
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2015

Dynamical systems analysis of electrostatic and
aerodynamic forced vibrations of a thin flexible
electrode
Sushma Bala Madanu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Aerospace Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Madanu, Sushma Bala, "Dynamical systems analysis of electrostatic and aerodynamic forced vibrations of a thin flexible electrode"
(2015). Graduate Theses and Dissertations. 14943.
https://lib.dr.iastate.edu/etd/14943

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=lib.dr.iastate.edu%2Fetd%2F14943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14943?utm_source=lib.dr.iastate.edu%2Fetd%2F14943&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


Dynamical systems analysis of electrostatic and aerodynamic forced vibrations
of a thin flexible electrode

by

Sushma Bala Madanu

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Engineering Mechanics

Program of Study Committee:
Thomas Ward III, Major Professor

Christina Lynne Bloebaum
Hui Hu

Iowa State University

Ames, Iowa

2015

Copyright c© Sushma Bala Madanu, 2015. All rights reserved.



ii

DEDICATION

I dedicate this work to God and my family members who supported me with love,

comfort and prayers when I am thousands of miles away.



iii

TABLE OF CONTENTS

Page

DEDICATION ii

LIST OF FIGURES v

LIST OF TABLES viii

ACKNOWLEDGEMENTS ix

ABSTRACT x

CHAPTER 1. INTRODUCTION 1

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Current Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 2. GOVERNING EQUATIONS 10

2.1 Numerical Analysis: Non-Dimensionalization . . . . . . . . . . . . . . . . . . 12

2.2 Steady Non-Linear Euler-Bernoulli Beam Equation . . . . . . . . . . . . . . 14

2.3 Unsteady Linear Euler-Bernoulli Beam Equation . . . . . . . . . . . . . . . . 16

CHAPTER 3. EXPERIMENTS 18

3.1 Experimental Setup and Materials . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



iv

Page

CHAPTER 4. RESULTS 27

4.1 Elastic Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Viscous Damping Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Electrostatic Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Aerodynamic Forcing and Drag Coefficient . . . . . . . . . . . . . . . . . . . 32

4.5 Electrostatic and Aerodynamic Forcing . . . . . . . . . . . . . . . . . . . . . 34

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

CHAPTER 5. CONCLUSIONS 42

BIBLIOGRAPHY 44



v

LIST OF FIGURES

Figure 1.1 Reynolds number regime for natural and artificial fliers [P. B. S. Lis-

saman]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 1.2 Nano Hummingbird [M. Keennon et al.]. . . . . . . . . . . . . . . . . 3

Figure 1.3 Single cantilever MEMS sensor [T. Gotszalk et al.]. . . . . . . . . . . 4

Figure 2.1 Schematic of deflection of the beam due to electrostatic, aerodynamic

and gravitational loads. . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 3.1 Experimental setup showing system for testing electrostatic vibrations

subjected to wind gusts in the wind tunnel. . . . . . . . . . . . . . . 19

Figure 3.2 Image captured by slow camera at 250 frames per second in a 200 x

200 pixels window with a resolution of h = 0.2 mm = 24 pixels showing

the location of beam tip considered for maximum displacement with

white vertical line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.3 Image captured by fast camera at 1000 frames per second in a 500 x

200 pixels window with a resolution of h = 0.2 mm = 26 pixels showing

the location of beam tip considered for maximum displacement with

white vertical line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.4 Beam at rest with the white line indicating that beam tip position

changes along that line with time and pixels information to determine

the scale factor to convert into millimeters. . . . . . . . . . . . . . . . 25

Figure 3.5 Pixel red color intensity values along the white line for the vertical

window size to determine the threshold value. . . . . . . . . . . . . . 26



vi

Figure 4.1 a) Comparison of experimental (solid lines) and numerical (dotted

lines) maximum displacement at the free end due to electrostatic load

versus steady potential applied to find elastic modulus of the beam

and b) comparison of experimental (closed circles) and numerical (solid

line) underdamped vibrations of the beam to find the viscous damping

coefficient of the system. . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 4.2 Comparison of experimental and numerical displacement time histo-

ries of free end of the beam for a0 = 15 mm, φmax = 7 kV due to

electrostatic load for three input signals a) sine, b) square and c) tri-

angle at an excitation frequency of ωφ = 8 Hz. . . . . . . . . . . . . . 31

Figure 4.3 Comparison of experimental and numerical displacement time histories

of free end of the beam due to aerodynamic load for a0 = 15 mm with

constant air flow speeds of a) U∞ = 0.8941 m/s (2 mile/hr) and b)

U∞ = 2.235 m/s (5 mile/hr). . . . . . . . . . . . . . . . . . . . . . . 33

Figure 4.4 lnK Vs lnFD for determining the drag coefficient. . . . . . . . . . . 34

Figure 4.5 Comparison of experimental and numerical displacement time histories

of free end of the beam due to electrostatic and aerodynamic loads with

square, φmax = 7 kV, ω2 = 8 Hz, a) U∞ = 0.2235 m/s (0.5 mile/hr)

and b) U∞ = 2.235 m/s (5 mile/hr). . . . . . . . . . . . . . . . . . . 35

Figure 4.6 Comparison of experimental and numerical phase plane diagrams of

free end of the beam due to electrostatic and aerodynamic loads with

square, φmax = 7 kV, ω2 = 8 Hz, U∞ = 0.2235 m/s (0.5 mile/hr) for

a0 = 15 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



vii

Figure 4.7 Comparison of experimental (open symbols) and numerical (closed

symbols) results a) Plot of ratio of maximum displacement due to

electrostatic and aerodynamic loads, max|uL,e+a| to maximum dis-

placement due to aerodynamic load, max|uL,a| versus inverse Strouhal

number, 1/St and b) Plot of displacement frequency versus inverse

Strouhal number, 1/St for data analysis. . . . . . . . . . . . . . . . . 40



viii

LIST OF TABLES

Table 3.1 Parameters of the beam and the dielectric medium . . . . . . . . . . . 19



ix

ACKNOWLEDGEMENTS

I would like to express my honest gratitude to Dr. Thomas Ward for his patient guid-

ance, encouragement and valuable suggestions of this research for a first time researcher like

me and for his support for my graduate studies and in the class Incompressible flow aero-

dynamics; without him these would not have been possible. I would like to thank Stanley I.

Barbel for his assistance in conducting the research and Andrew R. White for all his help

in academics and research throughout my master’s program. I would like to thank Cory D.

Hinton for laying the foundation for this research. I am very thankful to Dr. Christina L.

Bloebaum for her guidance in the class Multi-disciplinary optimization and for serving on

my program of study committee. I would also like to thank Dr. Hui Hu for his assistance

in serving as a member of my committee. Finally, I would like to thank the Department of

Aerospace Engineering at Iowa State University for equipping me with greater knowledge

and support to pursue master’s here.



x

ABSTRACT

Transverse vibrations of an electrostatically actuated thin flexible cantilever perturbed

by low-speed air flow is studied using both experiments and numerical modeling. In the

experiments the dynamic characteristics of the cantilever are studied by supplying a DC

voltage with an AC component for electrostatic forcing and a constant uniform air flow

around the cantilever system for aerodynamic forcing. The maximum voltage applied varies

from 1 – 9 kV and air flow speeds range from 0.224 – 3.58 m/s (0.5 – 8 mile/hr). The

Reynolds numbers for these speeds lie in the range of 103 − 2 × 104. A range of control

parameters leading to stable vibrations are established using the Strouhal number as the

operating parameter whose inverse values change from 100−2500. The Numerical results are

validated with experimental results. Assuming the amplitude of vibrations are small, then a

non-linear dynamic Euler-Bernoulli beam equation with viscous damping and gravitational

effects is used to model the vibrations of the dynamical system. Aerodynamic forcing is

modelled as a temporally sinusoidal and uniform force acting perpendicular to the beam

length. The forcing amplitude is found to be proportional to square of air flow velocity by

obtaining relationship between the experimental amplitude of vibrations and air flow velocity.

Numerical results strongly agree with those of experiments predicting accurate vibration

amplitudes, displacement frequency and quasi-periodic displacements of the cantilever tip.
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CHAPTER 1. INTRODUCTION

Development of micro air vehicles (MAVs) has spawned interest in using mechanical

flapping wing for flight in opposition to the conventional artificial flying members that use

fixed wing for flying. This interest aroused from the explanations of biologists and naturalists

that continuously flapping natural fliers (insects and birds) whose size is similar to MAVs

fall in low-Reynolds number regime of 102-105 where the flow field is unsteady, laminar and

incompressible [1, 2] (see Figure 1.1) and due to the already available defined configurations,

kinematics and aerodynamics of flapping flight of natural fliers determining wing span, mate-

rial and design [3]; forward velocity, acceleration [4]; power required [5]; aerodynamics [5, 6],

body size, wing beat time [7]; suitable air flow speeds and their aerodynamics [8, 5, 9] and

mechanisms and maneuverability[10].

Figure 1.1: Reynolds number regime for natural and artificial fliers [P. B. S. Lissaman].
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Although, flapping wing motion cycle is complex including flexing, twisting, rotating

or feathering of wings [11], in the development process of artificial fliers, most researchers

concentrated on this motion because studies show millions of biological flying species use it

as the transportation mode and also demonstrated improved performance in the low speed

air flow conditions [12]. Therefore in this study we want to model this flapping coupled with

aerodynamic forces as a dynamical system similar to damped forced pendulum with quasi-

periodic forcing [13] to develop control strategies suitable for controlled flying. There are only

few MAVs (insect and bird sized) which demonstrated flight in low speed air environments

[14, 15, 16].

The only successful flying MAV by flapping motion of wings closely resembling bird

size is Nano Hummingbird (see Figure 1.2) developed by AeroVironment[16]. We are inspired

by this nano hummingbird which uses flexible membrane for flapping wings whose length is

7.4 cm and mass is 0.26 g spanning 16.5 cm, flaps at 30 Hz flap rate and flies at a speed

of 6.7 m/s weighing 19 g. The flapping mechanism used is a string based mechanism and

a hybrid control mechanism, servo motors combined with geartrain is used for control of

flapping under aerodynamic loads.

In this study reduced order model of Nano hummingbird is studied to develop the

dynamical system. For the experimental purposes, non-lifting case is considered and the

flapping is restricted to one degree of freedom i.e. only transverse displacement occurs with

no twisting or rotation. The wing is designed as a simple rectangular flexible cantilever of

length ≈ 7 cm and flapping is generated with limited kinematics by electrostatic actuation

with sinusoidal and non-sinusoidal input signals at frequencies ranging from 1-8 Hz.
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Figure 1.2: Nano Hummingbird [M. Keennon et al.].

Electrostatic actuation is deflection of movable electrode closer to ground electrode

upon application of potential difference between the electrodes. This motion occurs due

to the charge build-up on conducting surfaces which gives rise to attracting electric field

as explained in [17, 18]. Microelectromechanical systems (MEMS) for many years now are

extensively using this actuation for manufacturing sensors, transducers and resonators using

silicon and polymer based substrates due to its very good performance in achieving repeated

motion quickly when forced periodic loading is applied. Therefore we would like to take

advantage of this feature with macro-scale conducting flexible cantilever beam. Figure 1.3

shows single cantilever MEMS sensor used in scanning probe microscopy [19].
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Figure 1.3: Single cantilever MEMS sensor [T. Gotszalk et al.].

1.1 Literature Review

Mimicking flapping wing flight of natural fliers for propulsion of artificial fliers, MAVs

is interesting to researchers, government organizations and military since several years due to

their applications in search and rescue operations, surveillance and targeting. For the search

and rescue operations in earthquake debris and fire-explosions in buildings we need to have

controlled flying vehicles in lower air flow speed environments whose size is small and is re-

liable and for surveillance and targeting the enemy through spying operations these vehicles

should satisfy controlled flying in low speed air flow environments resembling natural fliers.
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Given these constraints, the vehicles are being developed utilizing the studies of natural fliers

made by biologists.

Based on these studies, MAVs configurations for flapping are established. Spedding et

al. [20] showed that the wingspan is between 10-20 cm, Mueller [21] studied aerodynamics

and performance of airfoil geometries for MAVs and Madangopal et al. [22] studied energy

storage mechanism and aerodynamic wing models for MAVs. Control of flapping for obtain-

ing successful flight is the main issue. Considering a rigid wing the flapping kinematics are

developed using 2 DOF four bar linkage mechanism, carefully designing the wings for min-

imized flexure stresses. The aerodynamic force experienced by the wing is measured using

strain gages mounted on its tip and second order ordinary differential equation (ODE) for

motion of the tip with stiffness of spar and damping of wing is developed accounting for this

force [23] for closed loop control signals. Later 3 DOF four bar linkage mechanism kinematics

of flapping is studied using energy methods. Smith studied unsteady aerodynamics of teth-

ered moth’s flapping wings using panel method [24]. He concluded that including wake in the

analyses of the unsteady aerodynamics of flexible wings undergoing arbitrary, large-scale mo-

tion leads to the control of resultant aerodynamic force. Later on the kinematics for flapping

were designed similar to those of hummingbird with ball-and-socket joint at the shoulder

and simulated to produce the same wing beat patterns. A feedback control circuit inspired

by locust morphology was developed to automatically tune the actuator drive signal to the

resonant flapping frequency of the flexible wing structure. The strain-rate sensor attached to

the wing gives positive rate feedback to the circuit for its control [25]. This generated wing

beat patterns that approximately matched those of hummingbird’s flight.

However the equation of motion for flapping, developing suitable aerodynamic model

is not yet studied for macro-scale (centimeter scale) flapping flexible wings. The motivation

for this study is to better understand the continuous control of flapping mechanical systems
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in low speed wind gusts [16, 26, 27]. This development would prove useful for control of

flapping. This can be studied by observing flapping generated by simple kinematics. Simple

kinematics leading to flapping is observed in vibration of cantilever beams actuated by elec-

trostatic forcing in the MEMS technology. The electrostatic force is produced by supplying

DC voltage with small AC component. These cantilevers undergo small deflections whose

dynamic characteristics can be studied using Euler-Bernoulli beam theory [28, 29, 30]. The

deflections are stable only if the voltage applied for actuation is below pull-in voltage for

a given gap distance between the electrodes [31, 32, 33, 34]. [35] studied this actuation for

generating the vibrations of macro-scale cantilever beam quantifying for influence of voltage,

frequency and input signal type for two different gap distances. He concluded that the sys-

tem’s behavior is stable for linear input signal at natural frequency of the beam. He proposes

to test the system in wind gusts to study the controllability of this actuation. The study

of electrostatically actuated MEMS has been extended to observing dynamic characteristics

of the beams submerged in fluid media [28, 36] for better control of deflection amplitudes.

The force due to the fluid-loading was modelled as added mass. Thus inertial and conduc-

tivity effects of surrounding fluid is studied. If the fluid will be constantly flowing around

the cantilever system i.e. it is not stationary, then there is a need to model the aerodynamic

load acting on the beam. But this case is quite common in development of MAVs which

requires significant research to analyze the control parameters. [37] has studied the effect of

surrounding stationary air damping on free vibrations of cantilever beam. This is modelled as

air damping due to drag force proportional to velocity of vibration for small amplitudes and

proportional to dynamic pressure for large amplitudes. The forced vibration analysis of can-

tilever beams due to two types of forcing, mechanism generating flapping and aerodynamic

forcing can be viewed as multiple forced damped pendulum [13, 38, 39, 40] or extension of

single periodic forcing to multiple periodic forcing for explaining dynamical systems with

two forcing [41]. Studying these systems could lead to better understanding of controlling

the vibrations.
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1.2 Current Research

In this manuscript we present experimental and computational data for the electro-

static and aerodynamic forcing of a flexible electrode cantilever beam. The purpose is to

study the range of parameters for which periodic electrostatic forcing of a flexible electrode

cantilever [30, 28, 31, 35, 42, 43] can be used to control the beam vibrations in the presence

of a non-lifting aerodynamic load. The flexible electrode in this study is a plastic substrate

with one side containing a nanometer thin coating of metal. The thin metal coating does not

hinder flexing of the plastic such that it can be considered a homogeneous material with a

constant and uniform elastic modulus, E. With this understanding we develop mathemat-

ical expressions based on the Euler-Bernoulli beam theory to study the dynamics of both,

electrostatic and aerodynamic forcing of the flexible cantilever electrode. Here we are inter-

ested in developing robust reduced order models so that they may be used as a test bed for

understanding control of dynamic behavior that arises in these types of complex systems

[44, 45, 46, 47].

To develop a model for the dynamical systems that arises from the coupled forced

vibrations of a flexible electrode cantilever we consider the Euler-Bernoulli beam theory.

The Euler-Bernoulli beam theory is analogous to the classic forced pendulum with damp-

ing [13, 38, 40, 48, 49]. The two systems can be made similar by replacing gradient in the

shear force from the Euler-Bernoulli beam theory with the linear displacement term from

Hooke’s law. For the classic forced pendulum with damping a harmonic oscillator is sub-

jected to both damping that is proportional to the velocity, and a sinusoidal perturbation

that contains both an amplitude and frequency. For certain values of the parameters used

to represent the damping coefficient, and forcing amplitude and frequency, the pendulum is

known to exhibit chaotic behavior as measured by Poincaré mapping [13, 38] among other

methods. Here we model the coupled forced vibrations of a flexible electrode cantilever beam
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using Euler-Bernoulli beam theory with a viscous damping term that is proportional to the

velocity [28, 50], although other models exists which utilize higher order derivatives [49]. The

forcing terms consist of a fully non-linear electrostatic term [30, 28] and a periodic aerody-

namic forcing term based on a drag force, FD [37]. The aerodynamic forcing results in small

amplitude displacements so that the Euler-Bernoulli theory may be applied, and also allows

us to neglect any lifting forces [37].

While the dynamical system may be analogous to the forced pendulum leading to pe-

riodic or chaotic motion depending on the input parameters, it is not necessarily the only

source of complex behavior. Since both forcing mechanisms are periodic then other explana-

tions for complex motion may exist. In the literature it has been shown that the summation

of two harmonic forcing terms is also known to produce random behavior although it is typ-

ically not characterized as chaotic and instead is considered quasi-periodic as determined by

the multiple forced pendulum [40]. We will use the experiments and numerical model to de-

termine the source for any random behavior based on these two (chaotic and quasi-periodic)

possible explanations from the dynamical systems literature.

The phase plane diagrams obtained from experimental and numerical data show chaotic

results at higher air flow speeds and could not be compared to draw conclusions about the

system’s behaviour. Therefore a dimensionless parameter, the Strouhal number,

St =
uL,eωφ
U∞

(1.1)

is used to characterize the vibrational response to the coupled forcing [51, 52, 53, 54]. For

this study it is defined the ratio of the vertical velocity of the flexible electrode tip due to

electrostatic forcing uL,eωφ to the axially imposed free stream velocity, U∞. Note that in this

definition of the Strouhal number the two velocities are perpendicular. The displacement

frequencies due to aerodynamic forcing always occur at values close to the flexible electrode
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cantilever’s natural frequency ωn. Therefore, for the electrostatic forcing we use subharmonic

frequencies ωφ for comparison with the cantilever tips frequency response as a function of St.

In the next chapter we describe the mathematical model for the vibrating cantilever

beam that is based on the Euler-Bernoulli beam theory. This chapter includes a non-

dimensionalization of the equation which reveals a set of dimensionless parameters that

are used to characterize the system. In the chapter that follows we describe the experimental

setup and procedure. This chapter includes some characterization of the electrostatic prop-

erties of the beam and range of air flow speeds. Results of the experiments and computation

are presented in the next chapter. These are followed by some detailed discussion of the

comparison and then followed by concluding remarks.
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CHAPTER 2. GOVERNING EQUATIONS

Consider a flexible cantilever beam made of a semi-rigid plastic material coated with

a thin (nanometer scale) metal film on one side with elastic modulus E, density ρ and mass

m. The thin flexible cantilever extends out from an insulated post with length L and width

b such that b/L � 1 whose cross-sectional area is A. Gravitational forces cause deforma-

tion of the cantilever in the absence of any external forcing. Therefore, the cantilever is

separated from a ground electrode by a non-uniform distance a. The cantilever is subjected

to distributed dynamic loads resulting in small transverse vibrations. We are interested in

dynamic loads that are applied electrostatically due to a combination of a DC voltage φ1

and an AC voltage φ2 by φ(t) = φ1 + φ2Λ(2πωφ, t) where the AC component is generated

by a periodic signal, Λ assuming that electric field intensity is independent of width and no

fringing fields are formed due to the insulating surfaces on other side of electrodes. We are

also interested in aerodynamic forcing due to a uniform flow of air at constant speed, U∞.

The orientation of the cantilever beam relative to the loads are such that the electrostatic

forcing is lateral and the aerodynamic forcing is axial. Figure 2.1 shows a schematic of the

problem proposed in this study where the beam is positioned with its length along the x-axis

separated from the ground electrode with non-uniform gap distance, a.

Both forms of dynamic forcing cause transverse vibrations i.e. displacement due to

forcing occurs in the y-direction for the cantilever beam. The displacement of the beam

is represented by u(x, t) and is an aggregate of displacements due to electrostatic forcing

ue(x, t), aerodynamic forcing ua(x, t) and gravity ug(x). The maximum amplitude of the

cantilever beam vibrations occur at the free end of the beam, uL = u(L, t), for the range of

parameters studied here. The equation of motion governing the proposed cantilever beam
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Figure 2.1: Schematic of deflection of the beam due to electrostatic, aerodynamic and grav-
itational loads.

system is developed using the Euler-Bernoulli beam theory with forcing terms for electro-

static forcing presented in [30, 28, 35] and the expression for aerodynamic forcing is developed

by examining experimental results. It is observed that for small constant aerodynamic loads

applied on the beam, it vibrates at its natural frequency ωn with amplitudes suitable for

small deflection analysis. The displacement though is non-uniform for all substantial dis-

placements resulting in seemingly random motion that may represent a chaotic system. This

effect can be taken into account by modelling the aerodynamic forcing as uniform sinusoidal

forcing, perpendicular to the beam length whose amplitude is k N/m. This k value varies

for aerodynamic forcing and combined electrostatic and aerodynamic forcing cases. Besides

these external forces, the surrounding air has damping effects on this vibrating cantilever

whose distributed viscous damping coefficient is µ. The governing equation of motion for the

transverse vibrations of the beam is
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ρA
∂2u

∂t2
+ µ

∂u

∂t
+ EI

∂4u

∂x4
= −ε0εvb

2

(
φ(t)

a0 + u

)2

+ k sin(2πωnt)−
mg

L
(2.1)

where the terms on left hand side are inertial force, viscous damping force and internal restor-

ing force respectively and forcing terms on right hand side are electrostatic, aerodynamic

and a constant gravitational load, respectively in which I is the second moment of area of

cantilever, ε0 and εv are relative permittivity of air and permittivity of vacuum respectively,

g is gravitational acceleration constant and t is the time of oscillations. We are neglecting

any dynamic damping so the actual beam velocity due to displacement is relatively small.

The periodic forcing expression is φ(t) = φ1 + φ2Λ(2πωφ, t) where the function Λ(2πωφ, t) is

sine, square or triangle waveform and the total voltage applied is φmax = φ1 +φ2. Vibrations

due to a particular forcing can be found by equating the other right hand side forcing terms

to zero.

The dimensional amplitude of vibration at the free end of the beam after subtract-

ing the gravitational deflection ug(x), i.e. displacements due to combined electrostatic and

aerodynamic loads is represented by uL,e+a. Separately the electrostatic and aerodynamic

load are represented by uL,e and uL,a, respectively. Below we describe the dimensionless

equation of motion for the cases of only electrostatic forcing with gravity and the unsteady

linear equations. Solutions to these two additional forms of the equation of motion are used

to compare with experimental data in order to estimate the elastic modulus and damping

coefficient, respectively.

2.1 Numerical Analysis: Non-Dimensionalization

For numerical analysis the equations of motion are made dimensionless by scaling

lengths with the non-deformed beam length L and time with an initially unknown variable

1/Ω in 1/Hz. The mathematical expression for Ω is obtained by non-dimensionalizing Eq.
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2.1. Therefore, the dimensionless independent and dependent variables are u∗ = u
L

, x∗ = x
L

and t∗ = tΩ and the dimensionless form of Eq. 2.1 is

∂2u∗

∂t2∗
+ Πµ

∂u∗

∂t∗
+
∂4u∗

∂x4∗
=

−Πe

(1 +R∗u∗)2
f 2(2πωφt) + Πa sin(2πωnt)− Πg (2.2)

where

Πµ =
µ

ρAΩ
(2.3a)

Πe =
bε0εvφ

2
max

2m(a0Ω)2
(2.3b)

Πa =
k

mΩ2
(2.3c)

Πg =
g

LΩ2
. (2.3d)

The other variables that appear are µ = C/L and R∗ = L/a0 in which C is viscous

damping coefficient and a0 is distance between electrodes at x = 0. With the scaling used here

the inverse time scale is proportional to the undamped natural frequency Ω =
√
EI/(mL3).

The transient electrostatic forcing term is now f(2πωφt) = φ(t)/φmax. Also note that the

mass can be replaced by the beam density and dimensions using m = ρAL.

Boundary conditions for the cantilever beam at x∗ = 0 are,

u∗(0, t∗) = 0 (2.4a)

∂u∗

∂x∗

∣∣∣
x∗=0

= 0 (2.4b)

and
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∂2u∗

∂x2∗

∣∣∣
x∗=1

= 0 (2.5a)

∂3u∗

∂x3∗

∣∣∣
x∗=1

= 0 (2.5b)

at the free end x∗ = 1. These are the typical boundary conditions for the Euler-Bernoulli

beam problem which represent a fixed end and symmetry at x∗ = 0 and zero curvature and

gradient in the curvature at x∗ = 1.

The beam is initially displaced due to gravity with a zero velocity resulting in the

initial conditions,

u∗(x∗, 0) = −Πg

24
(x4∗ − 4x3∗ + 6x2∗) (2.6a)

∂u∗

∂t∗

∣∣∣
t∗=0

= 0. (2.6b)

The equations are solved using 4th order accurate finite difference discretization of the

spatial derivatives. The 4th order scheme is also applied to the boundary conditions. The

equations are advanced in time using an adaptive 4th order accurate Runge-Kutta-Merson

(RKM) adaptive time stepping algorithm. With the RKM method it is possible to estimate

the truncation errors and modify the time step accordingly to achieve a given precision [55].

2.2 Steady Non-Linear Euler-Bernoulli Beam

Equation

The steady form of Eq. 2.2 with Πµ = Πa = 0, φ(t) = φmax and zero acceleration

describes displacements due to DC electrostatic forcing. The steady equation is used to
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estimate the elastic modulus of the beam by comparing numerical and experimental data

for the maximum cantilever displacement. The maximum displacement is determined by the

non-linear ordinary differential equation

d4u∗

dx4∗
= −

[
Πe

(1 +R∗u∗)2
+ Πg

]
. (2.7)

The maximum amplitude of deflection occurs at the free end of the beam due to elec-

trical forcing which is denoted by u∗L,e. If the maximum deflection is very small such that

R∗u∗ � 1 then the problem reduces to linear static equation of deflection d4u∗/dx4∗ =

−(Πe + Πg) with the solution written as u∗(x∗) = −(Πe + Πg)/24[x4∗ − 4x3∗ + 6x2∗].

However, if the displacement is relatively large such that R∗u∗ ≮ 1 then the non-linear

equation must be solved in order to use it to estimate the elastic modulus. Solutions of the

non-linear ODE problem are non-trivial since only two boundary conditions are applied at

x∗ = 0 based on Eqs. 2.4 and 2.5. Therefore, there is no means of solving the equation by

using strictly explicit methods. To solve the non-linear ODE equation we will apply a double

shooting method for the two boundary conditions given by Eq. 2.5.

The initial guesses used to initiate the shooting method are based on solutions to

the linear static Euler-Bernoulli beam equation. For small values of R∗ the values of the

boundary conditions should be in the vicinity of those given by the linear solution. Using

these as initial guesses it is possible to build an algorithm that iterates to find the correct

boundary conditions using,

[
d2u∗

dx2∗

∣∣∣
x∗=0

]
n

= −(1 + C1n)

(
Πe + Πg

2

)
(2.8a)[

d3u∗

dx3∗

∣∣∣
x∗=0

]
m

= (1 + C2m)(Πe + Πg). (2.8b)
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The iteration step is denoted using n and m. The constants C1n and C2m are varied

to produce boundary condition estimates that are in the range given by the linear solution.

Initially a large range of values are chosen for the constants. After the first set of iterations

then a second range of values for the two constants are determined based on values that

overlap and contain a minimum in the values at x∗ = 1. The range of values is checked

to determine where the values overlap after each set of iterations until the range of value

narrows until an approximate local minimum is found where the boundary conditions at

x∗ = 1 are satisfied. The errors associated with the approximation of the minimum can be

determined by the size of the final range of values for the two constants and the associated

solutions to the ODE. So when reporting solutions to the ODE the displacement obtained

from all the iterations in the final range of values are averaged.

2.3 Unsteady Linear Euler-Bernoulli Beam Equation

The unsteady Euler-Bernoulli beam equations can be used to estimate the unknown

damping coefficient C. We are assuming that the damping coefficient is independent of any

external forcing and does not vary with time. To estimate the coefficient we keep in mind

that any displacement of the beam from its initial position due to gravitational forces should

result in an underdamped system. Then we can estimate the damping coefficient by com-

paring the transient maximum displacement of the cantilever beam denoted by uL,0 between

numerical data for a given value of C and the experimental data with the same initial con-

ditions.

The equation governing an underdamped cantilever beam is given by

∂2u∗

∂t2∗
+ Πµ

∂u∗

∂t∗
+
∂4u∗

∂x4∗
= −Πg (2.9)
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where we have set Πe = Πa = 0 in Eq. 2.2. Under these conditions it is possible to generate

an underdamped displacement using the initial condition

u∗(x∗, 0) = 0 (2.10a)

∂u∗

∂t∗

∣∣∣
t∗=0

= 0. (2.10b)

The equations are solved using 4th order finite difference discretization in space and

the RKM method with 4th order accuracy in time.
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CHAPTER 3. EXPERIMENTS

3.1 Experimental Setup and Materials

The experimental setup is similar to a parallel plate capacitor with an electrode rigidly

fixed at one end using a tapped cylindrical acrylic post and an insulated bolt with the dielec-

tric medium being ambient air shown as electrostatic actuation setup (see Figure 3.1). This

system is enclosed in an open circuit wind tunnel, by sliding the acrylic post through a hole

drilled into the bottom acrylic plate of the wind tunnel. The wind tunnel is an acrylic box

that is built by bolting four 0.3 x 0.3 x 0.013 m3 acrylic plates whose leading edges are at-

tached with semi-circular acrylic strips for smooth flow. The diameter of the hole is equal to

the outer diameter of the acrylic post. The length of the acrylic post is selected such that the

distance between the electrodes can be adjusted according to the experimental requirements.

The beam is a ≈ 70 x 13 x 0.2 mm3 polyester film (Delta Technologies Limited) coated with

thin layer of metals In2O3/Au/Ag on the side facing fixed electrode at some distance. The

fixed electrode is designed by gluing a larger PET film (150 x 150 x 0.2 mm3) with a hole,

on the inside face of the bottom plate of the wind tunnel such that the hole aligns with that

in the plate. The whole system rests on metal risers to adjust the gap distance between the

electrodes. Parameters of the beam and the dielectric medium are defined in Table 3.1.

A signal generator (Agilent Technologies) in series with a high voltage amplifier (Spell-

man) supplies the DC/AC voltage at very low currents of milli-ampere scale with a certain

input signal and frequency. Voltage was supplied through the supply wire to the fixed end of

the flexible electrode while fixed electrode is grounded by ground wire. The voltage supplied
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Figure 3.1: Experimental setup showing system for testing electrostatic vibrations subjected
to wind gusts in the wind tunnel.

Table 3.1: Parameters of the beam and the dielectric medium

Parameter Value
Cross-sectional area, A 2.6 mm2

Area moment of inertia, I 0.0087 mm4

Modulus of elasticity, E 3.1 GPa
Density, ρ 1185 kg/m3

Mass, m 251 mg
Vacuum permittivity, εv 8.854x10−12 F/m
Relative permittivity of air, ε0 1

includes the DC input φ1 and AC modulation amplitude φ2 where the DC component is

the offset and AC component is the amplitude of modulation in the waveform generator.

These values are determined using an oscilloscope whose ranges are 0.5 < φ1 < 6.5 kV,
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0.5 < φ2 < 2.5 kV and ratio φ1/φ2 is equal to 1 at 1 Hz and increases by ≈ 25% as the

frequency increases. A small box fan (Pentair) draws air at different speeds using voltage

regulator (Staco Energy) through the wind tunnel inlet past the system giving rise to aero-

dynamic perturbations. The vibrations occur perpendicular to the beam length i.e., in the

plane of beam thickness.

These beam vibrations in the plane of beam thickness are captured by cameras. These

are placed such that the side view of the experimental setup (which is the plane of vibrations)

at the beam tip can be captured. A CCD slow camera (Pixelink) records videos at 250 frames

per second in a 200 x 200 pixels window with a resolution of beam thickness, h = 0.2 mm =

24 pixels or 120 pixels = 1 mm (see Figure 3.2) for smaller vibration amplitudes and a fast

camera (Hotshot) records videos at 1000 frames per second in a 500 x 200 pixels window

with a resolution of h = 26 pixels or 130 pixels = 1 mm (see Figure 3.3) for larger vibration

amplitudes. A fluorescent lamp in line with the cameras is lit behind the setup for clearer

visibility of vibrational amplitudes. Length of the videos varies depending on the stability of

vibrations. For instance, stable vibrations occurred for electrostatic forcing and the length

of the videos was 3 seconds but when the system is subjected to wind perturbations, the

behaviour of the beam was random and the length of the videos captured was more than

double i.e., 7 seconds. The lengths are varied to have better understanding of periodicity in

the vibrations. The white vertical line in both the figures is considered to be the location of

maximum displacement at the beam tip.
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Figure 3.2: Image captured by slow camera at 250 frames per second in a 200 x 200 pixels
window with a resolution of h = 0.2 mm = 24 pixels showing the location of beam tip
considered for maximum displacement with white vertical line.
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Figure 3.3: Image captured by fast camera at 1000 frames per second in a 500 x 200 pixels
window with a resolution of h = 0.2 mm = 26 pixels showing the location of beam tip
considered for maximum displacement with white vertical line.

3.2 Procedure

The experimental setup is used in three configurations to see the effects of the low

speed air flow on electrostatic load induced vibrations of the beam. All the experiments are

conducted in ambient air conditions.
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Firstly, the system is excited electrostatically to measure uL,e by supplying DC voltage

with AC modulation to the beam with the fan switched off. For this, the beam is adjusted

to some gap distance 15 mm < a0 < 35 mm at 5 mm increments. The waveform generator

supplies voltage φmax on the range of 1-9 kV in 1 kV increments with one of the sine, square

and triangle signals at excitation frequencies ωφ ranging from 1-8 Hz in 1 Hz increments

to the beam using the high voltage amplifier. The highest voltage supplied is below the

breakdown voltage and this varies with the gap distance as the electric field intensity varies.

Although the theoretical dielectric strength of air is 3 kV/mm, the dielectric breakdown typi-

cally occurred earlier than this value due to deflection of the electrodes. This was determined

by observing an electric spark or any noise generated in the vicinity of the electrodes. For

instance, at 15 mm gap distance, the dielectric breakdown should occur at 45 kV but was

observed at 8 kV. This could also be the result of the shape of the electrodes which contains

sharp corners, temperature, humidity and/or dust particles as mentioned in [56].

Secondly, the system is excited aerodynamically to measure uL,a by fixing the post

at some distance and varying the air flow speeds from U∞ ≈ 0.224 m/s (0.5 mile/hr) to

U∞ ≈ 3.58 m/s (8 mile/hr) in U∞ ≈ 0.224 m/s (0.5 mile/hr) increments with no voltage

supplied. Reynolds number, Re for these speeds at the tip of the beam is found to vary as

1173 < Re < 18770 where Re=U∞x/ν in which x = 82.4 mm and ν = 1.57×10−5 m2/s at 25

◦C. Assuming the flow is steady and incompressible, similarity solution of Blasius boundary

layer equation is used to determine boundary layer thickness δ on flat plate at the beam tip

as δ = 5x/
√
Re which ranges from 3 mm to 12.03 mm for the calculated Re numbers.

Finally, the system is subjected to both electrostatic and aerodynamic loads to measure

uL,e+a after determining the system stability from the first and second set of experiments.

These are conducted for all gap distances with the square signal, highest voltage for a gap

distance and 8 Hz excitation frequency varying the air flow speeds from U∞ ≈ 0.224 m/s
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(0.5 mile/hr) to U∞ ≈ 2.24 m/s (5 mile/hr).

Experiments used to measure the elastic modulus are conducted by adjusting the beam

to a specific gap distance a0 between 15 mm and 35 mm from the ground electrode and

varying steady voltage φmax from 1-9 kV in 1 kV increments and from 9-1 kV in 1 kV

decrements while recording the displacement. Three sets of this type of data are collected and

averaged for each voltage. This procedure is repeated for other gap distances. Experiments

used to measure the viscous damping coefficient are conducted by displacing the beam from

its equilibrium position and releasing it while capturing the decaying vibrations over time.

3.3 Data Extraction

After all the required videos are captured, they are processed through a custom MAT-

LAB code written to extract the displacement versus time data of the beam tip using the

image analysis technique reading the videos frame by frame for studying the beam dynamic

characteristics.

For the image analysis technique, first of all a threshold value of pixels for the beam

at rest is determined by observing the pixel values of the beam tip at the location of the

white line which is considered to be beam tip position. Figure 3.4 shows beam at rest with

the white line which indicates that beam tip position changes along that line with time for

forced loading. On the other side is a steel ruler to convert the pixels into millimeters. This

ruler provides the information of the number of pixels for 1 mm, thus the scale factor to

convert pixels to millimeters is determined. This scale factor is verified using the number of

pixels for the beam thickness from the same image.
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Figure 3.4: Beam at rest with the white line indicating that beam tip position changes along
that line with time and pixels information to determine the scale factor to convert into
millimeters.

To determine the threshold value of pixels of resting beam tip location, intensity of red

color of every pixel is extracted. For the beam at rest, the intensity of red color along the

white line locating the position of beam tip for every pixel along the line is determined for

the vertical window size whose values range from 0 to 255, where 0 and 255 represent black

and white color intensities respectively. Figure 3.5 shows the red color intensity values along

the white line shown in Figure 3.4 for the vertical window size to determine the threshold

value. From figures 3.4 and 3.5 the beam is located between vertical window size pixels of

55 and 75 for which the red color intensities are below 50. This value of 50 is considered
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to be the threshold value to locate the position of beam tip along the white line when the

beam vibrates. To find the amplitude of vibration in each frame, position of the beam tip

is found. This position is obtained from the red color intensity of pixel values of the beam

tip at the location of white vertical line that are below the threshold value. If the pixel

values are greater than the threshold, then the location of white line moves away from the

beam tip closer to the fixed end where the intensities are below threshold which gives the

beam position. This is not quite the maximum tip displacement but we consider it to be

maximum displacement as the white line does not move more than 5 pixels away from the

considered beam tip location that results in an error of 42 µm in beam tip displacement for

the less resolution slow camera. Thus the amplitude of vibration for every increase in time

is determined.
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Figure 3.5: Pixel red color intensity values along the white line for the vertical window size
to determine the threshold value.
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CHAPTER 4. RESULTS

In order to produce accurate numerical results of non-linear, dynamic equation of mo-

tion of the beam, there is a need to estimate the elastic modulus and viscous damping

coefficient of the system due to the surrounding ambient air. These are found by comparing

the experimental and numerical displacements of the free end of the beam.

4.1 Elastic Modulus

Figure 4.1a shows the plot of maximum displacement due to electrostatic load at the

free end, uL,e versus steady applied voltage, φmax to estimate the elastic modulus of the

PET film. It can be seen that as the gap distance and the applied voltage increases, the dis-

placement decreases and increases, respectively. This is obvious from the steady electrostatic

forcing term where the intensity of electrostatic force is directly proportional to φ2
max and

inversely proportional to a20. This shows that the electrostatic forces are higher at lower gap

distances for the same voltage applied assisting in obtaining higher displacement amplitudes.

For numerical results, Eq. 2.7 is solved as described in Sec. 2.2 to obtain the steady displace-

ment of the beam. This plot demonstrates very good agreement between the experimental

and numerical displacement curves for all the voltages applied, especially at the higher gap

distances.

From the numerical data, as the gap distance decreases, displacement and the value of

the elastic modulus that produces the best fit increases. The average of these values is used

to estimate the elastic modulus which is 3.1 GPa. This value is reasonable based on other

studies of PET films [35]. Elastic modulus may be modified to be a constant by introducing a
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coefficient in electrostatic forcing term that increases with the gap distance. This coefficient

has to do with the non-linearity in the equation which produces higher displacements for

smaller gap distances raised to some power.

4.2 Viscous Damping Coefficient

Figure 4.1b shows the plot comparing the experimental and numerical free end under-

damped vibrations of the flexible electrode over time. This plot is utilized to determine the

viscous damping coefficient, C of the system. C is adjusted until the numerical vibration

amplitudes are close enough to the experimental ones. For C = 4.5×10−4 N-s/m the numer-

ical data strongly agrees with the experimental data. Additionally, from this experimental

data the natural frequency of the beam, ωn is found to be 13 Hz, after converting uL,0 vs t

data into uL,0 vs frequency using the Fast Fourier Transform (FFT) tool in MATLAB.

After the properties of the beam and the system are known values of the four dimen-

sionless variables are determined as Πµ = 0.106, Πg = 0.354, 2.8 × 10−4 ≤ Πa ≤ 0.029 and

4.6× 10−4 ≤ Πe ≤ 0.122. The range of Πa is found using the ’k’ values assumed for the aero-

dynamic forcing only as those values assumed for both electrostatic and aerodynamic forcing

case fall in this range and of Πe is found using steady voltage and uniform gap distance.

Now actual experiments are conducted. The same behavior like what is seen in steady

load application case is noted when the dynamic voltage is applied with varying gap distance

i.e. as φ(t) and a0 increases, the amplitude of displacement increases and decreases respec-

tively. Therefore, the results of smallest gap space a0 = 15 mm and highest voltage applied

φmax = 7 kV are considered for discussion. The influence of other variables subharmonic

frequency, input signal type and air flow speed are presented below.
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Figure 4.1: a) Comparison of experimental (solid lines) and numerical (dotted lines) maxi-
mum displacement at the free end due to electrostatic load versus steady potential applied
to find elastic modulus of the beam and b) comparison of experimental (closed circles) and
numerical (solid line) underdamped vibrations of the beam to find the viscous damping
coefficient of the system.
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4.3 Electrostatic Forcing

The beam is excited by three harmonic signals sine, square and triangle to see the

impact of sinusoidal and non-sinusoidal waves with subharmonic frequencies ranging from

1 Hz to 8 Hz below the beam natural frequency (13 Hz). Zero displacement in the plots

indicate equilibrium position due to gravity. Among all the frequency data sets, stable vi-

brations were observed when the beam is excited at 8 Hz which is probably close enough to

be considered a subharmonic mode of the beam’s natural frequency. Figure 4.2 shows com-

parison of experimental and numerical displacement time histories of free end of the beam

due to electrostatic load for smallest gap distance a0 = 15 mm and highest voltage applied

φmax = 7 kV for three input signals sine, square and triangle at an excitation frequency of

ωφ =8 Hz. The experimental results from Figure 4.2 show that the beam exhibits similar be-

haviour for all the input signals i.e. the response consists of a single sine wave for one cycle of

oscillation with displacement frequency equal to the excitation frequency and similar values

of maximum vibration amplitudes (≈ 0.2 mm). Closer observation reveals smooth waveform

in the case of a square wave input signal and lightly distorted responses in the case of sine

and triangle input signals. This observation could be the result of the larger bandwidth of

the square wave by the function generator which captures the subharmonic frequency of the

beam nicely. Therefore it can be noted that the sine and triangle behave similarly with some

instabilities while square is more stable and produces slightly higher vibration amplitudes.
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Figure 4.2: Comparison of experimental and numerical displacement time histories of free
end of the beam for a0 = 15 mm, φmax = 7 kV due to electrostatic load for three input
signals a) sine, b) square and c) triangle at an excitation frequency of ωφ = 8 Hz.
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For the numerical analysis Eq. 2.2 is solved with Πa = 0, but with a factor in the

electrical forcing term which increases with the gap distance by 36 %; at lower gap distances

the intensity from the electrical forcing term is considered at a minimum. These factors are

determined by comparing numerical results with those of the experiments for having similar

amplitudes of vibrations. The inclusion of this additional factor may be due to the non-

linearity in the equation solved. This equation reproduces the response of the experimental

square wave while sine and triangle responses have reduced amplitude of vibrations and much

smoother behavior. Therefore we continue the discussion of the results by focusing on the

square wave signal since it produces the most accurate comparison between the experimental

and numerical results.

4.4 Aerodynamic Forcing and Drag Coefficient

Next we conduct experiments to study the behavior of the beam under aerodynamic

forcing only. For this set of experiments we consider air flow speeds from U∞ ≈ 0.224 m/s

(0.5 mile/hr) to U∞ ≈ 3.58 m/s (8 mile/hr) in U∞ = 0.224 m/s (0.5 mile/hr) increments. The

oscillations of flexible films under constant aerodynamic forcing occur as mentioned in [45].

From the FFT analysis of all the experimental data sets, it is observed that the displacement

frequency is equal to the natural frequency of the beam until U∞ ≈ 0.894 m/s (2 mile/hr)

after which the displacement frequency is ≈ 22 Hz. This phenomena can be understood from

the experimental displacement time history results of the free end of the beam in figures 4.3a

and 4.3b for U∞ ≈ 0.894 m/s (2 mile/hr) and U∞ ≈ 2.24 m/s (5 mile/hr). It is observed

that the vibration amplitudes increase by ≈ 130% as the speed is increased and are random

for any air flow speed which can be seen in the figures. We observe that for a0 = 35 mm the

displacement frequency is always equal to the beams natural frequency which may indicate

the presence of a small boundary layer disturbance between the vibrating beam and bottom

wall (jet impingement) for a0 � 35 mm.
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Figure 4.3: Comparison of experimental and numerical displacement time histories of free
end of the beam due to aerodynamic load for a0 = 15 mm with constant air flow speeds of
a) U∞ = 0.8941 m/s (2 mile/hr) and b) U∞ = 2.235 m/s (5 mile/hr).

For the numerical analysis presented alongside the experimental data in Figure 4.3, Eq.

2.2 is solved with φ(t) = 0, ωn = 13 Hz and k is set equal to the experimentally measured

maximum displacement uL,a. This reproduces the vibration amplitudes seen in the experi-

ments but not the random behavior. The assumption that k = uL,a yielded numerical uL,a

values that are only 0.1% higher than that of the experiments validating the assumption of

modeling the aerodynamic forcing as a uniform sinusoidal forcing.

A drag coefficient is determined from the flow induced vibrations data. For this, as

mentioned earlier k is assumed to be equal to the value of experimental free end displace-

ment, uL,a for that speed and gap distance. This experimental displacement is found to be

proportional to the square of the air flow velocity U2
∞, implying the same proportionality to

k i.e. k ∝ U2
∞. This proportionality is then utilized to find out the drag coefficient of the
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cantilever beam, CD = K/FD where K = kL and FD = ρaAU
2
∞ in which K is aerodynamic

load applied, FD is drag force and ρa is air density. Figure 4.4 shows lnK vs. lnFD for all

gap distances a0, and air flow speeds U∞. It can be observed that lnK increases linearly

as lnFD increases. All the data falls into the solid line except for the ones at lowest speed

which may be due to 1) the low resolution of the camera to capture very small displacements

and 2) the boundary effects of the ground electrode glued to the bottom acrylic plate. By

interpolating linear best fit to the data, CD is found to be 0.074. This value is in agreement

with data computed for the case of plates of large aspect ratio[44].

ln𝐹𝐷[𝑁] 

ln𝐾 𝑁  

Figure 4.4: lnK Vs lnFD for determining the drag coefficient.

4.5 Electrostatic and Aerodynamic Forcing

Low air flow speeds are selected to observe the effects of small aerodynamic forcing on

stable vibrations after determining the conditions for stable vibrations of the beam under
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electrical forcing and characterizing the aerodynamic forcing on the cantilever. The electrical

forcing was the square input signal with 8 Hz which produced stable vibrations (see Figure

4.2b). The aerodynamic forcing was for the range of air flow speeds from U∞ ≈ 0.224 m/s

(0.5 mile/hr) to U∞ ≈ 2.24 m/s (5 mile/hr). It is observed that at lower air flow speeds the

amplitude of the vibration and displacement frequency are dominated by electric force cor-

responding to the electrical inputs giving rise to stable vibrations, where as at higher speeds

the air flow controls the behavior of the beam having it excited at the natural frequency. This

can be clearly seen in the experimental data of figures 4.5a and 4.5b where the displacement

time history for a0 = 15 mm, with square, φmax = 7 kV and ω2 = 8 Hz perturbed by a

constant air flow speeds of U∞ ≈ 0.224 m/s (0.5 mile/hr) and U∞ ≈ 2.24 m/s (5 mile/hr)

respectively are plotted.

𝑎) 

𝑡 [𝑠] 
𝑏) 

𝑢𝐿,𝑒+𝑎 [𝑚𝑚] 

𝑢𝐿,𝑒+𝑎 [𝑚𝑚] 

𝑡 [𝑠] 
Figure 4.5: Comparison of experimental and numerical displacement time histories of free
end of the beam due to electrostatic and aerodynamic loads with square, φmax = 7 kV,
ω2 = 8 Hz, a) U∞ = 0.2235 m/s (0.5 mile/hr) and b) U∞ = 2.235 m/s (5 mile/hr).
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For the numerical analysis Eq. 2.2 is solved with the parameters used for experiments

with beam excitation at the natural frequency for aerodynamic forcing with k � uL,e+a.

These values of k are chosen because the frequency of the displacements correspond to the

experimental ones whereas the vibration amplitudes correspond to the experimental data

for k = uL,e+a but the output frequencies do not correspond. From Figure 4.5b, it can be

seen that the numerical results strongly agree with the experimental ones producing close

vibration amplitudes and apparently random behavior. These plots suggest that the ampli-

tude of vibrations and their stability is dominated by electrostatic load at lower speeds and

dominated by aerodynamic load at higher speeds and the chaotic nature increases as the air

flow speed increases.

As the speed is increased the maximum vibration amplitudes increased by only ≈ 90%

as compared to the aerodynamic forcing data that showed an increase of 130%. It is observed

that the contribution of displacement assisted by aerodynamic forcing is only 65% as com-

pared to the case of only aerodynamic load i.e. uL,e+a = uL,e + 0.65uL,a. As the gap distance

increases, dominance of aerodynamic load increases exciting the beam at natural frequency

at lower air flow speeds.

Phase plane diagrams are plotted to study the behavior of the beam for the combined

electrostatic and aerodynamic forcing effect at lower speeds. For the experimental data,

displacement versus time uL,e+a data extracted from MATLAB is used for x- axis and velocity

versus time vL,e+a obtained from displacement versus time data is used for y-axis. This

velocity is calculated using change in position from this position to the next position per unit

time obtained from displacement versus time data. Numerical data is obtained by computing

position and velocity at each time step using 4th order RKM method. Figure 4.6 shows the

comparison of experimental and numerical phase plane diagrams of free end of the beam
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for combined electrostatic and aerodynamic forcing with square, φmax = 7 kV, ω2 = 8 Hz,

U∞ = 0.2235 m/s (0.5 mile/hr) for a0 = 15 mm.

𝑢𝐿,𝑒+𝑎 [𝑚𝑚] 

𝑣𝐿,𝑒+𝑎 [𝑚𝑚 𝑠−1] 

Figure 4.6: Comparison of experimental and numerical phase plane diagrams of free end of
the beam due to electrostatic and aerodynamic loads with square, φmax = 7 kV, ω2 = 8 Hz,
U∞ = 0.2235 m/s (0.5 mile/hr) for a0 = 15 mm.

The experimental data shows highly stable vibrations of the beam forming an ellipse.

This elliptical data corresponds to that explained in [35] which is due to the dependency of

electrostatic forcing on the gap distance between the electrodes. The intensity of electrostatic

forcing increases with decrease in the gap distance which implies the intensity of electric field

is higher at lower gap distances. As the electrostatic forcing increases depending on the input

signal allowing the beam to displace toward the ground electrode, the electric field intensity

increases and when the forcing is reversed, the electric field has a tendency to push the beam

away quickly allowing faster rate of change in velocity which can be observed clearly at the
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highest beam displacement amplitude. As the beam rises upward velocity increases slowly

reaching a maximum at the zero position and then decreases slowly as the beam reaches

the farthest position from the ground electrode where the electrostatic forces are minimum.

Then it quickly falls down due to gravity and reaches slowly to the closest position to the

ground electrode where the electrostatic forces come into play and the cycle repeats. The

numerical data shows dispersed data which seems to be quasi-periodic repeating four cycles

of different amplitudes over time which could be due to the two periodic forcing terms

as explained in [39]. The amplitude of displacement is smaller due to considering smaller

amplitude of aerodynamic forcing to obtain similar behavior of the electrode corresponding

to the experiments. The phase plane diagrams at higher air flow speeds are chaotic and could

not be compared to draw conclusions. Therefore St number is used to discuss the results as

shown in the next section.

4.6 Discussion

In this section we discuss the results in term of the Strouhal number St in order to

determine the region of stability of vibrations under electrostatic and aerodynamic forcing.

For this the data of all gap distances for all air flow speeds, at the highest voltage applied for

that gap distance, with square wave electrostatic forcing at ωφ = 8 Hz is examined as shown

in Figure 4.7a. Here the ratio of maximum displacement due to electrostatic and aerody-

namic forcing to maximum displacement due to aerodynamic forcing max|uL,e+a|/max|uL,a|

versus 1/St is plotted. The data points above the max|uL,e+a|/max|uL,a| = 1 line indicate

that the maximum displacement is dominated by the electrostatic load and that below the

line is dominated by the aerodynamic load.

It can be observed that the ratio max|uL,e+a|/max|uL,a| decreases as 1/St increases,

and all the data collapses into a curve with negative slope. As we can see from the experimen-
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tal data, the effect of electrostatic forcing is higher at lower 1/St numbers as compared to the

effect of aerodynamic forcing at higher 1/St suggesting that aerodynamic load can be over-

come effectively at lower 1/St. As 1/St increases a transition from a maximum displacement

dominated by electrostatic forcing to a maximum displacement dominated by aerodynamic

forcing occurs. This transition is not immediate as seen in the frequency data shown in

Figure 4.7b. When the displacement is dominated by electrostatic forcing, the displacement

frequency is the same as excitation frequency, ωφ = 8 Hz and when it is aerodynamically

dominated the displacement frequency is close to the beams natural frequency, ωn ≈ 13

Hz. In the figure, there is a region where frequencies appear at both ωn and ωφ before the

transition occurs. This region increases as the a0 increases; this can be seen as the frequency

shifts from ωφ to ωn early with the increase in a0.

While the observations of maximum displacements and frequency response to inverse

Strouhal number are not surprising, the robustness of the results as measured by the single

parameter for the various experimental setups are reassuring. Furthermore, the direct com-

parison of the numerical and experimental data for combined forcing, shown in Figure 4.5,

is extremely accurate for the reduced order modelling. This is true even though the separate

aerodynamic forcing only comparison shown in Figure 4.3 is not. To further explore the

source of the better agreement for the combined forcing we should discuss the influence of

the individual forcing terms on the resulting dynamics.

In all of the data that considers only the electrostatic forcing there is no appearance

of chaotic motion as seen in the time series plots shown in Figure 4.2. We should note here

that there have been some observations of chaotic motion in a similar system with a slightly

longer electrode cantilever [35]. But the fact that no chaotic motion is observed for the system

discussed in this paper is not necessarily surprising since chaotic motion is not seen in the

forced pendulum for all forcing and damping parameters [13, 38]. Then the same reasoning
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1 𝑆𝑡  
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Figure 4.7: Comparison of experimental (open symbols) and numerical (closed symbols)
results a) Plot of ratio of maximum displacement due to electrostatic and aerodynamic
loads, max|uL,e+a| to maximum displacement due to aerodynamic load, max|uL,a| versus
inverse Strouhal number, 1/St and b) Plot of displacement frequency versus inverse Strouhal
number, 1/St for data analysis.
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is also true for the data that only considers aerodynamic forcing since the forcing term is

similar.

The lack of an appearance of random or chaotic displacements for the separate electro-

static and aerodynamic forcing would seem to suggest that the coupling of the two forcing

terms is likely responsible. To understand this feature of the problem consider the appearance

of additional frequencies in the coupled forcing term. To study these terms we consider a

sinusoidal Λ and let R∗ → 0 to linearize the electrostatic forcing term. The resulting forcing

term is

−Πef
2(x) + Πa sin y = −[Πef

2(x) + Πa sinx] + 2Πa sin

(
x+ y

2

)
cos

(
x− y

2

)
(4.1)

where x = 2πωφt and y = 2πωnt. The combination of additional frequencies that are the

result of the combined forcing terms and the addition of the aerodynamic term to the elec-

trostatic forcing are clearly responsible for the agreement seen between experiments and

numerical results figures 4.5b and 4.6. This suggest that the coupled system is not chaotic

but quasi-periodic [40].

The result though does not conclusively determine the response seen in the data that

only considers the aerodynamic forcing i.e. it may still be chaotic. Although one possible

process for developing a model to test this hypothesis could be formulated by adding multiple

periodic forcing terms to model the aerodynamic loading. If the terms have similar frequency

but varying amplitude then this would also probably improve the agreement. In particular

this may explain the results shown in Figure 4.7b where frequencies slightly higher than

the natural one begin to appear. Although the underlying system is non-linear so these

frequencies may appear by adding non-linear terms [57].
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CHAPTER 5. CONCLUSIONS

The dynamic characteristics of an electrostatically actuated thin flexible electrode can-

tilever under low-speed air flow perturbations were studied experimentally and numerically.

A model was developed based on Euler-Bernoulli beam theory. Static non-linear and dynamic

linear Euler-Bernoulli equations were solved to estimate the elastic modulus and natural fre-

quency of the beam and viscous damping coefficient of the system respectively by comparing

those solutions with experimental results. Both static and periodic forcing results show that

as the applied voltage and the gap distances were increased, the amplitude of the electrode

cantilever displacement increased and decreased, respectively. Forced harmonic electrostatic

excitation of the beam produced stable vibrations at 8 Hz for square wave input signal which

are reproduced by the dynamic non-linear Euler-Bernoulli equation. Similar vibrational am-

plitudes are obtained by having magnitude of electrical force in this equation increase as the

gap space increases.

As the system is subjected to small aerodynamic loads, undisturbed higher vibrational

amplitudes (as compared to electrostatic forcing data) are obtained for air flow speeds <

0.447 m/s (1 mile/hour) corresponding to the electric input variables. But as the air flow

speed increases, the vibrations become unstable, vibrating at beam’s natural frequency with

reduced amplitude of vibrations (as compared to aerodynamic forcing data). Modelling the

aerodynamic forcing as single periodic term produces poor agreement with experimental ob-

servations when no electrostatic forcing is included. But including the combination of both

electrostatic and aerodynamic forcing in the equation of motion not only predicted the be-

havior of the beam but also produced similar vibrational amplitudes at higher air flow speeds
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validating the assumption.

A comparison between the experimental and numerical data is made using the Strouhal

number. Here, it is defined as the ratio of the flexible electrode cantilever’s vertical velocity

and the free stream velocity. Using the subharmonic frequency of the electrostatic forcing

it is possible to determine which forcing mechanism, either electrostatic or aerodynamic, is

mostly responsible for the cantilever tips displacement and response frequency. Direct com-

parisons of waveform data are also made between the experimental and numerical results

with fairly good agreement.

In the future, aerodynamic forcing can be modified as a non-linear term including

more periodic forcing terms of same amplitude or method of slowly varying amplitude and

phase as described in [58] to account for the random behavior seen in the experiments. Ex-

perimental observations with electrostatic forcing at beam natural frequency could provide

more insight into studying the random behavior and lifting case of the flexible beam under

combined forcing conditions. Studying the behaviour of beam with different elasticities and

complex geometries could lead to developing better MAV configurations. Studies with other

orientations of the film with respect to air flow direction could lead to better understanding

of control strategies. Extending the study to other degrees of freedom would be useful in

establishing accurate control parameters range for the system.
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