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Abstract

In the aftermath of the recent financial crisis, the way credit risk is affected by and

affects the macroeconomic environment has been the focus of academics, risk practi-

tioners and central bankers alike. In this thesis I approach three distinct questions

that aim to provide valuable insight into how corporate defaults, recoveries and credit

ratings interact with the conditions in the wider economy.

The first question focuses on how well the macroeconomic environment forecasts

corporate bond defaults. I approach the question from a macroeconomic perspective

and I make full use of the multitude of lengthy macroeconomic time series available.

Following the recent literature on data-rich environment modelling, I summarise a large

panel of 103 macroeconomic time series into a small set of 6 dynamic factors; the fac-

tors capture business cycle, yield curve, credit premia and equity market conditions.

Prior studies on dynamic factors use identification schemes based on principal compo-

nents or recursive short-run restrictions. The main contribution to the body of existing

literature is that I provide a novel and more robust identification scheme for the 6

macro-financial stochastic factors, based on a set of over-identifying restrictions. This

allows for a more straightforward interpretation of the extracted factors and a more

meaningful decomposition of the corporate default dynamics. Furthermore, I use a

novel Bayesian estimation scheme based on a Markov chain Monte Carlo algorithm

that has not been used before in a credit risk context. I argue that the proposed

algorithm provides an efficient and flexible alternative to the simulation based esti-

mation approaches used in the existing literature. The sampling scheme is used to

estimate a state-of-the-art dynamic econometric specification that is able to separate

macro-economic fluctuations from unobserved default clustering. Finally, I provide ev-

idence that the macroeconomic factors can lead to significant improvements in default

5



probability forecasting performance. The forecasting performance gains become less

pronounced the longer the default forecasting horizon.

The second question explores the sensitivity of corporate bond defaults and recov-

eries on monetary policy and macro-financial shocks. To address the question, I follow

a more structural approach to extract theory-based economic shocks and quantify the

magnitude of the impact on the two main credit risk drivers. This is the first study

that approaches the decomposition of the movements in credit risk metrics from a struc-

tural perspective. I introduce a VAR model with a novel semi-structural identification

scheme to isolate the various shocks at the macro level. The dynamic econometric

specification for defaults and recoveries is similar to the one used to address the first

question. The specification is flexible enough to allow for the separation of the macroe-

conomic movements from the credit risk specific unobserved correlation and, therefore,

isolate the different shock transmission mechanisms. I report that the corporate default

likelihood is strongly affected by balance sheet and real economy shocks for the cyclical

industry sectors, while the effects of monetary policy shocks typically take up to one

year to materialise. In contrast, recovery rates tend to be more sensitive to asset price

shocks, while real economy shocks mainly affect secured debt recovery values.

The third question shifts the focus to credit ratings and addresses the Through-the-

Cycle dynamics of the serial dependence in rating migrations. The existing literature

treats the so-called rating momentum as constant through time. I show that the rating

momentum is far from constant, it changes with the business cycle and its magnitude

exhibits a non-linear dependence on time spent in a given rating grade. Furthermore,

I provide robust evidence that the time-varying rating momentum substantially in-

creases actual and Marked-to-Market losses in periods of stress. The impact on regu-

latory capital for financial institutions is less clear; nevertheless, capital requirements

for high credit quality portfolios can be significantly underestimated during economic

downturns.
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Chapter 1

Introduction

1.1 Motivation and Aims

1.1.1 Background

In the aftermath of the recent financial crisis, the interaction of financial and real sides

of the economy has come to the forefront of today’s risk measurement practices, central

banking policy debate and academic research in the broad field of financial economics.

The notion of regulatory driven stress testing exercises has suddenly become a de-facto

tool to assess the financial sector’s strength and viability under adverse conditions;

adverse conditions that a few years ago seemed implausible and yet they are now

used as benchmarks for market and credit portfolio losses and capital requirements

calculations.

The financial crisis highlighted vulnerabilities in the quantification of all risk types.

The study of some of those risk types, such as counterparty and liquidity risk, is

relatively new. On the contrary, research on other risk types such as market and

credit risk has been active for many years; market risk certainly gained attention after

the 1997-2002 period (Asian crisis, Russian default, Dot-Com bubble, September 11th

attacks), while credit risk is an integral part of corporate finance for many decades.

Nevertheless, the importance of market risk is somewhat masked by the ability to

hedge and close-down positions in the short-term. At the same time, market risk is

typically relevant for investment banks and asset managers, having medium to low
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importance for commercial banks. It is really accumulated credit losses that lead to

the deterioration of the overall banking sectors balance sheet, tightening of lending

criteria and, consequently, amplification of economic downturns.

The literature in credit risk quantification is extensive. The study of Altman (1968)

is perhaps the first to thoroughly explore the empirical determinants of bankruptcy,

therefore linking credit risk to fundamental drivers. Merton (1974) is the first paper to

structurally formulate the default likelihood and the price of corporate debt as functions

of a firm’s asset value and level of debt, while Jarrow and Turnbull (1995) provide the

first reduced-form view on pricing derivative securities subject to credit risk. Despite

the two approaches on credit risk being distinct, Duffie and Lando (2001) show that

reduced form pricing can be viewed as a structural model with incomplete accounting

information. A challenge for all credit models is the ability to perform well in both

benign and stress periods. Das et al. (2007) and Duffie et al. (2009) introduce the

notion of ”frailty” in the credit risk literature to describe unobservable variables that

are correlated across firms, therefore causing clustering in corporate failings; Duffie

et al. (2007) use ”frailty” terms to enhance the prediction of firm level defaults. More

recently, Chen et al. (2009) adjust the structural credit risk models for market-varying

prices of risk to help fit historical credit spread levels. Finally, the study of Chen (2010)

is the first to provide a dynamic capital structure model that is able to capture the

historical variation in credit spreads linking explicitly default losses and leverage to the

business cycle.

The substantial increase in computational speed, combined with the availability

of long time series of US corporate default data spanning over multiple credit cy-

cles, enabled the estimation of high dimensional and possibly non-Gaussian systems

of endogenous variables. Recent econometric studies on corporate credit risk incorpo-

rate complex correlation structures and dynamics. McNeil and Wendin (2007) apply

a Bayesian Generalised Linear Mixed Model (GLMM) on quarterly corporate default

counts, incorporating business cycle dynamics and latent, default specific, random ef-

fects. Koopman and Lucas (2008) focus more on the latent credit factors and present

a non-Gaussian dynamic factor model to isolate the different dynamics from a panel

of industry sector and rating grade corporate bond defaults. Koopman et al. (2012)

extend the latent factor framework of Koopman and Lucas (2008) to include observed
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macroeconomic variables and show that the observed covariates account for approxi-

mately one third of the systematic variation in defaults. Recognising the benefits of

using many variables to capture all the aspects of the economic cycle, Koopman et al.

(2011) use a large scale dynamic factor model based on principal components to reduce

the dimensionality of the macro-financial stochastic movements; these dynamic factors

are then used to forecast corporate bond defaults. A similar dynamic factor model

based on principal components is employed by Boivin et al. (2013) to study the effect

of credit shocks on the rest of the economic and financial environment. Finally, Creal

et al. (2013) use a mixed-measurement and mixed-frequency dynamic factor framework

to jointly model corporate defaults, corporate recoveries, rating migrations and key

economic and financial variables.

In addition to the modelling of realised defaults, several studies explore the dy-

namic behaviour of credit ratings. Despite the criticism that the rating agencies have

received throughout the recent financial crisis, credit ratings still play a central role in

investment decisions on credit instruments, in setting covenants for credit contracts,

and in calculating regulatory capital for financial intermediaries. Early studies on dis-

crete time credit migration count modelling include Nickell et al. (2000) and Bangia

et al. (2002). Koopman et al. (2008) use a continuous time semi-Markovian framework

with a latent credit factor to model the transition matrix. A similar framework in

discrete time is used by Stefanescu et al. (2009).

A particular topic of interest in credit migrations is the so-called momentum effect,

or directional dependence. Directional dependence implies that a downgrade is more

likely for a corporate that has been previously downgraded, and the reverse applies

to upgrades. This momentum effect leads to non-Markovian stochastic behaviour for

credit migrations and, therefore, has severe implications for the time-varying or time-

invariant transition matrices typically used by investors and financial institutions alike

for risk management purposes. Early studies on the non-Markovian nature of rating

migrations include Kavvathas (2000) and Lando and Skødeberg (2002); both studies

confirm the existence of positive correlation between successive migrations of the same

type. In fact, Güttler and Raupach (2010) show that ignoring the rating momentum

effect leads to a significant underestimation of Value-at-Risk (VaR) for credit portfolios.

Furthermore, Güttler and Wahrenburg (2007) show that the momentum effect is shared
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among rating agencies; a rating change from a single rating agency typically leads to a

similar rating action from the other agencies.

1.1.2 Objective

Despite the extensive literature in credit risk modelling, there are still aspects that

have not been thoroughly explored. This is especially true for the macroeconomic

determinants and the cyclical dynamics of credit risk measures. The thesis focuses

on three topics of particular importance: forecasting of the systematic movements in

corporate defaults, the effect of structurally identified macro-financial shocks on credit

risk measures and the dynamic properties of the momentum effect in credit rating

migrations. The first two topics provide a macroeconomic view of credit risk, focusing

on the times series aspect of the respective risk measures. In contrast, the third topic

uses time-to-event continuous time methods to explore the micro-structure of rating

migrations and defaults.

The first question that I ask in the thesis is how well can systematic movements

in corporate bond defaults be forecasted by the current state of the economic cycle.

The dependence of defaults on the economic and financial environment is not straight-

forward, as the corporate balance sheet can be affected by multiple macro-financial

transmission channels. To avoid the problem of omitted variables from the econo-

metric specification, I introduce a large scale dynamic factor model that is able to

summarise the macro-financial dynamics into a small set of factors; the factors are

then used to predict defaults. The studies of Duffie et al. (2007), Koopman et al.

(2011), Duan et al. (2012) and Figlewski et al. (2012) also deal with the prediction of

corporate failings. Nevertheless, only the work of Koopman et al. (2011) focuses on

the systematic movements of corporate defaults and their correlation to the macroe-

conomic environment, with the remaining studies modelling the cross-section. Despite

the similarities with the work of Koopman et al. (2011), I approach the question from a

different perspective. While extraction of factors based on model a-theoretic principal

component analysis efficiently summarises the variability from large panels of data, it

does not necessarily give an intuitive interpretation for the factors. I argue that a set of

identification restrictions based on an appropriate segmentation of the input variable

panel leads to significant gains in corporate bond default forecasting, while providing an
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intuitive decomposition high dimensional variable set into the different aspects of the

macro-financial environment. In that sense, the approach is more similar to the work

of Creal et al. (2013), but with a much higher dimensionality of the macro-financial

input set and a particular focus on default forecasting.

The second question that I ask in the thesis is how corporate bond defaults and

recoveries are affected by real economy and monetary policy shocks. The dependence of

credit risk measures on the macroeconomic environment has attracted a lot of attention

over the recent years. McNeil and Wendin (2007), Koopman et al. (2011), Koopman

et al. (2012) and Creal et al. (2013) provide comprehensive dynamic factor structures

that combine macroeconomic fluctuations with credit specific unobserved components.

Concerning recoveries, the studies of Hu and Perraudin (2002), Altman et al. (2005),

Acharya et al. (2007) and Jankowitsch et al. (2014) provide empirical evidence that

the recovery amount from defaulted debt is linked to the default probability of the

issuer and the aggregate default frequency within the issuer’s industry sector. Despite

the depth of research on the systematic link between credit measures and economic

environment, no existing study attempts to explore the effects of structurally identified

macro-financial shocks on corporate defaults and recoveries. This decomposition of the

credit side of the economy to properly identified macro-financial shocks is of particular

importance to regulators and policy makers alike. Stress testing exercises have become

the norm in assessing the ability of the banking system to withstand extreme shocks.

To formulate a coherent and plausible set of macro-financial indicators that quantifies

the narrative of a specific scenario, it is much easier to work with properly identified

fundamental shocks closely tied to economic theory. Furthermore, policy makers need

to fully capture the different transmission mechanisms of the policy instrument. A

change in money supply or the base rate affects corporates and consumers alike, but

the impact in not straightforward. At a first stage, monetary policy shocks affect

the assets and liabilities of corporate and household balance sheets through changes

in demand and cost of debt. At a second stage, the deterioration or improvement

of corporate and consumer balance sheets could have an impact on the conditions of

further lending and that might in turn amplify the effect of a monetary policy shock.

The third and final question that the thesis addresses is what are the dynamic

determinants of the momentum effect in credit ratings. The momentum effect in rat-
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ing migrations is well documented. The studies of Kavvathas (2000) and Lando and

Skødeberg (2002) use continuous time rating migration frameworks and report an over-

all positive directional dependence of each rating change to the type of the previous

migration. Furthermore, Güttler and Raupach (2010) argue that ignoring the rating

momentum effect leads to an underestimation of VaR by 107 basis points on average.

Despite the existing work on the non-Markovian behaviour of rating transition matri-

ces, no study has assessed the stability of the rating momentum effect through time.

Therefore, the third question of the thesis focuses on how the momentum effect changes

with the business cycle and the time since rating assignment. Once the stability of the

rating momentum effect is statistically assessed, I quantify the impact of the various

non-Markovian effects on credit portfolios.

1.2 Contributions

1.2.1 Large scale dynamic factor model to summarize the macro-

financial environment

To quantify the forecasting power of the macroeconomic environment in predicting

corporate bond defaults, the thesis uses a large scale dynamic factor model to reduce

the dimensionality of the macro-financial dataset. While the use of dynamic factor

modelling is very common in econometric studies, I move away from the existing lit-

erature by introducing a set of over-identifying restrictions applied on the matrix of

factor loadings; that allows more robust isolation of the different dynamics and better

interpretability of the extracted factors. To extract the factors, typically dynamic fac-

tor models use direct likelihood methods with suitable just-identifying restrictions on

the loadings matrix or principal components, with possible Cholesky based rotations as

in Boivin et al. (2013). I argue that since the set of macro-financial variables contains

multiple series reflecting similar information (as for example the different interest rate

variables) the zero restrictions on the loading matrix should be applied to the entire

subset of economically similar inputs. By doing so, the factors more closely reflect the

different aspects of the economy.

Based on the over-identification scheme described above, I extend the existing
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literature by presenting a novel decomposition of the macroeconomic environment into

6 factors, reflecting business cycle fluctuations, cost of debt, yield curve risk, credit

premia, asset returns and asset volatility. I provide detailed forecast error variance

decomposition and correlation analysis to show that the proposed decomposition leads

to intuitive factor dynamics.

1.2.2 Forecasting corporate bond defaults

The thesis provides new empirical evidence on how the macroeconomic environment

helps to forecast corporate defaults. To assess the forecasting power of the macroe-

conomic environment, I combine the set of dynamic factors summarising the macro-

financial conditions with a set of unobserved, default-specific, factors. The inclusion of

macroeconomic and credit-specific factors in forecasting corporate defaults is not new,

as numerous studies have explored the benefits of dynamic factor analysis in credit

risk modelling. The difference with the existing literature is that I force the factors to

have a clear interpretation based on a set of over-identifying restrictions. By doing so,

the variability in default rates can be attributed to clear macro-financial dynamics as

opposed to arbitrary rotations of factors based on principal components or recursive

short-run identification restrictions that might be difficult to justify.

Furthermore, I base the estimation of the different non-Gaussian default models

on a recently introduced Markov Chain Monte Carlo (MCMC) scheme. The MCMC

algorithm combines a set of Gibbs sampling steps to transform the non-Gaussian ob-

servations into equivalent conditionally Gaussian data points; after transforming the

specification into a conditionally Gaussian state space model, efficient Kalman filter-

ing and smoothing is performed to sample the latent credit risk factors, combined

with Bayesian linear regression sampling for the regression parameters. The sampling

scheme follows the work of Frühwirth-Schnatter and Frühwirth (2007) and Frühwirth-

Schnatter et al. (2009) and this is the first time it is used in a credit risk context.

Unlike the existing literature that estimates dynamic credit event models either via

simulation based maximum likelihood or generic MCMC sampling schemes, I argue

that the data-augmentation algorithm used in this thesis offers an efficient and flexible

alternative that provides both point and entire posterior estimates for parameters and

dynamic factors.
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1.2.3 Identifying macro-financial shocks

To quantify the effects of macro-financial shocks on corporate defaults and recoveries, I

introduce a novel identification scheme to isolate the various shocks. The identification

scheme combines a set of short- and long-run restrictions on the dynamic multipliers

of a small-scale five variable Vector Autoregression (VAR) model. The VAR model

is inspired by the credit channel/financial accelerator literature and it models output,

inflation, leverage, asset value and interest rate variables. The suggested VAR analy-

sis identifies five orthogonal shocks as aggregate supply, aggregate demand, corporate

balance sheet, asset price and monetary policy. While based on existing views on

macroeconomic dynamics, the suggested VAR approach differs from alternative models

suggested in the literature in a number of ways.

First, I propose a new solution for isolating credit shocks in the economy, based

on using the ratio of outstanding corporate debt to corporate profits as a proxy for the

corporate sectors financial strength. This measure provides a highly cyclical indicator

of the corporate leverage and helps to pinpoint the effect of balance sheet shocks. At

the same time it justifies the short-run restrictions on the responses to asset price

and monetary policy shocks and addresses the simultaneity concern between credit and

macro-financial shocks. Studies like Boivin et al. (2013) that use bond spreads to proxy

the credit conditions, suffer from the problem of simultaneity between bond yields and

equity prices, even at a monthly frequency.

Second, I extend and strengthen the money neutrality argument of Bjørnland and

Leitemo (2009) to a much longer time series of quarterly data. I find the resulting

long-run restrictions to be particularly effective in separating asset price and monetary

policy shocks.

Finally, I follow a more holistic view and I make sure that the responses of all the

endogenous variables to each identified shock are intuitive. Typically, the VAR litera-

ture focuses solely on the small subset of structural shocks that are strongly identified

(shocks with many restrictions). I show that even the weakly identified, real economy,

shocks in my analysis produce intuitive impulse response functions.
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1.2.4 Responses of corporate bond defaults and recoveries to macro-

financial shocks

The thesis provides the first study that isolates the effects of independent macro-

financial shocks on credit risk without relying on purely recursive identification schemes.

This focus on the structural aspect of credit risk conditions renders the results of the

thesis particularly important to policy makers and regulatory authorities. Monetary

policy actions are transmitted via multiple financial channels to the economy and a

failure to identify the links to the corporate and financial sectors can lead to a fresh

balance sheet and net worth deterioration especially in the post-2008 crisis environment.

Furthermore, financial stability and regulation of financial institutions move towards

regular and comprehensive stress testing exercises, aiming to assess the solvency of the

banking sector and identify the need for additional capitalisation. To form extreme

but plausible shocks to drive the stress scenarios, based on quantitative grounds, a

structural view of the economy is needed. A structural approach would enable one to

express forward looking views on the economy in terms of independent, fundamental

sources of macroeconomic activity.

1.2.5 Duration dependence and business cycle effects in credit rating

momentum effect

The thesis contains the first effort to assess the stability of the directional serial de-

pendence that is observed in credit ratings. In doing so, I test for business cycle and

duration dependence of the so-called momentum effect. More specifically, I provide

statistical significance tests for:

• Time-invariant rating momentum: This is a test for the well-documented serial

dependence that is assumed to be constant. Unlike previous studies, I also adjust

the rating momentum estimates for industry heterogeneity, by stratifying the

baseline hazard rate.

• Rating momentum adjusted for duration time: This is a test for the interaction

of serial dependence and time since rating assignment. For greater flexibility, I

use fractional polynomials to model the duration dependence.
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• Rating momentum adjusted for business cycle movements: This is a test for

the interaction of serial dependence and macro-financial conditions. To proxy

the business cycle fluctuations, I use the Chicago Fed National Activity Index

(CFNAI) index.

In addition to the credit risk implications of the various non-Markovian effects

that are tested, the econometric specification used also corrects the Cox proportional

hazard model for continuous time-to-event data in two very important ways. First,

adjusting the momentum effect for duration time corrects the specification for the

non-proportionality of the rating momentum effect. Ignoring this non-proportional

effect leads to the violation of the Cox model’s assumptions and therefore to biased

inference. Second, the parameter estimates are adjusted for possibly different baseline

migration intensities across industry sectors. If the time profiles of the baseline hazard

rates are fundamentally different across industries, failing to appropriately adjust the

parameter estimates for the covariates leads to biased inference, see Kalbfleisch and

Prentice (2002).

1.2.6 Impact of non-Markovian transition matrices on portfolio credit

risk

Lending institutions and individual investors alike rely on published transition matrices

by the major rating agencies to assess the credit quality of a debt instrument. The

modelling of the transition matrices is typically based on the Markovian assumption.

When additional effects such as serial dependence and duration time are taken into

account, the Markov assumption is violated. Therefore, the final contribution of the

thesis is to quantify the impact of the aforementioned non-Markovian transition matrix

elements on credit portfolios.

To quantify the impact of the non-Markovian behaviour of the transition matrices,

I examine a few key metrics, particularly focusing on the implications for financial

institutions risk management. For a financial institutions banking book, I use the

Basel II/III Risk Weighted Assets (RWA) prescribed formula to capture the impact

rating momentum with duration and business cycle adjustments on regulatory capital.

For provisions and economic capital I use jump-to-default expected and 99% tail losses.
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Similarly, for the trading book I also cover expected and tail marked-to-market losses;

for the trading book losses arise from a combination of credit spread movements and

jump-to-default events. All loss estimates are based on two corporate bond portfolio

structures; the first reflects primarily sub-investment grade exposures, while the second

covers predominately investment grade risk exposures.

To quantify the impact of the non-Markovian behaviour of the transition matrices,

I examine a few key metrics, particularly focusing on the implications for financial in-

stitutions risk management. The portfolio metrics cover actual and Marked-to-Market

(MtM) losses, as well as regulatory capital measures. Adding to the existing literature

on corporate credit ratings, I show that the presence of serial dependence on rating mi-

grations leads to a substantial increase in actual and MtM losses, particularly in times

of stress; this increase depends on vintage of the existing portfolio as rating momentum

effect is not constant across a firm’s survival time. Furthermore, capital requirements

can be underestimated in times of stress, mainly for high credit quality portfolios.

1.3 Thesis Outline

The structure of the thesis mirrors the three questions that I am set to address. There-

fore, the remainder of this thesis comprises of three chapters, structured to address

each of the thesis’ three main questions independently. The overall thesis follows an

essay-type approach; each chapter is self-contained, with its own literature review,

methodology, data and results.

More specifically, Chapter 2 uses a large scale dynamic factor model to quantify

the forecasting power of the macro-financial environment in predicting corporate bond

default rates. Section 2.2 provides a brief summary of the related literature on dynamic

factor models and corporate default modelling. Section 2.3 explains the econometric

model used to for the analysis: Section 2.3.1 covers the corporate default model while

Section 2.3.2 is devoted to the macroeconomic dynamic factor model. Section 2.4

describes the Bayesian estimation procedure for both credit and macroeconomic models.

Section 2.5 summarises the data used in the empirical analysis, while the Appendix

provides the full set of macro-financial variables used in the analysis. Finally, Section

2.6 presents the results and Section 2.7 provides a summary of the chapter’s main points
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and some areas for future research.

Chapter 3 deals with the identification of macroeconomic shocks and the quan-

tification of their effect on corporate bond defaults and recoveries. Sections 3.3.1 and

3.3.2 derive the econometric equations for corporate defaults and recoveries from well-

established firm level structural default models. Section 3.3.3 covers the VAR model

used for the macroeconomic part of the model and describes in detail the semi-structural

identification scheme used to isolate the different macro-financial shocks. Section 3.3.4

describes the Bayesian estimation for defaults, recoveries and the macroeconomic VAR

model, while Section 3.4 summarises the data used in the analysis. The results of the

analysis are provided in Section 3.5 and comprise of the full set of impulse responses

and variance decompositions for the macroeconomic (Section 3.5.1) and credit models

(Section 3.5.2). Finally, Section 3.6 concludes the chapter and discusses possible exten-

sions to the model used. Chapter 3 also contains an Appendix that contains the factor

loadings for all the input macroeconomic variables.

Chapter 4 explores the properties of the momentum effect in credit ratings and

shows how this is affected by duration and business cycle effects. Section 4.3.1 describes

the continuous time model used to quantify and test the various effects in credit rating

migrations, while Section 4.3.2 covers the maximum likelihood estimation. Section 4.4

summarises the data used in the analysis and depicts the effect of momentum on rating

transition matrices. The empirical analysis is covered in Section 4.5. Section 4.5.1

provides the parameter estimates for the model and the output of the statistical tests

that are used to determine the statistical significance of the various momentum effects.

Section 4.5.2 quantifies the effect of the various momentum effects on credit portfolio

losses, covering the Profit & Loss, MtM and Regulatory Capital aspects. Finally,

Section 4.6 summarises the main findings of the chapter and highlights possible areas

for future research.

Chapter 5 concludes. The chapter includes a summary of the findings presented

in chapters 2-4, the implication of the results for credit risk management and policy

making and recommends possible extensions and topics for future work.

The thesis also contains a technical appendix that contains a brief summary of

Bayesian estimation methods and state space modelling. The topics covered in the
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Appendix are applicable to both chapters 2 and 3.
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Chapter 2

Forecasting Corporate Defaults

in a Data-Rich Environment

2.1 Introduction

Following the recent economic downturn caused by the credit crisis, the systematic

movement of default events has attracted additional attention, in both academic and

practitioner circles. The systematic correlation of defaults during adverse economic

conditions constitutes one of the major challenges in todays credit risk modelling re-

search and various approaches have been proposed to address the default clustering

due to, both, observed macroeconomic conditions and residual, credit cycle specific,

stochastic movements.

Inspired by the strong link between macroeconomic environment and credit risk,

I ask the question how well can systematic movements in corporate bond defaults

be forecasted using the current state of the economic cycle. To capture the different

aspects of the economic environment I use a large scale dynamic factor model, similar

in nature to Koopman et al. (2011), and Boivin et al. (2013). I introduce a set of

over-identifying restrictions to isolate the dynamic factors and represent business cycle

fluctuations, yield curve movements (both level and slope), credit premia, and equity

market conditions. The identification scheme is a significant contribution to the existing

literature on dynamic factor modelling as I show that the extracted factors have a more
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meaningful interpretation as compared to principal component analysis and short-run

restrictions.

Using the extracted factors, I measure the forecasting power on corporate bond

default rates across different industry sectors and forecasting horizons. Using a model

with only Industrial Production as a base specification, I show that the dynamic fac-

tors can lead to substantial increases in forecasting performance for the majority of

sectors; the performance gains can be as high as 90% in terms of Root Mean Squared

Error (RMSE) and 80% in terms of Mean Absolute Error (MAE). The results broadly

confirm the findings of Koopman et al. (2011) that use instead a principle component

based approach. Nevertheless, unlike the work of Koopman et al. (2011), I assess the

forecasting performance over multiple forecasting horizons. I find that the gains in

predicting performance become less clear the lengthier the forecasting horizon.

Estimation is performed by means of a recently introduced MCMC sampling scheme

based on data augmentation that expresses the non-Gaussian default events as con-

ditionally Gaussian observations. Working with conditionally Gaussian observations

allows the use of efficient Kalman filter based sampling for the various dynamic effects.

The MCMC scheme follows the work of Frühwirth-Schnatter et al. (2009), and this is

the first time it is used in a credit risk modelling context. I show that the data aug-

mentation MCMC scheme is an efficient and flexible alternative to simulated maximum

likelihood methods typically employed in the existing literature.

The remainder of this chapter is structured as follows. Section 2.3 provides the

theoretical background and the econometric specification for both the macroeconomic

dynamic factor model and the non-Gaussian stochastic default model. Section 2.4 deals

with the estimation of both aspects of the combined model, describing MCMC estima-

tion of the macroeconomic factor model, and the stochastic default model. Section

2.5 summarises the data used for the analysis, namely the macroeconomic variables

sourced from the Federal Reserve Economic Database and the corporate bond default

data sourced from Moodys Default & Recovery Database. Finally, section 2.6 presents

the final estimation and forecasting results, while section 2.7 concludes.
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2.2 Relevant Literature

The aggregated sector or economy wide default rates can be affected by both firm spe-

cific characteristics and systematic factors. By assuming the idiosyncratic risk for a

homogeneous and relatively large portfolio of companies can be perfectly diversified,

one can argue that default cycles are mainly affected by systematic observable (macroe-

conomic variables) or unobservable (latent) factors. The link between default cycles

and systematic factors has been examined in many papers during the last decade, see

Nickell et al. (2000), Bangia et al. (2002), Pesaran et al. (2006), Das et al. (2007),

McNeil and Wendin (2007), Duffie et al. (2009), Figlewski et al. (2012). The results

show that, although there is an interaction between observable real economy variables

(such as output and interest rates) and credit cycles, the link is not straightforward

and most of the variability in credit quality can be attributed to non observable factors.

In fact, Koopman et al. (2012) report that the macroeconomic environment accounts

for approximately 30% of the systematic variation in corporate defaults. Nevertheless,

Koopman et al. (2011) find that aggregating the economic conditions into a small set

of dynamic factors increases the prediction accuracy of corporate bond defaults.

Following the work of Koopman et al. (2011), and Creal et al. (2013), I use dynamic

factor modelling to summarise the co-movements in the macroeconomic and financial

variables. Early studies on dynamic factor models estimate systems of low dimension-

ality via maximum likelihood; see for example Engle and Watson (1981), Stock and

Watson (1989), Sargent (1989), and Stock and Watson (1991). Straight maximisation

of the likelihood function using the Kalman filter can be computationally infeasible for

high dimensional systems. Bräuning and Koopman (2014), and Jungbacker and Koop-

man (2014) introduce more efficient estimation schemes to reduce the computational

burden when the number of observable series is large. Alternatively, the work of Stock

and Watson (2002a,b) on diffusion indices highlights the computational gains of using

principal components to extract dynamic factors from large panels of macroeconomic

variables, avoiding likelihood maximisation via the Kalman filter recursions. Despite

the computational efficiency, using principal components for dynamic factor analysis

does not necessarily lead to meaningful interpretations of the extracted factors. The

semi-structural schemes described in Stock and Watson (2005) could be used to rotate

the principal components but they are typically overly restrictive to allow for generic
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identification of the factors. To overcome the limitations of the principal component

analysis and avoid the computational burden typically associated with the maximum

likelihood estimation, I use Bayesian MCMC techniques to estimate the macro-financial

dynamic factor model. The MCMC scheme provides full posterior draws for the dy-

namic factors and links naturally to the estimation of the non-Gaussian specification

for the corporate defaults.

The econometric model for the default events combines the dynamic factor analysis

of the macroeconomic environment, with frailty serially correlated unobserved factors

for the credit default cycle. The estimation is based on a recently introduced Gibbs

sampling scheme, specifically tailored to non-Gaussian state space models. The MCMC

algorithm transforms the non-Gaussian observation equation into an equivalent condi-

tionally Gaussian model, for which Gibbs sampling is possible from the full condition-

als of both parameters and hidden states. This so called auxiliary mixture sampling

scheme, was first introduced by Shephard (1994) in the context of stochastic volatility

models, and subsequently extended to models for count data by Frühwirth-Schnatter

and Wagner (2006), and binary-binomial data by Frühwirth-Schnatter and Frühwirth

(2007). These algorithms have been improved for efficiency by Frühwirth-Schnatter

et al. (2009). Model selection based on marginal likelihood using auxiliary mixture

models is explored in Frühwirth-Schnatter and Wagner (2008).

2.3 Econometric Framework

2.3.1 The Corporate Default Model

The econometric framework for a default process can be set either in a discrete or

continuous time setting. Since the focus of this chapter is on economy-wide corporate

defaults, with no firm-specific information used, I chose the discrete time setting. Con-

tinuous time to event models offer a greater level of granularity and predictive accuracy,

as reported by Das et al. (2007), Koopman et al. (2008), and Koopman et al. (2009).

Nevertheless, in the presence of frequent, monthly observations for the defaults and

explanatory variables, the performance of discrete and continuous time models is not

expected to diverge significantly (assuming that daily data provide a good proxy for
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continuous time analysis).

I denote by Dh
it the default counts over h months for a cohort formed at month

t with companies in sector i ∈ S, where S is the set of industry sectors used in the

analysis, and t = 1, ..., T . Conditioning on the available information set Fhit at time t,

the default counts are assumed independent and binomially distributed:

Dh
it|Fhit ∼ Binom(PDh

it, Nit), (2.1)

where Nit is the number of active companies in sector i at the beginning of month t, and

PDh
it is the sector specific probability of default over hmonths measured at month t. For

the purpose of this study, the information set Fhit comprises of two sources of systematic

correlation; a set of macroeconomic systemic factors Fm
t , and a set of unobserved

credit/default factors F d,h
t . The factors Fm

t are derived as linear combinations of

observed macroeconomic aggregates, while the factors F d,h
t are unobserved and need

to be estimated from the default data. The default specific factors F d,h
t are designed

to capture clustering in corporate defaults over and above what can be explained by

observed covariates, and they are commonly referred to as frailty, see Koopman et al.

(2011), and Koopman et al. (2012). Since the analysis is based on industry sector

aggregate default information, I extract one frailty factor per sector and, therefore, the

set of frailty factors can be written as F d,h
t = {fd,hit : i ∈ S}.

Both observed and unobserved factors enter (2.1) via PDh
it. Since this is a quantity

bound to lie between 0 and 1, I use the logit function to make the link to the filtration

process Fhit
log

(
PDh

it

1− PDh
it

)
= αi,h + βmi,h(L)Fm

t + βdi,hf
d,h
it , (2.2)

where αi,h are the sector/forecast horizon specific intercepts, while βmi,h(L) and βdi,h

are the sector/forecast horizon specific sensitivities to macroeconomic factors Fm
t and

industry frailty factor fdit respectively. The sensitivities βmi,h(L) in (2.2) are allowed

to be generic lag polynomials, therefore permitting defaults to be impacted by lagged

values of the macroeconomic factors Fm
t .

For the stochastic process of the frailty factors F d,h
t , I assume a 0 mean, p-th order

34



VAR of the form:

F d,h
t = Φd,h

1 F d,h
t−1+...+Φd,h

p F d,h
t−p+εt ⇒ F̃

d,h
t = Φd,hF̃

d,h
t−1+εt, εt ∼ N(0, IS), (2.3)

where

Φd,h =



Φd,h
1 Φd,h

2 . . . Φd,h
p−1 Φd,h

p

IS 0 . . . 0 0

0 IS 0 0

0 0
. . . 0 0

0 0 . . . IS 0


, F̃

d,h
t =


F d,h
t

...

F d,h
t−p+1

 .

S is the number of industry sectors, and the variance-covariance matrix of the residuals

is set to the identity matrix for identification purposes; if the variance-covariance is left

unrestricted then it cannot be jointly identified with the sensitivities βdi,h in (2.2). I

assume that the VAR(p) is stable, or equivalently:

det
(
IS − Φd,h

1 z − ...− Φd,h
p zp

)
6= 0, for |z| ≤ 1,

which is satisfied if all the eigenvalues of the matrix Φd,h have modulus less than 1.

The stable VAR(p) process implies a long-run variance covariance P d,h matrix for the

frailty dynamics given by:

vec(P d,h) =
(
I(Sp)2 −Φd,h ⊗Φd,h

)−1
vec(IS), (2.4)

where vec(.) is the vectorisation operator, and ⊗ is the Kronecker product. The bi-

nomial model in (2.1)-(2.2), and the frailty dynamics described in (2.3)-(2.4) are an

extension of the GLMM that McNeil and Wendin (2007) use in their analysis; while

McNeil and Wendin (2007) restrict their analysis to independent AR(1) processes, I

allow for more generic VAR dynamics for the unobservable factors.

2.3.2 Dynamic Factor Model

To define the effect of the economic environment on corporate defaults at any point

in time, a wide variety of macroeconomic and financial variables can be used. Nev-

ertheless, for any economic or financial concept there is no unique and indisputable
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data series that can be used for all corporates in a given segmentation. Therefore,

selecting individual variables to use in an econometric specification based on statisti-

cal significance and/or theoretical arguments, does not necessary capture the precise

measure that agents use in their decision making process. Furthermore, variables not

included in the econometric model may potentially bias forecasts and/or structural re-

sults (such as impulse responses in a systematic analysis), leading to the problem of

omitted variables/selection bias.

Recent studies propose factor based models as a solution to the above mentioned

problems. This type of high dimensional model is based on summarising the information

contained in large panels of macroeconomic and financial variables into a small set of

factors to be used for inference. The dimension reduction is typically based on principle

components. For a high level overview of the dynamic factor literature, see Stock and

Watson (2010). In the monetary policy literature, Bernanke et al. (2005) combine in

a VAR model, the FED Funds Rate and a set of dynamic factors derived from a high

dimensional panel of macro-financial variables. This so-called Factor Augmented Vector

Autoregression (FAVAR) setup is able to better capture the complicated transmission

channels of monetary policy in the US. More recently, Boivin et al. (2013) are interested

in the effects of credit shocks in the economy. To identify the different shocks, they

use a recursive scheme applied on a set of dynamic factors. The factors are derived

from a principle component decomposition of a large macroeconomic panel of US data.

Koopman et al. (2011) use a large scale dynamic factor model to forecast corporate

bond default rates.

Instead of using principal component-based dynamic factor analysis and rely on

asymptotic results, I follow Creal et al. (2013) and cast the factor model in its state

space form and use likelihood methods for inference. This allows the use of efficient

Kalman filter-based algorithms for factor extraction. To summarise the systematic

effects across a big dataset of observed macroeconomic and financial variables, I assume

that the economy adheres to a dynamic factor model, having the static form:

Xt = ΛFm
t + et, et ∼ N(0,Σe) (2.5)

Fm
t = Φm(L)Fm

t−1 + ηt, ηt ∼ N(0, I), (2.6)
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where Xt is the vector of observable macroeconomic and financial variables at time t,

and Fm
t is the vector of dynamic factors. The linear dependence of the observed vector

Xt on the unobserved factors Fm
t as described by (2.5) corresponds to the observation

equation of the state space form. The stochastic evolution of the factor as described by

(2.6) corresponds to the state equation. Φm(L) is a generic lag polynomial transition

matrix that allows a VAR process of arbitrary order for the evolution of the dynamic

factors. In a similar way to (2.3), the lag polynomial Φm(L) can be re-expressed as

Φm =



Φm
1 Φm

2 . . . Φm
p−1 Φm

p

IK 0 . . . 0 0

0 IK 0 0

0 0
. . . 0 0

0 0 . . . IK 0


,

where K is the number of dynamic factors and p is the order of the VAR process. The

observation equation errors, et, are assumed uncorrelated with the state equation errors,

ηt. The variance-covariance matrix for the error terms of the observation equation, Σe,

is assumed diagonal, so that all the cross-correlations between the variables in Xt are

captured by the factors Fm
t . The variance-covariance matrix for the state equation

errors ηt is assumed to be the identity matrix for identification purposes; the matrix of

factor loadings Λ and the variance of the dynamic factors cannot be jointly identified.

For simplicity, the variance-covariance matrix Σe in (2.5) is assumed to be di-

agonal. This assumption essentially forces the dynamic factors to capture the full

cross-sectional correlation among the macroeconomic variables. In practice, the strong

assumptions of uncorrelated residuals in both time and cross-section is too difficult to

be met empirically. While Σe can be extended to be a full matrix and the residuals et

can be allowed to be autocorrelated by augmenting appropriately the state vector in

(2.6), the sheer size of the set of input variables used in the analysis quickly renders

these extensions computationally unfeasible. Since the purpose of the analysis is not

to forecast each macroeconomic variable but to get estimates of the dynamic factors

Fm
t in (2.6), the empirical rejection of the assumptions for the behaviour of et is less

important due to the large cross-section and the length of the time series used. Further-

more, failing to properly account for the residual autocorrelation structure of et can
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only create problems when estimating factors in the presence of strongly trending vari-

ables. Nevertheless, introducing the identification assumptions below, I properly isolate

the strongly trending variables in the sample (mainly interest rates) and therefore the

dynamic factor estimates are not biased.

To forecast corporate bond defaults, I assume a-priori that the macro-economic

conditions in a given economy can be grouped into business cycle effects, cost of debt

effects, yield curve risk, credit conditions, asset value movements and asset volatility.

Therefore the choice of variables to be included in the analysis is geared towards the

above mentioned structure of the macro-financial environment. While the choice of

variables is not exhaustive (variables that capture risk from the international envi-

ronment could also be included), it covers a very wide spectrum of economic metrics.

Based on the a-priori assumption on the structure of the economy and the correspond-

ing choice of variables, I summarise the entire set of macro-financial variables into 6

dynamic factors. For a more formal selection process based on statistical theory, the

method of Bai and Ng (2002) can be used to determine the number of factors in generic

dynamic factor models. Nevertheless, it is less suited when semi-structural restrictions

are used.

The high-level factor structure is designed to separate business cycles from financial

shocks. Having removed the business cycle component from the financial variables, I

then choose two separate sets of factors to approximate determinants of the assets

and liabilities of a typical corporate balance sheet. The first set of factors captures

the drivers of the cost of debt, while the second set of factors captures asset value

movements and volatility. The 6 factors Fm
t correspond to:

• Business Cycle Factor (F bst ): A factor the affects both real and financial sides

of the economy. Essentially, to isolate the business cycle factor, I assume that

financial shocks do not have a contemporaneous effect on the real economy. This

is a typical assumption in both dynamic factor and VAR literature, see Bjørnland

and Leitemo (2009) and Boivin et al. (2013). It essentially orders all financial

shocks after the real economy variables. Following the terminology of Bernanke

et al. (2005), the real economy variables are treated as slow-moving, while the

financial variables are treated as fast-moving. Business cycle movements are very

important for default prediction as they affect corporate profitability, which in
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turn affects retained earnings and therefore the future corporate net worth. This

is particularly true for the highly cyclical sectors, such as Capital and Consumer

Industries.

• Cost of Debt Factor (F cdt ): This factor loads exclusively on interest rate vari-

ables, including yield curve and credit spreads. The factor is designed to capture

generic changes to the corporate funding cost, and proxies parallel shifts in the

government and corporate yield curve. As changes in the cost of borrowing affect

the investment decisions of corporates, an increase in the cost of debt is expected

to have a positive impact on corporate defaults.

• Yield Curve Risk Factor (F yct ): A factor related to the term spread risk, loading

on the yield curve and credit spread variables. A typical new corporate bond

issuance involves maturities of more than 10 years and therefore the slope of the

yield curve is very important. To separate the slope from the level of the yield

curve, I assume that interest rate variables are not affected contemporaneously

by yield curve slope and credit spread shocks. This assumption implies that

yield curve slope and credit spread shocks are ordered after yield curve level

shocks. The order of yield curve level and slope shocks can be reversed without

materially changing the extracted factors. Yield curve level and slope changes

typically exhibit low correlation, a structure that forms the base for the principle

components and Nelson-Siegel decomposition of the yield curve, see Diebold and

Li (2006) yield curve and the references therein. The directional effect of the yield

curve slope on corporate defaults is not clear. On one hand, when the short end of

the yield curve becomes more expensive this is typically regarded as a precursor

to a recession, and therefore it should be positively correlated with future default

rates. On the other hand, as corporate debt is typically issued on a medium to

long term basis, it should be the relative changes of the longer end of the yield

curve that are positively correlated with default rates.

• Credit Risk Factor (F crt ): This factor loads exclusively on credit spread variables

and reflects shocks that are caused by deterioration in credit market conditions.

Credit shocks have significant effects in economic activity, as shown by Gilchrist et

al. (2009), Gilchrist and Zakraǰsek (2012) and Boivin et al. (2013), and historically

they are highly correlated with default events. By construction, I define credit
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shocks as the incremental fluctuations in credit spreads after removing business

cycle, interest rate level and yield curve slope movements. This decomposition is

consistent with the work on the determinants of credit spreads by Collin-Dufresne

et al. (2001). Even though the credit spreads are ordered after the yield curve

spreads, the order can be reversed without affecting the resulting factors, as the

correlation between yield curve slope and credit spreads is minimal. As credit

spreads are positively correlated with corporate borrowing costs, an increase in

F crt should lead to an increase in default rates.

• Asset Return Factor (F art ): This is an independent factor loading exclusively

on equity return and equity volatility time series. As the equity market related

variables are also allowed to depend on overall factor F bst , the factor captures

the fluctuations in stock prices over and above the business cycle. Structural

credit models based on the work of Merton (1974) define default as the point

the asset value of a corporate falls below its level of liabilities. This definition of

default can be applied to public corporates to infer the unobserved asset values

as the residual of the debt level and the market capitalisation, therefore making

explicit the importance of equity price movements when studying credit risk.

Other things equal, a drop in F art should lead to a drop in the asset value of

corporates, pushing them closer to their default point, and therefore increasing

their likelihood to default.

• Asset Volatility Factor (F avt ): This is an additive adjustment to the factor F art

to capture the volatility in equity markets. Therefore it only loads on equity

volatility related time series. Again following the structural approach to credit

risk, the asset value and the level of liabilities are not enough to characterise the

probability to default. The remaining driving factor is the volatility of the asset

value. In absence of observed asset values to base the calculation of the volatility

on, I use equity returns and implied volatility series based on equity options. As

the equity volatility series are allowed to depend on both F art and F avt factors,

this structure implies that the asset volatility shocks are ordered after the asset

return shocks. This choice is extremely robust to re-ordering and assuming that

equity returns lead the equity volatility fluctuations leads to very similar factors.

Other things equal, an asset volatility increase increases the likelihood of the asset
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value process crossing the default point, and therefore the F avt factor should show

positive correlation to the observed default rates.

The above factor definitions introduce a set of restrictions that structurally identify the

model. Assuming that the input variables can be classified into Business Cycle (with

corresponding loadings denoted by Λbs), Interest Rate (with corresponding loadings

denoted by Λir), Yield Curve Spreads (with corresponding loadings denoted by Λys),

Credit Spreads (with corresponding loadings denoted by Λcs), Equity Price Returns

(with corresponding loadings denoted by Λer), and Equity Price Volatility (with corre-

sponding loadings denoted by Λev), then the factor loadings matrix can be expressed

as:

Λ =



Λ
F bst
bs 0 0 0 0 0

Λ
F bst
ir Λ

F cdt
ir 0 0 0 0

Λ
F bst
ys Λ

F cdt
ir Λ

F yct
ir 0 0 0

Λ
F bst
cs Λ

F cdt
cs Λ

F yct
cs Λ

F crt
cs 0 0

Λ
F bst
er 0 0 0 Λ

Fart
er 0

Λ
F bst
ev 0 0 0 Λ

Fart
ev Λ

Favt
ev


, (2.7)

where Λ
F ∗t
x denotes the vector of sensitivities of variable group x to the dynamic factor

F ∗t .

The set of restrictions in (2.7) over-identifies the model. Under the generic factor

model summarised by (2.5) and (2.6), if K is the number of factors, a total of K2 non-

redundant restrictions need to be imposed for the model to be identified. Forcing the

state errors ηt to be uncorrelated with unit variance imposes K(K + 1)/2 restrictions.

For more details on dynamic factor model identification, see Bai and Ng (2013). Using a

system with 6 dynamic factors, the variance restrictions impose 21 restrictions and for a

just-identified system a total of 36 restrictions are needed. Clearly (2.7) imposes a much

higher number of 0 restrictions than the 15 needed to just-identify the system, since

each block of Λ
F ∗t
x represents multiple series. Nevertheless, it is this over-identification

scheme that distinguishes the dynamic factor analysis presented here from the rest

of the literature. As factors represent clear macroeconomic and financial concepts,

variables of similar nature should share the same identification restrictions; it is very

difficult for example to argue that Industrial Production does not contemporaneously

respond to shocks in the Cost of Debt, while the Unemployment Rate does.
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2.4 Estimation

The dynamic factor model of section 2.3.2 and the corporate default model of section

2.3.1 can be jointly estimated by casting equations (2.1)-(2.3) and (2.5)-(2.6) into a

combined partially-Gaussian state space, along the lines of Creal et al. (2013). Never-

theless, the sampling of the non-Gaussian part of the state space model and the overall

dimensionality of the observation vector renders this sampling approach computation-

ally infeasible. Instead, I choose to estimate the Gaussian dynamic factor model of

section 2.3.2 independently and substitute the posterior means of the dynamic factors

F̂
m
t in (2.1)-(2.3) to estimate the corporate default default model (2.1)-(2.3) of section

2.3.1. This is a similar approach to that used by Koopman et al. (2011).

The dynamic factor model described in section 2.3.2 has a Gaussian state space

representation and it can therefore be estimated with a combination of Kalman filter-

ing/smoothing for the dynamic factors and closed form posterior Gibbs sampling steps

for the parameters. For the observation equation (2.5) I assume diffuse priors for the

parameters of the form

p(Λ,Σe) = p(Λ)p(Σe) =

N∏
i=1

p(Λi)

N∏
i=1

p(σ2
ei),

p(Λi) = constant, p(σ2
ei) ∝ 1/σ2

ei

(2.8)

where i denotes the i-th observed variable in the model, Λi denotes the i-th row of Λ

and σ2
ei denotes the variance of the residuals for the i-th equation. For the specific form

of the priors I take advantage of the diagonal structure of Σe and the absence of cross

equation restrictions in Λ. For the transition matrix Φm(L) in the state equation (2.6)

I also use diffuse priors of the form p(Φm(L)) = constant.

Both dynamic factor model and the non-Gaussian corporate default specification

can be estimated via maximum likelihood methods, see Koopman and Lucas (2008),

Koopman et al. (2011) and Creal et al. (2013). Nevertheless, the high dimensional-

ity of the observed time series and the full VAR dynamics for both macroeconomic

dynamic factors in (2.6) and frailty factors in (2.3) make full likelihood maximisation

computationally infeasible. To circumvent the computational requirements of maxi-

mum likelihood estimation, I choose to estimate the econometric specifications using
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MCMC techniques. MCMC methods offer significant advantages in the estimation of

high dimensionality Gaussian state space models as they break down the necessary

sampling into 3 steps:

1. Sample the states Fm
t conditional on Λ, Σe and Φm(L). For a Gaussian state

space this involves simulated draws based on a forward pass using the Kalman

filter and a backwards pass using the Kalman smoother, as per Carter and Kohn

(1994). Details of the simulation smoother algorithm can be found in Durbin and

Koopman (2002) and section C.2 of the Appendix. The Kalman filter is initialised

from the stationary distribution for the dynamic factor

Fm
0 ∼ N(0, Pm), vec(Pm) =

(
I(Kp)2 −Φm ⊗Φm

)−1
vec(IK).

2. Sample the transition matrix Φm(L) conditional on the states Fm
t . Due to ηt ∼

N(0, IK), sampling of Φm(L) can be performed on an equation-by-equation basis

as follows:

p(Φm
k |.) ∼ N(φ̂

m
k , Φ̂

m
k ), Φ̂

m
k =

[
(F̃

m
)′F̃

m
]−1

, φ̂
m
k = Φ̂

m
k

[
(F̃

m
)′Fm

]
, (2.9)

where k refers to the k-th factor, Fm = [Fm
1 , ...,F

m
T ]′, F̃

m
= [F̃

m
1 , ..., F̃

m
T ]′ and

F̃
m
t = [Fm

t , ...,F
m
t−p+1]′. (2.9) is the result of the diffuse priors and the unit

variance assumption for the residuals of the stochastic process. For the derivation

of the linear regression posterior moments under diffuse priors see Zellner (1971).

3. Sample factor loadings Λ and the variance-covariance matrix for the residuals Σe.

Since Σe is diagonal and there are no cross-equation restrictions, sampling can

be performed on an equation-by-equation basis. For each variable i, under the

assumption of diffuse priors of the form (2.8), random draws from the posteriors

for the loadings Λi and variances σ2
ei are obtained as follows:

p(Λi|.) ∼ N(λ̂i, Λ̂i), Λ̂i =
[
(Fm)′Fm

]−1
, λ̂i = Λ̂i

[
(Fm)′Fm

]
,

σ2
ei ∼ invGamma

(
0.5 · T, 0.5 ·

T∑
t=1

(Xit −ΛiF
m
t )2

)
,

(2.10)

where Fm is defined in (2.9).
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For the estimation of the non-Gaussian state space model in (2.1)-(2.3) I use a

recently proposed Gibbs sampling scheme that has not been used before in a credit

risk context. The sampling scheme is based on augmenting the binomial data with

the latent variable Dh∗
it , conditioning upon which, the observation equation (2.1) can

be re-expressed as Gaussian. For the conditionally Gaussian system, closed form full

conditional distributions exist for both states and parameters. Following Frühwirth-

Schnatter and Frühwirth (2007) and Frühwirth-Schnatter et al. (2009), I augment the

data with the latent variable Dh∗
it as follows:

Dh∗
it = Zhit + εh∗it , εh∗it ∼ Logistic(0, 1), (2.11)

where Zhit = αi,h + βmi,h(L)Fm
t + βdi,hf

d,h
it and the error term’s logistic distribution can

be re-expressed as a negative log-Gamma, εh∗it = − log ξh∗it , with ξh∗it ∼ Gamma(Nit, 1).

Each εh∗it is approximated by a finite mixture of normal distributions. The mixture

indicators rh∗it are introduced as a second layer of data augmentation. The number of

Normal densities, R∗it(Nit), mixture weights, wrh∗it
(Nit), means, µrh∗it

(Nit), and variances

σ2
rh∗it

(Nit), are dependent on the total number of firms Nit in each sector i at quarter t.

Conditional on rh∗it , (2.11) reduces to the following linear Gaussian model:

Dh∗
it = Zhit + µrh∗it

(Nit) + εh∗it , εh∗it |rh∗it ∼ N(0, σ2
rh∗it

(Nit)) . (2.12)

All mixture quantities are obtained by minimising the Kullback-Leibler divergence be-

tween the mixture approximation and the original negative log Gamma density. For

more details, see Frühwirth-Schnatter et al. (2009).

Having defined the non-Gaussian observation equation in (2.1)-(2.2) as the equiva-

lent conditionally Gaussian equation (2.12), and given starting values for Dh∗
it and rh∗it ,

the Gibbs sampling scheme consists of iterative draws from the full conditionals and

can be summarised in the following steps:

1. Sample Dh∗
it and rh∗it conditional on αi,h, βmi,h(L), βdi,h, fd,hit and Dh

it, using the

following steps for t = 1, ..., T
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(a) Sample Dh∗
it conditional on Zhit and Dh

it as:

Dh∗
it = − log

(
Uit

1 + eZ
h
it

+
V h
it

eZ
h
it

)

where Uit ∼ Gamma(Nit, 1) and V d
it ∼ Gamma(Nit − Dh

it, 1) are sampled

independently.

(b) Sample the component indicators rh∗it from the following discrete distribu-

tion:

Pr(rh∗it = r∗i |Dh∗
it , D

h
it, Z

h
it) ∝

w∗r∗(Nit)

σ∗r∗(Nit)
e
−0.5

(
Dh∗it −Z

h
it−µ

∗
r∗ (Nit)

σ∗
r∗ (Nit)

)2

where r∗ = {1, ..., R∗it(Nit)}.

2. Sample αi,h, βmi,h(L) and βdi,h conditional on Dh∗
it , rh∗it , Fm

t and fd,hit . For all the

model parameters, I assume normal priors of the form p(αi,h) ∼ N(α0
i,h, σ

2
α0
i,h

),

p(βmi,h(L)) ∼ N(βm,0i,h (L), σ2
βm,0i,h (L)

) and p(βdi,h) ∼ N(βd,0i,h , σ
2
βd,0i,h

). This choice of

priors leads to conjugate Bayesian linear regression posteriors of the form:

p(b|.) ∼ N(b1,B1), where

B1 =
(
B−1

0 +X ′X/σ2
)−1

, and b1 = B1(B−1
0 b0 +X ′Y /σ2).

(2.13)

In (2.13), X = vec([1T ,LF
m,fd,hi ]) is the vectorised version of the covariates,

LFm is the specific lag structure of Fm, Y = vec(Dh∗
i ), b0 = [α0

i,h,β
m,0
i,h (L),βd,0i,h ]

stacks all the prior means, while B0 = diag([σ2
α0
i,h
, σ2
βm,0i,h (L)

, σ2
βd,0i,h

]) is a diagonal

matrix, having the prior variances as diagonal elements.

3. Sample the latent factors fd,ht conditional on all Dh∗
it , αih, βmih(L) and βdih.

Working with the set of adjusted conditionally Gaussian observations D̃h∗
it =

Dh∗
it − αih − βmih(L)Fm

t , sampling of fd,ht is performed by means of the For-

ward Filtering-Backward Sampling multi-move sampling algorithm, see Carter

and Kohn (1994). The multi-move sampling scheme essentially samples from the

distributions of the error terms in (2.3) and (2.12) and then makes a forward

pass using the Kalman filter and a backward pass using the Kalman smoother.

The detailed simulation smoother algorithm is presented in Durbin and Koopman

(2002). The Kalman filter is initialised from the stationary distribution for fd,ht ,
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N(0, P d,h), where P d,h is given by (2.4).

4. Sample the transition matrix Φd,h(L) conditional on the frailty factors F d,h
t .

Similarly to the dynamic factor econometric specification, I assume diffuse priors

of the form p(Φd,h(L)) = constant. Due to εt ∼ N(0, IS), sampling of Φd,h(L) is

performed on an equation-by-equation basis as follows:

p(Φd,h
i |.) ∼N(φ̂

d,h
i , Φ̂

d,h
i ),

Φ̂
d,h
i =

[
(F̃

d,h
)′F̃

d,h
]−1

, φ̂
d,h
i = Φ̂

d,h
i

[
(F̃

d,h
)′fd,hi

]
,

(2.14)

for sector i ∈ S, where fd,hi = [fd,hi1 , ..., fd,hiT ]′, F̃
d,h

= [F̃
d,h
1 , ..., F̃

d,h
T ]′ and F̃

d,h
t =

[F d,h
t , ...,F d,h

t−p+1]′. The posterior moments in (2.14) are similar to the posterior

moments for the dynamic factors in (2.9), and they are the combination of the

diffuse priors and the identity matrix assumption for the covariance of εt.

2.5 Data

For the macroeconomic factors Fm
t , I construct a large panel of observed time series

by sourcing 103 variables from the Federal Reserve Economic Database (FRED)1. All

variables are sourced at a monthly frequency from January 1982 to August 2014. Jan-

uary 1982 is chosen so that it allows for potential lags in the default rate forecasting

equations. August 2014 coincides with the last monthly cohort for the default rate

analysis (see below for more details). For all the variables reported on a daily basis, av-

erage values over corresponding month are used. The variables can be grouped into 12

macroeconomic concepts: Production, Income, Consumption, Employment, Prices, In-

ventories & Orders, Housing Starts, Bank Lending, Interest Rates, Yield Curve Spreads,

Credit Spreads and Equity Market conditions. All non-stationary variables are trans-

formed to covariance stationary by suitable transformations. The definitions for all

variables along with the transformations applied are summarised in section 2.8 of the

Appendix.

Figure 2.1 depicts 6 key macroeconomic variables that are used to pinpoint each

of the 6 dynamic factors. Industrial Production (measured on a Year-on-Year change

1http://research.stlouisfed.org/fred2
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basis) provides a proxy for the business cycle and highly correlates with the overall

Business Cycle Factor F bst . The Federal Funds Rate is a proxy for the risk free rate

and drives the Cost of Debt Factor F cdt . As a proxy for the yield curve slope I choose

the difference between the 10Y Constant Maturity Treasury and the 3M Treasury Bill;

this is one of the main determinants of the Yield Curve Risk Factor F yct . The difference

between the BAA corporate yield and the 10Y Constant Maturity Treasury helps to

pinpoint the Credit Risk Factor F crt . The Year-on-Year returns on the S&P 500 index

are used as proxies for the Asset Return Factor F art . Finally the monthly volatility

of the S&P 500 index (annualised) drives the Asset Volatility Factor F avt . It is worth

noting that the equity price volatility is measured as a standard deviation of the daily

observations within a given month.

For the industry sector specific corporate bond defaults Dh
it, I rely on Moody’s

Default & Recovery Database. For the sector classification I use Moody’s 11 sector

definition. Companies that have no recorded sector information are excluded from the

analysis. From the 11 sector classification I also exclude Sovereign & Public Finance

companies since their risk behaviour is very different from the rest of the corporates.

Due to the scarcity of defaults, I group the Banking sector with the Finance, Insurance

and Real Estate (FIRE) sector, and the Energy & Environment sector with the Utilities

sector. The final 8 industry sectors used in the analysis are: Capital Industries2, Con-

sumer Industries3, Banks & Financials, Media & Publishing, Retail & Distribution4,

Technology, Transportation and Utilities.

The default counts are based on monthly rolling cohorts. Within each cohort, only

the defaults of active companies at the beginning of the cohort period are recorded.

Using cohort based default data can lead to inaccuracies when companies that are active

at the beginning of the period leave the sample due to rating withdrawal; this becomes

an issue especially when having long forecasting horizons. The non credit related rating

withdrawals can distort significantly the default rates when the number of withdrawals

is large as compared to total number of companies. In order to mitigate this problem I

assume that the rating withdrawals are on average uniformly distributed through time,

and, following Moodys adjustment, I subtract half their number from the initial count

2broad sector that includes capital equipment, aerospace & defence, automotive, chemicals, contain-
ers & packaging, paper products, and pharmaceuticals

3including durable and non-durable consumer goods
4mainly retail and wholesale distribution
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Figure 2.1: Historical Time Series - Macroeconomic Variables
Historical time series for key macroeconomic variables, covering the period January 1983-August 2014. All
data sampled at monthly frequency. Industrial production and S&P 500 returns are expressed in Year-on-
Year log differences. The yield curve slope is measured as the spread between the 10Y Treasury Constant
Maturity and the 3M Treasury Bill. The credit spread is approximated as the difference between the BAA
yield and the yield on the 10Y Treasury Constant Maturity. S&P 500 volatility is calculated on a monthly
basis and then annualized. Federal funds rate, yield curve slope, credit spreads and S&P 500 volatility are
all measured in percentage terms. Shaded areas correspond to NBER recession quarters.

Capital
Industries

Consumer
Industries

Banks &
Financials

Media &
Publishing

Retail &
Distribution

Technology
Trans-

portation
Utilities

Avg. D1Y 13 11 3 5 4 5 2 4

Avg. N 453 377 417 121 139 271 86 430

Avg. DR1Y 2.7% 2.8% 0.9% 3.7% 2.9% 1.7% 2.8% 0.9%

Table 2.1: Summary of Moody’s Corporate Default Data
Long-run average statistics for the corporate default dataset, for each of the 8 industry sectors used in the
analysis. All reported figures are based on annual non-overlapping and forward-looking cohorts from 1983-
2014 (2014 figures are calculated based on the period January 2014-September 2014). ’Avg. D1Y ’ refers to
the average yearly default occurrence. ’Avg. N’ refers to the average number of active companies at the
beginning of each annual cohort. Finally, ’Avg. DR1Y ’ refers to the average annual default rate.

of companies.

When examining the default time series for corporate bonds, there is a clear struc-

tural break between the early 80s and late 70s, with default rates in the latter period

significantly lower than the former. To exclude any possible outliers and to model a

period as consistently as possible, I choose the starting point to be the January 1983.

This starting point proceeds the refinement of Moody’s rating methodology to include

an alphanumeric scale that took place in 1982. It is also consistent with other stud-

ies on corporate default modelling, such as Creal et al. (2013). The final period used

in the estimation corresponds to September 2014. To evaluate the one month ahead

forecasting performance, observations up to August 2014 are used.
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Table 2.1 provides a summary of the corporate default data used in this study.

Transportation, Media & Publishing and Retail & Distribution are the sectors with the

lowest average firm count historically. Furthermore, Transportation is the sector with

the fewest defaults, averaging 2 per year. Nevertheless, the sector’s average annual

default rate of 2.8% is relatively high as compared to the typically high credit quality

sectors such Banks & Financials and Utilities that exhibit average annual default rates

of 0.9%. On the other hand, the sectors with the highest number of default counts are

Capital and Consumer Industries, averaging 13 and 11 default per year respectively.

In addition to the high level summary provided in table 2.1, figure 2.2 depicts the

time series of historical annual default rates for each of the 8 industry sectors used in

the analysis. The annual default rates are provided on a monthly rolling frequency.

Highly cyclical sectors such as Capital Industries, Consumer Industries and Retail &

Distribution exhibit clear business cycle dependence, with increased default frequency

over the 3 recession period in the sample (early ’90s, early ’00s and late ’00s). Media &

Publishing also shows strong cyclical dependence with higher default numbers during

the recession periods. It is worth noting that the sector has been disproportionally hit

by the recent credit crisis, with default rates over that period approximately 3 times

the historical peak. Banks & Financials exhibit two major peaks in default rates: the

first during the late ’80s Savings & Loans crisis and the second during the late ’00s

credit crunch. The Technology sector was severely hit during the burst of the dot-com

bubble in the early ’00s. Finally, the Transportation and Utilities sectors exhibit a very

mild dependence to the business cycle with default occurrence being highly irregular.

2.6 Results

2.6.1 Dynamic Factor Model

Using the MCMC algorithm described in section 2.4, the dynamic factor loadings for

all macroeconomic variables are summarised in section 2.8 of Chapter 2 Appendix.

As the variance across variables can be vastly different, I normalise all inputs to zero

mean and unit standard deviation; not adjusting the inputs can lead to series with

high variance dominating the estimated factors. Some of the loadings are very small in
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Figure 2.2: Historical Time Series - Corporate Default Rates
Historical time series of annual default rates for each of the 8 industry sectors used in the analysis, covering
the period January 1983-September 2013. Annual default rates are calculated based on a monthly frequency
and they are reported on a forward-looking basis (i.e. the default rate for September 2013 refers to the default
count from September 2013-September 2014 as a proportion of the number of active companies at September
2013). Shaded areas correspond to NBER recession quarters.

absolute terms and not significantly different from 0. For some of those variables that

exclusively load on a single dynamic factor, such as a number of unemployment duration

variables, it is evident that the dynamic factor model employed in this analysis does

not adequately capture the historical variation in those series. Furthermore, it becomes

apparent that the error terms of those variables should be allowed to be autocorrelated,

since the estimated dynamic factors fail to capture any of the historical autocorrelation

in the time series. As I argue in section 2.3.2, the purpose of the analysis is not to

forecast or accurately model every single input variable but rather to provide estimates

of the dynamic factors Fm
t . Therefore, I acknowledge that part of the extensive set of

input variables will not be accurately captured, but I choose to maintain the model’s

tractability and use the 6 dynamic factor structure.

Without loss of generality, I use a simple VAR(1) structure for the factor stochastic

evolution in (2.6). This choice of dynamics implies that the lag polynomial Φ(L)
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Figure 2.3: Estimated Dynamic Factors
Historical time series of the 6 estimated dynamic factors, covering the period January 1983-August 2014. All
factors are estimated by means of the MCMC algorithm described in section 2.4. For each factor and month,
the posterior mean is depicted, based on 50,000 MCMC draws. Shaded areas correspond to NBER recession
quarters.

reduces to the full 6x6 matrix Φ. This choice is not overly restrictive, especially since

the aim is not to forecast the dynamic factors. Table 2.2 provides point estimates

and standard errors for the VAR(1) matrix Φ. The VAR dynamics in table 2.2 are

bound to be marginally biased due to the simplifying assumptions of iid error terms in

the observation equation of the state space representation. Estimates of both loadings

and VAR coefficients are based on 60,000 draws of the MCMC sampling scheme, with

the first 10,000 draws discarded to ensure inference is based on only posterior draws.

For brevity, only the estimates based on the full sample January 1982-August 2014

are provided. Furthermore, figure 2.3 depicts the historical mean realisations of each

dynamic factor.

The estimated loadings in section 2.8 and the historical realisation of F bst in figure

2.3 confirm the interpretation of F bst as a Business Cycle factor. The factor loads pri-

marily on Industrial Production, Capacity Utilisation, Personal Income and changes in

Employment variables. Equity Volatility variables also exhibit weights large in magni-

tude; nevertheless, the historical pattern of the factor seems unaffected by the equity

market conditions. Prices, Inventories & Orders, Housing Starts and Bank Lending

variables all have little impact on F bst . This is not overly surprising, since Price vari-

ables are typically ordered after business cycle variables in VARs or dynamic factor

models, see for example Boivin et al. (2013). Furthermore, Inventories & Orders and
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F bst−1 F cdt−1 F yct−1 F crt−1 F art−1 F avt−1

F bst 0.964 0.018 0.090 -0.036 0.150 0.024
(0.020) (0.012) (0.016) (0.016) (0.029) (0.049)

F cdt 0.058 0.976 -0.020 0.010 -0.008 -0.088
(0.016) (0.010) (0.016) (0.016) (0.029) (0.047)

F yct -0.016 -0.009 0.961 0.020 0.058 -0.050
(0.015) (0.010) (0.016) (0.016) (0.029) (0.047)

F crt -0.049 0.041 0.044 0.907 -0.124 0.340
(0.029) (0.012) (0.017) (0.016) (0.036) (0.054)

F art 0.026 0.004 -0.013 0.001 1.029 -0.211
(0.021) (0.010) (0.016) (0.016) (0.031) (0.050)

F avt 0.113 -0.019 -0.007 0.042 0.279 0.437
(0.044) (0.010) (0.016) (0.016) (0.047) (0.046)

Table 2.2: Estimated Dynamic Factor Transition Matrix
Parameter estimates for the 6 dynamic factor VAR(1) dynamics Φm(L) in the state equation (2.6), based on
the period January 1983-August 2014. All estimates are based on the MCMC algorithm described in section
2.4 using 50,000 MCMC draws. Standard errors are also provided in brackets.

Housing Starts are typically treated as leading indicators of economic activity and they

are not expected to show significant contemporaneous correlations with business cycle

variables. In fact Bernanke et al. (2005) in their FAVAR classify Inventories & Or-

ders and Housing Starts as ’fast-moving’ together with stock price and interest rate

variables. I refrain from grouping the former group of variables with the latter, since

they represent fundamentally different information sets and the observed correlation is

relatively low.

Interest rate variables mainly load on the Cost of Debt Factor F cdt . The loadings on

F cdt are surprisingly similar, implying that the factor is approximately equally balanced

across all interest rate variables. The positive contemporaneous dependence on the

Business Cycle Factor F bst , as implied by the uniformly positive loadings, is not overly

surprising; as the economic conditions improve, prices are likely to rise (as indicated

by the positive loadings of Price variables to F bst ) and as a response the FED will

increase interest rates to suppress inflation. Exploring the VAR dynamics in table 2.2,

this positive dependence of the interest rate variables to the business cycle fluctuations

persists even at the 1 month lag.

The behaviour of the yield curve spread variables is less uniform as compared to the

interest rate variables. The long-to-medium (10Y to 2Y) and long-to-short (10Y to 3M)

52



maturity spreads are negatively affected by changes in F bst , while the difference between

2Y to 3M government yields and the TED spread show some positive correlation with

F bst , albeit statistically insignificant. The negative dependence of the former two spread

variables also drives the negative correlation of the Yield Curve Risk Factor F yct to

the lagged Business Cycle Factor F bst−1. These results are broadly consistent with the

work of Diebold et al. (2006) that use a Nelson-Siegel dynamic model to decompose

the yield curve and link it to macroeconomic variables. Diebold et al. (2006) report

negative dependence of the slope factor to the capacity utilisation (in their paper, slope

is defined as the difference between the short and the long end of the yield curve, which

corresponds to minus the definition used in my study) both at lag 1 and lag 0. The

dependence of the yield curve spread variables to the Cost of Debt Factor F cdt is mostly

positive, with only the 10Y to 2Y spread having a negative loading. Furthermore, the

overall dependence of F yct to F cdt−1 is negative, albeit highly insignificant. This appears

to partially contradict the study of Diebold et al. (2006) that report a strongly positive

dependence of the yield curve slope factor to the lagged value of the yield curve level

factor and a strongly negative dependence of the yield curve slope to the lagged value

of the FED Funds rate. Additionally, the contemporaneous correlations between slope

and level factors is mildly positive, while the contemporaneous correlation between

slope and FED Funds rate is strongly negative. As in the case of the analysis presented

here the definition of Cost of Debt and Yield Curve Risk Factors is not the same

with the work of Diebold et al. (2006), the comparison of the reported results is not

straightforward.

Based on the results of section 2.8, credit spreads are negatively correlated to F bst ,

F cdt and F yct , while they respond positively to changes in F crt . The signs of the credit

spreads are intuitive. As the economic conditions improve (positive movements of the

F bst factor) and the corporate balance sheets strengthen, credit spreads are expected

to be suppressed. Using the structural approach to valuing corporate debt, Longstaff

and Schwartz (1995) notice that an increase in interest rates leads to an increase in the

risk-neutral drift and they report a negative correlation between spreads and interest

rates. This is consistent with the results of table 2.6 that indicate a negative relationship

between credit spreads and F cdt . To the extent that increases in yield curve slope reflect

increases in the expected future level of interest rates, positive movements in F yct should

negatively affect credit spreads. Furthermore, flattening or even inversion of the yield
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Figures in % F bs
t F cd

t F yc
t F cr

t F ar
t F av

t Σe

FEVD
Industrial Production 13.8 1.3 7.5 2.5 37.6 11.9 25.4
Civilian Employment (Log Chg.) 16.4 1.5 8.9 3.0 44.7 14.2 11.3
FED Funds Rate 15.0 40.5 6.7 2.2 19.5 10.8 5.3
GS10-TB3MS 12.2 1.7 56.5 7.2 13.5 7.9 1.0
BAA Yield 11.3 35.4 4.9 1.6 12.1 7.9 26.8
BAA-GS10 Spread 11.1 25.5 10.6 14.2 26.0 12.0 0.6
S&P 500 Return 1.9 0.9 6.7 1.4 74.1 11.9 3.2
S&P 500 Volatility 8.4 1.4 4.9 2.1 61.0 21.8 0.3

R2

Industrial Production 76.1 0.6 1.1 1.8 15.9 58.0 -
Civilian Employment (Log Chg.) 89.7 3.0 0.4 2.8 6.0 55.7 -
FED Funds Rate 11.5 92.8 11.8 60.9 1.0 7.6 -
GS10-TB3MS 9.5 1.8 92.0 0.4 2.4 8.7 -
BAA Yield 0.7 87.0 0.5 84.3 0.5 0.2 -
BAA-GS10 Spread 46.0 8.0 2.2 3.0 23.3 26.9 -
S&P 500 Return 20.8 0.1 0.7 3.9 96.4 46.1 -
S&P 500 Volatility 10.7 0.4 0.1 3.8 17.1 0.2 -

Table 2.3: Dynamic Factor Forecast Error Variance Decomposition and R2

Proportion of the 60-step (5 years) forecast error variance of macroeconomic variables that is accounted for
by the Business Cycle (F bst ), Cost of Debt (F cdt ), Yield Curve Risk (F yct ), Credit Risk (F crt ), Asset Returns
(Fart ) and Asset Volatility (Favt ) factors. Variance decompositions are calculated using the posterior means
of the Φs in (2.6). Column Σe refers to the residual variance from the error terms in (2.5). R2 are calculated
using univariate regressions of each macroeconomic variable on each factor.

curve is typically associated with a deterioration in economic activity. Therefore credit

spreads are expected to be negatively correlated to the slope of the yield curve (or

factor F yct ); this is empirically supported by the work of Collin-Dufresne et al. (2001).

Both equity return and volatility series exhibit a strong dependency on the As-

set Return Factor F art . While equity return variables have a positive dependence on

F art , the loadings for the equity volatility variables are negative implying that volatility

drops as Asset Returns improve. This is in line with intuition, since jumps in volatility

are more likely during periods of stress. Equity volatility variables also show a negative

dependence on the Business Cycle Factor F bst , further supporting the view that volatil-

ity rises during downturns. Finally, equity return variables have marginally positive

sensitivities to F bst .

To complete the analysis of the dynamic factor model, table 2.3 depicts the Fore-

cast Error Variance Decomposition (FEVD) for some key macroeconomic variables,

alongside some univariate R2 statistics for each of the 6 factors used in this study. The
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FEVD is calculated as:

ωmik,h =

[
6∑
z=1

(
(λzi )

2
h−1∑
j=0

(φmzk,j)
2

)]
+ σ2

ei

6∑
n=1

[
6∑
z=1

(
(λzi )

2
h−1∑
j=0

(φmzn,j)
2

)]
+ σ2

ei

, (2.15)

where i is the specific macroeconomic variable of interest, λzi is the loading of variable i

to factor z (for simplicity in the notation, I assume that the factors are ordered from 1

to 6), φmzk,j is the (z, k) element of the matrix of dynamic multipliers at step j, (Φm)j ,

and σ2
ei is the variance of residuals for variable i. For the calculation of the FEVD, the

posterior mean values for the elements of matrix Φm are used. FEVDs are based on

a 60-month horizon. The R2 statistics are calculated by running univariate regression

of each variable on each dynamic factor. In this particular case, the R2 corresponds to

the squared correlation between observed variable and estimated factor.

The FEVDs in table 2.3 indicate that Asset Return and Business Cycle shocks

explain a significant proportion of the forecast variance for the majority of the variables.

More specifically, the long-run forecast variance for real economy variables such as

industrial production and changes in employment are explained by mainly Asset Return

and Business Cycle shocks (approximately 40% for the former and close to 15% for the

latter type of shocks) and, to a lesser extent, by Asset Volatility shocks. This relative

weight of the Asset shocks might seem counterintuitive; nevertheless, Business Cycle

shocks dominate the FEVD in the short-run. Government and corporate yields long-run

forecasts are primarily driven by the the Cost of Debt Factor F cdt and to a lesser extent

by the Business Cycle and Asset Return Factors F bst and F art . The significant impact

of Asset Return movements to yield curve level forecasts implies that FED and the

bond market take into consideration equity market movements when determining the

level of interest rates. More than 50% of the long-run forecast variance for the 10-year

to 3-month government bond spread is attributed to the Yield Curve Risk Factor F yct

with Business Cycle movements and Asset Return fluctuations contributing by 12.2%

and 13.5% respectively. This decomposition is not surprising, since the slope of the

yield curve reflects expectations on future inflation and, as a market priced measure, it

is likely to be affected by the investors’ sentiment behind equity premia. Credit spread

forecasts are more balanced, being mainly driven by Cost of Debt and Asset Return
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shocks with the remaining variance decomposed uniformly across Business Cycle, Yield

Curve Risk, Credit Risk and Asset Volatility Factor shocks. Finally, both return and

volatility series of the S&P 500 index exhibit similar behaviour; the forecast error

variance is predominately driven by Asset Return shocks and to a lesser extent Asset

Volatility shocks.

The R2 statistics reported in table 2.3 reflect the contemporaneous correlations

between input variables and extracted factors. Despite the number of real economy

variables used in the dynamic factor model, the Business Cycle Factor F bst is able to

capture 76% of the industrial production and 90% of the changes in employment time

series. The Cost of Debt Factor F cdt is able to explain 93% and 87% of the historical

variation in the two bond yields reported in table 2.3, namely FED funds rate and

BAA yield respectively. Additionally, the BAA yield exhibits an 84% correlation with

the Credit Risk Factor F crt . As expected, 92% of the historical variation of the 10-

year to 3-month government bond spread is explained by the Yield Curve Risk Factor

F yct alone. Somewhat surprisingly, the Credit Risk Factor F crt does not explain a

significant portion of the historical movements in the corporate bond spread, defined

as the difference between the BAA yield and the 10-year government bond yield. This

is mainly caused by the additive nature of the factor, that captures the variation over

and above what is explained by F bst , F cdt and F yct . These 3 factors are jointly able

to explain a significant proportion of the movements in corporate bond spreads pre-

2000. If the R2 is measured from 2000 onwards, then F crt is able to explain 42% of the

corporate bond spread variation. The Asset Return Factor F art explains 96% of the

S&P 500 returns movements. Finally, the Asset Volatility Factor F avt does not seem

to be correlated with the volatility in the S&P 500 index. If observed in isolation,

this result appears somewhat counterintuitive. Nevertheless, the R2 only picks up

contemporaneous correlations between individual factors and variables without looking

at the dynamic relationships between them. In this case, if the low R2 is examined in

conjunction with the FEVD, then the results of table 2.3 imply that the F avt factor

mainly captures the long-run forecast dynamics of the equity volatility series rather

than the short-run fluctuations. The short-run dynamics can be explained adequately

by a combination of the Business Cycle and Asset Return Factors.
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2.6.2 Corporate Default Forecasts

To assess the forecasting power of the extracted factors from section 2.6.1 for corporate

bond defaults, I use 3 values for the forecasting horizon h in the corporate default

econometric model (2.1)-(2.3): 3 months, 6 months and 1 year. The analysis can be

generalised to cover default rates over shorter and longer time horizons. In practice 1-2

month default rates are very volatile and inherently difficult to explain and default rates

of longer than 1 year do not strongly correlate with macroeconomic conditions at time

t. Each sector and forecasting horizon is allowed to have a different mix of factors Fm
t

and lags, with the selection of the explanatory factors being determined solely on the

basis of the statistical power for each sector/forecasting horizon segment. Finally, to

ensure that the measurement of the forecasting power is robust, I sequentially estimate

the model using windows of increasing size. Starting from the January 1983-August

2006 window, I re-estimate the corporate default specification in (2.1)-(2.3) using that

same starting date, but sequentially increasing the sample ending date by 1 year; this

results in 8 recursive samples within the period August 2006-August 2013.

In practice, the estimation of full VAR dynamics can lead to estimation problems.

Experimenting with different lag structures indicates that a 2-month lag is the maxi-

mum lag that does not cause estimation problems. Therefore, I use 2 as the maximum

lag order for forecasting purposes. To ensure the robustness of the parameter estimates,

I use a full VAR(2) specification for the frailty factors when possible and I switch to

single lag dynamics when the MCMC algorithm lead to numerical instabilities. For

forecasting horizons of 3 months and 1 year, the MCMC algorithm provides numeri-

cally stable estimates for the VAR(2) specification from the sample ending dates from

August 2009-August 2013. For the 6 months forecasting horizon, numerical stability is

maintained only for the recursive samples ending from August 2010-August 2013. For

the recursive samples ending before August 2009 for 3 months and 1 year forecasting

horizons and before August 2010 for 6 months forecasting horizons, a simpler VAR(1)

specification is used instead, both for estimation and out-of-sample forecasting.

The presence of the frailty factors in the specification (2.1)-(2.3) causes the sen-

sitivities of corporate defaults to the macroeconomic factors Fm
t to drop in absolute

magnitude. While this is a desirable feature if inference is biased in the absence of

57



autoregressive dynamics in the econometric specification for defaults, it might not be

desirable when assessing out of sample forecasting power for long horizons h. In the case

of long forecasting horizons, the mean reverting property of the frailty factors might

contribute disproportionally to the corporate default forecast and skew the outcome

upwards or downwards. To assess the sensitivity of the forecast to the relative weight

of the frailty factors, I estimate the model using two sets of priors. Each one is based

on an equivalent econometric specification to (2.1)-(2.2), but without the presence of

frailty factors F d,h
t (from here on the ”reference model”):

• Vague Priors: The priors for the sensitivities to the macroeconomic factors Fm
t

are centred around the estimates of the ”reference model” and they have a prior

variance of 1. While not completely diffuse, the priors are not overly restrictive

and the MCMC algorithm of section 2.4 is able to freely estimate the frailty

dynamics.

• Tight Priors: The priors for the sensitivities to the macroeconomic factors Fm
t

are centred around the estimates of the ”reference model” and they have a prior

variance equal to the variance of the ”reference model” posterior draws. Since

the choice of variables in the ”reference model” is based on statistical signifi-

cance, the standard errors of the ”reference model” estimates are relatively small.

Therefore, using the variance of the posterior draws from the ”reference model”

as the prior variance of the full specification (2.1)-(2.3) results in very tight priors

that dominate the posterior and essentially force the frailty factors to reflect the

residual fluctuation in corporate defaults after the macroeconomic dynamics are

removed.

Under both choices for the priors of the sensitivities to the macroeconomic factors Fm
t ,

the priors for the VAR dynamics in (2.3) are diffuse, as previously mentioned in section

2.4.

Based on the two set of priors mentioned previously, table 2.4 summarises the pa-

rameter estimates and their respective standard errors for the full sample period Jan-

uary 1983-August 2013. Estimates are provided for each forecasting horizon/industry

sector/prior choice segment. All estimates are based on the MCMC algorithm de-

scribed in section 2.4, using 50,000 draws for inference after discarding 10,000 draws
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x10−2 Tight Priors Vague Priors
Fm\Sec. CA CO FI ME RE TE TR UT CA CO FI ME RE TE TR UT
3M

F bst -5.1 -4.0 -6.4 -11.4 -4.3 -2.2 -6.6 -4.3 -5.3 -2.6 -1.9 -11.3 -0.7 -2.1 -2.9 -7.0
(0.1) (0.1) (0.1) (0.2) (0.2) (0.1) (0.2) (0.1) (1.7) (1.8) (2.2) (2.5) (3.0) (1.9) (3.3) (2.0)

F cdt - - 6.1 - - - - - - - 5.1 - - - - -
(-) (-) (0.1) (-) (-) (-) (-) (-) (-) (-) (1.1) (-) (-) (-) (-) (-)

F yct -7.3 -8.4 -5.6 - -5.5 -5.0 -3.7 - -6.4 -6.6 -2.9 - -3.5 -4.1 6.4 -
(0.1) (0.1) (0.1) (-) (0.2) (0.2) (0.3) (-) (1.8) (2.0) (2.9) (-) (4.3) (2.8) (4.2) (-)

F crt 3.7 3.3 - - - - - 4.9 1.6 3.7 - - - - - 2.7
(0.1) (0.1) (-) (-) (-) (-) (-) (0.1) (1.5) (1.3) (-) (-) (-) (-) (-) (2.1)

F crt−11 - - - - - 3.3 - - - - - - - 3.5 - -
(-) (-) (-) (-) (-) (0.1) (-) (-) (-) (-) (-) (-) (-) (1.7) (-) (-)

Fart -6.9 -6.2 -10.9 -3.3 -3.9 -13.2 -5.5 - -6.7 -4.8 -17.3 0.1 -6.0 -13.0 -13.8 -
(0.2) (0.2) (0.2) (0.3) (0.3) (0.2) (0.4) (-) (2.3) (2.1) (3.5) (3.3) (4.1) (2.9) (5.8) (-)

Favt - 7.2 - - - - 8.1 9.9 - 5.3 - - - - 6.7 11.5
(-) (0.4) (-) (-) (-) (-) (0.8) (0.3) (-) (2.9) (-) (-) (-) (-) (8.5) (2.3)

Favt−3 - - 12.8 15.8 8.3 - - - - - 9.9 12.9 3.0 - - -
(-) (-) (0.4) (0.6) (0.6) (-) (-) (-) (-) (-) (3.6) (3.9) (6.1) (-) (-) (-)

6M

F bst -5.3 -3.9 -5.7 -9.2 -4.2 -2.8 -4.9 -3.7 -4.2 -0.5 1.4 -8.0 2.4 -3.9 -2.8 -6.0
(0.1) (0.1) (0.1) (0.2) (0.2) (0.1) (0.2) (0.1) (1.5) (1.7) (4.1) (3.1) (2.8) (2.6) (2.8) (2.3)

F cdt - - 6.0 - 0.9 - - - - - 5.2 - 1.7 - - -
(-) (-) (0.1) (-) (0.1) (-) (-) (-) (-) (-) (1.5) (-) (2.0) (-) (-) (-)

F yct -7.8 -8.3 -6.1 - -6.1 -7.2 -4.0 -2.0 -5.9 -3.0 0.1 - 2.8 -3.8 -0.6 -2.8
(0.1) (0.1) (0.1) (-) (0.2) (0.2) (0.3) (0.1) (2.0) (2.3) (3.0) (-) (2.9) (3.3) (4.8) (3.3)

F crt 3.4 3.2 - 2.9 - - - 5.2 1.8 4.4 - 0.4 - - - 7.8
(0.1) (0.1) (-) (0.2) (-) (-) (-) (0.1) (1.7) (1.8) (-) (2.0) (-) (-) (-) (1.9)

F crt−11 - - - - - 3.7 - - - - - - - 1.2 - -
(-) (-) (-) (-) (-) (0.1) (-) (-) (-) (-) (-) (-) (-) (2.0) (-) (-)

Fart -9.5 -6.5 -15.0 -6.8 -6.4 -14.2 -3.7 - -3.1 0.3 -12.1 0.3 -3.8 -5.6 -4.2 -
(0.2) (0.2) (0.2) (0.4) (0.4) (0.2) (0.4) (-) (2.0) (2.0) (4.1) (3.3) (3.7) (3.4) (4.8) (-)

Favt 5.6 9.2 14.0 10.5 9.0 4.2 - 7.9 -0.1 0.1 1.8 2.1 -4.8 -0.7 - 6.4
(0.4) (0.4) (0.4) (0.7) (0.7) (0.5) (-) (0.3) (2.4) (2.5) (3.4) (3.4) (4.5) (3.6) (-) (3.7)

1Y

F bst -3.8 -3.7 -4.2 -7.3 -4.8 -3.6 -5.4 -2.7 -0.6 2.9 3.2 -4.7 4.2 -1.9 -3.1 -7.0
(0.1) (0.1) (0.1) (0.2) (0.2) (0.1) (0.2) (0.1) (1.3) (1.3) (2.7) (2.4) (1.8) (1.8) (1.9) (1.6)

F cdt - - 5.7 - 0.9 - - - - - 5.1 - 1.1 - - -
(-) (-) (0.1) (-) (0.1) (-) (-) (-) (-) (-) (0.7) (-) (0.8) (-) (-) (-)

F yct -7.8 -8.4 -4.3 - -7.0 -9.0 -3.5 - -2.7 -0.8 -0.3 - 0.8 -2.5 1.2 -
(0.1) (0.1) (0.1) (-) (0.2) (0.2) (0.3) (-) (1.2) (1.1) (1.7) (-) (1.7) (1.7) (2.5) (-)

F yct−5 - - - - - - - -2.6 - - - - - - - 0.7

(-) (-) (-) (-) (-) (-) (-) (0.1) (-) (-) (-) (-) (-) (-) (-) (1.8)

F yct−8 - - - -4.8 - - - - - - - -4.0 - - - -

(-) (-) (-) (0.2) (-) (-) (-) (-) (-) (-) (-) (1.4) (-) (-) (-) (-)

F crt 2.8 3.1 - 1.9 - 2.0 - 5.2 -0.1 0.9 - -1.4 - 1.6 - -0.2
(0.1) (0.1) (-) (0.2) (-) (0.1) (-) (0.1) (0.9) (0.9) (-) (1.5) (-) (1.3) (-) (1.6)

Fart -10.3 -5.5 -13.8 -8.7 -4.9 -10.1 -2.8 - -2.6 0.3 -3.8 0.6 2.0 0.2 -3.0 -
(0.2) (0.2) (0.2) (0.4) (0.3) (0.3) (0.4) (-) (1.4) (1.3) (2.0) (2.1) (1.7) (2.2) (2.6) (-)

Favt 5.3 11.2 12.9 8.7 10.5 5.5 - 6.2 -1.6 1.7 -0.2 -0.9 -1.9 1.0 - 4.3
(0.4) (0.4) (0.4) (0.7) (0.6) (0.5) (-) (0.3) (1.5) (1.4) (2.1) (2.1) (2.6) (2.5) (-) (2.3)

Favt−8 - - - - - - 5.2 - - - - - - - 1.2 -
(-) (-) (-) (-) (-) (-) (0.6) (-) (-) (-) (-) (-) (-) (-) (3.6) (-)

Table 2.4: Corporate Default Parameter Estimates
Parameter estimates for the sensitivities of corporate defaults to the dynamic factors Fmt in the econometric
specification (2.1)-(2.3), based on the period January 1983-August 2013. Parameter estimates are provided
for 3 forecasting horizons h: 3 months, 6 months and 1 year. The priors are loosely (”Vague Priors”) or tightly
(”Tight Priors”) centered around the estimates of an equivalent model derived from (2.1)-(2.2) without frailty
factors. All estimates are based on the MCMC algorithm described in section 2.4 using 50,000 MCMC draws.
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as the burn-in sample. As a general remark, the choice of prior appears to increase

in importance the longer the horizon h is. Comparing the parameter estimates across

tight and vague priors indicates that there are only minor differences when forecasting

defaults 3 months ahead, while there are major deviations and many sign reversions for

the individual sensitivities when forecasting defaults 1 year ahead. This is not overly

surprising. When forming rolling 1 year default rates on a monthly frequency, there

is a large degree of overlap; at each time t the defaults count for the following 11 out

of 12 months is the same with with the default count from the period month t − 1.

This creates a very high degree of (relatively long memory) autocorrelation. Addition-

ally, corporate defaults over the period t + 12 months are less likely to exhibit high

correlation with the macroeconomic conditions at time t, at least as compared to the

corporate defaults over the period t+ 3 months.

When examining the results of table 2.4 across sectors and the 3 forecasting horizons

it is evident that there is a strong dependency of corporate defaults across all sectors

to the Business Cycle Factor F bst ; nevertheless, the sensitivity to F bst appears to drop

in magnitude with the length of the forecasting horizon h. It is worth noting that the

Cost of Debt Factor F cdt plays a minor role, except for the defaults in the Financial

and Retail sectors. For those sectors the effect is more likely to be linked to retail

credit write-offs due to increased interest rates (drop in the affordability of household

debt) and the drop in the demand for consumer goods. The remaining sectors depend

on a combination of the Yield Curve F yct and Credit Risk Factors F crt to capture the

debt financing conditions on the liability side of their balance sheet. While the effect

of the F yct factor appears stronger than the effect of F crt , under vague priors most of

the sensitivities to F yct turn statistically insignificant, implying that the frailty factors

are able to incorporate a large proportion of the yield curve risk. The Asset Return

Factor F art has a strong effect across all sectors and that effect appears to strengthen

with the length of the forecasting horizon h. Nevertheless, as the high standard errors

in the specification with vague priors suggest, most of the variation in the F art factor in

the longer horizons can be attributed to the frailty factors. Finally, the Asset Volatility

Factor F avt appears to play a minor role in the short-run, with statistically significant

estimates only for Financial, Media and Retail sectors, but it increases in significance

as the forecasting horizon h increases.
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Figure 2.4: Estimated Frailty Factors
Historical time series of the estimated frailty factors for each of the 8 sectors, covering the period January
1983-August 2013. Frailty factors are provided for 3 forecasting horizons: 3 months, 6 months and 1 year.
Factor estimates are extracred from the econometric specification (2.1)-(2.3) with priors loosely centered
around the estimates from an equivalent model without frailty factors. All factors are estimated by means of
the MCMC algorithm described in section 2.4. For each factor and month, the posterior mean is depicted,
based on 50,000 MCMC draws. Shaded areas correspond to NBER recession quarters.

For the parameter estimates in table 2.4, figure 2.4 depicts the historical estimates

for the frailty factors per industry sector and forecast horizon. The frailty estimates

are based on the econometric specification with loose priors; that choice of priors pro-

vides less restrictions in the frailty dynamics and allows the frailty factors to be freely

extracted from the observed data. For comparability across the difference sectors, each

estimated factor is multiplied by the respective loading βdi,h in (2.2). The frailty factor

estimates across the different forecasting horizons are similar, with the series becom-

ing more volatile the shorter the horizon h. For the majority of sectors, the frailty

factors exhibit a jump during the early ’90s and late ’00s recessions, especially in the

1-year forecasting horizon. This is not overly surprising since it is well documented that

there is excess default correlation during economic downturns, see for example Koop-

man et al. (2012). Furthermore, the Technology sector frailty factor peaks around
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the early ’00s dot-com bubble and the subsequent recession, a finding consistent with

the sector’s performance during that period. Low default occurrence sectors such as

Transportation and Utilities exhibit more idiosyncratic patterns. Transportation shows

some minor cyclical movements but it is overall extremely volatile even at the 1-year

forecasting horizon, reflecting the only 2 defaults per year on average for the sector, as

reported in table 2.1. Finally, the Utilities frailty factor reflects the irregular default

behaviour of the sector, with jumps in mid-’80s and during the Asian crisis/Russian

default period.

To summarise the overall forecasting performance of the dynamic macroeconomic

and frailty factor regression (2.1)-(2.3) against the ”base model”, figure 2.5 depicts

the deviations of each specification from the historically realised default rate. Results

are provided per industry sector for each of the 3 forecasting horizons using recursive

1-year estimations from August 2006-August 2013 and out-of-sample default rates over

the period September 2006-September 2014. By examining the results of figure 2.5 it

is clear that, overall, the full specification (2.1)-(2.3) provides closer forecasts to the

realised default rates as compared to the ”base model” with only Industrial Production

as the explanatory variable. The forecasting performance difference between the full

specification with dynamic and frailty factors and the ”base model” is larger for Capital

Industries, Technology and Transportation during the 2009 stress period, especially

over the 3-month and 6-month forecasting horizons. For Consumer Industries, the full

specification models with tight and vague priors provide less accurate forecasts over

the period 2008-2010 as compared to the ”base model”, while the forecast performance

improves substantially over the last 2 years in the out-of-sample window. Furthermore,

for the Consumer Industries sector, the use of tight and vague priors gives materially

different forecasts on the 1-year horizon, with the use of vague priors leading to a

substantial over-estimation of the realised default rate. This is primarily caused by the

relative low severity of the default activity for the sector during the recent economic

downturn, in relative terms to the early ’90s and early ’00s recessions; that causes the

frailty dynamics to overshoot the default rate forecast by a large margin. The same

is also true for the Retail sector, for which the full specification with vague priors

gives forecast different from the realised default rate 4 times higher than the forecasts

generated by the same specification with tight priors. For Financials, the dynamic

and frailty factors imply a much higher default rate as compared to the actual default
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Figure 2.5: Default Rate Predictions Errors
Deviations from actual default rates using predictions from 3 models: ”Vague Prior” refers to the econometric
specification (2.1)-(2.3) with priors loosely centered around the estimates from an equivalent model without
frailty factors, ”Tight Prior” refers to the econometric specification (2.1)-(2.3) with priors tightly centered
around the estimates from an equivalent model without frailty factors, while a binomial-logit model without
frailty factors and only Industrial Production as an explanatory variable serves as the ”Base” case. Predictions
are provided for each sector across 3 forecasting horizons: 3 months, 6 months and 1 year. All predictions are
based on recursive samples with starting date January 1983 and ending date sequentially augmented from
September 2006-September 2013 at an annual frequency. All parameter estimates are based on the MCMC
algorithm described in section 2.4 using 50,000 MCMC draws.

occurrence over 2009, while the forecasts for the remaining out-of-sample period are

more accurate as compared to the ”base model”. Finally, the Utilities sector exhibits

a relatively a-cyclical default pattern and all econometric specifications provide similar
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Sector
3 Months 6 Months 1 Year

Base Tight Vague Base Tight Vague Base Tight Vague

Capital RMSE 2.03 0.44 0.42 3.00 1.24 1.31 5.50 5.32 6.82
MAE 0.96 0.33 0.32 1.32 0.76 0.81 2.91 2.78 3.53

Consumer RMSE 0.64 0.67 0.71 0.89 1.03 1.07 1.85 1.87 3.43
MAE 0.53 0.50 0.49 0.77 0.77 0.82 1.59 1.27 2.08

Financial RMSE 0.31 0.37 0.38 0.45 0.61 0.59 0.98 1.36 1.19
MAE 0.24 0.23 0.22 0.35 0.38 0.39 0.71 0.79 0.71

Media RMSE 2.27 1.97 1.74 3.22 2.58 2.57 7.91 6.96 6.47
MAE 1.29 1.20 1.04 2.00 1.84 1.63 4.75 4.16 4.10

Retail RMSE 1.01 0.79 0.60 1.25 1.07 1.11 1.88 1.71 6.70
MAE 0.86 0.57 0.44 1.04 0.80 0.80 1.71 1.33 4.26

Technology RMSE 2.66 2.08 0.87 4.58 0.47 0.52 6.73 2.56 6.97
MAE 1.19 1.09 0.45 1.95 0.35 0.37 3.08 1.50 2.99

Transportation RMSE 3.15 2.26 2.00 4.52 2.76 3.55 6.97 6.33 9.55
MAE 1.82 1.35 1.16 2.74 1.87 2.28 4.26 3.97 5.56

Utilities RMSE 0.27 0.28 0.28 0.42 0.43 0.36 0.44 0.58 0.44
MAE 0.22 0.20 0.21 0.34 0.33 0.26 0.35 0.43 0.34

Table 2.5: Default Rate Predictions RMSE and MAE
RMSE and MAE of predictions from 3 models: ”Vague Prior” refers to the econometric specification (2.1)-(2.3)
with priors loosely centered around the estimates from an equivalent model without frailty factors, ”Tight
Prior” refers to the econometric specification (2.1)-(2.3) with priors tightly centered around the estimates
from an equivalent model without frailty factors, while a binomial-logit model without frailty factors and
only Industrial Production as an explanatory variable serves as the ”Base” case. Predictions are provided
for each sector across 3 forecasting horizons: 3 months, 6 months and 1 year. All parameters are based on
recursive samples with starting date January 1983 and ending date sequentially augmented from September
2006-September 2013 at an annual frequency. All parameter estimates are based on the MCMC algorithm
described in section 2.4 using 50,000 MCMC draws. All RMSE and MAE are calculated based on rolling
out-of-sample forecasts from September 2006-September 2013.

forecasting results.

Table 2.5 summarises the forecasting performance of the specifications with both

vague and tight priors in terms of RMSE and the MAE. The RMSE is defined as:

RMSEhi =

√∑n
t=1(DRhit − PDh

it)
2

n
, (2.16)

where DRhit = Dh
it/Nit is the forward-looking h-month default rate for sector i at month

t. The MAE corresponds to:

MAEhi =

∑n
t=1 |DRhit − PDh

it|
n

. (2.17)

Both RMSE and MAE give an indication of the deviation of the corporate default

predictions from the observed default rate. While the MAE is a linear score that

weights equally all the individual differences when calculating the average, the RMSE

gives a relatively high weight to large errors. The RMSE is always larger or equal
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to the MAE and the greater difference between the two, the greater the variance in

the individual errors in the sample. Therefore, the RMSE is most useful when large

errors are particularly undesirable. Both RMSE and MAE are calculated over the

rolling out-of-sample forecasts from September 2006-September 2013. To put the results

into perspective, I benchmark the model forecasts against binomial-logit regressions

having Industrial Production as the single explanatory variable (from here on the ”base

model”). This specification corresponds to the econometric model (2.1)-(2.2) without

including any frailty factors F d,h
t and substituting Industrial Production in the place

of the macroeconomic factors Fm
t . The results from the ”base model” are included in

table 2.5.

The results from table 2.5 indicate a significant improvement in short horizon

out-of-sample forecasting power when using dynamic factors Fm
t and frailty factors

F d,h
t , especially when interested at predicting default behaviour over 3-month horizons.

For the 3-month forecasting horizon, the relative difference with respect to the ”base

model” specification is highest for Capital Industries, for which the RMSE improved by

78%/79% and MAE improved by 66%/67%(using tight and vague priors respectively).

Other sectors with high RMSE and MAE difference for the 3-month horizon include

Transportation (improvement in RMSE by 28%/37% for tight/vague priors respectively

and reduction in MAE by 26%/36%) and Technology (reduction in RMSE by 22%/67%

and in MAE by 8%/62%), with Media and Retail showing moderate improvement. On

the other hand, the RMSE for Consumer Industries, Financials and Utilities slightly

increases when using the full macroeconomic and frailty factors, but at the same time

the MAE decreases. This indicates that the forecasts generated by the ”base model”

are less volatile and they do not exhibit extreme deviations, despite the fact that on

average the ”base model” does not forecast as well. The improvement in the forecasting

performance for the 6-month horizon is similar to that for the 3-month horizon. The

major difference is observed for the Technology sector for which the ”base model”

forecasts poorly; using the dynamic macroeconomic and frailty factor specification leads

to a decrease in RMSE by 90%/89% for tight and vague priors respectively, while the

MAE is improved by 82%/81%.

The benefits of using the dynamic macroeconomic and frailty factors is less clear

for the 1-year forecasting horizon, as the use of the dynamic factors does not lead to
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a substantial increase in performance as compared to the base case. Nevertheless, the

use of dynamic and frailty factors does lead to an overall improvement of the RMSE

(despite the ”base model” performing marginally better for the Consumer Industries

and Financials sectors) and better MAE for almost all individual sectors. An interest-

ing observation is the extreme deviations of the full specification using vague priors for

Consumer Industries, Retail and Transportation sectors. This indicates that allowing

the frailty factors to dominate the regression specification (2.1)-(2.3) can provide better

in-sample fit but it might also lead to problems out-of-sample for long forecasting hori-

zons. As figure 2.5 shows, extreme forecasting errors when the frailty factors dominate

the econometric equations are more likely during periods of stress; using the recent

recession as an example, the mean reversion of the default rate time series seems to

be much faster than what the historical dynamics imply, especially for the Consumer

Industries, Retail, Technology and Transportation sectors.

The lack of clear performance gains at the 1-year horizon undermines the model’s

relevance in today’s credit risk management (that is typically concerned about the 1-

year+ horizons). This finding indicates that forecasting corporate defaults over long

horizons can be quite difficult and the links to the macroeconomic environment are not

that straightforward. Nevertheless, despite not substantially improving the forecasting

performance, the model can still offer valuable insight into the main determinants of

corporate defaults. Linking corporate defaults to a large set of macro-financial variables

is much more informative that having links to a single business cycle variable. For

example the sensitivity of a credit portfolio default rate on credit conditions and/or

interest rate shocks can be of particular importance. Furthermore, the decomposition

of the macroeconomic link for corporate defaults into major economic concepts allows

financial institutions and investors alike to scenario test their credit portfolios using

scenarios that cannot be captured by a single business cycle variable (such deflation,

credit squeeze, monetary policy shock etc).

2.7 Conclusion

In this chapter I assess the forecasting power of the macroeconomic environment in

predicting US corporate defaults. To address the issue of imperfect measurement of
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macroeconomic concepts by single variables, I use a large panel of US macroeconomic

time series. I summarise the macroeconomic movements into a small set of clearly dis-

tinguished factors, each describing a different side of the economic environment. The

factors are identified and estimated via efficient MCMC techniques. The default pre-

dicting specification consists of the observed macroeconomic variation, summarised in

the dynamic factors, and unobserved stochastic factors that correlate defaults through

time, resulting in a non-Gaussian autoregressive random effects specification. I estimate

the final non-Gaussian model, via a recently introduced and flexible MCMC sampling

scheme based on data augmentation, that is first used in a credit risk context.

I show that forecasting with dynamic and unobserved frailty factors, can lead to

an improvement of up to 90% in terms of RMSE and more than 80% in terms of MAE

over base specifications that take into consideration only business cycle fluctuations.

These substantial increases in forecasting power are observed for the Technology sector

at the 6-month forecast horizon. Other sectors that the inclusion of dynamic and frailty

factors leads to a dramatic increase in prediction accuracy include Capital Industries

(improvement of 79% in terms of RMSE and 67% in terms of MAE when predicting

defaults 3 months ahead) and Transportation (improvement of up to 67% in terms of

RMSE and up to 62% in terms of MAE), while Media and Retail sectors also exhibit

moderate improvements. Typically, the improvements in forecasting accuracy by using

dynamic and frailty factors diminish when predicting default rates at the 1-year horizon.

Finally, allowing the frailty factors to dominate the regression via the use of vague priors

can lead to increased volatility in prediction accuracy, albeit providing better in-sample

fit. Those results show that including macroeconomic conditions information can help

in reliably predicting corporate default rates in the short term, while the use of frailty

factors should be closely monitored when forecasting defaults over long time horizons.

The methodology presented in this chapter can be extended in a number of ways.

A natural extension is to use more granular default time series, especially including

a differentiation by credit quality. Nevertheless, using a credit grade split that is too

granular can lead to low default occurrence and excessively volatile default time series

that could render the forecasting power of the resulting model relatively poor. Further-

more, firm specific accounting/market data can be used; such a choice would increased

dramatically the dimensionality of the econometric specification and the estimation of
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the model can quickly turn unfeasible. Finally, more aspects of credit risk can be jointly

modelled, along the lines of the work of Creal et al. (2013) that additionally include

rating migrations and recoveries in a model of joint movements across corporate de-

faults and macroeconomic variables. Despite the attractiveness of joint modelling of all

aspects of credit risk, forecasting rating migrations and recoveries out-of-sample is not

straightforward. Rating agencies are known to follow a Through-the-Cycle approach

to assigning ratings and therefore it is not entirely clear how much of the credit cycle

Point-in-Time information they use in their rating process. Additionally, realised re-

covery rates are typically calculated over a lengthy emergence periods that often causes

the recovery amount to be a function of different phases of the credit cycle.
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Chapter 2 Appendix

2.8 Dynamic Factor Loadings

Description Code Tr. Code F bst F cdt F yct F crt Fart Favt
Production

Industrial Production:
-Index INDPRO 2 0.115 0 0 0 0 0
-Manufacturing (NAICS) IPMAN 2 0.114 0 0 0 0 0
-Durable Manufacturing (NAICS) IPDMAN 2 0.113 0 0 0 0 0
-Consumer Goods IPCONGD 2 0.098 0 0 0 0 0
-Durable Consumer Goods IPDCONGD 2 0.086 0 0 0 0 0
-Nondurable Consumer Goods IPNCONGD 2 0.078 0 0 0 0 0
-Business Equipment IPBUSEQ 2 0.116 0 0 0 0 0
-Final Products (Market Group) IPFINAL 2 0.119 0 0 0 0 0
-Materials IPMAT 2 0.106 0 0 0 0 0
-Durable Materials IPDMAT 2 0.107 0 0 0 0 0
-nondurable Materials IPNMAT 2 0.077 0 0 0 0 0

ISM Manufacturing:
-PMI Composite Index NAPM 2 0.065 0 0 0 0 0
-Production Index NAPMPI 2 0.049 0 0 0 0 0

Capacity Utilization:
-Total Industry TCU 2 0.104 0 0 0 0 0
-Manufacturing (NAICS) MCUMFN 2 0.105 0 0 0 0 0

Income

Real Personal Income: RPI 2 0.107 0 0 0 0 0
-Disposable DSPIC96 2 0.077 0 0 0 0 0
-Excluding current transfer receipts W875RX1 2 0.115 0 0 0 0 0

Consumption

Personal Consumption Expenditures*: PCE 2 0.090 0 0 0 0 0
-Durable Goods* PCEDG 2 0.068 0 0 0 0 0
-Nondurable Goods* PCEND 2 0.074 0 0 0 0 0
-Services* PCES 2 0.054 0 0 0 0 0

Unemployment

Civilian Unemployment Rate UNRATE 1 -0.054 0 0 0 0 0
Civilian Employment CE16OV 2 0.125 0 0 0 0 0
Employment Level - Nonagriculture LNS12035019 2 0.124 0 0 0 0 0
All Employees:

-Total Private Industries USPRIV 2 0.130 0 0 0 0 0
-Construction USCONS 2 0.119 0 0 0 0 0
-Durable goods DMANEMP 2 0.124 0 0 0 0 0
-Nondurable goods NDMANEMP 2 0.110 0 0 0 0 0
-Financial Activities USFIRE 2 0.090 0 0 0 0 0
-Goods-Producing Industries USGOOD 2 0.128 0 0 0 0 0
-Government USGOVT 2 0.029 0 0 0 0 0
-Manufacturing MANEMP 2 0.124 0 0 0 0 0
-Mining and logging USMINE 2 0.032 0 0 0 0 0
-Retail Trade USTRADE 2 0.120 0 0 0 0 0
-Service-Providing Industries SRVPRD 2 0.124 0 0 0 0 0
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-Trade, Transportation & Utilities USTPU 2 0.127 0 0 0 0 0
-Wholesale Trade USWTRADE 2 0.122 0 0 0 0 0

Mean Duration of Unemployment UEMPMEAN 1 -0.012 0 0 0 0 0
% Unemployed:

-<5 Weeks LNS13008397 1 0.049 0 0 0 0 0
-5 to 14 Weeks LNS13025701 1 0.007 0 0 0 0 0
-15 to 26 Weeks LNS13025702 1 -0.086 0 0 0 0 0
->15 Weeks LNS13008517 1 -0.039 0 0 0 0 0

Prices

Producer Price Index:
-All Commodities PPIACO 2 0.044 0 0 0 0 0
-Crude Materials: Further Processing PPICRM 2 0.044 0 0 0 0 0
-Finished Consumer Foods PPIFCF 2 0.023 0 0 0 0 0
-Finished Consumer Goods PPIFCG 2 0.024 0 0 0 0 0
-Finished Goods Excluding Foods PPIFLF 2 0.020 0 0 0 0 0
-Finished Goods PPIFGS 2 0.022 0 0 0 0 0
-Finished Goods: Capital Equipment PPICPE 2 -0.015 0 0 0 0 0
-Fuels & Related Products & Power PPIENG 2 0.030 0 0 0 0 0
-Industrial Commodities PPIIDC 2 0.043 0 0 0 0 0
-Intermediate Materials PPIITM 2 0.045 0 0 0 0 0

Consumer Price Index:
-All Items CPIAUCSL 2 0.035 0 0 0 0 0
-All Items Less Food CPIULFSL 2 0.034 0 0 0 0 0
-All Items Less Food & Energy CPILFESL 2 0.013 0 0 0 0 0
-All Items Less Food CUUR0000SA0L2 2 0.032 0 0 0 0 0
-All items less medical care CUSR0000SA0L5 2 0.037 0 0 0 0 0
-Apparel CPIAPPSL 2 0.016 0 0 0 0 0
-Commodities CUSR0000SAC 2 0.041 0 0 0 0 0
-Durables CUSR0000SAD 2 0.028 0 0 0 0 0
-Energy services CUSR0000SEHF 2 0.002 0 0 0 0 0
-Medical Care CPIMEDSL 2 -0.012 0 0 0 0 0
-Services CUSR0000SAS 2 0.010 0 0 0 0 0
-Transportation CPITRNSL 2 0.043 0 0 0 0 0

Inventories and Orders

ISM Manufacturing:
-Inventories Index NAPMII 1 0.077 0 0 0 0 0
-New Orders Index NAPMNOI 1 0.043 0 0 0 0 0
-Supplier Deliveries Index NAPMSDI 1 0.043 0 0 0 0 0

Housing Starts

Total New Priv. Housing Units HOUST 1 0.059 0 0 0 0 0
Midwest Census Region HOUSTMW 1 0.047 0 0 0 0 0
South Census Region HOUSTS 1 0.051 0 0 0 0 0
West Census Region HOUSTW 1 0.061 0 0 0 0 0

Bank Lending

Loans and Leases in Bank Credit LOANS 2 0.071 0 0 0 0 0
Commercial and Industrial Loans BUSLOANS 2 0.061 0 0 0 0 0
Real Estate Loans REALLN 2 0.037 0 0 0 0 0
Consumer Loans CONSUMER 2 0.029 0 0 0 0 0
Bank Credit LOANINV 2 0.065 0 0 0 0 0
Interbank Loans IBLACBM027SBOG2 0.035 0 0 0 0 0

Interest Rates

Treasury Bill Rates:
-3-Month TB3MS 1 0.033 0.078 0 0 0 0
-6-Month TB6MS 1 0.033 0.078 0 0 0 0

Treasury Constant Maturity Rates:
-1-Year GS1 1 0.032 0.078 0 0 0 0
-2-Year GS2 1 0.030 0.079 0 0 0 0
-3-Year GS3 1 0.027 0.079 0 0 0 0
-5-Year GS5 1 0.023 0.079 0 0 0 0
-10-Year GS10 1 0.019 0.078 0 0 0 0

Effective Federal Funds FEDFUNDS 1 0.030 0.078 0 0 0 0
Bank Prime Loan MPRIME 1 0.028 0.078 0 0 0 0
3-Month LIBOR USD USD3MTD156N 1 0.038 0.089 0 0 0 0
Moody’s Corporate Bond Yield:

-Aaa AAA 1 0.011 0.078 0 0 0 0
-Baa BAA 1 -0.003 0.078 0 0 0 0
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Yield Curve Spreads

GS10-GS2 Calculated 1 -0.047 -0.033 0.168 0 0 0
GS10-TB3MS Calculated 1 -0.035 0.011 0.241 0 0 0
GS2-TB3MS Calculated 1 0.003 0.063 0.186 0 0 0
USD3MTD156N-TB3MS Calculated 1 0.003 0.049 -0.014 0 0 0

Credit Spreads

AAA-GS10 Calculated 1 -0.056 -0.115 -0.055 0.116 0 0
BAA-GS10 Calculated 1 -0.084 -0.107 -0.042 0.178 0 0

Equity Market

S&P 500 SP500 2 0.022 0 0 0 0.282 0
Dow Jones Industrial Average DJIA 2 0.016 0 0 0 0.285 0
SP500 Volatility Calculated 1 -0.193 0 0 0 -0.318 0.680
DJIA Volatility Calculated 1 -0.190 0 0 0 -0.319 0.694
VIX S&P 500 VIXCLS 1 -0.183 0 0 0 -0.288 0.597
VIX Dow Jones Industrial VXDCLS 1 -0.152 0 0 0 -0.260 0.528

Table 2.6: Estimated Dynamic Factor Loadings
Parameter estimates for macroeconomic input series and the dynamic factor loadings Λ in the econometric
specification (2.5)-(2.6), based on the period January 1983-August 2014. All estimates are based on the
MCMC algorithm described in section 2.4 using 50,000 MCMC draws. The input macroeconomic variables
are either used untransformed (”Tr. Code”=1) or log Year-on-Year changes (”Tr. Code”=2).
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Chapter 3

Macroeconomic Shocks and

Credit Risk:

Monetary Policy and Real

Economy Effects on Corporate

Defaults and Recoveries

3.1 Introduction

The 2008 financial crisis highlighted the central role that credit risk plays when assess-

ing business cycle fluctuations, the strength of the financial sector, and the impact of

policy actions. Periods of economic growth tend to lead to a relaxation of lending cri-

teria and over-indebtedness, as both corporates and consumers seek additional return

by leveraging. Over-leveraging, especially when combined with a slowdown in eco-

nomic activity, usually leads to periods of increased default rates, deterioration of the

banking sector’s balance sheet and tightening of lending criteria. These business and

leverage cycle fluctuations emphasise that credit risk events are far from being isolated

and independent incidents, exhibiting strong systematic movements, clearly linked to

macro-financial conditions. This strong dependence of credit risk on the economic envi-
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ronment, has led regulators globally to adopt extreme but plausible economic scenarios

to assess the solvency of the banking sector and identify the need for additional capital

requirements.

Based on the strong linkages between macroeconomic and credit conditions, I make

two major contributions in this chapter. First, I present a new semi-structural iden-

tification scheme to disentangle the macro-financial shocks, applied on a small-scale 5

variable VAR model. The VAR setup is inspired by the credit channel/financial accel-

erator literature and models output, inflation, leverage, asset value, and interest rate

variables. The identification scheme comprises of a combination of short and long-run

restrictions on the dynamic multipliers, and enables the identification of the 5 orthogo-

nal shocks as aggregate supply, aggregate demand, corporate balance sheet, asset price

and monetary policy. Second, I trace the impact of each structural shock on corporate

bond defaults and recoveries, using a non-Gaussian specification that is able to capture

both macroeconomic effects and credit market specific unobserved correlations. Finally,

I undertake a detailed impulse response analysis using a flexible Bayesian MCMC esti-

mation framework that provides simulated draws from the full conditional distribution

of the impulse response functions.

The macroeconomic VAR model and the identification assumptions use elements

of the financial accelerator and credit transmission channel literature. The advocates

of the financial accelerator and the credit channel as shock transmission mechanisms

stipulate that endogenous changes in external finance premium amplify the effect of real

economy and monetary policy shocks. I follow Bernanke and Gertler (1989), Bernanke

et al. (1996), and Kiyotaki and Moore (1997) and I assume that corporate financing

is linked to the quality of the corporate balance sheet and the value of the available

collateral. I, therefore, include in the VAR model measures of corporate leverage and

equity returns to isolate balance sheet and asset price/collateral shocks. To separate

the real economy effects into aggregate demand and supply, I follow Blanchard and

Quah (1989) and I restrict the aggregate demand shock to only have a transitory effect

on output. Finally, I adopt the idea of money neutrality in the long-run and I build

upon the analysis of Bjørnland and Leitemo (2009) to assume that monetary policy

shocks do not have long-run effects on real output and real equity prices.

The choice of variables in the VAR model and the identification scheme used,
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produce intuitive responses for all macroeconomic variables to each of the 5 structural

shocks. Positive aggregate supply shocks that increase quarterly real output by 0.4%,

lead to a reduction of 0.3% in price inflation and a lower level of interest rates by

0.25pp. On the other hand, aggregate demand shocks that increase output by 0.6%,

lead to inflationary pressures that ultimately push interest rates up, to peak at a level

0.75pp higher than the long-run average. When examining the impact of balance sheet,

asset price, and monetary policy shocks, I provide robust evidence for the presence

of a working capital/cost channel transmission mechanism, along the lines of Barth

and Ramey (2002), Chowdhury et al. (2006), and Ravenna and Walsh (2006). This

transmission mechanism implies that corporates are able to partially pass on increases in

their cost of debt to consumers. The presence of a cost channel causes some inflationary

pressures when corporates struggle to attract funding due to balance sheet shocks, or

face increasing yields in their debt as a result of monetary policy shocks. Following

adverse balance sheet shocks, output drops by approximately 0.1%, while price inflation

rises by 0.05% and interest rates increase by 0.15pp, largely due to the effect of the cost

channel transmission mechanism. Contractionary policy shocks linked to an increase

in the FED Funds rate by 0.6pp, take approximately 1 year to adversely affect output

(0.15% quarterly decline), and, despite the initial drop in inflation by 0.15%, the cost

channel creates some minor inflationary pressures in 3-4 quarters. Finally, the cost

channel drives the responses of corporate leverage, inflation and interest rates to asset

price shocks; following an increase of 5% in real equity prices, interest rates increase

sharply and persistently by 0.4pp, leading to a 0.1% higher corporate leverage level and

0.05% positive rate of inflation.

Consistent with Koopman et al. (2012), I find that the macroeconomic environment

plays a significant role in explaining default rate dynamics. The FEVD suggests that the

macroeconomic shocks account for approximately 30% of the 1 quarter forecast variance

and approximately 45% of the long-run forecast variance. The remaining proportion of

the forecast error variance is attributed to unobserved credit specific factors. Following

Das et al. (2007), McNeil and Wendin (2007), Koopman and Lucas (2008), Duffie et al.

(2009), and Koopman et al. (2011), I interpret the latent credit factors as proxies of

frailty in the corporate environment. Quantifying the impact of the 5 structural shocks

on credit measures of default likelihood, I report a sharp increase of the cyclical sector

default rates by 5-10 basis points following a balance sheet shock, and a drop of similar
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magnitude following aggregate supply/demand shocks. While the level of default rates

remains lower than the long-run average following an aggregate supply type shock, an

aggregate demand shock leads to a higher interest rate level, and that causes default

rates to increase in the mid to long-run. I find the effect of asset price shocks to be

similar to the effect of aggregate demand shocks, for the default rates in most sectors;

main differences are observed for sectors strongly dependent on the equity market, such

as Technology firms. Finally, monetary policy tightening shocks lead to a 5-10 basis

points increase in default rates, approximately 1 year after the initial shock.

The impact of the 5 structural shocks on the fractional recovery of face value is

much less pronounced. The forecast error variance analysis indicates that macroeco-

nomic shocks account for only 24% of the short-run and 34% of the long-run forecast

variance, with recovery rates mainly affected by asset price shocks in the short-run

(irrespective of seniority, asset price shocks lead to short-run increases in recoveries

rates of 3%, with reversion to the long -run average taking place 1 year after the initial

shock). Secured debt recoveries strongly depend on aggregate supply/demand shocks,

particularly in the long-run; the forecast error variance decomposition over a 5 year

period indicates that, depending on the sector, the aggregate supply shocks accounts

for 4%-18% of the variance, while the aggregate demand shocks account for 10%-38%.

Finally, balance sheet and monetary policy shocks (both leading to increased cost of

debt and discounting of future cash flows for the calculation of recoveries) both lead

to an initial drop in recovery rates of approximately 1% on average, while the effect

quickly dies out, typically less than a year after the initial shock.

The remainder of this chapter is organised as follows. Section 3.2 gives a high level

summary of the relevant literature and highlights the gap that this chapter addresses.

Section 3.3 presents the econometric models used in this chapter, and covers the 3 sub-

components of my analysis: the corporate default econometric equations in sub-section

3.3.1, the recovery rate model in sub-section 3.3.2, and the overarching macroeconomic

VAR specification, including the identification of the 5 structural shocks, in sub-section

3.3.3. Details on the estimation of the various econometric equations are provided in

sub-section 3.3.4. Section 3.4 summarises the macroeconomic, corporate default, and

corporate debt recovery data used in the analysis. Section 3.5 presents the findings:

sub-section 3.5.1 focuses on the impulse response functions and variance decomposition
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of the macroeconomic VAR model, while sub-section 3.5.2 summarises the parameter

estimates and the responses of defaults and recoveries to each of the 5 structural shocks.

Finally, section 3.6 concludes.

3.2 Relevant Literature

Linking credit cycles to macroeconomic fluctuations has attracted a lot of attention

over the recent years, see Koopman et al. (2009), and also Pesaran et al. (2006) for

a global perspective. While correlating corporate defaults with the macroeconomic

environment has received the necessary attention, very few papers deal with the fun-

damental economic shocks that impact corporate default occurrence. The works of

Boivin et al. (2013), and Creal et al. (2013) attempt to give an answer to this question,

the former using a large scale macro-financial dynamic factor model and the latter us-

ing a smaller scale dynamic factor model but with richer dynamics. Nevertheless, both

papers follow a rather simplistic approach to identification, that relies on sequential im-

pact of each economic shock to the observed macroeconomic quantities. In this chapter

I present a new semi-structural identification scheme that uses a combination of eco-

nomic theory founded short- and long-run restrictions on the residuals of a small-scale

VAR, and therefore relaxes the reliance on Cholesky decomposition to disentangle the

macro-financial shocks.

Empirical evidence suggests that, despite the explanatory power of observed macroe-

conomic variables in predicting the default behaviour of corporates, there is a significant

amount of additional variation that cannot be directly linked to the macroeconomic en-

vironment. For a decomposition of the variation into its different sources, see Koopman

et al. (2012). A number of papers try to explain the additional systematic correlation

not captured by observed macroeconomic variables via the use of latent factors that

reflect frailty in the corporate environment. Examples from the literature include, Das

et al. (2007), McNeil and Wendin (2007), Koopman et al. (2008), Koopman and Lucas

(2008), Duffie et al. (2009), and Koopman et al. (2011). Another strand of research

interprets (part of) the additional correlation as steaming from the contagion/domino

effect a default of single firm can have on the rest of the corporate environment, see

Giesecke (2004), Jorion and Zhang (2007), and Lando and Nielsen (2010). In practice
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it is very difficult to robustly decompose default from contagion effects. Especially for

contagion, detailed balance sheet and trade data are necessary to capture business links

and disentangle the excess correlation from frailty.

I follow the frailty literature and I provide a decomposition into observed and

unobserved fluctuations in corporate bond defaults. For the observed fluctuations in

corporate defaults, I use the structurally identified macro-financial shocks and I provide

full impulse response analysis and variance decompositions. At the same time, I improve

on the work of Creal et al. (2013), by providing model consistent confidence bounds

for the impulse response functions that allow the isolation of statistically significant

effects.

In addition to the clear macroeconomic effects on corporate failures, there are

numerous studies suggesting that recovery rates of defaulted debt are also driven by

the state of the economy. In some of the early works, Frye (2000a) and Frye (2000b) use

a simple structural model to link recoveries to defaults and ultimately the state of the

economy, while Jarrow (2001) explicitly links equity prices and recovery rates, using

a reduced-form approach. For the time period used, recovery rates are shown to be

up to 25% lower during periods of stress. The strongly negative relationship between

recoveries and defaults (which implies a positive relationship between recoveries and

the macroeconomic conditions) is also confirmed by Hu and Perraudin (2002), Altman

et al. (2005), and Altman and Kalotay (2014). Two recent studies, Acharya et al.

(2007) and Jankowitsch et al. (2014) provide further evidence of the strong correlation

between defaults and recoveries, that is statistically significant even after accounting

for firm and debt issuance characteristics. Furthermore, Jankowitsch et al. (2014) show

that, in addition to firm/debt characteristics and distress information at market and

industry level, the FED Funds rate provides a statistically significant determinant of

corporate bond recovery rates.

Using the identified structural shocks, I extend the above mentioned literature by

providing the first link of corporate recoveries to macroeconomic fundamentals. In

addition to the explicit link to macroeconomic conditions, I also include unobserved

systematic factors that help to better fit the historical time series of recovery rates.

Finally, I provide a detailed impulse response and variance decomposition for the two

sourced of systemic variation in recovery rates.
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3.3 Econometric Framework

3.3.1 The Corporate Default Model

Following the popular firm value approach to credit risk, as introduced by Merton

(1974) and later extended by Black and Cox (1976), a default occurs when the value

Vit of a firm i at time t becomes negative. Assuming that a firm’s value is the difference

between assets Ait and liabilities Bit, default can be re-expressed as an event taking

place when Ait < Bit or, equivalently, log(Ait) < log(Bit). The focus of this chapter is

not the firm specific default processes, but rather the systematic movements of credit

events. Therefore, I impose suitable assumptions and express firm specific probabilities

to default, PDit, as a function of the systematic, cyclical drivers, F t.

For the stochastic evolution of Ait, I assume that its logarithmic return, A∗it, can

be decomposed into a systematic component FA∗
t , that affects the asset values of all

firms at a given time, and an idiosyncratic component ε∗it, that is firm specific:

A∗it = log(Ait)− log(Ait−1) = ωiF
A∗
t +$iε

∗
it, ε∗it ∼ N(0, 1), (3.1)

where ωi is the sensitivity to the systematic factors, and $i is the sensitivity to the

idiosyncratic factor. The systematic factor FA∗
t in (3.1) is a linear combination of the

economy-wide fluctuations, F t, and unobserved credit cycle specific movements:

FA∗
t = βA

∗
(L)F t + bA

∗
(L)fA

∗
t (3.2)

where fA
∗

t is the set of latent credit cycle factors, and βA
∗
(L) and bA

∗
(L) are vector

lag polynomials for the sensitivities of FA∗
t to the economy-wide systematic factors F t

and frailty factors fA
∗

t respectively. Both F t and fA
∗

t are assumed to be Gaussian

processes. By construction, fA
∗

t captures additional correlation in asset values that

macroeconomic and financial aggregates cannot explain. This additional correlation

in corporate bond default rates is strongly supported by empirical evidence and can

be attributed to omitted variables that drive the co-movements in corporate balance

sheets. This source of correlation is usually referred to as ”frailty”, see Das et al. (2007),

McNeil and Wendin (2007), Duffie et al. (2009), and Koopman et al. (2011). Additional

correlation can also result from the contagion/domino effects that single defaults have
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on the rest of the corporate environment. Studies exploring the contagion effects as

a source of default correlation include Giesecke (2004), Jorion and Zhang (2007), and

Lando and Nielsen (2010). In practice it is very difficult to robustly decompose frailty

from contagion effects. Especially for contagion, detailed balance sheet and trade data

are necessary to capture business links and disentangle the excess correlation from

frailty. Since this is not the purpose of the current chapter and such data are not

available, I choose to interpret all additional correlation as frailty.

I do not make explicit assumptions about the stochastic properties of the liabilities

Bit, but I rather focus on their movement relative to the asset value. Without loss

of generality, I restrict the dynamics of the leverage ratio Levit = log( Bit
Ait−1

) to be a

deterministic function of, possibly lagged, economic factors:

Levit = log(
Bit
Ait−1

) = µLev
i + βLev(L)F t (3.3)

where µLev
i is the long-run average of the leverage ratio, F t is the set of systematic

factors, and βLev(L) is a vector lag polynomial for the sensitivities to systematic factors

F t. β
Lev(L) allows additional flexibility in modelling the impact that the economic

environment has on a firm’s liabilities. In the absence of lags in βLev(L), the economic

environment has only a contemporaneous effect on Levit, and this assumption might

be overly restrictive. As mentioned earlier, F t is a set of cyclical, stationary systematic

factors. By making leverage a function of stationary economic drivers, (3.3) implicitly

assumes that corporate leverage mean reverts to the target leverage ratio of a given

firm. This assumption is supported by both theoretical and empirical evidence in

the literature, see Collin-Dufresne and Goldstein (2001), Flannery and Rangan (2006),

Geanakoplos (2010), and Flannery et al. (2012). In fact, the deterministic function (3.3)

can be seen as a discretised version of the stochastic process for corporate debt used by

Collin-Dufresne and Goldstein (2001). In their chapter, Collin-Dufresne and Goldstein

(2001) model log debt kt as dkt = λ(yt− v− kt)dt, where yt is the log asset value level.

In my specification, I assume a value of 1 for λ (which implies instant adjustment to the

constant leverage ratio v) and I add residual cyclical movements to the leverage ratio,

in the form of the systematic factors F t. Equation (3.3) can be extended to include

a frailty term (and therefore become stochastic). For the benefit of the mathematical

derivation of the PD equation below and given that the empirical analysis is based on
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a reduced form model, I refrain from including a frailty term. Nevertheless, the nature

of the reduced form results that follow would not change under the presence of a frailty

term for the leverage process.

I define PDit as the probability of a firm i defaulting at time t, providing that

a default did not occur before t. I further condition PDit on the filtration F t =

{F 1, ...,F t, f
A∗
1 , ...,fA

∗
t }. Using the asset value dynamics from (3.1) and (3.2), and

the leverage dynamics from(3.3), PDit is given by:

PDit = P (log(Ait) < log(Bit)|F t, Aij >= Bij , ∀ j = 1, ..., t− 1) =

= P (A∗it < log(Bit)− log(Ait−1)|.) =

= P (A∗it < Levit|.) =

= P

(
ε∗it <

µLev
i + βLev(L)F t − ωi(βA

∗
(L)F t + bA

∗
(L)fA

∗
t )

$
|.

)
=

= P (ε∗it < µi + βd(L)F t + ρdi f
A∗
t |.)

= Φ
(
µi + βd(L)F t + ρdi f

A∗
t

)
, (3.4)

where µi =
µLev
i
$ is the reduced form mean of Φ−1 (PDit), β

d(L) = βLev(L)−ωiβA
∗

(L)
$ is

the reduced form sensitivity of the default probability to the dynamic economic factors,

ρdi = −ωib
A∗ (L)
$ is the reduced form sensitivity to the frailty factor, and Φ(.), Φ−1(.) are

the cumulative and inverse cumulative functions of the standard normal distribution.

Since the objective is to forecast the default process, I work with the reduced form (3.4)

without separating βd(L) to the individual effects coming from the asset and leverage

processes in (3.2) and (3.3).

The credit risk framework presented so far can be re-expressed as a multi-factor

version of popular Merton based portfolio credit models, such as Vasicek (2002) and

CreditMetrics (2007). Working with standard normal versions of the stochastic factors

in (3.1) and (3.2), F̃
A∗

t , F̃ t, and f̃
A∗

t , the asset value process can be re-written as:

A∗it = log(Ait)− log(Ait−1) = ωi

(
βA
∗

i F t + bA
∗

i f
A∗
t

)
+$iε

∗
it

= σi

[√
ri

(
β̃
A∗

i F̃ t + b̃
A∗

i f̃
A∗

t

)
+
√

1− riε∗it
]
, β̃

A∗

i

(
β̃
A∗

i

)′
+ b̃

A∗

i

(
b̃
A∗

i

)′
= 1,

where σi is the volatility of the asset value process A∗it and the restriction β̃
A∗

i

(
β̃
A∗

i

)′
+
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b̃
A∗

i

(
b̃
A∗

i

)′
= 1 is imposed for β̃

A∗

i F̃ t + b̃
A∗

i f̃
A∗

t to have unit variance. The pairwise

asset correlation in this multi-factor model equals to

Asset Correlation =
√
ri
√
ri∗

(
β̃
A∗

i

(
β̃
A∗

i∗

)′
+ b̃

A∗

i

(
b̃
A∗

i∗

)′)
,

for two distinct companies i and i∗. For a homogeneous portfolio, consisting of com-

panies with equal ri = r, β̃
A∗

i = β̃
A∗
, and b̃

A∗

i = b̃
A∗ ∀ i, the above expression for the

asset correlation reduces to

Asset Correlation = r.

For the purpose of this chapter, the focus is on the systematic movements of the

default probabilities and, therefore, I do not use company specific information. The

chosen aggregation level corresponds to the intersection of industry sectors j ∈ S and

rating grades k ∈ G. To estimate the reduced form parameters in (3.4), I use quarterly

observed default counts, denoted as Djkt, for each sector j, rating grade k, and time t.

Conditioning on the available information set F t at time t, I assume the default counts

to be independent and binomially distributed:

Djkt|F t ∼ Binom(PDjkt, Njkt), (3.5)

where Njit is the number of active companies at grade j and sector k at the beginning

of quarter t, and PDjkt is the sector/grade specific probability of default for quarter t.

PDjkt are linked to the systematic factors F t and the industry specific frailty factors

fdjt via the probit function:

Φ−1(PDjkt) = αjk + βdj (L)F t + ρjkf
d
jt, (3.6)

where αjk is the industry sector/rating grade specific intercept, while βdj (L) are the

industry-wide sensitivities to the systematic factors F t and ρdjk are the industry/rating

level sensitivities to the industry specific frailty factors fdjt. The granularity of the spec-

ification could be further increased, possibly allowing for rating specific sensitivities to

the systematic factors F t or rating specific frailty factors; nevertheless, due to the infre-

quent nature of defaults, it very difficult to find statistical significance when estimating

sensitivities at the sector/rating level. It is worth noting that, unlike the analysis of
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Chapter 2 that uses a logit specification to model corporate defaults, (3.6) describes a

probit specification. The probit specification for this chapter is chosen as the natural

result of the well-known Merton model that helps to provide a more structural link

of corporate defaults to macroeconomic and frailty factors. On the other hand, the

choice of the logit specification in Chapter 2 is dictated by the MCMC algorithm used

to estimate the large scale model in a very efficient manner.

The composition and the stochastic evolution of the systematic factors F t is de-

scribed in great detail in section 3.3.3. The last piece in the default process specification

is the stochastic process for the frailty factors fdjt. To avoid over-parameterising the

model, I assume that all fdjt factors are mutually independent and each one follows an

AR(1) process. These simplifications lead to:

fdjt = ϑdj · fdjt−1 + edjt, edjt ∼ N(0, 1), ∀j ∈ S, (3.7)

where ϑdj is the AR(1) coefficient and −1 < ϑdj < 1, ∀j ∈ S to ensure stationarity. The

variances of the errors edjt are set to unity since they cannot be jointly identified with

the ρdjk sensitivities in (3.6). Each of the factors fdjt is initialized from its unconditional

distribution:

fdj0 ∼ N

(
0,

1

1− (ϑdj )
2

)
. (3.8)

3.3.2 The Recovery Model for Defaulted Debt

In the event a corporate defaults on its debt, the recovery rate is a function of the

residual value of the firm’s assets. For simplicity, I assume the (partial) recovery of the

debt’s face value takes place a quarter after default (the exposition can be generalised

to accommodate a longer recovery period). Using the notation of section 3.3.1 for

the value of a firm’s assets, Ait, and liabilities, Bit, the recovery rate RRit can be

expressed as RRit = Ait+1

Bit
|Ait+1 < Bit. Taking logs and using the assumed stochastic

processes for asset value and leverage in (3.1), (3.2), and (3.3), leads to the econometric

specification for the recovery rate:
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log(RRit) = log(Ait+1)− log(Bit)|F t, ∀ i : Ait < Bit =

= log(Ait) + ωiF
A∗
t+1 +$iε

∗
it+1 − log(Ait−1)− µLev

i − βLev(L)F t =

= A∗it + ωiF
A∗
t+1 +$iε

∗
it+1 − µLev

i − βLev(L)F t =

= ωiF
A∗
t +$iε

∗
it + ωiF

A∗
t+1 +$iε

∗
it+1 − µLev

i − βLev(L)F t =

= ωi(β
A∗(L)F t + βA

∗
(L)F t+1 + brr(L)f rrt )− µLev

i − βLev(L)F t +$iε
∗∗
it =

= µrri + βrr(L)F rr
t + ρrri f

rr
t + εrrit , εrrit ∼ N(0, $2

i ) (3.9)

where µrri = −µLev
i is the mean of the log recovery rate, F rr

t = [F t,F t+1]′ are

the reduced form systematic factors for the recovery rate, βrr(L) = [ωiβ
A∗(L) −

βLev(L),ωiβ
A∗(L)] are the reduced form sensitivities to the systematic factors F rr

t ,

f rrt = fA
∗

t + fA
∗

t+1 are the reduced form latent factors driving the recoveries, ρrri =

ωib
rr(L) are the reduced form sensitivities to the frailty factors, and εrrit = $iε

∗∗
it =

$i

(
ε∗it + ε∗it+1

)
are the reduced form residuals.

It is very apparent from (3.9) that if a firm’s assets form the collateral in case

of default on its debt, then there is a natural link between the probability to default

and the recovery amount in case of default. Following the structural approach to

recovery rate modelling, there are multiple studies that provide an explicit link between

collateral and default. For some of the early structural based studies see Frye (2000b),

and Pykhtin (2003), while for a good overview of both structural and reduced form

approaches to modelling recovery rates, see Altman (2008). While it is appealing to

jointly model defaults and recoveries, the purpose of this chapter is not to capture the

tail loss in a portfolio of credit exposures (in which case the co-dependence of default

and recovery processes would be crucial), but rather to capture the systematic effects

of the macroeconomic environment on defaults and recoveries. Therefore, I simplify

the econometric framework by treating recovery and default as independent processes,

and I work with the purely reduced form version of (3.9).

For the analysis of recovery rates I do not include any bond or company specific

information, as the focus of this chapter is the time series element of recoveries rather

than the cross-section. I choose to model the systematic effects on recovery rates at

the industry/seniority level. While the seniority is an obvious determinant of a bonds
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recovery rate (so that bondholders of secured debt should expect to recover more than

the holders of unsecured or subordinated debt), industry is a more ambiguous factor.

Acharya et al. (2007) provide empirical evidence that support the usage of industry

classification as an important determinant of debt recoveries; the evidence suggests

that the industry level effect can be attributed to both the number of defaults in a

given sector (economic downturn/distress effect) and the liquidity level of the assets

that firms within a sector typically pledge as collateral. Finally, the inclusion of industry

and seniority level information seems to be robust to the addition of bond and firm

specific characteristics as well as macroeconomic variables, as evidenced by Jankowitsch

et al. (2014).

For a given sector j ∈ S and seniority level s ∈ C, the reduced form recovery rate

equation for the ith default takes the form:

log(RRit) = αrrjs + βrrs (L)F t + ρrrjsf
rr
st + εrrit , εrrit ∼ N(0, (σrrs )2) (3.10)

where αjs are the industry and seniority level specific averages of the log recovery rate,

βs(L) are the seniority level specific sensitivities to the systematic factors F t, and ρrrjs is

the sector/seniority specific sensitivity to the frailty factors f rrst . Finally, for each default

i, εrrjst correspond to the model’s residuals, that are normally distributed with a seniority

specific constant variance (σrrs )2. Equation (3.10) implies that seniority is chosen as

the primary aggregation level for the various effects, with industry differentiation only

captured via the intercepts αrrjs and the sensitivities to the latent factors f rrst . This

simplified specification is driven by the lack of adequate recovery data to robustly

model the full cross-section of industry sectors and seniority level. Finally, similarly to

the default process specification, I allow the frailty factors f rrst to follow independent

AR(1) processes of the form:

f rrst = ϑrrs · f rrst−1 + errst , errst ∼ N(0, 1), ∀s ∈ C, (3.11)

where ϑrrs dictates the speed of the mean reversion for the AR(1) processes, the variance

of the residuals errs is set to unity for identification purposes, and each of the seniority
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specific frailty factors f rrst is initialised from the unconditional distribution:

f rrs0 ∼ N
(

0,
1

1− (ϑrrs )2

)
. (3.12)

3.3.3 The macroeconomic structural VAR model

For the 3 sources of systematic fluctuations in the broad macroeconomic and credit

specific conditions, F t, f
d
t and f rrt , I impose an autoregressive Gaussian process of

finite order:

Γ(L)

 F t

fdt
f rrt

 = γ + ut, ut ∼ N(0,Σu), (3.13)

where fdt = vec(fdjt){j:j∈G} is the stacked vector of sector specific unobserved default

factors, f rrt = vec(f rrst ){s:s∈C} is the stacked vector of seniority specific latent recov-

ery factors, γ is the vector of intercepts and ut is the vector of residuals. Unlike the

unobserved frailty factors fdt and f rrt , the systematic factors F t correspond to a fully

observable set of macro-financial variables following a finite order VAR process. More

specifically, I assume the 3 constituents of the filtration process F t in (3.6) and (3.10)

to be orthogonal. This assumption helps to keep the model tractable and not very cum-

bersome to estimate. This simplifying assumption implies a block diagonal structure

for both Γ(L) and Σu in (3.13):

Γ(L) =

 A(L) 0 0

0 Θd(L) 0

0 0 Θrr(L)

 , Σu =

 Σm
e 0 0

0 Σd
e 0

0 0 Σrr
e

 , (3.14)

where A(L), Θd(L), and Θrr(L) are the lag polynomial matrices for F t, f
d
t and f rrt

respectively, while Σm
e , Σd

e , and Σrr
e correspond to the residual covariance matrices for

the macroeconomic and default/recovery unobservable factors. The block diagonality

assumption allows modelling separately the dynamics of the 3 processes, avoiding the

cumbersome estimation of a high dimensional non-Gaussian dynamic model. Further-

more, it provides a natural interpretation of the unobserved factors fdt and f rrt as credit

specific frailty, or, in other words, additional default and recovery rate clustering above

and beyond what is captured by the macroeconomic variability F t. Such interpretation

would be difficult if the two effects are not properly identified.
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To model the macroeconomic environment, as captured by the evolution of the

observed macroeconomic variables F t, I use a small scale, closed economy, VAR of 5

variables. A key element of the system of endogenous variables is that I follow Bernanke

and Gertler (1989), Bernanke and Gertler (1995), andBernanke et al. (1996) and assume

that the balance sheet channel plays a major role in the monetary policy transmission

process; at the same time, it also determines the availability of funding for the corporate

sector. The 5 variables that I choose to model correspond to real GDP growth (yt),

price inflation (πt), corporate leverage (lt), real equity price inflation (eqt), and interest

rate (irt). The variables capture the main macroeconomic determinants of credit risk,

such as business cycle fluctuations, strength of the corporate balance sheet, distance to

default, value of posted collateral and cost of debt. More specifically, real GDP growth

and price inflation are essential in identifying aggregate demand and supply shocks,

while corporate leverage and real equity prices help to identify balance sheet and asset

price shocks respectively. Government interest rates play a major role in isolating the

monetary policy shock; nevertheless, as section 3.5.1 suggests, monetary policy shocks

are also strongly driven by business cycle fluctuations.

For the k = 5 variable vector of observables F t = [yt, πt, lt, eqt, irt]
′, the reduced

form p-th order VAR takes the form:

A(L)F t = ν + εmt , (3.15)

where A(L) is the lag polynomial A(L) = Ik −
p∑
i=1

AiL
i, ν is the vector of intercepts,

and εmt is the k-dimensional vector of reduced form residuals. I assume the residual

vector is Gaussian white noise, implying that E(εmt ) = 0, E(εmt (εmt )′) = Σm
ε , and

E(εmt (εms )′) = 0 for s 6= t. I assume that the covariance matrix Σm
ε is not singular,

and that the VAR is stable, and therefore the roots of |A(L)| lie outside the unit circle.

Using Wold’s Decomposition Theorem, the VAR model (3.15) can be written in the

structural moving average form:

F t = µm +
∞∑
i=0

Φiηt−i, (3.16)

where µm = A(L)−1ν is the unconditional mean, Φi is the matrix of the dynamic mul-

tipliers, Ψ∞ =
∑∞

i=0 Φi is the long-run impact matrix and η = [ηs, ηd, ηbs, ηap, ηm]′ is
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the vector of white noise orthogonal structural residuals, reflecting aggregate supply,

aggregate demand, corporate balance sheet, asset prices, and monetary policy respec-

tively.

I identify the structural innovations ηt in (3.16) from the reduced form residu-

als εmt in (3.15), by assuming that the reduced form residuals are linear functions

of the structural innovations. For a k2-dimensional matrix B, the relationship be-

tween reduced form and structural innovations can be written as εmt = Bηt, which

implies Σm
ε = BΣηB

′. Normalising the variance of the structural innovations to unity,

Ση = E(ηtη
′
t) = Ik, leads to the first set of identifying restrictions:

Σm
ε = BB′. (3.17)

Since Σm
ε is symmetric, (3.17) provides only k(k + 1)/2 = 15 restrictions. To exactly

identify all k2 = 25 elements of B, k(k−1)/2 = 10 additional restrictions are needed. In

principal, more than necessary restrictions can be imposed, but I choose a just-identified

VAR model to avoid restrictions on the lag coefficients A(L).

For the additional 10 restrictions, I make the following assumptions on the short

and long-run behaviour of the impulse responses:

• An aggregate demand shock has only a transitory effect on output. This assump-

tion is along the lines of Blanchard and Quah (1989) type of long-run restriction,

and is used to distinguish an aggregate demand from an aggregate supply shock.

• Balance sheet shocks have a lagged effect on real activity. An increase of the ex-

ternal finance premium is likely to cause a reduction in investment, production,

employment and prices. Nevertheless, theoretical arguments support the view

that the financing constraints resulting from a deterioration in credit conditions

will not immediately erode the firm’s net worth and, therefore, the effects on

economic activity will not be observed instantaneously. This assumption is con-

sistent with the existing literature on Structural Vector Autoregression (SVAR) or

FAVAR containing both real economy and credit condition variables, see Gilchrist

et al. (2009), and Gilchrist and Zakraǰsek (2012).

• Monetary policy and asset price changes do not have an instantaneous effect on
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real economy. This is a typical assumption in macroeconomic VARs, whereby

monetary policy and financial shocks are ordered after business cycle shocks in

recursive identification schemes.

• Monetary policy and asset price shocks do not affect corporate leverage at the

same quarter. As described in section 3.4, I use a forward looking book value

measure of corporate leverage, defined as the ratio of corporate debt (measured

at historical cost) to corporate profits. As neither determinant of corporate lever-

age is MtM, the absence of an instantaneous impact of asset price shocks on

corporate leverage naturally follows from my choice of variables. For the short-

run restriction of the monetary policy effect on corporate leverage, I assume that

only a negligible proportion of companies roll-over their debt at each quarter, so

that the effect of changing interest rates (and, consequently, bond yields and loan

rates) takes time to affect corporate leverage.

• While balance sheet, asset price, and monetary policy shocks do not affect real

activity at the same quarter, a change in monetary policy is allowed to have a

contemporaneous effect on price inflation. Balance sheet and asset price shocks

affect price inflation with a lag. Under the assumption of partially sticky prices,

all 3 financial shocks should have a lagged effect on price inflation. Nevertheless,

due to total number of restrictions in my identification scheme (see below for

more details), I need to leave the effect of monetary policy shocks on inflation

unrestricted in order to have a just-identified semi-structural VAR.

• Monetary policy shocks have no long-run effects on real output. This assumption

implies neutrality of money in the long-run, see Bernanke and Mihov (1998).

• To distinguish asset price from monetary policy shocks, I follow Bjørnland and

Leitemo (2009) and I assume that monetary policy has only transitory effects

on real asset prices. This restriction is consistent with the money neutrality

assumption. It is imposed due to the inherent difficulty in justifying short-run

restrictions in either the interest rate or the real asset price equations, especially

at a quarterly frequency.

The above restrictions also satisfy the necessary conditions for global and local iden-

tification, that require the stacked matrix of short and long-run restrictions to have
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exactly one column with j zero restrictions, for each j = 0, ..., k − 1. The restriction

matrix M can be written as (. denotes unrestricted element, while 0 denotes element

restricted to be zero):

M =



ηs ηd ηbs ηap ηm

yt . . 0 0 0

πt . . 0 0 .

lt . . . 0 0

eqt . . . . .

irt . . . . .

− − − − −

yt . 0 . . 0

πt . . . . .

lt . . . . .

eqt . . . . 0

irt . . . . .



, (3.18)

where the upper part corresponds to the short-run restrictions and the lower part to

the long-run restrictions. For a detailed exposition of the technical requirements for

global and local identification of SVARs, see Rubio-Ramı́rez et al. (2010).

The short-run restrictions from (3.18) are applied directly to the matrix B, by

setting the respective elements to 0, while the long-run restrictions are applied to the

long-run impact matrix Ψ∞ = A(L)−1B. Defining the long-run restriction matrix

J = 1{MLR=.}, the second set of identifying restrictions can be summarised as follows:

vec(J)′[I5 ⊗A(L)−1]vec(B) = 0, B =


b11 b12 0 0 0

b21 b22 0 0 b25

b31 b32 b33 0 0

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55

 . (3.19)

I solve the combined set of equations from (3.18) and (3.19) by Newton’s method1.

The extraction of the frailty terms fdt , f
rr
t and the estimation of the macroeconomic

VAR model, the default equations (3.5)-(3.7), and the recovery rate equations (3.10)-

1see rootSolve package in R
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(3.11) are presented in detail in section 3.3.4.

3.3.4 Estimation

Under the block diagonal assumption for the dynamics of F t f
d
t and f rrt in (3.14), the

model consists of 3 components that can be independently estimated: the full VAR

dynamics for the Gaussian process F t, the parameters and AR(1) frailty factors for the

non-Gaussian set of equations (3.5) and (3.6), and the parameters and AR(1) frailty

factors for the Gaussian equations for the recovery rate (3.10)-(3.11).

The VAR process for the systematic factor F t in (3.15) can be estimated by ap-

plying Ordinary Least Squares (OLS) equation-by-equation. In order to obtain the full

distribution of the impulse response functions, I choose to estimate the VAR model

using Gibbs sampling, assuming fully diffuse priors for the parameters. This choice of

priors provides point estimates for the VAR parameters identical to OLS, while ob-

taining full posterior samples. The VAR equation (3.15) can be re-expressed using the

concise matrix notation:

F t = (IM ⊗X)Ã+ εm, εm ∼ N(0,Σm
ε ⊗ IT ), (3.20)

where

X =


1 F p−1 . . . F 1

1 F p . . . F 2
...

...
. . .

...

1 F T−1 . . . F T−p

 , Ã = vec
[
(ν,A1, . . . , Ap)

′] .
Using the concise matrix notation (3.20), the posterior distribution for Ã is multivariate

normal, while the posterior for Σm
ε is an inverse Wishart distribution. The moments

for the posterior distributions are given by:

Ã|Σm
ε ,F ∼ N(vec(Â),Σm

ε ⊗ (X ′X)−1), Â = (X ′X)−1X ′F ,

(Σm
ε )−1|F ∼W ([(F −XÂ)′(F −XÂ)]−1, T −K −M − 1),

(3.21)

where F = [F 1, ...,F T ] if the stacked matrix of observed macroeconomic variables. For

more details, see section B of the Appendix at the end of the thesis.

One strand of the credit risk literature estimates via Maximum Likelihood non-
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Gaussian state space models with AR(1) latent factors, similar in form with the spec-

ification summarised by (3.5),(3.6) and (3.7). Examples include Koopman and Lucas

(2008), Koopman et al. (2009), and Koopman et al. (2011), that use simulated Maxi-

mum Likelihood estimation techniques based on importance sampling. In models with

a large number of parameters to be estimated, Maximum Likelihood techniques are

time consuming, and the accuracy and robustness of the final estimates rely largely

on starting values and possible flat regions in the likelihood function. This is particu-

larly true when simulation is used to approximate the likelihood function. Furthermore,

Maximum Likelihood gives point estimates and obtaining confidence intervals for highly

non-linear impulse response functions is not possible. I choose, therefore, to estimate

the econometric model by MCMC techniques that give full posterior distributions of

all the desired quantities. McNeil and Wendin (2007) use MCMC techniques to esti-

mate a similar setup to (3.5)-(3.7), although the aim of their work is different from this

chapter.

Denoting ψd = (αdjκ, β
d
j , ρ

d
jκ, ϑ

d
j ){j∈S, κ∈G} the parameter vector, fd = [fd1, ...,f

d
T ]

the stacked vector of the unobserved factors, the posterior can be written as:

p(fd,ψd|D) ∝ p(D|fd,F ,ψd)p(fd|ψd)p(ψd),

which can be re-expressed, using the Markovian structure of the latent factors fd, as:

p(fd,ψd|D) ∝ p(fd0|ψd)p(ψd)
T∏
t=1

p(Dt|fdt ,F t,ψ
d)p(fdt |fdt−1,ψ

d), (3.22)

where p(fd0|ψd) is the prior distribution for the initial state of the latent factors, fd0 =

vec(fdj0){j∈S}, given by (3.8), and p(Dt|fdt ,F t,ψ
d) is the Binomial density given by

(3.5). The posterior distribution (3.22) is not of closed form and analytical solutions

are not available. The posterior distributions of the parameters are obtained by means

of MCMC numerical techniques. Gibbs sampling is used to sequentially get draws for

the parameter set ψd and the factors fd from the full conditional distributions. Full
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conditionals for the individual components of ψd can be written as:

p(αdjk|.) ∝
T∏
t=1

p(Djkt|αdjk, .) p(αdjk),

p(βd,mj |.) ∝
T∏
t=1

∏
k

p(Djkt|βd,mj , Fmt , β
d,−m
j ,F−mt , .) p(βd,mj ),

p(ρdjk|.) ∝ p(Djkt|ρdjk, .) p(ρdjk),

p(fdjt|.) ∝



∏
k

p(Djkt|fdjt, .) p(fdjt+1|fdjt, ϑdj )p(fdjt|fdjt−1, ϑ
d
j ), if t 6= 0, T∏

k

p(DjkT |fdjT , .) p(fdjT |fdjT−1, ϑ
d
j ), if t = T

p(fdj1|fdj0, ϑdj )p(fdj0), if t = 0,

p(ϑdj |.) ∝
T∏
t=1

p(fdjt|fdjt−1) p(ϑdj ),

(3.23)

for sectors j ∈ S, rating grades k ∈ G, and observed macroeconomic variables m =

1, ..., 5.

For the parameters αdjk, β
d,m
j and ρdk, ∀ j ∈ S, κ ∈ S and i = 1, ..., 5, I choose

normal priors of the form p(αdjk) ∼ N(αdjk,0, σ
2
αdjk,0

), p(βd,mj ) ∼ N(βd,mj,0 , σ2
βd,mj,0

), and

p(ρdjk) ∼ N(ρdjk,0, σ
2
ρdjk,0

) respectively. To sample from the posterior distributions, the

slice sampling algorithm of Neal (2003) is used. The slice sampling algorithm is also

used to sample the unobserved factors fd. To ensure stationarity, the parameters

ϑdj , ∀ j ∈ S need to be constrained to values less than 1 in absolute value. Therefore, I

choose truncated normal priors of the form p(ϑdj ) ∼ N(ϑdj,0, σ
2
ϑdj,0

)I(−1, 1), and I sample

from the posterior via the slice sampling algorithm. For more information on Gibbs

and slice sampling, see sections A.1 and A.2 of the Appendix at the end of the thesis.

The priors and posteriors for the recovery rate equations (3.10)-(3.11) are very

similar to those of the default process, with the difference of the likelihood function

p (log(RRit)|.) being now normal instead of binomial, providing closed form posteriors

for some of the parameters. Denoting R̃Rit = log(RRit), the full conditionals of the
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parameters used for Gibbs sampling take the form:

p(αrrjs|.) ∝
T∏
t=1

∏
i:j,s

p
(
R̃Rit|αrrjs, .

)
p(αrrjs),

p(βrr,ms |.) ∝
T∏
t=1

∏
i:s

p
(
R̃Rit|βrr,ms , Fmt , β

rr,−m
s ,F−mt , .

)
p(βrr,ms ),

p(ρrrjs|.) ∝
T∏
t=1

∏
i:j,s

p(R̃Rit|ρrrjs, f rrst , .) p(ρrrjs),

p(f rrst |.) ∝



∏
i:s
p(R̃Rit|f rrst , .) p(f rrst+1|f rrst , ϑrrs )p(f rrst |f rrst−1, ϑ

rr
s ), if t 6= 0, T∏

i:s
p(R̃Rit|f rrsT , .) p(f rrsT |f rrsT−1, ϑ

rr
s ), if t = T

p(f rrs1 |f rrs0 , ϑrrs )p(f rrs0 ), if t = 0

p(ϑrrs |.) ∝
T∏
t=1

p(f rrst |f rrst−1) p(ϑrrs ),

p
(
(σrrs )2|.

)
∝

T∏
t=1

∏
i:s

p(R̃Rit|σrrs , .) p
(

(σrrs )2
)
,

(3.24)

for each default i, industry sector j ∈ S, seniority level s ∈ C, and observed macroeco-

nomic variables m = 1, ..., 5. I denote by i : j, s the subset of defaults i that belong to

industry sector j and seniority level s, and by i : s the subset of defaults that belong

to seniority level s.

Since p
(
R̃Rit|.

)
is a Gaussian density, choosing independent normal-inverse gamma

priors for intercepts, sensitivities, and variances leads to closed form posteriors for the

aforementioned parameters. More specifically, I assume priors of the form p(αrrjs) ∼

N(αrrjs,0, σ
2
αrrjs,0

), p(βrr,mj ) ∼ N(βrr,mj,0 , σ2
βrr,mj,0

), and p(ρrrjs) ∼ N(ρrrjs,0, σ
2
ρrrjs,0

). Conditional

on the observed macroeconomic variables F t, unobserved frailty factors f rrst and the

variances (σrrs )2, this choice of priors leads to the conjugate Bayesian linear regression

posteriors:

p(b|.) ∼ N(b1,B1), where

B1 =
(
B−1

0 +X ′X/σ2
)−1

, and b1 = B1(B−1
0 b0 +X ′Y /σ2).

The posteriors for αrrjs, β
rr,m
j , and ρrrjs are obtained by substituting in the expressions

above the appropriate covariates and residual variances (namely, a vector of 1s, the

macroeconomic factors F t, the frailty terms f rrst , and the variances (σrrs )2 respectively).
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Just like the default process posteriors in (3.23), I sample the latent factors f rrst and

AR(1) coefficients ϑrrs using slice sampling. For the latter, I use truncated normal

priors of the form p(ϑrrs ) ∼ N(ϑs,0, σ
2
ϑs,0

)I(−1, 1). Finally, choosing conjugate Inverse

Gamma priors for the variances (σrrs )2 of the form p
(

(σrrs )2
)
∼ IG(c(σrrs )2,0, C(σrrs )2,0),

gives closed form posteriors p
(
(σrrs )2

)
∼ IG(c(σrrs )2 , C(σrrs )2), with c(σrrs )2 = c(σrrs )2,0 +

0.5
∑
i

1i:s (where
∑
i

1i:s is the total number of seniority level s defaults) and C(σrrs )2 =

C(σrrs )2,0 + 0.5 ·
∑
t

∑
i:s

(log(R̃Rit) − αrrjs − β
rrF t − ρrrjsf rrst )2. Again more details for the

Bayesian estimation of a linear regression model can be found in section B of the

Appendix at the end of the thesis.

3.4 Data

For the macroeconomic VAR analysis I use quarterly data spanning from Q1 1959 until

Q2 2013. All data are sourced from the FRED. Output growth is defined as yt =

∆ log(Yt), where the real GDP series Yt is measured in billions of chained 2009 dollars

using the GDPC96 series. Inflation, πt = ∆ log(Pt), is defined as quarterly changes in

(logarithmic) consumer prices. For Pt I use the consumer price index series CPIAUCSL.

For the policy rate irt I use the FED Funds rate (series FEDFUNDS). As a proxy for

the indebtedness/leverage (lt) I use the ratio of outstanding debt of business corporate

(non farm) sector (series BCNSDODNS) to corporate profits after tax with inventory

valuation and capital consumption adjustments (series CPATAX). Corporate profits

reflect the internal funds available to a company, and the proportion not distributed to

shareholders contributes towards future net worth. Therefore dividing debt by profits

provides a more forward view of top down corporate leverage, as compared to the typical

definition of leverage that involves debt and equity/net worth. I have also considered

using the market value of the firm in the definition of leverage. Unfortunately, such

a choice invalidates the identification scheme. The market value of a firm is strongly

correlated with the aggregate equity price index I use in the VAR, and they should

both share the same short and long-run restrictions. A different option is to use the

book value of net worth; unfortunately, using the book net worth value leads to a

highly non-stationary time series, with unclear cyclical dynamics. Finally, I define the

real equity market returns eqt = ∆ log(SPt/Pt) as the quarterly change in logarithmic
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Figure 3.1: Historical Time Series - Macroeconomic Variables
Historical macroeconomic time series for the period Q1 1959-Q2 2013. All data sampled at quarterly frequency.
Output growth, inflation and equity prices are expressed in 1st order quarterly log differences of real GDP, CPI
and S&P 500 respectively. S&P 500 returns are deflated using the CPI. The FED Funds rate is measured in
percentage terms. Leverage corresponds to the ratio of the total credit market debt owed by the non-financial
corporates to corporate profits after tax. Shaded areas correspond to NBER recession quarters.

values of the S&P 500 index SPt, deflated by the consumer price index Pt. Historical

time series plots of the 5 macro-financial variables are depicted in figure 3.1.

For corporate bond default data I rely on Moody’s Default & Recovery database.

When examining the default time series for corporate bonds, there is a clear structural

break between the early 80s and late 70s; default rates in the latter period are signif-

icantly lower than the former. Furthermore, Moody’s introduced their alphanumeric

rating scale above Caa in mid-1982. To exclude any possible outliers and to model a

period as consistently as possible, I choose the first quarter of 1983 as the starting point.

The series ends in Q2 2013, which coincides with the last quarter of the macroeconomic

data. The different starting point of macroeconomic and credit data does not pose a

problem since the credit analysis of sections 3.3.1 and 3.3.2 is conditionally independent

of the macroeconomic model of section 3.3.3. Therefore, while the macroeconomic VAR

is estimated over the period 1959-2013, the credit models only use the macroeconomic

time series from 1983 till 2013. To define the number of firms Njit in (3.5) I use the

cohort definition: number of active companies at the beginning of each quarter. To

adjust for firms that have their rating withdrawn within a quarter, I subtract half the

number of withdraws during the quarter. Therefore, I make the implicit assumption

that withdraws are distributed uniformly within quarters.
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To capture the credit quality I use 4 rating groups. The highest credit quality

group corresponds to the investment grade rated firms (firms rated Aaa-Baa). Those

firms rarely default directly and, therefore, introducing additional granularity on that

end of the rating scale is subject to large estimation errors. For the sub-investment

grade rated firms, I use Moody’s letter grading system to classify firms into Ba, B and

Caa-C. Further split by Moody’s alphanumeric system is also possible; I refrain from

using an overly granular split to avoid picking up noise in the data as the default count

for each of the alphanumeric grades becomes low. I choose to group the firms rated Caa

and below, since firms of such low credit quality default in irregular patterns and it is

difficult to empirically maintain the discriminatory order of the rating grades. Based

on this 4 rating group segmentation, I record 14 Investment Grade firm defaults in the

sample, 78 Ba firm defaults, 465 B firm defaults, and 895 Caa-C firm defaults.

For the industry sector dynamics of corporate defaults I use Moody’s 11 segment

classification as the base. From the analysis I exclude Sovereigns and Public Finance

firms and companies with missing or unclassified industry information. Finally, to avoid

low default counts, I merge some sectors due to similar default patterns: the Media

& Publishing with the Consumer Industries segment, the Banking with the Finance

& Real Estate segment, and the Energy & Environment with the Utilities segment.

The final 6 industries are: Capital Industries, Consumer Industries (including Media &

Publishing), Financials (consisting of Banking, and Finance & Real Estate), Technol-

ogy, Transportation, and Utilities (including Energy & Environment). This industry

segmentation results in 388 company defaults for Capital Industries, 607 defaults for

Consumer Industries, 107 defaults for Financials, 156 defaults for Technology, 70 de-

faults for Transportation, and 124 defaults for Utilities.

For the recovery rates I rely on market-implied measures provided in Moody’s

Default & Recovery database. The recorded recovery rates are constructed as the

percentage change in traded prices of defaulted debt, 30 days post the default date.

For corporate bonds, recoveries are typically measured using trading prices 30 days

post default or by appropriately discounting the recovered cash flow until resolution.

While the question of which of the two measures is better often gets asked, the answer

is not straightforward. If the purpose of the recovery rate estimates is to allocated

capital for a portfolio of liquid instruments that must be sold shortly after default,
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then the 30 days post default price is the better recovery rate estimate. If, on the other

hand, the purpose of estimating recovery rates is to allocate capital for a portfolio of

illiquid assets that must be held until maturity, then the ultimate recoveries should be

preferred. Furthermore, despite not being a realised recovery rate, using post default

price data has distinct advantages. First, Moody’s Ultimate Recovery database that

contains actual recoveries has a much shorter history of data (historical data go back to

1987), unlike 30-day post default price data that go back to the early 1900’s. Second,

defaulted bonds can have long and highly diverse emergence periods making it very

difficult to assign macroeconomic variables to observed recoveries. A thorough analysis

of the macroeconomic determinants of ultimate recoveries will need to include the effect

of the economic environment on both the length of the emergence period and the level

of recoveries at emergence; this is beyond the scope of this chapter. However, Metz

et al. (2012) report that recovery rates based on 30-day post default trading prices are

very good predictors of ultimate recovery rates, both at the average and instrument

level. Despite this strong correlation between the two measures of recoveries, Metz et

al. (2012) note that trading prices tend to be close to 3% lower than ultimate recoveries

when the latter are discounted at the coupon rate. Despite all the useful properties, it

is worth pointing out that using trading prices for typically creates a higher correlation

between recoveries and the equity market. While recovery rates are a function of the

residual asset value of company after default and, therefore, there is a natural link to

the equity market, using trading prices for recovery rates might inflate this dependence.

This becomes more relevant when interpreting the result of section 3.5.2.

I segment recovery rates across two dimensions: industry sector and seniority level.

Consistently with the default rate analysis, I use the following 6 industry sectors for

the industry level segmentation: Capital Industries, Consumer Industries, Financials,

Technology, Transportation, and Utilities. There are an adequate number of unique

default events with recorded recoveries across all industry sectors, with 411 events for

Capital Industries, 647 events for Consumer Industries, 112 events for Financials, 154

events for Technology, 67 events for Transportation, and 136 events for Utilities. To

ensure that an adequate number of observations are available for inference, I opt for 3

seniority levels: Secured, Unsecured, and Subordinated. Secured debt includes First,

Second, and Third Lien issuances, while the Subordinated segmentation level includes

both Junior and Senior Subordinated debt. This 3 level seniority segmentation leads
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Figure 3.2: Historical Time Series - Credit Variables
Historical default and recovery time series for the period Q1 1983-Q2 2013. All data sampled at quarterly fre-
quency. Default rates reported per industry group and calculated using the cohort approach. They correspond
to number of defaults in a given quarter divided by the number of active companies at the beginning of the
quarter. Recovery rates are reported per seniority level, using 30-day post default trading price information.
Shaded areas correspond to NBER recession quarters.

to 579 default events with recorded recoveries for the Secured segment, 618 events for

the Unsecured segment, and 741 events for the Subordinated segment.

Figure 3.2 depicts the time series of historical data for both defaults and recoveries.

Default information is provided for the aforementioned industry sector segmentation,

while recovery rates are averaged across the 3 seniority levels. From figure 3.2 it is very

apparent that highly cyclical sectors like Capital and Consumer Industries exhibit a

substantial increase in default intensity during recessionary periods. For other sectors

default behaviour seems to be affected by particular historical events, like the dot-com

bubble in the early ’00s for the Technology sector, and the Savings & Loans crisis in

the late ’80s for the Financial sector. As compared to the default occurrence, recoveries

seem to be much less cyclical. Despite the reduced cyclicality, it is evident that during

the early and late ’00s recessions, recovery rates are lower than the long-run trend.

Finally, as expected, Secured debt has an average recovery level of 64%, Unsecured
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debt has an average recovery rate of 47%, and subordinated debt exhibits the lowest

recoveries, with an average recovery rate of 36%.

3.5 Results

3.5.1 Macroeconomic VAR

Figure 3.3 depicts the impulse response functions for each of the 5 macroeconomic

variables to each of the 5 structural shocks. The impulse responses are performed in

terms of the structural moving average form (3.16) for the 5 variable VAR, assuming 1

standard deviation independent shocks at the beginning of the forecast horizon. Results

are based on 100,000 MCMC draws from the full conditional distribution (see section

3.3.4 for details) and alongside the median responses, 1 standard deviation error bands

are also provided.

First observing the impact of aggregate supply and demand shocks, figure 3.3

indicates that both shocks lead to a comparable instantaneous increase in output. While

aggregate demand shocks disappear after less than a year, it takes almost two years for

output to return to the equilibrium growth path after an aggregate supply shock. An

aggregate demand shock shifts the demand curve to the right leading to an increased

level of output above the natural rate, creating inflationary pressures. Consistent with

expectations, the response of prices is instantaneous, as inflation peaks in the first

quarter of the shock and then slowly moves back to equilibrium. Furthermore, in line

with neo-classical models, an aggregate supply shock has an immediate negative effect

on prices over the first quarter (indicating no price stickiness), while output also rises

instantly. This sharp contrast in price behaviour under the 2 structural shocks, also

leads to very different time profiles for the FED Funds rate and by extension to the

corporate leverage. To tackle the inflationary pressures resulting from an aggregate

demand shock, FED raises interest rates by 0.75% approximately one year after the

initial shock, and this in turn makes debt issuance more costly for corporates and results

in higher than normal leverage ratios. Finally, due to the inflationary pressures in the

case of an aggregate demand shock, the real asset price level drops rapidly after the

instantaneous quarterly increase of 1%, to reach a minimum of -1% quarterly growth
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rate approximately a year after the initial shock. On the other hand, the low level

of price inflation and interest rates in the case of an aggregate supply shock helps to

maintain a persistent real stock price growth rate throughout the 20 quarters forecast

horizon.

The balance sheet shock leads to a decrease in real output, consistent with an ex-

pected gradual decrease in investment (and ultimately production) while the leveraged

corporate sector struggles to finance its capital growth. This decrease in investment

also translates to a lower demand for assets, leading to a drop in asset values. This

decrease in equity prices is also the result of the stock market participants pricing in

the future prospects and viability of the corporate sector. Perhaps counterintuitively,

the balance sheet shock leads to a temporary increase in price inflation and policy rate.

Nevertheless, following the working capital or cost channel strand of monetary policy

literature, in addition to financing long term projects, (short term) debt is also used

to finance a firm’s working capital. As the cost of debt becomes part of the firm’s

marginal cost, an increase in funding costs resulting from a credit squeeze could lead

to an aggregate supply type of shock, whereby prices for goods increase as producers

pass on their increased costs to the consumers. In order for that to happen, the cost

channel needs to be stronger than the demand channel, so that prices rise while output

drops (and consequently, interest rates also rise temporarily to respond to increased

price inflation). It is worth pointing out that this cost channel effect of a balance sheet

shock appears to be present even if I re-estimate the model using different sub-samples.

For more details on the cost channel, see Barth and Ramey (2002), Chowdhury et al.

(2006), and Ravenna and Walsh (2006). Despite the initial rise in inflation and interest

rates, the drop in investment and output eventually brings down prices and policy rate,

as the FED tries to facilitate the de-leveraging of corporates.

The effects of an asset price shock are easier to explain. An increase in equity prices

leads to an increase in wealth that eventually pushes up consumption and stimulates

investment via a Tobin Q effect. These two effects positively affect aggregate demand

and this is evident by the effect on real GDP, which stays positive for more than a year

following the shock. Price inflation also rises following an asset price shock, indicating

nominal rigidities and a slow reaction in the price formation. This relatively persistent

rise in inflation (price inflation reaction stays mostly positive throughout the 20 quarter
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horizon) leads to an increase in the FED Funds rate, consistent with an inflation-

targeting central bank. With this higher policy rate, debt issuance for corporates

becomes more costly, leading to a higher leverage level. The level of persistence for

inflation, policy rate, and corporate leverage suggests again the presence of a cost

channel in the transmission of debt cost changes. The increased level of interest rates

leads to an increased leverage level, that ultimately pushes prices up, as corporates

pass on their costs to the consumers; this increased price level keeps interest rates at a

relatively high level, and this feeds again to the corporate leverage.

A tightening monetary policy shock is associated with an increase in the FED

Funds rate by approximately 0.6%. As a result of the higher level of interest rates, out-

put drops, to reach a minimum approximately a year after the monetary policy shock.

Following that point, output bounces back. This sharp increase after the first year,

might not be identical to VARs using recursive identification schemes, see for example

Bernanke et al. (2005) for a FAVAR with Cholesky decomposition based shocks. Nev-

ertheless, this is a direct result of my identification scheme, that assumes no long-run

effect of monetary policy shocks on real output. Despite the argument of the presence

of a cost channel transmission mechanism, inflation drops following the tightening of

monetary policy. This indicates that the deflationary effect of the monetary policy

shock is higher than the cost corporates are able to pass on to consumers, and that

results in a drop in consumer price inflation. Furthermore, it avoids the so called ”infla-

tion puzzle” of Sims (1992), and Eichenbaum (1992), whereby inflation rises following

an contractionary monetary policy shock. The increased level of interest rates causes a

rise in the cost of debt, leading to a higher corporate leverage level that could also lead

to a partial sell-off of financial assets. Combined with the increase in the discount rate

for future dividends and the drop in output, contractionary monetary policy shocks

cause equity returns to drop sharply.

Table 3.1 contains the typical forecast error variance decomposition for the macroe-

conomic VAR. The forecast error variance decomposition captures the proportion of

the h-step forecast error variance of variable j that is accounted for by each of the

structural shocks ηkt, k = 1, ..., 5, and is based on:

ωjk,h =
h−1∑
i=0

φ2
jk,i/

h−1∑
i=0

5∑
m=1

φ2
jm,i,
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Figures in % Quarter 1 Quarter 20
Variable\Shock AS AD BS AP MP AS AD BS AP MP
Output 24.3 75.7 0.0 0.0 0.0 27.0 56.4 6.9 3.9 5.8
Inflation 52.9 33.5 0.0 0.0 13.6 39.6 48.5 1.8 3.8 6.3
Leverage 1.0 17.0 82.4 0.0 0.0 0.9 9.0 74.6 12.0 3.5
S&P 500 Returns 6.4 2.3 6.8 75.2 9.3 9.2 7.8 8.5 61.6 13.0
FED Funds Rate 18.2 18.9 2.7 9.9 50.3 7.6 58.0 7.7 16.1 10.6

Table 3.1: Macroeconomic VAR FEVD
Proportion of the h-step forecast error variance of each of the 5 macroeconomic variables that is accounted
for by the Aggregate Demand (AD), Aggregate Supply (AS), Balance Sheet (BS), Asset Price (AP), and
Monetary Policy (MP) structural shocks. Variance decompositions are calculated using the posterior means
of the Φis in the moving average VAR representation (3.16), and are provided for the 1st and 20th forecast
quarter.

where Φi is the matrix of the dynamic multipliers, and φjm,i is the (j,m) element of

Φi. For the Φi, the posterior means of the MCMC draws are used for the calculations.

Variance decompositions are provided for 1 and 20 quarters forecast horizon.

As expected, aggregate demand and supply shocks explain most of the forecast

error variance of output and inflation, both in the short and the long-run. Monetary

policy proves effective in reducing price inflation in the short-run, as evidenced by the

13.6% portion or the forecast error variance at quarter 1. In the long-run this propor-

tion drops to 6%, as the response of inflation to an aggregate demand dominates. The

contemporaneous big drop resulting from an expansionary aggregate demand shock

contributes significantly in explaining the short-run forecast errors of corporate lever-

age, in addition to the balance sheet shock (17% for the former effect and 82% for the

later). Interestingly, the asset price shock, despite having 0 initial impact on corporate

leverage, explains 12% of the forecast error variance in the long-run. The asset price

shock also dominates the real equity price movements. Due to the inflation adjustment,

the long-run forecast error variance of real equity returns is also attributed to the other

4 structural shocks, with proportions close to 10%, leaving a 60% share for the asset

price shock. Finally, the monetary policy shock contributes the most to the short-run

forecast error variance of the FED Funds rate, with a proportion of 50%, while aggre-

gate demand and supply shocks each contribute 18%. Interestingly, the contribution of

the monetary policy shock drops to 10% in the long-run, while the aggregate demand

shock dominates with 58%. The asset price shock also helps explaining 16% of the

long-run forecast error variance for the FED Funds rate.

To assess the robustness of my results, I apply the identification scheme in various

sub-periods in the sample. The results are remarkably stable to the sample used for

the analysis, and remain similar to those I report even if the last recession is excluded
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from the estimation. Nevertheless, it is worth noting that excluding the ’70s period

leads to problems when trying to separate aggregate demand and supply shocks; this is

not overly surprising, since the 1973 oil crisis and 1979 energy crisis are 2 of the most

characteristic periods of supply type of shocks. Furthermore, when sample only covers

the period from 1980 onwards, the cost channel of monetary policy transmission is very

strong and causes a sharp rise in price inflation following a tightening in monetary

policy.

3.5.2 Implications for Credit Risk

Corporate Defaults

For the corporate default specification, I work with highly uninformative priors for all

the parameters, centred at 0. More specifically, for the observation equation (3.6), I use

the normal priors p(αdjk) ∼ N
(
0, 104

)
, p(βd,mj ) ∼ N

(
0, 104

)
, and p(ρdjk) ∼ N

(
0, 104

)
,

while for the latent factor equation (3.7) I reduce the variance of the prior for the AR(1)

coefficient to p(ϑdj ) ∼ N (0, 10) I(−1, 1). Inference is based on 100,000 MCMC draws,

using the MCMC algorithm described in section 3.3.4, following a 10,000 burn-in sam-

ple that ensures only posterior draws are kept for inference. To narrow the confidence

intervals for the impulse response analysis, the lag polynomial of macroeconomic sen-

sitivities βdj (L) in (3.6) takes the simplified form βdj (L) = [βd,1j L`
d
1 , ...,βd,5j L`

d
5 ], where

`dm is the lag operator order for variable m. The specific set of observed macroeconomic

variables F t and their respective lag are based on a statistical model choice, using the

5% significance level as the cut-off point for the inclusion of a variable in the final

specification.

Table 3.2 contains the resulting parameter estimates and their corresponding stan-

dard errors. Consistent with the existing literature, I report highly persistent frailty

factors across all sectors (the only exception is the Transportation sector, for which

most of the autocorrelation in the observed time series is removed by the observed

macroeconomic variables). The degree of persistency, which ranges from 0.56 to 0.93

(excluding Transportation), is similar to that reported by Koopman and Lucas (2008),

and Koopman et al. (2012). Corporate leverage is the dominant factor for the majority

of sectors, and its impact on defaults is instantaneous. Especially for the Utilities sec-
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Capital Consumer Financials Technology Transportation Utilities

αd
IG - αd

IG - αd
IG -6.315 αd

IG - αd
IG - αd

IG -3.700
- - (1.483) - - (0.145)

αd
Ba -3.214 αd

Ba -3.285 αd
Ba -3.818 αd

Ba -4.038 αd
Ba -3.135 αd

Ba -3.148
(0.112) (0.364) (0.533) (0.868) (0.511) (0.314)

αd
B -2.596 αd

B -2.634 αd
B -2.602 αd

B -2.780 αd
B -2.653 αd

B -2.808
(0.103) (0.360) (0.154) (0.083) (0.225) (0.358)

αd
Caa -1.584 αd

Caa -1.671 αd
Caa -1.305 αd

Caa -1.730 αd
Caa -1.845 αd

Caa -1.653
(0.102) (0.149) (0.098) (0.157) (0.206) (0.109)

ρdIG - ρdIG - ρdIG 1.609 ρdIG - ρdIG - ρdIG -0.012
- - (0.737) - - (0.092)

ρdBa 0.016 ρdBa 0.133 ρdBa 0.722 ρdBa 0.676 ρdBa 0.308 ρdBa 0.290
(0.083) (0.056) (0.319) (0.440) (0.431) (0.142)

ρdB 0.198 ρdB 0.169 ρdB 0.325 ρdB 0.036 ρdB 0.554 ρdB 0.405
(0.050) (0.043) (0.122) (0.086) (0.197) (0.123)

ρdCaa 0.196 ρdCaa 0.067 ρdCaa 0.140 ρdCaa 0.347 ρdCaa 0.710 ρdCaa 0.049
(0.049) (0.022) (0.098) (0.092) (0.187) (0.094)

βd
yt−1

-0.124 βd
yt−1

-0.140 βd
yt−2

-0.169 βd
yt−1

-0.323
(0.055) (0.038) (0.087) (0.156)

βd
lt

0.159 βd
lt

0.079 βd
lt

0.154 βd
lt

0.117
(0.041) (0.030) (0.046) (0.046)

βd
eqt−2

-0.009 βd
eqt−2

-0.009 βd
eqt−1

-0.018 βd
eqt−1

-0.022
(0.005) (0.003) (0.007) (0.007)

βd
irt−2

0.065 βd
irt−1

0.167 βd
irt

0.059 βd
irt

0.095
(0.024) (0.026) (0.027) (0.048)

ϑd 0.746 ϑd 0.934 ϑd 0.555 ϑd 0.671 ϑd 0.320 ϑd 0.834
(0.122) (0.048) (0.193) (0.149) (0.205) (0.104)

Table 3.2: Parameter Estimates for Default Rates
Parameter estimates and corresponding standard errors for the corporate default non-Gaussian specification
(3.6)-(3.7). All estimates are based on 100,000 draws from the full posterior distribution, using the MCMC
algorithm described in section 3.3.4.

tor, corporate leverage is the only macroeconomic variable that I find to be statistically

significant; defaults in this sector are few, highly non-cyclical, and mainly driven by

changes in cost and availability of credit, as Utilities companies typically operate with

large amounts of debt. GDP growth plays a very important role for the cyclical sectors,

such as Capital Industries, Consumer Industries, and Transportation. Unlike leverage,

the effect of a drop in aggregate output takes 1 quarter to increase defaults in the

aforementioned sectors. GDP growth also affects defaults in the Financial sector, but

with a 2 quarter lag. This additional delay is possibly caused by the fact that Financial

firms indirectly feel the effects of a drop in output through increase in mortgage and

corporate lending charge-offs. Equity prices affect the net worth of corporates, which

in turn affects the availability of credit or funding in general. The effect on Capital and

Consumer industries comes with a 2 quarter lag, while for Financial and Technology

firms it comes with a single quarter lag. Financial firms typically have direct trading
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activities and a shock on the equity market is more likely to affect them sooner than

the rest of the corporates. The Technology sector includes a high number of companies

that do not yet produce profits or cash flows and, therefore, short term viability is more

closely linked to the performance of the equity market. Finally, the FED Funds rate

has typically a low impact for most sectors, except Financials. This somehow counter-

intuitive finding, is the result of concentrated defaults during the late ’80s Savings &

Loans crisis that followed the gradual increase in interest rates throughout the decade.

Figure 3.4 contains the impulse response functions for the corporate probabilities

to default PDjkt defined in (3.6). The impulse response functions are provided for each

of the 6 industry sectors, assuming a B rating for the corporates. Selecting a single

rating grade is necessary for brevity reasons, since PDjkt is a non-linear function of F t

and the responses to structural macroeconomic shocks depend on the long-run average

level of PDjkt. Assuming a given structure for the systematic factors F t, the response

functions for structural shock k are calculated as:

IRFdjk,h = N

(
αdj,B +

5∑
m=1

βd,mj · 1h≥`m · φmk,max(h−`m,0)

)
−N

(
αdj,B

)
, (3.25)

for sector j and a forecast horizon h. φmk,h is the (m, k) element of Φh. Equation

(3.25) is evaluated at each of the 100,000 MCMC draws for αdj,Ba and βd,mj to get

the full distribution of the impulse response functions. Figure 3.4 depicts the median

responses; 1 standard deviation error bands are also provided.

It is worth noting that unlike figure 3.3, the impulse response functions of figure

3.4 are highly non-linear and depending on the average PD level for a given sector

shocks might appear overly persistent (for example the aggregate demand and asset

price shocks for capital industries). In this sense the impulse response functions could

also be provided in terms of the N−1(PDjkt) transformation that would ensure linearity

and shocks that converge to the long-run average (probit) level. While I acknowledge

this shortcoming, I argue that measuring the impact on the probit scale does not give an

intuitive interpretation of the magnitude. In contrast, measuring the impulse response

functions on the actual PD scale can give risk managers a clear indication of the impact

of each shock to a quantity that directly affects their portfolio loss distribution.

A positive aggregate supply shock leads to a maximum decrease in corporate default
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rates by 5-10 basis points during the first year, with persistently lower than average

default rates thereafter, due to the combination of the shock’s long-run positive impact

on output, and the resulting low leverage and interest rate level. Nevertheless, the im-

pact after the first year is not statistically different from 0 for all sectors. As opposed

to an aggregate supply shock, a positive aggregate demand shock leads to an increase

in inflation that pushes up interest rates. This results in fundamentally different time

profiles for the 2 shocks when quantifying the effect on default rates. A positive ag-

gregate demand shock leads to an eventual rise in default rates in the long-run due

to the increased cost of debt. Following a short-run decrease in defaults of approxi-

mately 10 basis points for the more cyclical sectors, such as Capital, Consumer, and

Transportation, and close to 0 for the rest of the sectors, defaults reach a level of 5 (for

Technology firms) and 20 (for Financial firms) basis points above the long-run average

and then very slowly revert to the through-the-cycle level. This cost of debt side effect

is close to 0 for Utilities companies (as the effect of business cycles is very small for the

sector), and is very dampened for Consumer Industries (as the elevated profits from

the increased economic activity compensate for the increase in funding costs).

Responses to asset price shocks have very similar time profiles to the responses to

aggregate demand shocks; following a positive asset price shock, there is a sharp short-

run decrease in default rates over the first year, followed by a persistent rise in default

occurrence over the remaining quarters in the observation period. The magnitude of

the responses is less pronounced than those following an aggregate demand (peak drop

of default rates by 5 basis points for Capital, Consumer, Financials, and Technology,

followed by a peak rise of 5-10 basis points), while for Transportation the response of

default rates is positive throughout the 20 quarter horizon.

Finally, as expected, following positive balance sheet (shocks that lead to increased

corporate leverage) and monetary policy shocks (shocks that lead to an increase in the

FED Funds rate), there is a substantial increase in default rates across all the sectors.

Default rates increase for 2-4 quarters (2 quarters for Financials and Technology, and

4 quarters for all other sectors), after which they slowly mean revert, for the case of

monetary policy shocks, or decline below the long-run average, for the case of balance

sheet shocks. The peak response to a balance sheet shock ranges from 4 basis points

for Utilities companies to 17 basis points for Capital Industries, with the rest of the
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sectors experiencing an increase in default rates of 5-10 basis points. Monetary policy

shocks lead to milder increases in default occurrence, with sector default rates reaching

a peak of 5-10 basis points, except Financials for which default rates increase by 20

basis points.

According to the assumptions in equations (3.5)-(3.6), corporate defaults are nei-

ther normally distributed nor linear functions of observed and unobserved systematic

factors. Therefore the typical variance decomposition cannot be applied. To get an

approximate variance decomposition of the systematic default rate dynamics, I use in-

stead of the observation equation (3.5), the definition for the transformed probabilities

of default (3.6), that is both Gaussian and linear function of the systematic factors F t

and fdjt. Using the independent assumption between factors from (3.14), and the AR(1)

structure of the frailty factors from (3.7), I define the proportion of the h-step forecast

error variance of the probability to default for corporates in sector j and rating grade

g that is accounted for by each of the structural shocks and frailty factors as:

ωdgjk,h =

1k 6=FR ·
[

5∑
z=1

(
(βd,zj )2

h−1∑
i=0

(φdzk,i)
2

)]
+ 1k=FR ·

[
ρ2
gj

h−1∑
i=0

(ϑdj )
2h

]
5∑

m=1

[
5∑
z=1

(
(βd,zj )2

h−1∑
i=0

(φdzm,i)
2

)]
+ ρ2

gj

h−1∑
i=0

(ϑdj )
2h

, (3.26)

where φdzm,h = 1h≥`dm · φzk,max(h−`dm,0) is a binary indicator selecting the appropriate

element of Φh according to the sector specific lag structure provided in table 3.2, and

1k 6=FR/1k=FR are binary indicators that take the value 1 in case of structural/frailty

shocks respectively, and the value 0 otherwise.

Table 3.3 provides the proxy FEVD results for defaults, based on the definition

(3.26). Overall, there is clear evidence that the frailty factors play a central role in

explaining corporate bond defaults. This finding is not surprising, as there are sub-

stantial empirical findings supporting the view that the macroeconomic environment

captures only a small portion of corporate default dynamics; Koopman et al. (2012) re-

port that macroeconomic factors account for approximately one third of the systematic

variation in corporate defaults. Table 3.3 suggests that, in the short-run, macroeco-

nomic shocks account for approximately 30% of the forecast error variance across grade

and sector corporate defaults (portion measured as a weighted average across rating

grades/industry sectors, using the total firm count for each segment). When exploring
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Figures in % Quarter 1 Quarter 20
Variable\Shock AS AD BS AP MP FR AS AD BS AP MP FR
Capital Ba 1.3 13.8 79.2 0.0 0.0 5.8 6.0 17.3 59.4 12.1 4.3 1.0
Capital B 0.1 1.5 8.4 0.0 0.0 89.9 2.5 7.3 24.9 5.1 1.8 58.5
Capital Caa 0.1 1.5 8.5 0.0 0.0 89.8 2.5 7.3 25.1 5.1 1.8 58.2

Consumer Ba 0.1 0.8 4.8 0.0 0.0 94.3 2.3 5.3 6.5 2.4 0.9 82.5
Consumer B 0.0 0.5 3.0 0.0 0.0 96.4 1.5 3.5 4.3 1.6 0.6 88.4
Consumer Caa 0.3 2.8 16.1 0.0 0.0 80.8 5.9 13.8 16.9 6.3 2.4 54.7

Financials IG 0.0 0.0 0.0 0.0 0.0 100.0 0.2 3.8 0.7 1.3 0.9 93.1
Financials Ba 0.0 0.0 0.0 0.0 0.0 100.0 0.8 14.9 2.7 5.2 3.4 73.0
Financials B 0.0 0.0 0.0 0.0 0.0 100.0 2.0 35.6 6.4 12.5 8.2 35.4
Financials Caa 0.0 0.0 0.0 0.0 0.0 100.0 2.8 50.0 9.0 17.5 11.5 9.3

Technology Ba 0.0 0.2 0.8 0.0 0.2 98.8 0.2 2.4 4.2 2.3 0.8 90.0
Technology B 2.5 12.2 49.9 2.6 14.6 18.1 1.8 23.5 41.3 22.9 8.0 2.4
Technology Caa 0.1 0.7 2.8 0.1 0.8 95.4 0.5 7.2 12.5 7.0 2.4 70.4

Transportation Ba 2.5 5.4 1.3 3.9 21.5 65.3 1.2 51.4 9.6 16.2 11.6 10.0
Transportation B 1.0 2.2 0.5 1.6 8.7 85.9 0.9 42.0 7.9 13.3 9.5 26.4
Transportation Caa 0.7 1.4 0.3 1.0 5.6 90.9 0.8 36.0 6.7 11.4 8.1 37.0

Utilities IG 1.3 13.7 78.9 0.0 0.0 6.1 0.5 7.1 76.5 10.5 3.4 2.0
Utilities Ba 0.0 0.4 2.3 0.0 0.0 97.3 0.0 0.6 6.5 0.9 0.3 91.7
Utilities B 0.0 0.2 1.2 0.0 0.0 98.6 0.0 0.3 3.5 0.5 0.2 95.6
Utilities Caa 0.7 7.3 42.0 0.0 0.0 50.1 0.4 5.5 59.6 8.2 2.7 23.7

Table 3.3: Default FEVD
Proportion of the h-step forecast error variance of each time series of default rates that is accounted for by the
Aggregate Demand (AD), Aggregate Supply (AS), Balance Sheet (BS), Asset Price (AP), and Monetary Policy
(MP) structural shocks, as well as shocks to the frailty systematic factors (FR). Variance decompositions are
calculated using the proxy equation (3.26), and are provided for the 1st and 20th forecast quarter.

the results of table 3.3 at the grade/sector level, it is apparent that it is mainly the bal-

ance sheet shocks that help to explain a significant portion of the default forecast error

variance (79% for Ba rated Capital Industry corporates, 50% for B rated Technology

firms, and 79%/42% for Investment Grade/Caa rated Utilities companies respectively).

Monetary policy shocks only capture 20% of the forecast error variance for Ba rated

Transportation corporate defaults and 15% of the forecast error variance for B rated

Technology corporate defaults.

When moving to long-run effects of the different shocks, the findings suggest that

the importance of macroeconomic shocks increases substantially; on average across

rating grades/industry sectors, the macroeconomic environment accounts for approxi-

mately 45% of the forecast error variance (again the weighted average is based on using

the aggregate firm count as weights). Typically, aggregate supply shocks play a minor

role in explaining the forecast error variance. Aggregate demand shocks dominate the

forecasts for the Transportation sector (with proportions of total variance ranging from

36%-51%), and the sub-investment grade Financial firms (with proportions of total vari-

ance ranging from 15%-50%). Balance sheet shocks are very important in explaining

long-run fluctuations in Capital Industries (proportion of total variance between 25%

and 59%), high risk Technology (B rated Technology firms variance proportion of 41%,
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Secured Subordinated Unsecured Secured Subordinated Unsecured

αrr
cap. -0.568 -1.500 -1.058 ρrrcap. 0.227 0.027 0.389

(0.060) (0.086) (0.069) (0.058) (0.190) (0.067)

αrr
cons. -0.567 -1.545 -1.218 ρrrcons. 0.260 0.707 0.785

(0.056) (0.110) (0.111) (0.044) (0.100) (0.084)

αrr
fin. -0.524 -1.992 -0.716 ρrrfin. 0.081 1.101 1.192

(0.191) (0.224) (0.172) (0.185) (0.237) (0.173)

αrr
tech. -0.614 -1.709 -1.557 ρrrtech. -0.059 0.090 0.099

(0.092) (0.128) (0.076) (0.096) (0.264) (0.180)

αrr
transp. -0.426 -1.304 -1.358 ρrrtrans. 0.191 -0.076 -0.153

(0.112) (0.220) (0.091) (0.132) (0.360) (0.117)

αrr
util. -0.436 -1.401 -0.635 ρrrutil. 0.201 0.377 0.399

(0.080) (0.153) (0.088) (0.122) (0.268) (0.083)

βrr
yt−1

0.149 - - ϑrr 0.273 -0.095 0.093
(0.052) - - (0.226) (0.358) (0.141)

βrr
yt−2

- 0.173 0.165 σrr 0.653 1.212 0.761
- (0.076) (0.057) (0.015) (0.028) (0.012)

βrr
eqt 0.011 0.039 0.028

(0.005) (0.008) (0.005)

Table 3.4: Parameter Estimates for Recovery Rates
Parameter estimates and corresponding standard errors for the recovery rate Gaussian specification (3.10)-
(3.11). All estimates are based on 100,000 draws from the full posterior distribution, using the MCMC
algorithm described in section 3.3.4. Due to the majority of sensitivities and AR(1) coefficients of the frailty
factors not being statistically significant, the statistically significant estimates for those quantities are bolded.

Caa rated Technology firms variance proportion of 13%), and Investment Grade/Caa

rated Utilities firms (variance proportion of 77% and 60% respectively). Finally, asset

price and monetary policy shocks are mainly important in explaining long-run fluctu-

ations in Transportation sector defaults (11%-16% variance proportion for asset price

shocks, and 8%-12% variance proportion for monetary policy shocks), and to a lesser

extent high risk Financial firms (B-Caa rated Financial firms variance proportion 13%

and 18% respectively for asset price shocks), and B rated Technology firms (23% vari-

ance proportion for asset price shock).

Recovery Rates

Moving to the recovery rate findings, table 3.4 provides the parameter estimates for the

set of equations (3.10)-(3.11). Similarly to the corporate default specification, the re-

sults are based on the highly uninformative Normal priors for intercepts and sensitivities

to systematic factors p(αrrjs) ∼ N(0, 104), p(βrrj ) ∼ N(0, 104), and p(ρrrjs) ∼ N(0, 104),

and moderately informative truncated Normal priors for the AR(1) coefficients p(ϑrrs ) ∼

N(0, 10)I(1, 1). Finally, for the error variances, I assume the relatively uninformative

priors p
(
(σrrs )2

)
∼ IG(10−2, 10−2). Inference is based on 100,000 MCMC draws, fol-
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lowing a burn-in sample of 10,000 draws. Similarly to the default specification, the

lag polynomial for the macroeconomic sensitivities βrrs (L) in (3.10) takes the simplified

form βrrj (L) = [βrr,1j L`
rr
1 , ...,βrr,5j L`

rr
5 ], where `rrm is the lag operator order for variable

m. The seniority specific structure of the F t matrix is chosen using the 5% significance

level as the cut-off point for the inclusion of a variable in the final specification.

A first remark about the results in table 3.4 is that the parameter estimates for

the intercepts across the 3 seniority levels are monotonically decreasing when moving

from high to low collateralisation debt, across all sectors. The relative order of recovery

rates across the 3 seniority levels is a desirable feature, as it highlights that the long-run

average recoveries are intuitive within each sector. The second remark is that, unlike

defaults, the importance of the macroeconomic environment in explaining recovery

rates appears significantly weaker, resulting in a much smaller set of variables included

in the final specification. This is not entirely unexpected, since recovery rates do not

typically refer to a well defined period, but strongly depend on the type of debt and the

length of the resolution process (or, in this case, the market’s expectation of the time

to recover). Since the time to recover is not uniform, recovery rates might correspond

to multiple states of the business cycle. Despite this misalignment between recoveries

and business cycle, I find strong statistical evidence for including real GDP and equity

price growth rates in the econometric specification (3.10); the former enters with 1

quarter lag for secured debt recoveries, and 2 quarter lag for recoveries on unsecured

and subordinated debt. While for secured debt it is mainly the GDP growth that drives

the results, the recovery rates for unsecured and subordinated debt appear to depend

more on the equity market movements.

In addition to the macroeconomic environment, the dependence of recovery rates on

the frailty factors is fundamentally different across secured and unsecured/subordinated

debt. The frailty factor for secured debt loads almost uniformly on the different sectors

(the only major exception is the Technology sector, which has a marginally negative

loading). On the contrary, for unsecured/subordinated debt (loadings are remarkably

similar across these 2 seniority levels), it is the Financial and Consumer sectors that

dominate the construction of the frailty factors, with Capital Industries and Utilities

being the only other sectors that have statistically significant loadings for unsecured

recovery rates. Finally, the macroeconomic variables are able to remove the autocorre-
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Figure 3.5: Corporate Debt Recovery Impulse Responses Functions
Impulse-Response functions of the log recovery rates across the 3 seniority levels (RR) to each of the 5
structural shocks. The magnitude of the shocks is normalized to 1σ. AS denotes an Aggregate Supply
shock, AD an Aggregate Demand shock, BS a Balance Sheet shock, AP an Asset Price shock, and MP a
Monetary Policy shock. Vertical scales depict the difference from the long-run average level of log recovery
rates in percentage terms. Horizontal scales depict time in quarters. Median impulse responses (solid lines)
are reported with 1 standard deviation error bands (dotted lines), computed from 100,000 MCMC samples.

lation from the time series of recovery rates as evidenced by the reported estimates for

the AR(1) coefficients ϑrrs (for unsecured and subordinated debt the estimates are very

close to 0, while for secured debt the estimate of 27% appears to be not statistically

significant).

Figure 3.5 provides the impulse response functions for the log of corporate recovery

rates log(RRit), for each of the 3 seniority levels. The impulse response functions are

calculated as:

IRFrrsk,h =
5∑

m=1

βrr,ms 1h≥`rrm φmk,max(h−`rrm ,0), (3.27)

where s is the seniority level, h is the forecast horizon, φmk,h is the (m, k) element of

the matrix Φh, and 1h≥`rrm is a binary indicator that takes the value 1 when the forecast

horizon is higher or equal to the lag for variable m in the specification for seniority level

s, and the value 0 otherwise. Equation (3.27) is evaluated at each MCMC draw for

βrr,ms , and in figure 3.5 I depict median responses and 1 standard-error bands. The

shape of the responses is quite similar across the 3 seniority levels. As expected based

on the estimates of table 3.4, the asset price shock has the biggest impact, with recovery

rates rising by approximately 3%.

Both aggregate supply and demand shocks lead to a substantial increase in recovery
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rates over the first year; for secured debt, the instantaneous response is a level of

recovery rates approximately 2% higher than the long-run average, while for unsecured

and subordinated debt, recovery rates rise approximately 1% higher than the long-run

average. Recovery rates following an aggregate supply shock stay persistently positive,

while the effect of the aggregate demand shock becomes statistically not different from

0 from the second year onwards.

A positive balance sheet shock and the resulting drop in corporate net worth, as

firms struggle to find funding for new investment, cause an immediate drop in recovery

rates to a level approximately 1% lower than the historical average. The time profiles of

the responses to balance sheet shocks are significantly different across secured and non

secured bonds; while for the former type of bonds the drop in recovery rates is persistent

through time, for the latter type of bonds the recovery rates temporarily rise 1 year

after the initial shock. This difference is based on the higher sensitivity of non secured

debt to equity market movements; as the cash flows for unsecured and subordinated

debt are more uncertain, traded prices for defaulted bonds are more likely to be driven

by fluctuations in aggregate equity prices. The moderate increase in real equity prices

1 year after a balance sheet shock, due to a combination of falling inflation and interest

rates, appears to drag upwards the recovery rates. Nevertheless, it is worth pointing

out that this relationship might be biased by the use of traded prices for defaulted debt

as a proxy for recovery rates; results based on ultimate recoveries could potentially

shed more light.

Finally, the effect of a monetary policy shock is relatively mild, having a statistically

significant impact for the first 3 quarters. The initial decrease in recovery rates follow-

ing the higher level of interest rates ranges from 0.9%-1.5% and reflects the different

discounting the market applies to future cash flows across the 3 seniority levels.

For the forecast error variance of the recovery rates for sector j and seniority level

s I use the following definition:

ωrrjsk,h =

1k 6=FR ·
[

5∑
z=1

(
(βrr,zs )

2
h−1∑
i=0

(φrrzk,i)
2

)]
+ 1k=FR ·

[
ρ2
js

h−1∑
i=0

(ϑrrs )2h

]
5∑

m=1

[
5∑
z=1

(
(βrr,zs )2

h−1∑
i=0

(φrrzm,i)
2

)]
+ ρ2

js

h−1∑
i=0

(ϑrrs )2h

, (3.28)

where φrrzm,h = 1h≥`rrm · φzk,max(h−`rrm ,0). For comparability with the default rates I
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Figures in % Quarter 1 Quarter 20
Variable\Shock AS AD BS AP MP FR AS AD BS AP MP FR
Secured Cap. 0.3 0.1 0.5 4.5 0.5 94.1 5.5 11.7 2.2 4.4 1.7 74.6
Secured Cons. 0.2 0.1 0.4 3.5 0.3 95.5 4.4 9.5 1.8 3.6 1.4 79.4
Secured Fin. 1.8 0.8 2.7 25.1 2.5 67.2 15.7 33.4 6.2 12.5 4.9 27.3
Secured Tech. 2.6 1.2 3.9 36.7 3.7 52.0 18.0 38.3 7.2 14.4 5.6 16.6
Secured Trans. 0.4 0.2 0.7 6.2 0.6 91.8 7.0 15.0 2.8 5.6 2.2 67.3
Secured Util. 0.4 0.2 0.6 5.7 0.6 92.6 6.5 14.0 2.6 5.2 2.0 69.6

Subordinated Cap. 5.3 2.5 8.0 75.1 7.6 1.7 11.5 20.4 9.6 47.8 9.7 1.0
Subordinated Cons. 0.4 0.2 0.6 6.0 0.6 92.1 1.5 2.7 1.3 6.3 1.3 87.0
Subordinated Fin. 0.2 0.1 0.3 2.6 0.3 96.6 0.7 1.2 0.6 2.8 0.6 94.2
Subordinated Tech. 4.5 2.1 6.8 64.2 6.5 16.0 10.4 18.6 8.7 43.5 8.8 9.9
Subordinated Trans. 4.7 2.2 7.1 67.4 6.8 11.8 10.8 19.1 9.0 44.9 9.1 7.1
Subordinated Util. 1.2 0.6 1.9 17.7 1.8 76.8 4.0 7.1 3.3 16.6 3.4 65.6

Unsecured Cap. 0.7 0.3 1.1 9.9 1.0 87.0 3.3 6.3 2.2 9.8 2.2 76.3
Unsecured Cons. 0.2 0.1 0.3 2.7 0.3 96.5 1.0 1.9 0.7 2.9 0.6 92.9
Unsecured Fin. 0.1 0.0 0.1 1.2 0.1 98.4 0.4 0.8 0.3 1.3 0.3 96.8
Unsecured Tech. 3.7 1.7 5.7 53.4 5.4 30.1 11.5 21.9 7.8 34.1 7.5 17.2
Unsecured Trans. 2.6 1.2 4.0 37.6 3.8 50.8 9.3 17.7 6.3 27.5 6.1 33.2
Unsecured Util. 0.7 0.3 1.0 9.5 1.0 87.6 3.2 6.0 2.1 9.4 2.1 77.2

Table 3.5: Recovery FEVD
Proportion of the h-step forecast error variance of each time series of recovery rates that is accounted for by the
Aggregate Demand (AD), Aggregate Supply (AS), Balance Sheet (BS), Asset Price (AP), and Monetary Policy
(MP) structural shocks, as well as shocks to the Frailty systematic factors (FR). Variance decompositions are
calculated at the average level of recovery rates using the equation (3.28), and are provided for the 1st and
20th forecast quarter.

exclude (σrrs )2 from (3.28), interpreting variance decomposition with respect to only

observed and unobserved systematic factors (that implies a variance decomposition on

the average level of recovery rates). Based on the definition (3.28), table 3.5 summarises

the FEVD at the industry sector and seniority level. Macroeconomic shocks account

for approximately 24% of the forecast error variance for recovery rates on average in

the short-run (weighted average across all seniority/sector segments, using the number

of defaults as weights), and approximately 34% in the long-run. These findings clearly

show that the recovery rates are much less impacted by macroeconomic conditions as

compared to corporate defaults, and that the systematic frailty factors are essential

when trying to capture short and long-run dynamics of losses following corporate de-

faults. Exploring the variance decomposition at the sector/seniority level suggests that

recovery rates are mainly impacted by asset price and aggregate demand shocks; the

former type of shocks is more evident in unsecured and subordinated debt recoveries,

while the latter type of shocks mainly drives secured debt recoveries. The effect of asset

price shocks is particularly strong in the short-run, though the results might be biased

due to the use of traded prices of default rates as a proxy for ultimate recoveries.

As described in section 3.4, one of the drawbacks of using 30 days post default

prices as proxies for the recovery rates is that it might inflate the dependence on the

equity market. This is definitely a factor that should be taken into consideration when
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comparing the strong dependence of corporate defaults to the real economy and balance

sheet shocks and the increased dependence of recovery rates on the asset price shock.

Nevertheless, the depressed dependence of recoveries on real economy and balance

sheet shocks should not be solely attributed to the use of trading prices. The use

of ultimate recoveries instead does not necessarily lead to higher dependence on the

business cycle. This is mainly because recovery rates measured at resolution time

would typically depend on the economic conditions more than a year from the time of

default (corporate debt workout periods post bankruptcy can be extremely lengthy).

Therefore, finding any statistical significance in correlations with the economic activity

at time of default might be as difficult, if not even more difficult, when moving away

from trading price recovery rates.

3.6 Conclusion

In this chapter I introduce a new identification scheme to isolate real economy and

macro-financial shocks. The scheme combines a set of short and long-run restrictions

on the residuals of a 5 variable VAR, and leads to intuitive response functions to ag-

gregate supply, aggregate demand, corporate balance sheet, asset price, and monetary

policy shocks. The identification of the corporate balance sheet shock leads to credit

channel/financial accelerator type of effects in the endogenous macro-financial system.

In addition, I have reported strong evidence that corporates are able to partially pass

on changes in their funding costs to consumers, therefore creating a cost channel mech-

anism in the economy. This cost channel mechanism causes balance sheet, asset price,

and monetary policy shocks to have a material impact on inflation.

The identification scheme has been then used to quantify the impact of the struc-

tural shocks on corporate default likelihood and recovery rate post default. On average,

default rates are more sensitive to balance sheet and aggregate demand shocks, espe-

cially for the cyclical sectors. Contractionary monetary policy shocks typically increase

defaults by 5%-20%, with the effect taking 3-4 quarters to materialise. The effect of

monetary policy shocks is more pronounced for financial firms that have their income

stream tied to mortgage lending. Recovery rates are more sensitive to asset price shocks;

this sensitivity might be partially biased by the use of traded price of defaulted debt as
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a proxy for ultimate recoveries. On average, macroeconomic shocks account for approx-

imately 30% and 45% of the short-run and long-run forecast error variance of corporate

defaults respectively, while for the recovery rates, the macroeconomic shocks explain

approximately 24% and 34% of short and long-run forecast error variance respectively.

The work presented in this chapter can be extended in a number of ways. For

the identification of the macroeconomic shocks, using large scale FAVAR or dynamic

factor models, similar to Bernanke et al. (2005) and Boivin et al. (2013), can help to

address the issue of omitted variables from the VAR. The transmission mechanism for

many shocks can be complicated and the information set available to agents can be very

large as compared to the, typically low, dimensionality of VARs. Therefore, principal

component based factor models have been suggested in the literature as appealing and

computationally feasible alternatives to traditional VAR analysis. Despite the appeal-

ing features of high dimensionality and low computational burden, further research is

required to incorporate long-run impact restrictions of structural shocks on individual

input variables when extracting factors via principal components.

Concerning the credit risk analysis, more complex non-Gaussian dynamic factor

structures can be used to jointly model defaults, recoveries, and potentially rating mi-

grations, along the lines of Creal et al. (2013). This type of joint modelling of defaults,

recoveries and migrations captures more accurately the complicated correlation struc-

tures across the different components of credit losses in a portfolio setting. Furthermore,

when combined with macroeconomic variables, the mixed-measurement dynamic fac-

tor models of Creal et al. (2013) can simultaneously capture the interactions of credit

specific shocks with the macroeconomic environment. Nevertheless, when moving away

from recursive identification schemes for structural shocks, the size of the resulting

state space model and the complexity of the required calculations, quickly turn the

estimation computationally infeasible.
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Chapter 4

Momentum in Credit Rating

Downgrades: Through-the-Cycle

Evidence

4.1 Introduction

External credit agencies and their ratings continue to play a very important role in

today’s corporate finance and risk management, despite the criticism they have been

subject to in the aftermath of the recent credit crisis. By providing an independent as-

sessment of relative credit risk for corporate debt, credit agencies are key determinants

of credit instrument yields, credit portfolio profit & loss distributions, and regulatory

capital for banks and financial institutions. The Markov assumption offers computa-

tional advantages and, therefore, is typically used in practice to model the stochastic

evolution of the entire set of discrete ratings. According to the Markov model, the

information needed to predict a rating migration does not extend beyond the current

rating of a firm. Nevertheless, this Markovian assumption is highly questionable em-

pirically, an observation that was highlighted more than 20 years ago by Altman and

Kao (1992).

In this chapter I focus on a specific type of non-Markovian behaviour in corporate

credit ratings, the momentum effect or serial dependence. While estimating the mo-
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mentum effect has attracted some interest over the past decade this is the first study

that explores the stability of this rating momentum effect over time. More specifically,

I am interested in testing whether the business cycle and the time since rating assign-

ment enhance or weaken the directional serial dependence that is observed in credit

ratings. Following the vast body of literature, I base the analysis on continuous time,

as it allows to better capture the probabilities of rare transitions and to fully reflect the

available information provided in the data. Using migrations from Moody′s Default &

Recovery Database, I statistically test for 3 types of effects:

• Rating momentum: This is the Through-the-Cycle serial dependence effect, mea-

suring the average increase in likelihood of observing a down(up)grade for firms

that reached their current rating grade from a higher(lower) grade. While, this

is the same effect as in Lando and Skødeberg (2002), in this study I adjust the

estimates for industry heterogeneity. Consistently with prior studies, I report a

very strong downward drift (that can lead to an average increase of 4 times the

baseline intensity) while the upward drift is significantly milder (with the average

increase to be approximately twice the baseline intensity).

• Rating momentum adjusted for duration time: This effect adjusts the directional

dependence for the amount of time a firm has spent in a given rating grade. I

show that the duration dependence is highly non-monotonic and I model it with

flexible fractional polynomials. The duration adjustment is very strong for both

downgrades and upgrades, albeit exhibiting different time profiles across invest-

ment and speculative grade firms. The downward drift for investment grade firms

is approximately exponentially decaying with time, starting from a point 6 times

higher than the baseline downgrade intensity. On the contrary, the time profile of

the upward drift for investment grade firms is monotonically increasing at a di-

minishing rate of change (negative second derivatives). For sub-investment grade

firms, both upward and downward drift have similar time profiles, with a rapid

rise of the momentum effect to peak within 2 months following a rating change.

This peak level is much higher for the downward drift (7.5 times the baselines

intensity) as compared to the upward drift (4 times the baseline intensity).

• Rating momentum adjusted for business cycle: This effect captures cyclical move-

ments in rating momentum. Without loss of generality, I use the CFNAI index
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as a proxy for aggregate business cycle fluctuations. The analysis shows that,

for investment grade firms, the time profile of both upward and downward rating

momentum remains largely unaffected across the business cycle. On the contrary,

for speculative grade firms, business cycle dependence of the momentum effect is

statistically significant for both upgrades and downgrades. As the economic con-

ditions improve, the downward momentum effect peaks earlier and decays faster

than during periods of stress. Furthermore, the peak of the downward drift be-

comes higher as the economy deteriorates and can exceed 8 times the baseline

intensity level, during periods of extreme stress. Finally, for speculative grade

upgrades, the upward drift has a clear positive dependence to the state of the

business cycle, with the time profile shifting proportionally to approach a level of

6 times the baseline under extremely benign economic conditions.

All 3 effects are tested in addition to the base business cycle effect. Due to significantly

smaller sample coverage, I refrain from using watch-lists and outlooks. Despite their

clear additional information, they are available for a much shorter historical time period

and cover a significantly smaller set of firms as compared to the actual ratings.

To quantify the impact of this chapter’s findings, I examine a few key metrics,

particularly focusing on the implications for financial institutions risk management. For

a financial institution’s banking book, I use the Basel II/III RWA prescribed formula to

capture the impact on regulatory capital, while the results for provisions and economic

capital are based on jump-to-default expected and 99% tail losses. Finally, for the

trading book I also cover expected and tail marked-to-market losses, resulting from

a combination of credit spread movements and jump-to-default events. I examine the

behaviour of each of the metrics across 2 corporate bond portfolio structures, that reflect

high (primarily sub-investment grade bonds) and low (predominately investment grade

bonds) risk exposures respectively.

Using a business cycle adjusted transition matrix as the base case, I show that the

regulatory capital does not strongly depend on the presence of momentum in credit

ratings; large differences are mainly observed for high credit quality portfolios dur-

ing periods of extreme stress. Unlike capital requirements, expected actual losses are

significantly affected by the presence of rating momentum. During periods of stress,

momentum adjusted 1-year actual losses are close to 11% higher than the momentum
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insensitive case; over the 2-year period, the relative impact of rating momentum is close

to the 20% mark. A significant proportion of this difference can be attributed to the

business cycle and duration time dependence of the momentum effect; using the typical

proportional rating momentum effect as in Lando and Skødeberg (2002) can lead to

1.5-4 times lower losses as compared to the non-proportional specification of this chap-

ter. Furthermore, rating momentum has a higher absolute impact on marked-to-market

losses during the severe stress period 2008-2009 as compared to jump-to-default losses

(3.5 times the absolute loss amount for 1-year jump-to-default losses and 1.8 times the

2-year loss figure). Finally, the absolute momentum impact on 99% tail losses is of

similar magnitude to that for the average losses; it is only during periods of stress that

the absolute impact for tail losses can be 15%-20% higher than the impact on average

losses.

The econometric framework and the details of the estimation process are described

in section 4.3. Section 4.4 details the data I use for the analysis and summarises the

key features of historical credit rating transitions. I provide the parameter estimates

of the econometric specification in section 4.5.1. The credit portfolio assumptions and

the impact of rating momentum on portfolio credit losses are presented in section 4.5.2.

Finally, section 4.6 concludes.

4.2 Relevant Literature

Deviations from the Markovian behaviour typically take the form of directional serial

dependence in rating actions and duration dependence from the point a rating is as-

signed. Serial dependence is normally associated with a downward drift in subsequent

rating migrations. This rating drift is a consequence of the dynamic evolution of a firm’s

financial strength. If a firm’s financial condition is deteriorating, then eventually it will

be downgraded. If it does not take the necessary actions to increase profitability and

reduce debt then it will cause its rating to be changed downwards again. In parallel, the

rating change itself might have an adverse effect on this domino effect. Avramov et al.

(2007) show that there is a strong momentum in profitability for low rated public firms

with short selling strategies generating statistically significant positive payoffs. This

empirical evidence provides an indication that as firms are downgraded to lower rating
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grades, market pressure causes their asset values to decrease, which in return might

cause further deterioration of credit quality. This feedback effect is further empirically

supported by Campbell and Taksler (2003) and Campbell et al. (2008) who show that

low rated firms exhibit abnormally low stock returns and high equity volatility that can

cause as much cross-sectional variation in corporate bond yields as can rating changes.

Duration dependence is the result of two opposing effects. First, maintaining a stable

financial condition becomes less likely the longer a firm stays in a given rating grade;

therefore downgrades (for cases of deteriorating financial strength) and upgrades (for

cases of improving financial strength) become more possible. These types of duration

effects are closely related to firm ageing and life-cycle effects, see Agarwal and Gort

(2002) and the references therein. A second type of duration effects, this time negative,

is related to the reluctance of rating agencies for multi-notch rating changes. In this

case, firms that will eventually be downgraded or upgraded by multiple notches, spend

a short amount of time in the intermediate grades. Which of the two types of effects

prevails at the end and what is the actual time profile of the duration effect remains un-

clear, despite some evidence from Lando and Skødeberg (2002) for an overall negative

effect.

Early studies on the non-Markovian rating migrations literature, including Kav-

vathas (2000), and Lando and Skødeberg (2002), use continuous time rating migration

and default frameworks to test for the presence of duration and rating momentum

effects. The 2 studies report an overall negative dependence to duration time and a

strongly positive correlation between successive migrations of the same type. Chris-

tensen et al. (2004) use a hidden Markov approach to incorporate the rating momentum

as ”excited states” when estimating rating transition and default probabilities condi-

tional on previous downgrades. Using a similar framework, Güttler and Raupach (2010)

show that ignoring the rating momentum effect leads to an underestimation of VaR by

107 basis points on average. Generalising the serial dependence literature, Güttler and

Wahrenburg (2007) show that momentum effects are not only observed in single agency

ratings. Using joint data from Moody’s and S&P, they provide evidence that the rating

momentum is shared among the rating agencies; the direction and the magnitude of a

rating change from one agency causes a similar action from the other rating agencies.

Introducing non-Markovian elements in transition matrices makes the generation
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of long run predictions a computationally intensive task. Another approach suggested

in the literature is to expand the data to also include watch-lists and rating outlooks in

addition to rating changes. Hamilton and Cantor (2004) show that adjusting credit rat-

ings under review by two notches and adjusting ratings in the outlook list by one notch

helps to increase the accuracy of rating predictions. Evidence provided by Hull et al.

(2004) from the credit default swap market support this finding. They show that while

additions to the watch-list are informative for explaining credit default swap move-

ments, the eventual rating downgrades are not, indicating that the market prices the

rating migrations the moment a company is watch-listed. Bannier and Hirsch (2010),

using data from Moody’s, argue that watch-lists are used to enhance the information

flow for better rated firms, while for worse rated firms, they are used as a controlling

mechanism to incentivise towards a lower risk taking behaviour.

Since portfolio level rating migrations should reflect movements in the aggregate

default rates, transition matrices are expected to exhibit cyclical variations. Past his-

torical experience shows that the credit cycle follows approximately the business cy-

cle and, therefore, business cycle variables could help explain stochastic behaviour of

rating migrations. Early studies that identified the increase in downgrade frequency

during economic downturns include Nickell et al. (2000), and Bangia et al. (2002). In

a more recent study, Stefanescu et al. (2009), using S&P data, show that including

observed business cycle and equity price index variables increases the out of sample

performance of rating migration and default rate forecasting models. Fei et al. (2012)

use a hidden Markov chain as a proxy for the state of the business cycle and model the

rating migration matrix as a Mixture of Markov chains. At the same time they assess

the implications for financial institutions and they argue that properly incorporating

the cyclical dynamics of rating migrations helps to decrease the level of procyclicality

in capital requirements. Finally, Figlewski et al. (2012) explore the effect of general

macroeconomic conditions on default and rating migrations using a continuous time

Cox proportional hazards specification by controlling for rating momentum and ageing

effects. For their sample, covering all corporate issuers over 1981-2002, they report un-

stable macroeconomic sensitivities that are strongly affected by the variable selection

process.

While the concept of serial dependence in credit ratings has been explored in great
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length by the aforementioned studies, there is currently no study that looks into how

this momentum effect changes with time. Therefore, this chapter directly extends

the work of Lando and Skødeberg (2002) and Figlewski et al. (2012) to account for

a time variation in the momentum effect, both in survival (the time it takes a rated

company to migrate from one rating to another) and calendar time. For the calendar

time variation I employ the CFNAI economic index and I explore the interaction of the

momentum effect with the business cycle, extending in that way the work of Nickell

et al. (2000), Bangia et al. (2002) and Stefanescu et al. (2009) that do not consider the

serial dependence in the analysis.

The second contribution of this chapter is to I extend the Cox proportional hazard

specification of Lando and Skødeberg (2002) in 2 very important ways in order to make

statistical inference more robust. First, including the interaction of rating momentum

with the time a firm has spent in its current rating grade corrects the semi-parametric

specification for the non-proportionality of the rating momentum effect. Ignoring this

non-proportional effect leads to the violation of the model’s assumptions and therefore

to biased inference. Second, I allow for industry sector heterogeneity among firms.

The unadjusted Cox model assumes the same term structure of rating migrations for

all firms. As I show, the time profiles across different industries can deviate signifi-

cantly and, therefore, adjusting for sector heterogeneity enhances the robustness of the

reported results.

The final contribution of this chapter is to quantify the impact of the rating mo-

mentum effects on credit portfolios. This is an area that academic studies typically

ignore. The two most relevant studies that quantify the different effects for credit risk

management are Fei et al. (2012) and Figlewski et al. (2012). Nevertheless, the first

study does not deal with serial dependence, while the second study treats only static

momentum effects. This is the first study that quantifies momentum and business cy-

cle effects (and their interaction) in a model consistent manner. Clearly, relaxing the

Markovian assumption underlying the stochastic movements of rating grades and in-

troducing duration and business cycle dependence has implications for credit portfolio

risk measurement and management. For lending institutions, losses for loan exposures

need to be forecasted for accurate provisioning, pricing, risk allocation and regulatory

compliance. Traded credit positions need to be marked-to-market to reflect spread
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movements and calculate appropriate hedges. Credit ratings are used to both differ-

entiate the default likelihood of different obligors and determine the market prices of

credit products. Therefore, the findings in this chapter have implications for both

financial institutions and individual investors alike.

4.3 Econometric Framework

4.3.1 Specification

The econometric analysis is based on historically observed rating changes between the

discrete set of rating grades K = {1, 2, ...,K} for a set of i = 1, ..., n firms. The

alphanumeric rating grades (Aaa,Aa1, ...,C) are mapped to the numeric set of grades

K in order of decreased creditworthiness, so that Aaa corresponds to grade 1, Aa1

corresponds to grade 2 etc. To make full use of the available data, I use continuous

time, as rating changes are recorded on a daily basis.

I assume that for each firm i there exists a right continuous counting process

{Njki(t) : t ≥ 0}, starting from value 0 when firm i is assigned the rating j at t = 0.

The counting process Njki(t) increases by 1 each time firm i migrates from grade j

to grade k and its value set is finite, Njki(t) < ∞. The specific time that firm i

experiences a rating change to k is defined as Tki (Tki is a vector when firm i has

multiple rating changes to grade k). Finally, I denote by i ∈ Rj(t) that firm i has

rating j at time t and therefore is ”at risk” for all migrations from grade j. Using these

definitions, I express both firm-specific, Njki(t), and aggregate rating migration type,

Njk(t), counting processes as follows:

Njk(t) =
n∑
i=1

Njki(t),

Njki(t) = I{Tki ≤ t : i ∈ Rj(t)}.

(4.1)

In (4.1), I slightly abuse the notation for i, to take a separate value each time firm

i ∈ Rj(t), therefore forcing each of the individual point processes Njki(t) to take values

in {0, 1}. All point processes Njki(t) are adapted to the filtration Ft, which summarises

all the available information at time t. In a survival analysis setting, the filtration Ft
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typically consists of the known covariate values at time t and the number of events prior

to t. Conditional on the filtration Ft, rating events, and consequently the counting

processes Njki(t), are independent. Since Njki(t) captures by construction at most 1

event, past events do not enter the filtration and I express Ft = Zjki(t), for a covariate

vector Zjki(t).

Each point process Njki(t) has a corresponding intensity λjki(t), capturing the

instantaneous migration probability from rating grade j to rating grade k. In terms of

the point process Njki(t), the intensity λjki(t) is defined as

λjki(t) = lim
∆t→0

P (Njki(t+ ∆t)−Njki(t) = 1|Ft)
∆t

.

I assume a multiplicative form to link the covariate vector Zjki(t) to the migration

intensity and therefore λjki(t) can be written as follows:

λjki(t) = λ0
jk(t)e

βjkZjki(t), (4.2)

where λ0
jk(t) is the baseline intensity (intensity when explanatory variables are 0). The

intensity form in (4.2) has the property that changes in covariates result in intensities

proportional to the baseline level (commonly referred to as proportional hazard model

in the literature). The resulting density function for the time spent in a given rating

grade takes the form

fjki(t|Zjki(t)) = λ0
jk(t)exp

(
βjkZjki(t)

)
exp

(
−exp(βjkZjki(t))

∫ t

0
λ0
jk(u)du

)
,

where Λ0
jk(t) =

∫ t
0 λ

0
jk(u)du is the baseline cumulative intensity up to time t for the mi-

gration from rating j to rating k. The corresponding survival function can be expressed

as:

Sjki(t|Zjki(t)) = S0
jk(t)e

βjkZjki(t),

where S0
jk(t) = exp(−Λ0

jk(t)) is the baseline survival function for the migration from

rating j to rating k. For a more detailed exposition of the counting process approach

to survival analysis, see Andersen et al. (1993), Aalen et al. (2008), and Fleming and

Harrington (2011).

Since there is no theory behind the shape of the baseline intensity for rating migra-
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tions, I leave it unspecified. Leaving the baseline unspecified circumvents any estima-

tion bias caused by choosing a parametric form that does not fully reflect the empirical

data. Despite not giving a parametric form to the baseline, due to the proportionality

assumption, intensity ratios can be used to draw useful conclusions. From the esti-

mates of βjk in (4.2) I derive the relative migration intensity across different values

of an explanatory factor. For example, if the explanatory factor of interest in (4.2) is

the rating momentum indicator Zmjki (reflecting whether a given firm has reached its

current rating via a downgrade), then the ratio of the intensities for 2 discrete values

of the indicator leads to the relative intensity

λ0
jk(t)e

βmjk{Zmjki=1}

λ0
jk(t)e

βmjk{Zmjki=0} = eβ
m
jk(1−0) = eβ

m
jk , j > k (4.3)

Therefore, if the coefficient βmjk if 0.7 then firms that have reached the current rating

grade via a downgrade are twice more likely to be downgraded again as compared to

firms that have not been previously downgraded (since exp(0.7) ≈ 2).

The rating migration pair specific baseline intensities λ0
jk(t), j, k ∈ K are assumed

to be different across industry sectors g = 1, ..., G, despite being left unspecified. Dif-

ferentiating the baseline intensities by industry sector adjusts the parameter estimates

for sector heterogeneity without increasing the parameter set. Alternatively, sector

heterogeneity can be introduced via industry specific fixed or random effects (inter-

cepts or slopes). Nevertheless, both fixed and random effects approaches assume there

are enough observations for each sector and migration pair to make inference. The

benefit of introducing industry heterogeneity via baseline intensity stratification is that

elements of βjk are still estimated jointly across sectors; therefore, getting parameter

estimates in cases of missing observations for a subset of sectors in a given migration

pair is still feasible.

Once the parameters βjk have been estimated, I obtain smoothed, non paramet-

ric, estimates of the common baseline intensities λ0
jk(t) by using the standard kernel

smoothing methodology

λ0
jk(t) =

1

b

∑
{i:Tki≤t}

K
(
t− Tkl
b

)
1

|{h ∈ Rj(Tki)}|
, (4.4)
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where |{h ∈ Rj(Tki)}| denotes the size of the risk set at each transition time, the kernel

K is a bounded function on [−1, 1], which is 0 outside [−1, 1] and integrates to 1 over

this interval, and b is the kernel bandwidth that determines how much rating migration

events away from t would influence the intensity at t. For K I choose the Epanechnikov

kernel

K =


3
4

(
1− 1

5x
2
)
/
√

5 if |x| <
√

5

0 otherwise.

For the bandwidth b I choose the value that minimises the mean integrated squared

error if the data were Gaussian and a Gaussian kernel had been used. For further

information on kernel smoothing and bandwidth selection, see Wand and Jones (1995).

The main focus of the chapter is to explore whether the rating momentum effect

depends on business cycle fluctuations and time since rating assignment. The addition

of those two effects leads to a covariate vector Zjki(t) in (4.2) that varies across both

calendar and survival time, therefore introducing non-proportional elements in the base

specification (4.2) that assumes a time invariant Zjki. More specifically, the covariate

vector Zjki(t) comprises of 4 types of explanatory factors:

• Explanatory factors that are constant: After a certain migration event takes

place, the rating momentum effect is constant across both survival and calendar

time. The rating momentum indicator is denoted by Zmjki

Zmjki =


I {j > k} if previous migration is downgrade,

I {j < k} if previous migration is upgrade,

0 otherwise.

(4.5)

Zmjki takes the value 1 if the previous rating action was a downgrade(upgrade)

and j > k ( j < k), and the value 0 otherwise. Once a migration occurs, this

variable is fixed.

• Explanatory factors that change with calendar time τ : To capture systematic

movements in rating migrations, I use the CFNAI aggregate diffusion index as a

proxy for the business cycle fluctuations. The CFNAI covariate takes the form

Zcfnai,i(τ) = CFNAI(τ), (4.6)
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where τ is the calendar time corresponding to each i. This corresponds to the

base specification, since it does not adjust the systematic fluctuations for the

rating momentum effects.

In addition to the systematic effect Zcfnai,i(τ), I include in the model its interac-

tion with rating momentum. This interaction term takes the form

Zmcfnai,jki(τ) = Zcfnai,i(τ)Zmjki, (4.7)

where the rating momentum Zmjki is defined in (4.5).

• Explanatory factors that change with survival time t: To capture variations of

the rating momentum effect with the time spent in a given rating grade, I include

in Zjki(t) the interaction of Zmjki from (4.5) with survival time. There is no prior

information to dictate the functional form of time and, therefore, I use flexible

2nd order fractional polynomials. The fractional polynomial form uses two terms,

each one containing survival time raised to a power

Zmjki(t) =
[
Zmjkit

p1 Zmjkit
p2
]
, (4.8)

where t is the survival time corresponding to each i and p1, p2 are the degrees of the

two polynomial terms. The set of powers is restricted to {−2,−1,−0.5, 0, 0.5, 1, 2, 3}.

For each migration pair, I try all possible permutations, and I select the set of

powers that leads to the highest likelihood value. For more information on frac-

tional polynomials see Royston and Altman (1994).

• Explanatory factors that change with survival time t and calendar time τ : To

adjust the time-varying rating momentum effect for business cycle fluctuations, I

include in Zjki(t) the interaction of Zmjki(t) in (4.8) with the CFNAI index, in the

form of variable

Zmcfnai,jki(t) = Zmjki(t)Zcfnai,i(τ) =
[
Zmjkit

p1Zcfnai,i(τ) Zmjkit
p2Zcfnai,i(τ)

]
, (4.9)

where t is the survival time for each i and τ is the calendar time corresponding

to each i. Without loss of generality, I assume the fractional polynomial powers

in (4.8) and (4.9) are the same.
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Allowing the rating momentum to depend on survival time has a dual role. First,

it sheds light into how the rating momentum effect varies across firms with different

durations in their current rating grade. Second, it renders the maximum likelihood in-

ference of section 4.3.2 valid, if the true effect of rating momentum is non-proportional.

The hazard ratio example in (4.3) and the semi-parametric analysis of section 4.3.2 are

based on the proportionality assumption. If an effect is non-proportional but the sur-

vival time is omitted from the corresponding covariate, then the shape of the baseline

intensity in (4.3) cannot be ignored and the partial likelihood estimates in section 4.3.2

are invalid. Revisiting the hazard ratio example in (4.3), the inclusion of time varying

effects in (4.2) renders the proportional effect only valid for a given t.

4.3.2 Estimation

As Cox (1972) and Cox (1975) show that the semi-parametric survival model can be

estimated by maximising the so-called partial likelihood function. The partial likelihood

for the observed migration from rating grade j to rating grade k is defined as

Ljk(βjk) =
n∏
i=1

 eβjkZjki(Ti)∑
h∈R(Ti)

eβjkZjkh(Ti)


δi

(4.10)

where, using the notation of (4.1), i = 1, ..., n iterates over the distinct firm observations

in grade j, Ti is the time firm i leaves grade j, R(Ti) is the set of active firms at time

Ti and δi is the censoring indicator such that δi = 1 if Ti is a migration to grade k and

δi = 0 if Ti otherwise.

Equation (4.10) corresponds to the exact partial likelihood only when there are no

tied rating actions at any given time point Ti (and therefore the rating migrations can

be ordered in terms of survival time). Under a continuous time framework there can be

no events occurring at precisely the same time. Therefore, firms have the same survival

times only because the measurement is not accurate and granular enough, resulting in

information loss. When there are tied rating actions the, so called, exact partial likeli-

hood calculation involves the evaluation of the likelihood under all possible orderings of

the tied event times, see Kalbfleisch and Prentice (1973) and Kalbfleisch and Prentice

(2002). Given the number of rating actions available in the sample, this approach is
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not computationally feasible. Breslow (1974) shows that, assuming random ordering

and using (4.10) for every tied event (each time including all the other tied events at

the risk set), leads to a reasonable approximation when the ratio of events to risk set

size at each tie is small. Since under the Breslow approximation the denominator in

(4.10) is slightly overweight towards the observations exhibiting a rating change (the

set of tied events is included multiple times in the risk set), estimates of βjk may be

biased towards zero. The approximation proposed by Efron (1977) addresses this is-

sue by introducing ordering into the partial likelihood and reducing the denominator

weight in (4.10). Hertz-Picciotto and Rockhill (1997) provided evidence that the Ef-

fron approximation is more accurate than the Breslow approximation, a view shared by

some statisticians, especially for small sample sizes. Nevertheless, there is no general

consensus as to whether the increase in accuracy under the Effron approximation is

statistically significant to compensate for the additional complexity, especially in prob-

lems with a large number of events. For the purpose of this study, the existence of ties

is not a material issue since time is measured in days and only a very small proportion

of migration events are tied (much less than 1%). Therefore, I use the Breslow approx-

imation for the empirical analysis in section 4.5, in which case the partial likelihood in

(4.10) can be used unadjusted.

To find the maximum likelihood estimates of the parameter vector βjk in (4.10), I

work with the log partial likelihood function:

logLjk(βjk) =
n∑
i=1

δi

βjkZjki(Ti)− log

 ∑
h∈R(Ti)

eβjkZjkh(Ti)

 . (4.11)

The maximum of the log partial likelihood function (4.11) is maximised by setting the

first partial derivative with respect to the parameter vector βjk (score vector) to zero.

Assuming there are p = 1, ..., P covariates, the p’th element of the score vector is given

by:

Upjk(βjk) =
∂logLjk(β

p)

∂βpjk
=

n∑
i=1

δi(Z
p
jki(Ti)− Z

p
jki(Ti)),

Zpjki(Ti) =
∑

h∈R(Ti)

wihZ
p
jki(Ti), wih =

eβjkZjkh(Ti)∑
h∗∈R(Ti)

e
βjk∗Z

p
jkh∗ (Ti)

The negative matrix of second derivatives (Fisher information matrix) Vjk(βjk) has
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elements:

V pp∗

jk (βjk) = −
∂2logLjk(β

p)

∂βpjk∂β
p∗

jk

=
n∑
i=1

δi

 ∑
h∈R(Ti)

wih(Zpjkh(Ti)− Zpjkh(Ti))(Z
p∗

jkh(Ti)− Zp
∗

jkh(Ti))


Vjk(βjk) is used to calculate the parameter standard errors, since asymptotically the

maximum likelihood estimate β̂jk is multivariate normally distributed

β̂jk ∼ N(β̃jk,Vjk(βjk)
−1),

where β̃jk is the unknown true parameter vector.

The intensity parameterisation in (4.2), the partial likelihood in (4.10) and the

partial log likelihood in (4.11) assume that all observations have the same baseline

intensity and any heterogeneity is only reflected in the different covariate values. In a

sample of rating actions across multiple industry sectors, the common baseline intensity

and the proportionality assumptions are difficult to justify. Therefore, I introduce some

additional heterogeneity by allowing the baseline intensities to differ across sectors.

Stratifying the analysis by the g = 1, ..., G sectors involves collapsing the the partial

log likelihood function (4.11) into G independent sums:

logLjk(βjk) =

G∑
g=1

∑
i∈g

δi

βjkZjki(Ti)− log

 ∑
h∈R(Ti)

eβjkZjkh(Ti)

 , (4.12)

where for each of the G sums, only observations from the same sector are included.

4.4 Data

For the empirical analysis, I use corporate bond rating data sourced from Moody’s De-

fault & Recovery Database (DRD), covering the period from January 1983 to December

2012. Moody’s rating scale currently consists of 21 ordered alphanumeric ratings, span-

ning from Aaa for the low credit risk firms to C for the extremely high credit risk firms.

Moody’s introduced the alphanumeric scale for ratings above Caa in April 1982 and

therefore the rating migration behaviour is bound to be fundamentally different pre
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Aaa Aa1 Aa2 Aa3 A1 A2 A3 Baa1 Baa2 Baa3 Ba1 Ba2 Ba3 B1 B2 B3 Caa-C
Aaa . 54 41 9 8 5 2 0 0 0 0 0 0 0 0 0 0
Aa1 24 . 88 53 13 2 0 3 0 0 0 0 1 0 0 0 0
Aa2 14 57 . 192 62 17 3 0 2 0 1 0 0 0 1 0 0
Aa3 4 25 84 . 269 111 19 4 5 1 0 0 0 2 0 0 0
A1 2 4 14 160 . 334 107 19 5 4 6 7 2 3 0 0 0
A2 0 1 8 50 209 . 459 150 31 11 3 4 3 3 0 1 1
A3 1 3 3 3 38 293 . 384 173 52 6 2 6 3 1 0 0
Baa1 2 4 6 2 3 51 250 . 426 119 28 9 8 4 2 0 0
Baa2 2 3 3 2 8 28 88 303 . 465 91 30 13 5 7 1 1
Baa3 1 1 2 1 3 7 16 84 376 . 312 143 53 34 11 3 7
Ba1 1 0 0 1 1 3 4 19 64 290 . 226 160 47 26 4 9
Ba2 0 0 1 0 0 0 0 2 15 72 264 . 274 99 95 27 9
Ba3 0 1 0 0 0 5 4 2 11 17 85 278 . 294 279 108 16
B1 0 1 1 0 2 4 1 3 3 4 16 90 339 . 388 285 74
B2 0 0 1 0 0 0 0 4 4 3 5 17 82 348 . 627 295
B3 0 0 1 0 0 0 1 1 3 6 6 5 15 86 323 . 828
Caa-C 0 0 0 0 0 0 0 1 4 2 2 2 13 20 69 310 .

Table 4.1: Migration event counts
The table contains the number of historically observed migrations from each alphanumeric rating grade
(rows) to a different alphanumeric rating grade (columns). For presentation convenience, withdrawn rating
migrations and defaults are excluded, since they do not affect the analysis. To test for rating momentum, I
limit the analysis to 2 notches away from the current grade and I use all migration pairs with more than 60
historical events (shaded cells in the table). The migration from Aaa to Aa1 is excluded from the analysis
since this type of downgrades are not affected by rating momentum.

and post 1982. I choose to start the analysis from January 1983 to allow for a gradual

adoption of the new rating methodology, implicitly assuming that Moody’s does not

immediately change firm ratings to reflect the more granular rating scale. Despite set-

ting the starting point for the analysis at January 1983, the rating history prior to 1983

is also taken into consideration and therefore the rating momentum effect is quantified

without delay at the beginning of the sample. Moody’s introduced the alphanumeric

Caa ratings in July 1997. The limited rating activity prior to 1997 prevents any sta-

tistical separation of the rating momentum effects before and after 1997 and therefore

I group the Caa-C into a single grade and treat the entire sample as a whole.

Including all the rating data available in Moody’s DRD provides an increased sam-

ple size, but also introduces unnecessary heterogeneity in the dataset when trying to

make inference across different regions. To construct a sample as homogenous as possi-

ble, I limit the analysis to US rated firms, since the US data history is sufficiently rich

to draw robust conclusions. The US sample period contains a total of 8689 downgrades

and 5181 upgrades across 6589 distinct firms. To limit the high dimensionality of the

migration matrix and to exclude migration pairs with very few events through time,

I analyse migrations of up to 2 notches and more than 60 events historically. Down-

grades from rating grade Aaa are excluded since there can be no rating momentum for

such rating moves. Table 4.1 summarises the number of events for the entire transition

matrix, highlighting the cells that have been used for the empirical analysis of section

4.5.
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To proxy the business cycle I use the CFNAI as published by the Federal Reserve

Bank of Chicago1,2. Using an aggregate index instead of individual time series allows

to capture many aspects of the economic environment without loosing degrees of free-

dom by including many, highly correlated, covariates. The CFNAI is essentially the

first principal component of a panel of 85 economic indicators, sampled at a monthly

frequency. The indicators cover a wide spectrum of the real economic activity, by in-

cluding multiple measures of production, income, employment, consumption, housing,

sales and inventories. The index is standardised to have mean 0 and unit standard

deviation. The CFNAI index has been used in previous studies on default and rating

migration modelling, see McNeil and Wendin (2006), McNeil and Wendin (2007), and

Figlewski et al. (2012). I average and use the CFNAI index at a quarterly frequency,

despite the index also being available monthly. There are numerous studies showing

that rating agencies rate ”Through-the-Cycle” to achieve the desired rating stability,

see Amato and Furfine (2004), Altman and Rijken (2004), Löffler (2004), and Löffler

(2013). Furthermore, as Cantor (2001) argues, rating agencies suppress rating changes

when they are likely to be reversed within a relatively short period of time. Therefore,

rating changes do not adjust immediately to changes in the economic environment and

using monthly data would require rating grade specific lag optimisation. Using quar-

terly data smoothes out the lag effects while maintaining a sufficiently high granularity

level.

Figure 4.1 provides times series graphs for the quarterly number of rating migra-

tions. For illustration purposes, I summarise the time series by aggregate downgrades

and upgrades and I provide a split by investment and speculative starting grades. Quar-

terly frequency is only used for illustration purposes, as the model is estimated using

daily data. It is very apparent that downgrades follow very closely the NBER reces-

sions, even though the investment grade downgrades seem to be relatively unaffected by

the early ’90s recession and lag the early ’00s recession. In contrast, upgrades are less

affected by the business cycle, with only speculative grade upgrades strongly affected

over the recent economic downturn.

1http://chicagofed.org/webpages/publications/cfnai/index.cfm
2The concept behind the CFNAI index is similar to the dynamic factor analysis of Chapter 2. While

in principle the aggregate factor from Chapter 2 can be used instead (the correlation between the two
factors is close to 80%), I use the CFNAI to make the results of this chapter independent and allow for
an easier comparison with prior studies

134



Investment Grade Downgrades

1983Q1 1987Q1 1991Q1 1995Q1 1999Q1 2003Q1 2007Q1 2011Q1
0

50

100

150

200

Investment Grade Upgrades

1983Q1 1987Q1 1991Q1 1995Q1 1999Q1 2003Q1 2007Q1 2011Q1
0

10

20

30

40

50

60

70

80

Speculative Grade Downgrades

1983Q1 1987Q1 1991Q1 1995Q1 1999Q1 2003Q1 2007Q1 2011Q1
0

50

100

150

Speculative Grade Upgrades

1983Q1 1987Q1 1991Q1 1995Q1 1999Q1 2003Q1 2007Q1 2011Q1
0

10

20

30

40

50

60

Figure 4.1: Quarterly number of rating migrations
Number of upgrades and downgrades per quarter for the period 1983:Q1-2012:Q3. Investment Grade rating
actions refer to migrations from rating grades Aaa-Baa3, while Speculative Grade rating actions refer to
migrations from rating grades Ba1-C. Shaded areas correspond to NBER recession quarters.

Moody’s DRD database contains a variety of sector classifications. I choose the

Moody’s 11 sector broad industry classification to avoid having many segments with

very few or no rating migration events. The 11 sectors correspond to Banking, Capital

Industries, Consumer Industries, Energy & Environment, Finance, Insurance & Real

Estate Finance (FIRE), Media & Publishing, Retail & Distribution, Sovereign & Public

Finance, Technology, Transportation, and Utilities. I exclude from the analysis the

Sovereign & Public Finance entities, since their behaviour is likely not to follow the

corporate entities dynamics. Finally, I also exclude companies with missing sector

information.

Figure 4.2 plots the daily baseline intensities for aggregate downgrades and up-

grades for each of the 10 sectors used in the analysis (reported in bp). For illustration

purposes the cut-off point for the graphs has been set to 5 years. Despite a clear upward

trend for the first year since rating assignment for both downgrades and upgrades, it

is apparent that the term structure has significant differences across sectors. Energy &

Environment, Transportation and Utilities do not exhibit many similarities with other

sectors. Intuitively, Banking and FIRE are strongly correlated, while Capital and Con-

sumer related sectors (including Media & Publishing, Retail & Distribution) also show

some similarities in their term structures. Technology firm downgrades seem to peak at

3 years post rating assignment, an observation somewhat counterintuitive, since small
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Figure 4.2: Baseline intensity rates per industry sector
Daily baseline intensity rates λ0t (in bp) for each of the 11 industry sectors. Intensities are provided for
aggregate downgrades and upgrades, for up to 5 years from the point a firm is assigned a new rating.

Aaa Aa1 Aa2 Aa3 A1 A2 A3 Baa1 Baa2 Baa3 Ba1 Ba2 Ba3 B1 B2 B3 Caa-C
Aaa 88.2% 5.3% 4.4% 0.8% 0.9% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Aa1 2.1% 81.3% 7.1% 6.2% 1.8% 1.1% 0.1% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Aa2 0.9% 3.3% 79.3% 9.9% 3.9% 1.5% 0.6% 0.2% 0.3% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%
Aa3 0.1% 0.9% 3.0% 80.7% 8.7% 4.1% 1.4% 0.5% 0.3% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
A1 0.1% 0.1% 0.5% 4.3% 82.1% 7.9% 3.1% 0.9% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.0% 0.0% 0.0%
A2 0.0% 0.0% 0.1% 0.8% 4.0% 82.2% 7.6% 3.1% 1.0% 0.5% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.1%
A3 0.0% 0.1% 0.1% 0.1% 1.0% 6.6% 79.6% 6.8% 3.1% 1.4% 0.4% 0.1% 0.3% 0.2% 0.1% 0.1% 0.0%
Baa1 0.0% 0.1% 0.1% 0.1% 0.1% 1.5% 6.0% 80.0% 6.9% 2.8% 0.9% 0.5% 0.3% 0.5% 0.1% 0.0% 0.1%
Baa2 0.0% 0.0% 0.0% 0.0% 0.2% 0.8% 2.4% 6.2% 80.1% 6.4% 1.5% 0.6% 0.6% 0.4% 0.2% 0.2% 0.2%
Baa3 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.5% 2.6% 8.2% 78.1% 4.7% 2.6% 1.2% 0.9% 0.4% 0.2% 0.3%
Ba1 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.3% 0.8% 2.4% 10.2%72.4% 5.5% 3.8% 1.5% 1.4% 0.9% 0.6%
Ba2 0.0% 0.0% 0.1% 0.0% 0.0% 0.1% 0.0% 0.4% 0.8% 3.1% 8.5% 71.9% 7.1% 2.9% 3.0% 1.5% 0.7%
Ba3 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.4% 0.9% 2.5% 6.3% 74.9% 6.0% 5.0% 2.4% 1.3%
B1 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.3% 0.4% 2.3% 6.7% 77.6% 5.4% 4.6% 2.2%
B2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.2% 0.9% 3.0% 5.9% 75.7% 8.9% 5.1%
B3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.3% 0.3% 0.8% 3.1% 6.1% 77.5% 11.4%
Caa-C 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.2% 0.7% 0.2% 0.4% 0.1% 1.4% 2.0% 2.5% 6.8% 85.6%

Table 4.2: Average Migration Rates
The table depicts the average 1 year historical migration rates, using the entire sample 1983-2012. The average
is calculated using rolling quarterly windows. Migrations to default and rating withdrawals are excluded and
each row is re-normalized to sum to unity.

to mid-sized tech firms’ financial strength is generally volatile and the margin for busi-

ness model failure is high. The long-run term structures depicted in figure 4.2 provide

evidence that adjusting the estimations for different baseline shapes and levels for the

intensities, enhances robustness against any sector heterogeneity bias.

Lando and Skødeberg (2002) report an overall negative duration effect in their

analysis of rating migrations. Based on the baseline term structure profiles in figure
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4.2, the overall negative effect reported appears questionable. Even at the 5 years

horizon for most of the sectors there seems to be a positive relationship between time

spent in a given grade and rating migration, implying that the longer a firm stays in

a given rating grade the higher is the probability it will experience a rating migration.

Even if the baselines are extended to more than 5 years and the average effect across

the term structure is negative, it is apparent that additional flexibility is needed if the

duration effect is to be captured properly.

Corporate bond ratings are designed to ensure some long term stability, trying to

smooth out temporary changes in credit quality. Rating agencies achieve this stabil-

ity in their ratings by adopting a more Through-the-Cycle view when assessing the

creditworthiness of a given company. This long term stability is depicted in Table 4.2,

where I calculate the average 1 year migration matrix across the entire sample used

in the study. The average is calculated using rolling quarterly windows, instead of

the annual non-overlapping cohorts that credit agencies usually report in their default

studies. Furthermore, since the focus of this study is the behaviour of rating agencies,

I exclude defaults and rating withdrawals and I re-normalise each row of the transition

matrix to sum to 1 (defaults are not controlled by the rating agencies and rating with-

drawals are not credit risk related events). By examining table 4.2 it is apparent that

close to 80% of the companies retain their existing rating a year after observation, and

this percentage is clearly higher for investment grade firms as compared to speculative

grade firms. Finally, the migration matrix provides evidence of overall deterioration in

credit quality through time, since the downgrade rate is significantly higher than the

upgrade rate. This observation indicates that unless there is a constant addition of

highly rated corporates in the sample, the overall portfolio distribution shifts towards

sub-investment grade as time passes.

Various studies show that the effect of rating momentum is very strong, especially

for downgrades. To provide a high level impact of the momentum effect, I depict in

table 4.3 the same Through-the-Cycle migration matrix as in table 4.2 restricted to firms

that have been previously downgraded within 2 years prior to the observation point

(Aaa rated firms are excluded, since firms in that grade cannot have been previously

downgraded). The downward drift is very clear, since the downgrade rates are on

average 80% higher than those reported in Table 4.2, with the number of firms retaining
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Aaa Aa1 Aa2 Aa3 A1 A2 A3 Baa1 Baa2 Baa3 Ba1 Ba2 Ba3 B1 B2 B3 Caa-C
Aaa . . . . . . . . . . . . . . . . .
Aa1 0.0%65.7%17.8%13.8% 1.9% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Aa2 0.0% 1.1% 77.8%10.9% 5.4% 2.8% 1.3% 0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Aa3 0.0% 0.3% 0.5% 81.3% 4.4% 8.8% 4.0% 0.3% 0.2% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
A1 0.0% 0.0% 0.3% 2.1% 77.4%11.6% 5.0% 2.2% 0.5% 0.0% 0.7% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0%
A2 0.0% 0.0% 0.2% 0.6% 2.5% 75.7%11.9% 6.0% 1.7% 0.9% 0.2% 0.2% 0.0% 0.0% 0.0% 0.1% 0.0%
A3 0.0% 0.0% 0.0% 0.2% 0.3% 4.1% 75.9% 7.4% 6.3% 3.0% 0.7% 0.1% 1.0% 0.4% 0.3% 0.0% 0.3%
Baa1 0.0% 0.1% 0.0% 0.2% 0.1% 1.4% 3.0% 74.2%10.4% 5.8% 1.7% 1.3% 0.6% 0.9% 0.2% 0.1% 0.1%
Baa2 0.0% 0.0% 0.0% 0.1% 0.0% 0.5% 2.2% 2.0% 75.1%11.0% 3.5% 2.0% 1.4% 1.2% 0.3% 0.1% 0.4%
Baa3 0.0% 0.0% 0.2% 0.1% 0.0% 0.1% 0.6% 2.3% 5.4% 67.0% 8.5% 7.5% 2.8% 2.3% 1.0% 0.8% 1.5%
Ba1 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.3% 1.3% 8.0% 59.0%11.4% 9.9% 3.1% 3.6% 1.4% 1.8%
Ba2 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 1.2% 0.4% 2.7% 6.4% 59.2%10.1% 7.3% 6.8% 3.0% 2.6%
Ba3 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 0.1% 0.1% 0.5% 1.2% 3.8% 4.9% 61.9%11.9% 8.5% 3.7% 2.9%
B1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.7% 0.6% 2.3% 5.4% 68.7% 7.4% 8.3% 6.3%
B2 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.1% 0.2% 1.2% 4.1% 6.6% 65.7%12.7% 9.3%
B3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.2% 0.2% 0.3% 0.0% 0.7% 4.9% 5.2% 70.9% 17.3%
Caa-C0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 1.4% 0.2% 0.1% 0.0% 0.3% 1.4% 1.6% 6.6% 88.0%

Table 4.3: Average Migration Rates - Downward Momentum
The table depicts the average 1 year historical migration rates for firms that have been previously downgraded,
up to 2 years prior to the observation point. The average is calculated using rolling quarterly windows and
I include all firms across the entire sample from Q1 1983 to Q4 2012. Migrations to default and rating
withdrawals are excluded and each row is re-normalized to sum to unity. The migrations from Aaa to Aa1
are excluded from the analysis since they are not affected by rating momentum.

their existing rating within the 1 year horizon being approximately 10% lower.

There is no commonly agreed threshold for the classification of subsequent migra-

tions as rating drift. If momentum is assumed to be caused by the unwillingness of

rating agencies for multi-notch rating changes, then a short period threshold should

be applied, as multi-notch migrations are not caused by any subsequent deteriora-

tion/improvement of the corporate balance sheet. On the other hand, if momentum is

attributed to the countercyclical effect of rating migrations or to the trend of balance

sheet quality, then a longer period threshold should be adopted in order for new finan-

cial information to be incorporated in the rating process. In this chapter I choose 2

years as the cut-off point. This is higher than the 210-day threshold used by Güttler and

Raupach (2010), but lower than the unrestricted rating momentum used in some early

studies, such as Lando and Skødeberg (2002). I choose the 2-year threshold for multiple

reasons: 210 days are not enough to allow for a robust modelling of the momentums

time profile, as the sample size of momentum observations is small. Furthermore, a 7

month period might be too short to allow for rating agencies to incorporate changes in

corporate balance sheets and, therefore, the firm ageing effect might not be properly

captured.

It is worth noting that the analysis captures the behaviour of rating agencies,

which is intrinsically a combination of quantitative and qualitative assessments for a

given bond issuer. Due to the relative importance of credit ratings, Duan and Van

Laere (2012) present a framework to construct independent risk assessment based on
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purely transparent quantitative methods. The framework is based on the work of Duan

et al. (2012) and provides default probability estimates for all public firms around the

world. While such estimates can be very useful for risk management, it is out of scope

of the analysis presented in this chapter.

4.5 Empirical Analysis

4.5.1 Parameter Estimates

The hazard rate specification described in (4.2) and (4.5)-(4.9) provides the most generic

case of rating pair specific coefficients for all covariates. The number of migration events

is too small to allow for such generic specification to be robustly estimated at a rating

pair level. Therefore, without loss of generality, I assume 4 different groups for the

coefficients in (4.2): 1 set of coefficients for the investment grade downgrades, 1 set of

coefficients for the speculative grade downgrades, and 2 additional sets of coefficients to

describe investment and sub-investment grade upgrades. Using the notation of section

4.3.1, the migration intensity of the estimated model takes the form:

λjki(t) = λ0
jkg(t)· exp

(
βmc Z

m
jki + βcfnai

c Zcfnai,i(τ) + βcfnai,m
c Zmcfnai,jki(τ)

)
︸ ︷︷ ︸

Survival Time-Invariant Part

·

exp
(
βm(t)
c Zmjki(t) + βcfnai,m(t)

c Zmcfnai,jki(t)
)

︸ ︷︷ ︸
Survival Time-Varying Part

,
(4.13)

where c = {I{j<=10∧j>k}, I{j>10∧j>k}, I{j<=10∧j<k}, I{j>10∧j<k}} represents each of the

4 sets of coefficients, and λ0
jkg(t) is the baseline intensity per industry sector g, which is

left unspecified. The survival time-invariant covariates are described in (4.5)-(4.7), and

correspond to the rating momentum effect (Zmjki), the business cycle effect (Zcfnai,i(τ))

and their interaction (Zmcfnai,jki(τ)). The survival time-varying part of the specification

corresponds to the fractional polynomials for rating momentum (Zmjki(t)) and rating

momentum adjusted for the business cycle (Zmcfnai,jki(t)), as described in more detail in

(4.8)-(4.9).

To test the statistical significance of the various effects in (4.13) I use the likelihood
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ratio test. For hypotheses of type:

H0 : βc = βrc

H1 : βc = βuc ,

where βrc is a restricted subset of βuc , the likelihood ratio test is calculated as:

LRβrc/βuc = −2log

(
Ljk(β

r
c)

Ljk(β
u
c )

)
= 2logLjk(β

u
c )− 2logLjk(β

r
c). (4.14)

Asymptotically, the likelihood ratio statistic in (4.14) is χ2 distributed, with degrees of

freedom equal to the number of restrictions imposed on βuc to get βrc. Having obtained

parameter estimates for the 3 covariates used in the study, I test 5 main hypotheses:

• The proportional rating momentum effect is significant: Test to assess whether

including the rating momentum indicator to a model with only aggregate sys-

tematic effects, results in a model with higher explanatory power. The likelihood

ratio test statistic in (4.14) takes the form

LRβ̂cfnai
c /β̂mc

= 2logLjk(β̂
cfnai
c , β̂mc )− 2logLjk(β̂

cfnai
c ),

having a χ2(1) distribution. For notational convenience, I only report the ad-

ditive part of the specification as the unrestricted model, i.e. LRβ̂cfnai
c /β̂mc

=

LRβ̂cfnai
c /(β̂cfnai

c ,β̂mc ). This test of proportional rating momentum effects is similar

to Lando and Skødeberg (2002). Unlike Lando and Skødeberg (2002) that assume

the base case to be a long run average intensity model, I also consider systematic

movements in the base case.

• Rating momentum depends on time spent in current rating grade: Test to assess

whether adding the interaction of the rating momentum indicator with the time

in current rating grade results in a statistically significant improvement in model

fit. The likelihood ratio test statistic in (4.14) takes the form

LR
β̂mc /β̂

m
c (t)

= 2logLjk(β̂
cfnai
c , β̂

m

c (t))− 2logLjk(β̂
cfnai
c , β̂mc ),

having a χ2(2) distribution, due to the second order fractional polynomials used

140



for the time varying effects. For notational convenience I assume β̂
m

c (t) =

{β̂mc , β̂
m

c (t)}.

• Rating momentum depends on business cycle: Test to assess whether adding the

interaction of the proportional rating momentum effect with the CFNAI diffusion

index results in a statistically significant improvement in model fit. For a propor-

tional dependence of the rating momentum on the business cycle, the likelihood

ratio test statistic in (4.14) takes the form

LR
β̂
m
c (t)/β̂cfnai,m

c
= 2logLjk(β̂

cfnai
c , β̂

m

c (t), β̂cfnai,m
c )− 2logLjk(β̂

cfnai
c , β̂

m

c (t)).

This likelihood ratio statistic has a χ2(1) distribution. For notation convenience,

I assume that β̂
m

c (t) = {β̂mc , β̂
m

c (t)}.

• Rating momentum depends non-proportionally on business cycle: Test to assess

whether adding the interaction of the time-varying rating momentum effect with

the CFNAI diffusion index results in a statistically significant improvement in

model fit. In this case, the non-proportional rating momentum effect changes

non-proportionally with the CFNAI index. The likelihood ratio test statistic in

(4.14) takes the form

LR
β̂cfnai,m
c /β̂

cfnai,m(t)
c

= 2logLjk(β̂
cfnai
c , β̂

m

c (t), β̂
cfnai,m(t)

c )−

2logLjk(β̂
cfnai
c , β̂

m

c (t), β̂cfnai,m
c ),

where β̂
m

c (t) = {β̂mc , β̂
m

c (t)} and β̂
cfnai,m(t)

c =
{
β̂cfnai,m
c , β̂

cfnai,m(t)

c

}
for notational

convenience. This likelihood ratio statistic has a χ2(2) distribution.

• Business cycle and duration dependence effects are jointly significant: Test to as-

sess whether adding the time varying effects and the interaction with the CFNAI

diffusion index jointly results in a statistically significant improvement in model

fit. The likelihood ratio test statistic in (4.14) takes the form

LR
β̂mc /β̂

cfnai,m(t)
c

= 2logLjk(β̂
cfnai
c , β̂

m

c (t), β̂
cfnai,m(t)

c )− 2logLjk(β̂
cfnai
c , β̂mc ),

having a χ2(5) distribution. Just like in all other cases, I assume for notational

convenience that β̂
m

c (t) = {β̂mc , β̂
m

c (t)} and β̂
cfnai,m(t)

c =
{
β̂cfnai,m
c , β̂

cfnai,m(t)

c

}
.

141



IG Downgrades SG Downgrades IG Upgrades SG Upgrades

P
a
ra

m
et

er
E

st
im

a
te

s

p1, p2 [0.5,.] [-0.5,0.5] [-1,.] [-0.5,0.5]

β̂mc
1.8966 3.4806 0.9780 2.4518

(0.1610) (0.2782) (0.0951) (0.4040)

β̂cfnai
c

-0.3372 -0.3513 0.3345 0.1960
(0.0232) (0.0217) (0.0457) (0.0343)

β̂cfnai,m
c

-0.0732 -0.4065 -0.0946 0.1102
(0.0755) (0.1540) (0.1242) (0.5464)

β̂
m(t)
c

[-0.0402,.] [-4.4155, -0.1223] [-39.7542,.] [-4.7200, -0.0542]
(0.0089,.) (1.1249, 0.0123) (16.1552,.) (2.0749,0.0159)

β̂
cfnai,m(t)
c

[0.0048,.] [1.6561, 0.0163] [17.4266,.] [0.1266, 0.0017]
(0.0047,.) (0.6257, 0.0074) (26.2302,.) (2.9799, 0.0209)

L
R

st
a
ti

st
ic

p
-v

a
lu

es LRβ̂cfnai
c /β̂m

c
<0.0001 <0.0001 <0.0001 <0.0001

LRβ̂m
c /β̂m

c (t) <0.0001 <0.0001 0.0009 0.0008

LR
β̂m
c (t)/β̂

cfnai,m
c

0.8812 0.4576 0.6727 0.0441

LR
β̂
cfnai,m
c /β̂

cfnai,m(t)
c

0.3045 0.0191 0.5007 0.9959

LR
β̂m
c /β̂

cfnai,m(t)
c

<0.0001 <0.0001 0.0085 0.0026

Table 4.4: Downgrade parameter estimates - Investment Grade
Parameter estimates with standard errors (in brackets) for proportional rating momentum (β̂mc ), baseline

CFNAI effect (β̂cfnai
c ), proportional interaction of rating momentum and the CFNAI index (β̂cfnai,m

c ), rat-

ing momentum with duration dependence (β̂mc (t)), and rating momentum with business cycle dependence

(β̂
cfnai,m(t)
c ). The table also provides p-values for 5 Likelihood Ratio (LR) tests: presence of proportional

rating momentum (LRβ̂cfnai
c /β̂m

c
), incremental benefit of adding duration dependence (LRβ̂m

c /β̂m
c (t)), addi-

tional benefit of including proportional business cycle dependence (LR
β̂m
c (t)/β̂

cfnai,m
c

), additional benefit of

allowing for non-proportional business cycle dependence (LR
β̂
cfnai,m
c /β̂

cfnai,m(t)
c

), and finally, the joint sig-

nificance of adding time-varying duration and business cycle effects to the benchmark model of proportional
rating momentum (LR

β̂m
c /β̂

cfnai,m(t)
c

).

In table 4.4 I provide the parameter estimates and the corresponding standard

errors for the 5 effects in my specification. For the statistical hypothesis testing, ta-

ble 4.4 also includes the likelihood ratio statistics from (4.14) and the corresponding

p-values to assess the significance of the tested effect. P-value is the probability of ob-

taining the observed likelihood increase when including the respective effect, under the

assumption that the true effect is zero (null hypothesis). If the probability of obtaining

the observed difference in likelihood under the null hypothesis is close to zero, there is

very strong statistical evidence to reject the null hypothesis, and therefore, the tested

effect is statistically significant. To determine the strength of the statistical evidence

presented in table 4.4, the typical significance levels of 1% and 5% can be used as the

upper bounds for the p-value to indicate strong evidence against the null hypothesis.

P-values lower that 5% and especially 1% indicate a statistically significant effect, while

p-values higher that 5% indicate the effect tested is not statistically different from zero.

Examining the parameter estimates for downgrades in table 4.4, the baseline effect
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of the business cycle, as captured by the CFNAI index, is negative and highly significant

for both investment (-0.3372) and sub-investment grade firms (-0.3513). Overall, the

business cycle effect appears to be stronger for sub-investment grade firms, although the

difference is not statistically significant. Confirming earlier studies on rating migrations,

the baseline rating momentum effect is positive and highly significant. Furthermore,

the effect is approximately 1.5 times higher for sub-investment grade firms as compared

to investment grade (3.4806 and 1.8966 respectively). This finding might be linked to

the overall higher level of migration activity for the speculative grade part of the rating

scale, but might also indicate that the acceleration in balance sheet deterioration is

much more pronounced as firms approach their default point. The time-varying rating

momentum estimates are not very informative as they depend on the specific fractional

polynomial form. More informative are the p-values. The extremely low p-values

for the LRβ̂mc /β̂mc (t) statistic show that the rating momentum is strongly dependent

on time since rating is assigned, for both investment and sub-investment grades. On

the contrary, business cycle dependency of the momentum effect is less clear. The

β̂cfnai,m
c effect is on average negative (-0.0732 for investment grade and -0.4065 for

sub-investment grade), implying that as the economic conditions worsen, the rating

momentum effect becomes more pronounced. Nevertheless, β̂cfnai,m
c is only statistically

supported for sub-investment grade firms. Furthermore, for sub-investment firms, this

dependence of rating momentum on business cycle is highly non proportional, implying

that the time profile of the rating drift changes shape across different phases of the

business cycle.

The parameter estimates for upgrades in table 4.4 indicate that the business cycle

effects are not as pronounced as for downgrades. The proportional baseline sensitiv-

ity to the CFNAI index implies a decrease of 40% (based on the 0.3345 estimate)

and 22% (based on the 0.1960 estimate) in investment and sub-investment upgrade

intensity respectively, if the index decreases in value by 1. The respective sensitivi-

ties for downgrades imply an increase in intensity of 40% and 42% for investment and

sub-investment rated firms respectively. Furthermore, the baseline upward momentum

effect is also milder than the downward momentum, with an implied increase in upgrade

intensity approximately 60% lower than the increase in downgrade intensity. Despite

being milder than the downward drift, this time-invariant upward momentum effect is

strong, in contrast to the findings of Lando and Skødeberg (2002), that report a mostly
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insignificant momentum effect for upgrades. Nevertheless, the findings of Lando and

Skødeberg (2002) refer to a much shorter historical period and do not include business

cycle effects or differentiation of the baseline intensity across industry sectors. Similar

to the downward momentum, the low p-values for the LRβ̂mc /β̂mc (t) statistic show that

the rating momentum depends on time since rating is assigned, for both investment and

sub-investment grades. On the contrary, the upward momentum’s dependence on the

business cycle is only marginally significant at the 5% level for sub-investment grade

firms, and only on a proportional basis; the time profile of the upward momentum for

sub-investment grade firms seems to shift proportionally across the different phases of

the business cycle.

To visualise the reported findings in table 4.4, figure 4.3 provides a graphical sum-

mary of the rating momentum effect as a function of time in current grade, using the

full specification with the 2nd order polynomial terms for the time dependence. To

show the possible dependence on the state of the economy, the rating momentum effect

is summarised for 3 values of the CFNAI index: a value of 0 to capture the Through-

the-Cycle effect, a value of 2 to capture the effect during periods of good economic

conditions, and a value of -2 to capture the effect during period of stress. The graphs

on figure 4.3 ignore the baseline CFNAI effect β̂cfnai
c , since this is not specific to firms

that have been previously migrated.

Exploring the graphs on figure 4.3 clearly highlights the non-linearity of the rat-

ing momentum effect, both across survival time and the state of the economy. The

Through-the-Cycle dynamics show that for investment grade firms previously down-

graded, there is an immediate increase in re-downgrade intensity of approximate 6 times

the baseline and this effect almost exponentially decays with time the firms stay in their

current grade. For sub-investment grade firms, the nature of time dependence changes

drastically. After the firms are downgraded, there is a sharp rise in re-downgrade in-

tensity to reach the maximum in approximately 2 months after the current rating is

assigned. After the peak is reached, there is a gradual decrease over the 2 year period.

This peak corresponds to approximately 7.5 times the baseline. For investment grade

firms, the intensity for the upward momentum monotonically increases with the time

spent in current grade; nevertheless, after approximately 3 quarters since the current

rating is assigned, the upward drift can be considered as constant at a level twice the
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Figure 4.3: Rating momentum time varying effects
Time varying rating momentum effects for aggregate downgrades and upgrades. The effect is depicted as the
intensity ratio over the case of 0 rating momentum. Intensity ratios are depicted for 3 values of CFNAI: 1
correponding to severe conditions (CFNAI value of -2), 1 corresponding to average conditions (CFNAI value
of 0), and 1 corresponding to mild conditions (CFNAI value of 2). Baseline business cycle effects are ignored
and only the interaction terms of the CFNAI index with rating momentum are used. Duration time is capped
at 2 years since current grades has been assigned. Investment Grade rating actions refer to migrations from
rating grades Aaa-Baa3, while Speculative Grade rating actions refer to migrations from rating grades Ba1-C.

baseline upgrade intensity. Finally, for sub-investment grade firms, the shape of the

time dependence of the upward momentum effect is similar to the downwards momen-

tum. The upgrade intensity monotonically increases until a maximum of 4 times the

baseline intensity is reached after 2 months in the current grade. After this peak is

reached, the upward rating momentum effect decays with time, but a much slower rate

as compared to the downward drift.

In addition to the clear duration effects, business cycle fluctuations also have an

impact on the rating momentum’s time profile. For investment grade downgrades,

there is an inverse relationship between the state of the business cycle and the strength

of the downward momentum effect; as economic conditions worsen, firms that have

been previously downgraded are more likely to be downgraded again. This shift in

downgrade intensity appears proportional. Nevertheless, a careful examination of the

results in table 4.4 shows that the number of downgrades is not high enough to provide
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statistical evidence that this inverse relationship between the CFNAI index and the

strength of the momentum effect is significant. For speculative grade firms, the business

cycle clearly changes the shape of the downward momentum survival time distribution.

As the economic conditions improve, the time profile of the downward momentum effect

for sub-investment grade firms resembles that of investment grade firms: starting from

a level 7.5 times higher than the baseline, the effect exponentially declines with time

spent in current grade. As the economic conditions worsen, the peak of the downward

momentum is reached with increasing delay and the decay of the effect after having

reached this peak is slower as compared to benign economic conditions. Shifting the

focus to the upward momentum, the upgrade probability for investment grade firms

that have been previously upgraded rises much faster in periods of benign economic

conditions as compared to periods of stress. Nevertheless, as the economic conditions

improve, the time profile of the upward momentum tends to flatten at the point the

effect becomes twice as strong as the baseline. Examining the results presented in table

4.4 shows that this change in shape is not statistically significant. On the other hand,

for speculative grade firms, there is a very strong positive relationship between the state

of the business cycle and the strength of the upward momentum and this relationship

is clearly proportional, as evidenced by both the p-value for the LR
β̂cfnai,m
c /β̂

cfnai,m(t)
c

statistic in table 4.4 and the shift in the time profile depicted in figure 4.3.

4.5.2 Impact on Credit Portfolio Losses

Bank regulators require financial institutions to provide capital to cover potential worst-

case portfolio losses. The regulatory requirements take the form of a minimum amount

of Tier I and Tier II capital, calculated by aggregating all types of risk (namely credit,

market and operational) according to the Basel II or, the newly introduced, Basel III

standards (with Basel III further adding a leverage target ratio and capital conservation

and countercyclical buffers). For a banking institution credit is the dominant risk type

and it is the component most severely affected by the momentum in credit ratings.

In this chapter I only focus on corporate exposures, and therefore, for the rest of the

section, credit risk refers to the corporate banking book only.

For the calculation of the credit risk capital (banking book) two approaches are

provided under Basel II/III: the standardised and the Internal Ratings Based (IRB).
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The standardised approach is based on regulatory pre-determined risk weights for each

asset class. Under the IRB approach, banks use their internally calculated ratings to

estimate the Probabability to Default (PD) for each counterparty. The PDs are supple-

mented by internally estimated Loss Given Default (LGD) and Exposure At Default

(EAD) measures under the Advanced Internal Ratings Based (AIRB), or regulatory

prescribed levels under the Foundation Internal Ratings Based (FIRB). Internal rat-

ings might or might not coincide with external agency ratings. It is well known that

rating agencies assign ratings based on the long-run creditworthiness of a counterparty,

putting more weight on rating stability over short term accuracy3. The alignment

between the two rating sources largely depends on whether a bank uses a Through-

The-Cycle (TTC) assessment of risk for its regulatory capital calculations, or it prefers

a more Point-in-Time (PiT) approach. If banks under the IRB approach aim (or they

are constrained by the regulators) to have stable capital through time, then they would

need to use TTC ratings with long run PDs. In such case, I assume that the agency

ratings are good proxies for the internal ratings and therefore the rating momentum

affects banking capital in a similar fashion under standardised and IRB approaches.

Of course, a more thorough analysis of the impact rating momentum has on banking

capital would have to use actual internal ratings from financial institutions, but this is

well out of scope for this chapter. For completeness, the reader is referred to Jacobson

et al. (2006) for a comparison of internal rating models. Finally, it is worth mentioning

that, in the aftermath of the recent credit crisis, the Dodd-Frank Act in the US4 ex-

plicitly removes references to credit ratings under the standardised approach to credit

risk capital calculation. Furthermore, even though the AIRB to calculating capital is

unchanged, the Collins Amendment Floor5 requires the large banking institutions that

are subject to the advanced capital calculations to floor their capital ratios to that of

the standardised approach. In light of these recently introduced changes, my results

concerning the impact of rating momentum on regulatory capital might be less relevant

for the US.

To assess the magnitude of the impact rating momentum has on minimum regula-

3See www.moodys.com, http://www.standardandpoors.com, and http://www.fitchratings.com for
the rating approaches of the 3 major rating agencies

4Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010, section 939A
5Section 171 of the Dodd-Frank Act, 12 U.S.C. 5371
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tory requirements for credit capital, I use the Basel II/III formula:

RWA = 12.5 ∗ UL ∗ EAD ∗Maturity Adjustment

UL = LGD ×

[
Φ

(√
1

1−R
× Φ−1(PD) +

√
R

1−R
× Φ−1(0.999)

)
− PD

]

Mat. Adj. =
1 + (M − 2.5) + (0.11852− 0.05478 ∗ log(PD))2

1− 1.5 + (0.11852− 0.05478 ∗ log(PD))2

R = 0.12× 1− e−50×PD

1− e−50
+ 0.24×

(
1− 1− e−50×PD

1− e−50

)
,

(4.15)

where UL is the unexpected loss for each unit of exposure, R is the asset correlation, Φ

and Φ−1 are the cumulative and the inverse cumulative normal functions, and M is the

maturity of the exposure. Under Basel II, the minimum capital that a financial insti-

tution holds should be no less than 8% of its RWA. The regulatory formula in (4.15) is

based on the limiting distribution for an infinitely granular and homogeneous portfolio,

essentially defining capital as the difference between the worst case loss at the 99.9%

confidence level (potential losses beyond this level are considered too expensive to hold

capital against) and the expected loss (which reflects the cost of doing business and

it is covered by appropriate provisioning and pricing with no additional capital held

against it). For the derivation of the limiting distribution for the infinitely granular

and homogeneous portfolio see Vasicek (2002). The asset correlation within the one

factor structure assumed by the underlying model is provided explicitly as a decreasing

function of the PD, taking values from 12% to 24%. The maturity adjustment com-

ponent provides a conservative overlay to allow for potential future downgrades of the

exposures and therefore it is an increasing function of the maturity and a decreasing

function of the PD.

The regulatory capital provides a balance sheet view of credit risk. Credit ratings

and PDs also drive the expected loss metrics, that ultimately feed into the Profit & Loss

(P&L) calculation. Since the expected loss is a projection of the actual losses a bank

expects to incur at a given time horizon, the PDs used for the calculations need to reflect

as close as possible the default rate of the portfolio at hand. Therefore, long run PDs are

no longer appropriate and PiT equivalents are needed. Even though the derivation of

PiT PDs is not the focus of this chapter, I provide a simplified set of semi-parametric

regressions that link continuous time PDs to the CFNAI index, consistent with the
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rating momentum econometric framework of section 4.3. Due to the low number of

defaults, regressions at individual rating grade level show low statistical power and

therefore I group ratings at the Letter level. Meaningful results are obtained only for

the groups B and Caa-C, with the remaining grades receiving only the baseline intensity

contributions. After stratifying by rating grade, the common parameter estimate for

the sensitivity of defaults to the CFNAI is -0.297(0.042).

The importance of corporate bond ratings in capital requirements and loss esti-

mates of financial intermediaries is well documented, see Varotto (2012) and the refer-

ences therein. Varotto (2012) provides a historical perspective of capital requirements

using Moody’s corporate default, recovery and migration statistics. By benchmarking

against realised credit losses Varotto (2012) finds that Basel II regulatory capital is only

sufficient to absorb Great Depression-style losses for high credit quality portfolios and

1 year horizon; low credit quality portfolios and longer holding periods could generate

losses that cannot be covered by the available capital. The additional buffers intro-

duced under Basel III help to address this concern. Nevertheless, even under Basel III

a recapitalisation would be needed as the capital buffers would be almost completely

drained.

In addition to the credit risk component, market risk capital (trading book) is

also affected by a non-Markovian behaviour in credit ratings via the Incremental Risk

Charge (IRC). The IRC regulatory requirements were introduced in response to the re-

cent credit market turmoil, where a number of financial institutions experienced large

losses on their trading books, attributed not to default of the underlying credit instru-

ments (a risk that can be quantified by the banking book approach described above),

but rather to rating migrations and widening of credit spreads (MtM losses). To cover

the potential effect that the rating momentum can have on MtM losses I also quantify

the MtM impact on zero coupon corporate bonds, using corporate yields for Letter

grades from Moody’s. Bond prices take the simple form:

P = FV/ert, (4.16)

where FV is the bond’s face value, r is the bond’s yield and t is the time to maturity.

Due to the non-Markovian nature of the rating momentum effects, transition ma-
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trices do not have an analytically tractable form. Therefore, to quantify the impact

rating momentum has on portfolio losses, I resort to simulation. To simulate rating

migration and default times, I use the inverse CDF approach:

• I let the event arrival time t to be determined by solving the equation

Sji(t|Z(t)) = U, (4.17)

where U is a simulated, uniformly distributed random variable. Sji(t|Z(t)) =

exp(−Λji(t|Z(t))) is the survival probability for firm i, when it is currently in

grade j. The cumulative intensity function of firm i exiting grade j, Λji(t|Z(t)), is

calculated by summing the intensities across all possible grades (including default)

except j:

Λji(t|Z(t)) =

∫ t

0

∑
k 6=j

λjki(u|Z(t))du, (4.18)

where λjki(t|Z(t)) corresponds to the intensity of the migration pair j → k (where

k includes default as a state).

• Given the simulated survival time t, the specific credit event is drawn from the

univariate Multinomial distribution with probabilities:

πjki(t|Z(t)) =
λjki(t|Z(t))∑
k 6=j λjki(t|Z(t))

(4.19)

Equations (4.17)-(4.19) in the 2 step approach described above, simulate indepen-

dent events and arrival times. Independence in default occurrence is a very strong

assumption on the portfolio level, since observed and unobserved correlation in de-

faults is well documented. Default correlation can be attributed to multiple sources,

see Duffie et al. (2009) for an explanation based on unobserved frailty, and Jorion and

Zhang (2009) for an analysis from a credit contagion viewpoint. Instead of explicitly

modelling the stochastic correlation process, I use instead a copula function to introduce

dependence in default arrival times. Copulas can capture a wide range of dependence

structures and have been used extensively in credit portfolio modelling. For more in-

formation on copulas and their application to credit risk management see Embrechts

et al. (2003), and Rosenberg and Schuermann (2006) and the references therein. To

be consistent with the regulatory formula for calculating credit capital and without
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a loss of generality, I adopt the Gaussian copula with a common pairwise correlation

parameter ρc

CGaussρc (u) = Φρc

(
Φ−1(u1), ...,Φ−1(ud)

)
,

where d is the number of variables, Φ−1 is the inverse cumulative distribution function of

a standard normal and Φρc is the joint cumulative distribution function of a multivariate

normal distribution with mean vector zero and correlation matrix with a common

pairwise correlation parameter ρc. Simulating correlated default times is performed by:

• Simulate i = 1, ..., n correlated standard normal variables {X1, ..., Xn} via the

Cholesky decomposition of the covariance matrix Σc that is constructed by using

the common pairwise correlation parameter ρc for all the off-diagonal elements.

• Calculate Ui = Φ(Xi), where Φ(.) is the standard normal cumulative function.

• Substitute Ui in (4.17) and continue as in the independent case.

In addition to the default arrival correlation, I also include a dependence on the times

of rating migration. It is intuitive to think that rating agencies do not review firms in

isolation and downgrade or upgrade more than one entity at a time. For simplicity I

assume a Gaussian copula with the same pairwise correlation as in the default case.

To quantify the impact on a portfolio of credit exposures, I use 2 hypothetical

portfolio structures. The first hypothetical portfolio mainly consists of investment

grade bonds at a ratio of 80%-20% against sub-investment grade bonds. For simplicity

I assume that the exposures are uniformly spread across the rating grades within the

investment and speculative grade spectrum. The second portfolio represents a less risk

averse lender and consists of primarily speculative grade bonds at a proportion of 20%-

80% against investment grade exposures. Just like the high credit quality portfolio,

the exposures are assumed to be uniformly distributed across the rating grades. For

simplicity I assume that the portfolios are homogeneous each consisting of 1000 bonds,

with all bonds par valued at $100, with no coupon payments and a maturity of 10

years. For each of the 2 hypothetical portfolios, I assume that 30% of the bonds within

each of the grades have been previously downgraded, while 20% of the bonds within

each of the grades have been previously upgraded. The historical ratio of downward to

upward momentum is broadly consistent with the 30%/20% split, while leaving 50% of
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the exposures unaffected by previous rating movements allows the end results not to be

dominated by the effects of rating drift. To assess the sensitivity of the results to the

CFNAI index, I identify 2 periods that loosely correspond to the peak and the trough

of the business cycle; the first period corresponds to 01/01/2004-01/01/2005, a year

of benign economic conditions, with the real economy growing and a low number of

defaults/downgrades, while the second period corresponds to 01/01/2008-01/01/2009,

a period of severe stress, with a contracting economy, and an increased number of

defaults/downgrades especially after the Lehman Brothers collapse. Finally, to properly

assess the impact from adding time varying rating momentum effects, I use two separate

assumptions for the time in current grade each bond has spent at the beginning of the

period of interest. The first assumption is that all bonds are re-rated at the beginning

of the period of interest (i.e. 0 survival time at the start of benign and stress periods),

and the second assumption is that all bonds have spent a year in the current grade

at the beginning of the period of interest. Each of these 2 different assumptions are

applied to each of the 2 hypothetical portfolios for each of the 2 periods that I analyse,

resulting in 8 individual cases in total.

I first examine the shift in the portfolio rating distribution by including the, pos-

sibly time varying, rating momentum. Figure 4.4 depicts the impact of the rating

momentum effect on the portfolio composition, for each of the 2 hypothetical portfo-

lios, across the stress and benign economic periods. For presentation purposes, I only

include the case where the portfolio is re-rated at the beginning of the respective pe-

riod, and therefore, the starting survival time for all exposures is 0. In addition to

the distribution at the start of each of the 2 periods, I provide the portfolio distribu-

tions 1 year from the starting snapshot, based on 50,000 simulations. The business

cycle adjusted transition matrix serves as the base case for predicted 1 year portfolio

distribution. This business cycle adjusted transition matrix is obtained by using the

baseline duration profiles for each of the rating grades and including the CFNAI index

as the only covariate. To show the effect of the rating momentum I include it both pro-

portionally, with βmc as the sensitivity in (4.13), and non-proportionally, using the full

specification in (4.13). Examining the rating distributions in Figure 4.4 indicates that

the presence of momentum has a significant impact on the final portfolio composition,

especially in periods of stress. During those periods of adverse economic conditions,

rating momentum causes the portfolio to shift towards the worse end of the rating scale.
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As an extreme example, during the 2008 stress period, the proportion of Caa-C rated

bonds in the speculative grade hypothetical portfolio is approximately 15% higher than

the base case when the full specification for the rating drift is used. During benign eco-

nomic periods, the effect of rating momentum is less pronounced as the overall number

of migrations is low, irrespective of the specification used. Nevertheless, even using

the 2004 CFNAI index values, there is a clear shift of Aa exposures towards Baa, for

the investment grade range, and from Ba to Caa-C, for the speculative grade range.

This overall negative effect in creditworthiness also leads to default rates significantly

higher when either proportional or non-proportional rating momentum is included in

the specification. Further analysis of the differentiation between proportional and non-

proportional rating momentum effects shows significant deviations at the boundaries

of the rating scale and the Ba grades, where the downward momentum is much higher

than the upward momentum (indicating the speculative grade firms are more likely to

get downgraded rather than move to the investment grade range). This observation and

the significantly higher default rate caused by the non-proportional momentum during

stress periods, indicates that choosing the wrong specification for the rating drift can

lead to a severe underestimation of credit risk.

I then analyse the impact on portfolio loss and capital requirements. The analysis is

split between regulatory long run capital, actual PiT loss, and MtM losses. For capital I

use the regulatory formulae (4.15) with average PDs per grade calculated over the entire

sample and I report the RWAs. Simulated defaults do not affect the calculations as I

assume that defaulted positions are replaced by exposures of the same credit quality.

An alternative assumption could be that the portfolio shrinks if defaulted positions are

not replaced. I refrain from choosing the latter assumption since large fluctuations in

regulatory capital would be the result of defaults rather than migrations. For actual

PiT losses, PiT PDs are used based on the parameters of table 4.4. Actual losses refer

to default only losses. For MtM losses, the same PiT PDs as in the case of default

only losses are used. Losses are based on the change in portfolio market value due to

bond yields and default. The non-defaulted bonds, are priced using (4.16). In the case

of default, the bond position loses the LGD fraction of its face value. Using the bond

prices from equation (4.16), the MtM losses from period 0 to period 1, LMtM
0→1 , can be
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expressed as:

LMtM
0→1 = [FV (1− LGD)]D=1 + [FV/er1(t−τ1+τ0)]D=0 − FV/er0t, (4.20)

where τ1− τ0 refers to the time passed between period 1 and period 0, t is the maturity

of the bond at period 0, and r0, r1 are the bond yield at period 0 and 1 respectively.

For all 3 types of losses, baseline migration and default intensities are calculated using

the kernel smoother (4.4), described in section 4.3.1.

The naive assumption that all migrations only receive baseline intensity contribu-

tions adjusted for the point in the economic cycle serves as the base case for all rating

momentum results. Therefore, the base case corresponds to duration effects propor-

tionally shifted according to the value of the CFNAI index. To further differentiate

the source of deviation from the base case, the results are split by proportional rating

momentum effects (with βmc as the sensitivity in (4.13)), and rating momentum with

duration and business cycle dependence (the full specification in (4.13)). The process

of deriving PiT PDs is the same under both base and rating momentum cases, since

the PiT PDs are not related to rating drift. To better capture the effect of duration,

I analyse the portfolio’s behaviour when all the bonds are re-rated at the beginning of

the observation period and when all bonds have spend 1 year in their current rating

grade. Finally, to quantify the impact of default and migration clustering, I provide

results based on a Gaussian copula with 50% pairwise correlation, in addition to the

case of independent credit event occurrence.

Tables 4.5 and 4.6 provide the portfolio impact results for the 2 hypothetical port-

folios chosen for the analysis, based on 50,000 simulations. As mentioned above, the

first portfolio primarily consists of investment grade bonds (at a ratio of 80%-20%

against speculative grade bonds), while the second portfolio reflects a less risk averse

investor/financial institution and consists of 80% sub-investment grade bonds. Both

tables report the RWA for the respective portfolios, average and 99% actual losses,

and average and 99% MtM losses. All figures, except the RWAs, reflect losses and

negative results indicate a gain. The MtM losses assume that the investor is long in

the portfolio of bonds and that the yields rise within the observation window (which

corresponds to a price drop of the bonds in the portfolio). Conversely, losses can also

occur if the investor is short in the portfolio of bonds and the yields drop within the
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observation window. Results are presented for 1 and 2-year observation windows, start-

ing from January 2004 and January 2008. The former period reflects benign economic

conditions, while the latter covers the peak of the recent economic downturn, includ-

ing Lehman Brothers collapse in September 2008. The periods are chosen so that the

peak of the economic activity and the peak of the economic downturn approximately

coincide with the the end of the 1 year window for the respective periods. Therefore,

the 2-year observation window corresponds to a deterioration in economic activity and

an increase in corporate bond yields for the period starting in January 2004, and an

improvement in the economic activity combined with lower bond yields for the period

starting in January 2008. Results for the momentum effects are reported as percentage

deviations from the base specification.

For the portfolio loss impact analysis additional parameters are needed. The Gaus-

sian copula for dependent default and migration times is parameterised using 50% as

the pairwise correlation value. LGD is set across all periods to its stress value of 66%.

The stress value is based on 30 days post default market prices and corresponds to

the observed level over the 2008-2009 period. Basel II/III regulatory capital is rec-

ommended to be calculated using ”downturn” LGDs and for comparability with the

additional loss measures, I apply the same stress LGD value to all results. Alternatively

a stochastic LGD could be used instead, with the Beta distribution frequently chosen in

practice. I refrain from adding complexity to the LGD, since the focus of this chapter

is the PD component. I source rating specific yields from Moody’s. I use the median

yield of regular coupon bonds, maturing within 6-8 years and having an outstanding

value of more than $50 million. The median is calculated based on 1000-1200 bonds

each month. Finally, CFNAI data are sourced from the FRED6.

The results for the base case in both tables 4.5 and 4.6, confirm the choice of

01/01/2008-01/01/2010 as the stress period; both average and quantile losses for the

2008-2010 period are approximately twice as high as the losses for the more benign eco-

nomic period 01/01/2004-01/01/2006. Examining the MtM losses, the relative impact

of the 2008-2009 period is dramatic: for the investment grade portfolio, MtM losses

jump from approximately $500 in 2004 to approximately $14,000 in 2008 (an MtM loss

implying that 14% of the face value is wiped off during the peak of the stress), while

6http://research.stlouisfed.org/fred2/
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1 Year Horizon 2 Year Horizon
RWA Loss-Av Loss-99% MtM-Av MtM-99% RWA Loss-Av Loss-99% MtM-Av MtM-99%

January 2004

0
%

A
ss

et
C

o
rr

el
. Base

0 Starting Dur. 88,003 181 463 473 763 88,411 315 661 3,886 4,235
1Y Starting Dur. 88,258 316 661 587 966 88,703 460 925 3,980 4,409

Prop. Drift
0 Starting Dur. 0.58 1.59 0.00 2.08 2.44 1.56 4.89 10.00 1.10 2.14
1Y Starting Dur. 1.62 3.76 9.09 6.52 7.26 2.76 8.20 0.00 2.72 3.55

Non-Prop. Drift
0 Starting Dur. 0.85 4.83 0.00 8.68 7.67 1.48 8.76 10.00 1.79 2.93
1Y Starting Dur. 1.44 5.60 9.09 6.93 6.34 1.91 8.04 0.00 1.52 2.56

5
0
%

A
ss

et
C

o
rr

el
. Base

0 Starting Dur. 88,003 181 2,181 473 4,138 88,411 315 3,239 3,886 8,468
1Y Starting Dur. 88,258 316 3,305 587 5,573 88,703 460 4,165 3,980 9,540

Prop. Drift
0 Starting Dur. 0.58 1.59 0.00 2.08 1.90 1.56 4.89 2.04 1.10 1.65
1Y Starting Dur. 1.62 3.76 1.89 6.52 1.06 2.76 8.20 1.59 2.72 1.88

Non-Prop. Drift
0 Starting Dur. 0.85 4.83 0.00 8.68 2.15 1.48 8.76 2.04 1.79 3.11
1Y Starting Dur. 1.44 5.60 1.89 6.93 0.69 1.91 8.04 1.59 1.52 1.80

January 2008

0
%

A
ss

et
C

o
rr

el
. Base

0 Starting Dur. 89,693 386 793 13,962 14,170 91,597 744 1,256 -1,824 1,609
1Y Starting Dur. 90,945 492 925 14,261 14,520 92,878 866 1,454 -1,569 2,016

Prop. Drift
0 Starting Dur. 1.63 3.44 0.00 1.77 2.00 3.48 7.87 5.26 -27.17 16.49
1Y Starting Dur. 3.30 9.28 7.14 3.94 4.91 5.13 16.19 9.09 -55.97 28.30

Non-Prop. Drift
0 Starting Dur. 2.09 12.18 8.33 3.52 3.92 3.23 20.24 15.79 -39.51 26.56
1Y Starting Dur. 2.47 11.61 7.14 3.48 3.91 3.39 15.65 9.09 -43.10 21.67

5
0
%

A
ss

et
C

o
rr

el
. Base

0 Starting Dur. 89,693 386 793 13,962 16,358 91,597 744 1,256 -1,824 1,609
1Y Starting Dur. 90,945 492 925 14,261 16,742 92,878 866 1,454 -1,569 2,016

Prop. Drift
0 Starting Dur. 1.63 3.44 0.00 1.77 4.37 3.48 7.87 0.69 -27.17 57.07
1Y Starting Dur. 3.30 9.28 0.84 3.94 6.09 5.13 16.19 3.66 -55.97 64.67

Non-Prop. Drift
0 Starting Dur. 2.09 12.18 2.08 3.52 9.46 3.23 20.24 4.17 -39.51 108.08
1Y Starting Dur. 2.47 11.61 0.84 3.48 8.70 3.39 15.65 4.88 -43.10 84.31

Table 4.5: Credit portfolio loss simulation results - Investment Grade Portfolio
Simulation results for regulatory capital, actual loss and MtM loss for the hypothetical portfolio consisting
of 80%-20% investment and sub-investment grade bonds respectively. Portfolio results are provided for the
periods January 2004-January 2006, and January 2008-January 2010. The first period corresponds to benign
economic conditions, while the second period is representative of a stress economic environment. To properly
capture the impact of both baseline and rating momentum duration, I differenciate between all bonds starting
from 0 duration and all bonds having spent 1 year in their current grade. For the ”Base” case I only use
the CFNAI index as a covariate. For the ”Prop. Drift” case I add the proportional rating momentum effect
to the baseline business cycle fluctuations of the ”Base” case. Finally, the ”Non-Prop. Drift” case refers to
the full model, which allows the rating momentum to vary with time spent in current grade and business
cycle movements. All results correspond to loss estimates and, therefore, negative figures indicate a gain. All
rating momentum results are reported as differences from Base case, expressed in %.

for the sub-investment grade portfolio an MtM gain of $500 in 2004 compares to a

$21,000 loss in 2008 (an MtM loss level corresponding to 21% of the face value wiped

off). During the second year of each observation window the MtM differences are much

less pronounced, as corporate bond yields return to levels similar to those observed at

the beginning of each window. For the investment grade portfolio, a loss of $4,000 in

2005 is compared to a $1,800 gain in 2009, while a loss of $3,600 reduces to $2,000 for

the sub-investment grade portfolio. From a regulatory capital perspective the results

are less clear; the investment grade portfolio shows an increase in capital requirements

in 2008-2009 as compared to 2004-2005, but the reverse is true for the sub-investment
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1 Year Horizon 2 Year Horizon
RWA Loss-Av Loss-99% MtM-Av MtM-99% RWA Loss-Av Loss-99% MtM-Av MtM-99%

January 2004

0
%

A
ss

et
C

o
rr

el
. Base

0 Starting Dur. 128,952 741 1,322 -532 -144 127,343 1,263 1,983 3,622 4,090
1Y Starting Dur. 127,309 1,277 1,983 -257 244 125,767 1,818 2,644 3,879 4,437

Prop. Drift
0 Starting Dur. 0.03 1.58 0.00 -0.73 -7.56 -0.11 4.89 3.33 -0.06 1.04
1Y Starting Dur. 0.01 3.63 3.33 -0.54 11.34 -0.37 8.00 7.50 0.63 2.14

Non-Prop. Drift
0 Starting Dur. -0.12 4.81 0.00 -1.79 -60.90 -0.30 8.44 6.67 1.63 2.73
1Y Starting Dur. -0.18 5.35 3.33 -0.87 13.61 -0.41 7.66 5.00 -1.43 0.15

5
0
%

A
ss

et
C

o
rr

el
. Base

0 Starting Dur. 128,952 741 8,527 -532 4,875 127,343 1,263 12,295 3,622 10,608
1Y Starting Dur. 127,309 1,277 12,493 -257 7,620 125,767 1,818 15,600 3,879 12,716

Prop. Drift
0 Starting Dur. 0.03 1.58 0.78 -0.73 1.00 -0.11 4.89 0.54 -0.06 0.43
1Y Starting Dur. 0.01 3.63 0.00 -0.54 0.56 -0.37 8.00 1.27 0.63 1.48

Non-Prop. Drift
0 Starting Dur. -0.12 4.81 1.55 -1.79 2.29 -0.30 8.44 1.61 1.63 1.52
1Y Starting Dur. -0.18 5.35 0.53 -0.87 1.02 -0.41 7.66 1.27 -1.43 1.01

January 2008

0
%

A
ss

et
C

o
rr

el
. Base

0 Starting Dur. 126,749 1,587 2,380 20,895 21,159 123,188 2,980 4,032 2,087 2,697
1Y Starting Dur. 125,604 1,974 2,842 21,203 21,533 122,102 3,407 4,495 2,458 3,125

Prop. Drift
0 Starting Dur. -0.01 3.51 2.78 1.44 1.59 -0.30 7.56 4.92 28.22 22.73
1Y Starting Dur. -0.18 8.96 6.98 2.95 3.20 -0.86 15.02 11.76 40.96 33.84

Non-Prop. Drift
0 Starting Dur. -0.59 11.79 8.33 3.73 4.05 -1.47 18.61 14.75 53.71 43.85
1Y Starting Dur. -0.44 11.03 9.30 2.51 2.86 -0.89 13.25 11.76 28.23 24.24

5
0
%

A
ss

et
C

o
rr

el
. Base

0 Starting Dur. 126,749 1,587 12,493 20,895 24,014 123,188 2,980 17,913 2,087 10,876
1Y Starting Dur. 125,604 1,974 14,872 21,203 24,499 122,102 3,407 19,962 2,458 12,156

Prop. Drift
0 Starting Dur. -0.01 3.51 0.53 1.44 2.15 -0.30 7.56 0.18 28.22 4.28
1Y Starting Dur. -0.18 8.96 0.44 2.95 2.74 -0.86 15.02 1.66 40.96 7.03

Non-Prop. Drift
0 Starting Dur. -0.59 11.79 0.53 3.73 6.20 -1.47 18.61 2.21 53.71 11.43
1Y Starting Dur. -0.44 11.03 0.89 2.51 4.53 -0.89 13.25 1.99 28.23 7.47

Table 4.6: Credit portfolio loss simulation results - Speculative Grade Portfolio
Simulation results for regulatory capital, actual loss and MtM loss for the hypothetical portfolio consisting
of 20%-80% investment and sub-investment grade bonds respectively. Portfolio results are provided for the
periods January 2004-January 2006, and January 2008-January 2010. The first period corresponds to benign
economic conditions, while the second period is representative of a stress economic environment. To properly
capture the impact of both baseline and rating momentum duration, I differenciate between all bonds starting
from 0 duration and all bonds having spent 1 year in their current grade. For the ”Base” case I only use
the CFNAI index as a covariate. For the ”Prop. Drift” case I add the proportional rating momentum effect
to the baseline business cycle fluctuations of the ”Base” case. Finally, the ”Non-Prop. Drift” case refers to
the full model, which allows the rating momentum to vary with time spent in current grade and business
cycle movements. All results correspond to loss estimates and, therefore, negative figures indicate a gain. All
rating momentum results are reported as differences from Base case, expressed in %.

grade portfolio. This difference in behaviour between investment and sub-investment

grade portfolios can be explained but the non-linearity of the RWA function. The PD

level that maximises the RWA formula in (4.15) is close to the TTC PD for the Ba3

grade. As the average portfolio grade shifts to the B and Caa-C grades, the RWA figure

will decrease. Given the severity of the economic conditions during 2008-2009, the non-

linearity of the RWA formula causes the sub-investment grade portfolio to have lower

regulatory capital requirements. This behaviour is counterbalanced by the significantly

higher provisions that financial institutions would have to raise during the period 2008-

2009 to cover the impaired loans. Finally, losses are higher under the assumption that
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all the bonds in the portfolio have maintained their rating for 1 year at the beginning of

the observation window. This observation is consistent with the baseline hazard curves

in figure 4.2; migration and default intensities peak between 1 and 2 years since rating

assignment.

Examining the results for the rating momentum clearly shows that the drift in

rating migrations causes a shift in the loss distribution, with significantly higher average

and tail losses. This increase in losses is more pronounced during periods of severe

economic conditions; using the 2008 downturn as a proxy for stress conditions, the 1

year average losses for the rating momentum can be more than 11% higher than the

base case (close to 20% for the 2 year cumulative losses), while during the 2004-2005

benign economic period, the average loss for rating momentum can be approximately

5% higher than the base case (close to 8% for the 2 year cumulative losses). When the

rating momentum effect is constrained to be proportional, the above mentioned figures

can be 1.5-4 times lower, and this difference is significantly higher when starting from a 0

duration. This finding is consistent with the shape of the time profiles in Figure 4.3; the

migration intensity between 0 and 365 days is much higher than the average intensity

across the entire time horizon, and therefore, the proportionality assumption would

lead to materially different results over that timeframe. This extremely high difference

between proportional and non-proportional rating drift highlights the importance of

correctly specifying the momentum effect, especially for portfolios of recently re-rated

bonds.

Due to the relative scarcity of default events and the much higher base case loss

estimates, the percentage increase of the tail loss under the presence of rating momen-

tum is less pronounced than the increase in average losses. When assuming 0% asset

correlation, the tail loss increase over the base case is 20%-25% less than the equivalent

increase in average loss (this percentage is calculated by averaging the reported results

for all cases). For the 50% asset correlation, the magnitude of the tail loss increase can

be 10 times lower than the increase in average losses; across the different periods and

the 2 portfolio structures used in the analysis, the Gaussian copula based tail losses

are between <1bp and 200bp higher than the base case, with the average deviation in

the 80bp range. This range of percentage increase in 99% losses under the presence

of rating momentum, is broadly consistent with the 107bp average increase in VaR
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reported in Güttler and Raupach (2010) across the period 1996-2005. Nevertheless, a

few differences should be highlighted when comparing results across the two studies:

a) Güttler and Raupach (2010) use S&P ratings from 1996 to 2005, unlike the present

study that uses Moody’s ratings over the period 1983-2008 and therefore includes two

additional periods of stress (early ’90s recession, 2008 credit crisis), b) the base case for

Güttler and Raupach (2010) is the time homogeneous Markov chain transition matrix,

unlike the present study that assumes for the base case a transition matrix depended on

the macroeconomic environment, c) Güttler and Raupach (2010) use 99.9% confidence

level for the VaR, unlike the 99% level chosen in the current study, d) the portfolio

composition across the 2 studies is different, e) the methodology of deriving momen-

tum sensitive transition matrices is different across the 2 studies. Furthermore, despite

the lower impact relative to the average losses, the absolute difference from the base

case can be marginally more pronounced for low quality portfolios. With 0% asset cor-

relation, the increase in tail losses due to the presence of momentum is $50 higher than

the equivalent increase in average losses over the 1 year horizon (the absolute amount

impact of the rating momentum for tail losses is approximately $265), and $75 higher

over the 2 year horizon (the absolute amount impact of the rating momentum for tail

losses is approximately $530).

The MtM estimates include credit spread fluctuations in addition to defaults, and,

therefore, losses can be more extreme than the pure jump-to-default case, depending

on the direction corporate bond yields move over the observation period. Exploring

the base case results for the stress period January 2008-January 2009, it is very ap-

parent that the extreme increase in corporate borrowing premiums resulted in average

MtM losses 35 times higher than purely default related write-downs for the low risk

portfolio (across the 1 year horizon, approximately $14,000 across 0 and 1 year initial

duration as compared to approximately $400); the high risk portfolio has a substan-

tial jump-to-default component and therefore the equivalent increase for this portfolio

is approximately tenfold. Given the extreme jump in base MtM losses, the average

3.5% increase due to the presence of rating momentum is substantially lower than the

equivalent increase in jump-to-default losses (approximately 11% across the 2 portfo-

lios). Nevertheless, in absolute figures, the momentum-adjusted MtM loss estimates are

higher than the equivalent default only estimates; for the extreme stress period starting

on January 2008, the absolute impact of rating momentum on average MtM losses is
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more than $700 over the 1 year horizon, while the equivalent increase in jump-to-default

losses is close to $200 (over the 2 year horizon, the absolute impact is approximately

$900 for the MtM losses and $500 for the jump-to-default losses). This remark high-

lights that the combination of increased migrations caused by the rating drift and high

credit spreads can severely hurt investors that risk manage their fixed-income positions

based purely on the state of the business cycle. It is worth noting that, consistently

with the jump-to-default losses, the time varying momentum leads to 1.5-4 times higher

MtM losses across the 2 portfolios if the portfolio is re-rated at the beginning of the ob-

servation period. Nevertheless, due to the non-monotonic relative movement of credit

spreads across the rating scale, when starting from 1 year duration time, the time

varying momentum results are generally lower than the proportional momentum.

4.6 Conclusion

In this chapter I explore the dynamics of the momentum effect in credit rating mi-

grations. I confirm the results of earlier studies, by reporting a very strong effect of

previous rating movement on subsequent migration direction, with the, so-called, rat-

ing momentum effect quantified as an approximately 5 times increase in downgrade

intensity and 3 times increase in upgrade intensity on average. Unlike previous studies

that use pre-credit crunch data, the results of this study are based on an extended

dataset including the recent economic downturn and, therefore, the reported impact of

rating momentum effect reflects the recent increase in credit risk.

I further show that there is a strong dependence of this momentum effect on time

spent in a given rating grade and that this dependence is highly non-linear. The shape

of the time profile for the rating momentum can vary from an exponential decay for

investment grade downgrades to a concave increasing function for investment grade up-

grades. For sub-investment grade firms, the momentum effect for both downgrades and

upgrades monotonically increases to reach a maximum and then slowly decays as firms

stay longer in their current rating grade. These findings provide strong evidence that

the time-invariant momentum effects used in earlier studies are inadequate to properly

capture the dynamics of credit transition matrices. Furthermore, failing to account

for the time-varying nature of the rating momentum effect questions the robustness of
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any statistical testing based on proportional hazard models, since any dependence on

survival time violates the proportionality assumption of these models.

In addition to the dependence on time spent in the current grade, I also test

whether the rating momentum effect varies across the business cycle, possibly non-

proportionally. The results indicate that the rating momentum effect for investment

grade firms remains largely unaffected across the different phases of the economic cycle,

even though for investment grade upgrades there are very few migrations during periods

of stress in order to draw robust conclusions. For speculative grade firms, the effect

of the business cycle on the rating momentum effect is very pronounced, with a clear

non-proportional increase in downward momentum and an approximately proportional

decrease in upward momentum during periods of stress. Furthermore, the downward

momentum can be more than twice as strong in stress conditions as compared to the

long run average, shedding some light into the amplification of economic shocks via the

domino effect that corporate downgrades have on credit conditions.

The impact of each of the above effects is quantified across different portfolio struc-

tures and economic conditions. Basel II/III regulatory capital remains largely unaf-

fected by the presence of rating momentum, with noticeable differences mainly during

stress conditions for high credit quality portfolios. On the contrary, the impact of rat-

ing momentum on jump-to-default losses is proved to be highly significant, with an

increase of 11% and 20% in 1-year and 2-year average losses during periods of stress.

These significant uplifts can be attributed mainly to time and business cycle depen-

dence of the rating momentum, since removing those non-proportional effects leads to

1.5-4 times lower loss figures, especially if the portfolio under consideration is recently

re-rated. I report results for the tail losses consistent with the study of Güttler and

Raupach (2010), despite the differences in methodology and data used. I choose the

99% confidence level to define the tail losses and, in percentage terms, the impact of

rating momentum is smaller than the average losses. The absolute amount impact

strongly depends on the underlying portfolio’s composition. For high credit quality

portfolios with extremely low default probabilities, the presence of momentum adds

very little as compared to the average loss estimates. For low credit quality portfolios,

with a significant proportion defaulting, rating momentum adjusted tail losses increase

substantially more than the average losses, especially as defaults accumulate over a 2
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year horizon. Finally, due to the extreme movements of credit spreads during periods of

stress, MtM losses can be more pronounced than jump-to-default losses; for the 2008-

2009 period, the absolute MtM loss amount is 3.5 times higher than the equivalent

amount for jump-to-default losses over the 1-year horizon and 1.8 times over the 2-year

horizon.

Due to the focus of this chapter on capturing the duration and business cycle de-

pendence of the rating drift effect, the statistical specification is restricted to ensure

the robustness of results. Therefore, the specification can be extended in various ways

to facilitate more complex dynamics. A straightforward extension is to make the time

varying momentum effect rating grade and industry specific. Nevertheless, credit mi-

grations are relatively infrequent events and the sample of rated companies is not large

enough to allow for a robust analysis of the time varying rating momentum dynamics at

such a granular level. Therefore, differentiating the time dependent rating momentum

dynamics by rating grade and industry is left for future research as more data become

available.

Another extension can be the inclusion of latent systematic variables. My speci-

fication assumes a single source of systematic fluctuations in credit migrations, which

takes the form of the CFNAI diffusion index. This variable does not correspond to an

actual economic measure, but it is constructed so that it summarises the co-movements

in a very large panel of macroeconomic and financial measures. Despite being a cal-

culated measure, it is treated as observable for modelling purposes, since it is not

estimated jointly with the credit migrations. A number of studies have reported a

strong residual effect in rating migrations after generic macroeconomic and financial

movements are taken into account. This unobservable clustering in rating migrations

is usually attributed to economy-wide or industry-wide frailty, and is captured by a set

of autocorrelated factors jointly estimated with the observable part of the model, see

Koopman et al. (2008) for more details. To include such effects parametric assump-

tions are needed, therefore relaxing the semi-parametric nature of the Cox model used

in this study. Furthermore, the likelihood evaluation for such type of models requires

multi-dimensional integration, leading to simulation based methods for the estimation

that can dramatically increase the computational time.
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Chapter 5

Conclusion

5.1 Summary

In the aftermath of the recent financial crisis, the thesis aims at exploring the inter-

linkages between credit risk and the macro-financial environment. The research themes

revolve around 3 major topics in today’s risk management and policy making. First,

conditional on the macroeconomic conditions how well can be forecast corporate de-

faults? Default forecasting is at the heart of future loss projections for any financial

institution while it also has implications concerning the pricing of fixed-income portfo-

lios. Second, what is the impact of structural shocks on credit losses? Structural shocks

and their impact on credit portfolios are very important in policy making, but can be

extremely helpful when forming hypothetical scenarios for stress testing of financial

institutions. Third, what are the dynamics of serial dependence in rating migrations

and what are the implications of using the Markovian assumption when projecting

transition matrices? The non-Markovian characteristics in corporate transition matri-

ces can affect both investors (that MtM their corporate bond portfolios) and financial

institutions (that base their capital requirements on rating grades).

The first question deals with the forecasting power of the macroeconomic environ-

ment on corporate bond defaults. The 2008 credit crisis highlighted the importance of

a systematic view on credit risk; nevertheless, empirical evidence is inconclusive con-

cerning which economy-wide variables help to robustly predict the default cycles. To
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avoid the individual variable selection bias, I develop a high dimensionality dynamic

factor model from a panel of 103 macroeconomic and financial indicators. Unlike the

existing literature on dynamic factor modelling for credit risk prediction, the proposed

specification provides a clearly interpretable decomposition of the economic environ-

ment fluctuations into a small set of factors. I propose a novel MCMC algorithm based

on Gibbs Sampling to combine the economy-wide dynamic factors with US corporate

bond specific latent factors and forecast default probabilities at 3-month, 6-month and

1-year horizons. I provide evidence that the dynamic factors can lead to significant

gains in default probability forecasting performance of the model. The improvement

in forecasting performance over simplified specifications having Industrial Production

as the only covariate can be as high as 90% in terms of RMSE and more than 80% in

terms of MAE. Nevertheless, the gains from using dynamic and latent factors becomes

less pronounced the longer the default forecasting horizon.

The second question deals with the effects of monetary policy and macro-financial

shocks on corporate bond defaults and recoveries. I use a VAR model with a novel

semi-structural identification scheme to isolate the various shocks at the macro level.

In order to quantify the impact of the shocks on Moody’s default and recovery data, I

use a partially non-Gaussian specification. The econometric specification is sufficiently

flexible to separate the macroeconomic effects from the credit-specific systematic dy-

namics and to isolate the different shock transmission mechanisms. I report intuitive

impulse response functions for all macroeconomic variables in the analysis and the re-

sults highlight the importance of the cost/working capital and balance sheet channels

in the monetary transmission process. Corporate default likelihood is strongly affected

by balance sheet and real economy shocks for the cyclical industry sectors, while the

effects of monetary policy shocks typically take up to one year to materialise. In con-

trast, recovery rates tend to be more sensitive to asset price shocks, while real economy

shocks mainly affect secured debt recovery values. Finally, I present strong evidence

that semi-structural shocks account for approximately 45% of the long-run forecast

variance for defaults and approximately 34% for recovery rates.

The third question explores the stability of the autocorrelation in credit rating

migrations and their, possibly non-linear, dependence on the business cycle. I provide

robust evidence that there is a strong correlation between successive credit rating move-
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ments. I show that this so-called rating momentum effect is not constant through the

cycle; its magnitude exhibits a non-linear dependence to the time spent in a given rating

grade and changes across the difference states of the economy. Furthermore, the rating

momentum is more pronounced for downgrades as compared to upgrades, confirming

the existing evidence of a predominately downwards drift in credit ratings. Empiri-

cal evidence from Moody’s Default & Recovery database suggests that the presence of

this directional dependence has a significant impact on portfolio losses and regulatory

capital. In extreme periods of stress, average losses can be 20% higher over a 2-year

horizon and this increase can be twice as high for MtM losses. The Basel II/III regula-

tory capital is less affected by the presence of momentum, but capital requirement for

high quality portfolios can be underestimated by more than 3% in times of stress.

5.2 Contribution to knowledge

The results of the thesis provide significant extensions to the existing literature and

further enhance the understanding of the macroeconomic impact on corporate credit

risk.

First, I provide further evidence that the use of dynamic factors can lead to sig-

nificant improvements in forecasting performance. This is in line with the work of

Koopman et al. (2011) that use dynamic factors base on principal components. While

Koopman et al. (2011) benchmark the forecasting performance using a constant-only

base specification, I provide a more robust comparison by using a base specification with

Industrial Production as the sole covariate. I show that the improvement in forecast-

ing performance strongly depends on the industrial sector and the forecasting horizon,

but can be as high as 90% in terms of RMSE for the 3-month horizon. Unlike prior

work in the literature, I introduce a semi-structurally identified set of factors that pro-

vides an intuitive interpretation of the different macro-financial dynamics, in addition

to generating independent covariates for use in corporate default regressions. Further-

more, unlike the contemporaneous nature of the existing work on dynamic factors and

the credit side of the economy, I assess the forecasting power using different horizons

for the default rates. That allows for a better understanding of the forward looking

performance of the model and the corresponding implications for risk management.

166



Second, I provide the first structural decomposition of corporate bond defaults and

recoveries in terms of fundamental macroeconomic shocks. I introduce a new semi-

structural identification scheme for a small scale VAR model, that combines a set of

short- and long-run restrictions to isolate theory-based economic shocks. This is a

significant addition to the existing literature that typically identifies shocks based on

recursive restrictions. I show that the identified shocks have a meaningful interpretation

and the impulse-response analysis ensures that the responses of all the input variables

are intuitive. Being the first structural analysis of corporate bond credit risk metrics, I

show that this newly introduced semi-structural model generates macroeconomic shocks

that account for approximately 45% of the default forecast variance and approximately

34% of the recovery forecast variance. Finally, I find empirical support for the work

of Barth and Ramey (2002), Chowdhury et al. (2006), and Ravenna and Walsh (2006)

by reporting robust and strong evidence for the presence of a working capital/cost

channel transmission mechanism in monetary policy. This is of particular importance

for policy makers as it implies that corporates are able to partially pass on increases in

their cost of debt to consumers. The presence of a cost channel causes some inflationary

pressures when corporates struggle to attract funding due to balance sheet shocks, or

face increasing yields in their debt as a result of monetary policy shocks.

Third, I provide a thorough analysis of the so-called momentum effect on corporate

bond ratings. The analysis is an extension of the work by Lando and Skødeberg (2002)

and Güttler and Raupach (2010) and explores a number of themes not considered be-

fore. While rating momentum in the existing literature is treated as time-invariant with

a proportional impact on rating migrations, I provide robust evidence that the serial de-

pendence in rating migrations depends non-linearly on the business cycle and the time

a given issuer spends in a rating grade. These highly non-proportional extensions of

the basic Cox proportional hazard model used in prior studies, also help to remove the

bias associated with testing non-proportional effects in a proportional hazard setting.

The work presented in this thesis enhances our knowledge on the behaviour of rating

agencies and shows that the proportionality typically assumed in time-to-event stud-

ies of corporate migrations can lead to misleading inference. Furthermore, I provide

a detailed impact analysis of the rating momentum effect on credit loss and regula-

tory capital metrics. These results are very important for risk management as they

show that the Markovian assumption typically associated with transition matrices can
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lead to a severe underestimation of rating migration risk. While Güttler and Raupach

(2010) also explore the impact of serial dependence on VaR, the results reported in this

thesis constitute the first attempt to quantify the impact of non-proportional rating

momentum on a number of credit loss metrics, ranging from actual and MtM losses to

regulatory capital for financial institutions.

5.3 Implications for Risk Management and Policy Making

The analysis and results presented in chapters 2-4 touch a number of topics in the

broader field of credit risk modelling and have implications for investor and financial

institution risk management, micro-prudential regulation, financial stability and mon-

etary policy. While the chapters are independent and each one addresses a distinct

research question, the results can be seen as a unified framework to assess the sensitiv-

ity of the different aspects of credit risk to a changing economic environment and to

quantify potential losses that might occur as the results of adverse market movements.

The effects of credit risk on the banking system, in the aftermath of the recent

credit crisis, have been the focus of regulators on both sides of the Atlantic. Regulatory

actions, in the form of stress testing exercises, aim to assess the solvency of the banking

sector and identify the need for additional capital requirements. The analysis and

results of this thesis provide useful insights into two complimentary approaches to the

scenario building and assessment process. First, the dynamic factor approach of chapter

2 can lead to internally consistent scenarios across many macroeconomic variables. As

the dynamic factors in chapter 2 have an economic interpretation, stress scenarios can

be defined directly in the factor space. For example a deterioration in business cycle

conditions by 2 standard deviations coupled with a sharp increase in the cost of debt by

1 standard deviation can form the scenario narrative; based on this scenario narrative,

observed macroeconomic series paths can be derived directly from the model. A second

approach is to use the structural view of the economy followed in chapter 3 to form

extreme but plausible shocks to drive the stress scenarios. The structural view would

enable one to express forward looking views on the economy in terms of independent,

fundamental sources of macroeconomic activity. For example the scenario narrative

might be defined in terms of drop in aggregate demand, combined with a corporate
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balance sheet shock and tightening of monetary policy. Under both approaches, the

reduced-form econometric specifications for the default and recovery rates can be used

to quantify the effect of the defined macro-financial scenario on credit losses.

In addition to scenario analysis and stress testing, the methodologies presented in

chapter 2 can also be used for PiT forecasting of credit portfolios losses, both from an

investor’s and a financial intermediary’s perspective. For financial intermediaries loss

forecasting is essential in provision setting and pricing. Collective (or general) impair-

ment provisioning reflects the estimated amount of losses incurred on a collective basis,

without having been individually identified. To set collective provisions financial insti-

tutions typically use aggregate loss forecasting based on appropriate portfolio segments

(sector and/or credit quality). Therefore, robust forecasting tools that make best use

of the large amount of macroeconomic data available are very important in ensuring

that default rate forecasts over various horizons do not materially over- or under-shoot

the actual realisations. In addition to provisioning, accurate default probabilities are

essential for the pricing of private or public debt instruments. Pricing of loans should

reflect the counterparty’s probability of default over the lending duration. Similarly for

investors in the corporate bond market, accurate predictions of default occurrence can

drive investment decisions (if the investor thinks the bond is over/under-priced based

on his/her belief of future evolution of default rates) or can feed in the risk management

process to determine the maximum potential loss a given portfolio might incur.

In addition to the PiT credit measures, corporate credit ratings play a major role

in today’s risk management. Investors in the corporate bond market often base their

decisions on the rating of issuer (which is often link to the bond’s yield). Potential future

changes of the issuer’s credit grade can therefore have a material impact on the value

of a portfolio that is MtM. Furthermore, the capital requirements for banking book

positions of financial institutions are based on long-run default probability assessments,

typically mimicking the behaviour of external rating agency credit grades. Stress testing

of capital positions required a forward looking assessment of the possible change in the

credit quality of a portfolio of loans. Following the results of chapter 4, corporate

ratings exhibit a high degree of serial dependence that can greatly affect the prediction

of MtM losses and capital requirements alike. Furthermore, I show that the serial

dependence is strongly influenced by the state of the business cycle. If not accounted
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properly, both capital requirements and market losses can be severely underestimated,

especially in periods of stress. This is particularly evident for MtM losses, where the

loss estimate during periods of stress is a combination of rating downgrades and credit

spread widening.

Except from the micro view of individual portfolio credit losses, the results pre-

sented in chapter 3 have important implications for monetary policy and financial

stability. Inflation targeting monetary policy without a complete assessment of the

macro-financial linkages could miss the credit and cost channel transmission mecha-

nisms. As I show, monetary policy tightening shocks can lead to temporary inflation-

ary pressures 3-4 quarters post policy changes, and central banks need to adjust their

expectations accordingly. Furthermore, the sensitivity of default and recovery rates to

monetary policy and balance sheet shocks, indicate that regulatory oversight should be

adjusted accordingly when assessing capital requirements of financial intermediaries in

low interest rate and high leverage regimes; rise in interest rates and over-leveraging

can increase substantially write-offs in corporate and consumer loans, shrinking the

available capital to absorb further losses.

5.4 Limitations and Extensions

Chapters 2-4 explore 3 key issues in today’s credit risk and macroeconomic modelling.

No analysis can cover a research topic from all the possible angles or provide answers to

all the relevant questions. Rather, the results provided in this thesis aim at stimulat-

ing some discussion around how credit risk relates to the macroeconomic environment

and at highlighting the advantages of advanced econometric techniques in credit risk

modelling. Therefore, some research questions and approaches have been left out scope

and could be addressed as part of future research projects.

The thesis approaches the 3 main research questions from a macro perspective.

Even chapter 4, that uses firm specific momentum indicators and duration times, tries

to infer aggregate relationships and effects. Due to the macro focus of the analysis, no

firm-specific financial data are used. Therefore, an obvious extension of the approach

followed in this thesis is to answer the same questions by adding financial variables for

the firms in the sample. As Duffie et al. (2007) show, while macroeconomic data are very
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useful in explaining part of the time series aspect of defaults, for cross-sectional analysis

financial ratios and most importantly the Distance-to-Default are essential. That has

implications for the analysis of chapter 2; if differentiating the default probability across

bond issuers is the focus then forecasting defaults will need to include firm-specific

information in addition to macroeconomic factors. Furthermore, the structural analysis

of chapter 3 can greatly benefit from the use of corporate balance sheet information.

Macroeconomic shocks have complex transmission mechanisms and granular financial

data can help to disentangle the impact on both asset and liability side of the corporate

balance sheet. Finally, for the rating momentum analysis of chapter 4 adding balance

sheet information could help explain the quantitative element of the serial dependence

in credit ratings. Rating momentum is partially based on the change in the balance

sheet strength following a rating action and partially on behavioural aspects of rating

assignment process. While financial data do not explain the latter, they can help trace

the potential contagion following rating changes.

The dynamic factor and structural approaches of chapter 2 and 3 respectively can

be unified under a structural dynamic factor model that is based on economic and

financial theory to identify the different factors/shocks. The dynamic factor model of

chapter 2 is based on a number of 0 restrictions on the matrix of factor loadings. This

particular structural of the factor loadings matrix essentially restricts the short-run

responses to the dynamic factors for a subset of macroeconomic variables. Chapter

3 uses a number of short- and long-run restrictions to make the shock identification

more in line with traditional economic theory views. In principle, since a VAR can

be written in a dynamic factor form, these two approaches could be unified in one

model. Nevertheless, the presence of long-run restrictions complicates the estimation

process for a dynamic factor model, and the existing literature has not provided any

estimation scheme to address this class of problems. The MCMC sampling scheme

used in chapter 2 provides a good starting point for the development of an efficient

estimation algorithm, as it decomposes the different sampling steps into manageable

sub-groups.

The use of recovery rates in this thesis is limited to the impact analysis of structural

macroeconomic shocks on credit risk presented in chapter 3. The forecasting analysis

of chapter 2 could also be extended to cover the effect of the dynamic factors on
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recovery rates. Forecasting recoveries can be more complicated as compared to defaults.

Recovery rates are only applicable for defaulted debt and therefore the overall sample

size reduces significantly in size. Furthermore, recoveries are calculated by discounting a

number of post-default cash flows that do not necessarily correspond to a single period.

Therefore it is difficult to associate a single realisation of a macroeconomic variable or

factor with the overall recovery rate. Chapter 3 simplifies the analysis by using post-

default trading prices as a proxy for ultimate recoveries. Further work on structural

macroeconomic decomposition or forecasting of credit losses could also consider the

realised recoveries, building on the work of Khieu et al. (2012).

Recoveries and defaults need not be treated as independent. Multiple studies show

that there is a strong correlation between default clustering and low levels of recoveries,

see Altman (2008) and the references therein. As structural credit models imply, both

defaults and recovery values depend on the asset value of a firm and the underlying

drivers of this asset value process; the difference is the timing, as defaults depend on

the pre-default dynamics of the asset value, while recoveries depend on the post-default

dynamics. Therefore, a straightforward extension of the analysis presented in chapter

3 is to jointly assess the impact of structural macroeconomic shocks on defaults and

recoveries. Creal et al. (2013) introduce a set-up that allows the joint modelling of

default and recovery time series, albeit restricting the dimensionality to a small set

of macroeconomic variables and a simplified identification scheme. Joint modelling

of the credit risk constituents can also be applied to forecasting, therefore extending

the analysis of chapter 2. While joint modelling the default and recovery dynamics

offers clear benefits when assessing tail losses (the co-dependence between defaults

and recoveries becomes very important when focusing on extreme quantiles of the loss

distribution), the benefits for average loss forecasting are less clear.

Building on the potential interdependence between defaults and recoveries, credit

metrics and macro-financial environment could also be jointly modelled, along the lines

of Creal et al. (2013). Joint modelling of defaults, recoveries and macroeconomic con-

ditions can help incorporating feedback loops between the credit and the real sides of

the economy. At the same time though, increasing the dimensionality of the system to

be estimated, increases substantially the computational burden. This poses constraints

on the structural and forecasting specifications that can be feasibly estimated. For
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example the semi-structural identification restrictions of chapter 3 are extremely diffi-

cult to be implemented in a large scale dynamic and non-Gaussian state space model.

Furthermore, lag optimisation for forecasting purposes is very time consuming and only

contemporaneous correlations are allowed in the existing literature.

When moving to the continuous time setup of chapter 4, I employ a semi-parametric

Cox proportional specification to test the rating momentum effect. While the semi-

parametric nature removes the restrictions concerning the baseline intensities in a rating

transition matrix, at the same time it limits the dynamic effects that can be incorpo-

rated in the model. It is well documented that rating migrations, just like defaults,

exhibit clustering in time in addition to the observed business cycle movements. This

is usually captured by economy-wide or industry-wide unobserved factors, as in Koop-

man et al. (2008). Therefore, an extension of the analysis presented in chapter 4 could

incorporate unobserved frailty factors by adding a parametric form for the baseline

intensities and random effects through calendar time.

Finally, due to data constraints I only use default and recovery information provided

by Moody’s and I limit the analysis to the US market. Moody’s does not rate the entire

universe of corporates, especially the small and medium-sized companies that typically

do not issue public debt. A complete assessment of corporate default forecasts and the

sensitivity of corporate defaults and recoveries to macroeconomic shocks would need to

include defaults and bankruptcies from the entire corporate sector. This means that

the rated corporate universe would need to also include data from the other major

rating agencies and also private loan defaults. While the rated corporate universe can

be complemented with data by S&P and Fitch, private debt defaults and recoveries

are very difficult to obtain and require proprietary data from financial institutions.

Extending the analysis to non-US geographical jurisdictions also required a vast amount

of data. Corporate bond defaults are typically very rare and the time series length

is typically very short. For public companies, default information can be obtained

from cross-referencing databases; see Duan and Van Laere (2012) that describe their

approach for building a global default probability model for public companies. For

private firms the same limitations as in the US apply.

173



Technical Appendix

A Markov chain Monte Carlo

A.1 Gibbs Sampling

Gibbs sampling is a stochastic integration frequently used to sample from posterior

distribution in Bayesian inference. The method generates random draws from the

posterior conditional distributions for each of the parameters in succession, each time

conditioning on fixed values of all the other parameters and the observed data. For a

set of observed data points Y and a vector of model specific parameters ϑ, the desired

posterior distribution of the parameter vector is denoted by p(ϑ|Y ). Assuming that

the full posterior for each parameter is not of closed-form, Gibbs sampling partitions

the full parameter set ϑ into G groups, ϑ = {ϑ1, ...,ϑG}, and samples each set in

succession.

The algorithm uses full conditional distributions for each parameter group g. There-

fore, to sample each ϑg, Gibbs sampling treats the rest of the parameter set ϑ−g and

the data Y as fixed and generates random draws from p(ϑg|ϑ−g,Y). Starting from

initial values ϑ0 = {ϑ0
1, ...,ϑ

0
G}, the j-th iteration of the algorithm generates the set of

random draws ϑj1, ...,ϑ
j
G as follows:

1. Sample ϑj1 from p(ϑj1|ϑ
j−1
2 ,ϑj−1

3 , ...,ϑj−1
G ,Y)

2. Sample ϑj2 from p(ϑj2|ϑ
j
1,ϑ

j−1
3 , ...,ϑj−1

G ,Y)
...

3. Sample ϑjG from p(ϑjG|ϑ
j
1,ϑ

j
2,ϑ

j
3, ...,ϑ

j
G−1,Y),

174



assuming the full conditionals for all parameter sets are of known form.

It has been shown that under mild conditions the Gibbs sampling full conditional

random draws are guaranteed to converge to posterior marginal draws. More specifi-

cally, the random draws from the full conditionals converge in distribution to the true

parameter values

{ϑj1, ...,ϑ
j
G}

d−→ {ϑ1, ...,ϑG}

as j → ∞. Furthermore, the joint posterior of {ϑj1, ...,ϑ
j
G} converges to the true

joint posterior distribution of {ϑ1, ...,ϑG} at a geometric rate in j. Finally, for any

measurable function f(ϑ1, ...,ϑG) whose expectation exists the following applies

lim
J→∞

1

J

J∑
j=1

f(ϑj1, ...,ϑ
j
G)

a.s.−−→ E [f(ϑ1, ...,ϑG)] ,

where
a.s.−−→ denotes that the left-hand side converges almost surely to the right-hand

side. Therefore, inference based on the Gibbs sampling is guaranteed convergence.

This section is not intended to be a thorough exposition of the Gibbs sampling,

but rather to give a high level overview of the algorithm and some basic results. For

more details, see the classic textbooks of Zellner (1971) and Robert and Casella (1999).

A.2 Slice Sampling

The Gibbs sampling scheme described in section A.1 is straightforward to implement

as long as the full conditionals for each parameter group are of closed form. When this

is not the case, other sampling schemes would need to complement Gibbs sampling,

such as rejection sampling, Metropolis-Hastings, adaptive rejection sampling, or slice

sampling to name a few. For the analysis in chapter 3, I opt for the slice sampling

algorithm of Neal (2003) since it is relatively easy to implement, is generic without the

need to tailor it to the individual likelihood function to sample from and exhibits very

good convergence rates.

Slice sampling exploits the fact that random draws from a distribution p(x) can

be obtained by uniformly sampling from the points underneath the curve of such a

distribution or, alternatively, points (x, u) that satisfy 0 ≤ u ≤ p(x). For ease of
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exposition I only cover the univariate case; for the multivariate case Gibbs sampling

steps can be used to sample each variable conditional on the remaining variables. In

that case, starting from an initial point x0, the algorithm involves 3 main steps:

1. Draw u from U(0, p(x0)), defining the slice S = {x : u ≤ p(x)}.

2. Find an interval I = (L,R) around x0 that contains all of the slice S. There is

a trade-off between using large sampling regions and allowing large moves in the

distribution space, and using a simpler sampling region to maximise efficiency. To

address this problem local ”stepping-out” and ”shrinkage” procedures are used:

• ”Stepping-out” procedure: After defining a random interval of width w

around x0, expand the interval in steps of size w until both ends are outside

the slice S.

• ”Shrinkage” procedure: Generate draws from a uniform distribution on I

until a point inside the slice is found. Points outside the slice are used to

shrink the interval.

3. Draw a new point x1 from the part of the slice within this interval

B Bayesian Analysis of Multivariate Regression Models

I assume a generic Gaussian linear regression of the form:

yi = xiβ + εi, εi ∼ N(0, σ2
ε), (1)

where yi is an observed data point, xi is a vector of K covariates, β is a vector of K

coefficients and εi is the error term, which is normally distributed with 0 mean and σ2
ε

variance. The regression can be re-written in matrix form:

y = Xβ + ε, ε ∼ N(0,R), (2)

where y = [y1, ..., yn]′ is the stacked vector of the n observations, ε = [ε1, ..., εn]′ is the

stacked vector of residuals, R = σ2
εIn is the expanded error variance-covariance matrix
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and X is the matrix of k covariates:

X =

 x1,1 . . . x1,k
...

. . .
...

xn,1 . . . xn,k

 .
The specification in (2) is quite generic and can incorporate panel data where each

observation yi is tracked through time t. Under the Bayesian paradigm, inference is

based on the joint posterior of β and R conditional on the observed data, p(β,Rε|y).

Using Bayes theorem this quantity can be expressed as:

p(β,R|y) = p(β,R)p(y|β,R), (3)

where p(β,R) is the joint prior distribution for the parameters and p(y|β,R) is the

likelihood function. As R in this case is a diagonal matrix that depends on the single

parameter σ2
ε , (6) can be re-written in terms of only σ2

ε . Nevertheless, the posterior

expression (6) is also applicable to cases with a generic variance-covariance matrix R.

The likelihood function p(y|β,R) for the regression model in (2) takes the form:

p(y|β,R) ∝ |R|−
n
2 e−

1
2 [(y−Xβ)′R−1(y−Xβ)]. (4)

An integral part of Bayesian inference is the choice of priors for the parameters.

The conjugate priors for the regression model (2) correspond to:

p(β, σ2
ε) = p(β|σ2

ε)p(σ
2
ε),

β|σ2
ε ∼ N(b0, σ

2
εB0),

σ2
ε ∼ invGamma(c0, C0),

(5)

where b0, B0, c0 and C0 are hyper-parameters defining the moments of the prior

distributions. Under this choice of priors, the posteriors are of closed form and of the

same Normal-Inverse Gamma family as the priors. The joint posterior distribution

p(β, σ2
ε |y) is given by:

p(β, σ2
ε |y) ∝ p(β|σ2

ε ,y)p(σ2
ε |y), (6)
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where p(β|σ2
ε ,y) corresponds to a Normal density with moments:

β|σ2
ε ,y ∼ N(b1,B1),

B1 = (B−1
0 + X′X)−1,

b1 = B1(B−1
0 b0 + X′y)

(7)

and p(σ2
ε |y) corresponds to an Inverse-Gamma density with parameters:

σ2
ε |y ∼ InvGamma(c1, C1),

c1 = c0 + n/2,

C1 = C0 + (y′y + b′0B
−1
0 b0 − b′1B

−1
1 b1)/2.

(8)

The expression for the regression coefficients posteriors in (7) corresponds to the OLS,

adjusted for the prior beliefs for the coefficient values (the mean of the prior b0) and

the relative strength of the prior prior beliefs (the variance of the prior B0).

Unfortunately, this choice of priors implies that the prior for the regression coeffi-

cients β gets noisier if the data do, which is a somewhat unrealistic feature. Instead, in

this thesis I choose to work with two alternative sets of independent priors. The first is

a variation of the conjugate prior that assumes the same Normal-Inverse Gamma form

for the priors, but removes the dependence of p(β) on σ2
ε :

p(β, σ2
ε) = p(β)p(σ2

ε),

β|σ2
ε ∼ N(b0,B0),

σ2
ε ∼ invGamma(c0, C0).

(9)

Under the Independent Normal-Inverse Gamma prior, posterior marginals for β and

σ2
ε are not of closed form. To approximate the joint density Gibbs sampling can be

used. For Gibbs sampling, only the full conditionals need to be of closed form. It can

be proven that the full conditionals for this choice of priors is of the Normal-Inverse

Gamma form. For the regression coefficients β, the full conditionals take the form:

β|R,y ∼ N(b1,B1),

B1 = (B−1
0 + X′R−1X)−1,

b1 = B1(B−1
0 b0 + X′R−1y)

(10)

where I have substituted the expanded matrix R instead of σ2
ε . The full conditional

mean b1 in (10) is equal to the generalised least squares estimator (X′R−1X)−1X′R−1y,

adjusted for the prior mean b0 according to its strength B0. The posterior moments
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in (10) can be re-expressed in the following prediction-correction filter form:

b1 = b0 + K1(y −Xb0),

B1 = (I−K1X)B0),

K1 = B0X
′C−1,

C = XB0X
′ + R.

(11)

This alternative, but numerically equivalent, form expresses the posterior mean b1 as

a correction to the prior mean b0. This correction is based on the residuals y −Xb0,

which is the prediction error when using the prior mean b0 as an estimator of β. This

representation is helpful for the derivation of the Kalman filter in section C.2. For the

same set of priors, the full conditional for σ2
ε is given by:

σ2
ε |β,Y ∼ invGamma(c1, C1)

c1 = co + n/2,

C1 = C0 + (y −Xβ)′(y −Xβ)/2

(12)

The second choice of priors assumes no prior knowledge on either β or σ2
ε . This

corresponds to the so-called Jeffreys (or diffuse) prior:

p(β, σ2
ε) = p(β|σ2

ε)p(σ
2
ε),

β|σ2
ε ∝ 1,

σ2
ε ∝ 1/σ2

ε .

(13)

For the diffuse choice of priors, the posteriors (just like the conjugate priors) are of

closed form. The posterior for β is again a normal density with moments:

β|σ2
ε ,y ∼ N(b1,B1),

B1 = (X′X)−1,

b1 = B1X
′y

(14)

which correspond to the normal OLS quantities. The posterior of σ2
ε is again an Inverse-

Gamma density with moments:

σ2
ε |y ∼ InvGamma(c1, C1),

c1 = n/2,

C1 = (y −Xβ)′(y −Xβ)/2.

(15)
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C State Space Models

C.1 State Space Models and Bayesian Inference

State space models consist of an equation describing the dependence of the observed

quantities on the system’s state variables (measurement equation), and a second equa-

tion describing the stochastic evolution of the state variables (state equation). The

measurement equation for a Gaussian state space model takes the form:

yt = ZF t + εt, εt ∼ N(0,Σε), (16)

for a vector of observed time series yt and a vector of state variables F t. Z is the matrix

of the sensitivities of the observed variables to the system’s states and for simplicity it

is assumed time-invariant; in more generic state space models, the matrix is allowed to

vary with t. The state equation dictating the stochastic evolution of F t in the same

Gaussian state space model can be expressed as:

F t = ΦF t−1 + ηt, ηt ∼ N(0,Ση), (17)

where Φ is the transition matrix defining how future values of F t depend on the pro-

cess’s past values.

Bayesian inference in state space models is very appealing, since the parameter

space provides a natural decomposition and efficient algorithms with Gibbs sampling

steps can be employed to integrate the joint posterior. More specifically, Bayesian

inference is based on deriving the joint posterior density

p(F ,Z,Φ,Σε,Ση|y) ∝ p(y|F ,Z,Φ,Σε,Ση)p(F |Φ,Ση)p(Z,Φ,Σε,Ση), (18)

where y = [y1, ...,yT ]′ and F = [F t, ...,F T ]′ are the stacked observation and state

vectors respectively. Due to the recursive nature of a state space model (18) can be

re-written as:

p(F ,ϑ|y) ∝ p(F 0|ϑ)p(ϑ)

T∏
t=1

p(yt|F t,ϑ)p(F t|F t−1,ϑ), (19)
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where for brevity ϑ = {Z,Φ,Σε,Ση}. The densities p(yt|F t,ϑ) and p(F t|F t−1,ϑ) are

defined in (16) and (17) respectively. p(F 0|ϑ) is the initial value for the state vector,

while p(ϑ) is the prior density for all model parameters.

The posterior density (19) is not of closed form and therefore MCMC techniques

can be used to evaluate the multidimensional integration. A typical Gibbs sampling

scheme involves 2 main steps:

• Sample the states conditionally on the data and the model parameters: This is

translated to sampling F from p(F |y,ϑ). Even though this step can be imple-

mented by sampling F t sequentially at each t using a set of second layers Gibbs

sampling steps, it is more efficient to obtain random draws for the entire sequence

of T states in one step using some form of simulation smoothing. I follow Durbin

and Koopman (2002) and proceed in 5 steps:

1. Obtain the smoothed estimates for the states F̂ t|T by a forward pass of the

Kalman filter and a backwards pass of the Kalman smoother. Kalman filter

and smoother are described in section C.2.

2. Randomly generate T observation and state innovations. The random inno-

vations at time t are denoted by ε∗t and η∗t .

3. Create random observations and states by plugging ε∗t and η∗t into (16) and

(17) respectively. The pseudo-observations and states at time t are denoted

by y∗t and F ∗t respectively.

4. Obtain smoothed states F̂
∗
t|T by applying the Kalman filter and smoother

on the pseudo-observations y∗t .

5. Obtain the posterior draws as F̃ t|T = F̂ t|T − F̂
∗
t|T + F ∗t .

• Sample the model parameters conditionally on the data and the states: This is

translated to sampling all the elements of ϑ from the complete-data posterior

density p(ϑ|F ,y). It is clear that conditional on the states being known, both

(16) and (17) can be treated as linear regressions and therefore all the elements

of ϑ can be sampled using the results of section B.
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C.2 The Kalman Filter and Smoother

The Kalman filter is a recursive algorithm that operates on the series of measurements

observed over time in (16) and produces a statistically optimal estimate of the underly-

ing system state in (17). The algorithm works in a two-step process. In the prediction

step, the Kalman filter produces estimates of the current state variables, along with the

corresponding estimation uncertainty. Once the next measurement is observed (with

some noise), these estimates are updated using a weighted average: estimates with

higher certainty (lower variance) get a higher weight.

The equations forming the Kalman filter can be derived in multiple ways, see for

example Harvey (1990). Here, I base the derivation on the Bayesian information fil-

ter as it provides a more intuitive way to understand the mechanics of the algorithm.

Furthermore, it links naturally to the Bayesian estimation procedure used to estimate

the parameters in (16)-(17). To understand the filtering logic, I make use of the results

in section B. To derive the prediction and update steps of the Kalman filter, in addi-

tion to the formula provided in section B, the explicit form of the marginal likelihood

p(y|R) for the regression model (2) is also needed. Using Bayes’ theorem, the marginal

likelihood is obtained by evaluating:

p(y|R) =
p(y|β,R)p(β)

p(β|R,y)
. (20)

Evaluating the marginal likelihood at β = b0, from the joint normality of data and

prior results in:

yt|R ∼ N(Xb0,C), (21)

where C = XB0X
′ + R is defined in (11).

Turning now to the state space model setup in (16) and (17), the Kalman filter

provides the estimates for F t based on the posterior density p(F t|yt) (density of the

state vector F at time t, given the information available up to and including t). Using

Bayes’ theorem this posterior density can be obtained as:

p(F t|yt) =
p(yt|F t)p(F t|yt−1)

p(yt|yt−1)
, (22)

where p(yt|F t) is the likelihood of yt and p(yt|yt−1) is the marginal likelihood after
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integrating out the state vector F t. (22) essentially states that the posterior density of

F t is a combination of the observed model’s likelihood, p(yt|F t), when the state vector

follows the prior p(F t|yt). When the state space model is Gaussian (as it is the case

here), all the above densities are normal, with moments given by the Kalman filter:

the prediction step provides the prior p(F t|yt−1) for the new estimate of F t, while the

update step combines that prior with the regression model (16) for the observations yt

to derive the best linear estimate for F t.

The prediction-correction form (11) and the marginal likelihood function in (21)

serve as the basis for the derivation of the Kalman filter. To estimate the densities in

(22), the Kalman filter iterates the following steps assuming that at the beginning of

each iteration the moments of the filtered density F t−1|yt−1 ∼ N(F̂ t−1|t−1,P t−1|t−1)

are given by:

1. State Prediction Step: This step determines the state prediction density p(F t|yt−1)

in (22). Using Bayes’ theorem this density can be written as

p(F t|yt−1) =
p(F t|F t−1)p(F t−1|yt−1)

p(F t−1|F t,yt−1)
,

which is exactly the marginal likelihood in (20) for a linear regression with F t as

the dependent variable, and F t−1 as the unknown regression parameter, having

p(F t−1|yt−1) as its prior. Based on the normal marginal likelihood form in (21)

and the state equation (17), the moments of the normal density p(F t|yt−1) are:

F t|yt−1 ∼ N(F̂ t|t−1,P t|t−1),

F̂ t|t−1 = ΦF̂ t−1|t−1,

P t|t−1 = ΦP t−1|t−1Φ
′ + Ση.

(23)

2. State Correction Step: This step corrects the state prediction from step I. to

incorporate the information from a new data point yt.

(a) Observation Prediction Step: The corresponding predictive density for the

observations p(yt|yt−1) is obtained based on the predicted state value from

step I. Using Bayes’ theorem this density can be written as:

p(yt|yt−1) =
p(yt|F t)p(F t|yt−1)

p(F t|yt,yt−1)
,
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which is exactly the marginal likelihood in (20) for a linear regression of with

yt as the dependent variable, and F t as the unknown regression parameter,

having p(F t|yt−1) as its prior. Based on the normal marginal likelihood

form in (21) and the measurement equation (16), the moments of the normal

density p(yt|yt−1) are:

yt|yt−1 ∼ N(ŷt|t−1,Ct|t−1),

ŷt|t−1 = ZF̂ t|t−1,

Ct|t−1 = ZP t|t−1Z
′ + Σε.

(24)

(b) State Update Step: The filter density p(F t|yt) is based on the state and

observation predictions, p(F t|yt−1) and p(yt|yt−1) respectively. From (22)

this density is equivalent to the posterior of the regression parameter β in

(11), when β = F t|yt with p(F t|yt−1) as the prior. Therefore, using the

prediction-correction form for the regression coefficient in (11):

F t|yt ∼ N(F̂ t|t,P t|t),

F̂ t|t = ΦF̂ t|t−1 +Kt(yt − ŷt|t−1),

P t|t = (1−KtZ)P t|t−1,

Kt = P t|t−1Z
′C−1

t|t−1,

(25)

which concludes the Kalman filter iteration for time t. For each new t, the

filter uses the density F t−1|yt−1 ∼ N(F̂ t−1|t−1,P t−1|t−1) from the previous

iteration and goes back to step I.

Grouping the Kalman filter recursions in a concise form:

(Prior) Predicted state estimate: F̂ t|t−1 = ΦF̂ t−1|t−1

(Prior) Predicted state variance: P t|t−1 = ΦP t−1|t−1Φ
′ + Ση

Observation Predicted estimate: ŷt|t−1 = ZF̂ t|t−1

Observation Predicted variance: Ct|t−1 = ZP t|t−1Z
′ + Σε

Optimal Kalman gain: Kt = P t|t−1Z
′C−1

t|t−1

(Posterior) Updated state estimate: F̂ t|t = ΦF̂ t|t−1 +Kt(yt − ŷt|t−1)

(Posterior) Updated state variance: P t|t = (I −KtZ)P t|t−1

(26)
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To start the Kalman filter, one has to choose the initial normal prior F 0|y0 ∼

N(F̂ 0|0,P 0|0). Since for this chapter I assume that the state vector F t is stationary

(implying that Φ does not have roots on unit circle), it can be shown that the optimal

moments for the initial distribution are the unconditional mean and variance of the F t

process. The unconditional mean is by construction equal to 0. The ergodic variance

of F t is the solution to:

ΦP 0|0Φ
′ + Ση = P 0|0, (27)

where I assume that F t follows a VAR(1) process. (27) can be generalised to VARs of

higher order if the VAR is re-written as a VAR(1) process with Φ being the equivalent

VAR(1) matrix. Solving (27) for P 0|0 and using the 0 mean assumption leads to the

initial distribution for the filter, given by:

F 0|y0 ∼ N(0, devec
[
(IK2 −Φ⊗Φ)−1 · vec(Ση)

]
K,K

), (28)

where ⊗ denotes the Kronecker product, vec(Ση) represents the vectorised version of

Ση, and devec[.]K,K represents the de-vectorised version of the expression in brackets,

transformed into a K-by-K matrix. For a complete description of the filter initialisa-

tion problem, for both stationary and non-stationary cases, see Durbin and Koopman

(2001).

The Kalman filter delivers best estimates of the state vector F t at each t conditional

on all available information at time t. For the simulation smoother algorithm described

in section C.1, random draws conditional on the entire sample T are needed. The

backwards passing Kalman smoother is designed to provide optimal estimates for F t|T .

The algorithm can be written in many forms, but here I follow Durbin and Koopman

(2001) and defines the smoother recursions as follows:

Smoothed estimate of state: F̂ t|T = F̂ t|t−1 + P t|t−1rt

rt = Z′C−1
t|t−1(yt − ŷt|t−1) +L′trt+1

Lt = Φ−ΦKtZ

Smoothed state variance: P t|T = P t|t−1 − P t|t−1N tP
′
t|t−1

N t = Z′C−1
t|t−1Z +L′tN t+1Lt

(29)
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where the recursion runs from time T−1 backwards and rt/N t are initialised at time T

with rT = 0 and NT = 0. At time T the smoothed estimates are the Kalman filtered

estimates.
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