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ABSTRACT

Multiphase flows have been an active area of research for decades. Despite this, dense

compressible gas-solid flows are still poorly understood. A experiment developed recently

[Wagner et al., Exp. Fluids 52, 1507 (2012)] is able to isolate these conditions through the

use of a multiphase shock tube. However, the behavior of the flow inside the particle curtain

remains unclear. The objective of this work is to use numerical simulations to understand the

fluid dynamics at the particle scale in this flow regime. An immersed boundary method is used

to model the solid particles. The particles are tracked in the Lagrangian reference frame and

collisions are modeled using the hard sphere approach. The fluid phase is solved on an adaptive

grid using the Parallel Adaptive Wavelet-Collocation Method.

Detailed properties of the particle curtain are necessary for accurate simulations. Therefore,

the discrete element method (DEM) is used to simulate the particle curtain in isolation. The

model is first validated through comparison to a granular channel flow experiment. The mean

and fluctuation velocity profiles are found to show good agreement. A fully three dimensional

simulation of the particle curtain used by Wagner et al. yields information about the curtain’s

volume fraction and velocity profiles. The results suggest that the volume fraction profile is

not uniform as previously thought.
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CHAPTER 1. INTRODUCTION

1.1 Introduction

Multiphase flows are common and have important implications in many natural and indus-

trial processes. Multiphase flows are considered to be any flow that consists of more than one

phase, generally separated at scales larger than the molecular level. While many categories of

these flows exist, the interest of this work is in gas-solid multiphase flows. In the natural world,

these types of flows occur during sand storms, volcanoes, and avalanches. In industrial appli-

cations, this flow regime is observed in fluidized bed reactors and pneumatic conveyors, just to

name a couple applications. The important economic implications in the design of industrial

equipment that process these types of flows have driven research in better understanding and

prediction of multiphase flows.

There have been relatively successful models developed that can simulate specific regimes of

gas-solid multiphase flows. The most successful models are generally limited to flows where the

solid phase is either dilute or densely-packed. In these extremes, simplifying assumptions can be

made to ease the modeling efforts. However, these assumptions become invalid for flows in the

intermediate regime, where the solid volume fraction is high, but not in a granular regime [4, 5].

Additionally, in regimes where complexities such as flows with high Reynolds numbers and

situations where compressibility effects are important, modeling becomes increasingly difficult.

Flows of these types are precisely the interest of this work.

These types of flows occur during volcano eruptions, where ash and rock fragments inter-

act with the compression waves resulting from sudden explosions. These compressible, high

Reynolds number flows are also present in the detonation of explosives when a shock wave

passes through the cloud of solid particles as depicted in Fig. 1.1.



2

Figure 1.1 Photographs of a gas-solid multiphase flow occurring during an explosion [1].

There are many inherent difficulties encountered when trying to quantitatively measure

flows in this regime experimentally. First of all, it is very difficult to isolate flows where

the volume fraction lies in the dense, non-granular regime. For example, in the commonly

studied fluidized bed reactor, while there are regions where the solid volume fraction is in this

intermediate regime, there are also regions that are simultaneously in the dense, granular regime

and other regions that the solid particles are dilute. Therefore, isolating only the intermediate

volume fraction regions in these types of flows is problematic. The other main difficulty when

studying gas-solid flows in this regime is probing the fluid properties. The flow features are

often masked by the densely packed, opaque particles making measurements difficult.

These difficulties explain the significant gap in the experimental research that is crucial for

furthering the understanding of this regime of flows. There have been some experiments that

have looked at shock wave interactions with particle clouds. In the dusty regime, experiments

have been performed [6], and drag coefficient models have been developed [7]. On the other

extreme, where the particles are in a granular state, there have been studies focusing on shock

interaction with a dense bed of particles [8]. However, research in the regime between these

extremes has been lacking, leading to the necessity of extrapolating models from either extreme

to predict properties in this dense, non-granular regime [9].

However, recent experimental work utilizing a multiphase shock tube shows promise in the

quantitative measurement of these types of flows [2]. In this experiment, a gravity driven

particle curtain allows the isolation of a high solid volume fraction multiphase region. This
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Figure 1.2 Schlieren images from a recent experiment studying the interaction between a

shock wave and particle curtain [2].
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curtain is mounted inside a shock tube, allowing study of the interaction between a shock

wave and the particle curtain. Schlieren images, as shown in Fig. 1.2, are used to visualize the

flow features that develop. In addition, pressure measurements allow quantitative data to be

collected.

However, as mentioned above, the opaque nature of the particles makes it difficult to tell

what is occurring at the particle scale inside and immediately behind the particle curtain.

Additionally, detailed measurements such as the unsteady lift and drag forces experienced by

the particles are not obtained, and are very difficult to measure in experiments. Many times,

numerical simulations must be used in order to fully characterize these types of flows.

The advantage of numerical simulations is the ability to access any flow quantity at any

location in the flow field, allowing detailed “measurements” to be taken. However, the simula-

tion is only as accurate as the approximations made and the resolution used. Due to the wide

range of scales present, great demands are placed on the numerical methods used to simulate

these types of flows. In this largely uncharacterized regime of gas-solid flows, the luxury of

under-resolving the flow features and using models for the sub-grid scales is not possible. How-

ever, detailed particle-resolved simulations can help to develop a more general model for these

sub grid scales, allowing much larger industrial scale simulations to be possible.

This work details the application of the adaptive wavelet collocation method (AWCM) to

the simulation of these types of flows. This method is an efficient grid adaptation method

that allows highly resolved simulations while minimizing the total grid points necessary. When

applied to gas-solid multiphase flows, the AWCM allows one to fully resolve flow features such

as sock waves, boundary layers, and unsteady turbulence, while using less resolution in smooth

regions of the flow.

This work also discusses granular simulations techniques used to model particle-particle

interactions. Both hard sphere and soft sphere models are discussed. The hard sphere model

is applied to the fully resolved multiphase simulation, while the soft sphere model is used to

characterize the properties of the particle curtain which are necessary for the initial conditions.
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1.2 Thesis organization

Chapter 2 is a paper that describes the equations and numerical methods used in the

simulation of gas-solid multiphase flows. This includes the fluid phase governing equations

and numerical methods, followed by the solid phase equations and methods. Then the coupling

between phases is discussed, followed by some proof of concept results that showcase the abilities

of this technique.

In chapter 3, the simulation of granular flows using the discrete element method (DEM) will

be discussed. In this chapter, the particle curtain used in Ref. [2] is simulated and its properties

are predicted and summarized. These properties are important for the initial conditions of a

multiphase simulation of this experiment.

Finally, general conclusions will be drawn in chapter 4.

1.3 Literature review

1.3.1 Wavelet methods

Wavelets were first introduced by Grossmann and Morlet [10] and are typically used in

applications ranging from image processing to speech recognition. Original “first generation”

wavelets represent functions as a sum of a translations and dilations of a base wavelet at multiple

levels of resolution. Wavelets have the property that they are localized in both physical and

wavenumber spaces. Therefore, a sharp feature at one location has no effect on the wavelet

transform far from it. This means that wavelets have the natural ability to compress information

that contains localized features. Additionally, the existence of a fast wavelet transform has

increased the usefulness of wavelet transforms for a variety of applications [11].

The use of wavelets in solving partial differential equations (PDEs) is a relatively recent

application for the wavelet transform. Wavelets have been used in the solution of both linear

[12] and non-linear PDEs [13, 14, 15, 16, 17, 18]. Additionally, they have shown great promise

in the field of computational fluid dynamics (CFD) as summarized in Ref. [11].

The ability of wavelets to isolate localized features of a solution have made them useful in

the simulation of turbulent fluid flow. Turbulent flows are characterized by their intermittent
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localized flow features. Typically, direct numerical simulation (DNS) of these flows requires

a computational grid with enough resolution to capture all scales of these localized features

down to the smallest (Kolmogorov) scale. However, by applying the wavelet transform to DNS

methods, it allows fully resolving the highly transient and localized small scales at the highest

resolution, while allowing a lower resolution grid to be used in smoother regions of the fluid.

An example work that applied wavelet methods to DNS is Ref. [19].

Wavelet methods have also been applied to the large eddy simulation (LES) of turbulent

flow [20]. The premise behind LES is that the smallest scales of turbulence are universal, and

therefore do not need to be resolved. Instead, filtered equations are solved, and the under

resolved small scales are modeled as a sub-grid stress term. The advantages of the wavelet

transform that applied to DNS are also applicable to LES. The wavelet method allows resolving

only the necessary regions of the flow while saving computational expense where high resolution

is not needed.

Another area of CFD where wavelet methods have proven to be useful is in studying fluid-

structure interactions. Immersed boundary methods have been applied with the wavelet method

to allow resolved flow around solid obstacles [21, 22]. Once again, the wavelet method shines

in its ability to fully resolve small scale flow features, such as the boundary layers in this case,

while allowing computational savings in smoother regions of the solution.

In general, there are two different types of wavelet methods. The first is the adaptive

wavelet Galerkin method (AWGM) and the other is the adaptive wavelet collocation method

(AWCM). The AWGM solves the PDEs in wavelet coefficient space while the AWCM solves

them on an adaptive grid in physical space [23]. The AWCM has the advantage of being much

simpler to treat non-linearities in the equations in addition to general boundary conditions.

Additionally, there are now so-called “second generation” wavelets that are used in this work.

These wavelets remove the restriction mentioned above of all wavelets being translations and

dilation of a base wavelet. By removing this restriction, it allows these wavelet methods to be

used on general domains and have irregular sampling intervals [23].
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1.3.2 Multiphase flow simulation

Over the decades that gas-solid multiphase flows have been actively studied, there has been

a lot of effort expended in creating models to predict these types of flows. These models are

based on the idea of modeling each phase separately and treat the interaction between the

phases through various coupling methods. The various methods can be divided into three main

categories based on how the solid phase is treated and the corresponding method for coupling

the two phases. The categories differ based on the scale of flow features that are resolved. The

methods that only resolve the larger scale flow features are generally able to handle larger scale

problems, but are hindered by the accuracy of the models for the sub-grid flow features. On

the other hand, the methods that resolve all features of the flow require very little modeling,

but are limited by the high computational cost. A summary of the various methods can be

found in Refs. [24, 25].

1.3.2.1 Two fluid models

At the lowest computational cost end of the modeling spectrum lies the two-fluid model for

gas-solid multiphase flows [26]. These methods treat both the gas and solid phases as continua.

This class of models requires modeling of the particle-particle collisions within the solid phase

and coupling terms to model the drag forces that occur between phases.

Although this method is very useful for large scale problems due to its under-resolved

nature, it is limited by the accuracy of the closure models for the solid phase stresses due to

collisions and drag forces from the fluid acting on the solid phase. In cases of interest in this

paper, where high Reynold’s numbers and shock waves are present, these closures are not valid

and therefore this method is not practical for the flows of interest.

1.3.2.2 Point particle models

The next level of resolution in modeling gas-solid flows can be classified as the point particle

approach [27, 28, 29]. This approach differs from the previous in that each particle is tracked

in the Lagrangian frame of reference. The collisions between particles are resolved using either
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hard sphere or soft sphere models as described below. Although modeling is still involved in

predicting the collisions, this method is able to resolve the solid phase dynamics to a much

greater level of detail compared to the continuum representation.

In the point-particle approach, the fluid phase is solved in much the same way as the two

fluid approach. The governing gas equations are volume averaged, generally on a scale larger

than the particle size. The inter-phase forces are computed using correlations given the particle

and fluid velocities at the particle locations.

The equation for the motion of a spherical particle in a fluid is generally referred to as the

BBO equation after Basset [30], Boussinesq [31], and Oseen [32]. A thorough derivation for

a small particle in a non-uniform, unsteady, and low Reynolds number flow can be found in

Ref. [33] and a summary of various correction terms can be found in Ref. [24]. For example,

there are terms that have been developed to account for the effects due to undisturbed flow,

steady state drag, compressibility effects, turbulence effects, particle clouds, virtual mass ef-

fect, Basset force, and lift forces. However, many of these empirical correlations have a very

limited range of applicability. For example, when studying turbulent gas-solid flows, most drag

correlations assume that the particle size is smaller than the smallest scale in the flow so that

the flow in the vicinity of the particle, at the particle scale, is relatively laminar [34, 35].

Due to the volume averaged nature of the fluid solution, a relatively low resolution numerical

grid is able to be used. The main limitation of this approach is the number of particles that can

be feasibility tracked. With modern computers, this allows simulations of problems approaching

industrial scales. However, due to many unknowns in the drag correlations for the compressible,

high Reynolds number flows of interest, the point particle approach is not feasible for this work.

1.3.2.3 Particle resolved simulations

The class of techniques that require the least amount of modeling are those that resolve

the particles in the fluid. These methods apply the no-slip boundary conditions at the particle

surfaces directly. This allows direct calculation of the two-way coupling between the solid and

fluid phases without the need for drag force closure models. Given sufficient resolution, these

methods are applicable over the widest range of flow regimes.
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There has been some interesting work that is an intermediate step between point-particle

and particle resolved approaches in terms of modeling level and computational expense [36, 4,

37]. In these works, a coarse grid is used that is unable to resolve the flow features near the

particles’ surfaces. However, an analytical Stokes solution is extrapolated from the grid points

in the fluid to the particles’ surfaces. This allows a resolved analytic solution near the particles

to calculate the fluid forces and enforce the boundary conditions, without needing to resolve the

flow with a fine computational grid. However, the Stokes approximation must remain valid in

the flow region immediately adjacent to the particles meaning generally that low to moderate

Reynolds numbers are required.

Another approach to particle resolved gas-solid simulation utilizes body-fitted meshes that

ensure grid points lie exactly on the particles’ surfaces. For example in Ref. [38], the compu-

tational grid is re-meshed at every time step as the particles move. In that work, Reynolds

number on the order of 100 are simulated, but due to the expense of re-meshing at every time

step, these types of simulations are limited to small numbers of particles.

There have also been simulations that utilize immersed boundary methods. These methods

eliminate the necessity for grid points to lie directly on the particle’s surface. Instead, the

fluid phase is solved everywhere (including inside the particles), but terms are added to the

equations to enforce the boundary conditions at the particle surfaces. This technique has been

employed to study heat transfer effects [39] and the effect of particles on turbulence [40].

The immersed boundary method provides the most promise in studying the flows of interest

in this paper. In a recent work, the Brinkmann penalization method for immersed boundaries

has been extended to allow any arbitrary Dirichlet, Neumann, or Robin-type boundary con-

dition and works in compressible flows [21]. This technique does not require any modeling to

compute the forces on the particles, as they can be computed directly from the fluid solution.

In additoin, the immersed boundary method allows the use of a Cartesian grid, and therefore

works well with the AWCM discussed above. Unlike in Refs. [39, 40], where a uniform grid

is used for solving the fluid phase, the AWCM allows the computational grid to be refined in

only the necessary areas such as the particle boundary layer and shock waves. This creates the

ability to solve larger scale problems with the same amount of computational resources.
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1.3.3 Granular flows

Another goal of this work is to predict the particle curtain properties in Ref. [2]. This

prediction requires accurate simulation of granular flows. This section will provide a brief

summary of the historical granular flow experimental work and modeling efforts.

1.3.3.1 Experimental investigation

Granular flows have been the subject of many experiments. Through these experiments,

some general observations have emerged about granular flows. These flows are interesting

because of their apparent simplicity, yet surprising complexity. For example, depending on the

amount of external energy supplied to a granular system, these flows can exhibit properties

ranging from solid-like to gas-like [41, 42]. Although the terminology may differ, generally,

granular flows are broken into three regimes [43]. The first is known as the quasi-static regime

where particle inertia can be neglected. In this regime soil plasticity models are often used to

predict this type of flow [44, 45]. In the gaseous regime, binary collisions dominate and kinetic

theory can be used [46, 47]. The intermediate regime where particles are still under a sustained

network of contacts, but inertia effects become important is known as the dense flow regime

[42].

The inelastic nature of granular flows means that they need to be continuously supplied

with energy in order to obtain a steady state flow in the dense regime [48]. There are six types

of flows that are generally studied experimentally due to their relative ease in creating this

steady supply of energy [43]. These include plane shear flow, annular flow, vertical chute flow,

flow over an inclined plane, heap flow, and rotating drums. Due to the similarity to the flow in

the hopper region that feeds the particle curtain, the focus here will be on the vertical chute

flow/hopper flow.

The collective experimental work on hopper flows have lead to the observation of some

general characteristics of these types of flows. The first is the nature of the mean velocity

profile within the hopper. These flows are generally characterized by a centralized plug flow
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region with shear layers near the walls. The shear layer thickess is found to scale with particle

diameter regardless of the geometry of the channel [49, 50].

There has also been success in the development of an empirical correlation called the Bev-

erloo equation that predicts the effect of the hopper geometry on the mass flow rate for a

flat-bottomed hopper [51]. This relation has been extended for rectangular hoppers [52] and

to account for angled side walls [53]. This relation has been validated through numerical sim-

ulations [52, 54] has proven to be relatively good at predicting this type of flow.

Another common observation is the pressure saturation at the bottom of a hopper filled

with a granular material. Unlike a fluid, whose pressure monotonically increases with depth,

in a granular flow it is observed that above a critical depth, the pressure at the bottom of the

hopper becomes independent of the height of the particles above it [55].

1.3.3.2 Numerical modeling techniques

There are three main approaches used to model granular flows. The first is through the

use of continuum models. This approach treats the granular material as a continuum material.

However, as stated above, the dense regime between the gaseous and quasi-static regimes is

not well understood, and therefore it has been difficult to develop constitutive relationships for

flows in this regime [43]. Therefore, continuum approaches are limited in their usefulness for

the prediction of flows in this dense regime.

The other two main approaches for modeling granular flows both track individual particles in

the Lagrangian frame and resolve the collisions directly. These methods differ in their treatment

of the collisions. The first method treats collisions using a hard sphere model [28, 56]. In this

approximation, the collisions are assumed to be binary and instantaneous. The velocities of

two particles after a collision are determined through conservation of momentum and energy.

Energy losses in inelastic collisions are accounted for through a restitution coefficient and

frictional effects can also be included [24]. The downside to this modelling approach is its

inability to handle a particle contacting many particles at once. This situation dominates the

behavior of the quasi-static and dense granular flow regimes. For this reason, hard sphere

models are limited to simulations of granular flows in the rapid regime [48, 57]. The advantage
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of this model is its computational efficiency in comparison to the method described next. For

this reason, this is the model that is used in the coupled multiphase simulations described in

this paper.

The other method for resolving granular flows is known as the discrete element method

(DEM) which was originally proposed by Ref. [58]. This method solves Newton’s laws of

motion for each individual particle. The collisional forces are modeled as a function of the

overlap between particles. The advantage of this method is the ability to handle any arbitrary

number of particle contacts at a given moment in time. This allows simulation of any regime

of granular flow. However, the stiff nature of the equations due to the large force gradients

that occur during a collision means that this method is much more expensive to solve than the

hard sphere model.

There have been a wide variety of models for the forces that occur when two spheres collide.

We first look at some of the normal force models that have been proposed. One of the simpler

and most widely used models is the linear spring and dashpot model [59, 60]. This model is

commonly used partly because of the fact that an analytical solution exists. Therefore it allows

the damping in the model to be related to the restitution coefficient [61]. Another nice feature

of this model is the fact that the collision duration is independent of the incoming velocity of

the collision [62]. This allows one to define a time scale based on the collision duration.

Another model is based on the Hertz theory of elasticity for contact between spheres [63, 64].

This model is generally accepted to better capture the collision dynamics between spheres,

however its nonlinearity causes the restitution coefficient and collision duration to be dependent

on incoming velocity making it more difficult to use numerically [64].

Other models that have been used include a “locking spring” [65] and using different spring

constants for the compression and rebound phases to account for inelasticity [52]. Additionally

the repulsion phase of the Leonard-Jones potential, although more commonly used in molecular

dynamics simulations, has also been applied to granular flow modeling [54].

There are equally as many models for the frictional forces that occur during particle col-

lisions. The simplest model for friction is the static friction model. This model assumes the

frictional force is proportional to the normal force. While not valid for every flow regime, it has
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proven to be relatively sucessful in the prediction of granular flows and is more computationally

efficient than other models [62, 64].

The linear spring dashpot that is limited by Coulomb’s law of friction is perhaps the most

common friction model [52, 60]. However, this model requires calculating and storing the

tangential displacement for all pairs of particles in contact and can become computationally

expensive.

Another approach to modeling friction is through the use of non-spherical particles. By

using particles that have concave edges, the particles are allowed to interlock and model the

effects of friction without the need to introduce a separate model [54]. It has been observed

that non-spherical particles do a better job capturing the granular nature of flows compared to

spheres which tend to behave more fluid like [59].

Despite the variety of frictional models that can be found in literature, it has been observed

that all models perform acceptably well in simulating most materials [66]. This was also

observed in this work when comparing the static friction model to the linear spring dashpot

model in a granular channel flow simulation.

The DEM approach to simulating granular flows is in many ways the most detailed ap-

proach to study them [54]. Numerical methods allow better access to flow properties compared

to experiments where the dense, opaque nature makes them difficult to probe [67]. DEM sim-

ulations have proven to be useful in more fully understanding these flows and the development

of more accurate models to predict them [64].
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CHAPTER 2. PARTICLE RESOLVED DIRECT NUMERICAL

SIMULATION USING THE ADAPTIVE WAVELET COLLOCATION

METHOD

A paper in preparation for submission to the Journal of Computational Physics.

Ryan Goetsch and Jonathan Regele

Abstract

This work applies a new combination of techniques for the fully resolved simulation of com-

pressible, gas-particle multiphase flows. The adaptive wavelet collocation method is used to dy-

namically, and efficiently, adapt the computational grid to localized flow features. An extended

Brinkmann penalization technique that allows arbitrary Dirichlet, Neumann, or Robin-type

immersed boundary conditions, is used to enforce the no-slip condition at particle surfaces. A

hard sphere collision model is applied to resolve the particle-particle collisions. Proof of concept

test cases are presented, showcasing the dynamic grid adaptation and fully resolved two-way

coupling between the phases that is possible with this technique. This method shows great

promise for the simulation of larger scale multiphase flows than previously practicable.

2.1 Introduction

Multiphase flows occur in a wide variety of situations that have important implications.

They occur naturally in sand storms, volcanoes, and avalanches. In industrial and engineering

applications, they occur in pneumatic conveyors, fluidized bed reactors, solid propellant rockets,

and explosions. Research interested in understanding these complex flows has been ongoing for
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decades. However, due to the complexities that are inherent in these flows, they are yet to be

fully understood and their prediction has been notoriously difficult [68].

Of the many types of multiphase flows, the major interest of this work is gas-particle flows.

In this category, there are two major regimes characterized by the dominant physics. In the

dilute phase, the physics are dominated by the fluid phase with slight modifications due to

the presence of particles. The particle-particle interactions are infrequent and in many cases

are neglected in simulations of flows in this regime. On the other extreme are dense flows.

These flows are dominated by the particle-particle contacts. The flows on either extreme have

been the focus of many studies and modeling efforts [24, 25, 9]. In many cases, industrial-scale

problems of flows in these regimes can be simulated with success due to simplifying assumptions

that can be made. However, flows in the intermediate regime have not been as widely studied

[2].

Additionally, this work is interested in studying multiphase flows in this intermediate regime

for cases where compressibility effects in the fluid phase become important. One example of

such flows was studied in a recent experiment [2]. A gravity fed particle curtain with high

solid volume fraction was studied inside a shock tube. The interaction between the shock wave

and particle curtain was characterized through Schlieren images and pressure measurements.

However, due to the high particle density, observation of the flow features inside and immedi-

ately downstream of the particle curtain was not possible, leaving many questions unanswered.

Instead, this work looks to simulate these types of flows numerically in order to gain better

insight on the flow features that occur.

There are many modeling techniques that have historically been applied to the simulation

of multiphase flows. An overview the various methods can be found in Refs. [5, 25, 24]. Overall,

these modeling techniques can be broken into two main classes, based on their treatment of the

solid phase. The first main class of methods are known as two-fluid models, where both solid

and gas phases are treated as continua [26]. These models require closures for the force coupling

between phases in addition to the particle-particle interactions. However, general closures that

are valid in the flow regime of interest have yet to be developed.
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The second class of methods track individual particles in the Lagrangian frame. These

methods are able to resolve the particle-particle collisions more accurately and account for the

discrete nature of the particles. Within this class of methods, there are two approaches for

modeling the coupling between the phases.

One approach is to solve volume averaged equations for the fluid phase [27, 28, 29, 34, 69].

The forces caused by the coupling between solid and fluid phases are computed using empirical

correlations based on the fluid solution at the particle location. These correlations are most

successful when the flow is relatively laminar at the particle scale. There are corrections for

Reynolds number, turbulence, acceleration, and compressibility effects just to name a few [24],

however there is no general and widely accepted relation that is valid over all flow regimes of

interest in this work.

The other approach to modeling the coupling between phases is to directly resolve the no-slip

boundary conditions at the surface of the particles. This approach allows direct calculation

of the inter-phase forces while remaining valid over any flow regime without any additional

modeling. The downside of this approach is the high computational cost associated with

resolving the flow features near the particles.

Some interesting work has applied analytic solutions of Stokes flow in the vicinity of the

particle to “transfer” the no-slip boundary condition to adjacent nodes on the fluid-phase grid

[4, 36, 37]. This allows accurate integration of the fluid forces on the particle surface while

avoiding the need to resolve the boundary layer of the particle. However, this technique is lim-

ited to low to moderate Reynolds number and it would be difficult to account for compressibility

effects such as shock waves.

Another approach to resolving the boundary layer near the particles is through the use of

body-conforming meshes [38, 70, 71]. This allows enforcing the no-slip condition directly on the

nodes on the particle’s surface. However, these methods require significant numerical expense

to create the mesh and quickly become impractical for moving particles.

One of the more promising techniques for resolving the boundaries of moving particles

involves immersed boundary methods [39, 40]. These techniques apply forcing terms to the

physical equations to enforce the no-slip conditions at the particle locations, without the need
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to re-compute a new mesh as the particles move. However, generally these methods require

the use of a very fine and uniform computational mesh in order to resolve the boundary layer,

which limits the size of problems that can be simulated.

In this work, we also make use of the immersed boundary method to resolve the no-slip

condition at the particle surface. However, the prohibitive expense of using a highly resolved

uniform mesh is overcome through the use of the adaptive wavelet collocation method (AWCM)

[23, 72]. This technique leverages the natural ability of wavelets to compress data that is

mostly smooth with localized sharp features. By keeping only the wavelets that contain impor-

tant information, the computational mesh can be refined at the localized flow features, such

as the boundary layers and shock waves, while allowing a coarser grid in smoother regions

of the solutions. Best of all, this mesh refinement occurs dynamically and with little addi-

tional computational expense required. The AWCM, applied to the fully resolved simulation

of gas-particle flows, allows these simulations to be performed using much fewer computational

resources. This opens up the possibility of simulating much larger multiphase systems than

previously practical.

The remainder of this paper will be organized as follows. First, the governing equations

and numerical techniques for the fluid phase will be discussed in Section 2.2. Next, the so-

lution of the solid phase is discussed in Section 2.3, followed by a discussion of the coupling

between phases in Section 2.4. The results will be presented in Section 2.5, and a summary

and conclusions in Section 2.6.

2.2 Fluid phase

In this section, a discussion of the governing equations and numerical techniques used to

solve the fluid phase will be discussed in isolation from the solid phase.
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2.2.1 Governing equations

The evolution of the fluid phase is governed by the Navier-Stokes equations. This work

follows the non-dimensional formulation given in Ref. [21]

∂ρ

∂t
= −∂ρuj

∂xj
(2.1)

∂ρuj
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= −∂(ρuiuj)

∂xj
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where the non-dimensional equation of state is

p =
ρT

γ
, (2.4)

and

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
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δij

)
(2.5)

e =
1

2
uiui +

cpT

γ − 1
− p

ρ
. (2.6)

In the above equations, the velocity is non-dimensionalized by the reference speed of sound c0,

time by L/c0, specific energy by c20, density by ρ0, pressure by ρ0c
2
0, viscosity by µ0, thermal

conductivity by µ0cp0 , and temperature by T0, where all quantities with subscript “0” denote

the reference state and L is the reference length scale. The temperature dependence of µ is

assumed to follow Sutherland’s law [73]

µ =
1 + S1
T + S1

T 3/2 (2.7)

where S1 is normalized by T0.

2.2.2 Numerical methods

In order to fully resolve the flow features that are present around the solid particles, high

resolution is needed. However, far from the particles the resolution requirements are not as

demanding. This type of problem lends itself readily to the use of an adaptive grid. In this

work, an adaptive wavelet collocation method (AWCM) is used. A brief overview is provided
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here, while more details can be found in Refs. [74, 75, 72, 23, 76]. In this method, each grid

point is associated with a wavelet. A function u in multiple dimensions is decomposed as

u(x) =
∑
k∈K0

c0kφ
0
k(x) +

∞∑
j=0

2n−1∑
µ=1

∑
l∈Lµ,j

dµ,jl ψµ,jl (x), (2.8)

where φ is a scaling function with coefficient c and ψ is a wavelet with coefficient d. The

superscript j indicates the level of resolution, the subscripts k and l indicate the spatial index,

and µ is the wavelet family. The sets of integers K0 and Lµ,j are all integers associated with the

scaling functions at the zeroth level of resolution, and the wavelets at the jth level of resolution

and family µ, respectively.

A thresholding parameter ε is used to determine the wavelets that are important for rep-

resenting the solution. It has been shown that the error in the solution is bounded and is

controlled by ε [77]. This allows a solution with a known level of accuracy on much fewer grid

points than traditionally necessary.

In this work, the Crank-Nicholson method is used for time integration and a fourth order

accurate spatial discretization is used. However, any method can be used, as this work is not

dependent on the time integration or spatial discretization methods.

2.3 Solid phase

The solid phase is represented as cylindrical or spherical (2-D and 3-D, respectively) par-

ticles. The free flight motion, collision dynamics, and time integration are discussed in this

section.

2.3.1 Free flight motion

The motion of a particle in the absence of any collisions is governed by Newtons second law

for linear and angular motion

m
d2x

dt2
= F (2.9)

I
dω

dt
= T , (2.10)
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where m, x, F , I, ω, and T are the mass, position vector, net external force vector, moment

of inertia, angular velocity vector, and net external torque vector, respectively. Note that for

spheres/cylinders, the angular position is not important, therefore it is not solved for. For the

case where F and T are constant, the following equations are obtained

x(t) = x(0) + v(0)t+
1

2

F

m
t2 (2.11)

v(t) = v(0) +
F

m
t (2.12)

ω(t) = ω(0) +
T

I
t, (2.13)

where v is the particle velocity vector.

2.3.2 Collision model

In this work, the hard sphere approximation is used to model the collisions between spherical

particles. Collisions are assumed to be instantaneous and binary and the particle deformation is

neglected. The initial velocities v(0) and angular velocities ω(0) are known prior to the instant

of the collision. The post collision conditions are computed as a function of the impulsive

force exerted between the particles using the conservation of linear and angular momentum.

The details of the formulation can be found in Ref. [24]. The result is a relation between the

pre-collision and post collision velocities for each particle.

First, we define some quantities. The relative velocity of the particle centersG(0) and points

of contact G
(0)
c at the instant before contact are

G(0) = v
(0)
1 − v

(0)
2 (2.14)

G(0)
c = G(0) + r1ω

(0)
1 × n+ r2ω

(0)
2 × n, (2.15)

respectively. The tangential component of G
(0)
c is

G
(0)
ct = G(0)

c −
(
G(0)
c · n

)
n. (2.16)

In addition, the quantities µ and e, the friction and restitution coefficients respectively, are

taken to be known material properties. These parameters control the energy losses that occur

during the collision.
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There are two possible situations that need to be considered when two particles collide.

The first occurs when the particles slide for the entire duration of the collision. This condition

happens when the inequality

n ·G(0)∣∣∣G(0)
ct

∣∣∣ < −2

7

m1m2

m1 +m2

∣∣∣G(0)
ct

∣∣∣ (2.17)

is satisfied. In that case, the post-collision velocities are

v1 = v
(0)
1 − (n+ µt)

(
n ·G(0)

)
(1 + e)

m2

m1 +m2
(2.18)

v2 = v
(0)
2 + (n+ µt)

(
n ·G(0)

)
(1 + e)

m1

m1 +m2
(2.19)

ω1 = ω
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5
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ω2 = ω
(0)
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5

2r2

)(
n ·G(0)

)
(n× t)µ(1 + e)

m1

m1 +m2
. (2.21)

The case where Eq. 2.17 is not satisfied indicates that the particles’ relative sliding at the

contact point goes to zero at some point during the collision. The post collision velocities for

this case become

v1 = v
(0)
1 −

{
(1 + e)

(
n ·G(0)

)
n+

2

7
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2.3.3 Collision time and time advancement

Two particles will first come into contact when the following equation is satisfied

|xi(t)− xj(t)| = ri + rj , (2.26)

where the indices i and j represent two different particles. Using Eq. 2.11 for x(t), this equation

becomes a fourth order polynomial in time.

In the special case that the acceleration is the same for all particles, the equation is reduced

to a second order polynomial in time allowing an algebraic solution. This situation arises
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when only gravitational forces are acting on the particles, for example. In these cases, efficient

algorithms known as event-driven algorithms can be used [78, 56]. The collision time for all

pairs of particles can be computed with little numerical expense, allowing the system to be

advanced on a collision by collision basis. This allows very large time steps to be taken and

the system to be advanced through time in an efficient manner.

However, in this work the fluid forces result in non-equal accelerations. Therefore, a nu-

merical solution to the full fourth order polynomial is required. Because this is much more

computationally expensive than an algebraic solution, an event-driven approach is not practi-

cal.

For this reason, we use the approach described in Sect. 4.3 of Ref. [78] where collisions are

detected retrospectively. The simulation is advanced through time at a regular interval (in this

case, the same ∆t as required for the fluid phase) using the free flight equations 2.11–2.13. After

each step, collisions are detected by checking for overlaps between pairs of particles. When an

overlap is detected, the time that the collision should have occurred is bracketed by the starting

and ending times of the time step and a numerical algorithm can be used to solve for the actual

time of the collision.

In this work, the hybrid Newton-Raphson/bisection method described in Ref. [79] is used to

solve for the collision time. This method combines the fast convergence of the Newton-Raphson

method with the robustness of the bisection method.

There are situations where complex sequences of collisions occur for a given particle during

a time step. These situations require special care to properly resolve. The approach used here

involves subdividing time step size until the sequence of collisions can be solved using the simple

algorithm described above. Further details about the algorithm and can be found in Ref. [78].

2.4 Fluid-solid coupling

The equations and numerical techniques for both the fluid and solid phases have been

discussed above. In this section, the techniques for coupling the two phases are discussed.
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2.4.1 Immersed boundary method

The desired boundary conditions for a solid particle in a viscous fluid are a no-slip condition

for the velocity and adiabatic or heat flux condition on temperature. One method of enforcing

these conditions is through a body-fitted mesh, allowing the above constraints to be enforced

directly on the surface of the particle. However, computing a body fitted mesh at every time

step for moving objects is very computationally expensive. The alternative, used in this work,

is to use immersed boundary conditions.

Immersed boundary conditions work by adding forcing terms to the governing equations

that enforce the desired boundary conditions without the need for a body-conforming mesh.

This work uses an extended Brinkman penalization approach described in Ref. [21]. This

approach allows any Dirichlet, Neumann, or Robin type boundary condition to be specified on

a general hyperbolic or parabolic system of evolutionary equations. Additionally, the boundary

conditions can be easily applied to both integrated and non-integrated variables.

As discussed in Ref. [21], the governing equations 2.1–2.3 are penalized as follows

∂ρ

∂t
=(1− χ)× RHS− χ

ηc

[
ηk

∂ρ

∂xk
− φ

]
(2.27)

∂ρui
∂t

=(1− χ)× RHS (2.28)

− χ
[

1

ηb
ρ(ui − u0i)− ρνn

∂2ui
∂xj∂xj

+
1

ηc
ui

(
nk

∂ρ

∂xk
− φ

)]
∂ρe

∂t
=(1− χ)× RHS− χ

[
1

ηc

(
ηk
∂ρe

∂xk

)
ρ(uj − u0j)uj

ηb
− ρuj

ηc
ηk
∂uj
∂xk

(2.29)

−ρujνn
∂2uj
∂xi∂xi

− 1

ηc
eφ− 1

ηc
cvρq

]
,

where χ is a mask function that is unity inside the object and zero outside, RHS indicates

the right hand side of Eqns. 2.1–2.3, and nk is the inward facing surface normal of the object.

The velocity u0i is the velocity of the object. The parameters ηc, ηk, and νn control the

accuracy and numerical stability as described in Ref. [21]. Note that outside the object, the

equations become the same as the Navier Stokes equations, and inside are governed by only

the penalization terms. In the penealization for ρ, the quantity φ is governed by the equation

∂φ

∂t
= − χ

ηc
nk

∂φ

∂xk
. (2.30)
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The quantity φ allows a Neumann condition on ρ that is passively controlled by the fluid

physics. The error from these penalized boundary conditions converges as O(ηc, η
1/2
b ).

2.4.2 Force calculation

The force from a viscous fluid acting on a differential surface dS with unit normal nj is

fi = σijnj , (2.31)

where σij = −pδij + τij . The total force acting on a particle is the integral over the surface

Fi =

∫∫
δOm

σijnjdS =

∫∫∫
Om

∂σij
∂xj

dV ≈
∑
k∈Om

(
∂σij
∂xj

)
k

∆Vk, (2.32)

where the divergence theorem is used to change from a surface integral to a volume integral

and a summation over all k grid cells in Om is used to approximate the integral on a discrete

grid. Om represents the region inside the particle and δOm is the outer surface.

The net torque can be computed using a similar formulation, however this formulation is

restricted to spherical particles in 3-D or cylinders in 2-D. Using this restriction, the torque

acting on dS is related to fi by

ti = rεjkinjfk (2.33)

where ε is the permutation symbol used to represent the vector cross product in index notation

and r is the particle radius. This is then integrated over δOm to obtain the net torque, noting

that r is a constant for spherical particles

Ti =r

∫∫
δOm

εjkinj(σkmnm)dS = r

∫∫∫
Om

εjki
∂σkmnm
∂xj

dV (2.34)

≈
∑
l∈Om

(
εjki

∂σkmnm
∂xj

)
l

∆Vl,

where a generalized Stokes theorem is used to change from a surface integral to a volume

integral.

Note that the use of the divergence and Stokes theorems here is justified because the penal-

ized solution inside the particles is continuous. Even though this solution is not physical, its

continuity allows us to evaluate the forces at the surface by a volume integral over the interior.
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2.4.3 Time advancement

The current method of coupling the time integrations of the solid and fluid phases takes

a leap-frog approach. The first step is computing the fluid forces F n and T n acting on the

particles in Eqns. 2.32 and 2.34 using the current fluid solution, where n indicates the current

iteration. The particle locations and velocities are updated using the equations in Section 2.3.2,

with the assumption that F n and T n are constant through ∆t, yielding xn+1, vn+1, and

ωn+1. Next, the immersed boundary conditions, enforced through the penalized Navier-Stokes

equations 2.27–2.29, are updated using these updated particle positions and velocities. The fluid

phase is then advanced to tn+1 with the assumption that the particle positions and velocities

do not change during the time step. This completes the time step and the process is repeated

until the desired ending time is reached. In future work, a higher order method will be used to

couple the time steps of the solid and fluid phases.

2.5 Results

This section presents some results as a proof of concept for our multiphase flow simulation

technique. Qualitative validation will be the subject of future work. However, validity of the

immersed boundary method has been throughly investigated in Ref. [21]. The accuracy of the

flow solution for both stationary and moving cylinders was validated against previous numerical

works and experiments. Quantities such as the boundary layer separation point, and lift and

drag forces showed good agreement with previous results.

In addition, the hard sphere collision has also been verified independent of the fluid phase.

Simulations were performed and validated by verifying that total system energy and momentum

are conserved through collisions. These results can be found in Appendix A.

Figure 2.1 shows how the AWCM is able to adapt the grid to the surfaces of the particles.

In these test cases, there is no fluid solution to adapt to, therefore the grid is only adapting

to χ. These cases show how the AWCM allows fully resolved computation of the particles’

boundary layers while allowing a coarse grid in regions where the resolution is not needed,
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Figure 2.1 Snapshot in time of the computational grid dynamically adapting to χ for moving

particles in 2-D (left) and 3-D (right). The red regions are inside the particles

where χ = 1, and χ = 0 elsewhere.

including inside the particles. In cases where the fluid is also present, the grid will also adapt

to flow features such as shock waves.

This method was also tested in 2-D and 3-D when the fluid is present. The results for a 2-D

simulation are shown in Fig. 2.2. In this case, two cylindrical particles start on the upper right

and lower left corners of the domain and move toward the center. A collision occurs in the center

of the domain after which they move away from each other toward the opposite corners of the

domain. The acoustic Reynolds number is 1,000, the particles’ non-dimensional speed is 0.3,

and there are 64 points per particle diameter at the maximum level of resolution. During the

simulation, only 0.3 % of the possible grid points are needed, highlighting the computational

savings possible when using an adaptive grid. The results are colored by the out-of-plane

component of vorticity to highlight the unsteady vortex shedding occurring before and after

the particle collision.

2.6 Summary and conclusions

The goal of this work is the fully resolved simulation of compressible gas-particle multiphase

flows. Typically, fully resolved approaches are limited by the computational expense due to
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Figure 2.2 Example result for a 2-D simulation with two particles before and after undergoing

a collision. The grid lines are colored by the vorticity.
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grid generation or high cost of a uniform, high resolution grid. In this work, the AWCM is used

in conjunction with an extended Brinkmann penalization immersed boundary technique. The

use of the AWCM allows the computational grid to be refined only in the necessary regions

without the typical overhead of adaptive mesh techniques. A hard sphere collision model is

implemented to handle particle-particle collisions.

The wavelet-based grid adaptation is first tested with moving particles in 2-D and 3-D

in isolation from the fluid phase. The grid is seen to dynamically adapt to the edges of the

particles, which will allow full resolution of the particle boundary layers.

Additionally, tests were conducted that show the two-way coupling possible between the

solid and fluid phases. In 2-D, results are shown that exhibit a particle-particle collision and

unsteady vortex shedding from two cylinders, showcasing the possibilities of this approach.

In future work, we look to apply this method to the simulation of laboratory-scale problems

such as the multiphase shock tube tested in Ref. [2]. This method shows great promise in

simulating large scale problems, allowing a detailed look into the flow features that occur in

this complex regime of fluid flow.
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CHAPTER 3. DEM PREDICTION OF PARTICLE CURTAIN

PROPERTIES

A paper submitted to Physical Review E.

Ryan Goetsch and Jonathan Regele

Abstract

The discrete element method (DEM) is used to predict the properties of a particle curtain

created by the three-dimensional granular flow through a hopper constricted by a slit opening.

The profiles of the mean and fluctuation velocity components and solid volume fraction within

the particle curtain are estimated. The model is validated against experimental measurements

of the mean and fluctuation velocity profiles in a granular channel flow. Good agreement is

observed between the experimental channel flow measurements and our DEM simulations. The

approach is extended to model the behavior of the particle curtain after it exits the hopper.

The model predictions suggest that the volume fraction is not uniform across the curtain as

expected from experimental results.

3.1 Introduction

Multiphase flows occur in a wide variety of phenomenon. Some, such as fluidized bed

reactors, have very important industrial applications. For this reason, these types of flows have

been actively studied for decades. There has been success in modeling these flows when the solid

phase is in either the dilute or densely packed regimes. However, the modeling of compressible

flows when the solid phase has a volume fraction between these extremes has lagged behind [2].

Additionally, this intermediate regime of multiphase flows has seen relatively little experimental
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investigation due to the difficulties in isolating and measuring the high solid volume fraction

regions.

A recent experiment has been developed that investigates the interaction between a shock

wave and a high volume fraction particle curtain [2]. Schlieren images in conjunction with pres-

sure measurements are used to characterize the flow features. However, due to the high volume

fraction of particles within the particle curtain, the flow features are not directly observable.

For this reason, there is interest in simulating the shock wave-particle cloud interaction numer-

ically, in order to observe the flow features at a greater level of detail. However, a numerical

simulation requires accurate initial conditions, including detailed information about the par-

ticle curtain. Some important quantities include the profile of the volume fraction as well as

the mean and fluctuation velocity components of the particles in the curtain. The particle

curtain used in this experiment was generated by the granular flow of glass beads through a

hopper with a slit opening. Detailed information about the particle curtain is not available

experimentally, therefore it must be predicted through alternate methods.

The flow of granular materials have been notoriously difficult to model and predict. This

is partly due to the wide range of behaviors that granular flows can exhibit. They are known

to exhibit the behavior of a solid, liquid or gas depending on the amount of external energy

supplied to the system [41, 42]. Additionally, accurate experimental measurements of opaque

granular materials have many difficulties, which in part has lead to a significant lack of ex-

perimental information [64, 67, 80]. This wide range of behaviors and lack of information has

complicated the efforts in obtaining a universal continuum model [64, 81]. For these reasons,

much of the research in this field has relied on numerical simulations using a Lagrangian ap-

proach, where the trajectories of individual grains within a granular media are obtained. In

many ways these numerical simulations have lead experimental work in obtaining the detailed

measurements needed for the development of models [54, 64].

Perhaps the most widely used method used in these numerical studies is the discrete element

method (DEM), which was originally formulated by Cundall and Strack [58]. In this method,

the motion of individual grains is obtained through numerical integration of Newton’s second

law. The grains are allowed to slightly overlap, and the collisional forces are modeled as a
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function of the overlap distance. In this work, a solver using the discrete element method is

used to predict the properties of the particle curtain.

The primary objective of this work is to use DEM simulations to better characterize the

particle flow conditions exiting the hopper found in Ref. [2]. In order to have confidence in the

results from the numerical simulation, we first look to validate the model with detailed experi-

mental measurements. While there is little to no experimental work studying the properties of

a particle curtain similar to that used in Ref [2], there are a few classes of basic granular flows

that have been thoroughly studied. These include plane shear, annular shear, vertical channel

flows, inclined plane, heap flow, and rotating drums [43]. The flow that is most similar to the

particle curtain of interest is the vertical channel flow, as this flow exists in the feed hopper

region. In an experiment by Natarajan, et al. [3], the profiles of the mean and fluctuation

velocities within a channel were measured through optical particle tracking. These results are

used as a benchmark to show that the model is able to predict the properties of the particle

curtain below the channel.

The paper is organized as follows. First, the numerical approach will be discussed in

Section 3.2 followed by a validation of the model in Section 3.3. The prediction of the particle

curtain properties will then be discussed in Section 3.4. Finally, a summary and final conclusions

will be included in Section 3.5.

3.2 Numerical model

3.2.1 Equations of motion

The motion of each individual grain in a granular medium is fully described by Newton’s

second law for linear and angular motion

mi
d2ri
dt2

= Fi (3.1)

Ii
dωi
dt

= T i, (3.2)

where the subscript i represents the particle index, m is the mass, r is the position vector, t is

time, F is the total external force, I is the moment of inertia, ω is the angular velocity vector,

and T is the total external torque acting on the particle.
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Figure 3.1 Diagram of the linear spring and dashpot model for the contact forces in the normal

and tangential directions for two overlapping spheres as described in the text.

The external force F i is commonly broken into components that are each modeled separately

F i =
∑
j, j 6=i

(F n,ji + F t,ji) + F ext,i, (3.3)

where F n,ji and F t,ji are the normal and tangential components, respectively, of the contact

force acting on particle i due to particle j. The term F ext,i represents any additional external

forces not caused by particle-particle contact including gravitational forces, contact with walls,

and fluid forces. The torque on the particle i is related to the force acting on it through

T i =
∑
j, j 6=i

(Rinji × F t,ji), (3.4)

where nji is the normal unit vector that points from the center of particle i to the center of

particle j and Ri is the radius of particle i.

3.2.2 Collision model

The first part of this section focuses on the normal component, F n,ji, of the contact force

between two spheres. One of the most simple and widely used models is a linear-spring and

dashpot as depicted in Fig. 3.1. In this model, the normal contact force is given by

F n,ji = −knδn,jinji − ηnvn,ji (3.5)
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where kn is the normal spring stiffness, and vn,ji is the normal component of the velocity of

particle j relative to particle i. The normal component of the overlap δn,ji, unit normal vector,

and velocity of the surface of particle j relative to i at the point of contact are

δn,ji = (Ri +Rj)− |rj − ri| (3.6)

nji =
rj − ri
|rj − ri|

(3.7)

vji = (vj − vi) + (Riωi +Rjωj)× nji, (3.8)

respectively, where the normal component of the relative velocity is

vn,ji = (vji · nji)nji. (3.9)

The damping coefficient ηn is related to the restitution coefficient e [82, 83, 61]

ηn =
−2 ln e

√
m∗kn√

π2 + ln2 e
(e 6= 0) (3.10)

where it can take values in the range 0 < e ≤ 1 and m∗ is

m∗ =

(
1

mi
+

1

mj

)−1
. (3.11)

We now look at the tangential component of the contact force F t,ji. An analogous linear-

spring and damper model is commonly used. However, in the tangential direction this force is

limited by a Coulomb-type sliding friction force

F t,ji =

−ktδt − ηtvt,ji, |F t,ji| ≤ µ|F n,ji|

−µf |F n,ji|tji, |F t,ji| > µ|F n,ji|,
(3.12)

where kt, δt, ηt, and µ are the tangential stiffness, relative displacement, damping coefficient,

and coefficient of friction, respectively. The tangential relative velocity and unit vector are

found using

vt,ji = vji − vn,ji (3.13)

tji =
vt,ji
|vt,ji|

. (3.14)

The tangential relative displacement in 2-D is calculated by integrating the tangential ve-

locity

δt = δt0 +

∫ t

t0

vt,ji(t
′) dt′. (3.15)
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However, this formula requires storing δ for all pairs of particles that are in contact and adds

significant computational expense. Additionally, in 3-D simulations, the rotation of the contact

plane requires coordinate transformations between time steps [83].

An alternative friction model that eliminates the need to calculate Eq. 3.15 is the static

friction model. The friction force is represented as simply the static friction component of the

equation above

F t,ji = −µf |F n,ji|tji. (3.16)

As discussed in Ref. [62], this simplified model is a good compromise between accuracy and

computational cost for granular flows dominated by sustained contact. This is further investi-

gated in Appendix B.

The same equations used to compute contact forces between particles are also used to

compute the particle-wall contact forces. These contact forces occur at non-periodic system

boundaries and the plane segments that constrict the channel to a slit opening at the bottom.

In these collisions, the closest point to the center of the particle that lies on the wall is treated as

particle j with Rj = 0 and mj =∞. In effect, this treats a wall as a point particle with infinite

mass. This allows the calculation of F n and F t using the same models as for particle-particle

collisions.

3.2.3 Time integration

The equations of motion of the system of particles described in Section 3.2.1 above are a

coupled system of ordinary differential equations. The initial conditions of the particles are

known, therefore this represents an initial value problem where the solution can be marched

through time. In this work, a second order Runge-Kutta method is used.

Because of the stiff nature of the equations of motion, a very small time step is needed

to properly resolve the collisions and ensure conservation of energy. It is common practice to

restrict the time step by forcing N steps to occur within the duration of a collision. The exact

solution to the equations of motion shows that the collision duration is [62]

τ =

√
[π2 + ln(e)2]

m∗

kn
. (3.17)
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The maximum allowable time step is then dtmax = τ/N . When simulating a system of non

uniform diameter particles, the smallest value of dtmax for all pairs of particles is chosen to

ensure at least N time steps are taken during each collision. In previous work, N values of

10–100 have been used [64, 62, 59]. In this work, the time step size is chosen such that N ≥ 50

is enforced unless otherwise specified.

3.2.4 Initial conditions

In all of the simulations in this work, the desired initial condition is a fully packed and static

bed of particles in a closed hopper. This allows the hopper to be opened at the start of the

simulation and the particles then flow out of the hopper. However, generating a densely packed

bed of particles directly is not a trivial problem. Instead, the particles are first initialized in a

non-packed arrangement such as randomly placed in the domain or placed on a uniform lattice.

Then, with a wall placed at the bottom of the hopper to close it, the particles are allowed to

fall under the influence of gravity and settle to form the desired densely packed configuration.

This process can be sped up by using larger than physical values for e and µ in order to quickly

damp out the kinetic energy from the system [56].

3.2.5 Periodic recycling of particles

This work is focused on studying the properties of steady state granular flows, where the

statistics are stationary in time. This can be accomplished numerically by the use of periodic

boundary conditions, allowing particles leaving the bottom of the domain to re-enter through

the top. There has been numerical work where this has been done without any special treatment

[59]. However, in the present work, spurious fluctuations were observed caused by the re-

entering particles impacting the top of the particle bed. Other work has used a technique were

particles leaving were placed at the lowest location on the top of the particle bed with zero

velocity [54]. This allowed a level particle bed to be maintained while avoiding spurious effects

caused by particles impacting with finite velocity. However, this technique is more difficult to

implement and adds the expense of finding the correct location to place the particles.
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Figure 3.2 Diagram showing decomposition of domain into cells and the partitioning of cells

between processors. The group of cells on the left belong to one processor, and

the group on the right belong to a second processor. The particles and cells drawn

with dashed lines are the ghost particles and cells as discussed in the text. The

arrows represent the necessary inter-processor communication and the numbers

are the particle indices.

In this work a technique is desired that allows the use of standard periodic boundary con-

ditions while still avoiding spurious fluctuations. A new technique is developed where standard

periodic boundary conditions are used in addition to a region where an artificial viscous force

is added to the particles. The viscous force is chosen to be similar to an aerodynamic drag

force

Fv ∝ |vi|vi (3.18)

where the proportionality constant determines the terminal velocity of the particle. In the

following cases, the constant is chosen such that the terminal velocity is approximately twice

the mean velocity of the particles in the channel. This allows the re-entering particles to catch

up to the particles in the channel, while slowing them down before impacting the top of the bed.

This avoids spurious fluctuation velocities in the channel, while being very easy to implement

and requiring minimal computational expense.
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3.2.6 Linked cell algorithm and parallelization

In order to avoid O(N2
p ) operations required by Eq. 3.3, where Np is the total number of

particles, a linked cell algorithm is used [56, 59, 62]. The computational domain is decomposed

into rectangular (2-D) or rectangular prism (3-D) cells as shown in Fig. 3.2. A particle is said

to belong to a cell if its center lies within the cell. If the size of the cell in any direction is larger

than the largest particle diameter, it is ensured that particles can only interact with other

particles in their cell or in the immediately neighboring cells. Therefore, the force summation

in Eq. 3.3 can be restricted to the smaller region surrounding each particle and the numerical

complexity is reduced to O(Np).

Additionally, the linked cell algorithm lends itself readily to parallelization as described in

Ref. [62]. Each processor is assigned a group of cells and therefore a subsection of the domain.

This allows the same algorithms to be used by each processor on its sub-domain. However, care

needs to be taken at the processor boundaries where particles in neighboring sub-domains can

interact with particles within the processor’s domain. In order to handle these inter-processor

collisions, the particle information for the neighboring cells are shared with each processor and

stored as “ghost” particles as shown by the grey shaded cells in Fig. 3.2. In this way, each

processor can compute all necessary forces independently of the other processors. The only

information that needs to be shared at each time step is the movement of a particle from one

sub-domain to another and the updated ghost particle information at the boundaries between

the two sub-domains.

The parallel algorithm was tested on case with Np = 40, 000 and shows very linear scaling

up to 32 processors. For a larger simulation with more particles, liner scaling to a larger number

of processors is expected.

3.3 Model validation

Before using the DEM methodology described above to simulate the particle curtain in

Ref. [2], the granular channel flow experiment in Ref. [3] is used as a benchmark to validate

the model.
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Figure 3.3 Diagram showing the geometry of the DEM simulation of the vertical channel.

The dimensions for the height H, half-width W , and hopper angle α are shown.

The particles at the wall are fixed particles used to create a rough wall condition.

In smooth wall cases, these are absent.

3.3.1 Setup

The details of the experiment by Natarajan et. al. are as follows. The dimensions of the

channel are height H = 100 cm, width 2W = 5 cm, and depth d = 2.18 cm. The front and

back walls are polished glass to replicate a 2-D flow. Two wall conditions are used for the side

walls. A smooth wall condition is created using polished glass and a rough wall using particles

glued to the walls in an approximately hexagonal close packed configuration. The particles are

glass beads with a mean diameter of D = 3 mm with a standard deviation of 2.13 %. A feed

hopper is used to feed particles into the channel. At the bottom of the channel is a flow control

valve with variable width. This work will focus on the data obtained for a slit width of 1.3 cm.

Numerically, the setup shown in Fig. 3.3 is used. The width and depth of the domain are

matched to the experiment. Instead of a feed hopper, periodic boundary conditions are used as

described in Section 3.2.5 to create a steady flow of particles. The flow control valve geometry

was not specified in the experiment, therefore a hopper design with angled walls is used where

the angle α is determined as described in Section 3.3.2 below. Additionally, the 2.18 % standard

deviation in the particle diameter is matched numerically. A Gaussian distribution is chosen,
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however it is cutoff at two standard deviations to prevent small particles from overly restricting

the time step and large particles from restricting the cell size for the linked-cell algorithm.

Similar cutoffs have been used previously in numerical simulations [59].

The polished glass walls are modeled as planes with the same properties as the glass parti-

cles. For the rough wall case, fixed particles are arranged in a hexagonal close packed arrange-

ment at the wall.

The particle properties are chosen to match the properties of glass as used in the experiment.

The specific type of glass used was not mentioned, however glass is known to have a density of

2400–2800 g/m3. The value used in the simulation is determined as described in Section 3.3.2

below. The friction and restitution coefficients for binary collisions between small glass spheres

have been measured as e = 0.97 and µ = 0.092 [84]. Additionally, the elastic modulus is

60× 109 Pa and Poisson’s ratio is 0.24 [85].

The coordinate system is shown in Fig. 3.3 with the y-axis pointing upward in the streamwise

direction, x-axis in the transverse direction, and the z-direction along the depth of the channel.

The x = 0 location is the centerline of the channel. The velocity components in the x and y

directions are u and v, respectively.

3.3.2 Model calibration

One parameter that is left to be determined is the height of channel H, and resulting Np,

that is required. It has been observed experimentally that, contrary to the behavior of a liquid,

the pressure at the bottom of a hopper becomes independent of H above a critical height

because the weight of the particles is supported by the sidewalls [55]. In testing what this

critical height is, a simulation is performed where the periodic boundary conditions are not

used, causing the particles to drain out of the hopper and not re-enter. Therefore H steadily

decreases and the mass flow rate ṁ is measured as a function of H. An example of the results

obtained is shown in Fig. 3.4. In this figure, it is evident that above H ≈ 0.2 m the mass flow

rate becomes constant. In the final simulations, H = 0.75 m is used, which is still small enough

to compute in a reasonable time and is well above the critical height.
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ṁ
(k
g/
s)

 

 

kn = 103 N/m
kn = 104 N/m
kn = 105 N/m
kn = 106 N/m

Increasing kn

Figure 3.4 (Color online) Plot of mass flow rate ṁ versus height H for various values of spring

stiffness kn.

The next parameter that needs to be determined is the normal stiffness, kn, for the spring

model. If kn is chosen to accurately match the elastic modulus of glass particles, the equations

become impractically stiff and expensive to solve. For example, using the relation between

kn and the elastic modulus given in Ref. [86] with a characteristic velocity of 1 m/s, kn =

2.1 × 106 N/m would be required. In many cases it is possible to use a smaller kn than

would be needed to match the material properties, because the large scale flow features become

independent of kn in the limit of large kn. A range of simulations are run at various kn

to determine when the solution properties of interest (mass flow rate ṁ, mean transverse and

streamwise velocity components 〈u〉 and 〈v〉, and fluctuation transverse and streamwise velocity

components u′ and v′) become independent of kn. Here the angle brackets denote an averaged

quantity, and the prime indicated the standard deviation. Figure 3.4 shows the change in ṁ

with kn. As evident, from this figure, ṁ becomes independent of kn at kn = 1 × 105 N/m.

Although not presented here, the same trend is observed in the other flow properties of interest

〈u〉, 〈v〉, u′, and v′. Therefore kn = 1 × 105 N/m is the value used in the remainder of the

simulations.

As mentioned in the previous section, the type of glass used for the particles (and therefore

density ρ) and the angle α of the hopper walls is not specified in Ref. [3]. Therefore, these
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Figure 3.5 (Color online) Plot of ṁ versus α. Data from this work are shown in filled symbols

and the fitted empirical relation is the red dotted line. The horizontal dotted line

is the experimentally measured ṁ.

parameters are chosen as fitting parameters to match to the mass flow rate ṁ and mean

streamwise velocity 〈v〉measured in the experiment. In order to determine the angle dependence

of 〈v〉 (and ṁ which is proportional to 〈v〉) on the hopper exit angle α, a number of cases

were simulated with varying α. The results are plotted in Fig. 3.5. Experiments have shown

empirically that

ṁ = A[tan(90◦ − α)]−0.35, (3.19)

is a good fit to the dependence of ṁ on α, where A is the constant of proportionality [53].

This relation is only valid in the “mass flow” regime where there is no stagnant region near the

hopper base, therefore it is only valid for α & 45◦. The two largest α data points in Fig. 3.5

are fitted using least-squares by Eq. (3.19) which yields A = 0.149 kg/s and the resulting

fit is plotted as a dashed line in Fig. 3.5. It is evident that the numerical simulations agree

well for large α. By validating the angle dependence with the relation in Ref. [53], it allows

interpolation to choose the correct α to match the conditions in Ref. [3]. Since it is observed

that 〈v〉 is weakly dependent on ρ, and ṁ ∝ 〈v〉, the hopper angle α is interpolated using

Eq. (3.19) in order to match the 〈v〉 observed in Ref. [3]. Then, ρ is chosen in order to also

match the ṁ observed in the experiment. Using this process, the final ρ is 2600 kg/m3 and
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Table 3.1 Physical properties of the particles used in the simulations.

Property Symbol Value Units

Density ρ 2600 kg/m3

Poisson’s Ratio ν 0.22

Restitution Coefficient e 0.97

Friction Coefficient µ 0.092

Radius R 1.5 mm

Normal Stiffness kn 1× 105 N/m

the final α is determined to be 49.4◦. Given the density range of glass given in the previous

section, both these values are in the expected range.

The final properties of the particles used in the numerical simulations are given in Table 3.1.

3.3.3 Results

With ρ and α calibrated to match the experimentally measured ṁ and 〈v〉, the simulation

can be compared with the experimental measurements. The first step is computing the ve-

locity profiles. In the experiment, the velocity of the particles are computed by tracking the

displacement of a particle over images taken at a rate of 30 fps. The same technique was used

to compute the velocity in the DEM simulations. In addition, the statistics of the velocity, such

as the mean and standard deviation, need to be calculated as a function of location within the

channel. In the experiment, bins were used and the velocities were averaged over all particles

that pass through the bin. A particle is defined to be in the bin if its center is within the bin.

Reference [3] used bins 0.5D wide by 2 cm high. It was found in the DEM results that using

a bin 0.5D wide lead to bin-to-bin oscillations in the statistics due to the layering of particles

near the boundary. In other work, bin sizes around 1.0D to 1.5D are often used [67, 65, 87].

Much smoother statistics are obtained with bins 1.5D wide, therefore this is the size used in

the plots below.

Simulations are performed for both smooth wall and rough wall cases. The smooth wall

results are given in Fig. 3.6. Note that the data from Natarajan et. al. was only reported

for half of the channel. In the figures presented here, the data are mirrored about the channel
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Figure 3.6 (Color online) Velocity profiles for the smooth-walled channel. Plots are included of

(a) the mean velocity components 〈u〉 and 〈v〉 and (b) the fluctuating components

u′ and v′. Open symbols are data from this work and filled symbols are data from

Natarajan et al. [3]. Squares are the streamwise component of velocity u and

circles are the transverse component v.
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centerline. The error bars on the fluctuating velocity components represent the 4% and 7%

error in the streamwise and transverse components, respectively, as reported in Ref. [3].

As seen in these results, a flat profile is correctly predicted, and the magnitude of the mean

velocity in both the streamwise and transverse directions are correct. Looking at the results for

the fluctuation velocity in Fig. 3.6b, it is apparent that in both the streamwise and transverse

directions, the fluctuation magnitude is significantly under-predicted.

In the simulation of the rough walled channel, the calibration of α lead to a slightly different

value of α = 54.2◦ in order to match the experimentally measured 〈v〉 at the centerline. The

velocity profiles obtained for the rough wall case are plotted in Fig. 3.7. In Fig. 3.7a, the mean

velocity profile is shows good agreement with the experiment. The transverse component of the

fluctuation velocity in Fig. 3.7b also shows reasonable agreement. However, some discrepancy

between our simulation and the experimental data is observed in the streamwise fluctuation

velocity. The fluctuations near the wall are correct, however the simulation is predicting much

lower fluctuations in the center of the channel than was measured experimentally.

In the hope of obtaining results that more closely match the experiment, the friction and

restitution coefficients are varied in order to see the dependence of the velocity profile on these

quantities. As discussed in Appendix B below, varying these parameters did not yield improved

agreement with the experimental data.

Another possible cause of the disagreement in the steamwise fluctuation is the simplified

friction model Eq. 3.16 that is being used as opposed to the full linear friction model in Eq. 3.12.

We compared these two models by running both smooth and rough-walled channel cases using

the open source DEM code LIGGGHTS [88] using the same particle properties. The results are

compared with the results from this work in Figs. B.3 and B.4 of Appendix B. For the smooth-

walled channel, slightly better agreement is obtained for v′, and in the rough-walled channel,

slightly better results are obtained near the walls for 〈v〉 with the full linear model, however

overall very similar results are obtained. These observations confirm those found in Ref. [62]

where they observed that the simplified model in Eq. 3.16 is a good compromise between

accuracy and cost for granular flows dominated by sustained contact between particles.
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Figure 3.7 (Color online) Velocity profiles for the rough-walled channel. Plots are included of

(a) the mean velocity components 〈u〉 and 〈v〉 and (b) the fluctuating components

u′ and v′. Open symbols are data from this work and filled symbols are data from

Natarajan et al. [3]. Squares are the streamwise component of velocity u and

circles are the transverse component v.
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Figure 3.8 (Color online) Plot of 〈v〉, ṁ, and v′ versus the nondimensional periodic depth

in the z-direction d/D. All quantities are normalized by q0 which represents the

value at the smallest d/D.

Although, the shape of the 〈v〉 profile in Fig. 3.7 is very different from that obtained by

Natarajan et. al., other similar experimental work has yielded a qualitatively similar shape in

fluctuation velocity. For example, Fig. 4d in Ref. [43] shows a very similar profile with a peak

in fluctuations near the walls and a minimum at the center of the channel, as opposed to the

relatively flat profile obtained by Natarajan et. al. The source of these qualitative differences

is not clear. Overall, the results of the vertical channel flow validation show that with careful

choice of model parameters, the DEM approach is useful for the prediction of the properties of

granular flows with reasonable accuracy.

3.3.4 Periodic depth dependence

In the particle curtain that will be discussed next, the depth of the curtain in the z-direction

(referring to the same coordinate system as the channel above) is large compared to its width.

Therefore, numerically it can be considered semi-infinite and simulated using periodic boundary

conditions on the z boundaries. However, it is unclear how large of depth d in the periodic

direction needs to be simulated. Therefore, before the curtain is simulated, simulations of

the vertical channel case at various d are performed. The steady-state mean and fluctuation
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Figure 3.9 Geometry of the numerical simulation of the particle curtain. The origin is at the

center of the slit opening where the particle curtain begins.

velocities in the streamwise direction as well as the mass flow rate for the smooth-wall case are

tracked as a function of d. The results are plotted in Fig. 3.8. It is observed that the mean

velocity and mass flow rate are relatively independent of d, however the fluctuation velocity is

strongly dependent until around d = 10D where D is the mean particle diameter. In the next

section, a depth of 10D is used when simulating the particle curtain.

3.4 Particle curtain predictions

Given the good agreement between our DEM simulations and the experimental results for

the vertical channel flow, we proceed to simulate the particle curtain in Ref. [2]. A discussion

of the geometry and model parameters will be discussed next, followed by the results.

3.4.1 Setup

The geometry of the problem is shown in Fig. 3.9. The width of the hopper is 2W = 17.8 mm

and the slit opening is 3.2 mm wide. The walls at the bottom of the hopper are angled at

α = 60◦ with respect to horizontal. The visible length of the particle curtain is Hc = 76.2 mm
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and the particles are glass spheres with diameters sorted to 106–125 µm. For a full description

of the experiment, see Ref. [2].

The particle diameters are chosen to have a Gaussian distribution with a mean of 115.5 µm

and standard deviation of 4.75 µm. The distribution was cut off at two standard deviations to

give the correct diameter bounds of 106 µm and 125 µm. From the channel flow simulations

it is determined that for a height above 4(2W ), the mass flow rate becomes independent of

height. Therefore, the height of particles in the feed hopper is chosen such that H ≥ 71.2 mm

for this particle curtain simulation. The depth in the periodic z-direction must be d ≥ 10D for

the solution properties to be independent of d as determined in Section 3.3.4. Using the mean

particle diameter, this requires d = 1.155 mm. All particle properties except for kn (which is

discussed below) are the same as those used in the channel flow simulation given in Table 3.1

above because glass particles are being simulated in both cases.

For post processing the statistics of the particle curtain, the same bin-wise averaging as

above is used. In this case, the bin dimensions are chosen to be 2D by 10D in the x and

y directions, respectively. In calculating the solid volume fraction of a bin, the total volume

of the spheres whose centers lie in the bin is divided by the total bin volume. This value is

then time averaged. The errors associated with particles overlapping the edges of the bin are

averaged out through the time averaging process.

3.4.2 Results

The above geometry requires approximately 1.5 million particles to be simulated. The high

computational cost and limited resources demand that the time step size (determined by N) and

spring stiffness kn be chosen judiciously to satisfy accuracy of the solution and computational

cost. Simulations are first performed at various N and the results are presented and discussed

in Appendix C. N = 15 is chosen because although the results are not completely convergent,

the error is estimated to be less than 5 % for all relevant quantities. The stiffness kn was chosen

to be 32 N/m as this is the largest that could be simulated given the resources available. Any

errors associated with simulating overly soft particles is discussed following the presentation of

the results.
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Figure 3.10 (Color online) Contour plot of the mean volume fraction β in the particle curtain.
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Figure 3.11 (Color online) Volume fraction β versus x at various y locations in the particle

curtain.
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Figure 3.12 (Color online) Contour plot of the horizontal component of the mean velocity 〈u〉.

The averaged solid volume fraction β contour plot for the particle curtain is given in Fig. 3.10

and cuts at various y locations are shown in Fig. 3.11. It is evident that immeditaely after

the particles leave the slit opening, β is a nearly uniform 60 % across the width of the curtain.

The theoretical maximum β for spheres of equal sizes is 74.05 %, and the random close packing

limit has been observed to be 60–68 % [89].

By the time the particles reach y = −19.3 mm, the relatively flat β profile has become

Gaussian-like. As the particles continue to fall further from the slit opening, the evolution of

the β profile is mostly characterized by the dilation due to the gravitational acceleration. At

the midpoint of the curtain (y = −38.1 mm) the volume fraction at the centerline is 43 % and

the curtain is approximately 4 mm wide. The wording in Ref. [2] suggests a relatively uniform

β across the width of the curtain. Although this is observed immediately after the particles exit

the curtain, for the bulk of the curtain a highly non-uniform, Gaussian-like, profile is observed

in this work.

A look at the mean velocity profiles for the 〈u〉 and 〈v〉 velocity components in Figs. 3.12

and 3.13, respectively, explain the behavior of β. At the top of the curtain, there is a very thin

region where the 〈u〉 velocity points inward caused by the angled side walls that form the slit

opening. This inward velocity causes the β profile to be pushed toward the center and become

nonuniform. Below this region, there is a wide portion of 〈u〉 ≈ 0 in the center of the curtain
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Figure 3.13 (Color online) Contour plot of the vertical component of the mean velocity 〈v〉.

with the outer edges having velocities pointing outward. This explains the relatively constant

shape of the β profiles observed everywhere outside the thin region at the top of the curtain.

Note that these velocity contours are only shown on the bins that have at least 10 particles to

average over.

Additionally, it is interesting to look at the contour plots of the fluctuation velocities u′

and v′ in Figs. 3.14 and Figs. 3.15, respectively. In both plots, there is a very thin region near

the hopper exit where there are relatively large fluctuation velocities. However, outside of this

region the fluctuations are small. This explains the lack of “diffusion-like” spreading of the β

profile.

However, comparison with the data from Ref. [2] reveals some striking discrepancies. The

experiment estimated β = 21± 2 % and observed a curtain width of 2 mm at the midpoint of

the curtain. In Fig. 3.10, the data at y = −38.1 mm predict a much wider curtain and β at

the center more than double the experimentally observed estimate. Additionally, private com-

munication with the corresponding author of Ref. [2] revealed that the numerically simulated

mass flow rate is approximately double what is observed experimentally. It is believed that

these discrepancies are caused by the overly soft nature of the particles in the simulation.

In order to assess the impact of using a small particle stiffness, simulations using even

smaller values of kn are shown in Fig. 3.16. Note that these data are taken at y = −38.1 mm
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Figure 3.14 (Color online) Contour plot of the horizontal component of the fluctuation velocity

u′.
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v′.
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Figure 3.16 (Color online) Volume fraction β versus x at y = −38.1 mm for various kn.

and are simulated for a narrower domain of d = 3D. These data reveal that as kn is increased,

the predicted particle curtain becomes narrower. If the particles were the correct stiffness, one

could reasonably expect the simulated curtain to be closer to the 2 mm width that is observed

experimentally.

3.4.3 Soft particle effects

The effect of overly soft particles on the magnitude of the flow quantities can be tested

by revisiting the channel flow simulation discussed in Section 3.3. It is shown that using

kn = 1× 105 N/m and N = 50 results in accurate predictions of the flow. However, if N = 15

is used and kn is decreased, the effect on the simulated results can be observed.

Starting with the same material properties and geometry as used in the final results pre-

sented in Section 3.3.3, α was changed to 60◦ in order to match α that is used in the particle

curtain. A baseline, fully-resolved, case is run with kn = 1× 105 N/m and N = 50. Then N is

changed to 15 and kn is decreased holding all other parameters constant in order to replicate

the same level of under-resolution and particle softness that is present in the particle curtain

case. The percent error of the steady mass flow rate ṁ, average streamwise velocity 〈v〉, and

volume fraction β immediately below the hopper exit are shown in Fig. 3.17. Note that for all
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Figure 3.17 (Color online) Percent error in ṁ, 〈v〉, and β versus kn for the channel flow

case discussed in Section 3.3 above. All results are for N = 15 and the error is

calculated based on a simulation with kn = 1× 105 N/m and N = 50. A positive

error indicates the magnitude is larger than in the fully-resolved case.

quantities, a positive error signifies that the quantity has a larger magnitude than the accurate

case using kn = 1× 105 N/m and N = 50.

As seen in Fig. 3.17, by choosing a low kn it is possible to get a ṁ that is nearly double

the properly resolved case. Additionally, β and 〈v〉 are also 38 % and 27 % over-predicted,

respectively in the case with the softest particles. Interestingly, although not presented here,

β = 60 % at the hopper exit for the softest-particle case, which is nearly the same as predicted in

the particle curtain case in Fig. 3.11. This also agrees with the fact that an accurate prediction

of β at the hopper exit should be less than the random close packing limit of 60–68 % because of

the dilation that is required for movement. These results give some indication that the particles

in the curtain simulation are significantly softer than necessary for quantitative predictions.

If we assume that similar error magnitudes are present in the particle curtain case, namely

38 % and 27 % too large for β and 〈v〉, respectively, we can apply a correction to the volume

fraction profiles in Fig. 3.11. The dilation effect caused by the gravitational acceleration is

accounted for by assuming free-fall acceleration of the particles. The scaled data are shown in

Fig. 3.18. The scaled data show that β at y = −38.1 mm has the potential to be much lower
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Figure 3.18 (Color online) Volume fraction β versus x at various y locations in the particle

curtain. These data are scaled to the expected values if β and 〈v〉 at the hopper

exit in the simulated results are 38 % and 27 % too large, respectively.

than the current simulation with overly-soft particles indicates, and the average may in fact be

similar to to β = 21± 2 % that is cited in Ref. [2] if the correct stiffness is used.

Despite the errors caused by overly soft particles in the simulations that limit the quanti-

tative accuracy of this data, the qualitative trends are not expected to change if the correct

stiffness were used. Therefore, the results presented above still provide valuable insight into

the properties of the particle curtain in Ref. [2].

3.5 Summary and conclusions

The goal of this work is to better understand the properties of the particle curtain in Ref. [2].

To simulate the granular flow from a feed hopper through a slit opening, the discrete element

method is used. The linear-spring and dashpot model is used for the normal component of the

collisional force and a static friction model is used for the tangential component. In order to

simulate a steady flow of particles through the domain, periodic boundary conditions are used

in conjunction with a novel damping force that slows re-entering particles to avoid spurious

fluctuation velocities.

To validate our DEM model, we first simulate a granular channel flow and compare with the

experimental results in Ref. [3]. The profiles of the mean and fluctuating components of both
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the streamwise and transverse velocity components within the channel are compared. Both

smooth and rough wall conditions are tested. In both cases, the mean velocity show excellent

agreement with the experiment. The smooth wall case under-predicts both components of the

fluctuation velocity. However, in the rough-wall case, the transverse fluctuation velocity is well

predicted. The streamwise fluctuation velocity in the rough wall case shows some disagreement

in the center of the channel, but qualitatively agrees with the results from similar experiments.

Finally, the properties of the particle curtain in Ref. [2] are examined. Contrary to indica-

tions from the experimental results, the DEM simulations show a Gussian-like volume fraction

profile across the width of the curtain. The behavior of the particle curtain is governed mostly

by free-fall. The fluctuation velocities are mostly confined to the region near the hopper exit

and are observed to quickly decay as the particles fall.

Comparison with the data in Ref. [2] indicates that the DEM results have error believed

to be caused by the simulated particles being overly soft. Error analysis suggests that results

using a larger stiffness would show better agreement with the curtain width, volume fraction,

and mass flow rate that are observed experimentally. This also highlights the importance of

modeling particles with adequate stiffness to produce quantitative flow predictions.
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CHAPTER 4. GENERAL CONCLUSIONS

4.1 General discussion

The goal of this work is the development of tools for the simulation of gas-solid multiphase

flows. Specifically, this work is applied to the simulation of a shock wave impacting a particle

curtain as tested experimentally in Ref. [2]. Due to the high Reynolds numbers, high particle

volume fraction, and the presence of a shock wave that exist in the flows of interest, many

existing methods for simulating multiphase flows are not applicable. This work looks to fully-

resolve the flow features and therefore limit the amount of modeling that is required. This

means solving the complete Navier-Stokes equations for the fluid phase. An adaptive wavelet

collocation method is utilized which allows a highly resolved grid to be used only in the necessary

regions of the fluid. The boundaries of the particles are resolved through a recently developed

volume penalization immersed boundary method. The collisions between particles are modeled

using a hard sphere approximation because of its efficiency and accuracy for the flow regime

that is studied. A proof of concept case is presented that showcases the abilities of this method.

Another goal of this work is the prediction of the properties of the particle curtain in Ref. [2].

Information such as the volume fraction and velocity profiles are important in order to generate

an initial condition that accurately replicates the experiment in Ref. [2]. This information is

obtained through a DEM simulation.

In the simulation of the particle curtain, a linear-spring dashpot is used to model the normal

force and the tangential force is modeled by a static friction model. A linked-cell algorithm is

used in addition to parallelization in order to increase the computational efficiency and allow

the simulation of a large number of particles.
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The DEM model is validated through comparison with a vertical channel flow experiment.

The mean and fluctuation velocity profiles showed very good agreement with the experiment.

When simulating the particle curtain, computational resources limited the particle stiffness that

could be simulated. This caused some discrepancies between the simulated and experimentally

observed particle curtains. However, the simulations showed that the particle curtain volume

fraction varies across the width of the curtain unlike previously thought. Additionally, error

analysis revealed that if the correct stiffness were used, better agreement with the experiment

is expected.

4.2 Recommendations for future research

There are a few avenues for future work on this subject. The first involves the numerical

method for coupling between solid and fluid phases. The current implementation is a first

order accurate technique. Future work will extend this technique to be second order accurate

or higher. Another area for future work is the simulation of the particle curtain. The current

computational limitations did not allow for a fully resolved simulation. When more resources

become available, the simulation will be able to be rerun and more accurate results can be

obtained. This will allow a better quantitative analysis of the particle curtain properties.

Finally the tools that have been developed in this work will allow a highly resolved simulation

to be performed of the shock wave particle cloud interaction that was studied in Ref. [2]. The

results of such a simulation will be invaluable in better understanding the flow features that

develop in this complex regime of multiphase flows.
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APPENDIX A. VALIDATION OF HARD SPHERE COLLISION MODEL

In this section, we look to provide confirmation the particle phase is obeying the principals of

conservation of energy and momentum. This is achieved by simulating a system of particles and

monitoring the system’s total energy and momentum. In this example, a 3-D simulation of ten

particles is used where periodic boundaries are applied in all three directions. By using periodic

boundaries, we eliminate collisions with walls, which are an external force and therefore do not

conserve the system’s total momentum. Additionally, the parameters e and µ are set to unity

and zero, respectively, so that no energy should be lost during the collisions. The simulation is

allowed to run for a total of ten seconds, allowing many collisions between particles to occur.

In the following results, only two of the ten seconds are shown for clarity.

We first look at the conservation of kinetic energy K. The systems total kinetic energy is

computed with

Ktotal =
∑
i

1

2
mi||vi||2 (A.1)

where i denotes the particle index. The result is plotted in Fig. A.1. In this figure, Ktotal

is periodically sampled and plotted versus time t. The vertical black lines indicate the times

that a particle-particle collision occurs somewhere in the system. This result shows that even

through numerous collisions, the Ktotal is conserved.

We use a similar analysis to check for conservation of momentum. Both linear P and

angular L momentum need to be conserved. We compute the total linear momentum using

P total =
∑
i

mivi. (A.2)

The total angular momentum for the system of spheres about the origin is

Ltotal =
∑
i

[Iiωi + xi × (mivi)] . (A.3)
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Figure A.1 Total system kinetic energy Ktotal versus time t. Vertical lines indicate the time

that a particle-particle collision occurs.
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Figure A.2 Total system momentum Ptotal versus time t. Vertical lines indicate the time that

a particle-particle collision occurs.
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Figure A.3 Total system angular momentum Ktotal versus time t. Solid vertical lines indicate

the time that a particle-particle collision occurs. The dashed vertical lines are the

times that a particle crosses one of the periodic boundaries.

The results for P are plotted in Fig. A.2 and L in Fig. A.3. Note that through all collisions, all

three components of P total and Ltotal are conserved. However, in Fig. A.3, it is observed that

the components of Ltotal are not constant with time. This is because of the discontinuity in x

when a particle crosses a periodic boundary. Therefore, the dashed vertical lines in Fig. A.3

denote the times that a particle crosses a periodic boundary. The times that this occurs, we

expect to see a jump in the components of Ltotal as is observed.

Although not presented here, similar cases were run with non-periodic system boundaries,

gravitational forces, inelastic collisions, and frictional collisions. The conservation laws are

confirmed to be obeyed in all cases that they are applicable. For example, during inelastic

collisions we expect momentum to be conserved, but energy should not be. These results

suggest that the collisions between particles are simulated accurately.
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APPENDIX B. EFFECT OF COLLISION MODEL AND PARAMETERS

In the hope of improving the quality of agreement between the experimental and DEM

results in the channel flow simulation, the friction coefficient µ and restitution coefficient e

are adjusted. µ is tested in the range 0.00–0.15 and e from 0.9–1.0. The change of results

with respect to µ are plotted in Fig. B.1 and with respect to e in Fig. B.2. All results are for

the rough-walled channel case. Note that these results are simulated with the hopper angle

α = 49.4◦ calibrated for the smooth-wall case, as opposed to the recalibrated α = 54.2◦ that is

presented for the rough-walled channel in the main text.

It is evident in Fig. B.1 that changing µ has the most pronounced effect on the mean

streamwise velocity 〈v〉. With decreasing µ there is an increase in 〈v〉. This is in agreement

with intuition, as less friction allows particles to slide past each other more easily and therefore

flow through the channel more quickly. Additionally, with decreasing µ, it is observed that u′

at the channel walls increases. However, none of the results obtain a better overall result when

compared to the experimentally measured values.

When changing e as shown in Fig. B.2, there is very little effect on the velocity profiles,

therefore varying this parameter did not yield a better result.

Another parameter that is worth investigating is the choice of friction model. In this work,

the simplified model in Eq. 3.16 is used as a compromise between accuracy and computational

cost. However, it is interesting to see the effect of using the more accurate full linear friction

model in Eq. 3.12. To preform this comparison, the open source code LIGGGHTS [88] is used

to simulate both the rough and smooth walled channel cases. In LIGGGTS, the full linear

friction model is used, but all other model parameters are kept fixed. The comparison between

the LIGGGHTS results and those from this work are presented in Figs. B.3 and B.4 for the

smooth and rough walled channels, respectively.
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Figure B.1 (Color online) Velocity profiles for the rough-walled channel simulated at various

µ. Plots are included of (a) the mean velocity components 〈u〉 and 〈v〉 and (b)

the fluctuating components u′ and v′. Open symbols are data from this work and

filled symbols are data from Natarajan et al. [3]. Squares are the streamwise

component of velocity u and circles are the transverse component v.
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Figure B.2 (Color online) Velocity profiles for the rough-walled channel simulated at various

e. Plots are included of (a) the mean velocity components 〈u〉 and 〈v〉 and (b)

the fluctuating components u′ and v′. Open symbols are data from this work and

filled symbols are data from Natarajan et al. [3]. Squares are the streamwise

component of velocity u and circles are the transverse component v.
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It is observed that for the smooth walled channel, v′ is closer to the measured value in the

experiment when using the full linear friction model. However, v′ remains under-predicted in

both cases. The only other significant difference between the two friction models is 〈v〉 at the

wall of the rough-walled channel. Slightly better agreement is observed using the full linear

friction model. In general, both models produce roughly equivalent results, however the full

linear model requires additional computational expense and memory.
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Figure B.3 (Color online) Comparison of the results from this work and LIGGGHTS for the

smooth-walled channel. Plots are included of (a) the mean velocity components

〈u〉 and 〈v〉 and (b) the fluctuating components u′ and v′. Open symbols are data

from this work and filled symbols are data from Natarajan et al. [3]. Squares are

the streamwise component of velocity u and circles are the transverse component

v.
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Figure B.4 (Color online) Comparison of the results from this work and LIGGGHTS for the

rough-walled channel. Plots are included of (a) the mean velocity components 〈u〉
and 〈v〉 and (b) the fluctuating components u′ and v′. Open symbols are data

from this work and filled symbols are data from Natarajan et al. [3]. Squares are

the streamwise component of velocity u and circles are the transverse component

v.
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APPENDIX C. PARTICLE CURTAIN SENSITIVITY TO N

This section looks at the sensitivity that the particle curtain properties have to N , the

number of time steps per collision. N = 7 is the smallest value that gave convergent results, as

larger step sizes do not conserve energy. The smallest step size tested corresponded to N = 25

and these results are used as the reference values when computing the percent error. Note that

this study is performed on a smaller domain in the z-direction of d = 3D as opposed to the

10D width used in the final simulation to save computational effort. The results for volume

fraction β at y = −38.1 mm for each N tested are shown in Fig. C.1. It is evident from this

figure that as N is increased, the only significant change is a slight increase in the peak β at

the center of the curtain. All other flow quantities showed no significant change in the shape

of the profiles, only slightly differing magnitudes with varying N .

We quantify the percent error of the solution by comparing the centerline value of the

various flow quantities (except the mean transverse velocity 〈u〉 which is zero at the center)

with the N = 25 baseline solution. The results are plotted in Fig. C.2. It is evident that

general convergence is obtained with increasing N . Strictly due to computational resources

available, N = 15 is chosen for the final simulations with the realization that the error in the

final predictions will be on the order of 5 % due to error caused by slightly under-resolved

collisions.
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Figure C.1 (Color online) Volume fraction β versus x at y = −38.1 mm for various N .
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