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ABSTRACT 

 Soybeans are biologically active after harvest, continuing to respire during storage and 

processing. Soybean respiration rate (𝑣𝐶𝑂2
) and, thus, dry matter loss rate (𝑣𝐷𝑀𝐿) are affected by 

moisture content (𝑤) and temperature (𝑇). Knowledge of 𝑣𝐶𝑂2
 or 𝑣𝐷𝑀𝐿 is useful in developing 

maximum allowable storage time (MAST) guidelines for soybeans, which are currently sorely 

lacking for high 𝑤 and 𝑇 storage conditions. Therefore, in this study, 𝑣𝐶𝑂2
 and 𝑣𝐷𝑀𝐿 were 

measured for soybeans at a wide range of 𝑤 (14 to 22 %) stored at 35°C. A dynamic grain 

respiration measurement system (D-GRMS) was used to measure grain deterioration rates of 14 

to 22 % moisture content soybeans stored at 35ºC. Results showed that the pooled dry matter loss 

rates, (𝑣𝐷𝑀𝐿 ± 𝑆𝐸𝑣𝐷𝑀𝐿
)

𝑝
 were 0.128 ± 0.001, 0.250 ± 0.004, and 0.253 ± 0.005 % d-1 for 14, 18, 

and 22 % moisture content soybeans, respectively. These corresponded to pooled respiration 

rates, (𝑣𝐶𝑂2
± 𝑆𝐸𝑣𝐶𝑂2

)
𝑝
 of 1.879 ± 0.028, 3.664 ± 0.064, and 3.708 ± 0.068 mg CO2 (kg d)-1, 

respectively. The time to reach 0.5% 𝐷𝑀𝐿, 𝑡0.5 ± 𝜎𝑡0.5
, were also highly variable at 8.32 ± 2.89, 

5.88 ± 1.47, and 3.83 ± 0.54 d for 14, 18, and 22 % moisture content soybeans, respectively, due 

to variable lag times before 0.05 % 𝐷𝑀𝐿 was reached. Using a minimum significant difference 

to be detected of 𝛿 = 4(𝑣𝐷𝑀𝐿)𝑝 of 0.0032 % d-1 from respiration tests with 18 % moisture 

content soybeans, a statistical power analysis showed that a minimum of four replications was 

needed for a 3𝑤 x 1𝑇 factorial experiment. The analysis of variance (ANOVA) results, however, 

showed that across the 𝑤 tested, the minimum significant difference between treatments was 𝛿 = 

0.066 % d-1 and a minimum of one replication was needed. It is recommended that future 

soybean respiration experiments proceed with at least four replications. The effects of 𝑤 on 𝑣𝐷𝑀𝐿 

were best described with an exponential question [𝑣𝐷𝑀𝐿 = 𝛽1 exp(𝛽2𝑤)] with a mean relative 
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error, 𝑀𝑅𝐸 = 0.15 % d-1
; standard error of regression, 𝑆𝐸𝑟𝑒𝑔 =0.02 % d-1; 𝐹-statistic = 149.18, 

and an estimated coefficient of determination, 𝑅2= 0.97. The D-GRMS, protocols, and statistical 

analyses of grain deterioration parameters presented in this study are useful for conducting 

robust grain respiration measurements in the future towards building a set of MAST guidelines 

for soybeans and other cereal or oilseed commodities. 
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CHAPTER 1. INTRODUCTION 

Grains are biologically active after harvest, continuing to respire during storage and 

postharvest processing. According to Mason et al. (1997), grain deterioration starts even before 

harvesting and continues after harvest, mainly due to physical, chemical and biological 

interactions between the grain and its environment. Grain moisture content (𝑤, wet-basis) and 

storage temperature (𝑇) are critical factors influencing the rate of grain deterioration (Murthy et 

al., 2003; Liu, 1997). Many researchers have shown that increases in 𝑤 and 𝑇 lead to increases in 

respiration and, hence, grain deterioration rates (Frankel et al., 1987; Lacey et al., 1994; Murthy 

et al., 2003; Liu et al., 2011).  

To minimize deterioration, grains need to be stored under conditions that mitigate further 

physical, chemical and biological interactions with the environment and guarantee that the crop 

will not be impaired, for example, by fungal action (Kaleta and Górnicki, 2013). Modern grain 

trade is increasingly competitive and demands for food safety and quality are growing, which 

lead to intensified needs for safe grain storage (Ryniecki, 2005; Kaleta and Górnicki, 2013). 

Thus, grain deterioration is a problem that needs persistent attention to minimize losses that 

negatively affect grain processing qualities and decrease economic values (Hou and Chang, 

2004). Development of adequate storage systems is an important factor in keeping grain for 

extended periods without losing weight, quality, value and increasing food safety and health 

risks (Chow, 1980). However, insufficient data on grain deterioration rates increases the 

challenges of developing guidelines for safe grain storage. 

Safe grain storage is defined as the time it takes for the stored product to lose significant 

processing quality or market value. The American Society of Agricultural and Biological 

Engineers (ASABE) currently maintains an engineering standard (ASABE Standard D535, 
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R2014) for safe storage of shelled corn based on a 0.5% dry matter loss (𝐷𝑀𝐿) threshold, which 

has been shown to be equivalent to the loss of one unit of market grade, i.e., from U.S. Grade 

No. 1 to No. 2. The U.S. grade system for grain quality ranges from grades No. 1 to No. 4 and is 

based on percentages of damaged, broken and split kernels, foreign materials, and discolored 

soybeans (USDA, 2007). The greater the percentage of these components in a sample, the lower 

the quality of the grain.  

The approach of using 𝐷𝑀𝐿 as the basis for safe storage time guidelines has been 

proposed for other cereal grains, oilseeds, feed, and fiber (Rotz, 2005; Dadgar et al., 2009), 

including soybeans, but no other maximum allowable storage time (MAST) guidelines have been 

accepted as an industry standard. Before additional guidelines are developed, however, it is 

necessary to evaluate the effects of 𝑤 and 𝑇 on respiration and 𝐷𝑀𝐿 rates (𝑣𝐶𝑂2
 and 𝑣𝐷𝑀𝐿, 

respectively) and their respective variabilities to build a robust and consistent experimental 

procedure that enables reliable and repeatable results. Moreover, understanding behavior of 

deterioration rates over a wide range of 𝑤 and 𝑇 is key for the development of better and safer 

postharvest practices. Mathematical models of grain deterioration data from well-designed 

experiments, with adequate numbers of replications, should form the basis for MAST guidelines.  

Therefore, the overall objective of this study was to determine 𝑣𝐶𝑂2
 and 𝑣𝐷𝑀𝐿 of 

soybeans, as well as the times to reach 0.5% 𝐷𝑀𝐿 (𝑡0.5), and their respective variabilities 

(𝑆𝐸𝑣𝐶𝑂2
, 𝑆𝐸𝑣𝐷𝑀𝐿

, and 𝜎𝑡0.5
) at 14 to 22% moisture contents stored at 35°C. Soybeans are of great 

economic and social importance worldwide. The chosen experimental conditions represent 

typical harvest and storage conditions for low-latitude countries. For example, Sinop, Mato 

Grosso, Brazil (11.8608° S, 55.5095° W) is a region that produces 30% of soybeans in the 

country, which is equivalent to 9% of global soybean production (USDA, 2014).   
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The specific objectives of the thesis research described hereunto are to: 

1. Determine the pooled respiration rate, (𝑣𝐶𝑂2
)

𝑝
, pooled dry matter loss rate, (𝑣𝐷𝑀𝐿)𝑝, 

and time to reach 0.5% 𝐷𝑀𝐿 (𝑡0.5), and their respective variabilities [standard error 

of respiration rate, (𝑆𝐸𝑣𝐶𝑂2
)

𝑝
, standard error of dry matter loss rate, (𝑆𝐸𝑣𝐷𝑀𝐿

)
𝑝
, and 

the standard deviation of the time to reach 0.5% 𝐷𝑀𝐿 (𝜎𝑡0.5
)} of 14 to 22% moisture 

content soybeans stored at 35°C; 

2. Determine the minimum number of replications (𝑟𝑚𝑖𝑛) needed for a robust, 

statistically designed experiment to build a set of MAST guidelines for soybeans 

using variability estimates from tests with 18% moisture content soybeans; and  

3. Develop an appropriate mathematical model describing the effect of 𝑤 on 𝑣𝐷𝑀𝐿 at 

35°C. 
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CHAPTER 2. LITERATURE REVIEW 

2.1. Grain respiration and dry matter loss 

 Respiration is a metabolic process that breaks down complex materials, such as sugars, 

into carbon dioxide (CO2), water, and energy. The process of respiration is represented by the 

following chemical equation, where glucose reacts with oxygen and generates carbon dioxide 

(CO2), water and heat (Rees, 1982): 

𝐶6𝐻12𝑂6 + 6𝑂2 → 6𝐶𝑂2 + 6 𝐻2𝑂 + ℎ𝑒𝑎𝑡 

The CO2 produced during respiration can be used to estimate 𝐷𝑀𝐿 during postharvest 

processing: 

𝐷𝑀𝐿 (%) = (∑ 𝑚𝐶𝑂2
)

𝑠
(

1 𝑚𝑜𝑙 𝐶6𝐻12𝑂6

6 𝑚𝑜𝑙 𝐶𝑂2
) (

𝑀𝐶6𝐻12𝑂6

𝑀𝐶𝑂2

)  [2.1] 

𝑤here (∑ 𝑚𝐶𝑂2
)

𝑠
 is the specific accumulated mass of respired CO2 (gram per kilogram of dry 

matter), and 𝑀𝐶6𝐻12𝑂6
 and 𝑀𝐶𝑂2

 are the molar masses of glucose (180 g mol-1) and carbon 

dioxide (44 g mol-1), respectively. 

 The amount and rate of CO2 evolved during the respiration have been used in the 

development of storage guidelines. Kaleta and Górnicki (2013) reviewed over 30 papers on 

respiration studies and showed the use of CO2 and 𝐷𝑀𝐿 measurements and rates, thereof, as the 

basis for safe storage times of grains. Nearly a century ago, Bailey and Gurjar (1920) used a 

static grain respiration measurement system (S-GRMS) to estimate the safe storage time of 

wheat. Steele et al. (1969) were the first to demonstrate that a 0.5% 𝐷𝑀𝐿 corresponded to a 

depreciation of corn from U.S. Grade No. 1 to No. 2 and, with additional data from other 

researchers (Friday et al., 1989; Stroshine and Young, 1990; Wilcke et al., 1993; Al-Yahya et al., 

1993; Bern et al., 2002), this threshold became the basis for MAST guidelines for shelled corn 
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(ASABE, R2014). The same approach was taken by Sukabdi (1979), who observed that 18% 

moisture content long grain rice stored at 29.5°C dropped from a U.S. Grade No. 1 to No. 2 when 

0.5% 𝐷𝑀𝐿 was reached, while 22% medium grain rice, at the same 𝑇, dropped from U.S. Grade 

No. 1 to No. 2 when 0.25% 𝐷𝑀𝐿 was reached and even further to U.S. Grade No. 5 when 0.5% 

𝐷𝑀𝐿 was reached. Hence, Sukabdi (1979) advocated for a 0.25 to 0.5% 𝐷𝑀𝐿 threshold as a basis 

for safe storage of rice of any variety. The choice of 𝐷𝑀𝐿 thresholds can be based also on 

germination losses. For example, for wheat, White et al. (1982) proposed a 0.04% 𝐷𝑀𝐿 threshold 

while others proposed a 0.085% 𝐷𝑀𝐿 threshold (Brook, 1987; Lacey et al., 1994). The 

discrepancy in thresholds stemmed from variabilities in estimated times when molding was 

visibly observed. 

2.2. Effects of moisture content and temperature on respiration and dry matter loss rates 

A host of factors – 𝑇, 𝑤, hybrids or varieties, mechanical damage during harvesting, poor 

handling, inadequate storage facilities – contribute to grain deterioration rates and, thus, safe 

storage times (Kader, 1988). Elevated values of 𝑤 and 𝑇 create a favorable environment for mold 

growth further aggravating deterioration (Christensen and Kaufmann, 1965). Thompson (1972) 

studied the effects of 𝑇 and 𝑤 on corn 𝐷𝑀𝐿 and respiration, as well as heat transfer into the grain 

bin and effects of continuous aeration. He concluded that 𝐷𝑀𝐿 doubled when airflow was 

reduced by half and with each 2% increase in 𝑤. Other researchers noted that 𝑤 has a stronger 

effect on grain deterioration rates or 𝑡0.5 than 𝑇 (Steele et al., 1969; Dillahunty et al., 2000; Bern 

et al., 2002; Sorour and Uchino, 2004; Jian et al., 2014). For example, when the 𝑡0.5 table in 

ASABE Standard D535 (R2014) and Steele et al. (1969) are analyzed, 𝑡0.5 decreases linearly for 

every 5.5°C increase in 𝑇, but the rate of decrease is exponential for every 2% increase in 𝑤. 

Rice at 11.5 to 15% moisture content and 50°C exhibited 𝑣𝐶𝑂2
 below 10 mg (kg h)-1

, which 
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increased five times to 50 mg CO2 (kg h)-1 when 𝑤 was raised to 20%, and further increased to 

80 mg CO2 (kg h)-1 when 𝑤 reached 25% (Dillahunty et al., 2000). Wheat at 14 to 24% moisture 

content doubled in 𝑣𝐶𝑂2
 for every 10°C increase in 𝑇, and 𝑣𝐶𝑂2

 increased by at least 23% for 

every 1% increase in 𝑤 (White et al., 1982). Spencer (1976) saw allowable storage time, based 

on a drop of one US grade quality, for 14% moisture content soybeans decrease from 75 d at 

15.5°C to 25 d at 26.6°C; for 22% moisture content, allowable storage times decreased from 5 to 

2 d when 𝑇 increased from 15.5 to 26.6°C, respectively. The effects of 𝑤 and 𝑇 on germination 

loss rates of soybeans were studied by Alencar et al. (2006), where it was observed that total 

losses increased by 0.6% for every 10°C rise in storage 𝑇 and nearly doubled for every 2% 

increase in 𝑤. 

Grain varieties or hybrids also affect deterioration rates. For example, mold-resistant and 

mold-susceptible hybrids of corn, when stored at 20.5% moisture content and 26°C, took 14 and 

10.5 d, respectively, to reach 0.5% 𝐷𝑀𝐿 (Friday et al., 1989). The 𝑣𝐷𝑀𝐿 of mold-susceptible corn  

(47.6 ×10-3 % d-1) is 30% greater than the mold-resistant corn (36.4 ×10-3 % d-1). Mechanically 

damaged soybeans from combine harvesting exhibited 𝑣𝐷𝑀𝐿 (36.4 ×10-3 % d-1) that was 26.8% 

higher than hand-shelled soybeans (23.1 ×10-3 % d-1), which corresponded to 𝑡0.5 of 21.5 d instead 

of 17.0 d (Wilcke et al, 1993). 

Mathematical models have been developed to predict ∑ 𝑚𝐶𝑂2
, 𝐷𝑀𝐿, 𝑣𝐶𝑂2

, 𝑣𝐷𝑀𝐿  and 

𝑡0.5 (Table 2.1) dating back to 1972, when Thompson created a model for predicting CO2 

production during storage of corn (Model No. 1) based on the data obtained by Steele et al. 

(1969). This model has been extensively used by other researchers, even under different grains 

and storage conditions, for example, to predict CO2 production of corn from 15 to 35% moisture 

content and 0 to 49°C by Bern et al. (2002) and to study the effects of grain damages on grain 
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Table 2.1. Summary of mathematical models available for predicting grain respiration rates, dry matter loss, and safe storage times. 

Variables are defined in the footnotes. 

 Model 

No. 

Mathematical model1 Grain GRMS 

(S/D)2 

Storage conditions: 

𝑇 (°C) and 𝑤 (%) 

References 

E
x

p
o

n
en

ti
al

 o
r 

lo
g
ar

it
h
m

ic
 f

u
n
ct

io
n
s 

1 ∑ 𝑚𝐶𝑂2
= 𝛽1[𝑒𝑥𝑝(𝛽2𝑡 − 1)] + 𝛽3𝑡  

for every 𝑤 and 𝑇 treatment combination 

corn 

 

 

soybeans 

D 

 

 

D 

10 ≤ 𝑇 ≤ 50 

20 ≤ 𝑤 ≤ 25 

 

15 ≤ 𝑇 ≤ 30 

18 ≤ 𝑤 ≤ 26 

Thompson (1972) 

Stroshine and Yang 

(1990) 

Sorour and Uchino 

(2004) 

2 𝐷𝑀𝐿 = 1 − exp{𝛽1 exp[(𝑇 − 15.6) +
𝛽3(0.14𝑤)]}  

rice S 10 ≤ 𝑇 ≤ 40 

12 ≤ 𝑤 ≤ 21 

Atungulu et al. (2017) 

3 𝑣𝐶𝑂2
= 𝛽1[exp(𝛽2𝑤)]  rice S 𝑇 = 30 

11 ≤ 𝑤 ≤ 25 

Dillahunty et al. 

(2000) 

4 𝑡0.5 = exp(𝛽1 + 𝛽2𝑇 + 𝛽3𝑤 + 𝛽4𝐷𝑀𝐿)  wheat D 4 ≤ 𝑇 ≤ 40 

15 ≤ 𝑤 ≤ 24 

Al-Yahya (2001) 

5 𝑡𝑚 = exp[𝛽1 − 𝛽2𝑇 − 2.71𝜙] pea S 10 ≤ 𝑇 ≤ 40 

𝑤 = 18 

Dadgar e al. (2009) 

6 log(∑ 𝑚𝐶𝑂2
) = −𝛽1 + 𝛽2𝑇 − 𝛽3𝑤 − 𝛽4𝑇2 −

𝛽5𝑡2 + 𝛽6𝑤𝑡  

corn S 23 ≤ 𝑇 ≤ 45 

13 ≤ 𝑤 ≤ 21 

Ubhi and Sadaka 

(2015) 

7 log (𝐷𝑀𝐿) = 𝛽1 + 𝛽2𝑤 + 𝛽3𝑇 + 𝛽4𝑤2 + 𝛽5𝑤𝑇  wheat S 15 ≤ 𝑇 ≤ 30 

15 ≤ 𝑤 ≤ 19 

Mylona et al. (2012) 

8 log(𝑣𝐶𝑂2
) = 𝛽1 + 𝛽2𝑇 + 𝛽3𝑡 + 𝛽4𝑡2 + 𝛽5𝑤 rice S 10 ≤ 𝑇 ≤ 40 

14 ≤ 𝑤 ≤ 24 

White et al. (1982) 

9 ln 𝑣𝐶𝑂2
= 𝛽1 + 𝛽2𝑡 + 𝛽3𝑡2 + 𝛽4𝑤 wheat S 15 ≤ 𝑇 ≤ 35 

15 ≤ 𝑤 ≤ 19 

Karunakaran et al. 

(2001) 

1 Model variables: Dependent variables: accumulated mass of respired CO2, ∑ 𝑚𝐶𝑂2
; accumulated dry matter loss, 𝐷𝑀𝐿; respiration rate, 𝑣𝐶𝑂2

; time to reach 0.5 

or 0.5 or 1.0% 𝐷𝑀𝐿, 𝑡0.5 or 𝑡1.0, respectively; time to reach visible molding, 𝑡𝑚. Independent variables: storage time, 𝑡; storage temperature, 𝑇; grain moisture 

content, 𝑤; relative humidity, 𝜙; concentration of split kernels, 𝐶𝑠𝑘. Regression coefficients: 𝛽1 through 𝛽6. 
2 Static (S) or dynamic (D) grain respiration measurement system (GRMS).
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Table 2.1. Continued 

 Model 

No. 

Mathematical model1 Grain GRMS 

(S/D)2 

Storage conditions: 

𝑇 (°C) and 𝑤 (%) 

References 
Q

u
ad

ra
ti

c 
o
r 

cu
b
ic

 f
u
n
ct

io
n
s 10 𝐷𝑀𝐿 = 𝛽1 + 𝛽2𝑇 + 𝛽3𝑤 + 𝛽4𝑇2 + 𝛽5𝑤𝑇 +

𝛽6𝑤2  

corn S 5 ≤ 𝑇 ≤ 20 

14 ≤ 𝑤 ≤ 35 
Kaleta and Górnicki 

(2013) 

11 𝑡1.0 = 𝛽1 + 𝛽2𝑇 + 𝛽3𝑤 + 𝛽4𝑇2 + 𝛽5𝑤𝑇 + 𝛽6𝑤2  corn D 1 ≤ 𝑇 ≤ 24 

15 ≤ 𝑤 ≤ 30 
Brooker et al. (1974) 

12 𝑣𝐶𝑂2
= 𝛽1𝑡 + 𝛽2𝑡2 + 𝛽3𝑡3 soybean D 𝑇 = 26 

19 ≤ 𝑤 ≤ 21 

Rukunudin (1997) 

13 𝑡0.5 = 𝛽1𝐶𝑠𝑘
3 + 𝛽2𝐶𝑠𝑘

2 − 𝛽3𝐶𝑠𝑘 + 𝛽4 corn D 𝑇 = 26 

9 ≤ 𝑤 ≤ 21 

Bern et al. (1999) 

1 Model variables: Dependent variables: accumulated mass of respired CO2, ∑ 𝑚𝐶𝑂2
; accumulated dry matter loss, 𝐷𝑀𝐿; respiration rate, 𝑣𝐶𝑂2

; time to reach 0.5 

or 0.5 or 1.0% 𝐷𝑀𝐿, 𝑡0.5 or 𝑡1.0, respectively; time to reach visible molding, 𝑡𝑚. Independent variables: storage time, 𝑡; storage temperature, 𝑇; grain moisture 

content, 𝑤; relative humidity, 𝜙; concentration of split kernels, 𝐶𝑠𝑘. Regression coefficients: 𝛽1 through 𝛽6. 
2 Static (S) or dynamic (D) grain respiration measurement system (GRMS).
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respiration by Stroshine and Yang (1990). The model developed by Thompson (1972) was 

applied to soybeans by Sorour and Uchino (2004) at discrete 𝑤 and 𝑇 treatment combinations. 

By doing so, the exponential models they built were for specific storage conditions in their 

studies and cannot be generalized or used for other conditions or grains. 

 Exponential models of 𝐷𝑀𝐿 (Model 2) and 𝑣𝐶𝑂2
 (Model 3) across a wide range of 𝑤 and 

𝑇 were developed by Atungulu et al. (2017) and Dillahunty et al. (2000), respectively, for rice 

while others used the same approach to predict specific values of 𝐷𝑀𝐿 Models 4 and 5 (Al-

Yahya, 1991; Dadgar et al., 2009). Other researchers, however, used a logarithmic (Models 6 to 

9) (Ubhi and Sadaka, 2015; Mylona et al., 2012; White et al., 2001; and Karunakaran et al., 

2001), quadratic (Models 10 and 11) (Kaleta and Górnicki, 2013; Brooker et al., 1974), or cubic 

functions (Models 12 and 13) (Rukunudin, 1997; Bern et al., 1999).  

Why are there many model forms to describe the same grain deterioration behavior? It all 

depends on how narrow the 𝑤 or 𝑇 range used in a particular study. Consider the general shape 

of a linear, quadratic, cubic, or exponential function (Figure 2.1). Studies that are based on a 

narrow set of 𝑤 and/or 𝑇 may observe a linear 𝐷𝑀𝐿 behavior across these two parameters over 

time. Over a wide range of treatments, the nonlinear 𝐷𝑀𝐿 behavior becomes more apparent, 

especially when a lag period or visible molding is observed at the beginning or end of a 

respiration test, respectively. Regardless of whether a static or dynamic grain respiration 

measurement system (S- or D-GRMS) is used, there is no trend on which model function tends 

to be used to describe grain deterioration despite lower 𝐷𝑀𝐿 values reported for S-GRMS 

(Pereira da Silva et al., 2017).  
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Figure 2.1. General shape of linear, quadratic, cubic and exponential functions used to describe 

grain deterioration. 

 If all the models listed in Table 2.1 are describing the same biological behavior, there 

should be some agreement amongst them. However, that is not the case. A comparison among 

models demonstrated that for equations designed to predict the same dependent variable 

(𝑣𝐶𝑂2
, 𝐷𝑀𝐿, 𝑡0.5 or ∑ 𝑚𝐶𝑂2

) values do not converge, even for very similar ranges of 𝑤 and 𝑇. For 

example, the predictive model developed by White et al. (1982) and Dillahunty et al. (2000), 

using data from static systems for 𝑣𝐶𝑂2
 of rice, provides respiration rates of 6.19 mg CO2 (kg d)-1 

and 0.51 mg CO2 (kg d)-1
, respectively at 20% moisture content and 30°C. The discrepancy in 

these predictions may be explained by factors such as ranges of 𝑤 and 𝑇 tested, modeling 

(exponential, quadratic, or cubic), data collection system (static or dynamic) and CO2 monitoring 

system (by absorption or use of a transducer or bench-scale instrument).  

t (d)

D
M

L
 (

%
) DML= 1exp(t)

DML= 2t
2

DML= 3t
3

DML= 4t
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2.3. Systems used to measure grain respiration  

Historically, two different types of measurement systems – static and dynamic – have 

been used to measure grain respiration. In S-GRMS, grain is placed in a sealed container, where 

the CO2 concentration is monitored over time using a gas chromatograph or a sensor (White et 

al., 1982; Dadgar et al., 2009; Jian et al., 2014). This system is useful for small grain amounts 

and short storage periods. A D-GRMS, on the other hand, involves passing air through a bed of 

grain and determining the difference in CO2 levels at the inlet and outlet over time (Ubhi and 

Sadaka, 2015; Gross et al., 2016). CO2 levels can be determined in a variety of ways: 

gravimetrically or using a gas analyzer, such as a non-dispersive infrared (NDIR) sensor. 

Gravimetric methods involve passing the respired air through a CO2 absorbent material and 

monitoring the incremental increase in mass of the absorbent over time.  

Earlier respiration studies used ascarite extensively as a CO2 absorbent (Steele et al., 

1969; Fernandez et al., 1985). Ascarite is a combination of asbestos particles and sodium 

hydroxide, which can absorb CO2 as much as 40% of its own weight (Al-Yahya, 1991). Al-

Yahya et al. (1991) described the preparation of a vermiculite-potassium mixture to capture CO2, 

as a replacement for ascarite. This mixture was prepared using vermiculite granules soaked 50% 

(w/v) in potassium hydroxide solution. 

A medical grade soda lime material called Sodasorb® (Amron International, Vista, CA, 

USA) can be used as CO2 absorbent in D-GRMS. Sodasorb® works following the same 

principles as ascarite and the vermiculite-potassium mixture, specifically by the following 

chemical reactions (Nuckols et al., 1985):  
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𝐶𝑂2 + 𝐻2𝑂 ↔  𝐻2𝐶𝑂3 

2𝐻2𝐶𝑂3 + 2𝑁𝑎𝑂𝐻 + 2𝐾𝑂𝐻 →  𝑁𝑎2𝐶𝑂3 + 4𝐻2𝑂 +  𝐾2𝐶𝑂3  

2𝐶𝑎(𝑂𝐻)2 + 𝑁𝑎2𝐶𝑂3 + 𝐾2𝐶𝑂3 →  2𝐶𝑎𝐶𝑂3 + 2𝑁𝑎𝑂𝐻 + 2𝐾𝑂𝐻 

 

 

 

 Water is needed to initiate the first chemical reaction, where CO2 is captured in the 

Sodasorb® as carbonic acid (H2CO3) which reacts with embedded hydroxides to form more 

stable carbonates (Na2CO3 and K2CO3). In this process, water is produced as a byproduct 

(Nuckols et al., 1985). The carbonates react with calcium hydroxide, also embedded in the 

Sodasorb®, to form a more stable calcium carbonate (CaCO3). Often, ethyl violet dye is added 

during manufacture of Sodasorb®. This indicator dye changes from white to purple as CO2 is 

absorbed, but its efficacy diminishes as pH falls from 10.3, moisture content is lost, or the 

material is exposed to intense ultraviolet light. Over time, the indicator dye reverts from purple 

to white as a result of subsurface calcium hydroxide regenerating active hydroxide at the surface 

of a granule, causing a pH change at the surface. At this point, the Sodasorb® granules appear 

white even though the soda lime is nearly exhausted, and its CO2 absorptive capacity is minimal. 

Nuckols et al. (1985) demonstrated that absorbent moisture content, flow rate and relative 

humidity of the incoming air are crucial factors for proper functioning of Sodasorb®. Too little 

moisture in the absorbent may prevent the absorption reactions to start; also, too little moisture in 

the incoming air may cause the absorbent to dry and compromise the absorbent efficiency. 

Moreover, gas carrying CO2 needs to reside in the scrubber long enough to allow absorption 

process to occur.  

2.4. Challenges in developing MAST guidelines  

With several researchers having reported 𝑣𝐶𝑂2
 or 𝑡0.5  for several grains and oilseeds 

stored under a variety of conditions (Table 2.2), it may be plausible to compile information from   
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Table 2.2. Previous studies on grain respiration, CO2 measurement method, deterioration rates and number of replications used. 

Variables are defined in the footnotes. 

Grain 
CO2 

measurement1 

Storage conditions3 Grain deterioration rates Replications 𝑟 Reference 

𝑤 

(%, w.b.) 

𝑇 

(C) 

𝑣𝐶𝑂2
4 

[mg (kg d)-1] 

𝑡0.5
4 

(d) 

𝑣𝐷𝑀𝐿
5 

(10-3 % d-1) 

  

canola S GC 8 – 14  10 – 40 10.2 – 327.8  1.00 – 22.0 3 Jian et al. (2014) 

 S GC 10 – 14 25 – 30 172 – 500  10 – 30 1 Pronyk et al. (2004) 

corn D Abs 17.5 – 30 10 – 48  1.5 – 100 5.0 – 333 2 Steele et al. (1969) 

 D Abs 22 15 – 25  10.9 – 14.1* 31.0 – 45.0 2 Al-Yahya (1991) 

 D GC 18 – 22 20  9.8 – 42.5* 12.0 – 51.0 3 Gupta et al. (1999) 

 S P 13 – 21 23 – 45 0.0 – 1147  0.00 – 0.08 3 Ubhi and Sadaka 

(2015) 

 D GC 21.5 – 22.5 20  0.95 – 1.7 0.53 – 0.29 3 Wilcke et al. (1993) 

 D Abs 22 26 10 – 120  1-8 1 Fernandez et al. 

(1985) 

 S Abs 18 – 22 20 3.75 – 13.75  0.3 – 0.9 5 Chitrakar et al. 

(2006) 

 D ABS 15 – 18 25 0 – 18  0 – 1 3 Reed et al. (2006) 

pea S GC 18 10 – 40  14.0 –126.0 4.00 – 35.0 2 Dadgar et al. (2009) 

1 Systems were either static (S) or dynamic (D) and used a variety of methods to monitor CO2: gas chromatography (GC), absorbent (Abs), pressure sensor (P), and 

infrared (IR) sensor. 
2 The system was operated as a semi-static system. Researchers replenished oxygen (O2) during respiration tests by periodically opening grain-filled flasks to allow 

air exchange with the environment. 
3 Grain wet-basis moisture content (𝑤) and temperature (𝑇). 
4 Values indicated with a “*” were converted from hourly to daily rates.  
5 Values estimated based on respiration rate [𝑣𝐷𝑀𝐿 = 𝑣𝐶𝑂2

(1 𝑚𝑜𝑙 𝐶6𝐻12𝑂6 6 𝑚𝑜𝑙 𝐶𝑂2⁄ )(𝑀𝐶6𝐻12𝑂6
𝑀𝐶𝑂2

⁄ )] or time to reach 0.5% DML (𝑣𝐷𝑀𝐿 = 0.5 𝑡0.5⁄ ).
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Table 2.2. Continued 

Grain 
CO2 

measurement1 

Storage conditions3 Grain deterioration rates Replications 𝑟 Reference 

𝑤 

(%, w.b.) 

𝑇 

(C) 

𝑣𝐶𝑂2
4 

[mg (kg d)-1] 

𝑡0.5
4 

(d) 

𝑣𝐷𝑀𝐿
5 

(10-3 % d-1) 

  

rice S GC 11 – 25 30 192 – 2040*  13.0 – 140.0 3 Dillahunty et al. 

(2000) 

soybeans D Abs 16 – 24 22 – 89 12.0 – 1450  0.10 – 100.0 1 Ramstad and Geddes 

(1942) 

 D Abs 9 – 21 26  10.0 – 26.0 20.0 – 50.0 3 Rukunudin et al. 

(2004) 

 D Abs 14 – 26 15 – 30  7.1 – 47.2* 10.0 – 70.0 

 

3 Sorour and Uchino 

(2004) 

 S GC 23 15 – 35 46.6 – 269.2  3.0 – 20.0 3 Jian et al. (2014) 

 S IR 12.5 40 – 80  45 – 180 2.7 – 10 5 Hartmann Filho et 

al. (2016) 

 D Abs 12 25 600 – 2400  4 – 160 5 Mendes et al. (2009) 

wheat S Abs 12 – 16 37 2.2 – 247.2  0.10 – 16.0 1 Bailey and Gurjar 

(1920) 

 S2 GC 14 – 24 10 – 40  1 – 77 10.0 –  500 4 White et al. (1982) 

 S GC 15 – 19 15 – 35 10.0 – 829.0  10.0 – 56.0 2 Karunakaran et al. 

(2001) 

 S GC 14 15 – 35 36.7 – 214.2  3.0 – 15.0 3 Jian et al. (2014) 

 S GC 20.5 – 32 15 – 30 10 – 600  1 – 4 3 Mylona et al. (2012) 

1 Systems were either static (S) or dynamic (D) and used a variety of methods to monitor CO2: gas chromatography (GC), absorbent (Abs), pressure sensor (P), and 

infrared (IR) sensor. 
2 The system was operated as a semi-static system. Researchers replenished oxygen (O2) during respiration tests by periodically opening grain-filled flasks to allow 

air exchange with the environment. 
3 Grain wet-basis moisture content (𝑤) and temperature (𝑇). 
4 Values indicated with a “*” were converted from hourly to daily rates.  
5 Values estimated based on respiration rate [𝑣𝐷𝑀𝐿 = 𝑣𝐶𝑂2

(1 𝑚𝑜𝑙 𝐶6𝐻12𝑂6 6 𝑚𝑜𝑙 𝐶𝑂2⁄ )(𝑀𝐶6𝐻12𝑂6
𝑀𝐶𝑂2

⁄ )] or time to reach 0.5% DML (𝑣𝐷𝑀𝐿 = 0.5 𝑡0.5⁄ ).
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the literature to develop MAST guidelines for soybeans and other major cereal crops. However, 

doing so is not an easy task. First, for some commodities like canola, peas, rice and wheat, 

respiration studies have been conducted using S-GRMS only. S-GRMS typically yield lower 

estimates of 𝑣𝐶𝑂2
 than D-GRMS (Pereira da Silva et al., 2017) as a result of limited oxygen levels 

in the system, so measurements describe hermetic storage conditions that are atypical of aerated 

bulk storage systems that are more commonly used in practice. For corn and soybeans, both S- 

and D-GRMS have been used in grain respiration studies, in combination with a wide array of 

CO2 measurement techniques with varying sensitivities and limits of detection to CO2, which 

make direct comparisons of results from one study to another difficult. 

Because of the duration required for grain respiration studies, most researchers elect to 

minimize the number of respiration tests by focusing on a narrow range of 𝑤 or 𝑇. In most studies 

using D-GRMS, one factor (𝑤 or 𝑇) was kept constant while varying the other. In some cases, 

few replications are conducted. For example, Steele et al. (1969) varied 𝑤 from 23 to 28% and 

kept the 𝑇 constant at 18°C. Al-Yahya (1991) tested 22% moisture content corn while varying 𝑇 

from 15 to 25°C. Compared to respiration studies on corn, soybean studies had higher ranges of 𝑤 

and 𝑇 tested, but were limited in replications. Ramstad and Geddes (1942) tested soybeans from 

16 to 24% moisture content stored at 22 to 89°C, but conducted only one replication per treatment 

combination. Others kept replication numbers to two or three. Mendes et al. (2009) was able to 

conduct five replications for a soybean respiration tests at a single 𝑤 (12%) and 𝑇 (25°C). 

 The variability in test conditions and methodologies led to a wide array of reported grain 

deterioration rates. A survey of grain respiration studies since the 1920s shows most researchers 

reported grain 𝑣𝐶𝑂2
or 𝑡0.5 (Table 2.2). For direct comparisons to be made, reported 𝑣𝐶𝑂2

 or 

𝑡0.5 values were converted to 𝑣𝐷𝑀𝐿 as follows: 
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𝑣𝐷𝑀𝐿 = 𝑣𝐶𝑂2
(

1 𝑚𝑜𝑙 𝐶6𝐻12𝑂6

6 𝑚𝑜𝑙 𝐶𝑂2
) (

𝑀𝐶6𝐻12𝑂6

𝑀𝐶𝑂2

) [2.2] 

or 

𝑣𝐷𝑀𝐿 =
0.5

𝑡0.5
. [2.3] 

 Jian et al. (2014) found that 14% moisture content canola at 40°C exhibited 𝑣𝐷𝑀𝐿 of 22 x 

10-3 % d-1, while Pronyk et al. (2004) observed 𝑣𝐷𝑀𝐿 of 30 x 10-3 % d-1 for 14% moisture content 

canola at a lower temperature, 35°C. Corn at 22% moisture content and stored at 20°C exhibited 

𝑣𝐷𝑀𝐿 of 51 x 10-3 % d-1 (Gupta et al., 1999), which was 100 times higher than the  

0.53 x 10-3 % d-1 that Wilcke et al. (1993) reported. Furthermore, corn at 22% moisture content 

level and 26°C showed an even lower 𝑣𝐷𝑀𝐿 (0.001 x 10-3% d-1) (Fernandez et al., 1985), albeit 

this measurement was based on a single replication. Studies on wheat showed discrepancies in 

𝑣𝐷𝑀𝐿 estimates despite having similar storage conditions. White et al. (1982) reported wheat at 

22% moisture content stored at 40°C having a 𝑣𝐷𝑀𝐿 of 500 x 10-3 % d-1, while Karunakaran et al. 

(2001) observed 19% moisture content wheat at 35°C having a 𝑣𝐷𝑀𝐿 of 56 x 10-3 % d-1. 

 There was a general agreement from Ramstad and Geddes (1942), Rukunudin et al. 

(2004), and Sorour and Uchino (2004) that soybeans stored in D-GRMS had increasing 𝑣𝐷𝑀𝐿 

with increasing 𝑤 and 𝑇. Mendes et al. (2009) found the same behavior but reported much higher 

values for 𝑣𝐷𝑀𝐿  despite storing the soybeans at lower 𝑇 conditions. Divergence of 𝑣𝐷𝑀𝐿 

estimates could stem from a number of reasons, including the inadequacy of replications and 

differences in accuracy and precision of methods to measure respired CO2.  

2.5. Number of replications in grain respiration studies 

From Table 2.2., grain respiration studies were based often on experiments with one to 

five replications. To ensure an experiment is reliable, it is necessary to plan trials and correctly 
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evaluate their precision, including understanding sources of variability between replications of 

treatments (Storck, et al., 2011). To increase the ability of an experiment to assist in detecting 

differences, the minimum number of replications (𝑟𝑚𝑖𝑛) should based on standard deviation (𝜎), 

degrees of freedom (𝑑𝑓), significance (𝛼) and power (𝛽) of test, and the difference desired to be 

detected between two replications (𝛿) (Cochran and Cox, 1957):  

𝑟𝑚𝑖𝑛 = 2 (
𝜎

𝛿
)

2 

(𝑡1 + 𝑡2)2 
[2.4] 

 Values of 𝑡1 and 𝑡2 are determined from the t-student distribution, using a significance 

level (𝛼) and power (𝛽). The value of 𝛼 was set as 0.05 interval of significance, which indicates 

the probability of Type I error, i.e. the chance of falsely rejecting a null hypothesis when it is 

true. The value for 𝛽 is the power of the experiment design and expresses the probability that the 

difference 𝛿 will be falsely detected as treatment effect (Type II error); 𝛽 = 0.8 is considered a 

powerful experiment (Cochran and Cox, 1957). For a set of replications under similar conditions, 

an estimate of the pooled standard deviation (𝜎𝑝) can be applied to estimate the variability 

among a group of tests or variation within each replication (Zimmerman, 2004). When 

comparing treatment means, both 𝜎 and 𝛿 may be expressed as a function or percentage of the 

mean value 𝜇. Thus, coefficient of variation (𝐶𝑉 = 𝜎/𝜇) and 𝛿 = 𝑐𝜇 may be used in Equation 

2.4, where 0 <  𝑐 ≤ 1: 

𝑟𝑚𝑖𝑛 = 2 (
𝐶𝑉

𝛿
)

2
(𝑡1 + 𝑡2)2 = 2 (

𝜎

𝑐𝜇2)
2

(𝑡1 + 𝑡2)2. 
[2.5] 
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CHAPTER 3. MATERIALS AND METHODS 

3.1. Dynamic grain respiration measurement system (D-GRMS) 

A D-GRMS was developed and used in this study (Figure 3.1), based on the design and 

test protocols of Sood (2015). The system is divided into four parts: (a) air conditioning and flow 

management, (b) grain storage, (c) moisture and CO2 absorption, and (d) instrumentation. Unless 

otherwise noted, system components were connected using Vincon Flexible PVC tubing (Part 

No. ABH02017, Saint-Gobain, Akron, OH, USA) using quick disconnect connectors and three-

way valves (Catalog No. 60719, 60721 and 22259, U.S. Plastics, Lima, OH, USA), which were 

insulated with a 6.35 mm-thick pre-slit polyethylene pipe insulation on critical parts. All 

moisture content values are reported on a wet basis, unless specified otherwise. 

3.1.1. Section A – Air conditioning and flow management.  

Air was supplied using a compressed air tank (80% N2, 20% O2, with a CO2 

concentration (𝐶𝐶𝑂2
) of 400 ppm) whose flow rate (𝑄) was regulated at 500 ml min-1 using a 

precision mass flow controller (Model No. GFC17A, Aalborg, Orangeburg, NY, USA, accuracy 

± 1.0% of full scale reading). The air was scrubbed of CO2 by passing it through a 400 g bed of 

CO2 absorbent material (Sodasorb®, Amron International Vista, CA, USA). Additional 

information regarding standard operating procedure (SOP) to setting up the air supply CO2 

scrubber is described in Document No. D-GRMS-001 in Appendix A. Temperature (𝑇) and 

relative humidity (𝜙) of the air were controlled by passing the airstream through two bubblers 

(Part No. 50033, Red Sea, Houston, TX, USA) each placed in a glycerol-water solution 

contained in two 2 L plastic vacuum bottles (Catalog No. D1069702, US Plastics, Lima, OH, 

USA) to humidify the air stream to a relative humidity in equilibrium (𝜙𝑒) with the soybean
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Figure 3.1. Schematic of dynamic grain respiration measurement system (D-GRMS). Heat was applied to the flow tubes in Section B using 

a 100W light bulb and a 19.6 W m-1 heating tape to prevent condensation of the humidified or respired air streams.
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Section A – Air Conditioning 
& Flow Management

1. Compressed air tank
2. Pressure regulator
3. Mass flow controller (MFC)
4. Supply air CO2 scrubber
5. Water bath A
6. Glycerol solution

Section B – Grain Storage

7. Light bulb
8. Respiration chamber (RC)
9. Heat tape 
10. Water bath B

Section C – Absorption 
Columns

11. RC dehumidifier
12. RC CO2 scrubber

Section D – Instrumentation

13. Microcontroller 1 - MFC
14. T, RH, and CO2 sensors
15. Thermometer
16. Rotameter A
17. Rotameter B
18. T, RH, and CO2 sensors
19. Microcontroller 2 – data acquisition

14 15 16 17

C

TC, Temperature controller
TI,  Temperature indicator
RI,  Relative humidity indicator
CI,  CO2 concentration indicator

Blue line = flow path
Black line= instrumentation wiring
Red line  = heat tape

Abbreviation

13

7
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moisture content (𝑤𝑠𝑜𝑦,1). The bottles were connected in series and immersed in a 35°C water 

bath (Model No. RTE7 NESLAB, Thermo Electron Corporation, Newington, NH, USA). For 

example, for a test with 18% moisture content soybeans at 35°C, a 36.3% (m/m) solution was 

prepared by diluting and mixing analytical grade glycerol (Product No. G33500, Fisher 

Scientific, Hampton, NH, USA) in deionized water for 30 min at 50°C using a hot plate (Model 

11-100-49SH, Fisher Scientific, Dubuque, IA, USA). This corresponded to an 𝜙𝑒 of 88%. For 

tests with 14% and 22% moisture content soybeans at 35°C, a 51.47% and 29.52% (m/m) 

solution was used, respectively, corresponding to 𝜙𝑒 values of 80 and 92%, respectively. 

Additional information regarding preparation of glycerol-water solutions can be found in 

Appendix A (Document No. D-GRMS-002) and Sood (2015).  

3.1.2. Section B – Grain storage 

The conditioned airstream passed though the grain respiration chamber (RC) made of a 

sealed acrylic cylinder (10.2 cm 𝐼𝐷 x 40.6 cm height), which could hold 1800 g of soybeans. RC 

temperature, or grain storage 𝑇, was maintained using an external water jacket made of Vincon 

Flexible PVC tubing (Part No. ABH02017, Saint-Gobain, Akron, OH, USA) wrapped around the 

RC. Water at 35°C was recirculated through the jacket using a second water bath (Model 

9102A11B, PolyScience, Niles, IL, USA). Grain storage 𝑇 was visually monitored using a 

digital thermometer (Model No. 11050, DeltaTRAK, Pleasanton, CA, USA) located at the top of 

the column and inserted 7.5 cm deep into the grain bed. To minimize 𝑇 fluctuations and 

condensation of incoming and exiting air streams, the RC was thermally insulated with a 6.35 

mm-thick pre-slit polyethylene pipe insulation, wrapped with a heat tape (Model No. W51-6p, 

Raychem, Houston, TX, USA), and placed under a 100 W light bulb.  
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3.1.3. Section C – Moisture and CO2 absorption 

Air exiting the RC was passed through an RC dehumidifier made of 550 g bed of 

desiccant (Catalog No. 21001, WA Hammond Drierite Co., Ltd., Xenia, OH, USA) contained in 

a cylinder (Model No. 26800, W. A. Hammond Drierite Co., Xenia, OH, USA) to remove excess 

moisture from humidification and grain respiration. The 4-mesh desiccant contained a color 

indicator (i.e., blue when dry, pink when wet) that allowed for visual monitoring of the moisture 

removal process. The SOP on setting up RC CO2 dehumidifiers is available as Document No. D-

GRMS-003 in Appendix A. 

After dehumidification, the air was passed through a RC CO2 scrubber made of a layer of 

150 g of CO2 absorbent (Sodasorb®, Amron International, Vista, CA, USA) followed by a 300 g 

of 4-mesh desiccant (Catalog No. 21001, WA Hammond Drierite Co., Ltd., Xenia, OH, USA). 

The two layers of materials were contained in a cylinder (Model No. 26800, W. A. Hammond 

Drierite Co., Xenia, OH, USA), separated by a small plastic cylinder (2.5 cm 𝐼𝐷 x 1.5 cm height) 

with perforated disks at each end (40% open, 0.3 cm dia. holes) to mitigate diffusion of moisture 

from the CO2 absorbent into the desiccant. The SOP on setting up RC CO2 scrubbers is available 

as Document No. D-GRMS-004 in Appendix A, as well as results from testing their efficacy. 

3.1.4. Section D – Instrumentation 

A series of 𝑇 and 𝜙 sensors (Model No. DHT11, WAVGAT, Caizhixing, China) and CO2 

nondispersive infrared (NDIR) sensor probes and transmitters (Model Nos. GMP222 and 

GMPG0N0, Vaisala, Boulder, CO, USA) were placed at (a) in between Sections A and B and (b) 

the exhaust of D-GRMS to verify the air stream were at the following conditions:  𝑇 = 35 ± 2 

°C, 𝐶𝐶𝑂2
≤ 20 ppm and 𝜙 = 79, 89, or 92 ± 5 %RH for 𝑤 = 14, 18, or 22% moisture content, 

respectively. All sensor readings were logged every 2 min onto a desktop computer using a 
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microcontroller (ATmega2560, Arduino, Ivrea, Italy). Additional information regarding the 

circuitry and Arduino codes used to log 𝑇, 𝜙, 𝐶𝐶𝑂2
 are included in Appendix A. The mass flow 

controller voltage input was finely adjusted using a digital potentiometer connected to a second 

microcontroller. Finally, two rotameters (Model No. MMA-4, Dwyer Instruments, Michigan 

City, IN, USA) were placed at the inlet and outlet of Section C to confirm 𝑄 downstream and 

assure the D-GRMS was airtight or leak-free.  

3.2. Soybeans and sample preparation 

Soybeans (Pioneer 28T33R, Pioneer Hi-Bred, Johnston, Iowa, USA) were harvested at 

approximately 15% wet basis moisture content from the Crop Sciences Research and Education 

Farm at the University of Illinois in Urbana, IL in October 2016 and stored in a grain bin where 

they were dried to 12-13%. On January 19, 2017, soybeans (327 kg or 12 bu) were removed 

from the bin, placed in plastic storage containers (18 gal capacity), and stored at 4°C until 

testing.  

Prior to the start of each test, soybeans were manually mixed in the container and a 3 kg 

sample was removed (Figure 3.2). The sample was hand cleaned using sieves (Grainman 0.39 

cm x 1.9 cm, Miami, FL, USA) to remove broken beans, or splits, and foreign material. The 

beans were cleaned in batches to ensure removal of all undesired material. After cleaning, the 

sample was poured into a thin layer on a metal tray and allowed to acclimate to room 

temperature (approximately 20 to 22°C) for 30 to 40 min. A handheld moisture meter (Model 

No. SW16060, John Deere, Moline, IL, USA) was used to estimate the initial moisture content of 

the sample (�̂�𝑠𝑜𝑦,0), which was used to calculate the amount of deionized water (𝑚𝐻2𝑂) 

necessary to be added to adjust the moisture content of 2.4 kg (𝑚𝑠𝑜𝑦,0) of clean soybeans to 14, 

18, or 22% (�̂�𝑠𝑜𝑦,1): 
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𝑚𝐻2𝑂 =  𝑚𝑠𝑜𝑦,0 (
�̂�𝑠𝑜𝑦,1 −  �̂�𝑠𝑜𝑦,0

100 −  �̂�𝑠𝑜𝑦,1
) 

[3.1] 

 

 

Figure 3.2. Preparation of soybeans for a respiration test involved hand-cleaning, re-wetting and 

determining its moisture content. 

 

The 2.4 kg of clean soybeans were split into two batches of 1.2 kg each and placed into 

two round plastic jars (2 L capacity). Deionized water equal to 0.5𝑚𝐻2𝑂 according to Equation 

3.1 was added to each jar. An extra 5 g of water was also added to each jar for good measure. 

The filled jars were placed on a roller mixer (Scilogex MX-T6-S, Rocky Hill, CT, USA), which 

Remove soybeans (3 kg)

from cold storage.

Clean by hand.

Let soybeans (𝑚𝑠𝑜𝑦,0) stand at 

room temperature for 30-40 min. 

Estimate �̂�𝑠𝑜𝑦,0.

Re-wet soybeans by adding 

(𝑚𝐻2𝑂) (Equation 3.1) in a 

roller mixer for 60 min.

Spread a thin layer of soybeans 

on a tray. Let stand at room 

temperature for 30-40 min 

until�̂�𝑠𝑜𝑦,1 is reached.

Use 𝑚𝑠𝑜𝑦,1 = 1.8 kg 

in a respiration test. 

Discard foreign materials, 

damaged seeds, etc. 

(approx. 0.6 kg).

Discard excess soybeans.

In triplicates, determine 𝑤𝑠𝑜𝑦,1 according 

to ASABE Standard S358.3 (2012).
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was set at 60 rpm and left to run for 60 min. Afterward, the beans were poured as a thin layer on 

a metal tray and allowed to air-dry at room temperature for 30 to 40 min. �̂�𝑠𝑜𝑦,1 was monitored 

using the handheld moisture meter every 10 min, until the desired moisture content was 

achieved. 

 After beans were rewetted, three subsamples (25 to 30 g each) were removed for 

gravimetric moisture determination (𝑤𝑠𝑜𝑦,1), in an oven at 103°C for 72 h, according to ASABE 

Standard S352.2 (R2017). A 400 g subsample was also removed, placed in a plastic bag, sealed, 

and stored at -20°C for future lipid oxidation tests (not included in this study). No initial samples 

were saved for the first objective of the thesis. Lastly, approximately 1800 g (𝑚𝑠𝑜𝑦,1) of rewetted 

soybeans were poured into the RC of D-GRMS for testing. Excess soybeans were discarded. The 

moisture content obtained gravimetrically (𝑤𝑠𝑜𝑦,1) was used to calculate the initial amount of dry 

matter (𝑚𝐷𝑀,1) present in the sample: 

𝑚𝐷𝑀,1 = 𝑚𝑠𝑜𝑦,1 (1 −  
𝑤𝑠𝑜𝑦,1

100
) 

[3.2] 

The SOPs on preparing soybeans for a grain respiration test (Document No. D-GRMS-005) and 

gravimetric measurement of grain moisture content (Document No. D-GRMS-006) are available 

in Appendix A. 

3.3. D-GRMS preparation and respiration test initiation 

Two RC dehumidifiers and two RC CO2 scrubbers were prepared and the initial masses 

of the scrubbers [(𝑚𝑅𝐶,𝐴)
𝑡
 and (𝑚𝑅𝐶,𝐵)

𝑡
 at 𝑡 = 0] were determined using a digital scale (Model 

i3100, MyWeight, Phoenix, AZ). The dehumidifiers and scrubbers were placed into the  

D-GRMS using quick disconnect connectors and three-way valves, with airflow set to pass 

through RC dehumidifier A and RC CO2 scrubber A. A soybean-filled RC was installed in the 
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D-GRMS. The air supply and all water baths were turned ON and allowed to run for 30 to 40 

min. All sensor readings were checked to confirm they were within respiration test conditions 

(𝑇 = 35 ± 2 °C, 𝐶𝐶𝑂2
≤ 20 ppm and 𝜙 = 79, 89, or 92 ± 5 %RH for 𝑤 = 14, 18 and 22%, 

respectively). Adjustments to the water bath temperature or glycerol-water solution 

concentration were made accordingly. Once these conditions were met, a respiration test was 

started by recording the time. The SOP on running a grain respiration test (Document No. D-

GRMS-007) is available in Appendix A. 

3.4. Respired CO2 measurements 

The system was allowed to equilibrate for a period of 12 to 14 h. After this initial period, 

airflow was directed to RC CO2 scrubber B so that RC CO2 scrubber A could be removed from 

the system, weighed three times (with the scrubber turned 120° clockwise in between 

measurements), and corresponding date and time recorded. The average of three weight 

measurements [(𝑚𝑅𝐶̅̅ ̅̅ ̅̅ )𝐴,𝑡] was computed. [(𝑚𝑅𝐶̅̅ ̅̅ ̅̅ )𝐴,𝑡] increased over time as the mass of respired 

CO2 was captured in the CO2 absorbent material and accumulated:   

(∑ 𝑚𝐶𝑂2
)

𝐴
= (𝑚𝑅𝐶,𝐴̅̅ ̅̅ ̅̅ ̅)

𝑡
− (𝑚𝑅𝐶,𝐴̅̅ ̅̅ ̅̅ ̅)

0
  [3.3] 

Afterwards, RC scrubber A was installed back in the D-GRMS. The respired CO2 was 

allowed to accumulate in RC scrubber B for 2 h and the airflow was diverted back to RC 

scrubber A. The same weight measurement procedures were conducted and  

(∑ 𝑚𝐶𝑂2
)

𝐵
= (𝑚𝑅𝐶,𝐵̅̅ ̅̅ ̅̅ ̅̅ )

𝑡
− (𝑚𝑅𝐶,𝐵̅̅ ̅̅ ̅̅ ̅̅ )

0
  [3.4] 

Hence, at any time 𝑡, the total accumulated mass of respired CO2 was 

(∑ 𝑚𝐶𝑂2
)

𝐴+𝐵
= (∑ 𝑚𝐶𝑂2

)
𝐴

+ (∑ 𝑚𝐶𝑂2
)

𝐵
= (∑ 𝑚𝐶𝑂2

)
𝑠
𝑚𝐷𝑀,1  [3.5] 
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which, when divided by the mass of dry matter in the soybeans (𝑚𝐷𝑀,1) was the specific 

accumulated mass of respired CO2, (∑ 𝑚𝑐𝑜2
)

𝑠
.  

 Respired CO2 measurements were taken approximately every 2 h thereafter, during 

daytime hours. No measurements were taken overnight. The system was equipped with two RC 

CO2 scrubbers so that respired air could flow continuously during periods when one of the RC 

CO2 scrubbers needed to be weighed. The system was also equipped with two RC dehumidifiers 

so that respiration testing could proceed for extended periods (12 to 15 d). When RC 

dehumidifier A had absorbed 75% of its capacity by visual observation that the bottom ¾ of the 

desiccant bed had turned from blue to pink color), airflow was diverted to the second 

dehumidifier. The first dehumidifier was then removed from the system, replenished with fresh 

desiccant, weighed for its new tare, and available for the next changeover in RC. All data were 

recorded in a spreadsheet (Appendix B) using Microsoft Excel (Version 2016, Microsoft 

Corporation, Redmond, WA, USA). 

3.5. Ending a respiration test and shutting down D-GRMS  

A respiration test proceeded until (∑ 𝑚𝐶𝑂2
)

𝑠
= 22 g CO2 (kg dry beans)-1 were absorbed 

in combination by both RC CO2 scrubbers, which is equivalent to 1.5% 𝐷𝑀𝐿, or three times the 

0.5% 𝐷𝑀𝐿 threshold typically recommended for safe storage of shelled corn (ASABE, R2014). 

At the end of a respiration test, airflow was shut off and water baths were turned off. The 

soybeans were poured onto a metal tray and manually mixed. Triplicate samples were taken to 

estimate �̂�𝑠𝑜𝑦,2 using the handheld moisture meter. Three samples (25 to 30 g each) were also 

removed for gravimetric moisture content (𝑤𝑠𝑜𝑦,2) determination (ASABE, R2017). All CO2 

scrubbers, dehumidifiers, and RC were cleaned with soap and hot water, rinsed with ethanol, and 

dried for subsequent respiration tests. 
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3.6. Dry matter loss calculation and time parameters  

The amount of 𝐷𝑀𝐿 at any time 𝑡 was determined using the stoichiometric relationship 

between glucose and carbon dioxide in the respiration equation and (∑ 𝑚𝑐𝑜2
)

𝑠
 in Equation 2.1 

and is included in Appendix B. To facilitate calculations of elapsed time during a respiration test, 

logged dates and times in the Gregorian calendar were converted to Julian date (𝐽𝐷): 

 

 

[3.6] 

where the last two digits of the Gregorian year were multiplied by 103 and added to the total 

number of days since January 1 of the same year (𝐷𝑗) and the fraction of day. The hours and 

minutes (ℎℎ: 𝑚𝑚) were stated in military time, which were converted to fraction of day by 

dividing ℎℎ by 24 hours d-1 and 𝑚𝑚 by 1440 min d-1.  

Preliminary tests showed that respiration exhibited a “lag” period (𝑡𝑙𝑎𝑔) from the time 

soybeans were placed in D-GRMS to the time when an appreciable inflection point in 𝐷𝑀𝐿 vs. 𝑡 

curve could be detected (Figure 3.3). This lag phase may be a combination of the rewetted beans 

acclimating to their new environment and the respiration measurement system coming to 

equilibrium. Thus, the start time of grain respiration (𝑡𝑠𝑡𝑎𝑟𝑡) was initially designated as the time 

at which 𝐷𝑀𝐿 reached 0.05% (𝑡0.05). Grain respiration tests were terminated when 𝐷𝑀𝐿 

exceeded 1.5%, and the endpoint of the respiration test set at the time when 1.5% 𝐷𝑀𝐿 was 

reached (𝑡1.5). The lower limit is one order of magnitude below the 0.5% 𝐷𝑀𝐿 threshold used in 

MAST guidelines for shelled corn and the upper limit is three times this valuation threshold. 

Since it is not often convenient to obtain a CO2 measurement at exactly when (∑ 𝑚𝐶𝑂2
)

𝑠
= 
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0.733 g kg-1 (0.05% 𝐷𝑀𝐿) and (∑ 𝑚𝐶𝑂2
)

𝑠
=22.0 g kg-1 (1.5% 𝐷𝑀𝐿) are reached, 𝑡0.05 and 𝑡1.5 

were estimated by linear interpolation using two respired CO2 measurements – one immediately 

above and one immediately below these 𝐷𝑀𝐿 limits. Later, 𝑡𝑠𝑡𝑎𝑟𝑡 was adjusted to the time to 

reach 0.10% 𝐷𝑀𝐿 (𝑡0.10). 

 

Figure 3.3. Preliminary tests indicated present of lag period. Start of a grain respiration test was set 

to time to reach 0.05 or 0.10% 𝑫𝑴𝑳 (𝒕𝟎.𝟎𝟓 or 𝒕𝟎,𝟏𝟎, respectively) and ended when 1.5% 𝑫𝑴𝑳 was 

reached (𝒕𝟏.𝟓).  

3.7. Statistical analyses 

 All code and outputs from statistical analyses from the Data Analysis ToolPak (Version 

2016, Microsoft Excel, Microsoft Corporation, Redmond, WA, USA) and SAS Studio software, 

Version 4.2, Copyright ® 2017 SAS Institute Inc. are available in Appendix C. SAS and all other 

SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 

Institute Inc., Cary, NC, USA.   
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3.7.1. Soybean moisture contents 

Initial soybean 𝑤 estimated by handheld moisture meter (�̂�𝑠𝑜𝑦,1) were compared to 

gravimetric 𝑤 measurements taken before the respiration test (𝑤𝑠𝑜𝑦,1) by calculating their 

difference (Δ𝑤𝑠𝑜𝑦)
1
 and checking if it is zero in an effort to evaluate the use of a handheld meter 

to estimate 𝑤 and the efficacy of the rewetting procedure. Likewise, soybean moisture contents 

before (𝑤𝑠𝑜𝑦,1) and after (𝑤𝑠𝑜𝑦,2) the respiration test were compared by calculating their 

difference (Δ𝑤𝑠𝑜𝑦)
1→2

 was zero to evaluate the efficacy of the air conditioning mechanism of D-

GRMS. Means comparisons were made using paired samples and a two-tailed Student’s t-test to 

test the following hypotheses at 𝛼 = 0.05:   

Hypotheses 1    𝐻0: (Δ𝑤𝑠𝑜𝑦)
1

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
∑(�̂�𝑠𝑜𝑦,1−𝑤𝑠𝑜𝑦,1)

𝑘

𝑘
= 0 

                         𝐻𝐴: (Δ𝑤𝑠𝑜𝑦)
1

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≠ 0 

[3.7] 

Hypotheses 2   𝐻0: (Δ𝑤𝑠𝑜𝑦)
1→2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑(𝑤𝑠𝑜𝑦,1−𝑤𝑠𝑜𝑦,2)

𝑘

𝑘
= 0 

                        𝐻𝐴: (Δ𝑤𝑠𝑜𝑦)
1→2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠ 0 

[3.8] 

where is the k is the replication number.  

3.7.2 Lag times and time to reach 0.5% dry matter loss 

The first set of grain respiration tests conducted were for 18% moisture content soybeans, 

which included five replications. First, 𝐷𝑀𝐿 data were plotted against 𝑡, which were transformed 

to remove 𝑡𝑙𝑎𝑔 (Figure 3.3). The start time was adjusted by subtracting 𝑡0.05 or 𝑡0.10 to yield 𝑡′ 

and 𝐷𝑀𝐿 was adjusted by subtracting from the time, 𝑡, either 0.05 or 0.10% 𝐷𝑀𝐿 to yield 𝐷𝑀𝐿′ 

(Figure 3.4). These transformations effectively repositioned the origin from (0,0) to (𝑡0.05, 0.05) 

or (𝑡0.10, 0.10). These transformations were repeated with data for 14 and 20% moisture content 

soybeans. Estimates of 𝑡𝑙𝑎𝑔 and 𝑡0.5, which includes 𝑡𝑙𝑎𝑔, were compared across 𝑤 treatments 
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and between 𝑡𝑠𝑡𝑎𝑟𝑡 values using PROC ANOVA function in SAS Studio software. Significance 

of differences were tested at 𝑎 = 0.05.  

 

Figure 3.4. Dry matter loss (𝑫𝑴𝑳) and time (𝒕) axes were adjusted to remove the lag period (𝒕𝒍𝒂𝒈).  

 

3.7.3. Dry matter loss rates of 18% moisture content soybeans 

Following the data transformation, a linear regression was performed using the following 

model and the linear regression option in the Data Analysis ToolPak in MS Excel: 

𝐷𝑀𝐿′ = 𝑣𝐷𝑀𝐿𝑡′ + 𝐷𝑀𝐿0
′  [3.9] 

where the intercept (𝐷𝑀𝐿0
′ ) was set to zero. Outputs of the linear regression for each replication 

included: 

• regression statistics – coefficient of determination (𝑅2), standard error of regression 

(𝑆𝐸𝑟𝑒𝑔), 

• analysis of variance (ANOVA) table, and 
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• estimate of the slope and its standard error (𝑣𝐷𝑀𝐿 ± 𝑆𝐸𝑣𝐷𝑀𝐿
). 

The overall 𝐷𝑀𝐿 rate and its standard error (𝑣𝐷𝑀𝐿 ± 𝑆𝐸𝑣𝐷𝑀𝐿
)

𝑝
for each 𝑤 treatment were 

determined by pooling the data from all replications and conducting a linear regression using 

Data Analysis ToolPak. It was initially assumed that (𝜎𝑣𝐷𝑀𝐿
)

𝑝
, calculated as follows, may be a 

better estimate of the variability of 𝑣𝐷𝑀𝐿 estimates amongst replications: 

(𝜎𝑣𝐷𝑀𝐿
)

𝑝
= √

∑ (𝑛𝑖 − 1)(𝑆𝐸𝑣𝐷𝑀𝐿
)

𝑖

2𝑘
𝑖=1

∑ (𝑛𝑖 − 1)𝑘
𝑖=1

 

 

[3.10] 

where 𝑛 was the number of observations in a replication, 𝑆𝐸𝑣𝐷𝑀𝐿
 was the standard error of the 

slope of regression, and the replicated respiration tests were indexed 𝑖 = 1, … , 𝑘 = 5. Hence, a 

comparison at 𝛼 = 0.05 between (𝑆𝐸𝑣𝐷𝑀𝐿
)

𝑝
 and (𝜎𝑣𝐷𝑀𝐿

)
𝑝

 was performed, using PROC ANOVA 

in SAS Studio, in order to identify significant differences between these two values. 

3.7.4. Statistical power and minimum number of replications 

Using (𝜎𝑣𝐷𝑀𝐿
)

𝑝
 determined with 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.05 from respiration tests with 18% moisture 

content soybeans, a statistical power analysis was conducted using a few assumptions. First, 

𝑣𝐷𝑀𝐿 could be treated as a “mean” value representing 𝑛 observations taken during a respiration 

test (a.k.a., a population). As more replications were conducted, 𝑣𝐷𝑀𝐿 of each replication may be 

different but the standard deviation, or variance, of each population was the same. Therefore, the 

overall standard deviation of 𝑣𝐷𝑀𝐿 could be estimated by squaring, summing, and square rooting 

the individual population’s standard deviations (Equation 3.10) to give a higher precision 

estimate of standard deviation than an individual population’s.  

 Second, the value of (𝜎𝑣𝐷𝑀𝐿
)

𝑝
 was comparable among treatments. Finally, assuming a 

normally distributed response to a treatment, the size of 𝛿 between treatment means chosen in 
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statistical power analysis is critical to determining 𝑟𝑚𝑖𝑛. For small values of 𝛿, there is potential 

for a large overlap of response variables between treatments, resulting in a large 𝑟𝑚𝑖𝑛 (Figure 

3.5a). The overlap across treatment means decrease with increasing 𝛿, as shown in Figures 3.5b 

and 3.5c. 

 

Figure 3.5. Effects of difference size (𝜹) used in statistical power analysis, assuming normally 

distributed responses around treatment means (µ) with a pooled standard deviation, 𝝈𝒑. The 

subscripts 1, 2, and 3 represent treatment number. 

The value for 𝑟𝑚𝑖𝑛 was calculated two ways first, choosing a  𝛿 value and, second, using 

the coefficient of variance [𝐶𝑉 = (𝜎𝑣𝐷𝑀𝐿
)

𝑝
(𝑣𝐷𝑀𝐿)𝑝⁄ ] in Equation 2.4. A value of 𝛿 =

4(𝜎𝑣𝐷𝑀𝐿
)

𝑝
 was chosen since 95% of 𝑣𝐷𝑀𝐿 values are expected to surround each treatment mean, 

µ1 µ2 µ3

a

µ1 µ2 µ3

b

δ=3σp δ=6σp

µ1 µ2 µ3

c
δ=3σp

Response variable

Response variable

Response variable

N

N

N
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resulting in little overlap in 𝑣𝐷𝑀𝐿 among treatments. Since 𝜎 ≈ (𝜎𝑣𝐷𝑀𝐿
)

𝑝
, the term (𝜎 𝛿⁄ ) = ¼ 

or 0.25. Values of 𝑡1 and 𝑡2 were determined from a two-tailed Student’s t-test table, 

𝑡1 = 𝑡(𝛼 2⁄ , 𝑑𝑓) [3.11] 

𝑡2 = 𝑡[2(1 − 𝛽), 𝑑𝑓] [3.12] 

where 𝛼 = 0.05, 𝛽 = 0.8. The number of degrees of freedom (𝑑𝑓) is 

𝑑𝑓 = (𝑟 − 1)(𝑗 − 1) [3.13] 

where 𝑟 is the number of replications and 𝑗 is the total number of treatment combinations (e.g., 

three levels of 𝑤 and one levels of 𝑇 would give a 𝑗 = 3  1 = 3). Here, we see that calculating 

𝑟𝑚𝑖𝑛 is an iterative process that starts with an initial guess (�̂�𝑚𝑖𝑛) or estimate of 𝑟𝑚𝑖𝑛, and 

terminates when solution has converged (i.e., �̂�𝑚𝑖𝑛 = 𝑟𝑚𝑖𝑛).  

3.7.5. Dry matter loss rates of 14 and 22% moisture content soybeans 

The set of statistical analyses described in Section 3.7.3 were repeated for a completely 

randomized 2𝑤 x 1𝑇 x 𝑟𝑚𝑖𝑛 experiment using 14 and 22% moisture content soybeans using the 

𝑟𝑚𝑖𝑛 determined in Section 3.7.4. The estimate of 𝑟𝑚𝑖𝑛 was re-evaluated using (𝜎𝑣𝐷𝑀𝐿
)

𝑝
 of 14% 

and 22% moisture content soybeans and the experiment was adjusted, accordingly. A one-way 

ANOVA and Tukey’s multiple pairwise comparison of 𝑣𝐷𝑀𝐿 amongst 𝑤 treatments and between 

𝑡𝑠𝑡𝑎𝑟𝑡 values were conducted using PROC ANOVA function in SAS Studio software. 

Significance of differences were tested at 𝑎 = 0.05.  

3.7.6. Respiration rates of 14 to 22% moisture content soybeans 

 All (𝑣𝐷𝑀𝐿 ± 𝑆𝐸𝑣𝐷𝑀𝐿
)

𝑝
 values were converted to (𝑣𝐶𝑂2

± 𝑆𝐸𝑣𝐶𝑂2
)

𝑝
  using Equation 2.2 

for easy comparison to grain deterioration rates reported in the literature. 
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3.7.7. Mathematical models of dry matter loss rate 

Sorour and Uchino (2004) had the widest range of 𝑤 (18 to 26%) and storage 𝑇 (15 to 

30oC) experiment ever conducted using a D-GRMS for soybean respiration. The linear models 

they developed for predicting ∑ 𝑚𝑐𝑜2,𝑠 over time fit their respiration data well (𝑅2 > 0.99). 

Hence, their models were used to regenerate their data and calculate 𝑣𝐷𝑀𝐿 according to 

procedures described in Section 3.7.3. Details on data regeneration and linear regressions to 

calculate 𝑣𝐷𝑀𝐿 are in Appendix C. The 𝑣𝐷𝑀𝐿 estimates from Sorour and Uchino’s (2004) study 

and from this study were fitted to mathematical models based on Models 3, 8 and 9 (Table 2.1) 

to describe the effects of 𝑤 on 𝑣𝐷𝑀𝐿. Nonlinear modeling was accomplished using the PROC 

NLIN function in SAS Studio software and goodness-of-fit was based on mean relative error 

(𝑀𝑅𝐸), standard (𝑆𝐸𝑟𝑒𝑔), 𝐹-statistic, and estimated coefficient of determination (�̂�2) of the 

nonlinear regression, as well as the random nature of the residual plots.   
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CHAPTER 4. RESULTS AND DISCUSSION 

4.1. Soybean moisture contents 

For soybeans classified in the 14% moisture content group, the average moisture content 

estimated with a handheld meter was 14.37%, which was no different than the gravimetric 

moisture content measurement of 14.33% (𝑝 = 0.86). The same trend was found with soybeans 

classified in the 18% moisture content group, where the average estimated, and gravimetric 

measurements were 18.36% and 18.47%, respectively (𝑝 = 0.44). However, these values were 

found to be different with 22% moisture content soybeans group, where the average gravimetric 

moisture measurement (21.90%) was much higher than the average estimated moisture content 

(21.60%) (𝑝 = 0.01). This significance was due to a 0.51% difference in one of the four 

replications. Also, the moisture content estimates via the handheld meter were consistently lower 

than the gravimetric moisture content measurements at 22%, but the trend was not found with 14 

and 18% moisture content soybeans. These results suggested that, for moisture contents below 

22%, the handheld meter may be used to estimate the moisture content at the start of a grain 

respiration test. Estimates, however may be as far off as 0.5% from the gravimetric 

measurements for higher soybean moisture contents, so caution must be exercised at using and 

relying solely on the handheld meter. 

Likewise, the average moisture contents before (14.33%) and after (14.36%) grain 

respiration tests with 14% moisture content soybeans were not different (𝑝 = 0.91). The same 

was true for 18% moisture content soybeans (before, 18.47% and after, 18.22%, 𝑝 = 0.27). 

However, differences were observed between the average moisture contents before (21.90%) and 

after (21.65%) grain respiration tests with 22% moisture content soybeans (𝑝 = 0.04). These 
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results suggested that maintaining the moisture content via humidification during respiration 

tests may require using slightly more humid air.  

Table 4.1. Comparison of estimated and actual soybean moisture contents (%) before and after 

replicated respiration tests. Variables are defined in the footnotes. 

Treatment Before respiration test After respiration test Absolute differences 

𝑤1  �̂�𝑠𝑜𝑦,1 ± 𝜎�̂�𝑠𝑜𝑦,1
 𝑤𝑠𝑜𝑦,1 ± 𝜎𝑤𝑠𝑜𝑦,1

 𝑤𝑠𝑜𝑦,2 ± 𝜎𝑤𝑠𝑜𝑦,2
 |(Δ𝑤𝑠𝑜𝑦)

1
| |(Δ𝑤𝑠𝑜𝑦)

1→2
| 

14 14.23 ± 0.11 14.31 ± 0.002 14.57 ± 0.002 0.08 0.26 

 14.67 ± 0.11 14.26 ± 0.002 14.57 ± 0.001 0.41 0.31 

 14.43 ± 0.15 14.73 ± 0.000 14.51 ± 0.001 0.30 0.22 

 14.13 ± 0.06 14.02 ± 0.001 13.79 ± 0.001 0.11 0.23 

𝜇 ± 𝜎 =  14.37 ± 0.24d 2 14.33 ± 0.30dD 14.36 ± 0.38D   

18 18.27 ± 0.06 18.40 ± 0.001 17.78 ± 0.002 0.13 0.62 

 18.63 ± 0.15 18.51 ± 0.002 17.88 ± 0.005 0.12 0.63 

 18.13 ± 0.06 18.26 ± 0.001 18.82 ± 0.002 0.13 0.56 

 18.60 ± 0.10 18.80 ± 0.001 18.50 ± 0.001 0.20 0.30 

 18.17 ± 0.06 18.40 ± 0.001 18.11 ± 0.001 0.23 0.29 

𝜇 ± 𝜎 = 18.36 ± 0.24c 18.47 ± 0.20cC  18.22 ± 0.44C   

22 21.57 ± 0.06 22.08 ± 0.001 21.80 ± 0.001 0.51 0.28 

 21.67 ± 0.12 21.88 ± 0.003 21.47 ± 0.001 0.21 0.41 

 21.67 ± 0.05 21.78 ± 0.002  21.67 ± 0.001 0.11 0.11 

 21.53 ± 0.06 21.86 ± 0.001 21.66 ± 0.000 0.33 0.20 

𝜇 ± 𝜎 = 21.61 ± 0.07b 21.90 ± 0.13aA 21.65 ± 0.14B   

1 Moisture content (𝑤) variables: estimated moisture content via handheld meter, �̂�𝑠𝑜𝑦,1; gravimetric moisture 

content before grain respiration test, 𝑤𝑠𝑜𝑦,1; gravimetric moisture content after grain respiration test, 𝑤𝑠𝑜𝑦,2; 

difference between estimated and gravimetric moisture content before grain respiration test,  (Δ𝑤𝑠𝑜𝑦)
1
; and 

difference between moisture contents before and after a grain respiration test, (Δ𝑤𝑠𝑜𝑦)
1→2

. All moisture contents 

are reported as mean ± standard deviation and in % wet-basis. 
2 Treatment means and standard deviations (𝜇 ± 𝜎 % w.b.) with the same letter are not different from each other. 

Lowercase letters were used to denote differences in (Δ𝑤𝑠𝑜𝑦)
1
 while uppercase letters were used to denote 

differences in (Δ𝑤𝑠𝑜𝑦)
1→2

. 
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4.2. Lag times and time to reach 0.5% dry matter loss 

As previously mentioned, all soybeans tested exhibited a lag period prior to steadily 

losing dry matter during storage, with 𝑡𝑙𝑎𝑔 decreasing with increasing 𝑤 (Table 4.2). When 

𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.05, average 𝑡𝑙𝑎𝑔 values for 14, 18, and 22% moisture content soybeans were 4.34, 

3.65, and 0.94 d. These values were not different when 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.10, which due to the large 

standard deviation in each 𝑤. Across treatments, 𝑡𝑙𝑎𝑔 decreased with increasing 𝑤 and were 

different from each other.  

Table 4.2. Lag times of respiration tests with 14 to 22% moisture content soybeans in D-GRMS. 

Variables are defined in the footnotes. 

Moisture content, 

𝑤1 (% w.b.) 

𝑡𝑙𝑎𝑔 (d) 

When 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.05 𝑛 When 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.10 𝑛 

14 1.79 9 2.24 13 

 2.53 13 3.87 21 

 7.11 36 7.39 36 

 5.91 30 6.30 30 

 𝜇 ± 𝜎 = 4.34 ± 2.58aA 2  𝜇 ± 𝜎 = 4.95 ± 2.33aA  

18 5.04 23 5.34 26 

 4.28 22 4.58 22 

 4.09 22 4.75 24 

 0.79 2 0.86 3 

 4.07 23 4.68 25 

 𝜇 ± 𝜎 = 3.65 ± 3.85aA  𝜇 ± 𝜎 = 4.04 ± 1.81aA  

22 1.04 6 1.40 6 

 0.90 5 1.32 5 

 0.91 6 1.11 6 

 0.90 6 1.51 6 

 𝜇 ± 𝜎 = 0.94 ± 0.07bB  𝜇 ± 𝜎 = 1.33 ± 0.17bA  

1 Variables: moisture content, 𝑤 (% w.b.); start of grain respiration test, 𝑡𝑠𝑡𝑎𝑟𝑡 (d); time to reach 0.05 or 0.10% 𝐷𝑀𝐿, 

𝑡0.05 or 𝑡0.10 (d), respectively; lag time, 𝑡𝑙𝑎𝑔 (d); number of data points or observations in the lag period, 𝑛. 
2 Treatment means and standard deviations (𝜇 ± 𝜎) with the same letter are not different from each other. Lowercase 

letters denote differences within a column (𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.05 or 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.10); uppercase letters denote differences 

within a row (𝑤 treatments). 
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For all 𝑤 tested, 𝐷𝑀𝐿 increased steadily over time and estimates of 𝑡0.5 decreased with 

increasing 𝑤, after the lag period was removed (Table 4.3 and Figure 4.1). For both 

considerations (𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.05 or  𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.10), estimates of 𝑡0.5 were not different from each other 

at 18 and 22% moisture content. However, 14% moisture content soybeans presented estimate 

𝑡0.5 different from the ones for 18 and 22%. 

Table 4.3. Time to reach 0.5% dry matter loss for 14 to 22% moisture content soybeans in  

D-GRMS. Variables are defined in the footnotes. 

Moisture content, 

𝑤1 (% w.b.) 
Including 𝑡𝑙𝑎𝑔 (d) Excluding 𝑡𝑙𝑎𝑔 (d) 

when 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.05 when 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.10 

14 4.91 3.69 3.61 

 7.34 5.24 4.26 

 11.82 5.13 5.17 

 8.80 3.21 3.14 

𝜇 ± 𝜎 = 8.22 ± 2.89aA 4.32 ± 1.02aB 4.04 ± 0.88aB 

18 6.59 1.66 1.47 

 6.44 2.25 2.05 

 6.64 2.79 2.36 

 3.26 2.64 2.73 

 6.50 2.54 2.12 

𝜇 ± 𝜎 =  5.88 ± 1.47bA 2.38 ± 0.45bB 2.15 ± 0.46bB 

22 3.32 2.45 2.25 

 2.95 2.16 1.85 

 2.56 1.82 1.79 

 3.83 3.12 2.67 

𝜇 ± 𝜎 = 3.16 ± 0.54bA 2.39 ± 0.55bA 2.14 ± 0.41bB 

1 Variables: moisture content, 𝑤 (% w.b.); time to reach 0.5% 𝐷𝑀𝐿, 𝑡0.5 (d); start of grain respiration test, 𝑡𝑠𝑡𝑎𝑟𝑡 (d); 

time to reach 0.05 or 0.10% 𝐷𝑀𝐿, 𝑡0.05 or 𝑡0.10 (d), respectively; lag time, 𝑡𝑙𝑎𝑔 (d). 
2 Treatment means and standard deviations (𝜇 ± 𝜎) with the same letter are not different from each other. Lowercase 

letters denote differences within a column (𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.05 or 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.10); uppercase letters denote differences 

within a row (𝑤 treatments). 
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Figure 4.1. Dry matter loss (𝑫𝑴𝑳) of 14 to 22% moisture content soybeans at 35°C. The lag period 

prior to reaching 0.05% 𝑫𝑴𝑳 was removed.  
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4.3. Dry matter loss rates of 14 to 22% moisture content soybeans 

Regardless of whether the start of a respiration test was set at 𝑡0.05 or 𝑡0.10, 𝑣𝐷𝑀𝐿 were 

linear and increased with increasing 𝑤 (Table 4.4). Estimates of 𝑣𝐷𝑀𝐿 ranged from 0.117 to 

0.169% d-1 for 14% moisture content soybeans; from 0.222 to 0.304% d-1 for 18% moisture 

content soybeans; and from 0.210 to 0.297% d-1 for 22% moisture content soybeans. The 

arithmetic mean 𝑣𝐷𝑀𝐿 value for 14% moisture content soybeans (denoted 𝜇 in Table 4.4) was 

different from those at 18 and 22% moisture content soybeans (𝑝 = 0.001 and 0.002, 

respectively) even though the average 𝑣𝐷𝑀𝐿 values for 18 and 22% moisture content soybeans 

were not different from each other (𝑝 = 0.70). Average 𝑣𝐷𝑀𝐿 values obtained with either 𝑡𝑠𝑡𝑎𝑟𝑡 

values were not different from each other (p = 0.85) with each 𝑤 treatment.  

The 𝑆𝐸𝑣𝐷𝑀𝐿
 for each replication tended to increase with increasing 𝑤, as was expected, 

since high 𝑤 conditions promote both grain respiration and mold growth, which could be highly 

variable across grain samples. The lowest 𝑆𝐸𝑣𝐷𝑀𝐿
 values were observed with 14% moisture 

content soybeans, which also had the lowest 𝑣𝐷𝑀𝐿. When 𝐷𝑀𝐿 data were pooled for each w 

treatment, resulting (𝑣𝐷𝑀𝐿)𝑝 values were not different to the arithmetic mean 𝑣𝐷𝑀𝐿 values (𝑝 = 

0.793), despite consistently being lower, and estimates of variability – 𝑆𝐸𝑣𝐷𝑀𝐿
, (𝑆𝐸𝑣𝐷𝑀𝐿

)
𝑝

, and 

(𝜎𝑣𝐷𝑀𝐿
)

𝑝
 – were comparable with each other (Table 4.4). In fact, (𝑆𝐸𝑣𝐷𝑀𝐿

)
𝑝

 and (𝜎𝑣𝐷𝑀𝐿
)

𝑝
 were 

not different from each other (𝑝 = 0.40). However, the transformation of both 𝑡 and 𝐷𝑀𝐿 that 

was made effectively shifted the origin (Section 3.7.2). In retrospect, a shift of only the time 

variable may be more informative as to the best choice for 𝑡𝑠𝑡𝑎𝑟𝑡.
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Table 4.4. Dry matter loss rates of 14 to 22% moisture content soybeans. Variables are defined in the footnotes. 

Moisture 

content,  

𝑤 (% w.b.) 

𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.05
1  𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.10 

𝑛 𝑣𝐷𝑀𝐿 ± 𝑆𝐸𝑣𝐷𝑀𝐿
 

(% d-1) 

(𝜎𝑣𝐷𝑀𝐿
)

𝑝
 

(% d-1) 

(𝑣𝐷𝑀𝐿 ± 𝑆𝐸𝑣𝐷𝑀𝐿
)

𝑝
 

(% d-1) 

 𝑛 𝑣𝐷𝑀𝐿 ± 𝑆𝐸𝑣𝐷𝑀𝐿
 

(% d-1) 

(𝜎𝑣𝐷𝑀𝐿
)

𝑝
 

(% d-1) 

(𝑣𝐷𝑀𝐿 ± 𝑆𝐸𝑣𝐷𝑀𝐿
)

𝑝
 

(% d-1) 

14 56 0.134 ± 0.001    52 0.136 ± 0.001   

 63 0.117 ± 0.002    55 0.134 ± 0.001   

 57 0.119 ± 0.002    57 0.117 ± 0.003   

 44 0.169 ± 0.001    44 0.171 ± 0.001   

𝜇 ± 𝜎 = 0.135 ± 0.024bA 0.002 0.128 ± 0.001 𝜇 ± 𝜎 = 0.140 ± 0.023bA 0.002 0.134 ± 0.002 

18 19 0.304 ± 0.006    16 0.319 ± 0.007   

 29 0.285 ± 0.007    29 0.297 ± 0.007   

 27 0.227 ± 0.008    25 0.262 ± 0.007   

 30 0.222 ± 0.004    29 0.213 ± 0.005   

 24 0.256 ± 0.014    22 0.305 ± 0.014   

𝜇 ± 𝜎 = 0.259 ± 0.036aA 0.008 0.250 ± 0.004 𝜇 ± 𝜎 = 0.279 ± 0.042aA 0.008 0.263 ± 0.005 

22 21 0.297 ± 0.012    21 0.322 ± 0.012   

 29 0.277 ± 0.005    29 0.299 ± 0.003   

 27 0.291 ± 0.002    27 0.295 ± 0.002   

 35 0.210 ± 0.005    35 0.232 ± 0.004   

𝜇 ± 𝜎 = 0.269 ± 0.040aA 0.005 0.253 ± 0.005 𝜇 ± 𝜎 = 0.287 ± 0.039aA 0.003 0.273 ± 0.004 

1 Variables: moisture content, 𝑤 (% w.b.); start of grain respiration test, 𝑡𝑠𝑡𝑎𝑟𝑡 (d); time to reach 0.05 or 0.10% 𝐷𝑀𝐿, 𝑡0.05 or 𝑡0.10 (d), respectively; 

number of data points or observations used in the regression, 𝑛; per replication, 𝐷𝑀𝐿 rate and its standard error, 𝑣𝐷𝑀𝐿 ± 𝑆𝐸𝑣𝐷𝑀𝐿
 (% d-1); pooled 

standard deviation, (𝜎𝑣𝐷𝑀𝐿
)

𝑝
 (% d-1); and overall pooled 𝐷𝑀𝐿 rate and its standard error, (𝑣𝐷𝑀𝐿 ± 𝑆𝐸𝑣𝐷𝑀𝐿

)
𝑝
 (% d-1). 

2 Treatment means and standard deviations (𝜇 ± 𝜎) with the same letter are not different from each other. Lowercase letters denote differences within a 

column (𝑡𝑠𝑡𝑎𝑟𝑡); uppercase letters denote differences within a row (𝑤 treatments). 
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Overall, 𝑣𝐷𝑀𝐿 values obtained in this study were higher than those reported in the 

literature, which ranged from 0.003 to 0.050 % d-1 (Table 2.2), owing to a variety of factors – 

storage conditions tested, accuracy and precision of CO2 measurement method, soybean cultivar, 

etc. Previous studies focused on temperate conditions typical in North America and Europe 

rather than the tropical conditions in Brazil and other soybean-producing regions in low-latitude 

countries. Corresponding  (𝑣𝐶𝑂2
± 𝑆𝐸𝑣𝐶𝑂2

)
𝑝
 and 𝑡0.5 ± 𝜎𝑡0.5

 (including 𝑡𝑙𝑎𝑔) to 

(𝑣𝐷𝑀𝐿 ± 𝑆𝐸𝐷𝑀𝐿)𝑝 values obtained in this study are presented in Table 4.5. 

Table 4.5. Grain deterioration rates for 14 to 22% moisture content soybeans stored at 35°C. 

Variables are defined in the footnotes. 

Moisture content, 

𝑤1 (% w.b.) 
Respiration rate 

[mg CO2 (kg d)-1]  

Time to 0.5% 𝐷𝑀𝐿 

(d) 

𝐷𝑀𝐿 rate 

(10-3 % d-1) 

Replications, 

𝑟 

(𝑣𝐶𝑂2
±𝑆𝐸𝑣𝐶𝑂2

)
𝑝
 𝑡0.5 ± 𝜎𝑡0.5

3 (𝑣𝐷𝑀𝐿 ± 𝑆𝐸𝐷𝑀𝐿)𝑝 

14 1.879 ± 0.028 8.32 ± 2.89 128 ± 1 4 

18 3.664 ± 0.064 5.88 ± 1.47 250 ± 4 5 

22 3.708 ± 0.068 3.16 ± 0.54 253 ± 5 4 

1 Variables: moisture content, 𝑤 (% w.b.); respiration rate and its standard error, calculated from a pooled data set,  
(𝑣𝐶𝑂2

 ± 𝑆𝐸𝑣𝐶𝑂2
)

𝑝
[mg CO2 (kg d-1)]; time to reach 0.5% 𝐷𝑀𝐿 and its standard deviation, calculated with the lag 

period (d); 𝐷𝑀𝐿 rate and its standard error, calculated from a pooled data set, 𝑣𝐷𝑀𝐿 ± 𝑆𝐸𝑣𝐷𝑀𝐿
 (10-3 % d-1); number 

of replications, 𝑟. 
2 Respiration measurements were conducted using a dynamic grain respiration measurement system (D-GRMS) 

outfitted with a CO2 absorbent (Sodasorb®). 
3 Estimates include lag period. Excluding the lag period, 𝑡0.5 ± 𝜎𝑡0.5

 estimates are 4.32 ± 1.02, 2.38 ± 0.45, and 2.39 

± 0.55 d, with 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.05 𝐷𝑀𝐿; and 4.04 ± 0.88, 2.14 ± 0.46, 2.14 ± 0.41, with 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡0.10 𝐷𝑀𝐿; for 14, 18, 

and 22% moisture content soybeans, respectively.   

 

4.4. Minimum number of replications 

 In general, the number of treatment combinations (𝑗) increased, the number of 

replications required decreased proportionally. As the value of 𝑗 becomes smaller, it is more 

difficult to detect a significant difference between treatment combinations. Therefore, one can 

save labor by increasing treatment combinations rather than the number of replications to detect 
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a difference 𝛿. Table 4.6 illustrates this idea for a factorial experiment with three factors. For 

example, for a 2  1  1 factorial treatment combinations (𝑗), 25 replications are necessary. On 

the other hand, for a 3  3  3 combination, only one replication is needed. However, this 

strategy may only be used if (𝜎𝑣𝐷𝑀𝐿
)

𝑝
remains the same, as additional replications and respiration 

tests are completed.  

Table 4.6. Minimum number of replications for experiments with a minimum significant difference 

of 0.032 d-1. Variables are defined in the footnotes. 

No. of levels in a factorial 

experiment 

𝑗1 𝑑𝑓 𝑡1 𝑡2 𝑘2 𝑟𝑚𝑖𝑛 

Factor 1 Factor 2 Factor 3       

2 1 1 2 × 1 × 1 = 2 1 12.70 1.37 4 25 

3 1 1 3 2 4.30 1.06 4 4 

2 2 1 4 3 3.18 0.97 4 3 

3 2 1 6 5 2.57 0.92 3 2 

2 2 2 8 7 2.36 0.89 3 2 

3 3 1 9 8 2.31 0.89 3 2 

3 2 2 12 11 2.20 0.87 3 2 

3 2 3 18 17 2.11 0.86 3 2 

3 3 3 27 130 1.97 0.84 1 1 

1 Variables: number of treatment combinations, 𝑗; number of degrees of freedom, 𝑑𝑓; values from Student’s t-

distribution tables, 𝑡1 and 𝑡2; number of iterations, 𝑘; and minimum number of replications, 𝑟𝑚𝑖𝑛 .  
2 Statistical power analysis constants used were  = 0.032 % d-1,  = 0.05,  = 0.8, and an initial guess, �̂� = 6. 
 

 

In this study, using the (𝜎𝑣𝐷𝑀𝐿
)

𝑝
value of 0.008 % d-1 obtained from the five replicated 

tests with 18% moisture content, a δ = 4(𝜎𝑣𝐷𝑀𝐿
)

𝑝
= 0.032 % d-1 was used to find the number of 

replications necessary to assess the effects of 3𝑤  1𝑇  on 𝑣𝐷𝑀𝐿 (Table 4.7). The iterative 

process yielded a minimum of four replications were needed. After four replications each were 

conducted for 14 and 22% moisture content soybeans, 𝑟𝑚𝑖𝑛 was recalculated using their 
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respective (𝜎𝑣𝐷𝑀𝐿
)

𝑝
 values, which were lower than that for 18%. Hence, resulting 𝑟𝑚𝑖𝑛 values 

were lower and no additional replications were needed. 

Table 4.7. Minimum number of replications needed in this study. 

Moisture content, 

𝑤 (% w.b.) 

Pooled standard deviation, 

(𝜎𝑣𝐷𝑀𝐿
)

𝑝
 (% d-1) 

Significant difference, 

𝛿 = 4(𝜎𝑣𝐷𝑀𝐿
)

𝑝
 (% d-1) 

Minimum number 

of replications, 𝑟𝑚𝑖𝑛 

14 0.002 0.008 2 

18 0.008 0.032 4 

22 0.005 0.020 3 

  0.0661 1 

1 Minimum significant difference obtained from PROC ANOVA output from analyzing dry matter loss rates across 

moisture content treatments considering balanced sample sizes for all treatments. Fourth replication at 18% 

moisture content removed as possible outlier. 

 

4.5. Mathematical models of dry matter loss rate 

 The 𝐷𝑀𝐿 data collected in this study were higher than those reported by Rukunudin 

(1997) and Sorour and Uchino (2004) (Figure 4.2). Over time, 𝐷𝑀𝐿 data for 14 to 22% moisture 

content soybeans appeared exponential, likely due to the high storage temperature (35ºC). 

Similarly, data from 22% moisture content soybeans stored at 26ºC reported by Rukunudin 

(1997) and those reported for 18 to 26% moisture content soybeans stored at 30°C by Sorour and 

Uchino (2004) were nonlinear over time, but comparable in magnitude to those observed in this 

study.  

 



 

45 

 

 

Figure 4.2. Comparison of dry matter loss data of soybeans collected in this study to those reported 

by Rukunudin (1997) and Sorour and Uchino (2004).  

 

The 𝑣𝐷𝑀𝐿 values observed in this study were higher, but comparable, to those obtained by 

Sorour and Uchino (2004) (Figure 4.3). Over the range of 𝑤 tested, 𝑣𝐷𝑀𝐿 appears to reach an 

asymptote at 22% moisture content, while 𝑣𝐷𝑀𝐿 appears unbounded based on Sorour and 
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Uchino’s (2004) data. From Table 2.1, the following models have been proposed previously to 

describe 𝑤, 𝑇 and 𝑡 effects on 𝑣𝐶𝑂2
: 

Model No. 3 𝑣𝐶𝑂2
= 𝛽1 exp(𝛽2𝑤)  

Model No. 8 log 𝑣𝐶𝑂2
= 𝛽1 + 𝛽2𝑇 + 𝛽3𝑡 + 𝛽4𝑡2 + 𝛽5𝑤  

Model No. 9 ln 𝑣𝐶𝑂2
= 𝛽1 + 𝛽2𝑡 + 𝛽3𝑡2 + 𝛽4𝑤  

 

Figure 4.3. Effects of soybean moisture content on dry matter loss rates obtained in this study and   

Sorour and Uchino’s (2004) study. 

 

From Equation 2.2, 𝑣𝐷𝑀𝐿 is a multiple of 𝑣𝐶𝑂2
, so 𝑣𝐷𝑀𝐿 can be substituted easily into the 

above equations and simplified as follows, since 𝑇 was held constant in this study: 
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 𝑣𝐷𝑀𝐿 = 𝛽1 exp(𝛽2𝑤) [4.1] 

 log 𝑣𝐷𝑀𝐿 = 𝛽1 + 𝛽2𝑤 → 𝑣𝐷𝑀𝐿 = 10𝛽1+𝛽2𝑤 [4.2] 

 ln 𝑣𝐷𝑀𝐿 = 𝛽1 + 𝛽2𝑤 → 𝑣𝐷𝑀𝐿 = exp(𝛽1 + 𝛽2𝑤) = 𝛽1 exp(1 + 𝛽2𝑤) [4.3] 

Equations 4.1 through 4.3 are very similar and, thus, 𝑣𝐷𝑀𝐿 data were fitted to Equations 4.1 and 

4.3 only. Results showed that both exponential models present a good prediction for 𝑣𝐷𝑀𝐿 

(𝑅2 =0.96 and 0.97) in the range of 𝑤 used in this study. 

 

Table 4.8. Nonlinear models of the effects of soybean moisture content on dry matter loss rates. 

Mathematical model: 𝑣𝐷𝑀𝐿 = 𝛽1 exp(𝛽2𝑤)1 

𝑣𝐷𝑀𝐿 vs. 𝑤 Regression coefficients 𝑀𝑅𝐸 𝑆𝐸𝑟𝑒𝑔 𝐹 �̂�2 Residual 

plot 𝛽1 ± 𝜎𝛽1
 𝛽2 ± 𝜎𝛽2

 

Sorour and Uchino 

(2004) 

0.019 ± 0.009 0.090 ± 0.020 0.16 0.02 149.18 0.97 random 

This study 

 

0.064 ± 0.024 0.068 ± 0.024 0.15 0.02 149.31 0.96 random 

Mathematical model: 𝑣𝐷𝑀𝐿 = 𝛽1 exp(1 + 𝛽3𝑤) 

𝑣𝐷𝑀𝐿 vs. 𝑤 Regression coefficients 𝑀𝑅𝐸 𝑆𝐸 𝐹 �̂�2 Residual 

plot 𝛽1 ± 𝜎𝛽1
 𝛽3 ± 𝜎𝛽3

 

Sorour and Uchino 

(2004) 

0.007 ± 0.003 0.090 ± 0.020 0.16 0.02 149.18 0.97 random 

This study 

 

0.024 ± 0.009 0.068 ± 0.019 0.15 0.02 149.31 0.96 random 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

 A dynamic grain respiration measurement system (D-GRMS) was used to measure grain 

deterioration rates of 14 to 22% moisture content soybeans stored at 35ºC. Overall, 𝑣𝐶𝑂2, 𝑣𝐷𝑀𝐿 

and 𝑡0.5 results reported in this thesis research were higher than those previously reported in the 

literature because of the method of CO2 measurement used and soybean sample size. Most of the 

previous grain respiration studies were conducted using a static grain respiration measurement 

system (S-GRMS) which tends to predict a lower deterioration rate because of the limited 

oxygen supply for respiration. Nevertheless, 𝑣𝐶𝑂2, 𝑣𝐷𝑀𝐿 and 𝑡0.5 results were comparable to 

results from soybean respiration studies that utilized D-GRMS, albeit at lower storage 

temperatures (Rukunudin, 1997; Mendes et al., 2009). The quantification of the variability of 

𝑣𝐷𝑀𝐿, in the form of (𝑆𝐸𝑣𝐷𝑀𝐿
)

𝑝
 and (𝜎𝑣𝐷𝑀𝐿

)
𝑝
, was presented to show its utility in determining 

minimum significant difference to be detected in a statistical power analysis so that future grain 

respiration studies may be conducted in a robust manner. Finally, 𝑣𝐷𝑀𝐿 tended to increase 

exponentially with increasing 𝑤, based on data with 18 to 26% moisture content soybeans from 

Sorour and Uchino’s (2004) study, but the trend was asymptotic between 18 and 22% moisture 

content soybeans in this study. 

 For future work, it is recommended that more grain respiration data are collected for a 

wider range of 𝑤 and 𝑇 that would be typical and useful for soybean producing regions in low-

latitude countries. It would also be beneficial to find the correlation between 𝐷𝑀𝐿 and market 

grade. In this study, 𝑡0.5 was determined but no data were presented to show its correlation to 

market grade or quality factors, such as germination or lipid oxidation rates. Finally, the D-

GRMS, protocols, and statistical analyses of grain deterioration parameters presented in this 

study may be used with other cereal or oilseed commodities. For example, all wheat respiration 



 

49 

 

studies described in the literature have been conducted with S-GRMS, which provide important 

information for hermetic storage systems. However, since wheat is typically stored in bulk, 

aerated systems, respiration data collected in D-GRMS would be more appropriate towards the 

development a MAST guidelines for wheat crops. 
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APPENDIX A. DYNAMIC GRAIN RESPIRATION MEASUREMENT 

SYSTEM (D-GRMS) 

A.1. D-GRMS Instrumentation 

A.1.1. Fine adjustment of volumetric flow rate 

 Fine adjustment of the voltage delivered to the mass flow controller (Figure 3.1., Item 3) 

was adjusted using a digital potentiometer driven by a microcontroller (ATmega2560, Arduino, 

Ivrea, Italy) and the flow rate was displayed using an LCD digital display (Figure A.1).  

 

Figure A.1. Diagram of the circuit for fine adjustment of volumetric flow rate. All components 

share a common ground.  

  

The mass flow control program (listed below) utilized the open-source software by 

Arduino (IDE Version 1.5.5r2, Arduino, Ivrea, Italy) and 3 supporting libraries: SPI, 

LiquidCrystal_I2C, Wire. DigitalRead command was used to collect the information from the 
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momentary switches connected to the Pin 49 and 50 respectively, which were used to change the 

internal resistance of the digital potentiometer, resulting in a change of the voltage across this 

element. The voltage was then supplied to the remote control circuitry of the MFC which 

translated to flow rate level. The flow was kept constant with constant input voltage. The LCD 

connected to the SCL and SDA ports displayed the flow and the voltage in the MFC.  

Mass flow control program: 

#include <SPI.h> 

#include <Wire.h>  

#include <LiquidCrystal_I2C.h> 

// Set the LCD address to 0x27 for a 16 chars and 2 line display 

LiquidCrystal_I2C lcd(0x27, 16, 2); //LCD I2C address 

byte address = 0x00; 

int CS= 10; //chip select pin connection 

const int buttonPin_A = 50;    // pin assignment of switch A 

const int buttonPin_B = 49;    // pin assignment of switch B 

const int ledPin =  13;        // digital port for LED pin 

int buttonState_A = 0;         // variable for reading switch A status 

int buttonState_B = 0;         // variable for reading switch A status 

int count=0;                   //start counting from zero    

 

//creating characters for LCD 

uint8_t bar0_13[8] =  {B00000 , B00000 , B00000 , B00000 , B00000 , B00000 , 

B00000 ,}; 

uint8_t bar1_13[8] =  {B00000 , B00000 , B00000 , B00000 , B00000 , B00000 , 

B11111 ,}; 

uint8_t bar2_13[8] =  {B00000 , B00000 , B00000 , B00000 , B00000 , B11111 , 

B11111 ,}; 

uint8_t bar3_13[8] =  {B00000 , B00000 , B00000 , B00000 , B11111 , B11111 , 

B11111 ,}; 

uint8_t bar4_13[8] =  {B00000 , B00000 , B00000 , B11111 , B11111 , B11111 , 

B11111 ,}; 

uint8_t bar5_13[8] =  {B00000 , B00000 , B11111 , B11111 , B11111 , B11111 , 

B11111 ,}; 

uint8_t bar6_13[8] =  {B00000 , B11111 , B11111 , B11111 , B11111 , B11111 , 

B11111 ,}; 

uint8_t bar7_13[8] =  {B11111 , B11111 , B11111 , B11111 , B11111 , B11111 , 

B11111 ,}; 

 

uint8_t arrowup[8] =  {B00100 , B01110 , B10101 , B00100 , B00100 , B00100 , 

B00100 ,}; 

uint8_t arrowdown[8] = {B00100 , B00100 , B00100 , B00100 , B10101 , B01110 , 

B00100 ,}; 

 

//setup loop, runs once 

void setup() 

  { 

 

  Serial.begin(9600); 
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  // initialize the LED pin as an output: 

  pinMode(ledPin, OUTPUT); 

  // initialize the pushbutton switch pin as an input: 

  pinMode(buttonPin_A, INPUT);//read information from switch A as high   

    or low voltage. 

  pinMode(buttonPin_B, INPUT);// read information from switch B as   

     high or low voltage. 

  pinMode (CS, OUTPUT); // defining the output pin on the digital   

     potentiometer 

  SPI.begin(); //initializing the communication protocol with digital    

potentiometer 

  lcd.begin(); //starts LCD display 

 

//creating characters for  

  lcd.createChar(0,bar0_13); 

  lcd.createChar(1,bar1_13); 

  lcd.createChar(2,bar2_13); 

  lcd.createChar(3,bar3_13); 

  lcd.createChar(4,bar4_13); 

  lcd.createChar(5,bar5_13); 

  lcd.createChar(6,bar6_13); 

  lcd.createChar(7,bar7_13); 

  lcd.home(); 

//starting main loop   

} 

void loop() 

  { 

  //delay(1000); 

  // read the state of the pushbutton value: 

  buttonState_A = digitalRead(buttonPin_A); //read switch A 

  buttonState_B = digitalRead(buttonPin_B); //read switch B 

Serial.print("  Count: ");Serial.println(count); 

 

  if (buttonState_A == HIGH) //when switch A status is HIGH, increment   

     one count and increase the voltage that   

     leads to increase of 0.01 L/m. 

    { 

    Serial.println(" ");  

    if(count<128) 

      { 

      lcd.createChar(0, arrowup); 

      lcd.home(); 

      lcd.setCursor(11, 0);      

      lcd.write(0);   

      count++; 

      delay(200); 

      lcd.setCursor(11, 0);      

      lcd.print(" ");         

      } 

    digitalWrite(ledPin, HIGH); 

    } 

  else  

    if (buttonState_B == HIGH) //when switch B status is HIGH, increment  

      one count and increase the voltage that  

      leads to increase of 0.01 L/m. 
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      { 

      Serial.println(" "); 

    if(count>0) 

      { 

      lcd.createChar(0, arrowdown); 

      lcd.home(); 

      lcd.setCursor(11, 0);      

      lcd.write(0);  

      count--; 

      delay(200); 

      lcd.setCursor(11, 0);      

      lcd.print(" ");  

      } 

      // turn LED on: 

      digitalWrite(ledPin, HIGH); 

      lcd.clear(); 

      } 

  else  

    { 

    Serial.println(0); //in case of error, no voltage, the screen will be 

turned off 

    // turn LED off: 

    digitalWrite(ledPin, LOW);    

    } 

    if(count>=128) 

      { 

      lcd.backlight(); 

      lcd.setCursor(13, 0);   

      lcd.print("MAX ");  

      //delay(200); 

      //lcd.clear(); 

      } 

    else 

      { 

      if(count<=0) 

        { 

        lcd.backlight(); 

        lcd.setCursor(12, 0);   

        lcd.print(" MIN ");  

        //delay(200); 

        //lcd.clear(); 

        } 

      if(count>0 && count <128) 

        { 

        lcd.backlight(); 

        lcd.setCursor(12, 0); 

        lcd.print("    "); 

        lcd.setCursor(12, 0); 

        //lcd.write(int((count-1)*(7.0/128))); 

 

      if(round(7*(count+1)/128)<1) 

          { 

          lcd.setCursor(12, 0);   

          lcd.print(" ");   

          } 

        else 

          { 
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          lcd.write(round(7*(count+1)/128)); 

          } 

  

        Serial.print("%: "); 

        Serial.print(round(7*(count+1)/128)); 

 

        lcd.setCursor(13, 0); 

        lcd.print(((count*100)/128)); 

        lcd.setCursor(15, 0); 

        lcd.print("%"); 

        /*lcd.write(int(count*(7.0/128)));  

        lcd.setCursor(14, 0); 

        lcd.write(int(count*(7.0/128))); 

        lcd.setCursor(15, 0); 

        lcd.write(int(count*(7.0/128)));*/          

        } 

      } 

    digitalPotWrite(count); 

    lcd.backlight(); 

    lcd.setCursor(0, 0); 

    lcd.print("PWR: "); 

    lcd.print(count*(5.0/128)); 

    Serial.print("PWR: ");Serial.print((count*(5.0/128))); //prints the flow  

            value    

    lcd.setCursor(0, 1); 

    lcd.print("Flow Range: "); 

    lcd.print((count*(5.0/128))/2.5); 

    Serial.print("  Flow Range: ");Serial.print((count*(5.0/128))/2.5); 

    //delay(100); 

    //lcd.clear(); 

  } 

 

int digitalPotWrite(int value) 

  { 

  digitalWrite(CS, LOW); //status of digital potentiometer low 

  SPI.transfer(address); //SPI communication 

  SPI.transfer(value); 

  digitalWrite(CS, HIGH); //status of digital potentiometer high 

  } 

 

A.1.2. Temperature, relative humidity and CO2 monitoring 

𝑇, 𝜙, and 𝐶𝐶𝑂2
 were monitored immediately after humidification and at the exhaust 

(Figure 3.1). Monitoring after humidification ensured that the airstream entering the RC was at 

𝑇 = 35 ± 2ºC, 𝜙 = 𝜙𝑠𝑒𝑡  ± 5 %RH, and 𝐶𝐶𝑂2
≤ 200 ppm, where the setpoint 𝜙𝑠𝑒𝑡 = 79, 89, and 

92% for 𝑤 = 14, 18, and 22% moisture soybeans, respecitvely. At the exhaust, it was critical 

that 𝜙 = 0 %RH and 𝐶𝐶𝑂2
= 0 ppm, to ensure all moisture and CO2 were absorbed in the RC 
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dehumidifiers and RC CO2 scrubbers, respectively. 𝑇, 𝜙, and 𝐶𝐶𝑂2
 measurements were logged 

every 2 min onto a desktop computer using an ATmega microcontroller (Figure A.2).  

 

Figure A.2. Circuit diagram of the power supply, sensors, and data acquisition system for 

monitoring temperature, relative humidity, and CO2 concentration in D-GRMS.  

 

 The data acquisition program (listed below) utilized the open source software for Arduino 

and 3 supporting libraries: SPI, DHT, Wire. The Wire library allowed communication between 

I2C devices. The DHT library provided communication between the humidity and temperature 

sensor and the microcontroller. Inside the void loop, initially the program checked if the sensors 

were working and, in case a problem was identified, an error message was printed. From pins 5 

and 31 on the microcontroller, DHT library translated information into humidity (%) and 

temperature (°C).  From pins 12 and 13 on the microcontroller, the command readAnalog 
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provided the CO2 concentration reading from the Vaisala sensors. The program printed the 

readings from all the sensors on a serial monitor screen. 

Data acquisition program code: 

#include <SPI.h> 

#include <DHT.h> 

#include <Wire.h> 

 

//defining DHT 1 

dht DHT1; 

#define DHT11_PIN 5 

//defining DHT 2 

dht DHT2; 

#define DHT11_2_PIN 31 

 

//starting serial 

 

void setup() 

{ 

  Serial.begin(9600); 

//defining the order of values displayed 

 

  Serial.print("Set \tHumidity_1 (%)\tTemperature_1 (C) CO2_1 (ppm)"); 

  Serial.print("||\t"); 

  Serial.println("Set \tHumidity_2 (%) \tTemperature_2 (C) \tCO2_2 (ppm)"); 

} 

 

//mains loop 

void loop() 

{ 

// READ DATA 

  int chk1 = DHT1.read11(DHT11_PIN); //check if first Set of sensors is 

working 

  int chk2 = DHT2.read11(DHT11_2_PIN);//check if second Set of sensors is 

working 

//DHT1 check and reading 

  switch (chk1) 

    { 

    case DHTLIB_OK:   

                //Serial.print("OK,\t");  

                break; 

    case DHTLIB_ERROR_CHECKSUM:  

                Serial.print("Checksum error,\t");  

                break; 

    case DHTLIB_ERROR_TIMEOUT:  

                Serial.print("Time out error,\t");  

                break; 

    case DHTLIB_ERROR_CONNECT: 

        Serial.print("Connect error,\t"); 

        break; 

    case DHTLIB_ERROR_ACK_L: 

        Serial.print("Ack Low error,\t"); 

        break; 
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    case DHTLIB_ERROR_ACK_H: 

        Serial.print("Ack High error,\t"); 

        break; 

    default:  

                Serial.print("Unknown error,\t");  

                break; 

    } 

//DHT 2 check and reading 

 switch (chk2) 

  { 

    case DHTLIB_OK:   

                //Serial.print("OK,\t");  

                break; 

    case DHTLIB_ERROR_CHECKSUM:  

                Serial.print("Checksum error,\t");  

                break; 

    case DHTLIB_ERROR_TIMEOUT:  

                Serial.print("Time out error,\t");  

                break; 

    case DHTLIB_ERROR_CONNECT: 

        Serial.print("Connect error,\t"); 

        break; 

    case DHTLIB_ERROR_ACK_L: 

        Serial.print("Ack Low error,\t"); 

        break; 

    case DHTLIB_ERROR_ACK_H: 

        Serial.print("Ack High error,\t"); 

        break; 

    default:  

                Serial.print("Unknown error,\t");  

                break; 

    } 

//Vaisala 1 reading 

  int VAI1 = 0; 

  #define VAI1pin 12 

  VAI1 = map(analogRead(VAI1pin),0,1023,0,12200); 31 

//Vaisala 2 reading 

 int VAI2 = 0; 

  #define VAI2pin 13 

  VAI2 = map(analogRead(VAI2pin),0,1023,0,12200); 

// DISPLAY DATA 

  Serial.print("SET1\t"); 

  Serial.print(DHT1.humidity, 1); 

  Serial.print("\t"); 

  Serial.print(DHT1.temperature, 1); 

  Serial.print("\t"); 

  Serial.print(VAI1); 

  Serial.print("\t"); 

  Serial.print("||\t"); 

    Serial.print("SET2\t"); 

  Serial.print(DHT2.humidity, 1); 

  Serial.print("\t"); 

  Serial.print(DHT2.temperature, 1); 

  Serial.print("\t"); 

  Serial.println(VAI2); 

  delay(2000); 

}  
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A.2. Standard Operating Procedures (SOPs) 

University of Illinois at Urbana-Champaign Title: Setting up air supply scrubber 

Effective date: 01 October 2017 Document ID: D-GRMS-001 

Written by: L.R. Trevisan Approved by: R.S. Gates (supervisor) 

 

1.0. PURPOSE 

This SOP explains the protocol for setting up the air supply scrubber for the dynamic grain 

respiration measurement system (D-GRMS) located in Burnsides Research Laboratory. 

 

2.0. SCOPE 

This SOP describes how to prepare the air supply scrubber with Sodasorb® and clean and 

store the unit after each use.  

 

3.0. RESPONSIBILITY 

The supervisor will be responsible for training the personnel on proper use of D-GRMS and 

its components and implementing the protocol/procedure.  

 

4.0. MATERIALS AND EQUIPMENT 

4.1. Drierite Laboratory Air and Gas Drying Unit (Product No. 26800, W.A. Hammond 

Drierite Co., Ltd., Xenia, OH, USA) - The unit includes 1 molded polycarbonate 

column, 1 polycarbonate cap fitting (screw-top) with an o-ring gasket, 2 desiccant 

supports or perforated metal disks, 1 coil spring, and 1 wrench. 

4.2.Vincon Flexible PVC tubing – 6.35 mm (0.25 in) ID (Part No. ABH02017, Saint-

Gobain, Akron, OH, USA) or similar material with equivalent resistance. 

4.3.Connectors – In-line hose barbs, non-spill coupling insert (Product No. 60721, U.S. 

Plastics, Lima, OH, USA) or similar quick-disconnect coupler. 

4.4. CO2 absorbent – Sodasorb® (Product No. SODA-SORB-HP, Amron International, 

Vista, CA, USA) or similar material with equivalent absorbing capacity and particle 

size (e.g., granular). 

 

5.0. PROCEDURES 

5.1. Start with a clean and dry column. 

5.2. Check that the tubing attached to the column is secure and, on each end, a quick-

disconnect coupler insert is securely attached.  

5.3. Place the first perforated metal disk in the bottom of the column to create a plenum. 

5.4. Weigh 550 g Sodasorb®. Document the exact mass of Sodasorb® used in datasheet. 

5.5. Carefully pour the Sodasorb® into the column. 

5.6. Place the second perforated metal disk on top of the Sodasorb®, followed by the coil 

spring. 

5.7. Cover the filled column using the screw-top cap. Tighten cap using the supplied 

wrench. 
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5.8. Weigh the filled column three times, rotating the column 120º in between 

measurements. Record each weight and their averages. 

5.9. Place the filled column in between the mass flow controller and the first glycerol-

water reservoir of D-GRMS. Connect tubing using quick-disconnects couple  

 

6.0. PROCEDURE: CLEANING AND REPORTING 

6.1. After a grain respiration test, repeat Step 5.8. 

6.2. Dispose of spent Sodasorb® following chemical disposal guidelines by the UIUC 

Division of Research Safety. 

6.3. Wash the column, metal disks, coil spring, and cap with warm soapy water and let 

dry at room temperature.  

6.4. Check for scratches, cracks, and other defects in all components that would cause gas 

to leak in/out of the column. 

6.5. Store clean and dry units in a cabinet at room temperature. 

6.6. Record any issues with preparing, cleaning, and inspecting the column. If there are 

any issues, see corrective action (Section 7.0). 

 

7.0. CORRECTIVE ACTION 

7.1. When cracks or defects are found in the columns, notify the supervisor immediately. 

Do not use damaged columns in future grain respiration tests. 

7.2. The supervisor will take further corrective actions which may include repairing or 

replacing damaged materials. 

 

8.0. CHANGES FROM PREVIOUS VERSION 

8.1. SOP drafted on 01 July 2016. 

8.2. Reviewed, revised, and approved by supervisor on 01 October 2017. 
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University of Illinois at Urbana-Champaign Title: Preparing glycerol-water solutions 

Effective date: 01 October 2017 Document ID: D-GRMS-002 

Written by: L.R. Trevisan Approved by: R.S. Gates (supervisor) 

 

1.0. PURPOSE 

This SOP explains the protocol for preparing glycerol-water solutions for the dynamic grain 

respiration measurement system (D-GRMS) located in Burnsides Research Laboratory. 

 

2.0. SCOPE 

This SOP describes how to prepare glycerol-water solutions used to control the humidity of 

the airstream during a grain respiration test.  

 

3.0. RESPONSIBILITY 

The supervisor will be responsible for training the personnel on proper use of D-GRMS and 

its components and implementing the protocol/procedure.  

 

4.0. MATERIALS AND EQUIPMENT 

4.1. Plastic vacuum bottles – Heavy duty HDPE bottles with 83 mm cap, 2 L capacity 

(Product No. D1069702 Saint Gobain Performance, Akron, OH, USA) or similar 

vacuum bottle with the same volume capacity. 

4.2. Digital precision balance or scale – Ranges from 0 to 3100 g with 0.01 g resolution 

(Model iBalance i3100, MyWeigh, Phoenix, AZ, USA) or similar device with the 

same range and resolution. 

4.3. Stirring hot plate – Temperature range 30 to 540ºC and magnetic stirrer speed 60 to 

1200 rpm (Model No. G33500, Fisher Scientific, Hampton, NH, USA) or similar 

device that could heat solution to 50ºC and stir at 100-200 rpm. 

4.4. Magnetic stir bar and remover tool – Octagonal with flat surfaces, 12.7 mm (0.5 in) 

long (Product No. S717737, Fisher Scientific, Hampton, NH, USA) or similar device. 

4.5. Parafilm – 10.2 cm (4 in) wide (Product No. S37440, Fisher Scientific, Hampton, 

NH, USA) or similar material. 

4.6. Glass beakers –two 3000 ml beaker 

4.7. Glass bottle – 4.4 L capacity. 

4.8. Glycerol – Certified ACS grade (Fisher Scientific, Hampton, NH, USA). 

4.9. Deionized water 

 

5.0. PROCEDURES 

5.1. Use the table and equations in D-GRMS-002a to calculate individual masses of 

glycerol and water needed in a 2 L mixture to deliver desired relative humidity at the 

temperature of the grain respiration test. 

5.2. Weigh the amount of glycerol and water, according to results from Step 5.1, into 

separate 3000 ml beakers. 

5.3. Carefully pour the glycerol into the 4.4 L glass bottle.  
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5.4. Rinse the glycerol beaker with a portion of the deionized water weighed out in Step 

5.2. Transfer rinse solution to the vacuum bottle. Repeat 2-3 more times to transfer all 

of the glycerol into vacuum bottle.  

5.5. Pour any remaining water from Step 5.2 into the 4.4 L glass bottle.  

5.6. Gently drop the magnetic stir bar into the mixture. 

5.7. Seal the bottle with parafilm to prevent water loss due to evaporation.  

5.8. Place mixture on the stirring hot plate. Carefully set the temperature to 50°C and stir 

speed to 100-200 rpm. 

5.9. Let solution mix and warm up for 30 min. 

5.10. Remove mixture from hot plate and let it cool to room temperature. 

5.11. Pour mixture in equal parts into two vacuum bottles.  

5.12. Connect the bottles in series, submerge them in water bath “A”, and let them 

reach the set temperature prior to starting a grain respiration test. 

5.13. Check the resulting relative humidity and adjust by adding glycerol in small 

increments (100-1000 l at a time) to decrease humidity or by adding water in small 

increments (100-1000 l at a time) to increase humidity. 

 

6.0. PROCEDURE: FINAL STEPS AND REPORTING 

6.1. Record the date when a fresh glycerol-water solution was made. 

6.2. Glycerol-water solutions may only be re-used once. Store solutions for re-use at 4°C.  

6.3. Prior to re-use, check for molds or off-odors and test the resulting relative humidity. 

6.4. A solution that has been used for two grain respiration tests should be discarded by 

pouring it down the drain with copious amounts of water.  

6.5. Vacuum bottles and beakers should be washed with warm soapy water and let dry at 

room temperature.  

6.6. Check for scratches, cracks and other defects in vacuum bottles that could cause gas 

to leak in/out of the bottle prior to each use. 

6.7. Record any issues with preparing and re-using solutions. If there are any issues, see 

corrective action (Section 7.0).  

 

7.0. CORRECTIVE ACTION 

7.1. If the resulting relative humidity is below the desired humidity, calculate the amount 

of water needed to dilute the solution using information in D-GRMS-004a. Adjust 

accordingly by adding ½ the amount of water needed to each vacuum bottle. 

7.2. Discard any glycerol-water solution that shows signs of molding or emits off-odors.  

7.3. When cracks or defects are found in the bottles, notify the supervisor immediately. 

Do not use damaged bottles in future respiration tests. 

7.4. The supervisor will take further corrective actions which may include repairing or 

replacing damaged materials. 

 

8.0. CHANGES FROM PREVIOUS VERSION 

8.1. SOP drafted on 01 July 2016. 

8.2. Reviewed, revised, and approved by supervisor on 01 October 2017. 
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University of Illinois at Urbana-Champaign Title: Table and equations for making 

glycerol-water solutions 

Effective date: 01 October 2017 Document ID: D-GRMS-002a 

Written by: L.R. Trevisan Approved by: R.S. Gates (supervisor) 

 

1.0.PURPOSE 

This SOP provides a table and equations used to calculate the relative proportions of glycerol 

and water to make the mixture used for humidification in the dynamic grain respiration 

measurement system (D-GRMS) located in Burnsides Research Laboratory. 

 

2.0. SCOPE 

This SOP provides glycerol-water concentrations for soybean respiration tests involving 12 

to 22% moisture content soybeans to be stored at 25 to 45°C. 

 

3.0. RESPONSIBILITY 

The supervisor will be responsible for training the personnel on proper use of D-GRMS and 

its components and implementing the protocol/procedure. 

 

4.0.MATERIALS AND EQUIPMENT 

4.1.Calculator or spreadsheet 

4.2.Laboratory notebook and pen to record calculations 

 

5.0.PROCEDURES 

5.1.The following equations should be used to calculate the specific gravity (𝑆𝐺) and 

concentration (𝐶𝐶3𝐻8𝑂3
) of glycerol-water solutions: 

𝑆𝐺 = (−0.189𝜙𝑠𝑒𝑡 = 19.9)0.0806, where 𝜙𝑠𝑒𝑡 is the setpoint relative humidity in D-

GRMS and is equal to 𝜙𝑒 of the soybeans.  

𝐶𝐶3𝐻8𝑂3
= 383(𝑆𝐺 − 1) (% mass glycerol concentration) 

5.2.The total mass (𝑀𝑠𝑜𝑙𝑛) and volume (𝑉𝑠𝑜𝑙𝑛) of the solution are dependent on the mass 

and/or volume of the glycerol (𝑉𝐶3𝐻8𝑂3
) and water (𝑉𝐻2𝑂) to be mixed: 

𝑀𝑠𝑜𝑙𝑛 = 𝑉𝐻2𝑂(100𝜌𝐻2𝑂)(100 − 𝐶𝐶3𝐻8𝑂3
), where the density of water is 𝜌𝐻2𝑂 = 1 g 

mL-1. 

𝑉𝐶3𝐻8𝑂3
=

𝐶𝐶3𝐻8𝑂3𝑀𝑠𝑜𝑙𝑛

100𝜌𝐶3𝐻8𝑂3

, where 𝜌𝐶3𝐻8𝑂3
= 1.262 g mL-1. 

5.3. The table on the following page has been developed to ease calculations. 

5.4. 

6.0.PROCEDURES: FINAL STEPS AND REPORTING 

6.1. Record calculations with Step 6.1 in D-GRMS-002. 

 

7.0.CORRECTIVE ACTION 

7.1.Record calculations with Step 7.1 in D-GRMS-002. 
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𝑤 

(% w.b.) 

𝑇 

(°C) 

𝜙𝑒 

(%) 

𝑆𝐺 𝐶𝐶3𝐻8𝑂3
 

(%) 

𝑉𝐻2𝑂 

(mL) 

𝑀𝑠𝑜𝑙𝑛 

(g) 

𝑉𝐶3𝐻8𝑂3
 

(mL) 

𝑉𝑠𝑜𝑙𝑛 

(mL) 

12 25 65 1.18 68.09 1301 4076.85 2199.56 3500.56 

 30 66 1.18 67.18 1335 4067.05 2164.86 3499.86 

 35 68 1.17 65.28 1403 4041.32 2090.59 3493.59 

14 25 77 1.14 55.41 1767 3963.13 1740.20 3507.20 

 30 78 1.14 54.14 1810 3947.16 1693.47 3503.47 

 35 79 1.13 52.83 1855 3932.66 1646.33 3501.33 

18 25 87 1.11 40.27 2280 3817.21 1218.07 3498.07 

 30 88 1.10 38.36 2345 3804.14 1156.22 3501.22 

 35 89 1.09 36.34 2410 3785.64 1090.05 3500.03 

22 25 91 1.08 31.93 2550 3746.40 948.02 3498.02 

 30 92 1.08 29.52 2630 3731.32 872.68 3502.68 

 35 93 1.07 21.10 2750 3763.16 802.82 3494.82 

  

8.0.CHANGES FROM PREVIOUS VERSION 

8.1. SOP drafted on 1 October 2017. 

8.2. Reviewed, revised, and approved by supervisor on 01 October 2017. 
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University of Illinois at Urbana-Champaign Title: Setting up RC CO2 dehumidifiers 

Effective date: 01 October 2017 Document ID: D-GRMS-003 

Written by: L.R. Trevisan Approved by: R.S. Gates (supervisor) 

 

1.0. PURPOSE 

This SOP explains the protocol for setting up the respiration chamber (RC) dehumidifiers for 

the dynamic grain respiration measurement system (D-GRMS) located in Burnsides Research 

Laboratory. 

 

2.0. SCOPE 

This SOP describes how to prepare two RC dehumidifiers, clean, and store the unit after each 

use.  

 

3.0. RESPONSIBILITY 

The supervisor will be responsible for training the personnel on proper use of D-GRMS and 

its components and implementing the protocol/procedure.  

 

4.0. MATERIALS AND EQUIPMENT 

4.1. Drierite® Laboratory Air and Gas Drying Units (Product No. 26800, W.A. 

Hammond Drierite Co., Ltd., Xenia, OH, USA) – Two units are needed. Each unit 

includes 1 molded polycarbonate column, 1 polycarbonate cap fitting (screw-top) 

with an o-ring gasket, 2 desiccant supports or perforated metal disks, 1 coil spring, 

and 1 wrench. 

4.2.Vincon Flexible PVC tubing – 6.35 mm (0.25 in) ID (Part No. ABH02017, Saint-

Gobain, Akron, OH, USA) or similar material with equivalent resistance. 

4.3. Connectors – In-line hose barbs, non-spill coupling body and insert (Product Nos. 

60719 and 60721, U.S. Plastics, Lima, OH, USA) or similar quick-disconnect 

coupler. 

4.4. Valves – Three-way PVC ball valves with 6.35mm hosebarb end connectors (Product 

No. 22264, U.S. Plastics, Lima, OH, USA). 

4.5.Desiccant – Drierite®, 8 mesh, with indicator (Product No. 26802, W.A. Hammond 

Drierite Co., Ltd., Xenia, OH, USA) or similar material. 

 

5.0. PROCEDURES 

5.1. Start with a clean and dry column. 

5.2. Check that the tubing attached to the column are secure and, on each end, a quick-

disconnect coupler body is securely attached.  

5.3. Place the first perforated metal disk in the bottom of the column to create a plenum. 

5.4.Weigh 500 g desiccant and record measurement in datasheet. 

5.5. Carefully pour the desiccant into the column. 

5.6.Place the second perforated metal disk on top of the desiccant, followed by the coil 

spring. 
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5.7.Cover the filled column using the screw-top cap. Tighten cap using the supplied 

wrench. 

5.8.Weigh the filled column three times, rotating the column 120º in between 

measurements. Record each weight and their averages. 

5.9.Repeat Steps 5.1 to 5.9 to make a second RC scrubber column. 

5.10. Install the two RC dehumidifiers in parallel in the D-GRMS immediately 

following the RC using two valves and set up the valves so that airstream passes 

through the first RC dehumidifier (designated as “A”; the second scrubber is 

designated as “B”). 

 

6.0. PROCEDURE: CLEANING AND REPORTING 

6.1. After a grain respiration test, repeat Step 5.8. 

6.2. Regenerate spent desiccant at 210ºC for 1 h.  

6.3.Wash the columns, metal disks, coil springs, caps, and separators with warm soapy 

water. Be sure to scrub any traces of mold. Let dry at room temperature.  

6.4. Check for scratches, cracks, and other defects in all components that would cause gas 

to leak in/out of the column. 

6.5. Store clean and dry units in a cabinet at room temperature. 

6.6. Record any issues with preparing, cleaning, and inspecting the column. If there are 

any issues, see corrective action (Section 7.0). 

 

7.0. CORRECTIVE ACTION 

7.1. When cracks or defects are found in the columns, Sodasorb®, and desiccant, notify 

the supervisor immediately. Do not use damaged columns, Sodasorb®, or desiccant 

future grain respiration tests. 

7.2. The supervisor will take further corrective actions which may include repairing or 

replacing damaged materials. 

 

8.0. CHANGES FROM PREVIOUS VERSION 

8.1. SOP drafted on 01 July 2016. 

8.2. Reviewed, revised, and approved by supervisor on 01 October 2017. 
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University of Illinois at Urbana-Champaign Title: Setting up RC CO2 scrubbers 

Effective date: 01 October 2017 Document ID: D-GRMS-004 

Written by: L.R. Trevisan Approved by: R.S. Gates (supervisor) 

 

1.0. PURPOSE 

This SOP explains the protocol for setting up the RC CO2 scrubbers for the dynamic grain 

respiration measurement system (D-GRMS) located in Burnsides Research Laboratory. 

 

2.0. SCOPE 

This SOP describes how to prepare two RC CO2 scrubbers, clean, and store the units after 

each use.  

 

3.0. RESPONSIBILITY 

The supervisor will be responsible for training the personnel on proper use of D-GRMS and 

its components and implementing the protocol/procedure.  

 

4.0. MATERIALS AND EQUIPMENT 

4.1. Drierite® Laboratory Air and Gas Drying Units (Product No. 26800, W.A. 

Hammond Drierite Co., Ltd., Xenia, OH, USA) – Two units are needed. Each unit 

includes 1 molded polycarbonate column, 1 polycarbonate cap fitting (screw-top) 

with an o-ring gasket, 2 desiccant supports or perforated metal disks, 1 coil spring, 

and 1 wrench. 

4.2. Separators – Each separator is custom-made of a plastic cylinder (2.5 cm ID x 1.5 

height) with a plastic perforated disk (40% open, 0.3 cm dia. holes) on each end. One 

separator per column is needed for a total of two separators.  

4.3. Oven - Convection oven (Product No. VWR-U50, VWR, Radnor, PA, USA), set at 

103°C, or similar equipment. 

8.3. Vincon Flexible PVC tubing – 6.35 mm (0.25 in) ID (Part No. ABH02017, Saint-

Gobain, Akron, OH, USA) or similar material with equivalent resistance. 

4.4. Connectors – In-line hose barbs, non-spill coupling body and insert (Product Nos. 

60719 and 60721, U.S. Plastics, Lima, OH, USA) or similar quick-disconnect 

coupler. 

4.5. Valves – Three-way PVC ball valves with 6.35mm hosebarb end connectors (Product 

No. 22264, U.S. Plastics, Lima, OH, USA). 

4.6. CO2 absorbent – Sodasorb® (Product No. SODA-SORB-HP, Amron International, 

Vista, CA, USA) or similar material with equivalent absorbing capacity and particle 

size (e.g., granular). 

4.7. Desiccant – Drierite®, 8 mesh, with indicator (Product No. 26802, W.A. Hammond 

Drierite Co., Ltd., Xenia, OH, USA) or similar material. 
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5.0. PROCEDURES 

5.1. Start with a clean and dry column. 

5.2. Check that the tubing attached to the column are secure and, on each end, a quick-

disconnect coupler body is securely attached.  

5.3. Place the first perforated metal disk in the bottom of the column to create a plenum. 

5.4. Weigh 150 g Sodasorb® and record measurement in datasheet. 

5.5. Weigh 300 g desiccant and record measurement in datasheet. 

5.6. Carefully pour the Sodasorb® into the column. 

5.7. Place one separator on top of the Sodasorb®. 

5.8. Fill the remaining height of the column with the desiccant. 

5.9. Place the second perforated disk on top of the desiccant, followed by the coil spring. 

5.10. Cover the filled column using the screw-top cap. Tighten cap using a wrench. 

5.11. Weigh the filled column three times, rotating the column 120º in between 

measurements. Record each weight and their averages. 

5.12. Repeat Steps 5.1 to 5.11 to make a second RC scrubber column. 

5.13.  Install the two RC scrubbers in parallel in the D-GRMS using two valves and set 

up the valves so that airstream passes through the first RC scrubber (designated as 

“A”; the second scrubber is designated as “B”). 

 

6.0. PROCEDURE: CLEANING AND REPORTING 

6.1. After a grain respiration test, repeat Step 5.11. 

6.2. Regenerate spent desiccant at 210ºC for 1 h.  

6.3.Dispose of spent Sodasorb® following chemical disposal guidelines by the UIUC 

Division of Research Safety. 

6.4. Wash the columns, metal disks, coil springs, caps, and separators with warm soapy 

water. Be sure to scrub any traces of mold. Let dry at room temperature.  

6.5. Check for scratches, cracks, and other defects in all components that would cause gas 

to leak in/out of the column. 

6.6. Store clean and dry units in a cabinet at room temperature. 

6.7. Record any issues with preparing, cleaning, and inspecting the column. If there are 

any issues, see corrective action (Section 7.0). 

 

7.0. CORRECTIVE ACTION 

7.1. When cracks or defects are found in the columns, Sodasorb®, and desiccant, notify 

the supervisor immediately. Do not use damaged columns, Sodasorb®, or desiccant 

future grain respiration tests. 

7.2. The supervisor will take further corrective actions which may include repairing or 

replacing damaged materials. 

 

8.0. CHANGES FROM PREVIOUS VERSION 

8.1. SOP drafted on 01 July 2016. 

8.2. Reviewed, revised, and approved by supervisor on 01 October 2017. 
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University of Illinois at Urbana-Champaign Title: Preparing soybeans for a grain 

respiration test 

Effective date: 01 October 2017 Document ID: D-GRMS-005 

Written by: L.R. Trevisan Approved by: R.S. Gates (supervisor) 

 

1.0. PURPOSE 

This SOP explains the protocol for preparing soybeans for a grain respiration test. 

 

2.0. SCOPE 

This SOP describes how to clean and re-wet soybeans for a grain respiration test.  

 

3.0. RESPONSIBILITY 

The supervisor will be responsible for training the personnel on proper use of D-GRMS and 

its components, preparing samples, and implementing the protocol/procedure.  

 

4.0. MATERIALS AND EQUIPMENT 

4.1. Aluminum grain sieve – 33 cm ID with slotted screens of 0.39 cm x 1.9 cm to 

remove foreign materials and splits (Grainman 0.39 cm x 1.9 cm, Miami, FL, USA). 

4.2. Handheld digital moisture meter (Model No. SW16060 Moisture Check, John Deere 

Co., City, State, USA) or similar device. 

4.3. Digital precision balance or scale – Ranges from 0 to 3100 g with 0.01 g resolution 

(Model iBalance i3100, MyWeigh, Phoenix, AZ, USA) or similar device with the 

same range and resolution. 

4.4. Roller mixer (Model No. Scilogex MX-T6-S, Rocky Hill, CT, USA) or similar 

device. 

4.5. Plastic bottle – Nalgene 2 L capacity bottle (Model No. 2202-0005, U.S. Plastics, 

Lima Ohio, OH, USA) and wrapped with 2-3 rubber bands or similar device. 

4.6. Glass beaker, 100 ml capacity 

4.7. Plastic funnel – 32 oz. Polyethylene Funnel 6-3/8” Dia. x 7-1/8”H, (Model No. 

832WN, U.S. Plastics, Lima Ohio, OH, USA). 

4.8. Aluminum tray – 92x62x3 cm 

4.9. Timer – Digital compact timer (Product No. 5806, Taylor, Oak Brooks, IL). 

4.10. Soybeans (Pioneer 28T33R) – 12-14% (w.b.) moisture content and stored at 4°C. 

4.11. Deionized water 

 

5.0. PROCEDURES 

5.1. Remove approximately 3 kg of soybeans from storage.  

5.2. Clean by hand using sieves to remove foreign materials, split, broken, and damaged 

seeds.  

5.3. Weigh the clean soybeans and record measurement (𝑚𝑠𝑜𝑦,0).  

5.4. Let the soybeans stand at room temperature for 30-40 min. 

5.5. In triplicates, estimate the soybean moisture content using the handheld digital 
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moisture meter and record the average measurement (�̂�𝑠𝑜𝑦,0). 

5.6. Calculate the amount of water (𝑚𝐻2𝑂) needed to achieve desired moisture content 

(�̂�𝑠𝑜𝑦,1) using the following equation: 

𝑚𝐻2𝑂 = 𝑚𝑠𝑜𝑦,0 (
�̂�𝑠𝑜𝑦,1 −  �̂�𝑠𝑜𝑦,0

100 −  �̂�𝑠𝑜𝑦,1
) 

5.7. Weigh out the amount of water needed, and 10 g extra, using a glass beaker and 

digital scale.  

5.8.Carefully transfer clean soybeans into plastic bottle and, using a plastic funnel, add 

deionized water according to clean soybeans.   

5.9. Set filled bottle on its side on the roller mixer. Set mixer to 60 rpm and let the 

soybeans mix with water for 60 min at room temperature. 

5.10.  Spread a thin layer of soybeans on aluminum trays and let stand at room 

temperature to air-dry until �̂�𝑠𝑜𝑦,1 is reached, according to the digital handheld 

moisture meter. When �̂�𝑠𝑜𝑦,1 is reached, record an average moisture measurement 

using three samples. 

5.11. Mix the air-dried soybeans by hand on the tray and remove three samples (25-30 

g each) for a gravimetric moisture content measurement (see Document ID: D-

GRMS-006).  

 

6.0. PROCEDURE: FINAL STEPS AND REPORTING 

6.1. Record all weight measurements and calculations in an electronic datasheet 

designated for the specific grain respiration test.  

6.2. Set aside 400 g of excess soybeans for future soybean quality tests. 

6.3. Discard all foreign materials, split, broken, damaged, and any remaining excess 

soybeans. 

6.4. Check for molding and other defects in the soybeans after retrieval from storage.  

6.5. Record any issues with cleaning and re-wetting soybeans. If there are any issues, see 

corrective action (Section 7.0). 

 

7.0. CORRECTIVE ACTION 

7.1. When mold or defects are found in soybeans retrieved from storage, notify the 

supervisor immediately. Do not use any soybean with visible molds or emit off-odors 

in grain respiration tests.  

7.2. The supervisor will take further corrective actions which may include discarding 

soybeans from storage. 

 

8.0. CHANGES FROM PREVIOUS VERSION 

8.1. SOP drafted on 01 July 2016. 

8.2. Step 4.1 revised to include the use of two screens to clean soybeans. 

8.3. Reviewed, revised, and approved by supervisor on 01 October 2017. 
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University of Illinois at Urbana-Champaign Title: Gravimetric measurement of grain 

moisture content 

Effective date: 01 October 2017 Document ID: D-GRMS-006 

Written by: L.R. Trevisan Approved by: R.S. Gates (supervisor) 

 

1.0. PURPOSE 

This SOP explains the protocol for determining soybean moisture content according to 

ASABE Standard S352.2 (R2017). 

 

2.0. SCOPE 

This SOP describes how to determine moisture content of soybeans before and after each 

grain respiration test.  

 

3.0. RESPONSIBILITY 

The supervisor will be responsible for training the personnel on proper use of D-GRMS and 

its components, preparing samples, and implementing the protocol/procedure.  

 

4.0. MATERIALS AND EQUIPMENT 

4.1. Convection oven (Product No. VWR-U50, VWR, Radnor, PA, USA), set at 103°C, 

or similar equipment.  

4.2. Digital precision balance or scale – Ranges from 0 to 3100 y g with 0.01 g resolution 

(Model iBalance i3100, MyWeigh, Phoenix, AZ, USA) or similar device with the 

same range and resolution. 

4.3.Desiccator cabinet with silica gel desiccant. 

4.4. Aluminum weighing or moisture dishes – 4 oz utility cup full curl (Product No. 

42330, Pactiv, Lake Forest, IL, USA), or similar materials. 

4.5. Timer – Digital compact timer (Product No. 5806, Taylor, Oak Brooks, IL). 

4.6. Soybeans (Pioneer 28T33R) – 12-14% (w.b.) moisture content and stored at 4°C. 

 

5.0. PROCEDURES 

5.1. Label three aluminum moisture dishes and label each with a unique ID. For example, 

“Test 1A-1a, Test 1A-2a, and Test 1A-3a” labels are for three samples for Test 1. The 

uppercase letters denote whether samples were taken (A) before and (B) after a grain 

respiration test. Lowercase letters denote whether samples were filled with (a) wet or 

(b) oven-dried soybeans. 

5.2. Tare the empty digital scale. Place dish on the scale and record its mass (e.g., 

𝑚1𝐴, 𝑚2𝐴, 𝑚3𝐴). 

5.3. Without touching or moving the dish, gently pour one of the re-wetted soybean 

samples (see Document ID: D-GRMS-005, Step 5.11). Record the total mass of the 

dish with wet soybeans (e.g., 𝑚1𝐴−1𝑎, 𝑚1𝐴−2𝑎, 𝑚1𝐴−3𝑎). Carefully remove dish with 

wet soybeans from the scale. 

5.4. Repeat Steps 5.2 and 5.3 for the two remaining re-wetted soybean samples. 
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5.5. Place the three filled dishes on an aluminum tray and dry the beans in a convection 

oven set at 103°C for 72 h. 

5.6. Remove the tray from the oven and cool in a desiccator cabinet with active desiccant 

for 20-30 min. 

5.7. Carefully remove from cabinet and quickly weigh each dish’s dry weight (e.g., 

𝑚1𝐴−1𝑏 , 𝑚1𝐴−2𝑏 , 𝑚1𝐴−3𝑏). 

5.8. For sample 1, calculate the following: 

mass of wet soybeans:   𝑚𝑠𝑜𝑦,1𝑎 = 𝑚1𝐴−1𝑎 − 𝑚1𝐴 

mass of dry matter:   𝑚𝐷𝑀,1 = 𝑚1𝐴−1𝑎 − 𝑚1𝐴−1𝑏 

mass of moisture removed:  𝑚𝐻2𝑂,1 = 𝑚1𝐴−1𝑎 − 𝑚1𝐴 − 𝑚𝐷𝑀,1 

moisture content of soybean sample: 𝑤𝑠𝑜𝑦,1𝑎 =
𝑚𝐻2𝑂,1

𝑚𝑠𝑜𝑦,1𝑎
 

5.9. Repeat Step 5.8 for the other two soybean samples. 

5.10. Calculate the average moisture content of soybeans taken before a grain 

respiration test: 

�̅�𝑠𝑜𝑦,1 =
𝑤𝑠𝑜𝑦,1𝑎 + 𝑤𝑠𝑜𝑦,2𝑎 + 𝑤𝑠𝑜𝑦,3𝑎

3
 

5.11. To determine average moisture content of samples taken after a grain respiration 

test, repeat Steps 5.1 to 5.10 taking care to label samples appropriately. 

 

6.0. PROCEDURE: FINAL STEPS AND REPORTING 

6.1. Record all weight measurements and calculations in an electronic datasheet 

designated for the specific grain respiration test.  

6.2. Record any issues with determining moisture content of soybeans gravimetrically. If 

there are any issues, see corrective action (Section 7.0). 

 

7.0. CORRECTIVE ACTION 

7.1. Pay attention to calibration, drift, bias, etc. issues with the digital scale. Be sure to 

use the same digital scale for all weight measurements throughout a grain respiration 

study (not just individual tests or experiments). When scale issues arise, notify the 

supervisor immediately.  

7.2. The supervisor will take further corrective actions which may include re-calibrating 

or replacing the digital scale. 

 

8.0. CHANGES FROM PREVIOUS VERSION 

8.1. SOP drafted on 01 July 2016. 

8.2. Reviewed, revised, and approved by supervisor on 01 October 2017. 
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University of Illinois at Urbana-Champaign Title: Running a grain respiration test 

Effective date: 01 October 2017 Document ID: D-GRMS-007 

Written by: L.R. Trevisan Approved by: R.S. Gates (supervisor) 

 

1.0. PURPOSE 

This SOP explains the protocol for running a grain respiration test.  

 

2.0. SCOPE 

This SOP describes how to set-up D-GRMS prior to starting a test, collect and measure 

respired CO2 by the soybeans, calculate dry matter loss over time, end the test, and clean up. 

 

3.0. RESPONSIBILITY 

The supervisor will be responsible for training the personnel on proper use of D-GRMS and 

its components, preparing samples, and implementing the protocol/procedure.  

 

4.0. MATERIALS AND EQUIPMENT 

4.1. D-GRMS with air conditioning and flow management, grain storage, moisture and 

CO2 absorption, and instrumentation sections (see Figure 3.1). 

4.2. Air supply CO2 scrubber (qty = 1) prepared according to Document No. D-GRMS-

001. 

4.3. RC CO2 scrubbers (qty = 2) prepared according to Document No. D-GRMS-002. 

4.4. RC dehumidifiers (qty = 2) prepared according to Document No. D-GRMS-003. 

4.5. Glycerol-water solution (qty = 4 L) prepared according to Document No. D-GRMS-

004. 

4.6. Clean, re-wetted soybeans (qty = 1.8 kg) prepared according to Document No. D-

GRMS-005. 

4.7. Digital precision balance or scale – Ranges from 0 to 3100 g with 0.01 g resolution 

(Model iBalance i3100, MyWeigh, Phoenix, AZ, USA) or similar device with the 

same range and resolution. 

4.8. Power supply – Regulated power supply 24V (Model No. PSR-2/24, EMCO, Allen, 

TX, USA) for mass flow controller and Vaisala sensors. 

4.9. Power supply (110 Vac) for water baths, lamp bulb, heat tape. 

4.10.  Glass beaker, 3000 ml capacity 

4.11. Aluminum tray, 92 x 62 x 3 cm. 

 

5.0. PROCEDURES 

5.1. Turn ON all system components of the D-GRMS. Allow water baths to reach test 

temperatures. 

5.2. Open electronic datasheet template and save the worksheet using a unique name that 

denotes the specific grain respiration test (e.g., 14%-35C-rep1). 

5.3. Install air supply CO2 scrubber, RC CO2 scrubbers, RC dehumidifiers, and glycerol-

water solutions in the D-GRMS following their respective SOPs. 
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5.4. Weigh 1.8 kg of clean, re-wetted soybeans. Record actual weight (𝑚𝑠𝑜𝑦,1) in the 

datasheet. 

5.5. Using the moisture content of the soybeans (𝑤𝑠𝑜𝑦,1), estimate the mass of dry solids 

of the soybeans: 

𝑚𝐷𝑀,1 = 𝑚𝑠𝑜𝑦,1 (1 − 
𝑤𝑠𝑜𝑦,1

100
) 

5.6. Carefully pour beans into the RC. Cover the RC, secure the lid, and install it in the 

D-GRMS. 

5.7.  Turn ON pressure regulator valve of the air supply. Check flow rate as indicated on 

the LCD display of the Arduino-based fine adjustment of the mass flow controller. If 

𝑄 ≠ 0.50 ± 0.02 L min-1, adjust by tuning the digital potentiometer accordingly by 

pressing the buttons on the top of the controller. 

5.8. Check all components, tubing, and insulation of the assembled D-GRMS for any 

cracks, loose connections, or other defects that could allow gas to leak in/out of the 

system during a test.  

5.9. For 10 min, let the compressed air flow through the entire system to flush out air and 

CO2 present in the tubing initially. 

5.10.  Turn ON the serial monitor of the Arduino software to start recording 

temperature, relative humidity, and CO2 levels at the inlet of the respiration chamber 

(RC) and at the exhaust of the D-GRMS. 

5.11.  After 10 min, check the temperature, relative humidity, and CO2 levels. If 

temperature and relative humidity are off their limits, adjust water bath thermostats 

and glycerol-water solution concentration, respectively. If CO2 levels are off their 

limits, abort the test by turning OFF all system components. 

5.12. Record the time when desired test conditions have been achieved.  

5.13. Let the system run for 12-14 h undisturbed. During this period, the soybeans are 

acclimating to their new storage environment.  

5.14. Quickly divert airflow from RC CO2 scrubber A to RC CO2 scrubber B. 

5.15. Detach scrubber A from D-GRMS. Determine its average weight from three 

measurements, taking care to rotate the scrubber 120o in between measurements. 

Record all measurements and calculations in an electronic datasheet, along with the 

time of measurement. 

5.16. Install scrubber A back into D-GRMS. 

5.17. After 2 h, divert airflow from scrubber B to scrubber A.  

5.18. Repeat Steps 5.14 and 5.15 with scrubber B. 

5.19. Conduct weight measurements every 2 h during the daytime, alternating between 

the two scrubbers each time. 

5.20. All weight measurements represent the accumulated respired CO2 in the 

scrubbers. Normalize each weight measurement to 𝑚𝐷𝑀,1. 

5.21. When 22 g CO2 (kg dry beans)-1 is reached, terminate the grain respiration test. 

 

6.0. PROCEDURE: FINAL STEPS AND REPORTING 

6.1. Record all weight measurements, time of measurements, and calculations in an 
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electronic datasheet designated for the specific grain respiration test. 

6.2. At the end of each test, turn OFF all system components and remove the lid of RC.  

6.3. Place a 3000 L glass beaker on a digital scale. Tare the weight.  

6.4. Gently transfer soybeans into the beaker to determine and record its weight. 

6.5. Spread the soybeans onto an aluminum tray. Mix manually by hand and retrieve 

three samples (25-30 g each). 

6.6. Determine the moisture content of the soybeans gravimetrically following procedures 

outlined in Document No. D-GRMS-0006. 

6.7. Set aside 400 g of soybeans for future quality tests. Discard remaining soybeans 

following disposal guidelines by the UIUC Division of Research Safety.  

6.8. Record any issues encountered during a grain respiration test. If there are any issues, 

see corrective action (Section 7.0). 

 

7.0. CORRECTIVE ACTION 

7.1. Pay attention to calibration, drift, bias, etc. issues with the digital scale. Be sure to 

use the same digital scale for all weight measurements throughout a grain respiration 

study (not just individual tests or experiments). When scale issues arise, notify the 

supervisor immediately.  

7.2. Pay attention to all sensor readings. If temperature, relative humidity and flow rate 

stray from their limits, make adjustments accordingly. Note adjustments in the 

electronic datasheets and notify supervisor immediately. If CO2 levels go off limits, 

abort grain respiration test and notify supervisor immediately. 

7.3. The supervisor will take further corrective actions which may include testing for 

leaks and repairing or replacing system components, 

 

8.0. CHANGES FROM PREVIOUS VERSION 

8.1. SOP drafted on 01 July 2016. 

8.2. Reviewed, revised, and approved by supervisor on 01 October 2017. 
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A.3. Preliminary tests: Performance of respiration chamber (RC) CO2 scrubbers 

Materials and Methods 

A series of preliminary tests was conducted to test the effect of CO2 loading rate (𝑣𝐶𝑂2
) 

and moisture content of the CO2 absorbent (Sodasorb®, 𝑤𝑎𝑏𝑠) on the performance of RC CO2 

scrubbers used in the D-GRMS, specifically, on their breakthrough times (𝑡𝑏). To vary 𝑤𝑎𝑏𝑠, 

Sodasorb® was exposed to a desiccant (Catalog No. 21001, WA Hammond Drierite Co., Ltd., 

Xenia, OH, USA) for 0 to 5 days. At the end of the drying period, a 30 g subsample of the 

Sodasorb® was assessed for 𝑤𝑎𝑏𝑠 by drying in a convection oven at 103°C for 24 h. Afterwards, 

a range of RC CO2 scrubbers with varying 𝑤𝑎𝑏𝑠 was prepared and tested. 

A series of certified tanks of CO2 (0.1, 1, or 10% CO2, Aigas, Danville, IL, USA) was 

coupled to the mass flow controller and used to deliver CO2 at known 𝑣𝐶𝑂2
 to an RC CO2 

scrubber for a period of time 𝑡 (Figure A.3). 𝑇, 𝜙, and 𝐶𝐶𝑂2
 were monitored at the exhaust to 

ensure 𝑇 was uniform throughout the testing period and 𝜙 and 𝐶𝐶𝑂2
 were zero, indicating all CO2 

and moisture produced by the Sodasorb® during the absorption process were retained in the 

scrubber.  

 

Figure A.3. Experiment setup in testing performance of an RC CO2 scrubber. Instrumentation 

details are provided in Figures A.1 and A.2. 
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 With a constant and known 𝑣𝐶𝑂2
 during testing period 𝑡, the theoretical accumulated 

mass of CO2 to be retained in the scrubber could be determined:  

∑ �̂�𝐶𝑂2
= 𝑣𝐶𝑂2

𝑡  

The initial mass of the scrubber was recorded. Any changes to it would be attributable to the 

actual ∑ 𝑚𝐶𝑂2
 in the scrubber. Hence, the CO2 gas supply was turned OFF periodically during 

testing so that the scrubber could be removed and weighed using a digital scale (Model i3100, 

MyWeight, Phoenix, AZ). Both 𝑡 and ∑ 𝑚𝐶𝑂2
 were recorded in an electronic datasheet. After 

each weighing, the scrubber was put back in place and testing resumed. Tests ended when the 

scrubber reached 𝑡𝑏 or 8 h had passed since the start of a test.  

 Results were analyzed by comparing ∑ 𝑚𝐶𝑂2
 to ∑ �̂�𝐶𝑂2

 and performing a linear 

regression using the Data Analysis ToolPak in MS Excel (Version 2016, Microsoft Corporation, 

Redmond, Washington, USA). Slope and intercept values that were not statistically different 

from unity and zero, respectively, indicated good agreement between ∑ 𝑚𝐶𝑂2
 and ∑ �̂�𝐶𝑂2

.  

Results and discussion 

The RC CO2 scrubbers were tested at loading rates 𝑣𝐶𝑂2
 of 0.1 to 23.7 g CO2 h

-1. The 

slopes, ∑ 𝑚𝐶𝑂2
∑ �̂�𝐶𝑂2

⁄ , of the calibration curves were nearly unity for 𝑣𝐶𝑂2
< 10 g CO2 h

-1 and 

intercepts were nearly zero, indicating a high efficacy for the scrubber (Table A.1). As 𝑣𝐶𝑂2
 

increased from 10 g CO2 h
-1, slopes decreased from 1.0 to 0.90 and intercepts became 

significantly different from zero, indicating failure of the RC CO2 scrubber to capture, or absorb, 

all incoming CO2. As 𝑣𝐶𝑂2
 increased, 𝑡𝑏 decreased. The efficacy of the RC CO2 scrubber was 

also tested for 1.83% ≤ 𝑤𝑎𝑏𝑠 ≤ 12.04%. Results showed that when 𝑤𝑎𝑏𝑠 ≤ 10%, 

∑ 𝑚𝐶𝑂2
∑ �̂�𝐶𝑂2

⁄ ≠ 1 and intercept was non-zero (Table A.1). Hence, 𝑤𝑎𝑏𝑠 must be maintained 

above 10% to function properly. 
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Table A.1. Results from testing performance of RC CO2 scrubbers 

Test 

No. 

Test Inputs Test Results 

𝑤𝑎𝑏𝑠 𝐶𝐶𝑂2
 𝑄 𝑣𝐶𝑂2

 Slope Intercept R2 

(%) (%) (ppm) (L min-1) g CO2 h-1 ∑ 𝑚𝐶𝑂2
: ∑ �̂�𝐶𝑂2

  

1 11.44 1.0 10000 0.5 0.6 0.9815 0.0679 0.99 

2 9.83 1.0 10000 1.0 1.2 0.9630 0.1692 0.99 

3 11.12 1.0 10000 0.5 0.6 1.0112 0.0346 0.99 

4 9.92 1.0 10000 0.5 0.6 0.9820 0.0182 0.99 

5 9.88 1.0 10000 0.5 0.6 1.0143 0.0556 0.99 

6 9.85 1.0 10000 0.5 0.6 1.0182 0.0030 0.99 

7 12.04 1.0 10000 0.5 0.6 0.9840 0.0121 0.99 

8 10.73 1.0 10000 0.2 0.2 0.8504 0.0436 0.99 

9 10.84 1.0 10000 0.1 0.1 1.3097 0.0424 0.98 

10 8.40 1.0 10000 1.0 11.9 0.6009 7.1861 0.90 

11 11.97 1.0 10000 1.0 11.9 0.7609 0.3512 0.98 

12 11.76 10 1000000 1.0 23.7 0.8437 1.0421 0.99 

13 10.83 10 1000000 1.3 15.4 0.6992 2.6435 0.97 

14 10.18 10 1000000 1.5 17.8 0.6473 3.4833 0.91 

15 9.52 10 1000000 1.5 17.8 0.3861 5.1276 0.89 

16 6.75 0.04 450 0.6 0.1 0.8775 0.0183 0.99 

17 1.83 0.04 450 0.6 0.1 0.5606 0.1799 0.95 

 

  



 

83 

 

APPENDIX B. SOYBEAN RESPIRATION DATA AT 35°C 

Table B.1. Soybeans (14%) – Replication No. 1 

Start date and time: 05/15/2017 16:50 𝑀𝐶𝑂2
 (g mol-1): 44.0 

End date and time: 05/27/2017 17:10 𝑀𝐶6𝐻12𝑂6
 (g mol-1): 180.0 

No. of days: 12 𝑚𝑜𝑙 𝐶6𝐻12𝑂6 𝑚𝑜𝑙 𝐶𝑂2⁄ : 0.167 

    

�̂�𝑠𝑜𝑦,1
̅̅ ̅̅ ̅̅ ̅̅  (%) = 14.23 ± 0.1154 𝑚𝑠𝑜𝑦 (g) = 1785.69 

𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅  (%) = 14.31 ± 0.0019 𝑚𝐻2𝑂  (𝑔) = 𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅ 𝑚𝑠𝑜𝑦 =   255.55 

𝑤𝑠𝑜𝑦,2̅̅ ̅̅ ̅̅ ̅̅  (%) = 14.57 ± 0.0024 𝑚𝑑𝑚(𝑔) = 𝑚𝑠𝑜𝑦 − 𝑚𝐻2𝑂 = 1530.14 

 

𝑡  

[d] 

(𝑚𝑅𝐶̅̅ ̅̅ ̅̅ )∗  

[g] 

(∑ 𝑚𝐶𝑂2
)

∗
  

[g] 

∑ 𝑚𝐶𝑂2,𝑠  

[g kg-1]  

𝐷𝑀𝐿 

[%] 

𝑡′1 

[d] 

𝐷𝑀𝐿′1 

[%] 

∗= 𝐴, 𝑡 ∗= 𝐵, 𝑡 ∗= 𝐴 ∗= 𝐵 ∗= 𝐴 + 𝐵 

0.00 932.39 949.88     0.00 0.00 0.00   

0.64 932.50  0.11  0.11 0.07 0.00   

0.72   949.90   0.02 0.13 0.08 0.01   

0.84 932.54  0.04  0.17 0.11 0.01   

0.88   949.95   0.05 0.22 0.15 0.01   

1.00 932.63  0.09  0.31 0.20 0.01   

1.05   950.08   0.13 0.44 0.29 0.02   

1.64 933.18  0.55  0.99 0.65 0.04   

1.72   950.14   0.06 1.05 0.68 0.05   

1.80 933.27  0.09  1.14 0.74 0.05 0.01 0.00 

1.89   950.19   0.06 1.19 0.78 0.05 0.10 0.00 

1.97 933.40  0.13  1.33 0.87 0.06 0.17 0.00 

2.06   950.28   0.09 1.41 0.92 0.06 0.26 0.01 

2.63 935.97  2.57  3.98 2.60 0.18 0.84 0.12 

2.72   950.56   0.28 4.26 2.78 0.19 0.92 0.14 

2.80 936.12  0.15  4.41 2.88 0.20 1.01 0.14 

2.88   950.87   0.31 4.72 3.08 0.21 1.09 0.16 

2.98 936.31  0.19  4.91 3.21 0.22 1.18 0.16 

3.65   952.83   1.96 6.87 4.49 0.31 1.86 0.25 

3.72 936.64  0.33  7.20 4.70 0.32 1.92 0.27 

3.81   952.95   0.12 7.32 4.78 0.33 2.02 0.27 

3.89 936.89  0.25  7.57 4.95 0.34 2.10 0.28 

3.98   953.11   0.16 7.73 5.05 0.34 2.19 0.29 

4.05 937.01  0.12  7.85 5.13 0.35 2.26 0.30 

4.64   956.07   2.95 10.80 7.06 0.48 2.85 0.43 

4.73 937.26  0.25  11.06 7.23 0.49 2.93 0.44 
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Table B.1. Continued 
       

4.80   956.12   0.05 11.11 7.26 0.50 3.01 0.44 

4.88 937.31  0.05  11.16 7.30 0.50 3.09 0.44 

4.97   956.31   0.19 11.35 7.42 0.51 3.17 0.45 

5.65 938.62  1.31  12.66 8.27 0.56 3.85 0.51 

5.72   956.60   0.29 12.95 8.46 0.58 3.93 0.52 

5.81 938.97  0.35  13.30 8.69 0.59 4.01 0.54 

5.88   956.87   0.27 13.57 8.87 0.60 4.09 0.55 

6.63 941.53  2.56  16.13 10.54 0.72 4.84 0.66 

6.73   957.47   0.60 16.73 10.93 0.75 4.94 0.69 

6.80 941.74  0.21  16.94 11.07 0.75 5.01 0.70 

6.88   957.80   0.33 17.27 11.29 0.77 5.09 0.72 

6.97 941.92  0.18  17.45 11.41 0.78 5.17 0.72 

7.67   958.27   0.46 17.92 11.71 0.80 5.88 0.74 

7.80 942.10  0.18  18.10 11.83 0.81 6.01 0.75 

7.92   958.85   0.58 18.68 12.21 0.83 6.13 0.78 

8.03 942.26  0.16  18.84 12.31 0.84 6.23 0.78 

8.64   960.46   1.61 20.45 13.36 0.91 6.85 0.86 

8.64 942.52  0.26  20.71 13.53 0.92 6.85 0.87 

8.80   960.52   0.06 20.77 13.57 0.93 7.01 0.87 

8.88 942.80  0.28  21.05 13.76 0.94 7.09 0.88 

8.98   960.89   0.37 21.42 14.00 0.95 7.18 0.90 

9.07 944.84  2.04  23.46 15.33 1.05 7.27 0.99 

9.63   961.13   0.24 23.70 15.49 1.06 7.84 1.00 

9.73 945.15  0.31  24.01 15.69 1.07 7.94 1.02 

9.81   961.50   0.37 24.38 15.94 1.09 8.01 1.03 

9.88 945.50  0.35  24.74 16.17 1.10 8.09 1.05 

9.97   961.70   0.20 24.94 16.30 1.11 8.17 1.06 

10.05 947.21  1.70  26.64 17.41 1.19 8.25 1.13 

10.63   961.97   0.26 26.90 17.58 1.20 8.84 1.14 

10.72 947.51  0.30  27.21 17.78 1.21 8.92 1.16 

10.81   962.22   0.25 27.46 17.95 1.22 9.02 1.17 

10.90 947.84  0.33  27.79 18.16 1.24 9.10 1.18 

10.97   962.52   0.30 28.09 18.36 1.25 9.18 1.20 

11.05 951.77  3.92  32.02 20.92 1.43 9.26 1.37 

11.68   962.98   0.46 32.48 21.23 1.45 9.89 1.39 

11.78 952.13  0.36  32.84 21.46 1.46 9.98 1.41 

11.86   963.55   0.56 33.41 21.83 1.49 10.06 1.43 

11.92 952.66   0.53   33.93 22.18 1.51 10.10 1.45 
1Time and dry matter loss values were adjusted to 𝑡′ = 𝑡 − 𝑡0.05 and 𝐷𝑀𝐿′ = 𝐷𝑀𝐿 − 0.05. 
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Table B.2. Soybeans (14%) – Replication No. 2 

Start date and time: 06/14/2017 21:23 𝑀𝐶𝑂2
 (g mol-1): 44.0 

End date and time: 06/29/2017 09:30 𝑀𝐶6𝐻12𝑂6
 (g mol-1): 180.0 

No. of days: 15 𝑚𝑜𝑙 𝐶6𝐻12𝑂6 𝑚𝑜𝑙 𝐶𝑂2⁄ : 0.167 

    

�̂�𝑠𝑜𝑦,1
̅̅ ̅̅ ̅̅ ̅̅  (%) = 14.67 ± 0.1155 𝑚𝑠𝑜𝑦 (g) = 1809.91 

𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅  (%) = 14.26 ± 0.0015 𝑚𝐻2𝑂  (𝑔) = 𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅ 𝑚𝑠𝑜𝑦 =   258.10 

𝑤𝑠𝑜𝑦,2̅̅ ̅̅ ̅̅ ̅̅  (%) = 14.57 ± 0.0009 𝑚𝑑𝑚(𝑔) = 𝑚𝑠𝑜𝑦 − 𝑚𝐻2𝑂 = 1551.81 

 

𝑡  

[d] 

(𝑚𝑅𝐶̅̅ ̅̅ ̅̅ )∗  

[g] 

(∑ 𝑚𝐶𝑂2
)

∗
  

[g] 

∑ 𝑚𝐶𝑂2,𝑠  

[g kg-1]  

𝐷𝑀𝐿 

[%] 

𝑡′ 

[d] 

𝐷𝑀𝐿′ 

[%] 

∗= 𝐴, 𝑡 ∗= 𝐵, 𝑡 ∗= 𝐴 ∗= 𝐵 ∗= 𝐴 + 𝐵 

0.00 980.82 986.49     0.00 0.00 0.00   

0.55 980.89  0.07  0.07 0.05 0.00   

0.63   986.49   0.00 0.07 0.05 0.00   

0.71 980.90  0.01  0.08 0.05 0.00   

0.80   986.50   0.01 0.09 0.06 0.00   

0.87 980.90  0.00  0.09 0.06 0.00   

0.92   986.51   0.01 0.10 0.06 0.00   

1.49 981.52  0.62  0.72 0.46 0.03   

1.62   986.53   0.02 0.74 0.47 0.03   

1.69 981.56  0.04  0.78 0.50 0.03   

1.79   986.57   0.04 0.82 0.53 0.04   

1.86 981.58  0.02  0.84 0.54 0.04   

2.47   986.83   0.26 1.10 0.71 0.05   

2.55 981.63  0.04  1.15 0.74 0.05 0.01 0.00 

2.63   986.87   0.04 1.19 0.76 0.05 0.09 0.00 

2.72 981.64  0.02  1.20 0.78 0.05 0.19 0.00 

2.83   986.95   0.08 1.29 0.83 0.06 0.30 0.00 

3.45 982.28  0.64  1.92 1.24 0.08 0.92 0.03 

3.54   987.00   0.05 1.97 1.27 0.09 1.01 0.04 

3.61 982.32  0.04  2.01 1.30 0.09 1.08 0.04 

3.74   987.06   0.06 2.07 1.34 0.09 1.21 0.04 

4.47 983.46  1.14  3.21 2.07 0.14 1.94 0.09 

4.53   987.17   0.10 3.32 2.14 0.15 1.99 0.10 

4.62 983.57  0.11  3.43 2.21 0.15 2.08 0.10 

4.69   987.29   0.12 3.55 2.29 0.16 2.16 0.11 

4.79 983.69  0.12  3.67 2.36 0.16 2.26 0.11 

4.86   987.39   0.10 3.77 2.43 0.17 2.32 0.12 

5.48 985.43  1.74  5.51 3.55 0.24 2.95 0.19 
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Table B.2. Continued 

5.58   987.56   0.17 5.68 3.66 0.25 3.05 0.20 

5.65 985.59  0.15  5.83 3.76 0.26 3.12 0.21 

5.75   987.71   0.15 5.98 3.86 0.26 3.22 0.21 

5.82 985.69  0.11  6.09 3.92 0.27 3.29 0.22 

6.42   990.18   2.47 8.56 5.52 0.38 3.89 0.33 

6.48 985.82  0.13  8.69 5.60 0.38 3.95 0.33 

6.61   990.40   0.22 8.91 5.74 0.39 4.08 0.34 

6.69 986.06  0.24  9.15 5.90 0.40 4.16 0.35 

6.80   990.55   0.15 9.30 5.99 0.41 4.26 0.36 

7.45 988.57  2.52  11.82 7.61 0.52 4.92 0.47 

7.54   990.73   0.18 12.00 7.73 0.53 5.00 0.48 

7.61 988.75  0.18  12.17 7.84 0.53 5.07 0.48 

7.71   990.87   0.13 12.31 7.93 0.54 5.17 0.49 

7.78 988.96  0.21  12.52 8.07 0.55 5.24 0.50 

8.44   992.97   2.11 14.62 9.42 0.64 5.91 0.59 

8.53 989.20  0.24  14.86 9.58 0.65 5.99 0.60 

8.62   993.22   0.24 15.11 9.73 0.66 6.08 0.61 

8.70 989.41  0.21  15.32 9.87 0.67 6.16 0.62 

8.86   993.43   0.22 15.54 10.01 0.68 6.32 0.63 

9.46 992.36  2.95  18.48 11.91 0.81 6.92 0.76 

9.53   993.77   0.34 18.82 12.13 0.83 6.99 0.78 

9.61 992.55  0.19  19.01 12.25 0.84 7.07 0.78 

9.70   994.02   0.25 19.26 12.41 0.85 7.16 0.80 

9.80 992.80  0.25  19.52 12.58 0.86 7.26 0.81 

9.86   994.21   0.19 19.70 12.70 0.87 7.33 0.82 

10.44 995.58  2.78  22.48 14.49 0.99 7.91 0.94 

10.58   994.46   0.25 22.73 14.65 1.00 8.05 0.95 

10.69 995.83  0.25  22.98 14.81 1.01 8.16 0.96 

10.80   994.71   0.25 23.23 14.97 1.02 8.26 0.97 

11.45 998.68  2.85  26.08 16.81 1.15 8.91 1.10 

11.54   995.01   0.30 26.38 17.00 1.16 9.00 1.11 

11.62 998.91  0.23  26.61 17.15 1.17 9.08 1.12 

11.70   995.33   0.31 26.93 17.35 1.18 9.16 1.13 

11.78 999.22  0.31  27.24 17.55 1.20 9.24 1.15 

11.87   995.68  0.35 27.59 17.78 1.21 9.34 1.16 

12.46 1000.6   1.35  28.94 18.65 1.27 9.93 1.22 

12.54   995.89  0.21 29.15 18.79 1.28 10.01 1.23 

12.62 1000.8   0.26  29.42 18.96 1.29 10.08 1.24 

12.71   996.18  0.29 29.71 19.15 1.31 10.17 1.26 
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Table B.2. Continued 

12.78 1001.0   0.18  29.89 19.26 1.31 10.25 1.26 

12.86   996.52  0.34 30.23 19.48 1.33 10.32 1.28 

13.45 1003.6   2.53  32.76 21.11 1.44 10.92 1.39 

13.53   996.81  0.29 33.05 21.30 1.45 11.00 1.40 

13.62 1003.8   0.23  33.28 21.45 1.46 11.09 1.41 

13.71   997.13  0.32 33.60 21.65 1.48 11.18 1.42 

13.79 1004.0   0.24  33.84 21.80 1.49 11.26 1.43 

14.50   1001.3   4.19 38.02 24.50 1.67 11.31 1.45 
1Time and dry matter loss values were adjusted to 𝑡′ = 𝑡 − 𝑡0.05 and 𝐷𝑀𝐿′ = 𝐷𝑀𝐿 − 0.05. 

 

Table B.3. Soybeans (14%) – Replication No. 3 

Start date and time: 08/18/2017 18:15 𝑀𝐶𝑂2
 (g mol-1): 44.0 

End date and time: 09/05/2017 14:18 𝑀𝐶6𝐻12𝑂6
 (g mol-1): 180.0 

No. of days: 18 𝑚𝑜𝑙 𝐶6𝐻12𝑂6 𝑚𝑜𝑙 𝐶𝑂2⁄ : 0.167 

    

�̂�𝑠𝑜𝑦,1
̅̅ ̅̅ ̅̅ ̅̅  (%) = 14.43 ± 0.1528 𝑚𝑠𝑜𝑦 (g) = 1798.33 

𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅  (%) = 14.73 ± 0.0002 𝑚𝐻2𝑂  (𝑔) = 𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅ 𝑚𝑠𝑜𝑦 =   264.84 

𝑤𝑠𝑜𝑦,2̅̅ ̅̅ ̅̅ ̅̅  (%) = 14.51 ± 0.0007 𝑚𝑑𝑚(𝑔) = 𝑚𝑠𝑜𝑦 − 𝑚𝐻2𝑂 = 1533.49 

 

𝑡  

[d] 

(𝑚𝑅𝐶̅̅ ̅̅ ̅̅ )∗  

[g] 

(∑ 𝑚𝐶𝑂2
)

∗
  

[g] 

∑ 𝑚𝐶𝑂2,𝑠  

[g kg-1]  

𝐷𝑀𝐿 

[%] 

𝑡′ 

[d] 

𝐷𝑀𝐿′ 

[%] 

∗= 𝐴, 𝑡 ∗= 𝐵, 𝑡 ∗= 𝐴 ∗= 𝐵 ∗= 𝐴 + 𝐵 

0.00 933.38 932.70     0.00 0.00 0.00   

0.64 933.38  0.00  0.00 0.00 0.00   

0.73   932.70   0.00 0.00 0.00 0.00   

0.80 933.38  0.00  0.00 0.00 0.00   

0.89   932.70   0.01 0.01 0.00 0.00   

0.98 933.39  0.01  0.01 0.01 0.00   

1.58   932.71   0.01 0.02 0.01 0.00   

1.66 933.42  0.03  0.05 0.03 0.00   

1.75   932.71   0.00 0.05 0.03 0.00   

1.83 933.43  0.01  0.06 0.04 0.00   

1.97   932.71   0.00 0.06 0.04 0.00   

2.58 933.48  0.05  0.10 0.07 0.00   

2.66   932.71   0.00 0.11 0.07 0.00   

2.84 933.48  0.00  0.11 0.07 0.00   

2.95   932.72   0.01 0.12 0.08 0.01   

3.58 933.49  0.01  0.12 0.08 0.01   
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3.75   932.72   0.00 0.13 0.08 0.01   

3.92 933.52  0.03  0.16 0.10 0.01   

4.59   932.77   0.05 0.21 0.14 0.01   

4.67 933.55  0.03  0.24 0.16 0.01   

4.76   932.78   0.01 0.25 0.17 0.01   

4.84 933.58  0.03  0.29 0.19 0.01   

4.93   932.80   0.02 0.30 0.20 0.01   

5.02 933.60  0.02  0.32 0.21 0.01   

5.60   932.87   0.07 0.39 0.25 0.02   

5.74 933.63  0.03  0.42 0.27 0.02   

5.84   932.87   0.00 0.42 0.27 0.02   

5.91 933.66  0.03  0.45 0.30 0.02   

6.00   932.88   0.01 0.46 0.30 0.02   

6.05 933.68  0.02  0.48 0.32 0.02   

6.63   933.20   0.32 0.80 0.52 0.04   

6.72 933.72  0.04  0.84 0.55 0.04   

6.78   933.22   0.02 0.86 0.56 0.04   

6.86 933.75  0.03  0.89 0.58 0.04   

6.96   933.25   0.03 0.92 0.60 0.04   

7.03 933.78  0.03  0.95 0.62 0.04   

7.62   935.39   2.14 3.09 2.02 0.14 0.54 0.09 

7.74 933.80  0.02  3.11 2.03 0.14 0.66 0.09 

7.83   935.44   0.05 3.16 2.06 0.14 0.75 0.09 

7.96 933.91  0.11  3.27 2.13 0.15 0.88 0.10 

8.59   935.80   0.37 3.63 2.37 0.16 1.51 0.11 

8.72 933.95  0.04  3.68 2.40 0.16 1.64 0.11 

8.82   935.88   0.08 3.76 2.45 0.17 1.74 0.12 

8.91 934.02  0.07  3.82 2.49 0.17 1.83 0.12 

9.59   936.10   0.22 4.04 2.63 0.18 2.52 0.13 

9.68 934.10  0.08  4.12 2.68 0.18 2.60 0.13 

9.76   936.15   0.05 4.17 2.72 0.19 2.68 0.14 

9.84 934.17  0.07  4.24 2.77 0.19 2.76 0.14 

9.92   936.43   0.28 4.52 2.95 0.20 2.85 0.15 

10.00 934.22  0.05  4.57 2.98 0.20 2.92 0.15 

10.61   938.36   1.93 6.50 4.24 0.29 3.54 0.24 

10.70 934.56  0.33  6.84 4.46 0.30 3.62 0.25 

10.79   938.68   0.32 7.15 4.66 0.32 3.71 0.27 

10.87 934.98  0.43  7.58 4.94 0.34 3.79 0.29 

10.96   939.22   0.54 8.12 5.30 0.36 3.88 0.31 
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11.57 937.25  2.26   10.39 6.77 0.46 4.49 0.41 

11.66   939.50   0.28 10.67 6.96 0.47 4.58 0.42 

11.74 937.59  0.34   11.01 7.18 0.49 4.66 0.44 

11.82   939.72   0.22 11.23 7.32 0.50 4.74 0.45 

11.91 937.81  0.22   11.45 7.47 0.51 4.83 0.46 

11.99   939.95   0.23 11.68 7.62 0.52 4.91 0.47 

12.58 939.69  1.88   13.56 8.84 0.60 5.50 0.55 

12.67   940.28   0.33 13.89 9.06 0.62 5.59 0.57 

12.75 940.01  0.32   14.20 9.26 0.63 5.67 0.58 

12.83   940.55   0.28 14.48 9.44 0.64 5.75 0.59 

12.92 940.30  0.29   14.77 9.63 0.66 5.84 0.61 

12.99   940.77   0.21 14.98 9.77 0.67 5.91 0.62 

13.58 942.25  1.95   16.93 11.04 0.75 6.50 0.70 

13.66   941.12   0.36 17.29 11.27 0.77 6.58 0.72 

13.75 942.63  0.38   17.67 11.52 0.79 6.67 0.74 

13.84   941.48   0.36 18.03 11.76 0.80 6.76 0.75 

13.94 943.05  0.42   18.45 12.03 0.82 6.86 0.77 

14.62   943.66   2.18 20.63 13.45 0.92 7.54 0.87 

14.70 943.44   0.39   21.02 13.71 0.93 7.62 0.88 

14.78   943.93   0.27 21.29 13.88 0.95 7.70 0.90 

14.86 943.77   0.33   21.62 14.10 0.96 7.79 0.91 

14.96   944.32   0.39 22.01 14.35 0.98 7.88 0.93 

15.57 946.13   2.36   24.37 15.89 1.08 8.49 1.03 

15.67   944.76   0.44 24.81 16.18 1.10 8.59 1.05 

15.75 946.41   0.28   25.09 16.36 1.12 8.67 1.07 

15.84   945.10   0.34 25.43 16.58 1.13 8.76 1.08 

15.91 946.73   0.32   25.75 16.79 1.14 8.83 1.09 

16.00   945.45   0.35 26.10 17.02 1.16 8.92 1.11 

16.57 949.14   2.41   28.51 18.59 1.27 9.49 1.22 

16.66   945.88   0.43 28.94 18.87 1.29 9.58 1.24 

16.74 949.56   0.42   29.36 19.15 1.31 9.66 1.26 

16.92   946.24   0.36 29.72 19.38 1.32 9.84 1.27 

16.99 950.08   0.52   30.24 19.72 1.34 9.92 1.29 

17.59   948.87   2.63 32.87 21.43 1.46 10.51 1.41 

17.67 950.43   0.35   33.22 21.66 1.48 10.59 1.43 

17.75   949.26   0.39 33.60 21.91 1.49 10.67 1.44 

17.84 950.80   0.37   33.97 22.15 1.51 10.70 1.45 
1Time and dry matter loss values were adjusted to 𝑡′ = 𝑡 − 𝑡0.05 and 𝐷𝑀𝐿′ = 𝐷𝑀𝐿 − 0.05. 
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Table B.4. Soybeans (14%) – Replication No. 4 

Start date and time: 09/05/2017 21:05 𝑀𝐶𝑂2
 (g mol-1): 44.0 

End date and time: 09/20/2017 09:15 𝑀𝐶6𝐻12𝑂6
 (g mol-1): 180.0 

No. of days: 15 𝑚𝑜𝑙 𝐶6𝐻12𝑂6 𝑚𝑜𝑙 𝐶𝑂2⁄ : 0.167 

    

�̂�𝑠𝑜𝑦,1
̅̅ ̅̅ ̅̅ ̅̅  (%) = 14.13 ± 0.0577 𝑚𝑠𝑜𝑦 (g) = 1798.39 

𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅  (%) = 14.02 ± 0.0007 𝑚𝐻2𝑂  (𝑔) = 𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅ 𝑚𝑠𝑜𝑦 =   252.06 

𝑤𝑠𝑜𝑦,2̅̅ ̅̅ ̅̅ ̅̅  (%) = 13.79 ± 0.0008 𝑚𝑑𝑚(𝑔) = 𝑚𝑠𝑜𝑦 − 𝑚𝐻2𝑂 = 1546.33 

 

𝑡  

[d] 

(𝑚𝑅𝐶̅̅ ̅̅ ̅̅ )∗  

[g] 

(∑ 𝑚𝐶𝑂2
)

∗
  

[g] 

∑ 𝑚𝐶𝑂2,𝑠  

[g kg-1]  

𝐷𝑀𝐿 

[%] 

𝑡′ 

[d] 

𝐷𝑀𝐿′ 

[%] 

∗= 𝐴, 𝑡 ∗= 𝐵, 𝑡 ∗= 𝐴 ∗= 𝐵 ∗= 𝐴 + 𝐵 

0.00 981.77 982.12     0.00 0.00 0.00   

0.53 981.80  0.03  0.03 0.02 0.00   

0.61   982.13   0.01 0.04 0.03 0.00   

0.66 981.80  0.00  0.04 0.03 0.00   

0.80   982.16   0.03 0.07 0.05 0.00   

1.51 981.86  0.06  0.13 0.08 0.01   

1.60   982.19   0.04 0.16 0.11 0.01   

1.68 981.88  0.02  0.19 0.12 0.01   

1.81   982.22   0.03 0.21 0.14 0.01   

2.48 981.94  0.06  0.27 0.17 0.01   

2.58   982.28   0.06 0.33 0.21 0.01   

2.66 981.96  0.02  0.34 0.22 0.02   

2.76   982.30   0.02 0.37 0.24 0.02   

2.85 981.97  0.01  0.38 0.25 0.02   

3.47   982.37   0.07 0.45 0.29 0.02   

3.55 981.98  0.01  0.46 0.30 0.02   

3.63   982.39   0.02 0.49 0.31 0.02   

3.72 982.02  0.03  0.52 0.34 0.02   

3.80   982.41   0.02 0.54 0.35 0.02   

4.45 982.13  0.12  0.65 0.42 0.03   

4.58   982.43   0.02 0.67 0.44 0.03   

4.67 982.14  0.01  0.68 0.44 0.03   

4.76   982.45   0.02 0.71 0.46 0.03   

4.83 982.17  0.03  0.73 0.47 0.03   

5.45   982.58   0.13 0.86 0.56 0.04   

5.55 982.20  0.03  0.89 0.57 0.04   

5.62   982.64   0.06 0.94 0.61 0.04   

5.73 982.23  0.03  0.97 0.63 0.04   
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5.81   982.67   0.03 1.01 0.65 0.04   

5.88 982.28  0.05  1.06 0.69 0.05   

6.47   984.37   1.70 2.76 1.78 0.12 0.56 0.07 

6.55 982.42  0.14  2.90 1.88 0.13 0.64 0.08 

6.63   984.56   0.19 3.09 2.00 0.14 0.72 0.09 

6.70 982.61  0.19  3.28 2.12 0.14 0.80 0.09 

6.81   984.78   0.22 3.50 2.27 0.15 0.90 0.10 

7.47 985.70  3.09  6.59 4.26 0.29 1.56 0.24 

7.56   985.04   0.26 6.85 4.43 0.30 1.65 0.25 

7.64 986.09  0.39  7.24 4.68 0.32 1.73 0.27 

7.72   985.42   0.37 7.61 4.92 0.34 1.81 0.29 

7.81 986.31  0.22  7.84 5.07 0.35 1.90 0.30 

7.91   985.62   0.20 8.04 5.20 0.35 2.01 0.30 

8.50 988.57  2.26  10.30 6.66 0.45 2.60 0.40 

8.59   985.91   0.29 10.59 6.85 0.47 2.68 0.42 

8.67 988.90  0.33  10.92 7.06 0.48 2.76 0.43 

8.75   986.16   0.25 11.17 7.22 0.49 2.85 0.44 

8.83 989.17  0.27  11.44 7.40 0.50 2.92 0.45 

9.47   988.46   2.30 13.74 8.89 0.61 3.56 0.56 

9.56 989.38  0.21  13.95 9.02 0.62 3.65 0.57 

9.64   988.72   0.25 14.21 9.19 0.63 3.73 0.58 

9.72 989.69  0.31  14.51 9.39 0.64 3.81 0.59 

9.81   989.02   0.31 14.82 9.58 0.65 3.91 0.60 

9.91 990.00  0.32  15.14 9.79 0.67 4.00 0.62 

10.45   991.61   2.59 17.72 11.46 0.78 4.55 0.73 

10.54 990.37  0.37  18.09 11.70 0.80 4.63 0.75 

10.63   991.99   0.38 18.47 11.94 0.81 4.72 0.76 

10.90 990.76  0.39   18.86 12.20 0.83 5.00 0.78 

11.54   994.78   2.79 21.65 14.00 0.95 5.63 0.90 

11.63 991.17  0.41   22.06 14.27 0.97 5.72 0.92 

11.70   995.20   0.42 22.48 14.54 0.99 5.80 0.94 

11.79 991.57  0.40   22.88 14.80 1.01 5.88 0.96 

11.88   995.63   0.43 23.31 15.08 1.03 5.97 0.98 

12.47 994.42  2.85   26.16 16.92 1.15 6.56 1.10 

12.55   996.09   0.46 26.62 17.22 1.17 6.64 1.12 

12.63 994.86  0.44   27.06 17.50 1.19 6.73 1.14 

12.75   996.55   0.45 27.52 17.79 1.21 6.84 1.16 

12.83 995.31  0.45   27.97 18.09 1.23 6.92 1.18 

12.93   997.02   0.47 28.44 18.39 1.25 7.02 1.20 
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13.48 998.60  3.29   31.73 20.52 1.40 7.57 1.35 

13.56   997.50   0.48 32.21 20.83 1.42 7.65 1.37 

13.65 999.07  0.47   32.68 21.14 1.44 7.74 1.39 

13.75   998.00   0.50 33.19 21.46 1.46 7.84 1.41 

13.85 999.56  0.49   33.67 21.78 1.48 7.94 1.43 

14.51   1001.4   3.42 37.09 23.99 1.64 8.01 1.45 
1Time and dry matter loss values were adjusted to 𝑡′ = 𝑡 − 𝑡0.05 and 𝐷𝑀𝐿′ = 𝐷𝑀𝐿 − 0.05. 

 

Table B.5. Soybeans (18%) – Replication No. 1 

Start date and time: 02/16/2017 10:00 𝑀𝐶𝑂2
 (g mol-1): 44.0 

End date and time: 03/03/2017 13:30 𝑀𝐶6𝐻12𝑂6
 (g mol-1): 180.0 

No. of days: 15 𝑚𝑜𝑙 𝐶6𝐻12𝑂6 𝑚𝑜𝑙 𝐶𝑂2⁄ : 0.167 

    

�̂�𝑠𝑜𝑦,1
̅̅ ̅̅ ̅̅ ̅̅  (%) = 18.27 ± 0.0573 𝑚𝑠𝑜𝑦 (g) = 1820.00 

𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅  (%) = 18.40 ± 0.0011 𝑚𝐻2𝑂  (𝑔) = 𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅ 𝑚𝑠𝑜𝑦 =   334.96 

𝑤𝑠𝑜𝑦,2̅̅ ̅̅ ̅̅ ̅̅  (%) = 17.78 ± 0.0015 𝑚𝑑𝑚(𝑔) = 𝑚𝑠𝑜𝑦 − 𝑚𝐻2𝑂 = 1485.04 

 

𝑡  

[d] 

(𝑚𝑅𝐶̅̅ ̅̅ ̅̅ )∗  

[g] 

(∑ 𝑚𝐶𝑂2
)

∗
  

[g] 

∑ 𝑚𝐶𝑂2,𝑠  

[g kg-1]  

𝐷𝑀𝐿 

[%] 

𝑡′ 

[d] 

𝐷𝑀𝐿′ 

[%] 

∗= 𝐴, 𝑡 ∗= 𝐵, 𝑡 ∗= 𝐴 ∗= 𝐵 ∗= 𝐴 + 𝐵 

0.00 933.44 972.81    0.00 0.00 0.00   

0.10 933.44  0.00  0.00 0.00 0.00   

0.21   972.81   0.00 0.00 0.00 0.00   

0.31 933.44  0.00  0.00 0.00 0.00   

0.90   972.82   0.01 0.01 0.01 0.00   

0.96 933.45  0.00  0.01 0.01 0.00   

1.21   972.83   0.01 0.03 0.02 0.00   

1.29 933.46  0.01  0.04 0.03 0.00   

2.00   972.85   0.02 0.06 0.04 0.00   

2.13 933.47  0.01  0.07 0.05 0.00   

2.25   972.86   0.01 0.08 0.05 0.00   

2.96 933.48  0.01  0.09 0.06 0.00   

3.08   972.86   0.00 0.09 0.06 0.00   

3.17 933.49  0.01  0.10 0.07 0.00   

3.29   972.87   0.01 0.10 0.07 0.00   

3.98 933.70  0.22  0.32 0.22 0.01   

4.06   972.89   0.02 0.34 0.23 0.02   
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4.13 933.73  0.03  0.37 0.25 0.02   

4.21   972.91   0.02 0.39 0.26 0.02   

4.29 933.75  0.02  0.41 0.28 0.02   

4.38   972.93   0.02 0.43 0.29 0.02   

4.93 934.20  0.45  0.88 0.59 0.04   

5.02   972.97   0.04 0.92 0.62 0.04   

5.09 934.64  0.44  1.36 0.91 0.06   

5.17   973.00   0.03 1.39 0.94 0.06 0.08 0.06 

5.25 935.13  0.49  1.88 1.27 0.09 0.16 0.09 

5.42   973.52   0.52 2.40 1.62 0.11 0.33 0.11 

5.94 938.62  3.49  5.89 3.97 0.27 0.85 0.27 

6.02   974.05   0.53 6.42 4.32 0.29 0.93 0.29 

6.17 940.14  1.51  7.93 5.34 0.36 1.08 0.36 

6.28   974.16   0.11 8.04 5.42 0.37 1.19 0.37 

6.94 946.23  6.10  14.14 9.52 0.65 1.85 0.65 

7.07   975.28   1.12 15.26 10.28 0.70 1.98 0.70 

7.19 947.34  1.11  16.37 11.02 0.75 2.10 0.75 

7.25   975.33   0.05 16.42 11.06 0.75 2.16 0.75 

7.96 953.48  6.14  22.56 15.19 1.04 2.87 1.04 

8.07   976.27   0.94 23.50 15.82 1.08 2.98 1.08 

8.37 954.38  0.90  24.40 16.43 1.12 3.28 1.12 

9.00   976.50   0.23 24.63 16.59 1.13 3.91 1.13 

9.17 955.28  0.90  25.53 17.19 1.17 4.08 1.17 

10.17   989.70   13.20 38.73 26.08 1.78   

10.29 956.16  0.88  39.62 26.68 1.82   

10.93   992.91   3.21 42.82 28.84 1.97   

11.01 956.63  0.47  43.29 29.15 1.99   

11.13   993.75   0.84 44.13 29.72 2.03   
1Time and dry matter loss values were adjusted to 𝑡′ = 𝑡 − 𝑡0.05 and 𝐷𝑀𝐿′ = 𝐷𝑀𝐿 − 0.05. 
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Table B.6. Soybeans (18%) – Replication No. 2 

Start date and time: 03/07/2017 13:05 𝑀𝐶𝑂2
 (g mol-1): 44.0 

End date and time: 03/20/2017 18:00 𝑀𝐶6𝐻12𝑂6
 (g mol-1): 180.0 

No. of days: 13 𝑚𝑜𝑙 𝐶6𝐻12𝑂6 𝑚𝑜𝑙 𝐶𝑂2⁄ : 0.167 

    

�̂�𝑠𝑜𝑦,1
̅̅ ̅̅ ̅̅ ̅̅  (%) = 18.63 ± 0.1527 𝑚𝑠𝑜𝑦 (g) = 1800.00 

𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅  (%) = 18.51 ± 0.0015 𝑚𝐻2𝑂  (𝑔) = 𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅ 𝑚𝑠𝑜𝑦 =   333.16 

𝑤𝑠𝑜𝑦,2̅̅ ̅̅ ̅̅ ̅̅  (%) = 17.88 ± 0.0051 𝑚𝑑𝑚(𝑔) = 𝑚𝑠𝑜𝑦 − 𝑚𝐻2𝑂 = 1466.84 

 

𝑡  

[d] 

(𝑚𝑅𝐶̅̅ ̅̅ ̅̅ )∗  

[g] 

(∑ 𝑚𝐶𝑂2
)

∗
  

[g] 

∑ 𝑚𝐶𝑂2,𝑠  

[g kg-1]  

𝐷𝑀𝐿 

[%] 

𝑡′ 

[d] 

𝐷𝑀𝐿′ 

[%] 

∗= 𝐴, 𝑡 ∗= 𝐵, 𝑡 ∗= 𝐴 ∗= 𝐵 ∗= 𝐴 + 𝐵 

0.00 959.09 944.41     0.00 0.00 0.00   

0.08 959.09   0.00   0.00 0.00 0.00   

0.17   944.41   0.00 0.00 0.00 0.00   

0.85 959.09   0.00   0.00 0.00 0.00   

0.94   944.41   0.00 0.00 0.00 0.00   

1.01 959.10   0.01   0.01 0.01 0.00   

1.10   944.42   0.01 0.02 0.01 0.00   

1.18 959.11   0.01   0.03 0.02 0.00   

1.27   944.43   0.01 0.03 0.02 0.00   

1.80 959.15   0.04   0.08 0.05 0.00   

1.88   944.44   0.01 0.09 0.06 0.00   

1.97 959.16   0.01   0.10 0.07 0.00   

2.06   944.44   0.00 0.10 0.07 0.00   

2.15 959.17   0.01   0.10 0.07 0.00   

2.81   944.49   0.05 0.16 0.11 0.01   

2.89 959.17   0.00   0.16 0.11 0.01   

2.98   944.50   0.01 0.17 0.12 0.01   

3.10 959.18   0.01   0.18 0.12 0.01   

3.79   944.59   0.09 0.27 0.18 0.01   

3.87 959.19   0.01   0.28 0.19 0.01   

3.98   944.62   0.03 0.31 0.21 0.01   

4.08 959.20   0.01   0.32 0.22 0.01   

4.73   947.01   2.39 2.71 1.85 0.13   

4.79 959.41   0.21   2.92 1.99 0.14 0.06 0.14 

4.87   947.97   0.96 3.88 2.65 0.18 0.14 0.18 

4.97 959.66   0.25   4.13 2.82 0.19 0.24 0.19 

5.07   949.17   1.20 5.33 3.63 0.25 0.34 0.25 

5.14 960.11   0.45   5.78 3.94 0.27 0.41 0.27 
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Table B.6. Continued 

5.94   949.32   0.15 5.93 4.04 0.28 1.21 0.28 

6.02 960.92   0.81   6.74 4.59 0.31 1.29 0.31 

6.09   949.82   0.50 7.24 4.94 0.34 1.36 0.34 

6.21 962.11   1.19   8.43 5.75 0.39 1.48 0.39 

6.30   950.51   0.69 9.12 6.22 0.42 1.57 0.42 

6.82 968.11   6.00   15.13 10.31 0.70 2.09 0.70 

6.89   950.94   0.43 15.55 10.60 0.72 2.16 0.72 

6.97 969.13   1.02   16.57 11.30 0.77 2.24 0.77 

7.06   951.79   0.85 17.43 11.88 0.81 2.33 0.81 

7.14 969.49   0.36   17.78 12.12 0.83 2.41 0.83 

7.23   952.10   0.31 18.09 12.33 0.84 2.50 0.84 

7.86 977.46   7.97   26.06 17.77 1.21 3.14 1.21 

7.91   952.50   0.40 26.46 18.04 1.23 3.18 1.23 

8.07 978.12   0.66   27.12 18.49 1.26 3.34 1.26 

8.12   953.07   0.57 27.69 18.88 1.29 3.39 1.29 

8.20 978.34   0.22   27.91 19.03 1.30 3.47 1.30 

8.28   953.67   0.60 28.51 19.44 1.33 3.55 1.33 

8.86 978.52   0.18   28.69 19.56 1.33 4.14 1.33 

8.99   954.30   0.63 29.32 19.99 1.36 4.26 1.36 

9.08 979.15   0.64   29.95 20.42 1.39 4.35 1.39 

9.18   955.95   1.65 31.60 21.55 1.47 4.45 1.47 

9.87 984.02   4.87   36.47 24.86 1.70   

9.95   956.16   0.21 36.68 25.00 1.70   
1Time and dry matter loss values were adjusted to 𝑡′ = 𝑡 − 𝑡0.05 and 𝐷𝑀𝐿′ = 𝐷𝑀𝐿 − 0.05. 

 

Table B.7. Soybeans (18%) – Replication No. 3 

Start date and time: 03/23/2017 16:45 𝑀𝐶𝑂2
 (g mol-1): 44.0 

End date and time: 04/02/2017 18:00 𝑀𝐶6𝐻12𝑂6
 (g mol-1): 180.0 

No. of days: 10 𝑚𝑜𝑙 𝐶6𝐻12𝑂6 𝑚𝑜𝑙 𝐶𝑂2⁄ : 0.167 

    

�̂�𝑠𝑜𝑦,1
̅̅ ̅̅ ̅̅ ̅̅  (%) = 18.13 ± 0.0577 𝑚𝑠𝑜𝑦 (g) = 1815.00 

𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅  (%) = 18.26 ± 0.0012 𝑚𝐻2𝑂  (𝑔) = 𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅ 𝑚𝑠𝑜𝑦 =   331.36 

𝑤𝑠𝑜𝑦,2̅̅ ̅̅ ̅̅ ̅̅  (%) = 18.82 ± 0.0015 𝑚𝑑𝑚(𝑔) = 𝑚𝑠𝑜𝑦 − 𝑚𝐻2𝑂 = 1483.64 

 

𝑡  

[d] 

(𝑚𝑅𝐶̅̅ ̅̅ ̅̅ )∗  

[g] 

(∑ 𝑚𝐶𝑂2
)

∗
  

[g] 

∑ 𝑚𝐶𝑂2,𝑠  

[g kg-1]  

𝐷𝑀𝐿 

[%] 

𝑡′ 

[d] 

𝐷𝑀𝐿′ 

[%] 

∗= 𝐴, 𝑡 ∗= 𝐵, 𝑡 ∗= 𝐴 ∗= 𝐵 ∗= 𝐴 + 𝐵 

0.00 939.77 937.34     0.00 0.00 0.00   
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Table B.7. Continued 

0.64 939.77   0.00   0.00 0.00 0.00   

0.72   937.34   0.00 0.00 0.00 0.00   

0.90 939.78   0.01   0.01 0.01 0.00   

0.98   937.35   0.01 0.02 0.01 0.00   

1.06 939.79   0.01   0.03 0.02 0.00   

1.65   937.35   0.00 0.03 0.02 0.00   

1.73 939.81   0.02   0.05 0.03 0.00   

1.81   937.36   0.01 0.06 0.04 0.00   

1.91 939.82   0.01   0.07 0.05 0.00   

1.97   937.37   0.01 0.08 0.06 0.00   

2.07 939.83   0.01   0.09 0.06 0.00   

2.64   937.58   0.21 0.30 0.20 0.01   

2.72 939.86   0.03   0.33 0.22 0.02   

2.80   937.62   0.04 0.37 0.25 0.02   

2.90 939.87   0.02   0.38 0.26 0.02   

3.05   937.68   0.06 0.44 0.30 0.02   

3.68 940.30   0.42   0.86 0.58 0.04   

3.84   937.72   0.05 0.91 0.61 0.04   

3.92 940.32   0.03   0.94 0.63 0.04   

4.02   937.77   0.05 0.98 0.66 0.045   

4.07 940.39   0.07   1.05 0.71 0.048 0.06 0.05 

4.65   938.75   0.98 2.03 1.37 0.09 0.63 0.09 

4.73 940.51   0.12   2.15 1.45 0.10 0.71 0.10 

4.82   938.90   0.15 2.30 1.55 0.11 0.81 0.11 

4.90 940.63   0.12   2.42 1.63 0.11 0.88 0.11 

4.97   939.09   0.19 2.61 1.76 0.12 0.96 0.12 

5.06 940.80   0.17   2.78 1.87 0.13 1.04 0.13 

5.64   942.30   3.21 5.99 4.04 0.28 1.63 0.28 

5.73 940.96   0.16   6.15 4.15 0.28 1.72 0.28 

5.89   942.54   0.24 6.39 4.31 0.29 1.87 0.29 

5.98 941.18   0.21   6.61 4.45 0.30 1.96 0.30 

6.05   942.83   0.29 6.89 4.65 0.32 2.03 0.32 

6.73 945.78   4.60   11.50 7.75 0.53 2.71 0.53 

6.84   943.16   0.34 11.83 7.98 0.54 2.83 0.54 

6.94 946.10   0.32   12.15 8.19 0.56 2.92 0.56 

7.03   943.61   0.45 12.60 8.49 0.58 3.01 0.58 

7.69 950.02   3.92   16.52 11.13 0.76 3.68 0.76 

7.76   944.48   0.87 17.39 11.72 0.80 3.74 0.80 

7.84 951.01   0.99   18.38 12.39 0.84 3.83 0.84 
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Table B.7. Continued 

7.94   945.48   1.00 19.39 13.07 0.89 3.92 0.89 

8.01 951.99   0.98   20.36 13.73 0.94 4.00 0.94 

8.64   950.56   5.08 25.44 17.15 1.17 4.62 1.17 

8.72 952.52   0.53   25.98 17.51 1.19 4.70 1.19 

8.81   951.86   1.30 27.27 18.38 1.25 4.79 1.25 

8.89 953.64   1.11   28.39 19.13 1.30 4.87 1.30 

9.06   952.94   1.08 29.47 19.86 1.35 5.05 1.35 

9.65 958.36   4.72   34.19 23.05 1.57   

9.72   954.23   1.29 35.48 23.91 1.63   
1Time and dry matter loss values were adjusted to 𝑡′ = 𝑡 − 𝑡0.05 and 𝐷𝑀𝐿′ = 𝐷𝑀𝐿 − 0.05. 

 
Table B.8. Soybeans (18%) – Replication No. 4 

Start date and time: 04/11/2017 16:45 𝑀𝐶𝑂2
 (g mol-1): 44.0 

End date and time: 4/19/2017 12:25 𝑀𝐶6𝐻12𝑂6
 (g mol-1): 180.0 

No. of days: 9 𝑚𝑜𝑙 𝐶6𝐻12𝑂6 𝑚𝑜𝑙 𝐶𝑂2⁄ : 0.167 

    

�̂�𝑠𝑜𝑦,1
̅̅ ̅̅ ̅̅ ̅̅  (%) = 18.60 ± 0.1000 𝑚𝑠𝑜𝑦 (g) = 1898.88 

𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅  (%) = 18.80 ± 0.0009 𝑚𝐻2𝑂  (𝑔) = 𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅ 𝑚𝑠𝑜𝑦 =   357.03 

𝑤𝑠𝑜𝑦,2̅̅ ̅̅ ̅̅ ̅̅  (%) = 18.50 ± 0.0008 𝑚𝑑𝑚(𝑔) = 𝑚𝑠𝑜𝑦 − 𝑚𝐻2𝑂 = 1541.85 

𝑡  

[d] 

(𝑚𝑅𝐶̅̅ ̅̅ ̅̅ )∗  

[g] 

(∑ 𝑚𝐶𝑂2
)

∗
  

[g] 

∑ 𝑚𝐶𝑂2,𝑠  

[g kg-1]  

𝐷𝑀𝐿 

[%] 

𝑡′ 

[d] 

𝐷𝑀𝐿′ 

[%] 

∗= 𝐴, 𝑡 ∗= 𝐵, 𝑡 ∗= 𝐴 ∗= 𝐵 ∗= 𝐴 + 𝐵 

0.00 933.68 940.22     0.00 0.00 0.000   

0.72 934.71   1.03   1.03 0.67 0.045   

0.80   940.34   0.12 1.15 0.74 0.051 0.08 0.05 

0.88 936.34   1.63   2.78 1.80 0.123 0.16 0.12 

0.97   940.34   0.00 2.78 1.80 0.123 0.25 0.12 

1.07 937.23   0.89   3.66 2.38 0.162 0.35 0.16 

1.67   940.48   0.14 3.80 2.47 0.168 0.95 0.17 

1.77 938.10   0.87   4.67 3.03 0.207 1.04 0.21 

1.85   940.51   0.04 4.71 3.05 0.208 1.13 0.21 

1.93 938.33   0.24   4.95 3.21 0.219 1.21 0.22 

2.76   944.00   3.49 8.43 5.47 0.373 2.03 0.37 

2.83 938.90   0.56   9.00 5.83 0.398 2.11 0.40 

2.91   944.52   0.52 9.52 6.17 0.421 2.19 0.42 

2.97 939.12   0.22   9.74 6.31 0.431 2.25 0.43 

3.06   944.74   0.22 9.96 6.46 0.440 2.34 0.44 

3.65 943.13   4.02   13.97 9.06 0.618 2.93 0.62 
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Table B.8. Continued 

3.73   944.92   0.18 14.15 9.18 0.626 3.01 0.63 

3.85 943.85   0.72   14.87 9.64 0.657 3.13 0.66 

3.93   945.25   0.33 15.20 9.86 0.672 3.21 0.67 

4.00 944.18   0.33   15.53 10.07 0.687 3.28 0.69 

4.74   950.47   5.22 20.75 13.46 0.918 4.02 0.92 

4.86 944.81   0.63   21.38 13.87 0.945 4.14 0.95 

4.94   950.94   0.47 21.85 14.17 0.966 4.22 0.97 

5.01 945.33   0.52   22.37 14.51 0.989 4.29 0.99 

5.68   954.46   3.52 25.89 16.79 1.145 4.96 1.14 

5.79 945.80   0.47   26.36 17.10 1.166 5.07 1.17 

5.87   954.72   0.26 26.62 17.27 1.177 5.15 1.18 

6.64 951.77   5.97   32.59 21.14 1.441 5.91 1.44 

6.72   955.32   0.60 33.19 21.53 1.468 6.00 1.47 

6.82 952.48   0.71   33.90 21.99 1.499   

6.98   955.84   0.52 34.42 22.32 1.522   

7.07 953.73   1.25   35.67 23.13 1.577   
1Time and dry matter loss values were adjusted to 𝑡′ = 𝑡 − 𝑡0.05 and 𝐷𝑀𝐿′ = 𝐷𝑀𝐿 − 0.05. 

 

Table B.9. Soybeans (18%) – Replication No. 5 

Start date and time: 04/24/2017 16:15 𝑀𝐶𝑂2
 (g mol-1): 44.0 

End date and time: 05/03/2017 15:45 𝑀𝐶6𝐻12𝑂6
 (g mol-1): 180.0 

No. of days: 9 𝑚𝑜𝑙 𝐶6𝐻12𝑂6 𝑚𝑜𝑙 𝐶𝑂2⁄ : 0.167 

    

�̂�𝑠𝑜𝑦,1
̅̅ ̅̅ ̅̅ ̅̅  (%) = 18.17 ± 0.0577 𝑚𝑠𝑜𝑦 (g) = 1780.00 

𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅  (%) = 18.40 ± 0.0006 𝑚𝐻2𝑂  (𝑔) = 𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅ 𝑚𝑠𝑜𝑦 =   327.49 

𝑤𝑠𝑜𝑦,2̅̅ ̅̅ ̅̅ ̅̅  (%) = 18.11 ± 0.0013 𝑚𝑑𝑚(𝑔) = 𝑚𝑠𝑜𝑦 − 𝑚𝐻2𝑂 = 1452.51 

 

𝑡  

[d] 

(𝑚𝑅𝐶̅̅ ̅̅ ̅̅ )∗  

[g] 

(∑ 𝑚𝐶𝑂2
)

∗
  

[g] 

∑ 𝑚𝐶𝑂2,𝑠  

[g kg-1]  

𝐷𝑀𝐿 

[%] 

𝑡′ 

[d] 

𝐷𝑀𝐿′ 

[%] 

∗= 𝐴, 𝑡 ∗= 𝐵, 𝑡 ∗= 𝐴 ∗= 𝐵 ∗= 𝐴 + 𝐵 

0.00 934.21 936.37     0.00 0.00 0.00   

0.66 934.23   0.02   0.02 0.01 0.00   

0.74   936.37   0.00 0.02 0.01 0.00   

0.83 934.24   0.01   0.03 0.02 0.00   

0.91   936.37   0.00 0.03 0.02 0.00   

0.99 934.24   0.00   0.03 0.02 0.00   

1.10   936.38   0.01 0.04 0.03 0.00   

1.67 934.26   0.02   0.06 0.04 0.00   
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1.74   936.39   0.01 0.07 0.05 0.00   

1.88 934.27   0.01   0.08 0.06 0.00   

1.95   936.40   0.01 0.09 0.06 0.00   

2.04 934.28   0.02   0.10 0.07 0.00   

2.66   936.43   0.03 0.13 0.09 0.01   

2.74 934.29   0.01   0.14 0.10 0.01   

2.83   936.44   0.01 0.15 0.10 0.01   

2.91 934.30   0.01   0.16 0.11 0.01   

2.99   936.46   0.02 0.18 0.12 0.01   

3.08 934.32   0.02   0.20 0.14 0.01   

3.66   936.87   0.41 0.61 0.42 0.03   

3.75 934.38   0.06   0.67 0.46 0.03   

3.82   936.95   0.08 0.75 0.52 0.04   

3.91 934.49   0.11   0.86 0.59 0.04   

3.99   937.05   0.10 0.96 0.66 0.045   

4.08 934.62   0.13   1.08 0.75 0.051   

4.65   938.00   0.96 2.04 1.40 0.096 0.57 0.10 

4.70 934.76   0.15   2.19 1.51 0.103 0.62 0.10 

4.78   938.20   0.20 2.38 1.64 0.112 0.70 0.11 

4.88 934.87   0.11   2.49 1.72 0.117 0.80 0.12 

5.05   938.36   0.16 2.65 1.83 0.125 0.97 0.12 

5.67 937.93   3.06   5.71 3.93 0.268 1.59 0.27 

5.75   938.58   0.22 5.93 4.08 0.278 1.67 0.28 

5.84 938.16   0.23   6.16 4.24 0.289 1.75 0.29 

5.93   938.98   0.40 6.56 4.51 0.308 1.85 0.31 

6.09 938.50   0.34   6.90 4.75 0.324 2.01 0.32 

6.66   944.19   5.21 12.11 8.34 0.568 2.57 0.57 

6.74 938.90   0.40   12.51 8.61 0.587 2.66 0.59 

6.82   944.58   0.39 12.90 8.88 0.606 2.74 0.61 

6.93 939.17   0.27   13.18 9.07 0.619 2.85 0.62 

7.01   945.04   0.46 13.64 9.39 0.640 2.93 0.64 

7.66 946.89   7.72   21.35 14.70 1.002 3.58 1.00 

7.74   946.14   1.10 22.45 15.46 1.054 3.66 1.05 

7.82 948.71   1.82   24.27 16.71 1.139 3.74 1.14 

7.92   947.14   1.00 25.27 17.40 1.186 3.84 1.19 

8.00 950.00   1.29   26.56 18.29 1.247 3.91 1.25 

8.09   948.48   1.34 27.90 19.21 1.310 4.01 1.31 

8.69 959.10   9.10   37.00 25.47 1.74   

8.80   949.89   1.41 38.41 26.44 1.80   
1Time and dry matter loss values were adjusted to 𝑡′ = 𝑡 − 𝑡0.05 and 𝐷𝑀𝐿′ = 𝐷𝑀𝐿 − 0.05. 
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Table B.10. Soybeans (22%) – Replication No. 1 

Start date and time: 06/30/2017 17:45 𝑀𝐶𝑂2
 (g mol-1): 44.0 

End date and time: 07/06/2017 07:00 𝑀𝐶6𝐻12𝑂6
 (g mol-1): 180.0 

No. of days: 6 𝑚𝑜𝑙 𝐶6𝐻12𝑂6 𝑚𝑜𝑙 𝐶𝑂2⁄ : 0.167 

    

�̂�𝑠𝑜𝑦,1
̅̅ ̅̅ ̅̅ ̅̅  (%) = 21.57 ± 0.0577 𝑚𝑠𝑜𝑦 (g) = 1834.89 

𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅  (%) = 22.08 ± 0.0007 𝑚𝐻2𝑂  (𝑔) = 𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅ 𝑚𝑠𝑜𝑦 =   405.22 

𝑤𝑠𝑜𝑦,2̅̅ ̅̅ ̅̅ ̅̅  (%) = 21.80 ± 0.0006 𝑚𝑑𝑚(𝑔) = 𝑚𝑠𝑜𝑦 − 𝑚𝐻2𝑂 = 1429.67 

 

𝑡  

[d] 

(𝑚𝑅𝐶̅̅ ̅̅ ̅̅ )∗  

[g] 

(∑ 𝑚𝐶𝑂2
)

∗
  

[g] 

∑ 𝑚𝐶𝑂2,𝑠  

[g kg-1]  

𝐷𝑀𝐿 

[%] 

𝑡′ 

[d] 

𝐷𝑀𝐿′ 

[%] 

∗= 𝐴, 𝑡 ∗= 𝐵, 𝑡 ∗= 𝐴 ∗= 𝐵 ∗= 𝐴 + 𝐵 

0.00 934.27 933.55     0.00 0.00 0.00   

0.61 934.69  0.42  0.42 0.29 0.02   

0.68   933.64   0.09 0.51 0.36 0.02   

0.78 934.81  0.12  0.63 0.44 0.03   

0.87   933.79   0.14 0.78 0.54 0.04   

0.98 934.90  0.09  0.87 0.61 0.04   

1.64   935.69   1.90 2.77 1.94 0.13 0.60 0.08 

1.72 935.29  0.38  3.16 2.21 0.15 0.68 0.10 

1.82   935.98   0.29 3.44 2.41 0.16 0.78 0.11 

1.91 935.55  0.26  3.71 2.59 0.18 0.87 0.13 

2.66   939.03   3.06 6.76 4.73 0.32 1.62 0.27 

2.74 935.78  0.23  7.00 4.89 0.33 1.70 0.28 

2.78   939.42   0.39 7.38 5.16 0.35 1.74 0.30 

2.86 936.18  0.40  7.78 5.44 0.37 1.82 0.32 

2.95   939.86   0.44 8.23 5.75 0.39 1.91 0.34 

3.65 940.45  4.27  12.49 8.74 0.60 2.61 0.55 

3.73   944.90   5.04 17.53 12.26 0.84 2.68 0.79 

3.85 940.96  0.51  18.04 12.62 0.86 2.81 0.81 

3.93   945.54   0.64 18.68 13.07 0.89 2.89 0.84 

4.02 941.40  0.44  19.12 13.38 0.91 2.98 0.86 

4.70   952.84   7.30 26.42 18.48 1.26 3.66 1.21 

4.79 941.88  0.48  26.90 18.82 1.28 3.75 1.23 

4.86   953.36   0.52 27.42 19.18 1.31 3.82 1.26 

4.95 942.22  0.34  27.76 19.42 1.32 3.91 1.27 

5.02  953.91  0.55 28.31 19.80 1.35 3.98 1.30 

5.55 549.61  7.39  35.70 24.97 1.70 4.20 1.45 
1Time and dry matter loss values were adjusted to 𝑡′ = 𝑡 − 𝑡0.05 and 𝐷𝑀𝐿′ = 𝐷𝑀𝐿 − 0.05. 
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Table B.11. Soybeans (22%) – Replication No. 2 

Start date and time: 07/06/2017 21:30 𝑀𝐶𝑂2
 (g mol-1): 44.0 

End date and time: 07/12/2017 23:10 𝑀𝐶6𝐻12𝑂6
 (g mol-1): 180.0 

No. of days: 6 𝑚𝑜𝑙 𝐶6𝐻12𝑂6 𝑚𝑜𝑙 𝐶𝑂2⁄ : 0.167 

    

�̂�𝑠𝑜𝑦,1
̅̅ ̅̅ ̅̅ ̅̅  (%) = 21.67 ± 0.1155 𝑚𝑠𝑜𝑦 (g) = 1772.72 

𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅  (%) = 21.88 ± 0.0026 𝑚𝐻2𝑂  (𝑔) = 𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅ 𝑚𝑠𝑜𝑦 =   387.82 

𝑤𝑠𝑜𝑦,2̅̅ ̅̅ ̅̅ ̅̅  (%) = 21.47 ± 0.0012 𝑚𝑑𝑚(𝑔) = 𝑚𝑠𝑜𝑦 − 𝑚𝐻2𝑂 = 1384.90 

 

𝑡  

[d] 

(𝑚𝑅𝐶̅̅ ̅̅ ̅̅ )∗  

[g] 

(∑ 𝑚𝐶𝑂2
)

∗
  

[g] 

∑ 𝑚𝐶𝑂2,𝑠  

[g kg-1]  

𝐷𝑀𝐿 

[%] 

𝑡′ 

[d] 

𝐷𝑀𝐿′ 

[%] 

∗= 𝐴, 𝑡 ∗= 𝐵, 𝑡 ∗= 𝐴 ∗= 𝐵 ∗= 𝐴 + 𝐵 

0.00 955.77 960.92     0.00 0.00 0.000   

0.42 956.30  0.53  0.53 0.38 0.026   

0.61   961.07   0.15 0.68 0.49 0.033   

0.77 956.44  0.14  0.82 0.59 0.040   

0.88   961.21   0.14 0.96 0.69 0.047   

1.48 957.89  1.45  2.41 1.74 0.119 0.58 0.07 

1.56   961.56   0.35 2.76 1.99 0.14 0.66 0.09 

1.73 958.31  0.42  3.18 2.29 0.16 0.83 0.11 

1.81   961.80   0.24 3.42 2.47 0.17 0.91 0.12 

1.90 958.62  0.31  3.73 2.69 0.18 1.00 0.13 

2.44   965.41   3.61 7.34 5.30 0.36 1.55 0.31 

2.54 958.92  0.30  7.64 5.51 0.38 1.64 0.33 

2.60   965.73   0.32 7.96 5.75 0.39 1.71 0.34 

2.70 959.29  0.37  8.33 6.01 0.41 1.81 0.36 

2.81   966.36   0.63 8.96 6.47 0.44 1.91 0.39 

3.46 965.05  5.76  14.72 10.63 0.72 2.56 0.67 

3.54   966.86   0.50 15.22 10.99 0.75 2.64 0.70 

3.69 965.67  0.62  15.84 11.44 0.78 2.80 0.73 

3.81   967.52   0.66 16.50 11.91 0.81 2.91 0.76 

3.90 966.13  0.46  16.96 12.24 0.83 3.00 0.78 

4.48   972.68   5.16 22.12 15.97 1.09 3.58 1.04 

4.57 966.39  0.26  22.38 16.16 1.10 3.67 1.05 

4.65   972.95   0.27 22.65 16.36 1.12 3.75 1.07 

4.74 966.91  0.52  23.17 16.73 1.14 3.85 1.09 

4.81   973.52   0.57 23.74 17.14 1.17 3.91 1.12 

5.45 970.99  4.08  27.82 20.09 1.37 4.55 1.32 

5.52   973.96   0.44 28.26 20.40 1.39 4.62 1.34 

5.60 971.40  0.41  28.67 20.70 1.41 4.71 1.36 
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Table B.11. Continued 

5.70   974.27   0.31 28.98 20.92 1.43 4.80 1.38 

5.80 971.68  0.28  29.25 21.12 1.44 4.90 1.39 

5.88   974.72   0.45 29.71 21.45 1.46 4.98 1.41 

5.97 972.25  0.57  30.28 21.86 1.49 5.07 1.44 

6.07   975.23   0.51 30.79 22.23 1.52 5.11 1.45 
1Time and dry matter loss values were adjusted to 𝑡′ = 𝑡 − 𝑡0.05 and 𝐷𝑀𝐿′ = 𝐷𝑀𝐿 − 0.05. 

 

Table B.12. Soybeans (22%) – Replication No. 3 

Start date and time: 09/20/2017 19:30 𝑀𝐶𝑂2
 (g mol-1): 44.0 

End date and time: 09/26/2017 14:20 𝑀𝐶6𝐻12𝑂6
 (g mol-1): 180.0 

No. of days: 6 𝑚𝑜𝑙 𝐶6𝐻12𝑂6 𝑚𝑜𝑙 𝐶𝑂2⁄ : 0.167 

    

�̂�𝑠𝑜𝑦,1
̅̅ ̅̅ ̅̅ ̅̅  (%) = 21.67 ± 0.0471 𝑚𝑠𝑜𝑦 (g) = 1796.68 

𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅  (%) = 21.78 ± 0.0024 𝑚𝐻2𝑂  (𝑔) = 𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅ 𝑚𝑠𝑜𝑦 =   391.35 

𝑤𝑠𝑜𝑦,2̅̅ ̅̅ ̅̅ ̅̅  (%) = 21.67 ± 0.0009 𝑚𝑑𝑚(𝑔) = 𝑚𝑠𝑜𝑦 − 𝑚𝐻2𝑂 = 1405.33 

 

𝑡  

[d] 

(𝑚𝑅𝐶̅̅ ̅̅ ̅̅ )∗  

[g] 

(∑ 𝑚𝐶𝑂2
)

∗
  

[g] 

∑ 𝑚𝐶𝑂2,𝑠  

[g kg-1]  

𝐷𝑀𝐿 

[%] 

𝑡′ 

[d] 

𝐷𝑀𝐿′ 

[%] 

∗= 𝐴, 𝑡 ∗= 𝐵, 𝑡 ∗= 𝐴 ∗= 𝐵 ∗= 𝐴 + 𝐵 

0.00 932.42 931.48     0.00 0.00 0.00   

0.56 932.87  0.45  0.45 0.32 0.02   

0.65  931.60   0.12 0.58 0.41 0.03   

0.73 933.01  0.14  0.72 0.51 0.03   

0.81  931.73   0.13 0.85 0.60 0.04   

0.90 933.14  0.13  0.98 0.69 0.05   

1.54  934.98   3.25 4.23 3.01 0.21 0.64 0.16 

1.60 933.55  0.41  4.64 3.30 0.22 0.70 0.17 

1.68  935.37   0.39 5.02 3.57 0.24 0.77 0.19 

1.77 933.89  0.34  5.36 3.81 0.26 0.86 0.21 

1.89  935.74   0.37 5.73 4.08 0.28 0.99 0.23 

2.53 938.30  4.41  10.14 7.22 0.49 1.62 0.44 

2.61  936.23   0.49 10.63 7.57 0.52 1.71 0.47 

2.67 938.80  0.50  11.13 7.92 0.54 1.77 0.49 

2.78  936.68   0.45 11.58 8.24 0.56 1.87 0.51 

2.86 939.27  0.48  12.06 8.58 0.58 1.95 0.53 

2.94  937.19   0.51 12.57 8.94 0.61 2.03 0.56 

3.55 943.06  3.79  16.35 11.64 0.79 2.64 0.74 

3.60  937.67   0.48 16.83 11.98 0.82 2.70 0.77 
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Table B.12. Continued 

3.69 943.55  0.49  17.32 12.33 0.84 2.78 0.79 

3.77  938.13   0.46 17.78 12.65 0.86 2.86 0.81 

3.90 944.12  0.57  18.35 13.06 0.89 2.99 0.84 

3.98  938.68   0.55 18.90 13.45 0.92 3.07 0.87 

4.55 948.01   3.89  22.79 16.22 1.11 3.65 1.06 

4.63   939.25   0.57 23.36 16.62 1.13 3.72 1.08 

4.70 948.57   0.56  23.92 17.02 1.16 3.80 1.11 

4.79   939.80   0.55 24.47 17.41 1.19 3.89 1.14 

4.91 949.16   0.59  25.06 17.83 1.22 4.00 1.17 

5.52   944.47   4.67 29.73 21.16 1.44 4.61 1.39 

5.62 949.71   0.55  30.28 21.55 1.47 4.71 1.42 

5.71   944.99   0.52 30.80 21.92 1.49 4.80 1.44 

5.78 950.18   0.47   31.28 22.26 1.52 4.82 1.45 
1Time and dry matter loss values were adjusted to 𝑡′ = 𝑡 − 𝑡0.05 and 𝐷𝑀𝐿′ = 𝐷𝑀𝐿 − 0.05. 

 

Table B.13. Soybeans (22%) – Replication No. 4 

Start date and time: 09/26/2017 20:30 𝑀𝐶𝑂2
 (g mol-1): 44.0 

End date and time: 10/04/2017 09:00 𝑀𝐶6𝐻12𝑂6
 (g mol-1): 180.0 

No. of days: 8 𝑚𝑜𝑙 𝐶6𝐻12𝑂6 𝑚𝑜𝑙 𝐶𝑂2⁄ : 0.167 

    

�̂�𝑠𝑜𝑦,1
̅̅ ̅̅ ̅̅ ̅̅  (%) = 21.53 ± 0.0577 𝑚𝑠𝑜𝑦 (g) = 1795.32 

𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅  (%) = 21.86 ± 0.0005 𝑚𝐻2𝑂  (𝑔) = 𝑤𝑠𝑜𝑦,1̅̅ ̅̅ ̅̅ ̅̅ 𝑚𝑠𝑜𝑦 =   392.46 

𝑤𝑠𝑜𝑦,2̅̅ ̅̅ ̅̅ ̅̅  (%) = 21.66 ± 0.0003 𝑚𝑑𝑚(𝑔) = 𝑚𝑠𝑜𝑦 − 𝑚𝐻2𝑂 = 1402.86 

 

𝑡  

[d] 

(𝑚𝑅𝐶̅̅ ̅̅ ̅̅ )∗  

[g] 

(∑ 𝑚𝐶𝑂2
)

∗
  

[g] 

∑ 𝑚𝐶𝑂2,𝑠  

[g kg-1]  

𝐷𝑀𝐿 

[%] 

𝑡′ 

[d] 

𝐷𝑀𝐿′ 

[%] 

∗= 𝐴, 𝑡 ∗= 𝐵, 𝑡 ∗= 𝐴 ∗= 𝐵 ∗= 𝐴 + 𝐵 

0.00 947.86 955.98     0.00 0.00 0.00   

0.53 948.39  0.53  0.53 0.38 0.03   

0.61  956.08   0.10 0.63 0.45 0.03   

0.69 948.49  0.10  0.73 0.52 0.04   

0.80  956.20   0.12 0.85 0.61 0.04   

0.85 948.60  0.11  0.96 0.68 0.047   

1.56  957.37   1.17 2.13 1.52 0.10 0.66 0.05 

1.61 948.80  0.20  2.33 1.66 0.11 0.72 0.06 

1.72  957.55   0.18 2.51 1.79 0.12 0.82 0.07 

1.79 949.01  0.21  2.72 1.94 0.13 0.90 0.08 

1.87  957.81   0.26 2.98 2.13 0.14 0.97 0.09 
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Table B.13. Continued 

2.54 950.96  1.95  4.93 3.52 0.24 1.65 0.19 

2.63  958.22   0.41 5.34 3.81 0.26 1.74 0.21 

2.72 951.41  0.45  5.79 4.13 0.28 1.82 0.23 

2.85  958.62   0.40 6.19 4.41 0.30 1.95 0.25 

2.91 951.81  0.40  6.59 4.70 0.32 2.02 0.27 

3.54  961.22   2.60 9.19 6.55 0.45 2.64 0.40 

3.65 952.17  0.36  9.55 6.81 0.46 2.75 0.41 

3.75  961.59   0.37 9.92 7.07 0.48 2.86 0.43 

3.84 952.59  0.42  10.34 7.37 0.50 2.94 0.45 

3.92  962.00   0.41 10.75 7.67 0.52 3.02 0.47 

4.52 956.30  3.71  14.46 10.31 0.70 3.63 0.65 

4.57  962.52   0.52 14.98 10.68 0.73 3.68 0.68 

4.66 956.72   0.41  15.40 10.98 0.75 3.76 0.70 

4.75   963.02   0.50 15.90 11.33 0.77 3.86 0.72 

4.83 957.32   0.60  16.50 11.76 0.80 3.94 0.75 

4.90   963.49   0.47 16.97 12.10 0.82 4.01 0.77 

5.50 960.75   3.43  20.40 14.54 0.99 4.60 0.94 

5.58   964.09   0.60 21.00 14.97 1.02 4.69 0.97 

5.67 961.45   0.70   21.70 15.47 1.05 4.77 1.00 

5.75   964.69   0.60 22.30 15.90 1.08 4.86 1.03 

5.85 962.05   0.60   22.90 16.32 1.11 4.96 1.06 

6.52   968.85   4.16 27.06 19.29 1.32 5.63 1.27 

6.58 962.66   0.61   27.67 19.72 1.34 5.69 1.29 

6.67   969.46   0.61 28.28 20.16 1.37 5.78 1.32 

6.75 963.21   0.55   28.83 20.55 1.40 5.86 1.35 

6.83   970.06   0.60 29.43 20.98 1.43 5.94 1.38 

6.92 963.80   0.59   30.02 21.40 1.46 6.02 1.41 

7.00   970.64   0.58 30.60 21.81 1.49 6.10 1.44 

7.52 969.66   5.86   36.46 25.99 1.77 6.13 1.45 
1Time and dry matter loss values were adjusted to 𝑡′ = 𝑡 − 𝑡0.05 and 𝐷𝑀𝐿′ = 𝐷𝑀𝐿 − 0.05. 
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APPENDIX C. RESULTS OF STATISTICAL ANALYSES 

C.1. Comparison of moisture contents 

Table C.1. Student’s 𝒕-test results for Δ𝒘𝟏: Two-sample assuming equal variances 

Test parameter 𝑤 = 14% 18% 22% 

 �̂�𝑠𝑜𝑦,1
1 𝑤𝑠𝑜𝑦,1 �̂�𝑠𝑜𝑦,1 𝑤𝑠𝑜𝑦,1 �̂�𝑠𝑜𝑦,1 𝑤𝑠𝑜𝑦,1 

Mean 14.37 14.33 18.36 18.47 21.61 21.90 

Variance 0.06 0.09 0.06 0.04 0.01 0.02 

Observations 4 4 5 5 4 4 

Pooled variance 0.07  0.05  0.01  

Hypothesized mean 

difference 

0  0  0  

Degrees of freedom 6  8  6  

𝑡-Stat 0.18  -0.81  -3.97  

𝑝(𝑇 ≤ 𝑡) one-tail 0.430  0.220  0.004  

𝑡-critical 1.943  1.860  1.943  

𝑝(𝑇 ≤ 𝑡) two-tail 0.860  0.439  0.007  

𝑡-critical 2.447  2.306  2.447  

 

Table C.2. Student’s 𝒕-test results for Δ𝒘𝟏→𝟐: Two-sample assuming equal variances 

Test parameter 𝑤 = 14% 18% 22% 

 𝑤𝑠𝑜𝑦,1 𝑤𝑠𝑜𝑦,2 𝑤𝑠𝑜𝑦,1 𝑤𝑠𝑜𝑦,2 𝑤𝑠𝑜𝑦,1 𝑤𝑠𝑜𝑦,2 

Mean 14.33 14.36 18.47 18.22 21.90 21.65 

Variance 0.09 0.15 0.04 0.19 0.02 0.02 

Observations 4 4 5 5 4 4 

Pooled variance 0.12  0.12  0.02  

Hypothesized mean 

difference 

0  0  0  

Degrees of freedom 6  8  6  

𝑡-Stat -0.12  1.19  2.68  

𝑝(𝑇 ≤ 𝑡) one-tail 0.453  0.134  0.019  

𝑡-critical 1.943  1.860  1.943  

𝑝(𝑇 ≤ 𝑡) two-tail 0.905  0.268  0.036  

𝑡-critical 2.447  2.306  2.447  
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C.2. Comparison of time parameters 

Table C.3. ANOVA: Comparison of lag times 

Comparing among 𝒘 with 𝒕𝒔𝒕𝒂𝒓𝒕 =  𝒕𝟎.𝟎𝟓 

Source DF Sum of Squares Mean Square F-value Pr > F 

Model 2 26.2731 13.1366 4.26 0.0458 

Error 10 30.8089 3.0809   

Corrected total 12 57.0820    

R-square CV RMSE Mean Critical value of t 

0.4603 57.9731 1.7552 3.0277 2.2281 

Comparisons significant at the 0.05 level are indicated by ***. 

Comparison Difference 95% Confidence Limits   

14 vs. 18 0.681 -1.943 3.305   

14 vs. 22 3.398 0.632 6.163 ***  

18 vs. 22 2.717 0.093 5.340 ***  

Comparing among 𝒘 with 𝒕𝒔𝒕𝒂𝒓𝒕 = 𝒕𝟎.𝟏𝟎 

Source DF Sum of Squares Mean Square F-value Pr > F 

Model 2 25.8759 12.9379 4.01 0.0527 

Error 10 32.2898 3.2290   

Corrected total 12 58.1659    

R-square CV RMSE Mean Critical value of t 

0.4449 52.6725 1.7969 3.41 2.2281 

Comparisons significant at the 0.05 level are indicated by ***. 

Comparison Difference 95% Confidence Limits   

14 vs. 18 0.658 -2.028 3.344   

14 vs. 22 3.365 0.534 6.196 ***  

18 vs. 22 2.707 0.021 5.393 ***  

Comparing within 14% and 𝒕𝟎.𝟎𝟓 vs. 𝒕𝟎.𝟏𝟎 

Source DF Sum of Squares Mean Square F-value Pr > F 

Model 1 0.2665 0.2665 0.04 0.8465 

Error 6 39.1129 6.5188   

Corrected total 7 39.3794    

R-square CV RMSE Mean Critical value of t 

0.0068 56.5179 2.5532 4.5175 3.4604 

Means with the same letter are not significantly different. 

Tukey 

grouping 

Mean N J   

A 4.700 4 2   

A 4.335 4 1   
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Table C.3. Continued 

Comparing within 18% and 𝒕𝟎.𝟎𝟓 vs. 𝒕𝟎.𝟏𝟎 

Source DF Sum of Squares Mean Square F-value Pr > F 

Model 1 0.3763 0.3764 0.13 0.7317 

Error 8 23.8862 2.9858   

Corrected total 9 24.2626    

R-square CV RMSE Mean Critical value 

of t 

Minimum 

significant 

difference 

0.0155 44.9049 1.7279 3.8480 3.2612 2.5201 

Means with the same letter are not significantly different. 

Tukey 

grouping 

Mean N J   

A 4.042 5 2   

A 3.654 5 1   

Comparing within 22% and 𝒕𝟎.𝟎𝟓 vs. 𝒕𝟎.𝟏𝟎 

Source DF Sum of Squares Mean Square F-value Pr > F 

Model 1 0.3160 0.3160 19.00 0.0048 

Error 6 0.0998 0.0166   

Corrected total 7 0.4158    

R-square CV RMSE Mean Critical value 

of t 

Minimum 

significant 

difference 

0.7600 11.3491 0.1289 1.1362 3.4604 0.2231 

Means with the same letter are not significantly different. 

Tukey 

grouping 

Mean N J   

A 1.3350 4 2   

B 0.9375 4 1   

 

Table C.4. ANOVA: Comparison of time to reach 0.5% dry matter loss 

Comparing among 𝒘, includes lag time 

Source DF Sum of Squares Mean Square F-value Pr > F 

Model 2 51.1722 25.5861 7.41 0.0106 

Error 10 34.5493 3.4549   

Corrected total 12 85.7215    

R-square CV RMSE Mean Critical value of t 

0.5970 32.2354 1.8587 5.7661 3.8768 

Comparisons significant at the 0.05 level are indicated by ***. 

Comparison Difference 95% Confidence Limits   

14 vs. 18 2.332 -1.087 5.750   

14 vs. 22 5.053 1.450 8.655 ***  
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Table C.4. Continued 

18 vs. 22 2.721 -0.697 6.139   

Comparing among 𝒘, excludes lag time, with 𝒕𝒔𝒕𝒂𝒓𝒕 =  𝒕𝟎.𝟎𝟓 

Source DF Sum of Squares Mean Square F-value Pr > F 

Model 2 10.3838 5.1919 10.72 0.0033 

Error 10 4.8423 0.4842   

Corrected total 12 15.2261    

R-square CV RMSE Mean Critical value of t 

0.6819 23.3753 0.6958 2.9769 3.8768 

Comparisons significant at the 0.05 level are indicated by ***. 

Comparison Difference 95% Confidence Limits   

14 vs. 18 1.9415 0.6619 3.2211 ***  

14 vs. 22 1.9300 0.5812 3.2788 ***  

18 vs. 22 0.0115 -1.2681 1.2911   

Comparing among 𝒘, excludes lag time, with 𝒕𝒔𝒕𝒂𝒓𝒕 =  𝒕𝟎.𝟏𝟎 

Source DF Sum of Squares Mean Square F-value Pr > F 

Model 2 10.0145 5.0073 13.63 0.0014 

Error 10 3.6734 0.3673   

Corrected total 12 13.6879    

R-square CV RMSE Mean Critical value of t 

0.7316 22.2135 0.6061 2.7285 3.8768 

Comparisons significant at the 0.05 level are indicated by ***. 

Comparison Difference 95% Confidence Limits   

14 vs. 18 1.8990 0.7845 3.0135 ***  

14 vs. 22 1.9050 0.7302 3.0798 ***  

18 vs. 22 0.060 -1.1085 1.1205   

Comparing within 14%  

Source DF Sum of Squares Mean Square F-value Pr > F 

Model 2 43.5920 21.7960 6.44 0.0184 

Error 9 30.4784 3.3865   

Corrected total 11 74.0705    

R-square CV RMSE Mean Critical value 

of t 

Minimum 

significant 

difference 

0.5885 33.2975 1.8402 5.5267 3.9484 3.633 

Means with the same letter are not significantly different. 

Tukey 

grouping 

Mean N J   

A 8.218 4 1   

B 4.320 4 2   

B 4.045 4 3   
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Table C.4. Continued 

Comparing within 18%  

Source DF Sum of Squares Mean Square F-value Pr > F 

Model 2 43.9343 21.9671 25.61 < 0.001 

Error 12 10.2942 0.8578   

Corrected total 14 54.2285    

R-square CV RMSE Mean Critical value 

of t 

Minimum 

significant 

difference 

0.8102 26.6968 0.9262 3.4693 3.4693 1.5628 

Means with the same letter are not significantly different. 

Tukey 

grouping 

Mean N J   

A 5.8860 5 1   

B 2.3760 5 2   

B 2.1460 5 3   

Comparing within 22%  

Source DF Sum of Squares Mean Square F-value Pr > F 

Model 2 2.2885 1.1442 4.49 0.0444 

Error 9 2.2924 0.2547   

Corrected total 11 4.5809    

R-square CV RMSE Mean Critical value 

of t 

Minimum 

significant 

difference 

0.4996 19.6823 0.5047 2.5642 3.9484 0.9964 

Means with the same letter are not significantly different. 

Tukey 

grouping 

Mean N J   

A 3.1650 4 1   

A 2.3875 4 2   

A 2.1400 4 3   
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C.3. Dry matter loss rates calculation 

Table C.5. Linear regression results: Dry matter loss rates of soybeans at 14% moisture using 

𝒕𝒔𝒕𝒂𝒓𝒕 = 𝒕𝟎.𝟎𝟓 

Replication No. 1 2 3 4 Pooled 

Regression Statistics      

Multiple R 0.9986 0.9922 0.9897 0.9984 0.9858 

R square 0.9972 0.9844 0.9796 0.9969 0.9717 

Adjusted R square 0.9791 0.9683 0.9617 0.9736 0.9672 

Standard error 0.0429 0.1008 0.1107 0.0467 0.1344 

Observations 56 63 57 44 220 

ANOVA      

Degrees of freedom      

Regression 1 1 1 1 1 

Residual 55 62 56 43 219 

Total 56 63 57 44 220 

Sum of squares      

Regression 35.9023 39.7693 32.8831 29.8807 135.8886 

Residual 0.1011 0.6294 0.6858 0.0944 3.9530 

Total 36.0034 40.3988 33.5689 29.9751 139.8417 

Mean square      

Regression 35.9023 39.7693 32.8439 29.8807 135.8886 

Residual 0.0018 0.0102 0.0126 0.0022 0.0181 

F-statistic 19524 3917 2610 13606 7528 

p-value 8.53 x 10-71 4.71 x 10-57 2.3 x 10-48 2.19 x 10-54 5.24 x 10-171 

Regression estimatesa      

Slope (𝑣𝐷𝑀𝐿 ± S.E.) 0.1342  

± 0.0010 

0.1170  

± 0.0019 

0.1188  

± 0.0023 

0.1692  

± 0.0014 

0.1280  

± 0.015 

t-Stat 139.73 62.59 51.82 116.65 86.77 

p-value 7.35 x 10-72 9.50 x 10-58 5.23 x 10-49 1.98 x 10-55 1.43 x 10-171 
a Intercept was forced through zero; S.E. = standard error. 
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Table C.6. Linear regression results: Dry matter loss rates of soybeans at 18% moisture using 

𝒕𝒔𝒕𝒂𝒓𝒕 = 𝒕𝟎.𝟎𝟓 

Replication No. 1 2 3 4 5 Pooled 

Regression Statistics      

Multiple R 0.9961 0.9910 0.9843 0.9956 0.9689 0.9809 

R square 0.9921 0.9821 0.9688 0.9911 0.9389 0.9622 

Adjusted R 

square 

0.9366 0.9464 0.9304 0.9566 0.8954 0.9543 

Standard error 0.0654 0.1187 0.1292 0.0737 0.1739 0.1486 

Observations 19 29 27 30 24 119 

ANOVA       

Degrees of freedom      

Regression 1 1 1 1 1 1 

Residual 18 28 26 29 23 128 

Total 19 29 27 30 24 129 

Sum of squares       

Regression 9.7132 21.6137 13.4747 17.5694 10.6740 71.9729 

Residual 0.0770 0.3945 0.4337 0.1573 0.6952 2.8298 

Total 9.7903 22.0083 13.9084 17.7267 11.3691 74.8027 

Mean square       

Regression 9.7132 21.6137 13.4747 17.5694 10.6740 71.9729 

Residual 0.0043 0.0141 0.0167 0.0054 0.0302 0.0221 

F-statistic 2269 1534 808 3238 353 3255 

p-value 1.54 x 10-19 2.51 x 10-25 1.49 x 10-20 1.74 x 10-30 4.88 x 10-15 2.19 x 10-92 

Regression 

estimatesa 

      

Slope  

(𝑣𝐷𝑀𝐿 ± S.E.) 

0.3041 

± 0.0064 

0.2853 

± 0.0073 

0.2266 

± 0.0080 

0.2218  

± 0.0039 

0.2563 

± 0.0136 

0.2499 

± 0.0044 

t-Stat 47.64 39.16 28.42 56.90 18.79 57.05 

p-value 2.15 x 10-20 5.34 x 10-26 4.15 x 10-21 2.62 x 10-31 1.87 x 10-15 6.88 x 10-93 
a Intercept was forced through zero; S.E. = standard error. 

  



 

112 

 

Table C.7. Linear regression results: Dry matter loss rates of soybeans at 22% moisture using 

𝒕𝒔𝒕𝒂𝒓𝒕 = 𝒕𝟎.𝟎𝟓 

Replication No. 1 2 3 4 Pooled 

Regression Statistics      

Multiple R 0.9831 0.9961 0.9993 0.9899 0.9816 

R square 0.9665 0.9922 0.9987 0.9800 0.9634 

Adjusted R square 0.9165 0.9565 0.9602 0.9506 0.9544 

Standard error 0.1506 0.0824 0.0317 0.1192 0.1643 

Observations 21 29 27 35 112 

ANOVA      

Degrees of freedom      

Regression 1 1 1 1 1 

Residual 20 28 26 34 111 

Total 21 29 27 35 112 

Sum of squares      

Regression 16.0651 24.2972 19.8759 23.7184 79.1101 

Residual 0.4533 0.1902 0.001 0.4827 2.9984 

Total 13.5184 28.4874 19.9026 24.2011 82.1086 

Mean square      

Regression 16.0650 24.2972 19.8756 23.7184 79.1101 

Residual 0.0226 0.0068 0.0010 0.0143 0.0270 

F-statistic 576 3577 19787 1670 2934 

p-value 1.12 x 10-15 3.10 x 10-30 9.27 x 10-38 7.61 x 10-30 1.15 x 10-81 

Regression estimatesa      

Slope (𝑣𝐷𝑀𝐿 ± S.E.) 0.2975 

± 0.0124 

0.2775 

± 0.0046 

0.2913 

± 0.0021 

0.2095 

± 0.0051 

0.2528 

± 0.0047 

t-Stat 24.008 59.81 140.66 40.87 54.12 

p-value 3.22 x 10-16 4.37 x 10-31 5.31 x 10-39 1.72 x 10-30 1.27 x 10-81 
a Intercept was forced through zero; S.E. = standard error. 
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Table C.8. Linear regression results: Dry matter loss rates of soybeans at 14% moisture using 

𝒕𝒔𝒕𝒂𝒓𝒕 = 𝒕𝟎.𝟏𝟎 

Replication No. 1 2 3 4 Pooled 

Regression Statistics      

Multiple R 0.9984 0.9977 0.9871 0.9986 0.9875 

R square 0.9967 0.9954 0.9744 0.9972 0.9753 

Adjusted R square 0.9772 0.9769 0.9566 0.9740 0.9704 

Standard error 0.0452 0.0556 0.1172 0.0414 0.1225 

Observations 52 55 57 44 208 

ANOVA      

Degrees of freedom      

Regression 1 1 1 1 1 

Residual 51 54 56 43 207 

Total 52 55 57 44 208 

Sum of squares      

Regression 32.2224 36.3432 29.3578 29.9288 122.8579 

Residual 0.1040 0.1667 0.7702 0.0738 3.1090 

Total 32.3264 36.5099 30.1279 27.0026 125.9669 

Mean square      

Regression 32.2224 36.3432 29.3578 26.9288 122.8579 

Residual 0.0020 0.0031 0.0137 0.0017 0.01502 

F-statistic 15799 11774 2135 15680 8180 

p-value 3.35 x 10-64 6.31 x 10-64 1.08 x 10-45 1.12 x 10-55 8.95 x 10-168 

Regression estimatesa      

Slope (𝑣𝐷𝑀𝐿 ± S.E.) 0.1358  

± 0.0011 

0.1339  

± 0.0012 

0.1166  

± 0.0025 

0.1724  

± 0.0014 

0.1340  

± 0.015 

t-Stat 125.69 108.51 46.20 125.22 90.44 

p-value 3.08 x 10-65 6.93 x 10-65 2.78 x 10-46 9.49 x 10-57 2.28 x 10-168 
a Intercept was forced through zero; S.E. = standard error. 
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Table C.9. Linear regression results: Dry matter loss rates of soybeans at 18% moisture using 

𝒕𝒔𝒕𝒂𝒓𝒕 = 𝒕𝟎.𝟏𝟎 

Replication No. 1 2 3 4 5 Pooled 

Regression 

Statistics 

      

Multiple R 0.9956 0.9914 0.9919 0.9933 0.9797 0.9795 

R square 0.9912 0.9829 0.9839 0.9867 0.9599 0.9595 

Adjusted R 

square 

0.9245 0.9472 0.9422 0.9509 0.9123 0.9512 

Standard error 0.07189 0.1109 0.0914 0.08718 0.1394 0.1526 

Observations 16 29 25 29 22 122 

ANOVA       

Degrees of 

freedom 

      

Regression 1 1 1 1 1 1 

Residual 15 28 24 28 21 121 

Total 16 29 25 29 22 122 

Sum of squares       

Regression 8.6942 19.7948 12.2672 15.7503 9.7777 66.7295 

Residual 0.0775 0.3445 0.2007 0.2128 0.4083 2.8286 

Total 8.7717 20.1394 12.4679 15.9631 10.1860 69.5481 

Mean square       

Regression 8.6942 19.7948 12.2673 15.7503 9.7777 66.7295 

Residual 0.005 0.0123 0.0054 0.0076 0.0194 0.0233 

F-statistic 1682 1609 2467 2072 503 2865 

p-value < 1 x 10-14 < 1 x 10-14 < 1 x 10-14 < 1 x 10-14 < 1 x 10-14 < 1 x 10-14 

Regression 

estimatesa 

      

Slope  

(𝑣𝐷𝑀𝐿 ± S.E.) 

0.3191  

± 0.0078 

0.12977  

± 0.0074 

0.2623  

± 0.0068 

0.2135 

± 0.0047 

0.3049 

± 0.0136 

0.2633  

± 0.004 

t-Stat 41.01 40.11 38.30 45.52 22.42 53.52 

p-value 8.05 x 10-17 2.77 x 10-26 4.91 x 10-23 8.43 x 10-28 3.7610-16 4.34 x 10-86 
a Intercept was forced through zero; S.E. = standard error. 
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Table C.10. Linear regression results: Dry matter loss rates of soybeans at 22% moisture using 

𝒕𝒔𝒕𝒂𝒓𝒕 = 𝒕𝟎.𝟏𝟎 

Replication No. 1 2 3 4 Pooled 

Regression Statistics      

Multiple R 0.9864 0.9983 0.9994 0.9942 0.9871 

R square 0.9731 0.9966 0.9989 0.9885 0.9744 

Adjusted R square 0.9231 0.9609 0.9604 0.9591 0.9654 

Standard error 0.1282 0.0519 0.0276 0.0859 0.1309 

Observations 21 29 27 35 112 

ANOVA      

Degrees of 

freedom 

     

Regression 1 1 1 1 1 

Residual 20 28 26 34 111 

Total 21 29 27 35 112 

Sum of squares      

Regression 11.8882 22.2467 17.9422 21.6487 72.5002 

Residual 0.3285 0.0755 0.0199 0.2512 1.9001 

Total 12.2167 22.3222 17.9621 21.8999 74.4010 

Mean square      

Regression 11.8882 22.2467 17.9422 21.6487 72.5002 

Residual 0.0164 0.0027 0.0008 0.0074 0.0171 

F-statistic 724 8249 23431 2930 4234 

p-value 1.37 x 10-16 4.13 x 10-35 1.11 x 10-38 8.21 x 10-34 1.20 x 10-89 

Regression estimatesa      

Slope (𝑣𝐷𝑀𝐿 ± 

S.E.) 

0.3220  

± 0.0119 

0.2987 

± 0.0033 

0.2946 

± 0.0019 

0.2317  

± 0.004 

0.2728 

± 0.0042 

t-Stat 26.90 90.82 153.07 54.13 65.07 

p-value 3.53 x 10-17 3.85 x 10-36 5.91 x 10-40 1.41 x 10-34 3.11 x 10-90 
a Intercept was forced through zero; S.E. = standard error. 
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Table C.11. ANOVA: Comparison of dry matter loss rates 

Comparing among 𝒘 with 𝒕𝒔𝒕𝒂𝒓𝒕 =  𝒕𝟎.𝟎𝟓 

Source DF Sum of Squares Mean Square F-value Pr > F 

Model 2 0.0459 0.0230 19.71 0.0003 

Error 10 0.0117 0.0012   

Corrected total 12 0.0576    

R-square CV RMSE Mean Critical value of t 

0.7976 15.2600 0.0341 0.2237 3.8768 

Comparisons significant at the 0.05 level are indicated by ***. 

Comparison Difference 95% Confidence Limits   

14 vs. 18 -0.1241 -0.1868 -0.0613 ***  

14 vs. 22 -0.1340 -0.2002 -0.0678 ***  

18 vs. 22 -0.0100 -0.0727 0.0528   

Comparing among 𝒘 with 𝒕𝒔𝒕𝒂𝒓𝒕 =  𝒕𝟎.𝟏𝟎 

Source DF Sum of Squares Mean Square F-value Pr > F 

Model 2 0.0572 0.02861 23.81 0.0002 

Error 10 0.0131 0.0013   

Corrected total 12 0.0703    

R-square CV RMSE Mean Critical value of t 

0.8221 15.1597 0.03622 0.2389 3.8768 

Comparisons significant at the 0.05 level are indicated by ***. 

Comparison Difference 95% Confidence Limits   

14 vs. 18 -0.1405 -0.2071 -0.0739 ***  

14 vs. 22 -0.1475 -0.2177 -0.0773 ***  

18 vs. 22 -0.0070 -0.0736 0.0596   

Comparing within 14%  

Source DF Sum of Squares Mean Square F-value Pr > F 

Model 1 0.00005 0.00005 0.08 0.7835 

Error 6 0.00328 0.00055   

Corrected total 7 0.00332    

R-square CV RMSE Mean Critical value 

of t 

Minimum 

significant 

difference 

0.0136 17.0450 0.0233 0.1371 3.4604 0.0404 

Means with the same letter are not significantly different. 

Tukey 

grouping 

Mean N J   

A 0.1395 4 2   

A 0.1348 4 1   

Comparing within 18%  

Source DF Sum of Squares Mean Square F-value Pr > F 

Model 1 0.0011 0.0011 0.74 0.4161 

Error 8 0.0122 0.0015   
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Table C.11. Continued    

Corrected total 9 0.0133    

R-square CV RMSE Mean Critical value 

of t 

Minimum 

significant 

difference 

0.0842 14.5092 0.0391 0.2694 3.2612 0.0570 

Means with the same letter are not significantly different. 

Tukey 

grouping 

Mean N J   

A 0.2800 5 2   

A 0.2588 5 1   

Comparing within 22%  

Source DF Sum of Squares Mean Square F-value Pr > F 

Model 1 0.0007 0.0007 0.43 0.5358 

Error 6 0.0093 0.0015   

Corrected total 7 0.0099    

R-square CV RMSE Mean Critical value 

of t 

Minimum 

significant 

difference 

0.0670 14.1460 0.0393 0.2778   

Means with the same letter are not significantly different. 

Tukey 

grouping 

Mean N J   

A 0.2870 4 2   

A 0.2688 4 1   
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C.4. Minimum number of replications calculations  

Table C.12. Iterative calculations of minimum number of replications 

𝑤 = 14% (𝜎𝑣𝐷𝑀𝐿
)

𝑝
= 0.0017 % d-1 𝛼 = 0.05 𝑗 = 3𝑤  1𝑇 = 3 

 𝛿 = 0.0070 % d-1 𝛽 = 0.80  

𝑘 �̂� 𝑑𝑓 𝑡1 𝑡2 𝑟 (calculated) 𝑟 (rounded) 

1 6 10 2.2281 0.8791 1.2068 2 

2 2 2 4.3027 1.0607 3.6000 4 

3 4 6 2.4469 0.9057 1.4050 2 

4 2 2 4.3027 1.0607 3.5956 4 

𝑤 = 18% (𝜎𝑣𝐷𝑀𝐿
)

𝑝
= 0.0083 % d-1 𝛼 = 0.05 𝑗 = 3𝑤  1𝑇 = 3 

 𝛿 = 0.0333 % d-1 𝛽 = 0.80  

𝑘 �̂� 𝑑𝑓 𝑡1 𝑡2 𝑟 (calculated) 𝑟 (rounded) 

1 6 10 2.2281 0.8791 1.2068 2 

2 2 2 4.3027 1.0607 3.6000 4 

3 4 6 2.4469 0.9057 1.4050 2 

4 2 2 4.3027 1.0607 3.5956 4 

𝑤 = 22% (𝜎𝑣𝐷𝑀𝐿
)

𝑝
= 0.0025 % d-1 𝛼 = 0.05 𝑗 = 3𝑤  1𝑇 = 3 

 𝛿 = 0.0098 % d-1 𝛽 = 0.80  

𝑘 �̂� 𝑑𝑓 𝑡1 𝑡2 𝑟 (calculated) 𝑟 (rounded) 

1 6 10 2.2281 0.8791 1.2068 2 

2 2 2 4.3027 1.0607 3.6000 4 

3 4 6 2.4469 0.9057 1.4050 2 

4 2 2 4.3027 1.0607 3.5956 4 

 

 


