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ABSTRACT

The objective of this dissertation is to use second-order cone programming (SOCP)

for autonomous trajectory planning of optimal control problems arisen from aerospace

applications. Rendezvous and proximity operations (RPO) of spacecraft in any general

orbit include various constraints on acquisition of docking axis point, approach corri-

dor, plume impingement inhibition, relative velocity, and rate of change of thrust. By

a lossless relaxation technique, this highly constrained RPO problem (non-convex) is

transformed into a relaxed problem the solution of which is proven to be the same as

that of the original problem. Then a novel successive approximation method, forming

a sequence of subproblems with linear and time-varying dynamics, is applied to solve

the relaxed problem. Each subproblem is a SOCP problem which can be solved by

state-of-the-art primal-dual interior point method. Constraints on collision avoidance,

or more generally concave inequality state constraints, from any aerospace application

also make a problem non-convex. A successive linearization method is employed to lin-

earize the concave inequality constraints. It is proven that the successive solutions from

this method globally converge to the solution of the original problem and the converged

solution has no conservativeness. Further non-convex constraints include nonlinear ter-

minal constraints which are handled by first approximated with first-order expansions,

and then compensated with second-order corrections to improve the robustness of the

approach. The effectiveness of the methodology proposed in this dissertation is sup-

ported by various applications in highly constrained RPO, finite-thrust orbital transfers,

and optimal launch ascent.
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CHAPTER 1. INTRODUCTION

1.1 Background

Orbital rendezvous and docking becomes more and more important as human ex-

ploration in space continues to increase. The history shows that the orbital rendezvous

was developed in two diverged ways, which are the manual strategy and the automated

methodology leaded by the United States and the Russian space programs respectively

[1]. Since the ground support is impractical for time-critical missions, crew intervention

is unavailable in spacecraft with small size, and sophisticated cooperation does not exist

between vehicles when the target object is malfunctioning or uncooperative, autonomous

trajectory planning , which is the process of planning the trajectory on-board without the

involvement of ground support, crew on board, and complicated communication between

vehicles, is significant for current and future missions. The purpose of this dissertation is

to develop potential real-time algorithms for autonomous trajectory planning in various

kinds of space missions by using convex optimization which can be solved very reliably

and efficiently by interior-point methods.

First, for the mission of rendezvous and proximity operations (RPO) between a chaser

spacecraft and a target spacecraft, which can be found in Refs. [1–4] about its history

and related technologies, the majority of the present technology is based on the Clohessy-

Wiltshire (CW) equations [5] having a set of linear and time-variant differential equa-

tions, derived by assuming that the distance between the chaser and the target is close

and the target is in a circular orbit. The CW equations have an analytic solution which
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provides a convenient way for terminal rendezvous. When the target is in any Keplerian

orbit, linearized and time varying equations can be obtained to analyze the fuel-optimal

rendezvous [6]. In addition, state transition matrix is available for the equations with

application to terminal rendezvous [7, 8]. Nevertheless, the gap in the knowledge is that

those methods are all based on the linearized model which becomes inaccurate or even

invalid when the relative distance is not sufficient small. More importantly, they are not

able to incorporate various kinds of constraints that are necessary in practice [9], such

as those on approach corridor, hold points, plume impingement inhibition and relative

velocity [10].

Second, consideration of perturbations is practically important for space missions

since any spacecraft is subject to a variety of perturbations such as Earth gravity har-

monics, atmospheric drag, third-body attractions and solar radiation pressure [11, 12].

For circular reference orbit, a set of linearized equations, incorporating the effect of J2

perturbation, were developed in Ref. [13] for formation flying, which were also applied in

studying the rendezvous maneuver for multiple spacecraft with consideration to the J2

perturbation [14]. However, a general treatment to the perturbations, without lineariza-

tion, is not available in the literature.

Another critical issue related to space missions is collision avoidance which ensures

the safety of a spacecraft and its surrounding environment. For example, for the phase

of proximity operations in the RPO problem, it is significant for the chaser to be out-

side of a keep-out-zone centered at the target to avoid possible collision with the target.

The constraint from collision avoidance is challenging because it is a non-convex con-

straint. For polygonal obstacle avoidance with any number of sides, Ref. [15] proposed

using a set of linear inequality equations with binary variables to represent the collision

avoidance constraint. More specifically, ideas from Ref. [15] can be applied to approxi-

mate circular keep-out-zone avoidance with the appropriate number of linear equations
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including binary variables, as shown in Fig. 1.1. At each discrete time point, only one

linear inequality constraint in enforced, or the vehicle has to be on the outer side of at

least one of those dashed lines, which is achieved by using one binary variable in each

linear equation. If a large number of discretization points are needed for a problem

in hand and at each time point a polygon with a sufficient number of sides are used

to approximate the original keep-out-zone, the large number of binary variables would

dramatically increase the computation cost. This is meliorated by using the time-step

grouping technique in Ref. [15] to reduce the number of binary variables, even though it

usually adds conservativeness to the original constraint.

Figure 1.1 Collision avoidance constraint approximated by a set of linear equations with
binary variables.

To avoid using the binary variables, an alternative is to approximate the keep-out-

zone with a sequence of rotated tangent lines as in Refs. [16, 17], which is illustrated in

Fig. 1.2. At each discrete time, only one linear inequality equation is employed, which

excludes the use of binary variables and decreases the number of constraints to a large
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Figure 1.2 Collision avoidance constraint approximated by a series of rotated linear
equations.

degree. This method requires to choose the location of the first tangent line and the

rotation speed. Refs. [16, 17] propose to run a problem for multiple times over a range of

different locations for the first line to find the best value. In addition, the rotation speed

is determined to let the line make a full rotation for an orbital period [16]. Unfortunately,

what makes the best value for the first tangent line is unclear and the constant rotation

speed may result in convervativeness to the original constraint or even make a feasible

problem to have infeasible solutions. For keep-out zone with other shapes such as ellipse

or ellipsoid, it is even more difficult to choose the appropriate rotation speed.

Finally, space missions are usually formulated as optimal control problems with typ-

ical linear terminal constraints on the final position and velocity, but often nonlinear

terminal constraints are necessities for a majority of the practical space missions, even

though they make the problems to be non-convex and more difficult to solve. When the

optimal control problems are discretized to nonlinear programming problems, the non-
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linear terminal constraints are converted into nonlinear equality equations. A popular

method to deal with those nonlinear constraints is the well-known sequential quadratic

programming (SQP) method [18, 19] which linearizes the nonlinear constraints and in-

cludes their second-order (curvature) properties in the objective function. Consequently,

a sequence of quadratic subproblems can then be solved by active-set methods discussed

in details in Ref. [19].

For all the problems discussed above, they may have nonlinear dynamics, nonlin-

ear convex constraints, and nonlinear non-convex constraints, which are challenging for

most algorithms since they are non-convex optimization problems. In Ref. [20] a lossless

relaxation method was applied to convexify non-convex control constraints for a class

of optimal control problems. Similar ideas were used in Ref. [21] for convexification of

the plume impingement inhibition constraints (or thrust direction constraints) which are

non-convex in nature. The driving force behind it is that convex optimization problems

can be reliably and efficiently solved by interior-point methods, while general nonlinear

optimization problems are usually surprising difficult to solve [22]. Second-order cone

programming (SOCP) problems, having a linear objective function and constraints being

intersection of an affine set and the Cartesian product of second-order cones, are convex

optimization problems and have a variety of applications [23, 24]. Particularly, planetary

soft landing problems such as Mars landing can be efficiently dealt with SOCP based

methodology [20, 21, 25, 26]. Primal-dual interior point methods (IPM) have been de-

veloped for SOCP [27, 28], and existing software capable solving SOCP include MOSEK

[28], CPLEX, SDPT3 [29], SeDuMi [30], etc. Nevertheless, the problems considered

in this dissertation are not in the form of SOCP and are highly constrained nonlinear

optimization problems. As opposed to the constant gravity used in planetary soft land-

ing, this dissertation considers inverse-square central force field, which is supposed to be

more difficult due to its nonlinearity. Moreover, the inclusion of multiple interior-point

constraints (or waypoints) in the RPO problems makes the already complex problems
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more challenging to analyze, while they are not present in the planetary soft landing

problems.

1.2 Research Contributions

Motivated by the gap in the knowledge for the problems discussed in the previous sec-

tion, this dissertation first studies the RPO problem which uses the nonlinear equations

of motion with inverse-square nonlinear gravity. Meanwhile, the problem includes all the

necessary practical constraints such as those on thrust magnitude, plume impingement

inhibition, approach corridor, hold points and relative velocity, which are not considered

all together in the literature. A relaxed problem is obtained from the original highly

constrained optimal control problem after convexifing the constraints on plume impinge-

ment inhibition and applying change of variables. Then this dissertation contributes to

rigorously prove the equivalence of solutions between the original RPO problem and its

relaxed problem. Due to the inverse-square gravitational field, nonlinearity still exists

in the relaxed problem, which is overcome by a novel successive approximation method.

Consequently, the relaxed problem is solved by a sequence of constrained subproblems

with linear and time-varying dynamics. Each subproblem becomes a SOCP problem

after discretization. This method is also capable of incorporating the perturbations from

Earth harmonics J2 and atmospheric drag without linearizing them.

For a problem with collision avoidance constraints, a successive linearization method

(SLM) is proposed in this dissertation to instead solve a sequence of SOCP subproblems

each of which avoids including binary variables in the constraints and at the same time

uses the least number of constraints as that in Refs. [16, 17]. However, the SLM adds no

conservativeness to the original constraints. More importantly, there are strong theoret-

ical results to employ the SLM, which are that the successive solutions globally converge

to at least a local solution for the original problem under mild assumptions. Meanwhile,
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the practical effectiveness of the method is supported by some application examples.

When the terminal constraints are nonlinear, using the SQP method makes the prob-

lem have linear constraints by linearizing the nonlinear terminal constraints but have

quadratic objective function which is not allowed in the SOCP based methodology. The

method used in this dissertation leaves the linear objective function unchanged, linearizes

the nonlinear terminal constraints, and adds second-order corrections to the linearized

constraints to improve the robustness of the approach, which is proved to be effective

and successful even for certain difficult problems through numerical demonstration. This

approach can also be applicable to optimal control problems with nonlinear state equa-

tions.

1.3 Dissertation Organization

Autonomous trajectory planning to practical problems in aerospace is discussed in

this dissertation which is organized as follows. Some preliminaries are given in Chapter

2, which are helpful and used in the following chapters. Chapter 3 presents a relaxation

method and successive approximation method to transform the original problem into a

series of SOCP problems for the rendezvous and proximity operations. Rigorous proof

has been given to show the equivalence of the original problem and the relaxed one.

Numerical results are provided to verify the convergence of the successive approximation

method. While there is no consideration for perturbations in Chapter 3, a more realistic

model is given in Chapter 4 to include the effects of perturbations from the gravity

harmonic J2 and atmospheric drag. The method discussed in Chapter 3 can efficiently

incorporate those perturbations and some numerical examples are presented to support

the analysis on the convergence of the algorithm. Other issues that are common in

aerospace such as collision avoidance and nonlinear terminal conditions are the topics

of Chapter 5 and Chapter 6 in which appropriate methods are developed to handle
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those constraints so that the problems needed to be solved are still in the frame of

SOCP, while the solutions obtained are for the original problems. With an attempt to

implement a self-written solver for SOCP to have more efficiency and flexibility such

as hot start, Chapter 7 describes the well-known primal-dual interior-point method in

details. Finally, the conclusion is given in Chapter 8.
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CHAPTER 2. PRELIMINARIES

2.1 Second-order Cone Programming

In this dissertation, the problems from the trajectory planning in aerospace are all

transformed into second-order cone programming (SOCP) problems by various tech-

niques. The SOCP problems, which are convex optimization problems, have linear ob-

jective subject to intersection of an affine set and product of quadratic (second order)

cones [23, 24]. Linear programming (LP), convex quadratically programming (QP) and

convex quadratically constrained quadratically programming (QCQP) problems can be

formulated as SOCP problems, while SOCP is a special case of semidefinite programming

(SDP) [31]. A standard form of the SOCP problem has the form of [28, 32]

(P ) minimize cTx (2.1)

subject to Ax = b (2.2)

x ∈ K (2.3)

where x ∈ Rn is the optimization variables. A ∈ Rm×n with m ≤ n and rank(A) = n,

c ∈ Rn and b ∈ Rm are all given. K is a convex set that is the Cartesian product of

linear cones K+ and quadratic cones Kq which are defined as follows:

Definition 2.1.1. Linear cone R+:

K+ = {x ∈ R : x ≥ 0}. (2.4)

Quadratic cone Kq:

Kq = {x ∈ Rn : xn ≥
√
x2

1 + . . .+ x2
n−1, xn ≥ 0}. (2.5)
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Rotated quadratic cone Kr:

Kr = {x ∈ Rn :
√

2xnxn−1 ≥
√
x2

1 + . . .+ x2
n−2, xn, xn−1 ≥ 0}. (2.6)

Then, K can be expressed as

K = Kn1 ×Kn2 × · · · ×Knr (2.7)

where each Kni represents either linear cone or quadratic cone, and ni is the dimension

of the cone. If ni = 1, Kni defines the linear cone. For ni ≥ 2, the expression “z ∈ Kni”

for a z ∈ Rni , or “z ≥Kni 0” means that

zni
≥
√
z2

1 + . . .+ z2
ni−1 (2.8)

Note that the rotated quadratic cone Kr is identical to the quadratic cone Kq under a

linear transformation T [32], i.e.,

x ∈ Kr ⇔ Tx ∈ Kq (2.9)

where

T =



1√
2

1√
2

0 · · · 0

1√
2
− 1√

2
0 · · · 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 · · · −1


(2.10)

In Eq. 2.8, the components of z are directly from x, i.e., z = [xl, . . . , xl+ni−1]. For

quadratic cones or second order cones in the form of Eq. 2.8, it is convenient to express

them in the form of Eq. 2.3. Nevertheless, when the second order cones are expressed as

‖Gix− hi‖ ≤ dTi x− ei (2.11)

where Gi ∈ R(ni−1)×N , hi ∈ Rni−1, ci ∈ RN , and ei ∈ R, one can use the following

notation to represent the cone [33]

Aix− bi ≥Kni 0 (or Aix− bi ∈ Kni) (2.12)
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where Ai ∈ Rni×N and bi ∈ Rni

[Ai; bi] =

 Gi hi

dTi ei

 (2.13)

Hence, a second order cone in the form of Eq. (2.11) is also identical to the quadratic

cone Kq under the linear transformation defined in Eq. (2.13).

The SOCP problem can be solved efficiently by primal-dual interior-point method

in polynomial time [28, 34, 35]. For more detains on SOCP and its applications, see

Refs. [23, 24]. Chapter 7 also gives a detailed discussion on the primal-dual interior-

point method in an attempt to implement a self-written solver for SOCP so that more

flexibility and efficiency could be obtained.

2.2 Primal-Dual Interior Point Method

Primal-dual interior point method (IPM) is quite reliable and efficient in solving

SOCP problems. It does not require user-supplied initial guess. In addition, it enjoys

polynomial time convergence, and it is able to solve a SOCP problem within a number

of iterations that are almost always in the range between 10 and 100. Moreover, by

exploiting problem structure [28], such as sparsity, the method can efficiently solve very

large problems with many thousands of variables and constraints. For SOCP problems

considered in this dissertation, which have thousands of variables and constraints, the

method can usually find the solutions in about one second. Finally, it is capable of

detecting the infeasibility of either the primal problem or the dual problem. Therefore,

for its high reliability and efficiency, the primal-dual IPM has the potential for on-board

optimization or embedded optimization.
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2.3 Coordinate Systems and Coordinate Transformations

In this dissertation, three coordinate systems are used, which are geocentric equato-

rial inertial coordinate system, perifocal coordinate system [36], and local vertical local

horizontal coordinate system. First, the definition of those coordinate systems are intro-

duced, then followed by the description of coordinate transformations among them.

2.3.1 Coordinate Systems

Figure 2.1 Geocentric-equatorial inertial coordinate system.

The Geocentric-Equatorial Inertial Coordinate System The geocentric equa-

torial inertial coordinate system (GEI) is an inertial frame which has its origin at the

Earth’s center and X-axis pointing in the vernal equinox direction. Z-axis points in the

direction of the North pole. Y-axis completes the right-handed system, which, together

with the X-axis, are all in the plane of equator, as shown in Fig. 2.1. Denote the unit

vectors along the X, Y and Z axes be I, J , and K, respectively.
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Figure 2.2 Perifocal coordinate system.

The Perifocal Coordinate System The perifocal coordinate system has the fun-

damental plane in the orbital plane, which is very convenient to describe the motion of

a satellite. In Fig. 2.2, the Xw-axis points toward the perigee, Yw-axis rotates 90 deg

from the Xw-axis in the direction of the orbital motion and lies in the orbital plane, and

Zw-axis completes the righ-handed system. Unit vectors in the direction of Xw, Yw and

Zw are P , Q and W respectively.

The Local Vertical Local Horizontal Coordinate System In the local vertical

local horizontal coordinate system (LVLH) centered at the satellite, shown in Fig. 2.3,

the z-axis pointing to the Earth center is known as the local-vertical axis or R-bar axis.

The x-axis is in the orbital plane of the satellite and perpendicular to the z-axis in the

direction of the orbital motion. The z-axis is also called the local-horizontal axis or V-

bar axis. The z-axis, or H-bar axis, completes a right-handed system. In this frame, the

x-axis, y-axis and z-axis have their corresponding unit vectors i, j and k respectively.
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Figure 2.3 Local vertical local horizontal coordinate system.

2.3.2 Coordinate Transformations

To find the transformation matrix between two different coordinates, successive rota-

tions about multiple axes can be used [36, 37]. Denote the transformation matrix from

the GEI coordinate to the perifocal coordinate be MP/G. First, refer to Fig. 2.4 for

classical elements of an orbit. Then, based on Fig. 2.4, the perifocal coordinate can be

formed by the following sequence of successive rotations from the GEI coordinate:

1. Rotate about the Z-axis with a positive angle Ω. Let X′-Y′-Z′ denote the axes for

the new intermediate frame;

2. Rotate about the X′-axis with a positive angle i to yield a new frame with axes

X′′-Y′′-Z′′;

3. Rotate about the Z′′-axis with a positive angle ω to get the perifocal coordinate

frame.

Hence the rotation sequence can be written as: Cz(Ω)→ Cx(i)→ Cz(ω) with [37]

Cz(Ω) =


cos(Ω) sin(Ω) 0

− sin(Ω) cos(Ω) 0

0 0 1

 (2.14)



15

Figure 2.4 Orbital elements.

Cx(i) =


1 0 0

0 cos(i) sin(i)

0 − sin(i) cos(i)

 (2.15)

Cz(ω) =


cos(ω) sin(ω) 0

− sin(ω) cos(ω) 0

0 0 1

 (2.16)

Then the transformation matrix MP/G is computed as follows

MP/G = Cz(ω)Cx(i)Cz(Ω) (2.17)

which implies that
P

Q

W

 = MP/G


I

J

K

 = Cz(ω)Cx(i)Cz(Ω)


I

J

K

 (2.18)
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If a given vector H = [Hx, Hy, Hz] is expressed in the perifocal coordinate system as

H = HxP +HyQ+HzW = [Hx Hy Hz]


P

Q

W

 (2.19)

Then by utilizing Eq. (2.18), in the GEI coordinate system H can be written as

H = [Hx Hy Hz]


P

Q

W

 = [Hx Hy Hz]M
P/G


I

J

K

 (2.20)

So H has coordinates [Hx Hy Hz]M
P/G in the GEI coordinate system.

On the other hand, if a vector F is first given in the GEI coordinate system and has

coordinates [Fx, Fy, Fz], or

F = FxI + FyJ + FzK = [Fx Fy Fz]


I

J

K

 (2.21)

Similarly, we have

F = [Fx Fy Fz][M
P/G]−1


P

Q

W

 (2.22)

where MP/G has the following property [37]

[MP/G]−1 = [MP/G]T = [Cz(Ω)]T [Cx(i)]
T [Cz(ω)]T (2.23)

In addition, the transformation matrix from the perifocal coordinate system to the GEI

coordinate system, if denoted as MG/P , satisfies

MG/P = [MP/G]−1 = [MP/G]T (2.24)

[MG/P ]T = [MG/P ]−1 (2.25)
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Next, Let ML/G denote the transformation matrix from the GEI coordinate system

to the LVLH coordinate system. Starting from the GEI coordinate system, we can obtain

the LVLH coordinate system by the following rotation sequence:

1. Rotate about the X-axis with a positive angle 3π
2

;

2. In the new frame with axes X′-Y′-Z′, rotate about the Y′-axis with a positive angle

(2π − Ω). The resulting frame has axes X′′-Y′′-Z′′;

3. Then, rotate about the X′′-axis with a positive angle i to generate the third

intermediate frame with axes X′′′-Y′′′-Z′′′;

4. Finally, rotate about the Y′′′-axis with a positive angle (3π
2
− ω − ν) to arrive at

the LVLH frame.

Each step gives a rotation matrix and they are given as follows:

Dx(
3π

2
) =


1 0 0

0 cos(3π
2

) sin(3π
2

)

0 − sin(3π
2

) cos(3π
2

)

 (2.26)

Dy(2π − Ω) =


cos(2π − Ω) 0 − sin(2π − Ω)

0 1 0

sin(2π − Ω) 0 cos(2π − Ω)

 (2.27)

Dx(i) =


1 0 0

0 cos(i) sin(i)

0 − sin(i) cos(i)

 (2.28)

Dy(
3π

2
− ω − ν) =


cos(3π

2
− ω − ν) 0 − sin(3π

2
− ω − ν)

0 1 0

sin(3π
2
− ω − ν) 0 cos(3π

2
− ω − ν)

 (2.29)

Then,

ML/G = Dy(
3π

2
− ω − ν)Dx(i)Dy(2π − Ω)Dx(

3π

2
) (2.30)
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Similarly, Let MG/L be the transformation matrix from the LVLH coordinate name to

the GEI coordinate frame. ML/G and MG/L have the following properties

[ML/G]−1 = [ML/G]T = [Dx(
3π

2
)]T [Dy(2π − Ω)]T [Dx(i)]

T [Dy(
3π

2
− ω − ν)]T (2.31)

MG/L = [ML/G]−1 = [ML/G]T (2.32)

[MG/L]T = [MG/L]−1 (2.33)

For the transformation of a vector between the GEI coordinate system and the LVLH

coordinate system, follow the same method discussed above for the GEI coordinate

system and the perifocal coordinate system.
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CHAPTER 3. RENDEZVOUS AND PROXIMITY

OPERATIONS

3.1 Introduction

Rendezvous and proximity operations (RPO) refer to the process of maneuvering

a chaser spacecraft to have close distance with the target spacecraft, such as flying

around/station-keeping, or physically dock with the target, which usually include far-

field rendezvous phase, near-field rendezvous phase, proximity and docking phase [38].

PRO is a critical element of many space missions, such as the Soyuz program and the

space shuttle program. Refs. [2–4] provided a detailed description on the history and

technologies in RPO. The more recent activities in designing RPO for Orion Multiple-

Purpose Crew Vehicle can be found in Refs. [10, 39]. Autonomous trajectory planning

for the RPO is to plan the trajectory and generate guidance commands on-board with

ground supports or crew intervention unavailable or impractical, which is crucial for time-

critical missions and consideration of fuel optimization. Ref. [1] revealed the history and

reasons on importance of the autonomy.

The Clohessy-Wiltshire (CW) equations [5] have played an important role for analysis

in much of the current near-field and proximity operations. The CW equations are a

set of linear, time-invariant differential equations and there exist two assumptions the

first of which is the close distance between the chaser and the target, and the other of

which is the restrictive circular orbit [40]. The CW equations provide a convenient way

to analyze the relative motion between the chaser and the target, while they become
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invalid even for an orbit with small eccentricity, e.g. e < 0.1. In addition, there is no

analytic solution for the CW equations when practical constraints in RPO are included

such as approach corridor constraints, plume-impingement inhibition, hold points, etc.

Consequently, the CW equations become inadequate in practice. This dissertation is to

develop a methodology to include all those constraints in the problem needed to be solved

with consideration to fuel optimization, and design the trajectory on-board efficiently for

the target in any Keplerian orbit.

It is common for problems in aerospace to be nonlinear and non-convex, which pre-

vents the use of SOCP. For example, for limited-thrust system, the acceleration control in-

put T
m

is nonlinear, and the control constraints are non-convex [20]. Refs. [21, 25, 26] suc-

cessfully applied the SOCP-based approach to solve powered descent guidance for Mars

landing, which inspired the work of applying it to the RPO problem in this chapter [9].

The RPO problem in an inverse-square gravity field contains trajectory constraints in-

cluding those on terminal conditions, hold points, approach corridor, plume-impingement

inhibition, etc., which results in a highly constrained optimal control problem. In Sec-

tion 3.2, a relaxation technique is used to transform the original problem into a more-like

SOCP problem which has linear objective and convex constraint on plume-impingement

inhibition. Meanwhile, rigorous proof is given to show the equivalence between the orig-

inal problem and the relaxed problem. Nonlinearities resulting from the inverse-square

gravity field are overcome by the successive approximation presented in Section 3.3 and

its convergence is also analyzed. Numerical results are given in Section 3.4 to support

the effectiveness of the methodology used in the RPO problem.
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3.2 Problem Formulation

The point-mass three-dimensional equations of motion for a spacecraft in an inverse-

square gravity field an Earth-centered inertial reference frame are

r̈ = − µ
r3
r +

T

m
(3.1)

where µ is called the gravitational parameter of the Earth, r ∈ R3×1 is a vector from the

center of the Earth to the spacecraft and r = ‖r‖, T is the thrust vector of the spacecraft

engine, and mass is m.

The above equations of motion, after normalization, can be written as [9]

ṙ = V , r(0) = r0 (3.2)

V̇ = −(1/r3)r + T /m, V (0) = V 0 (3.3)

ṁ = −(1/vex)‖T ‖, m(0) = m0 (3.4)

where the position vector r is normalized by R0, the radius of the Earth. The velocity

vector V ∈ R3×1 is normalized by
√
g0R0 with g0 being the gravitational acceleration

at R0. T , m and t are normalized by m0g0, m0 and
√
R0/g0, respectively. The thrust

T ∈ R3×1 is the control input vector. The fuel consumption is dependent on ‖T ‖ and vex,

the dimensionless constant effective exhaust velocity of the engines. The initial position,

velocity and mass are given as r0, V 0, and m0, respectively.

For RPO, the chaser spacecraft follows a certain trajectory, usually fuel optimal path,

to move closer to the target spacecraft from a far distance and finally dock with it so

that they have the same final position and velocity and move together thereafter. During

the process, there are considerations for fuel cost, safe operation, plume impingement
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inhibition, etc. The problem considered is given as follows:

Minimize J =

∫ tf

0

‖T ‖dt (3.5)

Subject to ẋ = f(x,T ) (3.6)

‖T ‖ ≤ Tmax (3.7)

‖r(t)− rt(t)‖ cosα ≤ 1Tn (t)(r(t)− rt(t)) (3.8)

1Tn (t)T ≤ ‖T ‖ cos θ (3.9)

Cf (tf )x(tf ) + df (tf ) = 0 (3.10)

Ci(ti)x(ti) + di(ti) = 0, i = 1, . . . , l, 0 < t1 < · · · < tl < tf (3.11)

where 1n is a unit vector representing the docking axis fixed on the target, thus moving

with the target viewed in the inertial frame. The states of the spacecraft is denoted as

x = (r;V ;m) ∈ R7×1.

The performance index is to minimize the fuel/propellant consumption J in (3.5).

The dynamic equations (3.2)–(3.4) are combined in equation (3.6) which is a nonlinear

equation. The upper bound Tmax in Eq. (3.7), which is equal to the maximum thrust

magnitude divided by m0g0 in a dimensionless sense, is engine dependent, and a space-

craft is in coast when ‖T ‖ = 0. Constraint (3.8), with r(t) being the position of the

chaser and rt(t) the position of the target, describes the approach corridor within which

the chaser spacecraft should stay when they are close enough (relative distance is less

than 200 m for instance), which is shown in Fig. 3.1 with α of usually 10∼15 deg. The

equation (3.9) specifies the consideration on plume impingement inhibition, where θ is

the minimum angle the thrust plume has to be pointed away from the target in order

to avoid contamination. Specifically, when θ = 0 the thrust vector can be in any di-

rection, while for θ = 180 deg the thrust vector can only point to the target with the

plume in the opposite direction of the thrust direction. It is usually necessary to include

this constraint when the chaser is in close range to the target. Meanwhile, the angle θ
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can be chosen as time-varying parameter according to specific practical mission. Hence,

constraints (3.8) and (3.9) are enforced only when the chaser is in proximity of the target.

Figure 3.1 Approach corridor for the rendezvous and proximity operations.

The constraints for terminal conditions are expressed in Eq. (3.10), which are linear

at this point. Chapter 6 will further discuss nonlinear terminal constraints. For an

example on linear terminal constraints, a rendezvous mission has

x(tf )− xt(tf ) = 0 (3.12)

which is to say that the final state of the chaser is the same as that of the target. For

constraints on parts of the states or different relationship on final states between the

two spacecraft, appropriate form of the constraints could be used. In addition, when

necessary, constraint (3.11) can be added to achieve certain conditions at prescribed

intermediate times ti < tf . For example, if the chaser is required to be d m in front of of

the target along the docking axis 1n at t1, then we have

[I3×3 03×3]x(t1)− (rt(t1) + d1n) = 0 (3.13)

which is called Acquisition of Docking Axis (ADA) in practical RPO.

3.2.1 Relaxation

In order to apply SOCP to solve the problem (3.5)–(3.11), it requires the problem

to have a linear objective, linear constraints, quadratic or second-order cone constraints

all of which are convex. However, the performance index in (3.5) contains norm of a
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vector and is thus nonlinear. In addition, the dynamic equation (3.6) is nonlinear and

the plume impingement inhibition constraint(3.9) is non-convex for θ ∈ [0, π/2). So, it

is necessary to transform the original problem (3.5)–(3.11) to the form of SOCP.

First, a relaxed version is obtained by replacing ‖T ‖ with η in constraints (3.4), (3.5)

and (3.9), which is

Minimize J =

∫ tf

0

ηdt (3.14)

Subject to ṙ = V (3.15)

V̇ = −(1/r3)r + T /m (3.16)

ṁ = −(1/vex)η (3.17)

‖T ‖ ≤ η (3.18)

0 ≤ η ≤ Tmax (3.19)

‖r(t)− rt(t)‖ cosα ≤ 1Tn (t)(r(t)− rt(t)) (3.20)

1Tn (t)T ≤ η cos θ (3.21)

Cf (tf )x(tf ) + df (tf ) = 0 (3.22)

Ci(ti)x(ti) + di(ti) = 0, i = 1, . . . , l, 0 < t1 < · · · < tl < tf (3.23)

The performance index (3.14) is now linear after discretization. The dynamic equa-

tion (3.15)–(3.17) having u = (T ; η) as the new control input no longer contains ‖T ‖,

but it is still nonlinear because of the coupling of T and m as T
m

, plus the existence of

the nonlinear term 1
r3
r. The constraint (3.7) in the original problem is relaxed with a

convex set defined by (3.18) and (3.19), as in Refs. [21, 25, 26]. The original non-convex

thrust direction constraint (3.9) becomes to Eq. (3.21) due to the replacement, which is

a half-space and thus convex.

Even though the above relaxed problem still contains nonlinearity in Eq. (3.16),

which prevents the direct use of SOCP to solve it, significant progress has been made by
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transforming the objective function (3.5) and the thrust direction constraint (3.9) in the

original problem into their convex forms (3.14) and (3.21) respectively. If we set aside

the nonlinearity in Eq. (3.16) for the moment, the biggest concern now is whether the

relaxed problem still has the same solution with the original one. First, it is easy to

check that both problems are the same when ‖T ‖ = η, which is stated as the following

proposition

Propososition 3.2.1. The original problem Eqs. (3.5)–(3.11) and the relaxed problem

Eqs. (3.14)–(3.23) are equivalent if and only if the following condition holds in the

solution to the relaxed problem almost everywhere (a.e.) in [0, tf ]

‖T ‖ = η (3.24)

This equivalence is evident by comparing the two problems: the relaxed problem

becomes the original problem if ‖T ‖ = η almost everywhere in the solution of the relaxed

problem. In fact, this condition is checked a posteriori in all our numerical solutions to

make sure that the solution found for the relaxed problem is indeed also that of the

original problem. In the rest of this section, theoretical assurance of this equivalence is

established.

Ref. [21] investigates the equivalence of the solutions of similarly posed problems for

powered landing (earlier and less comprehensive versions of the problem and proofs can

be found in Refs. [25] and [26]). There the key differences in Ref. [21] from this chapter are

that the gravity is constant (both in magnitude and direction), constraints (3.23) are not

present, and an assumption is required that there are at most some isolated points on the

trajectory where a state inequality constraint like (3.20) is active. Here the gravity is from

an inverse-square central force field, therefore the system dynamics are nonlinear, and

the multiple interior-point constraints impact the trajectory differently. Furthermore, in

our applications frequently the optimal trajectory lies on the boundaries of inequality

constraints for some finite durations. Hence we will need to provide a general answer
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to the question of equivalence of solutions, including the case when the state inequality

constraint (3.20) is active in some subinterval(s) of finite length(s).

The following assumption will exclude a pathological case from consideration in the

following theoretical investigation.

Assumption 1

If the constraint (3.21) is present, the optimal trajectory of the relaxed problem

(3.14)–(3.23) does not contain any finite segment where the pointing constraint (3.21) is

active, while the following conditions hold simultaneously

1Tn (t)T (t)

cos θ
= constant, and 0 <

1Tn (t)T (t)

cos θ
< Tmax (3.25)

Although it is probable that the constraint (3.21) is active in a finite interval, the

constancy condition in Eq. (3.25) is very restrictive, given that 1n(t) and T (t) are both

time varying. The conditions in Eq. (3.25) render such optimal trajectory highly unlikely.

If the constraint (3.21) is not imposed, Assumption 1 is not needed.

First a result is stated and proved for the case when constraints (3.23) are not con-

sidered.

Lemma 3.2.1. In the absence of the interior-point constraints (3.23) and under As-

sumption 1, if the optimal trajectory for the relaxed problem Eqs. (3.14)–(3.22) has no

points where the constraint (3.20) is active, the solution to the relaxed problem is identi-

cal to that of the original problem Eqs. (3.5)–(3.10) without the interior-point constraints

(3.11).

Proof. Suppose that y∗(t) = (x∗T (t) m∗(t))T and u∗(t) = (T ∗T (t) η∗)T are the op-

timal state and control solutions to the problem Eqs. (3.14)–(3.22). By the Maxi-

mum Principle [41], there exists in [0, tf ] a continuous, nonzero costate vector function

p(t) = (pTr (t) pTV (t) pm(t) p0)T , where pr ∈ R3, pV ∈ R3, pm ∈ R and p0 ≥ 0 is a
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constant, such that for the Hamiltonian H defined below,

H = pTr V + pTV

(
− 1

‖r‖3
r +

T

m

)
− pmη

vex
− p0η (3.26)

the costates satisfy the differential equations

ṗr = −∂H
∂r

=
1

‖r‖3
pV −

3(pTV r)

‖r‖5
r (3.27)

ṗV = −∂H
∂V

= −pr (3.28)

ṗm = −∂H
∂m

=
(pTV T )

m2
(3.29)

Along the optimal trajectory for each fixed t, y∗(t) and the corresponding p(t), the opti-

mal values T ∗(t) and η∗(t) are determined by pointwise maximization of H in Eq. (3.26)

with respect to T and η [41]

max
(T ,η)∈U

H[y∗(t),p(t),T , η] (3.30)

where

U = {(T , η) | ‖T ‖ ≤ η,1Tn (t)T ≤ η cos θ, 0 ≤ η ≤ Tmax} (3.31)

Furthermore, H is a constant along the optimal trajectory because the dynamics are

autonomous and this is a fixed-time problem. First, assume pV 6= 0 a.e. in [0, tf ]. Then

with respect to T , H is a non-constant, linear (thus convex) function. For each η > 0

the maximization of H with respect to T is performed over a bounded convex set

UT = {T | ‖T ‖ ≤ η,1Tn (t)T ≤ η cos θ} (3.32)

A unique solution to this constrained pointwise maximization problem exists on the

boundary of UT [42], and it satisfies the Karush-Kuhn-Tucker (KKT) conditions [22]

(for minimizing f = −H)

− pV
m

+
λ1

‖T ‖
T + λ21n(t) = 0 (3.33)
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where 
λ1 = 0 if ‖T ∗‖ < η

λ1 ≥ 0 if ‖T ∗‖ = η

;


λ2 = 0 if 1Tn (t)T < η cos θ

λ2 ≥ 0 if 1Tn (t)T = η cos θ

(3.34)

Since the unique solution for the optimal T ∗ exists which must satisfy Eq. (3.33), this

requires that λ1 6= 0. Thus the constraint (3.18) ‖T ‖ ≤ η must be active, i.e., ‖T ∗‖ = η.

And it follows that ‖T ∗‖ = η∗ when η takes its optimal value. By Proposition 3.2.1,

the solutions to the relaxed and original problems are the same.

Next, consider the case where pV = 0 in a finite interval in [0, tf ]. It follows from

Eqs. (3.27) and (3.28) that we must have pV = pr ≡ 0 in [0, tf ]. Thus pm = constant by

Eq. (3.29). Since the final mass m(tf ) is free, the transversality condition for pm(tf ) is

[41]

pm(tf ) = 0 (3.35)

Therefore pm ≡ 0 in [0, tf ]. The Hamiltonian H in Eq. (3.26) in this case reduces to

H = −p0η (3.36)

Because p is nonzero, it must be true that the non-negative p0 is not zero (i. e., p0 > 0),

since already pr = pV = pm = 0. The condition (3.30) applied with respect to η means

maximization of H in (3.36) over the set

Uη = {η | 1Tn (t)T ≤ η cos θ, 0 ≤ η ≤ Tmax} (3.37)

The optimal η∗ then should be the lower bound of the (non-empty) convex set Uη. Given

the required constancy of H, it is straightforward to verify that under Assumption 1, the

set Uη is equivalent to

Uη = {η | 0 ≤ η ≤ Tmax} (3.38)

Therefore the lower bound of Uη is 0 and

η∗ = 0 (3.39)
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As a consequence constraint (3.18) admits only one solution T ∗ = 0. But this again

implies condition (3.24). It follows from Proposition 3.2.1 again that the solution to the

relaxed problem is again the same as that to the original problem.

When the inequality constraint (3.20) becomes active in [0, tf ], and/or when the

interior-point constraints (3.23) are added, what complicates the analysis is the fact that

the costate will be only piecewise continuous, separated by the so-called jump conditions

at the point(s) where the trajectory enters the boundary of the constraint (3.20), and

at the instances t1, . . . , tl where the constraints (3.23) are imposed. Rewrite constraint

(3.20) as

‖r(t)− rt(t)‖ cosα− 1Tn (t)(r(t)− rt(t)) := h(r, t) ≤ 0 (3.40)

Constraint (3.40) is a second-order constraint with respect to the control vector u, i.e., T

(a part of u) first appears in the second-order time derivative of h(r, t). Differentiating

h(r, t) twice and using Eqs. (3.15) and (3.16) give

ḧ = γT (r, t)T + φ(r,V , t) := q(x,T , t) (3.41)

Suppose that [tin, tout] ⊂ [0, tf ] is an interval where the constraint (3.40) becomes active.

Then the jump condition for the costates are [43] pr(t
+
in)

pV (t+in)

 =

 pr(t
−
in)

pV (t−in)

+ ν1
∂h

∂x
+ ν2

∂ḣ

∂x
(3.42)

where ν1 and ν2 are two constant multipliers. Similarly, at the points t1, . . . , tl, the

interior-point constraints (3.23) will cause jump conditions of the form [43] pr(t
+
i )

pV (t+i )

 =

 pr(t
−
i )

pV (t−i )

+ CT
i νi, i = 1, . . . , l (3.43)

where νi is vector multiplier of appropriate dimension (the same as the row dimension of

the Ci matrix). On the other hand, the following points should be made on the continuity

of the Hamiltonian along the optimal trajectory of the relaxed problem:
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• Since the times t1, . . . , tl are specified, the Hamiltonian H is continuous across

t1, . . . , tl, despite of the jumps in pr and pV at these points [43].

• Likewise it can be shown that the Hamiltonian is continuous at tin, even though pr

and pV are discontinuous in general at tin due to Eq. (3.42). Parts of Theorems 5

and 22 in Ref. [41] on H = 0, with and without state inequality constraints, imply

such continuity for free-time problems. Similar conclusion holds for the constancy

of the Hamiltonian for fixed-time problems, thus H remains continuous in [0, tf ].

These jump conditions preclude the use of similar arguments as in the proof of Lemma

1 to establish the equivalence of the solutions and necessitate a more involved approach.

The following results will be used in this approach.

Lemma 3.2.2. If the solution to the relaxed problem Eqs. (3.14)–(3.23) contains any

finite subinterval in [0, tf ] where ‖T ∗‖ < η∗ (i.e., the inequality (3.18) holds strongly),

this must be an interval where pV = 0.

Proof. The proof is given in the Appendix.

Lemma 3.2.3. Under Assumption 1, if the solution to the relaxed problem Eqs. (3.14)–

(3.23) contains any finite subinterval of [0, tf ] where pV = 0, the solution must have

η∗ = Tmax in that interval.

Proof. The proof is also provided in the Appendix.

Lemma 3.2.4. Under Assumption 1, the optimal solution to the relaxed problem Eqs. (3.14)–

(3.23) satisfies the condition ‖T ∗‖ = η∗ a.e. in [0, tf ]

Proof. We shall prove the result by contradiction. Assume that there is a least one finite

interval [tb, te] ⊂ [0, tf ] where ‖T ∗(t)‖ = β(t) < η∗(t). By Lemma 3.2.2 this can only be

an interval where pV = 0. By Lemma 3.2.3, this is also where η∗ = Tmax. In the following

it will be shown that another feasible trajectory with a smaller cost can be constructed

on the basis of these conditions to contradict the optimality of the given solution.
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Since β(t) < η∗ = Tmax in [tb, te], it is always possible to find a function ε(t) such

that ε(tb) = 0, ε(t) > 0,∀t ∈ (tb, te], and

[1 + ε(t)] β(t) ≤ Tmax (3.44)

Specifically, choose ε(t) as

ε(t) =
1

2
ε0(t− tb)

[
1 +

m∗(tb)

m∗(t)

]
, t ∈ [tb, te] (3.45)

where m∗(t) = m∗(tb) − Tmax(t − tb)/vex is the optimal mass history in [tb, te] for the

relaxed problem, and ε0 > 0 a sufficiently small constant such that the condition (3.44)

remains true in the interval. Clearly such an ε0 exists. For instance, let βmax = sup β(t)

for t ∈ [tb, te] (obviously βmax < Tmax by the assumption that β < Tmax). Then any ε0

satisfying

0 < ε0 ≤ (Tmax/βmax − 1) / {(te − tb) [1 +m∗(tb)/m
∗(te)]}

will do. Define a new thrust profile T in [tb, te] by

T (t) = [1 + ε(t)]T ∗(t), t ∈ [tb, te] (3.46)

This T has the same direction as T ∗, but with greater magnitude, yet is still admissible

because of condition (3.44). Furthermore, define a function

δ(t) = −ε0vexm
∗(t) < 0, t ∈ [tb, te] (3.47)

Construct a control η in the interval

η(t) = Tmax + δ(t) < Tmax = η∗, t ∈ [tb, te] (3.48)

The inequality holds because δ < 0. Clearly η ≥ 0 when ε0 is sufficiently small. So this

η is also admissible. Let

m(t) = m∗(tb) +

∫ t

tb

ṁ(τ)dτ = m∗(tb)−
∫ t

tb

η(τ)

vex
dτ
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be the mass profile from Eq. (3.17) corresponding to this η in the interval [tb, te] with

the same initial condition m(tb) = m∗(tb). It can be shown that

m(t) = [1 + ε(t)]m∗(t), t ∈ [tb, te] (3.49)

Note that there is no discontinuity in m(t) at t = tb because ε(tb) = 0. Hence for this

new admissible control u = (T , η), the following equation holds

T (t)

m(t)
=
T ∗(t)

m∗(t)
, t ∈ [tb, te] (3.50)

From Eqs. (3.16) and (3.15), condition (3.50) implies that starting from the same con-

dition as on the optimal trajectory at the beginning of the interval [tb, te], the trajectory

for x = (rT V T )T under the new control u in this interval will be identical to that of

the optimal solution (therefore satisfying all trajectory constraints). In particular, at the

end of the interval, r(te) = r∗(te) and V (te) = V ∗(te), yet m(te) now is greater than

m∗(te) because |ṁ(t)| = η(t)/vex < Tmax/vex = |ṁ∗| in [tb, te]. But this contradicts the

fuel/mass optimality of the solution y∗ = (r∗(t), V ∗(t), m∗(t)). Thus the assumption

that ‖T ∗‖ < η∗ in a finite interval cannot be true, and we must have ‖T ∗‖ = η∗ a.e. in

[0, tf ].

Note that Lemma 3.2.4 only states that ‖T ∗‖ = η∗ in the solution of the relaxed

problem, but does not suggest that η∗ = Tmax always. In fact, in a finite interval where

constraint (3.20) is active where necessarily ḧ = γT (r, t)T + φ(r,V , t) = 0 (cf. Eq.

(3.41)), it can be seen that in general η∗ = ‖T ∗‖ < Tmax in a finite interval where h ≡ 0.

Combining Lemma 3.2.4 and Proposition 3.2.1, it is concluded that

Propososition 3.2.2. Under Assumption 1, the solutions to the relaxed problem Eqs. (3.14)-

(3.23) and the original problem in Eqs. (3.5)-(3.11) are the same.
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3.2.2 Change of Variables

In order to cancel the nonlinearity in the dynamic equation, the following change of

variables is applied to the relaxed problem:

τ =
T

m
, σ =

η

m
, z = lnm (3.51)

Then from the mass equation ṁ(t)
m(t)

= ż = − 1
vex
σ(t), we obtain

m(t) = m0exp[− 1

vex

∫ t

0

σ(s)ds] (3.52)

So maximizing m(tf ) is to minimize the equivalent performance index

J =

∫ tf

0

σ(t)dt

For constraint (3.19), it becomes

0 ≤ σ ≤ Tmaxe
−z (3.53)

and can be approximated with [25]

0 ≤ σ ≤ Tmaxe
−z0 [1− (z − z0)] (3.54)

where z0 is the natural logarithm function of the nominal change of mass. It should be

mentioned that constraint (3.53) includes constraint (3.54), i. e., any σ satisfying (3.54)

also satisfies (3.53) [25]. So the problem (3.14)–(3.23) can be further written as

Minimize J =

∫ tf

0

σdt (3.55)

Subject to ẋ = A(r)x+Bu (3.56)

‖τ‖ ≤ σ (3.57)

0 ≤ σ ≤ Tmaxe
−z0 [1− (z − z0)] (3.58)

‖r(t)− rt(t)‖ cosα ≤ 1Tn (t)(r(t)− rt(t)) (3.59)

1Tn (t)τ ≤ σ cos θ (3.60)

Cf (tf )x(tf ) + df (tf ) = 0 (3.61)

Ci(ti)x(ti) + di(ti) = 0, i = 1, . . . , l, 0 < t1 < · · · < tl < tf (3.62)
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where x = (r;V ; z) and u = (τ ;σ). The constraint (3.56) is now a linear time-varying

equation with

A(r) =


03×3 I3×3 03×1

− 1
r3
I3×3 03×3 03×1

01×3 01×3 0

 , B =


03×3 03×1

I3×3 03×1

01×3 −1/vex

 (3.63)

Now the problem (3.55)–(3.62) can be solved by a sequence of SOCP subproblems if

A(r) is treated as a constant time-varying matrix in each subproblem and updated after

having its solution at each iteration by using the method of successive approximation,

which is the subject of the next section.

3.3 Solution to the RPO

3.3.1 Successive Approximation

The only nonlinearity in the state equations in problem (3.55)-(3.62) is in the term

1/r3 in the A matrix. In many cases the percentage of variations for r is very small,

and the approximation of r ≈ r0 may suffice, where r0 is the initial radius. This is

exactly the basis for the so-called “linear gravity” model proposed by Jezewski [44]. In

such a case A is a constant matrix, and the dynamics in Eq. (3.56) are linear. As a

more general approach applicable to all cases with high precision, a successive solution

method is devised in this chapter. In this approach, the following procedure is taken to

find the solution of the relaxed problem:

1. Set k = 1, and r(0)(t) = r0, and z(0)(t) = ln(1− ṁct), where ṁc > 0 is an arbitrary

constant dimensionless mass rate such that for the given final time tf , ṁctf ≤ mp

with mp as the (dimensionless) propellant mass carried by the vehicle. A simple

choice is

ṁc =
mp

tf
(3.64)
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2. Solve the following optimal control problem to find the solution pair {u(k),x(k)}:

Given the state equations and initial condition:

ẋ(k) = A[r(k−1)(t)]x(k) +Bu(k), x(k)(0) = x(0) (3.65)

minimize for the given tf

J =

∫ tf

0

σ(k)(t)dt (3.66)

subject to

‖τ (k)(t)‖ ≤ σ(k)(t) (3.67)

0 ≤ σ(k)(t) ≤ Tmaxe
−z(k−1)(t)

{
1− [z(k)(t)− z(k−1)(t)]

}
(3.68)

‖r(k)(t)− rt(t))‖ cosα ≤ 1Tn (t)
[
r(k)(t)− rt(t)

]
(3.69)

1Tnτ
(k)(t) ≤ σ(k)(t) cos θ (3.70)

Cf (tf )x
(k)(tf ) + df (tf ) = 0 (3.71)

Ci(ti)x
(k)(ti) + di(ti) = 0, i = 1, . . . , l, 0 < t1 < · · · < tl < tf (3.72)

where x(k) = col(r(k) V (k)), and r(k−1)(t) = ‖r(k−1)(t)‖ and z(k−1)(t) are already

found from the previous solution.

3. Check to see whether the convergence condition has been met for a prescribed

tolerance ε > 0

sup
0≤t≤tf

‖x(k)(t)− x(k−1)(t)‖ ≤ ε, k > 1 (3.73)

If the above condition is satisfied (for k > 1), go to Step 4; otherwise, set k = k+1,

and go to Step 2.

4. The solution to the problem is found to be x = x(k) and u = u(k). Stop.

Remarks:
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• For each k the problem (3.65)–(3.72) is one with linear, time-varying dynamics,

linear equality constraints and second-order-cone inequality constraints. Yet it is

still a nonlinear optimal control problem (because of the conic constraints), but

ready to be discretized into an SOCP problem and solved numerically.

• The above problems do not involve linearization in the conventional sense of small

perturbations. The converged solution found is the one that satisfies exactly (to

the accuracy of the numerical solution) the original nonlinear gravity model. On a

related note, a successive solution approach is proposed in Ref. [45] to find the solu-

tion satisfying the linearized dynamics (in the conventional sense) in the proximity

of a small celestial body, starting from a polynomial initial guessed trajectory.

• The above procedure suggests that even if the linear gravity approximation is

accurate (e.g., trajectory near a circular orbit), at least two successive solutions

will be needed in most cases because the optimal thrust profile (which consists of

bang-bang structure in most cases) is unknown. Compared to Ref. [46] where the

linear gravity model is used to solve for an optimal multiple-burn ascent trajectory

all at once, the major difference is that the burn-coast structure (the number of

burn and coast arcs) is specified in the problems treated in Ref. [46]. Here no such

information is prescribed a priori. Consequently the initial guessed mass profile

defined by z(0)(t) is generally far from the final solution. However, the final solution

found here will automatically determine the optimal number of burn and coast arcs

as well as their durations in a problem.

Finally, a complete rendezvous mission is typically divided into several phases, e.

g., far-field phasing, near-field maneuvers and final approach, each having distinctly

different primary objectives and requirements, and relying on different navigation means

and propulsion systems. It may be beneficial for the planning of RPO trajectory to

determine the best initial condition which will in turn serve as the target condition for
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the preceding phase. In such a case the initial condition (position and velocity vectors) in

Eq. (3.56) may be treated as unspecified, to be optimized subject to the box constraints

rL ≤ r(k)(0) ≤ rU , V L ≤ V (k)(0) ≤ V U (3.74)

where rL, rU , V L, and V U are all in R3 and prescribed.

3.3.2 Convergence

As the equivalence of the solutions of the relaxed problem and the original problem

has already been established, our attention turns to the convergence of the solution

sequence {y(k)} in Section 3.3.1 to the solution of the relaxed problem.

The closest resemblance in the literature to the approach in this chapter is the work

in Ref. [47]. The optimal control problem considered there is one with nonlinear system

dynamics of the form

ẋ = A(x)x+B(x)u, x(0) = x0 (3.75)

with performance index

J =
1

2
xT (tf )Fx(tf ) +

1

2

∫ tf

0

[
xTQ(x)x+ uTR(x)u

]
dt (3.76)

where F ≥ 0, Q(x) ≥ 0 and R(x) > 0 for all x. The solution to the above problem

is found by solving successively the following time-varying linear quadratic regulator

problems

ẋ(k) = A(x(k−1))x(k) +B(x(k−1))u(k), x(k)(0) = x0 (3.77)

with quadratic performance index

J (k) =
1

2
x(k)T (tf )Fx

(k)(tf ) +
1

2

∫ tf

0

[
x(k)TQ(x(k−1))x(k) + u(k)TR(x(k−1))u(k)

]
dt (3.78)

Assume that A(x) satisfies the following conditions

µ(A(x)) ≤ µ0 (3.79)

‖A(x)− A(y)‖ ≤ c‖x− y‖ (3.80)
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for some positive constant µ0 and c, where µ in Eq. (3.79) denotes the logarithmic norm

of the matrix [48]. Under these two conditions and another pair of boundedness and

Lipschitz conditions, the convergence of the above solution sequence {x(k)} is proved

[47]. For time-invariant bilinear systems with quadratic performance index, Refs. [49]

and [50] also use an iterative approach that constructs a successive solution sequence,

and the converges of the solutions under a mild condition is proved.

For our problem we first state an obvious fact based on the physics.

Propososition 3.3.1. Consider the system in Eqs. (3.2)–(3.4), subject to constraint

(3.7). For given Tmax and fraction of propellant mass, there exist appropriate positive

numbers rmin, rmax, Vmin, Vmax, r0min
, r0max, V0min

, V0max,γ0max, and tfmax such that for

any fixed tf ≤ tfmax and initial condition (r(0),V (0)) ∈ X0 where

X0 = {(r0,V 0) | r0max ≤ ‖r0‖ ≤ r0max , V0min
≤ ‖V 0‖ ≤ V0max ,

|rT0V 0| ≤ ‖r0‖‖V 0‖ sin(γ0max)}

the trajectory will satisfy the following condition for any T (t) meeting ‖T ‖ ≤ Tmax

rmin ≤ ‖r(t)‖ ≤ rmax, ∀t ∈ [0, tf ] (3.81)

Vmin ≤ ‖V (t)‖ ≤ Vmax, ∀t ∈ [0, tf ] (3.82)

The above conclusion can be easily proven, given that the unforced solution of the

system is the well-understood Keplerian motion. For the relaxed problem with dynamics

in Eqs. (3.15)–(3.17) subject to constraints (3.18) and (3.19), since ‖T ‖ ≤ η ≤ Tmax, the

same conclusion will hold.

For our problem, the desired convergence of {x(k)} to the solution of the original

problem requires two prerequisites: (a) the relaxed problem (3.14)–(3.23) has solution;

(b) the original problem (3.5)–(3.11) has solution. Let F denote the set of feasible

solutions to the relaxed problem (3.14)–(3.23), i. e., F is the collection of all the solutions
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that satisfy Eqs. (3.15)-(3.23). We have the following assurance regarding the existence

of the solution(s).

Propososition 3.3.2. Assume that F is not empty, and the problem data are such that

Proposition 3.3.1 holds. Then the solution to the relaxed problem (3.14)–(3.23) exists.

Furthermore, if Assumption 1 in the preceding section is assumed to hold, the solution

to the original problem (3.5)–(3.11) also exists.

Proof. The proof of the existence of solution to the relaxed problem directly follows

Corollary 2 in Chapter 4 of Ref. [51]. The relaxed problem is affine in the control

u = (T T η)T ), so is the integrand in the performance index (3.14). Proposition 3

ensures that the state trajectory of the problem is bounded. All other conditions required

in Corollary 2 of Ref. [51] are satisfied (Corollary 2 does not include the interior-point

constraints (3.23) in the problem statement. But the addition of those will not change

the proof and conclusion). Hence the solution to the relaxed problem exists. By the

Conclusion in the preceding section, the solution to the original problem is the same as

that to the relaxed problem, hence the solution to the original problem exists as well.

As shown in Ref. [47] for quadratic problems, whether {x(k)} converges heavily de-

pends on the properties of the A(r) matrix in Eq. (3.56). The definition of A matrix in

Eq. (3.63) gives

A(r)TA(r) =


1
r6
I3×3 03×3 03×1

03×3 I3×3 03×1

01×3 01×3 0

 (3.83)

which gives

‖A(r)‖ =
√
λmax(A(r)TA(r)) = 1 (3.84)

since r is normalized by R0 and r > 1. Eq. (3.84) further results in

‖A(r1)− A(r2)‖ ≤ ‖A(r1)‖+ ‖A(r2)‖ = 2 (3.85)
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To find µ(A(r)), we first have

A(r)T + A(r) =


03×3 (1− 1

r3
)I3×3 03×1

(1− 1
r3

)I3×3 03×3 03×1

01×3 01×3 0

 (3.86)

Then

µ(A(r)) = λmax(
A(r)T + A(r)

2
) =

1

2
(1− 1

r3
) (3.87)

With the Eq. (3.81), the above equation yields

µ(A(r)) ≤ 1

2
(1− 1

r3
min

) (3.88)

Therefore, the boundedness on the logarithmic norm of A(r), i.e. Eq. (3.88), is derived

similar to the Eq. (3.79). Note that Eq. (3.80) is replaced by a slight different form of

Eq. (3.84), which, however, would still validate the convergence proof in Ref. [47]. But

a complete theoretical proof of convergence of the successive solution sequence {x(k)}

appears much more difficult than those cases reported in the literature, because it is not

a quadratic problem and there are various constraints (3.7)–(3.11). In a way Proposition

3.3.2 also reveals why such a proof would be difficult: a proof the convergence of {x(k)}

would be equivalent to the proof of the existence of the solution to the original nonlinear

optimal control problem in Eqs. (3.5)–(3.11). A general proof of the latter is likely to be

rather elusive. However, given the naturally weak nonlinearity in the A matrix due to

relatively small percentage of variations in r (recall the successful applications of “linear

gravity” approximations [44, 46]), it is rather natural in practice to expect convergence

in just a few iterations. Our numerical experiences have always shown good convergence

of the successive solutions, even in the case of highly eccentric orbits where the variations

of r are not small.



41

3.4 Numerical Results

Let us consider a chaser spacecraft with an initial mass of 1385 kg and specific impulse

Isp of 200 sec. The target spacecraft is in an equatorial orbit which could be either

circular or elliptic. An circular orbit of radius 370 km is chosen to demonstrate the

simulation results, while a highly elliptic orbit with e = 0.5 is used, which has perigee

altitude of 370 km and apogee altitude of 13866.27 km. GPOPS is also used to verify the

optimality of the solution obtained from the SOCP method when it is applicable. The

test is performed on a 3GHz dual-core PC with 8GB of RAM and Windows 7 Enterprise

operating system.

3.4.1 Rate of Change of Thrust Vector

It is important to first point out the importance of constraining the rate of change

of thrust vector before presenting the simulations for different cases. Let us see the

rate of change of thrust magnitude, shown in the red curve of Fig. 3.2, when a chaser

spacecraft, initially located 5 km behind and 500 m below the target spacecraft which is

in the elliptic orbit with e = 0.5 and perigee altitude of 370 km, approaches and docks the

target spacecraft by using the V-bar approach. It is obvious that the thrust magnitude

chatters or changes quickly after t = 1800 sec when the chaser spacecraft is within the

approach corridor. The thrust profile is still a bang-bang control for t ∈ (0, 1800) sec since

there is only one constraint on the maximum thrust magnitude besides inherent dynamic

equation constraints. However, the rapid thrust chattering is found to be common at the

moments when inequality constraints such as approach corridor constraint and plume

impingement inhibition become active. Such chattering is an artifact of how the optimal

control problem is posed: the problem is not told that rapid chattering of the control

vector is not desirable. Due to the limited capability of a spacecraft to change quickly

its thrust magnitude or direction, it is necessary to constrain the rate of change of T ,



42

which can be achieved by adding another two dynamic equations and the corresponding

constraint equations as follows

τ̇ = ν (3.89)

σ̇ = λ (3.90)

‖ν‖ ≤ ξ, |λ| ≤ ζ (3.91)

where ξ is specified maximum rate of change of thrust direction, and ζ a specified maxi-

mum rate of change of thrust magnitude. The constraints in (3.91) are still second-order

cone constraints which can be handled very effectively by SOCP. The states and controls

in the dynamic equation (3.56) are now redefined as x = (r;V ; z; τ ;σ) and u = (ν;λ).

As a result, matrices A(r) and B become

A(r) =



03×3 I3×3 03×1 03×3 03×1

− 1
r3
I3×3 03×3 03×1 I3×3 03×1

01×3 01×3 0 01×3 −1/vex

03×3 03×3 03×1 03×3 03×1

01×3 01×3 0 01×3 0


, B =



03×3 03×1

03×3 03×1

01×3 0

I3×3 03×1

01×3 1


(3.92)

So the problem is (3.55)–(3.62) with (3.56) redefined above plus the additional constraint

(3.91). When the constraint on rate of change of thrust magnitude is enforced, the

blue curve in Fig. 3.2 shows that the thrust profile within the approach corridor is

much smoother, indicating improvement with respect to practical applications. The

parameters ξ and ζ in (3.91) can be chosen according to the capabilities of a specific

spacecraft. Note that most of the time it might be necessary to only include constraint

on the rate of change of the thrust magnitude.
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Figure 3.2 Effect of the constraints on the rate of change of the thrust vector in ren-
dezvous and docking with a target spacecraft in an elliptic orbit with e = 0.5
and perigee altitude of 370 km.

3.4.2 Far-field Rendezvous Phase

Consider that the chaser is initially 100 km behind and 100 km below the target, and

the initial relative velocity is [1 0 0.5] m/s in the LVLH frame. Maximum thrust Tmax

of 831 N is given for the chaser, generating thrust acceleration of around 0.6 m/s2. The

target is in an elliptic orbit with e = 0.5, and located in the position with true anomaly

ν = 5 deg when t = 0. The objective is to move the chaser to be 5 km behind the target

at tf = 1800 sec.

For this scenario, the dynamics between the chaser and the target can never be ap-

proximated by a linear model due to the significant difference in their altitudes. So it

becomes a nonlinear problem, such as the nonlinearity in the dynamic equation of the

chaser. However, this problem can be solved by solving a sequence of SOCP problems

each of which has linear dynamic equation, linear objective, and second-order cone con-

straints. The final converged solution including thrust profile and trajectory is shown in
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Figure 3.3 where ’1’ in the thrust profile represents the full thrust Tmax. The solution

from software GPOPS is also included in the figure, and the highly coincidence between

the two solutions verifies the optimality of the solution from the SOCP method, which

is further seen in the velocity components profile in Figure 3.4.

It is important to note that the solution obtained from GPOPS has only 36 nodes

after two mesh refinement, which is the reason for the non-vertical transition from full

thrust to zero in the thrust profile in Figure 3.3. The SOCP method uses 200 uniform

nodes to discretize the problem, which is much more than that for GPOPS. However,

GPOPS spends 276.36 sec to find the solution, while SOCP method needs only 5.01 sec to

find the converged solution after 9 iterations. When the initial relative position between

the chaser and the target is closer, such as in the near-field rendezvous, proximity and

docking phase, less iterations are usually needed, and thus less time to find a converged

solution.
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Figure 3.3 Thrust profile and relative trajectory in far-field rendezvous phase with ini-
tial relative position [-100, 0, 100] km and final relative position [-5, 0, 0]
km in LVLH frame; target is in an elliptic orbit with e = 0.5.
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Figure 3.4 Relative velocity components in LVLH frame.

3.4.3 Near-field Rendezvous, Proximity and Docking Phase

In this phase, the chaser is controlled to move from a few kilometers away from the

target to finally approach and dock with the target, with maximum thrust of 21 N or

acceleration of about 0.015 m/s2. Similar to the far-field rendezvous phase, it is necessary

to check the optimality of solution obtained from SOCP method. Nevertheless, GPOPS

is unable to get a converged solution when there is approach cone constraint, which is

illustrated in Figure 3.5.

It is seen in Figure 3.5 that the solution from GPOPS does not completely satisfy

the approach cone constraint and the thrust fluctuates a lot. So GPOPS can not help

verify the optimality of the solution from the SOCP method. But at least a couple of

phenomena could be observed from the GPOPS solution, which are that the chaser first

move to the boundary of the cone and then try to move along it, and intermediate thrust

is used for the chaser within the cone. Based on the solution from the SOCP method, the

chaser also uses the same strategy for minimum fuel consumption. The thrust oscillation

in the entrance and end of the cone can be eliminated if we add additional constraint
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Figure 3.5 Approach cone and thrust profile in the proximity and docking phase with
target in an elliptic orbit of e = 0.5, initial relative position is [200, 0, -2] m,
initial relative velocity is [0.5, 0, 0.06] m/s, and approach cone constraint
has a cone of half angle 10 deg.

on change rate of the thrust magnitude, which will be seen in the following simulation

results. Both circular orbit and elliptic orbit will be considered to demonstrate the

effectiveness of the SOCP method to the rendezvous and proximity operations.

Circular Orbit Let the chaser be 5 km ahead and 200 m above the target, which

means the initial relative position between the two vehicles is [5000, 0, -200] m, and

assume the initial relative velocity is [0.5, 0, 0.06] m/s. The constraints include:

1. Terminal constraint: At tf = 3000 sec, the chaser has the same position and

velocity with the target.

2. Interior point constraint: At t1 = 1800 sec, the chaser arrives at 200 m ahead of

the target along the V-bar axis, which is chosen as the docking axis, with relative

velocity less than 0.2 m/s. This requirement is also called the acquisition of docking
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Figure 3.6 Approach cone with the docking axis and acceleration profile, the target is
in a circular orbit with perigee altitude of 370 km.

axis (ADA).

3. Approach corridor constraint: Once within 200 m to the target, the chaser should

stay inside an approach corridor which is defined as a cone with half angle of 10

deg.

4. Thrust direction constraint: From t1 to t2 = 2520 sec, the thrust plume must be

60 deg away from the target, while the angle is decreased to 89 deg for t ∈ (t2, tf ].

5. Change rate of thrust magnitude constraint: It is constrained to be less than 0.1

N/s for t ∈ [t1, t2], and less than 0.05 N/s for t ∈ (t2, tf ].

The simulation results are shown in Figure 3.6–3.9. The constraints on approach

cone and change rate of thrust magnitude for the last 200 m are satisfied, as seen in

Figure 3.6, while Figure 3.7 illustrates the thrust direction constraint is also successfully

enforced.
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Figure 3.7 Trajectory plus thrust direction and the zoom-in view trajectory of the last
200 m, the target is in a circular orbit.

Before entering the approach cone, the chaser applies bang-band control which is to

first increase the relative velocity with full thrust, then propagate with zero thrust, and

finally brake with full thrust in order to have relative velocity less than 0.2 m/s when it

is 200 m ahead of the target, which is shown in the top subplot of Figure 3.8. Its bottom

subplot tells us that ‖ T ‖= η which is very important to ensure the equivalence between

the relaxed problem and the original problem.

For the last 200 m, Figure 3.9 gives the detailed information on how the chaser moves

within the cone to dock with the target. After the chaser is 200 m ahead of the target,

almost vertical thrust perpendicular to the docking axis is applied to raise the chaser’s

altitude to move toward the boundary of the cone, which is seen from the increase of the

approach angle for t ∈ (1800, 2020) sec in the middle subplot of Figure 3.9. During this

period, the relative velocity z component first increases in the negative R-bar direction

to speed up, then decreases by using less thrust, and further decreases to finally have a

small value in the positive R-bar direction. Due to the altitude increase of the chaser, its
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Figure 3.8 Top subplot: Magnitude of relative velocity in the LVLH frame; Bottom
subplot: Check the relaxation condition ‖ T ‖= η.

velocity along the V-bar direction is reduced, which makes the relative velocity between

the two vehicles along the V-bar direction increased, that is to say the chaser moves

faster toward the target. See the bottom subplot in Figure 3.9 for details.

Once the chaser is on the boundary of the cone, it keeps moving along the boundary

with proper relative velocity in the positive R-bar direction, which is achieved by almost

constant intermediate thrust shown in the top subplot of Figure 3.9. Since the altitude

of the chaser is becoming smaller and smaller as it moves along the boundary, its velocity

in the V-bar direction increases, resulting in the decrease in relative velocity along that

direction. When the chaser is around 15 m to the target, or starting at t = 2840 sec, it

starts to move away from the boundary by using less thrust and then slightly increase

its speed to decrease the relative speed in the V-bar direction, during which the chaser

will move back to the boundary again. This procedure is repeated one more to null the

relative velocity, but still keeps the chaser to move within the cone. This phenomenon

is not very noticeable in Figure 3.9, but it will be very easy to notice for the following
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Figure 3.9 Acceleration, approach angle, and relative velocity within the last 200 m for
the target in a circular orbit.

case with target in an elliptic orbit.

Elliptic Orbit The chaser is initially located 5 km behind and 500 m below the

target which has true anomaly of 5 deg in an elliptic orbit with perigee altitude of 370

km and eccentricity e = 0.5. The initial relative velocity between them is [-0.8, 0, 0.1]

m/s. All the requirements are stated as follows:

1. Terminal constraint: At tf = 3500 sec, both the chaser and the target has the same

position and velocity.

2. Interior point constraint: At t1 = 1800 sec, the chaser arrives at 200 m ahead of

the target along the V-bar axis, which is chosen as the docking axis, with relative

velocity less than 0.2 m/s.

3. Approach corridor constraint: The corridor is defined to be the same cone as before

with half angle of 10 deg.
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4. Thrust direction constraint: From t1 to t2 = 2820 sec, the thrust plume must be

60 deg away from the target, while the angle is decreased to 89 deg for t ∈ (t2, tf ].

5. Change rate of thrust magnitude constraint: It is constrained to be less than 0.1

N/s for t ∈ [t1, t2], and less than 0.05 N/s for t ∈ (t2, tf ].
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Figure 3.10 Thrust magnitude and trajectory for the whole process for the target in an
elliptic orbit with e = 0.5.

The thrust magnitude and relative trajectory are plotted in Fig. 3.10. Note that

the constraints from 3-5 described above are only enforced when the chaser is within

the corridor. So the control profile is typical bang-bang control, as seen the top plot

of Fig. 3.10, when there are only terminal constraint and an inequality constraint on

limiting the maximum magnitude of norm of the controls. When all the constraints

including those from 3-5 are included within the approach corridor, intermediate thrust

is used by the chaser to satisfy all the constraints and have minimum fuel cost.

In Fig. 3.11, the top plot shows the trajectory within the approach corridor along

with the thrust direction. It is interesting to notice that the chaser moves along the
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Figure 3.11 Trajectory, thrust magnitude, and relative velocity within the last 200 m
for the target in an elliptic orbit with e = 0.5.

boundary of the corridor for most of the time. Right after the acquisition of docking

axis (ADA), the chaser starts to first increase its thrust in the negative R-bar direction

to move towards the boundary of the corridor, which is seen by the increase of relative

velocity in the negative R-bar direction in the bottom plot of Fig. 3.11. At the same

time, the thrust right after the ADA has component opposite to the direction of the

orbital motion (or in the negative V-bar direction), which reduces the velocity of the

chaser in the direction of the orbital motion so that the chaser accelerates towards the

target, as shown in the bottom plot of Fig. 3.11. Then the chaser decreases its thrust

to finally reach the boundary. After that, almost constant thrust perpendicular to the

trajectory is used to maintain the motion along the boundary.

When the chaser is about 30 m to the target, it starts to prepare for the final docking

by varying its thrust. There are five vertical lines in Fig. 3.11 between the first two

of which the chaser uses less thrust, which is not enough to keep the motion along the

boundary, so that it leaves the boundary as a result of the increase of the relative velocity
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in the R-bar direction. When there is enough space between the chaser and the boundary,

it is seen between line 2 and line 3 that more thrust in the V-bar direction is used to

decrease the relative velocity between them. Meanwhile, the chaser will move back

towards the boundary because the thrust has large enough component in the negative

R-bar direction. What is happened in line 3-4 and line 4-5 repeats the previous process

to further decrease the relative velocity in the negative V-bar direction. Finally, it should

be pointed out that the middle plot of Fig. 3.11 illustrates that in the end similar thrust

profile is used to make sure the relative velocity and position between the chaser and

that target are zero at tf .



54

CHAPTER 4. PERTURBATIONS

4.1 Introduction

As mentioned in Chapter 3, much of the rendezvous problems were based on the

Clohessy-Wiltshire equations [5] which are linear and time-invariant differential equations

describing the proximity relative motion of a chaser spacecraft with respect to a target

spacecraft in a circular orbit. Linearized relative model was later extended to be valid for

any arbitrary elliptic orbit and its analytic state matrix can be found [8], which enables

the application in terminal rendezvous. See Ref. [7] for a summary of it. Optimal

rendezvous problem in general Keplerian orbit with bounded-thrust can be also found

in Ref. [6]. Furthermore, due to the existence of external perturbations to all satellites

in reality, a set of linearized equations, incorporating the effect of J2 perturbation, were

developed for circular reference orbit [13]. The model was used to study the rendezvous

maneuver for multiple spacecraft under the influence of J2 disturbance in Ref. [14].

Despite the progress in deriving linearized relative-motion models on circular or el-

liptic orbit, and the attempt to include the J2 effect, the prevalent work that can be

found in literature is still rather limited for complex realistic RPO applications. First,

all the models are linearized, implying that they are only approximations for the real

relative motion and the accuracy will suffer to the case when two vehicles are not suffi-

ciently close. Second, the constraints considered are very simple, such as only terminal

conditions for the terminal rendezvous problem. When there are more constraints, it

is usually impossible to derive an analytic solution for the relative motion. A practical
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RPO problem is often constrained by a number of additional inequality trajectory con-

straints and interior-point constraints such as those on acquisition of docking axis point,

relative velocity [10], approach corridor for docking, plume impingement inhibition [9],

and keep-out zone. The presence of these practical constraints and the need to optimize

the fuel-expenditure make an RPO problem a highly constrained and nonlinear optimal

control problem. Third, while a majority of available studies are based on impulsive

maneuver assumption to simplify the problem, the RPO maneuvers, particularly in the

terminal phase, use small thrusters and the maneuvers are finite-time burns. Such dif-

ference cannot be overlooked if high fidelity is required, and the problem must be solved

as finite-time-burn problem when it comes to guidance solution. Finally, other sources of

perturbations in an RPO problem such as atmospheric drag may need to be incorporated

in the solution. The methodology must be readily able to accommodate such needs.

For the highly constrained realistic RPO problem analyzed in Chapter 3, this chapter

is an extension to incorporate perturbations in the RPO problem. The equation of two-

body motion (3.1) does not consider any perturbations existing in real-world. In order

to have more precise solution for the RPO, a more accurate model plays a crucial role

for that, which can be written as [11]

r̈ = − µ
r3
r +

T

m
+ ap (4.1)

where ap is the sum of all perturbed acceleration caused by other forces. The value

and form of ap depend on the type of perturbing sources which include Earth gravity

harmonics, atmospheric drag, third-body attractions, solar radiation pressure, tides, etc.

In this dissertation, we only consider the first two perturbations, which are discussed in

Section 4.2 and 4.3 respectively. Inclusion of other perturbation sources is straightfor-

ward. The purpose is to show that the method proposed in Chapter 3 is able to solve

the problem with perturbations. The discussion followed can also be found in Ref. [52].



56

4.2 Harmonic Gravity

Earth gravitational harmonics are due to its non-spherical shape, which can be broken

down into zonal and tesseral harmonics. The latter attempts to model specific regions

on the Earth departing from a perfect sphere, while the former accounts for the Earth’s

oblateness. Since the tesseral harmonics are much smaller, here we only consider the

zonal harmonics in which J2 is the largest term and represents the most of the Earth’s

gravitational departure from a perfect sphere. For instance, the value of J2 is about 400

times larger than J3, see Ref. [11] for more details. So, it has good accuracy by simply

including J2 effect to represent the Earth gravity harmonics.

To express the gravitational acceleration from J2, a standard local-vertical local-

horizontal (LVLH) frame centered at the target spacecraft is formed as that the z-axis

pointing to the Earth is known as local-vertical axis or R-bar axis, the x-axis is in

the plane of the osculating orbit and is perpendicular to the z-axis in the direction

of the orbital motion of the target. The direction of the x-axis is also called as the

local-horizontal axis or V-bar axis. The y axis, or H-bar axis, completes a right-hand

coordinate system. Let i, j and k be the unit vectors of the coordinate system. The

gravitational acceleration due to J2 is given as [11]

aJ2 = aV i+ aHj + aRk (4.2)

where aV , aH , aR are the gravitational components along V-bar, H-bar, R-bar axis,

respectively and

aV = −3

2

µ

r2
(
R0

r
)2J2sin2i sin(2θ)

aH =
3

2

µ

r2
(
R0

r
)2J2sin(2i) sinθ

aR =
3

2

µ

r2
(
R0

r
)2J2(1− 3sin2i sin2θ)

(4.3)

where J2 = 1.08263 ∗ 10−3, i is the inclination of the osculating orbit, and θ is the sum

of the argument of perigee and the true anomaly of the osculating orbit. Note that i
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and θ are functions of r and V in the presence of non-Newtonian gravity. The dynamic

equation with J2 perturbation becomes

r̈ = − µ
r3
r + aV i+ aHj + aRk +

T

m
(4.4)

In order to express equation (4.4) in the form of (3.56), we make use of the following

i = V h/Vh, j =
r × V
|r × V |

, k =
−r
r

(4.5)

where V h the horizontal component of the velocity vector

V h = V − (V Tr/r2)r (4.6)

Equation (4.4) can be rewritten as

r̈ = −(
µ

r3
+
aV
Vh

V Tr

r2
+
aR
r

)r +
aV
Vh
V + aHj +

T

m
(4.7)

Substituting (4.5) to the above equation and applying normalization, we have

V̇ = (−1/r3 + a1)r + a2V +
T

m
+ a0 (4.8)

where

a1 =
3

2
J2
V Tr

r6Vh
sin2i sin(2θ)− 3

2
J2

1

r5
(1− 3sin2i sin2θ)

a2 = −3

2
J2

1

r4Vh
sin2i sin(2θ)

a0 =
3

2
J2

1

r4
sin(2i) sinθ j

(4.9)

Similar to equation (3.56), we have the following dynamic equation

ẋ = Ā(x)x+ B̄u+ b̄ (4.10)

with

Ā(x) =


03×3 I3×3 03×1

(− 1
r3

+ a1)I3×3 a2I3×3 03×1

01×3 01×3 0

 , B̄ =


03×3 03×1

I3×3 03×1

01×3 −1/vex

 , b̄ =


03×1

a0

0


(4.11)

Unlike the matrix A(r) in (3.56) which only depends on the norm of r vector, the matrix

Ā(x) here is dependent on both r and V as seen in the definitions of a1 and a2 in (4.9).
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4.3 Atmospheric Drag

The orbital decay of any low-altitude satellite is due to atmospheric drag which is a

non-conservative force, takes energy from the orbit and decreases the semi-major axis of

the orbit. So the chaser spacecraft also faces the atmospheric drag computed as

adrag = −1

2

CDS

m
ρV V (4.12)

where CD is the drag coefficient taking values about 2.2 for a flat plate model, S the cross-

sectional area of the spacecraft normal to its velocity vector V , and ρ the atmospheric

density which is perhaps the most difficult parameter to determine. The density is

dependent on many factors such as solar flux, diurnal variations, seasonal variations,

geomagnetic activity, etc. See Ref. [12] for details.

Normalizing the drag acceleration (4.12) and adding it linearly to the state equation

with perturbation from J2 in (4.8), we have the same form of equation (4.10), but replace

Ā(x) with

Ã(x) =


03×3 I3×3 03×1

(− 1
r3

+ a1)I3×3 (a2 + a3)I3×3 03×1

01×3 01×3 0

 (4.13)

where

a3 = −1

2

CDS

m

R0

m0

ρV (4.14)

The matrix Ã(x) in (4.13) includes both perturbations from J2 and the atmospheric

drag. If only drag acceleration is considered, set a1 = 0, a2 = 0, and a0 = 0.

4.4 Convergence

In this section, we will discuss the convergence of the successive approximation

method to solve the problem in Chapter 3 with perturbations considered in the pre-

vious two sections. As what is discussed in Chapter 3, a complete and general proof
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is not available when there are no perturbations. Nevertheless, some technical observa-

tions are made relevant to the convergence of the successive approximation method to

the problem which is an extension to the problem considered in Chapter 3 by accounting

for the perturbations from J2 and atmospheric drag [52].

In Ref. [47] a nonlinear optimal control problem is considered where the system

dynamic take the form of

ẋ = A(x) +B(x)u, x(0) = x0 (4.15)

with a quadratic performance index

min J =
1

2
xT (tf )Fx(tf ) +

1

2

∫ tf

0

(xTQx+ uTRu)dt (4.16)

Under the conditions of Lipschitz continuity on A(x) and B(x) and boundedness of the

logarithmic norm of A(x) and B(x), Ref. [47] shows that the above problem can be

approximated by a solving a sequence of linear-quadratic problems with the following

linear, time-varying dynamic systems

ẋ[k+1] = A
[
x[k](t)

]
x[k+1] +B

[
x[k](t)

]
u[k+1], x[k+1](0) = x0 (4.17)

and

min J =
1

2

(
x[k+1](tf )

)T
Fx[k+1](tf ) +

1

2

∫ tf

0

[(
x[k+1]

)T
Qx[k+1] +

(
u[k+1]

)T
Ru[k+1]

]
dt

(4.18)

In our problem B̃ is a constant matrix so it is trivially bounded. Make the following

reasonable assumptions on the target orbit during the finite period [t0, tf ]:

1. the altitude of the chaser is bounded: 1 < rmin ≤ r ≤ rmax

2. the flight path angle φ of the chaser is bounded: |φ| ≤ φmax < π/2

We will show that the matrix Ã(x) in our problem satisfies

ψ(Ã(x)) ≤ ψ0 (4.19)

‖Ã(x1)− Ã(x2)‖ ≤ 2 (4.20)
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where ψ denotes the logarithmic norm of the matrix, and

ψ0 = 1− 1

r3
max

+
3

2
J2

(
2 +

√
1− 1

cos2 φmax

)
Let λmax(M) stands for the largest eigenvalue of the matrix M . By the definition of

logarithmic norm, it can readily derived that

ψ(Ã(x)) = λmax

(
Ã(x) + Ã(x)T

2

)
= 1− 1

r3
+ a1 (4.21)

where a1 is

a1 =
3

2
J2

1

r5
[sin2 i sin(2u) tanφ+ 3 sin2 i sin2 u− 1] (4.22)

Since tan2 φ+ 1 = 1/ cos2 φ, so

−
√

1− 1

cos2 φmax
≤ tanφ ≤

√
1− 1

cos2 φmax
(4.23)

Using −1 ≤ 3 sin2 i sin2 u−1 ≤ 2, rmin > 1 and the above bounds on tanφ in Eq. (4.22),

a1 satisfies

− 3

2
J2

(
1 +

√
1− 1

cos2 φmax

)
≤ a1 ≤

3

2
J2

(
2 +

√
1− 1

cos2 φmax

)
(4.24)

Based on Eq. (4.21), it is proven that ψ(Ã(x)) ≤ 1− 1
r3max

+ 3
2
J2

(
2 +

√
1− 1

cos2 φmax

)
.

For inequality (4.20), we first compute ‖Ã(x))‖ which is given as

‖Ã(x))‖ =

√
λmax(Ã(x))T Ã(x))) = max(| − 1/r3 + a1|, 1) (4.25)

Since | − 1/r3 + a1| ≤ 1
r3

+ |a1| ≤ 1
r3min

+ 3
2
J2

(
2 +

√
1− 1

cos2 φmax

)
, this is a quantity that

is usually less than 1 for rmin > 1. So max(| − 1/r3 + a1|, 1) = 1 and

‖Ã(x))‖ = 1 (4.26)

Then we have

‖Ã(x1))− Ã(x2))‖ ≤ ‖Ã(x1))‖+ ‖Ã(x2))‖ ≤ 2 (4.27)

which proves the inequality (4.20).
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Based on the conditions of a Lipschitz condition on A(x) and bounded logarithmic

norm of A(x) (plus Lipschitz and boundedness conditions on B(x) which are automat-

ically satisfied in our case), Ref. [47] shows that for sufficiently small tf (or x0) the

successive solutions to the linear-quadratic (LQ) problems converge to that of the origi-

nal problem. It is shown here that critical condition in Ref. [47] on the logarithmic norm

of the Ã matrix is met. If the Lipschitz condition on A(x) in Ref. [47] is replaced by

the condition in similar to that in Eq. (4.20), the same convergence proof there would

remain valid. However, our problem is much more complex than an LQ problem, be-

cause of all the constraints. While a theoretical proof of convergence is not available, our

extensive numerical experience has provided strong evidence to consistent convergence

of the proposed successive approximation method in solving the RPO problem.

4.5 Numerical Results

In this section, the simulation results, obtained by the modeling toolbox YALMIP

[53] and the MOSEK solver [28], of the problem described in Chapter 3 will be shown

to verify the effectiveness of the method to incorporate the perturbations from J2 and

atmospheric drag.

For the rendezvous and proximity operations with perturbation from J2, consider the

target to be in a circular orbit with altitude of 400 km, inclination of 51.6 deg, and right

ascension of ascending node of 100 deg. The target is initially at a position that is 85

deg away from the right ascension of ascending node. The chaser having initial mass

of 1385 kg is located 5 km behind and 500 m below the target with nonzero relative

velocity of [0.7, 0, 0.5] m/s in the LVLH frame, and subjects to the perturbation from

J2. The maximum magnitude of thrust vector for the chaser is given as 84 N which gives

an acceleration of 0.06 m/s2. All constraints are given as follows:

1. The chaser is required to dock with the target with the same final position and
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velocity at total given flight time tf = 4000 sec. At t1 = 2000 sec, the chaser arrives

at 200 m in front of the target along V-bar and the relative velocity between them

is less than 0.2 m/s.

2. Since t1 = 2000 sec, the chaser needs to be inside the final approach corridor which

is a cone with half angle of 15 deg.

3. Within the corridor, for safety consideration, when t ∈ (2000, 3200] sec, the plume is

required to be at least 60 deg away from the target and the inertial relative velocity

is less than 0.3 m/s, while those values become 89 deg and 0.1 m/s respectively

when t ∈ (3200, 4000] sec.
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Figure 4.1 Top subplot: the thrust acceleration profile with the red curve including
perturbation from J2. Bottom subplot: the approach angle when the chaser
is within the approach corridor since 2000 sec (or the last 200 m). The
target is in a circular orbit with altitude of 400 km.

The simulation results are shown in Fig. 4.1–4.4 in which all blue curves, plotted for

comparison, represent the results when there is no J2 perturbation. Before the chaser
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Figure 4.2 Top subplot: the magnitude of relative velocity in the LVLH frame. Bottom
subplot: zoom in view on the magnitude of relative velocity since 2000 sec
(or the last 200 m). The target is in a circular orbit with altitude of 400
km. The target is in a circular orbit with altitude of 400 km.

enters the approach corridor, the only constraint is the maximum magnitude of thrust, so

the thrust is either full burn or coasting, as seen from the top plot of Fig. 4.1. However,

the first burn does not occur until about t = 730 sec when there is no perturbation, and

there is the second short burn for braking to satisfy the velocity requirement when the

chaser is close to be 200 m ahead of the target. With consideration to J2, the chaser

has the first burn in the very beginning followed by another one in the midway, and uses

a little bit thrust to brake right before it enters the corridor. So the thrust profile is

totally different for the existence of J2. In addition, the top two plots in Fig. 4.3 tells us

that the H-bar or out of plane component of the relative trajectory in the LVLH frame

is no longer zero when considering J2, which is the same case for the trajectory inside

the corridor shown in the bottom two plots of Fig. 4.3. Due to the existence of H-bar

component, it is also implied that for fuel optimal objective there is no need to constrain

the motion to be always in the orbital plane.
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Figure 4.3 Top two subplots: the whole relative trajectory in the LVLH frame. Bottom
two subplots: zoom in view on the relative trajectory since 2000 sec (or the
last 200 m).

Within the corridor, the chaser tries to move along the boundary to save fuel as seen

in the bottom plot of Fig. 4.1, with some temporarily leave away from the boundary

for changing velocity. For the thrust, its magnitude is intermediate due to the inclusion

of a variety of constraints. Also, it is larger than that when there is no J2, which is

understandable in practice. The direction of the thrust, plotted in Fig. 4.4, is not

limited to be in the orbital plane, but has nonzero component in the H-bar direction,

and satisfies the plume impingement inhibition.

In summary, the J2 perturbation has a significant effect on the solution, as discussed

above. So it is important to take J2 perturbation into consideration in practice. Nev-

ertheless, the main point here is that the method presented in Ref. [9] is applicable

to rendezvous problem with perturbations. There is no difficulty for the algorithm to

converge and it takes only 6 iterations or so.

Next, Let us consider the perturbation from atmospheric drag. From equation (4.12),
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Figure 4.4 The relative trajectory in 3-dimension for the last 200 m with thrust direc-
tion along the trajectory. All thrust vectors are in unit length.

the atmospheric density ρ needs to be known. There are numerous models, either static

or time-varying, to obtain the density, one of which is the Russian GOST model valid for

altitude of 120-1500 km. The version GOST 25645.115-84 of the model will be used here,

see Ref. [12] for details. The model accounts for the effects from solar flux, semiannual

variation, and geomagnetic activity. Semiannual effect is ignored here. In order for the

effect of drag perturbation to be more discernible, a lower circular orbit with altitude

of 250 km is used. In addition, assume that there is extreme geomagnetic activity with

kp = 9.0 which is a quasi-logarithmic, worldwide average of geomagnetic activity below

the auroral zones, and active solar activity with F̄10.7 = 240 is taken into consideration.

The drag coefficient CD is chosen as 2.2, and the cross sectional areas is assumed to be

a constant S = 20 m2.

For the data given above, the atmospheric drag gives a disturbed acceleration of about

1.32× 10−4 m/s2, which effects on the thrust and approach angle are shown in Fig. 4.5.

It is seen that little change is on the magnitude of thrust, while there is slight change
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Figure 4.5 Top subplot: the thrust acceleration profile. Bottom subplot: the approach
angle when the chaser is within the approach corridor. The target is in a
circular orbit with altitude of 250 km. tf = 3500 sec, t1 = 1300 sec.

for the approach angle. The top two plots of Fig. 4.6 illustrate that before entering the

approach corridor, the chaser’s motion in the R-V bar plane is slightly affected by the

atmospheric drag, but there is still no out of plane motion. When the chaser is inside

the approach corridor, increased out of plane motion, even though very small, occurs

under the influence of drag perturbation, as seen in the bottom-right plot in Fig. 4.6.

Overall, atmospheric drag does have slight influence to the case considered here. When

the chaser has less mass and smaller thrust, it is expected that the RPO will be more

affected by the atmospheric drag.
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CHAPTER 5. COLLISION AVOIDANCE

5.1 Introduction

Collision avoidance is practically important for satellites in orbit to avoid collision

with space debris or other satellites. An immediate example is the RPO problem dis-

cussed in Chapter 3 which has a potential for collision during proximity operations. For

example, when the chaser flies from behind the target to finally dock with the target by

using the V-bar approach, the chaser may collide with the appendages from the target

such as solar panel. Other areas could include launching a vehicle into orbit and orbital

transfer where collision avoidance is significant.

The constraints from collision avoidance are commonplace in aerospace problems and

robot path planning, and it may have different names in different situations, such as no-

fly-zone constraint or obstacle avoidance. The only efforts in the literature that attempt

to address such non-convex constraints for application of convex optimization are within

the context of linear programming (thus applicable only to linear problems). For polygon

avoidance region, Ref. [15] proposes to represent the collision avoidance constraint with a

set of linear equations including binary variables. For example, it needs 4 binary variables

in each time step for a rectangle avoidance region, producing 1200 binary variables if 300

time steps are used in a problem. To alleviate the greatly increased computational time

caused by the many binary variables, a time-step grouping technique [15] can be used

to reduce the number of binary variables needed to be dealt with. While in principle a

non-polygon avoidance region may be approximated by a polygon and then treated by
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the same approach as in Ref. [15], the dimension of the problem would be significantly

higher for reasonably accurate constraint representation. Extensions to 3-dimensional

constraints would result in a prohibitive dimension of the problem. In Refs. [16, 17], a

circular collision avoidance region in a 2-dimensional plane is replaced by the half space

defined by a single line tangent to the boundary of the circle and rotating at a constant

angular rate. There is only one linear inequality constraint at each time step without

involving binary variables. However, the initial location of the tangent line and the

constant rotation rate are two critical parameters that need to be determined in each

application. But the knowledge of what constitutes appropriate choices is not available

before a solution is found. So trial and error are inevitable. Yet inappropriate choices

could lead to infeasibility of this linear inequality constraint. When it works, it tends to

produce more conservative trajectory because of the limitation of the constant rotation

rate of the line. Extension to non-circular regions would be difficult, if not impossible,

because the constant rotation-rate assumption would be challenged even more.

Inclusion of the constraints poses a fundamental challenge to the SOCP-based method-

ology because the constraints, which can actually be viewed as concave inequality con-

straints, are non-convex. In this dissertation, each concave inequality constraint is ap-

proached by a successive solution process where a sequence of convex problems are solved.

Each of the concave inequality constraints is linearized about the last solution in the pro-

cess. As a result, each of the successive problems is a convex problem that can be solved

by SOCP. While similar ideas for handling nonlinearity in optimization problems have

long been tried [54], but no convergence results are available and the performance may

be poor [55]. However, it is shown in this disseration that the concavity of the constraints

results in a fundamental property of guaranteed feasibility to the original constraints by

the solutions of the successive problems. Further analysis establishes the existence of

the successive solutions, and the equivalence of a solution of the original problem to the

converged successive solution. Based on these findings, the convergence of the succes-
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sive solutions to a solution of the original problem, at least a local optimal solution, is

rigorously proven under reasonable conditions. Moreover, the converged solution by the

proposed approach will not have any conservativeness in satisfying the original concave

constraints.

5.2 Problem Formulation

For the RPO problem, during proximity operations around the target vehicle, the

chaser should make sure that its maneuvering trajectory does not get too close to the

target vehicle to avoid possible collision. The requirement is usually imposed as a con-

straint for keep-out zone centered at the target vehicle in the LVLH frame. In the

near-field rendezvous phase, the chaser, initially located behind the target, is trying to

approach the target and arrives in front of the target for a V-bar approach. Fig. 5.1

shows the scenario where the keep-out zone is modeled as a sphere of radius d centered

at the target vehicle in the LVLH frame. Denote the position of the chaser and target

be r̄ and r̄t respectively in the LVLH frame. Then the problem (3.55)–(3.62) has one

more inequality trajectory constraint for collision avoidance which is expressed as

r̄2
x + r̄2

y + r̄2
z ≥ d2 (5.1)

where r̄x, r̄y and r̄z are the components of the relative position between the chaser and

the target in the LVLH frame, i.e.,

r̄ − r̄t = r̄xi+ r̄yj + r̄zk (5.2)

A more general and practical keep-out zone in the RPO problem is typically an

ellipsoid where the chaser’s trajectory is prohibited. Figure 5.2 illustrates such a scenario

in 2D. If the ellipsoid has semi-principle axes of a, b and c along the x (V-bar), y (H-bar)

and z (R-bar) axis respectively, the constraint can be written as

r̄2
x

a2
+
r̄2
y

b2
+
r̄2
z

c2
≥ 1 (5.3)
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Figure 5.1 Circular keep-out zone for collision avoidance in 2-dimension (2D)

Figure 5.2 Elliptic keep-out zone for collision avoidance in 2D

It is seen that both Eq. (5.1) and (5.3) are expressed in the LVLH frame, while the

states and controls in problem (3.55)–(3.62) are all with respect to the GEI frame.

Therefore, it is necessary to rewrite the Eq. (5.1) and (5.3) in the GEI frame. Based

on the transformation matrix (2.30) in Chapter 2, we can express the relative position

vector in Eq. (5.2) in the GEI frame as

r − r̄t = [r̄x r̄y r̄z]


i

j

k

 = [r̄x r̄y r̄z]M
L/G


I

J

K

 (5.4)
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Let the relative position vector has coordinates [rX , rY , rZ ] in the GEI frame. Then we

have

[rX rY rZ ] = [r̄x r̄y r̄z]M
L/G (5.5)

which results in

[r̄x r̄y r̄z] = [rX rY rZ ][ML/G]−1 = [rX rY rZ ][ML/G]T (5.6)

The above equation means that the variables in Eq. (5.1) and (5.3) can be replaced by

components of the relative position vector in the GEI frame, which will generate the

corresponding contraints in the GEI frame. For example, consider an elliptic orbit which

has inclination i = 0 and its perigee is right on the Y-axis of the GEI frame. So, in

Eqs. (2.26)-(2.29), Ω, i, and ω are chosen as 0, 0, and π
2

respectively, which are used,

based on Eq. (2.31), to compute

[ML/G]T =[Dx(
3π

2
)]T [Dy(2π)]T [Dx(0)]T [Dy(π − ν)]T

=


− cos ν 0 sin ν

− sin ν 0 − cos ν

0 −1 0

 (5.7)

Substituting it to Eq. (5.6), we have

r̄x = −rX cos ν − rY sin ν

r̄Y = −rZ (5.8)

r̄Z = rX sin ν − rY cos ν

With the above equations, Eq. (5.1) can be rewriten as

r2
X + r2

Y + r2
Z ≥ d2 (5.9)

and Eq. (5.3) is rewritten as

(
cos2 ν

a2
+

sin2 ν

c2
)r2
X + (

1

a2
− 1

c2
) sin(2ν)rXrY + (

sin2 ν

a2
+

cos2 ν

c2
)r2
Y +

r2
Z

b2
≥ 1 (5.10)
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Eq. (5.9) or (5.10) is the constraint that needed to be added to problem (3.55)–(3.62)

for collision avoidance. Immediately one recognizes that the constraint is neither linear

nor second-order cone, the two types of inequality constraints that can be handled in

SOCP. Rather, they are concave inequality constraints.

Remark:

For practical numerical implementation, the form of expression for constraints in

either Eq. (5.9) or (5.10) may cause numerical problems. For example, the solution

obtained may not satisfy those constraints, even though they are indeed included in

problem formulation. It is because of the limited accuracy of an algorithm that the

constraints in Eq. (5.9) or (5.10) can not be satisfied in any digit accuracy. The

prescribed variables d, a, b, c are all small after normalization, and their square

becomes even smaller. Therefore, it is always better to express Eq. (5.9) and

(5.10) in the following forms: √
r2
X + r2

Y + r2
Z ≥ d (5.11)√

(cos2 ν +
a2 sin2 ν

c2
)r2
X + (1− a2

c2
) sin(2ν)rXrY + (sin2 ν +

a2 cos2 ν

c2
)r2
Y +

a2r2
Z

b2
≥ a

(5.12)

In the development hereafter, the notation for the quadratic-cone K induced partial

ordering “≥K” follows the standard used in the conic optimization literature (e. g., see

Ref. [33]). To make the analysis below also applicable to other problems with colli-

sion avoidance, we generate the expression for the collision avoidance constraints. The
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following SOCP problem with concave inequality constraints is considered [56]:

P1: min
y

cTy (5.13)

subject to Hy ≤ p (5.14)

gi(y) ≤ 0, i = 1, . . . , l (5.15)

Ay − b ≥K 0 (5.16)

where y ∈ RN is the variable vector consisting of the collection of all state and control

variables at the discretization points, and c is a constant column vector; H ∈ RM×N is a

constant matrix and p ∈ RM is a constant vector. Each of the linear equality constraints

in Eqs. (3.61) and (3.62) is expressed by two linear inequality constraints and included in

Eq. (5.14). Eqs. (3.58) and (3.60) can be directly transformed into the form of Eq. 5.14.

Each gi(y) is a concave function, which could be from (5.1) or (5.3). All the second-order

cone constraints in Eqs. (3.57) and (3.59) are represented in Eq. (5.16). See Chapter 2 on

how to represent it. The cone K is a direct product of second-order cones of dimension

ni, defined as

K = Kn1 ×Kn2 × · · · ×Knr (5.17)

where each Kni represents the quadratic cone at a discretization point from a second-

order-cone constraint in the original problem.

5.3 Successive Linear Approximation

5.3.1 Methodology

It is obvious in P1 that the constraints (5.15) neither convex nor second-order cones,

while violates the requirement in SOCP. One may find a way to equate the effects of

Eq. (5.15) with linear affine constraints. When the concave constraints in Eq. (5.15) are

linearized about the k-iterated solution y[k], a related subproblem PP(y[k]) is formulated
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for a given y[k] ∈ RN as follows:

PP(y[k]) : min
y

cTy (5.18)

subject to Hy ≤ p (5.19)

gi(y
[k]) + OgTi (y[k])(y − y[k]) ≤ 0, i = 1, . . . , l (5.20)

Ay − b ≥K 0 (5.21)

‖y − y[k]‖ ≤ ρ (5.22)

where Ogi(y[k]) is the gradient of gi(y) at y[k]. The constraint (5.22) is a “trust-region”

constraint (which is a second-order cone) for the linearization in Eq. (5.20) and ρ is the

radius of the trust region. This constraint will prevent ‖y − y[k]‖ from getting too large

before convergence so that the linearized constraints in Eq. (5.20) are reasonable approx-

imations to the original constraints (5.15). This mechanism is found to be important for

this approach to be robust.

The Problem PP(y[k]) is an SOCP problem for a given y[k]. In this dissertation a

sequence of the problems PP(y[k]), k = 1, 2, . . ., will be solved in order to find the solution

to Problem P1.

5.3.2 Convergence

It will be shown that if Problem P1 has a solution that satisfies the necessary con-

ditions for optimality, known as the Karush-Kuhn-Tucker (KKT) conditions [22], the

solutions of the problems PP(y[k]) will converge to the KKT-solution of Problem P1

under certain conditions to be stated later. The discussion thereafter on convergence is

from Ref. [56]. We start with the following result first:

Lemma 5.3.1. If gi(y) in (5.15) is C2, and concave, then any y that is feasible for

Problem PP(y[k]) is also feasible for Problem P1.
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Proof. Since all the constraints in Problem P1 are also in Problem PP(y[k]), except for the

difference between (5.15) and (5.20), it is only necessary to show that any y feasible for

(5.20) will be feasible for (5.15). Let y be an arbitrary feasible point to constraint (5.20),

i.e.,

gi(y
[k]) + OgTi (y[k])(y − y[k]) ≤ 0 (5.23)

Represent gi(y) by the second-order Taylor series expansion

gi(y) = gi(y
[k]) + OgTi (y[k])(y − y[k]) +

1

2
(y − y[k])TO2gi

[
y[k] + θ(y − y[k])

]
(y − y[k])

(5.24)

where θ ∈ [0, 1] and O2gi the Hessian of gi. Using Eq. (5.23) in the above equation leads

to

gi(y) ≤ 1

2
(y − y[k])TO2gi

[
y[k] + θ(y − y[k])

]
(y − y[k]) (5.25)

Since gi(y) is concave, O2gi
[
y[k] + θ(y − y[k])

]
is negative definite or negative semi-

definite, therefore gi(y) ≤ 0 from the above equation, which is exactly condition (5.15).

Since the constraint in Eq. (5.22) is also a second-order cone, it can be put into the

following form

Anr+1y − bnr+1 ≥Knr+1 0 (5.26)

where Anr+1 and bnr+1 are constructed as

[Anr+1 ; bnr+1 ] =

 In×n y[k]

01×n −ρ

 (5.27)

Hence, Eq. (5.22) can be combined with Eq. (5.21) to give

Ay − b ≥K̄ 0 (5.28)

where K̄ = K ×Knr+1 is the direct product of K and Knr+1.

The relationship between the solutions to Problem P1 and PP(y[k]) is established by

the following lemma.
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Lemma 5.3.2. Suppose that the quadratic-cone constraints in Problem PP(y[k]) are

strictly feasible, i.e., there exists a y ∈ RN such that

Ay − b >K̄ 0, Hy ≤ p, gi(y
[k]) + OgTi (y[k])(y − y[k]) ≤ 0, i = 1, . . . , l (5.29)

If the optimal solution y∗ to Problem PP(y[k]) is y[k] itself, then y∗ = y[k] is a Karush-

Kuhn-Tucker solution for Problem P1.

Proof. See the Appendix.

Note that no claim is made in Lemma 5.3.2 about the optimality of the KKT solution

of Problem P1. But later it will shown that the objective function of Problem P1 is indeed

improved by each successive solution.

Suppose that the solution to PP(y[k]) is found and designated by y[k+1]. Form the

problem PP(y[k+1]) and assume that its solution is found again. Repeating this process

will generate a sequence of solutions {y[k]}. Lemma 5.3.2 states that if this solution

sequence converges, a KKT solution to the original problem P1 is found. The next

lemma answers whether a solution sequence {y[k]} can indeed be generated.

Lemma 5.3.3. If y∗ is the solution to Problem PP(y[k−1]) for a given y[k−1], and denote

y[k] = y∗. Then Problem PP(y[k]) has an optimal solution.

Proof. For Problem PP(y[k]), y = y[k] immediately satisfies constraints (5.19), (5.21)

and (5.22) by the fact that y[k] is the solution to Problem PP(y[k−1]). As for Eq. (5.20),

using Lemma 1 (Eq. (5.24) in particular) gives rise to gi(y
[k]) ≤ 0. Thus y = y[k] is

also feasible to Eq. (5.20), hence y is a feasible solution to Problem PP(y[k]). Define the

feasibility set C of Problem PP(y[k])

C =
{
y ∈ Rn | Hy ≤ p, gi(y[k]) + Ogi(y

[k])T (y − y[k]) ≤ 0, Ay − b ≥K 0, ‖y − y[k]‖ ≤ ρ
}

(5.30)

The fact that y = y[k] ∈ C means that the feasible set C of Problem PP(y[k]) is not

empty. It is obvious that the set C, an intersection of half-spaces and second-order cones,
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is closed. In addition, the trust-region constraint (5.22) renders C bounded. Therefore,

the set C is compact. The objective function in PP(y[k]) is continuous on C. Then, by

the Weierstrass Theorem [57], there exists a minimizer in C for Problem PP(y[k]).

From the proof it is evident that y[k] need only be a feasible solution, not necessarily

optimal. Note that Lemma 5.3.3 is sufficient, but not necessary for the solution to

Problem PP(y[k]) to exist. Suppose that for an arbitrary y[0], the solution to Problem

PP(y[0]) is found. Set that solution to be y[1]. Then the optimal solution to Problem

PP(y[1]) exists by Lemma 5.3.3. Designate this optimal solution to be y[2] and repeat

this process. Lemma 5.3.3 establishes that such a solution sequence {y[k]}, k = 1, 2, . . .,

exists under a very mild condition. The next lemma addresses the change in the objective

function caused by the sequence {y[k]}.

Lemma 5.3.4. If y = y[k] is feasible to PP(y[k]), and y∗ solves the problem PP(y[k]),

then the objective function is non-increasing from y[k] to y∗, i. e.,

cTy∗ ≤ cTy[k] (5.31)

Furthermore, if y∗ is the unique optimal solution to Problem PP(y[k]), and y∗ 6= y[k],

the above condition holds strictly

cTy∗ < cTy[k] (5.32)

Proof. If y∗ is the (optimal) solution and y = y[k] is a feasible solution, both to Prob-

lem PP(y[k]), then the objective function corresponding to y∗ is no greater than that

corresponding to y[k]

cTy∗ ≤ cTy[k] (5.33)

When y∗ is the unique solution of Problem PP(y[k]), assume that cTy∗ = cTy[k]. Since

y[k] is feasible to Problem PP(y[k]), This means that y[k] 6= y∗ is also optimal, which

contradicts the uniqueness of y∗. Therefore, only the strict inequality in Eq. (5.33) can

hold, and this is the conclusion in Eq. (5.32).
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Note that the assumption of uniqueness of optimal solution to Problem PP(y[k]) is

not a very stretched condition. Lemma 5.3.3 already ensures the existence of an optimal

solution. Problem PP(y[k]) is a convex optimization problem and any of its minimum is

global. All it takes for condition (5.32) to hold is that this global minimum is unique.

By Lemma 5.3.4, if Problem PP(y[k]) always has a unique optimal solution for all k, the

solution sequence {y[k]}, obtained by recursively solving Problem PP(y[k]) satisfies the

following monotone decreasing condition

cTy[k+1] < cTy[k] (5.34)

In fact, starting from an arbitrary y[0] ∈ Rn, as long as a feasible solution y[1] to Problem

PP(y[0]) can be found, by Lemma 5.3.3 such a sequence {y[k]} is guaranteed to exist,

and can be found by solving Problem PP successively. Under the condition of Lemma

5.3.4, this sequence will enjoy the monotone decreasing property in Eq. (5.34). This

condition, together with Lemma 5.3.1, means that the objective function in Problem P1

is improving successively by the sequence {y[k]}.

Lemmas 5.3.1–5.3.4 have laid the groundwork for the following convergence result.

Theorem 5.3.1. Let {y[k]} be a sequence of the solutions obtained by recursively solving

Problem PP. Assume that there exists a unique solution for each of Problems PP(y[k]),

and the quadratic-cone constraints in each of the Problems PP(y[k]) are strictly feasible

(cf. Eq. (5.29)). Then either the sequence {y[k]} terminates in finite steps with a KKT

solution to Problem P1, or an infinite sequence {y[k]} converges to a KKT solution of

Problem P1.

Proof. The sequence {y[k]} terminates in finite steps if at one step y[k+1] = y[k]. Then

by Lemma 5.3.2, y[k] is a KKT solution of Problem P1. Next, consider the case when

{y[k]} is an infinite sequence. Eq. (5.22) implies that {y[k]} is bounded. Thus {y[k]} is

in a compact set in Rn. Then there is a subsequence {y[ki]} that converges to a limit
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y∗. Choose the merit function (referred to as the “adaptation function” in Ref. [58])

to be Z(y) = cTy. By Lemma 5.3.4, Z(y[k+1]) < Z(y[k]). Since Z is continuous, so

Z(y[ki]) −→ Z(y∗). By Lemma 4.1 in Zangwill [58], we also have Z(y[k]) −→ Z(y∗)

for the entire sequence {y[k]}. Represent the process of solving Problem PP(y[k]) to get

y[k+1] by the point-to-set mapping y[k+1] ∈ M(y[k]) where the set M(y[k]) consists of

all the solutions to Problem PP(y[k]) [58]. By the condition of uniqueness of solution to

Problem PP(y[k]), we can simply use the expression y[k+1] = M(y[k]). Since the KKT

conditions used to find the solution of Problem PP(y[k]) are continuous in y[k], and the

solution of these conditions depends continuously on y[k], the mappingM is closed in the

sense as defined in Ref. [58]. Therefore we must have the conclusion that y∗ =M(y∗).

To prove this conclusion by contradiction, suppose that it is not true. Consider the

sequence {y[ki+1]} which is obtained by increasing the index of each element in the

sequence {y[ki]} by 1. Then {y[ki+1]} contains a subsequence {y[ki+1]j} that converges

to a limit y∗+1. Let y[ki]j be the jth element of the sequence {y[ki]}, and y[ki+1]j the

jth element of the sequence {y[ki+1]}. Since y[ki+1]j = M(y[ki]j), y[ki+1]j −→ y∗+1, and

y[ki]j −→ y∗, we have y∗+1 =M(y∗) by the closeness of the mappingM. But y∗+1 6= y∗

since y∗ 6=M(y∗) is assumed. Consequently by Lemma 5.3.4

Z(y∗+1) < Z(y∗) (5.35)

Since {y[ki+1]j} is a subsequence of {y[k]}, and Z(y[k]) −→ Z(y∗), thus it is necessary

that Z(y∗+1) = Z(y∗). But this result contradicts with the finding in Eq. (5.35). So

we must have y∗ = M(y∗). Again by Lemma 5.3.2, y∗ is a KKT solution of Problem

P1.

Nothing has been said so far about the optimality of the KKT solution of the original

Problem P1 where the successive solution sequence {y[k]} converges to, i. e., whether

this KKT solution is indeed a minimum. In the following, we guarantee that this KKT

solution is at least a local minimum of Problem P1.
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Corollary

Let the conditions assumed in the Theorem hold. Let y∗ be the accumulation point

of the successive solution sequence {y[k]} identified in the proof of the Theorem, or the

last solution when {y[k]} terminates in finite steps. Then y∗ is at least a local minimum

of Problem P1.

Proof: The conclusion will be proven by contradiction. First realize from the proof of

the Theorem that y∗ is the solution to Problem PP(y∗). Assume that y∗ is not a local

minimum of Problem P1. This implies that for any arbitrarily small δ > 0, there exists a

ỹ such that ỹ is feasible to Problem P1, ‖y∗− ỹ‖ ≤ δ, and the following condition holds

cT ỹ < cTy∗ (5.36)

By Taylor’s Theorem, we have

gi(ỹ) = gi(y
∗) +OgTi (y∗)(ỹ−y∗) +

1

2
(ỹ−y∗)TO2gi [y

∗ + θ(ỹ − y∗)] (ỹ−y∗), θ ∈ [0, 1]

(5.37)

For sufficiently small δ, the first two terms in the above equation dominate the second-

order term on the right-hand side. Since gi(ỹ) ≤ 0 as ỹ is feasible to Problem P1, this

implies that

Ogi(y
∗) + gTi (y∗)(ỹ − y∗) ≤ 0 (5.38)

This is because if condition (5.38) is not true, it would lead to gi(ỹ) > 0 for a ỹ sufficiently

close to y∗, and this is a contradiction. Condition (5.38) and the fact that ỹ is feasible to

other constraints in Problem PP(y∗) because of the feasibility of ỹ to the same constraints

in Problem P1 suggest that ỹ is feasible to Problem PP(y∗). Equation (5.36) implies that

there is another feasible solution to Problem PP(y∗) that produces a smaller objective

function value than y∗ does, which contradicts the condition that y∗ is the optimal

solution of PP(y∗). Therefore y∗ must be at least a local minimum of Problem P1. ♣

Remarks:
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1. The above convergence results provide a rigorous foundation for the successive so-

lution method in this dissertation that other heuristic approaches lack. Another

implication of the above convergence theorem is that, unlike the existing approaches

in the literature, there will be no conservativeness in constraint satisfaction when

convergence occurs, even though linearization is used in Eq. (5.20) to approxi-

mate the nonlinear constraints (5.15). This is true because at convergence, the

constraints in (5.20) in Problem PP(y[k]) are the same as the original constraints

(5.15) in Problem P1, as the solution is y∗ = y[k].

2. In the standard convergence analysis of the well-recognized general nonlinear pro-

gramming algorithm, the sequential quadratic programming (SQP) method, the

convergence conclusion is reached on the basis of certain algorithmic parameter se-

lection rules dependent on the Lagrange multipliers of the problem [18, 19]. Since

the Lagrange multipliers are not known a priori, the convergence proof has only

theoretical significance, but offers little in algorithm implementation for guaran-

teed convergence. Here the general nonlinear constraints in a general nonlinear

programming problem the SQP method allows are traded for a special class of con-

straints (concave constraints) and an SOCP setting. The payoff is the certainty of

ensured convergence (under proper conditions) of the algorithm without depending

on unknown parameters.

3. Even though the above convergence conclusions are derived in the context of using

an SOCP-based approach, little needs to be changed for the conclusions to be

applicable if a Linear Programming (LP) based method is used to solve a problem

with concave inequality constraints. Hence, conceivably the problems solved by

using LP-based methods in Refs. [15–17] can benefit from the development in this

dissertation with the a similar successive LP solution approach.
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5.4 Numerical Demonstration

For the PRO problem with keep-out zone constraints (or collision avoidance con-

straints), two examples are given to demonstrate the effectiveness of the methodology

proposed in the previous sections.

Elliptic Keep-out Zone and V-bar Approach

In this RPO problem, the target spacecraft is in an elliptical orbit with eccentricity

e = 0.3 and perigee altitude of 350 km. A chaser spacecraft has an initial mass of 1500

kg. The chaser’s engine has a maximum thrust of 30 N (a maximum thrust acceleration

of just 2.0 × 10−3 g) and specific impulse of 200 sec. In order to express the relative

position and velocity between the target and chaser conveniently, the standard local-

vertical local-horizontal (LVLH) frame centered at the target is used. At t0 = 0, the

target has a true anomaly of 10 deg, the chaser is located 6 km behind and 300 m below

the target, i. e., the relative position vector in the LVLH frame is rrel=[-6000, 0, 300]

m, and relative velocity vector is V rel=[-0.5, 0, 0.2] m/s. The chaser is required to fly

around the target to a close distance on the V-bar axis in front of the target, approach

it and finally dock with it along the V-bar axis within a total given time tf=4000 sec.

The performance index is minimum-propellant consumption. During the process, there

are a variety of constraints imposed as follows:

1. At t1=2000 sec, the chaser is required to be 200 m ahead of the target on the

V-bar direction with relative velocity no greater than 0.2 m/s. This is called the

Acquisition-of-the-Docking-Axis constraint.

2. For t ∈ [t0, t1], there is a Keep-Out Zone (KOZ) constraint [59] which is defined

here to be an ellipsoid in the LVLH frame, centered at the target with the semi-

major axis of 200 m along the V-bar axis and two semi-minor axes of 100 m. The
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chaser cannot enter this KOZ before t1 to avoid the risk of collision between the

two spacecraft. This is a concave (and non-spherical) state inequality constraint.

3. For all t ∈ [t1, tf ], the chaser should remain inside an approach corridor which is

defined by a circular cone fixed at the target which has V-bar axis as its centerline,

a half angle of 10 deg and the apex at the target vehicle.

4. Once inside the approach corridor and for t ∈ (t1, t2] with t2=3200 sec, the relative

velocity is constrained to be less than 0.3 m/s and the chaser thrust plume (negative

of the thrust direction) should point at least 60 deg away from the target; and

the parameters for those constraints become 0.1 m/s and 89 deg respectively for

t ∈ (t2, tf ].

5. At tf , the relative position and velocity between the chaser and the target are both

zero. For a target vehicle on a known orbit, these conditions form 6 linear terminal

conditions.

The reader is referred to Ref. [9] for more detailed formulation and description of the

RPO problem (note that the KOZ constraint is not imposed in Ref. [9]). In addition,

the rate of change of thrust vector within the approach corridor is also constrained as

in Ref. [52]. Only inverse-square gravity field is used in this example. For more realistic

modeling such as a gravity field with high-order gravitational harmonics and aerodynamic

drag, see Ref. [52].

Even without the KOZ constraint, repeated attempts to solve this RPO problem by

general-purpose trajectory optimization software have failed. Now with the KOZ, the

numerical results by the proposed method are shown in Figs. 5.3–5.5. One of the trajecto-

ries in Fig. 5.3 shows that the optimal chaser trajectory would violate the KOZ constraint

without including it (the closest approach is 85 m, shorter than the semi-minor axis of

the keep-out ellipsoid). When the KOZ constraint is included, the approach proposed in
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Figure 5.3 RPO trajectories in LVLH frame with Keep-Out Zone constraint, V-bar
approach.

Section 5.3 very effectively and conveniently enforces it. As seen from Fig. 5.3, a part

of the converged trajectory lies on the boundary of the KOZ. While the convergence is

ensured by the Theorem in Section 5.3.2, in this example the convergence is also achieved

rapidly in just 4 iterations: in the first iterate (k = 1) the trajectory is one generated

without including the constraint, and it violates the KOZ constraint. The second iterate

(k = 2) is obtained from solving Problem PP(y[1]) in Section 5.3. By Lemma 5.3.1 this

solution will be feasible to original Problem P1, which indeed is the case as is evident

from Fig. 5.3. All further iterates will be feasible to the original problem from this point

on. When k = 3 the solution is already indiscernible from the converged solution (when

k = 4) in the scale of Fig. 5.3.



86

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.005

0.01

0.015

0.02

0.025

Time (sec)

A
cc

el
er

at
io

n 
(m

/s
2 )

−7000−6000−5000−4000−3000−2000−100001000

−200

0

200

400

600

800

1000

V−bar (m)

R
−

ba
r 

(m
)

 

 

w/o keep−out zone constraint
with keep−out zone constraint

direction of relative motion 

Figure 5.4 The magnitude of thrust acceleration and the complete relative RPO tra-
jectory in the LVLH frame, V-bar approach.

The top subplot of Fig. 5.4 reveals that for t ∈ [t0, t1] there are two burns no matter

whether the KOZ constraint is enforced or not. However, with the constraint, the first

burn occurs earlier in order to change the trajectory as seen in the lower subplot of

Fig. 5.4 so as to help the second burn to steer the chaser to move on the boundary of the

KOZ when the two vehicles are in close range. Another function of the second burn is

to reduce the chaser’s velocity relative to the target so that the velocity constraint at t1

will be met. The variable thrust burn after t1 = 2000 sec in the lower subplot of Fig. 5.4

is caused by the fact that the trajectory after t1 is always on the boundary of either the

approach corridor cone or the relative velocity magnitude constraint.

The zoom-in view of the RPO trajectory near the target along with the thrust di-

rection during the second full-thrust burn and variable thrust-burn inside the approach
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Figure 5.5 The RPO trajectory along with direction of the thrust vector near the target,
V-bar approach.

corridor is plotted in Fig. 5.5. It can be seen that the second full-thrust burn is largely

a braking maneuver, while the variable-thrust burn is mainly to maintain a relative tra-

jectory along the V-bar direction, with the thrust vector nearly perpendicular to the

relative trajectory. A considerable part of the chaser’s trajectory is on the boundary

of the KOZ constraint ( about 210 sec), clearly indicating zero conservativeness in con-

straint satisfaction by the proposed approach. The propellant consumption increase due

to the inclusion of the KOZ constraint is 0.58%.

Circular Keep-out Zone and R-bar Approach

The previous example shows the effectiveness of the methodology to solve the RPO

problem with elliptic keep-out zone constraint and V-bar approach for proximity opera-

tions. Here the same chaser spacecraft is considered, but the target is in an elliptic orbit
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with higher eccentricity e = 0.5 and rp = 350 km. The R-bar approach, i.e., the chaser

docks with the target in the R-bar direction, is used and the keep-out zone is circular.

In addition, t0, t1, t2 and tf have the same values as before. At t0, the relative position

and velocity between the chaser and the target are [3500, 0, -3500] m and [-1, 0, 0.1]

m/s, respectively. Following is a full description for all the constraints:

1. At t1, the chaser has to arrive at a position in the R-bar axis that is 200 m from

the target (ADA) and the relative velocity is no greater than 0.2 m/s.

2. For t ∈ [t0, t1], the keep-out zone is a circle with radius of 180 m centered at the

target.

3. When t ∈ [t1, tf ], the chaser is required to stay inside the approach corridor with

half angle of 10 deg.

4. Within the approach corridor, for t ∈ (t1, t2] the relative velocity is constrained to

be less than 0.3 m/s and the chaser thrust plume (negative of the thrust direction)

should point at least 60 deg away from the target; and the parameters for those

constraints become 0.1 m/s and 89 deg respectively for t ∈ (t2, tf ].

The simulation results are shown in Fig. 5.6–5.8. As before, no matter there is KOZ

constraint or not, the top plot of Fig. 5.6 shows there are two burns before the chaser

enters the approach corridor. It is hard to notice the difference for the first burn when

there is KOZ constraint or not, but the existence of difference is implied by the trajectory

plotted in the bottom plot of Fig. 5.6. Actually, with consideration to the constraint

the first burn lasts longer for about 10 sec. When the chaser is close to the target, the

second burn occurs to steer the chaser to move along the boundary of the KOZ which is

seen in Fig. 5.7. The functions of the second burn are similar to those discussed in the

first example.
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Figure 5.6 The magnitude of thrust acceleration and the relative trajectory in the LVLH
frame for the R-bar approach.

It is illustrated in Fig. 5.7 that the trajectory in solid line violated the KOZ constraint

and the shortest distance is about 115 m which is much smaller than the threshold 180 m,

as shown in Fig. 5.8. When considering the KOZ constraint, the proposed methodology

also successfully solves the problem, yielding a trajectory satisfying the KOZ constraint

with no conservatism which is supported by the chaser’s motion on the boundary of the

KOZ for about 20 sec. This is reflected in Fig. 5.7 and Fig. 5.8.

Finally, it should be pointed out that the KOZ constraint has an effect on the tra-

jectory inside the approach corridor, even though the constraint is only enforced outside

of the approach corridor. The effect is noticeable in both the thrust acceleration profile

in Fig. 5.6 and the trajectory in Fig. 5.7. The reason for causing it is that the chaser ar-

rives at the ADA point with different velocity when the KOZ constraint is added, which

results in the different control profiles since then.
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CHAPTER 6. NONLINEAR TERMINAL CONSTRAINTS

6.1 Introduction

The previous chapter proposes a methodology to handle the concave inequality con-

straint which is not directly applicable in SOCP. This chapter focuses on the next topic

on nonlinear state terminal equality constraints, which are also not allowed in the frame

of SOCP. A majority of practical aerospace problems will have nonlinear terminal con-

straints as opposed to linear ones. Within the same successive-solution, SOCP-based

methodology, a two-step approach is developed in this chapter to treat nonlinear equality

constraints. In each iteration, the first step is to approximate the nonlinear constraints

by their first-order expansions in the problem. A second-order correction is computed

for each constraint based on the result from the first step. The problem is then solved

with linearized equality constraints that are now compensated with the second-order

corrections. The testing results show convergence behavior typical of superlinearly con-

vergent methods. The second-order corrections are found to be critical for enhancing

the reliability of convergence. The approach proves to be effective and successful even

in some difficult problems known for high sensitivity. While this dissertation uses the

systems with linear, time-varying dynamics as the baseline model in the presentation of

the development, the method is equally applicable to nonlinear equality constraints in a

discretized problem arising from nonlinear state equations.
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6.2 Problem Formulation

Based on the problem PP(y[k]) in Chapter 5 where the collision avoidance constraints

are linearized, we add one more type of constraints that is from the nonlinear terminal

constraints discussed in Section 6.1 and form the problem as follows [56]:

minimize cTy (6.1)

subject to Hy ≤ p (6.2)

gi(y
[k]) + Ogi(y

[k])T (y − y[k]) ≤ 0, i = 1, . . . , l (6.3)

hi(y) = 0, i = 1, . . . , q (6.4)

Here we do not have the second-order cone constraint (5.16) to simplify the problem. If

it is assumed that at the optimal solution y∗ of problem (6.1)–(6.4) the active inequality

constraints are known. Then when y[k] is sufficiently close to y∗, the problem will have

the same active constraints as those at y∗. Those inactive inequality constraints at y∗

can be ignored, so are those in problem (6.1)–(6.4). The active ones can be treated as

equality constraints [18]. So it is enough to consider only equality constraints and we

consider the problem in the form of

P2: minimize cTy (6.5)

subject to hi(y) = 0, i = 1, . . . , q (6.6)

The active linear inequality constraint from Eq. (6.2)–(6.3) can be easily incorporated

to the above problem and for notation simplicity the form of the above problem is

considered.

6.3 Algorithm

A popular method to solve problem P2 is the well-known SQP approach [18, 19]

which solves a sequence of quadratic programming subproblems. The SQP method is
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equivalent to applying the Newton’s method to solve the first-order optimality conditions

(or KKT conditions) of P2, hence has the same local superlinear or quadratic convergence

properties as the Newton’s method does [19], depending on the assumptions on the

problem data. In the SQP subproblems, the nonlinear equality constraints (6.6) are

approximated by their linearized versions. But the curvatures (second-order terms) of

the constraints are included in the objective functions of the subproblems. Our intention

is to devise an algorithm that retains a similar consideration of the second-order influence

in treating the nonlinear equality constraints, but otherwise can be readily integrated into

the successive SOCP-solution framework described in Chapter 5 when other constraints

are included. Such will require the objective functions of the subproblems to remain

linear. Toward this end, the nonlinear equality constraints will be handled by successive

linearization with second-order corrections in the following development.

To make the treatment to the nonlinear equality constraints amendable to a SOCP-

based method, we seek to approximate hi(y) = 0 by

hi(y
[k]) + OhTi (y[k])(y − y[k]) + hci(y

[k]) = 0 (6.7)

where hci(y
[k]) is the correction that is an approximation to the second-order term in the

second-order Taylor series of hi(y) about y[k]

hi(y) = hi(y
[k]) + OhTi (y[k])(y − y[k]) +

1

2
(y − y[k])TO2hi(y

[k])(y − y[k]) (6.8)

The key requirements for the corrections are that no computation of the Hessian

O2hi(y
[k]) is required, and the correction hci depends only on y[k], but not y. The

approach we take relies on a two-step solution procedure. In the first step, hci = 0 is used

in Eq. (6.7) and the following problem is solved

P3: min
y

cTy (6.9)

subject to hi(y
[k]) + OhTi (y[k])(y − y[k]) = 0, i = 1, . . . , q (6.10)
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Let the solution to Problem P3 be yp. Note that yp is dependent on y[k], but nothing

else in a given problem. Next, consider the first-order expansion of the gradient Ohi(yp)

at y[k]:

Ohi(y
p)− Ohi(y[k]) = O2hi(y

[k])(yp − y[k]) (6.11)

The gradient Ohi(yp) can be analytically computed, given yp. Left-multiplying both

sides of the above equation with (yp − y[k])T/2 gives

1

2
(yp − y[k])T

(
Ohi(y

p)− Ohi(y[k]
)

=
1

2
(yp − y[k])TO2hi(y

[k])(yp − y[k]) (6.12)

Hence a logical choice of the correction in Eq. (6.7) should be

hci(y
[k]) =

1

2
(yp − y[k])T

(
Ohi(y

p)− Ohi(y[k])
)

(6.13)

By Eq. (6.12), this correction is a second-order correction. An alternate form of the

correction can also be obtained by using y = yp in Eq. (6.8) to get an approximation to

the second-order term as

hci(y
[k]) = hi(y

p)− hi(y[k])− OhTi (y[k])(yp − y[k]) (6.14)

For a quadratic function hi(y) = yTHy + bTy, both corrections in Eqs. (6.13) and

(6.14) yield the exact second-order term (yp − y[k])TH(yp − y[k]) in the Taylor series

expansion without any approximation. Still, it is clear that Eqs. (6.13) and (6.14) are

not the same for non-quadratic (and nonlinear) functions. In fact, if the gradient Ohi(yp)

in Eq. (6.13) is approximated by the rank-one update first derived as Eq. (10) in Ref. [60]

Ohi(y
p) = Ohi(y

[k]) +
2

δyT δy

(
hi(y

p)− hi(y[k])− OhTi (y[k])δy
)
δy (6.15)

where δy = yp − y[k], then Eq. (6.13) becomes exactly Eq. (6.14)! It is interesting to

note that if the coefficient “2” in Eq. (6.15) is changed to 1, this equation reduces to

the famous Broyden rank-one update [61]. But it is shown in Ref. [60] that the update

in Eq. (6.15) is more accurate than the Broyden rank-one update. In the testing we
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have done so far, no practically significant performance difference has been detected

between using the correction in Eq. (6.13) or (6.14). Other applications, however, may

favor one over the other. For instance, if the number of equality constraints is large,

the computation required for the correction in Eq. (6.14) will be considerably less than

Eq. (6.13) because no computation of the gradient Ohi(yp) is needed.

With the correction hci obtained, the following problem is solved as the second step

P4: min
y

cTy (6.16)

subject to hi(y
[k]) + OhTi (y[k])(y − y[k]) + hci(y

[k]) = 0, i = 1, . . . , q (6.17)

The solution to Problem P4 is set to be y[k+1].

The numerical evidences from our tests suggest superlinear local convergence of the

solution of Problem P4 to that of Problem P2, even though no rigorous proof is available

yet. It should be pointed out that faster convergence is not the only motivation for

using the second-order corrections. For our purposes the benefit of potentially enhanced

robustness in convergence is arguably more important. We have encountered cases (see

Section 6.4 later) where the solution approach succeeds with the second-order corrections,

but would fail to converge to satisfy the nonlinear constraints without the corrections.

As with any other methods utilizing constraint linearization, there is a possibility

for Eq. (6.10) to be inconsistent with other constraints in the problem (when they are

present), especially during the earlier iterations, even if the original nonlinear constraints

are consistent with other constraints. To find a remedy to ameliorate this possibility,

we stress that our goal is not to completely satisfy the original nonlinear constraints in

each iteration, which is actually impossible to be achieved by an algorithm. Existence

of infeasibility is acceptable, but we expect that the feasibility of the constraints is

improved in each iteration and finally the constraints are accurately satisfied. Therefore

a relaxation term may be added to Eq. (6.10)
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hi(y
[k]) + OhTi (y[k])(y − y[k]) = γhi(y

[k]) (6.18)

where γ ∈ (0, 1) is a constant. Typically γ = 0.01 is used. The term γhi(y
[k]) in the

above equation means that the accuracy of the approximation of hi(y) at the current

iteration is γ times the value of hi(y) from the previous iteration. So the goal of Eq.

(6.18) is to improve the feasibility based on the actual value of hi(y).

While the above discussion focuses on only nonlinear equality constraints, there is

no conceptual or methodological difficulty to include linear inequality and second-order-

cone constraints in the problem. Therefore the problem with both concave inequality

constraints and nonlinear terminal constraints can be solved by seeking successively the

solution of the following SOCP problem

P5(y[k]) : min
y

cTy (6.19)

subject to Hy ≤ p (6.20)

gi(y
[k]) + OgTi (y[k])(y − y[k]) ≤ 0, i = 1, . . . , l (6.21)

hi(y
[k]) + OhTi (y[k])(y − y[k]) + hci(y

[k]) = 0, i = 1, . . . , q (6.22)

Ay − b ≥K̄ 0 (6.23)

where in each iteration, Problem P5 is first solved with hci = 0 in Eq. (6.22). Then the

corrections hci(y
[k]) are constructed by Eq. (6.13) or (6.14); Problem P5 is solved again

with the computed hci in Eq. (6.22), and the next iterate y[k+1] is found.

So far the nonlinear inequality constraints in Eq. (6.22) have been regarded to have

originated from the nonlinear terminal constraints. But the discretized problem will

have the same form as in Eqs. (6.19)–(6.23) if the nonlinear inequality constraints in

Eq. (6.22) arise from any other sources in the original problem, including nonlinear state

equations (only in such a case the dimension q will be large). Therefore, the methodology
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developed here can be applied in principle to optimal control problems with nonlinear

dynamics as well.

6.4 Applications

In this section, the algorithm proposed in the previous section will be applied to some

practical applications where there are nonlinear terminal constraints. To further show

the effectiveness of the algorithm, problems with both concave inequality constraints

(or collision avoidance constraints here) and nonlinear terminal constraints will also be

considered.

6.4.1 McCue’s Orbital Transfer Problem

McCue’s problem of finite-thrust orbital transfer [62] is one in which the fuel-optimal

transfer is sought between two coplanar elliptic orbits whose apsidal axes are not aligned.

This type of problems are reported to be extremely sensitive and require the initial

guesses to be very close to the optimal solutions when solved by more traditional ap-

proaches [62], which makes them good tests to demonstrate the capability of the proposed

method for handling nonlinear terminal equality constraints even in highly sensitive prob-

lems.

In orbital transfer problems position and velocity usually vary greatly, and in general

no close trajectory is available a priori to serve as a reference for linearization of the

nonlinear trajectory dynamics. To overcome this inconvenience, the same techniques

discussed in Chapter 3 for the RPO problems are used here for orbital transfer problems.

Let τ be the thrust acceleration vector of the engine:

τ =
T

m
(6.24)

where T is the thrust-vector-to-initial-weight of the rocket engine, and m the current

mass of the vehicle normalized by its initial mass. Define z = lnm and σ a relaxation
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variable representing the thrust-acceleration magnitude in g. The relaxed dimensionless

three-degree-of-freedom equations of motion of the spacecraft in an inverse-square gravity

field are

ṙ = V (6.25)

V̇ = − 1

‖r‖3
r + τ (6.26)

ż = − 1

vex
σ (6.27)

For the meaning of each variable and the normalization factors, refer to chapter 3 for

details. Let x = (rT V T z)T be the state vector of the above system, and u = (τ T σ)T ∈

R4 the control vector. The above state equations can be cast as

ẋ =


03×3 I3×3 03×1

− 1
r3
I3×3 03×3 03×1

01×3 01×3 0

x+


03×3 03×1

I3×3 03×1

01×3 −1/vex

u =: A(r)x+Bu (6.28)

Two constraints that limit the engine thrust acceleration to its given finite upper bound

and define the relaxation relationship are

0 ≤ σ ≤ Tmaxe
−z (6.29)

‖τ‖ ≤ σ (6.30)

The propellant consumption performance index is

J =

∫ tf

0

σdt (6.31)

Let the specified nonlinear terminal conditions be

ψi(x(tf )) = 0, i = 1, . . . , nψ ≤ 6 (6.32)

When σ(t) ≡ ‖τ (t)‖ the above relaxed problem is the same as the the original rocket

flight problem (see Ref. [9]). It can be proved by following the same proofs in Ref [9]

that the above relaxed problem in Eqs. (6.28)–(6.32) has the same optimal solution as
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the original optimal orbital transfer problem with the same rocket, initial condition and

terminal constraints. The advantage of the relaxed problem is that the state equations

(6.28) are “almost” linear, with the single nonlinearity 1/r3 in the A matrix. However,

in the k+1-th iteration of the successive solution process, if r(t) is replaced by the

r[k](t) = ‖r[k](t)‖ obtained in the previous iteration, A(r[k](t)) becomes an explicit time-

varying matrix, and the system (6.28) will be linear in each iteration. When convergence

occurs, the solution will be the same (to the extent of the solution accuracy) as that to

Eq. (6.28). Such is the strategy used in order to employ the SOCP method.

To apply the proposed method to solve a McCue’s orbital transfer problem, consider

a spacecraft in an initial orbit with a semi-major axis a0 = 7531.211 km (perigee altitude

of 400 km), eccentricity of e0 = 0.1, orbital inclination of i0 = 51.6 deg, right ascension

of ascending node Ω0 = 119.82 deg, and argument of perigee ω0 = 51 deg. The engine

of the spacecraft has an initial thrust-to-weight ratio of 0.4 and a specific impulse of 320

sec. At t0 = 0, the spacecraft is in this orbit with a true anomaly ν = 175 deg. The

spacecraft is required to transfer to another co-planar orbit which has the same semi-

major axis and eccentricity, but a different argument of perigee of ωf = 170 deg. The

total transfer time is prescribed to be tf = 1700 sec. Therefore, the terminal constraints

for entering the target orbit are (note that everything below is dimensionless)√
(rf × V f )T (rf × V f )− hf = 0 (6.33)

0.5V T
f V f −

1

‖rf‖
+

1

2af
= 0 (6.34)

1Thrf = 0 (6.35)

1ThV f = 0 (6.36)

nTef − ef cos(ωf ) = 0 (6.37)

where the subscript “f” means the final value in the target orbit, rf and V f are the

final position and velocity vector of the spacecraft in the GEI frame. The constant
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hf =
√
af (1− e2

f ) is the required magnitude of angular momentum, af = a0 and ef = e0

as specified. The constant unit vector 1h is in the direction of the norm to the desired

target orbital plane. In the GEI frame,

1h = [sin Ωf sin if − cos Ωf sin if cos if ]
T

where Ωf = Ω0 and if = i0 for this problem. The nodal vector n = [0, 0, 1]T × 1h is

another constant unit vector. The eccentricity vector ef points to the direction of perigee

in the target orbital plane, and is defined by

ef = (V 2
f −

1

rf
)rf − (rTf V f )V f

Equations. (6.33)–(6.34) constrain the final eccentricity and semi-major axis. The con-

straints on if and Ωf are enforced by Eqs. (6.35)–(6.36). Finally Eq. (6.37) ensures that

the required ωf for the target orbit is achieved. But the location to insert into the target

orbit is left free, as part of the optimal solution to be found. Three of the five terminal

constraints, i. e., Eqs. (6.33), (6.34) and (6.37), are nonlinear.
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Figure 6.1 The thrust magnitude profile for the McCue’s orbital transfer problem

A discussion on the implication of the prescribed final time is in order. The McCue’s

problem is posed as a free-time transfer problem in Ref. [62]. The optimal solution is

supposed to find the optimal transfer time as part of the solution. But it is argued in
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Figure 6.2 Transfer trajectory in the McCue’s problem with the locations of the two
burns and the thrust vector direction

Ref. [63] that such a free-time multiple-finite-burn problem in an inverse-square gravity

field actually has no fuel-optimal solution. This peculiarity is caused by the periodicity of

the elliptical orbit: the condition at any point on an elliptical orbit will be repeated after

any number of orbits if the engine is shut off. See Ref. [63] for detail. To “regularize”

the problem so a meaningful optimal solution can be found, one option is to set an

upper bound on the time of flight. The prescribed tf = 1700 sec can be interpreted as

the upper bound for this problem. If the optimal solution turns out to inject into the

target orbit before 1700 sec, the optimal solution should have the engine shut off right

at the point. The spacecraft will simply coast on the final orbit until tf = 1700 without

incurring any unnecessary additional fuel expenditure, while the orbital elements remain

unchanged. The same argument applies to any other orbital transfer problems in the
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Figure 6.3 The changes of eccentricity e, argument of perigee ω, and true anomaly ν
along the transfer trajectory in the McCue’s problem

context of Keplerian motion, provided that all the terminal conditions are specified in

terms of the final orbital elements.

The optimal control problem is then to find the optimal engine ignition program

(when to burn, how many times, for how long), the thrust magnitude, and the direction

of the thrust vector during an engine burn, so that the nonlinear terminal constraints

in Eqs. (6.33)–(6.37) are satisfied, and the propellant consumption is minimized. As

long as the solution contains one or more coast arcs, this minimum-fuel problem is well

posed even though the final time is specified. The method proposed in Section 6.3 in

conjunction with the relaxation technique described in the first half of this section is

used to solve this problem.

Figure 6.1 shows the optimal thrust magnitude profile. The optimal solution starts

engine burn immediately in this case. The optimal solution is a two-burn solution at
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Figure 6.4 Altitude and velocity along the transfer trajectory in the McCue’s problem

maximum thrust, and the first burn is quite short. After a long coast, the second burn

lasts about 200 seconds and indeed finishes before tf = 1700 sec. For the last 140

seconds or so the solution is a coast arc, indicating that the upper bound tf = 1700

sec is already sufficiently long. The transfer trajectory in the specified orbital plane is

plotted in Fig. 6.2. Note that the solution got from solving the problem (6.28)–(6.32)

is expressed in the GEI coordinate system, which is in 3-dimension. The solution is

transformed to the perifocal coordinate system by using the method discussed in Section

2.3.2 in Chapter 2.

It is seen In Fig. 6.2 that the first burn is far from the intersection of the initial

and target orbits. Evidently a solution with a single-burn near the intersection of the

orbits is not optimal in this case. The direction of the thrust vector is also shown

in Fig. 6.2. The first burn is in the general direction of the orbital motion to help

increase the velocity. The direction of the second burn is almost perpendicular to the
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trajectory, suggesting that its main function is to adjust the shape of the osculating

orbit, not to change the energy. The changes of eccentricity, argument of perigee and

true anomaly of the osculating orbit along the transfer trajectory are shown in Fig. 6.3.

Note the major variations in all the 3 parameters during the second burn. Figure 6.4

illustrates the variations of the altitude and velocity, where a short but quick increase in

velocity during the first burn is clear. All the nonlinear terminal equality constraints in

Eqs. (6.33)–(6.37) are satisfied to the specified accuracy.

Even though only one case is presented here, a number of different cases in the

McCue’s problem with different data have been successfully solved using the proposed

method. It should be stressed that the second-order corrections developed in Section 6.3

proves to be instrumental for producing reliable convergence in this highly sensitive

problem. Without the second-order corrections, the algorithm would have difficulty to

converge in most cases of the McCue’s problem.

6.4.2 Optimal Launch Ascent Problem

In this application the capability of simultaneously handling concave state inequal-

ity constraints and nonlinear terminal equality constraints by the proposed algorithm

is demonstrated. The problem is ascent of the upper stage of a medium-lift launch

vehicle. The initial condition is given as that at the burnout of the previous stage of

the vehicle. Since the initial altitude (of 86 km) is already sufficiently high, the opti-

mal ascent problem is formulated as a vacuum ascent problem. As such, the dynamics

and performance index are the same as in Eqs. (6.25)–(6.31) in the Section 6.4.1. The

same successive solution approach is also used to treat the A matrix in Eq. (6.28) as an

explicitly time-varying one in each iteration, and then updated for the next iteration.

The initial thrust-to-weight ratio of the upper stage of the launch vehicle is 1.45. The

initial mass is given. The final orbit is one with e = 0.05, perigee altitude of 400 km, and
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i = 51.6 deg. The arguments of ascending node and perigee are free. The insertion point

is specified to be at the perigee of the final orbit. The nonlinear terminal constraints on

the final position and velocity vectors are then

√
rTf rf − r

∗
f = 0 (6.38)√

V T
f V f − V ∗f = 0 (6.39)

[0 0 1](rf × V f )− h∗f cos(i∗) = 0 (6.40)

rTf V f = 0 (6.41)

where r∗f and V ∗f are the required radius (corresponding to an altitude of 400 km) and

velocity at perigee of the specified orbit. Constraint (6.40) specifies the final orbital

inclination at i∗ = 51.6 deg, where h∗f is the magnitude of the angular momentum of the

final orbit. For insertion at perigee, h∗f = r∗fV
∗
f . Condition (6.41) requires the final flight

path angle to be zero (at perigee). The flight time (not the burn time) for the upper stage

is prescribed to be 800 sec. The optimal control problem is to find the thrust program

of the upper-stage engine (when to burn, how many times, for how long, at what thrust

level) and the thrust vector direction so the terminal constraints (6.38)–(6.41) are met, a

state inequality constraint to be described below is observed, and the final injected mass

maximized (equivalent to minimizing propellant consumption for a given initial mass).

Again, the optimization part of the problem is well posed as long as the solution has one

or more coast arcs.

Suppose that the above problem is solved without any inequality constraints, and it

is found that the resulting orbital insertion point is too close to another spacecraft that

is already on a nearby orbit. Let this found insertion point be r∗f . An exclusion zone

constraint is then imposed on the actual ascent trajectory

δ − ‖r∗f − r(t)‖ ≤ 0 (6.42)
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where δ = 300 km is chosen. This is a concave state inequality constraint. Now the

problem is solved to meet the constraints in Eqs. (6.38)–(6.41) as well as Eq. (6.42). This

problem has both elements of the non-convexity this dissertation intends to address.
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Figure 6.5 Thrust profiles for the launch ascent problem

The proposed algorithm solves this problem with complete ease. Figure 6.5 shows

the optimal thrust profile. The optimal thrust profile without the constraint (6.42)

is also plotted for comparison. The optimal solution is a two-burn maneuver at the

maximum thrust with the first one considerably longer. It is interesting to note an

initial coast of 16 seconds before the ignition of the engine for the first burn. The thrust

profile without constraint (6.42) does not have such an initial coast. This initial coast

mainly contributes to delay the ascent trajectory so the trajectory will terminate 300

km behind the position defined by r∗f . Figure 6.6 illustrates the zoom-in view near the

end of the ascent trajectory. It is clear that the optimal ascent trajectory ends right

on the boundary of the constraint (6.42), 300 km behind the position defined by r∗f ,

and this is the only point when the constraint (6.42) becomes active. Again, there is

no conservativeness in satisfying the constraint (6.42), even though this is a case where

nonlinear inequality terminal constraints are also present. Also evident from Fig. 6.6 is
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Figure 6.6 Zoom-in view at the end of the ascent trajectories

that the trajectory subject to constraint (6.42) ascends above the required final altitude

of 400 km before descending to this prescribed value. Figure 6.7, which shows the

altitude and velocity along the ascent trajectories, confirms just that. The variations of

instantaneous eccentricity and orbital inclination along the ascent trajectories with and

without constraint (6.42) are given in Fig. 6.8. Figures 6.7 and 6.8 clearly verify that

the nonlinear terminal constraints in Eqs. (6.38)–(6.41) are all accurately satisfied.

The cost of imposing the state inequality constraint (6.42) is a reduction of 1.15% in

the final injected mass, as compared to the case when constraint (6.42) is not imposed.
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Figure 6.7 Altitude and velocity along the ascent trajectories
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Figure 6.8 Osculating orbital eccentricity and inclination along the ascent trajectories



110

CHAPTER 7. PRIMAL-DUAL INTERIOR POINT

METHOD

7.1 Introduction

The broad applications of SOCP have stimulated the research on algorithms for

SOCP. The complexities of different variants of primal-dual algorithms were discussed

in Refs. [64, 65]. The primal-dual path-following algorithm enjoys polynomial time con-

vergence and upper bound on the total number of iterations could be pre-determined

[66]. Furthermore, Ref. [28] studies a state-of-the-art primal-dual interior point method

(IPM) which is robust and can handle the primal or dual infeasible problems in a sys-

tematic way. Similar work can also be found in Refs. [27, 32]. The primal-dual IPM does

not require use-supplied initial guess and the solution obtained can provide certificate

when either the primal problem or the dual problem is infeasible. This chapter gives a

summary on the implementation of the primal-dual IPM, which is a basis for writing a

customized solver for SOCP in order to improve computational efficiency and have more

flexibility for specific applications.
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7.2 The Goldman-Tucker Homogeneous Model

As introduced in Chapter 2, the primal SOCP problem can be expressed in standard

form as follows:

P : minimize cTx

subject to Ax = b

x ∈ K

where A ∈ Rm×n with rank(A) = m,m ≤ n, x, c ∈ Rn, b ∈ Rm, K is the Cartesian

product of linear, quadratic or rotated quadratic cones and K = Kn1 × Kn2 × · · · ×

Knr with ni being the dimension of the cone Kni . If x is partitioned according to its

components to the cones Kni , we have

x =



xn1

xn2

...

xnr


(7.1)

The corresponding dual problem is given by:

D : maximize bTy

subject to ATy + s = c

s ∈ K∗

where s ∈ Rn is called the dual variable, and K∗ is the dual cone of K.

Definition 7.2.1. Assume K is a convex cone in Rn. Then the dual cone K∗ of K is

defined as

K∗ = {s ∈ Rn : sTx ≥ 0, ∀x ∈ K} (7.2)

Assume K̄ is a linear, quadratic or rotated quadratic cone, it is shown in Ref. [32]

that K̄∗ = K̄. Then, since the K in problem P is a combination of three three kinds of

cones, it is implied that K∗ in problem D is the same as K in problem P .
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The weak duality theorem states that cTx ≥ bTy, or xT s = cTx − bTy ≥ 0 [22, 32].

In addition, the complementarity gap xT s = 0 implies that x is the optimal solution to

problem P and (y, s) is the optimal solution to problem D.

Solving problem P is equivalent to solving the following system:

Ax− b = 0, x ∈ K

ATy + s− c = 0, s ∈ K (7.3)

xT s = 0

The above system is further equivalent to

Ax− b = 0, x ∈ K

ATy + s− c = 0, s ∈ K (7.4)

bTy − cTx ≥ 0

since bTy− cTx ≥ 0 together with the fact that cTx− bTy ≥ 0 yield cTx− bTy = 0, which

is the complementarity condition sTx = 0.

After adding a slack variable κ ≥ 0 to the third equation in (7.4), obtained is the

following linear system:

Ax− b = 0, x ∈ K

ATy + s− c = 0, s ∈ K (7.5)

bTy − cTx− κ = 0

By homogenizing the above system, we consider the following Goldman-Tucker homoge-

neous model [32, 67]:

Ax− bτ = 0, x ∈ K

ATy + s− cτ = 0, s ∈ K (7.6)

bTy − cTx− κ = 0
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where the additional variable τ ≥ 0.

Denote (x, y, s, τ, κ) as the solution to (7.6), then

i) xT s+ τκ = 0.

ii) If τ > 0, then x/τ is the optimal solution for P and (y, s)/τ is the optimal solution

for D.

iii) If κ > 0, then either P or D is infeasible and at least one of the following inequalities

bTy > 0 (7.7)

and

cTx < 0 (7.8)

holds. The primal problem P is infeasible if Eq. (7.7) is satisfied, while D is infeasible if

Eq. (7.8) holds. Proof for the above results can be found in Ref. [32].

In order to always have a feasible starting point when using interior-point method in

solving the model in (7.6), the following optimization problem is considered [32]:

minimize βγ

subject to Ax− bτ = γrp

ATy + s− cτ = γrd (7.9)

bTy − cTx− κ = γrg

rTp y − rTd x+ rgτ = −β

where x, s ∈ K, τ ≥ 0, κ ≥ 0, y and γ are free, and for initial point (x0, y0, s0, τ0, κ0),

rp = Ax0 − bτ0

rd = ATy0 + s0 − cτ0

rg = bTy0 − cTx0 − κ0

β = −(rTp y0 − rTd x0 + rgτ0)

(7.10)
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where (rp, rd, rg) measure the primal-infeasibility, dual-infeasibility, and duality gap of

the starting point, respectively.

For the optimization problem (7.9), it is self-dual and the optimal value is 0. In

addition, βγ = xT s+ τκ can be proved (See Ref. [32] for more details). So solving (7.9)

is equivalent to find the solution of the following system:

Ax− bτ = γrp

ATy + s− cτ = γrd

bTy − cTx− κ = γrg

rTp y − rTd x+ rgτ = −β

xT s+ τκ = 0

(7.11)

Furthermore, since the fourth equation in (7.11) is implied by the other four equations,

it can be deleted from (7.11). Since xT s ≥ 0, τκ ≥ 0, xT s+ τκ = 0 implies that xT s = 0

and τκ = 0. Moreover, it is proved in Refs. [28, 32] that xT s = 0 if and only if XSe = 0

with X = mat(Tx), S = mat(Ts) where T for roated quadratic cone is defined in

Section 2.1. For quadratic cone, T is identity matrix, while T = 1 for linear cone. Then

(7.11) can be rewritten as:

Ax− bτ = γrp

ATy + s− cτ = γrd

bTy − cTx− κ = γrg

XSe = 0

τκ = 0

(7.12)

In the primal-dual interior-point method(IPM), there exists a central path which the

solution of the primal-dual problem should follow, which can be achieved by solving the
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following system of equations:

Ax− bτ = γrp

ATy + s− cτ = γrd

bTy − cTx− κ = γrg

XSe = γµe

τκ = γµ

(7.13)

where µ is the gap measure, µ = (xT s+ τκ)/(k + 1), k is the number of cones, between

the primal objective and dual objective. when µ → 0, (7.13) is the same as (7.12).

Actually, the solution from (7.13) is the one for (7.6) under the condition that µ → 0

and (rp, rd, rg)→ 0.

It is obvious that (7.13) is a nonlinear system, so newton method can be applied to

find its solution. With (rp, rd, rg) defined in the current point (x, y, s, τ, κ), the moving

direction (∆x,∆y,∆s,∆τ,∆κ) for the next point can be found by solving the following

1st-order linearized system:

A∆x− b∆τ = (γ − 1)(Ax− bτ)

AT∆y + ∆s− c∆τ = (γ − 1)(ATy + s− cτ)

bT∆y − cT∆x−∆κ = (γ − 1)(bTy − cTx− κ)

X(∆S)e+ S(∆X)e = γµe−XSe

τ∆κ+ κ∆τ = γµ− τκ

(7.14)

In the process of solving (7.14), a linear system in the form of Ax = b needs to be

solved. For the purpose of avoiding A to be singular and/or nonsymmetric to speed up

finding the solution [32], scaling matrix Θ and W such that (ΘW )x = (ΘW )−1s, with x

being scaled by (ΘW ) and s by (ΘW )−1, are introduced to (7.14) which is then rewritten
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as:

A∆x− b∆τ = (γ − 1)(Ax− bτ)

AT∆y + ∆s− c∆τ = (γ − 1)(ATy + s− cτ)

bT∆y − cT∆x−∆κ = (γ − 1)(bTy − cTx− κ)

X̄T (ΘW )−1∆s+ S̄T (ΘW )∆x = γµe− X̄S̄e

τ∆κ+ κ∆τ = γµ− τκ

(7.15)

where X̄ = mat(T (ΘW )x), S̄ = mat(T (ΘW )−1s). See Ref. [28] for definitions of Θ and

W . Note that X̄−1S̄ = I since (ΘW )x = (ΘW )−1s.

Let the next point be (x̄, ȳ, s̄, τ̄ , κ̄). It is easy to prove the relationship between the

next point and the current point as follows [28]:

Ax̄− bτ̄ = (1 + α(γ − 1))(Ax− bτ)

AT ȳ + s̄− cτ̄ = (1 + α(γ − 1))(ATy + s− cτ)

bT ȳ − cT x̄− κ̄ = (1 + α(γ − 1))(bTy − cTx− κ)

x̄T s̄+ τ̄ κ̄ = (1 + α(γ − 1))(xT s+ τκ)

(7.16)

where α ∈ [0, 1] is a step size, γ ∈ [0, 1] is updated at each iteration and (x̄, ȳ, s̄, τ̄ , κ̄) =

(x, y, s, τ, κ) + α(x̄, ȳ, s̄, τ̄ , κ̄). It is seen from (7.16) that (µ, rp, rd, rg) → 0 as long as

γ < 1 and α > 0 at each iteration, though the convergence speed is unknown, depending

on how small γ is and how big α is.
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7.3 Methods for Finding the Newton Search Direction

For notational convenience, we rewrite (7.15) as [32]:

A∆x− b∆τ = r1 (7.17)

AT∆y + ∆s− c∆τ = r2 (7.18)

bT∆y − cT∆x−∆κ = r3 (7.19)

X̄T (ΘW )−1∆s+ S̄T (ΘW )∆x = r4 (7.20)

τ∆κ+ κ∆τ = r5 (7.21)

where

r1 = (γ − 1)(Ax− bτ) = (γ − 1)rp

r2 = (γ − 1)(ATy + s− cτ) = (γ − 1)rd

r3 = (γ − 1)(bTy − cTx− κ) = (γ − 1)rg

r4 = γµe− X̄S̄e

r5 = γµ− τκ

(7.22)

There are three different ways of solving (7.17)–(7.21) to get the Newton search direction,

the first of which is introduced as follows:

From Eq. (7.20), we have

∆s = ΘWTX̄−1(r4 − S̄)TΘW∆x

which can be rewritten as

∆s = ΘWTX̄−1r4 − (ΘW )2∆x (7.23)

since X̄−1S̄ = I. Eq. (7.21) gives

∆κ = τ−1(r5 − κ∆τ) (7.24)
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Substituting Eqs. (7.23) and (7.24) into Eq. (7.18) and Eq. (7.19), we have

AT∆y − (ΘW )2∆x− c∆τ = r2 −ΘWTX̄−1r4 := r22 (7.25)

bT∆y − cT∆x+
κ

τ
∆τ = r3 +

r5

τ
:= r33 (7.26)

Rearranging Eq. (7.25) yields

∆x = D2(AT∆y − c∆τ − r22) (7.27)

where D := (ΘW )−1. Substituting Eq. (7.27) into Eq. (7.17) and Eq. (7.26) gives

AD2AT∆y − (AD2c+ b)∆τ = r1 + AD2r22 := r11 (7.28)

(b− AD2c)T∆y + (cTD2c+
κ

τ
)∆τ = r33 − cTD2r22 := r333 (7.29)

∆τ can be found from Eq. (7.29) as

∆τ =
1

cTD2c+ κτ−1
(r333 − (b− AD2c)T∆y)

which can be written simply as

∆τ =
1

a1

(r333 − aT2 ∆y) (7.30)

if we define a1 := cTD2c + κτ−1 and a2 := b − AD2c. Then, substitute Eq. (7.30) into

Eq. (7.28) to get

AD2AT∆y +
1

a1

(AD2c+ b)aT2 ∆y = r11 +
1

a1

(AD2c+ b)r333 := r111

which can be further rewritten as

(AD2AT + āâT )∆y = r111 (7.31)

if we define ā := AD2c+ b and â := a2
a1

. From Eq. (7.31), we have

∆y = (AD2AT )−1r111 −
âT (AD2AT )−1r111(AD2AT )−1ā

1 + âT (AD2AT )−1ā
(7.32)
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It is seen from Eq. (7.32) that we need to compute

(AD2AT )−1r111 := v0 (7.33)

and

(AD2AT )−1ā := v1 (7.34)

In Eqs. (7.33) and (7.34), AD2AT is symmetric and positive definite, so Cholesky factor-

ization can be applied to find the solution v0 and v1 [28]. With v0 and v1, ∆y is found

as follows:

∆y = v0 −
âTv0

1 + âTv1

v1 (7.35)

In summary, the solution to (7.17)–(7.21) can be found by first computing ∆y in

Eq. (7.35), then ∆τ in Eq. (7.30). After having ∆y and ∆τ , ∆x is computed by

Eq. (7.27), and finally ∆κ and ∆s in Eq. (7.24) and Eq. (7.23) respectively, i.e.,

∆y = v0 −
âTv0

1 + âTv1

v1

∆τ =
1

a1

(r333 − aT2 ∆y)

∆x = D2(AT∆y − c∆τ − r22)

∆κ = τ−1(r5 − κ∆τ)

∆s = ΘWTX̄−1r4 − (ΘW )2∆x

(7.36)

Following is the second method of computing steps for finding the Newton search

direction. Similar ideas may be found in Refs. [27, 28]. Following the way of computing

∆s and ∆κ in the first method, we rewrite the formulas here.

∆s = ΘWTX̄−1r4 − (ΘW )2∆x (7.37)

∆κ = τ−1(r5 − κ∆τ) (7.38)

Substituting Eqs. (7.37) and (7.38) into Eqs. (7.18) and (7.19), we get

AT∆y − (ΘW )2∆x− c∆τ + ΘWTX̄−1r4 = r2 (7.39)

bT∆y − cT∆x+
κ

τ
∆τ − r5

τ
= r3 (7.40)
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From Eq. (7.39), we have

∆x = D2AT∆y +D2(ΘWTX̄−1r4 − cT∆x− r2) (7.41)

where D := (ΘW )−1 is defined as before. Substituting Eq. (7.41) into Eq. (7.17) results

in

AD2AT∆y + AD2(ΘWTX̄−1r4 − cT∆x− r2)− b∆τ = r1

which gives

∆y = (AD2AT )−1
[
(r1 + AD2r2 − AD2ΘWTX̄−1r4) + (AD2c+ b)∆τ

]
= g2 + h2∆τ (7.42)

where

g2 = (AD2AT )−1(r1 + AD2r2 − AD2ΘWTX̄−1r4)

h2 = (AD2AT )−1(AD2c+ b)

With ∆y in Eq. (7.42), Eq. (7.41) is rewritten as

∆x = D2(ATh2 − c)∆τ +D2(ATg2 + ΘWTX̄−1r4 − r2)

= g1 + h1∆τ (7.43)

where

g1 = D2(ATg2 + ΘWTX̄−1r4 − r2)

h1 = D2(ATh2 − c)

Replacing ∆y and ∆x in Eq. (7.40) with Eqs. (7.42) and (7.43), we have

bT (g2 + h2∆τ)− cT (g1 + h1∆τ)− τ−1r5 + τ−1κ∆τ = r3

So

∆τ =
r3 + τ−1r5 + cTg1 − bTg2

τ−1κ− cTh1 + bTh2

(7.44)
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To make a summary, (g1, h1, g2, h2) can be found first by the above formulas, which

makes the value of ∆τ in Eq. (7.44) available. Then ∆y and ∆x are found by Eq. (7.42)

and Eq. (7.43) respectively. Finally Eqs. (7.37), (7.38) are used to compute ∆s and ∆κ.

They are combined together as

∆τ =
r3 + τ−1r5 + cTg1 − bTg2

τ−1κ− cTh1 + bTh2

∆y = g2 + h2∆τ

∆x = g1 + h1∆τ

∆s = ΘWTX̄−1r4 − (ΘW )2∆x

∆κ = τ−1(r5 − κ∆τ)

(7.45)

The final method to solve (7.17)–(7.21) is to simply combine all variables as one

vector and construct one linear system as follows

A 0 0 −b 0

0 AT I −c 0

−cT bT 0 0 −1

S̄T (ΘW ) 0 X̄T (ΘW )−1 0 0

0 0 0 κ τ





∆x

∆y

∆s

∆τ

∆κ


=



r1

r2

r3

r4

r5


(7.46)

The above linear system can be solved directly to find the newton search direction by

using the LU factorization.

Remarks:

1. For the SOCP problem considered above, we assume that there are no free variables.

Nevertheless, free variables need to be handled properly so that the above analysis

is still effective. The simplest and popular method is to split a free variable x̄ into

a difference of two nonnegative variables x̄+ ≥ 0 and x̄− ≥ 0, i.e., x̄ = x̄+ − x̄− so
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that the new variables x̄+ and x̄− both belong to linear cones. This method may

result in numerical instability due to the unboundedness of x̄+ and x̄−. For more

details on how to deal with free variables, see Refs. [68, 69].

2. For practical implementation of the primal-dual IPM, more aspects need to be

considered. For example, the matrix AD2AT in Eq. (7.32) and Eq. (7.42) might be

dense even when A is sparse and has only one dense column, which increases the

computation cost of computing ∆y. Techniques on separating the dense columns

in A could improve the efficiency [28, 32, 35]. In addition, presolving are beneficial

to reduce the problem size and eliminating features that may lead to numerical

difficulties such as linear dependencies in A [35, 70].

3. For the three methods on computing the search direction, the first two methods

seek to first solve a normal linear system with coefficient AD2AT to find one or

more variables, then substitute them back into certain equations in (7.17)–(7.21)

to get values for the remaining variables. It is obvious for the third method to

have more computational cost when the coefficient of the linear system 7.46 has

large size. However, experiences on implementing those methods, as discussed in

Section 7.4, tell us that the third method uses fewer iterations to get a solution

compared to the first two methods with respect to the same accuracy. The reasons

that can be found at this point are that the search direction obtained by the third

method can more accurately satisfy the equations in (7.17)–(7.21), while for the

first two methods some of the equations in (7.17)–(7.21) are satisfied to only an

accuracy of 10−8, rather than high accuracy of about 10−15 in the third method

for all equations. In other words, the search direction from the first two methods

is not as accurate as the one obtained from the third method, which causes the

first two methods to use more iterations, though all of them can generate converged

solutions. It is mentioned that the third method will encounter difficulty to find the
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search direction timely when the problem size is large. Therefore, increasing the

accuracy of the search direction from the first two methods to satisfy (7.17)–(7.21)

is a big concern for efficient implementation of the primal-dual IPM to large-scale

problems.

7.4 Implementation of the Primal-Dual IPM

With the Newton search direction from Section (7.3), it is natural to find the step

size for the next point to stay in a neighborhood of the central path. However, in order

to improve the efficiency of the algorithm in practice, adaptive Mehrotra’s predictor-

corrector method [71] is applied, in which a predictor direction is searched and then a

corrector direction is computed. The reason for doing so is that γ in (7.17)–(7.21) needs

to be determined and the accuracy of the model (7.17)–(7.21) should be improved when

possible.

Mehrotra’s predictor-corrector method satisfies the above two points. To be specific,

after having the predictor direction (∆xp,∆yp,∆sp,∆τ p,∆κp) with γ = 0, the step size

αp is found to be the maximum step size when the next point belongs to the feasible set

formed by all the constraints. Let the duality gap for the next point and current point

be µ̄ and µ respectively. γ is computed by

γ = (
µ̄

µ
)3 (7.47)

where

µ̄ =
(x+ αp∆xp)T (s+ αp∆sp) + (τ + αp∆τ p)(κ+ αp∆κp)

k + 1

We have mentioned that (7.17)–(7.21) is 1st-order approximation to the original system

(7.13). With the predictor direction, the quadratic items when linearizing the fourth and

fifth equations in (7.13) can be added to improve the accuracy. So the fourth and fifth
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equations in (7.22) are replaced with

r4 = γµe− X̄S̄e−∆X̄∆S̄e (7.48)

r5 = γµ− τκ−∆τ∆κ (7.49)

where

∆X̄∆S̄e ≈ ∆X̄p∆S̄pe (7.50)

∆τ∆κ ≈ ∆τ p∆κp (7.51)

with

∆X̄p := mat(TΘW∆xp), ∆S̄p := mat(T (ΘW )−1∆sp)

For system (7.17)–(7.21) with (r1, r2, r3, r4, r5) defined in (7.22), if we choose γ = 0,

then the resulting Newton direction computed by (7.36), (7.45), or (7.46) is found, which

is also called pure Newton direction or affine scaling direction. The dynamic choice of γ

is based on how much progress there is on the affine scaling direction with respect to the

duality gap. The formula in (7.47) is proved to work efficiently based on computation

experience, though other choices for computing γ may also work [28].

Next, for system (7.17)–(7.21) with (r1, r2, r3) defined in (7.22) but with (r4, r5) de-

fined in Eqs. (7.48) and (7.49), and γ is given by Eq. (7.47), then the computed Newton

direction is the corrector direction, denoted as (∆xc,∆yc,∆sc,∆τ c,∆κc), since there are

two corrector items added to the original (r4, r5) in (7.22). Based on the corrector di-

rection, the corresponding maximum step size αc needs to be obtained to make sure the

next point

(x̄, ȳ, s̄, τ̄ , κ̄) = (x, y, s, τ, κ) + αc(∆xc,∆yc,∆sc,∆τ c,∆κc) (7.52)

belongs to a neighborhood of the central path, which is described as

(x̄, ȳ, s̄, τ̄ , κ̄) ∈ N(σ) (7.53)
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where [27]

N(σ) =
{

(x, s, τ, κ) ∈ int(K̄)|
√

(x̄i)TQix̄i(s̄i)TQis̄i ≥ σµ,∀i, and τκ ≥ σµ
}

(7.54)

and σ ∈ [0, 1], K̄ = K ×K × R+ × R+, i is the idex for each cone. When σ decreases,

the size of the neighborhood defined by Eq. (7.54) increases. σ can be typically chosen

as 0.001 or other values determined by heuristics.

Following is the procedure for implementing the primal-dual IPM:

1. Choose the starting point for the algorithm:

xi(0) = si(0) = T iei1, y
0 = 0, τ = 1, κ = 1

2. For the current point, set γ = 0 and solve the linear system (7.17)–(7.21) with

(r1, r2, r3, r4, r5) defined in (7.22) to get the affine scaling direction. Then the step

size αp is found to be the maximum step that makes sure the next point belongs to

the feasible set formed by all constraints. To be prepared for step 3, γ is computed

by (7.47) and r4, r5 by (7.48), (7.49).

3. Apply γ from step 2 and solve again the linear system (7.17)–(7.21) with (r1, r2, r3)

defined in (7.22) but with (r4, r5) defined in Eqs. (7.48) and (7.49) to obtain the

corrector direction. The step size αc is produced based on the idea that the next

point belongs to the neighborhood of the central path defined by Eq. (7.53) under

maximum step size.

4. Compute the next point as in Eq. (7.52), update the current point with that point

(x, y, s, τ, κ) = (x̄, ȳ, s̄, τ̄ , κ̄) and check whether the following conditions are all



126

satisfied [35]:

‖ Ax− bτ ‖∞
1+ ‖ b ‖

≤ ε

‖ ATy + s− cτ ‖∞
1+ ‖ c ‖

≤ ε

‖ bTy − cTx− κ ‖∞
1+ ‖ cTx ‖

≤ ε

xT s+ τκ

k + 1
≤ ε

(7.55)

where ε is a prescribed number and very small, usually 10−8. Meanwhile, check

whether the maximum iteration limit Nmax, such as 50 for instance, is reached. If

neither of them is satisfied, go to step 2. Otherwise, go to step 5.

5. The following conclusion is given based on the current point (x, y, s, τ, κ):

If τ > 0, (x
τ
, y
τ
, s
τ
) is the optimal solution for (7.3) or the primal-dual problem.

Otherwise, if τ = 0 and κ > 0, the primal problem is infeasible when bTy > 0, and

the dual problem infeasible when cTx < 0.
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CHAPTER 8. CONCLUSIONS

The majority of the optimal control problems from aerospace applications are nonlin-

ear and non-convex. This dissertation proposes to apply various techniques to transform

the original problems into appropriate formulations so that second-order cone program-

ming (SOCP), which belongs to convex optimization, can be employed to solve the

problems. For rendezvous and proximity operations (RPO), a lossless relaxation tech-

nique is used to obtain a relaxed problem which is proven to have the same solutions

with the original problem. Then a novel successive approximation method is applied to

deal with the nonlinearity inherent in the inverse-square gravity in the system dynamics.

Consequently, the highly constrained RPO problem (non-convex) is to solve a sequence

of SOCP problems. The convergence property of the successive solutions is discussed in

this dissertation and numerical results demonstrate the effectiveness of the methodology,

which, meanwhile, is also capable of incorporating perturbations such as Earth harmonics

J2 and atmospheric drag. For problems with concave inequality constraints, specifically

collision avoidance constraints, the successive linearization method is proposed to lin-

earize the concave constraints to get a sequence of SOCP subproblems and leads to some

strong theoretical results which include guaranteed satisfaction of the original constraints

through the linearized ones, existence of the solution sequence and the equivalence of a

local optimal solution of the original non-convex problem to the convergent solution of

the sequence of subproblems. Furthermore, when a problem has nonlinear terminal con-

straints, the method used is to linearize the nonlinear equality constraints and also add

second-order corrections which are predicted by solving the problem with the linearized
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equality constraints. The corrections are found to improve the robustness of conver-

gence in practical problems. For problems with any non-convexity feature above, various

application problems are provided to demonstrate the effectiveness of the methodology

proposed in this dissertation.
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APPENDIX . PROOF OF LEMMAS

Proof of Lemma 3.2.2: We shall prove this lemma by showing that if pV 6= 0

a.e., ‖T ∗‖ = η∗ must hold. First assume that this interval where ‖T ∗‖ < η∗ does not

overlap with the finite interval(s) where the constraint (3.40) is active (if it happens at

all). If pV 6= 0 a.e. in this interval, the pointwise maximization condition (3.30) applies.

Following the same arguments based on the existence of a maximizing T ∗ and the KKT

conditions as used in Lemma 3.2.1 shows for any fixed η ≥ 0

‖T ∗‖ = η −→ ‖T ∗‖ = η∗ (.1)

that is, ‖T ∗‖ < η∗ cannot be true in this interval.

Now, if the interval where pV 6= 0 a.e. overlaps with a finite interval where the

constraint (3.40) is active, the pointwise maximization condition (3.30) in this interval

will be modified as (see the proof of Theorem 22 in Ref. [41] for detail.1)

max
(T ,η)∈Ω(x)

H[y(t),p(t),T , η] (.2)

where H is the same as in Eq. (3.26), and the set Ω(x) is defined as follows: for given

x = (rT V T )T where h(r, t) = 0

Ω(x) =
{

(T , η) | ‖T ‖ ≤ η,γT (r, t)T + φ(r,V , t) = 0,

1TnT ≤ η cos θ, 0 ≤ η ≤ Tmax
}

(.3)

1Note that Theorem 22 in Ref. [41] applies to first-order state inequality constraint g(x) ≤ 0. But,
in the notation of Ref. [41], what is fundamental in the proof is the first-order time derivative of the
constraint p(x,u) = ġ(x). For a second-order constraint, the proof would remain essentially the same
if p(x,u) is replaced by the second-order time derivative of the constraint q(x,u, t), as in our case.
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where the second constraint γT (r, t)T +φ(r,V , t) = 0 is from Eq. (3.41). For each fixed

η > 0 the domain from which T is selected to maximize H is the set ω(x)

ω(x) = {T | ‖T ‖ ≤ η,γT (r, t)T + φ(r,V , t) = 0,1TnT ≤ η cos θ, } (.4)

The set ω(x) is the intersection of a sphere, a hyperplane, and the half-space defined by

another hyperplane. So ω(x) itself is convex and bounded. For pV 6= 0 the Hamiltonian

is a non-constant convex (linear) function of T . Hence a maximizing T ∗ is guaranteed

to exist on the boundary of ω(x) [42], and it satisfies the KKT conditions similar to

Eq. (3.33) (plus a term λ3γ associated with γT (r, t)T + φ(r,V , t) = 0 this time) and

Eq. (3.34). The same arguments as used the proof of Lemma 1 will show that ‖T ∗‖ = η,

and ‖T ∗‖ = η∗ when η takes its optimal value. �

Proof of Lemma 3.2.3: Because the jump conditions such as those in Eqs. (3.42)

and (3.43) generally involve pV , a finite interval where pV = 0 can only be in a subinterval

separated by two adjacent jump conditions. First assume that such an interval does not

overlap with [tin, tout] in which h(r, t) = 0 (cf. Eq. (3.40)). The same arguments as in

the proof of Lemma 1 will show pr = pV = 0 in this interval, resulting in the condition

for the Hamiltonian defined in Eq. (3.26)

H = −
(
pm
vex

+ p0

)
η (.5)

If (pm/vex + p0) > 0, the optimality condition (3.30) with respect to η in the set Uη

defined as

Uη = {η | 1Tn (t)T ≤ η cos θ, 0 ≤ η ≤ Tmax} (.6)

should take the lower bound of this set. As argued in the proof of Lemma 1, the lower

bound of the set Uη is η = 0 under Assumption 1, thus H = 0; if (pm/vex + p0) = 0,

still H = 0 regardless of what value η∗ ∈ [0, Tmax] is. Since the system equations

(3.15)–(3.17) are autonomous, the performance index (3.14) is not an explicit function

of time, the problem has a fixed final time tf , and the continuity of the Hamiltonian is
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not affected by the jump conditions (3.42) and (3.43), it follows that the optimal value

of H is a constant throughout [0, tf ] [41]. But both the above two possibilities imply

that H = 0, and this is irrespective of any value of tf . Given that the H(tf ) represents

the influence of the variation of tf on the performance index [43], such an invariance of

the cost with respect to any tf is not possible for the problem at hand. Therefore the

condition that (pm/vex + p0) ≥ 0 can be ruled out, and the only remaining possibility is

that (pm/vex + p0) < 0. From Eq. (3.29) it is clear that pm is constant when pV = 0,

so is (pm/vex + p0). The maximization of H in (.5) with respect to η over the set Uη in

Eq. (.6) calls for the optimal η∗ to take the upper bound of Uη. But it is pointed out in

the proof of Lemma 1 that Uη = {η | 0 ≤ η ≤ Tmax} (cf. Eq. (3.38)). Hence η∗ = Tmax.

If the constraint (3.40) is not active anywhere, or active only at some isolated points

(tin = tout), the above discussion already covers the case. Next consider the case when

the interval [tin, tout] has finite length (tout > tin), and the interval in which pV = 0 is

contained in [tin, tout]. In the interval [tin, tout] the costate equation for pV becomes [41]

ṗr =
1

‖r‖3
pV −

(pTV r)

‖r‖5
r +D(x,T , t)pr + E(x,T , t)pV (.7)

ṗV = −pr + F (x,T , t)pr +G(x,T , t)pV (.8)

where D–G are 3× 3 matrices from a dyad formed by ∂q(x,T , t)/∂x and another time-

dependent vector in R6. See the proof of Theorem 22 in Ref. [41] for detail.2 When

pV = 0 in any finite subinterval in [tin, tout], pr will have to vanish simultaneously in

general, and consequently pV = pr = 0 throughout [tin, tout]. Hence the Hamiltonian

reduces to (.5) again. The optimal η will be determined from condition (.2), which for

η is over the same set Uη in Eq. (.6). Therefore the same arguments employed in the

preceding paragraph will again lead to η∗ = Tmax. �

2The footnote in the proof of Lemma 3.2.2 applies here as well.
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Proof of Lemma 5.3.2: The dual problem to the SOCP problem PP(y[k]) is first

derived. Define the Lagrangian of PP(y[k]) as [22]

L(y, ι,v, s) = cTy + ιT (Hy − p) +
l∑

i=1

vi[gi(y
[k]) + Ogi(y

[k])T (y − y[k])]− sT (Ay − b)

=

[
HT ι+ c+

l∑
i=1

viOgi(y
[k])− ATs

]T
y − ιTp+ bTs

+
l∑

i=1

vi
[
gi(y

[k])− Ogi(y[k])Ty[k]
]

(.9)

where ι, v and s are the associated Lagrange multipliers with ι ≥ 0, v = [v1, . . . , vl]
T ≥ 0

and s ∈ K̄∗ with K̄∗ being the dual cone to K̄. The dual problem to PP(y[k]) is given

by [22]

max
ι≥0,v≥0, s∈K̄∗

[
inf
y∈Rn

L(y, ι,v, s)

]
(.10)

or equivalently3

DD(y[k]) : maximize −ιTp+
l∑

i=1

vi[gi(y
[k])− Ogi(y[k])Ty[k]] + bTs (.11)

subject to HT ι+ c+
l∑

i=1

viOgi(y
[k]) = ATs (.12)

ι ≥ 0, v ≥ 0 (.13)

s ∈ K̄∗ (.14)

The Weak Duality Theorem [22] states that the optimal cost of DD(y[k]) is a lower bound

to that of the primal problem PP(y[k]), and the difference between them is called the

optimal duality gap. PP(y[k]) is a second-order cone problem and thus convex, Moreover,

since it is strictly feasible, the Slater’s condition [22] holds. Hence the strong duality

holds, meaning that the optimal duality gap is zero. Denote the optimal values of the

objective functions of the primal and dual problems by P ∗ and D∗ respectively. Then

3The formulation of the dual problem DD(y[k]) presented here may also be derived by following the
approach in Section 2.3 of Ref. [33].
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for y∗ = y[k], zero duality gap implies

0 = P ∗ −D∗ = cTy∗ + ι∗Tp−
l∑

i=1

v∗i [gi(y
[k])− Ogi(y[k])Ty[k]]− bTs∗

≥ cTy∗ + ι∗THy∗ +
l∑

i=1

v∗iOgi(y
[k])Ty∗ − bTs∗

= [HT ι∗ + c+
l∑

i=1

v∗iOgi(y
[k])]Ty[k] − bTs∗

= s∗TAy[k] − bTs∗ = s∗T (Ay[k] − b) (.15)

where the asterisked multipliers are the corresponding ones in the optimal solution of

DD(y[k]). The inequality sign in above equation is a result of using ι∗Tp ≥ ι∗THy∗ and

gi(y
[k]) + Ogi(y[k])T (y∗ − y[k]) ≤ 0, and the last second to the last equality sign is a

consequence of Eq. (.12). Equation (.15) gives s∗T (Ay[k] − b) ≤ 0. On the other hand,

by the definition of dual cone [22], s∗ ∈ K̄∗ means that s∗T (Ay[k] − b) ≥ 0. Therefore,

the only possibility is

s∗T (Ay[k] − b) = 0 (.16)

In addition, the following equation holds

ι∗T (Hy∗ − p) +
l∑

i=1

v∗i [gi(y
[k]) + Ogi(y

[k])T (y∗ − y[k])]− s∗T (Ay∗ − b)

=[HT ι∗ +
l∑

i=1

v∗iOgi(y
[k])]Ty∗ − ι∗Tp+

l∑
i=1

v∗i [gi(y
[k])− Ogi(y[k])y[k]] + bTs∗ − s∗TAy∗

=[HT ι∗ +
l∑

i=1

v∗iOgi(y
[k])]Ty∗ + cTy∗ − s∗TAy∗ = s∗TAy∗ − s∗TAy∗ = 0 (.17)

where in above steps, the following two results from the first part of Eq. (.15) and

Eq. (.12) are used

cTy∗ + ι∗Tp−
l∑

i=1

v∗i [gi(y
[k])− Ogi(y[k])Ty[k]]− bTs∗ = 0

HT ι∗ + c+
l∑

i=1

viOgi(y
[k])− s∗TA = 0
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Let C be the feasibility set of Problem PP(y[k])

C =
{
y ∈ Rn | Hy ≤ p, gi(y[k]) + Ogi(y

[k])T (y − y[k]) ≤ 0, Ay − b ≥K 0, ‖y − y[k]‖ ≤ ρ
}

(.18)

The constraints in Eqs. (.13) and (.14) for Problem DD(y[k]) plus y∗ ∈ C mean that

ι∗T (Hy∗−p) ≤ 0, v∗i [gi(y
[k])−Ogi(y[k])T (y∗−y[k])] ≤ 0, and −s∗T (Ay∗−b) ≤ 0. Hence

Eq. (.17) implies that each term on the left-most hand side of the equation must be zero,

in particular,

ι∗T (Hy∗ − p) = 0 (.19)

v∗i [gi(y
[k])− Ogi(y[k])T (y∗ − y[k])] = 0 (.20)

When y∗ = y[k], the above two equations become

ι∗T (Hy[k] − p) = 0 (.21)

v∗i gi(y
[k]) = 0 (.22)

Finally, when y∗ = y[k], the trust region constraint in (5.22) is an inactive inequality

constraint and can be ignored, which implies that all the cone constraints in PP(y[k])

are identical to those in P1, or K̄ = K.

Combine all the constraints from both PP(y[k]) and DD(y[k]), Eqs. (.16), (.21), and

(.22), y∗ = y[k] ∈ C, and condition K̄ = K to get

HT ι∗ +
l∑

i=1

v∗iOgi(y
[k]) + c = ATs∗ (.23)

ι∗T (Hy[k] − p) = 0 (.24)

v∗i gi(y
[k]) = 0, i = 1, . . . , l (.25)

s∗T (Ay[k] − b) = 0 (.26)

Hy[k] ≤ p (.27)

gi(y
[k]) ≤ 0, i = 1, ..., l (.28)

ι∗ ≥ 0, v∗ ≥ 0, Ay[k] − b ≥K 0, s∗ ∈ K∗ (.29)
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The above equations suggest that the Lagrange multipliers (ι∗, v∗, s∗) and y∗ = y[k]

satisfy the KKT conditions for the original problem P1. Equations (.24)–(.25) are the

conditions for complementary slackness and Eqs. (.27)–(.29) conditions for feasibility

[22]. So y∗ = y[k] is a KKT solution for Problem P1. �



136

BIBLIOGRAPHY

[1] Woffinden, D. C. and Geller, D. K., “Navigating the Road to Autonomous Orbital

Rendezvous,” Journal of Spacecraft and Rockets , Vol. 44, No. 4, 2007, pp. 898–909.

[2] Goodman, J. L., “History of Space Shuttle Rendezvous and Proximity Operations,”

Journal of Spacecraft and Rockets , Vol. 43, No. 5, 2006, pp. 944–959.

[3] Goodman, J. L. and Brazzel, J. P., “Rendezvous Integration Complexity of NASA

Human Flight Vehicles,” AAS Paper 09-065, 32nd Annual AAS Guidance and Con-

trol Conference, Breckenridge, CO, January 2009.

[4] Goodman, J. L., “History of Space Shuttle Rendezvous,” Revision 3, JSC-63400,

Flight Dynamics Division, Mission Operations Directorate, NASA Johnson Space

Center, Houston, TX, October 2011.

[5] Clohessy, W. H. and Wiltshire, R. S., “Terminal Guidance for Satellite Rendezvous,”

Journal of the Aerospace Sciences , Vol. 27, No. 9, 1960, pp. 653–674.

[6] Carter, T. E. and Humi, M., “Fuel-Optimal Rendezvous Near a Point in General

Keplerian Orbit,” Journal of Guidance, Control, and Dynamics , Vol. 10, No. 6,

1987, pp. 567–573.

[7] Carter, T. E. and Humi, M., “State-Transition Matrices for Terminal Rendezvous

Studies: Brief Survey and New Example,” Journal of Guidance, Control, and Dy-

namics , Vol. 21, No. 1, 1998, pp. 148–155.



137

[8] Yamanaka, K. and Andersen, F., “New State Transition Matrix for Relative Motion

on an Arbitrary Elliptical Orbit,” Journal of Guidance, Control and Dynamics ,

Vol. 25, No. 6, 2002, pp. 1073–1080.

[9] Lu, P. and Liu, X., “Autonomous Trajectory Planning for Rendezvous and Prox-

imity Operations by Conic Optimization,” Journal of Guidance, Control, and Dy-

namics , 2013, in press.

[10] D’Souza, C., Hanak, F. C., Spehar, P., Clark, F. D., and Jackson, M., “Orion Ren-

dezvous, Proximity Operations, and Docking Design and Analysis,” AIAA Paper

2007-6683, August 2007.

[11] Chobotov, V. A., Orbital Mechanics , chap. 9, AIAA, Reston, VA, 3rd ed., 2002.

[12] Vallado, D., Fundamentals of Astrodynamics and Applications , chap. 8, Microcosm

Press, El Segundo, CA, 2nd ed., 2004, Appendix B.

[13] Schweighart, S. A. and Sedwick, R. J., “High-Fidelity Linearized J2 Model for Satel-

lite Formation Flight,” Journal of Guidance, Control, and Dynamics , Vol. 25, No. 1,

2002, pp. 60–66.

[14] Bevilacqua, R. and Romano, M., “Rendezvous Maneuvers of Multiple Spacecraft

Using Differential Drag Under J2 Perturbation,” Journal of Guidance, Control, and

Dynamics , Vol. 31, No. 6, 2008, pp. 15951607.

[15] Richards, A., Schouwenaars, T., How, P., and Feron, E., “Spacecraft Trajectory

Planning with Avoidance Constraints Using Mixed-Integer Linear Programming,”

Journal of Guidance, Control, and Dynamics , Vol. 25, No. 4, 2002.

[16] Mueller, J. B. and Larsson, R., “Collision Avoidance Maneuver Planning with Ro-

bust Optimization,” 7th International ESA Conference on Guidance, Navigation

and Control Systems, June 2008.



138

[17] Mueller, J. B., Griesemer, P. R., and Thomas, S., “Collision Avoidance Maneuver

Planning with Robust Optimization,” AIAA Paper 2010-3525, April 2010.

[18] Boggs, P. and Tolle, J., “Sequential Quadratic Programming,” Acta Numerica,

Vol. 4, 1995, pp. 1–51.

[19] Nocedal, J. and Wright, S. J., Numerical Optimization, chap. 11 and 18, Springer-

Verlag, New York, NY, 2nd ed., 2006.

[20] Acikmese, B. and Blackmore, L., “Lossless Convexification for a Class of Optimal

Control Problems with Nonconvex Control Constraints,” Automatica, Vol. 47, No. 2,

2011, pp. 341–347.

[21] Acikmese, B., Carson, J. M., and Blackmore, L., “Lossless Convexification of Non-

convex Control Bound and Pointing Constraints of the Soft Landing Optimal Con-

trol Problem,” accepted for publication in IEEE Transactions on Control Systems

Technology, 2013.

[22] Boyd, S. and Vandenberghe, L., Convex Optimization, chap. 5, Cambridge Univer-

sity Press, New York, 2004.

[23] Alizadeh, F. and Goldfarb, D., “Second-Order Cone Programming,” Mathematical

Programming , Vol. 95, No. 1, 2003, pp. 3–51.

[24] Lobo, M. S., Vandenburghe, L., Boyd, S., and Lebret, H., “Applications of Second-

Order Cone Programming,” Linear Algebra and its Applications , Vol. 284, 1998,

pp. 193–228.

[25] Acikmese, B. and Ploen, S. R., “Convex Programming Approach to Powered Descent

Guidance for Mars Landing,” Journal of Guidance, Control and Dynamics , Vol. 30,

No. 5, 2007, pp. 1353–1366.



139

[26] Blackmore, L., Acikmese, B., and Scharf, D. P., “Minimum Landing Error Pow-

ered Descent Guidance for Mars Landing Using Convex Optimization,” Journal of

Guidance, Control and Dynamics , Vol. 33, No. 4, 2010, pp. 1161–1171.

[27] Kuo, Y.-J. and Mittelmann, H. D., “Interior Point Methods for Second-Order Cone

Programming and OR Applications,” Computational Optimization and Applica-

tions , Vol. 28, 2004, pp. 255–285.

[28] Andersen, E. D., Roos, C., and Terlaky, T., “On Implementing a Primal-Dual

Interior-Point Method for Conic Quadratic Optimization,” Mathematical Program-

ming , Vol. 95, No. 2, 2003, pp. 249–277.
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