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ABSTRACT 

The Illinois Department of Transportation (IDOT) and local agencies monitor and regulate the 

146,764 miles of roadway that are open to public travel in the State of Illinois. There are many 

old and aging bridges, culverts, and low water crossings on rural low-volume roads that need to 

be replaced.  

Low water crossings (LWCs) have been used as an economical alternative to culverts and 

bridges, designed without overtopping, on low-volume roads where there is a low number of 

floods. The lack of design guidance has posed difficulty for county engineers in Illinois in 

deciding when, where, and which type of low water crossing to use. The resulting structure is 

often either overdesigned or underdesigned.  

A study was conducted to design the guidelines for LWCs in Illinois at the University of Illinois at 

Urbana-Champaign in collaboration with the U.S. Army Corps of Engineers - Construction 

Engineering Research Laboratory (CERL) and support from the IDOT. The study included 

literature review, a LWC survey, and case studies on LWCs in Illinois. 

The results of a survey conducted among the county engineers in Illinois about their experience 

with LWCs are presented, and commonly used LWCs are also discussed. In this study, five 

existing LWCs in Illinois are selected, modeled in HEC-RAS to analyze their performance. The 

ability of the LWC to pass the design flow, the effect of the LWC on the floodplain of the 

stream, sediment transport, and movement of fishes across the LWC have been taken into 

consideration in the performance evaluation.  

From the case studies, it was found that most of the modeled LWCs were able to pass the 

design flow, but are not conductive to the sediment transport and aquatic organism movement. 

Results from the flood inundation studies show that the change in the inundated area 

compared to the baseline scenario is within 5% in most of the cases. There is a significant 

decrease in the shear stress and velocity in the cross section upstream of the crossing, 
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restricting the sediment transport. LWCs are acting as a sediment trap, which over the long 

period of time will modify the channel characteristics and affect the stream dynamics. 

LWCs provide a restriction to the flow of water and increase inundation under higher flows but 

allow smooth and safe movement of vehicles across the streams. There are over 26,000 road-

stream crossings in Illinois, and implementation of proper LWC design guidelines could save 

local agencies significant funding and provide better adaptability and storm-proofing 

characteristics, as well as reduce impacts to aquatic organism passage. 

Keywords: Low water crossings, fords, HEC-RAS, floodplains, modeling 
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CHAPTER 1: INTRODUCTION 

Illinois has 146,764 miles of road; the Illinois Department of Transportation (IDOT) maintains 

15,978 miles, and local agencies maintain the rest (IDOT 2016). These agencies are responsible 

for regulating and monitoring the road networks that are open to public travel. There are many 

old and aging bridges, culverts, and low water crossings on rural low-volume roads, primarily 

serving agricultural areas, which need to be replaced with suitable alternatives. The economic 

burden for many counties can be huge if all of these structures are to be replaced by a bridge or 

culvert designed to convey the entire design flow.  

A low water crossing (LWC) is a feasible and efficient road-stream crossing structure that may 

be implemented on roads with average daily traffic (ADT) values of less than 25. LWCs are road-

stream crossing structures designed to be overtopped by high flows or by debris- or ice-laden 

flows (Clarkin et al. 2006). At times when the structures are overtopped, the road will be closed 

to traffic, and alternative routes must be used.  

These relatively inexpensive structures are very useful for low ADT roads across ephemeral 

streams and where the normal depth of flow is low. In Illinois, these structures might be of 

particular interest on farmland access roads that are used only a few times a year for transport 

of machinery and other agricultural commodities and supplies. There is a high potential that 

construction of bridges and culverts will change the hydrological and hydraulic characteristics of 

the stream, leading to effects such as higher peak flow rates and runoff, increased downstream 

flooding, increased rates of sediment transport and deposition, increased erosion, widening of 

stream channels, etc. On the other hand, LWCs can also help in streambed stabilization, thus 

minimizing those effects in the stream. 

Current IDOT bridge design guidelines require 1 ft of vertical clearance above the design high-

water elevation for local agency roadways with an ADT < 250, where the minimum design flood 

frequency is commonly a 15-year event. Often, these requirements result in large waterway 

openings, bridges, or structures, and costly embankment construction—and are not conducive 

to the construction of a LWC.  
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In this study, five existing LWCs in Illinois were selected, modeled in HEC-RAS to analyze their 

performance. The ability of the LWC to pass the design flow, the effect of the LWC on the 

floodplain of the stream, sediment transport, and movement of fishes across the LWC have 

been taken into consideration in the performance evaluation. Suggestions for improved design 

and construction for LWCs are also included.  

The results and findings of the study are a part of the Illinois Center for Transportation project 

R27-148 “Development of Low-Water Crossing Design Guidelines for Very Low ADT Routes in 

Illinois.” There are over 26,000 road-stream crossings in Illinois, and implementation of proper 

LWC design guidelines could save local agencies significant funding, due to lower construction 

and maintenance costs, less channel and flood plain blockage, and better storm proofing 

characteristics, as well as reduced impacts to aquatic organism passage (AOP). 
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CHAPTER 2: OBJECTIVES 

The overall objective of this research was to develop guidelines that can be used to determine 

optimal, safe, and cost-effective LWC design to meet traffic needs, maintain the natural channel 

function, and allow the passage of water, sediment, debris, and AOP. The outcomes of this 

research will assist IDOT and local agencies in determining the safe, cost-effective, and 

environmentally friendly design of LWCs for low ADT routes in the state.  

The specific objectives of this research project are as follows: 

1. Conduct a thorough literature review of current practices and existing research 

publications and other federal, state, and county reports, studies, recommendations, 

and specifications related to LWC design. 

2. Conduct a survey on the current status of Illinois LWCs, including the experience of local 

agencies with LWCs in Illinois. 

3. Conduct field survey on selected LWCs that fall under the jurisdiction of Illinois public 

agencies. 

4. Conduct performance evaluation of LWCs based on the LiDAR and field survey data 

using HEC-RAS model. 
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CHAPTER 3: REVIEW OF LITERATURE 

3.1 Low Water Crossings (LWCs) 

The Natural Resources Conservation Service (NRCS) defines a LWC as “a stabilized area or 

structure constructed across a stream to provide a travel way for people, livestock, equipment 

or vehicles” (NRCS 2011). Three main types of LWCs, which are designed to submerge at some 

flows, include unvented fords, vented fords, and low water bridges (Figures 3.1 through 3.3). 

3.1.1 Unvented Fords 

An unvented ford is a structure that crosses streams that are dry most of the year or where 

normal stream flow is less than or equal to 6 inches in depth. Unvented fords are usually used 

for ephemeral streams or streams with shallow flows. They typically cross streams at, or slightly 

above, the elevation of the streambed without pipes. The grades of the roadway approaches 

are shaped to provide a smooth transition with acceptable slopes of less than 10% (Lohnes et 

al. 2001). The crossing may be constructed of crushed stone, riprap, precast or cast-in-place 

concrete slabs or other suitable material. Based on the crossing surface, unvented fords are 

divided into two categories: unimproved or improved.  

 Unimproved fords are simply natural crossings (Figure 3.1).  

 Improved fords have a stable driving surface of rock, concrete, asphalt, concrete blocks, 

concrete planks, gabions, geocells, or a combination of materials.  

Unvented fords are called “at-grade” if the crossing is placed directly on the stream channel 

bottom, whereas “above-grade” structures are raised to a certain height above the channel 

bottom.  

 At-grade LWCs provide a minimal barrier for AOP, and there is less chance for channel 

modification (due to aggradation or degradation). 

 Above-grade LWCs may act as a dam and trap the sediment flow, which may lead to 

channel aggradation upstream and degradation (scour) downstream. 
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Figure 3.1: Unvented ford across Big Creek in Hamilton County, Illinois. 

3.1.2 Vented Fords 

Vented fords have a driving surface elevated above the channel bottom with vents (pipes or 

culverts) that allow low flows to pass beneath, keeping vehicles out of the water during low 

flow (Clarkin et al. 2006). High water will periodically flow over the crossing. Approaches are 

designed to provide acceptable grades of less than 10% by shaping the roadway or adjusting 

the elevation of the crossing (Lohnes et al. 2001). The pipes or culverts may be embedded in 

earth fill, aggregate, riprap, or concrete. 

Vented fords differ from culverts because higher flows overtop the vented ford. Thus, the 

vented ford is designed to pass low flow such as 1% exceedance flow or 1-year flow and higher 

flows pass over the structure. However, other parts of the crossing such as approach roads, 

embankments, etc. are designed for higher flows such as 10- or 25-year flow, depending upon 

the desired lifetime of the structure. 

The vents can be one or more pipes (Figure 3.2), box culverts, or open-bottom arches. The 

opening and number of vents depends on the stream geometry and flow characteristics, and is 

defined by the vent-area ratio (VAR). A low VAR refers to a small vented area relative to the 

bankfull channel area, while high VAR refers to a vented area equal to or greater than the 
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bankfull channel area (Clarkin et al. 2006).  Bankfull flow can be defined as the flow that just 

overtops the stream banks and begins to flow out over the floodplain (Leopold et al. 1964).   

 

Figure 3.2: Vented ford in Jackson County, Illinois. 

3.1.3 Low Water Bridge 

Low water bridges are defined as open-bottom structures with elevated decks and a total span 

of at least 20 ft (Clarkin et al. 2006). They may include one or more piers with abutments and 

are structurally very similar to other bridges except they are built lower, allowing periodic 

overtopping. Low water bridges generally have greater capacity and can pass higher flows 

underneath the driving surface than most vented fords. However, they are designed and 

installed with the expectation they will be under water at higher flows (Howard et al. 2011). 

They are constructed at about the elevation of the adjacent stream banks, with a smooth cross 

section designed to allow high water to flow over the bridge surface without damaging the 

structure. A low water bridge is preferred in an area with ADT over 200 and where minimum 

disturbance to the channel geometry and aquatic organism passage is desired. To function as 

low water bridges, the structures should be such that they pass flow most of the time, yet be 

low enough to be overtopped by larger floods (Figure 3.3). 
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Figure 3.3: Low water bridge at Montgomery County, North Carolina (Filer, 2008). 

3.1.4 Advantages and Disadvantages of Low Water Crossings 

Low water crossings have advantages as well as disadvantages. Some of the advantages of 

LWCs are as follows: 

 Structures designed for overtopping, hence less damage during overtopping 

 Less likely than culverts to be plugged and damaged by debris or vegetation 

 Less expensive than culverts or bridges 

 Less susceptible than other structures to failing during flows higher than the design flow 

 Good for storm proofing roads where large amounts of sediment and debris are 

expected, such as after a large storm event or forest fire 

 Readily available materials and fast construction 

Some of the disadvantages of LWCs are as follows: 

 Periodic or occasional traffic delays during high-flow periods 

 Not well-suited to deeply incised channels 

 Not desirable for high use or high-speed roads 

 Can be difficult to design for aquatic organism passage 
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 Can be dangerous to traffic during high-flow periods 

 Periodic maintenance is required 

3.2 Current Status of LWC Design Guidelines 

LWCs are suitable for low-volume roads in flat, arid regions, such as the southwestern and 

midwestern United States, over streams with wide floodplains, and over streams where the 

depth of normal flow is very shallow. Various national and state agencies—such as the USDA 

Forest Service and the USACE Construction Engineering Research Laboratory (CERL), the 

Department of Transportation, and the Departments of Fish and Wildlife in several states—

have published guidelines for construction of LWCs, making traffic conditions, aquatic organism 

passage, and stream morphology the primary criteria. 

The U.S. Department of Transportation Federal Highway Administration published an executive 

summary titled Design and Construction of Low Water Stream Crossings (Motayed et al. 1982). 

It summarizes the commonly used low water crossings, and their selection criteria and design 

considerations, based on the design and performance of existing structures and interviews with 

highway officials. 

The United States Department of Agriculture Forest Service published a LWC design manual 

(Clarkin et al. 2006), which consists of geomorphic, biological, and engineering design 

considerations. It is the most comprehensive manual, and it details LWCs, their benefits, 

selection criteria, design elements and consideration tools, and best management practices to 

follow, and it also provides several case studies. 

A study was done by CERL in collaboration with the University of Illinois at Urbana-Champaign 

(Svendsen et al. 2006) in which design and testing of LWCs for military operations are detailed. 

The study demonstrates site-specific LWC designs, which have low maintenance problems and 

associated costs. Apart from that, CERL has also published public works technical bulletin 200-1-

115 (Howard et al. 2011), Low-Water Crossings—Lessons Learned, which details the 

experiences with LWC installations for military purposes. 
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Iowa has design and construction guidelines (Lohnes et al. 2001), prepared by a collaboration 

between the Iowa Department of Transportation and Iowa State University. The guidelines 

include a summary of selection criteria (site selection, LWC selection) and provide details about 

the construction of LWCs (unvented ford, vented ford, and low water bridge). The guideline 

also provides recommendations on signage at LWC sites. 

A study report was published in 2009 that provides design guidance for LWCs in areas of 

extreme bed mobility in Edwards Plateau, Texas, on the basis of a study done by Texas Tech 

University in collaboration with the University of Houston and Auburn University (Thompson et 

al. 2009). In the project, researchers used a qualitative physical model, as well as numerical 

modeling (HEC-RAS), to compute sediment transport. 

The Missouri Department of Natural Resources has provided guidelines for temporary stream 

crossings, in which the minimum requirements for LWCs are included, along with construction 

guidelines and methods for erosion control and stream bank protection (Missouri DNR, 2016). 

Similarly, Section 5-9 of the Indiana Drainage Handbook (Burke et al. 1999) discusses stream 

crossings, their construction, and repair recommendations. It provides an overview of factors to 

consider when these practices are undertaken.  The Indiana Department of Natural Resources 

has also provided general guidelines for stream crossings on its website (Indiana DNR 2016).   

Massachusetts, Vermont, and Washington have each published a stream crossings handbook 

with special emphasis on the aquatic organism and fish passage. The Massachusetts Riverways 

program published a stream crossings handbook (Singler and Graber 2005) that contains 

minimum design standards for stream crossings, taking fish and wildlife passage into 

consideration. It also provides guidelines on replacing aged crossings. 

The Vermont Department of Fish and Wildlife developed guidelines for the design of stream 

crossings for passage of aquatic organisms (Bates and Kirn 2009). The guidelines focus on 

design, installation, and maintenance of stream crossings to provide aquatic organism passage 

and aquatic habitat connectivity in the rivers and streams. They have suggested that any of the 
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three design methods—a low-slope option, stream simulation option, and hydraulic option—

may be used in designing the culverts. 

The Washington Department of Fish and Wildlife developed guidelines for the design of water 

crossings (Barnard et al. 2013), giving special emphasis to fish passage and habitat protection. 

The manual contains five different design methods: no-slope culvert design, stream-simulation 

culvert design, bridge design, temporary culvert and bridge design, and hydraulic design.  

The Kansas Department of Transportation, in collaboration with the University of Kansas, is also 

preparing design guidelines for LWC construction. Previously, it had been following the 

selection and design guidelines prepared by the Iowa DOT and the signing strategies manual 

prepared by the Texas Transportation Institute at Texas A&M University. 

3.3 LWCs and Environment 

In general, regardless of site specifics, the primary advantages of LWCs over culverts and 

bridges may include lower construction and maintenance costs, less channel and flood plain 

blockage, and less susceptibility to failure during high-flow events (Clarkin et al. 2006).  

LWCs are less expensive to construct, less complicated to design, quicker to construct, and 

require fewer materials than traditional culverts or bridge crossings do, especially for unvented 

fords (Howard et al. 2011). In some cases, the initial cost of more complex LWCs may exceed 

those of simple culverts, but the lower long-term maintenance and repair costs associated with 

the LWCs may still make them more economical (Clarkin et al. 2006).  

However, environmental effects must also be considered when deciding whether to use LWCs 

or not. Unvented fords are the most inexpensive to construct, but they may not be the safest or 

most environmentally friendly for the stream if the traffic volume surpasses the capacity of the 

crossing (Howard et al. 2011). Fords, especially simple unhardened crossings, are subjected to 

runoff and gullies at the ingress and egress of the crossings. When heavy vehicles cross streams, 

they can greatly contribute to stream bank and soil erosion in the area due to excessive 

vegetation loss and soil disturbance (Howard et al. 2011; Svendsen et al. 2006).  
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Field studies of hardened LWCs have shown that, when implemented properly, these crossings 

maintain stream water quality, reduce stream habitat fragmentation, and decrease 

maintenance expenses over the unimproved fords (Sample et al. 1998; Svendsen et al. 2006). 

Hardened LWCs are likely to scour on the approaches and the downstream edge of the 

crossing, especially when perched above the channel bottom (Howard et al. 2011). They should 

be built such that the main flow channel is not narrowed because it might result in increased 

flow velocities.  

Malinga (2007) assessed the impact of simple LWCs on stream stability at Fort Riley, Kansas, 

and found that poorly located crossings can change the direction of stream flow, causing bank 

erosion on areas immediately below crossings, while backwater pools upstream of the fords 

acted as sinks for sediment and disrupted the sediment transport. Also, there is a need to 

constantly modify simple LWCs relative to the level of stream instability at the site, and such 

crossings can contribute to the further geomorphological instability of the stream.  

Vented fords keep vehicle tires dry during base flow conditions, preventing soils and other 

pollutants from vehicles entering the stream (Howard et al. 2011). However, vented fords can 

also cause the stream to lose its natural hydrological properties, and culverts can clog due to 

debris and sediment, which is less likely to occur at unvented crossings (Howard et al. 2011). 

The geomorphic response of streams at vented fords (concrete slabs with one or more culverts) 

at Fort Riley, Kansas, included: mean riffle spacing upstream of the LWCs was double that of 

downstream reaches, greater deposition of fine sediments occurred directly upstream, and 

incised channels downstream. The vented fords also slowed or blocked the transportation of 

water, sediments, and debris downstream during bankfull flows.  

The USDA Forest Service requires that all low water bridges receive specific hydrologic, 

hydraulic, structural, and foundation design in accordance with the latest version of the 

American Association of State Highway Transportation Officials (AASHTO) Standard 

Specifications for Highway Bridges (Clarkin et al. 2006). Low water bridges have an elevated 

driving surface, maintain a more natural streambed, allow more natural sediment and aquatic 

organism movement than culverts, and are the best LWC type for fish passage (Clarkin et al. 
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2006). Low water bridges can be more expensive to design and build, and they are still 

susceptible to clogging under conditions such as high debris loading (Howard et al. 2011). 

Brown (1994) found that sediment is contributed to the stream at LWCs by five major 

processes: (1) creation of wheel ruts and concentration of surface runoff, (2) existence of tracks 

and exposed surfaces, (3) compaction and subsequent reduction in the infiltration rate of soils 

leading to increased surface runoff, (4) backwash from a vehicle as it emerges after fording the 

river, and (5) undercutting of banks by bow wave action. 

Wang et al. (2013) deduced that most of the sediment entering the streams following road 

construction was from the stream crossings and approaches to the crossings. When the 

approach fill slopes became re-vegetated, they stabilized, and the annualized sediment loads 

declined; however, sediment exports remained above the pre-disturbance levels.  

LWCs have the potential to deliver sediment into adjacent streams, especially when best 

management practices (BMPs) are not implemented. Studies have shown that BMPs could 

effectively reduce erosion and total suspended sediment loads near LWCs (Brown et al. 2013; 

Wear et al. 2013). Brown et al. (2013) found that approaches to the stream crossing have a high 

potential for impacting the water quality in the stream. They evaluated the sediment delivery 

rates associated with reopening legacy roads and found that annual sediment delivery from 

bare approaches was 7.5 times higher than that from gravel (hardened) approaches. They 

concluded that implementation of BMPs such as hardening of the surface and appropriate 

spacing of water control structures could reduce sediment delivery to streams. 

Clarkin et al. (2006) stressed that improving stream bank stabilization techniques and ford 

substrate materials would help enhance the LWC longevity and reduce erosion in the 

surrounding area.    
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3.4 Aquatic Organism Passage 

Culverts and LWCs, if not designed and installed properly, can act as a barrier to fish and other 

aquatic organism passage. Installation of LWCs at any site disturbs the natural regime of the 

channel. Common ways in which LWCs create an obstruction to aquatic organism passage 

(AOP) include drops at inlet and outlet, excessive water velocity, debris, excessive turbulence 

due to contraction at inlet region, insufficient low flows, etc. (Kilgore et al. 2010). This 

restriction of movement and migration of fish may lead to a decrease in fish population and 

change in the distribution of the aquatic organisms in the stream. 

LWCs may have an impact on the aquatic organism in the stream due to channel modification 

during LWC installation. Studies have shown that stream crossings may change the form and 

function of stream ecosystem and habitat significantly and affect aquatic organism movement 

(Bouska et al. 2010; Cocchiglia et al. 2012; Warren Jr & Pardew 1998). Warren Jr & Pardew 

(1998) looked into movement of fish for 21 different species in seven families through the 

culvert, slab, open-box, and ford crossings and through natural reaches and found that overall 

fish movement was an order of magnitude lower through culverts than through other crossings 

or natural reaches. They also found that open-box and ford crossings showed little difference 

from natural reaches in overall fish movement. Bouska et al. (2010) studied fish passage at five 

concrete box culverts and five low water crossings (concrete slabs vented by culverts) and ten 

control sites (below a natural riffle) and found that culverts were acting as a barrier to fish 

movement.  

Changes in stream hydrology and velocity occur when there is an alteration in the channel 

geometry that restricts movement and may also be inhospitable for many fish and 

invertebrates species (Cocchiglia et al. 2012). Water velocity and depth inside the culvert, and 

length and slope of the culverts cause barriers to fish passage (Rayamajhi et al. 2012). For 

improved AOP, the crossing should be similar in form and function to the natural bed of the 

stream channel (Bouska and Paukert 2010; Clarkin et al. 2006; Cocchiglia et al. 2012) (Figure 

3.4). 
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Figure 3.4: Culvert for AOP, which mimics the natural bedstream (from Barnard et al. 2013). 

The optimum design of LWC for wildlife and AOP should possess following qualities (Singler and 

Graber 2005): 

 Crossing spans the entire stream up to bank 

 Crossing has a natural streambed 

 Water depth and velocity in upstream and downstream side of the crossings are similar 

 Crossing has dry banks for wildlife passage 

 

Fords with slots or small channel to allow AOP during very low flows provide a little hindrance 

to organism passage if they mimic the form of the reach (Clarkin et al. 2006; Howard et al. 

2011). Unvented at-grade LWCs with streambed materials on the driving surface help in the 

passage of aquatic species. A series of embedded box culverts can be used in areas where 

aquatic organism habitat protection is of prime importance. Low water bridges have an 

elevated driving surface, maintain a more natural streambed, allow aquatic organism 

movement to greater extent than culverts, and are the best LWC type for fish passage (Clarkin 

et al. 2006). 
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Historically, culverts and LWCs have been designed for the efficient conveyance of water during 

normal and flooding conditions, with little attention given to AOP through the crossing. 

Designing LWCs for AOP generally results in a larger structure than necessary for hydraulic 

conveyance, but it has additional benefits of low maintenance and proves to be economically 

feasible in the long run (Schall et al. 2012). 

It is advised to consult HEC-26, Culvert Design for Aquatic Organism Passage (Kilgore et al. 

2010) while designing the crossing so that the LWC also facilitates adequate AOP. Current 

version of lists of endangered and threatened species of fishes, amphibians, and reptiles, which 

can be obtained from Illinois Department of Natural Resources (IDNR), should be consulted. 

Currently, the following tools are available for designing the culverts and low water crossings 

for AOP: 

HY-8 Culvert Analysis Program (FHWA 2016): HY -8 can be employed in designing vented LWC. 

HY-8 v7.40 contains a calculator that helps with the FHWA’s culvert AOP design procedure 

discussed in HEC-26, Culvert Design for Aquatic Organism Passage (Kilgore et al. 2010). HEC-26 

contains stream simulation design method, which can be followed while designing the crossing 

so that the LWC also facilitates adequate AOP.  

FishXing (USDA FS 2012): FishXing is free software developed by the USDA Forest Service that 

helps in assessment and design of culverts for fish passage. It models organism capabilities 

against culvert hydraulics for a range of expected stream flow, and compares the flows, 

velocities, and leap conditions with the swimming abilities of the fish species. It accommodates 

the iterative process of designing a new culvert to provide passage for fish and other aquatic 

species.   

HEC-RAS (USACE 2016): HEC-RAS can be employed to find the flow velocity and shear stress in 

the LWC and the immediate cross sections; these values can be compared to the permissible 

values to see whether the LWC affects the AOP. 
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3.5 HEC-RAS 

Hydrologic Engineering Center’s River Analysis System (HEC-RAS) is hydraulic modeling software 

developed by the US Army Corps of Engineers, which allows the user to perform one-

dimensional steady and unsteady flow calculations (Brunner 2010a). It was first released to the 

public in 1995 and has gained popularity among hydrologic modelers, which is evident by its 

prevalent use in modeling dams, bridges, and culverts.  

The HEC-RAS system consists of  

 A graphical user interface (GUI), which helps the user in data entry, editing, file 

management, hydraulic analysis and displaying of result 

 Hydraulic analysis components, where users do all the modeling  

 Data storage and management  

 Graphics and reporting capabilities 

The stable version HEC-RAS V 4.1.0 was released in 2010 and supports steady and unsteady 

flow water profile computations, sediment transport and water quality modeling (Brunner 

2010a). In 2016, Hydrologic Engineering Center launched HEC-RAS V 5.0 which has two-

dimensional modeling capabilities and can be used to perform 1D, 2D or combined 1D/2D 

modeling (Brunner 2016). The recent version 5.0.3 includes several new features such as 

Culvert inlet/outlet control changes, and several improvements in RAS Mapper.   

Additionally, HEC-GeoRAS, an ArcGIS extension designed the US Army Corps of Engineers, is 

also available which makes it easier to process the geospatial data for use in HEC-RAS. It lets the 

user create geometry files in ArcGIS from the digital terrain model (DTM), which can then be 

imported into HEC-RAS to perform the modeling. HEC-GeoRAS can also be used to plot the 

inundation depths and flood extent by using the water surface profile results from the HEC-RAS 

computation (Ackerman 2012).   
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3.5.1 Equations used for Basic Profile Calculations in HEC-RAS 

HEC-RAS computes the water surface profiles from one cross section to the next by solving the 

energy equation using the standard step method (Brunner 2010b). The energy equation is as 

given below: 

𝑍2 + 𝑌2 +
𝑎2𝑉2

2

2𝑔
= 𝑍1 + 𝑌1 +

𝑎1𝑉1
2

2𝑔
+ ℎ𝑒  

Where: 𝑍1, 𝑍2  = elevation of the main channel inverts 

𝑌1, 𝑌2   = depth of water at cross sections 

𝑉1, 𝑉2   = average velocities 

𝑎1, 𝑎2   = velocity weighting coefficients 

𝑔   = acceleration due to gravity 

ℎ𝑒  = energy head loss 

The energy head loss is given as: 

ℎ𝑒 = 𝐿𝑆𝑓 + 𝐶 |
𝑎2𝑉2

2

2𝑔
−

𝑎1𝑉1
2

2𝑔
|  

 Where: 𝐿 = discharge weighted reach length 

 𝑆𝑓  = representative friction slope between two sections 

 𝐶  = expansion or contraction loss coefficient 

The distance weighted reach length, L, is calculated as: 

𝐿 =
𝐿𝑙𝑜𝑏𝑄𝑙𝑜𝑏 + 𝐿𝑐ℎ𝑄𝑐ℎ + 𝐿𝑟𝑜𝑏𝑄𝑟𝑜𝑏

𝑄𝑙𝑜𝑏 + 𝑄𝑐ℎ + 𝑄𝑟𝑜𝑏
  

Where: 𝐿𝑙𝑜𝑏 , 𝐿𝑐ℎ, 𝐿𝑟𝑜𝑏    = cross section reach lengths for flow in the left overbank, main         

channel and right overbank, respectively 



18 
 

𝑄𝑙𝑜𝑏, 𝑄𝑐ℎ, 𝑄𝑟𝑜𝑏  = arithmetic average of the flows between sections for the left 

overbank, main channel and right overbank, respectively 

The total conveyance is calculated by subdividing the flow into different units. The flow in the 

overbank areas is subdivided using the information about locations where the change in the 

Manning’s n-value occurs. Conveyance is calculated in each subdivision using the following 

form of Manning’s equation based on English units: 

𝑄 = 𝐾𝑆𝑓
1/2

 

𝐾 =
1.486

𝑛
𝐴𝑅2/3 

 Where: 𝐾 = conveyance for subdivision 

 𝑛   = Manning’s roughness coefficient for subdivision  

 𝐴   = flow area for subdivision  

 𝑅   = hydraulic radius for subdivision  

3.5.2 HEC-RAS in Dam Investigations 

HEC-RAS has been used to evaluate the impacts of dam installations, dam break, and flood 

routing analysis in the United States and throughout the world. Nislow et al. (2002) used HEC-

RAS to study the effects of dam construction on the flood regime of natural floodplain 

communities in the Upper Connecticut River. In doing so, they compared the frequency and 

duration of flooding and the area flooded under different recurrence intervals for pre-and post-

impoundment discharges. They found that the riparian communities which were flooding 

between 20 to 100 years’ intervals before the dam construction would flood at more than 100 

years’ interval, thus isolating them from the riverine influence.  

Maingi & Marsh (2002) used HEC-RAS to examine the impacts of dam installations on the 

hydrologic regime of Tana River in Kenya. They used HEC-RAS to estimate the flooding 

frequency of 71 vegetation sample plots located on the floodplain of the river. HEC-RAS analysis 
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determined that the sample plots at an elevation greater than 1.80 m above dry season river 

level experienced more flooding after the Masinga Dam construction.  

Xiong (2011) applied dam break tool in HEC-RAS to the Foster Joseph Sayers Dam in 

Pennsylvania and concluded that the dam breaks due to pining only increases the time period 

of high water surface level, thus prolonging the risk duration. It was also found that the dam 

break does not increase the downstream maximum water surface elevation by significant 

amounts at the design Probable Maximum Flood (PMF). Another finding of the study is the 

greater impact on the immediate downstream location compared to further downstream, 

based on hydrograph comparison. 

3.5.3 HEC-RAS in Bridge and Culvert Study 

Various hydraulic models are available which can be used for modeling bridges and culverts. 

There are one-dimensional, two-dimensional, and three-dimensional models with steady 

and/or unsteady flow regimes. Zevenbergen et al. (2012) provides an extensive review of the 

differences between the various types of numerical modeling approaches.  Most bridge 

hydraulic studies use 1D analysis methods, though 2D models are becoming more common. 3D 

models are used to analyze complex flow fields. HEC-RAS is one of the frequently used models 

for bridge and culvert investigations. It is particularly useful for in-channel flows and when 

floodplain flows are minor. 

Brandimarte and Woldeyes (2013) used HEC-RAS to estimate the backwater effects at bridge 

crossing in Tallahala Creek, Mississippi. They compared the estimated backwater due to design 

flood profile using both the deterministic and probabilistic approach. Another study conducted 

by Hadera and Asfaw (2016) looked into the causes of outlet erosion in highway crossings 

(bridges and culverts) in Ethiopia. They used HEC-RAS and HY8 for the hydraulic analysis of the 

bridge and culvert respectively. From their investigation, they concluded that the major cause 

of downstream erosion and gully formation is the lack of proper hydrologic and hydraulic 

design of the highway drainage.  
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Olaniyan et al. (2014) utilized HEC-RAS in modifying the existing culverts in River Omi in Nigeria, 

which had been inundating the surroundings. They found that the existing culvert could no 

longer accommodate the flow in the river and provided an alternative design of box culvert 

with a span of 7.2 m and rise 1.8 m.  

3.5.4 HEC-RAS in LWC Study 

HEC-RAS has a wide range of applications in modeling hydraulics, as discussed above. The 

reliability of the HEC-RAS in LWC analysis is based on the studies involving bridges, dams, 

culverts and other civil engineering designs. HEC-RAS and GIS have also been used as a 

powerful tool in floodplain delineation (e.g. Tate and Maidment, 1999; Tate et al., 2002; Yang et 

al., 2006). Leahy (2014) used HEC-RAS to model LWCs at a U.S. Army installation in Indiana. 

Hydraulic analysis tools used for LWC design depend on the type of LWC to be designed or 

analyzed. The modeling of LWC in HEC-RAS is similar to bridge and culvert analysis. Based on 

the type of LWC, single culvert, multiple culverts, or bridge analysis is performed. Usually, one-

dimensional modeling is done for steady flow conditions with the appropriate design flow. 

Unvented fords are modeled as inline structure weirs. Vented fords are typically analyzed as 

culvert structures with weir flow over the road when the water overtops the structure (Schall et 

al. 2012). Weir flow takes place when the vented ford is overtopped. The hydraulic analysis and 

design of low water bridges are done the same way for normal bridges, with special 

consideration given to overtopping flows (Zevenbergen et al. 2012).  
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CHAPTER 4: METHODOLOGY 

4.1 Illinois LWC Survey 

A survey was conducted as a part of the research to obtain an overview of the distribution of 

LWCs in Illinois, along with county engineers’ experiences with LWCs pertaining to design, 

construction, and maintenance. The survey questionnaire consisted of a document file with 14 

questions (Appendix A) and a spreadsheet to document information on multiple LWCs. The 

summary of the survey is included in Appendix B. Some of the key findings of the LWC survey 

are as given below: 

 Low-water crossings have been used extensively in southern and central Illinois, which 

are predominantly agricultural areas. In the northern counties surrounding Cook 

County, the high ADTs do not favor the construction of LWCs. 

 LWCs are suitable for areas with average daily traffic less than 25 vehicles per day. 

 LWCs, especially unvented and vented fords, are economical and hence are suitable for 

rural, low ADT roads that primarily serve as access roads to farmlands.  

 Fords (unvented and vented) are the first choice for LWCs due to the simple design and 

low construction and other associated costs. 

 LWCs are permitted to overtop, but only during a limited time of the year. Usually, the 

overtopping is limited to less than 5% of the year. However, the time during which a 

LWC is allowed to be overtopped is based on the usability and importance of the road in 

which the LWC is present. The judgment of an engineer is important in this decision, and 

the design flow needs to be selected accordingly. 

 Few LWCs provide access to residential homes, which is suggested only in the presence 

of an alternative route nearby. 

 Lack of warning signs increases the risk of accidents in the crossings and is a liability to a 

highway department. Thus, proper signage should be installed at the LWC site.  
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 If maintained properly, LWCs can also be a point of attraction in parks and recreational 

areas. 

4.2 Study Sites 

As a part of the research, case studies were conducted on five existing LWCs in Illinois, which 

includes two unvented and three vented fords. The sites were chosen to represent different 

geographic regions of Illinois. The following criteria were considered when selecting the sites 

for a channel cross-section survey to be used in the numerical modeling in HEC-RAS. 

 Availability of LiDAR data 

 Diversity in LWC types 

 Size of the stream and contributing watershed area 

 Channel and site stability 

 LWC functionality 

 Utilization of LWC 

 Safety factors and signage 

 Cooperation of the county highway department 

Two vented LWCs in Edgar County were chosen for the case study based on an initial site 

assessment of 12 LWC sites in Edgar, Coles, and Christian counties. Another vented LWC in 

Logan County was also surveyed as the LWC was different in orientation from other sites. The 

crossing is skewed at a 35-degree angle to the streamflow direction. Similarly, two unvented 

LWCs, one each from Franklin County and Ogle County were also included. The unvented ford 

in Franklin County serves an agricultural area, whereas the one in Ogle County is inside a state 

park and used mostly by visitors for recreational purposes such as fishing.  

The LWC sites selected for the detailed analysis, based on the preliminary survey results and 

the criteria discussed above, and their details are provided in Table 4.1 and Figure 4.1.  
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Table 4.1: LWC Sites Selected for Case Study 

County ID Latitude Longitude Structure Type Stream 

Edgar Edgar #1 39.5084 –87.9236 
Above-Grade 
Vented 

North Fork 

 Edgar #3 39.5136 –87.7297 At-Grade Vented Fork Big Creek 

Franklin Franklin 38.0171 –88.7879 At-Grade Unvented  
Tributary to Akin 
Creek 

Logan Logan 40.0673 –89.5458 At-Grade Vented 
Tributary to Salt 
Creek 

Ogle Ogle 41.9924 –89.4707 At-Grade Unvented Pine Creek 

 
Figure 4.1: Location of LWCs selected in the study. 
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4.3 Logan LWC 

The LWC selected for further study in Logan is centered at 40.0673N, 89.5468W and is located 

on 1025 - 275th Avenue (Figure 4.2). It lies in the middle of an agricultural area and mostly 

carries the water discharged by tile drains in the field. The crossing was constructed in the late 

80’s and has performed well, requiring minimum maintenance.  

 

Figure 4.2: LWC (vented) in Logan County, Illinois. 

4.3.1 Structure Details 

Crossing history The LWC was constructed as a Missouri crossing, and the pipes were 
provided to handle the normal flow.  
 

Why was this 
structure selected? 

The structure was chosen because of its performance and low 
maintenance requirements. The LWC is located on a low ADT road, 
with less than 25 vehicles per day. 
 

Crossing details Structure: The structure was designed with a 10-year flood event.  
However, the low flow culverts were sized to accommodate the low 
flow of the stream. The vented LWC has three concrete pipes of 2 ft 
diameters. The crossing is 27 ft wide and has a skew angle of 35 
degrees (Figure 4.2). 
 

Cost: The structure was built in 1988 at the cost of $12,541. 
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Safety: There have not been any serious accidents at this location.  
However, there have been complaints about the roughness of the 
approach grades.  
 
Signage: Warning signs saying SLOW and DO NOT ENTER WHEN 
FLOODED are present on the approach roads. 
 
Alternative route: When the road is flooded, the adverse travel is 
only 2 miles. 
 

Flood and 
maintenance history 

The crossing is closed for a few hours with each flood event.  In case a 
larger flood event occurs (i.e. 50-year, 100-year), the road might be 
shut down for a day. The crossing requires maintenance after high 
flows, which are expected. The maintenance cost is very minimal. 
 

Presence of aquatic 
species 

This is a very small stream for most of the year, fed mostly by 
drainage tiles.  There are few, if any, fish in this area.  The low-flow 
culverts should allow passage of any aquatic species because these 
culverts are set along the flowline of the stream. 
 

Public perception The local citizens have not complained about the low water crossing. 

4.3.2 Watershed 

The vented LWC is placed across the stream, which is a tributary of the Salt Creek (Figure 4.3). 

The LWC area has a main channel slope of 20.33 ft/mi and the watershed upstream of the LWC 

has a drainage area of 3.13 mi2 as per Illinois StreamStats (USGS, 2016). It lies within the Salt 

Creek of Sangamon River Watershed.  

 

Figure 4.3: Stream network in the Logan LWC watershed. 
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The stream was classified using Chow (1959) to determine the appropriate Manning’s n value of 

the reach. The value assigned for Manning’s n was 0.03 within the channel and 0.035 for 

floodplain dominated by cultivated crops. The watershed is a predominately-agricultural area 

(96.7%), with a little bit of developed area (Figures 4.3 and 4.4; Table 4.2).  

 

Figure 4.4: NLCD land cover in the watershed associated with the Logan LWC. 

Table 4.2: NLCD Land Cover by Percent Area in Logan LWC Site 

NLCD Land Cover % Area 

Developed, Open Space 2.11 
Developed, Low Intensity 1.19 
Cultivated Crops 96.70 

 

4.3.3 Soil 

The majority of the watershed has soils in the B or C/D hydrologic group (Figure 4.5, Table 4.3). 

Soil group B has a moderate infiltration rate when thoroughly wet. Soil groups with drainage 

characteristics affected by a high water table are indicated with a /D designation, where the 

letter preceding the slash indicates the hydrologic group of the soil under drained conditions. 

The main drainage way is comprised primarily of B soils affected by a high water table (B/D). 
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Figure 4.5: Hydrologic soil groups for watershed associated with Logan LWC. 

Table 4.3: Hydrologic Soil Groups by Percent Area in Logan LWC Site 

Hydrologic Soil Group % Area 

B 35.68 
B/D 14.49 
C 13.49 
C/D 36.34 

4.4 Edgar#1 LWC 

This above-grade vented LWC in Edgar County is centered at 39.508N, 87.924W, and is located 

on N 200th Street (Figure 4.6). It lies across the North Fork Embarras River in the middle of an 

agricultural area. The LWC is located on low volume road and has been functioning well.  

  

Figure 4.6:  Edgar#1 LWC after a rainfall event (left), same LWC during dry months (right). 
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4.4.1 Structure Details 

Why was this 
structure selected? 

The structure was chosen because of its better functioning and low 
maintenance requirements. The LWC is located on a low ADT road, 
with less than 25 vehicles per day. 
 

Crossing details Structure: The LWC is an arched structure made up of corrugated 
metal with a span of 8.75 feet and a rise of 2.5 feet. The crossing is 20 
feet in width and has a skew angle of 15 degrees. 
The LWC has suffered from scouring at the downstream end, and 
traps logs and branches of trees after heavy rainfall events (Figure 
4.6). 
 

Cost: Not known. 
 

Safety: There have not been any severe safety issues in the crossing.  
 

Signage: None present. 
 

Flood and 
maintenance history 

The crossing is closed a couple of times a year, for up to 24 hours 
depending on the flood event.  The crossing needs to be maintained 
after heavy rainfall events, the cost of which is very low. 
 

Presence of aquatic 
species 

None known.  
 

Public perception The local citizens feel the LWC is better than having no crossing at all, 
and the crossing is very useful for the vehicle movement.   

 

4.4.2 Watershed 

The LWC is located across the North Fork Embarras River, which is a major tributary to the 

Embarras River (Figure 4.7). The LWC area has a main channel slope of 29.86 feet per mile, and 

the watershed upstream of the LWC has a drainage area of 4.44 square miles as per Illinois 

StreamStats. It lies within the Embarras/Middle Wabash River Watershed.  

The stream was classified using Chow (1959) to determine the appropriate Manning’s n value of 

the reach. The value assigned for Manning’s n was 0.04 within the channel, 0.1 for floodplain 

dominated by heavy timber stands and 0.05 for scattered brushes. The watershed is a 

predominantly agricultural area, with a little bit of pasture and forested area (Figures 4.7 and 

4.8; Table 4.4).  
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Figure 4.7: Stream network in the Edgar#1 LWC watershed. 

 

Figure 4.8: NLCD land cover in the watershed associated with the Edgar#1 LWC. 

Table 4.4: NLCD Land Cover by percent area in Edgar#1 LWC site 

NLCD Land Cover % Area 

Developed, Open Space 4.38 
Developed, Low Intensity 0.96 
Developed, Medium Intensity 0.05 
Developed, High Intensity 0.05 
Deciduous Forest 7.93 
Hay/Pasture 5.28 
Cultivated Crops 81.35 
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4.4.3 Soil 

The majority of the watershed has soils in the “C” or “B/D” hydrologic group (Figure 4.9, Table 

4.5). Soil group C has a slow infiltration rate when thoroughly wet. Soil groups with drainage 

characteristics affected by a high water table are indicated with a “/D” designation, where the 

letter preceding the slash indicates the hydrologic group of the soil under drained conditions. 

The main drainage way is comprised primarily of “B” soils affected by a high water table 

(“B/D”). 

 

Figure 4.9: Hydrologic Soil Groups for watershed associated with Edgar#1 LWC. 

Table 4.5: Hydrologic Soil Groups by percent area in Edgar#1 LWC site 

Hydrologic Soil Group % Area 

B 19.59 
B/D 35.00 
C 41.80 
C/D 3.61 

4.5 Edgar#3 LWC Site 

This at-grade vented LWC in Edgar County is centered at 39.5136N, 87.7297W, and is located 

on E 300th road (Figure 4.10). It lies across the East Fork Big Creek, in an agricultural region. The 

LWC is located on a low ADT road, with less than 25 vehicles per day.  
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Figure 4.10: Low water crossing and the approach, Sediment deposition upstream, Undercutting on 
downstream end (clockwise direction from top). 

4.5.1 Structure Details 

Why was this 
structure selected? 

The structure was chosen because it is functioning poorly. An 
alternative design for the LWC has been provided, which is expected 
to perform better than the existing LWC. 
 

Crossing details Structure: The LWC has two one-ft diameter corrugated metal pipes. 
The crossing is 11.5 feet in width and has a skew angle of 15 degrees. 
There is sediment deposition on the upstream side of the LWC, and 
undercutting by water under the structure (Figure 4.10).  
Cost: Not known. 
 

Safety: There have been several incidences where people tried to 
cross when they shouldn't and were washed off.  There have been 
deaths at the slabs, but it’s due to people trying to swim during high 
water, and not from cars being washed downstream.   
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Signage: None present. 
 

Flood and 
maintenance history 

The crossing is closed a couple of times a year, for up to 24 hours 
depending on the flood event.  The crossing must be maintained after 
heavy rainfall events. 
 

Presence of aquatic 
species 

None known.  
 

 

Public perception The local citizens feel that LWC is better than having no crossing at 
all. The LWC is good for a vehicle, but unreliable, as LWCs cannot 
always be depended upon.   

4.5.2 Watershed 

The LWC is placed across the East Fork Big Creek, which is a tributary of the Big Creek and 

eventually drains into the Wabash River (Figure 4.11). The LWC area has a main channel slope 

of 15.34 feet per mile, and the watershed upstream of the LWC has a drainage area of 13.64 

square miles as per Illinois StreamStats. It lies within the Embarras/Middle Wabash River 

Watershed.  

The stream was classified using Chow (1959) to determine the appropriate Manning’s n value of 

the reach. The value assigned for Manning’s n was 0.04 within the channel, 0.10 for floodplain 

dominated by heavy timber stands and 0.06 for light brushes and trees. The watershed is 

mostly dominated by agricultural area, with a little bit of pasture and forested area (Figures 

4.11 and 4.12; Table 4.6).  

 

Figure 4.11: Stream network in the Edgar#3 LWC watershed. 
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Figure 4.12: NLCD land cover in the watershed associated with the Edgar#3 LWC. 

Table 4.6: NLCD Land Cover by percent area in Edgar#3 LWC site 

NLCD Land Cover % Area 

Open Water 0.08 
Developed, Open Space 4.98 
Developed, Low Intensity 1.67 
Developed, Medium Intensity 0.06 
Barren Land 0.02 

Deciduous Forest 16.93 
Herbaceuous 0.89 
Hay/Pasture 13.24 
Cultivated Crops 62.13 

 

4.5.3 Soil 

The majority of the watershed has soils in the “B”, “C” or “B/D” hydrologic group (Figure 4.13, 

Table 4.7). Soil groups A, B and C have a high, moderate and slow infiltration rate respectively 

when thoroughly wet. Soil groups with drainage characteristics affected by a high water table 

are indicated with a “/D” designation, where the letter preceding the slash indicates the 

hydrologic group of the soil under drained conditions. The main drainage way is comprised 

primarily of “A” and “B/D” soils, affected by a high water table. 
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Figure 4.13: Hydrologic Soil Groups for watershed associated with Edgar#3 LWC. 

Table 4.7: Hydrologic Soil Groups by percent area in Edgar#3 LWC site  

Hydrologic Soil Group % Area 

Water 1.93 
A 0.06 
B 25.16 
B/D 29.37 
C 42.67 

C/D 0.30 
D 0.51 

 

  



35 
 

4.6 Franklin LWC 

The at-grade unvented LWC is centered at 38.0171N, 88.7879W and is located on an old farm 

road (Figure 4.14). It is placed across a tributary to Akin Creek, and lies in the middle of an 

agricultural area, providing access to one house. 

  

  

Figure 4.14: Franklin LWC site, crossing surface, sediment deposition downstream, signage 
(clockwise). 
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4.6.1 Structure Details 

Crossing history The unvented LWC was a replacement for the culvert pipes that were 
washed out.  The road commissioner at the time pulled the pipes out, 
cut the bank back, and poured concrete in the bottom. 
 

Why was this 
structure selected? 

The unvented structure was chosen because of its better 
performance and low maintenance requirements. The flow of water 
over the structure is very low most of the time, and it is located on a 
low ADT road with less than 25 vehicles per day. 
 

Crossing details Structure: The crossing is 11.5 feet in width. The crossing has gravel 
approaches, and the crossing surface has worn out (Figure 4.14). 
 

Cost: Not known. 
 

Safety: There have not been any accidents at this location. 
  

Signage: Sign that reads “LOW WATER CROSSING” is present on the 
approaches, about 375 feet from the crossing. 
 

Flood and 
maintenance history 

The crossing is closed once or twice a year when the creek it flows 
into backs up during a heavy rain, during which it is impassable for 
about 12 hours. Not much maintenance has been performed on the 
crossing. 
 

Presence of aquatic 
species 

None known. 
 
 

Public perception The crossing provides service for one house. There is another road 
nearby for a detour when the water gets high. 

 

4.6.2 Watershed 

The LWC is placed on a gravel road across a tributary to Akin Creek, which is a tributary to the 

Middle Fork Big Muddy River (Figure 4.15). The LWC area has main channel slope of 21.055 feet 

per mile, and the watershed upstream of the LWC has a drainage area of 1.3 square miles as 

per Illinois StreamStats. It lies within the Big Muddy River Watershed.  

The stream was classified using Chow (1959) to determine the appropriate Manning’s n value of 

the reach. The value assigned for Manning’s n was 0.035 within the channel and 0.035 for 

floodplain dominated by pasture and cultivated crops. The watershed is a predominantly 

agricultural area, along with some pastureland (Figures 4.15 and 4.16; Table 4.8).  
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Figure 4.15: Stream network in the Franklin LWC watershed. 

 

Figure 4.16: NLCD land cover in the watershed associated with the Franklin LWC. 

Table 4.8: NLCD Land Cover by percent area in Franklin LWC site 

NLCD Land Cover % Area 

Developed, Open Space 6.55 
Developed, Low Intensity 1.06 
Deciduous Forest 5.79 
Herbaceuous 1.49 
Hay/Pasture 26.12 
Cultivated Crops 58.99 
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4.6.3 Soil 

The majority of the watershed has soils in the “C” or “C/D” hydrologic group (Figure 4.17, Table 

4.9). Soil group C has a low infiltration rate when thoroughly wet. Soil groups with drainage 

characteristics affected by a high water table are indicated with a “/D” designation, where the 

letter preceding the slash indicates the hydrologic group of the soil under drained conditions. 

The main drainage way is comprised primarily of “B/D” soils, which are affected by a high water 

table. 

 

Figure 4.17: Hydrologic Soil Groups for watershed associated with Franklin LWC. 

Table 4.9: Hydrologic Soil Groups by percent area in Franklin LWC site 

Hydrologic Soil Group % Area 

Water 10.36 
B/D 3.24 
C 51.95 
C/D 34.45 

 

  



39 
 

4.7 Ogle LWC 

The at-grade unvented LWC is centered at 41.9924N, 89.4707W and is located on a park road in 

the White Pines Forest State Park (Figure 4.18). The hardened crossing lies across Pine Creek 

and is used by the visitors to get around the park. Another similar LWC is located about 750 feet 

downstream of the structure. The road is used seasonally and closed in the winter.  Riprap on 

the streambanks have been used as a best management practice, and a weir is provided to 

dissipate the energy in the crossing. 

  

Figure 4.18: Low water crossing under study and warning sign. 

4.7.1 Structure Details 

Crossing history The original fords were constructed in 1927.  Those were replaced 
with the current fords in 1955.  Remnants of the original ford are still 
visible immediately downstream of the current ford.  
 

Why was this 
structure selected? 

The structure was chosen because of its performance, low 
maintenance, and popularity among users. 
 

Crossing details Structure: The ford is a concrete monolith founded on a grid of 
timber piles driven into the stream bed. The crossing is 16.5 feet in 
width, located on a low ADT road of about 50 vehicles per day. 
The crossing performs well during periods of normal flow.  Normal 
flow results in an approximate water depth of 6 inches in the center.   
 

Cost: Not Known. 
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Safety: The crossing is for vehicles only.  Wading and swimming in the 
creek are prohibited.  Pedestrians cross using the pedestrian bridge 
approximately 100 feet east of the ford.  However, once in a while, a 
car with low clearance will get turned sideways by the current.  
 

Signage: Since the surface of the crossing is very slippery, there is a 
warning sign present on the entrance (Figure 4.18). 
 

Flood and 
maintenance history 

The ford can be closed for periods of a few days to several weeks 
depending on precipitation patterns.  This is common in the spring 
with the snow melt and rain. The ford is closed during cold weather 
months due to ice.  Even with the creek flowing normally in cold 
weather, the approaches become slippery from ice. 
 
The crossing is virtually maintenance free. The concrete surface has 
been patched in the past.   
 

Presence of aquatic 
species 

The fish population of the Creek includes bass, sunfish, crappie, carp, 
and suckers.  Keeper size trout are released in the spring and fall.  
There are no known threatened and endangered species in the area 
of the park.  Invasive zebra mussels are not present in Pine Creek. 
  

Public perception It is a very popular and unique novelty to most visitors. People like 
driving through the water. 

4.7.2 Watershed 

The LWC is placed across Pine Creek, which is a tributary to the Rock River (Figure 4.19). The 

LWC area has a main channel slope of 15.102 feet per mile, and the watershed upstream of the 

LWC has a drainage area of 44.94 square miles as per Illinois StreamStats. It lies within the Rock 

River Watershed.  

The stream was classified using Chow (1959) to determine the appropriate Manning’s n value of 

the reach. The value assigned for Manning’s n was 0.04 within the channel and 0.10 for 

floodplain dominated by brush and timber stands. The watershed is a predominantly 

agricultural area, with a little bit of developed area and forests (Figures 4.19 and 4.20; Table 

4.10).  
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Figure 4.19: Stream network in the Ogle LWC watershed. 

 

Figure 4.20: NLCD land cover in the watershed associated with the Ogle LWC. 

Table 4.10: NLCD Land Cover by percent area in Ogle LWC site 

NLCD Land Cover % Area 

Open Water 0.05 
Developed, Open Space 4.74 
Developed, Low Intensity 2.33 
Developed, Medium Intensity 0.50 
Developed, High Intensity 0.16 
Deciduous Forest 5.58 
Evergreen Forest 0.11 
Hay/Pasture 4.15 
Cultivated Crops 82.36 
Woody Wetlands 0.02 



42 
 

4.7.3 Soil 

The majority of the watershed has soils in the “B” or “B/D” hydrologic group (Figure 4.21, Table 

4.11). Soil group B has a moderate infiltration rate when thoroughly wet. Soil groups with 

drainage characteristics affected by a high water table are indicated with a “/D” designation, 

where the letter preceding the slash indicates the hydrologic group of the soil under drained 

conditions. The main drainage way is comprised primarily of “B” soils affected by a high water 

table (“B/D”). 

 

Figure 4.21: Hydrologic Soil Groups for watershed associated with Ogle LWC. 

Table 4.11: Hydrologic Soil Groups by percent area in Ogle LWC site 

Hydrologic Soil Group % Area 

Water 1.01 
A 0.35 
A/D 0.22 
B 62.60 

B/D 17.05 
C 17.85 
D 0.92 
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4.8 Site Hydrology 

The important factors in LWC design are expected high flow and normal (or base) flow. The high 

design flow dictates the expected water level above the LWC structure as well as the length of 

road surface that will be under the water—and indicates the need for special protection 

techniques such as bank stabilization and reinforcement. The normal or base flow will help the 

user decide which LWC to construct at the site. In the case of vented fords, the size of the pipes 

necessary to convey the flow through the structure depends on the low or normal flow. 

Although LWCs are designed to be overtopped by higher flows, it is not desirable that LWCs 

flood most of the year. The experience of local highway officials with LWCs, as well as the 

literature (Motayed et al. 1982), suggests that the favorable condition for a LWC is when 

average annual flooding is less than two times a year, whereas it is undesirable to use an LWC 

when flooding is more than ten times a year. Thus, the LWC should be designed such that it is 

functional at least 95% of the time in a year.  

There are two approaches to obtain design flow used in the design of the LWCs:  

 Use flow-duration data to estimate closure time of the LWC (number of days in a year 

during which the LWC may be closed to traffic) and the capacity of the LWC (pipes in 

case of a vented ford). 

 Use flood-frequency data to estimate high design flow for the design of the LWC 

structure at full capacity and refer to local knowledge about base flow in the stream to 

determine the type of LWC and the size of pipe in the case of a vented ford. 

Flow for different exceedance probabilities as obtained from regional flow duration curves 

equation (Over et al., 2014) is given in Table 4.12. The regional flow duration curves for Illinois 

is explained in detail in Appendix C.  
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Table 4.12: Flow for selected LWC sites for exceedance probability of 1 percent 

LWC Region Drainage area (sq. miles) Flow (ft3/s) 

Logan II 3.13 28.71 

Edgar#1 III 4.44 72.56 

Edgar#3 III 13.64 192.04 

Franklin III 1.3 25.00 

Ogle I 44.94 298.18 

The 1-year flow values for LWC sites were obtained from partial duration series (PDS) regional 

equations (Soong et al., 2004) and are provided in Table 4.13.  

Table 4.13: 1-year flow from PDS equations for selected LWC sites 

LWC Hydrological 
Region 

Drainage 
area (sq. mi) 

Main channel 
slope (ft/mi) 

%water Flow 
(ft3/s) 

Standard error 
of estimate (%) 

Logan III 3.13 20.332 0 186.01 45.9 

Edgar#1 III 4.44 29.864 0.078 231.18 39.6 

Edgar#3 III 13.64 15.34 0.071 477.16 39.6 

Franklin VI 1.3 21.055 0 174.27 39.6 

Ogle I 44.94 15.162 0.05 1403.83 44.1 

The partial duration series (PDS) regional equations for different regions in Illinois is explained 

in detail in Appendix D. The Table below (Table 4.14) contains the parameters used to obtain 

the flow values in Table 4.13 and were obtained from Soong et al. (2004). The parameters and 

values in Table 4.13 were used in conjunction with PDS regional equations to obtain the 1-year 

flow. 

Table 4.14: Parameters used to obtain 1-years flow values from PDS equations 

LWC Hydrological Region a b c d Flow (ft3/s) 

Logan III 207.1 0.645 -0.524 NA 186.01 

Edgar#1 III 207.1 0.645 -0.524 NA 231.18 

Edgar#3 III 207.1 0.645 -0.524 NA 477.16 

Franklin VI 87.4 0.822 0.405 -0.472 174.27 

Ogle I 52.6 0.755 0.458 -0.515 1403.83 

Peak flow statistics for the sites, obtained from Illinois StreamStats, which includes flows for a 

return period of 25 years are given in Table 4.15. 
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Table 4.15: 25-Year Peak flow for selected LWC sites 

LWC Site Flow (ft3/s) Prediction error 
(percent) 

Equivalent years 
of record 

Logan 970 44 4.7 

Edgar#1 1890 44 4.7 

Edgar#3 3170 44 4.7 

Franklin 854 NA NA 

Ogle 4700 44 4.7 

4.9 Datasets Required 

The input essential for steady-state flow modeling of LWC in HEC-RAS includes geometry 

properties, steady flow rate, and flow regime. Table 4.16 lists the datasets required for 

modeling a LWC in HEC-RAS and the source from which they were obtained. 

Table 4.16: Datasets Required for Hydraulic Modeling in HEC-RAS 

Datasets Source 

Elevation LiDAR DTM (ISGS Clearinghouse) 
 Site Survey 

Land Use NLCD Database 

Design Flood rates USGS StreamStats 
USGS empirical equations 

4.9.1 Topography and Survey 

Site surveys were performed to obtain the cross-section data, and LiDAR elevation data was 

used to get the elevation of points that were missed during the survey. Cross-sectional surveys 

for the LWC sites in Edgar and Logan counties were conducted in the fall of 2015 and for the 

LWCs in Franklin and Ogle counties in the spring of 2016. Cross-sectional data was surveyed 

with the help of surveying staffs from the US Army Corps of Engineers (USACE) and is consistent 

with FEMA mapping protocol. Surveys included structure measurement, channel topography up 

to the top of the bank, and other relevant data to characterize the channel and near overbank 

geometry. Minimum of four cross sections per site, two cross sections upstream and 

downstream of the structure, were obtained and then processed.  
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Cross-sectional geometry in the non-surveyed overbank area was obtained using the 

topographic data derived from light detection and ranging (LiDAR) and combined with the 

surveyed channel cross section. LiDAR data was obtained from the Illinois State Geological 

Survey (ISGS) clearinghouse, which was acquired by the ISGS as a part of the Illinois Height 

Modernization Program (ILHMP). A digital terrain model (DTM) was developed based on the 

topographic data from LiDAR and survey, and elevation information was extracted for use in 

HEC-RAS modeling. 

4.9.2 Channel Roughness 

The main channel and overbank roughness characteristics were determined from the 

photographs taken during the field surveys. The photographs were combined with information 

from aerial photography and land use data to assign the Manning’s roughness coefficients (n) 

along the modeled stream length. Manning’s n for the main channel was determined following 

Chow (1959) and for overbank floodplain regions were determined following HEC-RAS manual 

(Brunner 2010b; Chow 1959). 

Land use data for the selected counties was obtained from USDA Geospatial Data Gateway 

(USDA 2016) and the surrounding area was clipped. Land use data was used to account for the 

variation of Manning’s roughness (n) along the cross section. Manning’s n represents the 

surface roughness which provides the resistance to flow. Different values of Manning’s n used 

for various land cover conditions are as given in Table 4.17. 

Table 4.17: Manning’s n Values for Different Land Cover (adapted after Kalyanapu et al. 2010) 

NLCD (2011) Code Land Cover Manning’s n 

21 Developed, Open Space 0.0404 
41 Deciduous Forest 0.36 
82 Cultivated Crops 0.035 

Since no gage sites are present on any of the LWC locations, design flow rates for different 

return periods to use in the HEC-RAS modeling was obtained from USGS StreamStats 

application for Illinois (USGS, 2016) and USGS empirical equations, and their values are given in 

Tables 4.2 through 4.5.  
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4.10 Data Processing and HEC-RAS Modeling 

The data processing and modeling of the LWCs was completed using HEC-RAS, ArcGIS, and 

Microsoft Excel. In the study, the steady flow simulation was performed in HEC-RAS for 

different flow rates. Smaller flow rates such as 1% exceedance flow and 1-year flow were used 

to evaluate the adequacy of the existing structures in conveying the design flow through them, 

and 25-year flow model run was utilized in the flood inundation study. HEC-RAS requires the 

geometry data, steady flow data and flow regime to perform the steady flow simulation.  

The elevation data used for the cross sections in this study is based on survey data as well as 

LiDAR data. LiDAR data for different counties were acquired by the ISGS in different years: 

Edgar (2012), Franklin (2014), Logan (2013), Ogle (2009), and they were available in the Illinois 

state plane coordinate system. The survey was done following the UTM projection. Thus, the 

first step in the data processing was clipping the area surrounding the LWC from the LiDAR DTM 

and projecting them into NAD 1983 – UTM – Zone 16N, and subsequently, the elevation was 

also converted into meter. After this, Triangulated Irregular Network (TIN) files were created 

from the digital terrain files (DTM) for all the LWC locations. 

Numerical modeling of LWCs can be divided into three steps: HEC-RAS preprocessing, HEC-RAS 

processing, and HEC-RAS postprocessing, as shown in Figure 4.22. 
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Figure 4.22: Steps in HEC-RAS modeling. 

4.10.1 HEC-RAS Preprocessing 

HEC-RAS preprocessing was completed in ArcGIS using HEC-GeoRAS add-on. Creation of 

geometry files is the first step in the analysis. The HEC-GeoRAS add-on tools allow the user to 

create cross-sections along the geometric terrain, as well as assign bank stations, the structure 

and appropriate Manning’s roughness values (n). The RAS geometry toolbox was used to create 

and digitize the geometry components such as stream, banks, flow paths, and cross section 

using the triangulated irregular network (TIN) files. After the digitization was completed, the 

geodatabases and geometry files were exported into HEC-RAS format using the Export RAS 

Data option. 

The HEC-GeoRAS toolbar has four menus (RAS Geometry, RAS Mapping, ApUtilities, and Help) 

and seven tools/buttons (Assign RiverCode/ReachCode, Assign FromStation/ToStation, Assign 

LineType, Construct XS Cutlines, Plot Cross Section, Assign Levee Elevation, and Import RAS SDF 

file). 

The RAS Geometry tool within the HEC-GeoRAS toolbar was used for all the pre-processing 

required. The first step in HEC-RAS analysis was the creation of the geometry files that the 
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model required. A geodatabase file was created for each LWC and orientation. Firstly, from the 

RAS geometry menu, the Create RAS Layers tool was used to create empty GIS layers for the 

geometry components: stream centerline, bank lines, flow paths, and XS cut lines (cross-section 

lines). The layer files were automatically generated as feature classes within the current LWC 

geodatabase. 

The terrain TIN for the LWC site and the basemap aerial imagery were added to guide the 

digitization process. Digitization of the geometry files was done in the following order: River 

centerline, river banks, flow paths and finally cross sections. The river centerline was digitized 

by editing the River feature class, approximately following the center of the river/creek and 

aligned in the direction of flow i.e. from upstream to downstream direction. After the 

digitization of the stream centerline had been completed, the river name and the reach were 

assigned using the Assign River Code and Reach Code tool. Then, the complete attributes of the 

River feature class were populated by selecting the Stream Centerline Attributes option under 

RAS Geometry. This function also creates the 3D version of River centerline called River3D.  

Next, the banks were created, which are used to distinguish the main channel from the 

overbank (floodplain) region. The bank lines were then digitized by considering the bank full 

terrain elevation. Since there are no specific guidelines about the bank lines orientation, they 

were digitized along the flow direction, similar to the river centerline. Digitization was done 

starting from the upstream end and looking downstream; the left bank was digitized first 

followed by the right bank. 

The flow path centerlines were created by selecting Flow Path Centerlines from the Create RAS 

Layers menu. Three flow path lines are needed: left, right, and channel. The stream centerline 

was used to create the flow path centerline. The left and right flow paths were digitized by 

editing the Flowpaths feature class. The left flow path was digitized first looking downstream 

followed by the right flow path. These flow path lines are used to compute the distances 

between cross-sections in the over bank areas. After digitizing the flow paths, the Assign Line 

Type Attributes tool was used to assign the line type: left, channel, and right to the respective 

flow path lines.  
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The next component created using HEC-GeoRAS was the cross-section feature class, which was 

the key input to HEC-RAS. For the HEC-RAS modeling of LWCs, at least four cross sections, two 

each in upstream and downstream regions, are required. For the study, at least six cross 

sections were surveyed for each LWC site. The cross sections were drawn along the surveyed 

cross sections, which was layered on top of the TIN and aerial imagery. The cross-sections were 

digitized from left to right, moving from upstream to downstream with respect to the 

downstream direction.  

Aerial imagery from ArcGIS was used as a guidance so that the cross sections do not cross the 

roadway. It was also ensured that no two cross sections intersected each other. The cross 

sections were drawn 20 - 30 times the width of the stream so that all the variability in the 

entire area is captured in the modeling. In some cases, it was impractical to extend boundary 

cross-sections to a greater extent as it would intersect with a present road or a segment of the 

same stream, which would cause a divided flow and HEC-RAS errors. The cross -section cutlines 

are 2D lines and have no elevation information associated with them. The 2D cutlines were 

converted into 3D by using XS Cut Line Attributes tool, which creates XSCutLines3D and contains 

the elevation information as well. 

Although assigning Manning’s n and creating the LWC structure can be done within HEC-

GeoRAS, these things were done in HEC-RAS in this study as it is easier it HEC-RAS. Once the 

digitization of the layers mentioned above was completed, the Layer Setup option was selected 

from RAS Geometry menu to verify that all the required layers were ready for exporting. The 

stream centerline attributes, cross-section cutline attributes, bank lines, and flow path 

centerlines were selected and exported for HEC-RAS analysis using the Export RAS Data option. 
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4.10.2 HEC-RAS Processing 

In the HEC-RAS processing, the geometry files created using ArcGIS were imported and the 

location of the LWC was identified and added. Required cross sections were interpolated, and 

the required input of Manning’s n values, ineffective flow areas, contraction and expansion 

coefficients, and loss coefficients were provided. Then, steady flow analysis was performed 

using the design flood in the subcritical regime.  

For the study, different project files were created corresponding to the each LWC. Separate 

project files were created for the LWC-free (baseline) scenario and alternative design as well. 

First, the geometry data exported from HEC-GeoRAS was imported into HEC-RAS. The river and 

reach data were verified along with the cross section data and importing was completed. The 

modeling part in HEC-RAS was done is US Customary units. The data was populated into the 

HEC-RAS geometry editor, which was then saved. Some of the cross sections had more than 

500 elevation points (HEC-RAS limits the elevation points to 500), and in such cases, the Cross 

Section Points Filter tool was used from Geometric data editor. Wherever necessary, graphical 

cross-section editor was used to adjust the bank stations.  

Manning’s n values for the river channel, left over bank and right over bank were assigned. The 

variation in the Manning’s n values was determined using the Land Cover information, aerial 

imagery and photographs taken during the survey. The channel Manning’s n values were 

selected based on the stream characteristics, and the assigned values ranged from 0.03 to 0.04. 

The surrounding area land cover information derived from the 2011 NLCD data was used to 

determine the appropriate Manning’s n value, which ranged from the values 0.035 to 0.1.  

Then, the LWC was added at the identified location. Edit/ or Create bridges and culverts tool 

was used to add vented ford, and Edit/ or Create Inline structures tool was used to add 

unvented ford. Once the vented ford was inserted, Deck/Roadway data editor was opened and 

information such as deck width, a distance of deck to upstream cross section, weir coefficient, 

high chords for upstream and downstream stations, etc. were entered. In the weir crest shape, 

broad crested was selected, and weir coefficient of 2.54 was assigned. Ineffective flow areas 
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were placed at cross sections upstream and downstream of crossings, assuming a contraction 

ratio of 1:1 and an expansion ratio of 1.5:1. Contraction and expansion coefficients were 

increased to 0.3 and 0.5, respectively, at cross sections adjacent to structures. 

Similarly, in the case of unvented fords, Inline structure information such as deck width, a 

distance of deck to upstream cross section, weir coefficient, station and elevation coordinates 

for the top of the weir, etc. were entered. Franklin LWC was modeled as broad crested weir 

whereas Ogle LWC was modeled as Ogee weir. Unvented fords do not have ineffective flow 

areas, and the default contraction and expansion coefficients of 0.1 and 0.3 were used. 

After the geometry data was completed, steady flow data for different flow profiles were 

added. The flow data were obtained from different sources which are discussed in section 4.7. 

Then, normal depth was selected as steady flow boundary conditions and the downstream 

slope for normal depth computation was entered. Next, subcritical flow regime was selected to 

perform a steady flow analysis, and the water surface profiles were computed.  

Cross section outputs were analyzed for any errors and warnings, and necessary modification in 

the model input was made until the results were error free. All of the HEC-RAS models were 

reviewed by USACE-CERL engineers to verify roughness values, bank stations, ineffective flow 

areas, hydraulic structures, boundary conditions, and hydrologic model output. 

The final results of the calculation were exported using the Export GIS Data option, and the 

water surface profiles to export for further processing were selected. 
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4.10.3 HEC-RAS Postprocessing 

The final phase was the HEC-RAS post processing, in which the results from HEC-RAS simulation 

were imported into ArcGIS and the results of flood simulation were displayed using HEC-

GeoRAS. The aerial extent of the flood as per the limiting depth was calculated, and the 

resultant area was reported. 

HEC-GeoRAS was once again employed in the postprocessing. First, Import RAS SDF file option 

was selected, and the SDF file was converted into an XML file. Then, RAS Mapping Layer Setup 

option was selected to create a new analysis, and input rasterization cell size. Next, Import RAS 

Data option was selected from RAS Mapping, which created a bounding polygon by connecting 

the endpoints of XS cut lines. 

For the water surface generation, RAS Mapping/ Inundation Mapping/ Water Surface 

Generation option was selected for the profile associated with the 25-year flow. Next, RAS 

Mapping/ Inundation Mapping/ Floodplain Delineation using Rasters was selected which 

resulted in the flood inundation polygon. Then, the depth raster was reclassified to find the 

area with flooding depth greater than 6 inches, and the resultant areas were noted down.  

The following steps were carried out to obtain the 25-year flood inundation map: 

1. The flood depth grid file was imported from HEC-RAS into ArcGIS 

2. Binary raster calculation was performed to identify the area with flood depth of 6 inches 

or more 

3. Converted the resultant binary calculation layer into a shapefile 

4. Calculated the sum of the flooded area in the shapefile’s attribute table 

5. Reported resultant areas in the results section of the report 

The flood inundation maps under different scenarios for all the LWCs are included in the results 

section. 
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4.11 Flood Extent Analysis 

For the flood extent analysis of the LWC sites, a steady-state run of the HEC-RAS model was 

performed, and flood inundation analysis was done. The HEC-RAS models were run for the 

following flow rates: 

1. 1% exceedance flow 

2. 1-year return flow 

3. 25-year return flow 

1% exceedance flow and 1-year return flows were run to find out if the present pipes were 

adequate to convey the flow. Based on the site conditions and nature of the stream, these 

flows are used to select and design the crossing. In this analysis, 1% exceedance flow was taken 

as the main parameter to see if the present LWC is adequate or not. 1% flow is expected to pass 

through the pipes in case of vented LWCs and the overtopping depth in case of unvented LWCs 

is expected to be below 6 inches in some cases, 1-year return flow was used to make additional 

observations. 

In this analysis, 25-year flow was used for the flood extent analysis. The LWC components apart 

from the pipes, such as crossing surface, approach roads, riprap, etc. should be designed for 

these high flows so that they are not significantly damaged even when the flows overtop the 

crossing. This flow to use for analysis depends upon the desired life of the crossing.  

4.12 Sediment Transport Analysis 

Sediment transport modeling in HEC-RAS v 4.1 assumes quasi-unsteady flow, in which the flow 

is constant for a part of the flow series, making it easier to compute sediment transport 

(Brunner 2010b). The major data requirements for the sediment modeling include sediment 

data (bed gradation) and quasi-unsteady flow data (flow series data and water temperature). 

Because there were no flow-gaging stations in any of the study areas, in addition to the lack of 

information about the bed gradation, this approach could not be utilized in the sediment 

transport modeling.  
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Thus, a simplified approach was adopted for the sediment transport analysis. Two critical cross 

sections in the immediate vicinity of the crossing were taken into consideration, and the change 

in bed shear was computed. Values for bed shear stress (lb/ ft2) were obtained from the HEC-

RAS model runs for the different scenarios. Channel bed shear represents the sediment 

transport capacity of the stream. Change in bed shear between the present condition and LWC 

free scenario was computed to see how the installation of the LWC has affected the sediment 

transport capacity in the stream.    

4.13 Aquatic Organism Passage 

There is no information about the presence of aquatic species in most of the LWCs modeled in 

the study. In the Ogle LWC located across Pine Creek, fish population such as bass, sunfish, 

carp, etc. are present, and no threatened or endangered species are reported in the stream. 

The LWC is an unvented one, which provided very minimal obstruction to the aquatic organism 

passage. Due to the lack of flow-gaging stations in any of the study areas, flow hydrographs 

could not be obtained for further analysis of AOP in FishXing. Average stream velocity for the 

two critical cross sections (immediate upstream and downstream) of the LWC are reported in 

the results section, and the change in the velocity due to the LWC construction compared to 

the LWC free scenario is analyzed. This helps in understanding how the LWCs are impacting the 

movement of aquatic species. Apart from the stream velocity, minimum depth of water in the 

stream and the LWC also affects the AOP. 
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CHAPTER 5: RESULTS AND DISCUSSION 

5.1 Logan LWC 

5.1.1 Results from HEC-RAS Analysis 

The existing vented LWC in Logan County was modeled in HEC-RAS using the design flows of 1% 

exceedance (E1), 1-year flood (P1) and 25-year flood (P25). Similarly, the model was run for the 

same flows for the natural conditions (LWC free). The results of the analyses are presented as 

water surface elevation maps in Figure 5.1 and 5.2. From the analysis, the design of the existing 

LWC is found to be adequate to pass the design flows.  

For the existing LWC, the 1% exceedance flow of 28.71 ft3/s passes through the structure. This 

flow will be exceeded four days in a year, during which the LWC might be impassable. The 1-

year flow of 186.01 ft3/s passes over the structure with an overtopping depth of 1 ft, which has 

a probability of occurring once a year, and during this time the LWC will be closed for public 

use.  

 

Figure 5.1: Water surface elevation for design flows in Logan LWC. 
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Figure 5.2: Water surface elevation for design flows in LWC free scenario. 

The HEC-RAS analysis results were used to compute the flood depth in the LWC area. The 

results of the flood inundation study for the LWC site revealed that for the 25-year flow rate of 

970 ft3/s, the floodplain extent was minimally affected by the presence of the LWC (Table 5.1). 

In fact, it was found that there is a decrease in the inundated area in the present condition with 

the LWC compared to the LWC free scenario. With the present LWC, the area flooded with a 

depth of 6 inches or greater totaled 4.64 acres whereas it is 4.79 acres in LWC free condition. 

The decrease in inundated area (d > 6 in) is due to the backing up of water more in depth 

caused by the obstruction to the flow, which results in less area for the same volume of water. 

The floodplain map of the inundated area due to the 25-year flood in the present condition is as 

shown in Figure 5.3. A portion of the approach roadway and the surrounding agricultural area is 

affected by this flood, which was found to be acceptable.  
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Figure 5.3: Flood inundation map for 25-year flood in Logan LWC. 

Table 5.1: Results of the HEC-RAS 25-Year Flood Inundation for Logan LWC 

LWC Scenario 

Inundated area (acres) Percent 
change Present Scenario LWC free scenario 

Logan Total area 7.37 7.37 0.00 

 Area with d > 6 in. 4.64 4.79 -3.23 

 

For sediment transport capacity in the stream, the streambed shear stress output from HEC-

RAS analysis was utilized. The results in Table 5.2 are average bed shear stress for the cross 

sections upstream and downstream of the LWC at the 1% exceedance flow of 28.71 ft3/s.  

Table 5.2: Results for Bed Shear Stress for Critical Cross Sections in Logan LWC 

Scenario 

Shear Stress (lb/ ft2) 

U/S Section D/S Section 

LWC 0.08 0.14 

LWC Free 0.34 0.15 
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There is minimal change in the shear stress in the downstream cross section, before and after 

the LWC. However, in the upstream cross section, the shear stress decreases from 0.34 lb/ ft2 in 

the LWC free scenario to 0.08 lb/ ft2 in the present scenario. This means that the LWC is 

restricting the sediment transport in the downstream direction, which may lead to sediment 

deposition.  

For the AOP in the stream, the average velocity output from HEC-RAS analysis was analyzed. 

The results in Table 5.3 are average velocities for the cross sections upstream and downstream 

of the LWC at the 1% exceedance flow of 28.71 ft3/s.  

Table 5.3: Results for average velocity for critical cross sections in Logan LWC 

Scenario 

Velocity (ft/s) 

U/S Section D/S Section 

LWC 1.84 2.43 

LWC Free 3.58 2.43 

There is no change in the average velocity in the downstream cross section, before and after 

the LWC installation. However, in the upstream cross section, the velocity decreases from 3.58 

ft/s in the LWC free scenario to 1.84 ft/s in the present scenario. The LWC is restricting the 

movement of water, backing up the water and reducing the velocity. The abrupt change in the 

velocity from upstream to downstream affects the movement of fishes and aquatic species.  

5.1.2 Summary and Discussion 

The Logan LWC lies in a very small stream fed mostly by drainage tiles. It is an example of a cost-

effective LWC for locations with agricultural drainage and low road use. It is a good design option 

as there is an alternative travel route 2 miles away when the crossing is impassable. 

Maintenance is required across the structure after high flows.   
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5.2 Edgar#1 LWC 

5.2.1 Results from HEC-RAS Analysis 

The vented LWC in Edgar County (Edgar#1) was modeled in HEC-RAS using the design flows of 

1% exceedance (E1), 1-year flood (P1) and the 25-year flood (P25). The model was also run for 

the same flows for the natural condition (LWC free). Results of the analyses are presented as 

water surface elevation maps in Figure 5.4 and 5.5. From the analysis, the design of the existing 

LWC is found to be adequate to pass the design flows.  

For the existing LWC, the 1% exceedance flow of 72.56 ft3/s passes through the structure. This 

flow is expected to be exceeded four days in a year, during which the LWC might be impassable. 

The 1-year flow of 231.18 ft3/s passes over the structure with an overtopping depth of 1 ft, 

which has a probability of occurring once a year, and during this time the LWC will be closed for 

public use.  

 

Figure 5.4: Water surface elevation for design flows in Edgar#1 LWC. 

0 200 400 600 800 1000 1200
692

694

696

698

700

702

704

706

NFEmbrass   

Main Channel Dis tance (ft)

E
le

v
a

ti
o

n
 (

ft
)

Legend

WS  P25

WS  P1

WS  E1

Ground

NFEmbrass NFEmbrass



61 
 

 

Figure 5.5: Water surface elevation for design flows in LWC free scenario. 

 

Figure 5.6: Flood inundation map for 25-year flood in Edgar#1 LWC. 
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The HEC-RAS analysis results were used to compute the flood depth in the LWC area. The 

results of the flood inundation study for the LWC site revealed that for the 25-year flow rate of 

1890 ft3/s, the floodplain extent was minimally affected by the presence of the LWC (Table 5.4). 

It was found that there is an increase in the inundated area by 5% in the present condition with 

the LWC compared to the LWC free scenario. With the present LWC, the area flooded with a 

depth of 6” or greater totaled 5.13 acres whereas it is 4.85 acres in the LWC free condition. 

The floodplain map of the inundated area due to the 25-year flood in present condition is as 

shown in Figure 5.6. The area inundated by this flood includes the surrounding forested area 

and a small portion of farmland, which was found to be acceptable. 

Table 5.4: Results of the HEC-RAS 25-year flood inundation for Edgar#1 LWC 

LWC Scenario Inundated area (acres) Percent 
change Present Scenario LWC free scenario 

Edgar#1 Total area 6.76 6.47 4.48 

 Area with d > 6” 5.13 4.85 5.77 

For sediment transport capacity in the stream, the streambed shear stress output from HEC-

RAS analysis was taken into consideration. The results in Table 5.5 are average bed shear stress 

for the cross sections upstream and downstream of the LWC at the 1% exceedance flow of 

72.56 ft3/s.  

Table 5.5: Results for shear stress for critical cross sections in Edgar#1 LWC 

Scenario 

Shear Stress (lb/ ft2) 

U/S Section D/S Section 

LWC 0.02 0.11 

LWC Free 0.42 0.11 

There is minimal change in the shear stress in the downstream cross section, before and after 

the LWC. However, in the upstream cross section, the shear stress decreases from 0.42 lb/ ft2 in 

the LWC free scenario to 0.02 lb/ ft2 in the present scenario. This means that the LWC is 

restricting the sediment transport in the downstream direction, which may lead to sediment 

deposition.  
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For the AOP in the stream, the average velocity output from HEC-RAS analysis was analyzed. 

The results in Table 5.6 are average velocities for the cross sections upstream and downstream 

of the LWC at the 1% exceedance flow of 72.56 ft3/s.  

Table 5.6: Results for average velocity for critical cross sections in Edgar#1 LWC 

Scenario 

Velocity (ft/s) 

U/S Section D/S Section 

LWC 0.82 1.71 

LWC Free 3.08 1.71 

There is no change in the average velocity in the downstream cross section, before and after 

the LWC installation. However, in the upstream cross section, the velocity decreases from 3.08 

ft/s in the LWC free scenario to 0.82 ft/s in the present scenario. The LWC is restricting the 

movement of water, backing up the water and reducing the velocity. The LWC is controlling the 

abrupt change in the velocity from upstream to downstream and is more conductive to the 

movement of fishes and aquatic species compared to LWC free condition.  

5.2.2 Summary and Discussion 

This vented LWC is a good choice for the site located in a small drainage watershed. The 

crossing is functioning well, and there is very little effect on the environment. 

Periodic maintenance is required in the LWC, as the pipes tend to get clogged by the logs and 

branches of trees that tend to get trapped at the crossing. The vented ford poses less 

restriction to the movement of aquatic species.   
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5.3 Edgar#3 LWC Site 

5.3.1 Results from HEC-RAS Analysis 

The existing vented LWC in Edgar County (Edgar#3) was modeled in HEC-RAS using the design 

flows of 1% exceedance (E1), 1-year flood (P1) and 25-year flood (P25). Similarly, the model was 

run for the same flows for the LWC free scenario and alternate design. The results of these 

analyses are presented as water surface elevation maps in Figure 5.7, 5.8 and 5.9. From the 

analysis, the design of the existing LWC is found to be inadequate to pass the design flows. 

Thus, another alternative design has been presented.  

For the existing LWC, the 1% exceedance flow of 192.04 ft3/s passes over the structure with an 

overtopping depth of 1.5 ft and 1-year flow of 477.16 ft3/s has an overtopping depth of 2.5 ft 

Since the 1% exceedance flow is expected to flow under the road surface through pipes, the 

design is found to be insufficient.  

The alternative design for this LWC is a single cell rectangular concrete box culvert with a span 

of 8 ft and rise of 4 ft with a cover of 8 inches. The culvert was centered at the middle of the 

roadway, and the minimum high chord of the road was raised to an elevation of 606.9 ft from 

the current 602.1 ft in the design. 1% exceedance flow in this case passes through the box 

culvert whereas the 1-year flood has an overtopping depth of 11 inches. With this design, the 

LWC is expected to be impassable for less than four days in a year, during which the LWC will be 

closed for public use.  
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Figure 5.7: Water surface elevation for design flows in Edgar#3 LWC. 

 

Figure 5.8: Water surface elevation for design flows in LWC free scenario. 
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Figure 5.9: Water surface elevation for design flows in Edgar#3 LWC alternate design. 

The HEC-RAS analysis results were used to compute the flood depth in the LWC area. The 

results of the flood inundation study for the LWC site revealed that for the 25-year flow rate of 

3170 ft3/s, the floodplain extent was minimally affected by the presence of the current LWC 

(Table 5.7). It was found that there is a decrease in the inundated area in the present condition 

with the LWC compared to the LWC free scenario. With the present LWC, the area flooded with 

a depth of 6” or greater totaled 2.92 acres whereas it is 3.12 acres with the alternative design. 

The floodplain map of the inundated area due to the 25-year flood in present condition and 

alternate design is as shown in Figures 5.10 and 5.11. The area inundated by this flood includes 

the surrounding forested area, which was found to be acceptable.  
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Table 5.7: Results of the HEC-RAS 25-year flood inundation for Edgar#3 LWC 

LWC Scenario Inundated area (acres) Percent 
change Present Scenario LWC free scenario 

Edgar#3 Total area 3.72 3.72 0.00 

 Area with d > 6” 2.92 2.92 0.00 

Edgar#3 Alternative Total area 4.15 3.72 11.55 

 Area with d > 6” 3.12 2.92 7.19 

 

 

 

 

Figure 5.10: Flood inundation map for 25-year flood in Edgar#3 LWC. 
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Figure 5.11: Flood inundation map for 25-year flood in Edgar#3 LWC alternate design. 

For sediment transport capacity in the stream, the streambed shear stress output from the 

HEC-RAS analysis was utilized. The results in Table 5.8 are average bed shear stress for the cross 

sections upstream and downstream of the LWC at the 1% exceedance flow of 477.16 ft3/s.  

Table 5.8: Results for shear stress for critical cross sections in Edgar#3 LWC 

Scenario 

Shear Stress (lb/ ft2) 

U/S Section D/S Section 

LWC 0.11 0.08 

LWC Free 0.67 0.08 

Alt Design 0.02 0.08 

There is minimal change in the shear stress in the downstream cross section, before and after 

the LWC and in the alternate design. However, in the upstream cross section, the shear stress 

decreases from 0.67 lb/ ft2 in the LWC free scenario to 0.11 lb/ ft2 in the present scenario and 

0.02 lb/ ft2 in the alternate design. This means that the LWC is restricting the sediment 
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transport in the downstream direction, which leads to sediment deposition in the upstream 

region and scouring in the sediment starved downstream region.  

For the AOP in the stream, the average velocity output from HEC-RAS analysis was analyzed. 

The results in Table 5.9 are average velocities for the cross sections upstream and downstream 

of the LWC at the 1% exceedance flow of 477.16 ft3/s.  

Table 5.9: Results for average velocity for critical cross sections in Edgar#3 LWC 

Scenario 

Velocity (ft/s) 

U/S Section D/S Section 

LWC 1.74 1.54 

LWC Free 3.84 1.54 

Alt Design 0.85 1.54 

There is no change in the average velocity in the downstream cross section, before and after 

the LWC installation. However, in the upstream cross section, the velocity decreases from 3.58 

ft/s in the LWC free scenario to 1.74 ft/s in the present scenario and 0.85 ft/s in the alternate 

design. The LWC is controlling the abrupt change in the velocity from upstream to downstream. 

Alternate design more conductive to the movement of fishes and aquatic species compared to 

LWC free condition.   

5.3.2 Summary and Discussion 

This LWC in Edgar County is an example of a poorly designed LWC. Although the crossing is 

located on a low ADT road, it is not big enough to pass the 1% exceedance flow through it. The 

crossing also acts as a sediment trap. There is scouring underneath the structure which needs 

to be addressed. 

Alternate design analysis has been done using the concrete box culverts. Possible improvement 

in the crossing might include replacement by a suitable alternative LWC, as the drainage area of 

the watershed is relatively large giving a significant amount of flow. This will also facilitate 

easier AOP. 
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5.4 Franklin LWC 

5.4.1 Results from HEC-RAS Analysis 

The unvented LWC in Franklin County was modeled in HEC-RAS using the design flows of 1% 

exceedance (E1), 1-year flood (P1) and 25-year flood (P25). Similarly, the model was run for the 

same flows for the LWC free scenario. The results of this analysis are presented as water 

surface elevation maps in Figure 5.12 and 5.13. From the analysis, the design of the existing 

LWC is found to be adequate to pass the design flows.  

For the existing LWC, the 1% exceedance flow of 25 ft3/s passes over the structure with an 

overtopping depth of 6 inches. This flow is expected to be exceeded four days in a year, during 

which the LWC might be impassable. The 1-year flow of 174.27 ft3/s has an overtopping depth 

of 2 ft, which has a probability of occurring once a year, and during this time the LWC will be 

closed for public use.  

 

Figure 5.12: Water surface elevation for design flows in Franklin LWC. 
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Figure 5.13: Water surface elevation for design flows in LWC free scenario. 

The HEC-RAS analysis results were used to compute the flood depth in the LWC area. The 

results of the flood inundation study for the LWC site revealed that for the 25-year flow rate of 

854 ft3/s, the floodplain extent was minimally affected by the presence of the LWC (Table 5.10). 

It was found that there is a slight increase in the inundated area in the present condition with 

the LWC compared to the LWC free scenario. With the present LWC, the area flooded with a 

depth of 6” or greater totaled 1.30 acres, same as the LWC free condition. 

The floodplain map of the inundated area due to the 25-year flood in present condition is as 

shown in Figure 5.14. A portion of the approach roadway and the surrounding agricultural area 

is affected by this flood, which was found to be acceptable.  
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Figure 5.14: Flood inundation map for 25-year flood in Franklin LWC. 

Table 5.10: Results of the HEC-RAS 25-year flood inundation for Franklin LWC 

LWC Scenario Inundated area (acres) Percent 
change Present Scenario LWC free scenario 

Franklin Total area 2.20 2.24 -1.78 

 Area with d > 6” 1.30 1.30 0.00 

For sediment transport capacity in the stream, the streambed shear stress output from HEC-

RAS analysis was utilized. The results in Table 5.11 are average bed shear stress for the cross 

sections upstream and downstream of the LWC at the 1% exceedance flow of 25 ft3/s.  

Table 5.11: Results for shear stress for critical cross sections in Franklin LWC 

Scenario 

Shear Stress (lb/ ft2) 

U/S Section D/S Section 

LWC 0.03 0.61 

LWC Free 0.17 0.61 
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There is no change in the shear stress in the downstream cross section, before and after the 

LWC. However, in the upstream cross section, the shear stress decreases from 0.17 lb/ ft2 in the 

LWC free scenario to 0.03 lb/ ft2 in the present scenario. The results indicate that the LWC is 

restricting the sediment transport in the downstream direction, which may lead to sediment 

deposition.  

For the AOP in the stream, the average velocity output from HEC-RAS analysis was analyzed. 

The results in Table 5.12 are average velocities for the cross sections upstream and 

downstream of the LWC at the 1% exceedance flow of 25 ft3/s.  

Table 5.12: Results for average velocity for critical cross sections in Franklin LWC 

Scenario 

Velocity (ft/s) 

U/S Section D/S Section 

LWC 0.95 3.71 

LWC Free 2.23 3.71 

There is no change in the average velocity in the downstream cross section, before and after 

the LWC installation. However, in the upstream cross section, the velocity decreases from 2.23 

ft/s in the LWC free scenario to 0.95 ft/s in the present scenario. The LWC is controlling the 

abrupt change in the velocity from upstream to downstream.  

5.4.2 Summary and Discussion 

Franklin LWC is located on a road that serves only one residence. The crossing is located in an 

ephemeral stream with the very low flow most of the time. If the water gets high, there is 

another road nearby for a detour. This unvented ford is a good example where the local 

highway authority does not have enough money to construct a culvert or other alternatives.  

Unvented fords are easy to maintain, and the surface of the crossing requires periodic 

maintenance after larger precipitation events.   
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5.5 Ogle LWC 

5.5.1 Results from HEC-RAS Analysis 

The unvented LWC in Ogle County was modeled in HEC-RAS using the design flows of 1% 

exceedance (E1), 1-year flood (P1) and 25-year flood (P25). Similarly, the model was run for the 

same flows for the LWC free scenario. The results of this analysis are presented as water 

surface elevation maps in Figure 5.15 and 5.16. From the analysis, the design of the existing 

LWC is found to be adequate to pass the design flows.  

For the existing LWC, the 1% exceedance flow of 298.18 ft3/s passes over the structure with an 

overtopping depth of 1 ft. This flow is expected to be exceeded 4 days in a year, during which 

the LWC might be impassable. The 1-year flow of 1403.83 ft3/s has an overtopping depth of 2 

ft, which has a probability of occurring once a year, and during this time the LWC will be closed 

for public use.  

 

Figure 5.15: Water surface elevation for design flows in Ogle LWC. 
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Figure 5.16: Water surface elevation for design flows in LWC free scenario. 

The HEC-RAS analysis results were used to compute the flood depth in the LWC area. The 

results of the flood inundation study for the LWC site revealed that for the 25-year flow rate of 

4700 ft3/s, the floodplain extent was minimally affected by the presence of the LWC (Table 

5.13). It was found that there is an increase in the inundated area with a depth of more than 6” 

in the present condition with the LWC compared to the LWC free scenario. With the present 

LWC, the area flooded with a depth of 6” or greater totaled 5.51 acres whereas it is 4.92 acres 

in the LWC free condition. 

Table 5.13: Results of the HEC-RAS 25-year flood inundation for Ogle LWC 

LWC Scenario Inundated area (acres) Percent 
change Present Scenario LWC free scenario 

Ogle Total area 6.24 6.21 0.48 

 Area with d > 6” 5.51 4.92 11.99 
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The floodplain map of the inundated area due to the 25-year flood in present condition is as 

shown in Figure 5.17. A significant portion of the approach roadway and the parking lot area is 

affected by this flood.  

 

Figure 5.17: Flood inundation map for 25-year flood in Ogle LWC. 

For sediment transport capacity in the stream, the streambed shear stress output from HEC-

RAS analysis was utilized. The results in Table 5.14 are average bed shear stress in the main 

channel for the cross sections upstream and downstream of the LWC at the 1% exceedance 

flow of 298.18 ft3/s.  

Table 5.14: Results for shear stress for critical cross sections in Ogle LWC 

Scenario 

Shear Stress (lb/ ft2) 

U/S Section D/S Section 

LWC 0.11 0.66 

LWC Free 0.36 0.66 

There is no change in the shear stress in the downstream cross section, before and after the 

LWC. However, in the upstream cross section, the shear stress decreases from 0.36 lb/ ft2 in the 
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LWC free scenario to 0.11 lb/ ft2 in the present scenario. This means that the LWC is restricting 

the sediment transport in the downstream direction, which may lead to sediment deposition in 

the upstream region.  

For the AOP in the stream, the average velocity output from HEC-RAS analysis was analyzed. 

The results in Table 5.15 are average velocities for the cross sections upstream and 

downstream of the LWC at the 1% exceedance flow of 298.18 ft3/s.  

Table 5.15: Results for average velocity for critical cross sections in Ogle LWC 

Scenario 

Velocity (ft/s) 

U/S Section D/S Section 

LWC 1.44 3.77 

LWC Free 2.89 3.77 

There is no change in the average velocity in the downstream cross section, before and after 

the LWC installation. However, in the upstream cross section, the velocity decreases from 2.89 

ft/s in the LWC free scenario to 1.44 ft/s in the present scenario. The LWC is restricting the 

movement of water, backing up the water and reducing the velocity. The velocity downstream 

is higher due to the ogee shaped weir and affects the movement of fishes and aquatic species 

across the LWC.  

5.5.2 Summary and Discussion 

The low water crossing performs well during periods of normal flow and is serving its intended 

purpose.  Normal flow results in an approximate water depth of 6 inches in the center.  It has 

required very little maintenance and has had a negligible impact on the aquatic environment.   

Since the LWC is closed in the events of heavy precipitation during spring and over winter, the 

LWC is functioning adequately. This is one case where the LWC might be closed for more than 

25% of the time in a year. The crossing is located in a park, and the roads are closed to the 

public when there is no staff in the park, which makes flash flooding and the safety of the public 

less of an issue. 
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CHAPTER 6: CONCLUSION 

 
Low water crossings have been used in rural, low ADT routes in Illinois as an alternative to 

culverts and bridges for a long time. However, with the lack of design guidelines specific to 

LWCs, there is no standard practice or design among these LWCs in Illinois. Historically, LWCs 

have been selected, designed, and constructed based on the experience of highway 

department officials.  

Within the past decade, studies have been performed, selection and design criteria have been 

established for LWCs by different agencies, and reports have been published (Barnard et al. 

2013; Bates and Kirn 2009; Clarkin et al. 2006; Howard et al. 2011; Lohnes et al. 2001). This 

study includes findings from the previous studies incorporated with a LWC survey, case studies, 

and other information specific to Illinois. 

From the case studies, it was found that most of the modeled LWCs were able to pass the 

design flow (4 LWCs out of 5), but are not conductive to the sediment transport and aquatic 

organism movement. Results from the flood inundation studies show that the change in the 

inundated area compared to the baseline scenario is within 5% in most of the cases. There is a 

significant decrease in the shear stress and velocity in the cross section upstream of the 

crossing, restricting the sediment transport. LWCs are acting as a sediment trap, which over the 

long period of time will modify the channel characteristics and affect the stream dynamics. 

LWCs provide a restriction to the flow of water and increase inundation under higher flows but 

allow smooth and safe movement of vehicles across the streams.  

It is a challenge for an engineer to design a LWC in an economical way that has minimum 

effects on the aquatic organism passage in the stream.  Various factors such as stream type, 

hydrology, channel conditions, road use, economics, and aquatic organism passage should be 

considered during the selection, design, and construction of LWCs. Installation of a LWC in a 

particular site involves a compromise between human needs and the environment. Efforts 

should be directed at posing minimum disturbance to the surrounding environment when 

constructing these crossings.         
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6.1 Recommendations for Future Studies 

This study provides a clear methodology on how HEC-RAS can be used in hydrological modeling 

of LWCs. The difference in the modeling approach for unvented fords, vented fords and low 

water bridges are also discussed. However, the lack of all the required data hindered the 

sediment transport modeling in HEC-RAS. Model verification could not be done due to the lack 

of gaging stations nearby. With the increasing popularity of LWCs in rural low volume roads, the 

hydrological modeling and performance evaluation of LWCs, even before their construction, is 

more beneficial. 

The following additional data can be collected and utilized in order to improve upon the HEC-

RAS analysis: 

 Stream flow data, which can be used to obtain the flow hydrographs 

 Streambed gradation at each LWC cross-sections 

 More detailed bathymetric survey data for the LWC area, if possible. 

 Continuous monitoring of the stream velocity and depth of flow for AOP 

With the addition of above mentioned data in the modeling, the reliability of the HEC-RAS 

results can be improved, and it helps further in understanding the impacts of LWCs on the 

environment. 
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APPENDIX A: SURVEY QUESTIONNAIRE FOR LWCS IN ILLINOIS 

 

Development of Low-Water Crossing Design Guidelines for Very Low ADT 
Routes in Illinois 

Survey Questionnaire 

Responses Due:  February 20, 2015 

This survey is to assist the Illinois Department of Transportation (IDOT) and local public 
agencies in determining a safe, cost-effective, and environmentally friendly design of Low-
Water Crossings (LWCs) for very low average daily traffic (ADT) routes in Illinois. The focus of 
this work is to develop guidelines that can be used to determine appropriate locations and an 
optimal design of LWCs to meet traffic needs, while maintaining natural channel function.  

As part of this project, we are surveying IDOT, county, and municipal engineers on the current 
status of LWCs in Illinois.  The survey will provide critical information to effectively determine 
optimal design, current practices, and potential design issues impacting natural channel flow 
and safety.     

For Questions, please contact either Niels Svendsen (niels.g.svendsen@usace.army.mil) 217-
373-3448 or Heidi Howard (heidi.r.howard@usace.army.mil) 217-373-5865. 

Definition: The Natural Resources Conservation Service (NRCS) defines a LWC as "a stabilized 

area or structure constructed across a stream to provide a travel way for people, livestock, 
equipment or vehicles.”  These LWCs may consist of an unvented ford, a vented ford, or bridges 
and culverts designed to be overtopped by high flows during flooding conditions.  For purposes 
of this survey, as there are currently no design standards in Illinois, please provide locations 
which appear to meet the functional definition of a LWC. 

 

LWC: Unvented ford     LWC: Vented ford 

mailto:niels.g.svendsen@usace.army.mil
mailto:heidi.r.howard@usace.army.mil
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Respondent Information 

 Name: 

 Organization: 

 Telephone: 

 E-mail: 

General LWC Questions 

1. Please indicate the number of LWCs meeting the above definition within your 
jurisdiction:  

2. Please indicate the number of LWCs proposed for development in 2015 and 2016: 

3. Do you have your LWCs located within an available GIS layer (location, name, etc)? 

Individual LWC Questions (See attached spreadsheet for multiple LWCs) 

1. Please number the LWCs, and indicate the NBIS Structure Number if applicable.  (We 
will then assign a tracking number for our database and for future reference):   

2. Please indicate the LWC location:  (Latitude and Longitude are preferred, or an approximate location 

(street address/junction))  

3. Please indicate the stream or body of water the LWC is on: 

4. Please clearly label and include any photographs of the LWC:  (Insert here or attach) 

5. Please indicate the LWC type:  (Examples; at grade structure (vented/unvented), above grade structure 

(vented/unvented), culvert, low water bridge (pier and pillar), etc: 

6. Please indicate the design specifications used for this LWC if applicable:   

7. Please indicate the storm event the LWC was designed for, if applicable: (i.e. 15 year, 
30 year, etc.) 

8. Please indicate the function and intended use of this LWC: 

9. Please indicate the Average Daily Traffic (ADT): 

10. Please estimate the number of over-toppings per year: 

11. Does this LWC have advance warning signs? 

a. If Yes, what type(s): 

b. Please insert any photographs of the warning signs: 
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12. Do you experience any maintenance issues with this LWC: 

13. Have you experienced any safety issues with this LWC: 

14. What is the local public perception of this LWC: 

 

 

 

Completed Surveys:  Completed surveys may be returned to  

heidi.r.howard@us.army.mil  
 
OR 
 
ERDC-CERL 
ATTN: H. Howard 
P.O. Box 9005 
Champaign, IL 61826 
 

 

 

  

mailto:heidi.r.howard@us.army.mil
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APPENDIX B: ILLINOIS LWC SURVEY RESULTS 

 

Illinois LWC Survey  

A survey was conducted as a part of the research to obtain an overview of the distribution of 

LWCs in Illinois, along with county engineers’ experiences with LWCs pertaining to design, 

construction, and maintenance. The survey questionnaire consisted of a document file with 14 

questions (Appendix A) and a spreadsheet to document information on multiple LWCs. In the 

first phase, survey responses were obtained from only 32 out of 102 counties in Illinois. Hence, 

the survey questionnaire was sent again, and survey responses were received from 23 

additional counties. Even though some of the counties’ personnel did not respond to the 

survey, the survey responses from the Illinois Department of Natural Resources (IDNR) and the 

Illinois Department of Transportation (IDOT) contained the details on LWCs in various counties 

and were included in our survey response summary. Figure B.1 shows the participation of all 

the agencies in the survey. 

 

Figure B.1: Responses for Illinois LWCs survey. 

 

45%

9%

46%

Survey Response

Response by County Personnel Response by IDNR, IDOT No Response
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The survey responses are divided into three categories: 

 Counties that did not respond (47) 

 Responding counties that have LWCs (37) 

 Responding counties that have no LWCs (18) 

 

The responses from different counties and the distribution and location of LWC structures 

within the counties are shown in Figure B.2. The counties with orange dots in the background 

did not respond to the survey, the counties with a hatched background do not have any LWC 

structures, and the counties with a white background have LWCs in the location marked by 

purple dots. Based on the responses received, it can be seen that the southern part of Illinois 

has more LWC density compared to the northern part. 

Out of the 55 counties in Illinois for which we received information about LWCs, 18 counties 

indicated they do not have any LWCs. A total of 155 LWCs were identified in the remaining 

counties, which include unvented fords, vented fords, and bridges. Figure B.3 is the chart 

showing the number of low-water crossing structures in each category. 
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Figure B.2: Location of LWCs in the Illinois counties. 
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Figure B.3: Types of LWCs in Illinois. 

Vented fords are the most popular LWCs currently being used, with 106 vented fords. Of the 47 
unvented fords, 33 are at-grade structures. 

Most of the county highway departments do not have information about the design storm and 
design specifications that were used in the construction of these LWCs. 

These low-water crossings are used for a variety of purposes: farmland access, residence access 
roads, park roads, forest roads, drainage, a roadway for general traffic, etc. The bar graph in 
Figure B.4 shows the intended uses of the LWCs in Illinois. 

Adams County is planning to construct a LWC in the Ellington Road District over Little Mill 
Creek, with a 10-year return period as the design storm. Jo Daviess County and Christian County 
also have plans to build one and two new LWCs, respectively. 

30%

69%

1%

Types of Low Water Crossings in Illinois

Unvented Ford Vented Ford Bridge



91 
 

 

Figure B.4: Use of LWCs in Illinois. 

The following tables summarize the average daily traffic (ADT) over the crossings (Table B.1) 
and the frequency of overtopping of the LWCs (Table B.2), as reported by the county engineers. 

Table B.1: Average Daily Traffic (ADT) Over LWCs 

Average Daily Traffic (ADT) No. of LWCs 

100 to 200 13 
25 to 100 19 
25 or less 78 
Unknown 45 

 

Table B.2: Frequency of Overtopping of LWCs 

No. of Overtoppings per Year No. of LWCs 

250 or more 11 
100 to 250 8 
25 to 100 3 
10 to 25 26 
Less than 10 44 
Unknown 63 
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Thirty-six of the LWCs have warning and information signs present, whereas the majority of the 
existing LWCs (119) have no warning signs on the approach road. 

Of the 155 LWCs, 78 are functioning smoothly, with no safety and maintenance issues, whereas 
77 of them are facing some issues. The most prevalent maintenance issues include the 
following:  

 deposition of sediment and debris on the upstream side 

 blockage of pipes/vent by sand and debris  

 scouring of the crossing surface 

 scouring of the downstream end 

 washing out of riprap 

 aging of the structure 

Public perception about most of the LWCs is positive, but it is believed that some LWCs are 
narrow and inadequate. Hence, users want LWCs of adequate capacity to be installed and 
repaired in a timely manner. 
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APPENDIX C: REGIONAL FLOW DURATION CURVES FOR ILLINOIS 

Flow-Duration Approach 

The flow-duration curve (FDC) is a plot that indicates the percentage of time that the flow in a 

stream of interest is equaled or exceeded. The exceedance probability (e) can be used to 

determine the number of times per year a LWC will be closed. For example, a 5% exceedance 

probability means that the crossing will be closed, on average, for 18 days a year (5% time of a 

year) and 2% exceedance probability gives the closing time at 7 days in a year. During those 

days, the design discharge is equaled or exceeded, and the LWC is overtopped. 

A flow-duration curve for gauged streams can be prepared based on the available daily 

streamflow data. It is recommended to use long-term data because extreme values are 

averaged out more over a longer time period. The steps to obtain the FDC are as follows: 

Step 1: Sort the daily discharge values for the period of record from the largest to the smallest 

value. 

Step 2: Assign a rank to each of the discharge values, starting with the one that has the largest 

daily discharge value. 

Step 3: Compute the exceedance probability (P) using the following formula: 

𝑃 =
𝑚

𝑛 + 1
∗ 100 

P = probability that a given flow will be equaled or exceeded (% of time) 

m = ranked position on the list 

n = total number of events in record 

Step 4: To obtain the FDC, plot the discharge vs. percentage of time that a particular discharge 

was equaled or exceeded. 
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The FDC for ungauged catchments in Illinois is discussed in a USGS report, Estimation of 

Regional Flow-Duration Curves for Indiana and Illinois (Over et al. 2014). The study 

encompasses most of the area in Illinois, dividing the state into three different regions. Two 

methods are discussed in the study: drainage area–only equations and multiple regression 

equations.  

The drainage-area ratio (DAR) method is more applicable for LWCs because the only parameter 

required in this method is drainage area in square miles. The equation used in DAR method is 

log10 𝑄 = 𝑖 + 𝑎1 log10 𝐷𝐴 

Q = discharge (cfs) 

DA = drainage area (mi2) 

i and 𝑎1 = coefficients 

On solving, we get 

𝑄 = 10𝑖(𝐷𝐴)𝑎1  

The equation can be simplified as 

𝑄 = 𝑏 (𝐷𝐴)𝑎1  

𝑤ℎ𝑒𝑟𝑒, 𝑏 = 10𝑖  

Intercepts (i) and coefficients (𝑎1) for different regions and the corresponding flow-duration-

area curves are provided in Figures C.1 through C.4 and Tables C.1 through C.3. 
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Figure C.1: Regions in Illinois used to obtain FDC (reproduced after Over et. al 2014).  
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Region 1 

Table C.1: Parameters to Estimate FDC for Region 1 in Illinois (from Over et. al 2014)  

Exceedance Probability (e) Intercept (i) b=10i a1 

99.9 –3.131 0.0007 1.381 

99 –1.836 0.0146 0.938 

95 –1.272 0.0535 0.957 

90 –1.029 0.0935 0.927 

75 –0.686 0.2061 0.915 

50 –0.419 0.3811 0.970 

25 –0.0897 0.8134 0.976 

10 0.214 1.6368 0.986 

5 0.455 2.8510 0.961 

2 0.786 6.1094 0.914 

1 1.04 10.9648 0.868 

0.5 1.261 18.2390 0.826 

0.1 1.72 52.4807 0.729 

 

 

Figure C.2: FDC for different exceedance probabilities for Region 1 in Illinois.  
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Region 2 

Table C.2: Parameters to Estimate FDC for Region 2 in Illinois (from Over et. al 2014)  

Exceedance Probability (e) Intercept (i) b = 10i a1 

99.9 –7.310 0.00000005 2.483 

99 –5.637 0.00000231 2.108 

95 –4.892 0.00001283 2.017 

90 –3.799 0.00015873 1.725 

75 –2.166 0.00682193 1.327 

50 –0.816 0.15259946 1.082 

25 –0.259 0.55090146 1.051 

10 0.150 1.41187448 1.041 

5 0.428 2.67832454 1.016 

2 0.761 5.76666409 0.975 

1 0.991 9.79854005 0.942 

0.5 1.217 16.48763297 0.906 

0.1 1.630 42.69043253 0.839 

 

 

Figure C.3: FDC for different exceedance probabilities for Region 2 in Illinois.  
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Region 3 

Table C.3: Parameters to Estimate FDC for Region 3 in Illinois (from Over et. al 2014)  

Exceedance Probability (e) Intercept (i) b = 10i a1 

99.9 –8.251 0.00000001 2.589 

99 –6.492 0.00000032 2.276 

95 –4.962 0.00001092 1.965 

90 –3.9682 0.00010759 1.719 

75 –2.611 0.00244873 1.432 

50 –1.237 0.05793078 1.161 

25 –0.653 0.22226750 1.154 

10 –0.052 0.88655626 1.113 

5 0.401 2.51737781 1.046 

2 0.964 9.21411610 0.933 

1 1.299 19.91891095 0.867 

0.5 1.558 36.11465579 0.820 

0.1 1.948 88.66374680 0.761 

 

 

Figure C.4: FDC for different exceedance probabilities for Region 3 in Illinois.  
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APPENDIX D: PARTIAL DURATION SERIES REGIONAL EQUATIONS 

Partial Duration Series (PDS) Regional Equations 

The lowest peak discharge that StreamStats gives is Q2, which has a return period of 2 years. In 

certain areas, using this discharge to design the structure may result in a larger structure than 

required. In such cases, partial duration equations can be employed to obtain design discharge 

of return periods of 0.8 years, 1 year, 1.5 years, etc.  

More information on PDS regional equations can be found in the USGS report, Estimating 

Flood-Peak Discharge Magnitudes and Frequencies for Rural Streams in Illinois (Soong et al. 

2004). The seven hydrologic regions used for the PDS regional equations are given in Figure D.1. 

The regional equations are as follows: 

𝑄𝑇 = 𝑎(𝑇𝐷𝐴)𝑏(𝑀𝐶𝑆)𝑐(%𝑤𝑎𝑡𝑒𝑟 + 5)𝑑    [Region 1] 

 𝑄𝑇 = 𝑎(𝑇𝐷𝐴)𝑏(𝐵𝐿)𝑐(𝑃𝑒𝑟𝑚𝐴𝑣𝑔)𝑑    [Region 2] 

𝑄𝑇 = 𝑎(𝑇𝐷𝐴)𝑏(%𝑤𝑎𝑡𝑒𝑟 + 5)𝑐    [Region 3] 

𝑄𝑇 = 𝑎(𝑇𝐷𝐴)𝑏(𝑀𝐶𝑆)𝑐(𝐵𝐿)𝑑    [Region 4] 

𝑄𝑇 = 𝑎𝑁(𝑇𝐷𝐴)𝑏𝑁(𝑀𝐶𝑆)𝑐(%𝑤𝑎𝑡𝑒𝑟 + 5)𝑑   [Region 5, 6, 7] 

 

Values for the parameters TDA, MCS, %water, PermAvg, and BL can be obtained from 

StreamStats. A table of parameters a, b, c, and d used in different regions can be found in 

Soong et al. (2004).  
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Figure D.1: Hydrologic regions for PDS regional equations (adapted from Soong et. al 2004). 


