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Abstract 

 Quantifying and predicting the ecosystems responses to changes in natural and anthropogenic 

stressors using environmental models require a realistic representation of probable rainfall in its 

most sensible spatial-temporal dimensions matching that of the phenomenon under investigation. 

As one of the most critical inputs in environmental models, rainfall data can significantly change 

the quality and reliability of the model predictions. Due to the lack of ground-based measurements 

with high spatial and temporal resolution, other methods like radar, have been recently used as an 

alternative source of rainfall data. However, little research has been conducted to evaluate the 

possible tradeoffs in using radar generated rainfall data as oppose to ground-measured rainfall. 

The main objective of this study was to analyze the ability of radar estimates (NexRad N1P) in 

representing the rainfall patterns in a small-scale watershed and generate high temporal and spatial 

resolution rainfall data when rainfall pattern was given. To achieve this objective, first, we 

compared the precipitation from NexRad N1P and ground-based measurements in the Little 

Washita River Experimental Watershed in Oklahoma to quantify the differences in their patterns 

and distributions. And second, we tested the ability of a rainfall pattern simulator software “Zeus” 

to generate high temporal and spatial resolution rainfall data when the rainfall pattern was given. 

The generated rainfall data was compared with the original rainfall data from both NexRad and 

ground-based stations. The comparison of the NexRad and ground-based measured rainfall 

revealed that the mean rainfall from radar in March, April, May, June, and August is closer to the 

rainfall recorded from the ground-based station with an average difference between of less than 

25%. Rainfall recorded in the other months can easily be affected by extreme rainfall events, and 

the difference in the mean monthly rainfall can be higher than 40%. Also, the analysis showed that 

the NexRad has a tendency of recording the heavy and intense rainfall higher than the ground-
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based rainfall while the less intense rain less. The generated rainfall based on the NexRad data has 

less percent error than the ground-based when simulating the dry rainfall months (Jan, Feb, Mar, 

Apr, Sep, Oct, Nov and Dec). The results showed that significant differences were found between 

the NexRad and ground-based datasets that can significantly impact the response of environmental 

models that used them as inputs. This study enabled us to establish the rainfall patterns by using 

the NexRad when the density of ground-based stations is not sufficient to derive rainfall time series 

with high spatial and temporal resolution. Also, the “Zeus” software could help us generate the 

rainfall time series when other sources of high spatial and temporal resolution data are not 

available. The use of synthetically generated spatial-temporal rainfall patterns will enable us to 

explore the impacts of precipitation on hydrologic processes driven by changes in environmental 

stressors like land use and climate changes. 
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CHAPTER 1: INTRODUCTION 

Quantifying and predicting the ecosystems responses to changes in natural and anthropogenic 

stresses using environmental models requires a realistic representation of probable rainfall in its 

most sensible spatial-temporal dimensions matching that of the phenomenon under investigation. 

As one of the most critical inputs in environmental models, rainfall data can significantly influence 

the quality and reliability of the model predictions. As a result, many models cannot reach the 

desired accuracy and efficiency because of the lack of high-resolution and precise rainfall data. 

Rainfall, which affects both energy and water flow in the ecosystem, is one of the fundamental 

controlling ecosystem responses including runoff production, transport phenomena, and other 

environmental variables (Ivanov et al., 2007). As an example, distributed rainfall is used in real-

time forecasting such as severe weather and flash flood warnings in which the adequate spatial and 

temporal resolution is critical (Hill. et al., 2011; Moser. et al., 2015; Kim & Valdés, 2003). 

Distributed rainfall is also fundamental when quantifying changes in contaminant movement (e.g., 

sediment, nutrients, and pesticides) in agriculturally dominated watersheds due to the 

implementation of land management practices. Moreover, the presence or absence as well as the 

spatiotemporal representation of rainfall also affect other hydrometric variables (Ivanov et al., 

2007), and thus, the likelihood of the system response. The change in the rainfall distribution also 

affects the biotic and abiotic activities in the watershed ecosystems. In 2016, the shift of the rainfall 

levels has been proved associated with the amount of biomass in water (Badylak et al., 2016). 

To represent the areal rainfall within a watershed, it is a common practice to use ground-based 

rainfall data. However, in some cases, ground-based monitoring networks may not exist or possess 

the adequate density to characterize rainfall variability properly across the watershed resulting in 

increased uncertainties. On the other hand, the Next Generation Weather Radar (NexRad) may 
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provide an alternative to ground-based observations providing sufficient spatiotemporal resolution 

within the contiguous U.S. However, it may also contain a high degree of uncertainty (Ciach et 

al., 2007) and high rate of missing data derived from both the rainfall estimation model (e.g., Z-R 

relationship) and radar equipment errors (Ciach et al., 2007). Thus, practitioners need to evaluate 

the tradeoffs from the undesired uncertainty and restrictions driven by limited ground-based data 

(rain-gauge networks) and radar-rainfall estimations when assessing environmental impacts. 

Ground-based and radar estimated rainfall (e.g., NexRad) represent the precipitation process based 

on different principles and therefore result in different rainfall datasets (e.g. different time series). 

The differences can be due to the measurement target, time, and distance. For example, the 

measurement target of a ground-based station is the amount of rain that hits the ground while for 

the NexRad is the reflexivity of the cloud cover which is then converted to equivalent rainfall. 

Ground-based stations are static and can measure the rainfall at any temporal resolution. In 

contrast, radars rotate every 3 to 5 minutes and hence can capture rainfall information only within 

this time interval. Ground-based precipitation is a representative of a point in space while radar 

generated rainfall can capture spatial variability. Quantifying the differences between them can 

help us understand the risk and tradeoffs that may result when using the datasets which is crucial 

especially when the rainfall datasets are used in simulating watershed processes that are in turn 

used to evaluate the consequences of environmental decisions and policies. 

Assessing the impacts of climate change is simulated using projected future meteorological 

data in environmental models. The future meteorological data are commonly generated using 

General Circulation Models (GCMs) downscaled to a local or regional area. GCMs are series of 

three-dimensional mathematic models that simulate the climate based on some basic principles of 

mass, momentum, total energy, and water vapor to predict the climate changes in the future using 
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the surface hydrology, sea ice, cloudiness and other important climate factors (Grotch et al., 1991). 

The typical GCMs will have a resolution of between 250 km to 600 km for horizontal space which 

exceeded most of the size of a small watershed and the time interval is in years. Due to its low 

temporal and spatial resolution, it is nearly impossible to predict the climate changes in small areas 

that can capture the local climate regime or to be used in the environmental models focusing on 

the changes or behavior within a watershed. The process of downscaling the outputs of GCM 

models directly add another layer of uncertainties to the datasets such as the changeable 

relationship within the time series, and failure to capture most of the changes within the watershed 

(Wilby et al., 1997). Furthermore, most of the downscaling methods being used in most of the 

research are statistical and mathematical methods which might ignore the relationship between the 

hydrological and climate parts (Wilby et al., 1997), which played very important role in the water 

circulation in the ecosystem. Considering the important role that rainfall datasets play in 

developing environmental models that are then used to predict and forecast important events and 

to support the environmental decision and policies, a methodology to prepare them at the local 

scale based on some parameters which could preserve most information from available rainfall 

data is crucial and necessary. 
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CHAPTER 2: OBJECTIVES 

 Considering the importance of rainfall in evaluating the systemic responses of a watershed, 

understanding the properties and limitations of the different datasets in representing the areal 

watershed precipitation is crucial. The main objective of this study was to evaluate the tradeoffs 

between ground-based and NexRad radar data sets and to generate synthetic rainfall from both 

datasets to be used in scenario-based investigations. Specifically, this study was aimed to:  

(1) Derive a rainfall time series from the Next Generation Radar (NexRad, NOAA WSR-88D 

Doppler radar) and ground-based weather stations;  

(2) Compare NexRad and ground-based rainfall data and quantify the differences between these 

two rainfall measuring and recording methods in terms of rainfall patterns and the basic statistics 

of data;  

(3) Generate synthetic rainfall data sets from ground-based and NexRad datasets using a rainfall 

generator model. 

Understanding the differences between ground-based measured precipitation and NexRad will 

enable us to understand the risk and tradeoffs of using a specific data set to simulate hydrologic 

processes. Furthermore, by being able accurately to represent the temporal and spatial rainfall 

patterns peculiar to the watershed in question, we would be able to quantify accurately and predict 

the complex watershed responses (likelihood) within its probable behavioral spectrum under 

changing scenarios to predict the climate changes in small watershed or ecosystem area. 

  



 5 

CHAPTER 3: REVIEW OF LITERATURE 

 

 The importance of high-quality rainfall data in environmental models 

The quality of rainfall data referred to the characteristics of the rainfall data including and not 

limited to the density of the rainfall gauges (measured by the average area of each gauges 

covering), the reliability and catchments of the rainfall data, and the time interval of the rainfall 

time series. With the high-quality rainfall data, researchers can operate the analysis within the 

small watershed like flash flood and drought predictions, run-off models, non-point source 

pollution control, and land use analysis (Smith et al., 2007; Hansen et al., 1996; Jia et al., 2016; 

Aleman et al., 2016).  

In the environmental models, as one of the most variable factors or input, poor-quality rainfall 

data would enlarge the spatial-temporal resolution and uncertainty in the results and conclusions. 

On the other side, high-quality rainfall data could also enable us to capture the variation within the 

watershed which is sometimes critical. As a very complicated weather situation, rainfall could be 

affected by many factors including land use, air pressure, cloud thickness and height, wind speed, 

and elevation. Much research has been conducted by many researchers to evaluate the effects the 

quality of rainfall data on the ability of environmental models to simulate the different hydrologic 

processes at or within the watershed scale. Hansen et al., (2001) found that the rainfall data set 

with low rain gauges density can result in a poor rainfall-runoff model performance while the 

rainfall data set with fair or good rain gauges density can largely improve the performance. 

However, the research also pointed that the catchment response dynamics could also have an 

impact on the performance (Hansen et al., 1996).  Research by Duncan et al. indicated that high 

density of rainfall gauges has a strong and positive relationship with the accuracy of hydrograph 
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parameters. The accuracy within 5% of the hydrograph parameters could be achieved by the 

combination of the rainfall gauges data and the radar data which could provide the coverage in 

space (Duncan et al., 1993).  

In conclusion, to get a reliable and high-quality environmental model result, it is of vital 

importance to acquire the rainfall data with both high resolution in space (4km*4km or less) and 

time (daily or less) (Zhong & Yang, 2015). 

 The NexRad rainfall dataset  

The Next Generation Weather Radar (NexRad) program was developed in Oklahoma in 1988 

with the aim of providing high accuracy and resolution weather for the models, weather 

forecasting, natural disaster warning, and other uses (Ulbrich & Lee, 1999). The radar system is 

called “WSR-88D” system which provided the Level-II (Base) data including the original 

reflectively data, wind velocity data, and Level-III products generated from the original data like 

rainfall, storm structure and other products. The NexRad project which covered large areas and 

provided various radar products can largely assist users in real-time weather monitoring and short-

term or long-term weather forecast (Crum & Alberty, 1993), the detection of flood caused by the 

intense rainfall events (Seo et al., 2015), and calibration of the new rainfall detection method. 

NexRad rainfall data was generated using the Precipitation Processing System (PPS) 

algorithm using the “Z-R” law in which the “Z” represents the radar reflectively factor and “R” 

represents the rainfall (Fournier, 1999). The NexRad data, from 1988, can be ordered and 

downloaded from the website (http://www.roc.noaa.gov/WSR88D/) and viewed or processed by 

the software downloaded from the site (https://www.ncdc.noaa.gov/data-access/radar-data/radar-

display-tools). However, just like other measuring rainfall methods, the NexRad has its error 

issues. From the time NexRad was put into use, many types of research have been conducted to 
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evaluate the reliability and accuracy of the NexRad rainfall data product. In 1996, Hunter pointed 

out that error could happen due to many possible reasons like change in temperature and the 

reflective factor from different wavelength wave (Hunter, 1996). In 1999, Ulbrich & Lee 

conducted research about the reliability and accuracy of the “Z-R” law. The outcome showed that 

the equation above will get 33% more rainfall data during storm rain while 25% less rainfall during 

stratiform rain (Ulbrich & Lee, 1999). In 2011 and 2015, Seo et al. found that radar calibration 

errors are the main reason of rainfall error. However, all the results showed that the products from 

NexRad can provide the rainfall data for small-scale area environment modeling within an 

acceptable range when calibrated properly by other rainfall data like ground-based data measured 

and recorded by rainfall gauges (Seo et al., 2011&2015). 

However, few studies have been focused on quantifying the difference between the NexRad 

N1P (Level-III) product and the ground-based rainfall data acquired from the Tipping-Bucket 

rainfall gauges in the small-scale of a watershed in a long time scale. The existing lag caused large 

uncertainty and error in the hydrological models when using the other source of data as alternative 

data source. 

 The ground-based rainfall dataset 

The stations are equipped with Tipping-Bucket (TB) rainfall gauge which record data with a 

5-minute interval. Much research has been operated by researchers about the errors and the source 

of the TB rainfall gauges measurement because of its widely usage region and temporal and spatial 

reliability. In 2003, Ciach found that the relative standard error of the TB rainfall gauge 

measurements in 5-min timescale was less than 5%. However, he also pointed out that this can be 

exacerbated by extreme rainfall events (e.g., short duration high-intensity rainfall or low-intensity 

long duration). Research operated by Habib et al. in 2001 found that the increase of the time scale 
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of the sampling could largely decrease the error of the TB rainfall gauge measurement. The error 

is not significant when the time scale is over 15 minutes while the error of 1-minute time-scale 

rainfall is significant especially at low rain rates (Habib et al., 2001). In conclusion, both types of 

research showed that the sampling mechanism and its inability in capturing the changes in small 

time-scale time series are the main sources of the error. In 2016, Hoffmann et al. pointed out that 

the height of the TB will also affect the outcome of the amount of rainfall recorded by the 

measurement system. The TB installed 1 m height will record 12.7% less rainfall than the 

lysimeters installed on the ground in the experiment. What’s more, they also found that the TB 

system used in their study has a tendency to record less all the year while in winter the difference 

is more than in summer (Hoffmann et al., 2016). Apart from the factors listed above, Fankhauser 

in 1997 also found that the depth resolution, inaccurate rainfall depth per tip, exposure of the site, 

the wind and the uncertainty in rainfall distribution are all the factors which might cause errors in 

the TB rainfall gauges measurement. However, the depth resolution is not as important as the other 

factors (Fankhauser, 1998). Also, the location distribution of the rainfall gauges also affects the 

quality of the rainfall data set. Researchers operated by Seed and Austin in 1990 found that the 

regular network rain gauges could decrease the variable errors while the mean errors remain the 

same (Seed & Austin, 1990).  

In conclusion, the rainfall time series recorded by the TB rainfall gauges could represent the 

rainfall level of the watershed when we compared with the NexRad time series. However, we 

should also be aware that the ground-based rainfall time series could also be inaccurate because of 

the factors that could lead to errors as reviewed. 



 9 

 Representing rainfall at watershed scale  

The resolution of the rainfall data usually changes based on the area of the watershed and the 

resolution of the model used in the research. For example, the models which predicted the 

temperature, rainfall and, climate change in the global scale usually using the same rainfall value 

for one watershed or serial watersheds because the modification in one watershed or serial 

watersheds would not make a large difference (Hijmans, 2005). Most of the watershed with the 

area smaller than the cell in most of the models would also be regarded as one value for the whole 

watershed and ecosystem around like in GCMs. The mean value of the watershed can represent 

the general rainfall level and condition of the watershed in some extend and significantly simplify 

the environmental models when the model area is large and complex, however, this is not always 

useful and reasonable for the environmental models for small watersheds like regional runoff and 

non-point source pollution management (Smith et al., 2007; Hansen et al., 1996; Jia et al., 2016; 

Aleman et al., 2016). Furthermore, the rainfall data covering large area usually contained 

considerable error and uncertainty which would make the final result farther away from the real 

result.  

To analyze the effect of the rainfall on other environmental factors within the watershed, it is 

of vital importance for us to capture the variation in the watershed which made a difference. For 

example, in the research from Zhong and Yang (2015), the distribution of the rainfall event in both 

spatial and temporal scale is analyzed in a relatively high resolution (4km*4km) which meant that 

the rainfall data set should be in a raster rainfall data map instead of one value for the entire 

watershed. The raster rainfall map and shapefiles rainfall map, which is both common source of 

rainfall data in two-dimension or multiple-dimension environmental models, are usually chosen to 

represent the rainfall variation within the watershed. The shapefiles is also the standard file type 
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which is used by the USGS data gateway as the source GIS data. In the following study, all the 

rainfall data maps are prepared in the raster and shapefiles. 

In conclusion, it is of vital importance for us to generate the rainfall time series map for the 

small watershed with the high resolution to achieve the objective of quantifying the difference 

between the NexRad and the ground-based data and analyze and generate rainfall pattern for the 

small watershed shortly. 

 Rainfall patterns definition and generator  

The rainfall pattern referred to the rainfall characteristics including the sum of rainfall in a 

certain interval of time, rainfall events probability distribution function, relationships among the 

mean, maximum, and standard deviation, and conditional probabilities of wet days (the day with 

rainfall events) and dry days (the days without rainfall events). As one of the factors that can 

represent general climate changes and local climate situation, many researchers operated research 

about rainfall pattern in different spatial and temporal scales. In 2015, Liuzzo et al. analyzed the 

rainfall pattern in both spatial and temporal trend in Sicily from 1921 to 2012 and found that the 

total annual rainfall increased from 1981 to 2012 which partial proved that the climate change 

would increase the rainfall in the short term of time. However, the research also found that the 

general trend of the rainfall is decreasing from 1921 to 2012 which should introduce further study 

(Liuzzo et al., 2015). In the same year, Shi et al. also analyzed the rainfall pattern in the Southwest 

China which found that the climate would result in more chance of drought and flood in a different 

area in the future (Shi et al., 2015). Furthermore, rainfall pattern, especially the long term rainfall 

pattern, is also subjective to the changes of land use, elevation, planting-covering-percentage, and 

other environmental factors. 
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As one of the important inputs of most environmental models, the rainfall time series is critical 

in predicting climate change, planning agricultural activities, and other hydrological related 

activities. However, little research was focused on the generation of the rainfall time series data 

based on the rainfall pattern in small watershed with a unique ecosystem based on the NexRad 

rainfall data nor the ground-based rainfall data with the high rainfall gauges the density of 31.25 

km2 per station (Hansen et al., 1996).  
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CHAPTER 4: METHODOLOGY 

 

 Study area 

The Little Washita Experimental Watershed (LWREW) is located in south-central Oklahoma. 

It drains an approximate area of 625 km2 (Figure 4.1). The elevation of the watershed is between 

300m and 500m above mean sea level. The soil textures are from fine sand to silty loam while the 

exposed bedrock is sandstone dominant and Permian age sedimentary rocks. Average annual 

precipitation in the watershed is 760 mm while the mean temperature is 16°C. In this area, the land 

use includes range, pasture, forest, cropland, oil wasteland, quarries, urban/highways, and water 

(Elliott, R. L. et al., 1993). 

The LWREW has been used as an experimental watershed since 1936 for soil erosion control 

studies. In 1961, the U.S. Department of Agriculture (USDA) Agricultural Research Service 

(ARS) set up monitoring stations (36 stations) in the watershed to collect rainfall data for flood 

control and monitoring studies (Elliott, R. L., et al., 1993) (Figure 4.1). In 1978, the USDA and 

the U.S. Environmental Protection Agency (EPA) started to use this experimental watershed as 

one of seven selected watersheds for national projects to study the effects of land conservation in 

water quality (Elliott, R. L. et al., 1993). Even with the reduced field measurements during 1985 

to 1992, the stations from 1994 started to measure other environmental variables such as air and 

soil temperatures, relative humidity, and solar radiation apart from rainfall (Elliott, R. L., et al., 

1993).  
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Figure 4.1. The Little Washita Experimental Watershed (LWREW) and ground-based stations 
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Figure 4.2. The locations of the NexRad stations and the watershed in Oklahoma 

 

 Precipitation stations  

4.2.1 Ground-based stations 

The data from the ground-based stations were collected from the Micronet and Mesonet 

networks which contained 20 ground-based stations (Figure 4.1). The stations are equipped with 

Tipping-Bucket (TB) rainfall gauge which records data at a 5-minute interval. The period of record 

of the datasets is from 1997 to 2014. 
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4.2.2 NexRad stations 

The NexRad data used in this study was the Level-III radar product: “One-Hour Precipitation 

(N1P/78)”. This particular radar product represents the one-hour precipitation total ending at the 

volume scan time on a 1.1-nm x 1-degree grid (NOAA, 2016). 

Two radars cover the study area, stations KTLX and KFDR (Locations seen in Appendix 1 

and Figure 4.1). The period of record of the data sets is from 1994 to 2014 in station “LTLX” and 

2002 to 2014 in station “KFDR”. Raw data were ordered and downloaded from the website in a 

5-minute time scale. Using the NOAA's Weather and Climate Toolkit (WCT), the maps were 

exported to ASCII format. 

 Derivation of rainfall time series 

4.3.1 NexRad data  

Extracting rainfall data from NexRad was performed following three main steps (Figure 4.2). 

Raw radar data were obtained from the National Oceanic and Atmospheric Administration 

(NOAA). Algorithms and scripts were prepared in Python, ArcGIS, batch files, and Spellmap 

(Guzman et al., 2013) to facilitate data processing and management. Station-based rainfall was 

then derived at different time intervals such as 5-minute, one-hour and one-day following the steps 

described in Figure 4.3. 
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Figure 4.3. The working flow of rainfall time series data preparation.   

Ordering and downloading of data: NexRad data were ordered and downloaded from NOAA 

National Centers for Environmental Information 

(http://www.ncdc.noaa.gov/has/HAS.FileAppRouter?datasetname=7000&subqueryby=STATIO

N&applname=&outdest=FILE). The watershed was first located on the radar map and the radar 

stations that cover the area were identified (i.e., stations KTLX, KFDR). The data were then 

ordered corresponding to the period of interest (Figure 4.4). Ordered data were then downloaded 

from the received FTP link. The downloaded files were in a unique file format that could only be 

viewed using the NOAA toolkit. Each file represented the sum of rainfall in the past hour for the 

covered area. There is a 5-minute interval between files. One file in the dataset represented the 

sum of rainfall in the past one hour from the time indicated in the file for the radar covering the 

area with the five-minute interval between files.   

 

http://www.ncdc.noaa.gov/has/HAS.FileAppRouter?datasetname=7000&subqueryby=STATION&applname=&outdest=FILE
http://www.ncdc.noaa.gov/has/HAS.FileAppRouter?datasetname=7000&subqueryby=STATION&applname=&outdest=FILE
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Figure 4.4. For the LWREW, data were ordered and downloaded from NOAA National Centers for Environmental 

Information.  

Data processing: The downloaded data (e.g. Figure 4.5) were first converted to ASCI format 

to facilitate further processing. The NOAA toolkit (http://www.ncdc.noaa.gov/wct/install.php) 

was used to export the N1P data to ASCI file using the batch file processing capabilities of the 

toolkit. The exported data were now in the form of gridded maps with the spatial resolution of 4 

km and temporal resolution of 5 minutes. There were more than 6000 files in one month in the 

time period of 12 years (more than 864000 files) from radar station KFDR and 20 years (more than 

1440000 files) from radar station KTLX with the total size of more than 15 GB in memory.  

http://www.ncdc.noaa.gov/wct/install.php
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Figure 4.5. The NOAA toolkit was used to convert the N1P data to gridded maps (ASCI format) containing the rainfall 

depth (mm) at 4 km 4 km resolution. 

Gridded rainfall data were then projected from “GCS_North_American_1983” to “Universal 

Transverse Mercator (UTM) 14N” using ArcGIS. Scripts were prepared in Python to facilitate the 

batch projection of the maps. Once projected, the maps were clipped to the watershed boundaries 

using Spellmap (Guzman et al., 2013). Finally, the rainfall data in the clipped maps were converted 

to a time series format at 5-minute time step (Figure 4.6).  
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Figure 4.6. An example of the final product of data processing. The first column is the date (in string format of) and the 

succeeding columns are rainfall measurements for each 4 km x 4 km cell. The corresponding number for the cell in the 

TXT file could be found in Figure 4.7. 

Station-based time series conversion: The cell-based 5-minute NexRad time series were 

converted to daily station-based rainfall time-series to facilitate the comparison of the NexRad and 

ground-based data. The location of the cells relative to the ground-based stations was used as the 

basis for the conversion. For example, for cells close to the ground-based stations (Figure 4.7) 

were assigned to that stations. If two or more cells were located at the same distance to the station, 

the average rainfall from these cells was used for that station. The process of deriving the station-

based NexRad data is summarized as follows:  

(1) For stations close to the middle of the cells, the rainfall data of these stations is the 

rainfall of these cells; 

(2) For stations on the border of two cells, the rainfall data of these stations is the average 

rainfall of these cells when both cells are not “-9999” (i.e., missing); if one of the cells is “-

9999”, the data in this station is that of the other cell; 
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For the stations in the middle of more than two stations, the rainfall data of these stations is 

the average of rainfall data of the cells which are not “-9999”.  

 

Figure 4.7. The ground-based stations (dots) and radar cells map (colored grids) for (a) KFDR station and (b) KTLX 

station  

The table containing the cell-station relationship is shown in Appendix 2. After the temporal 

and spatial processing, the final format was a 4 x 4 km grid with each grid containing a daily 

rainfall time series. The NexRad rainfall data was also processed to obtain the total daily rainfall 

which is the total rainfall in one day in this watershed. It was computed as follows: 

𝐷𝑎𝑖𝑙𝑦 𝑡𝑜𝑡𝑎𝑙 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 = ∑ 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝐻𝑜𝑢𝑟𝑙𝑦                                  (Equation 4.1) 

where 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝐻𝑜𝑢𝑟𝑙𝑦 is the hourly rainfall obtained from the 20 stations in the watershed. 

The monthly daily time series were also obtained by organizing all the days in each month for the 

entire period of record (e.g. all the days in January from 1997-2012). 

Both the ground-based and NexRad daily entire time series were further processed to obtain 

the areal monthly rainfall. The areal monthly rainfall is one of the most important factors that we 

have to consider in comparing the NexRad and ground-based data because it reflects the 

seasonality of the time series. The areal monthly rainfall was calculated as follows:  

𝑅𝑀 = 𝐷 ∗ 𝑅̅                                                              (Equation 4.2) 
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where RM is the areal monthly rainfall, D is the number of days in the particular month, 𝑅̅ is the 

average daily rainfall of all the days in this month when taking the “no-data” (‘-9999’ in the 

dataset) as 0. Table 4.1 summarizes the time series used in this study. 

Table 4.1. Daily and monthly daily total time series rainfall for each station (20 stations) for both the ground-

based and NexRad datasets. 

TIME SERIES  TIME 

STEP 

PERIOD 

Ground-based KTLX KFDR 

DAILY daily 1997-2012  1994-2014  2002-2014 

JANUARY daily 1997-2012  1995-2014  2002-2014 

FEBRUARY daily 1997-2012  1994-2014 2002-2006 

MARCH daily 1997-2012  1994-2014 2002-2014  

APRIL daily 1997-2012  1994-2014  2002-2014 

MAY daily 1997-2012  1995-2014  2002-2014 

JUNE daily 1997-2012  1994-2014  2002-2014 

JULY daily 1997-2012  1994-2014  2002-2014 

AUGUST daily 1997-2012  1994-2014 2002-2014  

SEPTEMBER daily 1997-2012  1995-2014  2002-2014 

OCTOBER daily 1997-2012  1995-2014  2002-2014 

NOVEMBER daily 1997-2012  1995-2014  2002-2014 

DECEMBER daily 1997-2012  1995-2014  2002-2014 

MONTHLY 

AVERAGE 

monthly 1997-2012 1994-2014 2002-2014 

 

 Comparison between ground-based and NexRad data 

As one of the methods to record rainfall, it is of vital importance to compare the two 

approaches when we plan to use the other kind of data if the necessary data is not available. The 

comparison could quantify the difference and provide the possible error range between each type 

of data. The comparison of the ground-based and NexRad data was conducted using the following 

metrics: 

Basic statistics of data: The primary statistics of the ground-based and NexRad datasets were 

compared using the one-way ANOVA test for the areal monthly rainfall and the two-sample 
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Kolmogorov-Smirnov test for the daily time series for each month. The former compares the mean 

of the two datasets while the latter compares their probability distribution function (pdf).   

4.4.1 Basic statistics of data  

The objective of this comparison is to determine how differently, the rainfall data in this 

watershed area is represented from different sources. The areal monthly rainfall from the ground-

based data of the watershed is calculated using all the rainfall data recorded in the watershed 

instead of using only the rainfall larger than 2.54 mm in one day, which is the same as the NexRad 

data, to get all rainfall data from the ground-based stations.  

The NexRad data of the watershed was calculated by averaging the rainfall data from the two 

stations, KFDR, and KTLX, to get the general relationship between the NexRad data and ground-

based data. 

Apart from the areal monthly rainfall of the watershed, double mass analysis based on the 

areal monthly rainfall from NexRad and ground-based stations was also performed to find the 

possible relationship between the NexRad data and ground-based data. The double mass plot is 

the cumulative value in one station (e.g. ground-based) against the cumulative value in another 

station (e.g. NexRad). The annual residual mass, which is defined as a curve of accumulative 

departures from the standard value, was constructed using: 

𝑀 = ∑ 𝑌𝑗
12
1 − (

∑ 𝑌

∑ 𝑋
) ∗ ∑ 𝑋𝑗

12
1                                                       (Equation 4.3) 

where M is the annual residual mass of ground-based stations; ∑ 𝑌 is the accumulated annual 

rainfall of ground-based data; ∑ 𝑋 is the accumulated annual rainfall of the mean of two NexRad 

stations; 𝑌𝑗 is the mean rainfall of all the ground-based data in month j; 𝑋𝑗 is the mean rainfall for 

month j of all the NexRad data in month j. 
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4.4.2 Probability distribution functions (pdfs) 

The pdf of the ground-based and NexRad datasets was compared to determine if they came 

from the same distribution. If the two methods of measuring rainfall data have the same pdf, then 

we can conclude that they are sampled from the same rainfall population in this watershed area.  

To test whether the two pdfs are the same, a two-sample Kolmogorov-Smirnov test was 

applied to the PDFs. The two-sample Kolmogorov-Smirnov test is one of the most widely used 

tests to analyze whether or not two pdfs come from the same distribution. The test statistic used in 

Kolmogorov-Smirnov test is given by:   

𝐷𝑛 = 𝑠𝑢𝑝𝑥|𝐹𝑛1(𝑥) − 𝐹𝑛2(𝑥)|                                               (Equation 4.4) 

where 𝑠𝑢𝑝𝑥 is the supremum function; 𝐹𝑛1(𝑥) and 𝐹𝑛2(𝑥) are the empirical distribution functions 

of the first and the second sample. Dn is the cumulative difference of the two PDFs. 

However, when testing the NexRad data in two-sample Kolmogorov-Smirnov test, the 

probability of “no-data” was found to be relatively high which meant the “no-data” cannot be 

simply deleted. To rectify this, “no data” days in NexRad were compared with ground-based data 

to determine whether they are in fact missing or “0.”  

From the probabilities, we can calculate that the 95% confidence interval for KFDR is (0.887, 

0.909) and KTLX is (0.893, 0.913) where P is the probability of the days when no rainfall 

happened in the days that were recorded as ‘no data.' As a result, we assumed that 90% of the “no-

data” days we have in NexRad are days without rainfall while the other 10% was replaced by the 

average value of the rainfall in that area.  

 Rainfall pattern definition and regeneration 

Rainfall, being the most important driver of runoff, sediment transport, and other 

environmental processes have to be adequately represented in time and space to properly simulate 
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the response of the hydrologic system. However, rainfall data with high spatial and temporal 

resolution is not always available. As a result, the impacts of rainfall variability, especially in small 

watersheds, is not taken into consideration when evaluating the impacts of environmental stressors 

(e.g., climate change and land use change) on the systemic responses. Downscaling rainfall 

datasets to account for both the temporal and spatial variability in a small watershed is therefore 

an important task in environmental modeling. This study defined the rainfall patterns in the study 

area based on measured rainfall and then synthetically generate probable rainfall datasets (Figure 

4.8).  

Using the observed daily rainfall from three datasets (ground-based and 2 NexRad stations), 

the average, maximum, and standard deviation of all the cells (stations) were computed (Figure 

4.8). For the little Washita watershed, rainfall pattern described the characteristics of rainfall in 

time and space. In this study, rainfall patterns were defined by: 

(1) The sequence of days with rain and without rain, (i.e., the conditional probability of 

days with rain or without rain);  

(2) Daily rainfall probability distribution function; and 

(3) The relationship boundaries between areal maximum, mean, and standard deviation 

in log-scale figures;  

(4) Auto-correlation of daily time series. 

Once the rainfall pattern was established, the rainfall generator, “Zeus”, was used to generate 

synthetic rainfall time series at a daily time step.  
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Figure 4.8. The working flow of the analysis and regeneration statistical characteristics of the observed rainfall pattern 

for the Little Washita watershed  

4.5.1 Defining rainfall pattern in LWREW  

4.5.1.1 Daily conditional probabilities of wet days and dry days  

The occurrence of rain (or no rain) was described in terms of the conditional probabilities of 

wet and dry days in a given month. In general, there are four conditional possibilities that rain (or 

no rain) can occur in a given month and are summarized in Table 4.2. The computation of the 

conditional probabilities is further illustrated in Figure 4.9. For example, P_RR is the probability 
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that today is a rainy day when yesterday was also a rainy day and P_RN is the probability that 

today was a no-rain day when yesterday was a rainy day. The conditional probabilities also 

satisfied the following equations: 

P_R+P_N=1                                                       (Equation 4.5) 

P_RR+P_RN=1                                                  (Equation 4.6) 

P_NR+P_NN=1                                                  (Equation 4.7)   

Table 4.2. Computations of the conditional probabilities describing the rainfall pattern in LWREW.  

PROBABILITY DESCRIPTION CALCULATION EQUATION 

P_R Probability of rainy days in all days 

in a particular month 

𝐷_𝑅 

D_T
 

P_N Probability of dry days in all days 

in a particular month 

D_N

D_T
 

P_RR Probability of a rainy day when last 

day is rainy in a particular month 

𝐷_𝑅𝑅

𝐷_𝑅
 

P_RN Probability of a dry day when last 

day is rainy in a particular month 

𝐷_𝑅𝑁

𝐷_𝑅
 

P_NR Probability of a rainy day when last 

day is dry in a particular month 

𝐷_𝑁𝑅

𝐷_𝑁
 

P_NN Probability of a dry day when last 

day is dry in a particular month 

𝐷_𝑁𝑁

𝐷_𝑁
 

where D_R is the number of rainy days in a particular month; D_N is the number of dry days in a particular month; D_T is the total 

number of days in a particular month; D_RR is the number of rainy days with rainy last day; D_RN is the number of dry days with 

rainy last day; D_NR is the number of dry days with dry last day; D_NN is the number of rainy days with dry last day. 

 

Figure 4.9. The conditional probability relationship figure.  
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4.5.1.2 Autocorrelation of the area rainfall time series  

Autocorrelation is a variable that evaluates the statistical dependence of the time series to itself 

at different time lags. The autocorrelation is usually a number between -1 and 1 where “1” defines 

perfect correlation, “0” defines no correlation and “-1” defines perfect anti-correlation.  

The autocorrelation was calculated using: 

𝑅(𝜏) =
𝐸[(𝑋𝑡−𝜇)(𝑋𝑡+𝜏−𝜇)]

𝜎2                                                  (Equation 4.8) 

where 𝑅(𝜏) is the autocorrelation with the time interval of 𝜏 days (𝜏 ≥ 0); 𝐸 is the expectation 

function; 𝑋𝑡 is the value at time t; 𝑋𝑡+𝜏 is the value at time 𝑡 + 𝜏; and 𝜎2 is the variance of the time 

series. In this research, the autocorrelation was computed using Spellmap with the time interval of 

0 day to 24 days for the three datasets (KFDR, KTLX, and ground-based) from 2002 to 2012 

(Guzman, J. A., et al. 2013). 

4.5.1.3 PDFs of the maximum, minimum, standard deviation and pixel rainfall of rainy days   

The probability distribution functions (PDF) of all the rainy days from 2002 to 2012 of three 

rainfall data sets (KTLX, KFDR, and ground-based) were constructed for the maximum and 

minimum rainfall and the standard deviation. The PDFs were constructed using ten classes defined 

as follows: 

𝐶𝑙𝑎𝑠𝑠 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
𝑀𝑎𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠−𝑀𝑖𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

10
              (Equation 4.9) 

where the Class interval is the length of the value interval of each class; Max and Min of the 

parameters are the maximum value and minimum values, respectively, of all the rainy days in a 

particular month from 2002 to 2012 from each of the three datasets. 

After the calculation of the class intervals, all the boundary values for each class were 

calculated as follows: 
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𝐿𝑜𝑤 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 = 𝑀𝑖𝑛 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 + (𝑛 − 1) ∗  𝐶𝑙𝑎𝑠𝑠 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

(Equation 4.10) 

𝐻𝑖𝑔ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 = 𝑀𝑖𝑛 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 + 𝑛 ∗  𝐶𝑙𝑎𝑠𝑠 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

(Equation 4.11) 

where Low interval value and High interval value are the two border values of class n; Min of 

parameters is minimum value in the parameters of all the rainy days in particular month from 2002 

to 2012 from each of the three data sets; Class interval is the length of the interval calculated in 

the equation 4.(9). 

With the border values for each class, the PDFs were constructed using Python as follows: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
𝑇ℎ𝑒 𝑑𝑎𝑦𝑠 𝑤𝑖𝑡ℎ 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑟𝑎𝑖𝑛𝑦 𝑑𝑎𝑦𝑠
  

(Equation 4.12) 

where Probability for a particular interval is the PDF values for this particular interval; The days 

with value in the particular interval is the number of days with the parameter value larger than the 

low interval value and less or equal than the high interval value. 

4.5.1.4 The boundary conditions of the rainfall events   

The relationship between the maximum, mean, standard deviation, and cell daily rainfall data 

was determined by the log-scale plot of all the rainy days in the time series. The plots used daily 

maximum cell rainfall in the x-axis while the other statistical characteristics (mean and standard 

deviation) on the y-axis (e.g., Figure 4.10). Based on the log-scale plots, upper and lower 

boundaries of the rainfall statistical characteristics were determined (Figure 4.10). These 

boundaries were used in constraining the rainfall generated by Zeus.  
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Figure 4.10. Examples of the log-scale figures used to find the possible boundary relationships: (a) The log-scale figure 

between the daily maximum precipitation and the daily mean of May from 2002 to 2012 from the KFDR data set and the 

upper and lower boundary; (b) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in May from 2002 to 2012 from the KFDR data set and the upper and lower boundary. 

4.5.2 The downscaling and generating rainfall data using “Zeus” software   

After establishing the rainfall pattern in the experimental watershed, a rainfall generator 

software was used to synthetically generate precipitation time series that mimic the patterns of the 

observed data. An assessment of the generated precipitation was conducted to evaluate how well 

the generated rainfall represented the observed rainfall in time and space. The rainfall patterns 

were generated using the “Zeus” software. “Zeus” is a software designed to generate downscaled 

rainfall data time series using the parameters listed in Table 4.3. By generating multiple time series, 

the average of all the time series is usually considered as the rainfall time series which is used in 

analysis.  

Inputs to Zeus were contained in an XML (Table 4.4). For each type of rainfall datasets, an 

XML file was prepared to define the rainfall pattern acquired from each dataset. The KTLX and 

KFDR datasets were from 2002 to 2012 with a temporal resolution of 5 minutes and a spatial 

resolution of 4 x 4 km. The ground-based dataset is from 2002 to 2012 with a time interval of 5 
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minutes. The software generates “n” number of rainfall time series for every station in the 

watershed. In this study, 1000 daily time series for the 20 ground-based station were generated for 

every dataset.  

Table 4.3. Inputs of the model contained in the XML files 

ITEMS NAME DESCRIPTION 

Years(Scenarios) Years of simulation 

Realizations(Scenarios) Number of time series generated  

Stations(Network) The station locations 

Automaton(Events Sequence) The conditional probabilities of wet and dry days  

Residual Serial Correlation(Events Sequence) Autocorrelation at different lags  

Max Precipitation (pdf) The max PDFs of daily precipitation  

Event Mean Precipitation (pdf) The mean PDFs of daily precipitation 

Event STD Precipitation (pdf) The STD PDFs of daily precipitation 

Pixel Precipitation (pdf) The cells (stations) PDFs of daily precipitation 

Max To Mean (Boundaries) The upper and lower boundaries: daily maximum 

rainfall vs daily mean rainfall   

Max To STD (Boundaries) The upper and lower boundaries: daily maximum 

rainfall vs daily standard deviation  

Active (Solver) Generating a pdf using two Gamma functions by the 

solver to replace the original pdf from the observed data 

set.  

Screening Iterations (Solver) The times to fit the pdf within the target error. 

Target Error (Solver) The tolerance error in the fitting functions. 

Error In Mean (Solver) The tolerance error of the mean in the fitting functions. 

Minimum Value (Solver) The minimum daily rainfall the rainfall generator 

generated 

 The comparison between observed rainfall data and generated rainfall data 

The generated rainfall time series was compared to the observed rainfall time series, which is 

the typical downscaled datasets used for climate change studies. The comparison included: 

(1) The area average monthly rainfall from all 20 stations from observed rainfall from 

three datasets (KTLX, KFDR and ground-based), and the re-generated rainfall data from 2002 

to 2012; 

(2) The pdf of the maximums of all the 20 stations from observed rainfall from three 

datasets (KTLX, KFDR and ground-based), and the re-generated rainfall data from 2002 to 

2012 for each month.  
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The PDF of the maximum area daily rainfall was used as one of the comparison metrics 

because the maximum of the daily area rainfall was the first generated rainfall data from the “Zeus” 

software while the mean and standard deviation were generated based on the log-scale relationship 

inputted from the XML file. As a result, the PDFs of daily area maximum rainfall can represent 

how close the generated rainfall pattern was to the original rainfall dataset which measured the 

ability to simulate the rainfall pattern of the “Zeus” software.  

The maximums of all the daily rainfall were classified into 10 intervals to determine the PDF 

of the maximums of the daily rainfall. The nth interval in the PDF of the maximum of the daily 

rainfall included the days with daily maximum rainfall Rn satisfied the equation 4.13. 

0.1 ∗ (n − 2) ∗ Max < Rn ≤ 0.1 ∗ (n − 1) ∗ Max               (Equation 4.13) 

where Max is the maximum of the daily maximum rainfall in this area among all the original data; 

n is the class number; Rn is the maximum rainfall of that day. 

The Probability Difference (Dn) for the nth interval was calculated using the Equation 4.14. 

Dn = |Fsn − Fon|                                              (Equation 4.14) 

where Fsn is the frequency of the days in class n of all the simulated rainfall data; Fon is the 

frequency of the days in class n of all the original rainfall data. 

The comparison of the PDF analysis included: 

(1) The average of the absolute PDF difference between the daily maximum value of 

original and simulated rainfall was calculated from all the 3000 simulations to get the general 

performance of the “Zeus” software in generating rainfall pattern; 

(2) The average of the absolute PDF difference between the daily maximum value of 

original and simulated rainfall was calculated based on three rainfall datasets including two 
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NexRad datasets (KTLX and KFDR) and ground-based data sets by each month to get the 

possible difference between the performance for each kind of datasets and months. 

In order to understand the differences between the generated and measured rainfall, it is 

necessary to understand the process that generates rainfall. An observed rainfall time series can be 

written as Equation 4.15. 

𝑅(𝑡) = 𝑆(𝑡) + 𝐿(𝑡)                                                (Equation 4.15) 

where R (t) is the amount of rainfall detected and recorded for a particular period of time in a 

dataset (KTLX, KFDR and ground-based stations in this research). The length of the period can 

be a year, a month or a day; S (t) is the amount of rainfall for a particular period of time which was 

defined in the rainfall pattern analysis; L (t) is the amount of rainfall for a particular period of time 

which was not included using the rainfall pattern analysis we operated. S (t) is represented using 

the parameters we generated from different factors that made up the rainfall pattern (Table 4.4) 

Table 4.4. The names of the rainfall pattern parameters and the affected time scale  

NAMES OF THE RAINFALL PATTERN PARAMETERS   PATTERN TIME 

SCALE 

Autocorrelation of the area rainfall time series Daily 

PDFs of the area maximum, minimum, standard deviation and pixel rainfall of all 

the rainy days 

Daily and monthly 

The boundary conditions of the rainfall events Daily and monthly 

 

The unrepresented part of rainfall, L (t), on the other hand can be written as:  

𝐿(𝑡) = 𝐹(𝑡) + 𝐸𝑟(𝑡)                                              (Equation 4.16) 

where F (t) is the amount of rainfall which has a temporal pattern but cannot be summarized using 

the parameters listed in Table 4.4; Er (t) is the amount of rainfall caused by random environmental 

factors. As the rainfall generator only used the parameters listed in Table 4.4, the rainfall time 

series generated could be written as follows:. 

𝐺(𝑡) = 𝑆(𝑡) + 𝐸𝑝(𝑡) + 𝐸𝑔(𝑡)                                             (Equation 4.17) 
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where G (t) is the amount of rainfall which was generated by the rainfall generator; Ep (t) is the 

error resulting from generating method which satisfied|𝐸𝑝(𝑡)| ≥ 0; Eg (t) is the random error in 

the rainfall generating process which satisfied|𝐸𝑔(𝑡)| = 0. 

As a result, the difference between the generated rainfall time series and the observed rainfall 

time series can be written as the Equation 4.18.    

𝐷(𝑡) = 𝐹(𝑡) + 𝐸𝑟(𝑡) + 𝐸𝑝(𝑡) + 𝐸𝑔(𝑡)                                    (Equation 4.18) 

where D (t) is the difference between the generated rainfall time series and the observed rainfall 

time series.  

As the average of 1000 simulations was used in the comparison, 𝐸𝑔(𝑡) = 0 in Equation 4.18, 

the difference of area monthly average rainfall between the generated rainfall time series and the 

observed rainfall time series is composed of three components: 

(1) F (t), the amount of rainfall which has a pattern but could not be summarized using 

the parameters listed in Table 4.4. This factor is one of the two main reasons for the monthly 

differences. The difference caused by this factor could be reduced by adding or changing 

rainfall pattern parameters; 

(2) Er (t), the amount of rainfall caused by random and unexpected rainfall events 

without any temporal patterns which could be summarized. This factor is the main reason for 

the extreme rainfall events in the observed time series which would also cause the difference;  

Ep (t), the error caused by improper regenerating methods used in the software. This factor is 

the other main reason for the monthly difference. The difference caused by this factor could be 

reduced by improving regenerating methods and adding or changing rainfall pattern parameters. 
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CHAPTER 5: RESULT AND DISCUSSION 

 

 Deriving a rainfall map based on the NexRad rainfall data in the Little Washita 

watershed 

The time series of rainfall derived from the NexRad data set was cell-based covering the 

watershed with 84 cells for radar station “KTLX” and 88 cells for “KFDR”. Figure 5.1 as an 

example of the average rainfall map (4 x 4 km) for the month of June which can be used as the 

rainfall data map for GIS application or other models where high resolution and a large area of 

rainfall data is needed.  

 

Figure 5.1. The rainfall map of the Little Washita river watershed for the June for KFRD station. 

From the figure, we found that the distribution of the monthly rainfall in the watershed was 

not the same from the two NexRad stations. Using the monthly rainfall sum of 20 stations from 
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2002 to 2012, the one-way ANOVA test was conducted using R. Based on the R results, we found 

that apart from the rainfall data in December, the monthly sum of rainfall in other 11 months was 

all significantly different from each other with the p-value of 0.05. In order to present the rainfall 

level recorded by the NexRad stations in the term of monthly sum of rainfall, all the NexRad areal 

monthly rainfall used in the comparison between NexRad and ground-based data is the average of 

the two stations. 

 Comparisons of ground-based and NexRad data 

The comparisons of ground-based and NexRad rainfall datasets were conducted to quantify 

the differences and find a possible relationship between the two datasets. The results of the two 

comparisons, basic statistics of data and the PDFs, were shown in section 5.2.1 and 5.2.2.  

5.2.1 Basic statistics of data  

The means of the two NexRad stations were calculated which were further used to calculate 

the sum and annual cumulative sum of the NexRad dataset. The results of all the monthly mean 

values of ground-based data and NexRad data are shown in Figure 5.2. 

 

Figure 5.2. (a) Tabulated mean monthly total rainfall of the 20 stations in the NexRad dataset and the ground-based 

dataset from 2002 to 2012. Highlighted values in green are differences lower than 25% while highlighted in yellow is the 

month when the ground-based data is lower than the NexRad. (b) Plotted differences between the NexRad dataset and the 

ground-based dataset. The X-axis is the month and the Y-axis is the amount of rainfall. 

Month Ground NexRad Difference Difference percentage

Jan 28.39 15.35 13.04 84.94%
Feb 36.45 14.00 22.45 160.39%
Mar 51.90 43.62 8.28 18.98%
Apr 87.49 74.57 12.92 17.33%
May 90.09 111.07 -20.98 -18.89%
Jun 109.71 103.42 6.30 6.09%
Jul 68.39 49.73 18.66 37.52%

Aug 83.93 71.59 12.33 17.23%
Sep 62.24 36.00 26.24 72.90%
Oct 76.78 54.39 22.39 41.17%
Nov 33.00 22.91 10.08 44.00%
Dec 28.37 15.50 12.87 82.99%
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The one-way ANOVA tests were performed on the values of areal monthly rainfall from 

NexRad and ground-based rainfall data. According to the p values from the 12 tests corresponding 

to the 12 months, the mean values of rainfall data for each month are not the same with the NexRad 

rainfall data for all the months. The differences between the NexRad and ground-based data was 

further investigated as a function of the NexRad data (Figure 5.3).  

From the regression relationship, we can conclude that the differences decreases as the 

NexRad rainfall increases. The reasons for this might be due to the following: (1) the detection 

threshold of NexRad radar is 2.54 mm (The minimum rainfall value in the data set is 0.1 inch) 

while the ground-based is 0.254 mm. This means that the ground-based data include the rainfall 

amounts that the NexRad couldn't record in the range of 0.254 to 2.54 mm in a day. This 

differences is more significant in the months when the rainfall events have a shorter duration and 

lower intensity, for example in January and February. In the months when the rainfall events have 

a longer duration and higher intensity (June and August), the undetected rainfall events (0.254 to 

2.54 mm) may not matter as much as they do in dry months; (2) NexRad rainfall data was generated 

from the radar scolding the atmosphere at 360 degrees every 5 minutes. Rainfall events that occur 

between the 5-minute intervals will not be captured by the radar. Therefore, even if the rainfall 

intensity exceeds the detection threshold of 2.54 mm, the rainfall will not be detected and recorded 

with the duration less than 5 minutes.   
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Figure 5.3. The relationship between the differences between ground-based and NexRad rainfall and the average NexRad 

monthly total rainfall. The X-axis is the mean of NexRad monthly rainfall and the Y-axis is the differences between the 

mean of NexRad monthly rainfall and mean of ground-based monthly rainfall. 

Furthermore, the methods to handle the extreme rainfall events in the NexRad rainfall time 

series were also further discussed. Based on the rainfall analysis result about the total monthly 

rainfall between 2002 and 2012, the only month that the rainfall recorded by the NexRad is higher 

than the ground-based data is May. The reasons for this unusual result may be because there are 

some days when the amount of rainfall is extremely higher than other days. The days in NexRad 

with extremely high rainfall is shown in Table 5.1.  

Table 5.1. The days with high rainfall amount in May in the NexRad dataset 

DATE KFDR KTLX AVERAGE GROUND-

BASED 

DIFFERENCES 

20120520 128.89 107.36 118.12 44.69 164.31% 

20110520 110.64 107.36 109.00 42.80 154.69% 

  

From the table above, we found that these days were all recorded as the relatively high amount 

of rainfall in all of the three methods. In addition, the average rainfall amount recorded from the 

two NexRad stations are both over 150% higher than the ground-based rainfall data. Considering 

the average total amount of rainfall recorded by the NexRad stations was 114.35 mm in May from 
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2002 to 2012, the days above were modified and changed to the data recorded in the ground-based 

dataset. Then the monthly total averages rainfall from 2002 to 2012 were recalculated. The results 

are shown in Figure 5.4. 

 

Figure 5.4. (a) Tabulated mean monthly total rainfall of the 20 stations in the modified NexRad dataset and the ground-

based dataset from 2002 to 2012. Highlighted values in green are differences lower than 25% while highlighted in yellow 

is the month when the ground-based data is lower than the NexRad. (b) Plotted differences between the modified NexRad 

dataset and the ground-based dataset. The X-axis is the month and the Y-axis is the amount of rainfall. 

As shown in Figure 5.4, we found that the absolute differences in May changed from 23.29% 

to 9.05% which meant there was more than 10% differences resulted from the two days with high 

rainfall listed in Table 3. Further investigation showed that the reason for the extremely high 

rainfall recorded might result from the “Z-R” relationship equation, which was used in calculating 

the rainfall based on the reflexivity of the clouds, might not be accurate in the extreme weather 

conditions. 

As a result, when we are dealing with the rainfall data from the NexRad, the extremely large 

values (Over 100mm in one day) should be handled and referenced by the other source of data 

such as ground-based data or satellite rainfall data. However, we should also be aware that the 

ground-based rainfall data only measures and records the rainfall happens to the points where the 

rainfall gauges locate. This means that the rainfall can happen in the area where the rainfall gauges 

cannot detect or record.  

Month Ground NexRad Difference Difference percentage

Jan 28.39 15.35 13.04 84.94%
Feb 36.45 14.00 22.45 160.39%
Mar 51.90 43.62 8.28 18.98%
Apr 87.49 74.57 12.92 17.33%
May 90.09 98.23 -8.15 -8.30%
Jun 109.71 103.42 6.30 6.09%
Jul 68.39 49.73 18.66 37.52%

Aug 83.93 71.59 12.33 17.23%
Sep 62.24 36.00 26.24 72.90%
Oct 76.78 54.39 22.39 41.17%
Nov 33.00 22.91 10.08 44.00%
Dec 28.37 15.50 12.87 82.99%
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In conclusion, the extremely large rainfall events recorded in the NexRad data set can be up 

to 150% more than the real rainfall event amount happened that time in some particular locations. 

However, the extremely large rainfall events in the NexRad dataset represent that there should be 

heavy rainfall events happened in that particular region at that particular time which is of vital 

importance in prediction the possible natural disasters such as flooding or mud-rock flow.  

5.2.2 Double mass analysis 

The results of the double mass analysis were represented as follow. In Figure 5.2, the NexRad 

recorded consistently less rainfall in all the months than the ground-based data except May which 

is usually the wettest month in the watershed. These results are in agreement to what Ulbrich and 

Lee, (1999) reported that NexRad had a tendency to record higher rainfall during the wet seasons 

and less in the dry seasons.  

The comparisons between the NexRad and Ground-Based data were also performed using 

double-mass curve and residual mass curve (Figure 5.5). 

 

Figure 5.5. (a) Plots of the cumulative mean monthly rainfall between NexRad and ground-based data from 2002 to 2012. 

The X-axis is the cumulative monthly rainfall of ground-based dataset and the Y-axis is the cumulative monthly rainfall 

of NexRad dataset. (b) Plots of the Residual Mass Curve between residual of cumulative rainfall and cumulative monthly 

rainfall of ground-based. The X-axis is the month and the Y-axis is the differences between the cumulative monthly 

rainfall of NexRad dataset and ground-based dataset. 

JanFeb
Mar

Apr

May

Jun
Jul

Aug
Sep

Oct

NovDec

y = 0.853x - 10.961
R² = 0.994

0

100

200

300

400

500

600

700

800

0 200 400 600 800

C
u

m
u

la
ti

ve
 m

o
n

th
ly

 r
ai

n
fa

ll 
o

f 
N

ex
R

ad
/m

m

Cumulative monthly rainfall of ground-based/mm

Jan

Feb
Mar

Apr

May
Jun

Jul

Aug

Sep

Oct
Nov

Dec

-160

-140

-120

-100

-80

-60

-40

-20

0

D
if

fe
re

n
ce

 b
et

w
ee

n
 t

h
e 

cu
m

u
la

ti
ve

 s
u

m
s/

m
m

Months

(a) (b)



 40 

From the Figure 5.5(a), the tendency line with an R2=0.994 indicated that the NexRad and 

the ground-based dataset were strongly correlated which could be used as the prediction model 

when we only have the NexRad rainfall data within this watershed. The regression equation is 

shown in Equation 5.1. 

Y = 0.853X – 10.961                                            (Equation 5.1) 

where Y is the cumulative annual rainfall of the mean of two NexRad stations; X is the cumulative 

annual rainfall of ground-based dataset. 

From the Figure 5.5(b), we found that the residual was decreasing except in May (shown in 

the orange circles in the figure) which indicated that the ground-based stations recorded more 

rainfall than the NexRad except in May. This result is also in agreement with the results from 

Ulbrich and Lee, (1999) that the NexRad has a possibility of recording more rain in the rainy 

seasons while recording less in the dry seasons. In addition, as we also found that the annual sum 

of NexRad would become farther away from the ground-based data more as rainfall data from 

more months were added to the sum which indicated that the NexRad data needs modification if 

we want to use NexRad as the data for building the prediction model designed for the ground-

based dataset.   

As the relationship between NexRad and ground-based data changes according to the month, 

based on the monthly data for each station, the cumulative sums of stations were also calculated 

to get the particular relationship between the NexRad and Ground-Based data for each month in 

this watershed.  

5.2.3 Probability distribution functions (pdf) 

The Kolmogorov-Smirnov tests were conducted both between the two NexRad stations and 

between each station and the ground-based data. The time series used in the test was the daily total 
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rainfall. Before the test, the NexRad time series was modified based on the conclusion we drew in 

the previous section by the following methods: In every 10 days with ‘no-data’ (‘-9999’ in the data 

set), one day is changed to the average daily rainfall in that particular month and the other 9 days 

are recorded as ‘0’ which indicated no rainfall in that day.  

The results of the tests between the two NexRad stations showed that the data from each month 

in both stations were sampled from the same population. This results proved that different NexRad 

stations would record the same rainfall events even with different mean values. As a result, if the 

data from one NexRad station is missing, the data from the other stations covering the same area 

can be used to replace the missing data. 

However, the results of the tests between the two NexRad stations and the ground-based 

showed that the daily rainfall data was not sampled from the population with the same PDFs in all 

the months except July. Further analysis showed that the highest difference between both of the 

NexRad and the ground-based dataset was due to the fact that the ground-based dataset has more 

days with little rainfall (less than 1/10 of the maximum daily rain in that month) than the NexRad 

data. These results conclude that the NexRad would record some of the not-intense rainfall as ‘0’.  

The possible reasons for the differences in the PDFs in the area of not-intense rainfall are: 

(1) About 90% of the rainy days are the days with relatively little rainfall and lasting in 

a short time. These rainfall events as above are not easy to be detected and recorded by the 

NexRad because the time interval between each could of a certain area is 5 minutes which 

could be longer than the rainfall events lasting time. As a result, the NexRad will record the 

rainfall events as no rain while the ground-station will manage to record the rain; 

(2) The NexRad uses the “Z~R” relationship to calculate the possible rainfall in the 

certain area. As a result, the reflexivity of the not-intense rain might not be recorded by the 



 42 

radar because it might not reach the detectable level to be considered related with possible 

rainfall; 

(3) The minimum value of the rainfall recorded by the NexRad is 2.54 mm which means 

that the rainfall events less than that will be recorded as ‘0’. This may cause that the number 

of rainfall events from the NexRad data set is much less than the number of rainfall events 

from the ground-based data set; 

(4) The ground-based rainfall data using the rainfall gauges recorded the rainfall data in 

the particular points while the NexRad recorded the average rainfall in each resolution cell. 

The differences in the measuring targets might also lead to this differences.        

In conclusion, the NexRad could detect and record the days with relatively intense rainfall 

more efficiently and closer to ground-based dataset than the days with little rainfall (less than 1/10 

of the maximum daily rain in that month).   

 Simulated rainfall patterns  

Using the “Zeus” software and the rainfall patterns defined from the KTLX, KFDR, and 

ground-based datasets, 1000 simulations were performed to evaluate the ability of the software to 

generate rainfall time series. The results of the comparisons between the observed dataset and 

simulated dataset were conducted using the following method:    

5.3.1 Analysis of monthly average rainfall data  

The results of each of the 1000 rainfall time series simulations based on the rainfall patterns 

defined from the KTLX, KFDR, and ground-based datasets are shown in Figure 5.6 to 5.8. All 

the months with a differences from the measured rainfall of is less than 25% are highlighted in 

green. The blue lines in the figures are the mean of the 1000 simulations while the orange lines 

are from the observed dataset. 
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Figure 5.6. (a) Tabulated mean monthly total rainfall of the 20 stations in the observed ground-based dataset and the 

simulated ground-based dataset from 2002 to 2012. Highlighted values in green are differences lower than 25%. (b) 

Plotted differences between the observed ground-based dataset and the simulated ground-based dataset. The X-axis is the 

month and the Y-axis is the amount of rainfall. 

 

Figure 5.7. (a) Tabulated mean monthly total rainfall of the 20 stations in the observed KFDR dataset and the simulated 

KFDR dataset from 2002 to 2012. Highlighted values in green are differences lower than 25%. (b) Plotted differences 

between the observed KFDR dataset and the simulated KFDR dataset. The X-axis is the month and the Y-axis is the 

amount of rainfall. 

Month
Simulated 

ground
Original 
ground

Difference Difference percentage

Jan 10.16 28.39 18.23 64.21%

Feb 21.7 36.45 14.75 40.47%

Mar 19.57 51.9 32.33 62.29%

Apr 26.43 87.49 61.06 69.79%

May 71.03 90.09 19.06 21.16%

Jun 103.56 109.71 6.15 5.61%

Jul 51.86 68.39 16.53 24.17%

Aug 75.4 83.93 8.53 10.16%

Sep 35.44 62.24 26.8 43.06%

Oct 44.45 76.78 32.33 42.11%

Nov 24.32 33 8.68 26.30%

Dec 12.61 28.37 15.76 55.55%
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Month
Simulated 

KFDR
Original KFDR Difference Difference percentage

Jan 19.60 19.06 0.54 2.83%

Feb 12.02 11.81 0.22 1.83%

Mar 71.57 51.68 19.89 38.49%

Apr 89.56 85.54 4.02 4.70%

May 140.18 126.80 13.38 10.55%

Jun 154.49 122.68 31.81 25.93%

Jul 72.66 56.31 16.36 29.05%

Aug 123.50 84.25 39.26 46.60%

Sep 58.59 42.61 15.98 37.49%

Oct 96.94 65.81 31.13 47.31%

Nov 39.33 30.84 8.49 27.52%

Dec 14.09 15.66 1.57 10.02%
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Figure 5.8. (a) Tabulated mean monthly total rainfall of the 20 stations in the observed KTLX dataset and the simulated 

KTLX dataset from 2002 to 2012. Highlighted values in green are differences lower than 25%. (b) Plotted differences 

between the observed KTLX dataset and the simulated KTLX dataset. The X-axis is the month and the Y-axis is the 

amount of rainfall. 

By averaging the monthly differences (simulated minus observed) in three datasets, we found 

that the average percentage of two NexRad methods was 27.60% and the average percentage of 

ground-based was 38.74%. As the software ran 1000 times for each dataset, the differences could 

represent the ability of the software to regenerate the rainfall time series based on the rainfall 

patterns defined from the observed dataset. We conclude that the Zeus software can simulate the 

NexRad rainfall data more closely than the ground-based data set.  

In addition, from figure 5.7 and 5.8, we found that the “Zeus” software generated the same 

increasing and decreasing tendency especially during the dry seasons including Jan, Feb, Mar, Apr 

and, Dec as the observed NexRad data. However, in the rainy months (e.g., May, June, July, and 

August), the ground-based data were more closely represented (Figure 5.6).  

The differences between the simulations and the observed were further investigated by 

considering the processes generating the rainfall patterns. Based on the Equation 4.18, the average 

of 1000 simulations could make the expectation of the random error in the rainfall generating 

process zero. As a result, the differences between the generated rainfall time series and the 

observed rainfall time series can be written as follows: 

Month
Simulated 

KTLX
Original KTLX Difference Difference percentage

Jan 18.07 11.64 6.43 55.23%

Feb 19.88 16.19 3.69 22.81%

Mar 39.13 35.56 3.57 10.04%

Apr 79.69 63.59 16.10 25.32%

May 106.32 95.33 10.99 11.52%

Jun 130.16 84.16 46.00 54.66%

Jul 56.99 43.16 13.83 32.05%

Aug 88.46 58.93 29.52 50.10%

Sep 40.39 29.39 11.00 37.43%

Oct 54.77 42.96 11.80 27.47%

Nov 21.68 14.98 6.70 44.73%

Dec 16.69 15.34 1.35 8.78%
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𝐷(𝑡) = 𝐹(𝑡) + 𝐸𝑟(𝑡) + 𝐸𝑝(𝑡)                                 (Equation 5.3) 

where D (t) is the differences between the generated rainfall time series and the observed rainfall 

time series; F (t) is the amount of rainfall which has a temporal pattern but could not be defined 

using the parameters listed in Table 4.5; Er (t) is the amount of rainfall caused by random 

environmental factors; Ep (t) is the error resulting from generating method which 

satisfied|𝐸𝑝(𝑡)| ≥ 0. 

As the rainfall pattern parameters generating methods and the rainfall time series generating 

processes were identical for all the three process, we conclude that: 

𝐸𝑝(𝑡)𝑁𝑒𝑥𝑅𝑎𝑑 = 𝐸𝑝(𝑡)𝐺𝑟𝑜𝑢𝑛𝑑                                    (Equation 5.4) 

Based on Equation 5.3 and 5.4, we drew the conclusion that the differences in the performance 

between the NexRad dataset and the Ground-based dataset came from F (t) and Er (t). The 

relationship was shown in the Equation 5.5: 

 ∆𝐷(𝑡) = ∆𝐹(𝑡) + ∆𝐸𝑟(𝑡)                                       (Equation 5.5) 

where  ∆𝐷(𝑡) is the differences in performance of the rainfall re-generation process between the 

two datasets; ∆𝐹(𝑡) is the differences of the defined rainfall patterns between the two datasets 

using the parameters in the Table 4.4; ∆𝐸𝑟(𝑡) is the differences of the random rainfall events 

between the two datasets. 

The reasons for this differences might come from the differences in the threshold of minimum 

detection rainfall. As the detection range of the NexRad data set is 2.54 mm while the ground-

based data set is 0.254 mm, the ground-based data can detect and record daily rainfall less than 

2.54 mm, which suggests that the ground-based will record more rainfall events than the NexRad. 

This would result in differences in the amount of rainfall recorded in NexRad dataset and ground-

based dataset as follow: 
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 𝑅(𝑡)𝐺𝑟𝑜𝑢𝑛𝑑 > 𝑅(𝑡)𝑁𝑒𝑥𝑅𝑎𝑑                                       (Equation 5.6) 

where 𝑅(𝑡)𝐺𝑟𝑜𝑢𝑛𝑑 is the recorded rainfall patterns in the ground-based rainfall time series; 

𝑅(𝑡)𝑁𝑒𝑥𝑅𝑎𝑑 is the recorded rainfall patterns in the NexRad rainfall time series 

However, as same methods and same parameters were used in the rainfall patterns defining 

process which were shown in section 4.5.1 but the observed datasets were different, we drew the 

Equation as follow: 

∆𝐹(𝑡) > 0                                                     (Equation 5.7) 

where ∆𝐹(𝑡) is the differences between the rainfall patterns defined in ground-based dataset and 

NexRad dataset.  

Furthermore, the lower detection limit made the ground-based dataset record more random 

rainfall events than the NexRad dataset which meant that:  

∆𝐸𝑟(𝑡) > 0                                                    (Equation 5.8) 

In conclusion, the generated rainfall time series is closer to the observed rainfall time series 

based on the NexRad dataset in general. However, some of the relationships may be different from 

the general equations in the wet and dry months. 

To understand and explain the differences between the performance of NexRad and ground-

based datasets in dry and wet months, the rainfall patterns in both of the datasets were further 

investigated. All the rainfall patterns in the dataset, including the patterns defined and undefined 

in the parameters used, could be written as:  

𝑃(𝑡) = 𝑆(𝑡) + 𝐹(𝑡) = 𝐴1(𝑡) + 𝐴2(𝑡) + 𝐴3(𝑡) + ⋯ + 𝐴𝑥(𝑡)              (Equation 5.9) 

where 𝑃(𝑡) is the sum of all the rainfall patterns which could be defined; 𝐴𝑛(𝑡)s are the rainfall 

patterns with different magnitudes. All the 𝐴𝑛(𝑡)s satisfied the equations: 

|𝐴𝑥| ≥ 2.54                                            𝑓𝑜𝑟 𝑥 ≤ 𝑙1                    (Equation 5.10.1) 
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0.254 ≤ |𝐴𝑥| < 2.54                           𝑓𝑜𝑟 𝑙1 ≤ 𝑥 < 𝑙2                 (Equation 5.10.2) 

|𝐴𝑥| < 0.254                                         𝑓𝑜𝑟 𝑥 > 𝑙2                    (Equation 5.10.3) 

|𝐴𝑥| ≥ |𝐴𝑦|                                           𝑓𝑜𝑟 1 ≤ 𝑥 ≤ 𝑦 ≤ 𝑛         (Equation 5.10.4) 

As the detection limits are different in the NexRad and Ground-based datasets, 𝑆(𝑡) could be 

written as Equation 5.11 in NexRad dataset and 5.12 in ground-based dataset. 

𝑆(𝑡)𝑁𝑒𝑥𝑅𝑎𝑑 = 𝐴1(𝑡) + 𝐴2(𝑡) + ⋯ + 𝐴𝑛(𝑡)              𝑛 = 𝑙1         n n       (Equation 5.11) 

𝑆(𝑡)𝑔𝑟𝑜𝑢𝑛𝑑_𝑏𝑎𝑠𝑒𝑑 = 𝐴1(𝑡) + 𝐴2(𝑡) + ⋯ + 𝐴𝑛(𝑡) + ⋯ + 𝐴𝑚(𝑡)              𝑚 = 𝑙2 (Equation 5.12) 

The rainfall patterns in dry months (e.g., Jan, Feb, Mar, Apr, and Dec) usually have more 

rainfall events but with lower intensity and duration. As a result, the rainfall that NexRad recorded 

is, in general, larger than or equal to 2.54 mm. On the other hand, the rainfall time series that the 

ground-based dataset recorded includes the rainfall events with lower magnitudes which can result 

in a larger differences between the observed dataset and simulated dataset. However, in the wet 

months (e.g., May, June, July, and August) the rainfall events usually have higher intensity and/or 

longer duration. As a result, the rainfall time series that NexRad recorded does not include the 

rainfall events with magnitudes lower than 2.54 mm which can result in incompleteness and errors 

in the defined rainfall patterns. On the other hand, the rainfall that Ground-based dataset can record 

a complete rainfall patterns which can be defined and re-generated more easily compared with the 

rainfall patterns recorded in the NexRad dataset.     

Apart from the percent differences between dry months and wet months, the relationship 

between the generated dataset and observed dataset also have some patterns. All the simulated 

averages of NexRad monthly rainfall were larger than the observed data as shown in Figure 5.7 

and 5.8, while the generated ground-based data were less than the observed data as shown in Figure 

5.6. The reasons for this differences might include the following: 
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(1) The rainfall patterns defined from the NexRad dataset has the minimum threshold 

of 2.54 mm while the rainfall generator generated rainfall time series with the minimum 

value of 0.254 mm. As the result of this, the rainfall generator will generate some rainfall 

events which were not detected and recorded in the NexRad dataset; On the other hand, the 

rainfall pattern generated from the ground-based dataset has the threshold of 0.254mm while 

the rainfall generator generated the rainfall time series with the same threshold. However, as 

a highly complicated variable, the rainfall pattern defined can only represent and preserved 

part of the actual rainfall patterns. As a consequence, more patterns were generated in the 

simulated rainfall which caused the differences;   

(2) The differences in the detection limits also affected the differences in the random 

rainfall events which means that the more random events would be detected and recorded in 

the Ground-based dataset than the NexRad dataset. However, the methods used in the rainfall 

patterns definition process did not include the random events. As the result of this, we should 

expect that the generated rainfall would be less than the observed rainfall. 

However, as the differences and magnitude was the combinations of both factors, and the 

rainfall generated from the differences in the detection limits was more significant than the 

differences caused by the random differences in NexRad, the simulated NexRad data was still 

higher in magnitude than the observed NexRad data. 

5.3.2 Distribution of the simulated maximum rainfall 

The averages of the absolute PDFs differences between the daily maximum values of the 

observed and the simulated rainfall time series were calculated for all the 3000 simulations in 

KTLX, KFDR, and ground-based datasets to get the general performance of the “Zeus” software 

in generating rainfall pattern using the Equation 4.14. The results are shown in the Figure 5.9 
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where the X axis are the classes corresponding to the maximum rainfall intervals given in Table 

5.2.  

 

Figure 5.9. The X-axis is the classes of the daily area maximum rainfall classes with the meaning shown in Table 5.2; The 

Y-axis is the average absolute value of the probability differences between observed and simulated rainfall; the orange 

bars are the average differences in dry months; the blue bars are the differences in wet months.   

Table 5.2. The amount of rainfall in the days contained in each class number n. 

CLASS NUMBER N THE RAINFALL AMOUNTS IN THE 

CORRESPONDING CLASS 

1 0 

2 (0,0.1Rm*] 

3 (0.1Rm,0.2Rm] 

4 (0.2Rm,0.3Rm] 

5 (0.3Rm,0.4Rm] 

6 (0.4Rm,0.5Rm] 

7 (0.5Rm,0.6Rm] 

8 (0.6Rm,0.7Rm] 

9 (0.7Rm,0.8Rm] 

10 (0.8Rm,0.9Rm] 

11 (0.9Rm,Rm] 
*Rm is the maximum rainfall in that month. 

In Figure 5.9, the averages of the absolute PDF differences between the daily maximum value 

of observed and simulated rainfall in the wet months were lower in general with an average of 

4.17%, compared with the average of 5.48% in dry months. Furthermore, the differences in the 

days without rainfall was about 5% in the wet months while the differences in dry months is about 
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19%. As the first class probability is the frequency of dry days in the time series, the “Zeus” 

software can generate the time series closer to the observed time series considering the patterns of 

rainy days and dry days.  

Apart from the averages absolute differences, the averages of each class in dry months (Jan, 

Feb, Mar, Apr, Sep, Oct, Nov, and Dec) and wet months (May, Jun, Jul, and Aug) in both ground-

based dataset and NexRad data were also calculated and compared based on data sources with the 

result shown in Figure 5.10 and 5.11. 

 

Figure 5.10. Average of the PDF differences between the daily maximum value of observed and simulated rainfall in the 

NexRad dataset. The X-axis is the classes of the daily area maximum rainfall classes with the meaning shown in Table 5.2; 

The Y-axis is the averages of the probability differences between observed and simulated rainfall in the NexRad dataset. 

The orange bars represented dry months and the blue bars represented wet months. 
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Figure 5.11. Average of the PDF differences between the daily maximum value of observed and simulated rainfall in the 

Ground-based dataset. The X-axis is the classes of the daily area maximum rainfall classes with the meaning shown in 

Table 5.2; The Y-axis is the averages of the probability differences between observed and simulated rainfall in the 

ground-based dataset. The orange bars represented dry months and the blue bars represented wet months. 

For further analysis of the different performance of the software between the NexRad dataset 

and ground-based dataset, maximum PDF differences in both datasets based on dry or wet months 

were also compared in Figure 5.12 and 5.13.     
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Figure 5.12. Average of the PDF differences between the daily maximum value of observed and simulated rainfall in dry 

months. The X-axis is the classes of the daily area maximum rainfall classes with the meaning shown in Table 5.2; the Y-

axis is the averages of the probability differences between observed and simulated rainfall in the ground-based dataset. 

The orange bars represented NexRad and the blue bars represented ground-based. 

 

Figure 5.13. Average of the PDF differences between the daily maximum value of observed and simulated rainfall in wet 

months. The X-axis is the classes of the daily area maximum rainfall classes with the meaning shown in Table 5.2; The Y-

axis is the averages of the probability differences between observed and simulated rainfall in the ground-based dataset. 

The orange bars represented NexRad and the blue bars represented ground-based. 
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𝐷(𝑛, 𝑡)𝑃𝐷𝐹 = 𝐹(𝑛, 𝑡)𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝐹(𝑛, 𝑡)𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑                      (Equation 5.13) 

where 𝐷(𝑛, 𝑡)𝑃𝐷𝐹 is the differences in the PDF of the nth class in the month t between the simulated 

dataset and observed dataset. The meanings of class number n are shown in Table 5.2; 

𝐹(𝑛, 𝑡)𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 is the frequency of the nth class in the month t in the simulated dataset; 

𝐹(𝑛, 𝑡)𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the frequency of the nth class in the month t in the observed dataset. 

Based on the explanations of the Equation 5.13, a positive 𝐷(𝑛, 𝑡)𝑃𝐷𝐹 means that more days 

in the nth class in the month t from the simulated dataset than in observed dataset while a 

negative 𝐷(𝑛, 𝑡)𝑃𝐷𝐹 means that less days in the nth class in the month t from the simulated dataset 

than in observed dataset.  

From Figure 5.10, all the PDF differences of all the classes were less than 10% in general 

which showed the software could generate rainfall time series better based on the NexRad dataset. 

In addition, the software would generate more days with no or little rain (≤0.1*maximum daily 

rainfall) and fewer days with larger rainfall (>0.3*maximum daily rainfall) than the observed 

dataset in both dry and wet months. From Figure 5.11, all the PDF differences in the wet months 

were smaller in absolute value which demonstrated again that the software could simulate rainfall 

time series closer to the observed data in wet months in the ground-based dataset. In the dry 

months, the software would generate fewer days without rainfall but more days with little rainfall 

(≤0.1*maximum daily rainfall). From Figure 5.12, the simulated dataset was closer to the observed 

dataset in the NexRad dataset than the ground-based dataset. From Figure 5.13, the small value in 

the first class in both datasets showed that the rainfall generator could simulate the pattern of rain 

and no rain very close to the observed dataset in terms of the rainy days and dry days. However, 

both NexRad and ground-based datasets showed more days were generated with little daily rainfall 

than the observed datasets.     
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Based on the conclusions, the rainfall patterns defining the ability of the parameters used in 

the rainfall generator and the rainfall generator simulation ability changes according to different 

rainfall patterns. The ability improves when the rainfall level is extremely high or low, for example 

dry months in the NexRad dataset when dry days outnumber the wet days. This could also explain 

the relatively good performance in the wet months in the ground-based dataset when rainfall is 

rich compared with other months.   
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

 

 The NexRad rainfall time series 

 The issue of high uncertainty and error in environmental models caused by the absence of 

high temporal and spatial resolution rainfall data in a small-scale watershed can be addressed by 

NexRad rainfall dataset which is a Level-III radar product generated from the Level-II radar data. 

Compared with the time series generated from the ground-based rainfall gages, the NexRad rainfall 

time series has advantages over the following aspects: 

(1) Large coverage area for the U.S: the NexRad covers nearly all the mainland U.S.A. 

including areas in which ground-based rainfall gages are hard to set-up(e.g. regions in deep 

forests, high altitude area); 

(2) High temporal and spatial resolution: the highest temporal resolution is 5 minutes 

and the highest spatial resolution is 250 meters; 

(3) Multiple stations covering the same area for calibration: due to large number of 

stations and large coverage area of each station, there are usually more than one NexRad 

stations covering every watershed in the U.S; 

(4) Historic rainfall data availability: the historic rainfall data is available since 1988 

when NexRad project was set up; 

In conclusion, NexRad is a useful resource for rainfall data that can provide both high temporal 

and spatial resolution. 
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 The Comparisons between NexRad rainfall data and ground-based rainfall data  

 The comparison between the NexRad dataset and the ground-based dataset revealed some 

similarities and differences between these two dataset.  

(1) NexRad has a tendency of recording higher rainfall when events have high intensity 

and long duration. As a result, the rainfall recorded in the months of March, April, May, June, 

and August are more close to the rainfall recorded from the ground-based station with the 

average different percentage of less than 25%. Rainfall recorded in the other months can easily 

be affected by extreme rainfall events and the difference is usually higher than 40%.  

(2) The PDFs of the NexRad rainfall time series are not the same as the PDFs of the 

ground-based rainfall time series. Further investigation revealed the main reason for the 

differences was that NexRad could not detect the rainfall events less than 2.54mm in the time 

series. The other possible reasons can be the “Z-R” relationship used in the model is not 

effective in measuring short-lasting rainfall events and differences in the detecting targets 

between NexRad and ground-based gages.  

(3) The all-time high-resolution NexRad rainfall is very useful in capturing heavy and 

intense rainfall events and can be used to model processes that result from such events (e.g., 

flooding, erosion). However, it might not deliver realistic results as the ground-based datasets 

for low intensity or short duration rainfall events. Furthermore, it should be noted that the 

NexRad measures a bigger spatial area than the ground-based station. The ground-based 

station, although measuring a smaller spatial area, measures the actual rainfall reaching the 

ground as opposed to the NexRad which is based on reflectivity information from the clouds. 

These differences should be taken into consideration when deciding which datasets can best 

describe the processes to be modeled.   
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In conclusion, NexRad rainfall time series is different from the ground-based rainfall time series 

in monthly mean rainfall values and PDFs of daily rainfall which can result in uncertainty and 

errors in the outcomes when the other rainfall time series is used in the environmental models. 

However, both rainfall measuring and recording method can record the same increasing or 

decreasing tendency in general. 

 Rainfall pattern analysis  

 By comparing the re-generated rainfall time series based on three datasets (KFDR, KTLX, 

and ground-based) with their observed datasets, the “Zeus” software, which uses the parameters 

listed in Table 4.5 as rainfall pattern inputs, proves to be a useful software to generating and 

downscale the rainfall time series. The results of the comparisons revealed following conclusions: 

(1) All the re-generated rainfall time series showed the same increasing and decreasing 

tendency in monthly scale. Furthermore, the rainfall generator could re-generate rainfall time 

series within 10% error in the monthly rainfall in NexRad dataset and wet months (May, June, 

July and August) in the ground-based dataset in the process.  

(2) The PDFs of the daily maximum rainfall time series also showed similarities in some 

particular months. The result showed that in the dry months (January, February, March, April, 

September, October, November, and December) in NexRad dataset and wet months in the 

ground-based dataset, all differences within all classes listed in Table 5.2 were smaller than 

10%. However, the analysis also showed significant differences between simulated rainfall 

time series and observed time series in terms of total monthly rainfall and PDFs of daily 

maximum rainfall. Possible reasons include the difference between the thresholds of the 

observed datasets, incomplete rainfall pattern defining, and errors in re-generating process. 
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In conclusion, the method of defining rainfall patterns based on the parameters in Table 4.5 and 

rainfall time series generating based on these parameters is useful when rainfall time series data is 

not available. However, further improvements must be made to decrease the errors and differences 

between the simulated time series and observed time series in both rainfall pattern defining the 

process and the software. 

Overall, our results evidence the following points: 

(1) NexRad is a useful and reliable source of rainfall time series in environmental 

research for most of the area in the U.S with high temporal and spatial resolution; 

(2) The NexRad rainfall time series is different from the ground-based rainfall time 

series in mean value and PDFs. However, both of them showed the same tendency in monthly 

and yearly scale which means the NexRad can be used as one substitute dataset for the ground-

based dataset; 

(3) The rainfall pattern defining method used in the thesis and the rainfall generator can 

generate the basic increasing and decreasing tendency in monthly scale. However, further 

improvements on both the rainfall pattern defining methods and the software are necessary 

before reliable rainfall time series can be generated. 

The results of this study are not limited to a comparison between different rainfall datasets but 

have implications for better hydrologic process understanding in small-scale watershed. For 

example, by analyzing the difference in rainfall inputs and their impacts on the model outputs, we 

can better understand how the different rainfall patterns affect the hydrologic processes and 

consequently the ecosystem. This will also facilitate understanding of the impacts of climate 

changes on the environment. By being able to define the rainfall pattern accurately and completely 

in small watersheds will lead to better representation of the response of the environmental system 
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and will therefore result in less complexity and better performance in environmental models, 

simplified rainfall dataset, and a better understanding of the relationships between different 

environmental factors in a small-scale watershed. 
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APPENDIX A: THE LOCATIONS OF KFDR AND KTLX 

STATIONS 

Table A.1. The locations of KFDR and KTLX stations 

 LONGITUDE LATITUDE 

KFDR -98.97611 34.36222 

KTLX -97.2775 35.33306 
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APPENDIX B: THE CELLS AND STATIONS RELATIONSHIP 

Table B.1. The cells and station relationship of KTLX station 

STATION 

NAME 

NUMBER OF CELL 

NEEDED 

CELL 

NUMBER 

A124 4 7,8,19,20 

N1NN 2 10,22 

A121 1 23 

A133 1 18 

A132 1 17 

A131 2 15,16 

APAC 1 26 

A250 2 27,39 

A249 1 41 

A148 2 30,42 

A234 1 31 

A235 4 32,33,20,21 

A136 1 34 

A146 1 44 

A152 2 39,51 

A253 2 52,53 

A154 1 54 

A282 1 55 

ACME 2 68,69 

A159 2 69,81 

A256 1 58 

A244 2 47,59 

A262 2 66,78 
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Table B.2. The cells and station relationship of KFDR station 

STATION 

NAME 

NUMBER OF CELL 

NEEDED 

CELL 

NUMBER 

A154 1 49 

A124 2 7,18 

N1NN 2 20,21 

A121 1 22 

A131 1 14 

A132 2 15,26 

A133 2 16,17 

APAC 1 24 

A250 2 25,36 

A249 1 37 

A148 2 38,39 

A234 1 29 

A235 1 30 

A136 1 31 

A146 1 41 

A152 1 47 

A253 1 48 

A282 1 51 

ACME 1 63 

A256 1 53 

A244 2 54,55 

A159 4 63,64,74,75 

A262 4 60,61,71,72 
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APPENDIX C: DOUBLE MASS CURVE RESULTS FOR 

TWELVE MONTHS 
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Figure C.1. The double mass analysis between the ground-based dataset and NexRad dataset in January, February, and 

March. 
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Figure C.2. The double mass analysis between the ground-based dataset and NexRad dataset in April, May, and June. 
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Figure C.3. The double mass analysis between the ground-based dataset and NexRad dataset in July, August, and 

September. 
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Figure C.4. The double mass analysis between the ground-based dataset and NexRad dataset in October, November, and 

December. 
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APPENDIX D: R RESULT OF F-TEST OF AREAL MONTHLY 

RAINFALL BETWEEN NEXRAD AND GROUND-BASED 

DATASET 

Table D.1. The R result of F-test of areal monthly rainfall between NexRad and ground-based dataset 

TIME SERIES 

MONTH 

F VALUE DEGREES OF 

FREEDOMS 

P VALUE 

JAN 1850.2 1 < 2.2e-16 

FEB 2152.7 1 < 2.2e-16 

MAR 657.82 1 < 2.2e-16 

APR 102.73 1 3.549e-12 

MAY 219.01 1 < 2.2e-16 

JUN 27.791 1 6.509e-06 

JUL 85.226 1 5.046e-11 

AUG 35.877 1 6.529e-07 

SEP 318.07 1 < 2.2e-16 

OCT 428.32 1 < 2.2e-16 

NOV 243.94 1 < 2.2e-16 

DEC 460.65 1 2.937e-16 
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APPENDIX E: R RESULT OF KOLMOGOROV-SMIRNOV 

TEST BETWEEN KTLX AND GROUND-BASED DATASET 

Table E.1. The R result of Kolmogorov-Smirnov test between KTLX and ground-based dataset 

TIME SERIES 

MONTH 

D VALUE ALTERNATIVE 

HYPOTHESIS 

P VALUE 

JAN 0.2117 Two-sided 3.546e-10 

FEB 0.2490 Two-sided 5.784e-13 

MAR 0.1580 Two-sided 3.933e-06 

APR 0.1352 Two-sided 0.0001908 

MAY 0.1500 Two-sided 1.082e-05 

JUN 0.1649 Two-sided 5.166e-07 

JUL 0.0389 Two-sided 0.7824 

AUG 0.0831 Two-sided 0.04106 

SEP 0.1348 Two-sided 0.0001204 

OCT 0.1924 Two-sided 5.047e-09 

NOV 0.1867 Two-sided 4.781e-08 

DEC 0.2556 Two-sided 6.55e-15 
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APPENDIX F: R RESULT OF KOLMOGOROV-SMIRNOV 

TEST BETWEEN KFDR AND GROUND-BASED DATASET 

Table F.1. The R result of Kolmogorov-Smirnov test between KFDR and ground-based dataset 

TIME SERIES 

MONTH 

D VALUE ALTERNATIVE 

HYPOTHESIS 

P VALUE 

JAN 0.2327 Two-sided 7.449e-11 

FEB 0.2737 Two-sided 7.046e-07 

MAR 0.1808 Two-sided 1.149e-06 

APR 0.1548 Two-sided 7.186e-05 

MAY 0.1479 Two-sided 0.0001335 

JUN 0.1422 Two-sided 0.0002999 

JUL 0.0343 Two-sided 0.9525 

AUG 0.0735 Two-sided 0.1721 

SEP 0.1232 Two-sided 0.002618 

OCT 0.1985 Two-sided 1.093e-07 

NOV 0.1895 Two-sided 5.539e-07 

DEC 0.2760 Two-sided 1.199e-14 
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APPENDIX G: R RESULT OF KOLMOGOROV-SMIRNOV 

TEST WITHIN THE NEXRAD STATIONS 

Table G.1. The R result of Kolmogorov-Smirnov test within the NexRad stations 

TIME SERIES 

MONTH 

D VALUE ALTERNATIVE 

HYPOTHESIS 

P VALUE 

JAN 0.0225 Two-sided 0.9999 

FEB 0.0308 Two-sided 1.0000 

MAR 0.0269 Two-sided 0.9961 

APR 0.0300 Two-sided 0.9879 

MAY 0.0309 Two-sided 0.9776 

JUN 0.0640 Two-sided 0.2797 

JUL 0.0268 Two-sided 0.9962 

AUG 0.0208 Two-sided 1.0000 

SEP 0.0297 Two-sided 0.9880 

OCT 0.0211 Two-sided 1.0000 

NOV 0.0277 Two-sided 0.9972 

DEC 0.0204 Two-sided 1.0000 
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APPENDIX H: THE LOG-SCALE FIGURES OF GROUND-

BASED DATASET OF TWELVE MONTHS 
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Figure H.1. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in January from 2002 to 2012 from ground-based data set 

and the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily 

standard deviation of all the cells in January from 2002 to 2012 from the ground-based data set and the upper and lower 

boundary. 
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Figure H.2. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in February from 2002 to 2012 from ground-based data 

set and the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily 

standard deviation of all the cells in February from 2002 to 2012 from the ground-based data set and the upper and lower 

boundary. 
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Figure H.3. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in March from 2002 to 2012 from ground-based data set 

and the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily 

standard deviation of all the cells in March from 2002 to 2012 from the ground-based data set and the upper and lower 

boundary. 
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Figure H.4. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in April from 2002 to 2012 from ground-based data set 

and the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily 

standard deviation of all the cells in April from 2002 to 2012 from the ground-based data set and the upper and lower 

boundary. 
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Figure H.5. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in May from 2002 to 2012 from ground-based data set 

and the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily 

standard deviation of all the cells in May from 2002 to 2012 from the ground-based data set and the upper and lower 

boundary. 
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Figure H.6. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in June from 2002 to 2012 from ground-based data set 

and the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily 

standard deviation of all the cells in June from 2002 to 2012 from the ground-based data set and the upper and lower 

boundary. 
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Figure H.7. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in July from 2002 to 2012 from ground-based data set and 

the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in July from 2002 to 2012 from the ground-based data set and the upper and lower boundary. 
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Figure H.8. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in August from 2002 to 2012 from ground-based data set 

and the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily 

standard deviation of all the cells in August from 2002 to 2012 from the ground-based data set and the upper and lower 

boundary. 
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Figure H.9. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in September from 2002 to 2012 from ground-based data 

set and the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily 

standard deviation of all the cells in September from 2002 to 2012 from the ground-based data set and the upper and 

lower boundary. 
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Figure H.10. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in October from 2002 to 2012 from ground-based data set 

and the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily 

standard deviation of all the cells in October from 2002 to 2012 from the ground-based data set and the upper and lower 

boundary. 
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Figure H.11. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in November from 2002 to 2012 from ground-based data 

set and the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily 

standard deviation of all the cells in November from 2002 to 2012 from the ground-based data set and the upper and 

lower boundary. 
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Figure H.12. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in December from 2002 to 2012 from ground-based data 

set and the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily 

standard deviation of all the cells in December from 2002 to 2012 from the ground-based data set and the upper and 

lower boundary. 
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APPENDIX I: THE LOG-SCALE FIGURES OF KFDR 

DATASET OF TWELVE MONTHS 
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Figure I.1. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in January from 2002 to 2012 from KFDR data set and 

the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in January from 2002 to 2012 from the KFDR data set and the upper and lower boundary. 
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Figure I.2. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in February from 2002 to 2012 from KFDR data set and 

the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in February from 2002 to 2012 from the KFDR data set and the upper and lower boundary. 
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Figure I.3. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in March from 2002 to 2012 from KFDR data set and the 

upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in March from 2002 to 2012 from the KFDR data set and the upper and lower boundary. 
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Figure I.4. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in April from 2002 to 2012 from KFDR data set and the 

upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in April from 2002 to 2012 from the KFDR data set and the upper and lower boundary. 

 

KFDR April

y = 0.0087x1.2809

y = 0.192x1.308

0.01

0.1

1

10

100

1 10 100 1000

Ev
e

n
t 

M
e

an
 P

re
ci

p
it

at
io

n
 (

m
m

)

Maximum Precipitation (mm)

y = 0.0974x1.0532

y = 0.3066x1.0287

0.1

1

10

100

1 10 100 1000

Ev
e

n
t 

ST
D

 (
m

m
)

Maximum Precipitation (mm)



 93 

 

Figure I.5. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in May from 2002 to 2012 from KFDR data set and the 

upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in May from 2002 to 2012 from the KFDR data set and the upper and lower boundary. 
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Figure I.6. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in June from 2002 to 2012 from KFDR data set and the 

upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in June from 2002 to 2012 from the KFDR data set and the upper and lower boundary. 
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Figure I.7. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in July from 2002 to 2012 from KFDR data set and the 

upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in July from 2002 to 2012 from the KFDR data set and the upper and lower boundary. 
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Figure I.8. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in August from 2002 to 2012 from KFDR data set and the 

upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in August from 2002 to 2012 from the KFDR data set and the upper and lower boundary. 
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Figure I.9. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in September from 2002 to 2012 from KFDR data set and 

the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in September from 2002 to 2012 from the KFDR data set and the upper and lower boundary. 
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Figure I.10. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in October from 2002 to 2012 from KFDR data set and 

the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in October from 2002 to 2012 from the KFDR data set and the upper and lower boundary. 
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Figure I.11. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in November from 2002 to 2012 from KFDR data set and 

the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in November from 2002 to 2012 from the KFDR data set and the upper and lower boundary. 
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Figure I.12. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in December from 2002 to 2012 from KFDR data set and 

the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in December from 2002 to 2012 from the KFDR data set and the upper and lower boundary. 
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APPENDIX J: THE LOG-SCALE FIGURES OF KTLX 

DATASET OF TWELVE MONTHS 
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Figure J.1. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in January from 2002 to 2012 from KTLX data set and 

the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in January from 2002 to 2012 from the KTLX data set and the upper and lower boundary. 
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Figure J.2. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in February from 2002 to 2012 from KTLX data set and 

the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in February from 2002 to 2012 from the KTLX data set and the upper and lower boundary. 
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Figure J.3. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in March from 2002 to 2012 from KTLX data set and the 

upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in March from 2002 to 2012 from the KTLX data set and the upper and lower boundary. 
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Figure J.4. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in April from 2002 to 2012 from KTLX data set and the 

upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in April from 2002 to 2012 from the KTLX data set and the upper and lower boundary. 
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Figure J.5. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in May from 2002 to 2012 from KTLX data set and the 

upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in May from 2002 to 2012 from the KTLX data set and the upper and lower boundary. 
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Figure J.6. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in June from 2002 to 2012 from KTLX data set and the 

upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in June from 2002 to 2012 from the KTLX data set and the upper and lower boundary. 
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Figure J.7. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in July from 2002 to 2012 from KTLX data set and the 

upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in July from 2002 to 2012 from the KTLX data set and the upper and lower boundary. 
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Figure J.8. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in August from 2002 to 2012 from KTLX data set and the 

upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in August from 2002 to 2012 from the KTLX data set and the upper and lower boundary. 
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Figure J.9. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in September from 2002 to 2012 from KTLX data set and 

the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in September from 2002 to 2012 from the KTLX data set and the upper and lower boundary. 
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Figure J.10. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in October from 2002 to 2012 from KTLX data set and 

the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in October from 2002 to 2012 from the KTLX data set and the upper and lower boundary. 
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Figure J.11. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in November from 2002 to 2012 from KTLX data set and 

the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in November from 2002 to 2012 from the KTLX data set and the upper and lower boundary. 
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Figure J.12. The log-scale figures used to find the possible boundary relationships: (1) The log-scale figure between the 

daily maximum precipitation and the daily mean of all the cells in December from 2002 to 2012 from KTLX data set and 

the upper and lower boundary; (2) The log-scale figure between the daily maximum precipitation and the daily standard 

deviation of all the cells in December from 2002 to 2012 from the KTLX data set and the upper and lower boundary. 
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