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ABSTRACT 
 
 Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being 

considered for the modernization of tank armors. The high stiffness, low attenuation, and 

precise dimensions of these uniform tiles make them remarkable resonators when driven to 

vibrate. Defects in the tile, during manufacture or after usage, are expected to change the 

resonance frequencies and resonance images of the tile. The comparison of the resonance 

frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be 

a quantitative damage metric. By examining the vibrational behavior of these tiles and the 

composite lay-up with Finite Element Modeling and analytical plate vibration equations, the 

development of a new Nondestructive Evaluation technique is possible. This study examines 

the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a 

hexagonal ceramic tile and a multi-material, multi-layered composite. 
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CHAPTER 1. 
THESIS INTRODUCTION 

 
 Multi-layer, multi-material composites with ceramic tiles at their heart are being 

considered for next generation armors. The multiple layers of different materials, including 

materials with high attenuation, make traditional Nondestructive Evaluation (NDE) difficult. 

Due to their brittle nature and high fracture energy the ceramic tiles at the center of these 

composites provide the main ballistic resistance of the armor. The mechanical and geometric 

properties of the tiles also provide another difference from the other materials in the lay-up, 

namely that the high stiffness, low attenuation, and precise dimensions of these uniform tiles 

make them remarkable resonators when driven to vibrate. Any defects in the tile, during 

manufacture or after usage, are expected to change the resonance frequencies and resonance 

images of the tile. Likewise, any defects in the lay-up will affect the received signal. Thus the 

comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a 

defective tile/lay-up will be a quantitative damage metric. The purpose of this study was to 

develop the Air-Coupled Ultrasonic Resonance Imaging (ACURI) technique. The development 

of this new technique was performed by examining the vibrational behavior of the ceramic tiles 

and the composite lay-up with Air-Coupled Ultrasonic Testing (ACUT), analytical plate 

vibration equations, and Finite Element Modeling (FEM). 

 The second chapter of this thesis describes all of the ACUT analysis performed on the 

ceramic tiles and the lay-ups in the process of developing this new ACURI technique. All 

testing setups and their results are presented along with the conclusions drawn from the results. 

 The third chapter presents the development of an analytical equation to describe the 

transverse vibration of a hexagonal plate and its implementation. The results from the 
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implementation of this equation are compared with numerical (FEM) and experimental 

(ACURI) results and the validity of the equation is examined. 

 The fourth chapter of this thesis presents and describes all of the Finite Element 

Modeling performed on the ceramic tile and the composite lay-up. The results from the FEM 

cannot be completely presented due to the shear amount of the images and data, however, any 

and all significant data, will be presented and discussed. This chapter also examines the 

accuracy of using symmetric sections to reduce problem size/complexity and computation time. 
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CHAPTER 2. 
AIR-COUPLED ULTRASONIC TESTING 

 
 

Introduction 

Ultrasonic testing has long been used in Nondestructive Evaluation (NDE) for flaw 

detection and characterization. Most of the ultrasonic testing techniques have used water or 

some other liquid couplant due to their relatively low attenuation. This allows for a high 

amount of energy to be transferred into a sample. The advent of composites and other couplant 

sensitive materials, as well as their subsequent integration into many industries (such as the 

aerospace industry) necessitated the development and use of non-contact NDE methods. 

Acoustic non-contact methods have historically been very difficult to use due to the 

enormous loss of energy at the air-solid interface and the inefficient transfer of acoustic energy 

through air. Over the last two decades, more efficient transducers were developed for the 

generation and reception of air-borne ultrasound, thus enabling the non-contact, non-

contaminating inspection of composite laminates and honeycomb structures widely used in the 

aerospace industry. [1.13] 

Since its inception, Air-coupled Ultrasonic Testing (ACUT) has been treated as a low 

frequency version of water-coupled ultrasonics, and its development and uses are described in 

the references [1.3-1.19]. Because of this treatment almost no techniques have been developed 

that utilize the strengths of ACUT. Trying to use the techniques developed for Water-Coupled 

inspection with ACUT has provided less than spectacular results. This chapter explores a new 

testing method for ACUT that utilizes resonance imaging. 
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Literature Review 

 It is an undeniable fact that some materials, especially composites structures, are 

couplant sensitive and require some sort of non-contact inspection systems. The 1995 paper by 

Grandia and Fortunko [1.1] was one of the first to describe the capabilities of a commercially 

available air-coupled system and discus potential applications. Bhardwaj further describes the 

air-coupled systems (transducers and analyzers) in his 2001 paper [1.2]. The development of 

several different aspects (different techniques, limitations, and capabilities) of this nascent yet 

maturing branch of NDE is chronicled in the references [1.3-1.19]. 

Migliori and Darling [1.20] were the first to explore resonant ultrasound spectroscopy 

in 1995 to determine the natural modes of a given sample. This was done by shaking the 

sample ultrasonically in short bursts then recording the amplitude of the ring-down vibration of 

the sample. Cabrera et al [1.21] in 2003 used this technique to detect cracks and other flaws in 

samples. They demonstrated that a defect in a sample will change the amplitude and/or 

frequency of the natural modes of the sample. 

 

Material Description 

 A new composite material is being considered for the modernization of tank armors. 

This new composite is composed of several layers of different materials and will thus be 

referred to as a multi-layer, multi-material composite. The overall lay-up is depicted in Fig.1.1. 

The layers from the bottom up are: IM7 carbon-fiber/epoxy (graphite), hexagonal Silicon 

Carbide (SiC) tiles, IM7 carbon-fiber/epoxy, rubber, and glass-fiber/epoxy (S2 glass). 
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FIGURE 1.1. Depiction of the materials and layers of the Multi-layer, Multi-material Composite. 

 
 
The layers are glued together with two sheets of FM94 film adhesive. Each layer is composed 

of a different material from its neighboring layers, and each material has very different 

mechanical and acoustical properties. 

 Several samples of this material and its constituent parts were provided for this study. 

Multiple SiC tiles, both hexagon and square, four lay-ups, three full lay-ups with embedded 

defects and one graphite-ceramic-graphic (GCG) lay-up, and small samples of the graphite, 

rubber, and glass layers were provided. The SiC material has an elastic modulus of 428.28 GPa, 

a Poison’s ratio of 0.166, and a density of 3058.4 Kg/m^3. 

 

Problems with Traditional Methods 

 When it comes to traditional NDE Ultrasonic Testing (UT), such as through 

transmission inspection and pulse-echo inspection, this type of material offers some difficulties, 

namely high attenuation and impedance mismatches at the layer interfaces. 
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FIGURE 1.2. Plot of the approximate signal losses in dB based on the reflection coefficients for each interface and the 
transmission coefficients for each layer. The thickness of each layer is proprietary and hence is not shown in the fgure. 

Courtesy of Frank Margatan, CNDE, Iowa State University. 
 
 

 Fig. 1.2 shows a plot of the approximate signal loss in decibels (dB) as a function of 

thickness calculated as the signal passes through the material. The signal loss is calculated very 

simply by using material properties obtained from Water-Coupled UT (immersion scanning), 

which dictate the reflection coefficients of each layer interface and the transmission coefficients 

through each layer. It can be seen from the figure that the signal loss increases drastically with 

increase in frequency. It is also noteworthy to mention that Air-Coupled UT operates below the 

frequencies plotted and Water-Coupled UT typically operates above. 

 The results of an immersion pulse-echo inspection attempted on a multi-layer, multi-

material composite is shown in Fig. 1.3. The signal is very convoluted due to all of the layers 

which make it difficult to analyze. When the ultrasonic wave strikes the interface between layer 

1 and layer 2, part of the wave is reflected back into layer 1 and part of the wave is transmitted 

into layer 2. The wave that was reflected back into layer 1 strikes the interface between layer 1 

and the coupling medium and part of the wave is reflected while the other part is transmitted. 

This means that part of the original reflected wave is reflected back into the material. This 
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reflected wave just keeps bouncing between the two interfaces and transmits part of its energy 

each time it strikes an interface. Meanwhile the wave transmitted into layer 2 strikes the 

interface between layer 2 and layer 3, again there is reflection and transmission and the process 

of the wave bouncing between the two interfaces of layer 2 is initiated. This happens in each 

and every layer and each transmission at each interface starts another series of signals 

bouncing. The reflecting waves in each layer yield a very convoluted signal and the result is 

Fig. 1.3. 

 
 

 
FIGURE 1.3. Immersion UT pulse-echo inspection plot of voltage versus time. 

 
 
 Traditional immersion scans suffer drastic signal loss in through transmission 

inspections and are forced to operate at the very low end of their operating frequencies. In 

pulse-echo inspections, the signal is so complicated that no useful information can be easily 

extracted. These facts, combined with the necessity of a water tank large enough to contain the 

sample, make the immersion scan difficult to perform and an unviable option as a fieldable 

NDE technique. With that in mind, and the fact that Fig. 1.2 indicates the operating frequencies 

of ACUT experience much less signal loss through the lay-up, Air-Coupled Ultrasound is the 

obvious choice for continued ultrasonic inspection of this material. 
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Initial ACUT Inspection 

 The preliminary Air-Coupled inspection of one of the samples yielded some surprising 

results. Fig. 1.4 shows two separate through scans of the same sample at the frequencies of 120 

kHz and 225 kHz. The most noticeable things from these scans are the very prominent hexagon 

shapes and the very bright dots that form, what has been termed to be, “snowflake” patterns 

centered on the hexagon shapes. There is only one component of the lay-up that could account 

for the presence of these hexagon shapes in the above scans. These hexagonal patterns are the 

same size, shape, location, and orientation as the SiC tiles in the center of the lay-up. The 

snowflake patterns are centered on the hexagon shapes and appear to line up with the hexagons 

as if the hexagon shape and the snowflake image were part of the same pattern. Because of this, 

it is safe to assume the hexagon and the snowflake patterns are caused by the vibration of the 

ceramic tiles. 

 

 
FIGURE 1.4. Preliminary through scans of a sample layup at the frequencies of 120 kHz and 225 kHz. The 
images are produced by taking the amplitude maximum of the received waveform over the entire time gate. 

 
 
 If it is true that the snowflake patterns are caused by the vibration of the ceramic tiles, 

then they must be resonance patterns of the tiles. If they are resonance patterns of the tiles, then 

they should vary with both material and frequency. A closer inspection of the images in Fig. 

1.4 shows that the snowflake patterns for the 120 kHz scan are different for the different 
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materials. The SiC tile has more of a “spoke-like” pattern while the alumina tiles have more of 

a separated dot pattern, which is significantly different. When comparing the 120 kHz scan 

image to the 225 kHz scan image (the SiC tile specifically), it can be seen that the pattern is 

significantly different at the different frequencies. Since the snowflake patterns vary with both 

material and frequency it is safe to assume that the results from the preliminary through scans 

are due to the resonance of the ceramic tiles embedded in the lay-up. 

 
 

 
FIGURE 1.5. Comparison of preliminary through scan of a sample layup with defects at a frequency of 120 kHz 
with an immersion scan at a frequency of 2.25 MHz. The Air-Coupled image is produced by taking the amplitude 

maximum of the received waveform over the entire time gate. 
 
 
 In a quick comparison of a preliminary through scan using Air-Coupled UT at a 

frequency of 120 kHz and an Immersion UT through scan at a frequency of 2.25 MHz (Fig. 

1.5) it is obvious that the six flaws are more easily detected with the Immersion scan. The 

differences in the tile materials, however, could not be detected with Immersion UT. This 

shows that the different inspection methods have different strengths and give different 

information. 
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SiC Tile Characterization 

 The first step in developing an NDE technique is to characterize the SiC tile. Two 

different types of scans were performed on the SiC tile in order to better understand the 

behavior of the tile and to search for several strong resonances, their frequencies, and their 

visual patterns. 

 The first technique used to characterize the tiles is to perform a through transmission 

scan on the tile, where both the transmitter and receiver are scanning. This is exactly the same 

type of inspection used in the full lay-ups. Fig 1.6 shows a comparison between a through 

transmission scan of the bare SiC tile and a full lay-up with no known defect. In these images 

blue is low amplitude while red is high amplitude. Since the plate is vibrating the high and low 

amplitude regions will alternate in sign, and hence color, in a cyclical manor. Because of this 

the colors are interchangeable. This is true for all of the ACUT images in this study. As can be 

seen, the resonance patterns match quite well when damping from the other layers is taken into 

account (and the colors reversed). 

 
 

 
FIGURE 1.6. Comparison of through transmission scans of a layup with no known defects and a bare SiC tile at  

120 kHz. The images are produced by taking the amplitude maximum of the received waveform over the entire 
time gate. 
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 The second technique used to characterize the SiC tiles uses a constant frequency sine 

wave (CW) signal, which was impinged on the bare tile at low voltage and hence low 

amplitude. The amplitude of the received wave was stored, then the frequency was increased by 

a specified amount, 𝑑𝑓, and the whole process was repeated. This technique identifies all of the 

natural frequencies of the tile, and is very similar to the method used by Cabrera et al [1.20]. 

 Fig. 1.7 and 1.8 show the results from this type of scan. The blue plot is the transducer 

amplitude through air at each frequency. The red plot is the amplitude of the received signal 

from the tile. In this case the transmitter is impinging on the center of the tile and the receiver is 

far enough away from the tile to hopefully capture most of the surface. 

 

 
FIGURE 1.7. Frequency scan to detect strong resonances over the bandwidth of the 100 kHz transducer. 

 
 

The 100 kHz plot shows quite a few high amplitude resonances. These high amplitude 

resonances could be used to detect flaws after the resonance images for each resonant peak are 

determined. It is interesting to note here that the quality factors (Q value), which measure how 

well a system oscillates, for these scans are in excess of 10,000. The highest Q value observed 
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is ~47,000. This means that these SiC tiles are remarkable resonators when driven to vibrate, 

and explains why the resonance patterns can be seen through the entire lay-up. 

 

 
FIGURE 1.8. Frequency scan to detect strong resonances over the bandwidth of the 225 kHz transducer. 

 
 
 Also notice that there are many more resonant peaks within the 225 kHz transducer 

bandwidth than within the 100 kHz transducer bandwidth. This is because the number of 

resonant modes a given shape is able to support increases (as well as the complexity of the 

resonance patterns) with increasing frequency. Having multiple resonance peaks within the 

transducer bandwidth means that each of the resonance peaks will be excited when the first 

type of scans discussed above is used. This causes a superposition of resonance patterns which 

is discussed in the next section. 

 These scans were performed at low voltages so as not to damage the transducers. 

Unfortunately the voltage used was not high enough to overcome the damping effects from the 

other layers when they were added to the tiles and no signal was received. It was conjectured 

that a tone-burst system would be able to recreate the effects of the CW system but in small 
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enough bursts that more voltage could be put through the transducers without damaging them 

and thus a signal would be strong enough to propagate through the lay-up. No credible results 

were obtained using the tone-burst system. It seems that at this time, using the currently 

available transducers, isolating a frequency with which to scan the lay-up is not possible. 

 An Air-Coupled pulse-echo inspection was also attempted on a SiC tile without success. 

This is due to the long ring-down time and noise level of the transducer. When the back-wall 

echo reaches the transducer the transducer is still ringing from the initial pulse. Normally these 

two signals could be separated with a Fast Fourier Transform (FFT) (assuming the back-wall 

echo is not the same frequency as the initial pulse) but in this case the signal from the back-wall 

is of lower amplitude than the transducer noise. 

 
Resonance Pattern Superposition 

 The images in this study are made by applying a time gate to the received signal and 

plotting the maximum amplitude of the waveform inside this time gate. Smaller sub-gates can 

also be applied to the signal so that images can be produced that correspond to specific portions 

of the waveform. This process allows for the observation of how the vibrations of the sample 

change with time.  

 
FIGURE 1.9. Different resonance patterns obtained from a through transmission scan of a bare SiC tile at 120 kHz. The 

images are produced by taking the amplitude maximum of the received waveform over the time sub-gate. 
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FIGURE 1.10. Different resonance patterns obtained from a through transmission scan of a bare SiC tile at 225 kHz. The 

images are produced by taking the amplitude maximum of the received waveform over the time sub-gate. 
 
 
 Fig. 1.9 shows several distinct resonance patterns observed in the bare SiC tile with 

through transmission at a frequency of 120 kHz. Likewise, Fig 1.10 shows several distinct 

resonance patterns observed in the bare tile with through transmission at a frequency of 225 

kHz. The different images in each figure come from the same scan but from different times in 

the received signal. This shows that as the tile is allowed to ring down, it experiences several 

different resonant modes. The two images from the 120 kHz scan are actually a repeated mode. 

 Transducers have a finite, non-zero bandwidth that encompasses many resonances 

which occur at very specific, discrete frequencies. This means that each and every one of the 

resonances that is within the transducer bandwidth is excited by the transducer during a scan of 

type one discussed above. When a multitude of these resonances are excited at the same time 

the resonance images are superimposed in the scan results. It may also lead to constructive and 

destructive interference. This, in part, accounts for the complexity of the resonance images 

observed. Consider the implications of Fig. 1.7 and 1.8 on the results from the through 

transmission scans shown in Fig. 1.9 and 1.10 respectively. This superposition can be reversed 
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somewhat by stepping through the received signal, from the through scan of type one described 

above, with a small time-gate. 

 This indicates that resonance modes of different frequencies will travel through the 

material at different speeds which would mean there are different phase velocities and that the 

material is dispersive. It is not as simple as that however. Because of the large reflection 

coefficient of the SiC-air interface even a short ultrasonic pulse will produce a long ring down. 

The presence of multiple resonances within the bandwidth of the transducer will produce a 

superposition, yet there will be dominant resonance modes that may need to die down before 

the other resonance modes become apparent. 

 

New ACUT Scanning Method 

 As mentioned previously, traditional ACUT tries to mimic the inspection techniques 

and capabilities of Immersion UT, but due to the high attenuation of the ambient air and the 

incredible impedance (ρc: density * wave velocity) mismatch between the material and air, 

pulse-echo inspection is extremely improbable with ACUT. Pitch-catch inspection is usually 

unavailable as well because of the inhomogeneous nature of the materials with which ACUT 

tends to operate (this does not hold true for surface waves). Through transmission is the only 

inspection technique that can be used to any great affect with ACUT. 

 Traditional ACUT has both drawbacks and benefits when compared to Immersion UT. 

The main drawbacks are: the difficulty in getting energy into the sample (due to the attenuation 

and impedance mismatch problems described above) and the minimum detectable flaw size is 

dependent on the wavelength of the particular frequency in the particular material (the same 

holds true for immersion), and with the low frequencies used in ACUT, this makes the 
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minimum flaw size fairly large (~1in in graphite/epoxy at 120 kHz). The benefits include the 

incredible penetration depth due to lower attenuation through materials at lower frequencies 

and the fact that this type of inspection is non-contact. 

 Based on this evidence, a new technique could be created (for this problem specifically 

and possibly for many others) that would utilize the strengths of ACUT. The preliminary scans 

(Fig. 1.4) demonstrated that the ceramic tiles vibrate so strongly that their resonances can be 

seen through all of the other layers and they actually suppress the vibrations of the other layers 

and force them to vibrate with the same pattern as the tiles. 

 It is proposed that since these tiles vibrate so strongly that their resonances are clearly 

visible and the minimum flaw size is fairly large, these resonances be used to detect and 

characterize flaws in the lay-up during the manufacturing process or after possible damage 

during combat or handling. Comparing the resonance patterns of the ceramic tiles in a lay-up 

with no defect to those of lay-ups with known defects at several frequencies should provide a 

good damage metric with which to develop this technique. Any flaws or damage in the tiles 

themselves should result in a change in the resonance pattern or the resonance frequency of the 

tile which will make the flaws and damage apparent. Likewise, any damage or flaws in the path 

of the propagating wave will affect the appearance of the resonance amplitude, or eliminating 

high amplitude regions of the resonance pattern. This technique is called Air-Coupled 

Ultrasonic Resonance Imaging (ACURI). 

 

Flaw Detection Using ACURI Method 

 The question for this new flaw detection method is whether or not flaws can be detected 

and characterized in a multi-layer, multi-material composite lay-up using ACUT. Three 



17 

samples were used to explore this question. These three samples will be referred to as Panel A, 

Panel B, and Panel C and have the following characteristics: Panel A has the rough dimensions 

of 14 in x 15 in x 1.5 in, is composed mostly of hexagonal alumina tiles with one hexagonal 

SiC, and has no known defect in the materials or the lay-up; Panel B has the rough dimensions 

of 16 in x 18 in x1.5 in, is composed mostly of hexagonal alumina tiles with six complete 

hexagonal SiC tiles, and has six simulated disbonds; finally, Panel C has the rough dimensions 

of 21 in x 25 in x 1.5 in, is composed of ten complete hexagonal alumina tiles and eighteen 

complete hexagonal SiC tiles, and has 30 embedded defects, 12 inclusions and 18 simulated 

disbonds. 

 All of the tests performed on the three panels are ACUT through scans with both the 

transmitter and receiver scanning together (C-scan). The transducers used were Quality 

Material Inspection (QMI) <http://www.qmi-inc.com/> spherically focused probes with center 

frequencies of ~120 kHz and ~225 kHz with bandwidths of ~25%. The transducers were held 

~2 in from both the front and back surfaces. The signal was impinged on the graphite side of 

the lay-up and was received on the S2 glass side of the lay-up. 

 
 

 
 

FIGURE 1.11. Layout of Panel A showing the approximate size and location of the ceramic tiles. The box indicates the portion 
of the scan considered in the images of Panel A. 
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 The approximate size and location of both the hexagonal alumina tiles and the solitary 

hexagonal SiC tile of Panel A are shown in Fig. 1.11. The square outline over part of the figure 

outlines the area of interest for this panel and the scan images of Panel A are cropped to this 

approximate size. 

 The scans of Panel A, for both frequencies mentioned above, are shown in Fig. 1.12. 

The SiC tile can be easily distinguished from the alumina tiles due to a difference in the 

resonance patterns of the tiles. In the 120 kHz image, the SiC tile exhibits a series of high 

amplitude dots that form a spoke-like pattern where the alumina tiles show a series of separated 

dots that, while showing the same symmetry as the SiC tile, form a different pattern. 

 
 

 
FIGURE 1.12. C-scan images of Panel A at 120 kHz (left) and 225 kHz (right). The images are produced by 

taking the amplitude maximum of the received waveform over the entire time gate. 
 
 

 
FIGURE 1.13. C-scan images of the SiC tile in Panel A at 120 kHz (left) and 225 kHz (right) with resonance 

patterns highlighted. The images are produced by taking the amplitude maximum of the received waveform over 
the entire time gate. 
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In the 225 kHz image, both the alumina tiles and the SiC tile have the same (or very similar) 

resonance patterns, however, the amplitude of the resonance patterns is different for the 

different material, and the SiC tile can still be easily distinguished. 

 Since there are no known defects over the SiC tile in this panel (Panel A), these 

resonance images will be used as a basis for comparison for the panels with defects to 

determine whether the defects can be visually detected. The resonance patterns have been 

outlined in Fig. 1.13 to make comparisons easier. The 225 kHz pattern is too intricate to use the 

entire pattern and since the defects are primarily over the center of the tiles only the inner part 

of the pattern will be used. 

 
 

 
 

FIGURE 1.14. Layout of Panel B showing the approximate size and location of the ceramic tiles. The approximate size, shape, 
and locations of the  6 simulated disbonds are shown. The disbonds are located between different layers in the layup as 

indicated by the right part of the figure. 
 
 
 The approximate size and location of both the hexagonal alumina tiles and the 

hexagonal SiC tiles of Panel B are shown in Fig. 1.14. The approximate size, shape, and 

locations of the six engineered disbonds are also indicated. The disbonds are square, centered 

over the center of the SiC tiles, and come in the sizes of 0.5 in, 1.5 in, and 2.5 in. They were 

engineered by cutting the appropriately sized and shaped holes in both layers of the film 
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adhesive between two layers of the lay-up as indicated in the figure. This gives “void disbonds” 

instead of “kissing disbonds,” which makes it more difficult for an ultrasonic signal to pass 

through. As indicated in the figure, the two rows of disbonds are located between different 

material layers. The top row, labeled as row 1, has the disbonds between the rubber and S2 

glass layers while the bottom row, labeled as row 2, has the disbonds between the graphite and 

rubber layers. 

 The defects in Panel B were created to simulate the effect of the inclusion of air during 

the manufacture of the lay-up. The square disbond shape is merely for ease of fabrication and 

serves no scientific purpose. The choice of the 0.5 in, 1.5 in, and 2.5 in sizes for these disbonds 

is not due to any mechanical significance, but merely to test the detection limits of this 

technique. We can term these sizes as small, medium, and large, based on detection capabilities 

in composites, for the purpose of detection. 

 
 

 
FIGURE 1.15. C-scan of Panel B at 120 kHz. (a) Resonance image of the bare SiC with 120 kHz resonance 

pattern outlined. (b) 120 kHz scan of full layup panel with six engineered disbands outlined. (c) 120 kHz scan of 
full layup panel with six engineered disbands and the resonance patterns outlined. The images are produced by 

taking the amplitude maximum of the received waveform over the entire time gate. 
 
 
 Fig. 1.15 shows the scan results for Panel B as well as the undamaged SiC tile from 

Panel A for the frequency of 120 kHz. In Fig. 1.15-b the approximate size, shape, and location 
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of the disbonds are outlined. A casual glance at Fig. 1.15-b shows that the 1.5 in and 2.5 in 

disbonds are clearly visible as dark cloudy areas in both the top and bottom rows in this scan. 

Furthermore, the 0.5 in disbond in the top row can be detected via a disruption of the resonance 

pattern when compared to the pattern of the tile with no known defect (Fig. 1.15-a) due to a 

large change in the amplitude and clarity of the resonance image. A slightly closer inspection of 

the image in Fig 1.15-b shows that a significant difference between the top and bottom rows 

can be observed. This means the difference in the disbond locations can be distinguished with 

through transmission due to these resonance patterns. 

 In Fig. 1.15-c the resonance patterns have been highlighted for easier comparison. If the 

top row of images is visually compared to the bottom row, the differences in the resonances are 

apparent. The bottom 0.5 in defect pattern matches very closely with the pattern of the tile with 

no known defect (Fig. 1.15-a) while the top 0.5 in defect pattern has a significantly different 

amplitude and seems to have been disrupted by something. Comparison of the 1.5 in defect 

patterns shows that they are basically the same as the 0.5 in defect patterns, that they show the 

same relation, but with a very low amplitude region in the approximate location of the 

disbonds. The top 1.5 in defect pattern is fairly chaotic and even though some of the resonance 

pattern is detectable it has been disrupted by the disbond significantly more than the bottom 

pattern. The top 2.5 in defect pattern is very chaotic and there is no detectable resonance pattern 

though the pattern is evident in the bottom row. The pattern in the bottom row matches the 

pattern of the tile with no known defect quite well (though much lower amplitude). There is 

also a secondary pattern (outlined in yellow-orange), though what causes this is unknown. 

 It is clear from these comparisons that 5 out of 6 of the disbonds are detectable with 

ACURI at a frequency 120 kHz and that there is a significant and noticeable difference 
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between the resonance images of the disbonds located between the rubber and glass layers and 

the disbonds located between the graphite and the rubber layers. 

 
 

 
FIGURE 1.16. C-scan of Panel B at 225 kHz. (a) Resonance image of the bare SiC with 225 kHz resonance 

pattern outlined. (b) 225 kHz scan of full layup panel with six engineered disbands outlined. (c) 225 kHz scan of 
full layup panel with six engineered disbonds and the resonance patterns outlined. The images are produced by 

taking the amplitude maximum of the received waveform over the entire time gate. 
 
 
 Fig. 1.16 shows the same two panels shown in Fig. 1.15, but using a 225 kHz transducer 

instead of a 120 kHz transducer. Again the first image (Fig. 1.16-a) shows the resonance 

pattern of the tile in the lay-up with no known defects, the second image (Fig. 1.16-b) outlines 

the six engineered defects, and the third (Fig. 1.16-c) highlights some of the resonance patterns. 

A quick glance at the scan image shows that all 6 of the disbonds can be seen. Also evident is 

the difference between the top and bottom rows, namely that two of the three bottom disbonds 

have discernable resonance patterns while only one of the top disbonds has a discernable 

resonance pattern. 

 Looking at the 0.5 in disbonds, the top and bottom patterns are very similar and match 

well with the no defect pattern, however, the high amplitude center, clearly visible in the no 

defect pattern, is not present. This indicates that both of the 0.5 in disbonds are detectable. The 
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resonance pattern is still detectable for the bottom 1.5 in disbond, but not for any of the rest of 

the disbonds. 

 From these comparisons it is evident that 6 out of 6 of the disbonds are detectable with 

ACURI at a frequency of 225 kHz and that there is a significant and noticeable difference 

between the resonance images of the disbonds located between the rubber and glass layers and 

the disbonds located between the graphite and rubber layers. All six of the disbonds were easily 

detectable by comparing the defective resonance patterns with the non-defective patterns. 

Moreover, a difference in flaw location (which layers the flaw is between) can also be seen by 

comparing resonance patterns. 

 A possible explanation for the different disbond locations affecting the resonance 

patterns differently lies in the way in which the disbonds were engineered. Essentially there is a 

void for each disbond. Consider the vibrational displacement of the layers. The SiC tiles have 

the largest displacement (due to the vibration) of all of the layers. If the void/disbond is located 

between the second graphite layer and the rubber layer, the displacement of the graphite layer 

due to the SiC vibration may be larger than the thickness of the void/disbond and the 

displacement can be transferred to the subsequent layers. If the void/disbond is located between 

the rubber layer and the S2-glass layer, the displacement of the rubber layer due to the vibration 

of the SiC tile may be smaller than the thickness of the void/disbond and the displacement 

cannot be transferred to the S2-glass layer. This is because the rubber has a low modulus and 

high damping that will absorb a significant portion of the displacement of the graphite layer. 
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FIGURE 1.17. Layout of Panel C showing the approximate size and location of the ceramic tiles. The approximate size, shape, 
and locations of the 30 defects are shown. The defects are located between different layers in the layup as indicated by the right 

part of the figure. 
 
 
 The approximate size and location of both the hexagonal alumina tiles and the 

hexagonal SiC tiles of Panel C are shown in Fig 1.17. The approximate size, shape, and 

locations of the 30 engineered defects are also indicated. The materials included in the lay-up 

(mold release and grease) and their locations are indicated in the figure and as indicated the 

inclusions are circular, centered over the center of the Sic tiles, and come in the sizes of 0.5 in 

and 1 in. The disbonds are circular with each group of three centered over the center of the SiC 

tile and are made by including two circular layers of kapton of different thicknesses. Including 

two layers of kapton will create a “kissing” disbond that will transmit the signal when in 

compression but not in tension. As indicated in the figure, the six columns have two different 

sizes of defects and the defects are located between different material layers. The defects are 

between the SiC tiles and the graphite layer in the first and fourth columns, labeled as column 

1, the second and fifth columns, labeled as column 2, have the defects between the graphite and 

rubber layers, and the third and sixth columns, labeled as column 3, have the defects between 

the rubber and S2-glass layers. The defects in Panel C were created to simulate the effect of 
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different types of possible inclusions during the manufacture of the lay-up and disbonds that 

may occur. Again the sizes are arbitrary and are merely to test the detection limits. 

 
 

 
 

FIGURE 1.18. C-scan of Panel C. (a) 120 kHz scan of full lay-up with Alumina tiles outlined. (b) 225 kHz scan of 
full lay-up with Alumina tiles outlined. The images are produced by taking the amplitude maximum of the 

received waveform over the entire time gate. 
 
 
 Figure 1.18 shows the results from two resonance scans of Panel C, the first at 120 kHz 

and the second at 225 kHz. A comparison of all of the alumina tiles outlined in the figure 

shows a drastic difference in the amplitude and clarity of the resonance patterns, especially in 

the 225 kHz scan. Neither the scans of Panel A or Panel B show a similar issue. This indicates 

some deviation in the manufacture or handling with respect to Panels A and B. ACUT signals 

are sensitive to variations in the lay-up not caused by engineered defects, variations such as dry 

patches or delaminations. These variations can cloud or mask the actual engineered defects, 

which means that the presence of both engineered and accidental defects could make flaw 

detection difficult with this technique. Even though any results from Panel C cannot be 
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considered valid, a comparison of Panel A and Panel C yields some indications of flaw 

detection. 

 
 

 
FIGURE 1.19. C-scan of Panel C at 120 kHz. (a) Resonance image of the bare SiC with 120 kHz resonance 

pattern outlined. (b) 120 kHz scan of full layup panel with engineered defects outlined. (c) 120 kHz scan of full 
layup panel with engineered defects and the difference in the resonance patterns outlined. The images are 

produced by taking the amplitude maximum of the received waveform over the entire time gate. 
 
 
 Fig. 1.19 shows the scan results for Panel C as well as the undamaged SiC tile from 

Panel A for the frequency of 120 kHz. In Fig 1.19-b the approximate size, shape, and location 

of the defects are outlined. Although the scan does not have very defined or consistent 

resonance patterns on the SiC tiles, due to a possible problem in the lay-up during the 

manufacture, two SiC tiles show indications of defects. Fig 1.19-c highlights six dark, cloudy, 

circular shapes in the fourth and fifth tiles of the bottom row of SiC tiles. These six dark areas 

correspond with six of the simulated kapton disbonds. The lack of indication of any other 

defect is probably due to problems with the lay-up. 
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FIGURE 1.20. C-scan of Panel C at 225 kHz. (a) Resonance image of the bare SiC with 225 kHz resonance 

pattern outlined. (b) 225 kHz scan of full layup panel with six engineered disbands outlined. (c) 225 kHz scan of 
full layup panel with engineered defects and the difference in the resonance patterns outlined. The images are 

produced by taking the amplitude maximum of the received waveform over the entire time gate. 
 
 
 Fig. 1.20 shows the scan results for Panel C as well as the undamaged SiC tile from 

Panel A for the frequency of 225 kHz. In Fig 1.20-b the approximate size, shape, and location 

of the defects are outlined. Again the scan shows signs of some sort of unknown problem. Fig 

1.20-c highlights differences in the resonance patterns between Panel A with no defect and 

Panel C. It is easier to highlight the differences because of the complexity of the resonance 

pattern. The highlighted differences in the top two rows of SiC tiles correspond with the grease 

and mold release inclusions and eleven of the twelve are detected because the high amplitude 

center in the resonance pattern is absent. The high amplitude center is again absent in the first 

three resonance patterns of the bottom row of the SiC tiles. This indicates a flaw of some kind 

but does not indicate the three simulated disbonds. The resonance patterns in the fourth and 

fifth SiC tiles in the bottom row are completely disrupted with possible indications of the 

circular disbonds. The sixth resonance pattern in the bottom row also shows evidence of 

disruption in locations that correspond with the locations of the disbonds. 
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 Although the scans of Panel C did not produce very clear images and any conclusions 

can only be treated as conjectures, there is good evidence that the flaws would have been 

detectable in a better constructed sample. Eleven of the twelve inclusions and six of the 

eighteen disbonds were detectable with some certainty. 

 

Future Work 

 The work presented in this thesis is only a beginning in the study of the ACURI 

technique and more work needs to be done to validate the results and conclusions of this study. 

More experiments need to be performed on a variety of samples with different types of defects 

and more modeling with FE should be performed to simulate different defects. Image 

processing should also be performed to determine whether the differences in resonance images 

between a non-defective tile/lay-up and a tile/lay-up with known defects can be detected with 

an automated or semi-automated program. 

 Some initial image processing was performed as part of this study. The resonance image 

of the SiC tile in Panel A (with no known defect) and the resonance image from one of the SiC 

tiles in Panel B (with six engineered disbonds) were compared. Several easily identifiable high 

amplitude regions on the image with no defect were selected along with the corresponding 

regions on the image with known defect. From the relative positions of these selected points a 

transform matrix was created and applied to the known defect image in order to rotate and align 

it with the no defect image. A cross-correlation was then performed to ensure that the images 

were properly aligned. The images were then subtracted and divided in several combinations to 

see if the defects were apparent. 
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FIGURE 1.21. Results from preliminary image processing on Panel B. 

 
 
 The results from the initial attempt at image processing to detect the flaws in Panel B at 

120 kHz are shown in Fig. 1.21. The 1.5 in and 2.5 in disbonds are clearly visible as bright 

green shapes. There are no shapes apparent for the 0.5 in disbonds, but there is some indication 

of an image difference. There is also an apparent difference between the top and bottom rows. 

This image processing technique has corroborated the conclusions drawn from visual 

comparison in the section Flaw Detection Using Proposed Method. 

 Since the images show a strong periodicity the next image processing technique to try 

utilizes 2D FFT’s. Essentially the FFT of the no defect image is subtracted from the FFT of the 

known defect image with some preprocessing to reduce the noise of the images. Any residual 

data present after this subtraction process should indicate the presence of a defect and possibly 

allow for flaw characterization. 
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Conclusion 

 The multi-layer, multi-material composite armor considered in this study provides some 

difficulties for many traditional NDE techniques. The ceramic tiles at the center of this 

composite material have special properties that can and should be utilized when creating an 

optimized detection technique. These SiC are remarkable resonators when driven to vibrate, 

and there are many distinct natural resonances with distinctive resonance patterns within the 

bandwidth of the transducers used. Several of these resonances are very strong and have a 

resonance sharpness, or Q factor, comparable to or above that of quartz. It has been shown that 

these resonance patterns can be used to detect and characterize flaws. All six of the engineered 

disbonds in Panel B were detectable along with information indicating between which two 

layers the disbonds were located. Even with the poor scan results from Panel C eleven of the 

twelve inclusions and six of the eighteen disbonds were detectable. 

 The ACURI technique developed in this study shows great promise for this material 

specifically and for several different types of materials in general. More work needs to be done 

by scanning samples containing different defects, using frequency scans (cw scans at specific 

frequencies), and using image processing to detect flaws. 
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CHAPTER 3. 
ANALYTICAL EQUATION OF THE TRANSVERSE VIBRATION OF A 

HEXAGONAL PLATE 
 
 

Introduction 

 Analytical equations describing the transverse deflection and vibration of rectilinear and 

triangular plates are well known and have been a topic of inquiry for the past hundred years. 

These equations are fairly straight forward and solvable. Conversely, the equations describing 

the transverse deflection and vibration of higher order polygonal shapes are difficult to 

formulate and to solve. A solution to this problem was proposed in 1961 and has been accepted 

by the academic community. During the course of this research the use of the 1961 analytical 

solution was attempted. The results were compared with the experimental results and the results 

from a numerical solution, and it was observed that there are some inherent limitations with the 

analytical solution. The analytical results and the inherent limitations observed are presented 

and discussed in this chapter. 

 

Literature Review 

 In 1820 Navier presented a paper to the French Academy of Science on the solution of a 

simply supported rectangular plate in the form of a double trigonometric series [2.4]. In his 

1899 paper to the French Academy of Science, M. Maurice Lévy presented a solution to the 

biharmonic equation that describes the equilibrium of a rectangular plate [2.6]. This solution is 

an alternate solution to that proposed by Navier. It suggests a form of a single trigonometric 

series and was readily accepted by the academic community. 
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 Kaczkowski utilizes Lévy’s proposed solution in a 1961 paper to analytically determine 

the transverse vibration of regular polygonal plates by applying the solution to a triangular 

section of the plate created by the plate symmetry lines [2.2]. The results from the analysis 

performed by Kaczkowski was used by Leissa in his 1969 publication [2.1] and subsequently in 

several papers and publications such as K. Chauncey Wu’s 1991 paper, “Free Vibration of 

Hexagonal Panels Simply Supported at Discrete Points,” which analyses hexagonal plates for 

space craft.  

 

Solution Proposed by Kaczkowski 

 In his 1961 paper [2.2], Von Zbigniew Kaczkowski presents and explores a unique 

approach to the solution of the transverse vibration of regular polygonal figures (Fig. 2.1). He 

proposed that applying the well known equation for the transverse vibrational displacement to a 

triangular section of the plate makes the solution for shapes with more than four sides easier to 

obtain. The triangular sections are chosen by using the symmetry lines of the polygon, and 

when the solution for the triangular section is calculated the solution for the full plate can be 

found by mirroring the triangular solution. The development of Kaczkowski’s solution is given 

briefly below and is given in its entirety in Appendix A1. To test the validity and accuracy of 

this analytical model, it will be compared to the results of a Finite Element Model (FEM: 

numerical model) and to the results of Air-Coupled Ultrasonic Resonance Imaging (ACURI: 

experiment). 
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FIGURE 2.1. Several polygonal figures with Cartesian coordinate systems and new coordinate systems used in 

the development of the analytical equation. 
 
 
 Kaczkowski considers an isotropic plate with a regular n-sided polygonal shape and 

thickness h. The plate is on an elastic base with Winkler coefficient K and has a time-

independent clamping force, N, applied evenly on the entire periphery and normal to the edges. 

Thin, ideal, elastic plate theory is valid. The equation for the transverse vibrational 

displacement, w, for the natural frequencies of the plate takes the well-known form: 

 
𝐷∇2∇2𝑤(𝑥,𝑦) + 𝑁∇2𝑤(𝑥,𝑦) − (𝜇𝜔2 − 𝐾)𝑤(𝑥,𝑦) = 0   (2.1) 

 
Where D is the plate bending stiffness, µ is the plate area mass, and ∇2 is the Laplacian 

operator. He then applies this equation to the triangular section described in Fig.2.2. 
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FIGURE 2.2. The regular hexagon and the triangular section used in the development of the analytical equation. 

 
 
 The differential equation (2.1) can be difficult to solve. Kaczkowski utilizes a solution 

proposed by M. Lévy for bi-harmonic equations. The simple series (2.2), fulfills (2.1) when the 

function 𝑌𝑚(𝜂) satisfies the ODE (2.3) with the substitutions (2.4) and (2.5). 

 
𝑤(𝑥,𝑦) = ∑ 𝑌𝑚(𝜂)sin (𝑚𝜋𝜉)∞

𝑚=1,3,5,…                (𝜉 = 𝑥 𝑎⁄ , 𝜂 = 𝑦
𝑎� )       (2.2) 

 
𝑑4𝑌𝑚
𝑑𝜂4

− 2𝛾𝑚
𝑑2𝑌𝑚
𝑑𝜂2

+ 𝛿𝑚2 𝑌𝑚 = 0    (2.3) 
 

𝛾𝑚 = (𝑚𝜋)2 �1 − Λ
𝑚2� ,        𝛿𝑚2 = (𝑚𝜋)4 �1 − 2 Λ

𝑚2 −
Ω
𝑚4�   (2.4) 

 
Λ = 𝑁𝑎2

2𝜋2𝐷
,          Ω = 𝜇𝜔2−𝐾

𝜋4𝐷
𝑎4     (2.5) 

 
 The general integral of the differential equation (2.1), which fulfills the symmetric 

boundary condition on the line x = a/2 (due to the sine function) has the following form: 

 
𝑤(𝑥,𝑦) = ∑ (𝐴𝑚 cosh(𝑚𝜋𝜑𝑚𝜂) + 𝐵𝑚 sinh(𝑚𝜋𝜑𝑚𝜂) + 𝐶𝑚 cosh(𝑚𝜋𝜓𝑚𝜂) +∞

𝑚=1,3,5,…
𝐷𝑚 sinh(𝑚𝜋𝜓𝑚𝜂)) sin(𝑚𝜋𝜉)     (2.6) 

 

𝜑𝑚 = �1 − Φ
𝑚2 , 𝜓𝑚 = �1 − Ψ

𝑚2    (2.7) 

 
Φ = Λ − √Λ2 + Ω, Ψ = Λ + √Λ2 + Ω       (2.8) 
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Of the four coefficients in the above equation, two can be calculated by considering the 

boundary conditions on the edge y=0. This edge is where the clamping force is applied. 

According to Kaczkowski the coefficients for the free and fixed boundary conditions are 

defined, respectively, as the following: 

 

�
𝐴𝑚 = 𝐶𝑚 = 0

𝐶𝑚 = −𝐴𝑚,        𝐷𝑚 = −𝜑𝑚
𝜓𝑚

𝐵𝑚�      (2.9) 

 
Where the coefficients Am and Cm

 Kaczkowski goes on to formulate the boundary conditions for the line y=2βx by 

implementing the new coordinate system below, 

, in the case of a freely held plate, have most likely been 

chosen not because they are the solutions to the boundary conditions but because the plate is 

not symmetric about the x-axis and the even functions of y are discarded. The coefficients for 

the fixed plate come from the solutions for the boundary conditions on the edge y=0 as 

described in Appendix A1. These coefficient equations can then be combined with the 

equations resulting from the boundary conditions on the line y=2βx to explicitly solve for the 

coefficients. 

 

� 𝑥 = 𝑠 𝑎
𝑐
− 𝑛 2𝛽𝑎

𝑐
,                     𝑦 = 𝑠 2𝛽𝑎

𝑐
+ 𝑛 𝑎

𝑐
,

𝜉 = 𝜎 − 2𝛽𝜁,     𝜂 = 2𝛽𝜎 + 𝜁,     𝜎 = 𝑠
𝑐

,     𝜁 = 𝑛
𝑐

�    (2.10) 

 
This rotates the axes so they are normal and tangent to the line y=2βx just as the original 

coordinate system was normal and tangent to the line y=0. Doing this makes the boundary 

equations easier to handle. He uses this and some mathematical manipulation to obtain 

equations for the boundary conditions, but does not explicitly solve for the four coefficients of 

the differential equation. 
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Applying the proposed solution to the four boundary conditions yields a system of 

homogeneous equations that can be solved explicitly. The two boundary conditions on the line 

y=2βx yield equations that are hyperbolic functions of the line length. This means that the 

equations are nonlinear in the tangent coordinate (s) of the line but linear in the coefficients. 

Because of this, we were able to solve the system of equations using Singular Value 

Decomposition at discrete values of s, the results of which are shown in Fig 2.3 and 2.4. 

 

 
FIGURE 2.3. Plot of the Kaczkowski coefficients for the vibration of a freely held hexagonal plate as a function 

of line length. 
 
 

 Due to the hyperbolic nature of two of the four coefficient equations, all four 

coefficients vary drastically with increasing side length as is evidenced by the plots. If the 

determinant of the system is calculated for each of the values of s, it can be found that the 

system only has exact solutions for the value s=0. With this consideration the transverse 

vibration can be calculated over the face of the plate section. 
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FIGURE 2.4. Plot of the Kaczkowski coefficients for the vibration of a freely held hexagonal plate as a function 

of line length. 
 
 

 Kaczkowski obtains the fundamental frequency of a freely bound plate with the 

following equation: 

 

𝜔 = 𝑋𝜋2

𝑅2 �
𝐷
𝜇
�1 − 𝑁𝑅2

𝑋𝜋2𝐷
+ 𝐾𝑅2

𝑋2𝜋4𝐷
     (2.11) 

 
Where R comes from (Fig 2.1) and X = 0.529 for a hexagon. This gives the fundamental 

frequency of a freely bound hexagonal Silicon Carbide (SiC) plate with the following 

dimensions as: 

 
𝑅 = 0.0508𝑚,     𝐷 = 0.25373𝑀𝑃𝑎,     𝜇 = 58.2625 𝑘𝑔

𝑚2    (2.12) 
 

𝑓𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 = 21.248 𝑘𝐻𝑧 
 
Examination of Solution 

 In order to examine the validity and accuracy of the solution proposed by Kaczkowski, 

three cases are compared. The first case takes the equations from Kaczkowski’s paper and plots 
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the results using Matlab. The second case uses the results from a FEM modal analysis 

performed using ANSYS, which extracts the natural modes and frequencies. The third case 

uses results from ACURI testing of the hexagonal SiC tile modeled, as described in Chapter 1. 

 

Kaczkowski’s Solution 

 In his paper Kaczkowski fails to explain how to determine any resonance frequencies 

above the fundamental. Because of this the only test frequencies available are those from the 

FEM results. These were put into the analytical equation and the results were plotted. The first 

image in the following two plots is the fundamental frequency provided in Kaczkowski’s paper. 

 
 

 
FIGURE 2.5. Results from Kaczkowski’s solution with fixed boundaries. 
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FIGURE 2.6. Results from Kaczkowski’s solution with free boundaries. 

 
 
 Fig. 2.5 and 2.6 show the results from Kaczkowski’s equation for several frequencies. 

In these images blue is low amplitude while red is high amplitude. Since the plate is vibrating 

the high and low amplitude regions will alternate in sign, and hence color, in a cyclical manor. 

Because of this the colors are interchangeable. It is easy to see from these two figures that 

Kaczkowski’s solution does not vary with frequencies above those of the fundamental 

frequency. This suggests that the solution does not fully articulate the transverse vibration of 

the hexagonal plate and that it is possible that this solution is only valid for the prediction of the 

fundamental frequency. 
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FEM Solution 

 Since Kaczkowski’s solution only considers a case where both interior edges are subject 

to a symmetric boundary condition the FE model used similar boundary conditions. The results 

from the modal analysis are presented in Fig. 2.7 and Fig. 2.8. In these images blue is negative 

displacement while red is positive displacement. Again since the plate is vibrating the high and 

low amplitude regions will alternate in sign, and hence color, in a cyclical manor. Because of 

this the colors are interchangeable. 

 
 

 
FIGURE 2.7. FEM modal results for a 1/12 section of the hexagonal plate with fixed external boundary. 

 
 

 The analytical solution does not match well, or at all, with the numerical FEM solution. 

Only the first resonance pattern and frequency from the FEM results find a match in the 

analytical solution and that is the fundamental mode. Though the fundamental resonance 

pattern matches well between the analytical solution and the FEM solution, the fundamental 

resonance frequency differs by ~22% between the two for the free boundary condition. 
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FIGURE 2.8. FEM modal results for a 1/12 section of the hexagonal plate with free external boundary. 

 

ACURI Solution 

 The ACURI testing of the shape and material modeled with Kaczkowski’s equation and 

FEM could not completely replicate the conditions in the two models. There is no way to 

ensure the periphery of the plate is completely free or fixed. Also there is no way to ensure that 

all of the lines of symmetry of the plate are symmetric boundaries. Furthermore, the specific 

frequencies predicted by FEM and used in the Kaczkowski model could not be impinged on the 

plate. Instead several transducers with bandwidths were employed, none of which were able to 

capture the fundamental frequency of the plate. 
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FIGURE 2.9. ACURI scan results of SiC tile at 100 kHz, 120 kHz, 225 kHz. The images are produced by taking 

the amplitude maximum of the received waveform either over the entire time gate or a smaller sub-gate. 
 
 
 Fig. 2.9 shows the results from several ACURI scans at several frequencies. In these 

images blue is low amplitude while red is high amplitude. Again since the plate is vibrating the 

high and low amplitude regions will alternate in sign, and hence color, in a cyclical manor. 

Because of this the colors are interchangeable. The analytical solution does not match with any 

of the observed ACURI results of the plate, though several of the FEM and RCURI results 

match. 

 
Examination of Solution Formulation 
 The above comparison of the analytical solution, numerical solution, and experimental 

results demonstrates that the solution developed by Kaczkowski does not accurately describe 

the vibrational behavior of a regular hexagonal plate. An examination of the formulation of 

Kaczkowski’s solution shows some differences from the plate equation derivation detailed in 

literature as well as some discrepancies. 

 Compare equation (A1.1) and equation (A2.20). 

 
𝐷∇4𝑤(𝑥, 𝑦) + 𝑁∇2𝑤(𝑥,𝑦) − (𝜇𝜔2 − 𝐾)𝑤(𝑥, 𝑦) = 0    (A1.1) 
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𝐷∇4𝑤 − Nx
𝜕2w
𝜕𝑥2

− 2Nxy
𝜕2w
𝜕𝑥𝜕𝑦

− Ny
𝜕2w
𝜕𝑦2

− (µω2 − K)w = 0 
 
The mid plane force term in the equation used by Kaczkowski is significantly different from 

the equation presented in the literature. Kaczkowski never discusses the force N except to say 

that it is the clamping force. Since N is the clamping force it is applied normal to the periphery 

of the full plate. The top of the plate was free and the bottom was subject to the Winkler 

Stiffness, K. When a section of the plate is considered, as in Fig 2.2b, the force N should be 

applied solely in the positive y direction on the line y=0. All boundary conditions on the lines 

x=a/2 and y=2βx will take into account the resultant forces from the clamping force applied to 

the other sides of the full plate.  

 It can be argued that Eq. A1.1 is just a special case of Eq. A2.20 where the equation is 

applied on a thin film (Nxy=0) and the stress is homogeneous (Nx =Ny

The first boundary condition used by Kaczkowski is from the symmetry line x=a/2. He 

states that since the condition on the line is symmetric, the solution can only contain solutions 

that are even functions of x with respect to the line and thus retains the sin(𝑚𝜋𝜉) term. 

). If this were the case 

then N could not be applied to the Laplacian of w as Kaczkowski does in Eq. A1.1 because the 

middle term 𝜕2𝑤 𝜕𝑥𝜕𝑦�  would still be present in the equation. 

 The free boundary condition on the line y=0 seems to be processed in a similar manor. 

Kaczkowski assumes that since the plate boundary is free, it is not symmetric about the line and 

the even functions of y can be discarded. This idea will duplicate the condition stated in the 

first line of Eq. 2.7. There is nothing about the coefficients Bm and Dm. This is not the typical 

treatment of a free boundary condition in literature and applying the equations for a free 

boundary does not yield the same coefficient equations. (See Appendix A2). 

(A2.20) 
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 The fixed boundary conditions used by Kaczkowski on the line y=0 seem to be 

consistent with the fixed boundary condition discussed in literature. 

 The symmetric boundary conditions used by Kaczkowski on the line y=2βx are 

 

�𝜕𝑤
𝜕𝜁
�
𝜁=0

= 0

�𝜕∇
2𝑤
𝜕𝜁

�
𝜁=0

= 0
 

 
The fist condition, Eq (A1.10a), matches with the condition in literature, Eq (A1.14a). The 

second condition, Eq (A1.11a), differs by (2-ν) in the second term. 

 
�𝜕𝑤
𝜕𝑛
�
𝑦=2𝛽𝑥

= 0       (A1.14a) 

𝑉𝑛 = �𝑄𝑛 + 𝜕𝑀𝑛𝑡
𝜕𝑡

� = 0  ⟹   �𝜕
3𝑤
𝜕𝑛3

+ (2 − 𝜈) 𝜕3𝑤
𝜕𝑛𝜕𝑡2

�
𝑦=2𝛽𝑥

= 0  (A1.15a) 

 
These differences between the boundary conditions used by Kaczkowski and those used in 

literature could drastically affect the coefficients of the displacement equation and the results. 

The inaccuracy of kaczkowski’s solution may be partly due to the first order nature of his 

analysis. 

 The proposed solution is trigonometric in x and hyperbolic in y. This would give a 

displacement with periodicity in the x direction and exponential increase in the y direction. 

This seems inconsistent with the results from experiment and numerical simulation as well as 

basic physics models of vibration as all three of these show periodicity in both the x and y 

direction. Though it is true that certain combinations of hyperbolic functions reproduce 

periodicity, from these considerations it seems that any proposed solution should be 

trigonometric in nature. 

(A1.10a) 
 
(A1.11a) 
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The deflection function developed by Kaczkowski for a freely held plate can be 

expressed as  

 

𝑤(𝑥,𝑦) = ∑ �𝐵𝑚 sinh���𝑚𝜋
𝑎
�
2

+ �𝜌𝜔2

𝐷
𝑦� + 𝐷𝑚 sinh���𝑚𝜋

𝑎
�
2
− �𝜌𝜔2

𝐷
𝑦�� sin �𝑚𝜋𝑥

𝑎
�∞

𝑚=1,3,5,…          (2.13) 

 
The function is only square root frequency dependent in the y direction. This combined with 

the hyperbolic nature in the y direction gives a deflection function that does not vary drastically 

with frequency as any plate vibration equation that describes the natural resonances should. 

 

Conclusion 

 Kaczkowski proposed a novel approach to the derivation of the analytical expression of 

the transverse vibration of polygonal plates by using symmetric sections. The solution proposed 

works perfectly if the formulation of the differential equation of the transverse vibration and the 

boundary conditions is valid, but until now no one has compared the results from this solution 

to experimental results. 

 Closer inspection of the proposed solution results for a hexagon has shown that the 

results do not vary with frequency or approximate the different resonance modes of the 

hexagonal plate very accurately. The results from the analytical solution do not match well with 

the numerical FEM solution or the experimental ACURI solution. The reason for this may be 

due to several discrepancies found during the examination of Kaczkowski’s solution 

formulation. The only part of the proposed solution that corresponds with the numerical model 

and the experimental results is the prediction of the fundamental frequency, which varies 22% 

from the numerical model and is only a first order approximation. 



48 

 Even though Kaczkowski’s solution has been widely accepted by the academic 

community the formulation and solution are inaccurate. More work needs to be done in the 

development of this analytical equation if this type of solution is to be used to accurately model 

the transverse vibration of regular polygonal shapes. 

 
References 
 
2.1. Leissa, A. W., “Vibration of Plates,” NASA SP-160, 1969 
 
2.2. Kaczkowski, Z., “Stabilität und Eigenschwingungen einer Platte von der Form eines 

regelmäϐigen Polygons,” 1961, Ingenieur-Archiv, Vol. 15, pp.103-109 
 
2.3. Mansfield, E. H., “The Bending and Stretching of Plates,” 1964, Pergamon Press Ltd., 

Oxford England 
 
2.4. Timoshenko, S. P., Woinowsky-Krieger, S., “Theory of Plates and Shells,” 1959, 

McGraw-Hill Book Company, Inc., New York 
 
2.5. Timoshenko, S. P., Goodier, J. N., “Theory of Elasticity,” 1970, McGraw-Hill Book 

Company, Inc., New York 
 
2.6. Lévy, M. M., “Sur L’Équilibre Élastique d’une Plaque Rectangulaire,” 1899, Comptes 

Rendus des Séances de L’Académie des Sciences, Vol. 129, pp. 535-539 
 
2.7. Laurie, S. A., Vasiliev, V. V., “The Biharmonic Problem in the Theory of Elasticity,” 

1995, Gordon and Breach Publishers, ISBN 2-88449-054-X 
 
2.8. Yu, Y. Y., “Vibrations of Elastic Plates,” 1996, Springer-Verlag New York, Inc., ISBN 

0-887-94514-8 
 
2.9. Gorman, D. J., “Vibration Analysis of Plates by the Superposition Method,” 1999, 

World Scientific Publishing Co. Pte. Ltd. 
 

2.10. Soedel, W., “Vibrations of Shells and Plates,” 2004, Marcel Dekker, New York 
 

2.11. Qatu, M. S., “Vibrations of Laminated Shells and Plates,” 2004, Elsevier Ltd. 
 
  



49 

CHAPTER 4. 
ANSYS MODELING 

 
 

Introduction 

 Finite Element Modeling (FEM) is a very useful and powerful tool for the numerical 

solution of a great many engineering problems. The problems range from deformation and 

stress analysis to wave propagation and composite analysis to fluid and heat flow. For this 

research, the FEM program ANSYS was used to numerically model the natural and forced 

vibrations of the multi-layer, multi-material composite discussed in Chapter 2 as well as the 

polygonal plate discussed in Chapter 3. 

 It is common practice, when modeling with FEM, to utilize the symmetry of the 

problem in order to reduce the complexity of the model and reduce the computation time. 

During the course of this research, the question arose of whether this common practice gives 

accurate results, when compared to a full model and to experiments. 

 This chapter describes the models used in Chapter 2 and Chapter 3 and presents the 

results from the analyses performed on the models. This chapter will also explore the accuracy 

of symmetric models. 

 

Air-Coupled Ultrasonic Resonance Imaging Models 

 In this research several FE models have been made to numerically simulate the 

vibrational response of the different materials of the multi-layered, multi-material composite 

discussed in Chapter 2, as well as several different lay-ups. The specifics of each material and 
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the results of each model are described briefly below. The models are 4 inches from side to 

side. 

 The model for the SiC tile is made with the ANSYS element solid187. This element is a 

higher order 3-D, 10-node element with quadratic displacement behavior. The material has an 

elastic modulus of 428.28 GPa, a Poison’s ratio of 0.166, and a density of 3058.4 Kg/m^3. The 

boundary conditions for this model are either fixed or free and are applied solely to the 

periphery of the hexagonal plate. Since the research in Chapter 2 deals with vibrations a modal 

analysis was performed to look at the natural resonance modes and frequencies of the 

hexagonal SiC tiles. Figures 3.1 and 3.2 show some of the resonance modes and frequencies 

extracted from the model with a modal analysis. 

 
 

 
FIGURE 3.1. Here are the results from a modal analysis on the SiC model with fixed boundary conditions. There 

are several resonance images and corresponding resonance frequencies displayed. 
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FIGURE 3.2. Here are the results from a modal analysis on the SiC model with free boundary conditions. There 

are several resonance images and corresponding resonance frequencies displayed. 
 
 

There is a multitude of repeated resonance modes that appear in both the fixed and free 

models. A repeated resonance mode occurs when there is more than one mode with the same 

frequency to at least one decimal place. The resulting resonance patterns will be different, in 

this case the resonance pattern is rotated slightly, but the frequencies are the same. The 

resonant images from the fixed model correspond better with ACURI results from the bare SiC 

tile. This is not surprising because it is difficult to simulate a truly free boundary, also the 

boundary condition will be fixed, to some degree, inside any type of lay-up. Because of these 

two considerations, only fixed boundary conditions will be used in subsequent models. 

 The model for the Graphite-Carbon-Graphite (GCG) consists of three volumes, which 

are glued together so that the coincident areas become a single area. The center volume is 

exactly the same as the SiC model, and the other volumes have the same shape and size. The 

two outside volumes are models of the carbon-fiber/epoxy lay-up. These volumes are made 
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with the ANSYS element solid185. This element is a 3-D, 8-node element with layered 

structure capabilities. The material has a density of 1580.0 Kg/m^3 and the following physical 

properties: 

 
𝐸𝑥 = 181 𝐺𝑃𝑎 𝐸𝑦 = 10.3 𝐺𝑃𝑎 𝐸𝑧 = 10.3 𝐺𝑃𝑎

𝜈𝑥𝑦 = 0.15 𝜈𝑦𝑧 = 0.10 𝜈𝑥𝑧 = 0.15
𝐺𝑥𝑦 = 5.50 𝐺𝑃𝑎 𝐺𝑦𝑧 = 6.41 𝐺𝑃𝑎 𝐺𝑥𝑧 = 5.50 𝐺𝑃𝑎

 

 
There are 24 layers and the thickness of each layer is approximately 132 µm. The fiber 

direction follows the lay-up [ [0,+45,90,-45]3 ]sym

 

. Fixed boundary conditions are applied 

solely to the periphery of the hexagonal plate. Figure 3.3 shows some of the resonance modes 

and frequencies extracted from the model with a modal analysis. 

 

 
FIGURE 3.3. Here are the results from a modal analysis on the GCG model with fixed boundary conditions. 

There are several resonance images and corresponding resonance frequencies displayed. 
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 The same resonance modes appear in this modal extraction as appeared in the SiC 

modal extraction. This indicates that the SiC tile is the strongest vibrator of the three layers and 

that it either overpowers the other two volumes or damps out their vibrations. There are some 

important differences, however. Many of the resonance patterns appear with a slightly smaller 

amplitude and the resonant frequencies have shifted downward. All of this is to be expected 

from the damping characteristics of adding layers to the SiC tile. Also note that the repeated 

resonances from the SiC model are now separated. 

 The model for the full lay-up consists of five volumes which are glued together so that 

the coincident areas become a single area. Two volumes are added to the GCG model; a rubber 

layer right next to the GCG and a S2 glass-fiber/epoxy layer next to the rubber layer. The 

rubber volume is made with the ANSYS element solid187. This is the same as the element used 

for the SiC layer and allows for large deflection. The material has the following generic rubber 

properties: an elastic modulus of 2.412 MPa, a Poison’s ratio of 0.33, and a density of 1079 

Kg/m^3. The S2 glass-fiber/epoxy volume is made with the ANSYS element solid185, which is 

the same element used for the carbon-fiber/epoxy layers. The material has a density of 2000.0 

Kg/m^3 and the following physical properties: 

 
𝐸𝑥 = 55 𝐺𝑃𝑎 𝐸𝑦 = 16 𝐺𝑃𝑎 𝐸𝑧 = 16 𝐺𝑃𝑎

𝜈𝑥𝑦 = 0.28 𝜈𝑦𝑧 = 0.10 𝜈𝑥𝑧 = 0.28
𝐺𝑥𝑦 = 7.6 𝐺𝑃𝑎 𝐺𝑦𝑧 = 4.52 𝐺𝑃𝑎 𝐺𝑥𝑧 = 7.6 𝐺𝑃𝑎

 

 
There are 96 layers and the thickness of each layer is approximately 132 µm. The fiber 

direction follows the lay-up [ [ [ [0,+45,90,-45]3 ]sym ]sym]sym. Fixed boundary conditions are 

applied solely to the periphery of the hexagonal plate. Figures 3.4 and 3.5 show some of the 

resonance modes and frequencies extracted from the model with a modal analysis. 
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FIGURE 3.4. Here are the results from a modal analysis on the Full Lay-up Model with fixed boundary 

conditions. There are several resonance images and corresponding resonance frequencies displayed. Here only the 
S2 glass layer is vibrating. 

 
 

In both of these figures, the left side of each image is the S2 glass-fiber/epoxy side of 

the full model and the right side of each image is the GCG side of the full model. The images 

of the modal results in Fig. 3.4 indicate that only the S2 glass-fiber/epoxy layer vibrates while 

only the GCG section vibrates in the images of Fig. 3.5. This indicates that the rubber layer acts 

like an impedance layer and effectively separates the vibrations from the S2 glass-fiber/epoxy 

layer and the GCG section. The same resonance modes appear in this modal extraction as 

appeared in the SiC modal extraction, but the resonance images are slightly damped and the 

frequencies are shifted slightly. Several of the resonance images in Fig. 3.5 match well with the 

ACURI results (Fig. 3.6) which indicates that both the rubber layer and the S2 glass-

fiber/epoxy layer only act as damping layers to the SiC Tile vibration and do not add resonance 

patterns to the resulting resonance images during ACURI scanning. 
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FIGURE 3.5. Here are the results from a modal analysis on the Full Lay-up Model with fixed boundary 

conditions. There are several resonance images and corresponding resonance frequencies displayed. Here only the 
GCG layer is vibrating. 

 
 
 In order to test the accuracy of these FE models matches between the ACURI scan 

results and the modal results of the SiC model were made. Fig. 3.6 shows several matches 

made between the ACURI and FEM modal results. Several of the ACURI images can be 

directly matched with a single FEM mode at a frequency close to the center frequency and 

within the bandwidth of the transducer. Other of the ACURI images require a superposition of 

FEM modes in order to make a match. These results indicate that the FE model accurately 

describes the behavior of the SiC tile. 
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FIGURE 3.6. Matching resonance images from ACURI and FEM modal results. 

 
 
Kaczkowski Plate Section Model 

 The model for the plate section is made with the ANSYS element solid187. This 

element is a higher order 3-D, 10-node element with quadratic displacement behavior.  The 

model is roughly 2 in by 1.5 in by 0.75 in. The material has an elastic modulus of 428.28 GPa, 

a Poison’s ratio of 0.166, and a density of 3058.4 Kg/m^3. The boundary conditions for this 

model are either fixed or free for the exterior edge of the plate section and symmetric or 

antisymmetric on the interior edges. Since the research in Chapter 2 deals with natural 

vibrations a modal analysis was performed to look at the natural resonance modes and 

frequencies of the polygonal plate section. Figures 3.7 and 3.8 show some of the resonance 

modes and frequencies extracted from the model with a modal analysis. 
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FIGURE 3.7. FEM modal results for a 1/12 section of the hexagonal plate with fixed external boundary. 

 
 
 
 
 

 
FIGURE 3.8. FEM modal results for a 1/12 section of the hexagonal plate with free external boundary. 
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Symmetric Modeling 

 The model for the material considered in this study is complex with a large number of 

nodes. Models of anything larger than a full lay-up the same shape and size as one of the 

hexagonal tiles with an appropriately small mesh size are simply too large to analyze easily. 

Modal and harmonic analyses are very simple analyses that usually take no time at all to run. 

With the full lay-up this simple analysis can take hours. A more complex analysis, such as a 

waveform impingement, will take much longer. An analysis of this type was performed using a 

computer cluster on a symmetric quarter of the SiC tile model. Even with this small model and 

a relatively coarse mesh, the analysis took four days to complete. It is because of these 

considerations; namely the complexity of modeling multiple layers and several tiles at a time, 

the complex analyses, and the long computation time, that the validity of symmetric modeling 

was considered. 

 In order to test the accuracy of modeling with symmetric sections two different 

polygonal plates, a square and a hexagon, were divided along the symmetry lines of the 

polygons as shown in Fig 3.9 and Fig 3.10. All possible symmetric sections are considered in 

this analysis. The sections of the polygons are subjected to a modal analysis and a harmonic 

analysis and the results compared to the results of the full models. A modal analysis shows the 

natural resonance modes and frequencies of the models. Comparing the natural resonances of 

the plate sections to those of the full plate will determine whether the plate sections have the 

same behavior as the full plate. The harmonic analysis will show the response of the model to a 

sine input at specific frequencies. Comparing the responses of the plate sections to the response 

of the full plate will determine whether the plate sections respond to a given impingement in 
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the same manner as a full plate. These two analyses can indicate whether a symmetric model 

can be used to recreate a full model without loss of accuracy. 

The boundary conditions on the plate periphery and on the corresponding areas of the 

plate sections are either fixed (zero x,y, and z displacement) or free (no constraints). For the 

areas of the plate sections that would normally be in the interior of the full plate (interior areas) 

the possible boundary conditions are symmetric and antisymmetric. For a mathematical 

explanation of these boundary conditions see Appendix A.2. Combinations of the symmetric 

and antisymmetric boundary conditions on the interior areas of the plate sections should 

replicate all possible interactions that occur in the interior of the full plate. 

 
 

 
FIGURE 3.9. Square plate and possible symmetric sections. 
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FIGURE 3.10. Hexagonal plate and possible symmetric sections. 

 
 

 All of the full plate ANSYS models created for this analysis are approximately 4 inches 

in length from side to side and 0.75 inches thick, and the symmetric section models are sized 

relative to the full model. The element type and material properties are the same as those listed 

for the SiC tile model described under the Air-Coupled Ultrasonic Resonance Imaging Models 

section. 

 

Modal Analysis 

 A modal analysis of the plates and plate sections extracts the natural modes of the 

models for the given material and boundary conditions. The extracted modes were visually 

compared and like modes were grouped together. 
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FIGURE 3.11. A comparison of the natural resonance modes of symmetry models to the resonance mode of the 

full plate model. A) Full Plate Model @ 30670 Hz. B) Half point-point Section Model @ 30700 Hz. C) Half side-
side Section Model @ 30690 Hz. D) One Third Section Model @ 30669 Hz. E) One Fourth Section Model @ 

30669 Hz. F) One Sixth Section Model @ 30668 Hz. G) One Twelfth Section Model @ 30667 Hz. 
 
 

 
FIGURE 3.12. A comparison of the natural resonance modes of symmetry models to the resonance modes of the 
full plate model. A) Full Plate Model @ 113926 Hz. B) Half point-point Section Model @ 113943 Hz. C) Half 

side-side Section Model @113935 Hz. D) One Fourth Section Model @ 113926 Hz. 
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FIGURE 3.13. A comparison of the natural resonance modes of symmetry models to the resonance modes of the 

full plate model. A) Full Plate Model @ 113209 Hz. B) Half Triangular Section Model @ 113911 Hz. C) Half 
Rectangular Section Model @ 113116 Hz. D) One Fourth Rectangular Section Model @ 112939 Hz. 

 
 
 

 
FIGURE 3.14. A comparison of the natural resonance modes of symmetry models to the resonance modes of the 

full plate model. A) Full Plate Model @ 139994 Hz. B) Half Triangular Section Model @ 140033 Hz. C) Half 
Rectangular Section Model @ 139991 Hz. D) One Fourth Triangular Section Model @ 139990 Hz. E) One Fourth 

Rectangular Section Model @ 139973 Hz. 
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The matching of resonance modes was performed by looking for distinctive features, such as 

high and low amplitude regions, in the resonance images of the full plate model and each 

symmetry model. The size, shape, and locations of these distinctive features were then 

compared to match the resonance images. It is important to keep in mind that in this FE 

analysis red is positive displacement and blue is negative displacement, but in a sinusoidal 

vibration positive and negative displacement change positions cyclically. Hence the blue and 

red colors can be interchanged; they essentially represent the maxima in a resonance image. 

 Figures 3.11 through 3.14 demonstrate how the extracted modes are compared and 

grouped. The comparisons made in Figures 3.11 and 3.12 were relatively easy to make when 

small discrepancies such as color variation and rotation of the resonance pattern were taken into 

account. The comparisons in Figures 3.13 and 3.14, on the other hand, were somewhat more 

difficult to make as not only were there color variations and rotations to consider but some of 

the maximas have changed position slightly due to the constraints of the geometry of a given 

plate section. 

 The frequency range of this study was from 0-300 kHz. This was chosen to capture both 

the fundamental frequencies and frequencies where ACURI can operate. For the sake of 

brevity, the tables below list only the natural resonance modes between 0 and 100 kHz. The 

resonance modes of the full plate model are listed by frequency and all the corresponding 

resonance modes from the plate sections are listed for each full plate resonance long with the 

specific model and the interior boundary conditions. 
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Hexagon Resonance Modes, Fixed BC 
Full Model Symmetric Models     
Frequency (Hz) Frequency (Hz) Model Interior BC's 

30669.7505       
  30700.3255 half p-p sym 
  30690.1668 half s-s sym 
  30669.3626 third sym-sym 
  30669.3918 fourth sym-sym 
  30668.3595 sixth sym-sym 
  30666.7199 twelfth sym-sym 

55021.7374       
  55103.0331 half p-p antisym 
  55064.9021 half s-s sym 
  55018.6634 fourth sym-antisym 

55021.8769       
  55097.6985 half p-p sym 
  55080.0526 half s-s antisym 
  55024.2001 fourth antisym-sym 

75712.4516       
  72720.445 half p-p antisym 
  72716.6723 half s-s sym 
  72712.0422 fourth sym-antisym 

72712.4803       
  72719.642 half p-p sym 
  72718.2008 half s-s antisym 
  72712.7531 fourth antisym-sym 

79798.3981       
  79944.816 half p-p antisym 
  79904.0709 half s-s antisym 
  79799.4161 fourth antisym-antisym 

79798.4261       
  79944.6592 half p-p sym 
  79879.0981 half s-s sym 
  79798.0312 fourth sym-sym 

88235.2725       
  88414.5946 half p-p sym 
  88356.0798 half s-s sym 
  88233.9126 third sym-sym 
  88235.5451 fourth sym-sym 
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  88231.1792 sixth sym-sym 
  88225.3267 twelfth sym-sym 

89915.4626       
  89917.7606 half p-p antisym 
  89916.8434 half s-s antisym 
  89915.4577 third antisym-antisym 
  89915.4912 fourth antisym-antisym 
  89915.4382 sixth antisym-antisym 
  89915.4305 twelfth antisym-antisym 

TABLE 3.1. Table of resonance frequencies between 0 and 100 kHz for a hexagonal plate with fixed boundary 
conditions and matched frequencies of symmetric models. 

 
 

Hexagon Resonance Modes, Free BC 
Full Model Symmetric Models    
Frequency (Hz) Frequency (Hz) Model Interior BC's 

18616.373       
  18619.9092 half p-p sym 
  18618.8201 half s-s sym 
  18616.4489 fourth sym-sym 

18616.3715       
  18620.4733 half p-p antisym 
  18618.1244 half s-s antisym 
  18616.3804 fourth antisym-antisym 

27346.8839       
  27350.1151 half p-p sym 
  27349.093 half s-s sym 
  27346.8937 third sym-sym 
  27346.9318 fourth sym-sym 
  27346.8909 sixth sym-sym 
  27346.8837 twelfth sym-sym 

35064.4102       
  35083.5299 half p-p sym 
  35075.125 half s-s antisym 
  35064.3862 third sym-sym 
  354.599806 fourth antisym-sym 
  35064.3812 sixth sym-sym 
  35064.0982 twelfth sym-antisym 

42353.6231       
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  42364.6056 half p-p antisym 
  42359.4873 half s-s sym 
  42353.6163 third antisym-antisym 
  42653.7621 fourth sym-antisym 
  42353.6449 sixth antisym-antisym 
  42353.6087 twelfth antisym-sym 

54116.5348       
  54116.8813 half p-p antisym 
  54116.7333 half s-s antisym 
  54116.5405 fourth antisym-antisym 

54116.5352       
  54116.8924 half p-p sym 
  54116.7579 half s-s sym 
  54116.5388 fourth sym-sym 

54132.6444       
  54154.5037 half p-p antisym 
  54148.2321 half s-s sym 
  54132.867 fourth sym-antisym 

54132.6633       
  54155.0178 half p-p sym 
  54147.8749 half s-s antisym 
  54132.8515 fourth antisym-sym 

58986.4291       
  58987.3549 half p-p antisym 
  58987.0318 half s-s sym 
  58986.4393 fourth sym-antisym 

58986.4298       
  58987.3534 half p-p sym 
  58986.9903 half s-s antisym 
  58986.4445 fourth antisym-sym 

59671.8844       
  59708.5694 half p-p sym 
  596954.6375 half s-s sym 
  59672.1037 fourth antisym-antisym 

59671.8898       
  59712.5782 half p-p antisym 
  59691.9689 half s-s antisym 
  59672.6776 fourth sym-sym 

69656.3551       
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  69656.495 half p-p sym 
  69656.4419 half s-s sym 
  69656.3552 third sym-sym 
  69656.3568 fourth sym-sym 
  69656.3541 sixth sym-sym 
  69656.3546 twelfth sym-sym 

80048.8065       
  80052.1805 half p-p sym 
  80050.9068 half s-s antisym 
  80048.8238 third sym-sym 
  80048.8591 fourth antisym-sym 
  80048.7882 sixth sym-sym 
  80048.7413 twelfth sym-antisym 

84360.8609       
  84438.4958 half p-p sym 
  84402.0214 half s-s antisym 
  84362.2506 fourth antisym-sym 

84360.9537       
  84438.515 half p-p antisym 
  84402.8692 half s-s sym 
  84361.8734 fourth sym-antisym 

84636.7707       
  84639.668 half p-p antisym 
  84638.5617 half s-s sym 
  84636.7706 third antisym-antisym 
  84636.7973 fourth sym-antisym 
  84636.752 sixth antisym-antisym 
  84636.7121 twelfth antisym-sym 

84987.2839       
  85050.6614 half p-p antisym 
  85031.8971 half s-s antisym 
  84988.1029 fourth antisym-antisym 

84987.3289       
  85052.1805 half p-p sym 
  85031.059 half s-s sym 
  84988.0893 fourth sym-sym 

85791.0826       
  85863.1278 half p-p sym 
  85842.007 half s-s sym 
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  85790.8721 third sym-sym 
  85791.7468 fourth sym-sym 
  85790.9244 sixth sym-sym 
  85790.4653 twelfth sym-sym 

87722.195       
  877251353 half p-p sym 
  87724.0727 half s-s sym 
  87722.2293 fourth sym-sym 

87722.1897       
  87725.298 half p-p antisym 
  87723.9262 half s-s antisym 
  87722.2211 fourth antisym-antisym 

TABLE 3.2. Table of resonance frequencies between 0 and 100 kHz for a hexagonal plate with free boundary 
conditions and matched frequencies of symmetric models. 

 
 
Several observations can be made about the hexagonal models from the data presented in the 

tables above. 

1. Every single resonance mode in the full plate model can be replicated with the 

symmetry models. 

2. The frequencies of the resonance modes from the symmetry models have a variance 

from the resonance frequencies of the full plate that is less than 0.3% of the resonance 

frequency. This means the symmetry models accurately replicate both the resonance 

pattern and the resonance frequency of the full plate. 

3. For the symmetry conditions sym-antisym and antisym-sym, with both the fixed and 

free boundary conditions, the resonance images of the one sixth and the one third 

models do not appear among the resonance images of the full model. 

4. Of all of the symmetric models, only the half models have resonance modes that match 

with every single resonance mode of the full model. This means that attempting to 

model a structure with symmetry models any smaller than one half the size of the full 
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model will not give a full solution. This is due to the fact that a smaller model cannot 

model the combinations of interior boundary conditions that occur in a full model. This 

is shown in Fig 3.15 below. Observe the symmetry conditions on the symmetry lines of 

the full plate specified when using a small symmetry model (in this case a one twelfth 

model). Changing the condition on just one of the lines of symmetry yields a possibility 

that the small symmetry model cannot duplicate but that can be modeled with a larger 

symmetry model ( 1/2 or 1/4) or the full model itself. 

 
 

 
FIGURE 3.15. A graphical explanation of possible symmetry condition of a Full Plate Model where the lines 

represent symmetry lines. The blue lines are symmetric and the red lines are antisymmetric. A) 1/12 section with 
symmetric-antisymmetric boundaries. B) The 1/12 section mirrored symmetrically into a full plate. C) Possible 

interior boundary conditions of a Full Plate. 
 
 

5. Both the half point-point model and the half side-side model have resonance modes that 

match the resonance modes of the full model but both of the interior boundary 

conditions (symmetric and antisymmetric) must be used. This means that the idea of 

using a smaller symmetric model to reduce the computation time is faulty since two of 

the half models will have to be run to replicate the results from an analysis of the full 
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model. This is true at least for this type of analysis. If an analysis was required in which 

only a symmetric interior boundary need be considered, then a half model would reduce 

the computation time. 

 It seems that the best model, both for accuracy and computation time, for the hexagonal 

plate is the Full Plate model. 

 
 

Square Resonance Modes, Fixed BC 
Full Model Symmetric 

Models 
    

Frequency (Hz) Frequency (Hz) Model Interior BC's 
28840.8035       

  28908.5353 half tri Sym 
  28834.616 half rec Sym 
  28834.8514 fourth tri sym-sym 
  28810.4538 fourth rec sym-sym 
  28819.842 Eighth sym-sym 

51511.8833       
  51511.1326 half rec Antisym 
  51441.4541 fourth rec  antisym-sym 

51512.6166       
  51487.7026 half rec Sym 
  51440.5873 fourth rec sym-antisym 

69096.9259       
  69097.1229 half rec Antisym 
  69091.2126 fourth rec antisym-sym 

69097.1031       
  69094.8371 half rec Sym 
  69091.0701 fourth rec sym-antisym 

69847.0634       
  70119.8839 half tri Sym 
  69836.3458 half rec Antisym 
  69823.5377 fourth tri sym-sym 
  69746.0942 fourth rec antisym-antisym 
  69767.0002 Eighth antisym-sym 

80197.0795       
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  80592.1918 half tri Antisym 
  80162.8529 half rec Sym 
  80166.4387 fourth tri antisym-antisym 
  80041.9618 fourth rec sym-sym 
  80069.4801 Eighth sym-antisym 

81222.6659       
  81597.0163 half tri Sym 
  81202.6928 half rec Sym 
  81079.1823 fourth rec sym-sym 
  81186.2997 fourth tri sym-sym 
  81115.2768 Eighth sym-sym 

86738.4232       
  86741.9071 half tri Antisym 
  86738.0156 half rec Antisym 
  86737.8797 fourth tri antisym-antisym 
  86736.3265 fourth rec antisym-antisym 
  86737.782 Eighth antisym-antisym 

95544.3988       
  95869.8707 half tri Sym 
  95536.8782 half rec Sym 
  95519.516 fourth tri antisym-sym 
  95377.898 fourth rec sym-antisym 

95550.2627       
  96212.4797 half tri Antisym 
  95528.0827 half rec Antisym 
  95509.9986 fourth tri sym-antisym 
  95376.5839 fourth rec antisym-sym 

TABLE 3.3. Table of resonance frequencies between 0 and 100 kHz for a square plate with fixed boundary 
conditions and matched frequencies of symmetric models. 

 
 

Square Resonance Models, Free BC 
Full Model Symmetric 

Models 
    

Frequency (Hz) Frequency (Hz) Model Interior BC's 
13125.0478       

  13137.9604 half tri Sym 
  13124.1726 half rec Antisym 
  13124.0035 fourth tri sym-sym 
  13121 fourth rec antisym-antisym 
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  13120.9022 eighth antisym-sym 
19253.5843       

  19259.2258 half tri Antisym 
  19253.56 half rec Sym 
  19253 fourth tri antisym-antisym 
  19252.3477 fourth rec sym-sym 
  19247.0786 eighth sym-antisym 

21475.3778       
  21483.3875 half tri Sym 
  21475.2961 half rec Sym 
  21474.9901 fourth tri sym-sym 
  21473.5668 fourth rec sym-sym 
  21473.8388 eighth sym-sym 

30569.9849       
  30621.2278 half tri Antisym 
  30569.5954 half rec Sym 
  30567.5506 fourth tri sym-antisym 
  30560.0403 fourth rec sym-antisym 

30570.4431       
  30594.932 half tri Sym 
  30567.3163 half rec Antisym 
  30567.4681 fourth tri antisym-sym 
  30560.0247 fourth rec antisym-sym 

47394.8394       
  47395.2907 half tri Sym 
  47394.7932 half rec Antisym 
  47394.8115 fourth tri sym-sym 
  47395 fourth rec antisym-antisym 
  47384.9207 eighth antisym-sym 

48480.8517       
  48480.8078 half rec Antisym 
  48480.5894 fourth rec antisym-sym 

48480.8765       
  48480.8254 half rec Sym 
  48480.5894 fourth rec sym-antisym 

48782.6398       
  48780.4983 half rec Antisym 
  48769.8338 fourth rec antisym-sym 

48783.3643       
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  48780.6333 half rec Sym 
  48769.8214 fourth rec sym-antisym 

50549.2038       
  50652.3 half tri Sym 
  50545.5822 half rec Sym 
  50542.5802 fourth tri sym-sym 
  50522.7034 fourth rec sym-sym 
  50528.1003 eighth sym-sym 

53931.7643       
  53931.9833 half tri Antisym 
  53931.7474 half rec Sym 
  53932 fourth tri antisym-antisym 
  53931.6636 fourth rec sym-sym 
  53902.5021 eighth sym-antisym 

54475.3399       
  54583.0686 half tri Antisym 
  54470.0764 half rec Antisym 
  54470 fourth tri antisym-antisym 
  54450 fourth rec antisym-antisym 
  54455 eighth antisym-antisym 

58104.2338       
  58208.2665 half tri Sym 
  58100.6492 half rec Antisym 
  58098.4384 fourth tri sym-sym 
  58080 fourth rec antisym-antisym 
  58081.953 eighth antisym-sym 

58156.7116       
  58157.584 half tri Anisym 
  58156.6564 half rec Sym 
  58157 fourth tri antisym-antisym 
  58156.3307 fourth rec sym-sym 
  58148.6589 eighth sym-antisym 

62591.291       
  62591.4391 half tri Sym 
  62591.2842 half rec Sym 
  62591.2878 fourth tri sym-sym 
  62591.2447 fourth rec sym-sym 
  62591.2525 eighth sym-sym 

74681.4437       
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  74848.1448 half tri Sym 
  74674.5888 half rec Sym 
  74671.9474 fourth tri antisym-sym 
  74627.0347 fourth rec sym-antisym 

74682.9791       
  74954.1332 half tri Antisym 
  74676.0474 half rec Antisym 
  74668.3296 fourth tri sym-antisym 
  74627.0747 fourth rec antisym-sym 

75361.7414       
  75361.3942 half rec Antisym 
  75360.282 fourth rec antisym-sym 

75361.7652       
  75361.468 half rec Sym 
  75360.2799 fourth rec sym-antisym 

81560.6294       
  81739.1611 half tri Antisym 
  81554.8963 half rec Sym 
  81549 fourth tri antisym-antisym 
  81514.0965 fourth rec sym-sym 
  81513.5414 eighth sym-antisym 

83483.0954       
  83667.2195 half tri Sym 
  83477.3177 half rec Sym 
  83469.4256 fourth tri sym-sym 
  83433.4492 fourth rec sym-sym 
  83441.5059 eighth sym-sym 

85604.5706       
  85617.1737 half tri Antisym 
  85603.5556 half rec Antisym 
  85605 fourth tri antisym-antisym 
  85600 fourth rec antisym-antisym 
  85601 eighth antisym-antisym 

88067.8954       
  88304.0052 half tri Sym 
  88061.6559 half rec Sym 
  88058.3053 fourth tri antisym-sym 
  88010.3732 fourth rec sym-antisym 

88069.9365       
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  88333.5406 half tri Antisym 
  88065.6762 half rec Antisym 
  88057.7387 fourth tri sym-antisym 
  88010.3101 fourth rec antisym-sym 

98300.806       
  98698.5347 half tri Sym 
  98284.9238 half rec Antisym 
  98275.7085 fourth tri sym-sym 
  98193 fourth rec antisym-antisym 
  98210.2637 eighth antisym-sym 

99301.1668       
  99300.0083 half rec Antisym 
  99295.0079 fourth rec antisym-sym 

99301.2124       
  99299.903 half rec Sym 
  99295.0052 fourth rec sym-antisym 

TABLE 3.4. Table of resonance frequencies between 0 and 100 kHz for a square plate with free boundary 
conditions and matched frequencies of symmetric models. 

 
 
 
 Several observations can be made about the square models from the data presented in 

the tables above. 

1. Every single resonance mode in the Full Plate model can be replicated with the 

symmetry models. 

2. The frequencies of the resonance modes from the symmetry models have a variance 

from the resonance frequency of the full plate that is between ~0% and 1% of the 

resonance frequency. Also, Fig 3.13 and Fig 3.14 show several cases where the 

resonance patterns of the full square plate and the patterns of the symmetry models 

where very difficult to match. This means the symmetry models do a decent but flawed 

job of replicating both the resonance patterns and the resonance frequencies of the full 

plate. 
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3. A multitude of resonance modes from several of the symmetric models with both fixed 

and free boundary conditions do not appear among the resonance modes of the full plate 

model. 

4. Of all of the symmetric models only the half rectangular model has resonance modes 

that match every resonance mode of the full plate model. This means that only the half 

rectangular model could potentially be used to reduce the model complexity without a 

significant loss of fidelity. 

5. Only by using both of the interior boundary conditions (symmetry and antisymmetry) 

on the half rectangular model can all of the resonance modes of the full plate model be 

matched. This means that the idea of using a smaller symmetric model to reduce the 

computation time is faulty since two of the half models will have to be run to replicate 

the results from an analysis of the full model. This is true at least for this type of 

analysis. If an analysis was required in which only a symmetric interior boundary need 

be considered, then a half model would reduce the computation time. 

 

 It seems that the best model, both for accuracy and computation time, for the hexagonal 

plate is the Full Plate model. 

 

Harmonic Analysis 

 A harmonic analysis applies a pressure or force that varies sinusoidally with time at a 

specific forcing frequency and extracts the results of a forced vibration. For this particular 

analysis the Gaussian pressure distribution described in Fig 3.15 is applied to the models. The 

pressure distribution is centered on the origin of all of the models. 
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FIGURE 3.16. 2D Gaussian pressure distribution applied to the harmonic models. 

 
 
 This analysis was performed with 37 distinct frequencies ranging between 80 and 300 

kHz and the results for the first frequency is shown in Fig. 3.17-3.20.  

 
FIGURE 3.17. Harmonic results for the full plate and all of the symmetric sections with fixed boundary 

conditions and a frequency of 84400 Hz. 
 
 
Since this analysis is a forced response it is not enough that the results from the symmetric 

sections match decently or closely with the results from the full plate, they must match very 
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closely or exactly in order for symmetric modeling to be considered valid. If the symmetric 

sections cannot replicate the forced response of a full model then they cannot be used to 

accurately model a structure and its responses to stimuli. 

 

 
 FIGURE 3.18. Harmonic results for the full plate and all of the symmetric sections with free boundary conditions 

and a frequency of 84400 Hz. 
 
 
 The results from the harmonic analysis performed on the hexagonal plate and all of the 

corresponding sections at a frequency of 84400 Hz are presented in Fig. 3.17 and 3.16. These 

are merely sample results presented for visual comparison. 

 The fixed boundary analysis demonstrated that very few of the results from the 

symmetric sections match with the results from the full model. Only two of the symmetry 
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models have any results that match with the results of the full model. The fourth model with 

symmetric-antisymmetric interior boundary conditions is able to match two of the results from 

the full model. The half side-side model with a symmetric interior boundary is able to match 

many, but not all of the results from the full model. 

 The free boundary analysis also demonstrated that very few of the results from the 

symmetric sections match with the results from the full model. Only nine of the twenty 

symmetry models have any results that match with the results of the full model, but no model 

has more than eight matches. 

 It is clear from this analysis that the only model of a hexagonal plate that can fully 

replicate the forced response is a full plate model. 

 
 

 
FIGURE 3.19. Harmonic results for the full plate and all of the symmetric sections with fixed boundary 

conditions and a frequency of 84400 Hz. 
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 FIGURE 3.20. Harmonic results for the full plate and all of the symmetric sections with free boundary conditions 

and a frequency of 84400 Hz. 
 
 
 The results from the harmonic analysis performed on the square plate and all of the 

corresponding sections at a frequency of 84400 Hz are presented in Fig. 3.19 and 3.20. These 

are merely sample results presented for visual comparison. 

 The fixed boundary analysis demonstrated that very few of the results from the 

symmetric sections match with the results from the full model. Only three of the symmetry 

models have any results that match with the results of the full model. The eighth model with 

symmetric-symmetric interior boundary conditions is able to match seven of the results from 

the full model. The fourth triangular model with symmetric-symmetric interior boundary 

conditions is able to match two of the results from the full model. The fourth rectangular model 



81 

with symmetric-symmetric interior boundary conditions is able to match three of the results 

from the full model. 

 The free boundary analysis also demonstrated that very few of the results from the 

symmetric sections match with the results from the full model. The eighth model with 

symmetric-symmetric interior boundary conditions is able to match eight of the results from the 

full model. The fourth triangular model with symmetric-symmetric interior boundary 

conditions is able to match five of the results from the full model. The fourth rectangular model 

with symmetric-symmetric interior boundary conditions is able to match one of the results from 

the full model. 

 It is clear from this analysis that the only model of a square plate that can fully replicate 

the forced response is a full plate model. 

 

Conclusion 

 Using a structure’s natural symmetry has long been thought to be a valid way to reduce 

a model’s size, complexity, and computation time. In order to test the accuracy of modeling 

with symmetric sections two different polygonal plates, a square and a hexagon, were divided 

along the symmetry lines of the polygons, and were subjected to a modal and a harmonic 

analysis. These two analyses can indicate whether a symmetric model can be used to recreate a 

full model without loss of accuracy. 

 The results from the modal analysis show that only half plate models can fully replicate 

all of the natural responses of the full plate, both the resonance frequencies and the resonance 

patterns. However, in order to replicate all of the resonances two half models must be run; one 

with a symmetric interior boundary, and one with an antisymmetric interior boundary. The 
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necessity of running two separate models negates the time saved by modeling with a symmetric 

section. 

 The results from the harmonic analysis show that no single model or combination of 

models can replicate the forced responses of the full plate. 

 Symmetric modeling is not accurate in many cases and should only be used very 

carefully. In certain cases the complexity and size of the model can be reduced but the 

computation time cannot. 
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APPENDIX A1 
FULL DEVELOPMENT OF KACZKOWSKI’S SOLUTION 

 
 

 The equation of the transverse vibration of a triangular segment of a hexagonal plate 

and the proposed solution are given by Kaczkowski as: 

 
𝐷∇4𝑤(𝑥, 𝑦) + 𝑁∇2𝑤(𝑥,𝑦) − (𝜇𝜔2 − 𝐾)𝑤(𝑥, 𝑦) = 0    (A1.1) 

 
𝑤(𝑥,𝑦) = ∑ ��𝐴𝑚 cosh �𝑚𝜋𝜑𝑚

𝑎
𝑦� + 𝐵𝑚 sinh �𝑚𝜋𝜑𝑚

𝑎
𝑦� +∞

𝑚=1,3,5,…

𝐶𝑚 cosh �𝑚𝜋𝜓𝑚
𝑎

𝑦� +  𝐷𝑚 sinh �𝑚𝜋𝜓𝑚
𝑎

𝑦�� sin �𝑚𝜋
𝑎
𝑥��  

 
The four coefficients require four distinct boundary conditions in order to reach an explicit 

solution. The solution is formulated such that symmetric boundary conditions are true on the 

line x=a/2 in Fig. 2.2. The equations for the boundary conditions are developed in Appendix 

A2. 

 
 

 
FIGURE 2.2. The regular hexagon and the triangular section used in the development of the analytical equation. 

 
 
 
 
 
 

(A1.2) 
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A1.1 Free Boundary Conditions 

 When the plate is freely held on the edge y=0 from Fig 2.2 the boundary conditions for 

that line are as follows: 

 
𝑉𝑦 = �𝑄𝑦 + 𝜕𝑀𝑥𝑦

𝜕𝑥
� = 0  ⟹   �𝜕

3𝑤
𝜕𝑦3 + (2 − 𝜈) 𝜕3𝑤

𝜕𝑥2𝜕𝑦
�
𝑦=0

= 0 

 
Applying Kaczkowski’s solution to this condition gives: 
 

���𝑚𝜋𝜑𝑚
𝑎

�
3
𝐴𝑚 sinh �𝑚𝜋𝜑𝑚

𝑎
𝑦� + �𝑚𝜋𝜑𝑚

𝑎
�
3
𝐵𝑚 cosh �𝑚𝜋𝜑𝑚

𝑎
𝑦� + �𝑚𝜋𝜓𝑚

𝑎
�
3
𝐶𝑚 sinh �𝑚𝜋𝜓𝑚

𝑎
𝑦� +

�𝑚𝜋𝜓𝑚
𝑎

�
3
𝐷𝑚 cosh �𝑚𝜋𝜓𝑚

𝑎
𝑦�� sin �𝑚𝜋

𝑎
𝑥�� −

(2 − 𝜈) �𝑚𝜋
𝑎
�
2
���𝑚𝜋𝜑𝑚

𝑎
� 𝐴𝑚 sinh �𝑚𝜋𝜑𝑚

𝑎
𝑦� + �𝑚𝜋𝜑𝑚

𝑎
� 𝐵𝑚 cosh �𝑚𝜋𝜑𝑚

𝑎
𝑦� +

�𝑚𝜋𝜓𝑚
𝑎

� 𝐶𝑚 sinh �𝑚𝜋𝜓𝑚
𝑎

𝑦� + �𝑚𝜋𝜓𝑚
𝑎

�𝐷𝑚 cosh �𝑚𝜋𝜓𝑚
𝑎

𝑦�� sin �𝑚𝜋
𝑎
𝑥�� = 0  

 
(𝜑𝑚3 − (2 − 𝜈)𝜑𝑚)𝐵𝑚 + (𝜓𝑚3 − (2 − 𝜈)𝜓𝑚)𝐷𝑚   (A1.3b) 

 
 The second condition comes from the consideration that the plate section is not 

symmetric about the line y=0. This means that the even functions can be discarded while 

keeping the odd functions. From this consideration the following is true. 

 
𝐴𝑚 = 𝐶𝑚 = 0      (A1.4) 

 
 The two equations, (A1.3b) and (A1.4), along with the two from the symmetric 

boundary constitute four conditions that give a system of linear equations which can be solved. 

 

A1.2 Fixed Boundary Conditions 

 When the plate has a fixed boundary on the line y = 0 in Fig. 2.2 the boundary 

conditions are as follows: 

 
(𝑤)𝑦=0 = 0      (A1.5a) 

 

(A1.3a) 
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�𝜕𝑤
𝜕𝑦
�
𝑦=0

= 0      (A1.6a) 

 
Applying Kaczkowski’s solution to the first condition gives: 
 

𝐴𝑚 + 𝐶𝑚 = 0      (A1.5b) 
 
Applying Kaczkowski’s solutionto the second condition gives: 
 

��𝑚𝜋𝜑𝑚
𝑎

�𝐴𝑚 sinh �𝑚𝜋𝜑𝑚
𝑎

𝑦� + �𝑚𝜋𝜑𝑚
𝑎

�𝐵𝑚 cosh �𝑚𝜋𝜑𝑚
𝑎

𝑦� +

�𝑚𝜋𝜓𝑚
𝑎

� 𝐶𝑚 sinh �𝑚𝜋𝜓𝑚
𝑎

𝑦� + �𝑚𝜋𝜓𝑚
𝑎

�𝐷𝑚 cosh �𝑚𝜋𝜓𝑚
𝑎

𝑦�� sin �𝑚𝜋
𝑎
𝑥� =

0  
 

𝜑𝑚𝐵𝑚 + 𝜓𝑚𝐷𝑚 = 0     (A1.6b) 
 
 These two equations along with the two from the symmetric boundary constitute four 

conditions that give a system of linear equations which can be solved as: 

 

A1.3 Symmetric Boundary Conditions Used by Kaczkowski 

 The line y = 2βx from Fig. 2.2 can support two different boundary conditions when it is 

considered in the context of the entire hexagonal plate. This boundary can either be symmetric 

or anti-symmetric. Here the symmetric condition will be considered. In order to apply the 

boundary equations, a new coordinate system must be defined. 

 

𝑥 = 𝑠
𝑎
𝑐
− 𝑛

2𝛽𝑎
𝑐

,     𝑦 = 𝑠
2𝛽𝑎
𝑐

+ 𝑛
𝑎
𝑐

,     𝑤ℎ𝑒𝑟𝑒 𝑐 = 2��
𝑎
2
�
2

+ (𝛽𝑎)2 

 
𝜉 = 𝜎 − 2𝛽𝜁,     𝜂 = 2𝛽𝜎 + 𝜁,     𝜎 =

𝑠
𝑐

,     𝜁 =
𝑛
𝑐

 

 
With these substitutions, the proposed solution becomes 
 

𝑤(𝜎, 𝜁) = ∑ ��𝐴𝑚 cosh�𝑚𝜋𝜑𝑚(2𝛽𝜎 + 𝜁)� + 𝐵𝑚 sinh�𝑚𝜋𝜑𝑚(2𝛽𝜎 + 𝜁)� +∞
𝑚=1,3,5,…

𝐶𝑚 cosh�𝑚𝜋𝜓𝑚(2𝛽𝜎 + 𝜁)� + 𝐷𝑚 sinh�𝑚𝜋𝜓𝑚(2𝛽𝜎 + 𝜁)�� sin�𝑚𝜋(𝜎 −
2𝛽𝜁)��  

 

(A1.7) 
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And the Laplacian of the proposed solution becomes: 
 

∇2𝑤(𝜎, 𝜁) = ∑ ��Φ𝐴𝑚 cosh�𝑚𝜋𝜑𝑚(2𝛽𝜎 + 𝜁)� + Φ𝐵𝑚 sinh�𝑚𝜋𝜑𝑚(2𝛽𝜎 +∞
𝑚=1,3,5,…

𝜁)� + Ψ𝐶𝑚 cosh�𝑚𝜋𝜓𝑚(2𝛽𝜎 + 𝜁)� + Ψ𝐷𝑚 sinh�𝑚𝜋𝜓𝑚(2𝛽𝜎 +
𝜁)�� sin�𝑚𝜋(𝜎 − 2𝛽𝜁)��  

 
Using trigonometric and hyperbolic identities, the solution becomes: 
 

𝑤 =
∑ {[𝐴𝑚(cosh(𝑚𝜋𝜑𝑚2𝛽𝜎) cosh(𝑚𝜋𝜑𝑚𝜁) +∞
𝑚=1,3,5,…

sinh(𝑚𝜋𝜑𝑚2𝛽𝜎) sinh(𝑚𝜋𝜑𝑚𝜁)) +
𝐵𝑚(sinh(𝑚𝜋𝜑𝑚2𝛽𝜎) cosh(𝑚𝜋𝜑𝑚𝜁) +
cosh(𝑚𝜋𝜑𝑚2𝛽𝜎) sinh(𝑚𝜋𝜑𝑚𝜁)) +
𝐶𝑚(cosh(𝑚𝜋𝜓𝑚2𝛽𝜎) cosh(𝑚𝜋𝜓𝑚𝜁) +
sinh(𝑚𝜋𝜓𝑚2𝛽𝜎) sinh(𝑚𝜋𝜓𝑚𝜁)) +
𝐷𝑚(sinh(𝑚𝜋𝜓𝑚2𝛽𝜎) cosh(𝑚𝜋𝜓𝑚𝜁) +
cosh(𝑚𝜋𝜓𝑚2𝛽𝜎) sinh(𝑚𝜋𝜓𝑚𝜁))][sin(𝑚𝜋𝜎) cos(−𝑚𝜋2𝛽𝜁) +
cos(𝑚𝜋𝜎) sin(−𝑚𝜋2𝛽𝜁)]}  

 
And the Laplacian of the solution becomes: 
 

∇2𝑤 = −�𝜋
𝑎
�
2
∑ {[Φ𝐴𝑚(cosh(𝑚𝜋𝜑𝑚2𝛽𝜎) cosh(𝑚𝜋𝜑𝑚𝜁) +∞
𝑚=1,3,5,…

sinh(𝑚𝜋𝜑𝑚2𝛽𝜎) sinh(𝑚𝜋𝜑𝑚𝜁)) +
Φ𝐵𝑚(sinh(𝑚𝜋𝜑𝑚2𝛽𝜎) cosh(𝑚𝜋𝜑𝑚𝜁) +
cosh(𝑚𝜋𝜑𝑚2𝛽𝜎) sinh(𝑚𝜋𝜑𝑚𝜁)) +
Ψ𝐶𝑚(cosh(𝑚𝜋𝜓𝑚2𝛽𝜎) cosh(𝑚𝜋𝜓𝑚𝜁) +
sinh(𝑚𝜋𝜓𝑚2𝛽𝜎) sinh(𝑚𝜋𝜓𝑚𝜁)) +
Ψ𝐷𝑚(sinh(𝑚𝜋𝜓𝑚2𝛽𝜎) cosh(𝑚𝜋𝜓𝑚𝜁) +
cosh(𝑚𝜋𝜓𝑚2𝛽𝜎) sinh(𝑚𝜋𝜓𝑚𝜁))][sin(𝑚𝜋𝜎) cos(−𝑚𝜋2𝛽𝜁) +
cos(𝑚𝜋𝜎) sin(−𝑚𝜋2𝛽𝜁)]}  

 
 
The boundary conditions are given as 
 

�𝜕𝑤
𝜕𝜁
�
𝜁=0

= 0

�𝜕∇
2𝑤
𝜕𝜁

�
𝜁=0

= 0
 

 
Applying the modified proposed solution to the first condition yields: 
 

𝜋∑ 𝑚{[𝜑𝑚𝐴𝑚(cosh(𝑚𝜋𝜑𝑚2𝛽𝜎) sinh(𝑚𝜋𝜑𝑚𝜁) +∞
𝑚=1,3,5,…

sinh(𝑚𝜋𝜑𝑚2𝛽𝜎) cosh(𝑚𝜋𝜑𝑚𝜁)) +
𝜑𝑚𝐵𝑚(sinh(𝑚𝜋𝜑𝑚2𝛽𝜎) sinh(𝑚𝜋𝜑𝑚𝜁) +

(A1.8) 

(A1.9) 

(A1.10) 

(A1.10a) 
 
(A1.11a) 
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cosh(𝑚𝜋𝜑𝑚2𝛽𝜎) cosh(𝑚𝜋𝜑𝑚𝜁)) +
𝜓𝑚𝐶𝑚(cosh(𝑚𝜋𝜓𝑚2𝛽𝜎) sinh(𝑚𝜋𝜓𝑚𝜁) +
sinh(𝑚𝜋𝜓𝑚2𝛽𝜎) cosh(𝑚𝜋𝜓𝑚𝜁)) +
𝜓𝑚𝐷𝑚(sinh(𝑚𝜋𝜓𝑚2𝛽𝜎) sinh(𝑚𝜋𝜓𝑚𝜁) +
cosh(𝑚𝜋𝜓𝑚2𝛽𝜎) cosh(𝑚𝜋𝜓𝑚𝜁))][sin(𝑚𝜋𝜎) cos(−𝑚𝜋2𝛽𝜁) +
cos(𝑚𝜋𝜎) sin(−𝑚𝜋2𝛽𝜁)] −
2𝛽[𝐴𝑚(cosh(𝑚𝜋𝜑𝑚2𝛽𝜎) cosh(𝑚𝜋𝜑𝑚𝜁) +
sinh(𝑚𝜋𝜑𝑚2𝛽𝜎) sinh(𝑚𝜋𝜑𝑚𝜁)) +
𝐵𝑚(sinh(𝑚𝜋𝜑𝑚2𝛽𝜎) cosh(𝑚𝜋𝜑𝑚𝜁) +
cosh(𝑚𝜋𝜑𝑚2𝛽𝜎) sinh(𝑚𝜋𝜑𝑚𝜁)) +
𝐶𝑚(cosh(𝑚𝜋𝜓𝑚2𝛽𝜎) cosh(𝑚𝜋𝜓𝑚𝜁) +
sinh(𝑚𝜋𝜓𝑚2𝛽𝜎) sinh(𝑚𝜋𝜓𝑚𝜁)) +
𝐷𝑚(sinh(𝑚𝜋𝜓𝑚2𝛽𝜎) cosh(𝑚𝜋𝜓𝑚𝜁) +
cosh(𝑚𝜋𝜓𝑚2𝛽𝜎) sinh(𝑚𝜋𝜓𝑚𝜁))][sin(𝑚𝜋𝜎) cos(−𝑚𝜋2𝛽𝜁) +
cos(𝑚𝜋𝜎) sin(−𝑚𝜋2𝛽𝜁)][−sin(𝑚𝜋𝜎) sin(−𝑚𝜋2𝛽𝜁) +
cos(𝑚𝜋𝜎) cos(−𝑚𝜋2𝛽𝜁)]} = 0  

 
∑ 𝑚[𝐴𝑚(𝜑𝑚 sinh(𝑚𝜋𝜑𝑚2𝛽𝜎) sin(𝑚𝜋𝜎) −∞
𝑚=1,3,5,…

2𝛽 cosh(𝑚𝜋𝜑𝑚2𝛽𝜎) cos(𝑚𝜋𝜎)) +
𝐵𝑚(𝜑𝑚 cosh(𝑚𝜋𝜑𝑚2𝛽𝜎) sin(𝑚𝜋𝜎) −
2𝛽 sinh(𝑚𝜋𝜑𝑚2𝛽𝜎) cos(𝑚𝜋𝜎)) +
𝐶𝑚(𝜓𝑚 sinh(𝑚𝜋𝜓𝑚2𝛽𝜎) sin(𝑚𝜋𝜎) −
2𝛽 cosh(𝑚𝜋𝜓𝑚2𝛽𝜎) cos(𝑚𝜋𝜎)) +
𝐷𝑚(𝜓𝑚 cosh(𝑚𝜋𝜓𝑚2𝛽𝜎) sin(𝑚𝜋𝜎) −
2𝛽 sinh(𝑚𝜋𝜓𝑚2𝛽𝜎) cos(𝑚𝜋𝜎))] = 0  

 
Applying the Laplacian of the modified solution to the second condition gives: 
 

−𝜋 �𝜋
𝑎
�
2
∑ 𝑚{[𝜑𝑚Φ𝐴𝑚(cosh(𝑚𝜋𝜑𝑚2𝛽𝜎) sinh(𝑚𝜋𝜑𝑚𝜁) +∞
𝑚=1,3,5,…

sinh(𝑚𝜋𝜑𝑚2𝛽𝜎) cosh(𝑚𝜋𝜑𝑚𝜁)) +
𝜑𝑚Φ𝐵𝑚(sinh(𝑚𝜋𝜑𝑚2𝛽𝜎) sinh(𝑚𝜋𝜑𝑚𝜁) +
cosh(𝑚𝜋𝜑𝑚2𝛽𝜎) cosh(𝑚𝜋𝜑𝑚𝜁)) +
𝜓𝑚Ψ𝐶𝑚(cosh(𝑚𝜋𝜓𝑚2𝛽𝜎) sinh(𝑚𝜋𝜓𝑚𝜁) +
sinh(𝑚𝜋𝜓𝑚2𝛽𝜎) cosh(𝑚𝜋𝜓𝑚𝜁)) +
𝜓𝑚Ψ𝐷𝑚(sinh(𝑚𝜋𝜓𝑚2𝛽𝜎) sinh(𝑚𝜋𝜓𝑚𝜁) +
cosh(𝑚𝜋𝜓𝑚2𝛽𝜎) cosh(𝑚𝜋𝜓𝑚𝜁))][sin(𝑚𝜋𝜎) cos(−𝑚𝜋2𝛽𝜁) +
cos(𝑚𝜋𝜎) sin(−𝑚𝜋2𝛽𝜁)] −
2𝛽[Φ𝐴𝑚(cosh(𝑚𝜋𝜑𝑚2𝛽𝜎) cosh(𝑚𝜋𝜑𝑚𝜁) +
sinh(𝑚𝜋𝜑𝑚2𝛽𝜎) sinh(𝑚𝜋𝜑𝑚𝜁)) +
Φ𝐵𝑚(sinh(𝑚𝜋𝜑𝑚2𝛽𝜎) cosh(𝑚𝜋𝜑𝑚𝜁) +
cosh(𝑚𝜋𝜑𝑚2𝛽𝜎) sinh(𝑚𝜋𝜑𝑚𝜁)) +
Ψ𝐶𝑚(cosh(𝑚𝜋𝜓𝑚2𝛽𝜎) cosh(𝑚𝜋𝜓𝑚𝜁) +
sinh(𝑚𝜋𝜓𝑚2𝛽𝜎) sinh(𝑚𝜋𝜓𝑚𝜁)) +
Ψ𝐷𝑚(sinh(𝑚𝜋𝜓𝑚2𝛽𝜎) cosh(𝑚𝜋𝜓𝑚𝜁) +

(A1.10b) 
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cosh(𝑚𝜋𝜓𝑚2𝛽𝜎) sinh(𝑚𝜋𝜓𝑚𝜁))][sin(𝑚𝜋𝜎) cos(−𝑚𝜋2𝛽𝜁) +
cos(𝑚𝜋𝜎) sin(−𝑚𝜋2𝛽𝜁)][−sin(𝑚𝜋𝜎) sin(−𝑚𝜋2𝛽𝜁) +
cos(𝑚𝜋𝜎) cos(−𝑚𝜋2𝛽𝜁)]} = 0  

 
∑ 𝑚[Φ𝐴𝑚(𝜑𝑚 sinh(𝑚𝜋𝜑𝑚2𝛽𝜎) sin(𝑚𝜋𝜎) −∞
𝑚=1,3,5,…

2𝛽 cosh(𝑚𝜋𝜑𝑚2𝛽𝜎) cos(𝑚𝜋𝜎)) +
Φ𝐵𝑚(𝜑𝑚 cosh(𝑚𝜋𝜑𝑚2𝛽𝜎) sin(𝑚𝜋𝜎) −
2𝛽 sinh(𝑚𝜋𝜑𝑚2𝛽𝜎) cos(𝑚𝜋𝜎)) +
Ψ𝐶𝑚(𝜓𝑚 sinh(𝑚𝜋𝜓𝑚2𝛽𝜎) sin(𝑚𝜋𝜎) −
2𝛽 cosh(𝑚𝜋𝜓𝑚2𝛽𝜎) cos(𝑚𝜋𝜎)) +
Ψ𝐷𝑚(𝜓𝑚 cosh(𝑚𝜋𝜓𝑚2𝛽𝜎) sin(𝑚𝜋𝜎) −
2𝛽 sinh(𝑚𝜋𝜓𝑚2𝛽𝜎) cos(𝑚𝜋𝜎))] = 0  

 
 
A1.4 Symmetric Boundary Conditions from Appendix A2 

 Using slightly different coordinate transformation and different boundary conditions, 

i.e. those developed in Appendix A2, slightly different equations for the coefficients are 

obtained. If the coordinate transformation used is: 

𝑥 =
𝑎
𝑐
𝑡 −

2𝛽𝑎
𝑐

𝑛,     𝑦 =
2𝛽𝑎
𝑐

𝑡 +
𝑎
𝑐
𝑛,     𝑤ℎ𝑒𝑟𝑒 𝑐 = 2��

𝑎
2
�
2

+ (𝛽𝑎)2 

 
Then the proposed solution becomes 
 

𝑤(𝑛, 𝑡) = ∑ ��𝐴𝑚 cosh �𝑚𝜋𝜑𝑚
𝑐

(𝑛 + 2𝛽𝑡)� + 𝐵𝑚 sinh �𝑚𝜋𝜑𝑚
𝑐

(𝑛 +∞
𝑚=1,3,5,…

2𝛽𝑡)� + 𝐶𝑚 cosh �𝑚𝜋𝜓𝑚
𝑐

(𝑛 + 2𝛽𝑡)� + 𝐷𝑚 sinh �𝑚𝜋𝜓𝑚
𝑐

(𝑛 +

2𝛽𝑡)�� sin �𝑚𝜋
𝑐

(𝑡 − 2𝛽𝑛)��  
 
Applying the identities mentioned above transforms the solution into the following: 
 

𝑤 =
∑ ��𝐴𝑚 �cosh �𝑚𝜋𝜑𝑚

𝑐
2𝛽𝑡� cosh �𝑚𝜋𝜑𝑚

𝑐
𝑛� +∞

𝑚=1,3,5,…

sinh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜑𝑚
𝑐

𝑛�� +

𝐵𝑚 �sinh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜑𝑚
𝑐

𝑛� +

cosh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜑𝑚
𝑐

𝑛�� +

𝐶𝑚 �cosh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜓𝑚
𝑐

𝑛� +

(A1.11b) 
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sinh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜓𝑚
𝑐

𝑛�� +

𝐷𝑚 �sinh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜓𝑚
𝑐

𝑛� +

cosh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜓𝑚
𝑐

𝑛��� �sin �𝑚𝜋
𝑐
𝑡� cos �−𝑚𝜋

𝑐
2𝛽𝑛� +

cos �𝑚𝜋
𝑐
𝑡� sin �−𝑚𝜋

𝑐
2𝛽𝑛���  

 
The symmetric boundary conditions are: 
 

�𝜕𝑤
𝜕𝑛
�
𝑦=2𝛽𝑥

= 0       (A1.14a) 

 
𝑉𝑛 = �𝑄𝑛 + 𝜕𝑀𝑛𝑡

𝜕𝑡
� = 0  ⟹   �𝜕

3𝑤
𝜕𝑛3

+ (2 − 𝜈) 𝜕3𝑤
𝜕𝑛𝜕𝑡2

�
𝑦=2𝛽𝑥

= 0  (A1.15a) 

 
Applying Kaczkowski’s solution to the first symmetry condition on n = 0 gives: 
 

∑ ���𝑚𝜋𝜑𝑚
𝑐

�𝐴𝑚 �cosh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜑𝑚
𝑐

𝑛� +∞
𝑚=1,3,5,…

sinh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜑𝑚
𝑐

𝑛�� + �𝑚𝜋𝜑𝑚
𝑐

� 𝐵𝑚 �sinh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜑𝑚
𝑐

𝑛� +

cosh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜑𝑚
𝑐

𝑛�� + �𝑚𝜋𝜓𝑚
𝑐

� 𝐶𝑚 �cosh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜓𝑚
𝑐

𝑛� +

sinh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜓𝑚
𝑐

𝑛�� + �𝑚𝜋𝜓𝑚
𝑐

�𝐷𝑚 �sinh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜓𝑚
𝑐

𝑛� +

cosh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜓𝑚
𝑐

𝑛��� �sin �𝑚𝜋
𝑐
𝑡� cos �−𝑚𝜋

𝑐
2𝛽𝑛� +

cos �𝑚𝜋
𝑐
𝑡� sin �−𝑚𝜋

𝑐
2𝛽𝑛�� − 2𝛽 �𝑚𝜋

𝑐
� �𝐴𝑚 �cosh �𝑚𝜋𝜑𝑚

𝑐
2𝛽𝑡� cosh �𝑚𝜋𝜑𝑚

𝑐
𝑛� +

sinh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜑𝑚
𝑐

𝑛�� + 𝐵𝑚 �sinh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜑𝑚
𝑐

𝑛� +

cosh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜑𝑚
𝑐

𝑛�� + 𝐶𝑚 �cosh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜓𝑚
𝑐

𝑛� +

sinh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜓𝑚
𝑐

𝑛�� + 𝐷𝑚 �sinh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜓𝑚
𝑐

𝑛� +

cosh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜓𝑚
𝑐

𝑛��� �− sin �𝑚𝜋
𝑐
𝑡� sin �−𝑚𝜋

𝑐
2𝛽𝑛� +

cos �𝑚𝜋
𝑐
𝑡� cos �−𝑚𝜋

𝑐
2𝛽𝑛��� = 0  

 
∑ �𝐴𝑚 �𝜑𝑚 sinh �𝑚𝜋𝜑𝑚

𝑐
2𝛽𝑡� sin �𝑚𝜋

𝑐
𝑡� −∞

𝑚=1,3,5,…

2𝛽 cosh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� cos �𝑚𝜋
𝑐
𝑡�� +

𝐵𝑚 �𝜑𝑚 sinh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� sin �𝑚𝜋
𝑐
𝑡� − 2βcosh �𝑚𝜋𝜑𝑚

𝑐
2𝛽𝑡� cos �𝑚𝜋

𝑐
𝑡�� +

𝐶𝑚 �𝜓𝑚 sinh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� sin �𝑚𝜋
𝑐
𝑡� −

2𝛽 cosh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� cos �𝑚𝜋
𝑐
𝑡�� +

𝐷𝑚 �𝜓𝑚 sinh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� sin �𝑚𝜋
𝑐
𝑡� − 2βcosh �𝑚𝜋𝜑𝑚

𝑐
2𝛽𝑡� cos �𝑚𝜋

𝑐
𝑡��� =

0  
 
Applying the solution to the second symmetry condition on n = 0 gives: 
 

(A1.14b) 
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∑ ���𝑚𝜋𝜑𝑚
𝑐

�
3
𝐴𝑚 �cosh �𝑚𝜋𝜑𝑚

𝑐
2𝛽𝑡� sinh �𝑚𝜋𝜑𝑚

𝑐
𝑛� +∞

𝑚=1,3,5,…

sinh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜑𝑚
𝑐

𝑛�� + �𝑚𝜋𝜑𝑚
𝑐

�
3
𝐵𝑚 �sinh �𝑚𝜋𝜑𝑚

𝑐
2𝛽𝑡� sinh �𝑚𝜋𝜑𝑚

𝑐
𝑛� +

cosh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜑𝑚
𝑐

𝑛�� +

�𝑚𝜋𝜓𝑚
𝑐

�
3
𝐶𝑚 �cosh �𝑚𝜋𝜓𝑚

𝑐
2𝛽𝑡� sinh �𝑚𝜋𝜓𝑚

𝑐
𝑛� + sinh �𝑚𝜋𝜓𝑚

𝑐
2𝛽𝑡� cosh �𝑚𝜋𝜓𝑚

𝑐
𝑛�� +

�𝑚𝜋𝜓𝑚
𝑐

�
3
𝐷𝑚 �sinh �𝑚𝜋𝜓𝑚

𝑐
2𝛽𝑡� sinh �𝑚𝜋𝜓𝑚

𝑐
𝑛� +

cosh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜓𝑚
𝑐

𝑛��� �sin �𝑚𝜋
𝑐
𝑡� cos �−𝑚𝜋

𝑐
2𝛽𝑛� +

cos �𝑚𝜋
𝑐
𝑡� sin �−𝑚𝜋

𝑐
2𝛽𝑛�� − (2𝛽)3 �𝑚𝜋

𝑐
�
3
�𝐴𝑚 �cosh �𝑚𝜋𝜑𝑚

𝑐
2𝛽𝑡� cosh �𝑚𝜋𝜑𝑚

𝑐
𝑛� +

sinh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜑𝑚
𝑐

𝑛�� + 𝐵𝑚 �sinh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜑𝑚
𝑐

𝑛� +

cosh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜑𝑚
𝑐

𝑛�� + 𝐶𝑚 �cosh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜓𝑚
𝑐

𝑛� +

sinh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜓𝑚
𝑐

𝑛�� + 𝐷𝑚 �sinh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜓𝑚
𝑐

𝑛� +

cosh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜓𝑚
𝑐

𝑛��� �sin �𝑚𝜋
𝑐
𝑡� sin �−𝑚𝜋

𝑐
2𝛽𝑛� −

cos �𝑚𝜋
𝑐
𝑡� cos �−𝑚𝜋

𝑐
2𝛽𝑛�� − 6𝛽 ��𝑚𝜋𝜑𝑚

𝑐
�
2
𝐴𝑚 �cosh �𝑚𝜋𝜑𝑚

𝑐
2𝛽𝑡� cosh �𝑚𝜋𝜑𝑚

𝑐
𝑛� +

sinh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜑𝑚
𝑐

𝑛�� + �𝑚𝜋𝜑𝑚
𝑐

�
2
𝐵𝑚 �sinh �𝑚𝜋𝜑𝑚

𝑐
2𝛽𝑡� cosh �𝑚𝜋𝜑𝑚

𝑐
𝑛� +

cosh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜑𝑚
𝑐

𝑛�� +

�𝑚𝜋𝜓𝑚
𝑐

�
2
𝐶𝑚 �cosh �𝑚𝜋𝜓𝑚

𝑐
2𝛽𝑡� cosh �𝑚𝜋𝜓𝑚

𝑐
𝑛� + sinh �𝑚𝜋𝜓𝑚

𝑐
2𝛽𝑡� sinh �𝑚𝜋𝜓𝑚

𝑐
𝑛�� +

�𝑚𝜋𝜓𝑚
𝑐

�
2
𝐷𝑚 �sinh �𝑚𝜋𝜓𝑚

𝑐
2𝛽𝑡� cosh �𝑚𝜋𝜓𝑚

𝑐
𝑛� +

cosh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜓𝑚
𝑐

𝑛��� �− sin �𝑚𝜋
𝑐
𝑡� sin �−𝑚𝜋

𝑐
2𝛽𝑛� +

cos �𝑚𝜋
𝑐
𝑡� cos �−𝑚𝜋

𝑐
2𝛽𝑛�� − 12𝛽2 ��𝑚𝜋𝜑𝑚

𝑐
�𝐴𝑚 �cosh �𝑚𝜋𝜑𝑚

𝑐
2𝛽𝑡� sinh �𝑚𝜋𝜑𝑚

𝑐
𝑛� +

sinh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜑𝑚
𝑐

𝑛�� + �𝑚𝜋𝜑𝑚
𝑐

� 𝐵𝑚 �sinh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜑𝑚
𝑐

𝑛� +

cosh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜑𝑚
𝑐

𝑛�� +

�𝑚𝜋𝜓𝑚
𝑐

� 𝐶𝑚 �cosh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� sin3 h �𝑚𝜋𝜓𝑚
𝑐

𝑛� +

sinh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜓𝑚
𝑐

𝑛�� + �𝑚𝜋𝜓𝑚
𝑐

�  𝐷𝑚 �sinh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� sinh �𝑚𝜋𝜓𝑚
𝑐

𝑛� +

cosh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� cosh �𝑚𝜋𝜓𝑚
𝑐

𝑛��� �− sin �𝑚𝜋
𝑐
𝑡� cos �−𝑚𝜋

𝑐
2𝛽𝑛� +

cos �𝑚𝜋
𝑐
𝑡� sin �−𝑚𝜋

𝑐
2𝛽𝑛��� = 0  

 
∑ �𝐴𝑚 �(𝜑𝑚3 − 3𝜑𝑚(2𝛽)2) sinh �𝑚𝜋𝜑𝑚

𝑐
2𝛽𝑡� sin �𝑚𝜋

𝑐
𝑡� +∞

𝑚=1,3,5,…

�(2𝛽)3 + 3𝜑𝑚2 (2𝛽)� cosh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� cos �𝑚𝜋
𝑐
𝑡�� + 𝐵𝑚 �(𝜑𝑚3 −

3𝜑𝑚(2𝛽)2) cosh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� sin �𝑚𝜋
𝑐
𝑡� +

�(2𝛽)3 + 3𝜑𝑚2 (2𝛽)� sinh �𝑚𝜋𝜑𝑚
𝑐

2𝛽𝑡� cos �𝑚𝜋
𝑐
𝑡�� + 𝐶𝑚 �(𝜓𝑚3 −

3𝜓𝑚(2𝛽)2) sinh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� sin �𝑚𝜋
𝑐
𝑡� +

�(2𝛽)3 + 3𝜓𝑚2 (2𝛽)� cosh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� cos �𝑚𝜋
𝑐
𝑡�� + 𝐷𝑚 �(𝜓𝑚3 −

(A1.15b) 
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3𝜓𝑚(2𝛽)2) cosh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� sin �𝑚𝜋
𝑐
𝑡� +

�(2𝛽)3 + 3𝜓𝑚2 (2𝛽)� sinh �𝑚𝜋𝜓𝑚
𝑐

2𝛽𝑡� cos �𝑚𝜋
𝑐
𝑡��� = 0 
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APPENDIX A2 
Development of Basic Plate Equations 

 
 

 Some basic moment-deflection equations: 
 

�

𝑀𝑥 = −𝐷 �𝜕
2𝑤
𝜕𝑥2

+ 𝜈 𝜕2𝑤
𝜕𝑦2

�

𝑀𝑦 = −𝐷 �𝜕
2𝑤
𝜕𝑦2

+ 𝜈 𝜕
2𝑤
𝜕𝑥2

�

𝑀𝑥𝑦 = −𝑀𝑦𝑥 = 𝐷(1 − 𝜈) 𝜕2𝑤
𝜕𝑥𝜕𝑦⎭

⎪
⎬

⎪
⎫

 

 

𝐷 =
𝐸ℎ3

12(1 − 𝜈2) 

 
A2.1 Equilibrium 
 
Summing all of the forces on the element in the x direction gives 
 

Σ𝐹𝑥 = 0 = 𝑄𝑥𝑑𝑦 − �𝑄𝑥 +
𝜕𝑄𝑥
𝜕𝑥

𝑑𝑥� 𝑑𝑦 − 𝑄𝑦𝑑𝑥 + �𝑄𝑦 +
𝜕𝑄𝑦
𝜕𝑦

𝑑𝑦� 𝑑𝑥 − 𝑞𝑑𝑥𝑑𝑦 

 
−
𝜕𝑄𝑥
𝜕𝑥

𝑑𝑥𝑑𝑦 −
𝜕𝑄𝑦
𝜕𝑦

𝑑𝑥𝑑𝑦 − 𝑞𝑑𝑥𝑑𝑦 = 0 

 
𝜕𝑄𝑥
𝜕𝑥

+ 𝜕𝑄𝑦
𝜕𝑦

+ 𝑞 = 0 
 

Similarly summing the forces in the y direction gives 
 

𝜕𝑄𝑥
𝜕𝑥

+ 𝜕𝑄𝑦
𝜕𝑦

− 𝑞 = 0 
 

Summing all of the moments of the element about the x-axis gives 
 

Σ𝑀𝑥 = 0 = 𝑀𝑦𝑑𝑥 − �𝑀𝑦 +
𝜕𝑀𝑦

𝜕𝑦
𝑑𝑦� 𝑑𝑥 + 𝑀𝑦𝑥𝑑𝑥 − �𝑀𝑦𝑥 +

𝜕𝑀𝑦𝑥

𝜕𝑥
𝑑𝑥� 𝑑𝑦 + �𝑄𝑦 +

𝜕𝑄𝑦
𝜕𝑦

𝑑𝑦� 𝑑𝑥𝑑𝑦 − 𝑄𝑥𝑑𝑦𝑑𝑦

+ �𝑄𝑥 +
𝜕𝑄𝑥
𝜕𝑥

𝑑𝑥� 𝑑𝑦𝑑𝑦 + 𝑞𝑑𝑥𝑑𝑦 

 
−
𝜕𝑀𝑦

𝜕𝑦
𝑑𝑥𝑑𝑦 −

𝜕𝑀𝑦𝑥

𝜕𝑥
𝑑𝑥𝑑𝑦 + 𝑄𝑦 = 0 

 
𝑄𝑦 = 𝜕𝑀𝑦

𝜕𝑦
+ 𝜕𝑀𝑥𝑦

𝜕𝑥
 

 

(A2.2) 

(A2.3) 

(A2.4) 

(A2.1) 
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Similarly summing the moments about the y-axis gives 
 

𝑄𝑥 = 𝜕𝑀𝑥
𝜕𝑥

+ 𝜕𝑀𝑥𝑦

𝜕𝑦
 

 
 An equilibrium equation can be expressed solely in terms of the moment derivatives by 

substituting expressions (---.4) and (---.5) into (---.2) and eliminating Qx and Qy

 
∂
∂x
�
∂Mxy

∂y
+
∂Mx

∂x
� +

∂
∂y
�−

∂Mxy

∂x
+
∂My

∂y
� + q = 0 

. 

 
𝜕2𝑀𝑥
𝜕𝑥2

+ 𝜕2𝑀𝑦

𝜕𝑦2
− 2 𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
= −𝑞 

 
 
A2.2 Differential Equation of Transverse Deflection 

 The differential equation for the transverse deflection of the plate can be obtained by 

substituting the moment-curvature relationships (A2.1) into the equilibrium equation (A2.6). 

Here the plate bending stiffness is assumed to be constant. 

 
𝜕2

𝜕𝑥2
�−𝐷 �

𝜕2𝑤
𝜕𝑥2

+ 𝜈
𝜕2𝑤
𝜕𝑦2

�� +
𝜕2

𝜕𝑦2
�−𝐷 �

𝜕2𝑤
𝜕𝑦2

+ 𝜈
𝜕2𝑤
𝜕𝑥2

�� − 2
𝜕2

𝜕𝑥𝜕𝑦
�𝐷(1 − 𝜈)

𝜕2𝑤
𝜕𝑥𝜕𝑦

� = 𝑞 

 

−𝐷
𝜕4𝑤
𝜕𝑥4

− 𝐷𝜈
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
− 𝐷

𝜕4𝑤
𝜕𝑦4

− 𝐷𝜈
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
− 2𝐷(1 − 𝜈)

𝜕4𝑤
𝜕𝑥2𝜕𝑦2

= −𝑞 

 
𝜕4𝑤
𝜕𝑥4

+
𝜕4𝑤
𝜕𝑦4

+ �𝜈
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝜈

𝜕4𝑤
𝜕𝑥2𝜕𝑦2

+ (2 − 2𝜈)
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
� =

𝑞
𝐷

 

 
𝜕4𝑤
𝜕𝑥4

+ 2 𝜕4𝑤
𝜕𝑥2𝜕𝑦2

+ 𝜕4𝑤
𝜕𝑦4

= ∇4w = q
D

 
 
This equation for the transverse deflection does not include any mid-plane stress and is 

essentially for a freely bound plate. 

 

 

(A2.5) 

(A2.6) 

(A2.7) 
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A2.3 Mid-Plane Stress 

 Mid-plane stress develops directly from the application of forces at the boundary of the 

plate. Fig. A2.1 shows the forces per unit length of the mid-plane. 

 
 

 
FIGURE A2.1. Forces per unit length of the mid-plane 

 
 
Equilibrium of the mid-plane forces on element δxδy gives the following equations. 
 

�𝐹𝑥 = 0 = −𝑁𝑥𝑑𝑦 + �𝑁𝑥 +
𝜕𝑁𝑥
𝜕𝑥

𝑑𝑥� 𝑑𝑦 − 𝑁𝑥𝑦𝑑𝑥 + �𝑁𝑥𝑦 +
𝜕𝑁𝑥𝑦
𝜕𝑦

𝑑𝑦� 𝑑𝑥 

 
𝜕𝑁𝑥
𝜕𝑥

𝑑𝑥𝑑𝑦 +
𝜕𝑁𝑥𝑦
𝜕𝑦

𝑑𝑥𝑑𝑦 = 0 

 
𝜕𝑁𝑥
𝜕𝑥

+ 𝜕𝑁𝑥𝑦
𝜕𝑦

= 0 
 

�𝐹𝑦 = 0 = −𝑁𝑦𝑑𝑥 + �𝑁𝑦 +
𝜕𝑁𝑦
𝜕𝑦

𝑑𝑦� 𝑑𝑥 − 𝑁𝑥𝑦𝑑𝑦 + �𝑁𝑥𝑦 +
𝜕𝑁𝑥𝑦
𝜕𝑥

𝑑𝑥� 𝑑𝑦 

 
𝜕𝑁𝑦
𝜕𝑦

𝑑𝑥𝑑𝑦 +
𝜕𝑁𝑥𝑦
𝜕𝑥

𝑑𝑥𝑑𝑦 = 0 

 
𝜕𝑁𝑦
𝜕𝑦

+ 𝜕𝑁𝑥𝑦
𝜕𝑥

= 0 
 
 If a force function, Φ, is introduced the conditions (A2.8) and (A2.9) are satisfied and 

the quantities Nx, Ny, and Nxy can be calculated. 

(A2.8) 

(A2.9) 
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𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦
𝜕𝑦

= 0 =
𝜕2𝛷1
𝜕𝑥𝜕𝑦

+
𝜕2𝛷1
𝜕𝑥𝜕𝑦

  ⟹   𝑁𝑥 =
𝜕𝛷1
𝜕𝑦

,𝑁𝑥𝑦 = −
𝜕𝛷1
𝜕𝑥

 

 
𝜕𝑁𝑦
𝜕𝑦

+
𝜕𝑁𝑥𝑦
𝜕𝑥

= 0 =
𝜕2Φ2

𝜕𝑥𝜕𝑦
+
𝜕2Φ2

𝜕𝑥𝜕𝑦
  ⟹   𝑁𝑦 =

𝜕Φ2

𝜕𝑥
,𝑁𝑥𝑦 = −

𝜕Φ2

𝜕𝑦
 

 
𝑁𝑥𝑦 − 𝑁𝑥𝑦 = 0 = −

𝜕Φ1

𝜕𝑥
+
𝜕Φ2

𝜕𝑦
  ⟹   Φ1 =

𝜕Φ
𝜕𝑦

,Φ2 =  
𝜕Φ
𝜕𝑥

 

 

�

𝑁𝑥 = 𝜕2Φ
𝜕𝑦2

𝑁𝑦 = 𝜕2Φ
𝜕𝑥2

𝑁𝑥𝑦 = − 𝜕2Φ
𝜕𝑥𝜕𝑦⎭

⎪
⎬

⎪
⎫

 

 
If the strains in the mid-plane are due solely to the mid-plane forces then the following are true 

according to the Theory of Elasticity. 

 

�

𝜕𝑢
𝜕𝑥

= �𝑁𝑥−𝜈𝑁𝑦�

𝐸ℎ
𝜕𝑣
𝜕𝑦

= �𝑁𝑦−𝜈𝑁𝑥�

𝐸ℎ
𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

= 2𝑁𝑥𝑦(1+𝜈)

𝐸𝑡 ⎭
⎪
⎬

⎪
⎫

 

 
The compatibility condition requires the following to be true. 
 

𝜕2

𝜕𝑦2
�
𝜕𝑢
𝜕𝑥
� +

𝜕2

𝜕𝑥2
�
𝜕𝑣
𝜕𝑦
� −

𝜕2

𝜕𝑥𝜕𝑦
�
𝜕𝑢
𝜕𝑦

+
𝜕𝑣
𝜕𝑥
� = 0 

 
Which can be expressed as: 
 

𝜕2

𝜕𝑦2
�
�𝑁𝑥 − 𝜈𝑁𝑦�

𝐸ℎ
�+

𝜕2

𝜕𝑥2
�
�𝑁𝑦 − 𝜈𝑁𝑥�

𝐸ℎ
� −

𝜕2

𝜕𝑥𝜕𝑦
�

2𝑁𝑥𝑦(1 + 𝜈)
𝐸𝑡

� = 0 

 
𝜕2

𝜕𝑦2
�

1
𝐸ℎ

𝜕2Φ
𝜕𝑦2

� − 𝜈
𝜕2

𝜕𝑦2
�

1
𝐸ℎ

𝜕2Φ
𝜕𝑥2

� +
𝜕2

𝜕𝑥2
�

1
𝐸ℎ

𝜕2Φ
𝜕𝑥2

� − 𝜈
𝜕2

𝜕𝑥2
�

1
𝐸ℎ

𝜕2Φ
𝜕𝑦2

� +
2(1 + 𝜈)
𝐸ℎ

𝜕4Φ
𝜕𝑥2𝜕𝑦2

= 0 

 
or when h is constant over the plate: 
 

𝜕4Φ
𝜕𝑥4

+ 𝜕4Φ
𝜕𝑦4

+ 2 𝜕4Φ
𝜕𝑥2𝜕𝑦2

= ∇4Φ = 0 
 

(A2.10) 

(A2.11) 

(A2.12) 



96 

A2.4 Z Component Mid-Plane Forces 
 
 

 
FIGURE A2.2. A plate section under deflection. The mid-plane force exhibits a z-component. 

 
 
 It can be seen from Fig A2.2 that the mid-plane forces have a z-component, which can 

be written by inspection as 

 
@𝑥 = 0  ⟹  −𝑁𝑥

𝜕𝑤
𝜕𝑥

𝑑𝑦 − 𝑁𝑥𝑦
𝜕𝑤
𝜕𝑦

𝑑𝑦

@𝑥 = 𝑑𝑥  ⟹   𝑁𝑥
𝜕𝑤
𝜕𝑥

𝑑𝑦 +
𝜕
𝜕𝑥

�𝑁𝑥
𝜕𝑤
𝜕𝑥
� 𝑑𝑥𝑑𝑦 + 𝑁𝑥𝑦

𝜕𝑤
𝜕𝑦

𝑑𝑦 +
𝜕
𝜕𝑥

�𝑁𝑥𝑦
𝜕𝑤
𝜕𝑦
� 𝑑𝑥𝑑𝑦

@𝑦 = 0  ⟹  −𝑁𝑦
𝜕𝑤
𝜕𝑦

𝑑𝑥 − 𝑁𝑥𝑦
𝜕𝑤
𝜕𝑥

𝑑𝑥

@𝑦 = 𝑑𝑦  ⟹   𝑁𝑦
𝜕𝑤
𝜕𝑦

𝑑𝑥 +
𝜕
𝜕𝑦

�𝑁𝑦
𝜕𝑤
𝜕𝑦
� 𝑑𝑥𝑑𝑦 + 𝑁𝑥𝑦

𝜕𝑤
𝜕𝑥

𝑑𝑥 +
𝜕
𝜕𝑦

�𝑁𝑥𝑦
𝜕𝑤
𝜕𝑥
� 𝑑𝑥𝑑𝑦

 

 
The resultant force in the z direction (including a force applied to the face of the plate) can be 

written as 

 
�𝐹𝑧 = 𝑞′ = −𝑁𝑥

𝜕𝑤
𝜕𝑥

𝑑𝑦 − 𝑁𝑥𝑦
𝜕𝑤
𝜕𝑦

𝑑𝑦 + 𝑁𝑥
𝜕𝑤
𝜕𝑥

𝑑𝑦 +
𝜕
𝜕𝑥

�𝑁𝑥
𝜕𝑤
𝜕𝑥
� 𝑑𝑥𝑑𝑦 + 𝑁𝑥𝑦

𝜕𝑤
𝜕𝑦

𝑑𝑦 +
𝜕
𝜕𝑥

�𝑁𝑥𝑦
𝜕𝑤
𝜕𝑦
� 𝑑𝑥𝑑𝑦

− 𝑁𝑦
𝜕𝑤
𝜕𝑦

𝑑𝑥 − 𝑁𝑥𝑦
𝜕𝑤
𝜕𝑥

𝑑𝑥 + 𝑁𝑦
𝜕𝑤
𝜕𝑦

𝑑𝑥 +
𝜕
𝜕𝑦

�𝑁𝑦
𝜕𝑤
𝜕𝑦
� 𝑑𝑥𝑑𝑦 + 𝑁𝑥𝑦

𝜕𝑤
𝜕𝑥

𝑑𝑥 +
𝜕
𝜕𝑦

�𝑁𝑥𝑦
𝜕𝑤
𝜕𝑥
� 𝑑𝑥𝑑𝑦 

 
𝜕
𝜕𝑥

�𝑁𝑥
𝜕𝑤
𝜕𝑥

+ 𝑁𝑥𝑦
𝜕𝑤
𝜕𝑦
� 𝑑𝑥𝑑𝑦 +

𝜕
𝜕𝑦

�𝑁𝑦
𝜕𝑤
𝜕𝑦

+ 𝑁𝑥𝑦
𝜕𝑤
𝜕𝑥
� 𝑑𝑥𝑑𝑦 = 𝑞′ 

 

𝑁𝑥
𝜕2𝑤
𝜕𝑥2

+ 2𝑁𝑥𝑦
𝜕2𝑤
𝜕𝑥𝜕𝑦

+ 𝑁𝑦
𝜕2𝑤
𝜕𝑦2

= 𝑞′

𝜕2Φ
𝜕𝑥2

𝜕2𝑤
𝜕𝑥2

− 2 𝜕2Φ
𝜕𝑥𝜕𝑦

𝜕2𝑤
𝜕𝑥𝜕𝑦

+ 𝜕2Φ
𝜕𝑦2

𝜕2𝑤
𝜕𝑦2

= 𝑞′
 

 
Combining (A2.7) and (A2.13) gives an expression for the deflection of a plate that includes 

mid-plane forces. 

(A2.13) 
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𝐷∇4𝑤 = 𝑞 + 𝑞′  ⟹   𝐷∇4𝑤 = 𝑞 + 𝑁𝑥
𝜕2𝑤
𝜕𝑥2

+ 2𝑁𝑥𝑦
𝜕2𝑤
𝜕𝑥𝜕𝑦

+ 𝑁𝑦
𝜕2𝑤
𝜕𝑦2

 
 
 If the plate is on an elastic foundation while it experiences deflection then there will be 

a restoring pressure acting on the plate due to the foundation. 

 
𝑞 = 𝑞𝑟𝑒𝑠 − 𝐾𝑤 

 
Where K is the foundation/Winkler stiffness. This gives the following 
 

𝐷∇4𝑤 = 𝑞𝑟𝑒𝑠 + 𝐾𝑤 + 𝑁𝑥
𝜕2𝑤
𝜕𝑥2

+ 2𝑁𝑥𝑦
𝜕2𝑤
𝜕𝑥𝜕𝑦

+ 𝑁𝑦
𝜕2𝑤
𝜕𝑦2

 
 
When the plate the plate is vibrating the elastic reaction of the plate produces an acceleration on 

each element of the plate. 

 

𝐹𝑎𝑐𝑐𝑒𝑙 = −𝜇 𝜕2𝑤
𝜕𝑡2  

 
Where µ is the area mass. If we substitute the acceleration force for q
 

res 

𝐷∇4w + Kw + µ 𝜕2𝑤
𝜕𝑡2

= Nx
𝜕2w
𝜕𝑥2

+ 2Nxy
𝜕2w
𝜕𝑥𝜕𝑦

+ Ny
𝜕2w
𝜕𝑦2

 
 
For a vibrating plate a solution of the above differential equation can be assumed to exhibit 

simple harmonic motion. 

 
𝑤(𝑥, 𝑦, 𝑡) = 𝑤(𝑥,𝑦) sin�𝜔(𝑡 − 𝑡0)� 

 
Using this assumed solution in the above equation gives the following 
 

𝐷∇4𝑤(𝑥,𝑦) sin�𝜔(𝑡 − 𝑡0)� + 𝐾𝑤(𝑥, 𝑦) sin�𝜔(𝑡 − 𝑡0)� − 𝜇𝜔2𝑤(𝑥,𝑦) sin�𝜔(𝑡 −

𝑡0)� = 𝑁𝑥
𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2
sin�𝜔(𝑡 − 𝑡0)� + 2𝑁𝑥𝑦

𝜕2𝑤(𝑥,𝑦)
𝜕𝑥𝜕𝑦

sin�𝜔(𝑡 − 𝑡0)�+

𝑁𝑦
𝜕2𝑤(𝑥,𝑦)
𝜕𝑦2

sin�𝜔(𝑡 − 𝑡0)�  
 

𝐷∇4𝑤 − Nx
𝜕2w
𝜕𝑥2

− 2Nxy
𝜕2w
𝜕𝑥𝜕𝑦

− Ny
𝜕2w
𝜕𝑦2

− (µω2 − K)w = 0 
 
 

(A2.14) 

(A2.15) 

(A2.16) 

(A2.17) 

(A2.18) 

(A2.19) 

(A2.20) 
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A2.5 Boundary Conditions 

 The development of the boundary conditions of a plate for the cases of a plate freely 

held and a plate clamped along its periphery is as follows: 

 

Clamped, Fixed, or Built-in Edge. With this type of edge, all edge displacements are zero  

 
(𝑤)𝑦=0 = 0 

 
and the tangent lines on the edge in the x and y directions must be the same as the undeformed 

plate, namely zero. 

 
�𝜕𝑤𝜕𝑦�𝑦=0

= 0 

 
Free Edge. A free edge is completely unstressed, therefore a free edge cannot support vertical 

shearing forces, bending moments, or twisting moments. 

 
�𝑀𝑦�𝑦=0 = 0,     �𝑀𝑥𝑦�𝑦=0 = 0,     �𝑄𝑦�𝑦=0 = 0 

 
Kirchoff showed that only two conditions were necessary and that the above three conditions 

could be expressed as two conditions. 

 

�𝑀𝑦�𝑦=0 = 0  ⟹   �𝜕
2𝑤
𝜕𝑦2 + 𝜈 𝜕

2𝑤
𝜕𝑥2�

𝑦=0
= 0 

 

�𝑉𝑦�𝑦=0 = �𝑄𝑦 + 𝜕𝑀𝑥𝑦
𝜕𝑥 �𝑦=0

= 0  ⟹   �𝜕
3𝑤
𝜕𝑦3 + (2 − 𝜈) 𝜕3𝑤

𝜕𝑥2𝜕𝑦�𝑦=0
= 0 

 
Symmetric/Sliding Edge. A symmetric edge is free to move in the vertical and tangential 

direction but cannot move in the normal direction. Since the edge is symmetric all 

displacements must be the same on both sides of the boundary. This can be expressed as: 

(A2.21) 

(A2.22) 

(A2.23) 

(A2.24) 
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�𝜕𝑤𝜕𝑛�𝑛=0

= 0 
 
This edge also cannot support any moment that would cause displacement of the edge in the 

normal direction or any shear because shear is not symmetric. 

 

𝑉𝑛 = �𝑄𝑛 + 𝜕𝑀𝑛𝑡
𝜕𝑡 �𝑛=0

= 0  ⟹   �𝜕
3𝑤
𝜕𝑛3 + (2 − 𝜈) 𝜕3𝑤

𝜕𝑛𝜕𝑡2�
𝑛=0

= 0 

 
  

(A2.25) 

(A2.26) 
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Appendix A3 
Matlab Code 

 
%========================================================================== 
%-----------    Analytical Hexagonal Plate Vibration    ------------------- 
% 
%   This program uses the equation discussed in the paper "Stabilitat und 
% Eigenschwingungen einer Platte von der Form eines regelmaBigen Polygons" 
% to solve for the vibrational displacements w(x,y,f). 
  
clear, clc 
  
%--------------- 
% input 
%--------------- 
data = csvread('triangle nodes.csv'); 
    %node locations 
x = data(:,1); 
y = data(:,2); 
%figure,plot(x,y,'.') 
  
h = 4*0.0254;               %(m) 
a = h/tand(60);             %(m) 
    %length of the side of the hexagon 
r = (h/2)/sind(60);         %(m) 
t = 3/4*0.0254;             %(m) 
    %thickness of the plate 
rho = 3058.4;               %(kg/m^3) 
    %density of SiC 
mu = rho*t;                 %(kg/m^2) 
    %area density of the plate 
E = 428.28e9;               %(Pa) 
    %Young's modulus of SiC 
nu = 0.166; 
    %Poison's ratio of SiC 
K = E;                      %(Pa) 
    %This is the Winkler stiffness applied to the face of the plate 
    %A decent approximation for this force in this problem is the elastic 
    %stiffness of the carbon fiber/epoxy layer 
N = E; 
    %This is the clamping pressure applied to the sides of the plate 
    %A decent approximation for this pressure in this problem is the 
    %elastic stiffness of the carbon fiber/epoxy spacers 
D = E*t^3/(12*(1-nu^2)); 
    %the bending stiffness 
  
%f = 6.961/(2*pi*a^2*sqrt(mu/D)); 
%f = 182665.347; 
    %Frequency of vibration 
     
BC = 1; 
    %BC = 0 if Kaczkowski's free BC's are used 
    %BC = 1 if Kaczkowski's fixed BC's are used 
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    %BC = 2 if the boundary is free 
    %BC = 3 if the boundary is fixed 
  
%% 
%--------------- 
% calculations 
%--------------- 
if (BC == 0 || BC == 2) 
    K = 0;  N = 0; 
        %completely free plate 
elseif (BC == 1 || BC == 3) 
    K = 0; 
        %fixed BC's but no force on the plate face 
end 
  
omega = 2*pi*f; 
Lambda = N*a^2/(2*pi^2*D); 
Omega = (mu*omega.^2-K)*a^4/(pi^4*D); 
m = [1]; 
    %index 
xi = x/a;   eta = y/a; 
Phi = Lambda-sqrt(Lambda^2+Omega); 
Psi = Lambda+sqrt(Lambda^2+Omega); 
phi_m = sqrt(1-Phi./m.^2);    psi_m = sqrt(1-Psi./m.^2); 
  
%% 
%--------------- 
%BC coeffs 
%--------------- 
beta = 0.866; 
c=2*sqrt((a/2)^2+(beta*a)^2); 
t = 0:0.001:c; 
for j = 1:size(m,2) 
    ch_phi = cosh((m(j)*pi*phi_m(j)*2*beta*t)/c); 
    sh_phi = sinh((m(j)*pi*phi_m(j)*2*beta*t)/c); 
    ch_psi = cosh((m(j)*pi*psi_m(j)*2*beta*t)/c); 
    sh_psi = sinh((m(j)*pi*psi_m(j)*2*beta*t)/c); 
    S = sin((m(j)*pi*t)/c); 
    C = cos((m(j)*pi*t)/c); 
    a31 = phi_m(j)*sh_phi.*S-2*beta*ch_phi.*C; 
    a32 = phi_m(j)*ch_phi.*S-2*beta*sh_phi.*C; 
    a33 = psi_m(j)*sh_psi.*S-2*beta*ch_psi.*C; 
    a34 = psi_m(j)*ch_psi.*S-2*beta*sh_psi.*C; 
    a41 = (phi_m(j)^3-
3*phi_m(j)*(2*beta)^2)*sh_phi.*S+((2*beta)^3+3*phi_m(j)^2*2*beta)*ch_phi.*C; 
    a42 = (phi_m(j)^3-
3*phi_m(j)*(2*beta)^2)*ch_phi.*S+((2*beta)^3+3*phi_m(j)^2*2*beta)*sh_phi.*C; 
    a43 = (psi_m(j)^3-
3*psi_m(j)*(2*beta)^2)*sh_psi.*S+((2*beta)^3+3*psi_m(j)^2*2*beta)*ch_psi.*C; 
    a44 = (psi_m(j)^3-
3*psi_m(j)*(2*beta)^2)*ch_psi.*S+((2*beta)^3+3*psi_m(j)^2*2*beta)*sh_psi.*C; 
     
    if BC == 0 
        for i = 1:size(t,2) 
            coefA = [1 0 0 0; 
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                0 0 1 0; 
                m(j)*a31(i) m(j)*a32(i) m(j)*a33(i) m(j)*a34(i); 
                m(j)*Phi*a31(i) m(j)*Phi*a32(i) m(j)*Psi*a33(i) 
m(j)*Psi*a34(i)]; 
            det(coefA); 
  
            [D,S,V] = svd(coefA); 
            coef_svd = V(:,size(coefA,2)); 
            a_m_svd(i) = coef_svd(1); 
            b_m_svd(i) = coef_svd(2); 
            c_m_svd(i) = coef_svd(3); 
            d_m_svd(i) = coef_svd(4); 
                %these coefficients are functions of the edge coordinate t 
            if coefA*coef_svd == zeros(4,1) 
                A_m(j) = a_m_svd(i); 
                B_m(j) = b_m_svd(i); 
                C_m(j) = c_m_svd(i); 
                D_m(j) = d_m_svd(i); 
            end 
        end 
        firstline = '{\bf Non-constant Coefficients for m=}'; 
        secondline = '{\bf Kaczkowski Free BC}'; 
        thirdline = '{\bf Using Singular Value Decomposition}'; 
        figure, plot(t,a_m_svd, t,b_m_svd, t,c_m_svd, t,d_m_svd) 
            title({[firstline,num2str(m(j))];secondline;thirdline}) 
            xlabel('{\bf Edge length (m)}'),ylabel('{\bf Coefficient 
value}') 
            legend('{\bf A_m}','{\bf B_m}','{\bf C_m}','{\bf D_m}') 
  
        %    A_m = 0; 
        %    B_m = 1; 
        %    C_m = 0; 
        %    D_m = -phi_m./psi_m; 
    elseif BC == 1 
        for i = 1:size(t,2) 
            coefA = [1 0 1 0; 
               0 phi_m(j) 0 psi_m(j); 
               m(j)*a31(i) m(j)*a32(i) m(j)*a33(i) m(j)*a34(i); 
               Phi*a31(i) Phi*a32(i) Psi*a33(i) Psi*a34(i)]; 
           det(coefA) 
  
            [D,S,V] = svd(coefA); 
            coef_svd = V(:,size(coefA,2)); 
            a_m_svd(i) = coef_svd(1); 
            b_m_svd(i) = coef_svd(2); 
            c_m_svd(i) = coef_svd(3); 
            d_m_svd(i) = coef_svd(4); 
                %these coefficients are functions of the edge coordinate t 
            %if coefA*coef_svd == zeros(4,1) 
                A_m(j) = a_m_svd(1); 
                B_m(j) = b_m_svd(1); 
                C_m(j) = c_m_svd(1); 
                D_m(j) = d_m_svd(1); 
            %end 
        end 
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        firstline = '{\bf Non-constant Coefficients for m=}'; 
        secondline = '{\bf Kaczkowski Fixed BC}'; 
        thirdline = '{\bf Using Singular Value Decomposition}'; 
        figure, plot(t,a_m_svd, t,b_m_svd, t,c_m_svd, t,d_m_svd) 
            title({[firstline,num2str(m(j))];secondline;thirdline}) 
            xlabel('{\bf Edge length (m)}'),ylabel('{\bf Coefficient 
value}') 
            legend('{\bf A_m}','{\bf B_m}','{\bf C_m}','{\bf D_m}') 
  
        %    a_m = 1; 
        %    b_m = 1; 
        %    c_m = -a_m; 
        %    d_m = -phi_m./psi_m; 
    elseif BC == 2 
        for i = 1:size(t,2) 
            coefA = [phi_m(j)^2-nu 0 psi_m(j)^2-nu 0; 
                0 phi_m(j)^3-(2-nu)*phi_m(j) 0 psi_m(j)^3-(2-nu)*psi_m(j); 
                a31(i) a32(i) a33(i) a34(i); 
                a41(i) a42(i) a43(i) a44(i)]; 
  
            [D,S,V] = svd(coefA,0); 
            coef_svd = V(:,size(coefA,2)); 
            a_m_svd(i) = coef_svd(1); 
            b_m_svd(i) = coef_svd(2); 
            c_m_svd(i) = coef_svd(3); 
            d_m_svd(i) = coef_svd(4); 
                %these coefficients are functions of the edge coordinate t 
        %if coefA*coef_svd == zeros(4,1) 
            A_m(j) = a_m_svd(1); 
            B_m(j) = b_m_svd(1); 
            C_m(j) = c_m_svd(1); 
            D_m(j) = d_m_svd(1); 
        %end 
         
        end 
        firstline = '{\bf Non-constant Coefficients for m=}'; 
        secondline = '{\bf RAL Free BC}'; 
        thirdline = '{\bf Using Singular Value Decomposition}'; 
        figure, plot(t,a_m_svd, t,b_m_svd, t,c_m_svd, t,d_m_svd) 
            title({[firstline,num2str(m(j))];secondline;thirdline}) 
            xlabel('{\bf Edge length (m)}'),ylabel('{\bf Coefficient 
value}') 
            legend('{\bf A_m}','{\bf B_m}','{\bf C_m}','{\bf D_m}') 
  
    elseif BC == 3 
        for i = 1:size(t,2) 
            coefA = [1 0 1 0; 
                0 phi_m(j) 0 psi_m(j); 
                a31(i) a32(i) a33(i) a34(i); 
                a41(i) a42(i) a43(i) a44(i)]; 
  
            [D,S,V] = svd(coefA,0); 
            coef_svd = V(:,size(coefA,2)); 
            a_m_svd(i) = coef_svd(1); 
            b_m_svd(i) = coef_svd(2); 
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            c_m_svd(i) = coef_svd(3); 
            d_m_svd(i) = coef_svd(4); 
                %these coefficients are functions of the edge coordinate t 
            %if coefA*coef_svd == zeros(4,1) 
                A_m(j) = a_m_svd(1); 
                B_m(j) = b_m_svd(1); 
                C_m(j) = c_m_svd(1); 
                D_m(j) = d_m_svd(1); 
            %end 
        end 
        firstline = '{\bf Non-constant Coefficients for m=}'; 
        secondline = '{\bf RAL Fixed BC}'; 
        thirdline = '{\bf Using Singular Value Decomposition}'; 
        figure, plot(t,a_m_svd, t,b_m_svd, t,c_m_svd, t,d_m_svd) 
            title({[firstline,num2str(m(j))];secondline;thirdline}) 
            xlabel('{\bf Edge length (m)}'),ylabel('{\bf Coefficient 
value}') 
            legend('{\bf A_m}','{\bf B_m}','{\bf C_m}','{\bf D_m}') 
  
    end 
end 
  
%% 
E_m = 0;    F_m = 1; 
    %antisym-sym => E_m=0, F_m=1 
    %sym-antisym => E_m=1, F_m=0 
    %sym-sym 
    %antisym-antisym 
%%% 
w = 0; 
for j = 1:size(m,2) 
    w1 = A_m(j)*cosh(m(j)*pi*phi_m(j).*eta); 
    w2 = B_m(j)*sinh(m(j)*pi*phi_m(j).*eta); 
    w3 = C_m(j)*cosh(m(j)*pi*psi_m(j).*eta); 
    w4 = D_m(j)*sinh(m(j)*pi*psi_m(j).*eta); 
%%% 
    %w1 = A_m(j)*cos(m(j)*pi*phi_m(j).*eta); 
    %w2 = B_m(j)*sin(m(j)*pi*phi_m(j).*eta); 
    %w3 = C_m(j)*cos(m(j)*pi*psi_m(j).*eta); 
    %w4 = D_m(j)*sin(m(j)*pi*psi_m(j).*eta); 
    w_i = (w1+w2+w3+w4).*(E_m*cos(m(j)*pi*xi) + F_m*sin(m(j)*pi*xi)); 
%%% 
    w = (w+w_i); 
end 
  
%% 
%--------------- 
% results 
%--------------- 
for j = 1:size(f,2) 
xlin = linspace(min(x),max(x),100); 
ylin = linspace(min(y),max(y),100); 
    %Recreates uniformly spaced data 
[X,Y] = meshgrid(xlin,ylin); 
    %generates uniformly spaced grid 
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W = griddata(x,y,w,X,Y,'cubic'); 
    %interpolate the values of the function at the uniformly spaced points 
  
%figure,surf(X,Y,abs(W)),title('Hexagon Vibration (Triangle portion)') 
%    xlabel('x (m)'),ylabel('y (m)'),zlabel('z') 
%    shading interp 
  
old = [x,y]; 
rotate_60 = [cosd(60) sind(60); -sind(60) cosd(60)]; 
rotate_120 = [cosd(120) sind(120); -sind(120) cosd(120)]; 
old_rotate_60 = old*rotate_60; 
old_rotate_120 = old*rotate_120; 
    %rotates [x,y] so the results can be formed into a hexagon 
  
%figure,plot(x,y,'.', a-x,y,'.', x,h-y,'.', a-x,h-y,'.') 
%    hold all 
%    plot(a+old_rotate_60(:,1),old_rotate_60(:,2),'.', 
a+old_rotate_60(:,1),h-old_rotate_60(:,2),'.') 
%    plot(r+(a/2)+old_rotate_120(:,1),(h/2)+old_rotate_120(:,2),'.', 
r+(a/2)+old_rotate_120(:,1),(h/2)-old_rotate_120(:,2),'.') 
%    plot(-old_rotate_60(:,1),old_rotate_60(:,2),'.', -old_rotate_60(:,1),h-
old_rotate_60(:,2),'.') 
%    plot(-(a/2)-old_rotate_120(:,1),(h/2)+old_rotate_120(:,2),'.', -(a/2)-
old_rotate_120(:,1),(h/2)-old_rotate_120(:,2),'.') 
%    grid on 
%    hold off 
    %plot the rotated matrices 
  
xlin60 = linspace(min(old_rotate_60(:,1)),max(old_rotate_60(:,1)),100); 
ylin60 = linspace(min(old_rotate_60(:,2)),max(old_rotate_60(:,2)),100); 
xlin120 = linspace(min(old_rotate_120(:,1)),max(old_rotate_120(:,1)),100); 
ylin120 = linspace(min(old_rotate_120(:,2)),max(old_rotate_120(:,2)),100); 
    %creates uniformly spaced data for the rotated matrices 
[X60,Y60] = meshgrid(xlin60,ylin60); 
[X120,Y120] = meshgrid(xlin120,ylin120); 
    %generates uniformly spaced grid for the rotated matrices 
W60 = griddata(old_rotate_60(:,1),old_rotate_60(:,2),w,X60,Y60,'cubic'); 
W120=griddata(old_rotate_120(:,1),old_rotate_120(:,2),w,X120,Y120,'cubic'); 
    %interpolate the values of the function at the uniformly spaced points 
    %for the rotated matrices 
  
X1 = [X,X;a-X,a-X]; 
Y1 = [Y,h-Y;Y,h-Y]; 
W1 = real([W,W;W,W]); 
    %form square matrices with reflected triangles for the original data 
X2 = [a+X60,a+X60;-X60,-X60]; 
Y2 = [Y60,h-Y60;Y60,h-Y60]; 
W2 = real([W60,W60;W60,W60]); 
X3 = [r+(a/2)+X120,r+(a/2)+X120;-(a/2)-X120,-(a/2)-X120]; 
Y3 = [(h/2)+Y120,(h/2)-Y120;(h/2)+Y120,(h/2)-Y120]; 
W3 = real([W120,W120;W120,W120]); 
    %form square matrices with reflected triangles for the rotated data 
X4 = [X1,X2;X3,0*X1]; 
Y4 = [Y1,Y2;Y3,0*Y1]; 
W4 = [W1,W2;W3,0*W1]; 
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    %assemble hexagon from reflected triangles 
  
figure,surf(X4,Y4,W4) 
    xlabel('{\bf x (m)}'),ylabel('{\bf y (m)}'),zlabel('{\bf z}') 
    shading interp 
if BC == 0 
    title({'{\bf Transverse Hexagon Vibration}';'{\bf Kaczkowski Free 
BC}';['{\bf Frequency = }',num2str(f),'{\bf Hz}']}) 
elseif BC == 1 
    title({'{\bf Transverse Hexagon Vibration}';'{\bf Kaczkowski Fixed 
BC}';['{\bf Frequency = }',num2str(f),'{\bf Hz}']}) 
elseif BC == 2 
    title({'{\bf Transverse Hexagon Vibration}';'{\bf RAL Free BC}';['{\bf 
Frequency = }',num2str(f),'{\bf Hz}']}) 
elseif BC == 3 
    title({'{\bf Transverse Hexagon Vibration}';'{\bf RAL Fixed BC}';['{\bf 
Frequency = }',num2str(f),'{\bf Hz}']}) 
end 
end 
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