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ABSTRACT

Integral stiffeners act as a frequency dependent filter for guided plate waves, impeding

transmission and limiting the performance of ultrasonic structural health monitoring (SHM)

systems. The effect of integral stiffeners on an acoustic leak location system for manned space-

craft is examined. Leaking air is turbulent and generates noise that can be detected by a

contact-coupled acoustic array to perform source location and find the air leak. Transmission

of guided waves past individual stiffeners is measured across a frequency range of 50 to 400

kHz for both high and low aspect-ratio rectangular stiffeners. Transmission past a low aspect

ratio stiffener is correlated with the ability to locate leaks in the presence of multiple stiffeners.

A simple explanatory model that illuminates the underlying mechanics of waves crossing a

stiffener is developed using impedance methods. Good agreement is seen with numerical cal-

culations using the boundary element method and with the experimental measurements. The

model aids the designer and indicates transmission and reflection are determined by longitu-

dinal and flexural stiffener resonances. It is demonstrated that operating in frequency ranges

of high plate wave stiffener transmission significantly improves the reliability of noise source

location in the spacecraft leak location system. A protocol is presented to enable the selection

of an optimal frequency range for leak location.
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CHAPTER 1. Introduction

Stiffeners represent one of the fundamental structures underlying many engineering struc-

tures. They are often the most efficient way to add flexural rigidity with minimal material.

Most stiffeners are bonded or welded to a plate-like surface, but where high performance is

required, integral stiffeners may be preferable. Although the geometry is nearly identical,

the integral stiffeners under consideration in this work are composed of rectangular strips of

material machined rather than bonded to the larger structure.

This work considers the effects of integral stiffeners in the context of structural health mon-

itoring (SHM) non-destructive evaluation (NDE) systems. The specific application considered

in the first part of this work is an ultrasonic leak location system for spacecraft structures. The

system uses phased array sensors to passively detect leak-generated noise transmitted through

the plate-like pressure vessel as guided waves. Integral stiffeners machined into the pressure

vessel scatter the leak-generated noise and limit the range of the array detectors.

The first part of this work examines the behavior of the detection system in the presence

of integral stiffeners and uses the transmission characteristics of the stiffeners to suggest an

algorithm for determining the optimal frequency range at which the leak detection system

should operate.

The second part of this work looks more closely at normal incidence of guided waves upon

a stiffener. An explanatory model is developed and indicates that the scattering is a result of

both flexural and longitudinal resonances in the stiffener.
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CHAPTER 2. Guided plate wave scattering at vertical stiffeners and its

effect on source location

Accepted for publication in ULTRASONICS October 26, 2011

R. S. Reusser, D. E. Chimenti, R. A. Roberts, S. D. Holland

Center for Nondestructive Evaluation

and Aerospace Engineering Department

Iowa State University

Ames IA 50011 USA

2.1 Abstract

This paper examines guided wave transmission characteristics of plate stiffeners and their

influence on the performance of acoustic noise source location. The motivation for this work is

the detection of air leaks in manned spacecraft. The leaking air is turbulent and generates noise

that can be detected by a contact-coupled acoustic array to perform source location and find

the air leak. Transmission characteristics of individual integral stiffeners are measured across

a frequency range of 50 to 400 kHz for both high and low aspect-ratio rectangular stiffeners,

and comparisons are made to model predictions which display generally good agreement. It

is demonstrated that operating in frequency ranges of high plate wave stiffener transmission

significantly improves the reliability of noise source location in the plate. A protocol is presented

to enable the selection of an optimal frequency range for leak location.
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2.2 Introduction

Stiffeners are used in aerospace structures to add structural rigidity with minimal additional

weight. In situ structural health monitoring (SHM) non-destructive evaluation (NDE) systems

use ultrasonic guided waves to evaluate structural integrity (1). The interaction of guided

waves with structural features limits the range of ultrasonic SHM sensors. Typical NDE and

SHM applications use piezoelectric actuators to excite guided wave modes in the kilohertz to

low-megahertz range. The waves propagate through the structure, and after interacting with

a feature of interest, they propagate to a detector. Analysis of the detected waveforms gives

information on structural degradation. Thus, the interaction of guided waves with lap joints

(2; 3), stringers (6), more complex joints (13), or integral stiffeners controls the amount of

energy that eventually reaches the detector.

This paper considers the influence of rectangular stiffeners typical in spacecraft structures

on guided plate wave propagation. This type of integral stiffener is machined directly into the

structure in order to add flexural rigidity with minimal weight. Many studies have consid-

ered the similar problems of guided wave reflection from rectangular notches (6; 2; 7; 8), step

thickness changes (9), or strip weldments (10). Wilcox et al. analyze an adhesively bonded

stringer using the Semi-Analytical Finite Element method and observe variation in guided wave

transmission as the incident angle of waves upon the straight feature is varied (6). We show

here, based on experimental data and Boundary Element Method (BEM) simulations (4), that

rectangular stiffening ribs act like a geometric filter, producing some frequency bands with high

transmission across stiffeners, and other frequency bands with low transmission. This filtering

behavior limits performance of an SHM systems such as ours that locates leaks in manned
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spacecraft.

2.2.1 Spacecraft Leak Location

Manned spacecraft are at risk of orbital debris and micrometiorite impact (12; 13) which

can generate an air leak. Because of the limited oxygen on board, it is imperative to quickly

locate a leak. Turbulence-generated airborne noise is the conventional method of locating leaks

in pressure vessels. In space, because the air leaks into the vacuum, the leak noise flows outward

with the air and there is almost no airborne noise generated inside the spacecraft. In addition,

equipment and life support systems mounted against the pressure vessel wall inhibit access and

preclude rapid location of an air leak. The method we have reported (14) relies instead on ultra-

sonic noise (20-400 kHz) generated by the leak in the skin of the spacecraft structure, through

aerodynamic coupling of the escaping air to the plate-like pressure vessel wall. An acoustic

array provides directional information on the arriving noise signals. Temporal correlations ex-

tract the statistics of the noise signal arriving at one array element compared to signals from all

the other elements of the array (15). Because the signals are random and continuous, the signal

acquisition and processing can proceed sequentially, significantly reducing the expense of the

electronics. Extension of the two-dimensional spatio-temporal analysis of Alleyne and Cawley

(16) to three dimension transforms the measured correlations into frequency-wavevector space.

The direction of the wavevector under the sensor array indicates the direction to the noise

signal source. Triangulation with two or more arrays locates the leak.

Successful leak location has been demonstrated on simulated spacecraft structure using a

64-element diced PZT (lead zirconate titanate) piezoelectric array detector (17). Our own prior

work (14; 18) has shown that integral stiffeners may limit performance of the leak location pro-
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cedure. In an environment where prompt and accurate leak location is critical, the system and

procedure must be robust, so the current work focuses on a study of guided wave propagation in

spacecraft structures to evaluate stiffener transmission characteristics, and uses those results to

develop a frequency selection protocol for optimal detection center frequency and bandwidth.

We find that guided wave transmission measurements performed at normal incidence using

a piezoelectric point source and an ideal optical virtual array receiver are consistent with BEM

simulations over a frequency range of 50 to 400 kHz for two types of stiffener geometry. Since

the transmission varies greatly with frequency, and the location of the passbands (transmitted

frequencies) are strongly geometry-dependent, it is best to include the entire frequency range

in the active analysis. When integrated over the entire detection spectrum, the passbands

dominate the other frequencies, producing accurate results.

2.3 Transmission across a Stiffener

The theory of guided Lamb waves is well known (9). Geometric obstructions, such as

the integral stiffeners considered here, scatter guided Lamb modes, resulting in reflection and

transmission as well as mode conversion of an incoming wave. The reflection and transmission

depend on frequency, aspect ratio, guided wave mode, and incident angle. The stiffener acts

as a geometry-dependent filter of the guided wave; It is observed that certain frequency bands

have high transmission and other frequency bands have high reflection (5). Transmission across

the stiffener seems to be related to resonances which, in the case of non-normal incidence, map

to feature-guided waves that propagate along the stiffener (6).
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2.3.1 Theory

A single guided mode incident upon a stiffener may be mode-converted into multiple scat-

tered modes. The overall behavior is represented with an energy transmission coefficient,

defined at frequency ω by

T (ω) =

∑
n
Etr

n (ω)∑
n
Einc

n (ω)
, (2.1)

where Etr
n and Einc

n are the transmitted and incident energies of the nth guided wave modes,

respectively. Because the A0 and S0 modes are the only propagating modes that exist at low

frequency, and because the A0 mode dominates over the symmetric mode under the asym-

metric excitation used in our experiments, only the A0 mode need be considered. With that

simplification, the transmission coefficient is

T (ω) ≈
Etr

A0
(ω)

Einc
A0

(ω)
. (2.2)

Observing that energy is proportional to the square of amplitude, the expression can further

be simplified to

T (ω) =
|Atr

A0
(ω)|2

|Ainc
A0

(ω)|2 . (2.3)

2.3.2 Experiment

To measure transmission of the lowest order antisymmetric, or A0, Lamb mode across an

integral stiffener, a laser vibrometer measures modal amplitudes of incident and transmitted

guided waves created by a piezoelectric contact transducer. The methodology is similar to that

of Morvan et al. (11) to study Lamb wave reflection from the free edge of a plate, and has been

used extensively for SHM applications (22; 23; 24). Because the guided wave amplitude will be

a superposition of incident and reflected waves as well as waves reflected from the boundaries,
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amplitudes are sampled along a line containing the source and perpendicular to the stiffener,

as depicted in Fig. 2.1. The cross denotes the location of the contact source transducer, and

two independent 1-dimensional coordinate scans with the laser vibrometer (indicated by the

lines of dots) measure the incident and transmitted waves. Because the signal is repeatable

only a single point need be measured at a time for the wavefield to be reconstructed. Data is

captured until all ringing and wave propagation have decayed to below the noise threshold.

Figure 2.1 Photo of 6× 6-foot sample showing experimental area isolated by butyl rubber (seen as a

low-reflection band on the perimeter). Source is marked with a cross, and two sets of dots

show the locations of laser vibrometer linear virtual-array measurements of incident and

scattered guided wave fields. Inset shows stiffener cross-section with arrows representing

waves incident upon as well as transmitted and reflected by stiffener.

Two aluminum samples have been studied in these experiments. The first has a thickness of

3.175 mm (1/8 inch) with stiffeners having a square cross section of 4.76× 4.76 mm machined

directly into the plate, so there is no material boundary between the plate and the stiffener.

The second plate has a thickness of 3.175 mm with stiffeners 2.54 mm wide and 22 mm in

height. To isolate the response of a single stiffener, sound-absorbing putty is layered around
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the perimeter of the experimental area so that reflections are almost completely suppressed,

even at the lowest frequency of 50 kHz. A representation of the experimental geometry is shown

in the inset of Fig. 2.1. The incident, reflected, and transmitted waves are shown for the short,

or low aspect-ratio, stiffener.

A 9.5-mm diameter contact transducer with a non-resonant ultrasonic horn that reduces

the contact area to roughly 1 mm2 induces guided waves in the plates. A Panametrics

pulser/receiver excites the transducer, which is fixed to the specimen with couplant and light

pressure for the duration of the test. Because of asymmetric single-side excitation, most of the

energy resides in the A0 Lamb mode.

At each point in the scan, a Polytec OFV-5000/OFV-505 Laser Vibrometer measures the

out-of-plane particle velocity of the plate surface. At the frequencies involved, the sensitivity

of the laser vibrometer is very poor compared piezoelectric sensors. The point contact horn

on the source transducer best approximates a point source, but is inefficient. Because of these

conditions, 104 averaged impulse responses at a simulated leak source acquired at a rate of 100

Hz, provide the desired signal-to-noise ratio. To achieve the best results, the full usable spans

of the plates are scanned with 1 mm spacing.

To correct for radial falloff of the waves as they spread in two dimensions, the signal measure-

ments are normalized by 1/
√
r, where r is the distance from the noise source to the measurement

location. A spatio-temporal Fourier transform of the measured signal (16; 25), permits separa-

tion of the modes and guided wave propagation directions in frequency-wavenumber space. A

spatial Kaiser window applied before the Fourier transform reduces sidelobes. Finally, ampli-

tudes are sampled along the incident and transmitted A0 mode curves, and the transmission

coefficient is calculated per frequency with Eq. (3.42).
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Figure 2.2 Measured normal component of particle velocity magnitude displayed as a gray-scale plot

in coordinate x and time t for the tall stiffener test section. The wave amplitude is

represented by the surface particle velocity vn

Figure 2.2 illustrates a portion of the measured x − t diagram for scattering from the tall

stiffener. The magnitude of the normal component of the velocity magnitude is plotted in a

logarithmic gray-scale (higher amplitude, darker value) in time from t = 0 to t = 250µs and in

space from the source at x = 0 to the stiffener at x = 325 mm and beyond out to 550 mm from

the source, both segments acquired with 1 mm spacing. Visible in the data are the incident

S0 and A0 modes. Although the A0 mode has greater out of plane velocity than the S0 mode for

a given energy flux, the incident energy flux of the S0 mode is still only ten percent that of the

A0 mode at the center frequency (200 kHz). A portion of the incident S0 energy mode converts

to A0. When the stronger but slower incident A0 waves meet the stiffener, there is significant
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Figure 2.3 Measured dispersion curves for incident guided plate waves in the high aspect-ratio test

section. Calculate Lamb wave dispersion curves (dotted lines) are superimposed.

reflection and transmission of energy with little conversion. A very close examination shows

that a small amount of A0 →S0 mode conversion does occur in the transmitted waves, but it

amounts to only 5% of the incident energy flux.

Interestingly, on the left side of the figure the vibrometer detects a very faint, and very

slow, acoustic wave which appears as a faint line from the source to about 80 mm at t = 250µs.

The wave speed matches the 340 m/s speed an acoustic wave travels in air.

The measured incident wave spectrum, the 2-D Fourier transform of the data of Fig. 2.2,

is shown in Fig. 2.3. The data fall onto discrete mode curves which coincide with normal

modes of the plate, i.e., Lamb waves. The spectrum of the source transducer together with

the amount of out-of-plane moton for a given mode and frequency determines the magnitude

at each point on the dispersion curves. Higher normal wave motion leads to a larger detected
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amplitude, such as between 100 and 300 kHz and 0.05 to 0.15 mm−1 in the wavenumber for

the A0 mode. Between 600 and 900 kHz the lowest order symmetric mode S0 is also rather

strongly excited, but very little of the S0 mode is seen below 500 kHz.

2.3.3 Comparison of Experiment with BEM Simulation

Computational modeling of the stiffener transmission frequency dependence is corroborated

through comparison to these experimental measurements. The models of stiffener transmission

were previously developed and reported (4; 5). The computational model employed to gener-

ate the predictions of transmission behavior presented here is based on the Boundary Element

Method (BEM). This particular formulation starts with a boundary integral equation formula-

tion of the scattering problem, using principles of elastodynamic reciprocity between the sought

wave field and the elastodynamic response to an applied point load (Green function) (3). The

formulation separates the problem geometry into two semi-infinite plates attached to a joining

body. It is assumed in formulating the problem that neither the geometry of the stiffened

plate nor the incident plate wave field has a spatial dependence on the direction parallel to the

length of the stiffener, thereby reducing the formulation to a 2D scattering problem. By virtue

of reciprocity principles, the computation requires only explicit determination of wave field

displacements and tractions on the surface of the joining body, via the numerical solution of a

governing boundary integral equation. Transmission and reflection coefficients are extracted by

employing fields computed on the joining body surfaces to which the semi-infinite plates attach

in an associated reciprocity relation expressing the response of a semi-infinite plate to applied

edge fields. Established integral equation solution methods are employed, which project bound-

ary fields onto discrete basis functions, thereby transforming the boundary integral equation
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into an algebraic matrix equation, variously referred to as the Method of Moments (MoM), or

the Boundary Element Method (BEM) (27; 2). A more detailed exposition of the computa-

tional model used to generate the results presented here is found in (4). Others methods have

been applied to plate wave transmission at a geometric disruption, such as application of Finite

Element Analysis (6). The benefit of a semi-analytical approach such as the one used here is

that the semi-infinite plates can be modeled explicitly.

Application of the computational model to the stiffened plate defines the joining body to

consist of the stiffening rib plus the adjacent section of the plate to which the stiffening rib

is integrally attached (see Figure 2.1). The surface of the joining body is sub-divided into

adjacent boundary segments, over each of which the sought wave field is represented as a

quadratic polynomial. Employing this field representation in the governing boundary integral

equation yields a matrix equation for the polynomial coefficients. For the low aspect ratio

stiffener (4.76× 4.76 mm), 5 boundary segments were prescribed on each face of the stiffener,

and on each plate attachment surface, yielding a total of 30 segments. Three polynomial

coefficients for the 2D wave field on each segment results in a 180 × 180 coefficient matrix,

the inversion of which yields the desired field on the plate attachment surfaces. The width

and height of the high aspect ratio stiffener (2.54 × 22 mm) was subdivided into 2 and 15

segments, respectively, with 5 segments prescribed over the plate attachment surfaces, leading

to inversion of a 264 × 264 coefficient matrix. Applying the computed plate attachment wave

field to the edge of the semi-infinite plate and employing field reciprocity as described in (5)

yields computed versions of the guided wave transmission coefficients referred to in Eq. (3.42).

Fig. 2.4 shows measured and simulated transmission coefficients of a high aspect ratio

stiffener. The measured coefficient is calculated from data in Fig. 2.2 to evaluate Eq. (3.42)
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Figure 2.4 Experimental and theoretical energy transmission coefficients across the tall aspect-ratio

stiffener, with the incident guided wave at normal incidence to the stiffener. The theoretical

curve is the result of the boundary element method calculation.

using the procedure described above. The measured and simulated coefficients share a periodic

structure with with a period of roughly 70 kHz and minima around 120, 190 and 250 kHz. This

confirms the passband/stopband nature of the stiffeners when interacting with guided waves.

Despite a high sensitivity of the exact stopband frequencies to geometry and elastic properties,

the stopband frequencies match to within about 5 kHz. The small portion of S0 not accounted

for in Eq. (3.42) allows the transmission coefficient to slightly exceed 1.0 at some frequencies.

Similarly, Fig. 2.5 shows the measured and simulated energy transmission coefficient of the

A0 mode in the low aspect-ratio stiffener. The general shape of the two curves is similar. Both

start at a transmission coefficient of 1.0 in the low frequency regime and have relative minima

at approximately 100 and 260 kHz. The transmission coefficient increases to approximately 1.0

above 300 kHz. The analysis neglects mode conversion of incident A0 energy into transmitted

S0, which is again on the order of 5%. As for the high aspect ratio stiffener, the small percentage

of transmitted A0 energy originating from S0 due to the asymmetric geometry allows the

transmission coefficient to appear to slightly exceed 1.0.
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Figure 2.5 Experimental and theoretical energy transmission coefficients across the low aspect ratio

stiffener, with the incident guided wave at normal incidence to the stiffener. The theoretical

curve is the result of the boundary element method calculation.

The narrow stop bands observed in Fig. 2.4 for the high aspect ratio stiffener are the

signature of a resonance. Transmission is blocked when the phase of the incident wave and the

phase of a reflection in the stiffener come into alignment. For the low aspect ratio stiffener, we

hypothesize that such a resonance is less well defined, hence the broader relative bandwidth

of the stopband. If true, this would be very important for all structural health monitoring

applications because a sufficiently wide stopband could block most of the ultrasonic signal

bandwidth when crossing a stiffener.

2.4 Spacecraft Leak Location

We now consider the performance of a spacecraft leak location system (14; 18) in the

presence of integral stiffeners. Because the diameter of the spacecraft is much larger than the

longest ultrasonic wavelength, the vessel wall can be accurately modeled as the same sort of

flat plate used in evaluating the effect of stiffeners (29).
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2.4.1 Theory

To summarize the guided wave source location method briefly, the signal generated by the

source and arriving at the jth element of the detector array can be expressed, for distance

|xj | � 1/kn(ω), as

v(xj , ω) = N(ω)|xj |−1/2
∑
n

An(ω) exp(i kn(ω)|xj |), (2.4)

where v represents the normal particle velocity at the jth array element at position xj and

frequency ω to be measured with the laser vibrometer. The term N represents the complex

amplitude and phase of the source, and the propagating waves are summed over all guided

wave modes n with amplitude coefficient An. We can represent the jth array element vector

position xj as the sum of the array reference position x0 and a relative element position sj ,

xj = x0 + sj . (2.5)

The distance to a specific element can be written using the far-field approximation as

|xj | = |x0|+ d · sj , (2.6)

where d is a unit vector representing the direction of wave propagation under the array. Then,

substitution into Eq. 2.4 yields

v(xj , ω) = N(ω)|x0|−1/2
∑
n

An(ω) exp [i kn(ω)(|x0|+ d · sj)] . (2.7)

The detector array (PZT or laser vibrometer) is not infinitely large, so its finite spatial ex-

tent means that a spatial window function W (x) is applied to the acquired data. The two-

dimensional Fourier transform of Eq. 2.7 in transform variables k and ω gives

FT {W (x)v(x, ω)} =
∑
n

Bn Ŵ (k− knd) , (2.8)
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where Ŵ is the Fourier-transformed window function and the amplitude coefficients have been

grouped into Bn which is implicitly dependent on frequency. Representing the data in a two-

dimensional wavenumber map, the energy in all modes n and at frequency ω lies along a line

emanating from the origin and in the dominant direction of wave propagation d. This direction

can then be discerned by inspection of the map. Summing over a particular frequency range

∆ω enhances the detectability of the leak. This operation results in a much improved detection

accuracy and a more robust leak location method. Suppressing the parametric dependence on

frequency ω and local array vector s, we have

ω2∑
ω1

FT {W v} =

ω2∑
ω1

∑
n

Bn Ŵ (k− knd) . (2.9)

That is to say, the 3-D spatio-temporal (x, y, t) Fourier transform of the measured detector

array data, summed over the relevant frequency band, gives a map of the propagating waves

under the array in terms of k = (kx, ky), blurred by the limited spatial sensing range and

windowing. The above analysis makes no assumptions about the wave source. The noise from

the leak (our desired “signal”) is in fact random, but we cross correlate it, which makes it

deterministic. In most ultrasonic experiments, we time gate our detection to eliminate the

interference from late arrivals. With the correlated random source, this is not possible. In the

experiments below we have done sufficient averageing that the “noise” we are fighting comes

not from the detector but instead from interference from alternate wave paths.

2.4.2 An Algorithm for Selecting a Frequency Band

Selection of the proper frequency band is critical to determining the most probable leak

location and minimizing the number of required sensors. Three factors determine this frequency

band: leak noise spectrum, array detector sensitivity, and noise transmission across structural
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features. A robust leak location system must operate in the intersection of these three criteria.

Basic turbulence theory predicts the leak energy coupled into the plate will decrease with

frequency (30), and in fact it is observed that no usable leak noise lies beyond roughly 400 kHz.

This finding matches the sensitivity of the detector, which operates up to 500 kHz. Thus the

useful noise for spacecraft leak location is noise below 400 kHz which is minimally scattered by

the spacecraft structure.

The most straightforward algorithm for locating the high transmission frequencies, termed

in situ calibration, collocates a simulated leak with each detector array. The calibration is

determined by sensing the simulated leak signal from each of the other non-collocated detector

arrays. Location of one simulated leak at a time with each of the other sensors determines the

calibration. The disadvantage of this method is that it requires additional complexity, power,

and cost of additional source transducers. to act as simulated leaks. The second method,

termed wide-bandwidth analysis, simply uses the full functional range of the array detector.

By integrating over all available frequencies that may provide a correct answer, those frequencies

that transmit through stiffeners tend to dominate the measured signals.

2.4.3 Experimental Configuration

A 6×6 foot plate containing a 1 foot grid of low aspect-ratio stiffeners simulates a section of

a spacecraft pressure vessel. (A small section of the same plate was used for the low aspect-ratio

stiffener transmission measurement in Section 2.) Forty-three different simulated leak locations

have been arbitrarily distributed across the surface of the plate. The point contact transducer

is excited with a Panametrics pulser/receiver in a manner identical to the stiffener transmission

tests.
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The laser vibrometer virtual array consists of a 12 × 12 scanned point array on a 27.5 ×

27.5 mm area with 2.5 mm spacing between the optical beam points. The out-of-plane motion

is captured with the laser vibrometer using 200 triggers per point, averaged. Waveforms at

each point are acquired sequentially and the direction of wave propagation is determined from

Eq. 2.9. Fewer averages are needed here than the 104 needed for the stiffener transmission mea-

surement because the very high signal-to-noise ratio is not required and because the measured

response can be integrated over frequency. Throughout the tests, the optical array location

is not moved. Instead, the piezoelectric source transducer is attached to the plate with mild

pressure and a very thin layer of butyl rubber for acoustic coupling and is moved to simulate

different leak locations relative to the stiffener.

The results of one of the simulated in situ calibration tests are plotted in Fig. 2.6. The

spatial Fourier transform is zero-padded to 128×128 points in the x and y directions and uses a

rectangular window. Each data point in the plot has been integrated with a 25-kHz bandwidth

from 75 to 100 kHz. After summing, the data is integrated along a set of radial lines with

0.5◦ resolution. The angle with the largest integral is selected and plotted at each source point

with a solid line. Each “x” in the figure corresponds to a simulated leak location, and the

single circle shows the location on the 6 × 6-foot plate of the scanned laser vibrometer array.

The arrows at each “x” correspond to the most likely direction of the arriving wave vector, as

measured at the open circle. The arrow lengths have been scaled for ease of interpetation so

they nearly reach the detector. The diagonal dashed lines represent the low aspect-ratio integral

stiffeners. Figure 2.6 shows the results of all 43 tests with the wavenumber map integrated over

a frequency range extending from 75 to 100 kHz, as described in (14). For each test, only the

strongest observed wavevector has been sampled and plotted. Although some of the simulated
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Figure 2.6 Leak location results for frequencies from 75-100 kHz. The “x” markings show simulated

leak locations, and the circle near the plate center shows the detector array position. The

diagonal dashed lines are the locations of the integral stiffeners.

leaks are correctly located by the laser vibrometer array in Fig. 2.6, the performance is generally

quite poor when the 75-100 kHz frequency range is used. Many of the arrows are not pointing

even approximately toward the location of the array.

Contrast this behavior with the measurements of the same test analyzed in a frequency range

from 375-400 kHz, as shown in Fig. 2.7. In this figure, essentially none of the prediction

measurements, even across as many as four stiffeners, is in error by more than 5◦ for the range

375–400 kHz. Because there are no coupling variations, as when using a physical PZT array

detector, and because the ratio of signal to detector noise was very high, the behavior observed

here must be entirely caused by coherent interference of alternate wave paths from the source

to detector array.
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Figure 2.7 Leak location results for frequencies in the range 375–400 kHz. The “x” markings show

simulated leak locations, and the circle shows the detector array position. The diago-

nal dashed lines are the integral stiffeners. The arrows, indicating the predicted source

directions based on the measured data, are now essentially all correct.

These observations using the laser vibrometer detector match very closely the measured

performance of the PZT array detector, when it is also operated in this frequency range.

Furthermore, these results are completely consistent with the stiffener transmission coefficients

in Fig. 2.5. In tests with either the laser vibrometer or PZT array, leak location occurs with

consistent accuracy mainly above 275 kHz. Although the test data shown in Fig. 2.7 indicate

clearly that the guided wavevectors are not always normal to the stiffener, as they are in the

transmission coefficients plotted in Fig. 2.5, the data of Fig. 2.7 strongly suggest that normal-

incidence transmission still is a good indicator of leak location performance.

The strong correlation described above between stiffener transmission and accurate leak
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Figure 2.8 Normalized leak location maps for frequencies in the range 100–475 kHz. The “x” markings

show simulated leak locations, and the circle shows the detector array position. The

diagonal dashed lines are the integral stiffeners. The arrows, indicating the predicted

source directions based on the measured data, are still nearly all correct, as they were in

Fig. 2.7.

location seems to favor in situ calibration as the preferable algorithm for frequency range

selection. Not all stiffener geometries, however, have such wide passbands and stopbands. For

the tall stiffener (2.54 mm wide by 22 mm high) Fig. 2.4 shows the measured and calculated

transmission coefficients, but with much narrower passbands and stopbands. Moreover at non-

normal incidence the frequencies can scale or shift, which could lead to an absence of any

frequency bands with consistently good transmission.

In fact, there is no real need to choose such a narrow frequency band. Figure 2.8 shows

data from the same tests as those presented in Figs. 2.6–2.7, but with the maps normalized

so as to weight all frequencies equally when integrated from 100 to 475 kHz. Normalization
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prevents a single spurious frequency from dominating the entire result. This wide-bandwidth

algorithm demonstrates accurate leak location for 40 of the 43 tests. Although this result does

not quite match the nearly perfect performance of Fig. 2.7, it does demonstrate that a simpler,

more robust strategy can still locate leaks with high accuracy. For a practical array, which

will not have flat frequency response, the response could similarly be normalized, within the

constraints of detector noise. To compensate for that dependence, which can include coupling

variations and wave damping, we would need to reformulate the protocol to give extra weight

to those frequency ranges where the signal is stronger owing to these extrinsic effects.

2.5 Summary and conclusions

Measurements and simulations have shown that integral stiffeners pass ultrasonic waves in

some frequency bands while almost entirely blocking them in others. High aspect ratio stiff-

eners seem to block transmission at their resonance. BEM simulations accurately predict this

stopband/passband behavior, despite the sensitivity of the stopband and passband frequencies

to stiffener height and elastic properties. As a result of these stopbands and their variation in

frequency with incident angle, it will be best to take advantage of all available frequencies in

finding the direction to the leak source. Further investigations might include the examination

of the angular dependence of guided wave transmission and mode conversion at off-normal

incidence on an integrally stiffened plate.
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CHAPTER 3. Reflection and transmission of guided plate waves by

vertical stiffeners
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3.1 Abstract

The interaction of guided plate waves with integral stiffeners limits the spatial range of

structural health monitoring non-destructive evaluation systems. This paper develops a simple

explanatory model that illuminates the underlying mechanics of waves crossing a stiffener. The

model aids the designer and indicates transmission and reflection are determined by longitudinal

and flexural stiffener resonances. Good agreement is seen with numerical calculations using the

boundary element method and with experimental measurements.
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3.2 Introduction

Stiffeners add flexural rigidity and buckling resistance to aerospace structures while mini-

mizing weight. Many structural health monitoring (SHM) non-destructive evaluation (NDE)

concepts rely on the ability of ultrasonic guided waves to propagate a long distance from actu-

ator to defect to detector in order to monitor structural integrity with a minimum of sensors

(1). Integral stiffeners interfere with propagating ultrasonic waves, limiting the effective range.

SHM sensors typically operate in kilohertz to low-megahertz range. Since useful wavelengths

are typically similar in length scale to the stiffeners, scattering is a complicated process that

results in a pattern of stopbands and passbands. Based on our observations and calculations,

guided wave transmission past an integral stiffener is determined by the pattern of resonances

within the stiffener.

Figure 3.1 shows the geometry for wave scattering by an integral stiffener. Incoming wave-

fronts parallel to the stiffener enter from the left. Upon interacting with the stiffener, a portion

of the waves are reflected back to the left, and the remaing energy is transmitted in waves

that exit to the right. Points representing the center of the junction (point J), the base of the

stiffener (point B), and the end of the stiffener (point E) are marked on the diagram.

Since scattering problems quickly becomes complex for non-trivial geometries, a great deal

of effort has been expended developing approximate and numerical solution techniques. The

most mathematically complete technique for linear elastic wave equations is the boundary

element method (BEM) (2) Using the Reciprocity theorem (3), the problem is reduced to an

integral discretized along the boundary of the geometry (4) (5). More recent developments

expand on the well-known finite element method (FEM) to improve the spectral properties of
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Figure 3.1 Coordinate system for the stiffener cross-section, SHM transducer on the left trans-

mitting to an SHM receiver on the right.

solutions when dealing with propagating waves. These techniques are used very successfully to

analyze wave interaction with similar geometries (6). However, the downside of such numerical

techniques is that the complexity obscures the fundamental mechanics governing the problem.

Analytical approximations have been developed, but primarily for the cases of waves in

rods and rod impact. Lee and Kolsky (7) consider stress waves in circular rods as they pass

pass through an angular junction. By matching displacements and rotations at the joint, they

develop a theory that couples the two rods together and reproduces the experimentally observed

transmission and reflection of flexural and longitudinal waves. Yong and Atkins (8) also consider

transient wave propagation in square rods forming a T-junction, modeling the junction as a

rigid cube. Using Timoshenko beam theory, they observe good agreement with experiments

as longitudinal waves in the terminating rod approach a T-junction, pass through the joint,

and spread outward symmetrically. In a similar manner, we use the theory of guided waves

in plates to develop an approximate model for wave transmission past a stiffener. Through

a straightforward approximation and impedance techniques from transmission line theory, the
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transmission coefficient is observed to be near unity at resonance (low stiffener mechanical

impedance) and near zero between resonances (high stiffener mechanical impedance.)

3.3 Approximate Model

3.3.1 High aspect ratio approxmation

The primary approximation in our model is that the aspect ratio of the stiffener is large

(much taller than it is thick). In this situation, the stiffener itself behaves as another plate.

Guided waves travel up and down it, interacting with the junction at one end and the free

surface at the other. The stiffener functions as a finite plate coupled to the larger plate.

Similarly, at some distance away from the stiffener, the waves traveling in the plate must

approach guided Lamb modes, for which an explicit solution and various approximations are

well known (9). The same holds in the stiffener away from either the junction or the free end.

Thus, the problem of guided wave scattering by a high aspect ratio stiffener is governed by the

interaction of guided Lamb modes with the junction and free end of the stiffener.

3.3.2 Small junction approximation

A number of exact solution techniques exist for Lamb wave reflection from the free edge of a

plate. Y. Cho combines a boundary element method with the normal mode expansion technique

(10), and Morvan et al. apply stress-free conditions at a number of colocation points along

the free edge (11). No such technique exists for the more complicated junction between plate

and stiffener. Typical approaches utilize numerical discretization, using either the Boundary

Element Method (BEM) (5) Finite Element Method (FEM) (12; 13), or, more recently, the

Semi-Analytical Finite Element (SAFE) method (6). These techniques are consistent, meaning
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they approach the exact mathematical solution as grid resolution or discretization order are

increased, but at the cost of a great deal of computation. When the junction region is small

relative to wavelength of the guided plate waves, the precise mechanics of the junction become

less significant. As a result, the sections that meet at the junction may be though of as directly

coupled in displacement and rotation.

3.3.3 Low frequency approximation

The result of these approximations is that at low frequencies, the problem may be solved

through the combination of Lamb wave solutions with matching conditions where they meet.

This assumption leads to an approximate solution that still accurately captures the fundamental

mechanics of the scattering problem.

At low frequencies where translation and rotation of the stiffener cross section are more

significant than distortion, there are three primary degrees of freedom and corresponding forces

at each point along the plate. The state of the plate at a given point is defined by displacements

u =


u

v

θ

 , (3.1)

where u is horizontal particle displacement, v is vertical displacement, and θ is counterclockwise

cross section rotation, and forces

F =


H

V

M

 , (3.2)

where H is horizontal force per depth averaged across the cross-section, V is vertical force per

depth, and M is the moment per depth acting on the cross section.
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3.3.4 Generalized Impedance

Forces in a linear dynamic system may be related to the resulting particle velocities through

a mechanical impedance, typically defined as

F = Zu̇, (3.3)

where F is force, Z is impedance (in N/(m/s)), and u̇ is the time derivative of displacement u.

Impedance representation simplifies analysis, making the resulting transmission and reflection

coefficients relatively simple functions of impedance. This approach is commonly used in the

study of electronic transmission lines (14) where voltage and current are used in place of

force and particle velocity, respectively. Unlike electronic transmission lines when there is a

single force (voltage) and proportional degree of freedom (current), mechanical plates have

three forces (normal, shear, and moment) and three mechanical degrees of freedom (horizontal

velocity, vertical velocity, and rotational velocity). We can define a generalized impedance

matrix Z that relates the three forces to the three velocities,

F = Zu̇, (3.4)

where the bold symbols F and u̇ indicate vectors of length 3, and Z is an 3×3 impedance matrix

coupling each degree of freedom to each of the forces. Writing out all components explicitly,
H

V

M

 =


z11 z12 z13

z21 z22 z23

z31 z32 z33



u̇

v̇

θ̇

 . (3.5)

3.3.5 Junction

The free body diagram in Fig. 3.2 cuts the problem into three plates that meet at junction

J . The stiffener has a free end at point E. The subscript I/R indicates forces resulting from
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Figure 3.2 Free body diagram of the stiffener cross-section with corresponding displacements

in parentheses.

the superposition of incident and reflected waves, the subscript T indicates forces resulting

from transmitted waves, and the subscript S indicates forces resulting from the superposition

of waves traveling up and down the stiffener. All forces illustrated on the diagram indicate

complex amplitudes of time-harmonic forces at the cross section centers. These forces are

averaged across the cross section so that a single force at the cross-section center represents

the force applied to the whole cross-section.

Using these definitions, a guided wave of frequency f traveling in an unbounded plate may

be said to have a characteristic generalized impedance Z0 that fixes the relationship between

F and u̇ for all types of waves the plate permits,

F = Z0u̇. (3.6)



34

3.3.6 Force Balance

If the three plates in Fig. 3.2 meet at a junction with no volume, then forces must balance

according to Newton’s 2nd Law, leading to the system of equations
∑
H = 0 : HI/R,J +HT,J +HS,J = 0∑
V = 0 : VI/R,J + VT,J + VS,J = 0

x
∑
M = 0 : MI/R,J +MT,J +MS,J = 0,

(3.7)

or in vector notation using the definitions in Eqs. 3.1 and 3.2,

FI/R,J + FT,J + FS,J = 0. (3.8)

Since FI/R,J results from the superposition of incident and reflected waves, it can be split into

indicent and reflected components, yielding

FI,J + FR,J + FT,J + FS,J = 0. (3.9)

This force balance equation can be expressed in terms of the corresponding particle velocity

components and generalized impedances. If ZS is the generalized impedance representing the

total response of waves traveling up and down the stiffener, and Z0,I , Z0,R, and Z0,T are the

characteristic generalized impedance of incident, reflected, and transmitted waves respectively,

then by substitution into Eq. 3.9,

Z0,I u̇I,J + Z0,Ru̇R,J + Z0,T u̇T,J + ZSu̇S,J = 0. (3.10)

u̇I/R,J here has been split by superposition into it’s right- and left-moving component,

u̇I/R,J = u̇I,J + u̇R,J . (3.11)

Displacements must also be continuous at the junction, so that

u̇T,J = u̇S,J = u̇I,J + u̇R,J . (3.12)



35

Using this fact, substitution and rearrangement of Eq. 3.10, noting that Z0,I = −Z0,T if the

plates on the left and right are the same, yields

u̇R,J = − (Z0,R + Z0,T + ZS)−1 ZSu̇I,J . (3.13)

Putting this equation in terms of incident and transmitted waves according to Eq. 3.11

yields

u̇T =
(
I− (Z0,R + Z0,T + ZS)−1 ZS

)
u̇I , (3.14)

which, after rearrangement, becomes

u̇T = (Z0,R + Z0,T + ZS)−1 (Z0,R + Z0,T ) u̇I . (3.15)

Equation 3.15 expresses transmitted particle velocities in terms of incident particle velocities

and impedances. As is the case for most wave problems in bounded media though, guided plate

waves occur in a discrete set of modes.

3.3.7 Plate waves

The theory of guided plate waves is well known and studied (15; 9). The exact theory

due to Lamb describes dispersion of guided waves in a linear elastic isotropic plate. Figure

3.3 shows the dispersion curves of the first three guided Lamb modes for a 6061-T6 aluminum

alloy plate with measured longitudinal wave speed 6242 m/s, measured transverse wave speed

3144 m/s, density 2700 kg/m3, and thickness 3.175 mm. The real component of the complex

wavenumber, corresponding to transmitted waves, is plotted in the right half-plane, and the

imaginary component, corresponding to spatially decaying disturbances, is plotted in the left

half-plane. This work makes use of the first two antisymmetric modes, A0 and A1, as well as
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Figure 3.3 Dispersion curves for Lamb wave theory, along with Timoshenko and longitudinal

wave approximations.

the first symmetric mode, S0. At frequencies of interest in this work, the A1 mode is a strictly

evanescent (imaginary wavenumber) mode localized around a boundary.

The transmission formula in Eq. 3.15 is not dependent on which guided wave theory is

used, except to the extent that a guided wave theory is needed to evaluate the impedance

matrices. In the case of the approximate theories, these forces and moments take the form of

a single expression corresponding to the traveling wave, as outlined in Appendix A. For the

exact Lamb wave theory, integration across the cross section would be required to evaluate the

total forces acting on the plate cross section from the Lamb wave modal amplitudes, giving
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resultant normal force F , shear force V and moment M per depth

F =

∫ d/2

−d/2
σxx dy (3.16)

V =

∫ d/2

−d/2
σxy dy (3.17)

M =

∫ d/2

−d/2
σxxy dy, (3.18)

where d is the thickness of the plate, x is the direction in the plane of the plate, and y is the

lateral direction.

The work in this paper uses the approximate theory of Timoshenko for flexural waves and

the approximate longitudinal wave solution. The longitudinal wave theory is modified to include

the effect of lateral intertia due to the Poisson effect. Since the approximate theories in Fig. 3.3

overestimate the wavenumbers of all three modes in the 0-500 kHz range, a scalar correction

factor of 0.965 is applied to all wavenumbers. The overestimate is due to the lack of rotational

inertia, and the scalar correction makes it possible to produce very accurate wavespeed-sensitive

results even while using the very simple approximate theories. A comparison of results obtained

with the exact Lamb wave theory is presented in Appendix A.

Similarly, displacements and their time derivatives are evaluated from one of the guided wave

theories. Timoshenko and the approximate longitudinal wave theory allow direct evaluation of

rotation and displacement, while for exact Lamb wave theory, the rotation and horizontal and

vertical displacements would be evaluated along the centerline of the plate.

By linearity, all of the guided wave theories give a simple proportionality between displace-

ment and modal amplitude. In general, this may be written as

u̇∗ = C∗ξ∗ (3.19)

where ∗ is one of I (incident), R (reflected), or T (transmitted), representing any one of the
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traveling wave components in the problem. ξ here is a vector containing the amplitudes of

the A0, S0, and A1 modes, and C is a 3 × 3 matrix that follows from direct evaluation of

displacement amplitudes given modal amplitudes. Assuming the left and right plates are the

same, CI = CT since the waves in each are both right-moving, so that Eqs. 3.13 and 3.15

become, through substitution of 3.19,

ξT = C−1
I (Z0,R + Z0,T + ZS)−1 (Z0,R + Z0,T ) CIξI (3.20)

ξR = C−1
R (Z0,R + Z0,T + ZS)−1 ZSCIξI . (3.21)

Equation 3.3.7 determines the amplitudes of transmitted Lamb wave components from the inci-

dent amplitudes, while Eq. 3.21 determines the amplitude of reflected Lamb wave components.

A number of conclusions follow from Eq. 3.3.7 even without direct evaluation of the impedances.

As the stiffener becomes small or at resonence when ZS vanishes, all terms on the righthand

side of equation except for ξI cancel, making the transmitted amplitude equal to the incident

amplitude, as would be expected if the stiffener were not there. When the stiffener impedance

becomes large relative to the characteristic impedance of the plate (between resonances), the

righthand side becomes zero and indicates pure reflection of energy from the stiffener.

It turns out that, accounting for the sign changes that occur when the mirror image of

transmitted wave forces and displacements is compared to reflected forces and displacements,

all of the off-diagonal elements of Z0,R + Z0,T cancel, while the diagonal components are equal

and add constructively. Thus only the diagonal elements of the generalized plate impedance,

H/u̇, V/v̇, and M/θ̇, affect the transmission coefficient.
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3.4 Calculation of Generalized Impedance

Within the bounds of the approximations, the modal transmission and reflection coefficients

in Eqs. 3.3.7 and 3.21 present a very simple, concise solution to the complicated stiffener trans-

mission problem. They provide the means to calculate transmitted and reflected amplitudes

from just the characteristic impedance of the plate and the impedance of the stiffener. All

complexity is contained within the impedances, which must now be calculated.

3.4.1 Characteristic Impedance of Plate Waves

Prescribing a set of particle velocities on a cut section of a plate uniquely determines

the forces on the cross section by the traveling wave solutions. Thus prescribing a single

horizontal particle velocity component u̇ uniquely determines corresponding forces H, V , and

M acting on the cross section. The most straightforward velocity is thus the unit vector

[u̇ = 1, v̇ = 0, θ̇ = 0]T . The ratios between H, V , and M and particle velocity u̇ respectively

are the impedance matrix components z11, z21, and z31 as defined in Eq. 3.5. The second and

third columns of the impedance matrix are determined by prescribing unit vectors in the v̇ and

θ̇ components respectively.

Figure 3.4 shows the nine elements of the characteristic generalized impedance matrix for

right-moving waves, both incident (Z0,I) and transmitted (Z0,T ). So that each of the nine

elements are visible on the same vertical scale, each element is non-dimensionalized through

per-element multiplication by

E

ω0


1 1 dp

1 1 dp

dp dp d2p

 (3.22)

where E is Young’s modulus and ω0 is a characteristic temporal frequency of the problem,
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Figure 3.4 The nine non-dimensionalized elements of the characteristic generalized impedance

of incident waves, shown with real part (- -), imaginary part (· · · ), and modulus

(—).

chosen arbitrarily to be 100kHz for this geometry and material. Four of the elements in Fig. 3.4

are identically zero. They are identically zero because horizontal force and particle velocity

correspond to symmetric Lamb waves, whereas vertical/rotational forces/particle velocities

correspond to antisymmetric Lamb waves. Since symmetric and antisymmetric Lamb waves

are decoupled the impedance matrix must also be decoupled.

Characteristic impedance for reflected waves (Z0,R) are calculated by the same procedure.
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Figure 3.5 Coordinate system for the stiffener cross-section.

Results are the same as Fig. 3.4 except the z2,3 and z3,2 elements are negated because of the

opposite propagation direction. For both right and left-moving waves, all of the impedance

components are slowly varying as a function of frequency.

3.4.2 Stiffener Impedance

The impedance of the stiffener is calculated in a similar manner. The stiffener, however,

has three extra constraints since there is no normal force, shear force, or moment acting on the

free end of the stiffener. Figure 3.5 shows the coordinate system for the impedance calculation.

The impedance if first calculated about the base of the stiffener, point B. To calculate the first

column of the impedance matrix, a particle velocity vector in the u̇ direction is prescribed at

the base of the stiffener, the same as was done to calculate the characteristic impedance of the

plate. Since there are wave components traveling up and down the plate however, there are

six unknown wave amplitudes instead of the three wave amplitudes for waves travling a single

direction in a plate. This means three extra equations are needed to solve for the forces at

the base of the stiffener and calculate the impedance components. The three extra equations
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come in the form of the stress-free condition at the free end of the stiffener. The equations

HS(y) = 0, VS(y) = 0, and MS(y) = 0 where HS(y), VS(y), and MS(y) are the traveling wave

solutions for the horizontal force, vertical force, and moment in the stiffener, are evaluated at

the free end of the stiffener. Together with the particle velocity equations at the base of the

stiffener, these six equations are solved using computer algebra. This determines the three force

components acting on the base of the stiffener, from which a single column of the impedance

matrix is calculated. As for the plate, unit particle velocities in the v̇ and θ̇ directions produce

the other two columns.

In this manner, the impedance ZS,B is first calculated about the base of the stiffener (point

B). We treat the stiffener as only the material above the surface of underlying plate and will

then extrapolate to determine an effective impedance at joint J , consistent with the forces at

point J defined in Fig. 3.2. This perturbed impedance accounts for rotation of the base of the

stiffener (point B) about the center of the junction (point J) due to the rotational component

of the wave, and also accounts for shear and longitudinal strain in the stiffener.

Fig. 3.5 shows a cross section of the stiffener-plate combination. The plate has thickness

dp, and the stiffener has width ds and height ls. The dashed lines (- -) indicate the cuts

that separate the domain into three regions: the incoming/reflected wave side to the left, the

transmitted wave side to the right, and the stiffener.

The base of the stiffener applies a force to point B. To connect this to the impedance

calculations of Eq. ??, we need to replace it by an equivalent force applied to the center of the

junction, point J . From the free body diagram, we consider the effect of force FS,B at point J
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by writing

FS,J =


HB

VB

MB −HB
dp
2

 =


1 0 0

0 1 0

−dp
2 0 1


︸ ︷︷ ︸

K1


HB

VB

MB

 , (3.23)

where the moment is decreased by the shear force HB times perpendicular distance
dp
2 . The

transformation can be represented as a matrix K1. In vector notation,

FS,J = K1FS,B. (3.24)

For small plate thicknesses, K1 approaches the identity matrix.

We state particle velocity u̇S,B in terms of u̇S,J by first observering that vertical offset at the

base of the stiffener leads to lateral motion when the plate rotates. In terms of displacements,

uS,B = uS,J −
dp
2

sin(θS,J) ≈ uS,J −
dp
2
θS,J . (3.25)

Longitudinal strain in the stiffener causes vertical displacement of the base of the stiffener,

vS,B = vS,J −
∂vS
∂y

∣∣∣∣
B

· dp
2
, (3.26)

and shear strain produces lateral displacement

uS,B = uS,J −
∂uS
∂y

∣∣∣∣
B

· dp
2
. (3.27)

Approximate continuity of rotation throughout the junction implies, simply,

θS,B = θS,J . (3.28)

In matrix form, these modifications become


uS,B

vS,B

θS,B

 =


uS,J

vS,J

θS,J

+


−dp

2 θS,J

0

0

+



−∂uS
∂y

∣∣∣
B

dp
2

0

− ∂vS
∂y

∣∣∣
B

dp
2

0


(3.29)
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The first two vectors on the righthand side are easily combined by defining a perturbed identity

matrix K2 to yield
uS,B

vS,B

θS,B

 =


1 0 −dp

2

0 1 0

0 0 1


︸ ︷︷ ︸

K2


uS,J

vS,J

θS,J

+


−∂uS

∂y

∣∣∣
B

dp
2

−∂vS
∂y

∣∣∣
B

dp
2

0

 . (3.30)

Elimination of the last term follows from evaluation of the constituitive equation for normal

force in the stiffener at point B. Starting with the constituitive equation,

σyy = Eεyy, (3.31)

substitution of the parameters of this problem gives

VS,B
ds

= E
∂vS
∂y

∣∣∣∣
B

. (3.32)

In a similar manner, the shear stress is put in terms of forces and displacements. The shear

force is related to shear strain by

σxy = 2Gεxy. (3.33)

Similar substitution of forces and displacements gives

HS,B

ds
= 2G

∂vS
∂y

∣∣∣∣
B

. (3.34)

Stated in terms of forces and differentiated in time, Eq. 3.30 becomes

u̇S,B = K2u̇S,J +


−iω dp

ds

HS,B

4G

−iω dp
ds

VS,B

2E

0

 . (3.35)

Factorization again puts the equation in terms of known quantities, yielding

u̇S,B = K2u̇S,J +


−iω dp

ds
1
4G 0 0

0 −iω dp
ds

1
2E 0

0 0 0


︸ ︷︷ ︸

K3

FS,B (3.36)
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Generalized stiffener impedance about point J is defined by

FS,J = ZS,J u̇S,J . (3.37)

Substituting Eq. 3.36 into Eq. 3.37,

K−1
1 FS,J = ZS,B (K2u̇S,J +K3FS,B) , (3.38)

and rearranging yields the desired relation between FS,J and u̇S,J ,

FS,J =
(
I −K1ZS,BK3K

−1
1

)−1
K1ZS,BK2︸ ︷︷ ︸

ZS,J

u̇S,J , (3.39)

FS,J = ZS,J u̇S,J , (3.40)

where I is the identity matrix and ZS,J is the resulting perturbed stiffener impedance matrix.

Note that as dp in K2 and K3 approaches zero, ZS,J approaches the unperturbed ZS,B.

Fig. 3.6 shows all nine elements of the stiffener impedance ZS,J , plotted as a function of

frequency and with the same normalization as for Fig. 3.4. The strictly imaginary impedances

indicate a purely reactive stiffener that transmits no net power into or out of the stiffener. The

most obvious difference compared to the characteristic impedance of the plate is the presence of

sharp peaks in all nonzero elements. These points of large impedance correspond to resonances

of the A0 or S0 modes traveling up and down in the stiffener. The ‘×’ shape of nonzero

elements in ZS,J reflects decoupling of vertical force/particle velocity from horizontal/rotational

forces/particle velocities. The interchange between horizontal and vertical between the plate

and stiffener switches which component is decoupled. It is this difference that drives the mode

conversion at low frequencies.
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Figure 3.6 The nine non-dimensionalized elements of the stiffener impedance, ZS , shown with

real part (- -), imaginary part (· · · ), and modulus (—).

3.5 Results

Impedances are calculated using the approximate Timoshenko flexural and longitudinal

wave theories, and computations are performed for a plate with thickness 3.175 mm and a stiff-

ener with height 21.97 mm and width 2.54 mm. Material properties correspond to a specimen

of 6061-T6 aluminum alloy with measured longitudinal wave speed 6242 m/s, transverse wave

speed 3144 m/s, and density 2700 kg/m3.
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Figure 3.7 S0 energy reflection and transmission coefficients for incident S0 Lamb waves. De-

formed shapes for lettered points plotted in Fig. 3.8.

3.5.1 S0 Transmission

Figure 3.7 shows the magnitude of the S0 energy transmission coefficient TS0(ω), defined as

TS0(ω) =

∣∣∣∣ξT,S0(ω)

ξI,S0(ω)

∣∣∣∣2 , (3.41)

where ξT,S0(ω) represents the frequency-dependent modal amplitude of the transmitted S0

waves and ξI,S0(ω) represents the modal amplitude of incident S0 waves. The transmission

shows a periodicity of roughly 55 kHz, corresponding to the spacing between resonant frequen-

cies of flexural motion in the stiffener. Maximum transmission peaks at resonances with a

transmission coefficient near 1.0, and the stiffener blocks as much as 70% of the incident energy

in the S0 mode between resonances. The energy that is not transmitted as S0 is split between

reflected S0 and mode-converted reflected and transmitted A0.

Figure 3.8 (a)-(e) shows instantaneous deformed shapes calculated from evaluation of the

traveling wave solutions at several frequencies for incident S0 waves. The corresponding fre-

quencies are labeled by letter in Fig. 3.7. The incident S0 mode is dominated by lateral motion
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(a) (b)

(c) (d)

(e)

Figure 3.8 Instantaneous deformed shapes for S0 Lamb waves incident from the left at fre-

quencies 50 kHz (a), 70 kHz (b), 95 kHz (c), 120 kHz (d), and 150 kHz (e).
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Figure 3.9 A0 energy reflection and transmission coefficients for incident A0 Lamb waves.

Deformed shapes for lettered points plotted in Fig. 3.11.

which excites flexural waves in the stiffener. The S0 incident and transmitted waves are virtu-

ally invisible in Fig. 3.8 because their displacements are so much less than for the A0 waves.

The waves visible in Fig. 3.8 are the reflected mode-converted A0 on the left, the transmitted

mode-converted A0 on the right, and A0 coupled into the stiffener. Transmission is determined

by stiffener resonance. The number of flexural wavelengths that fit in the stiffener increases

with frequency. In Figs. 3.8 (a), (c), and (e), the stiffener exhibits an approximately pure flex-

ural resonant mode of 2nd, 3rd, and 4th order, respectively. This occurs at frequencies for which

the impedance of the A0 mode in the stiffener is small. These frequencies can be identified in

Fig. 3.6 where the inpedances in the four corner elements of the impedance matrix approach are

small. These frequency bands correspond to high S0 transmission. At the alternate frequencies

plotted in Figs. 3.8 (b) and (d), the stiffener exhibits high impedance and blocks transmission

of the S0 mode.
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3.5.2 A0 Transmission

Figure 3.9 shows the magnitude of the A0 energy transmission coefficient TA0(ω), defined

as

TS0(ω) =

∣∣∣∣ξT,S0(ω)

ξI,S0(ω)

∣∣∣∣2 , (3.42)

where ξT,A0(ω) represents the frequency-dependent modal amplitude of the transmitted A0

waves and ξI,A0(ω) represents the modal amplitude of incident A0 waves. Similar to the case

of incident S0, the transmission shows a periodicity of roughly 55 kHz, but the pattern of A0

transmission is significantly more complex due to the coupling between lateral and rotation

motion in the A0 mode. The reflection and transmission coefficients plotted in Fig. 3.9 show

alternating bands of high and low transmission, but unlike the S0 transmission coefficients

of Fig. 3.7, the regularity is not immediately apparent. In the case of incident A0 waves,

vertical motion in the A0 mode couples into longitudinal waves in the stiffener, and rotational

motion in the A0 mode couples into flexural waves in the stiffener, thus both the longitudinal

and flexural stiffener resonances may impede energy transmission. This is seen in Fig. 3.9 as

alternating bands of low and very low transmission. The very low transmission bands centered

around 75 and 195 kHz correspond to flexural and longitudinal impedance peaks, while the

moderately low transmission bands around 120 and 250 kHz correspond to only longitudinal

stiffener impedance peaks. The approximate overlap of A0 and S0 resonances is a result of

the approximate 2:1 ratio in wavespeeds (phase velocities) between the A0 and S0 modes. In

isotropic materials with a Poisson’s ratio near 0.3, the 2:1 ratio holds below the cutoff frequency

of the A1 mode (approximately 500 kHz for this geometry and material).

Figure 3.10 shows a comparison of the model calculations for the transmission coefficient of
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incident A0 waves with a numerical boundary element code (5). The dotted line additionally

shows experimental measurements performed on a plate with the same geometric and material

properties (16). The model and numerical solutions show almost perfect agreement from 50-100

kHz, and agreement is very good up to roughly 200 kHz. Beyond 200 kHz, the solutions begin

to diverge since the impedance model does not accurately model deformation of the junction.

Both computations match the experimental data reasonably well, demonstrating very similar

stopbands and passbands over the full frequency range. The deviation in precise shape can be

attributed to limitations in the experimental measurements due to mode conversion and the

finite extent of the plate (16). Despite the limitations of the approximation, it still provides

a straightforward and accurate explanation of the physical mechanism behind the scattering

problem.

For both incident A0 and incident S0, roughly n
2 + 1

4 wavelengths fit in the stiffener at

resonance. These resonances result in the regions of high transmission. Conversely, a peak in

the impedance of the flexural mode of the stiffener results in moderately low transmission (e.g.

25 kHz, 125 kHz, and 255 kHz in Fig. 3.9), and a peak in the impedance both the flexural and

longitudinal modes of the stiffener results in a band of very low transmission (e.g. 75 kHz and

200 kHz in Fig. 3.9).

3.5.3 Conclusion

A model is developed for transmission and reflection of guided plate waves incident upon an

integral stiffener. Using the impedance method with approximate guided wave theories, good

agreement is demonstrated with numerical calculations and experimental data over a range

of frequencies. Despite the simplicity of the model, it accurately reprouces the complex pass-
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Figure 3.10 Comparison of A0 energy transmission coefficient with numerical solution and

experimental data for incident A0 Lamb waves.

bands and stop-bands resulting from n
2 + 1

4 - wavelength flexural and longitudinal resonances

in the stiffener. This explanation guides the designer in quickly determining frequencies where

an integral stiffener is expected to either transmit or scatter guided waves incident at a normal

angle.
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(a) (b)

(c) (d)

(e)

Figure 3.11 Instantaneous deformed shapes for A0 Lamb waves incident from the left at fre-

quencies 50 kHz (a), 75 kHz (b), 110 kHz (c), 125 kHz (d), and 160 kHz (e).
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CHAPTER 4. Conclusions

4.1 Summary

The case of waves normally incident upon an integral stiffener has been studied in detail

and the results have been applied to the problem of spacecraft leak location.

In the first part of this work, transmission of the A0 guided wave mode normally incident

upon a low and high aspect ratio stiffener is measured and related to performance of a leak

location system for manned spacecraft. A pattern of high and low transmission frequency

bands is observed. It is demonstrated that integral stiffeners acting as frequency-dependent

filters limit the range of the leak location system. Although normal incidence upon a stiffener

does not adequately describe guided wave interaction with the complex pattern of stiffeners,

very good correlation is observed between normal transmission and the ability of a virtual

detector to locate a synthetic leak source. Based on these observations, two algorithms are

proposed for determing the best frequency band for detecting leak-generated noise. The first,

termed in-situ calibration relies on virtual leak sources to determine a posteriori which narrow

frequency bands produce acceptable results. The second, termed wide bandwidth calibration,

simply uses all available frequencies. Wide bandwidth is determined to be the most robust

option since most stiffeners have rapidly varying transmission peaks and valleys and so will not

have a narrow frequency band that produces consistently acceptable results.

In the second part of this work, the mechanics of transmission past an integral stiffener at
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normal incidence are examined in greater depth. Using approximate longitudinal and flexural

wave theories, a model is developed that accurately predicts low-frequency transmission and

reflection. For incident S0 waves, it is found that high transmission corresponds to low stiffener

mechanical impedance of flexural waves in the stiffener. Transmission of incident A0 waves is

found to depend on both the flexural and longitudinal resonances in the stiffener.

4.2 Recommendations for future research

Waves incident on a stiffener at an oblique angle have not been considered in this work.

The relatively simple mechanics governing the problem of normal incidence suggest that a

straightforward extrapolation is possible for angles of incidence close to normal. Wilcox (6)

takes a detailed look at computational methods and physical mechanisms for waves obliquely

incident on an adhesively bonded hollow square stiffener. The complexity of that problem

means it requires numerical solution, but it should be possible to gain a deeper understanding

of the somewhat simpler problem of waves obliquely incident on the integral stiffener considered

in this work. This would be invaluable information for the designer who desires approximate

guidelines rather than tabulated solutions for each possible case.
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APPENDIX A. APPROXIMATE GUIDED WAVE THEORY

Timoshenko flexural wave approximation

The Timoshenko beam theory approximation (15) applied to flexural waves in a plate

captures the two lowest order flexural Lamb modes, the A0 and A1 modes. By accounting

for the rotation of the cross-section, Timoshenko derives a theory that, while still quasi one-

dimensional, closely approximates the exact Lamb wave solution.

A single traveling wave represents the solution, but the theory considers translation and

rotation separately. Transverse displacement v is represented by

v = B1e
i(kx−ωt), (A.1)

where ei(kx−ωt) represents the traveling wave with wavenumber k and angular temporal fre-

quency ω, and B1 is an arbitrary coefficient defining the amplitude and phase of the wave.

The key feature of Timoshenko flexural wave theory is that a second traveling wave defines the

rotation ψ of the cross section plane, as opposed to the slope of the surface of the beam, ∂v
∂x . ψ

is defined as

ψ = B2e
i(kx−ωt), (A.2)

and it is related to the traveling wave solution for v by the relation

B2

B1
= i

(Gκk2 − ρω2)

Gκk
. (A.3)
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Here, κ is the so-called shear coefficient, given as 0.833 for rectangular cross-sections. ρ is the

density of the material, and G is the shear modulus. Note that as ω → 0, B2
B1
→ ik, or a simple

derivative. Correspondingly, Timoshenko defines the moment and shear forces per depth acting

on a cross section of the plate as

M = −EI ∂ψ
∂x

(A.4)

and

V =
∂M

∂x
+ ρI

∂2ψ

∂t2
. (A.5)

From page 184 of Graff (15), the dispersion relation for these waves is

EI

ρA
k4 − I

A

(
1 +

E

Gκ

)
k2ω2 − ω2 +

ρI

GAκ
ω4 = 0, (A.6)

where κ is the so-called shear coefficient, with a value of 0.833 given for rectangular beam

cross-sections, and A is the area of the cross-section. This theory applies to plates as well as

beams since a plate is equivalent to a beam where everything has been scaled to unit depth.

Fig. 3.3 shows the result of Timoshenko’s approximation. Since Eq. A.6 is a fourth-order

polynomial in k, there are four corresponding roots. Two pairs differing only in sign correspond

to solutions oriented in opposite directions. For each pair, one root corresponds to the the lowest

order antisymmetric Lamb mode, A0, while the other corresponds to the second lowest order

antisymmetric Lamb mode, A1. At low frequencies, the branch corresponding to the A1 mode

is purely complex, indicating a non-propagating mode. Fig. 3.3 shows one pair of roots with

purely real wavenumbers in the right half-plane and purely imaginary wavenumbers in the left

half-plane.
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Approximate longitudinal Wave Theory

Graff (15) uses a variational approach to account for the effect of lateral inertia on longi-

tudinal waves traveling in a bar. Unlike the flexural waves for which a rectangular bar was

equivalent to a plate, Graff’s derivation for longitudinal waves must be ammended to account

for lateral inertia in only one direction rather than two. These straightforward modifications

produce a modified partial differential equation for longitudinal waves in a plate,

∂2u

∂x2
+

(
ν

1− ν

)2 h2

12c20

∂4u

∂x2∂t2
=

1

c20

∂2u

∂t2
. (A.7)

Substitution of a traveling wave produces the corresponding dispersion relation,

h2k2νω2

12 (ν − 1)
+ c20k

2 = ω2. (A.8)

Since this dispersion relation is only a second order polynomial, there are just two branches,

corresponding to S0 symmetric Lamb modes traveling in opposite directions.

Fig. 3.3 shows the approximate Timoshenko and longitudinal wave theories, along with the

exact Lamb wave solution. Despite the approximations, all modes are approximated to within

a wavenumber of about three percent all frequencies.

Traveling wave solutions

The approximate wave theories are expressed as traveling waves. Displacements are defined

for each of the wave components (incident, reflected, transmitted, up the stiffener, and down

the stiffener). For waves incident on the stiffener, the horizontal displacement uI and vertical

displacement vI are

uI = S0,Ie
i(kS0,P

x−ωt)
(A.9)

vI = A0,Ie
i(kA0,P

x−ωt)
+A1,Ie

i(kA1,P
x−ωt)

, (A.10)
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where A0,I , S0,I , and A1,I represent the complex amplitudes of the incoming wave modes.

Correspondingly, kA0,P
, kS0,P

, and kA1,P
represent the wavenumbers of each of the three modes

in the plate. The reflected wave displacements are

uR = S0,Re
i(−kS0,P

x−ωt)
(A.11)

vR = A0,Re
i(−kA0,P

x−ωt)
+A1,Re

i(−kA1,P
x−ωt)

, (A.12)

so that the total displacement of the left half-plate is, by superposition,

uI/R = uI + uR (A.13)

vI/R = vI + vR (A.14)

Multiplying each term of the vertical displacement summation by its corresponding B2/B1

from Eq. A.3 determines the quantity ψI/R. Note that since B2/B1 is a function of k, the

appropriate wavenumber of each term must be substituted into the expression for B2/B1.

The transmitted waves displacements uT and vT are similarly represented as

uT = S0,T e
i(kS0,P

x−ωt)
(A.15)

vT = A0,T e
i(kA0,P

x−ωt)
+A1,T e

i(kA1,P
x−ωt)

, (A.16)

and analogous term-by-term multiplication by B2/B1 yields an expression for ψT . Finally, the

stiffener displacements uS and vS are

uS = A0,Ue
i(kA0,S

x−ωt)
+A0,De

i(−kA0,S
x−ωt)

(A.17)

+A1,Ue
i(kA1,S

x−ωt)
+A1,De

i(−kA1,S
x−ωt)

vS = S0,Ue
i(kS0,S

x−ωt)
+ S0,De

i(−kS0,S
x−ωt)

, (A.18)

where the U and D subscripts represent waves traveling up and down the stiffener, respectively,

and the S subscript on the wavenumbers indicate wavenumbers of the three modes in a stiffener
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with width ds. Note that uS and vS are still represent horizontal and vertical displacements,

respectively, so where flexural modes show up in the vertical displacement of the plate, they

now show up in horizontal displacement of the stiffener.

The slope of the plate in Timoshenko’s flexural wave theory, defined here as α, are for each

of the sections,

αI/R =
∂vI/R

∂x
(A.19)

αT =
∂vT
∂x

(A.20)

αS = −∂uS
∂y

. (A.21)

Sign conventions have been selected so that positive α corresponds to a counterclockwise ro-

tation for each of the three plate sections. Since α represents the slope of the plate and ψ

represents the rotation of the cross-section plane, they are averaged to get the rotation of a

differential element of the material. Defining this rotation as θ,

θI/R =
1

2

(
ψI/R + αI/R

)
(A.22)

θT =
1

2
(ψT + αT ) (A.23)

θS =
1

2
(−ψS + αS) . (A.24)

Fig. 3.2 illustrates the forces and moments acting on each of the cut sections. The normal

stresses acting on the span of a cut section are

σI/R = E
∂uI/R

∂x
(A.25)

σT = E
∂uT
∂x

(A.26)

σS = E
∂vS
∂y

, (A.27)
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so that the forces per unit depth are

FI/R =
∂uI/R

∂x
dp (A.28)

FT =
∂uT
∂x

dp (A.29)

FS =
∂vS
∂y

ds. (A.30)

The moments acting on the span of a cut section are, according to Eq. A.4,

MI/R =
1

12

∂ψI/R

∂x
Ed3p (A.31)

MT =
1

12

∂ψT

∂x
Ed3p (A.32)

MS =
1

12

∂ψS

∂y
Ed3s (A.33)

Finally the shear forces acting on the span of a cut section are, according to Eq. A.5 and

Eqs. A.31–A.33,

VI/R =
∂MI/R

∂x
+

1

12

∂ψI/R

∂t2
ρd3p (A.34)

VT =
∂MT

∂x
+

1

12

∂ψT

∂t2
ρd3p (A.35)

VS = −∂MS

∂y
+

1

12

∂ψS

∂t2
ρd3s (A.36)

The preceeding equations have been reproduced in their entirety if only to emphasize exactly

where the unexpected sign differences occur. The negative signs arise naturally from the fact

that, while preserving horizontal and vertical displacements make vector addition simple, it

forces the stiffener into a left-handed coordinate system while the plate instead has a right-

handed coordinate system.
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Comparison to approximate model with Lamb wave theory

To verify that the improved agreement is meaningful, the calculations discussed above are

replicated with the Lamb wave model in place of approximate theories. Particle velocities are

evaluated at the centerline of the plate, and the rotation is calculated directly from the field

solution evaluated at the centerline,

θ =
1

2
(∇× u) . (A.37)

The forces are evaluated by direct evaluation of stresses and integration across the span of the

plate, giving forces and moments per unit depth in the plate of

F =

∫ dp
2

− dp
2

σxx dy (A.38)

V =

∫ dp
2

− dp
2

σxy dy (A.39)

M =

∫ dp
2

− dp
2

yσxx dy (A.40)

The rest of the calculation proceeds as above and produces the transmission coefficients in

Fig. A.1.

Fig. A.1 shows the energy transmission coefficient, defined as the squared magnitude of

the transmitted A0 mode amplitude given a pure unit-amplitude A0 incident wave. The ap-

proximate model is plotted together with the results of the Boundary Element Method (BEM)

simulation. Scaling the wavenumber by 0.965 as described above clearly improves agreement

with the numerical simulation.
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Figure A.1 A0 Energy transmission coefficient for incoming A0 waves using approximate the-
ory without wavenumber correction (top), with wavenumber correction (middle),
and with exact Lamb wave theory (bottom).
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