And we obtain 

 0,Q F G
x yτ

∂ ∂ ∂
+ + =

∂ ∂ ∂

ɶ ɶɶ

 (4)  

where 
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( )
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Herein, ) = & and �*, +
 ∈ -−1,1/!, are the local coordinates in the computational domain. In 

the transformation shown above, the Jacobian matrix 0 takes the following form  

 
( )
( )

  
, ,

  
, ,

0 0 1

x x x
x y t

J y y y
ξ η τ

ξ η τξ η τ

 
∂  = =  ∂  

 

. (6)  

    Note that the grid velocity �122223 = �'4, (4
 is related with �*5 , +5
 by 

  g

g

v

v
τ

τ

ξ ξ

η η

 = − ∇


= − ∇

i

i

���

��� . (7)  

 

2.2  Space Discretization 

    The SD method is used for the space discretization. In the SD method, two sets of points 

are given, namely the solution and flux points, as shown in Fig. 1. (b). Conservative variables 

are defined at the solution points (SPs), and then interpolated to flux points to calculate local 

fluxes. In the present study, the solution points are chosen as the Chebyshev-Gauss 

quadrature points and the flux points are selected to be the Legendre-Gauss points with end 

points as -1 and 1. Then using Lagrange polynomials, we reconstruct all the fluxes at the flux 

points. Note that this reconstruction is continuous within a standard element, but 

discontinuous on the cell interfaces. Therefore, for the inviscid flux, a Riemann solver is 

necessary to reconstruct a common flux on the interface. The reconstruction of the viscous 

flux is based on the average of the ‘left’ and ‘right’ fluxes. The detailed reconstruction 

procedures can be found in [26].  

 
 

        (a)                                                                (b) 
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Fig. 1. (a) Transformation from a moving physical domain to a fixed computational domain; (b) Distribution of 

solution points (as denoted by circles) and flux points (as denoted by squares) in a standard quadrilateral 

element for a third-order SD scheme. 

 

2.3  Simulation Parameters  

In this study, the kinematics of the airfoil is specified as follows.  

Plunging motion:  ( )y hsin tω= ; 

Pitching motion: ( )Asin tθ ω φ= + , 

where ( and 6 are the plunging displacement and pitching angle of the airfoil respectively, � 

is the chord length, ℎ and 8 are the plunging and pitching amplitude respectively, 9 is the 

angular frequency of oscillation and : is the phase lag between the plunging and pitching 

motions.  

 The aerodynamic parameters are specified as follows. The Reynolds number (Re) based 

on the airfoil chord length and the free stream velocity is ;< = �=>� �⁄ = 1,200, well 

within the insect flight regime. The Strouhal number B&� based on the plunging amplitude ℎ  

is defined as B&� = 2Cℎ	 =>⁄ . The reduced frequency D based on the airfoil chord length � is 

defined as D = 2EC� =>⁄ .  

 

2.4  Optimization Procedure 

For simplicity, we consider an unconstrained optimization problem of the form 

maximize ( ) ,T
power

power

C
C

η =x  

where +�FGHI  is the propulsive efficiency, 〈��〉  is the time averaged thrust coefficient, 

〈��FGHI〉  is the time averaged power input of the oscillating airfoil, and L  denotes the 

optimization parameters. The unsteady flow solver is used to evaluate the propulsive 

efficiency +�FGHI . 

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [27] is adopted for the 

optimization. It is a quasi-newton algorithm and can achieve a superlinear rate of 

convergence. The BFGS algorithm is briefly reviewed here for completeness [27]. 
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    Denote the function to be minimized by f (f=	+�FGHI   in our case). Give an educated guess 

of the optimization parameters as LM. Let the convergence tolerance be  N > 0, PM = LQ −

LM,and RM = STQ − STM.Then,  the initial inverse Hessian approximation UV can be 

specified as below: 

=
T
0 0

0 T
0 0

y sH I
y y

. 

Let D = 0, 

while ‖STX‖ > N,  

    Compute line search direction 

= −k k kp H f∇∇∇∇ . 

    Set LXYQ = LX + Z[\X, where Z[ is the line search step length, which satisfies the Wolfe 

condition, 

1( ) ( )k kf f cα α+ ≤ + T
k k k k kx p x f p∇∇∇∇ ; 

2( )T
k cα+ ≥ T

k k k k kf x p p f p∇ ∇∇ ∇∇ ∇∇ ∇ . 

    Update PX, RX, and ]XYQ using the following formulas: 

PX = LXYQ − LX 

RX = STXYQ − STX 

( ) ( )= - - +T T T
k+1 k k k k k k k k k kH I ρ s y H I ρ y s ρ s s , 

  where �[ = 1 ^RX_PX`⁄ . 

  D = D + 1 

end (while) 

Typical values for a�and a! in the Wolfe condition suggested in Ref. [27] are a� = 10�b 

and a! = 0.9. 

 

3.  Optimization Results and Discussions 
In this section, the NACA0012 and NACA0006 airfoils are used for the optimization. The 

optimizations are performed for one to four kinematic parameters with the NACA0012 airfoil 
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and for four kinematic parameters with the NACA0006 airfoil. The convergence criteria N is 

set as 10�e in this study. 

 

3.1  Results for NACA0012 

3.1.1  Optimization of ' = : at B&� = 0.3, D = 3.5 and 8 = 20F 

The initial condition for this case is specified as : = 75F. Note that this initial value is 

chosen based on the suggestions in Ref. [10]. The convergences of the i! norm of ∇+ and : 

are shown in Fig. 2. The optimized phase lag : is 87.8F  and the propulsive efficiency is 

30.8%. Note that the optimal propulsive efficiency is achieved after only six optimization 

iterations.  

  
                                               (a)                                                                                     (b) 

Fig. 2.  Convergences of (a) the i! norm of ∇+ and (b) the phase lag :. 

 

3.1.2  Optimization of ' = �:, 8
 at B&� = 0.3, D = 3.5 

    The initial conditions for this case are specified as �:, A
 = �75F , 20F
 . The 

convergences of the i! norm of ∇+ and �:, A
 are shown in Fig. 3. The optimized kinematic 

parameters �:, A
 are �89.2F , 17.9F
 and the propulsive efficiency is 31.2%. Note that the 

optimal propulsive efficiency is achieved after eight optimization iterations. 
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(a) 

  
                                               (b)                                                                                     (c) 

Fig. 3.  Convergences of (a) the i! norm of ∇+, (b) the phase lag : and (c) the pitching amplitude. 

 

3.1.3  Optimization of ' = �:, 8, ℎ
 at D = 3.5 and D = 1 

The initial conditions for the case at D = 3.5  are specified as 

�:, A, ℎ/�
 = �75F , 20F , 0.27
. The convergences of the i! norm of ∇+ and �:, A, ℎ/�
 are 

shown in Fig. 4. The optimized kinematic parameters �:, A, ℎ/�
 are �84.7F, 25.9F , 0.38
 

and the propulsive efficiency is 33.4% . Note that the optimal propulsive efficiency is 

achieved after sixteen optimization iterations. 
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                                               (a)                                                                                     (b) 

 
                                               (c)                                                                                     (d) 

Fig. 4.  Convergences of (a) the i! norm of ∇+, (b) the phase lag :, (c) the pitching amplitude and (d) the 

normalized plunging amplitude at D = 3.5. 

 

The initial conditions for the case at D = 1 are specified as �:, A, ℎ/�
 = �85F , 45.8F , 1.5
. 

The convergences of the i! norm of ∇+ and �:, A, ℎ/�
 are shown in Fig. 5. The optimized 

kinematic parameters �:, A, ℎ/�
 are �86.4F , 49.0F , 1.66
  and the propulsive efficiency is 

53.3%. In this case, the gradient of the propulsive efficiency ∇+ does not converge to the 

desired error level but the values of :, A, ℎ/�  converge almost surely towards the local 

minima. Therefore, the optimization results are reasonable. 
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                                               (a)                                                                                     (b) 

 
                                               (c)                                                                                     (d) 

Fig. 5.  Convergences of (a) the i! norm of ∇+, (b) the phase lag :, (c) the pitching amplitude and (d) the 

normalized plunging amplitude at D = 1. 

 

3.1.4  Optimization of ' = �:, 8, ℎ, 9
   

The initial conditions for the case are specified as �:, A, ℎ �⁄ , D
 = �85F , 45.8F , 1.5, 0.8
. 

The convergences of the i! norm of ∇+ and �:, A, ℎ/�
 are shown in Fig. 6. The optimized 

kinematic parameters �:, A, ℎ �⁄ , D
  are �88.4F, 41.9F , 1.57,0.84
  and the propulsive 

efficiency is 53.4%. As in the last case, the gradient of the propulsive efficiency ∇+ does not 

converge to the desired error level but the values of :, A, ℎ/� and D converge almost surely 

towards the local minima. Therefore, the optimization results are reasonable. 



140 
 

 
                                               (a)                                                                                     (b) 

 
                                               (c)                                                                                     (d) 
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(e) 

Fig. 6.  Convergences of (a) the i!  norm of ∇+ , (b) the phase lag : , (c) the pitching amplitude, (d) the 

normalized plunging amplitude and (e) the reduced frequency. 

 

3.1.5 Flow Fields and AerodynamicForces at Optimal Kinematics Parameters 

The flow field around the oscillating NACA0012 airfoil with the optimized kinematics 

�:, A, ℎ �⁄ , D
 = �88.4F , 41.9F , 1.57,0.84
 is simulated using a 3rd order SD scheme. The 

vorticity fields are displayed in Fig. 7. It is found that large scale leading edge separation 

only occurs when the airfoil starts to reverse its plunging direction. During most of the 

oscillation cycle, no leading edge separation shows up. Such kind of flow features may be 

critical for maintaining the maximum propulsive efficiency, which is also reported in [24]. 

 

 
(a)                                                         (b)                                                         

 
(c)                                                        (d) 

Fig. 7.  The vorticity fields with optimized kinematics L = �:, A, ℎ �⁄ , D
 = �88.4F , 41.9F, 1.57,0.84
  at 

different phases from simulations with the 3rd SD scheme for the NACA0012 airfoil. (a) phase 0; (b) phase 

E 2⁄ ; (c) phase E; (d) phase 3E 2⁄ . 



142 
 

3.2  Results for NACA0006 

On using the same initial conditions of �:, A, ℎ �⁄ , D
 as shown in 3.1.4, the optimized 

kinematics parameters for the oscillating NACA0006 airfoil is obtained as �:, A, ℎ �⁄ , D
 =

�87.0F , 41.9F, 1.54,0.83
. The maximized propulsion efficiency is 56.9%. Similarly to the 

optimization process of the NACA0012 airfoil, the gradient of the propulsive efficiency ∇+ 

does not converge to the desired error level but the values of :, A, ℎ/�  and D  converge 

almost surely towards the local minima. The vorticity fields simulated using a 3rd order SD 

scheme are displayed in Fig. 8. Similar flow features as those from the NACA0012 airfoil 

can be concluded from the flow fields. The time histories of the thrust and lift forces are 

shown in Fig. 9. From the results it is found that the absolute peak values of the thrust and lift 

forces during the oscillation are almost of the same level. Furthermore, although during one 

stroke of a specific oscillating cycle the aerodynamic forces display certain fluctuation, the 

force histories are very periodic. This is closely related to the suppression of leading edge 

separation during the oscillation.  

 

 

 
(a)                                                         (b)                                                         
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(c)                                                        (d) 

Fig. 8.  The vorticity fields with optimized kinematics L = �:, A, ℎ �⁄ , D
 = �87.0F , 41.9F, 1.54,0.83
  at 

different phases from simulations with the 3rd SD scheme for the NACA0006 airfoil. (a) phase 0; (b) phase 

E 2⁄ ; (c) phase E; (d) phase 3E 2⁄ . 

 

 
Fig. 9.  Time histories of the thrust and lift forces with optimized kinematics for the NACA0006 airfoil. 

 

4. Conclusions and Future Work 
A high order SD scheme based numerical optimization method is proposed to optimize the 

kinematics of flapping airfoils and provide further insights into flapping motions with 

maximum propulsive efficiency. A cost-effective multi-level optimization approach is 

adopted in the development. At the first stage, a gradient-based optimization algorithm is 

coupled with a second-order SD Navier-Stokes solver to search for the optimal kinematics of 
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a certain airfoil undergoing a combined plunging and pitching motion. Specifically, the 

quasi-Newton optimization algorithm BFGS is used to speed up the convergence. Then a 

high-order SD scheme is used to verify the optimization results and reveal the detailed vortex 

structures associated with the optimal kinematics of the flapping flight. The proposed 

optimization procedure is tested for several cases with one to four optimization parameters of 

flapping NACA0012 and NACA0006 airfoils. The maximum propulsive efficiency for the 

NACA0012 airfoil can achieve 53.4% and that for the NACA0006 airfoil can be up to 56.9% 

after four kinematics parameters are optimized, namely, the oscillation frequency, plunging 

and pitching amplitudes and the phase lag between the plunging and pitching motion. Adjoint 

based optimization of the flapping wing shape and kinematics for maximum propulsive 

efficiency will be conducted in the future. 
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CHAPER 7. The Effects of Wing Planforms on the 

Aerodynamic Performance of Thin Finite-Span Flapping 

Wings   
A paper published in the 50th AIAA ASM conference proceedings 

 

Meilin Yu, Z. J. Wang and Hui Hu 

Abstract 

A three-dimensional high-order unstructured dynamic grid based spectral difference 

(SD) Navier-Stokes (N-S) compressible flow solver with low Mach number 

preconditioning is used to investigate the effects of wing planforms on the aerodynamics 

performance of the thin finite-span flapping wings in this paper. Two types of wings, 

namely the rectangular and bio-inspired wings, are simulated and compared. The 

formation process of the ubiquitous two-jet-like wake patterns behind the finite-span 

flapping wing is explained at first. Then the effects of the wing planforms on the 

aerodynamics performance of the finite-span flapping wings are elucidated in terms of 

the evolutions and dynamic interaction among the leading edge vortices (LEV), trailing 

edge vortices (TEVs) and the wing tip vortices (TVs). Different types of LEVs have been 

discovered for different wing planforms with the flapping motion in the vertical direction, 

resulting in different aerodynamic performances. A combined plunging and pitching 

motion is then adopted to enhance the thrust production of the flapping wing, and it 

increases the amount of the thrust production by about thirty times when compared with 

the flapping motion only in the vertical direction.  

 

Nomenclature 

AOA = angle of attack 

a = speed of sound 

AR = aspect ratio 
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��  = thrust coefficient 

c = chord length 

E = total energy 

F,G,H = vectors of fluxes in the physical domain ��, ��, �� = vectors of fluxes in the computational domain 

i,j,k = index of coordinates in x, y, z direction 

J = Jacobian matrix 

K = reduced frequency 

M = Mach number 	
  = mass flow rate 

�� = grid displacement 

p = non-dimensional pressure �,��  = vectors of conservative variables in the physical and computational domains 

Re = Reynolds number based on the chord length �� = fifth-order polynomial blending function 

St = Strouhal number 

s = normalized arc length �, � = time in the physical and computational domain 

u,v,w = non-dimensional velocity in x, y, z direction �� = grid velocity 

x,y,z = non-dimensional Cartesian coordinates in the physical domain � = pitch angle of the airfoil �, �, � = Cartesian coordinates in the computational domain � = non-dimensional density � = phase angle �� = spanwise (z) vorticity 

 

1.  Introduction 
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    Research on the bio-inspired flow under low Reynolds number (102-104) regimes has 

increased greatly both in the experiment and computational fluid dynamic (CFD) 

communities during recent years, encouraged by the design needs of Unmanned Aerial 

Vehicles (UAVs) and Micro-Air-Vehicles (MAVs). Based on versatile research aims, 

both two-dimensional (2D) and three-dimensional (3D) unsteady vortex-dominated flows 

have been studied experimentally and numerically [1]. Among all the topics related to the 

flapping motion, wing/airfoil shape effects have been emphasized by some researchers 

[2,3,4]. For the 2D airfoil shape study, Shyy et al. [3] studied different airfoil 

performances for the low Reynolds number and concluded that airfoil shape can 

dramatically affect the aerodynamic performance. From the research, they found that thin 

airfoils with relative large cambers can enjoy better aerodynamic performance than their 

thick counterparts. Lentink and Gerritsma [2] confirmed that thin airfoils with aft camber 

perform better under low Reynolds number, compared with traditional thick airfoils. 

Obviously, airfoils can be treated as a wing with infinite aspect ratio (AR), which cannot 

reflect the influences of the wing tip vortices over the whole flow field. Therefore, studies 

of the 3D wing planform effects will help to unfold the 3D wing geometric influences on 

the vortex interactions, i. e. the wing tip vortices (TVs), leading edge vortices (LEVs) and 

trailing edge vortices interactions for different wing geometries. 

According to the study [5], wings with low ARs (most insects have such kinds of wings 

[6]) are beneficial for the agile locomotion. Therefore, many studies [1,3,5,7,8,9,10,11] 

have been concentrated on the aerodynamic performances of low AR wings. It can be 

found that almost all these studies were focused on the unsteady lift generation of the 

hovering flight. Ellington et al. [9] first reported that the intense leading edge vortex 

(LEV) created by dynamic stall is the reason for the high-lift force generation during the 

hovering flight of the hawkmoth. They also pointed out that the spanwise flow is essential 

for the stability of such leading edge vortex. However, Birch and Dickinson [7] found that 

even there does not exist the spanwise flow, the LEV can still be stabilized for the 

flapping wings of the fruit fly. They confirmed that the downwash effect of the wing tip 
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vortex can explain the stability of the LEV. In fact, according to Ref. 0, under the regime 

of high Reynolds numbers, the spanwise flow can enhance the stability of the LEV, while 

for lower Reynolds numbers, wing tip vortex and wake vorticity play a vital role in 

prolonging the attachment of the LEV. Recently, Shyy et al. [11] further confirmed that 

the wing kinematics can greatly affect the wing tip effects on the aerodynamic 

performance of a low AR wing. For the cruise flight, von Ellenrieder et al. [12] and 

Parker et al. [13] have studied the 3D vortex structures after a finite-span flapping wing 

with two free ends. Their research was restricted to the effects of aerodynamic parameters 

and the wing motion kinemics on the wake structures. In Spentzos et al.’s [4] work, the 

wing tip effects on the dynamic stall are studied. They confirmed that different wing 

planforms could have similar flow topology. However, whether these conclusions can be 

extended generally to flapping wings and how the interaction between the wing tip vortex 

and the leading/trailing edge vortex affects the thrust/lift generation are still open 

questions. Here, we focus on the wing tip effects on the vortex flow over a series of low 

AR (=2.6772) fix-rooted wings with different planforms (namely, rectangular, elliptic, 

and bionic) during the cruise flight.  

    Since the phenomena in this study are vortex-dominated flows, high-order methods are 

needed for the numerical simulations due to their prominent low dissipation features. For 

the present study, a three-dimensional high-order unstructured dynamic grid based 

spectral difference (SD) Navier-Stokes (N-S) compressible flow solver was adopted. The 

spectral difference (SD) method [14] is a recently developed high-order method to solve 

compressible flow problems on simplex meshes. Its precursor is the conservative 

staggered-grid Chebyshev multi-domain method [15]. The general formulation of the SD 

method was first described in Ref. 0 and applied for computational electromagnetic 

problems. It is then extended to 2D Euler [16] and Navier-Stokes equations [17,18]. After 

that, Sun et al. [19] implemented the SD method for 3D N-S equations on unstructured 

hexahedral meshes. Later, a weak instability in the original SD method was found 

independently by Van den Adeele, et al. [20,21] and Huynh [22]. Huynh [22] further 

found that the use of Legendre-Gauss quadrature points as flux points results in a stable 
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SD method. This was later proved by Jameson [23] for the one dimensional linear 

advection equation. Based on Sun et al.’s [19] work, Yu et al. [24] further developed a 

Geometric Conservation Law (GCL) compatible SD method for dynamic grids and used 

it for bio-inspired flow simulations. Liang et al. [25] and Ou et al. [26] have developed 

dynamic grid based SD method for bio-inspired flow simulation as well. 

    The paper is further organized as follows. In section 2, the SD method, grid 

deformation strategy and simulation parameters are briefly introduced. Then numerical 

results are presented and discussed in section 3. There we explain the formation process 

of the ubiquitous two-jet-like phenomenon behind the finite-span flapping wing and 

compare the aerodynamic performances of flapping wings with different wing planforms 

and kinematics. Finally, conclusions are summarized in section 4. 

 

2.  Numerical Methods and Simulation Parameters 

2.1  Governing Equations 

A three-dimensional high-order Navier-Stokes (N-S) spectral difference solver for 

dynamic grids has been used for the present simulation. A brief introduction of the 

method will be presented here and readers can refer to Ref. 0 for details. 

We consider the unsteady compressible Navier-Stokes (N-S) equations in conservation 

form in the physical domain (�, �, �,  ) 
 

"�"� + "�"� + "�"� + "�" = 0. (1)  

Herein, � = 	 (�, �(, ��, �), *)�	are the conservative variables, ρ	 is the fluid density, (, �	and )  are the Cartesian velocity components, and *  is the total initial energy. 

F, G, H  are the total fluxes including both the inviscid and viscous flux vectors, 

i.e., F =�, − �., G =�, − �.	and H =�, − �..  Detailed formulas for the fluxes can be 

found in Ref. 0. On assuming that the fluid obeys the perfect gas law, the pressure is 

related to the total initial energy by 	E = 0123 + 34 ρ(u4 + v4 +w4),  which closes the 

solution system. 
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   To achieve an efficient implementation, a time-dependent coordinate transformation 

from the physical domain (�, �, �,  ) to the computational domain	(�, �, �, �), as shown in 

Fig. 1(a), is applied on Eq. (1), which is 

 
"��"� + "��"� + "��"� + "��" = 0, (2)  

where 

 

89:
9; �� = |=|�																																														�� = |=|>��? + ��@ + ��A +���B	�� = |=|>��? + ��@ + ��A + ���B�� = |=|>��? + ��@ + ��A + ���B

. (3)  

Herein, 	� = � , and (�, �, �) ∈ D−1,1FG , are the local coordinates in the computational 

domain. In the transformation shown above, the Jacobian matrix J  takes the following 

form 

 = = "(�, �,  , �)"(�, �, �, �) = H�I 		�J		�K 		�?�I		�J 		�K 		�? I		 J		 K 		 ?0				0				0				1 L. (4)  

For a non-singular transformation, its inverse transformation must also exist, and the 

transformation matrix is  

 =23 = "(�, �, �, �)"(�, �,  , �) = H�@		�A		��		�M�@		�A		��		�M�@ 		�A		��		�M0				0				0				1 L. (5)  

It should be noted that all the information concerning grid velocity ������N = (�M, �M,  M) is 

related with (�?, �?, �?) by 

 O�? = −������N ∙ ∇��? = −������N ∙ ∇��? = −������N ∙ ∇� 	. (6)  

2.2  Space discretization 
    The SD method is used for the space discretization. In the SD method, two sets of 

points are given, namely the solution and flux points, as shown in Fig. 1(b) for a 2D 
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quadrilateral element. Unknown solutions or degrees of freedom (DOFs) are defined at 

the solution points (SPs), and fluxes are calculated on flux points (FPs). In the present 

study, the solution points are chosen as the Chebyshev-Gauss quadrature points. For a �R23 reconstruction, S solution points are needed in 1D and are specified as 

 �T = −cos X2Z − 12S ∙ [\ , Z = 1,2,⋯ ,S (7)  

It has been proved in Ref. 23 that the adoption of the Legendre-Gauss quadrature points 

as the flux points can ensure the stability of the SD method. Therefore, the flux points are 

selected to be the Legendre-Gauss points with end points as -1 and 1. These points are 

denoted as _̂ , ` = 0,1,⋯ ,S. 

Two sets of Lagrange polynomials based on the solution points and flux points 

respectively can be specified as follows. 

SPs based Lagrange polynomial: 

 aT,,(�) = b � − �T�, − �T
R

Tc3,Td, , e = 1,2,⋯ , S (8)  

FPs based Lagrange polynomial: 

 a_,,(^) = b ^ − _̂,̂ − _̂
R

_cf,_d, , e = 0,1,⋯ , S (9)  

The reconstruction of the SD method is stated briefly as follows. First of all, the 

inviscid fluxes are reconstructed. Note that the fluxes related to the grid movement are 

incorporated into the inviscid fluxes, e.g., ��, = |=|>��? + �,�@ + �,�A + �,��B . The 

conservative variables �_  on the flux points are interpolated from the conservative 

variables �T on the solution points via a tensor production of the 1D Lagrange polynomial 

Eq. (10), which takes the following form 

 �_(�, �, �) = ggg�T>�,, �h , �iBaT,,(�)aT,h(�)aT,i(�)R
,c3

R
hc3

R
ic3 . (10) 

    Then the fluxes can be reconstructed at the flux points using �_ . Note that this 

reconstruction is continuous within a standard element, but discontinuous on the cell 
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interfaces. Therefore, a Riemann flux or common flux needs to be specified on the 

interface to ensure conservation. Since the flow regime for flapping flight is almost 

incompressible and the present governing equations are compressible N-S equations, the 

Riemann solver should retain good performance at low Mach numbers. The AUSM+-up 

Riemann solver [27] for all speed is implemented for the present simulation and is proved 

to behave well at low Mach numbers. The procedures to reconstruct the common fluxes 

from the AUSM+-up Riemann solver are stated as follows. 

Denote the face normal of arbitrary interface by j�, then the interface mass flow rate 	
 3 4⁄  reads  

 	
 3 4⁄ = l3 4⁄ m3 4⁄ n�o 					e`	m3 4⁄ > 0�q							r�ℎt�)eZt, (11) 

where the subscript ‘1/2’ stands for the interface, l and m are speed of sound and Mach 

number respectively. Note that the grid velocity has been included in the interface Mach 

number m.  The numerical normal fluxes ��,, �� , and ��, can then be specified as 

 

899
:9
9;��, = X	
 3 4⁄ nuo					e`		
 3 4⁄ > 0uq					r�ℎt�)eZt		 + �3 4⁄ \ |=||∇�|Zevj(j� ∙ ∇�)
��, = X	
 3 4⁄ nuo					e`		
 3 4⁄ > 0uq 					r�ℎt�)eZt		 + �3 4⁄ \ |=||∇�|Zevj(j� ∙ ∇�)
��, = X	
 3 4⁄ nuo					e`		
 3 4⁄ > 0uq					r�ℎt�)eZt		 + �3 4⁄ \ |=||∇�|Zevj(j� ∙ ∇�)

, (12)

where u = (1, (, �, ), (* + w) �⁄ )� , � = >0, wj@, wjA , wj� , wvx,yB� ,  with n{, n|, n}and 

vx,y specifying the face normal components in x, � and z direction and the grid velocity in 

the face normal direction respectively. 

After this, the derivatives of the inviscid fluxes are calculated on the solution points 

using the following formulas, 

 

"��,"� (�, �, �) = ggg��,>�, , �h , �iBa_,,� (�)aT,h(�)aT,i(�)R
,cf

R
hc3

R
ic3  

"��,"� (�, �, �) = ggg��,>�,, �h , �iBaT,,(�)a_,h� (�)aT,i(�)R
,c3

R
hcf

R
ic3  

(13) 
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"��,"� (�, �, �) = ggg��,>�,, �h , �iBaT,,(�)aT,h(�)a_,i� (�)R
,c3

R
hc3

R
icf  

Since the viscous fluxes are functions of both the conservative variables � and their 

derivatives ∇� , slightly more involved reconstruction procedures are needed. In the 

present study, the approach proposed in [28], also known as ‘BR1’, is adopted. The 

implementation of this approach in SD is briefly introduced as follows.  

Let �� = ∇� , and on transforming this formula from the physical domain to the 

computational domain, we obtain the three components of �� in the conservation form as 

  

�@ = 1|=| �"|=|��@"� + "|=|��@"� + "|=|��@"� � 

	�A = 1|=| �"|=|��A"� + "|=|��A"� + "|=|��A"� �. 
�� = 1|=| �"|=|���"� + "|=|���"� + "|=|���"� � 

(14) 

Then using the conservative variables �_ on the flux points, the derivatives in Eq. (16) on 

the solution points can be calculated following the procedure as shown in Eq. (15). Note 

that the common conservative variables ����  on element interfaces are used in the 

derivative calculation. In BR1, ���� is the average of the left and right solutions on the 

interface, 

 ���� = �o + �q2 . (15) 

After this, the gradient of �  is then interpolated back to flux points following the 

procedure as shown in Eq. (12) and the viscous fluxes can then be calculated on flux 

points. Again, the gradient of �  from the aforementioned reconstruction is generally 

discontinuous on the element interface, and BR1 is used to provide a common gradient ∇���� on the element interface, 

 ∇���� = ∇�o + ∇�q2 . (16) 



155 
 

Thus the viscous fluxes ��., ��.,and ��. on flux points are uniquely specified in a local cell, 

and the flux derivatives on solution points can then be calculated via the approach as 

shown in Eq. (15). 

    Once all flux derivatives are available, the DOFs can be updated with either explicit or 

implicit time integrations.  

 

2.3  Dynamic grids strategy 

In order to solve problems with moving grids, it is necessary to design a grid moving 

algorithm. In this study, a blending function approach proposed in Ref. 29 is used to 

reconstruct the whole physical domain. The fifth-order polynomial blending function 

reads  

 ��(Z) = 10ZG − 15Z� + 6Z�, Z ∈ D0,1F (17) 

It is obvious that ���(0) = 0, 	���(1) = 0, which can generate a smooth variation at both 

end points during the mesh reconstruction. Herein, ‘s’ is a normalized arc length, which 

reflects the ‘distance’ between the present node and the moving boundaries. s=0 means 

that the present node will move with the moving boundary, while s=1 means that the 

present node will not move. Therefore, for any motion (transition, rotation), the change of 

the position vector �� is 

 ∆�����T��M = (1 − ��)∆���,�,� (18) 

After these manipulations, a new set of mesh nodes can be calculated based on ∆��. It is 

clear that for systems with complex relative motions, the algebraic algorithm for the grid 

motion will be hard to design. However, for many cases this method enjoys its 

remarkable simplicity and efficiency. 

 

2.4  Problem statements 

Rectangular and bio-inspired flapping wings, as shown in Fig. 2 are studied here. Wing 

surface grids and streamwise grids on the symmetric plane are also displayed in Fig. 2. 
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The grid deformation strategy is specified as follows. Suppose that all Lagrangian control 

points on the flapping wing oscillate only on the plane perpendicular to the spanwise axis. 

The maximum position of the profile in the plane perpendicular to the chordwise axis is 

set to be a parabola ℎ = ℎf�4 where � ∈ D0,1F is the distance from the wing root to the 

Lagrangian control point normalized by the wing span and ℎf is the flapping amplitude of 

the wingtip. The rigid-body plunging function for one particular position (�T, �T,  T) on 

the flapping wing is given as follows, 

 � = �T,  =  T, � = �T + ℎTsin	(��) (19) 

where ℎT is determined from the aforementioned parabola. Then the blending function Eq. 

(19) and the motion control function Eq. (20) are used to determine the movement of 

other grid points. Herein, ∆���,�,� is specified as Δ� on the surface of the flapping wing. 

    For the combined pitching and plunging motion, the pitching part is controlled as 

below 

 �����T��M − ������T��M − ��� = Xcos(Δ�) −sin	(Δ�)sin	(Δ�) cos(Δ�) \ ��_����� − ���_����� − ��� (20) 

with �� =	ℎ�,Tsin	(��)  and � = �f�rZ	(�� + �f) . According to the optimal thrust 

generation conditions suggested by Anderson et al. [30], �f is set as 75o. Herein, ∆���,�,� 

is specified as (Δ�, Δ�) on the surface of the flapping wing. 

    The studied finite-span flapping wings have the same wing span, aspect ratio of the 

planform (defined as the ratio of the square of the wing span to the planform area, aT���4 ��tl⁄ ) and the kinematic parameters of the flapping motion.  In the present study, 

the Strouhal number (���) of the finite-span flapping wings was selected to be well within 

the optimal range usually used by flying insects and birds and swimming fishes (i.e., 0.2 

< ��� < 0.4). For all the simulations during the present study, the Mach number of the 

free stream is set to be 0.05, under which the flow is almost incompressible. The aspect 

ratios for all wings are set as 2.6772. The Reynolds number (�t) based on the free stream 

velocity and the averaged chord length (the planform area divided the wing span, ��tl aT���⁄ ) is 1,200. The reduced frequency (�) of the flapping motion is 3.5, and the 
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Strouhal number (���) of the wingtip, based on the definition in Ref. 31, is 0.38. All these 

parameters are from the experimental setup stated in Ref. 32. The space discretization 

accuracy for the simulation is of third order, and the time integration is performed with 

the explicit three stage TVD Runge-Kutta method [33]. 

 

  

                                                                 (a)                                                             (b) 

Figure 1. (a) Transformation from a moving physical domain to a fixed computational domain; (b) 

Distribution of solution points (circles) and flux points (squares) in a standard quadrilateral element for a 

third-order accurate SD scheme. 

 

Figure 2. Wing surface and root plane meshes for rectangular (left) and bio-inspired (right) wings.   

 

3.  Numerical Results and Discussions 

The comparisons of the instantaneous vorticity distributions from the numerical 

simulations and those from experimental measurements in the chordwise cross plane at 

50%, 75% and 100% wingspan (i.e., wingtip) and the corresponding time-averaged 

velocity fields are displayed in Fig. 3. Note that the wake structures at 50% wingspan 

from the numerical simulations bare good visual agreement with the experimental results 
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at the same position. However, at 75% wingspan and the wingtip, numerical results 

exhibit more elaborate small vortices structures than the experimental results. From the 

corresponding time-averaged velocity fields at all three positions as displayed in Fig. 3, it 

is found that the numerical simulations capture the qualitative features of the wakes 

indicated by experimental measurements. Specifically, the experimental measurements 

show a von Karman vortex street type wake at 50% wingspan, which is well captured by 

the numerical simulations. Although numerical simulations show more elaborate vortices 

structures at 75% wingspan and the wingtip, the time-averaged results show the similar 

flow topology as revealed by the experimental results --- jet-like flow structures, which 

indicates the momentum surplus. Furthermore, these jet-like flow structures are not 

formed merely by a single inverse von Karman vortex street, but the combination of 

several inverse von Karman vortex streets (wingtip) or even the mixture of both regular 

and inverse ones (75% wingspan), which has been reported as bifurcated jets wake 

pattern in Dong et al.’s [8] study for a free-end finite-span wing. These interesting wake 

phenomena are considered to be closely tied to the wingtip vortices effects, which will be 

thoroughly discussed next. 

 

 

(a) 
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(b) 

 
(c) 

Figure 3. Instantaneous vorticity fields and the corresponding time-averaged velocity fields at (a) 50%, (b) 

75% wingspan and (c) wingtip for the flapping rectangular wing. Left two columns: numerical results; 

Right two columns: experimental results (Courtesy of H. Hu, et al.0). 

 

3.1  Two-Jet-Like Wake Patterns Formation  

The wake vortex structures of the flapping rectangular wings from perspective and side 

views are shown in Fig. 4(a) and (b) respectively. In these figures, the vortex structures 
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are indicated by the Q-criterion colored with the streamwise velocity. The Q-criterion is a 

Galilean-invariant vortex criterion, which is defined as follows 

 � = 12 >�,h�,h − �,h�,hB = 12"(,"�h "(h"�,  (21) 

where �,h = 34 (����@� − ����@�), is the angular rotation tensor, and �,h = 34 (����@� + ����@�),  is the 

rate-of-strain tensor. The different vortices have been marked out with rectangular 

windows or solid arrows which indicate the rotation directions. It is clear from the figures 

that the complex vortex system around the flapping wing can be decomposed into four 

parts, namely trailing edge vortices (TEVs), leading edge vortices (LEVs) and tip vortices 

(TVs), and the entangled vortices (EVs) due to the interactions among TEVs, TVs and 

LEVs. Similar wake phenomena have been reported by Dong, et al. [8] for free-end 

finite-span wings except the complex EVs. This might be due to the fact that in the 

present study a thin wing with shape edges are used for the simulations while in the 

aforementioned literatures, relatively thick wings are adopted in the simulations.  

It has been reported in Ref. 0 that the formation of the two-jet-like wake patterns 

behind the flapping wing is closely related to the existence of tip vortices. But the reasons 

for the formation process of the bifurcated jet were not fully analyzed.  Herein, a detailed 

observation of the bifurcated jet effects is shown in Fig. 4(c) for the fixed-root flapping 

rectangular wing. The figure shows the 3D vorticity fields indicated by the Q-criterion 

and the spanwise vorticity field at the 75% wingspan. The trajectories of both clockwise 

(-) and anti-clockwise (+) vortices are also schematically plotted in the figure. 

Furthermore, the jet bifurcation position is determined by examining the starting point of 

the two-jet-like wake patterns from the time-averaged velocity fields in Fig. 3. It is 

observed from the figure that the jet bifurcation occurs when TVs intensively interact 

with the TEVs and many elaborate small vortices appear in this region.  

In order to further examine the physics behind this, a combined flapping and pitching 

motion with pitch leading plunge 75o is used to reduce the separation from the leading 

edge and the wingtip, which makes the wake vortex structures much clearer as shown in 

Fig. 5(a). Note that with this combined motion, the two-jet-like patterns still exists at the 
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75% wingspan as shown in Fig. 6. From Fig. 5(b), it is obvious that the upper branch of 

the bifurcated jet is formed by an anti-clockwise vortex row consisting of TEVs and a 

clockwise vortex row consisting of TVs; while the lower branch of the bifurcated jet is 

formed by an anti-clockwise vortex row consisting of TVs and a clockwise vortex row 

consisting of TEVs. The reasons why TVs can contribute to the spanwise vorticity are 

illustrated in Fig. 5(b). Let’s use TVs2, TEVs3 and TVs3 to explain the process.  Because 

of the existence of TVs2, the end part of the TEVs near the wingtip will be dragged 

gradually from the ‘z’ direction to the ‘y’ direction during the flapping stroke, which 

indicates that certain amount of vorticity in the vertical (y) direction is generated. The 

induced rotational velocity field is schematically denoted with the blue dashed arrow near 

the wingtip part of TEVs3.  This velocity field will bend the bottom end of TVs3 to 

TEVs2, and finally TVs3 have a vorticity component in the spanwise direction. It is not 

hard to examine that this induced vorticity component is negative as denoted with the 

blue dashed arrow near the bottom part of TVs3.  This explains the formation of the 

spanwise vorticity contribution from the TVs and further elucidates the formation of the 

two-jet-like wake patterns. Note that the above explanation will also work for the flapping 

case aforementioned, although the existence of small vortices in that case makes the two-

jet-like wake formation process hard to distinguish.  Similar explanations can apply to the 

formation of the wake pattern at the wingtip.  

  
                                             (a)                                                                          (b) 
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(c) 

Figure 4. Vortex topology around the flapping rectangular wing.  Vortex structures are indicated by the Q-

criterion and colored by the streamwise velocity. (a) Perspective view. (b) Side view. (c) Perspective view 

of the vortex structures near the wingtip region and the spanwise vorticity field of the chordwise cross plane 

at 75% wingspan. 

 

  

(a)                                                                                     (b) 

Figure 5. Vortex topology around the rectangular wing with a combined plunging and pitching motion.  

Vortex structures are indicated by the Q-criterion and colored by the streamwise velocity. (a) Side view. (b) 

Perspective view of the vortex structures near the wingtip region and the spanwise vorticity field of the 

chordwise cross plane at 75% wingspan. 
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                   (a)                                                              (b)                                                              (c) 

Figure 6. Time-averaged velocity fields at (a) 50%, (b) 75% and (c) 100% wingspan for the rectangular 

wing with a combined plunging and pitching motion. 

 

3.2  Aerodynamic Performance Comparisons of Different Wing Planforms  

The comparison of thrust coefficient histories for the rectangular and bio-inspired 

wings with the flapping motion is displayed in Fig. 7(a). The contributions from the 

pressure force and viscous force for the thrust are shown in Fig. 7(b) and (c). From these 

figures, it is found that during one flapping cycle the rectangular wing experiences both 

larger thrust and drag than the bio-inspired wing. These differences mainly come from the 

contributions from the pressure force. It is also observed that the bio-inspired wing 

experience less drag from the viscous force (i.e. shear stress). The time-averaged thrust 

coefficients for these two wings as presented in Table 1. From the table, it is clear that the 

rectangular wing generates larger thrust than the bio-inspired wing, and for both wings, 

the pressure force dominates the thrust production. Note that both thrust coefficient 

histories for the two wings in Fig. 7 display certain small-scale unsteady fluctuations. 

This can be explained by the rich vortex structures around the flapping wings as shown in 

Fig. 8. In this figure, the vortex structures indicated by the Q-criterion and colored by the 

streamwise velocity for the rectangular wing are shown in the upper row. The phases for 

the four instantaneous flow fields are 0� , 90� , 180�  and 270�  respectively. The 

corresponding flow fields at the same phases for the bio-inspired wing with the same Q 

value are displayed in the lower row of Fig. 8.  It is found that more small vortex 

structures are generated around the rectangular wing especially in the wingtip region. 
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This is due to the relatively sharp tip edge of the rectangular wing and this phenomenon 

indicates that more flapping energy has been wasted as these small vortices are hard to be 

efficiently collected to generate thrust. It is also found that the LEVs around the 

rectangular wing at phases 0� and  180� are stronger than those around the bio-inspired 

wing. As will be discussed momentarily, at these two phases the flapping wings will 

experience thrust peaks, which are believed to closely tie to the behaviors of the LEVs. 

Further, this phenomenon can help to explain the reason why the rectangular wing 

generates more thrust than the bio-inspired wing does at the present simulation 

parameters.   

As aforementioned, the pressure force dominates the thrust generation in the present 

cases. Based on careful examinations of the flow fields it is found that the pressure 

change on the leading and trailing edges of the flapping wings mainly occurs in the 

regions near the wingtip, indicating that the thrust generation is dominated by the outer 50% 

regions of the flapping wings. It is obvious that at these regions flapping wings have 

larger flapping amplitudes and speeds and can result in a local dynamic stall. The 

associated LEVs can be stabilized by the downwash effects of the TVs and can induce a 

local low pressure region near the leading edge of the flapping wing. This is beneficial for 

the thrust production. Since the LEVs of the rectangular wing are more intensively 

interacting with the leading edge than the bio-inspired wing, a lower pressure region near 

the wingtip of the rectangular wing makes it experience a larger thrust peak than the bio-

inspired wing as observed from the thrust coefficient histories (Fig. 7). 

 The spanwise vorticity fields and the time-averaged velocity fields of the bio-inspired 

wing in the chordwise cross plane at 50%, 75% wingspan and wingtip are displayed in 

Fig. 9. The phases of the flow fields and contour levels are the same as those shown in 

Fig. 3 for the rectangular wing. Different features of the flow fields can be found by 

comparing Fig. 9 and 3. At the 50% wingspan, it is clear that the bio-inspired wing has 

smaller region with velocity deficit than the rectangular wing does. However, at the 

wingtip, because of the wing shape difference the bio-inspired wing almost does not 

generate thrust while the rectangular wing still has apparent jet patterns. At the 75% 
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wingspan, the two-jet-like pattern for the bio-inspired wing has a different shape 

compared with the rectangular wing, and the high speed region is smaller than the 

rectangular wing. Since it has been found that the thrust production is mainly determined 

by the outer 50% regions of the flapping wing, all the discussed wake features for the 

rectangular and bio-inspired wings show the reasons why the rectangular wing generates 

more thrust than the bio-inspired wing from the aspect of wake structures. 

 

3.3  Aerodynamic Performances for Wings with Combined Plunging and Pitching 

Motions 

 Note that according to Table 1 the time-averaged thrust coefficient for the flapping 

rectangular wing is very small. This can be explained like this. Based on the knowledge 

that the pressure force dominates the thrust generation, two parameters, namely the 

effective wing area projection in the streamwise direction and the pressure difference, 

will determine the output of the thrust during the flapping flight. Since thin wings are 

adopted in the present study, for the flapping motion in the vertical direction, the wing 

area projection in the streamwise direction is very small. This is unfavorable to the thrust 

production. Therefore, it becomes necessary to add certain pitching motion to the flapping 

motion to enlarge the wing area projection in the streamwise direction. However, the 

phase lag between the plunging motion and the pitching motion should be carefully 

designed as this phase lag will affect the adjustment of effective angle of attack (AoA). If 

this parameter is not assigned properly, the performance of the wing can even degrade. As 

aforementioned, the phase lag between the plunging motion and the pitching motion is set 

to be 75o as suggested by Anderson et al. [30].  

    The histories of the total thrust coefficient and the component contributed by the 

pressure force for the rectangular wing under combined plunging and pitching motions 

are displayed in Fig. 10. The corresponding vortex structures indicated by the Q-criterion 

around the wing are shown in Fig. 11 for four phases, namely 0� , 90� , 180� and 270�. It 

is concluded that under the combined motions, the flapping wing can generate much 

larger (about thirty times) thrust than the flapping case. Moreover, because of the 
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effective AoA adjustment of the pitching motion, the breakdown of vortices becomes less 

severe, which indicates less energy waste.  

 

4.  Conclusions 

In this study, a three-dimensional high-order unstructured dynamic grid based spectral 

difference (SD) Navier-Stokes (N-S) flow solver was used to investigate the effects of 

wing planforms on the aerodynamics performance of the thin finite-span flapping wings. 

The formation process of the two-jet-like wake patterns behind the finite-span flapping 

wing is found to be closely related to the interaction between TEVs and TVs. It is found 

that for the flapping motion in the vertical direction, the rectangular wing can generate 

larger thrust than the bio-inspired wing because of the dynamic behaviors of LEVs. 

However, the thrust production for such kind of motions is very small. In order to 

enhance the thrust production, a combined plunging and pitching motion is adopted and it 

increases the amount of the thrust production by about thirty times when compared with 

the flapping motion only in the vertical direction.  
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Figure 7. The thrust coefficient histories for different wing planforms with the flapping motion. (a) total 

thrust; (b) contribution from the pressure force; (c) contribution from the viscous force. 

 

 ��̅ ��̅_¢ ��̅2. 

Rectangular 1.36 × 1024 4.72 × 1024 −3.36 × 1024 

Bio-inspired 0.17 × 1024 3.07 × 1024 −2.90 × 1024 

Rectangular(Com.) 0.366 0.466 -0.100 

Table 1. Time-averaged thrust coefficient histories for different wing planforms with the flapping motion 

or the combined motion indicated by ‘Com.’.  ��̅ stands for the time-averaged total thrust; ��̅_¢ stands for 

the contribution from the pressure force; ��̅_. stands for the contribution from the viscous force. 

 

  

  
        (a) � = 0�                         (b) � = 90�                             (c) � = 180�                             (d) � = 270� 

 Figure 8. Comparison of the vortex topology for the rectangular and bio-inspired wings at four phases 

(0�, 90�, 180� and 270�) with the flapping motion. The upper row is for the rectangular wing while the 

lower row is for the bio-inspired wing. 
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        (a) 50% wingspan                                       (b) 75% wingspan                                          (c) wingtip 

Figure 9. Instantaneous vorticity fields and the corresponding time-averaged velocity fields at (a) 50%, (b) 

75% wingspan and (c) wingtip for the flapping bio-inspired wing.  

 

 

Figure 10. The total thrust coefficient history and that from the pressure force for the rectangular wing with 

the combined motion. 

 



171 
 

 
       (a) � = 0�                         (b) � = 90�                              (c) � = 180�                            (d) � = 270� 

 Figure 11. Vortex topology for the rectangular at four phases (0�, 90�, 180� and 270�) with the combined 

motion.  
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CHAPER 8. General Conclusion 

A dynamic unstructured grid based high-order SD compressible Navier-Stokes solver is 

developed to perform high-fidelity simulations for flapping-wing aerodynamics. A gradient-

based cost-effective multi-level optimization algorithm is incorporated into the solver to 

carry out flapping wing related optimizations. Both the GCL and low Mach number 

preconditioning procedure work well with the high order accuracy SD method and it is 

demonstrated that the developed algorithm preserves the high-order accuracy of the SD 

method on dynamic grids and works efficiently for bio-inspired flow problems. 

In the experimental and numerical analyses of the wake structures behind an oscillating 

NACA0012 airfoil, two types of wake transition processes (i.e. the transition from a drag-

indicative wake to a thrust-indicative wake and that from the symmetric wake to the 

asymmetric wake) are identified. The wake transition point from the drag-indicative type to 

the thrust-indicative type is found to be S� = 0.12; the transition point from the symmetric 

type to the asymmetric type is at S� = 0.31. The asymmetric wake is believed to be closely 

related to the formation of a dipole-like vortex pair shed in one pitching cycle and can be 

treated as an inviscid phenomenon. The deflective angle of the asymmetric wake is 

determined by the initial phase angle and the asymmetric wake structures are more sensitive 

to the Strouhal number than the reduced frequency. 

In the numerical assessments of the airfoil thickness effects, it is found that viscous force 

plays a substantial role in thrust production for thin airfoils. For the airfoils with relatively 

large thickness, viscous force contributes mainly to drag production, and its effect is almost 

negligible. The role change of viscous force in the thrust generation of the plunging airfoils is 

found to be closely related to the dynamics of the unsteady vortex structures around the 

plunging airfoils. 

    From the numerical simulations of a series of NACA 4-digit airfoils with different 

kinematics, it is found that the combined plunging and pitching motion can outperform the 

pure plunging and pitching motions by sophisticatedly adjusting the airfoil gestures during 

the oscillation stroke. With the same kinematics, thin airfoils outperform thick airfoils. For 

all airfoil thicknesses, relatively low reduced frequency is conducive to the thrust production 

and propulsive efficiency. In the kinematics optimization of the oscillating airfoils, four 
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kinematics parameters, namely the oscillation frequency, plunging and pitching amplitudes 

and the phase lag between the plunging and pitching motion, are optimized. The maximum 

propulsive efficiency of a flapping NACA 4-digit airfoil can achieve more than 50% when 

the oscillating kinematics is optimized. From the simulations using high-order accuracy 

scheme, it is found that the maximum propulsive efficiency appeared to occur right before 

the incipience of leading edge separation. 

    The formation of a two-jet-like wake pattern after the 3D flapping wing is explained by 

analyzing the interaction between wake and wingtip vortex structures. It is found that the 

bent wingtip vortices play a vital role in the two-jet-like wake pattern formation. The vortex 

structures around flapping wings with different wing planforms and the corresponding 

aerodynamic performances are analyzed. It is confirmed that the aerodynamic force 

production during cruise flight is dominated by the pressure force and is closely related to the 

dynamics of LEVs.  From the comparison of the aerodynamic forces generated with different 

wing kinematics, it is found that the pure plunging motion is not conducive to the propulsive 

performance. A combined plunging and pitching motion can drastically increase the thrust 

production. 
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