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ABSTRACT

Many of the applications pertinent to unmanned vehicles, such as environmental research

and analysis, communications, and information-surveillance and reconnaissance (ISR), benefit

from prolonged vehicle operation time. Conventional efforts to increase the operational time of

electric-powered unmanned vehicles have traditionally focused on the design of energy-efficient

components and the identification of energy efficient search patterns, while little attention has

been paid to the vehicle’s mission-level path plan and power management. This manuscript

explores the formulation and generation of integrated motion-plans and power-schedules for

solar-panel equipped mobile robots operating under strict energy constraints, which cannot

be effectively addressed through conventional obstacle avoidance motion planning algorithms.

Problem formulations are provided for transit problems conducted under both Balkcom-Mason

and Pseudo-Dubins curves, as well as the generation of mission plans for vehicles which must

persistently travel between certain locations. A comparison between one of the common motion-

planning algorithms and experimental results of the prescribed algorithms, made possible by

use of a test environment and mobile robot designed and developed specifically for this research,

are presented and discussed.
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CHAPTER 1. INTRODUCTION

Unmanned vehicles have demonstrated unique aptitude in multiple environments, and in

a variety of applications. Unmanned Underwater Vehicles (UUVs) have been used for explo-

ration, oceanography, underwater construction, and various military applications for a number

of years (Robert W. Button (2009)). New Unmanned Ground Vehicles (UGVs) are currently

being investigated by the United States military for cargo hauling (Marc Raibert and the Big-

Dog Team (2008)), scouting, explosive detection and disposal, and other auxiliary warfighting

tasks (Voth (2004)). Unmanned Aerial Vehicles (UAVs), well established as ideal platforms

for remote sensing, mapping, and other tasks both civil and military, are now being applied to

novel applications such as data-ferrying (Anthony J. Carfang and Kingston (2014)).

These types of missions can be broadly catagorized into three distinct groups - dull, dirty,

and dangerous (Takayama et al. (2008); Gupta et al. (2013)). Dull missions include those

which are long-duration and repetitive, such as information-surveillance-reconnaissance (ISR)

and precision agriculture. Dirty missions are those which take place in unsafe or hazardous

environments, including environmental research inside storms and hurricanes, as well as radio-

logical events such as the Fukushima nuclear disaster. Dangerous missions require an unmanned

vehicle to directly contend with other adversarial entities, and applies to a multitude of military

applications such as suppression of enemy air defense (SEAD) missions.

Because dull missions, in particular, are characterized by prolonged periods of activity,

they stand to greatly benefit from increased vehicular operation (endurance) and/or persistent

operation. An unmanned vehicle’s endurance, regardless of its environment, is inversely pro-

portional to the consumption of its energy source (fuel, electrical power, etc.). Accordingly, an

unmanned vehicle’s endurance may be extended in two different ways - the vehicle could be

used more efficiently, and/or the vehicle itself could be made more efficient.
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Attempts to increase the endurance of unmanned vehicles have attracted attention from

multiple academic circles, including the robotics community, and have in large part focused

on the development and selection of efficient components (Vaussard et al. (2013)). Efficient

path planning and search patterns in mobile robots, or UGVs, have also been investigated

with some success (Wang et al. (2008); Mei et al. (2004)). Additionally, recent research into

mission planning for multiple unmanned vehicles that work cooperatively to maintain a per-

sistent mission presence has shown promise. For example, several authors have proposed using

teams of unmanned vehicles which can adapt to new conditions or unanticipated failures in

one of the member vehicles (Nigam (2014); Brett Bethke and Vian (2008); Mario Valenti and

de Farias (2007)). Another work has investigated a swap and charge method for quickly replac-

ing and recharging the batteries of a team of miniaturized unmanned aerial vehicles (UAVs)

(N. Kemal Ure (2015)).

Although teams of unmanned vehicles may be feasible for some applications, they are still

limited by the capacity of each vehicle to perform their tasks and move intelligently. Efforts

to facilitate efficient and intelligent movement in unmanned vehicles have resulted in extensive

work on motion planning algorithms, including A* (Zeng and Church (2009)), Probabilistic

Road Maps (PRM) (Kavraki et al. (1996)), and Rapidly-exploring Random Trees (RRT) (Ser-

tac Karaman (2011); Lawrance and Sukkarieh (2011)). These algorithms are commonly used in

obstacle-avoidance problems to identify a vehicle’s most efficient route. However, these meth-

ods are used are exclusively to determine the path a vehicle should take, and not the speeds at

which the path should be traversed.

An alternative method to prolong a given vehicle’s endurance is to harvest ambient envi-

ronmental resources, such as solar energy, to act as a supplemental power supply. Recent work

in developing long-duration solar-powered UGVs (Heng et al. (2011); Sulaiman et al. (2013);

Lever et al. (2006)) which utilize the energy from the environment and charge storage batteries

as backups for sustained operation has shown promise. For example, the Mars Opportunity

Rover, which persistently explores unknown areas on Mars, has been working for a number of

years using only solar power. Another example is the “cool robot” designed to use solar energy

carry scientific payloads during summer in the Antarctic (Ray et al. (2007)).



3

While cloudless days and environments such as Mars or the Antarctic may be considered

to have a uniform solar energy distribution for some period of time, many environments fea-

ture complex nonuniform and time-variant solar energy distributions, or insolations. Although

dynamic power management microcontroller have been investigated and implemented in un-

manned vehicles de J Mateo Sanguino and Gonzalez Ramos (2013), these controllers simply

allocate power according to the solar energy available to the system at each moment, where

available power is first allocated to the motors to maintain motion, and the remainder is used to

charge a backup battery. The mere inclusion of a solar panel, then, is often insufficient to effec-

tively extend a the endurance of an unmanned vehicle. Instead, the vehicle should be operated

with respect to both the environment’s insolation and the vehicle’s overall mission objectives.

This requires not only a deep understanding not only of the vehicle’s power-consumption char-

acteristics, but also of the environment’s insolation.

Motion planning with respect to solar energy is a relatively new field. For instance, a

mission planning algorithm for aircraft in persistent surveillance missions which gather solar

energy along their designed paths has been demonstrated (Vasisht and Mesbahi (2015)), but

assumes a constant insolation. This drawback is not particularly surprising, as characterizing

an environment’s insolation is in itself a great challenge - many environments feature nonuni-

form distributions which can not easily be expressed through fitted continuous functions, which

precludes the use of gradient-based optimization techniques. Insolation models are often pre-

dictive, and are commonly developed using various forms of ray tracing (Glassner (1989)).

Commercial software can generate digital elevation maps from aerial photographs, which can

be used to construct insolation maps through ray tracing. Another method to develop insola-

tion maps involves exploiting knowledge of the sun’s current position and using an unmanned

vehicle to identify an environment’s shaded regions to calculate the height of obstacles within

the region (Plonski et al. (2013); Plonski and Isler (2014)), which may also be used to create

an insolation map via ray tracing.

This work contained in this manuscript describes mission planning techniques for an un-

manned ground vehicle, equipped with a solar panel, which can be used to minimize the time

required to accomplish a given movement, subject to various energy constraints, by optimiz-
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ing both the vehicle’s path and its velocities with respect to a model of the environment’s

insolation. These techniques employ modified variants of Particle Swarm Optimization (PSO)

(Eberhart and Kennedy (1995)), a type of metaheuristic optimization, to address the diffi-

culty of insolation characterization through continuous functions, and accounts for both the

vehicle’s performance and the availability of ambient solar energy in the vehicle’s operating en-

vironment. The mission-planning techniques in this manuscript produce both path-plans and

power-schedules. In conjunction, these schedules characterize the vehicle’s path and the speeds

at which it must travel and turn, unlike conventional motion planning approaches, which are

used to produce a path free of environmental obstacles and do not determine the speed the

vehicle travels at or the power it expends.

The mission planning techniques described in this manuscript are applied to two separate

energy-constrained problems. The first of these problems is refereed to as the Transit Problem,

wherein the unmanned vehicle must proceed from a given initial point to a desired ending

location as quickly as possible while satisfying its energy constraint. This problem is formulated

and solved with two types of curves. The first of these curves is the Balkcom-Mason (Balkcom

and Mason (2002)), which is characterized by straight line-segments and zero-radius turns.

The second curve is a modified form of the classical Dubins curve (Dubins (1957)), known as

a Pseudo-Dubins curve. While the conventional Dubins curve is characterized by straight line

movements and minimum radius circular-arc turns, the Pseudo-Dubins curve substitutes the

traditional uniform minimum turning radii with individually designed turning radii for each

turn. For each of these curves, a similarly-structured optimization problem is posed and solved

with a modified PSO.

The second of these problems is the Persistent Traveling Vehicle problem, where the vehicle

must visit a number of locations and return to its starting position and orientation, subject

to the same energy constraints as earlier. In many ways this resembles the classical Traveling

Salesperson Problem (TSP), which requires a salesperson to determine what order to visit some

number of cities so as to minimize the total distance traveled. Solving the TSP is computation-

ally challenging, and has spurred the development of multiple solution algorithms. Because the

Persistent Traveling Vehicle problem requires both the determination of what order to visit cer-
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tain locations in the vehicle’s environment, as well as the velocities at which to travel and turn,

it is even more computationally difficult. This problem is solved under the Balkcom-Mason

regime through a cascaded optimization process which employs both variants of the modified

Particle Swarm Optimizer used to solve the Transit Problem as well as typical optimization

techniques for the Traveling Salesperson Problem.

The organization of this thesis is as follows: Chapter 2 contains problem formulations for

the energy-constrained Transit Problem under both the Balkcom-Mason and Pseudo-Dubins

curves, including the vehicle’s dynamics, energy harvesting, and power consumption models.

Chapter 2 also introduces the modified Particle Swarm Optimization process used to solve

the Transit Problem. Chapter 3 provides the problem formulation for the energy-constrained

Persistent Traveling Vehicle, and explores the Cascaded Particle Swarm Optimization process

and its application to the problem. Chapter 4 contains a discussion of the hardware and test

environment developed to evaluate these methods, as well as a method of characterizing the

test environment’s insolation. Chapter 5 contains both simulation and experimental results of

the methods discussed in Chapters 2 and 3. Finally, this manuscript’s conclusions and closing

remarks are presented in Chapter 6.
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CHAPTER 2. ENERGY-CONSTRAINED TRANSIT PROBLEM

In this Chapter, we address the energy-constrained Transit Problem, in which an unmanned

ground vehicle, equipped with a solar-panel, is required to traverse an area of known insola-

tion as quickly as possible, constrained so that the vehicle’s net energy gain at the end of

its prescribed movements is greater than or equal to zero. It is assumed that the vehicle’s

performance characteristics have been previously established, and also that the environment is

of level, uniform terrain. Two types of curves, Balkcom-Mason and Pseudo-Dubins, are first

discussed in sections 2.1 & 2.2 (Kaplan et al. (2015b,a)). An optimization problem which can

be applied to either of these curves is then formulated in Section 2.3, along with the vehicle’s

energy harvesting, and power consumption models. Section 2.4 proceeds to offer a brief intro-

duction to Particle Swarm Optimization, and Section 2.5 concludes with a modified Particle

Swarm Optimization algorithm which may be used to solve the optimized problem posed earlier

in the Chapter.

2.1 Balkcom-Mason Curve Formulation

We begin by examining a Balkcom-Mason type curve (Balkcom and Mason (2002)), which

is characterized by straight-line segments and zero-radius turns. Balkcom-Mason curves permit

the vehicle to travel forward and backwards in straight lines, and turn in-place both clockwise

and counterclockwise. In this particular problem, we may safely restrict the vehicle to for-

ward straight-line movement and zero-radius turns in both directions, as demonstrated on the

following page in Fig. 2.1.
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Figure 2.1 Path segments of the Balkcom-Mason curve.

2.2 Pseudo-Dubin Curve Formulation

We now proceed to examine a Pseudo-Dubins curve, which substitutes the traditional uni-

form minimum turning radii of the classical Dubins curve with individually designed turning

radii. In this case, the UGV’s movement is governed by three differential-drive primitives includ-

ing straight lines, where both drive wheels move the same speed and direction, and circular-arc

turns in both the clockwise and counterclockwise directions, where both drive wheels move

in the same direction but at different speeds. While a classical Dubins curve is characterized

by circular turns using the vehicle’s minimum turning radius, imposing such a constraint on

a vehicle capable of performing zero radius turns yields a Balkcom-Mason curve, discussed in

the Section above. Allowing the radii of the UGV’s turns to vary not only allows the princi-

ples of the Dubins curve to be applied to a differential drive vehicle, but also allows the UGV

to continue progressing towards its destination while changing its orientation. In the experi-

mental results presented in Chapter 5, the Pseudo-Dubins curve requires less power than the

zero-radius turns employed under the Balkcom-Mason curve.
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Figure 2.2 Path segments of the Pseudo-Dubins curve.

2.3 Optimization Problem Formulation

For both the Balkcom-Mason and Pseudo-Dubins curves, the path from the initial point

W1 to the final point Wn is composed of n−2 interception points and n−1 turn and line pairs.

To simplify the path planning problem, the design variables for both curves are comprised of

the intersection points, denoted as Wi(xi, yi), i = 2, . . . , n − 1, the linear speed along the line

segment, denoted as Vi, i = 1, . . . , n−1, and the angular speeds along the turn or turn segment,

denoted as ωi, i = 1, . . . , n− 1.

Determining the beginning and ending locations of each turn, as well as the change in

orientation ∆θ(i), for a Balkcom-Mason curve is trivial. For the Pseudo-Dubins curve, each

starting point Si and ending point Ei of circular-arc i for i = 2, . . . , n− 1 are determined by

xSi = xi −Ri cos θi, ySi = yi −Ri sin θi, (2.1)

xEi = xi +Ri cos θi, yEi = yi +Ri sin θi, (2.2)

∀ i = 2, . . . , n− 1,

where Ri is the turn radius of circular-arc i, and is predefined by a polynomial function with

respect to the angular velocity, denoted as fR(ωi). The heading angle θi along line segment i

for i = 2, . . . , n− 1 is found from

θi = tan−1 yi+1 − yi
xi+1 − xi

, ∀ i = 2, . . . , n− 1. (2.3)
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For the first circular-arc, i = 1, S1 coincides with the initial point W1, such that xS1 = x1

and yS1 = y1. Subsequently, the coordinate of E1 are determined by

xE1 = x2 − sign(x2 − x1)d1 cos(tan−1 y2 − yr

x2 − xr
− sin−1 R1

d1
), (2.4)

yE1 = y2 − sign(y2 − y1)d1 sin(tan−1 y2 − yr

x2 − xr
− sin−1 R1

d1
), (2.5)

where xr = x1 and yr = y1 + sign(y2 − y1)R1 are the coordinates for the center of the first

circular-arc, R1 can again be determined from the polynomial function fR(ω1), and d1 =√
(y2 − yr)2 + (x2 − xr)2.

For both curves, the time required for the UGV to complete the the prescribed turns and

line segments is expressed as

Ttotal =

n−1∑
i=1

(T r(i) + T l(i)), (2.6)

where the superscripts ‘r’ and ‘l’ denote variables associated with the turn and line segments,

respectively. With the corresponding rotational and linear velocities, ωi and Vi, the total travel

time can be reformulated as

Ttotal =
n−1∑
i=1

(
∆θi
ωi

+
Li

Vi
), (2.7)

where ∆θi = θi+1 − θi, i = 1, . . . , n− 1, is the change in heading angle along turn i, while the

length of line-segment i, Li, is simply Li =
√

(xi+1 − xi)2 + (yi+1 − yi)2 for the Balkcom-Mason

curve and Li =
√

(xSi+1 − xEi)
2 + (ySi+1 − yEi)

2 in a Pseudo-Dubins curve.

In both curves, the energy gathered along each turn and line segment is an integral function

of the energy collection rate, Pin, over the relative time span, where Pin is dependent on the

solar radiation strength over the concerned area, Rin(a, b), and the solar panel area of the UGV,

denoted as As.

Recall that the environment’s solar energy density can not be expediently represented as

a continuous function. As a result, the harvested energy can not be integrated analytically.

Instead, we place Q equidistantly spaced samples across Rin from the starting to the ending

points along each turn and line segment i to evaluate the average solar radiation strength along

the line segment, and multiply it by the time spent by the vehicle performing the movement.
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The energy gathered from each line and turn segment may me formulated as

El
in(i) =

Q∑
q=1

Rin(aq, bq)AsLi/(QVi) (2.8)

Er
in(i) =

Q∑
q=1

Rin(aq, bq)As∆θi/(Qωi). (2.9)

The energy consumed by the UGV to complete each movement is determined by the en-

gines’ power consumption rate P l
e(i) and P r

e (i), e = 1, . . . , Ne, where Ne is the number of

engines, as well as the power required by the on-board components (microcontroller, wire-

less modem, voltage/current sensors, etc.), and the time required to finish the corresponding

segment. Each engine’s consumption rate under both linear and rotational movements is a

predefined polynomial function of corresponding linear and angular speed, denoted as P l
e(Vi)

and P r
e (ωi), e = 1, . . . , Ne, respectively. In order to simplify the expression, we assume the

power controller will always allocate the necessary power to the microcontroller, wireless sen-

sor, and other miscellaneous components. The summation of the three consumption units is

denoted as the vehicle’s passive power consumption, Pa. Mathematically, the consumed energy

is represented by

El
out(i) = (

∑Ne
e=1 P

l
e(Vi) + Pa)T l(i) (2.10)

Er
out(i) = (

∑Ne
e=1 P

r
e (ωi) + Pa)T r(i) (2.11)

To satisfy the energy constraint at the final point, Wn, such that the net energy change ∆Etotal

at the end of the vehicle’s movement is above zero, we have

∆Etotal =

n−1∑
i=1

(El
in(i) + Er

in(i)− El
out(i)− Er

out(i)) ≥ 0. (2.12)

The engines’ power may be supplied from two sources - the harvested energy from environ-

ment, and/or the backup battery. At each movement segment, the power controller allocates

the necessary power to each engine to achieve the vehicle’s desired motion. Therefore, the

power among all the electric components is balanced by

Ne∑
e=1

P l
e(Vi) + Pa + P l

b(i) =

Q∑
q=1

Rin(aq, bq)As/Q, (2.13)
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Ne∑
e=1

P r
e (ωi) + Pa + P r

b (i) =

Q∑
q=1

Rin(aq, bq)As/Q, (2.14)

where the battery consumed/supplied power, P l
b(i) and P r

b (i) is constrained by its capacity,

Pbmax and Pbmin
, such that Pbmin

≤ P l
b(i) ≤ Pbmax and Pbmin

≤ P r
b (i) ≤ Pbmax .

With the path, energy harvesting, and consumption models described above, the integrated

path planning and power management optimization problem for both the Balkcom-Mason and

Pseudo-Dubins curves can be formulated as

minX
∑n−1

i=1 (T l(i) + T r(i)) (2.15)

s.t. −
∑n−1

i=1 E
l
in(i) + Er

in(i)− El
out(i)− Er

out(i) ≤ 0∑Ne
e=1 P

l
e(Vi) + Pa + P l

b(i)−
∑Q

q=1Rin(aq, bq)As/Q = 0∑Ne
e=1 P

r
e (ωi) + Pa + P r

b (i)−
∑Q

q=1Rin(aq, bq)As/Q = 0

Pbmin
≤ P l

b(i) ≤ Pbmax

Pbmin
≤ P r

b (i) ≤ Pbmax

where the variable set to be optimized, X, includes the coordinates of n−2 interception points

(xi, yi), i = 2, . . . , n− 1, and the n− 1 linear, Vi, and rotational, ωi, speeds along each segment

i, i = 1, . . . , n− 1.

2.4 Particle Swarm Optimization

Particle Swarm Optimization, first introduced by Eberhart and Kennedy in 1995, is a heuris-

tic optimization method capable of exploring the design spaces of both continuous and non-

continuous problems. Particle Swarm Optimization iteratively evaluates and adjusts a number

k of possible solutions to an optimization problem, represented as particles. These “particles”

exist in a space consisting of as many dimensions d as there are optimization variables, such

that each particle represents a distinct solution to the optimization problem

P j = [xj1, x
j
2, . . . , x

j
d], ∀ j = 1, . . . , k. (2.16)

These particles are iteratively perturbed a varying distance M in each dimension i in the

direction of the particle’s personal best performing location, PBEST , and the group’s single
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best performing location, GBEST , influenced by the local and global confidence factors C1 and

C2. Both movements are multiplied by a random number R between 0 and 1. Each of the

particle’s subsequent movements in a given dimension are influenced by the previous movement

M j
i (t− 1), multiplied by an inertia factor I. Mathematically, M j

i is expressed as

M j
i = IM j

i (t− 1) + (C1R(P j
BEST i

− P j
i )) + (C2R(GBEST i − P

j
i )).

(2.17)

Each particle is reevaluated after its movement, and if appropriate, replaces its previous

PBEST location and the group’s GBEST . Subsequent updates to GBEST will identify a progres-

sively optimal solution set, eventually leading to a local or global extrema. Upon initialization,

each particle’s PBEST must be its present position. As a result, the initial movement expression

Minitial may be simplified as

M j
i initial = C2R(GBEST i − P

j
i ). (2.18)

For the particle whose initial position was found to be the best initial global best, P j
i = GBEST i ,

and subsequently, M j
i initial = 0.

2.5 Modified Particle Swarm Optimization for Mission Planning

In the integrated path planning and power management problem formulated in (2.15), each

particle P consists of n − 2 interception points Wi = (xi, yi), i = 2, . . . , n − 1, and n − 1 pair

of speed settings Ui = (Vi, ωi), i = 1, . . . , n− 1, summarized as

P j = [W j
2 , . . . ,W

j
n−1, U

j
1 , . . . , U

j
n−1]

= [xj2, y
j
2, . . . , x

j
n−1, y

j
n−1, V

j
1 , ω

j
1, . . . , V

j
n−1, ω

j
n−1].

Because the dimension of each particle directly correlates to the number of intersection

points n, a small n will decrease the PSO’s computation time, but also may lead to an infeasible

solution. Conversely, specifying a large n will increase the computation time in exchange for

a greater likelihood of a feasible solution with an improved performance index. Therefore, the
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dimension n must be carefully chosen based off of the physical dimensions of the problem area

and the sparsity of the available solar energy.

In a conventional PSO, the Pbest and Gbest updates occur only when a particle’s performance

index is greater than the previous Pbest or Gbest, and when the particle meets all of the problem’s

constraints. In our problem, Pbest and Gbest updates would happen only when a particle’s Ttotal

is less than the previous Pbest or Gbest value and when the particle’s ∆Etotal satisfies the energy

constraint, expressed as

P j
best = P j , if [Ttotal(P

j
best) > Ttotal(P

j)] & [∆Etotal(P
j) > 0],

Gbest = P j , if [Ttotal(Gbest) > Ttotal(P
j)] & [∆Etotal(P

j) > 0].

Due to the strict constraints in the above update conditions, it is difficult to generate random

particles in the initialization step to guarantee that each particle satisfies the energy constraints,

and difficult to iterate the particles towards increasingly optimal solutions which satisfying the

constraints. In this method, we impose a new Pbest update relationship to promote gradual

fulfillment of the problem’s energy constraint. At the initialization step, each Pj is pseudo

randomly populated such that x1 < xj2 < . . . < xjd−1 < xd and all W and U values fall

within permissible ranges originally defined by the problem. Each particle’s location, P j , and

corresponding objective value, Ttotal(P
j), are saved regardless of the values of ∆Etotal(P

j). If

any particle exists with a ∆Etotal > 0, Gbest will be selected from that group by looking for the

lowest Ttotal. If none of the initialized particles meet the energy constraint, then Gbest will be

selected as the particle with the ∆Etotal closest to zero. Once they have been initialized, each

particle is iteratively perturbed and evaluated against both its Pbest and the group’s Gbest, and

if necessary, they are replaced by

P j
best = P j , if [Ttotal(P

j
best) > Ttotal(P

j) & [∆Etotal(P
j) > 0],

or

P j
best = P j , if [∆Etotal(P

j) > ∆Etotal(P
j
best)] & [∆Etotal(P

j
best) < 0],

and
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Gbest = P j , if [Ttotal(Gbest) > Ttotal(P
j
best)] & [∆Etotal(P

j) > 0].

By imposing this dual Pbest update relationship, we allow particles that are not necessarily

power consistent upon initialization to gradually move towards satisfying the problem’s energy

constraint and help ensure that Gbest values meet the problem’s constraints. Once a particle

has achieved energy consistence, the first update relationship continues to drive it towards a

minimal Ttotal.
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CHAPTER 3. ENERGY-CONSTRAINED PERSISTENT TRAVELING

VEHICLE PROBLEM

This Chapter discussed the energy-constrained Persistent Traveling Vehicle Problem, which

requires a solar-panel equipped ground vehicle to visit a series of objective points and return to

its starting location and orientation as quickly as possible, constrained such that the vehicle’s

net energy gain must be greater than or equal to zero (Kaplan et al. (2016)). Recall that this

problem is analogous, in a general sense, to the classical Traveling Salesperson Problem (TSP),

but more complex in that we must solve for both the visiting sequence to each objective point

as well as the motion and power allocation plans to optimize the vehicle’s travel time subject

to its net energy constraint. This complexity requires a novel approach to effectively plan the

vehicle’s motion and power schedule. The Persistent Traveling Vehicle optimization problem,

along with a brief review of the vehicle’s dynamics and energy models, are presented in Section

3.1, and a new cascaded, or sequential, optimization process is presented in Section 3.2.

3.1 Problem Formulation

Consider the same solar-panel equipped UGV from the previous Chapter, which must now

travel to a number of objective points and then return to its starting position and orientation

in the shortest amount of time. In order to persistently repeat this mission, the vehicle’s net

energy gain at the moment it returns to its starting orientation must be greater than or equal

to zero. Let this vehicle’s movement be governed by the four differential-drive primitives of a

Balkcom-Mason curve. Unlike the scenario described in Section 2.1, there is no requirement

that the vehicle must always travel forwards. It may be assumed that the vehicle may drive

backwards at the same speed and for the same energy consumption as driving forwards. Sub-
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sequently, the vehicle shall be permitted to travel forwards and backwards, as well as turn

clockwise and counterclockwise. The UGV may travel directly between each objective point,

denoted by O1(x1, y1), . . . , Om(xm, ym), where m is the number of objective points, or elect

to detour to other locations to gather energy. The waypoints visited by the vehicle, denoted

by W1(x1, y1), . . . ,Wn(xn, yn), where n is the number of waypoints, must include the set of

objective points, O ⊆ W , as demonstrated in Figure 3.1. In this problem, the vehicle must

Figure 3.1 Example for motion of n waypoints.

travel from W1(x1, y1) to Wn(xn, yn) and then return to W1(x1, y1). This requires the vehicle

to traverse a total of n line segments and n+ 1 turns. Accordingly the time spent by the UGV

traveling through the designed path be expressed as

Ttotal =

n+1∑
i=1

(T r(i)) +

n∑
i=1

(T l(i)). (3.1)

Similarly to equation 2.7 from Section 2.3, Ttotal can be rewritten as

Ttotal =

n+1∑
i=1

(
∆θ(i)

ω(i)
) +

n∑
i=1

(
L(i)

V (i)
), (3.2)

where ∆θ(i) is the required change in angle from the vehicle’s present heading to the new

heading before moving straightly to the next waypoint, and L(i) is the length of line-segment

i. The vehicle’s energy in, energy out, and power balance equations are identical to those

presented in Section 2.1 (equations 2.8, 2.10, and 2.13, respectively). However, because the
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vehicle must traverse n lines and n+ 1 turns, the ∆Etotal equation must be reformatted as

∆Etotal =

n+1∑
i=1

(Er
in(i)− Er

out(i)) +

n∑
i=1

(El
in(i)− El

out(i)) ≥ 0 (3.3)

The motion planning problem for the energy-constrained persistent traveling vehicle can now

be summarized as an optimization problem in the form of

minX
∑n+1

i=1 T
r(i) +

∑n
i=1 T

l(i) (3.4)

s.t. O ⊆W

W (1)−W (n) = 0 (3.5)

−
∑n+1

i=1 (Er
in(i)− Er

out(i))−
∑n

i=1(E
l
in(i)− El

out(i)) ≤ 0 (3.6)∑Ne
e=1 P

l
e(Vi) + Pa + P l

b(i)−
∑Q

q=1Rin(aq, bq)As/Q = 0∑Ne
e=1 P

r
e (ωi) + Pa) + P r

b (i)−
∑Q

q=1Rin(aq, bq)As/Q = 0

Pbmin
≤ P l

b(i) ≤ Pbmax

Pbmin
≤ P r

b (i) ≤ Pbmax

where the variable set to be optimized, X, includes the coordinates of n− 2 interception points

W (xi, yi), i = 2, . . . , n− 1, the n linear speeds Vi, i = 1, . . . , n, and the n+ 1 angular speeds ωi

along each turn, i = 1, . . . , n+ 1.

3.2 Cascaded Optimization for Mission Planning

The motion planning problem formulated above is a mixed-integer nonlinear optimization

problem which includes both integer and continuous variables, and as a result, it is difficult to

find an optimal solution within a reasonable amount of computation time. The motion planning

problem requires that the waypoints visited by the UGV, Wi(xi, yi), i = 1, . . . , n, include all of

the mission’s objective points, Oj(xj , yj), j = 1, . . . ,m. The optimization variables, including

the total number of waypoints, the locations of each waypoint, and the linear and rotational

velocities, are all coupled. Because the waypoints define the location of the path, it follows that

the distance and energy distribution along the path can be determined from these waypoints.

The number of waypoints, n, and their locations, Wi(xi, yi), i = 1, . . . , n, are the dominant
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variables, and play the most significant roles when determining the performance index and

the amount of recoverable energy along the path. Although the linear and angular speed

along each segment also contribute to the performance index, their roles in contribution are

generally not dominant in this specific problem, and can be optimized later to further improve

the performance along each segment after the waypoints are determined.

To demonstrate this concept, the Balkcom-Mason curve motion planning problem posed

in equation 2.15 from Section 2.3 is solved with two types of PSO algorithms. The first of

these methods is the modified PSO, discussed in Section 2.5, which solves the design variables

all at once (AAO). The second method is the cascaded optimization technique propose above

(CPSO), which first optimizes the locations of the waypoints via a heuristic and then optimizes

the vehicle’s velocities. A comparison of algorithms’ resulting performance and computation

times are shown below in Fig. 3.2. Examining these results reveals that the CPSO produces

results with comparable performance but significantly reduced computation time, and proves

that the variables may be solved sequentially.

Figure 3.2 PSO vs. CPSO performance and computation times

To solve the energy-constrained Persistent Traveling Vehicle problem, a cascaded optimiza-

tion algorithm is proposed to cascade the optimization into three distinct steps, wherein the

two set of variables will be determined sequentially. We will first examine each of the possible

connections between the objectives O, and if appropriate, inject waypoints between two ob-
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jective points to allow the vehicle pass through nearby regions with higher energy densities.

Secondly, a group of these paths connecting all of the objectives will be selected to allow the

UGV to obtain the most amount of energy while traveling least amount of distance, yielding n

and Wi(xi, yi), i = 1, . . . , n. Finally, we will optimize Vi, i = 1, . . . , n and ωi, i = 1, . . . , n+ 1,

to complete the resulting path in minimum time while satisfying net energy gain constraint.

The first step is to determine where the UGV would benefit from detouring from a straight-

line path between any two objective points. A connectivity matrix BC ∈ Rm×m is generated,

where an element BC{i, j} = 1 indicates that there is a connecting path between objective

point i and j, i, j = 1, . . . ,m, i 6= j, otherwise, BC{i, j} = 0. For each possible connection, we

sample the energy density Rin of s equidistantly spaced points within a polygon whose vertices

are defined by Oi(x, y+∆h), Oi(x, y−∆h), Oi+1(x, y+∆h), and Oi+1(x, y−∆h), where ∆h is

a user-defined variable which constrains the exploration around the straight-line path between

two objective points. We then calculate the standard deviation of the s number of Rin values.

If the standard deviation is below a certain threshold, δSD, we may assume the insolation

around the straight-line path between the two objectives to be relatively uniform, and it is

not worth diverting from a straight-line path. Subsequently, a standard deviation equal to or

greater than δSD is indicative of a concentrated amount of solar radiation somewhere near the

path which would yield additional harvestable energy. In this case, we begin a sub-optimization

process which injects two new waypoints, W1 and W2, in-between Oi and Oi+1, as shown in Fig.

3.3. This brief optimization subprocess utilizes a PSO which employs a heuristic performance

index that attempts to produce a path which both passes through energy-dense regions but

minimizes deviations from the straight-line path:

minX−
∑3

i=1Ein(i) cos2(|θp(i)− θg(i)|) (3.7)

s.t. Oi ≤W1 ≤ Oi+1

Oi ≤W2 ≤ Oi+1

W1 ≤W2,

where the variable set to be optimized, X, contains the x and y locations of the new
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waypoints W1 and W2, Ein(i) represents the average ambient energy in along the line segment i,

while θp(i) and θg(i) represent the angle of the path and the angle towards O(i, 2), respectively.

For this brief PSO, each j particle P consists of the candidate locations of W1 and W2:

P j = [W j
1 ,W

j
2 ] = [xj1, y

j
1, x

j
2, y

j
2]

The criterion to determine if the waypoints are required and where they are allocated will

apply to each element in BC with BC{i, j} = 1, i, j = 1, . . . ,m, i 6= j. The average energy per

unit distance of the path between O(i, 1) and O(i, 2) is then saved, regardless of whether it not

it was optimized to include W1 and W2.

Figure 3.3 Example of deviated path between two objective points

Once the average energy density for each possible connection between the objective points

has been recorded, the next step is to determine what route the UGV should take. This step of

the optimization process may be solved similarly to the traditional TSP, which can formulated

as integer linear programming problem and solved via an existing linear programming solver

(C.E. Miller and Zemlin (1960)). However, the performance index for this optimization is

different from the classical TSP’s, which minimizes the overall distance. Instead, the objective

for the persistent motion planning problem here is to maximize the amount of energy per unit
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distance, expressed as

max

m∑
i=1

Ein(i)

d
(3.8)

where d is the length of the entire path. The specific objective function above, instead of the

distance, is selected here to meet the problem’s strict net energy gain constraint. Because the

speed at which the vehicle may travel is influenced directly by the energy it may harvest, a

path which offers a greater energy intake will allow the vehicle to travel more quickly than an

otherwise shorter path with less energy exposure. Therefore, a ”good” path for this mission will

be one which has (comparatively) short distance and simultaneously has high energy density

along the path. Though this step may be trivial for a traveling mission with small number

of objective points, the options for the visiting sequence will be a exponential function of the

number of objectives.

The final step is to determine the remaining variables, the linear and rotational speed along

each segment, which can again be accomplished via the modified PSO algorithm from Chapter

2. A new series of j particles are pseudo randomly initialized in the form of

P j = [V j(1), . . . , V j(n), ωj(1), . . . , ωj(n+ 1)]. (3.9)

The initialized particles are constrained by their physical limitations, Vmin < V j < Vmax and

ωmin < ωj < ωmax, and other constraints specified in (2.15). As the particle swarm iterates

over time, the particles will eventually converge to an increasingly optimal solution. In the

event that none of the initial particles satisfy the net energy constraint, the swarm will be

reinitialized until at least one feasible candidate is identified.
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CHAPTER 4. HARDWARE AND ENVIRONMENT

CHARACTERIZATION

In order to verify the mission planning methods discussed in chapters 2 and 3, it was

necessary to construct a time-invariant testing environment and solar-powered mobile robot,

as well as to develop an expedient way to characterize the environment’s insolation. The

development of the test environment is discussed in Section 4.1, while Section 4.2 contains a

description of the mobile robot’s design. Finally, a method to swiftly characterize the test

environment’s insolation is presented in Section 4.3.

4.1 Test Environment

Solar panels generate their advertised power yield under a solar radiation density of 1

kW/m2, which is the approximate value produced during a bright, cloudless day (Garg and

Garg (1983)). To simulate this sunlight within the confines of a research lab located under-

ground, we employ high pressure sodium lights, which are commonly used in industrial agri-

culture greenhouses, shown in Fig. 4.1. The high-pressure sodium lights produce a maximum

energy density of 0.6 kW/m2 underneath the lamp, approximately half of the average outdoor

solar radiation. Subsequently, a UGV which can successfully operate in this environment can

be expected to achieve higher performance in outdoor tests during sunny or partly cloudy days.

The laboratory housing this test environment is equipped with a Vicon Bonita camera system,

which can capture the motion of our demonstration robot in a volume of 14 × 30 × 12 ft3.

Because the high-pressure sodium-lights produce 780 nm light, which is identical to the wave-

length used by the Bonita’s strobe lights, we employ floor tiles coated in blackboard paint to

reduce interference between them and the Vicon system (Takashi (1973)).
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Figure 4.1 Indoor Test Environment.

4.2 Unmanned Ground Vehicle

For a vehicle to be capable of both executing and validating the prescribed motion plan, it

must be capable of effectively gathering ambient solar energy and converting it to the operat-

ing voltage level, while also measuring the incoming and outgoing energy of the system. Our

unmanned ground vehicle, pictured in Fig. 4.2, is based on a Dagu 5 robot chassis controlled

by an Arduino Uno and a wireless modem. The ambient solar energy is gathered through a

top-mounted solar panel capable of generating 18W of power from bright sunlight, i.e., a solar

radiation density of 1 kW/m2 Recall that the efficiency of a given solar panel is characterized

by a nonlinear current-voltage curve, and for this reason the resistance which yields the max-

imum power point of a solar panel varies. Subsequently, any energy gathered by the UGV’s

solar panel is directed to an on-board Maximum Power Point Tracking (MPPT) solar charger,

which adjusts its resistance to the solar panel in order to produce the optimal load. The MPPT

may then pass the energy on to either the vehicle’s on-board battery or load (on-board com-

puter, motors, etc). Recovered ambient energy is first delegated to the vehicle’s load, and any

remaining energy is then used to charge the battery. In the event that the recovered ambient
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Figure 4.2 Demonstration vehicle with 18W solar panel.

energy is insufficient to supply the required load power, the difference is supplied by the battery.

Two voltage/current (V/C) sensors are placed on either side of the MPPT’s outgoing lines, as

shown in Fig. 4.3. These sensors monitor the vehicle’s power flow and provide experimental

data in real time.

Figure 4.3 Vehicle power system block diagram.

The linear and angular speeds of the UGV are controlled by adjusting the pulse-width

modulation (PWM) of the voltages supplied to the motors. For straight line motion, the PWM

of both drive-wheels are set the same number. For zero radius turns, the PWMs are set to the

same magnitude in opposite directions, and for a circular-arc turn, the interior drive-wheel’s

PWM is held constant at a predefined value while PWM of the exterior drive-wheel is adjusted

to achieve the desired motion. Polynomial functions of the linear speed, angular speed, and

power consumed in terms of PWM are interpolated from large amount of sampled data and

illustrated in Fig. 4.4.
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Figure 4.4 Polynomial functions of UGV performance

4.3 Insolation Characterization

Recall that insolation patterns are often highly sporadic, and can not be accurately modeled

with continuous functions. To more effectively evaluate the solar radiation map, a scalar

field interpolation, Rin(x, y) is constructed from a number of discrete solar energy samples to

represent the solar energy distribution for a given area. Though these samples can gathered

individually by a search vehicle, doing so is inefficient and not be feasible for time-variant

environments outside of a laboratory.

Recent work (Kaplan et al. (2016)) has explored the development of insolation maps from

simple visual-spectrum imagery. Because photovoltaics utilize energy from several spectrums,

including visual, it is possible to correlate the amount of recoverable energy to the amount of

visible light in an area.

This characterization is started by first obtaining a high quality image of the environ-

ment, which is followed by projecting the image’s perspective view on a two-dimensional plane

through a geometric spatial transformation. The transformation converts the original geometry

data, I(u, v), obtained from the perspective view, into a two dimensional top-view coordinates,

J(x, y), via the projective transformation matrix T , expressed as,
x

y

1

 = T


u

v

1

 , (4.1)

where T ∈ R3×3. Constructing the transformation matrix T requires one of two conditions,

either the precise height and angle of the camera used to take the picture are given, or the
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image contains relative relationship between two reference frames, I and J . For example, the

indoor test environment discussed above utilizes 60×60 cm2 floor tiles. Each of the four corners

of a tile can be identified as one of the elements in I(u, v), and its corresponding coordinates in

J(x, y) can be determined by setting up a two-dimensional reference frame in the real world.

The transformation matrix T can be solved via (4.1) when sufficient number of elements in

both I and J frames are identified. The example in Figure 4.5 uses four identified points to

obtain the transformation matrix, where each pixel of J(x, y) represents 1 cm2. In cases where

a camera is affixed at a given location and orientation on a UGV, the transformation matrix T

can be determined from the initial setting and can then be used for geometry transformation

of any subsequent images.

Figure 4.5 Projective Transformation of Test Environment

Once a top-down view of the environment has been generated, the next step is to determine

the amount of available energy at each location. Because photovoltaic cells operate under

the visual light spectrum, among others, the available energy within the environment should

correspond to the brightness of the image. To find the relationship between the solar radiation

and the brightness values, the image is converted to greyscale to generate a double-precision

matrix with indices representing the locations and elements corresponding the brightness at

these locations.
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By sampling the energy density Rin at two separate points which demonstrate a distinct

difference in brightness within the test environment, a linear relationship between the sampled

power and the brightness value may be expressed as

Rh
in = a1B

h + a2

Rl
in = a1B

l + a2

(4.2)

where a1 and a2 are coefficients to be determined, Rh
in and Rl

in are sampled energy density

at corresponding high brightness Bh and low brightness Bl locations. This linear relationship

allows us to predict the energy density for any given brightness value B within the image.

Certain environments may require more complex scaling functions, which can be generated in

a similar fashion. With the geometric transformation and brightness conversion, an insola-

tion map, Rin(x, y), is generated from the captured image, and is utilized to provide energy

distribution information for a scalar field interpolation, which may then be used for mission

planning.

To provide a comparison, a polynomial surface fit of 5th order in both x and y was applied

data sampled from the test environment, and shown below in Figs. 4.6 and 4.7. This high-

degree polynomial surface of R2 = 0.6595 is clearly a poor fit for the scattered data.
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Figure 4.6 3D Polynomial Surface Fit of Insolation Data

Figure 4.7 2D Polynomial Surface Fit of Insolation Data
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CHAPTER 5. SIMULATION AND EXPERIMENT RESULTS

This Chapter contains the simulated and experimental results for the energy-constrained

Transit Problem posed in Chapter 2, and the energy-constrained Persistent Traveling Vehicle

problem posed in Chapter 3. Section 5.1 begins with a simulated environment, and includes so-

lutions for a naive straight-line, a Balkcom-Mason, and a Pseudo-Dubins solution to the transit

problem, as well as a comparison case using a conventional path planning algorithm. Section 5.2

presents experimental data for the transit problem using naive straight-line, Balkcom-Mason,

and Pseudo-Dubins curves. A conventional TSP-approach is applied to the persistent travel-

ing vehicle problem in Section 5.3, while Section 5.4 concludes with experimental results of a

solution to the persistent traveling vehicle problem generated from the CPSO algorithm.

Each of the plans presented below has three power schedule parameters which characterize

the UGV’s performance: the anticipated intake power, PIN ( ), the consumed power, POUT

( ), and the change of battery energy, ∆Battery ( ). In the cases where experimental

data was gathered and compared to predicted trends, the corresponding experimental data is

denoted as PIN ( ), POUT ( ), and ∆Battery ( ). Please note that energy gained by the

system is denoted as positive, while energy expended from the system is negative.

5.1 Transit Problem Simulation Results

We now examine a scenario where our vehicle is tasked with crossing a simulated 5.5×5.5 m2

sparse-energy area which yields a maximum power intake of less than 7W. Results for a naive

straight-line solution, a Balkcom-Mason solution, a Pseudo-Dubins solution, and a conventional

Bellman-Ford graph search solution are presented and discussed below.
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5.1.1 Straight-Line Solution

A simple straight-line solution between our starting and ending location, using the greatest

possible uniform-velocity which can satisfy our energy constraint, is pictured below in Fig. 5.1

and Fig. 5.2. This solution requires a total travel time of 32.27 seconds and yields a net energy

gain of 0.43 J.

Figure 5.1 Straight-Line Path for Virtual Scenario

Figure 5.2 Simulated Straight-Line Power & Energy Schedule
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5.1.2 Balkcom-Mason Solution

We then generate a 5-waypoint Balkcom-Mason motion plan, presented below in Figs. 5.3

and 5.4. This plan requires the vehicle to move for 26.86 seconds and predicts a 1.05 J net

energy gain.

Figure 5.3 Balkcom-Mason Path for Virtual Scenario

Figure 5.4 Simulated Balkcom-Mason Power & Energy Schedule
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5.1.3 Pseudo-Dubins Solution

Next, we generate a 5-waypoint Pseudo-Dubins motion plan, summarized below in Fig. 5.5

and Fig. 5.6. The Pseudo-Dubins solution predicts a 26.03 second travel time accompanied by

a 0.26 J net energy increase.

Figure 5.5 Pseudo-Dubins Path for Virtual Scenario

Figure 5.6 Simulated Pseudo-Dubins Power & Energy Schedule
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While both the Balkcom-Mason and Pseudo-Dubins plans offer a significant time reduction

from the naive straight-line solution (16.76% and 19.34%, respectively), the Pseudo-Dubins

offers only a 3.09% reduction from the Balkcom-Mason motion plan.

5.1.4 Bellman-Ford Solution

To demonstrate the advantages of the modified PSO over conventional motion-planning

methods in solving this type of problem, we conclude by examining a motion plan generated

from the Bellman-Ford graph search algorithm (Bellman (1958)). The Bellman-Ford algorithm,

like other conventional motion planners discussed in Chapter 1, works by identifying the optimal

path comprised of multiple possible path segments. In order to adapt the classical Bellman-

Ford algorithm technique to our problem, the same simulated area is divided into a set of grids

and path segments, which are denoted by the edges connecting any node (labeled as circles in

Fig. 5.7) in a given column to any other node in the adjacent columns.

The “cost” of each segment is determined by the minimum amount of time required for

the vehicle to travel between one node to another while avoiding a negative net energy change.

Because the Bellman-Ford algorithm identifies some optimal assortment of edges, compliance

with the Transit Problem’s net energy constraint mandates that each of these edges individually

meet the net energy constraint. For any edge that cannot satisfy the net energy gain constraint,

a relatively large cost is assigned so as to render it infeasible to the algorithm. The Bellman-

Ford algorithm (Bellman (1958)) is used to search for the minimum cost path from the initial

point to the final point. Grids ranging from 5x5 to 25x25 nodes were examined, and the best

performing motion plan identified by the Bellman-Ford method is presented below in Fig. 5.7

and Fig. 5.8. This plan requires a 38.52 second travel time, and produces a net energy increase

of 0.13 J.
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Figure 5.7 Path from Bellman-Ford for Virtual Scenario

Figure 5.8 Simulated Power & Energy Schedule from Bellman-Ford Method

The Bellman-Ford plan is, unsurprisingly, slower than the Balkcom-Mason (43.41%) and

Pseudo-Dubins (46.50%), yet also slower than the naive straight-line solution (22.90%) due to

the constraint on each path segment. It is clear from this method that adapting conventional

motion planners to this type of problem cannot yield result with improved performance.
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5.2 Transit Problem Experiment Results

We now employ the test environment described in Chapter 4 to generate new plans and

gather experimental data. Three high-pressure sodium lights are distributed within a 3.8×1.31

m2 area. The resulting solar energy density distribution is mapped and used to generate a naive

straight-line solution, a 5-waypoint Balkcom-Mason solution, and a 5-waypoint Pseudo-Dubins

solution. The resulting motion plans were executed by the demonstration vehicle five separate

times and are presented below.

5.2.1 Straight-Line Solution

The naive straight-line solution, including path, predicted variable history, and the recorded

experimental data, is shown in Figs. 5.9-5.10. The anticipated travel time for the straight-line

solution is 57.71 seconds with a net energy increase of 1.19 J, while the average experimental

travel time is 57.13 seconds with a minimum of 56.42 seconds and a maximum of 57.79 seconds,

and an average experimental net energy increase 1.89 J with a minimum net energy increase

of −0.17 J and a maximum of 3.97 J. The average standard deviation of the experimental

∆Battery from the prediction is 1.68 J, with a minimum of 1.46 J and a maximum of 1.97 J.

Figure 5.9 Straight-Line Path for Experimental Environment
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Figure 5.10 Experimental Straight-Line Power & Energy Data

The straight-line solution requires the vehicle to travel at the speed of 0.066 m/s, which is

very close to the UGV’s minimum speed of 0.055 m/s. Even if a straight-line path from start to

finish were broken up into smaller line segments with nonuniform velocities, the experimental

data above demonstrates that the vehicle would be unable to travel any (significantly) slower

through the high-energy regions, and thus would have insufficient energy to travel more quickly

in the sparse regions. A straight line, in this case, cannot yield a swift route from start to finish

while satisfying the net energy gain constraint.

5.2.2 Balkcom-Mason Solution

The path and predicted variable history of the Balkcom-Mason solution can be found in

Figs. 5.11-5.12. The anticipated travel time for the straight-line solution was 25.01 seconds

with a net energy increase of 0.25 J, while the average experimental travel time was 24.78

seconds with a minimum of 24.41 seconds and a maximum of 25.25 seconds, and an average

experimental net energy increase −0.03 J with a minimum net energy increase of −1.30 J and

a maximum of 1.72 J. The average standard deviation of the experimental ∆Battery from the

prediction is 1.48 J, with a minimum of 0.92 J and a maximum of 1.96 J.
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Figure 5.11 Balkcom-Mason Path for Experimental Environment

Figure 5.12 Experimental Balkcom-Mason Power & Energy Data

5.2.3 Pseudo-Dubins Solution

The pseudo-Dubins solution, including its path, predicted variable history, and the recorded

experimental data, are presented in Figs. 5.13-5.14. The anticipated travel time for the pseudo-

Dubins solution is 20.22 seconds with a net energy increase of 3.39 J, while the average experi-

mental travel time is 20.20 seconds with a minimum of 19.90 seconds and a maximum of 20.41
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seconds, and an average experimental net energy increase 4.17 J with a minimum net energy

increase of 1.53 J and a maximum of 7.99 J. The average standard deviation of the experimental

∆Battery from the prediction is 1.66 J, with a minimum of 1.13 J and a maximum of 2.24 J.

Figure 5.13 Pseudo-Dubins Path for Experimental Environment

Figure 5.14 Experimental Pseudo-Dubins Power & Energy Data

Again, both the Balkcom-Mason and Pseudo-Dubins plans resulted in decreased transit

time from the naive straight-line case (56.66% & 64.97% predicted and 56.59% & 64.63% aver-

age experimental, respectively). More significantly, the Pseudo-Dubins solution constituted a
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marked improvement from the Balkcom-Mason plan, offering predicted travel time reduction of

19.16% and an average experimental time reduction of 18.54%. The Balkcom-Mason solution

requires that the UGV moves slowly underneath the leftmost energy source and pass close to

the rightmost source in order to meet the energy constraint. In contrast, the Pseudo-Dubins

solution was planned to gather sufficient energy from the middle source alone, and consumes

less energy to complete its turns by preserving some of the vehicle’s translational motion to-

wards the goal during the turn. The small discrepancies observed between the anticipated and

experimental energy trends may be contributed by small deviations in the vehicle’s path from

its planned path, due to interference between our test environment’s motion capture system

and the infrared light emitted by the high-pressure sodium lamps. In testing, the demon-

stration vehicle averaged a 4.93% error in distance traveled and 2.27% error in angle turned.

Measurement noise in the UGV’s voltage/current sensors may also contribute to these small

experimental discrepancies.

5.3 Persistent Traveling Vehicle Problem Simulation Results

We now begin our analysis of Persistent Traveling Vehicle problem introduced in Chapter 3.

Four objective points within the test environment were selected and placed within the test

environment. The UGV is tasked with starting at objective point 1, traveling to objective

points 2-4 in some order, and returning to its starting position and orientation as quickly as

possible while ensuring a nonnegative net energy change. To benchmark the performance of the

planned motion using the CPSO method discussed in Chapter 3, we first provide a simulated

motion plan obtained from the classical TSP solution. Different from the CPSO method, the

classical TSP method does not consider the environment’s energy distribution when searching

for the optimal path. Instead, it seeks to minimize the vehicle’s travel time by finding the

shortest distance between the objectives, but allows the vehicle to slow down at each path

segment to meet the net energy gain constraint. The comparative planned path and its energy

schedules are shown in Figs. 5.15-5.16. The TSP plan results in a vehicle travel time of 43.82

seconds, and a final ∆Battery of 1.187 J.
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Figure 5.15 Comparison Path Plan

Figure 5.16 Comparison Energy Schedule

5.4 Persistent Traveling Vehicle Problem Experiment Results

Finally, the CPSO method discussed in Chapter 3 is applied to produce an optimized motion

plan and energy schedules. The resulting mission plan was executed by the demonstration
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vehicle five separate times. The planned path and history of the associated power schedules

are shown in Figs. 5.17 & 5.18.

Figure 5.17 Optimal Planned Path

Figure 5.18 Optimized Energy Schedules

The optimized plan predicts a vehicle travel time of 34.09 seconds and a ∆Battery of

0.0037 J, while the average experimental travel time and ∆Battery of the five trials were 33.97
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s and 0.0024 J, respectively. The average standard deviation of the experimental ∆Battery

from the prediction was 4.6034 J, with a minimum of 3.1764 J and a maximum of 5.9566

J. The experimental data gathered was prone to significantly more error than the previous

experiments, ddue in no small part to this plan calling for more than double the number of

vehicle movements than the previous plans. Even a small error in any one of these movements

could bring the vehicle off of its predicted path and cause a propagating series of deviations

from the anticipated energy states.

Note that the CPSO algorithm added additional waypoints between the objective point

pairs (1,2), (1,3) and (2,4), where the energy density is non-uniformly distributed along the

corresponding segment, and that the locations of these inserted waypoints were optimized to

slightly deviate from the straight-line segment to harvest more energy along the path. There

were no waypoints added between the objective point pair (3,4) as the energy density along

the corresponding segment is relatively uniform. Though these additions result in the CPSO

path being slightly longer than the conventional TSP solution’s, the CPSO plan requires some

22.20% less time to complete.
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CHAPTER 6. CONCLUSION

This thesis has explored motion planning techniques for a solar-panel equipped unmanned

ground vehicle. Variants of Particle Swarm Optimization were applied to solve transit problems

under strict energy constraints, and a Cascaded Particle Swarm Optimizer was introduced to

generate a mission plan which required the vehicle to persistently visit a number of objective

points. An indoor test environment and custom-built mobile robotics platform were designed

and built, and simulated and experimental results were presented which demonstrated the

effectiveness of these approaches over conventional methods. Though the methods presented

constitute a first step in the relatively new field of insolation-based mission planning for solar-

powered vehicles under energy constraints, they already vastly outperform conventional path

planning techniques such as the Bellman-Ford graph search.

With the advancement of autonomous technology, unmanned systems have alleviated hu-

man operators from numerous tedious tasks where system endurance plays a crucial role. Cur-

rent technology employed in solar-powered unmanned systems is subject to design and power

limitations and varying environments. Intelligently harvesting energy from environments and

scheduling power consumption to optimize the desired system performance will significantly

improve the vehicle’s endurance, and any unmanned vehicle which can access solar energy may

potentially benefit from the results of this work.

Future efforts must address the swift and accurate characterization of an environment’s

insolation, and be proven in time-variant environments of non-uniform terrain, and additional

effort will be required to further reduce the computation time required by these methods and

allow real-time mission planning.
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