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ABSTRACT 

The conceptual design stage offers the most opportunity for innovation and the 

capability to reveal costly design errors early.  Integrating high fidelity design and simulation 

tools into the conceptual design stage enables engineers to develop design variations quickly 

and affordably.  This work focuses primarily on the development and utilization of 

parametric modeling methods as they apply to a simulation based design process.  It will also 

address the impacts to conceptual design development time.  A blended wing-body (BWB) 

hypersonic wave rider demonstrates how state-of-the-art solid modeling techniques can be 

coupled to high fidelity CFD analysis codes to perform top down design.  Performance trends 

are identified for several trade study variations which represent a single iteration through the 

simulation based design process.  Performance metrics are based on interpretations from 

higher level customer, regulatory, business, and other requirements.  The process of 

cascading these requirements down to the component level is the definition of top-down-

design.  This bidirectional tracing of requirements allows vehicle development to progress in 

a manner such that any change of the vehicle can be assessed in terms of the overarching 

requirements. 
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CHAPTER 1. INTRODUCTION 

It is widely accepted that the best opportunities to achieve significant cost reductions 

are in the early stages of product development [1, 2].  Although this may seem intuitively 

obvious, many large organizations are still designing and developing products using outdated 

tools and methods.  Off the shelf computational power provided by today’s common desktop 

workstations allows companies and their engineer’s access to numerous software packages.  

If implemented correctly, these packages have the potential to reduce conceptual design costs 

while also providing higher fidelity analyses.  Figure 1.1 represents the impact of design 

changes in terms of cost through a typical product program, from conception to production. 

 

 

Figure 1.1:  Design changes and their impact on project cost for design phases. 

The figure above indicates a significant portion of design changes are generated 

during the conceptual design phase while capital investment is minor.  This plot also elicits 

the impact design decisions made during conceptual design have on project costs.  The more 

errors caught in the conceptual phase ultimately reduces costly changes later in the design 

process.  Minimizing errors is quintessential during this first stage for project (and possibly 

company) success. 

For the aerospace industry, the tools capable of reducing conceptual design errors are 

simple, commercially available computational fluid dynamic (CFD) software, finite element 

analysis (FEA) software, and Computer-Aided Design (CAD) software.  This tool set 

combined with the right design process, allows for rapid almost overnight results - enabling 
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engineers to make informed decisions on first pass designs.  The key to this design process: a 

robust CAD model that is common to all groups within the initial design phase.  These 

groups may include structures, aerodynamics, and propulsion systems.  This design structure 

will hence be referred to as CAD-centric.  In addition, it is important that the CAD-centric 

model is intelligently parameterized and flexible.  The methodology set forth in Chapter 3 

defines and describes in more detail what intelligent modeling is and its role in reducing time 

between design iterations.  The parameterized model includes features of interest to each 

design group built into their respective components.  For example, the aerodynamics 

department may want control over wing sweep.  By incorporating sweep as a design 

parameter, the CAD model may then be manipulated manually by an engineer or 

autonomously using an appropriate optimization routine.  It is this rapid manipulation 

coupled with the appropriate CFD and FEA packages that give an aerodynamic engineer 

critical performance and loading data that a structural engineer can then map to a finite 

element mesh and quickly identify problematic design features early in the stages of product 

development. 

Many aerospace companies today use surface representations (in contrast to 

automotive and consumer goods where they use solids) to define geometrical features needed 

for analysis in the conceptual and preliminary design phases.  It is the intention of this paper 

to demonstrate an alternative method of creating robust geometries capable of rapid 

modifications using only solid features.  Models constructed from solid bodies are ideal for 

CFD analysis due to their inherent manifold properties.  Surface representations are difficult 

to analyze due in part to how they are constructed.  When multiple sheets are used to create 

complex geometries, gaps and overlapping regions form between the adjacent sheet bodies.  

Figure 1.2 illustrates this complication. 

 

Figure 1.2:  Section view of surface gaps in Busemann inlet geometry. 

Small 

Gaps 
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Gaps shown in Figure 1.2 are not evident from a distance, but as the detail view 

reveals, they are inherent characteristics for surface representations.  These issues require 

many engineering man hours to correct; drastically decreasing the quantity of design 

variations a conceptual design team can deliver.  Corrections are usually accomplished by 

stitching/sewing adjacent surfaces together, however, if the gaps and overlaps are not within 

tolerance, than other measures must be taken.  

 

1.1 General Proceedings 

This thesis will focus on parametric modeling methods as they apply to a simulation 

based design (SBD) process.  The second chapter reviews the evolution of computer aided 

engineering and the historical roles it has played in industry advancements.  It will also 

describe the proposed simulation based design process and the benefits of implementing a 

CAD-centric structure.  Chapter three begins with an overview of what constitutes an 

intelligent CAD model and outlines the interrelations between aircraft design disciplines.  

Following that, it will detail the model construction process for an air breathing hypersonic 

blended wing body aircraft as well as a traditional supersonic jet configuration.  Simulation 

methodology is characterized in chapter four.  Here the simulated flight conditions, domain 

sizing and solvers used in STAR-CCM+ are justified, as well as the importance of using 

solids over surfaces.  A Case study using an author designed blended wing variant 

encompasses chapter five.  Aerodynamic efficiency, range, and static stability analyses are 

also calculated using MatLab to process and display data.  Chapter six draws general 

conclusions and presents opportunities for future work. 
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CHAPTER 2. BACKGROUND 

2.1 Motivation 

Engineers inherently strive to take existing constructs and make them better.  In the 

realm of aerodynamics, this means designing new aircraft to go faster, higher, and further 

than ever before.  Hypersonic vehicles accomplish exactly that.  With applications now 

extending beyond research and into space and military, the practicalities for developing fast 

and accurate design methods have never been greater.  Unfortunately in recent years, 

academic institutions expend exorbitant amounts of time and resources on the quantifiable 

areas of engineering; leaving the subject of engineering design relatively unaltered.  

In the past, computational power was limited and therefore restricted the abilities for 

high fidelity analysis (three dimensional flow and structural analyses).  Currently, the 

computational power required to run a full suite of complex FEA and Reynolds averaged 

Navier-Stokes (RANS) CFD codes is available from a common desktop workstation.  As a 

result, present-day practice is no longer limited by computational power, but by the aircrafts 

geometrical definition [3]. Currently, large U.S. aerospace manufacturers primarily represent 

their aircraft geometries using surfaces.  This method has worked in the past; however, with 

the advancements in computation, 1000’s of aircraft can be analyzed in a matter of days.  The 

problem with surface representations is they require tedious stitching between adjacent 

sheets.  This process is done manually, requiring many engineering man hours to complete.  

After the geometry is completely air-tight, it can be gridded, meshed, and simulated.  It 

would (and does) take years to analyze a comparable amount of these surface configurations 

that can otherwise be done using solid geometry; because solids do not require weeks of 

surface stitching.  

The aerospace industry has experienced significant changes in the product 

development time.  The question may be asked, with the advancements in modeling and 

simulation time, why have product development times increased?  For example, the 

Lockheed F-117 stealth aircraft was designed, built, and put into operation is 5 years.  The F-

35 joint strike fighter request for proposals (RFP) was issued in the early 1990’s and the 

aircraft is still not fully operational.  There are many theories as to why the development time 

has escalated, including greater complexity and increased risk management.  While these 

theories deserve merit, an underlying problem exists in the aerospace industry – absence of a 

seamlessly integrated design process.   

Advantages of a fully integrated design process were recognized by the automotive 

and consumer goods industries in the 1990’s.  Automotive development time was reduced 
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from 6 to 3 years.  In the 2000’s, further advancements reduced the product cycle time from 

3 years to 18 months.  Changes in design processes for these industries were prompted by 

competition from foreign markets.  The aerospace industry is at a cross road.  If the industry 

continues along its current path, key segments of its traditional markets may be lost to 

foreign market competition. 

2.2 Design Methods 

2.2.1 Historical 

The basic design process has been around since the 1400’s while erecting the 

Florence Cathedral (Santa Maria del Fiore) [4]. It begins with an initial conceptual design 

and then progresses through concept evaluation, detailed design, process planning, 

manufacture, and assembly.  The first two stages of this process mainly relied on pencil, 

paper and physical prototypes up through World War II and the 1970’s [4] when engineers 

began using computers to aid them in the design process. 

2.2.2 Brief History of Computer Aided Engineering 

In the 1960’s computers became powerful enough to facilitate solutions to problems 

that were previously only possible by hand.  Structural mechanics industries are among the 

first disciplines to take advantage of the computing power using finite element methods.  

Finite difference codes are also implemented for fluid mechanics using idealized geometries.  

SKETCHPAD, developed by Ivan Sutherland at MIT and DAC-1 (Design Augmented by 

Computers) from General Motors, introduce the first CAD programs.   

By the 1970’s and 1980’s higher level computer languages make it possible for CAE 

(computer aided engineering) tools to develop graphical user interfaces.  This is also a time 

when it becomes common practice to use structural codes for validation.  Complex surface 

modeling became standard late in the 1970’s and Boeing along with General Electric are 

commissioned to develop a standard file format for representing three dimensional objects by 

the Department of Defense (DoD).  This new file format is known as Integrated Graphics 

Exchange Specification (IGES) and is the standard file format for all government contracts.  

In the late 1980’s, engineers working on the National Aerospace Plane (NASP) pictured in 

Figure 2.1 used full nose to tail geometric surface representations in their analysis. 
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Figure 2.1:  National Aerospace Plane. 

Early on in the 1990’s CFD begins to emerge as a viable option for solving complex 

three dimensional geometric representations [5].  This is also the decade when three-

dimensional parametric solid modeling begins to transform CAE processes by seamlessly 

integrating CAD geometries into analysis.  The automotive industry is among the first adopt 

a process where geometries are able to be transferred directly from CAD into a simulation 

environment.  These unified parametric vehicle (UPV) models are solid body CAD 

geometries with parameters that adjustment based on analysis results to improve performance 

[6].  Figure 2.2 shows the flow field on a plane bisecting a UPV during a simulated wind 

tunnel test.  It can be seen in the left image that the entire facility is modeled to more 

precisely correlate simulation results to test data.  The model is an assembly of smaller 

components which are parametrically coupled to create a single coherent model. 

 

Figure 2.2:  Ford Motor Company UPV simulation in a wind tunnel [6]. 
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This CAE process was not only capable of capturing the complex component 

interactions of the exterior, but could also monitor the interior cabin thermal comfort level of 

human manikins.  Figure 2.3 below illustrates the solid model representations of the cabin 

and a simulated interior environment. 

 

Figure 2.3:  Interior cabin thermal comfort model (left) and simulation (right) [6]. 

By the turn of the century in the early 2000’s, consumer goods adopted a simulation 

based design (SBD) process.  Among these companies was Whirlpool Corporation.  The 

engineers at Whirlpool extended simulation based design into include the complex 

interactions of multidisciplinary design.  Modeled interactions encompassed design down to 

the component level up through manufacturing and packaging [7].  Increasing the degree of 

modeling complexity allowed multiple design teams working on separate components and 

subassembly modules to use the same master assembly.  Figure 2.4 displays working system 

modules and components as separate parts of a larger master assembly. 
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Figure 2.4:  Refrigeration systems incorporated into Whirlpools SBD process [7]. 

The top down design process allowed Whirlpool to assess the impacts design changes 

made not only between components, but effects to the supply chain as well.  Capabilities to 

asses packaging was also included to compare the capital required to increase the structural 

steel of the appliance vs. increasing the waste packaging materials used to secure the 

appliance during transportation. 

2.3 Top Down Design Methodology 

A top down design (TDD) method uses system requirements as the highest level of 

design criteria.  System requirements are defined by customer requirements, regulatory 

requirements, business requirements, and even societal.  These requirements are translated 

into vehicle requirements and characteristic features by engineering design teams to drive a 

conceptual model.  Once a conceptual model is established, preliminary design begins.  

Using the conceptual model as a template, system features are integrated and parameterized.  

By having all design groups work from a common CAD model, design modifications can be 

traced down to all their dependent systems.  Each level of the top down design method is 

detailed in the sections to follow. 

2.3.1 Requirements 

Every design variant is scored against the top level system requirements.  

Requirements fall into three primary categories: 1) Customer, 2) Regulatory, and 3) 

Module System Master 

Assembly 

System Module Set validation for Thermal 

Requirements 

Evaporator Module 

Performance Validation 
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Business.  Customer requirements may specify a minimum range, maximum speed 

capability, acquisition price, and/or payload capacity.  The Federal Aviation Administration 

(FAA) sets many regulatory requirements on environmental impacts (emissions, noise, etc.) 

and safety (fire precautions, ventilation, collision avoidance, etc.).  Many associations exist 

between customer and business requirements, however, from the business perspective, profit 

and operational costs are often a main concern.  The fourth system level requirement is 

societal.  These requirements are often times based on ethics and impacts to humanity. 

In order to translate between requirements and vehicle performance targets, design 

engineers frequently utilize a quality function deployment process (QFD).  This tool 

facilitates the transition between phases all the way down to component level design by 

defining potential options for how requirements can be accomplished.  An example of a QFD 

is shown in Figure 2.5. 

 

Figure 2.5:  Simplified QFD chart and legend. 

A QFD assists in tracking design performance by weighting the importance imposed 

on each requirement and assigning relational values (see legend in Figure 2.5) between each 

requirement to be met and the possible range of solutions.  Cross correlations are determined 

in a matrix above each potential solution.  This diagonal matrix is analogous to a roof and the 

intersections below it are representative of a house.  QFD processes generally contain several 

houses of quality where, for each increasing level, the functional requirements become the 

new demanded qualities. 
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2.3.2 Conceptual Concurrent Design 

Only evaluates designs on the vehicle level.  Scoring is based primarily on 

fundamental flight performance metrics, structural evaluations, FAA regulations, and cost 

estimates.  Scoring is weighted by the established requirements from the QFD’s 1
st
 House of 

Quality.  A simplified flow diagram for a top down approach to conceptual concurrent design 

is illustrated Figure 2.6. 

 

 

Figure 2.6:  Conceptual design flow chart. 

The four concurrent performance assessment blocks in Figure 2.6 are preceded by 

verification of vehicle targets.  This step determines which configurations are viable 

candidates for more detailed analysis.  After the performances are assessed, they are 

measured in terms of the mission.  If the mission targets are met, the design passes on to 

weight assesment and structural analyses.  If structural and weight analyses reveal a viable 

design, the configuration is subject to a conceptual design review (CDR) before passing 

through to preliminary design.  If a vehicle falls short of mission targets or fails its CDR, the 

engineering concept model is modified and reanalyzed. 

The engineering concept model contains all relevant design parameters for each 

engineering design discipline.  During the conceptual design phase, parameters are relatively 

simple and are constrained to the outer mold line (OML), propulsion system, stabilizers (with 
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control surfaces), packaging volume, and system placement.  Figure 2.7 below details typical 

department relations a concept model supports.   

 

 

Figure 2.7:  Sample diagram for a CAD-centric design environment. 

Because the conceptual design model is constantly fluctuating, it is important each 

department works from this common model.  This ensures all design groups are aware of 

modifications and are working from the most current design model.  All conceptual design 

iterations retain their respective concept model; linking each performance score to a 

representative CAD model.  This capability serves as a detailed design history for each 

modification.  Performance can be tracked in many ways; however, a simple method is a 

design scorecard.  A design scorecard ties the vehicle back to mission requirements and 

enables engineers to monitor vehicle convergence.  This can be done simply by using red, 

yellow, and green color coded blocks to represent quantified targets.  Figure 2.8 illustrates an 

example scorecard with the targets arranged down the first column and each design variant 

across the top. 
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Figure 2.8:  Example of a conceptual design scorecard for multiple vehicle variations. 

The vehicle targets have a numerical value that qualifies a variation for either meeting 

a target or failing.  Variations that meet the specified target are represented with green shaded 

cells.  Failure to meet a target is represented by red cells.  Yellow shaded cells fall 

somewhere between the lowest scoring variation and the indicated target value.  The example 

above uses numerical results to determine shading.  Other methods may strictly use integer 

scale values such as 1 through 10 or 1 through 3. 

2.3.3 Preliminary Concurrent Design 

The highest performing design which meets or exceeds targets from the conceptual 

stage is selected to enter into preliminary design.  Subsystems are included into the 

engineering concept model such as landing gears, control systems, structures, and refined 

weight assignments.  The CAD model also maintains nearly all previous capabilities to 

modify design parameters.  Experts in their respective areas increase the level of design 

detail for each system.  Preliminary design is also when fabrication begins for correlating 

analytical models with physical models.  These can include wind tunnel models and some 

structural members of interest.  Physical testing also increases confidence in the analytical 

models. CFD and FEA models have considerably increased fidelity compared to conceptual 

analysis simulations.  Multiple system integration trade studies and optimization routines 

incorporated into preliminary design exploits many residual performance gains from the 

conceptual design process.  Nearly all systems and performance metrics from the conceptual 

design phase remain integrated in the scorecard to maintain design change traceability.  

Scorecards include the subsystem performance metrics to accommodate subsystem 

requirements. 

2.3.4 Detailed Design 

After all systems and subsystems have been established, design at the component 

level begins.  During the detailed design phase, the vehicle configuration is deemed viable 
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and meets all requirements.  Tasks completed include: interior layout, shop drawings, and 

placement of hydraulics, electrical, fuel lines and ducting.  Typically design for 

manufacturing is also completed at this phase in the design process [2] such as tooling 

equipment and jig arrangements for component production.  By this point, it is important that 

design changes be kept to a minimum, as the cost to modify components can be substantial 

depending on the number interactions there are with other systems, subsystems, and 

components.  Often times, shop drawings are verified and released early for certain 

components so fabrication may commence.  Changes made to components already in 

production can have crippling effects to project deadlines and budget.  The earlier adverse 

interactions can be caught, the less chance there is for costly modifications during detailed 

design.  Increasing the fidelity of the conceptual model and using a top-down-design 

methodology, the probability of exposing adverse interactions increases dramatically for 

hypersonic aircraft.   
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CHAPTER 3. INTELLEGENT CAD MODELS 

When considering a CAD-centric approach, there are three important considerations 

that need to be addressed within the CAD Model itself: 1) Operability by other design 

groups, 2) Intelligent relations between features, and 3) Robustness and flexibility.  A CAD 

model with these characteristics will hence forth be referred to as an iMod (intelligent 

Model).  When iterating through preliminary design cycles, iMods improve efficiency by 

minimizing undesired side effects from the modification of design variables.   

A simple example to consider is increasing/decreasing the inlet capture area of an 

engine nacelle.  If a relation is created between the feature sketches (see section 3.2.1 for 

CAD too definitions) that control the capture area for the flow path and the feature sketches 

which control the outer diameter of the engine nacelle, when one dimension is altered, the 

others will maintain a constant specified distance.  Figure 3.1 shows this update relation by 

setting the outer nacelle diameter equal to the inlet diameter + 2 inches.  Relations of this 

type reduce the number of dimensional changes required to update geometries and preserve 

geometric relations.  Using the same example in Figure 3.1, if the relation described is not 

applied and the inner diameter was decreased from 36 inches (left) to 24inches (right) the 

resulting geometry would have an engine nacelle leading edge radius of 3.5 inches rather 

than the initial designed radius of 1 inch. 

 

 

Figure 3.1:  Intelligent relation between inlet capture area and outer nacelle diameter. 

Other, more complex relations that could only be realized by a practicing engineer 

define the intelligent relations.  An example of an intelligent relation would include 

considerations for vortex shedding and wake interactions between upstream and downstream 
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features. Another important aspect of an iMod is all solid features are merged to form a 

single solid body; thus creating a manifold geometry.   

It is important to have air-tight geometry when analyzing performance using 

Computational Fluid Dynamics (CFD).  By definition, a solid body is air-tight and will create 

a single manifold geometry with the air domain when Boolean operations are executed.  A 

difficulty of using surfaces for complex geometry is they are inherently discontinuous and 

must be sewn or stitched together before they can be properly gridded and meshed.  If gaps 

exist in the aircraft, the boundary conditions at those locations are absent and the air domain 

is allowed access to the interior of the outer mold line (OML).  If that occurs, at best, the 

residuals will not converge.  More commonly, surface gaps prevent the geometry from being 

discretized into a grid for meshing.  Solids are also beneficial when defining a location for 

the center of gravity (Cg).  By using mass properties, weights can be assigned to individual 

components and located within the OML domain to position the Cg for aircraft stability.  

3.1 Initial Sizing and Design 

From provided mission requirements, target L/D ratios and volume constraints are 

set.  Using the targets, preliminary designs are proposed to meet the specified requirements.  

No initial design is perfect, which is why incorporating parametric capability into beginning 

concept models is important. For supersonic/hypersonic aircraft such as the Lockheed D21-

B, Blackswift (HTV-3) from DARPA, and NASA X-43, configurations are typically lifting 

bodies or blended wing body aircraft.  Length scales vary from as little as 3.7 m for NASA’s 

X-43 [8] to just over 13 m for the Lockheed D21-B [9].  Keeping within these bounds set by 

legacy aircraft, a proposed initial design model 10 m in length is selected as an appropriate 

size for the case study in Chapter 5. 

3.2 Construction Methodology Overview 

3.2.1 CAD Tool Definitions 

In order to effectively discuss construction methods, some common CAD tool 

definitions must first be made.  SolidWorks 2014 is the primary modeling software used in 

the creation of all iMods in this chapter and the chapters to follow. 

Construction/Reference Line 

These are lines used for creating references within the design domain.  Construction 

lines create the foundation on which OML features are built from and control all parametric 

variations.  Nearly all feature sketches and guide curves in the following sections will 
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reference construction lines.  The terms construction line and reference line will be used 

interchangeably throughout this study. 

Loft Features 

A CAD tool used to create or remove solid regions between two or more feature 

sketch profiles.  If no control criteria are set, the loft will interpolate cross sectional 

transitions between the feature sketches. 

Feature Sketch 

Is a sketch that is commonly used by loft and extrude features to define the bounds 

for the OML and other aircraft components.  If using feature sketches for lofting, robustness 

can be improved by using the same number of line segments in each feature sketch and 

including guide curves between the sketches. 

Sketch Plane 

Used as datum for creating sketches.  These reference geometries can be created 

using a multitude of different techniques; however, some methods are better suited for certain 

applications.  For example, if the goal is to create a control sketch for wing dihedral, then the 

simplest reference set would be a plane with a parallel constraint to the front plane and 

horizontally dimensioned point that is coincident with the centerline.  The same plane could 

have just as easily been created with a perpendicular constraint to the mirror plane and a 

coincident constraint to a vertical line sketched on the mirror plane. 

Guide Curve 

User defined sketches to control loft contours. They can be a single line or curve 

and/or a combination of lines and curves in a series.  When using guide curves to create loft 

features, they must intersect all feature sketches within the loft domain.  Model edges may 

also be used as guide curves, however, for robustness it is not recommended.  This is because 

model edges may disappear depending on dimensional combinations within the configuration 

design – resulting in a broken reference and possible failure to regenerate the feature. 

Spline 

When fitting a spline to predefined construction line endpoints, by default it will 

assume a fit using multiple 3
rd

 order polynomial segments.  These splines are known as b-

splines.  Handles provide user defined tangency control.  Increasing the magnitude of a spline 

handle increases the tangency strength from its respective spline point.  For more robust 

spline control SolidWorks 2014 includes style splines which are based on Bezier curves.  
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Although this spline type is more robust, it does not offer the exact point to point 

intersections available from b-splines. 

Model Hierarchy 

Two basic terms are commonly used to denote the hierarchy in a CAD model – 

“parent” and “child”.  A feature or sketch used as a reference for creating another is known 

as a parent feature.  A feature or sketch that references another is known as a child of the 

referenced feature or sketch.  This is the foundation on which parametric models are built.  

Using an edge or vertex of a solid body is not a recommended parent reference for the same 

reason noted in the “Guide Curve” section above. 

Figure 3.2 through Figure 3.4 illustrate the parent-child relations between three 

sketches (S*) and four sketch planes (P*): S1) Centerline, S2) Height Control, S3) 

Anhedral/Dihedral Control, P1) Mirror, P2) Front, P3) Mid, and P4) Rear.  The front (YZ) 

and mirror (XZ) planes are fixed in space and represent the models absolute coordinate 

system.  The Centerline sketch is attached to the mirror plane and is therefore dependent on 

it.  The sketch titled Height Control is coincident with a point on the centerline sketch and is 

drawn on the mirror plane.  This creates a dual parent relationship; one with the centerline 

and another with the mirror plane.  The rear and mid planes are parallel with the front plane 

and coincident with points on the centerline.  The sketch labeled Anhedarl/Dihedral Control 

is drawn on the mid plane and coincident with the sketch titled height control.  By creating 

these relations, anhedral/dihedral control is entirely dependent on its own dimensions and the 

parent features it references.  For each succession through the following figures, a different 

parameter is altered to better demonstrate the parent-child relations.  Figure 3.2 shows the 

initial positions for each model feature. 
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Figure 3.2:  Parent-child relationships.  Original sketch positions. 

A dimensional alteration is made to a point on the centerline sketch in Figure 3.3.  

The point is referenced by the sketch “Height Control” and the Mid Plane.  It can be seen that 

all child features and inherited child features (Anhedral/Dihedral Control) also translate with 

the point down the centerline.  All other constraints not associated with the parent feature 

“Centerline” remain unaltered. 

 

Figure 3.3:  Parent-child relationships.  “Centerline” sketch alteration. 

Figure 3.4 shows the result of a modification made to the sketch “Height Control”.  

This sketch is a child of the “Centerline” sketch and a parent to “Anhedral/Dihedral Control”.  

Comparing Figure 3.4 to Figure 3.3, all construction lines of “Anhedral/Dihedral Control” 

have undergone a downward vertical translation. 
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Figure 3.4:  Parent-child relationships.  “Height Control” sketch alteration. 

It also follows that any dimensional alteration to the sketch “Anhedral/Dihedral 

Control” will only affect the lines within that sketch since it has no dependent children. 

3.2.2 Simple Parametric Example 

Features of parametric interest are built upon a foundation of construction lines which 

control and define feature positions within a three dimensional Cartesian coordinate system.  

Primary parametric features include overall aircraft vehicle length, cross section dimensions 

and absolute distance from nose for each cross section, wing dihedral, wing planform 

characteristics (section spans, chord lengths, sweep, etc.) and airfoil properties for each wing 

section.  Below is a simplified example of how construction lines are used to create 

parametric variations for a loft between two rectangular cross sections. 
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Figure 3.5:  Simple example of iMod parametric control sketches. 

 The origin is used as reference point to fix features in space and is located where the 

red dashed line intersects the front plane.  The red centerline is used to control the overall 

length extending down the –X axis (in a stability coordinate frame) and references the origin.  

The front and rear sketch planes are used to create the front and rear cross section 

construction lines (cyan dashed lines) and body feature sketches (blue solid lines) in Figure 

3.6.  The vertical cyan line on the front plane is directed along the –Z axis and the horizontal 

cyan line along the +Y axis.  These directions are representative of a body fixed stability 

coordinate system. 
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Figure 3.6:   iMod with body cross section sketches and guide curves included. 

The body cross section sketches (blue) are children of the cyan colored body cross 

section construction lines.  The guide curves (green) are children of both the cyan body cross 

section construction lines and the blue body cross section sketches.  By arranging the model 

hierarchy as such, dimensional variations in the cyan and red parent construction lines will 

cascade down the feature tree to all their children (rear plane, front and rear cross sections, 

guide curves, and the solid body loft).  Several variations are illustrated in Figure 3.7. 

All green guide curves are straight lines with the exception of the upper curve located 

on the XZ plane; which is a spline with handles at each endpoint.  Each handle of this spline 

is driven by an equation setting the tangency magnitude equal to 50% of the centerline 

length.  The baseline configuration is represented in the top left.  Variation 1 (top right) has 

 

Figure 3.7:  Simple loft variations between two rectangular cross sections. 
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deviated from the baseline by only the front and rear cross sections.  Variation 2 (bottom left) 

has a 25% reduced length and altered cross sections.  Variation 3 (bottom right) is reduced 

75% in length and also has altered cross sectional aspect ratios. 

3.3 iMod Construction Process 

Depending on the class of aircraft, the construction process of iMods will vary.  In the 

following sections two aircraft are considered; 1) A blended wing body (BWB) configuration 

for an air breathing hypersonic vehicle and 2) A traditional aircraft configuration for a 

supersonic business jet.  The first step necessary to constructing any iMod is determining 

which design parameters are of interest.  Each design group will have individual goals and 

targets which must be addressed within the iMod.  Therefore, determining the dimensions 

and aircraft characteristics for parameterization is a deliberative process between groups.   

3.4 Blended Wing-Body Aircraft: Hypersonic Wave Rider 

Due to the nature of blended wing bodies (BWB), it is difficult to use multiple loft 

features and create a smooth wing-body transition.  Because of this, the design engineer must 

be creative when constructing a parameterized model.  One such technique that provides 

exceptional control is point-to-point transitions.  This method consists of multiple cross 

sections distributed longitudinally down the centerline.  Each of these cross sections has 

driving construction sketches for span, anhedral/dihedral, and thickness.  Section 3.4.2 

provides details for constructing this model type. 

3.4.1 Design Parameters 

Point-to-point control offers parameterization for a very diverse set of OML features; 

however, there are other design variables which can be built into an iMod that offer more 

broad control.  An example of broad range feature control is constraining the points defining 

the leading edge (LE) to a single construction line.  This can be a useful technique to force 

the model to have a linear leading edge or to drive the wing LE by a Mach cone relationship.  

Stability parameters may also be incorporated into the reference sketches that drive the 

vertical stabilizer(s) and trailing edge control surfaces. 

Ramp Angles 

For air breathing hypersonic aircraft with inlet positioned below the body, the 

upstream ramp angles play very important roles in propulsive efficiency.  To compress the 

air before entering the inlet, a series of shock waves are generated at each ramp transition 

[10].  At the design Mach number, the oblique shock structure should resemble Figure 3.8 
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and converge on the inlet cowl lip.  The fuselage reference line is defined being parallel with 

the flow when the aircraft is at zero degrees angle of attack.  Ramp half angles used to 

determine the shock structure are depicted in Figure 3.8 as θ1, θ2, and θ3. 

Having parametric control over the half angles gives engineers the capability to 

quickly determine the best set of angles for the designed cruise condition and accommodates 

any necessary changes later in the design process.  The same concept may be extended to 

variable geometry inlets and nozzles. 

Leading Edge-Mach Cone Relation  

Hypersonic wave riders are characterized by matching their leading edges up with the 

cruise condition Mach cone.  By doing this, the shock cone produced by the nose attaches to 

the LE and isolates the low pressure region above from the high pressure region below.  An 

example of this phenomenon is pictured in Figure 3.9.  Absolute pressure contours are 

displayed on a plane that laterally bisects the aircraft and fluid domain.  Red, orange and 

yellow indicate high pressure regions.  Shades of blue indicate low pressure regions.  Shades 

of green represent pressure values which are near to the atmospheric pressure. 

 

Figure 3.9:  Mid-plane high and low pressure contours. 

 

Figure 3.8:  Design approach to ramjet/scramjet inlets at design Mach number. 

Fuselage Reference Line 𝜃1 𝜃2 
𝜃3 
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Stabilizers  

Due to the nature of a BWB configuration, a horizontal tail is not a necessary or 

appropriate component.  To accommodate the eliminated stabilizer, control surfaces are can 

be positioned along the trailing edges of the wing.  Yaw stabilization can be achieved 

through a body centered vertical tail, symmetric twin tail, or by oversizing the winglets.  

Structurally, vertical stabilizers on the wing tips are not as viable as body centered or twin 

tail configurations.  Aerodynamically, a vertical stabilizer centrally located on the body 

becomes “shadowed” at hypersonic speeds from the wake created by the nose at even small 

angles of attack [11].  This dramatically reduces the effectiveness for body centered 

stabilizers.  Symmetrically offset vertical stabilizers with a slight toe-in provide an 

aerodynamic and structural compromise between the two configurations. 

Control Surfaces  

After completing the conceptual design process, higher fidelity characteristics can be 

incorporated into the iMod.  Usually for aircraft showing a high performance index, control 

surface deflections are analyzed.  Elevons are a common example of this and provide the 

functions of both an aileron for roll and an elevator for pitch control. 

3.4.2 Construction Process 

The beginning foundation for constructing a blended wing body aircraft resembles the 

example of section 3.2.2.  First reference lines and planes are made.  After that, feature 

sketches are attached to the reference geometry, and finally lofts are made between sections.  

Figure 3.10 shows the coordinate system used throughout the construction process and 

includes two reference lines at the origin.  One line extends along the y-axis and represents 

the right wing direction; the other is aligned with the negative x-axis and designates the 

special location for the aircraft body.  The nose of the aircraft is coincident with the origin.   

 

Figure 3.10:  Reference coordinate system. 

Longitudinal Control Sketches 

Similar to the traditional aircraft in section 3.5, a centerline is created to establish a 

fixed reference line for body control parameters.  Constructed on the mirror plane and 
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beginning at the origin, the centerline extends down the negative x-axis.  The length of this 

line determines the total length of the aircraft.  Coincident points are added to the centerline.  

Each point represents the longitudinal position of a body cross section and is dimensioned 

from the origin.  Also included in the centerline sketch are angle controls for each body cross 

section which provide variability in the vertical direction.  To begin, a single reference line is 

made coincident with the origin extending vertically upward along the -z axis and 

dimensioned.  This dimension will define the leading edge radius for the wing.  Next, a chain 

of lines are created beginning at the free end of the LE radius reference line.  The number of 

line segments in the chain should equal the number of points on the centerline and terminate 

at the endpoint of the center line.  Small vertical lines are created at the endpoints of each 

line segment.  Each is constrained to a vertical orientation as well as a midpoint constraint.  

These construction lines are used as a reference line for dimensioning the body section 

angles.  Figure 3.11 shows the current model state up to this point with arbitrary dimensions. 

 

Figure 3.11:  Centerline body section angles. Detail view of nose LE thickness control. 

A second reference sketch is created on the mirror plane to control center thickness of 

each body cross section.  Two vertical construction lines are created at the endpoints of each 

line segment.  One line extends upward and the other line downward; both are given vertical 

constraints and dimensioned relative to their respective endpoint.  If it is more desirable to 

drive the lower forebody with ramp angles to control the shock interactions with the cowl lip 

(see Figure 3.8) then the lower vertical lines can be driven using angles between the 

centerline section line segments and newly created lines that span from endpoint to endpoint 

on the lower vertical lines.  Figure 3.12 displays the thickness control sketch in cyan.  This 

Detail View 
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model also incorporates the ramp angles as a design parameter to drive the lower first three 

sections. 

Sections are numbered based on how many stations exist within the conceptual model 

developed by the design team.  Stations are determined by regions of significant change; 

such as a ramp or variation in wing span.  To begin with, station dimensions are added to the 

iMod to create similar proportions to the conceptual model; exact values may be entered at a 

later time. 

Lateral Control Sketches 

Now that longitudinal control has been established, lateral dimensionality is possible.  

Cross section planes are generated lengthwise, and for the purposes of this study, reference 

the fixed front plane (parallel) and centerline points (coincident).  Each plane that references 

a centerline point becomes a child feature of the centerline, and therefore dependent, on the 

point.  Every dimensional modification to the point moves the plane and every sketch on that 

plane.  These planes contain the foundation on which all lateral dimensionality is built on. 

Lateral control reference sketches are constructed on the cross section planes and 

have individual control over span, dihedral, and thickness.  Assembled similarly to the 

longitudinal control sketches, each cross section control sketch originates off a common 

origin.  To ensure robustness, the same point used as a reference for the sketch plane is used 

as the control sketch origin.  Figure 3.13 shows a detailed view of the sketches that form a 

single lateral control sketch at a single station.  Span and dihedral dimensionality are 

 

Figure 3.12:  Body thickness control reference sketch (cyan) and centerline sketch (black). 
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contained in a separate sketch apart from the thickness control – identical to the setup for 

longitudinal control.  The cyan line in the figure is the height control line from the body 

thickness sketch.  To reduce dimensional clutter, only the span wise dihedral measurements 

are shown.  Other dimensions include horizontal distances for each black line segment from 

the origin, upper and lower lengths for each magenta thickness control line, and LE 

thickness.  LE thickness is driven by the same dimension from the detailed nose view in 

Figure 3.11; allowing all LE thicknesses to be updated from a single dimensional change. 

To maintain consistent alignment between each span wise section, thickness lines are 

angled relative to the span segment that precedes it.  To accomplish this, the two dihedral 

angles that surround it are averaged using Eq. 3.1. 

𝜃𝑡ℎ𝑖𝑐𝑘 = (
Γ𝑠𝑒𝑐𝑡𝑖𝑜𝑛 1 + Γ𝑠𝑒𝑐𝑡𝑖𝑜𝑛 2

2
) − Γ𝑠𝑒𝑐𝑡𝑖𝑜𝑛 1 + 90 Eq. 3.1 

Where Γsection 1 and Γsection 2 are the inner and outer (respectively) dihedral angles 

relative to the vertical cyan body thickness control line.  The resulting angle θthick is measured 

relative to the inner dihedral line segment (Γsection 1) and drives the magenta thickness line.   

A benefit of incorporating the average angle into an iMod is that even under extreme 

dihedral angles, the thickness angle will not bias toward eithier wing section.  Figure 3.14 

illustrates this biasing effect if not properly constrained.  The magenta colored line furthest 

outboard (left) has a simple perpendicular constraint with the outside black dihedral line and 

is strongly biased toward the underside of the second (center) black line.  The interior 

bod 

Figure 3.13:  Lateral control sketches.  Span and dihedral (black).  Thickness (magenta). 
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magenta colored line is driven by Eq. 3.1 and remains centered between the surrounding 

dihedral reference lines.   

After all cross section reference sketches are added, the iMod resembles the state of 

Figure 3.15.  All black colored lines are part of the centerline sketch, green lines represent 

reference lines for body thickness and ramp angles, cyan is for the lateral span and dihedral 

control, and the magenta lines belong to longitudinal thickness control. 

 

Examining Figure 3.15 closer, it is evident that the magenta thickness control 

sketches on the planes “Body_xSect3” and “Body_xSect2” have interior line angles which 

bod 

Figure 3.14:  Lateral control sketches.  Span and dihedral (black).  Thickness (magenta). 

 

Figure 3.15:  Display of all lateral and longitudinal control sketches. 
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deviate from Eq. 3.1.  This is to allow individual control over the ramp widths at those 

stations and is a useful technique for managing available surface area when sizing an inlet. 

Feature Sketches 

Little dimensioning is required for feature sketches even though they are what truly 

define the outer mold line at each station.  These sketches are a result of their parenting 

control sketches and must be robust enough to regenerate under extreme conditions.  

Common failure modes include acute angles over short distances and unregulated tangency 

magnitudes for splines.  For this reason, many of the feature curves on the wing are straight 

lines from point to point. 

Feature sketches share transverse cross section planes with their parenting dihedral 

and span control sketches.  Figure 3.16 illustrates the process of creating these feature 

sketches.  To begin, a circular arc is added at the leading edge (a) and is governed by 

coincident relations with the LE thickness reference line. Second, lines are added between 

the endpoints of each upper and lower magenta reference line (b); leaving a gap in the first 

section.  Lastly, splines are added to close the upper and lower openings and a vertical line 

(collinear with the mirror plane) encloses the boundary (c).  The splines that form the first 

section are given start and end tangency constraints.  These spline controls force a horizontal 

direction from the point lying on the mirror plane and parallel relation with the line that 

begins the second section from stage (b). 

For a more robust model, equations are added to control tangency strengths.  

Equations are set to have a linear correlation to the first wing sections span dimension; a 

decrease in span distance causes a decrease in tangency magnitude, the opposite is true for an 

increase in span distance.  Having control of the tangency magnitude for curves increases 

robustness by allowing the spline to smoothly transition between stations by stretching and 

contracting rather than bending and kinking.  It also provides consistency when modifying 

 

Figure 3.16:  Progression through construction stages of a feature sketch. 

(a) (b) (c) 



30 

design parameters.  Figure 3.17 demonstrates how different spline control methods impact 

the outcome of a body feature sketch.  The image to the left is a representation of the 

originally intended design form and has constant magnitude tangents in place.  The center 

image is the result of reducing the first wing section span by 33% while preserving the 

constant magnitude splines.  The drawing to the right also has a 33% reduction of the first 

wing section, but has all four spline magnitudes independently driven by linear equations 

which are dependent on dimensional span of the first section. 

It is apparent to the design engineer that the constant magnitude outcome is less than 

desirable and adjustments must be applied.  Rather than readjust the magnitudes every time 

the wing section has a span alteration, equations can be implemented to create the effect seen 

in Figure 3.17 (c).  This is especially useful when implementing automated design 

optimization.  One method is to establish the linear slope equation for the spline handles by 

simply determining feasible spline magnitudes for reasonably near and far wing span 

dimensions and use Eq. 3.2. 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = (
𝑀𝑓𝑎𝑟 − 𝑀𝑛𝑒𝑎𝑟

𝑏𝑓𝑎𝑟 − 𝑏𝑛𝑒𝑎𝑟
) (𝑏 − 𝑏𝑛𝑒𝑎𝑟) + 𝑀𝑛𝑒𝑎𝑟 Eq. 3.2 

Where Mfar and Mnear are the spline magnitudes at the arbitrary near and far span 

distances which produce the desired transitions, bfar and bnear are the chosen near and far span 

distances, and b references the current span dimension.  This equation is the two-point slope 

form for a linear equation.  Figure 3.18 shows all feature sketches (blue) added to the iMod.  

This is the display state for all wing-body features sketches.  To ensure there are no errors 

within the model up to this stage, each set of feature sketches undergoes a section-by-section 

loft test. 

 

Figure 3.17:  Tangency magnitude control comparison for body feature splines. 

  Equation Driven   Original Form   Constant Magnitude 
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Stabilizer 

Vertical stabilizer sketches are constructed on their own independent planes and 

constricted to the body only enough to contain the root chord sketch completely within the 

OML.  To enable twin tail configurations a transverse angle control relative to the mirror 

plane is incorporated.  This reference sketch (red in Figure 3.19) is located on a transverse 

plane dimensioned longitudinally from the aircraft base.  Control over the stabilizer planform 

is achieved using a series of construction lines (cyan in Figure 3.19) on a plane which 

references the transverse angle control sketch and the front plane (perpendicular relation).  

The root chord reference line is collinear with the second to last sections centerline to ensure 

complete submersion when it comes time to unite the solid features.  The planform is driven 

using span length, chord length, and sweep angle dimensions. 

 

Figure 3.18:  Model display state after all body feature sketches added. 
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Each airfoil thickness control sketch is drawn on a plane coincident with their 

respective reference chord line (see Figure 3.19) and perpendicular to the plane that holds the 

planform control sketch.  Thickness controls are driven by an equation set to a percentage of 

the corresponding sections chord length.  Leading and trailing edge radii can be 

dimensionally constrained to match “LE Thickness” from Figure 3.11.  Trapezoidal airfoils 

are driven by their parenting thickness control lines and the final display state is illustrated in 

Figure 3.20 

 

Figure 3.19:  Vertical stabilizer planform reference sketches (cyan) and planes. 

 

Figure 3.20:  Final reference sketch display state for vertical stabilizer. 
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The airfoil selection is not limited to a single variety.  The construction lines that 

define the stabilizer can be referenced by multiple airfoil types such as diamond or biconvex.  

More complex airfoils can also be generated on the vertical stabilizer section planes and use 

the planform control reference lines to drive sizing.  Individually lofting each group of 

airfoils will create multiple solid bodies for the vertical stabilizer, all within the same aircraft 

configuration.  Feature suppression makes it possible to deactivate the stabilizers not 

undergoing analysis. 

Guide Curves 

Before lofting sections together, guide curves can be inserted between them.  This is 

advantageous because rather than relying on the CAD software to interpolate between 

sections, the loft is forced to follow each guide curve.  Two conditions must be met to profit 

the most from lofting: 1) Each section being lofted contains the same number of line 

segments and 2) Traversing guide curves extend between all corresponding section nodes.  If 

these conditions can be met, the resulting solid will be more robust and consistent between 

variations.  To illustrate, Figure 3.21 contains a simplified rectangular-to-elliptical shape 

transition (REST) inlet.  The upper image does not use the guide curves displayed in green, 

while the lower image is. 

 

Guide curves are particularly useful for inlet geometries generated from streamlines 

traced from inviscid compression fields.  Such a process is commonly used when generating 

three-dimensional hypersonic inlets [12].  If guides are not utilized during loft processes, 

then the design engineer is limited to using start and end constraints or centerline parameters.  

Both of which do not offer the complete shape and transition control available with guide 

curves. 

 

Figure 3.21:  Loft without guide curves (top) and with guides (bottom). 
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Best practices for guide curves vary on the situation and multiple guide combinations 

may exist that produce identical results.  A majority of the guide curves used in this iMod are 

3D sketches; which are simply sketches that do not require a predefined two dimensional 

plane and are able to freely reference objects within the three dimensional design space.  This 

is a dynamically robust method when using straight lines from point-to-point; however, if 

splines are used, they should be constricted to sketch planes. 

Both upper and lower center body guides are sketched on the mirror plane.  The upper 

guide is a single spline that uses each cross sectional station as a reference point for 

interpolation.  The lower guide curve uses straight lines for the first three ramp sections and a 

spline for all other downstream sections.  These two guide curves are essential for 

consistently producing manifold geometry by forcing each section boundary all the way up 

to, and never beyond, the mirror plane.  Guide curves which define the nose leading edge are 

splines generated on two separate planes – one for the upper LE radius and one for the lower 

LE radius.  The planes are defined by three points: 1) The nose tips radius endpoint (upper or 

lower), 2) the first cross sections corresponding radius endpoint (upper or lower), and 3) the 

corresponding thickness endpoint for the first cross section.  These relations enable the plane 

to twist along with any dihedral modifications to the outermost span section.  Figure 3.22 

depicts the guide curves for the mirror and wing leading edges in green.  The centerline 

(black) and span control (cyan) sketches are shown to better represent where the guide curves 

are relative to the solid body (gray shaded region).  Final lofting should not be performed 

until all guide curves are positioned. 

All other guide curves follow what is referred to as a point-to-point approach.  

Meaning the guide curves reference common endpoints of each sections thickness control.  

Most body features and vertical stabilizer use this method.  The resulting body guide curves 

create a web that defines the OML.  Figure 3.23 displays the point-to-point guide curves for 

the wing and vertical stabilizer.  The wing LE, upper, and lower body guides are hidden. 

 

Figure 3.22:  Mirror plane and wing leading edge guide curves. 
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The same sketch color coding applies to the figure above: Magenta is for thickness 

control, cyan for span (chord length for vertical stabilizer), and green for guide curves 

Lofting 

Lofting can be performed intermittently throughout the construction process, but 

should only serve as a check to ensure each loft functions as intended.  A minimum of two 

sections are required for a loft and there is no practical maximum, however, fewer sections 

within a loft offers more flexibility and robustness.  A disadvantage of using multiple lofts 

chained together includes non-tangent transitions between lofts.  This issue can be resolved 

by using common guide curves for each lofted section or by adding tangent relations between 

multiple curves chained together.  For the BWB vehicle of this chapter, each loft section uses 

only two sketch profiles and tangency is enforced using guide curves.  It should be noted that 

on rare occasions, a loft will fail to generate based on the order guide curves are selected. 

Only after all control sketches are completed and guide curves are placed is lofting 

advisable.  Reasons for this technique include: reduced clutter, avoidance of referencing solid 

feature vertices, the model is faster to work with (reduced load on graphics processing unit), 

each model update does not require complex feature regeneration, and better organization of 

sketch and feature hierarchy in the model (default settings will often have solid features 

absorb their parenting feature sketches). 

Because the foundation for generating solids is now in place, lofting is as simple as 

selecting feature sketches and guide curves.  Figure 3.24 is a snapshot from the SolidWorks 

environment for lofting “Body_xSection_2” and “Body_xSection_3” together to form 

 

Figure 3.23:  Web of point-to-point guide curves. 
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“Section 3”.  The dark green lines are selected guide curves for section three, solid cyan lines 

are upper and lower mirror plane guides, and the orange lines are the selected loft profiles.  It 

is important to select “Merge Result” in the options dialogue box for a manifold geometry. 

 

 

Figure 3.24:  SolidWorks CAD environment for lofting between sketch profiles. 

The final parameterized iMod is shown in Figure 3.25 (left).  To determine capability, 

a robustness test is performed on the iMod (right).  By producing multiple parameter 

combinations, failure points within the model can be identified and repaired.  It is not 

uncommon for automatic relations to form during construction.  Automatic (inferred) 

relations can often times be customized in the CAD software options menu.  Robustness 

should be vigorously tested before any multidisciplinary design analysis and optimization 

(MDAO) is performed. 

  

Figure 3.25:  Final configuration display state (left).  Robustness test (right). 
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3.5 Traditional Wing-Body Aircraft: Supersonic Transport 

Similar to the previous BWB design, traditional wing-body aircraft can be 

constructed and parameterized for rapid manipulation.  The methods to follow are 

demonstrated using a supersonic transport concept vehicle and are highly condensed.  This 

section is intended to illustrate the capability and extensions of the iMod techniques into 

other classes of aircraft.  These classes may include: Unmanned Aircraft Systems (UAS), 

commercial transports, military transports, fighter jets, and light commuter aircraft.   

3.5.1 Design Parameters 

Wing-body aircraft have several distinct features and cannot be effectively 

constructed using the point-to-pint technique from section 3.4.  For a robust model, each 

major feature must be individually lofted.  These features include the: fuselage, wing, engine 

pylons, engine nacelles, vertical stabilizer, horizontal stabilizer, canard or any other auxiliary 

parts.  To capture outer mold line (OML) features of interest, the following have been 

selected for inclusion in the parameterized iMod.   

Dihedral/Anhedral 

Wing dihedral is important for aircraft lateral stability, but is selected as a metric 

primarily to quantify its performance impact on lift and drag.

 

Figure 3.26:  Wing dihedral set to 5° (left).  Wing anhedral set to 5° (right). 

Wing Span 

Correlated to aspect ratio (AR) by 

𝐴𝑅 =
𝑏2

𝑆
 Eq.  3.3 

Where b is the wing span and S is the wing area. As this parameter increases, the lift 

coefficient CL,α also increases [2].  Similarly, for aircraft exceeding the speed of sound, 

increasing the Aspect Ratio will also increase the zero-lift drag coefficient, CD,0. 
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Figure 3.27:  Wing span variations.  b=83’ 4” (left) and b=114’ 7” (right). 

Wing Thickness to Chord Ratio (t/c) 

Depending on desired cruising flight flow regime (subsonic or supersonic), the wing 

thickness ratio will impact flight performance differently.  Because smaller thickness ratios 

tend to increase the critical Mach number (transition speed where localized sonic flow begins 

to appear) supersonic aircraft will tend to have lower t/c ratios [2].  Significant disadvantages 

of low t/c ratios for supersonic aircraft include a reduction in fuel volume and limited 

structural performance. 

 

Figure 3.28:  Wing t/c ratio variations. 

Wing Sweep 

Similar to the wing thickness ratio, wing sweep also increases the critical Mach 

number and decreases the zero lift drag coefficient (CD,0) [2].  Incorporating sweep into a 

iMod allows engineers to analyze an array of multiple sweep angles and identify the 

performance tradeoffs between reducing CD,0 (increasing sweep angle) and increasing CL,max 

(decreasing sweep angle).  An additional benefit of including wing sweep as a parametric 

design variable is for directional stability and analyzing the impacts it has on Dutch roll. 
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Figure 3.29:  Wing sweep variations. 

Stabilizer Position and Sizing 

Vertical and horizontal stabilizers contribute to the lateral and longitudinal stability.  

Adding parametric position and sizing variations to these features will help identify locations 

and sizes that provide optimal control while minimizing adverse performance effects.  Figure 

3.30 illustrates a simple iMod reconfiguration from a single vertical and attached horizontal 

to a twin (dove) tail configuration. 

 

Figure 3.30:  Vertical stabilizers.  Single (left) and dove tail (right) configurations. 

This process, when done manually, takes an engineer less than 5 minutes.  Two 

simple steps are required: suppress the horizontal stabilizer and then increase the angle value 

with respect to the XZ plane (stability coordinate system) of the vertical stabilizer.  Two 

stabilizing features are created when the solid body is mirrored over the XZ plane. 

Control Surfaces 

Major design considerations for control surfaces include: position, sizing, and 

deflection angle.  Including the capability to control these parameters enables a rapid 
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succession of optimization cycles to determine candidate configurations providing maximum 

trim effectiveness while minimizing adverse effects such as drag. 

After the aerodynamic forces and static margin are determined (see section 4.2.2), 

parameters such as sizing and deflection angles can be incorporated into the iMod.  To 

reduce computational resources, control surface analyses should only be considered in the 

latter stages of the initial design cycles.  Including a trimmed aircraft configuration in the 

initial design analysis may expose significant aerodynamic and structural issues early on – 

avoiding costly and time consuming design changes later on. 

 

Figure 3.31:  Control surface deflections. 

The upper image of Figure 3.31 is the default zero degree deflection state.  The image 

in the lower left corner has 20 degree flap deflections.  The lower right image has 15 degree 

aileron deflections for a positive roll (right) maneuver. 

3.5.2 Summary of Construction Process 

Constructing traditional style aircraft takes place in three basic stages: 1) Fuselage, 2) 

Wing, and 3) Auxiliary components.  Auxiliary components include stabilizers, engine 

pylons, engine nacelles, canards, winglets, and other components deemed appropriate by the 

engineering design team.  Each stage follows the underlying construction technique 

previously shown in the Simple Parametric Example of section 3.2.2 – obeying the three step 
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process: construction lines, feature sketches, and then lofting.  It is important to complete all 

sketches for each feature and then begin lofting in the proper order of dependency.  This will 

improve efficiency and reduce undesired references.  Dependency orders can vary, but as a 

general rule, it is best to loft the root feature before any others.  For an aircraft this is the 

fuselage.  Without a main adjoining feature the wing and tail stabilizers are separate bodies 

and detached until the fuselage is created to unite them.  Lofting can be thought of as a 

growing process where features are extensions from their larger counterparts.  If lofting 

follows the order: fuselage, wing, winglet, vertical stabilizer, and then horizontal stabilizer 

(for a T-tail configuration) while optioning to unite each feature as it is created; there is only 

a single solid body throughout the entire process.   
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CHAPTER 4. SIMULATION BASED DESIGN METHODOLOGY  

The method used to demonstrate the robustness and flexibility of iMods incorporates 

physics simulations and data post processing techniques to evaluate each parametric 

variation.  In particular, CFD (STAR-CCM+) is used to evaluate the forces and moments on 

the aircraft and a MatLab code evaluates the performance.  Performance scoring and criteria 

are covered at greater length in Section 4.2.4.  The basic process is illustrated in Figure 4.1 

and begins with mission requirements setting the design targets.  After targets are set, initial 

design models are created.  The initial designs are simply concept models that represent the 

class or classes of aircraft which best suit the mission requirements.  These concept models 

also determine the initial aircraft scaling, such as total length and wing span.  After the initial 

design(s) are generated, iMods are developed and the process becomes cyclic.  The first 

iMod in the design cycle will be known as the “baseline” design, as this model sets the 

standard from which all other variations are measured from.  CFD physics simulations 

generate raw data that is gathered and analyzed for performance by a data post processing 

MatLab code which scores the design based on how well it meets the targets. 

 

Figure 4.1:  Simulation based design process flow chart. 
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If performance evaluations reveal the vehicle configuration does not meet 

requirements, its parameters are modified by design engineers or updated using an 

optimization routine, and the cycle continues.  Once a feasible design is found, it proceeds to 

the next design phase and higher fidelity analyses are conducted.  Analysis may include a full 

3-dimensional stability CFD modeling to determine all forces and moments in pitch, roll, 

yaw, and coupled rotations or structural modeling within a finite element analysis (FEA) 

code. 

4.1 Physics Simulation Setup (CFD) 

The primary analysis tool for the case study in CHAPTER 5 is STAR-CCM+ Version 

8.06.005.  This commercially available CFD software is capable of simulating multi-million 

cell meshes for full three-dimensional geometries.  The setup consists of six basic categories: 

1) Geometry.  Which includes importing the CAD model, naming, and creating the domain, 

2) Physics continua and solvers, 3) Mesh continua, 4) Boundary conditions, 5) Setting up 

free stream flow characteristics, and 6) Adding reports to monitor force and moment data.  

These six setup steps are briefly outlined in the following sections. 

4.1.1 Geometry 

Several file types can be imported into STAR-CCM+.  For CFD simulations, only 

solid body types are used to avoid otherwise time consuming processes associated with 

surface models – such as surface stitching and wrapping.  Both Parasolid and STEP files are 

used for the case study in CHAPTER 5.  STEP files are convenient if the CAD modeling 

software allows exporting of both solid and surface geometry.  This enables the naming of 

solid body surfaces within the CAD software and eliminates the process within the CFD 

software.  Naming the surfaces within an iMod also preserves conventions within all model 

variations and configurations (provided surfaces are not created or eliminated).  Additionally, 

some CAD software packages have the capability to attach non-physical attributes which 

would assign proper boundary conditions, mesh properties, etc. to the solid surfaces. 

The created air domain is solid sphere (or hemisphere for symmetrical half body 

simulations) surrounding the CAD model.  The free stream domain is sized based on the 

scale of model.  For simulations at supersonic and hypersonic velocities, the distance 

between the nose of the aircraft and the outer boundary of the free steam can be on the order 

of 1/2 to 1/4 the overall vehicle length.  For the best accuracy, a minimum distance of 8-10 

times the overall length behind the aircraft should be used [13]; however, distances of three 

times the overall vehicle length are sufficient for supersonic and hypersonic simulations. 
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Under subsonic conditions, information is able to travel upstream and larger domains 

(both upstream and downstream) must be considered.  Simulations that include propulsion 

analysis should also have an appropriately sized domain to capture the entire exhaust plume.  

The free stream is elongated as shown below in Figure 4.2.  The upper half of the dark gray 

profile is revolved 180 degrees around the x-axis to form a solid axisymmetric half body 

domain. 

 

Figure 4.2:  Profile used for free stream air domain. 

4.1.2 Physics Continua 

For the CAD-centric design methodology, each engineering discipline is in charge of 

their respective area(s) of expertise.  These specialty associations are vital to achieve as high 

of accuracy as possible when simulating physical conditions and environments.  Results from 

CFD codes and software can significantly vary based on solver settings; therefore, an 

immense amount of subject knowledge is required to properly setup an analysis.  For the 

investigations throughout this paper, a template created using CD-Adapco’s best practices is 

implemented to ensure accurate solutions.  A summary of the selected physics models are 

briefly described below. 

For strictly analyzing the outer mold line in transonic, supersonic, and hypersonic 

flows, full three-dimensional steady state solutions are found using Reynolds-Averaged 

Navier-Stokes equations.  The coupled flow and energy models incorporate the AUSM+ 

(advection upstream splitting method) scheme to more accurately capture the shock and 

contact discontinuities [14]. The ideal gas law is used express the air density as a function of 

the temperature and pressure.  Turbulence is modeled using the SST (shear-stress transport) 

K-Omega technique by Menter [15] with an all y+ wall treatment. 
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4.1.3 Mesh Continua 

The mesh continua used in this study includes two main categories: models and 

reference values.  Mesh models set the cell types and quality.  Reference values dictate the 

properties of added mesh models.  Value categories vary depending on the mesh models used 

in a simulation. 

Models 

For the supersonic and hypersonic external aerodynamic applications, polyhedral 

meshes have proven to perform well [13].  A prism layer mesh should also be used to capture 

the boundary layer.  A surface remesher is also used to improve the imported CAD models 

initial surface quality and optimize it for volume meshing.  The illustration below in Figure 

4.3 shows an example of an initial geometry surface (left) and the remeshed surface (right).  

The substantial quality increase is valuable for analyzing the performance of leading edges 

under supersonic and hypersonic flight conditions.  It is not unusual for a hypersonic aircraft 

to have a LE radius between .03 and .05 inches [16].  Because of these small features, special 

care must be taken to capture the designed geometry to improve simulation accuracy. 

 

  

Figure 4.3:  Initial geometry and remeshed surface comparison. 

Reference Values 

Polyhedral, prism, and surface remesher models include the following major 

reference values: Base size, prism layer control parameters, surface cell controls, and 

volumetric cell controls.  To efficiently simulate geometries, each specified boundary region 

in the domain should specify custom mesh conditions.  The free stream and symmetry 

boundaries should have equal sizing constraints and the far field cells may be sized on the 

order of the overall body length. 
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The base size can be used to facilitate mesh refinement on a global scale by setting 

cell boundary sizes to a percentage of the base size.  Doing this enables changes by altering a 

single parameter rather than to all boundary parameters.  

Prism layer controls include the number of prism layers, prism layer stretching, and 

the total thickness for the prismatic cell layers.  The prism layer stretching ratio specifies the 

thickness of each cell relative to the previous cell layer.  Stretching ratio is important for 

controlling wall Y+ values.  Wall Y+ indicates how well the mesh is able to resolve the 

boundary layer and accurately model turbulence. 

Surface cell controls may include: growth rate, curvature, minimum size, and target 

size.  Surface growth rate is a ratio which represents the maximum size difference between 

the edges of adjacent cells.  This property is important for maintaining smooth transitions 

across regions with dissimilar mesh refinement settings.  Curvature dictates cell face sizes on 

a curve based on arch length using an operator defined quantity of points around an 

equivalently sized circles circumference.  The minimum and target sizes can be defined as 

percentages of the base cell size or as absolute values.  Boundaries which require mesh 

refinements can be dramatically impacted by these two values.  Minimum size restrictions 

regulate the surface mesher by preventing small geometric features from becoming too 

refined.  Target size sets the preferred surface cell dimensions and facilitates cell size 

optimization by allowing slight deviations above and below the specified target value. 

The volumetric mesh domain is indirectly sized by surface cell controls.  After the 

first cell layer is generated on the surface, volumetric controls take over.  Polyhedral meshes 

in STAR-CCM+ have two defining properties – density and growth factor.  The density 

factor either increases for values greater than 1.0 or decreases for values less than 1.0.  By 

increasing the density above 1.0, the mesh domains cell count will also increase.  The 

opposite holds for reducing the value below 1.0.  Polyhedral growth factors determine the 

rate at which the cell volumes grow between boundaries with fine mesh settings to those with 

coarser settings. 

4.1.4 Boundary Conditions 

Simulations can be analyzed based on two primary stability conditions.  Longitudinal 

(pitch) stability analyses only requires half body symmetrical simulations while lateral (roll) 

and directional (yaw) stability require full body simulations.  Figure 4.4 presents the two 

simulation types. 
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Figure 4.4.  Half (left) and full (right) body simulation boundary conditions. 

For pitch simulations, only half the domain is necessary.  A symmetrical boundary 

condition is applied to the mirror plane.  This boundary is represented in the left image of 

Figure 4.4 as a dark blue region.  Both half body (left image) and full body (right image) 

simulations use free stream boundary conditions (gold region) for the air domain and wall 

boundary conditions (grey region) for the aircraft OML. 

4.1.5 Force and Moment Reports 

Reports in STAR-CCM+ are used to monitor physical properties by extracting the 

desired information from the applied physics models within the simulation.  Multiple reports 

are available in STAR-CCM+, ranging from mass flow rates to heat transfer properties and 

user defined expressions.  For the purposes of this analysis, force and moment reports are 

selected.  Full body aerodynamic forces and moments are the primary reports used for 

evaluating performance; however, the body may be split into smaller components.  Breaking 

down the aircraft into sections is useful when determining the impact of specific parametric 

changes.  For instance, if an aircraft forebody is altered and all other parameters remain 

constant, the impact of that change can be seen on each individual component.  Other 

examples include stabilizer contributions to restoring moments.  When partitioning the 

aircraft, it is important to ensure the reference pressure is taken into consideration. 

Symmetrical simulations with pitch only maneuvers require lift, drag, and pitching 

moment reports because it is assumed that all other body forces cancel with their symmetrical 

counterparts.  Full body simulations involving roll and yaw maneuvers require force and 

moment values associated with each of the three Cartesian component directions. Sign 

convention is derived using the standard stability coordinate system shown in Figure 4.5.  A 

positive pitching moment (My) is nose up.  Positive yawing moment (Mz) is to the nose right 
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and a positive roll moment (Mx) is right wing down when viewing the aircraft from behind in 

the positive x-direction. 

 

Figure 4.5:  Standard body fixed stability coordinate system. 

Exporting report data for post processing is done with the use of .csv files.  In STAR-

CCM+, the files are exported as data points from monitor plots.  Monitors are set to capture 

the data points when the simulation is converged by using iteration triggers.  These triggers 

are set to extract the values from the desired reports at specified iterations.  Consistent data 

formatting of rows and columns is important when using a code or script to process the data. 

4.2 Performance Evaluations 

Data is gathered from the CFD force and moment reports in the form of *.csv files.  

Each report file is read into MatLab where the raw data is transformed using the free stream 

flow characteristics data table, and a performance index value is assigned based on the set 

design requirements.  For the case study in CHAPTER 5, the primary performance metrics 

include; lift to drag ratio (L/D) translated into range, static stability, and total volume within 

the vehicles OML.  These basic vehicle performance parameters are discussed below. 

4.2.1 L/D 

The ratio of lift to drag is a very important metric in determining overall aircraft 

performance.  It is a measure of efficiency and has a linear relationship with range through 

the Breguet range equation [Eq.  4.1]. It should be noted that this equation assumes steady 

level flight conditions where Thrust = Drag and Lift = Weight.  Also, L/D and TSFC remain 

constant.  To effectively utilize the Breguet range equation, the flight trajectory can be 

divided into smaller segments and approximated as steady and level. 
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𝑅 =
𝐿

𝐷

𝑉

𝑇𝑆𝐹𝐶
𝑙𝑛 (

𝑊𝑖

𝑊𝑓
) Eq.  4.1 

Where R is the range, L is lift, D is drag, V is velocity, TSFC is the thrust specific 

fuel consumption, Wi is the initial weight, and Wf is the final weight. It is also be appropriate 

to write the Breguet range equation in terms of specific impulse (Isp).  This is shown in 

equation Eq.  4.2. 

𝑅 = 𝑉
𝐿

𝐷
𝐼𝑠𝑝𝑙𝑛 (

𝑊𝑖

𝑊𝑓
) Eq.  4.2 

Because of the significant performance impact, L/D contributes substantially to the 

overall performance index for the case study in CHAPTER 5. 

4.2.2 Static Stability 

Aerodynamic data is extracted from CFD results for the full aircraft.  Forces and 

moments are set to report about the nose (origin) and later transformed to a range of locations 

along the aircrafts X and Z axes using a post processing script written in MatLab.  The 

standard stability coordinate system from Section 4.1.5 is used.  First, rotations are computed 

from the user defined freestream table, force vectors, moment vectors, and the Eulerian 

transformation matrices.  The Euler transformations [17] follow a sequence of three 

rotations: 1) Yaw, 2) Pitch, and 3) Roll and are shown in equations Eq. 4.3, Eq. 4.4, and Eq. 

4.5.  For convenience, the notations from Table 4.1 are implemented: 

 

 

Table 4.1:  Abbreviations used in Eulerian transformation matrices. 

Yaw Angles Pitch Angles Roll Angles 

𝐶𝛽 = cos(𝛽) 𝐶𝛼 = cos(𝛼) 𝐶𝜓 = cos(𝜓) 

𝑆𝛽 = sin (𝛽) 𝑆𝛼 = sin (𝛼) 𝑆𝜓 = sin (𝜓) 

 

1) Yaw {

𝑥1

𝑦1

𝑧1

} = [
    𝐶𝛽 𝑆𝛽 0
−𝑆𝛽 𝐶𝛽 0
   0 0 1

] {

𝑥0

𝑦0

𝑧0

} Eq. 4.3 
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2) Pitch {

𝑥2

𝑦2

𝑧2

} = [
    𝐶𝛼 0 −𝑆𝛼

0 0    0
   𝑆𝛼 0    𝐶𝛼

] {

𝑥1

𝑦1

𝑧1

} Eq. 4.4 

3) Roll {

𝑥3

𝑦3

𝑧3

} = [
1    0 0
0    𝐶𝜓 𝑆𝜓
0 −𝑆𝜓 𝐶𝜓

] {

𝑥2

𝑦2

𝑧2

} Eq. 4.5 

 

The vector < 𝑥0, 𝑦0, 𝑧0 > represents the original force or moment vector aligned with 

the XYZ body fixed coordinate system and < 𝑥3, 𝑦3, 𝑧3 > is the final vector orientation 

aligned with the wind.  Once the rotations are applied to the force and moment vectors, they 

are translated to the volumetric Cg (center of gravity).  This provides an approximate starting 

location for applying small (approx. 1% the total length) variations to the Cg’s position.  By 

doing this, a range of suitable locations is determined for positive static stability.  Because a 

majority of the simulations are symmetrical for the case study in CHAPTER 5, they do not 

include yaw and roll; therefore longitudinal static stability is used as the primary 

performance metric.  To quantify the longitudinal static stability; static margin [18] is defined 

as the distance between the center of gravity and the neutral point (np) divided by the mean 

chord length.  Eq. 4.6 represents this property.  Positive values indicate the center of gravity 

(COG) is forward relative to the neutral point and has a pitch down restoring moment.  This 

positive positional relationship for np and Cg defines a statically stable aircraft. 

𝑆. 𝑀. =  
𝑙𝑛𝑝

𝑐̅
 Eq. 4.6 

Where lnp is the longitudinal distance measured from the COG to the neutral point and 

𝑐̅ is the mean wing chord length.  For BWB aircraft, the entire planform is considered the 

wing.  The neutral point is defined as the location where the total pitching moment does not 

change with small perturbations in angle of attack.  If the COG is located at this point, the 

aircraft is neutrally stable. 

It should also be noted that STAR-CCM+ is capable simulating geometries with 6 

degrees of freedom when provided with the mass moments of inertia.  This aids in 

determining dynamic stability performance and may be considered when proceeding to 

higher fidelity design analyses. 
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4.2.3 Total Volume 

Aircraft volume is an essential metric for determining overall performance.  The 

target volume is set by estimating the space required to contain all essential aircraft 

components for a successful mission.  These components include but are not limited to; 

payload and cargo, structure, fuel, electronics and avionics, hydraulics, and propulsion 

subsystems (fuel system, air induction system, engine controls, etc.).  Of these, the three most 

prominent components for volume considerations are fuel, payload, and structure.   

Given mission range requirements, an approximate fuel volume can be determined 

based on current engine performance data.  Payload volume is also set by mission 

requirements.  Because there is no direct way to determine the percentage of overall volume 

required for a structurally sound aircraft other techniques must be used.  Approximations can 

be made based on legacy aircraft, however, adding FEA as an additional physics simulation 

to the previous design stage can be advantageous.  Adding a structural design group within 

the simulation based design process allows early identification of structurally problematic 

regions within the OML.  Once identified, the volume can be expanded to allow for larger 

structural members where the current material has exceeded its yield strength. 

4.2.4 Scoring Performance Metrics 

As the design process progresses through iterations, it is important to track how each 

change impacts the vehicle.  Each design variation is evaluated based on how well the 

performance metrics accomplish the requirements from three categories provided in section 

2.3.1.  This can be a very complex process and involves input from all design disciplines.  

For the purposes of this study, each metric drives vehicle performance primarily based on 

range and stability.  L/D may be considered to be the most important factor as it contributes 

greatly to the overall range of the vehicle.  Total aircraft volume can also be used in 

conjunction with L/D to improve range estimations.  Due to insufficient definition for system 

and subsystem sizing and placement during the conceptual design stages, the impact total 

volume has on the overall vehicle is unknown.  Static stability is determined based on static 

margin.  A positive static margin is considered stable.  If the design variation exceeds 4% it 

is considered viable.  A negative static margin is considered unstable and requires advanced 

flight control systems.  If an aircraft scores high for all other performance metrics but fails to 

meet stability requirements, the design can be looked at in closer detail for potential solutions 

to correct the instability.  This scoring process provides engineers quick and consistent 

methods for determining changes for subsequent design iterations and aids in tracking 

convergence toward each individual requirement. 
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4.3 Design Changes 

After performance is evaluated and the design fails to meet mission targets, 

modifications must be implemented.  Two design update methods outlined below include 

trade studies and optimization schema. 

4.3.1 Trade Studies 

Trade studies involve engineering human interaction to determine the most optimal 

design.  This system engineering method requires the engineer to make conscious tradeoffs 

and weight conflicting benefits [19].  Because of human interaction, trade studies are both 

advantageous and detrimental to the design process.  A major advantage includes allowing a 

knowledgeable engineer to make methodical changes to determine which design variables 

drive the performance closer to and further from the targets.  The primary disadvantage of 

this process is the increased time to cycle through design variations due to dependence on 

human interaction.  Trade studies may provide satisfactory results in fewer cycle iterations - 

making them ideal when computational resources are limited. 

4.3.2 Optimization Schema 

If computational resources are not an issue, there are many multidisciplinary 

optimization schemes available.  Due to the nature of this particular design challenge, many 

gradient based optimization schemes are impractical as the performance results are highly 

dependent the mesh refinement.  This causes difficulty when determining if an increase or 

decrease in a performance metric is caused by the small perturbation of a design variable or 

by a change in the cell architecture of the mesh domain.  Optimization methods must be 

capable of capturing an enormous number of design variables and converging on multiple 

solutions due to the large number of dimensions that drive an iMod.  Particle swarm 

optimization schemes with elements of value driven design have proven useful for handling 

the enormous amounts of data associated with analyzing aircraft OML features. 
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CHAPTER 5. CASE STUDY 

This study illustrates a single iteration through a simulation based design process for 

the outer mold line of a hypersonic aircraft.  Mission requirements are provided from the 

customer and design targets are set.  An initial concept model classification is defined to 

correspond with the mission goals design targets.  Next, the initial concept model is 

dimensioned and design variables for iMod parameterization resolved.  Flow and energy 

physics are simulated using CFD and performance evaluations conducted.  The final stage of 

the iteration process is included in the chapter to follow and discusses potential methods for 

design changes. 

5.1 Requirements 

The following list of requirements is created for a high speed flight demonstration 

research vehicle with the capability to extend into military applications. 

 L/D > 6.5 

 Airframe integrated scramjet engine. 

 Cruise range over 5000 nautical miles (nm). 

 Non-recoverable.  Controlled crash into Pacific Ocean. 

 10,000 lb. GTOW with 4,000 lb. fuel capacity 

5.2 Design Targets 

To address high speed flight, all variations are simulated using CFD in an 

environment replicating Mach 6 cruise at approximately 103,000 feet (31,000 m).  To 

maximize cruise range, the model is assumed to begin flight at 30,000 feet after deploying 

from the wing of a B-52.  In order to bring the aircraft up to supersonic speeds required for 

scramjet operation, a rocket booster is used.  Because the aircraft is a demonstration research 

vehicle, only the flight data needs recovering and there is no need for complex landing 

systems. 

5.3 Initial Concept Model 

The requirement for an airframe integrated scramjet engine is fulfilled by housing the 

inlet on the underside of the aircraft and nozzle out the rear. An initial concept model capable 

of characterizing these properties and also offers high volumetric capability is a blended 

wing body aircraft with a length scale of 10 meters.  As stated in section 3.1, this value is 
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based on legacy aircraft similar to NASA’s X-43.  Figure 5.1 illustrates the initial blended 

wing body conceptual model.  This model represents the historical conceptual pencil and 

paper sketches used to estimate aerodynamics and weights by comparing to legacy designs.  

However, it is now a digital representation which can be imported into a CFD code and 

simulated to provide more accurate first-order sizing. 

 

Figure 5.1:  Initial hypersonic wave rider concept model. 

5.4 iMod 

The 10 meter iMod constructed in section 3.4.2 is used for this analysis.  Selected 

design parameters are included in Table 5.1.  Each batch has seven variations for a total of 56 

model configurations.  The extent of design variable modification varies throughout the 

batch.  For example, “Batch 1” modifies the iMods longitudinal body section angles with 

respect to the centerline.  The first variation changes the angle of only the last loft section 

(section 7).  The second variation retains the first and also adjusts the angle for section 6.  

The trend continues through to variation 7 where all body section angles are different than 

the unmodified (baseline) configuration.  

 

Table 5.1:  Test parameters. 

Batch Variation Range Parameters Modified 

1 PS01_V01 – PS01_V07 Body Section Angles 

2 PS01_V08 – PS01_V14 Centerline body cross section thicknesses 

3 PS01_V15 – PS01_V21 Wing Dihedral 
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Table 5.2 continued 

4 PS01_V22 – PS01_V28 Wing Span 

5 PS01_V29 – PS01_V35 Wing Span 

6 PS01_V36 – PS01_V42 Wing Span 

7 PS01_V43 – PS01_V49 Wing Thickness 

8 PS01_V50 – PS01_V56 Wing LE Thickness 

 

Each set of selected design parameters are formulated in what SolidWorks refers to as 

a “Design Table”.  Design tables are organized using an Excel Spreadsheet with dimension 

names across the top row and model configuration names in the first column.  The inner 

matrix of numbers assigns each configuration a corresponding dimensional value.  Figure 5.2 

is an example design setup.  Batches 1, 2, and 3 are color coded in the first column as varying 

shades of gray.  The row shaded in red is the baseline (default) configuration; the dimensions 

of this row are never changed.  Orange cells in the central matrix highlight altered 

dimensions within each variation.  Color coding is optional, but makes reading the spread 

sheet much simpler.  Formatting is software dependent.  SolidWorks uses the top left most 

cell to reference a the part file to which it is linked and only allows non-dimensional cells 

three rows below the last model variation.  Dimension descriptions are located below this 

threshold and also serve as convenient cells for equations and logic statements. 

 

Figure 5.2:  Example of a design table (segment from batches 1, 2, and 3). 

Design tables extend beyond the capability to execute quick multi-dimensional 

modifications in a single spreadsheet; they reveal opportunity for automated optimization.  

Discussion on methods for design modification is included in section 4.3.2. 
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5.5 Physics Simulations 

STAR-CCM+ (version 8.06.005) from CD-Adapco is used to perform CFD flow and 

energy physics.  An automated batch process imports *.STEP AP203 formatted CAD files.  

Using this file type is beneficial because feature names can be appended to faces of the solid 

model and transferred into CFD.  All iMod configurations retain naming conventions from 

the original model – eliminating the need to name every surface for each variant within the 

CFD software.  Boundary conditions and mesh sizing are also automatically assigned based 

on face naming conventions.  Figure 5.3 illustrates the how the iMod is broken down into 

features of interest for CFD analysis. 

 

 

Figure 5.3:  Naming conventions from iMod. 

All regions in Figure 5.3 are assigned wall boundary conditions.  The symmetry and 

free stream (not shown) are created within STAR-CCM+ and maintain their continua settings 

from the template.  The body (red) region represents the bulk of the geometry and is assigned 

larger target mesh values.  Leading edge (green) regions are located along the body, 

forebody, nose, and vertical stabilizers.  The tips and trailing edges of the stabilizers are also 

included with green leading edge regions.  To comply with best practices, no fewer than two 

cell thicknesses are permitted along the leading edges and are usually resolved to four cell 

thicknesses.  Vertical stabilizers (blue) cells are proportionately sized relative to the body.  



57 

Nose (magenta) and forebody (black) faces are split from the main body to specify finer 

prism layer control for improved capturing of the thin boundary layer in those locations.   

Freestream flow conditions are driven from a table set up using Excel.  Triggered by 

iterations, the table sets the flow parameters throughout the simulation.  Among the 

parameters are: flow direction (XYZ components), Mach number, pressure, and temperature.  

Table 5.3 is the free stream table used for this study.  Unit labels are not included in the 

actual table headings; however, they are included below for completeness. 

 

Table 5.3:  Free stream flow conditions for variation studies. 

Iteration X Y Z 
Pitch 
(deg) 

Yaw 
(deg) 

Roll 
(deg) Mach 

P 
(Pa) 

T  
(°K) 

1 -0.9994 0 0.0349 -2 0 0 6 950 228.05 

500 -0.9998 0 0.0175 -1 0 0 6 950 228.05 

1000 -1.0000 0 -0.0000 0 0 0 6 950 228.05 

1500 -0.9998 0 -0.0175 1 0 0 6 950 228.05 

2000 -0.9994 0 -0.0349 2 0 0 6 950 228.05 

2500 -0.9986 0 -0.0523 3 0 0 6 950 228.05 

3000 -0.9976 0 -0.0698 4 0 0 6 950 228.05 

3500 -0.9962 0 -0.0872 5 0 0 6 950 228.05 

4000 -0.9945 0 -0.1045 6 0 0 6 950 228.05 

4500 -0.9925 0 -0.1219 7 0 0 6 950 228.05 

 

Pitch, roll, and yaw columns are indirectly used to generate the components for the X, 

Y, and Z columns using the Eulerian transformations from Eq. 4.3, Eq. 4.4, and Eq. 4.5.  

Because the CFD simulation modifies the free stream flow direction and does not rotate the 

mesh, positive aircraft pitch, roll, and yaw is achieved through negative pitch, roll and yaw 

transformations of the free stream.  The free stream Mach number is equal to 6 and 

atmospheric pressure and temperature represent a 500 pound per square foot (PSF) dynamic 

pressure. 

5.6 Performance Evaluations 

Configuration performance is based on 4 criteria: 1) Lift to drag ratio, 2) Range, 3) 

Total volume, and 4) Static stability (static margin).  All performance metrics are then 

weighted and combined to provide an overall vehicle performance.  The model variations 

follow a short-hand naming convention of PSx_Vy.  Where x represents the phase 

(design cycle iteration) the model variation corresponds to, in this case PS01 is for phase 
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#01 and y represents the variation number.  PS01_V01 is the first variation and is 

considered the baseline. 

5.6.1 L/D + Breguet Range Equation 

Primarily used to compute each variations range capability using the standard Breguet 

range equation [20] from Section 4.2.1.  Separately inspecting the values for aerodynamic 

performance provides concise correlated feedback from each design modification.  Figure 5.4 

presents these finding for the first 56 configurations relative to the set target L/D of 6.5. 

 

 

Figure 5.4:  Individual lift to drag ratios for 56 variations. 

L/D values falling below the target are indicated by negative values below the 

horizontal axis; values exceeding the target are positive and rise above the horizontal axis. 

Figure 5.5 uses L/D values from each variation and represents the performance in 

terms of the cruise range using the Breguet range equation.  The equation assumes a constant 

TSFC equal to 2.50 (
𝑙𝑏𝑚/ℎ

𝑙𝑏𝑓
) and velocity of 3589 knots.  The L/D values for each variation are 

also held constant.  
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Figure 5.5:  Breguet range evaluations relative to 5000 nm target. 

The Breguet range analysis above is only applied over the cruise portion of the 

trajectory, and assumes thrust = drag and lift = weight.  This approximation is very optimistic 

and should be used primarily as a tool for comparison and identifying trends. 

5.6.2 Volume + Modified Breguet Range Equation 

Similar to the L/D metric, it is also important to monitor the volume as a standalone 

quantity to identify correlations with design variable changes.  A bar graph in Figure 5.6 

represents the volume findings for each of the 56 variations as +/- values relative to the 

baseline configuration. 
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Figure 5.6:  Volume breakdowns for each model variation. 

Changes in volume are also used to compute a modified form of the Breguet range 

equation (Eq. 5.1).  This modification improves the cruise range comparisons between 

variations by accounting for the changes in total volume.  Larger volumes enable more space 

for allocating fuel storages and vise-versa.  Eq. 5.2 and Eq. 5.3 quantify the approach used in 

determining the additional term (Δfuel) in the Breguet range equation (Eq. 5.1). 

𝑅 =
𝐿

𝐷

𝑉

𝑇𝑆𝐹𝐶
𝑙𝑛 (

𝑊𝑖 + Δ𝑓𝑢𝑒𝑙

𝑊𝑓
) Eq. 5.1 

The Δfuel term is calculated assuming the 4,000 lb. fuel capacity from the 

requirements and the total volume of the baseline configuration.  Eq. 5.2 is used to calculate 

the baseline fuel fraction (FF). 

𝐹𝐹 =
𝑊𝑓𝑢𝑒𝑙

𝑉𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 Eq. 5.2 

Where Wfuel is the weight of the fuel (4,000 lb.) and Vbaseline is the total volume (155.8 

ft
3
) for the baseline variation.  This equates to a fuel fraction of 25.66 pounds/ft

3
.  The final 

value for Δfuel is calculated for each variation using Eq. 5.3.  
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Δ𝑓𝑢𝑒𝑙 = (𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑉𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) ∗ 𝐹𝐹 Eq. 5.3 

The result from Eq. 5.3 represents the differences in fuel weight using the volumetric 

proficiency or deficiency of each variation relative to the baseline.  Figure 5.7 shows the 

modified Breguet cruise range variations relative to the 5000 nm target set by the 

requirements. 

 

Figure 5.7:  Modified Breguet range evaluations for cruise relative to the 5000 nm target. 

It can be observed that the results from the modified range equation are significantly 

improved over the unaltered equation and follow a trend more closely related to the variation 

volumes than L/D.  This is due to relatively minor differences in L/D ratios compared to the 

fluctuations in fuel capacity. 

5.6.3 Range from Energy-State Approximation 

The following range findings utilize the methods from Leland M. Nicolai’s optimal 

trajectories for a ramjet propulsion based aircraft [2].  The code used to produce the results 

was written by Brad Kirkpatrick [21].  Opposed to the previous Breguet range results which 

assume 100% the fuel is used for cruise, the energy-state approximation assumes ramjet 

propulsion accelerates the aircraft through the climb phase.  The range estimates between the 

two methods are apparent in the figures that follow.  Data required to run the code involves 

simulating the aircraft of interest at several Mach numbers and altitudes to attain CL and CD 
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results.  While assuming a constant thrust to weight ratio, the code runs a minimum fuel 

consumption (maximum range) trajectory.  Aircraft performance is interpolated through the 

simulated points at defined altitudes to establish a combination of altitude and velocity, thus 

a dynamic pressure, to maximize energy height gain per unit mass of fuel.  Four variations 

are selected for this analysis; the original baseline (PS01_01), two top contending 

configurations from the previous Breguet range analysis (PS01_V35 and PS01_V33), and a 

lower performing variant (PS01_V16) for comparison.  Figure 5.8 through Figure 5.11 show 

the resulting trajectories plots of altitude and range with variations in Mach number.  The red 

scatter points are projections of the trajectory (black) data onto each of the planes to 

represent the three dimensional data points as 3 separate two dimensional data sets.  Plane 

representations are as follows: lower plane, Range vs. Mach #; right plane, Mach # vs 

Altitude; and the left plane, Range vs Altitude. 

 

Figure 5.8:  Energy method trajectory results: Baseline configuration (PS01_V01). 

Energy-state approximations yield an overall range of 3,289 nm in 68 minutes.  This 

method underperforms findings from the unmodified Breguet range analysis by 1677 nm.  

The aircraft is also estimated to reach its cruise Mach number (M=6) at 1,742 nm down range 

and an altitude of 107,000 feet.  Time to reach this cruise condition is 42 minutes.  The next 
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two figures represent PS01_V35 and PS01_V33.  L/D performances of these two aircraft are 

6.61 and 6.63, respectively; very close to PS01_V01 with an L/D = 6.77.   

 

Figure 5.9:  Energy method trajectory results: Baseline configuration (PS01_V35). 

 

 

Figure 5.10:  Energy method trajectory results: Baseline configuration (PS01_V33). 
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Compared to the baseline, with an L/D = 6.77, the energy-state trajectories of 

PS01_V35 and PS01_V33 are very comparable.  PS01_V35 has a range of 3,265 nm while 

PS01_V33 reaches 3,290 nm.  PS01_V35 and PS01_V33 both reach their maximum ranges 

in the same 68 minute time frame as PS01_V01.  Similarities for all three configurations 

extend beyond flight variations of only a few seconds.  PS01_V33 reaches an altitude of 

110,607 feet.  PS01_V35 reaches maximum altitude of 110,807 feet; only 1 foot shy of 

PS01_V01.  Climb data for variations 33 and 35 is also nearly identical to PS01_V01. 

Figure 5.11 represents the trajectory of PS01_V16, one of the lowest performing 

variants from the Breguet range analysis.  This configuration is analyzed to demonstrate 

result sensitivities for the energy-state approximation.  Variation 16 has an L/D = 6.52 and a 

significantly lower reference area (Aref = 273.83 ft
2
).  For comparison, reference areas for the 

other three configurations are 338 ft
2
 for Variation 01, 334 ft

2
 for Variation 33, and 341 ft

2
 

for Variation 35.  A result of the reduced lifting surface area is a dramatic reduction in CL, 

and thus, lifting force.  This decline drives the aircraft to fly at much higher dynamic 

pressures in order to accelerate the aircraft to higher altitudes.  While the other three previous 

configurations average dynamic pressures are approximately 375 PSF, Variation 16 does not 

fall below 400 PSF and averages approximately 550 PSF throughout its flight trajectory. 

 

Figure 5.11:  Energy method trajectory results: Baseline configuration (PS01_V16). 
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Results from Figure 5.11 reveal a substantial decrease in range and altitude compared 

to Variations 01, 33, and 35.  The final altitude is 102,086 feet at a range of 2,979 nm.  Total 

flight duration is 65 minutes 45 seconds. 

5.6.4 Static Stability 

Force and moment data exported from STAR-CCM+ as .csv files is imported into 

MatLab.  The script applies Eulerian rotation transformations to convert the raw data into lift, 

drag, and pitching moment.  The static margin (Eq. 5.6) is calculated using the aerodynamic 

center (Eq. 5.4) and neutral point (Eq. 5.5).  The x-distances for the equations below are 

measured relative to the nose.  For the CFD simulations, this point corresponds to the origin.   

𝑋𝑎𝑐 =
𝑀(𝐿 𝐷)⁄

𝑚𝑎𝑥 

𝐿(𝐿 𝐷)⁄
𝑚𝑎𝑥

  Eq. 5.4 

Because the primary point of interest is where the aircraft is at maximum L/D, the 

aerodynamic center is calculated using lift and moment values that correspond to this 

condition.  For a majority of the variations, maximum L/D occurs at approximately 4° ±1° 

angle of attack (AoA). 

Xnp =
𝜕𝐶𝑚

𝜕𝐶𝐿
=

𝜕𝑀𝑦

𝜕𝐿
  Eq. 5.5 

The neutral point is the location at which the pitching moment does not change for 

small changes in AoA.  It is also the position where the COG would be placed for a neutrally 

stable aircraft.  The y-axis is the pitching axis, and thus the moment is taken about this 

direction.  The partial derivatives for My and L may be simplified into the slope values for 

each variables linear regression line.  

SM =
(𝑋𝑎𝑐 − 𝑋𝑛𝑝)

𝑐̅
∗ 100  Eq. 5.6 

The variable 𝑐̅ is the mean aerodynamic chord (MAC) length.  Because the overall 

vehicle length never varied from 10 meters and the span fluctuations were relatively minor in 

comparison, a constant MAC is designated for all configurations.  This value is set at 6.5 

meters.  For human piloted aircraft a static margin greater than 5% can serve as rough initial 

estimate for longitudinal stability [18].  The BWB design of this study is not intended to have 
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a human pilot; however, for the hypersonic speeds at which it travels pitch stability is vital – 

even with an advanced control system.  For this study, a slight reduction in static margin is 

considered feasible and values assessed above +4.0% are deemed statically stable.  The static 

margin is calculated for each variation relative to the 4% target and displayed in the column 

chart of Figure 5.12. 

 

Figure 5.12:  Static margin values for each variation (relative to the 4.0% target). 

5.6.5 Lift 

Lift is selected as a metric to eliminate designs which do not produce enough upward 

force to overcome the weight of the aircraft during flight.  A summary of the lifting values is 

included in Figure 5.13 relative to the 10,000 pound target.  These quantities are the 

maximum lift values for the aircraft which occur at the maximum simulated AoA of 7°. 

 

Figure 5.13:  Lift relative to 10,000 lbf target for each variation. 
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CHAPTER 6. CONCLUSION 

The results of this study have proven the value of incorporating robust parametric 

modeling practices in the conceptual design phase.  The time required to complete this full 

study on a single desktop workstation with 16 processing cores is detailed in Table 6.1. 

 

Table 6.1:  Summarized timeline of this study. 

Task 
Approximate Time 

Duration 

Construct baseline iMod 28 hrs. 

Create additional 55 variations 4 hrs. 

Simulate 56 variations at 10 angles of attack 1 week 

Write MatLab scripts to post process data 16 hrs. 

Post processing 8 hrs. 

Derive correlations from data 8 hrs. 

Total ≈ 232 hrs. 

 

This total time estimate assumes all tasks are completed in consecutive order.  

However, this is only true for the first three tasks. If the MatLab scripts are written while the 

simulations run and 8 hour work days are used, the total time for completion is 13 days 

assuming the simulations run 24 hours/day.  The total billable engineering hours only totals 

64, as there is no human interaction with the simulation processes.  This time table is only 

applicable for the first iteration through the conceptual design cycle.  All additional cycles 

will not require the build time for the first conceptual baseline iMod or the time to write the 

MatLab post processing scripts.  If MatLab post processing scripts are written to organize 

and plot data in a meaningful manner, the time to derive correlations may also be drastically 

reduced.  The most significant gains for the simulation based design process will come from 

computational resources.  If simulation time can be reduced to match the time required to 

post process and derive meaningful correlations from the data, future cycle time can be 

reduced to a meager two days or less.  This can be achieved with an additional 56 processing 

cores; just slightly over 3 identical workstations. 

By using the top down approach, each design team has the ability to filter features of 

the iMod which do not pertain to their current analysis.  Parent-child relations enable 

engineers to track these changes and monitor their effects on other design parameters.  The 

BWB iMod constructed in section 3.4 proves the capability of solid modeling and establishes 
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the superiority it has over surface modeling.  It should be noted that the process of 

developing iMods is not an exact science and special care must be taken when creating 

parametric relations.  In practice, this requires acute attention to detail coupled with strict 

guidance from expert design engineers to capture complete aircraft functionality.  iMod 

development constantly evolves during the design phases to enhance current constructs and 

reconcile newly discovered design defects.  This is a learning process for both the engineers 

developing the iMod and the veteran engineers guiding them along the way. 

6.1 Future Work 

Introducing the full spectrum of design disciplines into the conceptual phase will 

provide engineers with a more comprehensive analysis.  Additional CAE tools which allow 

seamless integration into a simulation based design process includes structural finite element 

analysis.  Abaqus has been used in conjunction with STAR-CCM+ to map pressure contours 

from the finite volume CFD mesh to the finite element FEA mesh.  By having a structural 

design team capable of constructing internal structures, regions susceptible to failure can be 

identified and corrected early.  Propulsion integration is another critical system component to 

the conceptual design phase.  Without engine sizing data, the aerodynamics team is left to 

make gross and uninformed approximations for inlet capture area and nozzle exit area.  

Propulsion system integration will also provide more accurate results for installation 

penalties as they relate to aerodynamic performance.  Total volume estimates, subsystem 

placements for COG location, and additional reinforcement structures are other among other 

design considerations highly dependent on propulsion integration.  When aforementioned 

systems are integrated into the conceptual design phase, a model with detailed mass 

properties can provide mass moments of inertia for dynamic stability analysis.  STAR-CCM+ 

is capable of computing transient flow simulations using 6 degrees of freedom (DOF) to 

compute dynamic performance.  Each of these systems along with their subsystems and 

components require substantially increasing the level of detail for the parametric iMod.   
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