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ABSTRACT 

 

Nonlinear elastic wave methods such as nonlinear resonant ultrasound 

spectroscopy (NRUS) and nonlinear wave modulation spectroscopy have been previously 

used to detect damages in several materials. It was observed that applying these techniques 

to composite materials becomes difficult due to the significant inherent baseline 

nonlinearity, i.e. nonlinearity in the undamaged state. Understanding the non-classical 

nonlinear nature of the composites plays a vital role in implementing nonlinear acoustic 

techniques for material characterization as well as qualitative nondestructive testing of 

composites. There are several factors which can influence the baseline nonlinear response 

in fiber reinforced composites, but this work is limited to the study of the effect of three 

factors, namely: fiber orientation, laminate sequence and type of fabric. Since fiber 

reinforced composites are orthotropic in nature, the baseline response variation with fiber 

orientation is very important. This work explores the nature of the inherent nonlinearity by 

performing nonlinear resonant spectroscopy (NRS) in intact or undamaged unidirectional 

carbon/epoxy samples with different fiber orientations with respect to major axis of the 

sample. Factors such as frequency shifts, modal damping ratio, and higher harmonics were 

analyzed to explore the non-classical nonlinear nature of these materials. Similarly, NRS 

tests were carried out on samples with different laminate sequence to observer the 

difference in nonlinear response. Similar comparisons were made between continuous 

fabric laminate and woven fabric laminate.  
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A nonlinear-viscoelastic forced vibration model based on geometric nonlinearities 

was developed to explain the observed responses. The Kelvin-Voigt model was used to 

model viscoelasticity along with geometric nonlinearity in the form of von Kármán strains. 

The classical nonlinear and damping sources were identified and compared between 

experiment and theory. A semi-analytical experimental approach was used to extract model 

parameters from experiment, and compare model predictions against experimental results. 

The classical and the non-classical nonlinear parameters were compared for different 

laminate sequences to complete the baseline study. Although the results presented here are 

for carbon/epoxy type of composites, the model and phenomenon can be extended for any 

fiber reinforced composite system.  
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CHAPTER I 

INTRODUCTION 

The use of composites has increased exponentially in the past decade especially in 

aerospace and energy sectors. With increasing demand for light weight but strong 

materials, composites seem to be a very effective solution. Fiber reinforced composites 

such as carbon fiber reinforced polymers (CFRP) and glass fiber reinforced polymers 

(GFRP) are extensively used in the manufacturing sector. By using these materials we 

make ourselves susceptible to the complexity of inspecting structures made from these 

materials. The field of nondestructive evaluation (NDE) has been used to catalogue various 

techniques for both inspection and characterization of metals. In the recent decade 

techniques such as ultrasonics, thermography, radiography etc. have been extended for 

composites in an attempt to create such a catalogue [1,2]. Ultrasonics stands out as one of 

the best NDE techniques for composites and has been explored by many researchers 

including the use of guided waves [3-8]. Typically, the damage would initiate in the form 

of matrix micro-cracking, matrix crushing, and fiber-matrix debonding. These defect 

initiators are very small and difficult to detect using traditional NDE techniques. For a 

tighter quality control and damage prognosis, detecting precursor to damage is very vital. 

Precursors such as micro-cracking or low impact delaminations are very important in 

determining the fatigue life of the structure. To meet this requirement several researchers 

have used nonlinear acoustic techniques such as nonlinear resonant ultrasound 

spectroscopy (NRUS) and nonlinear wave modulation spectroscopy (NWMS). These 

belong to a class of techniques called nonlinear elastic wave spectroscopy (NEWS) first 

devised by Guyer and Johnson [9]. With higher excitation amplitudes some materials begin 
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to act nonlinearly and deviate from linear elastic behavior even in the absence of a defect. 

This type of response was first reported for pristine rock and geomaterials by Guyer and 

Johnson [9]. They predicted that NEWS techniques can also be used for inspection of 

damaged materials since the characteristic response of damaged materials and geomaterials 

was similar. They called this class of materials as mesoscopic materials where the elastic 

behavior was controlled by mesoscopic elements along the grain boundary. Following this, 

several researchers have used NEWS techniques to detect and quantify damage in 

composites and other materials [10-19]. Van Den Abeele demonstrated the use of NEWS 

techniques for detecting damage in fiber cemented plates. The hysteresis behavior along 

with non-classical nonlinear indicators were summarized [10,11]. Impact damage in 

composite laminates and sandwich panels was investigated by Meo [14,15]. Micro-crack 

density from heat damage was quantified using a nonlinear parameter by Van den Abeele 

[16]. Aymerich [17] studied the effect of impact damage on nonlinear modulation response. 

It was observed that clamping force for a cantilever beam affects the nonlinear response. 

Novak [18] studied the evolution of nonlinear response (which was defined as read factors) 

for different damage states.   

Layered composites constitute multiple layers of fibers, fiber-fiber overlap and 

fiber-matrix interface etc. This would lead one to believe that composites may exhibit 

mesoscopic behavior similar to rocks and concrete. The present study does not explore the 

possibilities of using nonlinear acoustic methods for damage detection in composites since 

it has been performed by various researchers [14-19]. Rather, it focuses on studying the 

inherent baseline nonlinearity of fiber-reinforced composites, which is the nonlinear 

response of the material in its intact or undamaged state. A high level of inherent 
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nonlinearity in the absence of a defect would make NDE of such structures very 

challenging. Hence understanding the baseline nonlinearity becomes very important which 

creates the need to characterize the baseline response and factors that may influence the 

baseline nonlinearity. Composites are primarily composed of binding materials (epoxy) 

and reinforcements (fibers). Assuming perfect bonding between fibers and epoxy and 

between multiple layers, the entire material can be treated as a continuum and an effective 

stiffness matrix can be used to describe the material. It is well known that by the same 

argument unidirectional laminates exhibit transversely isotropic properties, and composites 

in general can be described as orthotropic materials. Hence changing the fiber orientation 

of a unidirectional laminate would result in change in the stiffness matrix as well as the 

nonlinear response. To observe this phenomenon three fiber orientations were chosen, i.e. 

00, 450 and 900, since these are standard fiber orientations chosen for making cross ply 

[0/90] or [45/-45], or quasi-isotropic laminate [0/45/-45/90]. Hence, the first part of the 

work focuses on investigating the effect of fiber orientation on the baseline nonlinearity. 

Many authors who have performed NRS tests on composites, both damaged and intact 

reported lower nonlinear response in intact state compared to damaged state. Most of these 

involved using quasi-isotropic or cross-ply layup. In the current study, the non-classical 

nonlinear (NCNL) characteristics of laminate layup for four different configurations 

namely [0/90], [90/0], [45/-45] and [0/45/-45/90] was also investigated. These results were 

compared to the results obtained from the orientation study, i.e. 00, 450 and 900. 

Furthermore, the type of fabric used for fabrication was also investigated by comparing 

results between continuous fabric laminate and woven laminate for [0/90] and [45/-45]. 
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The carbon fiber/epoxy was chosen as the material system, but the results can be extended 

for any fiber-reinforced composite system. 

1.1 Background 

The nonlinear response of several materials both damaged and undamaged has been 

extensively explored by Johnson, Van Den Abeele, Guyer, TenCate, etc. from Los Alamos 

[9-12,20-23]. Van Den Abeele, Guyer and McCall [20] used a phenomenological model to 

show that for a nonlinear hysteretic material, linear softening (i.e. linear decrease in 

frequency), a quadratic dependency of the third harmonic on fundamental and linear 

increase of attenuation can be observed. This formulation holds good for damaged 

materials where the elasticity is controlled by volumetric cracks, bond systems, and other 

features [16]. Similar types of response was observed for rock and geomaterials by Johnson 

and Rasolofosaon [21] who had reported a linear decrease in frequency. Guyer et al. [22] 

performed a set of resonant bar experiments with geomaterials at low strains and reported 

a linear dependence of frequency even at very low strains (10-8 ≤ ≤ 5x10-7). But in some 

recent research by Pasqualini et al. [23], it was reported that rocks and other geomaterials 

exhibit different frequency shift responses depending on the strain magnitude; (a) low 

strain linear zone, where the material behaves linear elastic and no frequency shift exists, 

(b) mid-range strain classical nonlinear zone where a quadratic decrease in frequency can 

be observed as shown by Landau [24], (c) high strain non-classical non-equilibrium zone 

where the response is controlled by slow and fast-dynamics and linear decrease in 

frequency can be observed. Pasqualini et al. showed that the linear softening observed 

experimentally in the non-equilibrium zone is due to the material conditioning effects 

resulting from slow dynamics. P. A. Johnson (personal correspondence) later found out 
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that damaged materials behave in a similar fashion and have three strain ranges as described 

by Pasqualini, i.e. a linear zone, a quadratic zone and a non-equilibrium zone with linear 

softening.   

A schematic representation of each zone has been shown in Figure 1. The strain 

range used in the current work has also been compared to the range used by other 

researchers. The lowest excitation frequency as shown in the figure lies in the classical 

non-linear zone hence resulting in a non-zero frequency shift offset, similar to results 

obtained by Van den Abelee.  

 

 

Figure 1: A schematic of the three strain zones that was observed by Pasqualini [23]. (f/ f0) is the 

shift in the resonant frequency normalized to linear frequency. The low strain linear zone exhibits 

no frequency shift, while quadratic softening can be observed in the classical non-linear zone, 

followed by linear softening in the NCNL zone. The strain ranges used by various researchers have 

been compared to the strain range used in this study. 
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1.2 Approach 

The fundamental question of whether composites belong to linear elastic, CNL or 

NCNL will be explored in this study. Based on the multi-material, multi-layered structure 

of composites, there are several factors that can influence inherent nonlinearity, such as: 

type of resin and fiber, fiber/matrix interface, residual stress, quality of cure, manufacturing 

method and ply orientation or fiber direction. We restrict this work to understanding the 

influence of three factors: fiber orientation, laminate sequence and fabric type on nonlinear 

response of fiber reinforced composites. Nonlinear resonant spectroscopy (NRS) was used 

to characterize the nonlinear response of different samples used in this study. Standard 

parameters such as resonant frequency shifts and modal damping ratio variations which 

have been used by several other researchers were used to comment on the baseline 

nonlinear response. Higher harmonic measurements were also used to analyze the 

nonlinear response. A forced vibration problem was framed using nonlinear von Kármán 

type of strains and viscoelastic damping was modeled as Kelvin-Voigt damping to arrive 

at a modified Duffing equation. Method of multiple scales was used to solve the modified 

Duffing equation. Analytically obtained results were compared against experimentally 

obtained results for unidirectional and multi-layered media. 
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CHAPTER II 

EXPERIMENTAL DETAILS 

2.1 Sample Preparation 

A 30 layer unidirectional laminate was fabricated and 25.4 mm X 152.4 mm 

coupons were cut in three different orientations, namely 00, 450 and 900 to observe the 

dependency of fiber orientation on nonlinear response. The fiber direction is parallel to the 

length of the sample for “00”, at 450 to the length for “450” and perpendicular to the length 

for “900”. A schematic of the fiber direction and sample orientation is shown in Figure 2. 

Since the first order bending mode was excited during experimentation, the properties 

along the length of the sample will dominate the nonlinear response. Hence the fiber 

orientation along the length of the sample was chosen as the variable parameter. All 

samples were inspected by performing immersion ultrasound C-Scans and no distinct 

defects were found.  

 

Figure 2: The schematic representation of the various samples used for experimentation are shown. 

Fiber direction is along the coordinate axis “0” as shown. Sample dimensions along with orientation 

are shown in the schematic. 
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2.2 Experimental Setup 

A schematic of the experimental setup used is shown in Figure 3. The setup consists 

of a continuous waveform (CW) generator which sends a sinusoidal signal to the amplifier 

where the signal is amplified and sent to a magnetostrictive actuator which was used for 

exciting the sample. The sample was supported directly on the actuator as shown, with the 

head of the actuator at the geometric center of the sample. An accelerometer was used to 

measure the out-of-plane response of the sample and was placed at the edge of the sample. 

Wax was used to couple the actuator and the accelerometer to the sample. The response 

from the accelerometer was sent to a lock-in amplifier to track the frequency. The output 

from the CW generator was used as a reference for the lock-in amplifier. Data from lock-

in amplifier was sent to a computer for processing.  

 

Figure 3: A schematic of the experimental setup used is shown. The sample was excited by a 

magnetostrictive actuator, and acceleration was recorded using an accelerometer. 

 



   9 
 

2.3 Parameters Used For Characterization  

Nonlinear resonant spectroscopy was performed by sweeping a broad frequency 

range to find the various natural modes and the lowest order mode was chosen. A 50 Hz 

sweep was performed on either side of the chosen resonant peak and data was collected at 

16 Hz intervals. This was repeated for various levels of excitation voltages and plotted 

together against amplitude. Figure 4 shows the various resonance curves for 00.  

Since “00” has a resonant frequency much higher than that of “900”, the acceleration 

data obtained from accelerometer was converted into strain so as to normalize with 

resonant frequency. The laminate mounted directly on the actuator head was constrained 

and excited at the center. 

 

Figure 4 : Example of the resonance curves collected from the NRS test system for various levels 

of excitation amplitudes. 

 

To understand the type of vibration the beam is undergoing for the given set of 

boundary conditions, a linear finite element modal analysis was performed. The boundary 

conditions chosen for the finite element analysis was that of a cantilever beam with half 

beam length. Modal analysis showed that the first order bending mode observed for a 
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cantilever beam was nominally in the same range as the experimentally observed 

frequency. The accelerometer position will only affect the magnitude of the measured 

acceleration. So in all cases accelerometer was placed at the end of the sample where 

maximum acceleration can be measured. Similarly the position of the actuator head will 

change the length of the cantilever beam resulting in a change of strain magnitude.    

The strain-velocity expression used by Van Den Abeele [16,25] for free-free type 

of boundary condition was modified for cantilever beam with half-length as shown in Eq. 

(1), to match the experimental boundary conditions. 

휀 ≈ 0.219
𝑇

𝑓√12
(

1.875

𝐿/2
)

2

𝑣                                              (1) 

where v is the velocity determined by integrating the acceleration data over time, L = 152.4 

mm and T = 4 mm are the sample dimensions, and f is the resonant frequency. Further to 

determine attenuation or modal damping ratio (MDR) [10], the MDR formula was used as 

shown in Eq. (2). 

𝑀𝐷𝑅 =
𝑄−1

2
⁄ =  

𝑓ℎ𝑤

𝑓
2

⁄                                               (2) 

where fhw is the frequency width at half the peak amplitude of the resonant peak (f) at finite 

strain amplitude. MDR has been used by many researchers to show non-classical nonlinear 

responses [10]. In the linear zone, MDR remains a constant and does not change. At higher 

strains, a linear increase in MDR can be observed for NCNL materials. 
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CHAPTER III 

INFLUENCE OF FIBER ORIENTATION 

 

3.1. Frequency Shift 

NRS test was repeated for all three orientations and resonance curves at increasing 

levels of excitation was collected. Figure 5 shows the resonance curves for three 

orientations. A varying degree of shift in frequency can be observed. 

 

Figure 5: Resonance curves for various levels of excitation amplitudes. (a) 00, (b) 450 and (c) 900 

laminate.  

 

Shift in resonance frequency was calculated by: f = f – f0, where f0 is the lowest 

amplitude excitation frequency. Since the lowest excitation frequency is different for 

different orientations, the frequency shift was normalized to the resonant frequency at 

lowest excitation (f / f0). The frequency shifts for 00, 450 and 900 are presented in Figure 

6. Maximum shift was observed for 900, followed by 450 and 00. All strain data was limited 
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to 15 micro-strain. A nominally linear frequency shift was observed with increasing strain 

amplitude over the data range. This overall response is consistent with non-classical non-

linear materials. Although a good linear fit over the entire strain can be observed, fits over 

smaller ranges has to be performed to observe changes in nonlinear behavior. 

 

Figure 6: Shift in resonant frequency normalized to low amplitude frequency for different 

orientations. (a) 00, (b) 450 and (c) 900. Note the logarithmic scale for strain. The error bars have 

also been plotted in the data along with R2 values and equations for linear fit. 

 

The presence of a quadratic softening zone was investigated by performing a pure 

quadratic fit on the experimental data starting from low strain to the high strain amplitude. 

A comparison between quadratic fit and linear fit over the low range for 450 laminate can 

be seen in Figure 7. The R2 value for linear fit over the small range was 0.801 compared to 

0.9834 for the linear fit over the entire range. This shows that a discontinuity exists, which 

is an indicator that the material does not exhibit linear softening over the entire range. The 

R2 value for a pure quadratic fit (0.89) was better than the R2 value for the linear fit (0.801) 
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which suggest the presence of the quadratic softening zone or the classic nonlinear zone. 

Information in the CNL zone can be affected by various experimental factors such as 

humidity, temperature etc. Furthermore because of a gradual transition from the CNL to 

NCNL zone, results will necessarily be influenced by both responses.   

 

Figure 7: The frequency shift in lower strain range for 450 sample. A pure quadratic fit and linear 

fits were compared using their respective R2 values. From the R2 values the quadratic fit seems to 

be better than the linear fit in this range. The R2 value for the linear fit over the entire range as 

shown in Fig. 6(b) is 0.983, but linear fit over the low strain range is 0.801, which shows the 

discontinuity in response. 

 

The pure quadratic fits in the small range were extrapolated for the entire range and 

plotted against the experimental data as shown in Figure 8. A good quadratic fit can be 

observed for a certain strain range beyond which the experimentally observed data deviates 

from the quadratic fit. Comparing the goodness of fit in the low strain range as 450, the 

quadratic fit R2 value for 00 was 0.61 compared to linear fit value of 0.969. This can be due 

to the gradual transition between CNL and NCNL zone as suggested earlier. Further to get 

a good quadratic fit, data in the linear strain range and CNL range has to be measured as 
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shown by Pasqualini. Since the data for 00 starts in the CNL range and transitions quickly 

to NCNL range within a short strain range, the R2 value for quadratic fit will be lower than 

the linear fit. However there are sufficient points in the NCNL range for 00 to describe a 

good linear fit confirming the NCNL response. The quadratic fit R2 value for 900 was 0.965 

compared to linear R2 value of 0.945 which is consistent with 450. To be able to truly 

characterize the linear, CNL and NCNL strain zones, a measurement similar to Pasqualini 

has to be performed over a large strain range under controlled environment. This is 

considered out of scope of this study since the objective is to characterize the NCNL zone 

of these materials. Linear softening with increasing strain amplitude indicates NCNL 

behavior. Further, the presence of two zones, namely quadratic softening zone and non-

equilibrium zone with linear softening at higher strains suggests that these materials can be 

classified under NCNL type of materials. 

 

Figure 8: Frequency shift vs strain showing the two zones, namely: classical nonlinear and non-

classical nonlinear. A pure quadratic fit is compared with experimental data to show the threshold 

strain where the material begins to lose its quadratic nature and behave like a NCNL material.  
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3.2 Modal Damping Ratio 

Since 00, 450 and 900 have different MDR values, relative change in MDR was used 

as shown in Eq. (3).  

∆𝑀𝐷𝑅 =  
𝑄−1−𝑄0

−1

2
                                              (3) 

where, Q-1/2 is the MDR at higher strain amplitude, and Q0
-1/2 is the MDR at the lowest 

excitation amplitude. The MDR calculated from Eq. (3) was plotted for all three samples 

against strain as shown in Figure 9. A linear increase in MDR was observed for all samples 

with 900 exhibiting the maximum increase, followed by 450 and 00. The linear increase in 

MDR suggests NCNL characteristics. The dependency of MDR on the fiber orientation is 

consistent with results obtained from frequency shifts.  

 

Figure 9: Modal damping ratio increase for different orientations showing a linear fit. 

Highest increase in MDR with increasing strain can be observed for 900 followed by 450 

and 00, which is consistent with the frequency shift response. Note the logarithmic scale 

for strain. 
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3.3 Higher Harmonic Analysis 

To further explore the presence of non-classical behavior, a higher harmonic 

analysis was performed on each sample. Frequency sweeps were performed to find the 

fundamental resonant frequency, and the amplitude of higher harmonics were measured 

for the given excitation voltage. The process was repeated for different excitation voltages. 

To explore the NCNL aspect, a pure cubic fit was performed on the 3rd harmonic 

experimental data for all three orientations as shown in Figure 10. A pure quadratic fit was 

also performed on the experimental data to compare with cubic fit. Fitting was performed 

from the low strain range to the high strain range due to the discontinuous nonlinear 

response as shown earlier in frequency shifts. R2 values were used to compare the goodness 

of fit between the quadratic and cubic fits. From Figure 10, it is evident that the 3rd 

harmonic does not follow a cubic dependency of the fundamental which suggests the 

absence of CNL characteristics. A pure quadratic fit seems to match the experimental data 

well for both 00 and 450. The quadratic R2 value for 00 was 0.989 compared to the cubic fit 

which was 0.66 which shows that a quadratic fit is better. Similarly the quadratic R2 value 

for 450 was 0.9931 compared to 0.4771 for the cubic fit which shows a better quadratic fit. 

However for 900, the experimental response lies somewhere between a quadratic and cubic 

response since the quadratic R2 value is 0.861 compared to the cubic response of 0.964. 

This suggests contributions from both CNL and NCNL for the given excitation range. 

Although the third harmonic response for 900 is somewhat ambiguous, the increase in 

MDR and frequency shift of the sample are indicative of NCNL response. By fitting the 

data from low strain to high strain amplitude, it can observed that beyond a particular 

acceleration (strain) the 3rd harmonic loses its classic nonlinear response (cubic 
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dependency) and begins to exhibit non-classical nonlinear response (quadratic 

dependency). The 3rd harmonic scaling quadratic with the fundamental suggests NCNL 

characteristics.  

 

Figure 10: 3rd harmonic acceleration values have been plotted against fundamental acceleration 

values for (a) 00, (b) 450 and (c) 900. In each case a pure quadratic and cubic fit was also performed 

to investigate quadratic or cubic dependency. The difference in the scale of fundamental 

acceleration for 00 compared to 450 and 900 arises from different fundamental frequencies. The R2 

values for cubic and quadratic fits have also been listed. 

 

From the results presented in this chapter it can be observed that composites exhibit 

NCNL characteristics. The frequency shift, MDR and harmonic analysis results are 

consistent and shows that unidirectional fiber reinforced composites exhibit NCNL 

properties. It can also be noticed from Figure 7 and 8 that there exists a CNL zone where 

quadratic softening can be observed. This is consistent with results presented by Pasqualini 

et al. [23]. 
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CHAPTER IV 

EFFECT OF LAMINATE SEQUENCE 

This section presents the effect of laminate sequence on the nonlinear response of 

composites. A laminate with [0]15s corresponds to symmetric, 00,15 layer laminate (total 

30 layers). By changing the orientation of the individual layers, the laminate essentially 

becomes a multi-layered media, and the properties of laminate can be tailored. A [0/90] 30 

layer symmetric laminate was fabricated and 25.4 mm X 152.4 mm coupons were cut in 

three different orientations. The global axis for the [0/90] laminate is shown in Figure 11. 

Since NRS utilized the flexural mode, the properties along the length of the laminate will 

influence the nonlinear response. As shown in Figure 11, the coupons were cut at 00, 450 

and 900 to the global axis. The sample at 00 to the global coordinate is [0/90], the sample 

at 450 is [45/-45] and sample at 900 is [90/0]. A 48 layered quasi-isotropic (QIS) laminate 

with [0/45/-45/90]6s was also fabricated.  

 

Figure 11: The schematic representation of the various samples used for experimentation are 

shown. Fiber direction is along the coordinate axis “0” and “90”. The various laminate sequences 

resulting from cutting the samples are different orientations are listed next to the samples. Sample 

dimensions along with orientation are shown in the schematic. 
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All samples used in this study were symmetric laminates. They were scanned, inspected 

with immersion C-Scans and no distinct defects were found.  

NRS tests were carried out on the [0/90], [90/0], [45/-45] and [0/45/-45/90] 

samples. Figure 12 shows the normalized frequency shift vs. strain amplitude plot for the 

different laminate sequences. It is evident from Figure 12(a) and 12(b) that although [0/90] 

and [90/0] are different only by 2 plies, a difference in nonlinear properties can be 

observed. Since [90/0] has more number of 900 plies, its NCNL characteristic is slightly 

higher than that of the [0/90]. The [45/-45] has a much bigger shift compared to [0/90] 

sequence. The quasi-isotropic sequence, [0/45/-45/90] seems to exhibits a much smaller 

frequency shift compared to the cross ply sequence.  

 

Figure 12: Frequency shifts of different laminate sequences are compared: (a) [90/0], (b) [0/90], 

(c) [45/-45], (d) [0/45/-45/90]. Note the log scale used to plot the strain. 
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To get a perspective of how the nonlinear shifts for multi-layered media (MLM) 

look compared to unidirectional (UD) laminates, i.e. 00, 450 and 900, the frequency shifts 

of the MLM were plotted together with the UD as shown in Figure 13. It can be observed 

that MLM NCNL response is less than or almost the same as the 00 laminate response. The 

lowered NCNL response of MLM compared to UD suggests that as anisotropy of the 

laminate decreases, the NCNL response also decreases (the quasi-isotropic laminate is 

closer to isotropic than the transversely isotropic nature of UD).  

 

 

 

Figure 13: The frequency shifts observed for MLM have been compared with UD laminate. Cross 

ply signifies [0/90] in this plot. The frequency shifts for MLM are much lower compared to the UD 

laminates. Note the log scale used to plot the strain.  
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Figure 14: The MDR shifts observed for MLM have been compared with UD laminate. MDR shifts 

for MLM are much lower compared to the UD laminates and trends are consistent with the 

frequency shifts observed in Fig. 15. Note the log scale used to plot the strain. 

 

The MDR shift vs. strain was plotted as shown in Figure 14. Similar to the 

frequency shift results, the MDR shift of MLM was considerably lower than the UD 

laminates. The quasi-isotropic and cross ply laminates exhibits least increase in MDR, 

lower than the 00 laminate. The MDR shift results are consistent with the frequency shift 

results, i.e. MLM has a much lower MDR shift compared to the UD.  

Although the reason behind this behavior is not directly apparent, it can be 

concluded that laminate sequences which make the laminate closer to being isotropic, 

decreases the NCNL characteristics of the laminate.  
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CHAPTER V 

EFFECT OF FABRIC TYPE 

There are two types of fabrics which are used in composite fabrication; continuous 

fabrics, where individual fiber and fiber toes are aligned in one direction which forms a 

continuous strand and woven fabrics, where the fiber bundles are woven in a particular 

pattern so that the strands interlace with other strands at right angle. Examples of the 

commonly used weave pattern are plain, twill and satin weave, which include 4, 5 and 8 

harness weaving pattern. Due to the weaving and interlacing, it can be hypothesized that 

fiber-fiber interaction might be higher in this type of laminate compared to continuous 

fabric laminates, which might give rise to a higher NCNL response. A 4 harness satin 

weave sample of nominally the same thickness as that of the [0/90] continuous laminate 

was fabricated. Two 25.4 mm X 152.4 mm coupons were cut from the laminate at 00 and 

450 similar to the samples described in Chapter IV. From here on the 00 laminate will be 

called as woven cross ply (WCP) and the 450 laminate will be called as [45/-45]W.  

 

Figure 15: The observed frequency shifts from woven fabric laminates; (a) WCP, (b) [45/-45]W. 

WCP stands for woven cross ply and is the equivalent of [0/90] for continuous fabric.  
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NRS tests were carried out on WCP and [45/-45]W laminates. The frequency shift 

response can be seen in Figure 15(a) & (b). It can be observed that [45/-45]W has a much 

higher NCNL response compared to the WCP, similar to the continuous fabric results. To 

get a perspective of how different the NCNL response is between woven and continuous 

fabric, the frequency response was plotted together as shown in Figure 16. It can be 

observed from Figure 16(a) & (b) that WCP exhibits lower NCNL response compared to 

both [0/90] and [90/0]. But, [45/-45]W exhibits a slightly higher nonlinear response in the 

classic zone compared to [45/-45]C, whereas the NCNL response of [45/-45]C is slightly 

higher than [45/-45]W as can be seen from the slope of the linear fit.  

 

Figure 16: Frequency shifts for woven and continuous fabric compared between: (a) [90/0]C vs. 

WCP, (b) [0/90]C vs. WCP, (c) [45/-45]C vs. [45/-45]W. The woven fabric exhibits lower 

nonlinearity compared to the continuous fabric. 
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To confirm the findings a higher harmonic analysis was carried out. The 2nd and 3rd 

harmonic of resonant frequency for continuous and woven laminates were measured for 

increasing excitation voltages. The measured harmonic accelerations were plotted against 

the fundamental acceleration. Figure 17 shows various plots comparing the continuous and 

woven fabric. Figure 17(a) & (c) show that the 2nd harmonic amplitude for [0/90] and [90/0] 

compared to WCP are nominally similar for the considered acceleration range. Fig. 17(e) 

also shows a similar trend with the woven laminate having a slightly lower 2nd harmonic 

content than the continuous laminate. Figure 17(b), (d) and (f) tell a completely different 

story, i.e. the continuous fabric exhibits much higher 3rd harmonic content than the woven 

laminate. One of the attributes of NCNL materials is that they exhibit a higher 3rd harmonic 

content compared to classic nonlinear materials. The higher NCNL response from 

continuous fabric compared to woven fabric confirms the frequency shift results. 

Contrary to the earlier hypothesis that woven fabric might exhibit higher NCNL 

response than continuous fabric, results show that woven fabrics exhibit lower NCNL 

characteristics than continuous fabric laminates. It is difficult to provide a theoretical 

explanation for the lower nonlinearity exhibited by woven laminates. One of the possible 

reasons might be that the interlacing of the fabric tends to inhibit any shear/ sliding action 

of the fabric. This shear/sliding action is one of the main contributors of the non-classical 

effects. Similarly any type of inter-lamina shearing is also inhibited in woven laminate, 

whereas it exists in continuous laminate. A much deeper understanding of the non-classical 

nonlinear phenomenon is required to build a theory around the experimental observations. 
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Figure 17: The higher harmonic content measured for continuous fabric has been compared with 

the woven fabric. Figures (a), (c) and (e) represent the 2nd harmonic acceleration plotted against the 

fundamental acceleration. Figures (b), (d) and (f) represent the 3rd harmonic acceleration plotted 

against the fundamental acceleration. Comparisons between WCP and [0/90]C and [90/0] in (a) 

and (c) show that the 2nd harmonic contents are quite similar, while the 3rd harmonic content is 

much higher in the continuous fabric (b) and (d). Similar results can be observed between [45/-

45]C and [45/-45]W. The line connecting the dots are only for presentation and do not represent a 

fit.  
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CHAPTER VI 

NONLINEAR FORCED VIBRATION MODEL 

From the experimental observations in the previous chapters it is evident that the 

epoxy or matrix plays a vital role in the non-classical nonlinear response. The [90] laminate 

exhibited higher levels of nonlinearity compared to [0]. It is well known that the properties 

of [90] are influenced by matrix rather than the fibers. Similarly, it can be observed from 

laminate sequence results that as the laminate gets closer to being isotropic in nature, the 

non-classical nonlinearity reduces. A quasi-isotropic laminate will have fibers in multiple 

directions, which reduces the influence of matrix. Hence to explain the observed 

phenomenon, a nonlinear forced vibration model was developed. Building such a model 

will also allow characterization of the baseline nonlinearity observed in laminates with 

different fiber orientations and stacking sequences without the need to fabricate and test 

them. Moreover such a model could also be applied for any fiber reinforced system, not 

just carbon/epoxy.  

Several researchers have built forced vibration models for both nonlinear and linear 

analysis. The use of analytical formulation, or finite element or combination of both having 

a semi-analytical finite element formulation is very common. A semi-analytical approach 

was used for examining the forced and free vibration of S-S and C-C beams by Azrar et al 

[26,27]. Mahmoodi et al. [28,29] who investigated the nonlinear vibration of a cantilever 

viscoelastic beam by modeling it as an Euler-Bernoulli beam with Kelvin-Voigt damping. 

A two layered model with carbon nanotube-epoxy mixture was studied both analytically 

and experimentally. Youzera et al. [30] studied a three layer beam with composite core 

using a nonlinear damped model by performing forced vibration analysis. Shooshtari et al. 
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[31] studied nonlinear forced vibration of clamped functionally graded beams without 

damping.  

It is well know that composites constitute two materials, the fiber and epoxy which 

have completely different properties. Hence, there are several factors which have to be 

included in a unified model to capture all the effect, such as fiber-matrix interface, 

shear/sliding effects from fiber-fiber interaction, and inter-lamina effects. But a grand 

unified model including all these factors is not possible with the current understanding of 

the scale and effects of such factors. Hence, in the current study a continuum approach 

towards modeling was used. A comparison between analytical and experimental 

nonlinearity parameters will also help to identify the difference that arises by neglecting or 

discounting these factors. 

It can be observed from experiments that the coupon can be treated as cantilever 

beam undergoing flexural vibrations. Since the coupon is composite with orthotropic 

properties, the beam can be modeled as a laminated beam. Using an approach similar to 

other researchers [28, 31] a nonlinear forced vibration analysis can be developed using 

geometric nonlinearity. The current study extends this to include the effect of 

viscoelasticity by using the Kelvin-Voigt model for stress-strain relationship. This 

viscoelastic contribution comes from the matrix, and by modeling a laminated beam, the 

effect of fiber orientation and stacking sequences can be captured. 

The present model follows the classical laminated plate theory (CLPT) [32]. 

According to Kirchhoff hypothesis, the displacements are given as: 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) =  𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0

𝜕𝑥
                                             (4) 
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𝑤(𝑥, 𝑦, 𝑧, 𝑡) =  𝑤0(𝑥, 𝑦, 𝑡)                                            (5) 

Where t is the time and u0 and w0 are the in-plane and transverse mid-plane displacements. 

The von Kármán type nonlinear strain-displacement relationship is given by: 

휀𝑥𝑥 =  
𝜕𝑢0

𝜕𝑥
+ 

1

2
(

𝜕𝑤0

𝜕𝑥
)

2
− 𝑧

𝜕2𝑤0

𝜕𝑥2
                                             (6) 

Assuming the solid to be viscoelastic, a linear elastic stress-strain relationship together with 

Kelvin-Voigt damping term for the viscoelastic contribution is given by: 

𝜎 = 𝐸휀 +  휂휀̇                                              (7) 

where, E is the Young’s modulus which can be written as stiffness matrix,  is the Kelvin-

Voigt damping term which controls the strain rate. Eq. (7) can be written as: 

𝜎 = 𝜎𝑒 +  𝜎𝑣                                              (8) 

where, e is the elastic component of the stress-strain response, and v is the viscoelastic 

component.  

By using the extended Hamilton’s principle;  

𝛿 ∫ (𝐾 − П + 𝑊)
𝑇

0
𝑑𝑡 = 0                                              (9) 

where, K is the kinetic energy, П is the potential energy, and W is the work done by non-

conservative forces. Potential energy can be rewritten as: П = 𝑈 + 𝑉, where U is the elastic 

strain energy and V is potential energy change from conservative external forces.  

Writing out in virtual terms separately: 

𝛿𝑈 =  ∯ (𝜎𝑒𝛿휀𝑥𝑥)𝑑𝑧
ℎ 2⁄

−ℎ 2⁄
𝑑𝑥𝑑𝑦                                             (10) 

                                            𝛿𝑉 =  − ∯ ((𝐹𝛿𝑤(𝑥, 𝑦))) 𝑑𝑧𝑑𝑥𝑑𝑦
ℎ 2⁄

−ℎ 2⁄
                   (11) 
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                𝛿𝐾 = ∯ (𝜌0 [(�̇�0 − 𝑧
𝜕�̇�0

𝜕𝑥
) + (𝛿�̇�0 − 𝑧

𝜕𝛿�̇�0

𝜕𝑥
) + 𝑤0̇𝛿𝑤0̇]) 𝑑𝑧𝑑𝑥𝑑𝑦

ℎ 2⁄

−ℎ 2⁄
          (12)

𝛿𝑊 =  − ∯ (𝜎𝑣𝛿휀𝑥𝑥)𝑑𝑧
ℎ 2⁄

−ℎ 2⁄
𝑑𝑥𝑑𝑦                                              (13) 

where  F is the external force applied, v is the non-conservative viscous dissipative force, 

and the xx and u0, w0 are the virtual strain and virtual displacements.  

Substituting Eq. (10-13) into (9) we obtain: 

∫ ( ∯ ((𝜎𝑒 + 𝜎𝑣)𝛿휀𝑥𝑥 − (𝐹𝛿𝑤0)

ℎ 2⁄

−ℎ 2⁄

𝑇

0

− 𝜌0 [(�̇�0 − 𝑧
𝜕�̇�0

𝜕𝑥
) + (𝛿�̇�0 − 𝑧

𝜕𝛿�̇�0

𝜕𝑥
) + 𝑤0̇𝛿𝑤0̇]) 𝑑𝑧𝑑𝑥𝑑𝑦) 𝑑𝑡 = 0 

                                              (14) 

Using Eq. (8), the elastic and viscous stress can be rewritten and Eq. (14) can be solved to 

obtain the equations of motion: 

𝜕𝑁𝑥𝑥

𝜕𝑥
= 𝐼0

𝜕2𝑢0

𝜕𝑡2                                               (15) 

𝜕

𝜕𝑥
(𝑁𝑥𝑥

𝜕𝑤0

𝜕𝑥
) +

𝜕2𝑀𝑥𝑥

𝜕𝑥2 + 𝐹 = 𝐼0
𝜕2𝑤0

𝜕𝑡2                                              (16) 

where Nxx and Mxx are the force and moment resultants and I0 is the mass moment of inertia 

given by: 

𝑁𝑥𝑥 =  ∫ 𝜎𝑥𝑥𝑑𝑧
ℎ 2⁄

−ℎ 2⁄
                                              (17) 

𝑀𝑥𝑥 =  ∫ 𝜎𝑥𝑥(𝑧)𝑑𝑧
ℎ 2⁄

−ℎ 2⁄
                                              (18) 

𝐼0 =  ∫ (𝜌0)𝑑𝑧
ℎ 2⁄

−ℎ 2⁄
                                              (19) 
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Rewriting the nonlinear strain relationship: 

휀𝑥𝑥 =  𝑢0
′ +

1

2
(𝑤0

′ )2 − 𝑤0
′′                                              (20) 

Where, the term uo’ corresponds to partial differential with respect to x.  

Substituting Eq. (20) and (7) into (17) and (18) gives: 

𝑁𝑥𝑥 =  𝐴11 (𝑢0
′ +

1

2
(𝑤0

′ )2) − 𝐵11𝑤0
′′ +  𝜇(�̇�0

′ + 𝑤0
′ �̇�0

′′) − 𝜇′�̇�0
′′                              (21) 

𝑀𝑥𝑥 =  𝐵11 (𝑢0
′ +

1

2
(𝑤0

′ )2) − 𝐷11𝑤0
′′ + 𝜇′(�̇�0

′ + 𝑤0
′ �̇�0

′′) − 𝜇′′�̇�0
′′                              (22) 

where, 

                                            (𝐴11, 𝐵11, 𝐷11) =  ∫ 𝐶11(1, 𝑧, 𝑧2)𝑑𝑧
ℎ 2⁄

−ℎ 2⁄
                                    (23) 

                                            (𝜇, 𝜇′, 𝜇′′) =  ∫ 휂(1, 𝑧, 𝑧2)𝑑𝑧
ℎ 2⁄

−ℎ 2⁄
                                              (24) 

For symmetric laminates the bending-extensional coupling parameter B11 and ’ are 

negligible. By neglecting axial inertia, the in-plane force resultant (Nxx) becomes invariant 

of x, i.e. (dNxx/dx) = 0.  The in-plane displacements become small allowing us to write the 

force and moment resultants in terms of the transverse displacement. Assuming the force 

resultants don’t change over time, integrating over time and length, the new force and 

moment resultants are obtained as: 

𝑁𝑥𝑥 =  ∫ ∫ [𝐴11 (
1

2
(𝑤0

′ )2) +  𝜇(𝑤0
′ �̇�0

′′)] 𝑑𝑥𝑑𝑡
𝐿

0

𝑇

0
                              (25) 

𝑀𝑥𝑥 =  −𝐷11𝑤0
′′ − 𝜇′′�̇�0

′′                                                     (26) 

For nonlinear vibration analysis, expressing the transvers displacement as: 

𝑤(𝑥, 𝑡) = 𝑞(𝑡) 𝑝(𝑥)                                              (27) 
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where, q(t) corresponding to temporal function and p(x) corresponds to spatial function or 

linear vibration mode shape. Substituting Eq. (27) into force and moment resultant 

equations, Eq. (25), (26) and re-substituting those into the equation of motion, Eq. (16), we 

can obtain the nonlinear equation: 

 �̈� + (𝛽2)𝑞 + (𝛾)𝑞3 + (𝛿)𝑞2�̇� + (𝛼)�̇� = 𝐹                                             (28) 

where, 

𝛽2 =  
𝐷11

∆
∫ 𝑝𝐼𝑉𝑑𝑥

𝐿

0
                                              (29) 

                                                 𝛾 =  −
𝐴11

2∆
∫ 𝑝′′𝑑𝑥

𝐿

0
∫ (𝑝′)2𝑑𝑥

𝐿

0
                                            (30) 

                                                𝛿 =  −
𝜇

2∆
∫ 𝑝′′𝑑𝑥

𝐿

0
∫ (𝑝′)2𝑑𝑥

𝐿

0
                                            (31) 

𝛼 =  
𝜇′′

∆
∫ 𝑝𝐼𝑉𝑑𝑥

𝐿

0
                                              (32) 

∆ = 𝐼0 ∫ (𝑝)𝑑𝑥
𝐿

0
                                               (33) 

Eq. (28) can be called as the modified Duffing equation as a result of the Kelvin-Voigt 

damping term. Eq. (29) represents the linear frequency. Eq. (30) is the nonlinear parameter 

arising from geometrical nonlinearity. Eq. (31) and Eq. (32) represent damping terms 

arising from the Kelvin-Voigt model. 

The modified Duffing equation can be solved by various perturbation techniques, but in 

this work, the method of multiple time scales (MTS) [33] will be used. Two time scales are 

introduced which give rise to: 

𝑞(𝑡, 𝜖) = 𝑞0(𝑇0, 𝑇1) +  𝜖𝑞1(𝑇0, 𝑇1)+ ..                                             (34) 

where T0 = t and T1 = ϵt. This leads to the transformation of the derivatives of the time 

scales 
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𝑑

𝑑𝑡
= 𝐷0 + 𝜖𝐷1                                                        (35) 

                                                           
𝑑2

𝑑𝑡2 = 𝐷0
2 + 2𝜖𝐷0𝐷1+..                                          (36) 

This approach assumes small displacements along with small nonlinearity. It also assumes 

that the nonlinearity, excitation, and damping are all on the same scale ϵ. Hence, with 

external harmonic excitation, the modified Duffing equation is given by: 

                   �̈� + (𝛽2)𝑞 + 𝜖(𝛾)𝑞3 + 𝜖(𝛿)𝑞2�̇� + 𝜖(𝛼)�̇� = 𝜖𝐹𝑠𝑖𝑛(𝜔𝑡)                             (37) 

Substituting Eq. (35) and (36) into (37) and separating the coefficients of ϵ0 and ϵ1 terms; 

                                                        𝐷0
2𝑞0 + 𝛽2𝑞0 = 0                                                      (38) 

    2𝐷0𝐷1𝑞0 + 𝐷0
2𝑞1 + 𝛽2𝑞1 + 𝛾𝑞0

3 + 𝐷0𝛿𝑞0
3 + 𝛼𝑞0𝐷0 = 𝐹𝑠𝑖𝑛(𝑤𝑡)                               (39) 

The general solution of Eq. (38) is given by: 

                                  𝑞0 = 𝐴(𝑇1)𝑒𝑖𝛽𝑇0 + �̅�(𝑇1)𝑒−𝑖𝛽𝑇0                                                     (40) 

Substituting Eq. (40) into (39) and isolating the secular terms (𝑒𝑖𝛽𝑇0) which must vanish 

leads us to: 

                         2𝐴′(𝑖𝛽) + 3𝐴2�̅� + 3𝐴2�̅�𝛿(𝑖𝛽) + 𝛼𝐴(𝑖𝛽) =
𝐹

2
𝑒𝑖𝜔𝑇0                              (41) 

Introducing a detuning parameter “” defined as: 

                                                           𝜔 =  𝛽 + 𝜖𝜎                                                           (42) 

Expressing A in polar form and introducing a new parameter : 

                                                           𝜑 =  𝜎𝑇1 − ∆                                                          (43) 

                                                          𝐴 =  
1

2
𝑎𝑒𝑖∆                                                             (44) 

Substituting Eq. (42-44) into (41) and separating the real and imaginary parts:  
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                                            𝑎′ =
1

2
Fsin(𝜑) −

3

8
𝑎3𝛿 −

1

2
𝛼𝑎                                                  (45) 

                                            𝑎𝜑′ =
1

2
Fcos(𝜑) −

3

8

𝑎3

𝛽
𝛾 + 𝑎𝜎                                                 (46) 

At steady state, the terms a’ and a’ will vanish. Hence by squaring and adding Eq. (45) 

and (46), the frequency response equation can be obtained. 

                                            (
3

8
𝑎3𝛿 +

1

2
𝛼𝑎)

2

+ (𝑎𝜎 −
3

8

𝑎3

𝛽
𝛾)

2

=  
𝐹2

4𝛽2                                (47) 

6.1 Theoretical Parameters 

It can be noticed from Eq. (24) that the Kelvin-Voigt damping terms represent an 

equivalent damping for a given laminate sequence. The damping term 휂 in Kelvin-Voigt 

model can be rewritten in terms of damping ratio by substituting 휂 as: 

                                            휂 = 휁√(
𝐶11𝐼𝑜𝐿5

𝐼𝑦𝑦
⁄ )                                                                  (48) 

where, 휁 is the damping ratio and Iyy is the area moment of inertia given by bh3/12.  

 By substituting Eq. (48) in Eq. (32), equivalent laminate damping which includes the 

damping characteristics of all lamina can be obtained. The first term on the left hand side 

of Eq. (47) collectively represents this equivalent damping term. By solving Eq. (47) it can 

be observed that contribution from  is minimal compared to the contribution from . This 

leads to the observation that Eq. (47) is very similar to the frequency-response equation for 

the Duffing model as shown by Pasqualini et al. [23] and others. 

Since unidirectional laminas are transversely isotropic in nature, their damping 

characteristics are also transversely isotropic. The on-axis damping matrix is given by: 
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                                            [휁𝐿] = [
휁11 0 0
0 휁22 0
0 0 휁66

]                                                               (49) 

The off-axis damping matrix for individual lamina can be calculated using: 

                                            [휁𝐶] = [𝑅]𝑇[휁𝐿][𝑅−1]𝑇                                                                (50) 

where, R is the rotation or transformation matrix is given by[34] : 

                  [𝑅] = [
𝑐𝑜𝑠2휃 𝑠𝑖𝑛2휃 −2𝑠𝑖𝑛휃𝑐𝑜𝑠휃
𝑠𝑖𝑛2휃 𝑐𝑜𝑠2휃 2𝑠𝑖𝑛휃𝑐𝑜𝑠휃

𝑠𝑖𝑛휃𝑐𝑜𝑠휃 −𝑠𝑖𝑛휃𝑐𝑜𝑠휃 𝑐𝑜𝑠2휃 − 𝑠𝑖𝑛2휃

]                                           (51) 

The global and local coordinates are related through the angle of the lamina, 휃. 

Using Eq. (50) in Eq. (48) and substituting in Eq. (24) gives the laminate damping which 

includes the damping characteristic of each lamina. Substituting this into Eq. (32) gives the 

damping term in the Duffing equation. Similar approach is used to determine the theoretical 

nonlinearity parameter for different laminate sequences and fiber orientations. 

The sequences considered for this study were: [0], [45], [90], [0/90], [90/0], [45/-

45] and [0/45/-45/90]. All laminates were 30 layers, 4 mm thick except for the quasi-

isotropic which was 48 layers and 6mm thick. The nonlinear parameter and damping ratio 

were calculated from properties listed in Table 1. The damping matrix given in Eq. (49) 

has to be determined experimentally, which is beyond the scope of this study. Hence for 

relative measure, the values given by Youzera et. al. [30] have been used. The nonlinear 

parameter and damping values calculated from Eq. (30) and (32) for various laminate 

sequences have been listed in Table 2.  
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TABLE 1: Material properties of lamina used for numerical and analytical models. 

Properties of Laminate Value 

Ex 189 GPa 

Ey 6.08 GPa 

νxy .3 

Gxy 2.72 GPa 

ρ 1580 Kg/m3 

𝜻 0.00255 

𝜻 0.00425 

𝜻 0.0066 

 

6.2 Experiments 

The results obtained from NRS testing of unidirectional and MLM were compared 

with theoretical predictions. Experimental damping ratio was determined for each sequence 

using the expression:  

𝑀𝐷𝑅 =  
𝑓ℎ𝑤

2𝑓0
                                                                   (52) 

where, fhw is the frequency width at half the peak amplitude of the resonant peak f0.  

Using an approach similar to Pasqualini et al. [23], the nonlinear parameter was extracted 

from the experimental results using the expression: 

𝑓𝑝 =
3𝐿2𝛾𝑒

16𝜋3𝛽
휀2 +

𝛽

2𝜋
                                               (53) 

where, fp is the nonlinear frequency at peak amplitude, L is the length of the specimen,  is 

the linear frequency,  is the strain and e is the experimental nonlinear parameter that is to 

be determined. It can be observed from Eq. (47) that the nonlinearity parameter and 

frequency response equation can only describe classical nonlinearity and not the non-

classical nonlinearity. Since NCNL materials also exhibit classical nonlinearity at low 

strain amplitudes as shown in Chapter III, the data in the low strain range, i.e. the classical 
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zone, was used to determine the classical nonlinear parameter (CNP). The experimental 

nonlinear parameter extracted for different laminate sequences have been listed in Table 2 

along with the experimentally determined damping ratio using Eq. (52).   

This experimental CNP represents an equivalent parameter which includes several effects 

which have not been included in determining the theoretical CNP as mentioned earlier.  

6.3 Comparison Between Experiment and Theory 

 

Figure 18: The nonlinearity and damping parameters calculated theoretically and determined 

experimentally have been plotted together. Although the values between experimental and 

theoretical are off by factors of 4-5 orders of magnitude, the trend between different laminate 

sequences is preserved.  
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The values of CNP and loss factors obtained experimentally and theoretically from 

Table 2, were plotted together as shown in Figure 18. It can be immediately observed that 

the theoretical nonlinear parameter values are 4-5 orders of magnitude smaller than the 

experimentally obtained values. As mentioned earlier the 1D model only considers material 

geometric nonlinearities and does not consider physical effects such as fiber-matrix 

interface, inter-lamina effects etc. which can have a much higher contribution to the 

nonlinear response. From Figure 18, it can be observed that [0] exhibits a higher nonlinear 

parameter compared to [45] and [90]. MLM laminates have a higher nonlinearity parameter 

than UD laminates. Comparing the theoretically obtained and experimentally extracted 

nonlinear parameters, it can be observed that the trend within UD and MLM is preserved 

in experiment and theory. While experimental nonlinear parameter for [0/90] is higher than 

[0], the theoretical value of [0/90] is lower than [0]. This difference between experiment 

and theory can arise from various factors including discounting any inter-lamina effects, 

and other physical effects as stated earlier. Although quantitatively the values do not match, 

qualitatively a good correlation can be observed including predicting the response for 

different laminate sequences.   

The damping ratios calculated theoretically and determined experimentally show a 

much more promising result in terms of the trend in Figure 18. A much closer trend can be 

obtained by using a different laminate damping model such as the Ni/Adams equation [35]. 

The current damping model works well in the case of orthotropic laminates where only the 

diagonal elements exists in Eq. (49). But for a monoclinic case, the entire matrix in Eq. 

(49) will be filled. Since [45] is monoclinic, the effect of 휁16 and 휁26 has to be accounted 

for in the equivalent damping term.  
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As mentioned earlier, comparing the experimental and analytical nonlinearity 

parameters would help in identifying the difference between the values due to discounting 

several factors. The 4-5 orders of magnitude difference experiment and theoretical values 

may be attributed to some of the physical effects described earlier which were not 

accounted for in the model. 

TABLE 2: Nonlinear parameter and damping ratio calculated theoretically and measured 

experimentally for different laminate sequences. 

Laminate 

Sequence 

Nonlinear Parameter Damping Ratio 

Theoretical Experimental Theoretical Experimental 

[0] -1.73e14 -3.00e18 .00255 0.0103 

[45] -4.62e13 -3.40e17 0.00457 0.03125 

[90] -5.58e12 -2.02e17 0.00425 0.03215 

[0/90] -9.50e13 -8.23e18 0.00259 0.01075 

[90/0] -8.39e13 -6.99e18 0.00261 0.0145 

[45/-45] -4.62e13 -5.87e18 0.00405 0.02 

[0/45/-45/90] -6.78e13 -7.80e18 0.00293 0.0092 

 

 

Using the theoretical values for nonlinearity parameter and damping ratio from 

Table 2, Eq. (47) was solved to obtain the resonance curves for increasing levels of 

excitation as shown in Figure 19(a). As the excitation amplitude increases, the frequency 

starts decreasing, which is consistent with the experimental observation. The shift in the 

resonant frequency was calculated by: f = f – f0 where f is the resonant frequency for a 

given excitation and f0 is the resonant frequency at lowest amplitude excitation. Since 

different laminate sequences have different resonant frequency, the frequency shift was 

normalized to the lowest amplitude resonant frequency f0. 
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Figure 19: (a) Theoretical resonance curves for various excitation amplitudes simulated from 

frequency-response equation. (b) The frequency shifts normalized to resonant frequency calculated 

from the resonance curves from (a) for the three orientation have been plotted against amplitude of 

vibration normalized to length, “L”. 

 

The frequency shift was plotted against a/L as shown in Figure 19(b), where a is 

the vibration amplitude normalized to the length of the sample L. Significant difference 

between [0] and [90] can be noticed from the frequency shift plot.  

The comparisons between experimental and theoretical frequency shifts cannot be 

carried out since the value of the nonlinear parameter calculated theoretically is 4-5 orders 

of magnitude lower than the experimentally determined value. Hence an approach similar 

to Pasqualini et al. was used by extracting the parameter values from experiment in the 

classical zone using the model equations, i.e. Eq. (52) and Eq. (53). These were used in the 

frequency-response equation given by Eq. (47) to generate the semi-analytical 

experimental resonance curve. The data obtained using this technique would help in 

verifying if the nonlinear model presented here is able to capture the physical phenomenon 

as observed in the experiments in the classical zone. For the comparison, only data from 

[0], [45] and [90] have been considered.  
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The experimental and model predicted frequency shifts for different laminate 

sequences have been plotted in Figure 20(a), (b) and (c). From Figure 20(a), it can be 

observed that the analytical data for [0] does not match very well with the experimentally 

obtained data. This can be due to lack of measurement sensitivities at very low amplitudes 

coupled with other nonlinear contributions from sources not considered in this work as 

described in Chapter III. But a better fit for [45] can be observed from Figure 20(b). 

Similarly [90] exhibits a good agreement between experiment and the model prediction as 

can be seen in Figure 20(c).  

 

 

Figure 20: The frequency shift observed experimentally compared to the theoretical predictions 

from frequency-response equation for: (a) 00 laminate, (b) 450 laminate, (c) 900 laminate. The solid 

line represents the analytical solution and points represent the experimental data.  
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Several researchers [20, 36-38] have tried to create nonlinear models which 

captures the non-classical nonlinear nature of certain materials. But most of them are 

phenomenological models, not physical models. In an effort to develop such a model, the 

current study used a viscoelastic formulation to capture the non-classical nature. Using 

geometric nonlinearity and linear viscoelasticity, the modified Duffing equation was 

obtained. It is well known that three parameters namely damping, linear frequency, and 

nonlinearity parameter control the frequency response equation. The viscoelastic term in 

the Kelvin-Voigt model does not contribute to nonlinearity, rather the contribution comes 

directly in the form of stiffness.  

The importance of this work lies in the ability of the model to capture the physical 

effect that was observed experimentally. Although pure theoretical CNP values cannot be 

directly compared to experiment, qualitatively a good agreement can be observed. 

Furthermore, by substituting the experimental CNP values into the model equation, a good 

agreement between experimental data and model predictions was observed.  

The geometric nonlinearity considered in this work can only simulate the classic 

nonlinear zone as can be seen in Figure 20. The 3rd strain zone with non-classical 

nonlinearity exhibiting linear frequency shifts was not observed using the model used in 

this study. This suggests that using a linear stress-strain relationship with linear Kelvin-

Voigt damping term will not simulate the non-classical nonlinear nature of the composites 

and will only simulate the classical nonlinearity. A nonlinear Kelvin-Voigt damping model 

will be reserved for future work. Similarly a nonlinear stress-strain relationship coupled 

with nonlinear strain-displacement relationship will be explored as a part of future work.  
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CHAPTER VII 

DISCUSSION AND CONCLUSION 

7.1 Discussions 

To observer the influence of fiber type on CNP, the nonlinear parameter for 

continuous and woven fabric from Table 3 was plotted into a column plot as shown in 

Figure 21. Only experimental values for woven laminate could be obtained since 

theoretically calculating the nonlinear parameter from woven fabric is beyond the scope of 

this work. The WCP has a lower nonlinear value compared to the [0/90]C, while [45/-45]W 

exhibits a higher nonlinear value compared to [45/-45]C. To interpret and explain this trend 

would require a physical model considering contributions from many nonlinear sources.  

 

Figure 21: A comparison of the experimental nonlinearity parameter extracted from Eq. (51) 

between continuous and woven fabric. A higher level of nonlinearity can be observed for the 

continuous compared to woven for [0/90], whereas the [45/-45]W shows slightly higher 

nonlinearity than the continuous fabric. 
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TABLE 3: Nonlinear parameters extracted from experiment comparing continuous and 

woven fabric. 

Laminate Sequence Continuous fabric Woven fabric 

[0/90] -8.225e18 -5.004e18 (WCP) 

[90/0] -6.98e18 -5.004e18 (WCP) 

[45/-45] -5.867e18 -6.605e18 

 

For material characterization and NDE of composites, both the classical nonlinear 

and non-classical nonlinear parameters are important. The non-classical nonlinear 

parameter can be calculated as shown by Van Den Abelee [10]: 

𝐶1 =

(𝑓0−𝑓)
𝑓0

⁄

∆𝜖
                                               (54) 

where, f is the resonance frequency at strain amplitude , and f0 is the low amplitude 

resonance frequency. The non-classical parameter C1 calculated from Eq. (54) was 

compared between different laminate sequences as shown in Figure 22. 

 

Figure 22: The experimental non-classical nonlinearity parameter C1 calculated from Eq. (54) for 

different laminate sequences have been compared.   
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Consistent with the results observed earlier in Chapter 2 & 3, 900 exhibits highest 

C1 values compared to 00, 450 and MLM. With decrease in anisotropy, the C1 values for 

MLM reduces below the value for 00 with QIS exhibiting the lowest C1 value. The C1 

values for continuous and woven fabric was compared in Figure 23. The WCP laminate 

has lower C1 value compared to [0/90]C and [90/0]C, while the [45/-45]W is slightly lower 

than [45/-45]C.  

 

Figure 23: The experimental non-classical nonlinearity parameter C1 calculated from Eq. (54) for 

continuous and woven fabrics have been compared.   

 

The knowledge of C1 parameter is vital for NDE of composite laminates using 

NEWS techniques. The large difference in baseline C1 value between 900 and QIS 

highlights the need for a thorough baseline study for the given laminate orientation, since 

a large baseline nonlinear response can easily be mistaken for damaged state.  

Mode selection can also alter the results significantly, i.e. results can vary between 

a flexural mode and a torsional mode. In the current study only the fundamental flexural 
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mode was used to perform the NRS tests. To understand the influence of the chosen mode, 

a linear finite element modal analysis was performed on 00 laminate to find the higher order 

shear or torsional mode. NRS experiments were repeated for the torsional mode and the 

results are shown in Figure 24. The fundamental bending mode was observed at 974 Hz 

while the torsional mode could be observed at 4345 Hz. The bending mode shows a much 

smaller frequency shift compared to the torsional mode even at lower velocity as seen 

Figure 24. The properties along the length of the sample will influence the flexural mode, 

whereas the shear properties will influence the torsional mode. The higher NCNL response 

from a shear mode, suggests that shear or sliding action has a bigger role to play in the 

contributions towards NCNL behavior. 

 

Figure 24: Influence of mode on inherent nonlinearity. Mode at 947 Hz is the first order bending 

mode, while mode at 4345 Hz is a shear or torsional mode. The torsional mode exhibits much 

higher nonlinearities at lower excitation velocities compared to the bending mode. 
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7.2 Summary and Conclusion 

The current work focused on investigating the influence of fiber orientation on 

inherent acoustic nonlinearity of composites. The initial hypothesis was that fiber 

reinforced composites which can be multi-material, multi-layered structures may act like 

rock and other geomaterials in terms of nonlinear response, i.e. non-classical nonlinear in 

nature. NRS tests were performed by collecting resonant frequency sweeps for increasing 

excitation voltages. Based on the frequency shifts in the various strain zones, the responses 

were found to be similar to that of NCNL materials. It was observed that 900 had the highest 

shift in frequency, followed by 450 and 00.  A linear increase in MDR was observed with 

900 increasing the highest followed by 450 and 00 consistent with the frequency shift. 

Similarly the 3rd harmonic scaled quadratic as a function of the fundamental. These results 

show that composites demonstrate a NCNL nature and reveal how the fiber orientation can 

affect the non-classical nonlinear response of composites.  

NRS tests were carried out on rectangular coupons fabricated with different 

laminate sequences; [0/90], [90/0], [45/-45], [0,45/-45/90] and different fabric type; 

continuous and woven fabric. The observed nonlinear response was compared to nonlinear 

response from continuous UD fabric which showed that MLM reduces the non-classical 

nonlinear contribution.  

To explore the source of nonlinearity, a nonlinear viscoelastic model based on 

geometric nonlinearity and Kelvin-Voigt damping term was developed. A forced vibration 

analysis was performed which resulted in solving the modified Duffing equation to obtain 

the frequency-response equation. Good agreement in trend was observed between the 

theoretically obtained nonlinear parameter and damping values. This is a very simple first 
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order model with no shear or rotational effects, but a higher order model using third or 

fourth order shear deformation theory might be able to match the results and trend better. 

The experimental results obtained for woven fabric was compared to continuous fabric 

which showed that classical nonlinearity is lower in woven composite compared to 

continuous fabric composites. Theoretical resonance curves show that a quadratic shift in 

frequency can be captured using the model. A semi-analytical experiment model was 

compared with the experimentally obtained results, which showed a nominally good 

agreement. Modeling and understanding the nonlinear response of composites is important 

due to the fact that composites are anisotropic and cannot be generalized. Each laminate 

sequence exhibits a certain level of nonlinearity different from other sequences, and hence 

generalization of nonlinearity is not possible. Modeling the nonlinearity based on laminate 

sequence will help in characterizing the baseline response of composites before applying 

any type of nondestructive evaluation tool for inspection of flaws or defects.  

Furthermore, the non-classical nonlinear parameter was also determined for all 

laminates. It was observed that the laminates which exhibited highest classical nonlinearity, 

exhibited least non-classical nonlinearity and vice-versa. This suggests that a classical 

nonlinear strain zone exists which is described by the classical nonlinear parameter and a 

non-classical strain zone with hysteresis, conditioning etc. exists which dominates over 

classical nonlinearity. Woven fabric exhibited lower non-classical nonlinearity compared 

to continuous fabric. Explaining these trends require physical models with the ability to 

capture small nonlinear sources like crazing, fiber-fiber interaction, inter-lamina effects 

etc.  
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The importance of the study lies in characterizing the baseline nonlinear response 

of composites, which is very vital for any nonlinear NDE of composites. By studying the 

effect of fiber orientation, laminate sequence and fabric type, the baseline study can be 

extended for any combinations of these making it easier to characterize and inspect 

composite structures. The model will help in determining the baseline nonlinearity of a 

certain laminate sequence before any NDE has to be performed which, will help to quantify 

the baseline nonlinearity better.  
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APPENDIX  

NONLINEAR MODEL II 

 

This section presents a work in progress for modeling nonlinear response of 

laminate beam where the source of nonlinearity is the stress-strain relationship instead of 

geometric nonlinearity as shown in this work.  

A nonlinear stress-strain relationship was described as: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙휀𝑘𝑙 + 𝐶𝑖𝑗𝑘𝑙𝑚𝑛휀𝑘𝑙휀𝑚𝑛                                              (55) 

where, 𝐶𝑖𝑗𝑘𝑙 represents the seconds order elastic constants, and 𝐶𝑖𝑗𝑘𝑙𝑚𝑛 represents the third 

order elastic constants. For an orthotropic material, there are 9 second order elastic 

constants and 20 third order constants. Using Voigt notation, 𝐶𝑖𝑗𝑘𝑙 and 𝐶𝑖𝑗𝑘𝑙 can be 

rewritten as 𝐶𝑖𝑗 and 𝐶𝑖𝑗𝑘. Since this is 1D case, only C111 and C11 will influence the results. 

A linear strain-displacement relationship was chosen to discount for any geometric 

nonlinearities.  

휀𝑥𝑥 =  
𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤0

𝜕𝑥2
                                              (56) 

Using a similar approach to Chapter 4, the force and moment resultants can be written as: 

𝑁𝑥𝑥 =  𝐴11(𝑢0
′ ) − 𝐵11𝑤0

′′ +  𝐴111(𝑢0
′ )2 + 𝐷111(𝑤0

′′)2 − 2𝐵111𝑢0
′ 𝑤0

′′                          (57) 

𝑀𝑥𝑥 =  𝐵11(𝑢0
′ ) − 𝐷11𝑤0

′′ +  𝐵111(𝑢0
′ )2 + 𝐸111(𝑤0

′′)2 − 2𝐷111𝑢0
′ 𝑤0

′′                          (58) 
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where, 

                                            (𝐴11, 𝐵11, 𝐷11) =  ∫ 𝐶11(1, 𝑧, 𝑧2)𝑑𝑧
ℎ 2⁄

−ℎ 2⁄
                                    (59) 

                    (𝐴111, 𝐵111, 𝐷111, 𝐸111) =  ∫ 𝐶111(1, 𝑧, 𝑧2, 𝑧3)𝑑𝑧
ℎ 2⁄

−ℎ 2⁄
                                    (60) 

Using boundary conditions, Eq. (57) can be writing in terms of the transverse 

displacements alone. Further, substituting Eq. (57) and Eq. (58) into the equation of 

motion, Eq. (16), and expressing the transverse displacement as W(x,t) = q(t) p(x), the 

modified undamped Duffing equation can be obtained.  

�̈� + (𝜔2)𝑞 + (Γ)𝑞3 + (Ψ)𝑞2 = 𝐹                                             (61) 

where, 

𝜔2 =  
𝐷11

∆
∫ 𝑝𝐼𝑉𝑑𝑥

𝐿

0
                                              (62) 

                                                 Γ =  −
𝐷111

∆
∫ (𝑝′′)3𝑑𝑥

𝐿

0
                                            (63) 

                                             Ψ =  
𝐸111

∆
(∫ 𝑝′′𝑝𝐼𝑉𝑑𝑥

𝐿

0
+ ∫ 𝑝′′′𝑑𝑥

𝐿

0
)                                       (64) 

∆ = 𝐼0 ∫ (𝑚)𝑑𝑥
𝐿

0
                                               (65) 

Eq. (61) is the modified Duffing equation as a result of nonlinear stress strain relationship. 

Eq. (62) represents the linear frequency, Eq. (63) is the nonlinear parameter arising from 

third order elastic constants.  

Eq. (61) can be solved using perturbation technique as shown earlier to obtain the solution: 

                                            (𝑎𝜎 −
3

8

𝑎3

𝜔
Γ)

2

=  
𝐹2

4𝜔2
                                                           (66) 
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This solution is similar to the solution of the undamped Duffing equation, with the 

nonlinearity source being the third order elastic constants.  Nonlinearity controlled by the 

third order elastic constants would lead one to believe that the gap between experimental 

and theoretical nonlinearity parameter would be brought closer at least by an order of 

magnitude, but on the contrary the value of Γ for [0] is much smaller than 𝛾, i.e. 9.6e8, 

compared to 1.73e14 from geometric nonlinearities. The third order constant used to 

calculate Γ was taken from Wu et. al.[39] as -829 GPa. Although this model suggests that 

geometric nonlinearities can contribute to a higher nonlinear response, a combined model 

with geometric nonlinearity and material nonlinearity might be able explain part of the 

phenomenon. This will be reserved for future work.  
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