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ABSTRACT

The current work puts forth an implementation of a dynamic procedure to locally compute

the value of the model constant CDES , as used in the eddy simulation branch of Delayed

Detached Eddy Simulation (DDES). Former DDES formulations [P. R. Spalart et al., A new

version of detached-eddy simulation, resistant to ambiguous grid densities, Theor. Comput.

Fluid Dyn. 20, 181 (2006); M. S. Gritskevich et al., Development of DDES and IDDES formu-

lations for the k−ω shear stress transport model, Flow, Turbul. Combust. 88, 431 (2012)] are

not conducive to the implementation of a dynamic procedure due to uncertainty as to what

form the eddy viscosity expression takes in the eddy simulation branch. However, a recent,

alternate formulation [K. R. Reddy et al., A DDES model with a Smagorinsky-type eddy vis-

cosity formulation and log-layer mismatch correction, Int. J. Heat Fluid Flow 50, 103 (2014)]

casts the eddy viscosity in a form that is similar to the Smagorinsky, LES (Large Eddy Simula-

tion) sub-grid viscosity. The resemblance to the Smagorinsky model allows the implementation

of a dynamic procedure similar to that of Lilly [D. K. Lilly, A proposed modification of the

Germano subgrid-scale closure method, Phys. Fluids A 4, 633 (1992)]. A limiting function

is proposed which constrains the computed value of CDES , depending on the fineness of the

grid and on the computed solution. In addition to the dynamic procedure, influence of inflow

condition is also explored in this work.
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CHAPTER 1. INTRODUCTION

For industrial applications of turbulence simulation, Reynolds Averaged Navier Stokes

(RANS) models are widely used, but they can produce insufficiently accurate results for complex

geometries. Though more accurate, Large Eddy Simulation(LES) is not practical in industry

in upcoming decades because of its high demand on computing resources. Detached Eddy Sim-

ulation (DES) was proposed to fill the gap between RANS and LES with much more accuracy

but manageable increase of cost. It is a modification of a RANS model, which switches to

a subgrid scale formulation in regions where the turbulence scales are large enough for LES

calculation. The original DES formulation suffers from Grid Induced Separation (GIS) and

Log-Layer Mismatch (LLM). Those shortcomings lead to the development of Delayed DES

(DDES) to prevent GIS and to Improved DDES (IDDES) to alleviate LLM. IDDES introduces

a lot of empiricism. Recently our group has proposed an alternative DDES formulation that

alleviates LLM. The eddy viscosity is formulated in a similar way to the subgrid viscosity in the

Smagorinsky model. The need of adjusting the constant in the Smagorinsky model is inherited

in our DDES model. That leads naturally to the current work, allowing model constant to

be computed via a dynamic procedure: stresses are computed from the resolved scales via a

test filter, and the constant optimizes a fit between modeled and resolve stresses. A limiting

function is proposed to set constrains on the computed model constant, depending on the mesh

resolution and turbulence scales. Tests of the the dynamic procedure are made on benchmark

cases.
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CHAPTER 2. REVIEW OF LITERATURE

In simulation of turbulent flow, it has always been a trade off between computing power

and solution accuracy especially for industrial application. Reynolds Averaged Navier Stokes

(RANS) models separate flow character into time averaged and fluctuations parts. Time aver-

aged flow is solved and fluctuation part is modeled. Those models have been widely used in

industry but sometimes are insufficiently accurate, especially for flow over complex geometries.

Large Eddy Simulation (LES) resolves a large portion of turbulent motions which improves

accuracy but also brings extraordinary demand for computing power. Direct Numerical Sim-

ulation (DNS), which resolves all the turbulent motions, is far beyond application level in

industry. Detached Eddy Simulation, as one kind of the Hybrid RANS and LES branch, was

proposed to predict turbulent flows at high Reynolds number with better accuracy than RANS

in massively separated flow without exceeding manageable computing power.

2.1 Physical Aspect of Turbulence

2.1.1 The Kolmogorov’s Hypotheses

η = (
ν3

ε
)
1
4 (2.1)

There are three hypotheses from Kolmogorov’s theory [Kolmogorov (1941)]. Kolmogorov’s

hypothesis of local isotropy assumes that at sufficiently high Reynolds number, the small scale

turbulent motions are statistically isotropic. Kolmogorov’s first similarity hypothesis states

that in every turbulent flow at sufficiently high Reynolds number, the statistics of the small

scale motions have a universal form that is uniquely determined by dissipation ε and molecular

viscosity ν, as equation 2.1 Kolmogorov’s second similarity hypothesis states that in every
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turbulent flow at sufficiently high Reynolds number, the statistics of the motions `0 >> ` >> η

have a universal form that is uniquely determined by dissipation ε but independet of molecular

viscosity ν.

2.1.2 The Turbulence Energy Spectrum

Turbulent flow contains a wide range of scales of motion and energy transferring between

scales. The energy spectrum function of wave number E(κ) is a straightforward way to ex-

amine the distribution of energy over scales. The energy transfer can be divided into three

principal portions based on scales. The largest, named as energy containing range, doesn’t

have a universal character. It is based on flow configurations such as boundary condition. The

smallest scales are in the dissipation range, which is determined by the dissipation and molec-

ular viscosity. Scales between the energy containing range and the dissipation range belong to

the inertial subrange. Those scales, that only depends on the dissipation, are still in universal

equilibrium.

Figure 2.1: Energy spectrum for varying Reynolds number [Pope (2000)]

Based on the second Kolmogorov hypothesis, within the inertial subrange, it is found that

E(κ) ∝ κ−5/3 [Pope (2000)]. This is a universal form which only depends on the Reynolds

number for isotropic turbulence.
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2.1.3 Universality of Boundary Layer Profiles

Although flow characteristics are determined by flow configurations, boundary layer profile

has some universal properties termed as law of the wall. The law of the wall is not totally

independent of flow outside boundary layer, for example the outermost region of flate plate

boundary layer and fully developed channel flow can be different but the inside region quite

similar.

Law of the wall is based on nondimensionalizing the boudnary layer profile by plus units,

+. Which is based on wall shear stress, τw. For example, velocity is normalized by wall friction

velocity which is defined as equation 2.2.

uτ =

√
τw
ρ

(2.2)

Normalized velocity u+ is a function of normalized wall distance y+ and this function is

universal. And flow characteristics are related to such normalized wall distance. Such as with

in viscous sublayer (y+ < 5), the role of Reynolds shear stress is negligible and the molecular

viscosity is dominant. Thus, approximately U+ = y+ describes the velocity profile here. From

y+ > 40 to central of a funlly developed channel or 0.2δ of flat plate boudnary layer is called the

log-layer. In this region molecular viscosity is negligible compared to Reynolds stress. The log

law applies here as equation 2.3. The constant κ is the vol Karman constant which is usually

about 0.41. B is approximated 5.2 by curve fitting of experimental data. Region between

log-layer and viscos sublayer is the buffer layer, with 5 < y+ < 40.

U+ =
1

κ
lny+ +B (2.3)

2.2 Simulation and Modeling of Turbulence

There are three main kinds of methods of solving Navier-Stokes equations, Reynolds Aver-

aged Navier Stokes (RANS), Large Eddy Simulation (LES) and Direct Numerical Simulation

(DNS). RANS is the cheapest and is ready for industrial use since the 1990s. LES consumes

a lot more CPU power and its scaling with Reynolds number makes it prohibitive to be used
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in the industry a few decades, not even mention DNS. Hybrid RANS/LES improves accuracy

but also reduces demand on computing power which can be a possible approach to fill the gap

between RANS and LES.

2.2.1 Reynolds Averaged Navier Stokes

Reynolds Averaged Navier Stokes models solve time averaged flow field. Its idea is built

on ensemble average and Reynolds decomposition. The instantaneous field is broken down

into time averaged field and fluctuation field. The fluctuation field is being modeled and the

time averaged field is solved in Reynolds Averaged Navier Stokes equations. Extra equations

are established to close the set of equations. Usually there are a bunch of empirical constants

in a RANS model that are calibrated with simple turbulent flows such as decaying isotropic

turbulence. Those characters make a RANS model incapable of providing satisfactory results

for complex geometries. Although Unsteady RANS has been developed and makes RANS

possible to capture some unsteady motion in a turbulent flow. It is hard to say it is physically

sound since it is still based on statistical time averaging of the flow field.

There are two main kinds of RANS models. The first is constructed on Boussinesq eddy

viscosity hypothesis [Pope (2000)] and can be written as equation 2.4. Extra one or two

equations are used to solve the eddy viscosity (νT ) to incorporate the time averaged N-S

equation. One equation models like Spalart-Allmaras model and two equation models such as

k − ε and k − ω all fall in this kind.

−τij +
1

3
τkk = 2νTSij (2.4)

The other kind the Reynolds Stress Models (RSM). Though not as widely used as eddy

viscosity models, these models can sometimes better predict the Reynolds stress because it

can be more elaborately presented. RSM models can respond to flow characters like buoyancy,

rotation and curvature. However, due to the formulation of dissipation terms, in some flow its

performance is as bad as eddy viscosity models. In those models, six unknown components in

Reynolds stress are being solved which lead to complexity and insufficient robustness.
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The baseline of two transport equation models is to solve for turbulent kinetic energy (k) and

turbulent dissipation (ε), which is the standard k− ε model [Launder and Sharma (1974)]. The

k − ε model performs poorly for complex flows involving severe pressure gradient, separation,

strong streamline curvature. Near wall behavior of the eddy viscosity is wrong so it requires a

damping function or extra equations. k − ε model is not as sensitive as k − ω model to inflow

conditions.

Another classic two equation eddy viscosity is Wilcox’s k − ω model [Wilcox (1993)]. It

defines eddy viscosity as equation 2.5. Transport equations for turbulent kinetic energy and

specific dissipationj rate is defines in equation 2.6 and equation 2.7. For the near wall behavior,

k − ω model doesn’t predict correctly k profile but approximately correct νT profile, which

requires mesh resolution near the wall. Which means k−ω model does not require any damping

function near wall. Compare with other classic eddy viscosity models, the k − ω model has

superior performance for wall bounded boundary layer, free shear and low Reynolds number

flows. It is more appropriate for complex boundary layer flows than k− ε model under adverse

pressure gradient and separation. However, it typically predicts excessive and early separation.

It also can predict premature transition.

νT = k/ω (2.5)

Dk

Dt
= τij

∂Ui
∂xi
− Cµkω +

∂

∂j
[(ν + σk(k/ω))

∂k

∂xi
] (2.6)

Dω

Dt
= α

ω

k
τij
∂Ui
∂xi
− Cω2ω2 +

∂

∂j
[(ν + σω(k/ω))

∂ω

∂xi
] (2.7)

The k − ω model can be integrated to wall but is too sensitive to free stream boundary

condition. The k − ε model is more robust in the free stream. This results in the SST model

formulation. It combines the original Wilcox k−ω model for near walls regions and the standard

k− ε model away from the walls with a blending function. The use of k−ω in near wall region

allows the SST model to be used as low-Re model without wall function. And the eddy viscosity

formulation is modified to take the transport effect of the principle turbulent shear stress into

account.
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2.2.2 Large Eddy Simulation

As mentioned in section 2.1.1 that the small scales in a turbulent flow are universal and only

depends on the Reynolds number. The principal operation in Large Eddy Simulation (LES) is

low pass filtering. The operation is applied to the Navier-Stokes equations to filter out small

scales of the solution. In another word, the universal small scales are modeled and the rest are

resolved. A large portion of turbulence being resolved provides better fidelity than alternative

approaches such as RANS. However, such portion of resolved turbulent puts a strict limit on

the upper bound on the cut-off length. That requirement makes wall resolved LES extremely

expensive for wall bounded flows.

The modeled part is unresolved and the scales are smaller than cutoff filter width. It is

termed as subgrid stress. The filtering process is based on how to model the subgrid stress.

Sometimes the subgrid stress doesn’t have a high correlation with actual filtered flow field of

DNS solution. As long as it predicts appropriate time averaged solution, there is some freedom

in modeling the subgrid stress. There are two kinds of modeling, one is similar to the RANS

idea to use subgrid viscosity like Smagorinsky model, the other is based on flow structure like

the similarity model [Bardina et al. (1980)]. Linear combination of those two kinds also exists,

which can have higher correlation with actual stress than Smagorinsky model and more proper

dissipation than similarity model. Also there are other ways like implicit-LES, which uses

numerical dissipation to replace the role of dissipation brought by subgrid stress.

The widely used Smagorinsky model [Smagorinsky (1963)] was based on the idea of the

Prandtl mixing length theory. The length scale is defined as Cs∆ where ∆ is the cube root of

local cell volume and Cs is a model constant. The subgrid viscosity is defined as equation 2.8.

νsgs = (Cs∆)2 |S| (2.8)

The model constant CS in Smaogrinsky is not a universal constant. It needs to be adapted

according to flow. For decaying isotropic turbulence, Cs is found to be approximately 0.17.

For free shear flows a near zero value will be best suited. It is also found that the Smagorinsky

model is too dissipative near wall. Either a damping function or the dynamic procedure [Lilly

(1992)] is required to reduce the model constant near wall.
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The dynamic procedure on Smagorinsky model is proposed by Germano et al. (1991), then

modified by Lilly (1992) based on least square minimization. The formulation is listed in

equation 2.9. However, the evaluated C2
s is unstable and sometimes become negative. In

practice the negative evaluated C2
s values are clipped out for the sake of numerical stability.

C2
s =

LijMij

2MijMij
(2.9)

dev(Lij) = dev(Tij − τ̂ij) = dev(−̂̄uiūj + ˆ̄ui ˆ̄uj) (2.10)

Mij = ∆̂2| ˆ̄S| ˆ̄Sij −∆2 |̂S̄|S̄ij (2.11)

dev(Lij) here means the trace free part of Lij . C
2
s is also very unstable both in time and

space from such dynamic procedure. For flow with at least one homogeneous direction, C2
s is

recommended to be averaged over those directions. For example, in fully developed channel

flow, C2
s is evaluated over spanwise and streamwise. Lagrangian averaging, meaning C2

s is

averaged over fluid pathline, is also proposed [Meneveau et al. (1996)]. A new time constant is

brought in by such lagrangian averaging, and it seems not to be a true constant. As a result

another dynamic procedure [Verma and Mahesh (2012)] for such evaluating time constant is

introduced but is not easy to implement in CFD code.

There are also some other subgrid eddy viscosiy formulations declear to be able to get rid

of dynamic proceudre. For example, the Wall-Adapting Local Eddy-Viscosity (WALE) model

[Ducros et al. (1998)], defines a inverse time scale, corresponding to |S| in Smagorinsky model,

that is computed based on flow structure. The adjusting of eddy viscosity according to flow is

carried out by adjusting this inverse time scale rather than length scales.

2.2.3 Direct Numerical Simulation

Direct Numerical Simulation (DNS), the most demanding method, doesn’t model any scale

of motion. All scales, both spatial and temporal, are resolved by directly solving Navier Stokes

equations. It is expect to be the most accurate method. Kolmogorov scaling makes the total

number of grid scale like Re
9
4 . As a result, DNS is only practical on low Reynolds number

cases like channel flow at Reτ around several hundreds. DNS has enought resolution on the

flow field and when adequate numerical scheme and appropriate boundary condition are used.



9

There is no empirism in DNS so it can be regarded accurate. Constants in other more empirical

methods like LES and RANS can be tuned according to comparison with DNS data on simple

flows. Due to its high resolution, DNS is also a powerful tool in fundamental research, which

sometimes doesn’t have enough experimental data. In another word, DNS can provide some

data that can not be measured in experiments.

2.2.4 Hybrid RANS/LES Methods

Hybrid RANS/LES method contains a wide range of possible formulations. DES is one

kind of those hybrid model which is based solely on a single RANS model. There are also other

formulations like applying hybrid filters to represent Reynolds Averaged operation and the LES

filter [Rajamani and Kim (2010)]. Linear interpolation of RANS and LES is also tried [Walters

et al. (2013)]. It is based on linear interpolation on Reynolds stress and subgrid stress. Also,

Zonal-DES is also proposed. Zonal-DES approach is not really an DES formulation because it

is basically applying two different models in pre-specified regions. Interface between LES and

RANS in such zonal approach is troublesome. There are also Wall Modeling LES (WMLES)

formulations to reduce the demands on CPU power because near wall resolution requirement

is the most grid consuming part. Wall models are used to provide the velocity profile near the

wall based on universal boundary layer profile and the LES models are applied outside the near

wall region. Very Large Eddy Simulation and Embedded LES also fall in this scope.

2.3 Detached Eddy Simulation

Detached Eddy Simulation is a hybrid RANS/LES model which is constructed based on

a single RANS formulation with modifications on length scales. It is designed to improve

predictions on massive separated flow without increasing too much grid resolution requirement.

2.3.1 DES97

The first DES model, which was proposed by Spalart et al. (1997), is based on the Spalart

Allmaras model [Spalart and Allmaras (1992)]. The modification is to replace the length scale
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definition in the dissipation term in the ν̃ equation. The original length scale is the wall

distance. It is replaced by equation 2.12

Where d is still the wall distance. ∆ = max(∆X,∆Y,∆Z) which is the maximum local cell

spacing. CDES is a model constant. In the near wall region, because wall distance is smaller

than the cell spacing, d̃ equals to wall distance which is the same as Spalart Allmaras RANS

model. When away from the wall, switching to cell spacing is used to enhance dissipation in ν̃

equation to reduce eddy viscosity which allows unsteadiness to be developed.

d̃ = min(d,CDES ∗∆) (2.12)

The original DES formulation has two fundamental flaws. On ambiguous grids Grid Induced

Separation (GIS) was observed which is due to Modeled Stress Depletion (MSD). This is because

on those grids the model switches from RANS to LES too early that even it is in the eddy

simulation region, there is no enough turbulence resolved. Insufficient total stress will cause

flow separation early than where RANS model predicted. The second problem, Log-Layer

Mismatch (LLM), is also associated with total stress distribution. On the non-dimensional

velocity profile, there are two log-layer predicted by RANS and LES, but they do not align

with each other. This is because there is not enough total stress in the RANS/LES interface,

velocity gradient need to be increased in order to balance the momentum transfer.

2.3.2 GIS and DDES

Figure 2.2 shows the basic idea of what a grid induced separation is like. The DES model

predicts a much earlier separation location than the RANS model. It usually happens on

ambiguous grid where the grid spacing is comparable to boundary layer thickness. Switching

from RANS to LES doesn’t necessary mean that the local grid resolution is fine enough to

resolve accurate LES content. LES content develops too slow to fullfill the decreased portion

of modeled stress. Which is termed as Modeled Stress Depletion. Such mechanism results

in insufficient total stress at the RANS/LES interface. Earlier separation location and other

defects can be expected from modeled stress depletion, especially under adverse pressure.



11

Figure 2.3 shows what kind of mesh is ambiguous for DES. The first mesh is what DES

was originally designed for. It is a boundary layer grid with wall-parallel spacing excess of the

boundary thickness. For the DES97 formulation, the entire boundary layer is solved by RANS.

The third grid is fine enough for an LES simulation, though the RANS/LES switching location

is inside the boundary layer, the mesh after the switching is actually fine enough to resolve

enough Reynolds stress, which won’t cause GIS. The second mesh with wall-parallel spacing

near the magnitude of boundary layer thickness is in fact troublesome. The switching occurs

within the boundary layer but the mesh is not good enough to resolve enough Reynolds stress.

With the reduction of modeled stress, the total stress is underpredicted which causes GIS in

figure 2.2.

In Delayed Detached Eddy Simulation, a shielding function is applied on DES model to

ensure eddy simulation is not applied to too close to wall [Spalart et al. (2006)]. The shielding

function delays switching from RANS length scale to LES length scale in some grid and makes

the switch smoother. The first shielding processe was proposed by Menter and Kuntz (2004),

in which the DES limiter is disabled as long as the flow is recognized as a boundary layer.

The detection of boundary layer is achieved by the SST F2 function. After that, a generic

formulation of shielding function was proposed [Spalart et al. (2006)]. This generic shielding

function can apply on any RANS model. The formulation for a DDES model with be like

equation 2.13

`DDES = `RANS − fd ∗max(0, `RANS − `LES) (2.13)

2.3.3 LLM and IDDES

There are also some efforts trying to use a DES model in WMLES simulations on channel

flow. The concept of using RANS as wall model and LES in other region was suggested long

before DES. DES gives a simpler formulation to achieve this within a single model. There are

early efforts in trying to use DES as WMLES in channel flow [Nikitin et al. (2000)]. Although it

shows promising results in that high Reynolds number cases can be simulated with low increase

in computational cost, there are key flaws. The result shows significant log layer mismatch. An
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Figure 2.2: Grid Induced Separation, (a) RANS, (b)DES., figure taken from Menter and Kuntz

(2004)

Figure 2.3: Different grid distribution for DES, figure taken from Spalart et al. (2006)

underpredict of skin friction coefficient by approximately 15% is observed in channel flow cases.

The velocity wall normal gradient at the RANS/LES interface is too high that the log layers

predicted by RANS and LES have nearly the same slope but different intercept. Refining the

grid actually transfers this high gradient area near the wall.

The argument [Baggett (1998)] is that those unphysical, elongated wall streaks in the RANS

region cause a de-correlation between streamwise and wall-normal fluctuations that must be

compensated by a higher velocity gradient to balance the streamwise momentum. The discrep-

ancy between the log-law intercepts in the inner and outer part of log-layer is caused by the

transition between RANS and LES regions. In this region, the eddy viscosity is already reduced
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significantly below normal value expected from pure RANS model. But the flow is more like

URANS rather than an LES without enough smaller scales to fill the required Reynolds stress.

In a gradient diffusion sense, the only way to reach the equilibrium value of shear stress is by

the velocity gradient increase to balance the eddy viscosity decrease.

The shielding function in DDES only fixes GIS which leaves LLM still an open question.

In Travin et al. (2006), length scale for the Spalart Allmaras DES model was changed from

maximum local cell spacing to cubic root of cell volume. The rationale of changing the LES

length scale is based on the suggestion of facilitating the generation of Reynolds stress gener-

ating structures Piomelli et al. (2002). The IDDES formulation of Shur et al. (2008) is quite

ambitious. For one reason the IDDES formulation is aimed to solve LLM and GIS, for an-

other reason both WMLES and nature DES capabilities are expected. In addition to modified

cell spacing definition, wall distance is also taken account. The modification tends to depress

near the wall and give it a steep variation, which stimulates instabilities, boosting the resolved

Reynolds stressSpalart (2009). A lot more empirical functions are implemented, some involves

cell Reynolds number. Though they improved the accuracy of the model, those modifications

make IDDES a rather complex model.
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CHAPTER 3. DYNAMIC COMPUTING OF DDES MODELCONSTANT

3.1 The `2ω DDES Model

As mentioned in section 2.3, DDES models which are based on modifying length scales in

the dissipation term to reduce eddy viscosity make it unclear what the relation between DES

eddy viscosity and LES subgrid viscosity is. For the eddy simulation branch of a DES model, in

order to mimic a LES model, it would be preferable to make the eddy viscosity defined similar

to LES formulation.

Our group has put forth an alternate formulation of DDES based on the k − ω RANS

model [Reddy et al. (2014)]. It defines νT as an explicit function of `DDES 3.4. The production

term in k equation contains νT . The other terms in the k and ω equations are unaltered.

So the length scale limiter can be interpreted as limiting the production term, rather than

enhancing the dissipation term. This alternate formulation of eddy viscosity is in similar form

of Smagorinsky subgrid viscosity. Thus, a priori estimate of model constant CDES = 0.12 was

made from the Smagorinsky constant Cs. Then it is calibrated by channel flow simulations, a

range of value 0.05 . CDES . 0.15 was found to be satisfactory.

The DDES formulation of Reddy et al. (2014) is reproduced here for convenience:

`DDES = `RANS − fd max(0, `RANS − `LES) (3.1)

`RANS =

√
k

ω
(3.2)

`LES = CDES∆ (3.3)

∆ = fdV
1/3 + (1− fd)hmax CDES = 0.12

νT = `2DDESω
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The generic shielding function by Spalart et al. (2006) is also used here to provide shielding

for the RANS branch. Using cubic root of cell volume allows the model to alleviate log-lay-

mismatch, so the IDDES formulation is not required here. Test cases in Reddy et al. (2014)

show that the DDES model with constant CDES produces quite good results on different flows

like channel flow, backward-facing step and periodic hills. Since one of the motivations to

develop such model is to make the eddy simulation branch more like a practical LES model. It

is natural that development of the Smagorinsky model shall be combined with current DDES

model.

Dk

Dt
= 2νT |S|2 − Cµkω +

∂

∂j
[(ν + σk(k/ω))

∂k

∂xi
] (3.4)

Dω

Dt
= 2Cω1 |S|2 − Cω2ω2 +

∂

∂j
[(ν + σω(k/ω))

∂ω

∂xi
] (3.5)

It is known that the best value of Smagorinsky constant Cs depends on the flow configura-

tions. For homogeneous isotropic turbulent the best value might be Cs ≈ 0.17. For channel flow

Cs ≈ 0.1 is better than Cs ≈ 0.2. For free shear flow Cs ≈ 0. This could also be the case for the

DDES model because the eddy viscosity formulation is similar to Smagorinsky type. Near wall

the Smagorinsky model is too dissipative where a dynamic procedure or a damping function is

required to decrease model constant. And in DDES model the near wall region is handled by

RANS. RANS region thickness is an implicit function of CDES . Optimized switching location

requires carefully determined model constant CDES . The dynamic process of determination of

CDES will be introduced in 3.2.

3.2 Dynamic Procedure for `2ω DDES Model

The dynamic procedure used in current DDES model is similar to Lilly (1992). It is based

on the germano identity. A set of assumptions are made to derive the evaluation process, as

will be mentioned later.

In an LES simulation, the smallest stresses are being modeled. According to Kormogonov’s

hypotheses, those small scales are universal and not influenced by flow configurations. As shown

in figure 3.1, turbulent motions in scales smaller than the grid scale ∆ are being modeled and
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Figure 3.1: Rationale for dynamic procedureLilly (1992)

motions larger than that can be computed in LES. Resolved velocity is represented by ū where

the overbar means the LES filter. Note that in eddy viscosity models the LES filter is implicit.

The unknown part is modeled by subgrid stress τij . If we apply a test filter, which has a width

of ∆̂ on that resolved field, it is equivalent to resolving the flow field on a coarser mesh. Then

the subgrid stress is Tij . Note that on the coarser mesh Tij is unknown just like τij . However,

scales between test filter width ∆̂ and grid width ∆ can be computed from resolved fields. The

derivation of Lij , the trace-free part of Tij − τ̂ij , is as follows,

τij = ūiūj − uiuj (3.6)

Tij = ˆ̄ui ˆ̄uj − ûiuj (3.7)

dev(Lij) = dev(Tij − τ̂ij) = dev(−̂̄uiūj + ˆ̄ui ˆ̄uj) (3.8)

dev() here means the deviatoric part. In a modeling sense, if we want to model the subgrid

stress, the trace-free part can be represented by
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τ̂ij −
1

3
τ̂kk = −2(CDES∆)2 ̂̄ωS̄ij (3.9)

Tij −
1

3
Tkk = −2(CDES∆̂)2 ˆ̄ω ˆ̄Sij (3.10)

Equation 3.9 is under the assumption that CDES is unaffected by test filtering. The lenth

scale in equation 3.10 is the test filter width. ω and Sij need to be test filtered to represent

the test filter scale value. Assume CDES is scale independent, then we could define Mij as

equation 3.11, as a result equation represents the relation between Lij and Mij . Least square

minimization is used to compute CDES in form of equation 3.13.

Mij = (∆̂2| ˆ̄ω| ˆ̄Sij −∆2 |̂ω̄|S̄ij) (3.11)

Lij ∼ 2C2
DESMij (3.12)

C2
DES = 0.5

LijMij

MijMij
(3.13)

In current work, local averageing of LijMij and MijMij are used to help stabilizing the

evaluated constant C2
DES .

3.3 Constrains on Model Constant CDES

Indeed, there is yet another issue, associated with the mesh resolution. In order for the

test filter to be valid, a significant portion of the inertial range needs to be resolved. But

the coarse meshes that sometimes are used in DES do not capture enough of the small scales.

Figure 3.2(a) highlights this, where the power spectral density (PSD) of the streamwise velocity

component u obtained in the simulation of a backward facing step is shown. The coarse mesh

used results in a rather limited inertial range. A sketch of how the dynamic procedure works

on coarse mesh is shown in Figure 3.2(b), the assumption made in equation 3.13 is that CDES

is scale independence which is not the case here. Applying dynamic procedure on those mesh

could lead to underestimated CDES value.

Figure 3.3(a) shows that fd value is affected by CDES . It is because CDES defines LES

length scale which determines eddy viscosity in eddy simulation region. fd is based on wall
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Figure 3.2: (a)PSD of stream velocity from backstep case. (b) Sketch of energy pectrum on

coarse mesh

Figure 3.3: (a) fd in channel flow with constant CDES . (b) fd and LLM on coarse mesh
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distance and eddy viscosity. Reduction of CDES value will reduce the eddy viscosity on top of

the RANS/LES interface. As a result shielded region is lowered to further increase the eddy

simulation region. This is why shielded RANS region is decreased due to underestimated CDES ,

which acts like disabling the shielding process.

One thing needs to be noted that it is not all bad that CDES is reduced by the dynamic

procedure. In some case, enough inertial range is resolved. And even though a small CDES

value is computed in the dynamic procedure it is the appropriate value and is the case we want

to improve the result. The case that deteriorates the result is only when there is not enough

inertial range to determine CDES , and it is underestimated. As a result, on coarse mesh that

doesn’t have enough inertial range resolved, avoiding the dynamic procedure altogether might

be best. For anything but these very coarse meshes there is a good prospect for dynamic

DES. Indeed, if the mesh resolution is close to that of wall resolved LES, utilizing the dynamic

procedure might be favorable, even in the near-wall region. To address these caveats, we should

introduce some evaluation criteria for mesh resolution.

In section 2.1.1, Kolmogorov’s first similarity hypothesis defines the smallest scales of tur-

bulent motions. We can use the ratio between grid spacing and some length scale similar to

the Kolmogorov scale to define grid resolution. So we also define a length scale Lk which is in

the same form as the kolmogorov scale. The dissipation is evaluated in equation 3.18, which

contains both subgrid dissipation and modeled dissipation. One thing we need to note that we

don’t want to apply the dynamic procedure in the RANS region. So a modeled part comes into

ε formulation to detect the RANS region.

CDES = max(Clim, Cdyn) (3.14)

C2
dyn = max

(
0,

LijMij

2MijMij

)
(3.15)

Clim = C0
DES

[
1− tanh

(
α exp

(
−βhmax
Lk

))]
(3.16)

Lk =

(
ν3

ε

)1/4

hmax = max(∆X,∆Y,∆Z) (3.17)

ε = 2(C0
DEShmax)2ω|S|2 + Cµkω (3.18)
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Figure 3.4: Clim verses hmax/Lk

The grid spacing hmax is defined by maximum local cell spacing. If hmax/Lk is under

a certain threshold value, it means the grid resolution is fine enough to apply the dynamic

procedure. If hmax/Lk is approaching infinity, obviously the mesh is not capable of resolving

enough portion of inertial subrange. Which means we should avoid using dynamic procedure.

Here we introduce a limiting function which acts as a bound on the computed value of CDES .

It is described as follows:

hmax is the maximum cell spacing. Constants are defined as α = 25 and β = 0.05. Those

are empirical constants calibrated in channel flow test cases. It is a trade off between avoiding

log-layer mismatch and maximizing area to apply dynamic procedure. Equation 3.15 is the

same as equation 3.13, except that it is now clipped at 0, avoiding negative values for C2
dyn.

The limiting value as a function of hmax/Lk is plotted in figure 3.4.
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CHAPTER 4. SIMULATION OF TEST CASES

The model is implemented into the open source CFD software OpenFOAM [Jasak et al.

(2013)]. Gaussian finite volume integration with central differencing for interpolation was

chosen for spatial discretization of equations. Convection terms of k and ω are limited by sweby

limiter. Time integration was by the 2nd order, implicit backward difference method. The

resulting matrix system was solved using the Pre-conditioned Bi-conjugate gradient algorithm,

with the simplified, diagonal-based, incomplete-LU (Lower Upper) preconditioner. Solution

for the matrix system at each time step was obtained by solving iteratively, to a specified

tolerance of the residual norm. Maximum CFL number is controlled to be no larger than 0.5.

For convenience, `2ω DDES model with CDES = 0.12 is termed as model 1 in test cases. The

one with dynamic procedure is termed as model 2.

4.1 Test Cases for Dynamic Procedure

4.1.1 Channel Flow

Several channel flow simulations were carried out for different Reynolds numbers. The non-

dimensioned velocity profiles are compared to the Dynamic Smagorinsky model or the k − ω

model based on mesh resolution.

For figure 4.1(a), because the mesh resolution is fine, the RANS region is reduced to near

wall region where ω is approaching infinity and is no longer proportional to |S|. The entire log

layer is simulated by the LES branch of the DDES model. The non-dimensionalized velocity

profile collapse with the one from dynamic smaoginsky model. For figure 4.1(b, c), in coarser

mesh, non-limited region of CDES gets reduced. Increasing of limiting value starts from the

wall and then spread toward the channel center. For figure 4.1(d), in all the region within the
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channel CDES is limited to non-zero value which means the dynamic procedure doesn’t apply in

this case. In the eddy simulation of Reτ = 6000 case, the limiting value is 0.06 < Clim < 0.12.

If the mesh is even coarse, then the limiting value shall increase to 0.12, which makes the model

the same as model 1.

Clim

Figure 4.1: U+ verses y+ for channel flow with Reτ=500, 1250, 2000, 6000

Reτ ∆x+ ∆z+

500 50 25

1200 120 60

2000 200 100

6000 600 300

Table 4.1: Grid resolution for channel flow cases with

different Reynolds numbers

The difference between the performance of Model 2 and Model 1 is highlighted in figure 4.2.

Model 1 and Model 2 data correspond to a channel flow simulation with Reτ = 500, while the
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Figure 4.2: (a) Profile of Resolved u′+, v′+, w′+, (b) Profile of k+ and fd

DNS data correspond to Reτ = 590 [Moser et al. (1999)]. Profiles of resolved u′+ , v′+ , and

w′+ are shown in Figure 5(a). The trend observed in the Model 1 predictions for this Reτ =

500 case is similar to that observed for Reτ = 2250 [Reddy et al. (2014)]. This is primarily due

to the presence of a significant RANS region for Model 1 as shown in Figure 4.2(b), where the

shielding function fd is shown, along with the non-dimensional total turbulent kinetic energy

k+.

k+ = (km + kr)/u
2
τ (4.1)

kr = 0.5(u′2 + v′2 + w′2) (4.2)

k+ here represent the total turbulent kinetic energy which is the sum of modeled part (km) and

resolved part (kr). Modeled part is the k value got from k equation. Resolved part is defined

in equation 4.2.

Notice that the extent of the RANS region is similar for Model 1 with Reτ = 500 and

Reτ = 2250, despite the fine mesh for the lower Reτ . Model 2 however was able to detect that

the mesh has sufficient resolution to employ the dynamic procedure. This leads to lower CDES

, and subsequently, lower k and `LES values, resulting in a smaller shielded region. Thus, the

eddy simulation branch is active over a larger region, till the bottom of log-layer by maximum,

which gives a better prediction of the velocity fluctuations and the turbulent kinetic energy.
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4.1.2 Backward-facing Step

The flow over a backward facing step is an excellent case to test the performance of any

hybrid RANS/LES method due to the abrupt change in flow features across the sharp edge.

The model must be capable of switching from RANS to eddy simulation at the step, where the

flow separates.

Figure 4.3: (a) Mean velocity distribution at different streamwise location. (b) Mean urms
profile at different streamwise location. (c) Cf distribution along bottom of channel

The experimental setup of Vogel and Eaton (1985) was simulated. The Reynolds number

at the inflow boundary is 28, 000 based on the bulk velocity Ub and the step height H. Sim-

ulation details such as the grid used, the boundary conditions specified and the extent of the

computational domain are the same as in Reddy et al. (2014).

Overall, a good agreement between the simulation and the experimental data is observed.

Figures 4.3 shows velocity profile after step, urms profile after step, and the variation of the

skin friction coefficient Cf along the bottom wall and it agrees experimental data quite well.

The grid used is relatively coarse (∆x+ ≈ 200 and ∆z+ ≈ 100 away from the step), so we

expect the limiting function to impose lower bounds on CDES . Figure 4.4 shows contours of

time-averaged Clim. We observe that almost throughout the entire eddying region, Clim > 0.06.
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Figure 4.4: Time averaged Clim along central plane

CDES hits the limiter at 0.12 where the flow separates from the step. Due to wall resolution

requirements, the cell at the separation corner has very large aspect ratio, which deviates from

typical LES grid resolution. Also, the rate of strain is large, which means that dissipation is

high. As a result, the values of Lk are relatively low, causing the bound on the value of CDES

to be invoked.

4.1.3 Periodic Hills

This case shows flow separation from a smooth surface, unlike the backward-facing step.

The geometry and flow conditions are described in Fröhlich et al. (2005). The extent of the com-

putational domain is 9H and 4.5H along the streamwise and spanwise directions respectively,

where H is the hill height at the crest. The Reynolds number based on the hill height and the

bulk velocity at the crest is 10, 595. The grid used has 106× 100× 90 points in the streamwise,

wall normal and spanwise directions respectively. Periodic boundary conditions are enforced

along the streamwise and spanwise directions. The flow is driven by a pressure gradient source

term which is adjusted to sustain the required bulk velocity at the inflow boundary.

Figure 4.5(a) compares skin friction coefficient along bottom wall predicted by Model 1 and

Model 2 with LES data [Fröhlich et al. (2005)]. Overall there is a good agreement between those

2 models and LES data. Model 2 seems predict a better match, especially near the inlet. This

maybe because grid is finer near the hill, and model 2 can reduce the RANS region thickness

at that location. Figure 4.5(b, c) shows the velocity profile and urms profile agree with the

LES data. Thanks to the periodic boundary condition, Urms profile fits the LES data well at
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Figure 4.5: (a) Cf distribution along bottom wall. (b) Mean velocity profile at different stream-

wise location. (c) Mean urms profile at different streamwise location.

the top of the hill (x/H = 0), which is definitely helpful in such smooth surface separation

situation.

4.1.4 Rotating Channel

The flow through a fully developed rotating turbulent channel was simulated as another

illustration of the advantage of the dynamic procedure over a constant CDES . In pure RANS

mode, k − ω would require some kind of curvature correction to predict rotation effect [Arolla

and Durbin (2013)]. No such corrections are used here. This means that simulations based

on Model 1 would likely be subject to errors due to the presence of a thick RANS region near

the walls. In the eddy-simulation region, rotation effects are captured by the Navier-Stokes

equations. Thus, we expect to get better results using Model 2 since the RANS region will be

smaller, provided the mesh is fine enough for LES simulation.

The non-dimensional measure of rotation is defined as the Rossby number Ro = 2Ωδ/Ub

[Grundestam et al. (2008)], where Ub is the bulk velocity, δ the channel half-width and Ω the

rate of coordinate system rotation. Four different simulations were carried out, corresponding to

four different Ro values. These simulations correspond to previous DNS studies of Grundestam
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Figure 4.6: Mean velocity profile at (a) Ro = 0.1, (b) Ro = 0.5, (c) Ro = 0.98 , (b) Ro = 1.5

Grundestam et al. (2008) (Ro = 0.98, 1.5) and Kristoffersen Kristoffersen and Andersson (1993)

(Ro = 0.1, 0.5).

Reτ
Ro DNS Model 1 Model 2

0.1 194 229 196

0.5 194 206 199

0.98 180 215 179

1.5 180 330 187

Table 4.2: Predicted Reτ for different Ro values

In the DNS studies, a constant pressure gradient was prescribed, which forces constant

total uτ and Reτ values. The bulk velocity, Ub and Reb (Reynolds number based on the bulk

velocity) then vary with Ro. In our simulations, Ub was specified, for each Ro, and the resulting
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uτ and Reτ values were computed. Figure 4.6 shows mean velocity profiles obtained with both

Model 1 and Model 2, compared with DNS data. Model 2 results are more in line with the data,

especially near the right wall, at higher Ro, where the turbulence is suppressed by rotation.

Due to the asymmetry in the velocity profile, there are 2 different friction velocities, uτu and

uτs, corresponding to the unstable and stable sides Grundestam et al. (2008). An average

friction velocity uτ is defined as:

uτ = [0.5(u2τu + u2τs)]
1/2

For the specified bulk velocity Ub, the predicted Reτ values for Model 1 and Model 2 are

shown in table 4.2, along with the reference DNS values. Model 2 predicts more accurate values

for the wall shear stress than Model 1. The grid used for these cases has a non-dimensional

cell spacing ∆x+ = ∆z+ ≈ 30 for Model 2 (the corresponding numbers evaluated when using

Model 1 ≈ 50 due to the larger predicted uτ ), with ∆y+ < 1 for the near wall cells in all the

simulations. This leads to a smaller RANS region while using Model 2, and subsequently a

smaller error stemming from the absence of any curvature correction terms.

At large Ro, we observe that Model 2 starts to deviate from the DNS results, especially on

the right wall (figure 4.6). That is the wall where rotation is stabilizing. A likely explanation

for the discrepancy is that the RANS model does not include a curvature correction. Hence,

as long as there is a thin RANS region, it cannot laminarize. Regions of negative production

were observed for Ro = 1.5 Grundestam et al. (2008), and that certainly cannot be captured

by the k−ω eddy viscosity model. For lower Ro values, the predictions are in good agreement

with DNS.

Also, as Ro gets higher the flow starts to relaminarize. We should expect CDES value to

get closer to zero if our model is responding to flow. Figure 4.7 shows how CDES and Clim

distribute inside channel. Near wall it is expected CDES to be large because it is RANS region.

In side the channel CDES value is not symmetric. It is because on the top side on channel

turbulence is enhanced and on the bottom side turbulence is depressed. Model constant values

in figure 4.7 verifies that the dynmaic procedure can respond to these rotation effects.
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Figure 4.7: CDES and Clim value across channel at Ro = 1.5

4.1.5 3D Diffuser

As an example of a 3D geometry, the flow through a 3D diffuser was simulated. The

geometry and flow conditions correspond to the “diffuser 1” of Cherry et al. Cherry et al.

(2008). The grid and boundary conditions are the same as in Jeyapaul (2011). The grid is

nearly LES-quality. Three simulations were carried out for this geometry, each corresponding

to a different turbulence model – the k− ω RANS model Wilcox (1993), Model 1 Reddy et al.

(2014) and Model 2 (the current dynamic DDES model).

Figure 4.8 shows contours of the time-averaged streamwise velocity component obtained

from all three simulations at the diffuser exit (x/H = 15, where H is the height of the inlet

section). Model 1 does predict separation along the top wall, but the separation region is much

thinner than the DNS data. Figure 4.9 and figure 4.10 compared the mean velocity profiles at

x/H = 0, 2, 6, 8, 12, 14, 15.5 and 17 along the midplane obtained for Model 1 and Model 2

with DNS data. It shows better prediction from Model 2 than Model 1.
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Figure 4.8: Mean streamwise velocity contour at diffuser exit

Introducing the dynamic procedure improves the results appreciably. The dynamic DDES

was able to take advantage of the grid resolution. Utilizing the dynamic procedure almost

everywhere in the domain, leading to marked improvement in the prediction.

Figure 4.9: Mean velocity distribution along diffuser central plane with Model 1
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Figure 4.10: Mean velocity distribution along diffuser central plane with Model 2

4.1.6 FAITH Hill

FAITH hill [Bell et al. (2012)] is an axisymmetric hill defined by cosine curve. Those

massive separation flow should be well handed by DES method. The computational domain is

the same as in the experiment. The boundary layer start from a leading edge which has the

same location relative to the hill as in the experiment. The Reynolds number based on hill hight

is 500, 000, the separated regiona after the hill is large. So high Reynolds number and massive

separation makes this flow configuration a perfect case for nature DES application. Uniform

flow is imposed before the leading edge just like the experiment. Boundary layer grows under

RANS branch. The mesh used has non-dimensional cell spacing ∆X+ and ∆Z+ up to 1000

bsed on local friction velocity.

Figure 4.11: (a) Mean streamwise Velocity, (b) total TKE, (c) Mean urms, and (d) Mean u’v’

on Z = 0 plane
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Figure 4.12: Contour of experimental data, (a) Mean streamwise Velocity, (b) TKE, (c) Mean

urms, and (d) Mean u’v’ on Z = 0 plane, figure taken from Bell et al. (2012). Color bands are

the same as figure 4.11

Figure 4.11 shows time average streamwise velocity, total turbulent kinetic energy(TKE),

urms and u′v′ on streamwise and wall normal plane across hill center. Figure 4.13 shows time

averaged modeled and resolved parts of TKE, the shielding function fd and time averaged value

of CDES .

Figure 4.13: (a) Mean modeled TKE, (b) Mean resolved TKE, (c) fd, and (d) Mean CDES on

Z = 0 plane

Several things need to be noted when comparing DES prediction (figure 4.11) and experi-

mental data (figure4.12). The area of the separated region predicted by DES model matches

experimental data. And the velocity profile matches well, as shown in figure 4.14. The trends

observed in the urms and k variations in the PIV data are captured by the simulation. The
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peak value is slightly overestimated for urms. k is obviously overpredicted. One possible ex-

planation for this would be the coarseness of the mesh used. LES in coarse mesh usually will

have overpredicted streamwise velocity predictions, do does the DES model show in this case.

Cf distribution on hill predicted by Model 2 gives good agreement with experimental data, as

shown in figure 4.15.
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Figure 4.14: Velocity profile predict by Model 2 compared with experiment (Bell et al. (2012))

(a) (b)

Figure 4.15: Cf predicted on hill by (a) Model 2, (b) Experiment by Bell et al. (2012)

The fact that the mesh is coarse can also be inferred from figure 4.13(d) which shows

that CDES = C0
DES = 0.12 over the entire region behind the hill, where we observe most of

the relevant unsteady phenomena. Comparison between the u′v′ distribution shows that with

RANS inlet profile, after separation the resolved turbulnet content needs to develop over certain

streamwise direction to reach a normal value. In this case, because CDES is large, Model 2

essentially functions as Model 1 for simulations involving very coarse meshes. Better agreement
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with experimental data could likely be achieved by increasing the mesh resolution such that

the dynamic procedure is employed in the eddy simulation regions.

4.2 Exploring the Role of Inlet Conditions

DES was proposed to address massive separated flow. Flow with shallow separation or weak

instability is considered as challenging for DES. There are still some unresolved issues in the

RANS/LES interface. Usually DES will give poor results when those regions that determine

flow features is located in this interface. In some cases, this can be alleviated by using turbulent

inflow conditions to speed up the RANS to LES transition to improve the prediction accuracy.

For example, for backward-facing step 4.1.2, before the step flow is attached boundary layer

but right after the step the model switches from RANS to LES branch. Right after the switch,

there is the region that resolved turbulent stress needs to be developed. Before the total stress

recovers, there is an unphysical region in RANS to LES transition area. The length of that area

is dependent on the flow. However, flow instability after backward-facing step is strong and

turbulent stress can recover to an appropriate magnitude soon enough that good agreement

with experimental data is achieved.

4.2.1 NASA 2D Bump

There are flow control experiments on separation on this geometry [Seifert and Pack (2002)],

however this is not the focus here. In this section we only simulate flow over NASA 2-D bump

without flow control or corresponding slots and chamber. It is similar to the periodic hills

because the flow separates from a smooth surface but the difference is that we can control the

inlet condition in this case. Totally the mesh contains 0.8 million cells for RANS inlet case

and 1.3 million cells for unsteady inlet. Extra cells are used for an extended domain. The

non-dimensional mesh spacing is 100 < ∆X+ < 500 and 100 < ∆Z+ < 200 based on different

locations in the domain. For inflow condition using RANS profile, a precursor simulation is

performed to obtain a RANS boundary layer profile just the same as in [Avdis et al. (2009)]

except their precursor simulation is using LES. The imposed inlet plane is the same as in

Avdis et al. (2009). For inlet profile generated by rescaling and recycling [Arolla and Durbin
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(2014)], the domain is extended to x/C = −2.1 which allows a recycling region allocated at

−2.1 < x/C < 1.38 to generated certain boundary layer thickness to match the LES data.
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Figure 4.16: Cf distribution along bottom wall compared with LES Avdis et al. (2009), (a)

with RANS inlet, (b) with unsteady inlet
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Figure 4.17: Velocity distribution after hump compared with LES Avdis et al. (2009),, (a) with

RANS inlet, (b) with unsteady inlet

Figure 4.16 shows that if a RANS profile is used, which means before separation the attached

boundary layer is handled by the RANS branch, the predicted reattachment location(x/C ≈

1.22) is later than in LES. In another words, DES performance in such smooth surface sepa-

ration condition is similar to RANS. It is consistent with other DES simulations [Avdis et al.

(2009)]. Also this is approximately the reattachment location predicted by other RANS mod-

els [Avdis et al. (2009)]. The WMLES case, where velocity fluctuations are imposed at the

inlet, predicts a reattachment location close to LES data. The velocity profiles after the hump
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crest are also shown in figure 4.17. A good agreement with experimental data can be observed

[Rumsey (2015)]. However, the natural DES case predicts an incorrect velocity profile right

after separation. This is because in the natural DES case, right after separation modeled stress

is reduced due to decreased eddy viscosity, the total stress is underpredicted. Although the

model switches to its LES branch, there is not enough resolved turbulence because the flow is

just convected out of the attached boundary layer which is a RANS region. In such separation

from a smooth surface, the shear layer instability is not very strong, which means a certain

streamwise length is required for resolved Reynolds stress to develop. This kind of mechanism

is plotted in figure 4.18(a), resolved Reynolds stress is nearly zero at x/C = 0.65 and it grows

slowly post hump. On the plot as the flow goes downstream, the resolved Reynolds stress be-

comes closer and closer to experimental data. However, for the WMLES case, in figure 4.18(b),

resolved Reynolds stress is approximately at the same level as experimental data. The differ-

ence may lie in near wall region but it is somehow unavailable in experimental data. After the

flow separates, the resolved part has a similar magnitude as the experimental data, though not

perfect match. It is possibly because the mesh is coarse.
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Figure 4.18: Reynolds stress u’v’ distribution after Hump, (a) with RANS inlet, (b) with

unsteady inlet
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However, this is one of the cases that can tell the influence of using different inlet condi-

tion. For smooth surface separation or cases sensitive to the RANS/LES interface, turbulent

fluctuations are needed in the inflow condition.

4.2.2 ERCOFTAC Hill

This is another axisymmetric hill which is lower than the FAITH hill. The geometry and

flow configurations are described in Garcia-Villalba et al. (2009). The Reynolds number based

on free stream velocity and hill hight is 130, 000. In the absence of the hill, a zero-pressure-

gradient turbulent boundary layer thickness δ is half the hill height. The separated region is

extremely shallow. Shallow separation cases are expected to be challenging for DES which is not

naturally designed for this situation. There is an enormous discrepancy between results from

RANS [Visbal et al. (2007)] and LES [Garcia-Villalba et al. (2009)]. The surface streamline

topology predicted by RANS is totally different with LES and experiments.
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Figure 4.19: Mean streamwise velocity contour, (a) with RANS inlet, (b) with unsteady inlet
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Figure 4.20: Central plane velocity vector and separation line, (a) Experiments, (b) LES.

Figures taken from Garcia-Villalba et al. (2009)
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Since this is a case with shallow separated region, the inflow condition can actually make

some difference in the result. Two simulations are performed here. The first is using inlet

profile prescribed by k − ω RANS. The second is using recycling and rescaling of upstream

boundary layer [Arolla and Durbin (2014)]. Totally there are approximately 3 million cells in

the domain. This simulation was carried out before the dynamic model was developed, so a

constant CDES = 0.06 was used in the simulation.

The result from the simulation shows that there is no obvious improvement compared to

RANS models. In DDES, the near wall region is covered by RANS. In experiments and LES

simulations the separated region is very shallow [Garcia-Villalba et al. (2009)]. If we assume

that the DES model can predict a corrected separation region. Then the separation region

is so shallow that almost all of it is covered by RANS. So as a result this is a case that the

near wall RANS region plays a dominant role. Unfortunately the RANS model, predicts wrong

surface streamline topology and separation bubble. The DES model only gives better turbulent

statistics by resolving turbulent motions in the eddy simulation region. It is hard to imagine

how much improvement can the RANS region get from eddy simulation region. In this case,

we do observe such behavior. In figure 4.25, DES with RANS inlet profiles predicts earliest

separation location compared to the case with inlet fluctuations. The dominant role of the

RANS model in such case limits the extent to which DES can improve the predictions. The

reattachment location and separation bubble are similar to the RANS results [Visbal et al.

(2007)] even for the WMLES case.
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Figure 4.21: Mean resolved Reynolds stress u’v’, (a) with RANS inlet, (b) with unsteady inlet
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Figure 4.22: Cp contour On hill surface, (a) with RANS inlet, (b) with unsteady inlet

However, this geometry is also a challenging case for LES. The fine mesh LES case (GVR)

[Garcia-Villalba et al. (2009)] has approximately 135 million cells which is about to be nearly

fifty times finer than our case. It also predicts earlier separation location than experiment and

the Cp curve doesn’t fit experimental exactly. One thing we can get from the result is that for

those cases with shallow separation, inlet condition does make a big difference in the results.

Figure 4.21 shows resolved Reynolds stress u’v’ after the hill. In the nature DES case, it

takes a long distance for it to grow. The real reattachment location is so close to the hill that

it cannot wait for Reynolds stress to be developed that slow. For the WMLES application,

though the resolved Reynolds stress develops much faster than nature DES application, it is

only capable of suppressing the separation bubble to a level similar to RANS. In figure 4.21,

the near wall region doesn’t have enough resolved Reynolds stress clearly shows that. The

surface streamline plot shows a topology more similar to RANS [Visbal et al. (2007)] rather

than LES results [Garcia-Villalba et al. (2009)]. In DES predicitions saddle points (red cube)

near separation line are missing and are possibly merged with separation point (blue dot in

figure 4.24(b)). The other two saddle points (red cube) near reattachment location are missing,

too. Most likely those two are merged with the reattachment point, which is also marked in

blue in figure 4.24(b). In figure 4.24(a) on hill surface large k value is observed but this can

not be captured by the k−ω RANS model. This maybe is related to the failure of DES model

in this case because RANS is used to handle near wall region.



40

Figure 4.23: Surface streamline, (a) with RANS inlet, (b) with unsteady inlet

Figure 4.24: LES data from GVR [Garcia-Villalba et al. (2009)], (a) Surface streamline on hill,

(b) Surface streamline topology. Figures taken from Garcia-Villalba et al. (2009)
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Figure 4.25: Pressure coefficient on hill at Z=0
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CHAPTER 5. CONCLUSION

The previously proposed, DDES formulation of Reddy et al. (2014) opened the possibility

to develop a dynamic DDES formulation. The model constant CDES is computed locally via

a well-established procedure. This requires a test filter that captures the small scales. Coarse

grids are sometimes used for DES, and these small scales are not present. A limiting function

was introduced in order to estimate the validity of utilizing the dynamic procedure on the

given mesh. The function compares grid spacing to a Kolmogorov scale. Based on this, CDES

becomes a default value if the dynamic procedure is likely to fail. Simulations showed improved

predictions when employing the dynamic procedure, rather than using a constant CDES . That

was especially true when simulations were carried out on LES-quality meshes.

The dynamic procedure yields superior performance over the constant coefficient model for

2 reasons. The first reason is similar to the case of LES: the coefficient adapts to how well the

turbulence is resolved; if it is well resolved CDES becomes very small. The second reason is

peculiar to detached eddy simulation: using a locally computed CDES in `LES causes the RANS

region to become thinner when the mesh is fine. By maximizing the size of the eddy simulation

region, the dynamic DDES model is able to reduce any drawbacks in the RANS model (such

as the absence of curvature corrections while simulating rotating turbulent channel flow).

A key observation is how obvious it was to implement a dynamic procedure into our alternate

DDES formulation Reddy et al. (2014). That is because it was designed to be similar to the

Smagorinsky model. It is likely that other improvements/modifications made to the original

Smagorinsky formulation can also be implemented. This could lead to additional robustness of

this DES formulation, capable of handling a wide range of flow configurations.

The role of inflow property is also explored here. It is shown by test cases that the model

naturally bridges the WMLES and nature DES applications. It is clear that using turbulence
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resolved inflow condition gives better results than having RANS inflow profile.

The necessity of using turbulent resolved inflow condition is also demonstrated here. For

massively separated flow, such as backward facing step, is exactly the ideal case for nature

DES application. The nature DES application can produce a satisfactory result. Therefore,

RANS inflow condition is good enough so that there is no need to waste computational cost for

resolved, time accurate inflow condition. For moderate separation case, usually on a smooth

surface, WMLES bests nature DES by better handling RANS to LES transition adjacent to the

separation line. For extreme shallow separation, like the Ercoftac hill, separation bubble lines

in wall model region. RANS branch can deteriorate the result. Using resolved inflow condition

helps in improving the results but obviously there is a cap on accuracy.
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APPENDIX. TECHNICAL SUPPLEMENTAL MATERIAL

Multi-domain for Removing Downstream Effect for LES Inlet Generation

In some test cases, recycling and rescaling of boundary layer[Arolla and Durbin (2013)] is

used to generate turbulent resolved inlet profile. Boundary layer profile is taken from down-

stream and is imposed to inlet boundary after rescaling. Any non-homogeneous behavior of

the boundary layer will be magnified by such rescaling and recycling process. For example, in

that Ercoftac Hill case[4.2.2], compared to flate plate chase, upstream of the hill the pressure is

changed which would influence the velocity profile. such influence magnified by recycling and

rescaling will cause the boundary layer before hill to be thicker and thicker. Boudnary layer

on the sides will decrease to balence the total momentum thickness due to the mechanism of

that recycling method. At last, non-physical inflow condition will deteriorate the flow field.

One possible fix for that is to use two separate domains. Unlike those simulations with

precursor simulation to get time varying inflow profile[Avdis et al. (2009)], this separated

domain can be solved simultaneously with the main domain within single solver thanks to

multi-domain handling capability in OpenFOAM[Jasak et al. (2013)].

It is shown in figure .1, the boundary condition is set to be like this: Region 1 is the

separated domain to generate inflow profile while region 2 is the domain contains flow we want

to solve. Inflow condition at plane A is from recycling and rescaling where the sampling plane

is in region 1. Plane B is just a outflow boundary. Plane C, which is the inflow boundary of

interested domain, directly uses data sampled in region 1 or plane B.

This method gives two advantages: First, the rescaling and recycling method is independent

of spanwise flow non-homogeneity from downstream. Second, those two domains can be solved

simultaneously to avoiding data storege and accessing problem from precursor simulation.
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Figure .1: Sketch of multi-domain for inlet generation
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