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ABSTRACT 

Biofuels are a promising renewable transportation fuel that can improve energy security and 

rural economics. How to develop an efficient and effective biomass production and provision 

system is important for successful large-scale biofuels production. The overall objective of this 

dissertation is to develop multiple-scale supply chain optimization models and decision support 

tools to facilitate biomass production and provision. An interdisciplinary approach, Concurrent 

Science Engineering and Technology (ConSEnT), was applied to facilitate systems informatics 

and analysis for optimization of biomass feedstock provision. The ConSEnT approach for large-

scale biomass supply chain management was developed through the integration of operations 

research, geographic information systems (GIS), processing modeling, techno-economic 

analysis, and cyberinfrastructure.  

In this dissertation, three optimization modeling tools and a CyberGIS-enabled biomass 

feedstock provision decision support platform have been developed to facilitate large-scale 

biomass feedstock provision.  

BioScope model, a strategic planning model, was developed to optimize long-term 

decisions, such as facility numbers, locations, capacities, and biomass distribution patterns, for a 

three-stage biomass-biofuel production system. The model was implemented to evaluate Illinois 

Miscanthus based biofuel supply chain system through minimizing annual Miscanthus-ethanol 

production costs at different scenarios. The results showed that biorefinery related costs are the 

most important factor, followed by biomass procurement, transportation, and centralized storage 
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and preprocessing (CSP) related costs. Cropland usage rate, biomass demand, transportation 

mode, and facility capacity limit are the key factors affecting the production costs. 

To better understand the development of biofuel production, Dynamic BioScope model, a 

multi-period strategic planning model, was developed to address how a biomass provision 

system would be best evolved to meet the increasing biofuels production demand over time. The 

model minimizes total production costs throughout the planning period by optimizing decisions 

including building and expansion timings, numbers, locations, and capacities of facilities and 

biomass distribution patterns within the system. The model was applied to evaluate the systems 

performance of Miscanthus-ethanol production in Illinois from 2012 to 2022. The results showed 

that Miscanthus-ethanol production costs will be reduced as the system evolved, mainly due to 

the achievement of the economies of scale through building larger biorefineries and better 

biomass supply chain infrastructure. 

To better understand the interactions between strategic and tactical decisions, an 

integrated biomass supply chain optimization model was developed to minimize annual biomass-

ethanol production costs by optimizing both strategic and tactical planning decisions 

simultaneously. The numbers, locations, and capacities of facilities as well as biomass and 

ethanol flow patterns are the key strategic decisions; while biomass production, delivery, and 

operating schedules as well as inventory monitoring are the key tactical decisions. The model 

comprises four modules including farm management, logistics planning, facility allocation, and 

ethanol distribution. The activities optimized by the model range from biomass harvesting, 

packing, in-field transportation, stacking, transportation, preprocessing, storage, to ethanol 

production and distribution. The model was implemented to study the Miscanthus-ethanol supply 
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chain in Illinois. Among the biomass production activities, biomass baling and harvesting are the 

two most expensive operations. The biomass delivery schedules showed seasonal variations. 

Sensitivity analysis showed a 50% reduction in biomass yield would increase biofuels production 

costs by 11%.  

A CyberGIS-enabled biomass supply chain decision support platform was developed to 

improve the accessibility and computing performance of the BioScope model. The platform 

includes four major components: BioScope optimization model, an interactive CyberGIS 

Gateway interface, GISolve middleware, and high-performance cyberinfrastructure (CI). The 

workflow and functions of each component were provided to illustrate the development and 

usage of the platform. Empowered by high performance CI, the platform improved the 

computing performance for both single and multiple job submissions. This implementation 

example could serve as a protocol for further integration development of cyberinfrastruture, 

operations research, and geospatial analysis. 

Keywords: biomass, supply chain optimization, decision support, systems analysis, informatics 
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CHAPTER 1 

INTRODUCTION 

Biofuels are a promising renewable transportation fuel under consideration, which can improve 

energy security, reduce greenhouse gas (GHG) emissions, and develop rural economics (EPA, 

2010). With the utilization of renewable biomass feedstock, cellulosic biofuels are considered a 

major potential component of a future fuel system. To meet the target of 16 billion gallons of 

cellulosic ethanol production in 2022 (EPA, 2010), more than 200 million Mg of biomass will be 

required annually; however, few commercial cellulosic ethanol facilities exist due to a lack of a 

cost-effective technology and reliable feedstock supply. Further, biomass is produced in a 

distributed manner within a limited harvesting window each year. It is expected that biomass 

feedstock provision will be a key limiting factor for large-scale biofuels production. Moreover, 

whether or not the existing supply chain infrastructure is efficient and effective to support large-

scale biofuels production remains unknown. There is therefore an urgent need to develop a 

systems-level decision support platform to optimize both long-term supply chain configurations 

and short-term operations management for large-scale biofuels production.  

The objective of this dissertation is to improve efficiency and effectiveness of large-

scale biofuels production through the optimization of biomass supply chain configurations 

and operations management. For the development of an effective and efficient biomass supply 

chain, there is a critical need for a new systems modeling approach to integrate and optimize all 

the components within a biomass provision system. An interdisciplinary approach, Concurrent 

Science Engineering and Technology (ConSEnT), was proposed to evaluate the performance of 

complex systems (Liao, 2011). Although ConSEnT was proposed recently, the idea of an 
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integrated systems thinking approach had been presented before, where the purposes are: 1) to 

integrate information and knowledge related to the systems under study from various sources in a 

real-time fashion; 2) to perform systems analysis; and 3) to deliver the results of analysis based 

on the most updated information (Ting et al., 2003). Similar concepts have been implemented for 

systems analyses of controlled phytomation systems (Fleisher et al., 2002), advanced life support 

systems (Rodríguez et al., 2003), and forest (Church et al., 2000) and agricultural residual 

management (Perimenis et al., 2011; Shastri et al., 2010). 

Systems informatics, modeling and analysis, and decision support system are the three 

components of ConSEnT (Figure 1.1). Systems informatics provides means of transferring both 

experimental and modeling data to information that could be used for further modeling and 

systems analysis. It starts with defining the system scope and boundary based on the research 

objective, followed by the system component identification, data collection and management. 

Design and development of database is crucial to facilitate information management and sharing. 

Modeling and analysis aims to develop qualitative and quantitative computational analysis tools 

to evaluate and optimize systems performance under different scenarios. The key performance 

indicators of the system are to be defined by decision makers, which may include economic, 

environmental, and social impacts. Development of decision support platform provides accesses 

to decision makers through the interactive web interfaces. The computational performance could 

be further improved through the integration of web interface, cyberinfrastructure, and high-

performance distributed computing. 

In this study, the ConSEnT approach is applied for large-scale biomass feedstock 

provision management through the integration of geographic information systems (GIS), 

operations research, processing modeling, techno-economic analysis, and cyberinfrastructure. 
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Most agricultural systems are spatial explicit. GIS is used to collect and manage spatial explicit 

data of biomass feedstock. Operations research provides fundamental methodologies to develop 

systems optimization and simulation analysis tools. Process modeling is adopted to simulate 

commercial-scale operating performances (e.g. energy and water usage and equipment capacity) 

based on the lab-scale biomass preprocessing or conversion experimental data. Techno-economic 

analysis provides cost-benefit evaluations for different biofuels production technologies under 

different financial scenarios. Cyberinfrastructure and high-performance distributed computing 

are incorporated to improve computational efficiency and throughput performance. It is expected 

that this approach could be expanded to evaluate the system performance for many biomass 

feedstocks, in many regions, and many end-uses. 

 

Figure 1.1: The application of the ConSEnT principle on sustainable biofuels pathways 
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This study will evaluate multiple biofuels production pathways through systems 

informatics and analysis, primarily through applications of optimization, and identify 

opportunities and challenges for large-scale biomass feedstock provision. By leveraging high 

performance distributed cyberinfrastructures, the development of a decision support platform 

could improve computational efficiency and throughput for large scale applications. The 

platform will help create an understanding of the complexity of the system and quantify the 

impact of emerging technologies on the system with web-based spatial visualization. This study 

contributes to interdisciplinary research collaborations and public knowledge sharing of biofuels 

production. 

The proposed work aims to advance our understandings on large-scale cellulosic biofuels 

production from engineering and economic perspectives. The following key systems-level 

questions have been answered: 

1. What are the major cost components of cellulosic biofuels production? 

2. How do we analyze the interactions between strategic and tactical decisions and how 

these interactions affect the system performance? 

3. How do we quantify the impact of emerging technologies on a large-scale biofuels 

production system? 

4. How do we improve model accessibility and computing performance to improve model 

applications? 

To better answer these key systems-level questions, the dissertation is designed to 

address the following objectives: 

Objective 1: Develop a regional scale biomass supply chain optimization model to 

address long-term strategic planning challenges. 
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Objective 2: Integrate both strategic and tactical planning tools to optimize long-

term supply chain configurations with the support of short-term operations management. 

Objective 3: Establish a CyberGIS enabled decision support platform to facilitate 

decision-making and knowledge sharing in the context of biofuels production. 

The dissertation is organized as follows. Chapter 2 provides a literature review on 

systems modeling and analysis studies, which includes three parts: 1) an overview of a cellulosic 

biofuel production system; 2) existing modeling studies on biomass supply chain optimization; 

and 3) studies on the existing web-based spatial supported decision support platform.  

Chapters 3 and 4 focus on strategic biomass supply chain optimization, aiming to identify 

the major cost components of cellulosic biofuels production by optimizing long-term decisions. 

Chapter 3 describes the development of a strategic supply chain optimization model, BioScope. 

The BioScope model is a GIS-enabled mixed integer linear programming model, which 

minimizes annual biofuel production costs through optimizing the number, location, and capacity 

of facilities as well as biomass flow patterns. Detailed constraints and objective functions are 

provided. Several case studies of Miscanthus-ethanol production in Illinois are provided to 

illustrate the application of the model.  

To meet a target of 16 billion gallons of cellulosic ethanol production in 2022 (EPA, 

2010), biofuel production infrastructure will undergo significant development. Dynamic, multi-

period, strategic supply chain optimization provides an effective tool to evaluate the system 

development during the rapid development phase. Chapter 4 describes the development of multi-

period supply chain optimization for large-scale biofuels production. The model minimizes the 

total biofuels production costs throughout the planning period by optimizing production timings, 

numbers, locations, and capacities of facilities and annual biomass procurement and delivery 
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patterns. The model is implemented to optimize Miscanthus-ethanol production in Illinois from 

2012 to 2022 given the projected changes of biomass supply and demand. 

Biomass is produced within a limited time but needs to be processed all year round. 

Understanding how to harvest, store, and deliver biomass to support processing activities is vital 

to an optimized biomass supply chain. Chapter 5 describes the development of an integrated 

strategic and tactical biomass supply chain optimization model. The integrated model 

coordinates and optimizes the interactions between strategic decisions, such as facility location 

and capacity, and tactical decisions, such as biomass production and delivery schedules. Several 

case studies of Miscanthus production in Illinois are presented to illustrate the usage of the 

model. 

Model accessibility and computational efficiency are the major limitations for a wide 

application of developed optimization models. Chapter 6 describes the development of a 

CyberGIS-enabled decision support platform for biomass supply chain optimization. The 

platform provides web-based services to support large group applications through the integration 

of three layers: web-based user interface, CyberGIS middleware, and high-performance 

distributed cyberinfrastructure. Detailed descriptions of key components and workflow 

development are presented to illustrate the development cycle. Case studies are presented to 

show how this platform could improve model computing efficiency for single and multiple job 

submissions. 

Finally, we will summarize the dissertation in Chapter 7 and discuss future research 

directions in Chapter 8. 



7 

 

CHAPTER 2 

LITERATURE REVIEW 

Systems informatics, modeling and analysis, and decision support platform development are 

three components that facilitate complex systems analyses. It is critical to define the scope of a 

biofuel production system to be modeled prior to systems abstraction and information retrieval. 

To that end, a literature review of biofuel production systems is presented to illustrate the system 

components, existing technologies, possible scenarios, and the data describing these components 

and scenarios. Because of the complexity of a biofuel production system, supply chain 

optimization is proposed to facilitate effective biomass provision and, generally, three levels of 

decision-making are considered: strategic, tactical, and operational decisions. A literature review 

is presented here to describe the existing modeling approaches and tools for strategic and tactical 

planning of biofuel production. Model accessibility and results visualization are key factors for a 

good decision support platform. A literature review of spatial supported decision support 

platform development is also presented. 
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2.1 BIOMASS-BIOFUEL PRODUCTION SYSTEM 

Cellulosic ethanol is considered an important component of a sustainable fuel system (EPA, 

2010). However, due to low energy density and distributed supply of biomass, ensuring effective 

biomass feedstock provision is one of many challenges for large-scale cellulosic biofuels 

production (Hess et al., 2007). From a systems perspective, a biofuel production system includes 

the following parts: biomass farm production, transportation, storage, preprocessing, conversion, 

ethanol distribution and blending, and end consumption (Figure 2.1).  

 

Figure 2.1: The scope of a biofuel production system 

Biomass farm production is to grow, harvest, and produce deliverable biomass for 

processing facilities, which includes the following major steps: biomass planting, harvesting, 

packing, in-field transportation, handling, and storage. Biomass yield, availability, and its 

associated production costs are the key factors affecting biomass procurement costs. Because of 

spatial differences in weather and soils, biomass availability, quality, and production costs vary 

geographically. Geographical Information Systems (GIS) have been applied to estimate the 

yields, supplies, and production costs for different feedstocks, including Miscanthus (Khanna et 

al., 2008), switchgrass (Perrin et al., 2008), and corn stover (Kadam et al., 2003).  

Biomass transportation is one of the major challenges of large-scale biofuels production. 

As compared with other energy resources, biomass has a relatively lower energy and physical 
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density and is collected from a more distributed manner. Biomass can be transported by truck, 

train, barge, pipeline, and/or a combination of these transportation modes (Miao et al., 2012). For 

any single transportation mode, transportation costs are usually composed of distance 

independent fixed costs and variable distance dependent costs (Mahmudi and Flynn, 2006). 

Fixed costs are related to biomass loading and unloading costs, which will vary based on the 

specific form of biomass; while variable distance related costs are dependent on the distance of 

biomass travelled (Searcy et al., 2007). Among the three transportation modes, truck usually 

incurs the lowest fixed cost but the highest unit distance related costs; whereas barge usually 

incurs the highest fixed cost and lowest unit distance related costs. Because of these tradeoffs, 

studies have been presented to compare the biomass transportation costs by different 

transportation modes (Mahmudi and Flynn, 2006) and different types of feedstocks (Miao et al., 

2012).  

Biomass storage is a very critical link in biofuels production system, which serves as a 

buffer between a short-time window of biomass production and a year-around continuous 

biomass processing. Biomass can be stored on farm fields, intermediate centralized locations, or 

next to refineries. Ambient and covered storage are two major storage methods, whereas 

moisture content and dry matter loss are the key performance indicators for storage (Ebadian et 

al., 2012). Covered storage incurs higher costs but could reduce annual dry matter loss to 2%, 

lower than the 15% loss using ambient storage (Brummer et al., 2000). The decisions on the 

selection of storage location are dependent on the systems demand, facility location, storage 

method selection, and biomass formats. 

Biomass preprocessing, or biomass physical densification, reduces logistics burdens and 

provides uniform biomass feedstock format for ethanol conversion. Size reduction and 
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mechanical densification are the two major steps. Depending on the differences of ground 

particle size and densification pressure, ground biomass with compaction (Hess et al., 2007), 

briquette (Sokhansanj and Turhollow, 2004), and pellet (Campbell, 2007) are the three major 

biomass forms after physical densification. The biomass bulk density can be improved from less 

than approximately 100 kg m
-3

 at a loose condition to a range of 320 to 700 kg m
-3

 given 

different densification levels. Because of the low energy and physical density of loose biomass, 

many researchers have been working on the feasibility of developing regional biomass storage 

and preprocessing depots for large-scale biofuels production (Sokhansanj et al., 2009; Eranki et 

al., 2011; Shastri et al., 2012a).   

Cellulosic biorefineries are to produce renewable fuels from cellulose, hemicellulose, or 

lignin biomass. High capital investment costs and production costs as well as low conversion 

efficiency are considered the major challenges for scaling up biofuels production. Although there 

exists no commercial cellulosic biofuel facility currently, more than ten commercial projects are 

under development (Brown and Brown, 2013). The current cellulosic ethanol conversion 

technologies can be grouped into two broad categories: hydrolytic and thermochemical, where a 

detailed description of each conversion technology and their production and cost status can be 

found in Dwivedi et al (2009). A process simulation model had been developed to estimate a 

commercial scale biorefinery using dilute acid pretreatment and enzymatic hydrolysis and co-

fermentation (Humbird et al., 2011). The model showed that it would require a capital 

investment of 422.5 million dollars to build a refinery at annual capacity of 61 million gallons 

and it would cost $2.15 per gallon of ethanol production assuming a 76% of conversion 

efficiency (Humbird et al., 2011). 
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After production, ethanol will be distributed to blending stations to mix with gasoline for 

end uses. Ethanol is shipped mainly via truck across the United States (Morrow et al., 2006). 

Because of its high energy density, ethanol distribution costs were estimated at a $0.01-0.02 per 

liter of ethanol, which remains a relatively small fraction of total fuel cost (Morrow et al., 2006). 

2.2 BIOMASS SUPPLY CHAIN MANAGEMENT 

Supply chain management has been proposed to facilitate effective biomass provision and, 

generally, three levels of decision-making are considered: strategic, tactical, and operational 

decisions; we seek to focus in the interplay between strategic and tactical decision-making.  

Strategically, biomass resource evaluation and selection of facility location and capacity 

are important long-term decisions. On the supply side, biomass availability and associated 

production costs have been evaluated for feedstocks including Miscanthus (Khanna et al., 2008), 

switchgrass (Perrin et al., 2008), and corn stover (Kadam et al., 2003). On the biomass end-use 

side, biofuels producers prefer to maintain constant quantity and uniform quality of feedstock 

(Hess et al., 2007).  Large biorefineries could reduce ethanol production costs by $0.05-0.08 L
-1 

($0.2-0.3 gal
-1

) as a result of the economies of scale (Kocoloski et al., 2011).
 
However, the larger 

the biorefinery production capacity, the larger the biomass feedstock supply region, and 

accordingly the higher the transportation costs. Biomass transportation and storage costs 

accounted for more than half of biomass (corn stover) costs at biorefinery gate and farmer 

participation had a significant impact on the total production costs (Leboreiro and Hilaly, 2011). 

Balancing the trade-off between transportation costs and unit production costs is important for an 

efficient biomass supply chain design.  
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Considering the spatial variances of biomass availability and production costs as well as 

facility economies of scale, optimal facility location and capacity selection and optimal biomass 

source pattern are key decisions of strategic supply chain optimization. Several models have 

been presented to optimize strategic planning decisions given a single biomass resource 

(Panichelli and Gnansounou, 2008; Kim et al., 2011; Lin et al., 2013) and multiple renewable 

resources (Parker et al., 2010). Most of the previous studies have optimized the biomass supply 

chain that only includes two stages: biomass suppliers and biorefineries. However, the two-stage 

supply chain may not be effective for large-scale biofuel production (Hess et al., 2007). Several 

optimization models have been developed to evaluate the system performance of adopting a 

three-stage supply chain (Parker et al., 2010; Lin et al., 2013). These strategic planning models 

provide decision support based on the annual biomass delivery estimations, without much 

consideration on the tactical planning details.  

Tactically, biomass can only be harvested within a limited window due to its standing dry 

matter loss. Biomass production, delivery, and operating schedules and inventory monitoring are 

key tactical decisions. Biomass procurement consists of multiple unit operations including 

biomass harvesting, packing, in-field transportation, and handling. Several biomass supply chain 

simulation and optimization models have been developed to manage biomass production and 

delivery activities for different feedstocks, including Miscanthus (Shastri et al., 2010), 

switchgrass (Kumar and Sokhansanj, 2007; Zhu et al., 2011), corn stover (Sokhansanj et al., 

2006; Leboreiro and Hilaly, 2011), and cotton stalks (Tatsiopoulos and Tolis, 2003). These 

models, however, are based on the given strategic decisions, such as previously determined 

facility locations and capacities. 
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Strategic decisions regarding biomass supply chain will impact subsequent tactical 

decisions. Without the support of biomass delivery, the processing facility cannot achieve its 

designed operating capacity. Few multi-scale supply chain optimization models have been 

developed to solve processing facility locations and capacities as well as biomass delivery 

schedules simultaneously (Eksioglu et al., 2009; Zhang et al., 2013). However, these two studies 

did not consider other important tactical decisions simultaneously, such as biomass production 

schedules and farm management issues. 

Biomass is harvested within a limited window but needs to be processed all year round. 

Determining how to harvest, store, and deliver biomass to support the processing activities is 

vital to optimizing biomass supply chains. Therefore, it is important to coordinate and optimize 

linkages between biomass production, logistics, and processing on both strategic and tactical 

levels simultaneously.  

In the long run, biofuels production system infrastructure will be expanded in response to 

its growing demand, expanding from zero to an estimated production volume of 16 billions of 

gallons in 2022. In addition to the annual biofuel production optimization for strategic and 

tactical planning, facility construction and expansion timing as well as resource competition are 

key issues for dynamic system changes. Given the changes of supply and demand in the planning 

period, dynamic optimization was applied to address facility location and resource allocation 

issues for biomass-methanol production (Leduc et al., 2010), synthetic biodiesel production 

(Walther et al., 2012), and biofuels production from multiple feedstock resources (Huang et al., 

2010; Chen and Fan, 2012).  
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2.3 WEB-BASED DECISION SUPPORT SYSTEMS 

Decision support systems (DSS) are considered to facilitate management decision making. Data, 

models and analysis tools, and user interface compromise the major parts for a DSS. With the 

development of internet and spatial understanding, web-based and spatial-supported are the 

major improvements for DSS. The development of spatial supported decision support systems 

(SDSS) origins from the integration of two sources: geographic information systems, which is 

good at managing and displaying spatial related data, and decision support tools, which is good 

at providing analytic tools for complex problem solving (Suguraman and Suguraman, 2007). A 

SDSS incorporates both geographic information systems (GIS) functionalities such as spatial 

data management, cartographic display, etc., as well as analytical modeling capabilities, a 

flexible user interface, and complex spatial data structures (Goodchild, 2000). However, model 

accessibility remains a major bottleneck for the implementation because of hardware and 

software requirements.  

The recent progresses on web technologies have transformed the design, development, 

implementation, deployment of DSS (Bhargava et al., 2007). The web-based SDSS uses the Web 

as a medium to collect spatial input information and deploy spatial analysis tools for a much 

broader audience of decision makers, without any limits on space and time (Bhargava et al., 

2007). Web-based SDSS were initially applied to solve material distribution (Prindezis and 

Kiranoudis, 2005), vehicle routing problems (Ray, 2007; Santos et al., 2011), Recently, it has 

been applied to renewable energy development, including strategic planning of wind farm 

(Simao et al., 2009; Mari et al., 2011) and woody based biomass logistics (Frombo et al., 2009), 

and tactical planning of biomass provision (Liao, 2011). However, these platforms are 
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concentrated on data analysis and visualization, without much emphasis on harnessing high-

performance distributed computing network. Computational efficiency could be a potential 

bottleneck for large-scale group applications. 

Cyberinfrastructure (CI) is designed to integrate computing systems, data storage systems, 

advanced instruments, and visualization environments together by software and high 

performance networks to facilitate complex problem solving (Stewart et al., 2010). 

Cyberinfrasturcture based GIS (CyberGIS) provides a seamless integration of CI, GIS, and 

spatial modeling analysis, which is becoming important to facilitate large-scale problem solving, 

model accessibility, and visualization capabilities (Wang et al., 2013). The GISolve Toolkit is 

one of representative CyberGIS software, which is composed of service-oriented GIS 

components, spatial middleware, a suite of parallel and distributed GIS algorithms, and a set of 

user-interface and collaboration services (Wang, 2010). GISolve has been applied to various 

research areas, including ecological analysis (Wang and Zhu, 2008), geostatistical modeling 

(Yan et al., 2007), and a spatially explicit agent-based model (Tang and Wang, 2009).  

2.4 CONCLUSIONS 

The nature of biomass production imposes spatial and temporal constraints that must be 

considered for successful biofuels production and delivery. A typical cellulosic-ethanol 

production pathway ranges from biomass growing, harvesting, packing, storage, pre-processing, 

transportation, to ethanol production and distribution. The components within the system interact 

with each other. Supply chain optimization has been applied to facilitate the efficiency and 

effectiveness of biomass feedstock provision. Most studies however focus on strategic level 

planning optimization given the general assumption of tactical plans, without much emphasis on 
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the optimization of detailed tactical level planning. In order to facilitate decision making, there is 

a need to develop an integrated strategic and tactical modeling tool to understand, evaluate, and 

optimize both strategic planning, such as technology selection, facility locations, and resource 

allocations, to tactical planning decision, such as day-to-day decision making and scheduling. 

The development of spatial supported web decision support systems facilitates decision 

making. Through the integration of cyber infrastructure (CI), GIS, and spatial modeling analysis, 

CyberGIS could facilitate large-scale problem solving, data management, model accessibility, 

and visualization. Supported by the high performance CI and service oriented middleware, 

integrating CyberGIS and biomass supply chain optimization models will facilitate decision 

making on biomass feedstock provision.  
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CHAPTER 3 

STRATEGIC BIOMASS-ETHANOL SUPPLY CHAIN 

OPTIMIZATION
*
 

This chapter describes the development of a strategic biomass supply chain optimization model, 

the BioScope model. The development of BioScope model aims to optimize long-term strategic 

biomass provision decisions including the components of biomass-biofuel production costs, 

optimal facility locations and capacities, and optimal biomass distribution patterns. The detailed 

constraint equations, variables, and input data parameters are provided to better understand the 

component of a biomass supply chain system. Several case studies of Miscanthus production in 

Illinois are presented to illustrate the usage of the model. Cropland usage rate, biomass demand, 

preprcessing technology selection are key factors affecting biomass production costs.  

This chapter cannot be realized without successful teamwork, where the team members 

are Tao Lin, Luis Rodríguez, Yogendra Shastri, Alan Hansen, and K.C. Ting. Mr. Lin led the 

overall research, collected data, developed the model, and drafted the manuscript. Dr. Rodríguez, 

Shastri, Hansen, and Ting participated the research design and the draft revision.  

The primary tasks conducted by Mr. Lin include: 1) development of constraint and 

objective equations that are listed in the chapter, 2) design of the proposed input-output model 

workflow, and 3) design of spatial related maps for results visualization. The content of this 

chapter has been published in a journal paper (Lin et al., 2013). 

  

                                                 
*
Reprint, with permission, from Lin et al., 2013, “GIS-enabled biomass-ethanol supply chain optimization: model 

development and Miscanthus application ,” Journal of Biofuels, Bioproducts & Biorefining 7(3): 314-333. 
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Abstract. To ensure effective biomass feedstock provision for large-scale ethanol 

production, a three-stage supply chain was proposed to include biomass supply sites, centralized 

storage and preprocessing (CSP) sites, and biorefinery sites. A GIS-enabled biomass supply 

chain optimization model (BioScope) was developed to minimize annual biomass-ethanol 

production costs by selecting the optimal numbers, locations, and capacities of farms, CSPs, and 

biorefineries as well as identifying the optimal biomass flow pattern from farms to biorefineries. 

The model was implemented to study the Miscanthus-ethanol supply chain in Illinois. The results 

of the baseline case, assuming 2% of cropland is allocated for Miscanthus production, showed 

that unit Miscanthus-ethanol production costs were $220.6 Mg
-1

, or $0.74 L
-1

. Biorefinery 

related costs are the largest cost component, accounting for 48% of the total costs, followed by 

biomass procurement, transportation, and CSP related costs. The unit Miscanthus-ethanol 

production costs could be reduced to $198 Mg
-1

 using 20% of cropland, primarily due to savings 

in transportation costs. Sensitivity analyses showed that the optimal supply chain configurations, 

including the numbers and locations of supply sites, CSP facilities, and biorefineries, changed 

significantly for different cropland usage rates, biomass demands,  transportation means, and 

preprocessing technologies. A supply chain composed of large biorefineries with the support of 

distributed CSP facilities was recommended to reduce biofuels production costs. Rail 

outperformed truck transportation to ship preprocessed biomass. Ground biomass with tapping 

is the suggested biomass format for the case study in Illinois, while high-density biomass formats 

are suggested for long distance transportation.  

Keywords. Supply chain, optimization, GIS, facility location, biomass, biofuels  
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3.1 INTRODUCTION 

The development of renewable fuels can help reduce greenhouse gas (GHG) emissions, reduce 

petroleum imports, and improve energy security (EPA, 2010). Cellulosic ethanol is expected to 

be an important component of a future renewable fuel system and its production has been 

targeted to be 16 billion gallons in 2022 (EPA, 2010). The advantage of cellulosic ethanol is that 

it uses renewable biomass as the primary feedstock, which does not compete with food supply as 

compared with corn ethanol production. However, due to low energy density and distributed 

supply of biomass, ensuring effective biomass feedstock provision is one of many challenges 

anticipated for large-scale ethanol production. Strategic design of the biomass supply chain will 

be essential to overcoming this challenge. From a systems perspective, facility capital related 

costs, facility operating costs, biomass procurement costs, and biomass transportation costs are 

major cost categories for cellulosic ethanol production (Hess et al. 2007; Humbird et al., 2011).  

On the supply side, biomass availability, quality, and production costs vary 

geographically because of the spatial differences in weather and soils. Therefore, Geographical 

Information System (GIS) has been applied to estimate biomass yields, supplies, and production 

costs (Graham et al., 2000; Noon et al., 2002; Khanna et al., 2008). Due to spatial variation of 

biomass availability and its production cost, optimal facility location selection is important for 

ensuring the most efficient biomass supply. Previous studies have applied GIS and mixed integer 

linear programming (MILP) on facility location optimization for single biomass resource 

(Panichelli and Gnansounou, 2008; Kim et al., 2011) and multiple renewable resources (Parker et 

al., 2010). 
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On the biorefinery side, producers prefer to maintain constant quantity and uniform 

quality of input materials and to exploit the economies of scale (Hess et al., 2007). A previous 

study has shown that large facilities could decrease ethanol production costs by $0.05-0.08 L
-1 

($0.2-0.3 gal
-1

) due to the economies of scale (Kocoloski et al., 2011).
 
However, the larger the 

biorefinery production capacity, the larger the biomass feedstock supply area, and accordingly 

the higher the transportation related costs. Therefore, large-scale cellulosic ethanol biorefineries 

can reduce the unit production costs, but require higher biomass provision costs. Biomass 

transportation and storage costs accounted for more than half of biomass (corn stover) costs at 

the biorefinery gate and farmer participation had a significant impact on the total production 

costs (Leboreiro and Hilaly, 2011). Balancing the trade-off between transportation costs and unit 

production costs will be important for an efficient biomass supply chain design.  

Large-scale biorefineries not only incur high biomass transportation costs, but also face 

significant challenges with logistics, delivery schedules, and inconsistent feedstock formats 

(Hess et al., 2007). By shifting preprocessing from biorefineries to storage sites, biorefineries 

will receive feedstock with the same format and thus can reduce potential operating problems. 

Furthermore, preprocessed biomass requires lower biomass transportation costs due to the 

increased biomass density (Shastri et al., 2012a; Sokhansanj et al., 2009; Eranki et al., 2011). 

Therefore, in order to meet the processing demand and minimize production costs, the optimal 

biomass supply chain design should not only consider the optimal locations and capacities of 

facilities, but also the sourcing of consistent biomass supply.  Most of the previous studies have 

optimized the biomass supply chain that only includes two stages: biomass suppliers and 

biorefineries (Panichelli and Gnansounou, 2008; Kim et al., 2011; Parker et al, 2010; Kocoloski 

et al., 2011; Leboreiro and Hilaly, 2011). However, the two-stage supply chain may not be 
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effective for large-scale biofuel production. To provide consistent quality and format of 

feedstock and reduce logistics burdens, centralized storage and preprocessing were proposed to 

provide services to store, handle, and preprocess biomass (Hess et al., 2007; Eranki et al., 2011). 

This leads to a three-stage supply system including several biomass suppliers, centralized storage 

and preprocessing sites, and biorefineries, with potentially different capacities at different 

locations (Figure 3.1).    

 

Figure 3.1: Farms, centralized storage and preprocessing (CSP) sites, and biorefineries make up a three-stage 

biomass-ethanol supply chain. The associated costs include biomass purchase costs, transportation costs, CSP 

operating costs, CSP capital related costs, biorefinery operating costs, and biorefinery capital related costs. 
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To minimize annual biomass-ethanol production costs within the three-stage biomass 

supply chain, a GIS-enabled optimization model, BioScope, was developed to select the optimal 

numbers, locations, and capacities of the biomass supply sites, centralized storage and 

preprocessing sites, and biorefineries and to identify the most efficient biomass flow patterns 

within the system. GIS was used to store, manage, and retrieve geospatial related information, 

including county level biomass availability, biomass production costs, and transportation 

distances between facilities in the supply chain. 

3.2 OVERVIEW OF THE BIOSCOPE MODEL 

The BioScope model was developed by integrating geographical information and 

optimization tools to provide decision support on biomass supply chain configurations. Biomass 

availability and farm-gate prices, transportation distances, annual facility capital costs, and 

annual facility operating costs were the five major inputs for the BioScope optimization model 

(Figure 3.2). Biomass availability was estimated by using biomass yield and cropland area 

(USDA, 2010) at the county level. For example, Miscanthus yield data could be predicted via the 

MISCANMOD tool (Jain et al., 2010). The optimal biomass farm-gate prices were composed of 

biomass establishment and production costs, and land opportunity costs. To assemble a distance 

matrix between facilities, ArcGIS (ESRI, 2013) was used to calculate the shortest transportation 

distances between facilities using the existing road network (US Census Bureau, 2011). Based on 

data describing the capital investment costs for centralized storage and preprocessing site (Hess 

et al., 2007) and biorefinery (Humbird et al., 2011) at one capacity level, a facility cost 

estimation model was developed to estimate annual capital related costs for CSPs and 

biorefineries at various capacities.  
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Subject to user defined scenarios, spatial data, such as biomass availability, production 

costs, and distances, can be managed using GIS tools to generate input data that can be stored in 

a spreadsheet file format. The BioScope model can read spreadsheet files to instantiate 

parameters and constraints for analyses. The BioScope model is a mixed integer linear 

programming model that was developed on the GAMS platform and solved using the CPLEX 

solver (GAMS, 2013). The results are exported into an Excel spreadsheet and can be further 

visualized on the maps via ArcGIS. 

 

Figure 3.2: The components of the BioScope model and their data flow. The rounded rectangles represent 

source data (biomass harvesting, preprocessing, and storage (Hess et al., 2007), land opportunity costs (Jain 

et al., 2010), county level farm size and cropland area (USDA, 2010), county level biomass yield (Jain et al., 

2010), road networks
 
(US Census Bureau, 2011)) the rectangles represent the models used in the system 

(MISCANMOD (Jain et al., 2010), BioFeed (Shastri et al., 2010), and the NREL model (Humbird et al., 

2011)). BioScope, Shortest Distance Estimation Model, and Facility Cost Estimation Model were developed in 

this study), and clouds represent processed input and output data. 
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3.2.1 Spatial Elements of the System 

Biomass availability varies at the county level because of the spatial differences in weather, soil 

condition, growing area, and biomass yield. Biomass availability is estimated based on the 

biomass yield predicted at the county level and the cropland area to be allocated to growing 

biomass. For example, Miscanthus yield rates, as predicted by the MISCANMOD model (Jain et 

al., 2010), have been shown to vary at the county level (Khanna et al., 2008), as does the 

cropland area (USDA, 2010). Therefore, assuming 2% of cropland was allocated for growing 

Miscanthus, its availability at each county of Illinois was estimated (Figure 3.3).  

Biomass farm-gate prices, or biomass procurement costs, are composed of land 

opportunity costs, biomass establishment, and production costs. Biomass production costs, 

include harvesting, baling, infield transportation, and transportation within the county, are a 

function of not only biomass yield but also farm size (Shastri et al., 2010). By integrating a 

previously developed biomass production optimization model, BioFeed (Shastri et al., 2010), 

with typical county-level farm size distributions from USDA (2010) and county-level 

Miscanthus yield data (Jain et al., 2010) in Illinois, Miscanthus harvestable yield and its 

production costs can be estimated. The sum of production costs and establishment (Jain et al., 

2010) and land opportunity costs (Jain et al., 2010), is the biomass farm-gate price, which can be 

estimated for each county in Illinois (Figure 3.4). 

Biomass transportation costs are correlated to the distance between facilities. To integrate 

feedstock resource data with transportation network data, it was assumed that all the feedstock 

produced in a county was available at the biggest city of each county. The transportation distance 

within each county was approximated as the radius of a circle with the same area as the county. 
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Interstate and state highway road networks were considered for biomass transportation between 

facilities. Given the existing road network data (US Census Bureau, 2011), ArcGIS was used to 

calculate the shortest pathway between any potential biomass supply sites, CSP sites, and 

biorefinery sites.  

 

Figure 3.3: The quantity of available Miscanthus in each county of Illinois given 2% of cropland is allocated 

for Miscanthus production. County level cropland area is from USDA
 
(2010) and Miscanthus harvestable 

yield data is based on the MISCANMOD model
 
(Jain et al., 2010) and the BioFeed Model (Shastri et al., 

2010).  
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Figure 3.4: The optimal farm-gate prices of Miscanthus in each county of Illinois. The Miscanthus farm-gate 

prices are composed of land opportunity (Jain et al., 2010), establishment, and production costs. Miscanthus 

production costs include harvesting, baling, and infield transportation, and within county transportation 

costs were estimated based on the BioFeed model (Shastri et al., 2010). 
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3.2.2 Facility Capital Related Costs for Biorefineries and CSP Sites 

Facility capital investment costs are the most significant costs for cellulosic ethanol production. 

To estimate the economies of scale of processing facilities, the power law has been applied to 

predict capital investment costs based on the costs of a baseline case; scaling factors are typically 

selected ranging from 0.6 to 0.7 for biomaterial and chemical processing facilities (Peters and 

Timmerhaus, 1991; Park, 1984). The capital investment costs of a biorefinery have increased 

significantly in the last decade (Humbird et al., 2011; Aden et al., 2002), largely due to the cost 

increase of the raw materials. In this study, a baseline case of biorefinery was assumed to be 

772,000 Mg y
-1

 with capital investment costs of $422 million (Humbird et al., 2011). A scaling 

factor of 0.7 was used to estimate the capital costs at other capacities (Figure 3.5A).  

Because a linear programming model is computationally efficient and can provide a 

guaranteed optimum result, a piecewise linear approximation of the power law nonlinear 

equation was used to estimate the economies of scale of the facility predicted by the power law. 

To improve the estimation resolution, we proposed three facility capacity levels of biorefineries 

in this study, namely small (50,000-600,000 Mg y
-1

), medium (600,000-1,300,000 Mg y
-1

), and 

large (1,300,000-1,900,000 Mg y
-1

) (Figure 3.5A). The largest single biorefinery facility was set 

at 1,900,000 Mg y
-1

 (150 million gallons of ethanol per year) for this study. Within each 

segment, there exists a separate linear equation to estimate the capital investment costs: the slope 

of the line represents the unit variable capital related costs and the intercept value represents the 

fixed capital related costs (Figure 3.5A). The larger the facility capacity, the higher will be the 

fixed capital investment costs, but the unit variable capital investment costs will be lower. 
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Figure 3.5: Biorefinery capital investment cost estimation at small, medium, and large facility capacity levels 

for biorefineries (A) and centralized storage and preprocessing (CSP) facilities (B). The curves were 

generated using a scaling factor of 0.7 with the base-case costs. The base-case costs for biorefineries are $422 

million at a capacity of 772,000 Mg y
-1

 from NREL (Humbird et al., 2011) and for CSPs are $19 million at a 

capacity of 726,000 Mg y
-1

 from INL (Hess et al., 2007). The piecewise approximation method was applied to 

generate linear equations to estimate capital investment costs at three facility capacity levels for both 

biorefineries and CSPs.  

Annual capital related costs include depreciation, amortized loan payments, and the 

internal return requirement for investors.  It was assumed that the facility has a 15-year life span 
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with zero salvage value. Annual depreciation costs were calculated using the straight-line 

depreciation method. The facility investors owned 40% equity and required 10% of internal 

return rate for their investment. The remaining 60% of the total capital investment costs were 

from a loan with an annual 5% interest rate. Given these assumptions, the annual facility capital 

related costs were $57.8 million for the baseline case (772,000 Mg y
-1

). The annual facility 

capital costs accounted for 13.7% of the facility capital investment costs (Table 3.1). 

Table 3.1: Annual biorefinery capital costs are listed, given the baseline case biorefinery at a cost of $422 

million with a capacity of 772,000 Mg y
-1

 (Humbird et al., 2011).
 
It is assumed that investors own 40% of the 

facility with the internal return rate of 10%. 60% of the capital investment costs are from a loan at the 

interest rate of 5% with 15-year payback period. The facility has a 15-year life span with zero salvage value. 

Description Value 

Capital investment costs (A) $422,500,000 

Principal (60% of A) $253,500,000 

Equity (40% of A) $169,000,000 

Annual dividends (10% IRR for investors) (B) $22,173,232 

Annual depreciation (15-year facility life span 

with zero salvage value) (C) 
$11,266,667 

Amortized payment (5% interest rate with 15-

year payback period) (D) 
$24,422,770 

Annual facility related costs (E=B+C+D) $57,862,669 

The ratio of annual facility capital costs to 

capital investment costs (E/A) 
13.7% 
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Centralized storage and preprocessing (CSP) facilities were proposed to receive, handle, 

store, and preprocess biomass. Tub-grinding was considered for biomass size reduction at CSP 

facilities in the current study. It was estimated to cost $19 million to build a CSP facility with a 

capacity of 726,000 Mg y
-1 

(Hess et al., 2007). Three facility capacity levels of CSP facilities 

were proposed, namely: small (50,000-600,000 Mg y
-1

), medium (600,000-1,300,000 Mg y
-1

), 

and large (1,300,000 – 2,000,000 Mg y
-1

) (Figure 3.5B). A scaling factor of 0.7 was applied to 

estimate the capital investment costs of CSPs at various capacities, and a similar linear 

approximation method was used for CSPs, resulting in three cost estimation equations (Figure 

3.5B). Further, a factor of 13.7% was also applied to estimate annual facility capital costs based 

on the capital investment costs of each CSP facility.  

3.2.3 Optimization Model Formulation 

The objective of the optimization model is to minimize annual biomass-ethanol production costs 

( ) that are comprised of four costs: biomass purchase costs (  ), transportation related costs 

(  ), CSP site related costs (  ), and biorefinery related costs (  ) (Eq. 3.1). 

                       (3.1) 

In the current study, let   represent any element in the set   that is composed of   

possible biomass supply counties,   represent any element in the set   that is composed of   

potential CSP sites,   represent any element in the set   that is composed of   potential 

biorefinery sites (see Figure 3.1), and   represent any possible facility capacity level. 
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3.2.3.1 Biomass Supply  

Biomass purchase costs (  ) are a function of the optimal biomass flow pattern (    ) from 

supply sites to CSP sites and the county-level biomass production costs at the sourcing site (  ) 

(Eq. 3.2). The decision variable related to biomass purchase costs is the amount of biomass flow 

from each supply site to each CSP site (    ). County-level biomass production costs (  ) and 

biomass availability (  ) are two inputs related to biomass supply (i.e. Figure 3.3 and 3.4 for the 

baseline case analysis). Since both inputs vary by county, it is important to optimize the supply 

site selection as well as the quantity of biomass to purchase from each site to meet the total 

biomass demand ( ) (Eq. 3.3). Moreover, the total amount of biomass output from a biomass 

supply site should not exceed its biomass availability (Eq. 3.4).  

   ∑∑      

  

 (3.2) 

∑∑    

  

   (3.3) 

∑    

 

    (3.4) 

3.2.3.2 Biomass Transportation  

Biomass transportation costs (  ) are composed of variable transportation costs (  ) and fixed 

transportation costs (  ) (Eq. 3.5). There are two transportation stages: the transportation before 

CSP sites and the transportation after CSP sites. The decision variables related to total biomass 

purchase costs are the amount of biomass flow from supply sites to CSP sites (    ) and the 

amount of preprocessed biomass flow from CSP sites to biorefineries (    ). Variable 

transportation costs are a function of the unit variable transportation cost (       ), which will 
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vary depending on the form of the biomass (i.e. baled and ground as considered in the case 

study), amount of biomass being transported (    ,     ), and the transportation distance 

(         ) (Eq. 3.6).  Fixed transportation costs that include loading and unloading costs depend 

on the unit fixed transportation cost        ) and the amount of biomass being transported 

(    ,     ) (Eq. 3.7). Unit variable and fix transportation costs are inputs that can be decided by 

users. The shortest distances between the facilities within the system (    ,     ) are inputs 

calculated via ArcGIS using the existing road network.   

         (3.5) 

   ∑∑         

  

       ∑∑         

  

       (3.6) 

   ∑∑         

  

  ∑∑        

  

 (3.7) 

3.2.3.3 Centralized Storage and Preprocessing 

The costs related to CSP facilities (  ) are composed of annual operating costs (  ) and annual 

capital related costs (  ) (Eq. 3.8). Annual operating costs include the costs for utilities, 

maintenance, labor, supervision, insurance, laboratory charges, and waste treatment. In this 

study, it is assumed that CSP facilities with different capacities incur the same unit operating 

costs (   ). Therefore, annual operating costs are linearly dependent on the demand of biomass 

for CSP facilities ( ) (Eq. 3.9).  

Annual capital costs are linearly dependent on the capital investment costs where a factor 

  (13.7%) is used to represent its relationship. To improve the accuracy, the model adopts a 

piecewise linear approximation to estimate the capital investment costs for three different levels 
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of facility capacity. Therefore, annual capital related costs are linearly dependent on the sum of 

fixed (  
 ) and variable (  

 ) capital related costs at every level of capacity at each potential 

location (Eq. 3.10). The binary decision variable   
 
 controls whether there exists a CSP facility 

located in county  . The binary decision variable   
   

 controls the capacity level l of the CSP 

facility located in county  . And the variable      represents the specific capacity of the CSP in 

county   at the capacity level  .  

         (3.8) 

         (3.9) 

      ∑∑  
         

    
   

  

  (3.10) 

The total capacities of all CSP facilities should be equal to the amount of the total 

biomass required for processing (Eq. 3.11). Eq. 3.12 to 3.14 describe the capacity range of the 

facility at small (   ), medium (   ), and large (   ) facility capacity levels (Figure 3.5A). 

The minimum    
   and maximum (  

 ) capacities of each facility capacity level for CSP facilities 

are inputs decided by users. If there exists a facility in county  , the binary variable   
 
 will be set 

equal to one. In order to ensure there exists exactly one facility in county  , exactly one binary 

variable   
   

 must be equal to one (Eq. 3.15). Alternatively, if no facility exists in county  , 

  
 
will be set equal to zero. Thus, no facility is located in county   at any capacity levels, as all 

binary variables   
   

 must be equal to zero (Eq. 3.15). Therefore, the sum of the capacities of 

CSP at all levels should be the same as the CSP capacity for that county (Eq. 3.16). Considering 

the mass balance, the CSP capacity in county   should be equal to the total amount of biomass 
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transported to county   from all supply sites (Eq. 3.17). The model also considers the biomass 

loss at the CSP stage (Eq. 3.18). Biomass loss rate     is an input parameter decided by users. 

∑∑    

  

   (3.11) 

  
    

   
        

    
   

 (3.12) 
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(3.17) 
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(3.18) 

3.2.3.4 Biorefinery  

Similar to CSP facilities, the costs related to biorefineries (  ) are composed of annual 

biorefinery operating costs (  ) and annual biorefinery capital costs (  ), as shown in Eq. 3.19. 

In this study, it is assumed that the unit operating costs for the biorefinery (   ) are constant for 

any capacity. Therefore, annual operating costs are linearly dependent on the demand of 

processed biomass for ethanol production at biorefineries ( ), which is an input parameter 
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decided by users (Eq. 3.20). Annual biorefinery capital costs have a linear relationship (  = 

13.7% in the current study) with biorefinery capital investment costs, which are the sum of fixed 

and variable capital related costs at every level of capacity at each potential location (Eq. 3.21). 

The binary variable   
   

 indicates whether there exists a biorefinery at capacity level   located in 

county  , and the variable      represents the biorefinery with the capacity at level   located in 

county  . As in the case of the CSP facilities, a piecewise linear approximation method for 

biorefinery capacity and capacity level identification was implemented (Eq. 3.22-3.26). 

Regarding mass balance, the amount of all the preprocessed biomass flow into the biorefinery 

located in county   from all CSPs should be equal to the biorefinery facility capacity (Eq. 3.27). 

The total capacity of all biorefineries should meet the given demand of processed biomass for 

ethanol production (Eq. 3.28). 

         (3.19) 

         (3.20) 
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∑    

 

 ∑    

 

 
(3.27) 

∑∑    

  

   (3.28) 

3.3 CASE STUDY OF MISCANTHUS APPLICATION IN ILLINOIS 

3.3.1 Baseline case 

To illustrate the use of the BioScope model, we chose a Miscanthus-ethanol supply chain in 

Illinois for the baseline case study. Each county in Illinois was a candidate location. Thus, each 

of the three stages in the supply chain had 102 potential candidates for consideration. In the 

baseline case, 2% of cropland was assumed allocated for Miscanthus production, and the total 

Miscanthus processing demand was 2,000,000 Mg y
-1

. Biomass loss rate     of 5% was assumed 

at centralized storage and preprocessing (CSP) sites, and therefore the total amount of 

preprocessed biomass available for ethanol conversion was 1,900,000 Mg y
-1

. Assuming that one 

Mg of Miscanthus could produce 300 liters (79 gallons) of ethanol (Humbird et al., 2011), the 

total ethanol production capacity was 570 million liters per year (150 million gallons per year) 

for the baseline case.  

There existed a relatively wide range of unit transportation costs for baled biomass (Table 

2) (Kumar et al., 2005), and the costs at the high estimate level were used as inputs in the 

baseline case study. Size reduction processes have been proposed to reduce biomass 

transportation costs and logistics burdens (Sokhansanj et al., 2009; Eranki et al., 2011). The 

density of ground biomass with tapping is 200 kg m
-3

, higher than 150 kg m
-3

 for baled biomass 

(Sokhansanj et al., 2009). Further, ground biomass has better flowability than baled biomass, 
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which would reduce loading and unloading costs (fixed transportation costs). In this study, CSP 

facilities were designed to preprocess baled biomass to provide ground biomass with tapping. 

Therefore, the unit variable and fixed transportation costs from CSP facilities to biorefineries 

were lower than the costs before preprocessing. The unit transportation costs after preprocessing 

(         were assumed to be 80% of the costs before preprocessing (         (Table 3.2).  

Table 3.2: Transportation cost data before and after preprocessing used in the baseline case study 

Symbol Description Unit Value 

(High estimate) 

Value 

(Low estimate) 

    Variable transportation cost 

before preprocessing (bale) 

$ Mg
-1 

km
-1

 0.15 0.073 

    Variable transportation cost 

after preprocessing (ground) 

$ Mg
-1 

km
-1

 0.12 0.058 

    Fixed transportation cost 

(including loading and 

unloading) before 

preprocessing 

$ Mg
-1

 5.42 7.08 

    Fixed transportation cost 

(including loading and 

unloading costs) after 

preprocessing 

$ Mg
-1

 4.34 5.67 

 

The estimation of the facility capital investment costs for biorefineries and CSP facilities 

was conducted using a scaling factor of 0.7 (Figure 3.5). The baseline case costs were $422 

million at a capacity of 772,000 Mg y
-1

 for biorefineries (Humbird et al., 2011) and $19 million 

at a capacity of 726,000 Mg y
-1

 for CSP facilities (Hess et al., 2007). An annualized cost factor 
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of 13.7%     was used to estimate the annualized capital related costs. The unit operating costs 

of a biorefinery (   ) were considered constant at $48 Mg
-1 

at any capacity level (Humbird et al., 

2011),
 
while the unit operating costs of a CSP facility (   ) were $9.95 Mg

-1 
at any capacity level 

(Hess et al., 2007).
  
 

All the costs used in this study have been converted to year 2007 using three cost indices. 

The costs of equipment related to farm operating and biomass size reduction (tub grinder) were 

adjusted through the Index of prices paid by growers for farm machinery in the USDA’s 

Agricultural Prices (USDA, 2007). For the equipment related to biomass handling and storage at 

CSP and all the equipment at the biorefinery, the Chemical Engineering Plant Cost Index 

(Chemical Engineering, 2010) was used to adjust the prices. Labor costs were adjusted according 

to the Bureau of Labor Statistics index (US Department of Labor, 2010). A complete list of input 

parameters and decision variables for the baseline case is provided in Tables A.1 to A.4 in 

Appendix A. 

3.3.2 Scenario Analyses of Cropland Usage Rate 

A sensitivity analysis was conducted to illustrate how the optimal biomass supply chain 

configuration changed to provide the same total biomass processing demand at eight different 

cropland usage rates. The cropland usage rate was considered from 2, 3, 4, 5, 7, 10, 15, to 20% 

for each county in Illinois. 

3.3.3 Scenario Analyses of Biomass Demand Changes 

A scenario analysis was conducted to assess the impact of biomass processing demand changes 

on the optimal biomass supply chain configuration, where two levels of biomass demand, 
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2,000,000 and 10,000,000 Mg y
-1

, were analyzed. To ensure sufficient biomass supply in both 

scenarios, 5% of cropland in Illinois was allocated for growing Miscanthus.  

3.3.4 Scenario Analyses of Transportation Cost Changes 

Scenario analysis was conducted to identify how the supply chain network design changed at two 

different levels of truck transportation costs (Table 3.2). In both scenarios, 5% of cropland was 

allocated to produce Miscanthus to meet the demand of 10,000,000 Mg y
-1

. 

3.3.5 Scenario Analyses of Variable Cropland Usage Rates 

A case study was conducted to allow the farmer participation rate to vary within specified 

distances served by CSP facilities. Farmers near CSP facilities require lower transportation costs 

and would likely allocate more land to grow energy crops than those are further away. The 

systems processing demand was set at 10,000,000 Mg y
-1

. Additional decision variables and 

constraints are necessary to the study of variable cropland usage rates (Table A.5 and Eq. A.4a-

A.4f of Appendix A). 

3.3.6 Scenario Analyses of Biorefinery Capacity Limit 

A scenario analysis was conducted to identify the impact of biorefinery capacity on the biomass 

supply chain configuration. As compared to the base case where maximum biorefinery capacity 

was limited to 1,900,000 Mg per year (570 million liters per year), no capacity limit was 

imposed on a biorefinery for the new scenario. The biomass supply and demand requirements 

remained the same as those in Scenario 3.3.4. 
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3.3.7 Scenario Analyses of Preprocessing Technology and Transportation 

Modes 

A scenario analysis was conducted to evaluate the system performance of utilizing different 

transportation modes and preprocessing technologies. Truck and rail are the possible modes to 

transport.  Truck is used from biomass supply sites to CSP facilities, whereas rail car is 

considered as an option from CSPs to biorefineries. At the CSP facilities grinding with tapping 

as opposed to pelletization were considered. Pelletization produces biomass with higher density 

and could reduce the unit transportation costs (Table 3.3), but requires higher capital investment 

and operating costs (Table 3.4) (Campell, 2007). The biomass supply and demand requirements 

remained the same as those in Scenario 3.3.4; no capacity limit was imposed for a biorefinery. 

Table 3.3: The cost of shipping varies depending on preprocessing technology and form of transport. Fixed 

and variable cost assumptions for transport of preprocessed biomass are listed for ground and pelletized 

biomass using truck and rail. 

 
Ground Biomass  

with Tapping 
 Biomass Pellets 

 Truck Rail  Truck Rail 

Fixed transportation costs 

($ Mg
-1

) 
4.34 6.98  4.34 6.98 

Variable transportation 

costs ($ Mg
-1 

km
-1

) 
0.12 0.05  0.1 0.02 
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Table 3.4: The cost, density, and capacity assumptions for biomass grinding and pelletization technologies 

Description Grinding Pelletization 

Base case capacity (Mg y
-1

) 726,000 100,000  

Capital investment costs $18,586,800 $7,261,600 

Operating costs ($ Mg
-1

) 9.95 15 

Density (kg m
-3

) 200 550 

 

3.4 RESULTS AND DISCUSSION 

3.4.1 Baseline Case Analysis  

The results showed that 35 counties were selected to produce 2,000,000 Mg of biomass annually; 

13 centralized storage and preprocessing (CSP) facilities were selected with capacities ranging 

from 82,000 to 376,000 Mg y
-1

; one biorefinery was selected with the capacity of 1,900,000 Mg 

y
-1

 (Figure 3.6). The southern Illinois counties were selected as biomass supply sites because of 

their relatively low biomass procurement costs and high yields. The optimal Miscanthus-ethanol 

production costs were $220.6 Mg
-1 

of biomass, or
 
$0.74 L

-1 
($2.79 gal

-1
) of ethanol. Among the 

costs, biorefinery related costs were the most significant costs, accounting for 47.9% of the 

system costs, followed by biomass procurement, transportation, and CSP related costs (Figure 

3.7). Because biorefinery related costs have a significant impact on the total costs, it is 

worthwhile to build a large-scale centralized facility take advantage of the economies of scale. 

The results showed that all 13 CSPs were located around the biorefinery. The largest CSP site 



42 

 

was situated at the same location as the biorefinery, which reduced the biomass transportation 

costs from CSP to biorefinery. 

 

Figure 3.6: The optimal 3-stage biomass-ethanol supply chain configuration when 2% of cropland is allocated 

for Miscanthus production and the biomass processing demand is 2,000,000 Mg y
-1

. Colors signify a biomass 

supply region serving the CSP (marked by the triangle) contained within that region. Stars represent the 

location of the biorefinery. 
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Figure 3.7: Cost breakdown of biomass-ethanol production systems when 2% of cropland is allocated for 

Miscanthus production in Illinois and total biomass processing demand is 2,000,000 Mg y
-1

. The unit 

Miscanthus-ethanol production costs are $220.6 Mg
-1 

($0.74 L
-1 

or $2.8 gal
-1

). 

The optimal cellulosic-ethanol production costs in this study ($0.74 L
-1

)
 
were higher than 

the cost of $0.55 L
-1

 given in a recent NREL study (Humbird et al., 2011), which considered 

corn stover as feedstock. The cost increase was largely due to the difference of biomass costs at 

the biorefinery gate. Miscanthus procurement, handling, and transportation costs were $0.39 L
-1

 

in the current study, higher than the $0.2 L
-1

 for corn stover (Humbird et al., 2011). Since only 2% 

of cropland in each county was allocated for Miscanthus production, it required a large number 

of biomass supply sites to meet the annual demand of 2,000,000 Mg y
-1

. Therefore, 

transportation costs were substantial and accounted for 14% of total ethanol production cost 

($0.11 L
-1

).  

47.9%

7.4%

14.0%

30.7%

Biomass purchase costs

Transportation related costs

CSP related costs

Biorefienry related costs
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3.4.2 Scenario Analysis of Cropland Usage Rate 

To quantify the impact of cropland usage rate on the optimal biomass supply chain configuration, 

8 different cropland usage rates, ranging from 2% to 20%, were selected. The optimal 

configuration of the supply chain was changed significantly at different cropland usage rates, 

including capacities and locations of supply counties, CSP sites, and biorefineries (Figure 3.8). 

With higher cropland usage rate for Miscanthus production, fewer biomass supply sites were 

required to meet the biomass demand. The optimal numbers of biomass supply sites reduced 

from 35 to 3 counties, when the cropland usage rate increased from 2 to 20%. The number of 

CSP facilities also decreased with the higher cropland usage rate, while the average capacity of 

the CSP facility increased. A single centralized biorefinery facility was suggested in all scenarios.  

The optimal Miscanthus-ethanol production costs decreased from $220.6 to $198 Mg
-1 

when the cropland usage rates increased from 2 to 20%, largely due to the savings of 

transportation costs (Figure 3.9). The share of transportation related costs decreased from 14% to 

7% when the cropland usage for Miscanthus production increased from 2% to 20%. Biorefinery 

related costs remained constant because one biorefinery with the same capacity was selected in 

all scenarios. Biomass procurement costs changed slightly with higher cropland usage rates, 

which indicates that the selected biomass supply region has biomass production costs similar to 

the baseline case. As a result of lower transportation costs, biorefinery related costs and biomass 

procurement costs exert higher impact on the biofuels production costs with a higher cropland 

usage rate. 
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Figure 3.8: The optimal 3-stage biomass-ethanol supply chain configuration at various cropland usage rates: 

(a) 2%; (b) 3%; (c) 4%; (d) 5%; (e) 7%; (f) 10%; (g) 15%; (h) 20%. Each colored area represents one 

biomass supply region for one CSP facility. Triangles represent CSP facilities and stars represent biorefinery 

facilities. 

 

Figure 3.9: The impact of changing cropland usage rates on the optimal Miscanthus-ethanol production costs. 

0 50 100 150 200 250

2%

3%

4%

5%

7%

10%

15%

20%

Production Costs ($ Mg-1) 

C
ro

p
la

n
d

 U
sa

g
e 

R
a

te
 

Refinery Biomass CSP Transportation



46 

 

3.4.3 Scenario Analysis of Biomass Demand Changes 

Two biomass demand scenarios, 2,000,000 and 10,000,000 Mg y
-1

, were selected to quantify the 

impact of biomass demand changes on the optimal biomass supply chain configurations. 5% of 

cropland was allocated for Miscanthus production.  The results showed that the number of 

suggested supply counties increased from 14 to 66 in the high demand scenario; the number of 

CSP facilities increased from 10 to 40; and the number of biorefineries increased from one to 

five (Figure 3.10). The proposed biomass supply region for the high demand scenario included 

all counties selected for the low demand scenario. All the selected biorefineries in both scenarios 

reached the capacity limit, 1,900,000 Mg y
-1

. Ethanol producers should build large biorefineries 

to take advantage of economies of scale. The optimal Miscanthus-ethanol production costs 

changed slightly, increasing from $210.1 to $215.6 Mg
-1

 at the high biomass demand. The 

increase of biomass procurement costs was the major contributing factor for the increase of 

biofuels production costs. The increased demand for biomass would cause processing facilities to 

source biomass from the areas that require relatively high production costs.  
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Figure 3.10: The impact of biomass demand change on the optimal biomass supply chain configuration: (a) 

2,000,000 Mg y
-1

; (b) 10,000,000 Mg y
-1

. 5% of cropland is allocated for Miscanthus production in both 

scenarios. Triangles represent CSP facilities and stars represent biorefinery facilities. Each colored area 

represents one biomass supply region serving by a CSP facility. Biorefineries source biomass from CSPs of 

the same color. 

3.4.4  Scenario Analysis of Transportation Cost Changes 

Given the same biomass supply and demand, two transportation cost scenarios (Table 3.2) were 

selected to quantify the impact of transportation costs on the optimal biomass supply chain 

configuration. The results showed that the optimal supply chain in each scenario requires the 

same biomass supply sites but different numbers and capacities of CSP facilities (Figure 3.11). 

41 CSPs were suggested in the base transportation cost scenario, whereas 12 CSPs were 

suggested in the low transportation cost scenario. Among the 12 CSP facilities, five CSP 

facilities had a capacity larger than 1,250,000 Mg y
-1

, whereas all 41 CSP facilities in the base 

transportation cost scenario operated below 800,000 Mg y
-1

.
 
In the base transportation cost 
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scenario, the savings of transportation costs by preprocessing biomass locally outweighed the 

increased unit CSP related costs due to small capacities. The results conceptually agree with 

what previous work that suggested distributed preprocessing at farms and centralized storage 

sites was cost effective for biomass provision (Shastri et al., 2012). Therefore, a distributed 

biomass supply chain with more CSP facilities is suggested when transportation costs are high.  

 

Figure 3.11: The impact of transportation costs on the optimal biomass supply chain configuration: (a) high 

estimate of transportation costs; (b) low estimate of transportation costs (Table 2). Five percent of cropland is 

allocated for Miscanthus production in both scenarios. The biomass processing demand is 10,000,000 Mg y
-1

. 

Triangles represent CSP facilities and stars represent biorefinery facilities. A commonly shaded area 

represents one biomass supply region served by a CSP. Biorefineries source from biomass CSPs of the same 

color. 



49 

 

3.4.5 Scenario Analysis of Variable Cropland Usage Rates 

Cropland usage rates could be varied related to the transportation distances between supply sites 

and CSP facilities. The results suggest that supply chain would be composed of five biorefineries, 

35 CSP facilities, and 37 supply counties (Figure 3.12). All the selected supply counties are 

located within a distance of 80 km to the CSP facilities they serve, and therefore 10% of 

cropland was allocated for Miscanthus production in these counties. The number of biomass 

supply counties decreased significantly from 60 counties using the constant cropland usage rate 

(Figure 3.10). The optimal Miscanthus-ethanol production costs were reduced from $215.6 to 

$207.3 Mg
-1

, largely due to the savings of biomass transportation and procurement costs (Table 

3.5).  

Table 3.5: A breakdown of biofuels production costs considering a variable cropland usage rate, with and 

without biorefinery capacity limit. Annual biomass demand is 10,000,000 Mg y
-1

. All values are in terms of $ 

Mg
-1

.   

 With Biorefinery Capacity Limit  
Without Biorefinery 

Capacity Limit 

 

Constant 5% 

Cropland 

Usage Rate 

Variable 

Cropland 

Usage Rate 

 
Variable Cropland 

Usage Rate 

Biomass costs 71.9 67.7  67.7 

CSP related costs 15.3 15  15 

Transportation costs 22.6 18.8  24.4 

Biorefinery related costs 105.7 105.7  96.7 

Total production costs 215.6 207.3  203.8 
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Figure 3.12: The optimal 3-stage biomass-ethanol supply chain configuration considering a variable cropland 

usage rate as a function of distance from centralized storage and preprocessing (CSP) facilities. The biomass 

processing demand is 10,000,000 Mg y
-1

. Triangles represent CSP facilities and stars represent biorefinery 

facilities. Commonly shaded areas represents one biomass supply region served by a CSP. Biorefineries 

source biomass from CSPs of the same color. All the selected biomass supply counties are within a distance of 

80 km served by CSP facilities.  
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3.4.6 Scenario Analysis of Biorefinery Capacity Limit 

Without any capacity limit on a biorefinery, the optimal supply chain for conversion of 

10,000,000 Mg of biomass per year was composed of two biorefineries, 30 CSP facilities, and 36 

supply counties (Figure 3.13). As compared to the case with biorefinery capacity limit imposed 

(Figure 3.12), the new supply chain required fewer, though larger, biorefineries. The capacity of 

two refineries in the new scenario was 5,560,000 and 3,940,000 Mg y
-1

, respectively. The 

optimal Miscanthus-ethanol production costs were reduced from $207.3 to $203.8 Mg
-1

 (Table 

3.5). The savings of unit biorefinery related costs outweighed the increased transportation costs, 

which recommended a supply chain that is composed of large biorefineries with the support of 

distributed, small CSP facilities. Furthermore, the system suggested building two large 

biorefineries instead of a single centralized biorefinery. This indicates that there is a maximum 

biorefinery capacity, given regional biomass availability, where reduced unit biorefinery related 

costs are not sufficient to offset the increased truck transportation costs, given longer distance 

transportation. 
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Figure 3.13: The optimal 3-stage biomass-ethanol supply chain configuration when no biorefinery capacity 

limit is imposed. The cropland usage rate changes at different levels of distance from centralized storage and 

preprocessing (CSP) facilities. The biomass processing demand is 10,000,000 Mg y
-1

. Triangles represent CSP 

facilities and stars represent biorefinery facilities. Commonly shaded areas represents one biomass supply 

region served by a CSP. Biorefineries source biomass from CSPs of the same color. 
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3.4.7 Scenario Analysis of Preprocessing Technology and Transportation 

Modes 

To quantify the impact of preprocessing and transportation modes we considered pelletization 

and rail transport. The results showed that the optimal supply chain configuration was dependent 

on the selection of the transportation mode (Figure 3.14). One biorefinery was selected in 

scenarios including rail transport, while two biorefineries were selected using truck transport. 

Further, all scenarios suggest that there are benefits to distributed preprocessing of biomass. All 

the selected biomass supply sites are within 80 km of the CSP facilities they serve. The results 

recommended ground biomass with rail transportation, where the optimal biofuel production 

costs could be reduced to $198.4 Mg
-1 

(Table 3.6).  

Table 3.6: The breakdown of biofuels production costs considering different preprocessing technologies and 

transportation means. All the numbers in the table are in terms of $ Mg
-1

.  

 
Ground Biomass  

with Tapping 
 Biomass Pellets 

 Truck + Truck Truck + Rail  Truck + Truck Truck + Rail 

Biomass costs 67.7 67.2  67.6 67 

CSP related costs 15 15.2  22.8 23.1 

Transportation costs 24.4 22.4  22.2 16.8 

Biorefinery related costs 96.7 93.7  96.7 93.7 

Total production costs 203.8 198.4  209.3 200.6 

 

Rail transportation provides a better transportation means for preprocessed biomass 

between CSPs and biorefineries. Biomass pellets gained higher savings of transportation costs 

using rail transportation, due to its higher density. The relatively low variable (distance related) 
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costs for rail transportation makes it effective to source biomass pellets from further away areas 

where biomass procurement costs are low (Figure 3.14b and 14d). The reduced transportation 

costs using biomass pellets, however, could not offset increased preprocessing costs—

approximately $8 Mg
-1

 higher than ground biomass. This is because the current study of biomass 

supply chain is considered within Illinois, where average transportation distance is about 140 km 

for both rail transportation scenarios. The longer distance biomass transported, the more savings 

could be gained by biomass pellets. It is therefore anticipated that biomass pellets could be a 

recommended format for long distance transportation.  
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Figure 3.14: The impact of preprocessing technology and transportation mode on the biomass supply chain 

configuration: (a) ground biomass with tapping and truck transportation, (b) ground biomass with tapping 

and rail transportation, (c) biomass pellets and truck transportation, (d) biomass pellets and rail 

transportation. No biorefinery capacity limit is imposed for all four scenarios. The cropland usage rate 

changes as a function of distance from centralized storage and preprocessing facilities. The biomass 

processing demand is 10,000,000 Mg y
-1

. Triangles represent CSP facilities and stars represent biorefinery 

facilities. A commonly shaded area represents one biomass supply region served by a CSP. Biorefineries 

source biomass from CSPs of the same color. 
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3.5 CONCLUSIONS 

A biomass supply chain optimization (BioScope) model was developed to minimize annual 

biomass-ethanol production cost by selecting the optimal numbers, locations, and capacities of 

farms, centralized storage and preprocessing sites and biorefineries as well as identifying the 

optimal biomass flow patterns from farms to biorefineries. GIS were used to generate spatial data 

related to biomass production and the shortest transportation distances between the possible 

facilities using the existing road and railway network. The BioScope model was implemented to 

study Miscanthus-ethanol supply chain in Illinois. The baseline case was set at the demand of 

2,000,000 Mg y
-1

 using 2% of cropland for Miscanthus production. The baseline case results 

showed that unit Miscanthus-ethanol production costs were $0.74 L
-1

, and biorefinery related 

costs accounted for 48% of costs. The sensitivity analyses demonstrated that the optimal supply 

chain configuration changed for different cropland usage rates, biomass demands, transportation 

costs and modes, and preprocessing technologies. The unit Miscanthus-ethanol production costs 

decreased with increasing cropland usage rates. Rail outperformed truck transportation to ship 

preprocessed biomass from centralized storage and preprocessing facilities to biorefineries. 

Large biorefineries, supported by rail transportation, are suggested to achieve maximum 

economies of scale. Distributed centralized storage and preprocessing facilities are suggested to 

preprocess biomass locally. For the Illinois case study, ground biomass with tapping 

outperformed biomass pellets, largely due to the relatively low preprocessing costs of grinding 

and short transportation distance required. High density biomass is suggested for long distance 

transportation.     
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Note 

The version of the BioScope model described here is associated with revision number 

2497 on the Subversion Server maintained by the Engineering Solutions for Biomass Feedstock 

Production Program in the Energy Biosciences Institute. This revision of the software has been 

tagged for future reference. 
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CHAPTER 4 

DYNAMIC BIOMASS-ETHANOL SUPPLY CHAIN 

OPTIMIZATION 

This chapter describes the development of a dynamic, multiple-year, strategic planning model for 

biomass supply chain optimization under the changing biomass supply and demand. The model 

was developed to address a long-term strategic biomass supply chain planning question that how 

biomass supply chain configuration could be best evolved to meet the increasing cellulosic-

ethanol production demand. The model could quantify the changes of biomass-biofuel 

production costs in an evolving system and identify the key affecting factors. The dynamic 

optimization model was developed based on the BioScope model, which is described in Chapter 

Three. The model can provide decision support on strategic level questions such as production 

timings, locations, and capacities of facilities given the changes of biomass supply and demand.  

This chapter cannot be realized without successful teamwork, where the team members 

are Tao Lin, Luis Rodríguez, Yogendra Shastri, Alan Hansen, and K.C. Ting. Mr. Lin led the 

overall research, collected data, developed the model, and drafted the manuscript. Drs. 

Rodríguez, Shastri, Hansen, and Ting participated the research design and the draft revision.  

The primary tasks conducted by Mr. Lin include: 1) developed constraint and objective 

equations of the model, 2) designed spatial related maps for results visualization, and 3) analyzed 

and discussed the model results. 

This chapter is based on a published conference paper (Lin et al., 2012), with the 

expansion of updated case study design and results discussions. This chapter will be further 
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edited for submission to one of the following journals including Bioresource Technology, 

Transactions of ASABE, and GCB-bioenergy.  
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Abstract. To produce 16 billion gallons of ethanol from cellulosic feedstocks by 2022, 

the biomass based ethanol industry will undergo significant changes in biomass supply and 

ethanol demand as compared to the current situation where few commercial facilities are 

operating. Strategic level decisions such as timings, locations, and capacities of facilities within 

the system will be critical for the success of the cellulosic based ethanol industry. These 

decisions will be impacted by biomass availability, production costs, and accessibility to 

transportation infrastructure. A multi-stage biomass supply chain optimization model was 

developed to answer these systems level questions. The model minimized the total ethanol 

production costs throughout the planning period (2012-2022) given the projected changes of 

biomass supply and ethanol demand. It was assumed that a planning decision should be made 

each year during the planning period. The results show that cellulosic-ethanol production costs 

would be reduced from $246.1Mg
-1

in 2012 to $208.7 Mg
-1

 in 2022 for 1-year contract and from 

$248 Mg
-1

in 2012 to $209Mg
-1

 in 2022 for 11-year contract. The cost savings in both scenarios 

are attributed to the increased economies of scale and shorten biomass transportation distances. 

The short-term contract scenario requires less production costs, largely due to the savings of 

transportation costs. 

Keywords. Supply chain optimization, dynamic, GIS, cellulosic ethanol, biofuels. 
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4.1 INTRODUCTION  

Global climate change, shortage of the fossil fuel resources, and lack of reliable energy supply 

have driven many countries in the world to develop new means of energy supply. Biofuels are 

considered a renewable transportation fuel to reduce greenhouse gas (GHG) emissions and 

improve energy security (EPA, 2010). The U.S. fuel ethanol production has increased 

significantly in the last three decades, from 175 millions of gallons in 1980 to 13.9 billion 

gallons in 2011 (RFA, 2012). The first generation biofuel production, corn ethanol production, 

accounts for the majority of the increase. However, the increase usage of corn for fuel production 

has been criticized for its competition with food supply, which increased food prices and 

worsened the world hunger situation. 

Unlike corn ethanol production, cellulosic ethanol production is considered a sustainable 

biofuel production because it uses renewable biomass (i.e. corn stover, forest waste, and energy 

crops) as its primary feedstock, which does not compete with food supply. In the U.S., cellulosic 

ethanol is expected to be an important component of a future renewable fuel system and its 

production has been target to be 16 billion gallons in 2022 (EPA, 2010). However, few 

commercial cellulosic ethanol facilities exist at this time due to the lack of cost-effective 

technologies and reliable feedstock supply. Furthermore, because of low energy density and 

conversion efficiency, 80 gal Mg
-1

 as of now (Humbird et al., 2011), an annual supply of 200 

million Mgs of biomass are required to meet the annual cellulosic ethanol production target in 

2022. In order to transport such a large amount of biomass efficiently and effectively, a novel 

system infrastructure is required to ensure effective biomass feedstock provision for large-scale 

biofuels production. With the government support and private equity interests, cellulosic ethanol 
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industry is being fast developed currently. This transition feature requires a strategic planning to 

consider both spatial and temporal constraints to identify a system design that is best suited for 

large-scale cellulosic ethanol production. 

Spatially, biomass yields, quality, and production costs vary due to the geographical 

differences in weather and soils. Geographic Information System (GIS) has been applied to 

quantify biomass yields and production costs at the county level (Graham et al., 2000; Khanna et 

al., 2008). Because of the distributed supply of biomass, the larger the biorefinery production 

capacity, the larger the biomass feedstock supply region, and accordingly the higher the biomass 

transportation costs. On the biorefinery side, large biorefinery can reduce unit production costs 

because of the economies of scale (Kocoloski et al., 2011). Therefore, the locations, numbers, 

and capacities of facilities and biomass flow patterns between the facilities within the system are 

critical questions on the spatial dimension.  

Temporally, long-term biofuel system planning is critical when biomass supply chain 

system undergoes such an evolving process, expanding from nothing to a production of 16 

billion gallons in 2022. The production system infrastructure will be expanded in response to the 

growing demand. Because of the dynamic feature of such an evolving system, several temporal 

issues need to be resolved, such as: 1) Whether to build new facilities or expand the existing 

facilities to meet the increasing demand; 2) Where to source the increasing biomass supply; 3) 

Will the new facilities compete biomass resources with the existing facilities?  

Strategic planning of biomass supply chain network is critical to help design such a 

system infrastructure that can meet the increasing demand of biomass feedstock provision. Most 

previous studies have only considered the spatial issue of the biomass supply chain planning. 

Some researchers optimized the biomass supply chains that only include two stages: biomass 
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suppliers and biorefineries (Parker et al., 2010; Kocoloski et al., 2011; Leboreiro and Hilaly, 

2011). To provide consistent quality and format of the feedstock and reduce logistics burdens, 

other researchers proposed a three-stage supply chain that has an addition step of centralized 

storage and preprocessing (CSP) to handle, receive, store, and preprocess biomass before 

sending raw feedstock to biorefineries (Hess et al., 2007; Shastri et al., 2012a) (Figure 4.1). 

However, few studies have considered the dynamic feature in the long-term strategic planning of 

biomass supply chain (Huang et al., 2010). 

 

Figure 4.1: Farms, centralized storage and preprocessing (CSP) sites, and biorefineries make up a three-stage 

biomass-ethanol supply chain. The associated costs include biomass purchase costs, transportation costs, CSP 

operating costs, CSP capital related costs, biorefinery operating costs, and biorefinery capital related costs. 

To achieve the overall effectiveness of such evolving biomass supply chains, a multi-

period optimization model, Dynamic BioScope, was developed through incorporating both 

spatial and temporal dimension issues. To minimize the total system production costs within the 

planning horizon, the model can 1) decide the optimal timings, numbers, locations, and 
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capacities of facilities within the system; 2) decide whether to build new facilities or expand the 

existing facilities; 3) decide the optimal biomass flow patterns between facilities at each year.  

4.2 OVERVIEW OF THE DYNAMIC BIOSCOPE MODEL  

The system scope of this study is from biomass supply to ethanol production at biorefineries. To 

provide consistent quality and quantity of feedstock for large-scale cellulosic ethanol production, 

a three-stage supply chain was considered in this study (Figure 4.1). From a systems perspective, 

facility capital costs, facility operating costs, biomass purchase costs and biomass transportation 

costs are major cost categories for such a biomass supply chain (Hess et al., 2007; Humbird et al., 

2011). 

Through integrating geographic information and operations research methods, the 

optimization model was developed to provide decision support on the optimal biomass supply 

chain configurations over a planning period, under the projected biomass supply and demand 

changes. Annual biomass processing demands and annual cropland usage rate are the key input 

parameters for the dynamic optimization. County level biomass yield and production costs, 

transportation distances, facility capital costs, and facility operating costs are other key inputs, 

and the detailed description can be found in Chapter 3.  

4.2.1 Mathematical model description 

The dynamic optimization model is to minimize the total cellulosic ethanol production costs 

throughout a planning horizon, under the projected changes of biomass supply and demand. The 

planning horizon is divided into multiple 1-year time phases and decisions are made for each 

year.  A list of set names, decision variables, and parameters used in the model is provided in 

“Nomenclature” in Tables B.1 to B.3 of Appendix B. The total cellulosic ethanol production 
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costs ( ) are estimated by the summation of each year production costs that are comprised of 

four costs: biomass procurement costs (  
 ), transportation costs (  

 ), CSP related costs (  
 ), and 

biorefinery related costs (  
 ) (Eq. 4.1). 

           ∑  
    

    
    

 

 

  (4.1) 

Biomass supply contract is important for an emerging biofuels market, especially for 

dedicated energy crops where the life cycle usually lasts for more than ten years. It is assumed 

that if a biomass supply county is signed a contract in year tc to provide biomass feedstock, then 

the same amount of biomass is guaranteed to be selected from that county throughout the 

contract period (   ) (Eq. 4.2).  The length of the contract is an input parameter determined by 

the user. The amount of biomass supplied from each supply site in year t (    ) is estimated by 

summing all the biomass delivered to all the CSP facilities from all the contracts (Eq. 4.3). 

∑∑           

   

 ∑∑         

   

                  (4.2) 

     ∑∑         

   

           (4.3) 

Biomass procurement costs in year t (  
 ) are a function of the amount of biomass 

provided from each supply sites in year t (    ) and the county-level biomass production costs at 

each supply site (    ) (Eq. 4.4). County-level biomass production costs (    ) and biomass 

availability (    ) are two inputs related to biomass supply. The total amount of biomass supplied 

from all supply counties during each year should meet the annual biomass demand (  ) (Eq. 

4.5). Moreover, the total amount of biomass output from a biomass supply site should not exceed 

its annual biomass availability (    ) (Eq. 4.6).  
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  ∑         

 

        (4.4) 

∑    

 

            (4.5) 

                      (4.6) 

Annual biomass transportation costs (  
 ) are composed of variable transportation costs 

(  
 ) and fixed transportation costs (  

 ) (Eq. 4.7-4.9). The annual amounts of pre-processed 

biomass moved from supply counties to CSP facilities by different contracts (         ) and 

processed biomass moved from CSP to biorefineries (      ) are the key decision variables for 

biomass transportation costs. The associated input parameters include unit variable transportation 

cost (       ), unit fixed transportation cost        ), and the transportation distance 

(         ).The concept of estimating annual biomass transportation costs are similar to the 

approach used for BioScope model, and please see the detailed equation descriptions in Chapter 

3.  

  
    

    
          (4.7) 

  
  ∑∑∑                    

    

 ∑∑           

  

              (4.8) 

  
  ∑∑∑             

    

 ∑∑          

  

         (4.9) 

The costs related to CSP facilities in year t (  
 ) are composed of annual operating costs 

(  
 ) and annual capital related costs (  

 ) (Eq. 4.10). Annual operating costs include the costs for 

utilities, maintenance, labor, supervision, insurance, laboratory charges, and waste treatment. In 

this study, it is assumed that CSP facilities with different capacities incur the same unit operating 
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costs (   ). Therefore, annual operating costs are linearly dependent on the annual demand of 

biomass for CSP facilities (  ) (Eq. 4.11).  

Annual capital costs are linearly dependent on the capital investment costs where a factor 

  (13.7%) is used to represent its relationship. To improve the accuracy, the model adopts a 

piecewise linear approximation to estimate the capital investment costs for three different levels 

of facility capacity. Therefore, annual capital related costs are linearly dependent on the sum of 

fixed (  
 ) and variable (  

 ) capital related costs at every level of capacity at each potential 

location (Eq. 4.12). The binary decision variable   
   

 controls whether there exists a CSP facility 

located in county   in year t. The binary decision variable   
     

 controls the capacity level l of the 

CSP facility located in county   in year t. And, the variable      represents the specific capacity 

of the CSP in county   at the capacity level  . The sum of the capacities of CSP at all levels in 

year t should be the same as the total CSP capacity in that county (Eq. 4.13). In the current study, 

it is assumed that once a facility is built in county   in year t, the facility will keep operating in 

the following years. The facility can be expanded later but can only be expanded to the high limit 

of that capacity level (Eq. 4.14). Considering the mass balance, the CSP processing capacity in 

county   year t should be equal to the total amount of biomass transported to county   from all 

supply sites by all contracts (Eq. 4.15).  

  
    

    
         (4.10) 

  
                 (4.11) 

  
    (∑∑  

           
    

     

  

)       (4.12) 
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∑      

 

                 (4.13) 

                                (4.14) 

∑∑         

   

 ∑      

 

              
(4.15) 

If there is a facility in county j, there only exists one capacity level facility during the 

planning period (4.16).A piecewise linear approximation approach is applied to estimate the 

economies of scale at different capacity levels (4.17 -4.19). The detailed description can be 

found in Chapter 3. The biorefinery related costs estimations and the constraints for biorefinery 

location, capacity, and production timing are similar to the equations provided here for CSP 

facilities. 

∑  
     

 

   
   

             
(4.16) 

  
    

     
          

    
     

              (4.17) 

  
    

     
          

    
     

             (4.18) 

  
    

     
          

    
     

              (4.19) 

4.3 CASE STUDY OF ILLINOIS MISCANTHUS-ETHANOL PRODUCTION 

To illustrate the use of the Dynamic BioScope model, we chose Miscanthus-ethanol supply chain 

in Illinois for the case study. Each county in Illinois is considered as a candidate location, thus 

there will be 102 candidates for each stage of the supply chain. To provide decision support on 

how to meet the RFS mandate, the planning period of the case study is set from 2012 to 2022. 
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4.3.1 Biomass demand and supply change 

Based on the RFS mandate, the nationwide cellulosic ethanol production capacity will increase 

annually from almost nothing to 16 billion gallons in 2022 (Table 4.1). In 2011, all the corn-

ethanol facilities in Illinois provided 1.23 billion gallons of ethanol, accounting for 8.3% of 

nationwide corn ethanol production capacity (RFA, 2012). Assuming Illinois can provide the 

same market share of cellulosic ethanol production biennially from 2012, the annual biomass 

demand for Illinois can be estimated (Table 4.1).  

Table 4.1: The projected biomass demand and supply changes in Illinois from 2012 to 2022. The projected 

demands in Illinois are assumed based on the projected cellulosic ethanol production by RFS and the ratio of 

Illinois corn ethanol production capacity to nationwide ethanol production, 8.3%.  

Year The U.S. annual 

cellulosic ethanol 

production capacity
Ɨ 

(Million gallons) 

Illinois annual 

cellulosic ethanol 

production 

(Million gallons) 

Illinois annual 

cellulosic 

biomass supply 

 (Mg) 

The cropland usage 

rate in Illinois for 

Miscanthus 

production 

2012 500 41.5 530,000 1% 

2013 1000 41.5 530,000 2% 

2014 1750 145.3 1,850,000 4% 

2015 3000 145.3 1,850,000 6% 

2016 4250 352.8 4,500,000 8% 

2017 5500 352.8 4,500,000 10% 

2018 7000 581 7,400,000 12% 

2019 8500 581 7,400,000 14% 

2020 10,500 871.5 11,100,000 16% 

2021 13,500 871.5 11,100,000 18% 

2022 16,000 1328 17,000,000 20% 

Ɨ
 The value is based on EPA (2010). 
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Biomass supply is a function of cropland area and biomass yield. Due to the spatially 

variance of weather and soils, biomass yield vary by counties (Khanna et al., 2008). To provide 

sufficient biomass to meet the evolving biomass demand in the next ten years, it is assumed that 

the cropland usage rate for Miscanthus production also increases annually (Table 4.1). 

4.3.2 Facility capacity levels and capital investment costs 

Facility capital investment costs are the most significant costs for cellulosic ethanol production 

(Humbird et al., 2011).  The power law type of equation is usually applied in literature to predict 

capital investment cost for a particular scale based on the costs for the base, where the scaling 

factor usually ranges from 0.6 to 0.7 for a biomaterial and chemical processing facility (Peters 

and Timmerhaus, 1991). Facility capital investment costs are composed of two parts: fixed 

capital investment costs and variable investment costs. Large bioprocessing facilities incur 

higher fixed capital investment costs but lower variable investment costs as a result of economies 

of scale. To identify the impact of facility capacity on the supply chain configuration, three 

levels of centralized storage and preprocessing (CSP) facilities and biorefineries are proposed in 

this study, namely small (50,000 – 600,000 Mg y
-1

), medium (600,000 – 1,250,000 Mg y
-1

), and 

large (1,250,000 – 2,000,000 Mg y
-1

). The facility capital investment costs for each capacity 

level of both CSP facilities and biorefineries are based on Lin et al. (2013). It is assumed that the 

facility expansion capital costs are the same as the facility variable capital investment costs. 

4.3.3 Biomass supply contract design 

The life span of dedicated energy crop usually lasts for more than ten years, which would result 

in an important issue on biomass supply contract design. When there does not exist a commodity 
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market for biomass feedstock, both farmers and biomass processors would prefer long-term 

contract to secure the sell and purchase of biomass feedstock, respectively. However, if there 

exists a commodity market, both parties would probably not prefer signing a long-term contract 

but seeking for a better plan for each year. To quantify the impact of the contract length on the 

evolving biomass market, this study considers 1-year and 11-year contract between farmers and 

processors. For 1-year contract, biomass processors could choose different biomass suppliers 

each year, whereas for 11-year contract, biomass processors would keep purchasing biomass 

from certain biomass suppliers once the contract is made. 

4.4 RESULTS AND DISCUSSION 

For one-year contract case, the least-cost planning strategy of Miscanthus-ethanol supply chain 

in Illinois suggests the construction of  21 centralized storage and preprocessing (CSP) facilities 

and 10 biorefineries from year 2012 to 2022 (Figure 4.2). CSP facilities always prefer sourcing 

biomass from counties nearby. The increased biomass demand would require more CSP and 

biorefinery facilities to be constructed, which also expands the area of biomass supply counties. 

During the 11 year period, 37 counties have been chosen to supply biomass, whereas 32 counties 

are selected to provide biomass in 2022. Some supply counties are in and out of competitive 

production during the planning period (Figure 4.2). The changes of supply county selection are 

most occurred in the years when biomass productions increase while the demands remain the 

same. For these years, CSP facilities would prefer sourcing more biomass from the counties in a 

short distance, which would drive the counties further away out of the procurement scope. The 

detailed results on biomass supply, CSP and biorefinery capacities are provided in Tables B.4 to 

B.6 of Appendix B. The total systems costs throughout the planning period are approximately 
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$13.68 billions to provide a total of 5.15 billion gallons of ethanol. The average Miscanthus-

ethanol production costs are $2.66 gal
-1

, or $0.7 L
-1

. With the increasing biomass supply and 

demand, larger biorefineries and CSP facilities would be built and operated in the later years of 

the planning period. The increased facility capacity, economies of scale, and better transportation 

network would reduce the annual cellulosic-ethanol production costs from $246.1 per Mg
 
of dry 

matter biomass in 2012, or $3.08 per gallon of ethanol, to $208.7 per Mg
 
of dry matter biomass 

in 2022, or $2.61 per gallon of ethanol (Figure 4.3). 

 

Figure 4.2: The changes of biomass supply chain configuration from 2012 to 2022 given 1-Year contract. 
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Figure 4.3: The biomass production costs changes in Illinois from 2012 to 2022 given 1-year contract. 

For 11-year contract case, the least-cost planning strategy of Miscanthus-ethanol supply 

chain suggests the construction of 30 centralized storage and preprocessing (CSP) facilities and 

11 biorefineries from year 2012 to 2022 (Figure 4.4). During this 11-year period, 33 counties 

have been chosen to supply biomass, and all 33 counties are selected to provide biomass in 2022 

because of the long-term contract. Once a county is selected a biomass supplier, the county will 

always be selected as a result of the long-term contract. Although biomass supply changes 

annually, the supply chain configuration only changes every other year, following the changes of 

the demand, as a result of the long-term contract. The selected supply region remains relatively 

stable, which indicates the importance of the decisions at the beginning of the planning period. 

The detailed results on biomass supply, CSP and biorefinery capacities are provided in Tables 

B.7 to B.9 of Appendix B. The total systems costs throughout the planning period are 

approximately $13.73 billions to providing a total of 5.15 billion gallons of ethanol. The average 

 -

 50

 100

 150

 200

 250

 300

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

C
o

st
s 

($
/M

g
) 

Year 

Biomass Procurement Costs Biomass Transportation Costs

CSP Related Costs Biorefinery Related Costs



74 

 

Miscanthus-ethanol production costs throughout the 11-year planning period are $2.67 gal
-1

, or 

$0.7 L
-1

. With the evolving biomass supply and production, larger biorefineries and CSP 

facilities would be built and operated in the later years of the planning period. The increased 

facility capacity, their associated economies of scale, and better transportation network would 

reduce the annual cellulosic-ethanol production costs from $248.1 per Mg
 
of dry matter biomass 

in 2012, or $3.1 per gallon of ethanol, to $209 per Mg
 
of dry matter biomass in 2022, or $2.61 

per gallon of ethanol (Figure 4.5). 

 

Figure 4.4: The changes of biomass supply chain configuration from 2012 to 2022 based on11-Year contract 

condition. 
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Figure 4.5: The biomass production costs changes in Illinois from 2012 to 2022 given 11-year contract. 

The results of both contract scenarios show that small biorefineries and CSP facilities 

would be built in the early stage. With the increasing biomass supply and demand, new larger 

facilities would be built first to achieve economies of scale and then followed by the expansions 

of existing small facilities. The selected biomass supply area is more distributed for the short-

term contract as compared to the long-term contract. The results show that the biomass supply 

area remains relatively stable under the long-term contract, where the supply counties are mainly 

located in southern Illinois. On the other side, the short-term contract allows the biomass supply 

area to be more flexible with the changes of biomass supply and demand. Some counties would 

be considered as the biomass supply area for a short period. 

For annual cellulosic ethanol production costs, the long-term contract usually requires 

higher production costs in odd number years (Figure 4.6), when the demand remains the same as 

the previous year but with a higher biomass supply from each county. For the short-term 

contract, the system would prefer to source more biomass from the counties near CSP facilities 
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in these years, which would shrink the total supply area (Figure 4.2). The smaller biomass supply 

area would result in lower biomass transportation costs in the odd number years, which provides 

major contributions for the cost savings (Figure 4.7). 

 

Figure 4.6: The comparison of biomass production costs from 2012 to 2022 at 1-Year and 11-Year contract 

conditions.  

 

Figure 4.7: The comparison of biomass transportation costs from 2012 to 2022 at 1-Year and 11-Year 

contract conditions.  
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The contract design mainly affects the decisions on how to source biomass, which are 

highly related to biomass procurement and transportation costs. The results show that the short-

term contract incurs lower production costs, mainly because of the flexibility of sourcing 

biomass in a short distance with a lower biomass procurement costs. The trend of biorefinery 

related costs change during the planning period are similar in both cases, which indicates that the 

contract design would not affect the biorefinery related decisions. 

In both cases, biorefinery related costs are the most important cost factor, accounting for 

more than half the cellulosic-ethanol production costs. Moreover, the construction and operation 

of large biorefineries would drive down the unit biorefinery related costs considering the 

economies of scale. The magnitude of savings on biomass transportation costs is incomparable to 

that on biorefinery related costs (Figures 4.3 and 4.5). The decisions of building large facilities 

are highly dependent on the assumption of biomass demand. To better understand the dynamics 

of an evolving biomass-biofuel production system, more scenario analyses would be provided 

considering the changes on biomass demands.    

4.5 CONCLUSIONS 

Dynamic strategic planning helps to identify the optimal supply chain configurations suited for 

the transition to a future with significantly higher ethanol production from cellulosic feedstock. 

The strategic level decisions should consider both spatial and temporal issues. The decisions of 

the optimal installation/expansion timings, locations, and capacities of facilities within the 

system will be critical for the success of cellulosic based ethanol industry. These decisions will 

be impacted by biomass availability, production costs and accessibility to transportation 

infrastructures. The biomass-ethanol supply chain has three stages, including farms, centralized 
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storage and preprocessing facilities, and biorefineries. The optimization model was implemented 

to analyze the Miscanthus-ethanol supply chain in Illinois from the year 2012 to 2022 

considering 1-year and 11-year contract scenarios. The results show that cellulosic-ethanol 

production costs would be reduced from $246.1Mg
-1

in 2012 to $208.7 Mg
-1

 in 2022 for 1-year 

contract and from $248 Mg
-1

in 2012 to $209Mg
-1

 in 2022 for 11-year contract. The lower 

production costs for the short-term contract are a result of savings on biomass transportation 

costs. 
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CHAPTER 5 

INTEGRATED STRATEGIC AND TACTICAL BIOMASS 

SUPPLY CHAIN OPTIMIZATION 

This chapter describes the development of an integrated strategic and tactical biomass supply 

chain optimization model. The development of the integrated model is to connect short-term 

decisions (e.g. harvesting and delivery schedules) to long-term decisions (e.g. facility locations 

and capacities) through the defined mass-balanced constraints. The integrated model can identify 

how strategic planning decisions would interact with tactical planning decisions for an optimal 

biomass provision system design. The detailed constraint equations, variables, and input data 

parameters are provided to better understand the biomass supply chain system. A base case study 

of Miscanthus production in Illinois is presented to illustrate the use of the model. Scenario 

analyses are conducted to quantify how the change of biomass yield rate and ethanol demand 

would affect the optimal biomass supply chain configuration and its associated production costs. 

This study cannot be completed without successful teamwork, where the team members 

include Tao Lin, Luis Rodríguez, Yogendra Shastri, and K.C. Ting. Mr. Lin led the overall 

research, collected and analyzed data, developed the model, discussed the results, and drafted the 

manuscript. Dr. Rodríguez participated the research design and led the draft revision. Dr. Shastri 

contributed the original source code of the BioFeed model that serves as the foundation of the 

farm production and logistics module in the integrated model. Dr. Ting participated the research 

design and results discussions. 
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The primary tasks conducted by Mr. Lin include: 1) modified and integrated the codes of 

the BioFeed and BioScope models, 2) developed new constraint equations that are listed in the 

chapter, 3) designed a two-step workflow algorithm to speed-up computing efficiency, 4) lead 

the analysis of data and drove the development of conclusions. 

This chapter will be further edited to submit to one of the following journals including 

Bioresource Technology, GCB-bioenergy, and Biofuels, Bioproducts, and Biorefining. 
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Abstract. To ensure effective biomass feedstock provision for large-scale ethanol 

production, an integrated biomass supply chain optimization model was developed to minimize 

annual biomass-ethanol production costs by optimizing both strategic and tactical planning 

decisions simultaneously. The model is a mixed integer linear programming model and 

comprises four modules including farm management, logistics planning, facility allocation, and 

ethanol distribution. The activities optimized by the model range from biomass harvesting, 

packing, in-field transportation, stacking, transportation, preprocessing, and storage, to its 

conversion into ethanol. The numbers, locations, and capacities of biomass supply sites, CSP 

sites, and biorefineries and biomass and ethanol distribution patterns are key strategic 

decisions; while biomass production, delivery, and operating schedules as well as inventory 

monitoring are key tactical decisions. The model was implemented to study the Miscanthus-

ethanol supply chain in Illinois. Assuming 5% of cropland is allocated for Miscanthus 

production to support an annual demand of 32 million gallons of ethanol in the Greater Chicago 

area, the results showed that unit Miscanthus-ethanol production costs were $218.5 Mg
-1

, or 

$0.72 L
-1

. Biorefinery related costs are the largest cost component, accounting for 62% of the 

total costs, followed by biomass procurement, CSP related, and transportation costs. Among the 

biomass procurement activities, biomass baling and harvesting are the two most expensive 

operations, followed by in-field transportation and stacking. The biomass delivery schedules 

vary by season, suggesting delivering more biomass to CSP facilities during the harvesting 

period to prevent biomass storage losses at farm fields. A sensitivity analysis showed a 50% 

reduction in biomass yield would increase biofuels production costs by 11%. Biomass 

procurement and transportation costs are the key factors for the cost increase.   

Keywords. Biomass, Biofuels, Supply chain, Optimization, Cost 
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5.1 INTRODUCTION  

Cellulosic based biofuels are considered to be sustainable renewable transportation fuel. To meet 

a target of 16 billion gallons of cellulosic ethanol production in 2022 (EPA, 2010), more than 

200 million Mg of biomass will be required annually; however, few commercial cellulosic 

ethanol facilities exist due to a lack of a cost-effective technology and reliable feedstock supply. 

Bioprocessing facility related costs and biomass procurement costs comprise the major biofuel 

production costs (Humbird et al., 2011; Lin et al., 2013). Biomass is produced in a distributed 

manner within a limited harvesting window each year; but it should be processed in a centralized 

facility throughout the year to gain the economies of scale. Therefore, effective and efficient 

provision of biomass is a key challenge for large-scale biofuel production.  

Supply chain management has been proposed to facilitate effective biomass provision 

and, generally, three levels of decision-making are considered: strategic, tactical, and operational 

decisions. We seek to focus on the interplay between strategic and tactical decision-making. 

Strategically, biomass resource evaluation and selection of facility location and capacity are 

important long-term decisions. Biomass availability and associated production costs have been 

evaluated for feedstocks including Miscanthus (Khanna et al., 2008), switchgrass (Perrin et al., 

2008), and corn stover (Kadam et al., 2003). Furthermore, considering the spatial variances of 

biomass availability and production costs, several models have been presented to optimize 

facility locations and capacities (Panichelli and Gnanasounou, 2008; Kim et al., 2011; Lin et al., 

2013). These strategic planning models provide decision support based on annual biomass 

delivery estimations, without much consideration for tactical planning details.  
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Tactically, biomass can only be harvested within a limited window due to its standing dry 

matter loss. Biomass production, delivery, and operating schedules and inventory monitoring are 

key tactical decisions. Biomass procurement consists of multiple unit operations including 

biomass harvesting, packing, in-field transportation, and handling. Several biomass supply chain 

simulation and optimization models have been developed to manage biomass production and 

delivery activities for different feedstocks, including Miscanthus (Shastri et al., 2010), 

switchgrass (Kumar and Sokhansanj, 2007; Zhu et al., 2011), corn stover (Sokhansanj et al., 

2006; Leboreiro and Hilaly, 2011), and cotton stalks (Tatsiopoulos and Tolis, 2003). These 

models, however, are based on the given strategic decisions such as determined facility locations 

and capacities. 

Strategic decisions regarding biomass supply chain will impact subsequent tactical 

decisions. Without the support of biomass delivery, the processing facility cannot achieve its 

designed operating capacity. Few multi-scale supply chain optimization models have been 

developed to solve processing facility locations and capacities as well as biomass delivery 

schedules simultaneously (Eksioglu et al., 2009; Zhang et al., 2013). However, these studies did 

not consider other important tactical decisions simultaneously, such as biomass production 

schedules and farm management issues. 

Biomass is produced within a limited time window but needs to be processed all year 

round. Determining how to harvest, store, and deliver biomass to support the processing 

activities is vital to optimizing biomass supply chains. Therefore, it is important to coordinate 

and optimize linkages between biomass production, logistics, and processing simultaneously. 

The objective of this study was to develop an integrated biomass supply chain optimization 

model to minimize annual biomass-biofuel production costs. The model simultaneously 
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optimizes both strategic decisions, such as facility locations, capacities, and resource allocations, 

and tactical decisions, such as biomass production, delivery and operating schedules as well as 

inventory monitoring.  

5.2 INTEGRATED MODEL OVERVIEW  

Large-scale biofuel production faces significant challenges including logistics, delivery 

schedules, and inconsistent feedstock formats (Hess et al., 2007). To facilitate effective biomass 

production, a five-stage biomass supply chain was proposed to include farms, centralized storage 

and preprocessing (CSP) facilities, biorefineries, ethanol blending stations, and ethanol 

consumption. Farmers were expected to harvest, bale, transport, and stack biomass at their farm 

gates for delivery. CSP facilities were expected to store, handle, and preprocess biomass, in order 

to provide consistent feedstock format for conversion and reduce logistics challenges (Hess et 

al., 2007; Eranki et al., 2011; Lin et al., 2013). After production at biorefineries, ethanol will be 

transported to blending stations to mix with gasoline. The mixed fuel will be transported to gas 

stations for end consumption. For this study, we assume current blending infrastructure and 

consumption stations have been well developed. The objective of an integrated model is to 

optimize a biomass supply chain configuration optimization based on the existing ethanol 

blending and consumption infrastructure. 

By the nature of biomass production, spatial and temporal constraints are important for 

supply chain optimization. Spatially, farm number and cropland size, and biomass yield vary by 

county. The transportation distance between facilities varies based on their spatial distribution. 

These spatial features are highly related to strategic decisions such as the selection of facility 

locations and capacities. Temporally, the harvestable biomass yield and probability of working 
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day vary with time. Using these temporal constraints tactical decisions, such as when to harvest, 

store, and deliver biomass, can be considered. Without coordinating these activities, the loss of 

biomass in storage could offset the gains of the high harvestable yield. 

To address spatial and temporal issues, the integrated optimization model is composed of 

four modules: a biomass farm management module that optimizes biomass harvesting, packing, 

loading, and infield transportation activities; a logistics planning module that optimizes biomass 

delivery schedules and transportation fleet; a location-allocation module that optimizes facility 

locations and capacities, transportation modes, and biomass flow patterns; and an ethanol 

distribution module that optimizes ethanol distribution flow patterns (Figure 5.1). The model 

coordinates tactical decisions, such as production and delivery schedules, with strategic decisions 

such as facility locations and capacities, to provide decision support on both levels accordingly. 

This coordination was implemented by linking delivery schedules among biomass production 

activities at farms, biomass utilization activities at CSP and biorefinery facilities, and ethanol 

demand at consumption areas (Figure 5.1).  
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Figure 5.1: The components of the integrated optimization model and their data flow. The rounded rectangles 

represent source data (cropland area and farm number (USDA, 2010), biomass yield (Jain et al., 2010), land 

opportunity costs (Khanna et al., 2008), probability of working day (Shastri et al., 2012b), equipment and 

vehicle data (Shastri et al., 2010), road networks (U.S. Census Bureau, 2011), and preprocessing and storage 

data (Hess et al., 2007)). The rectangles represent the models used in the system (MISCANMOD (Jain et al., 

2010), NREL model (Humbird et al., 2011), and Shortest Distance Estimation Model and Facility Cost 

Estimation Model (Lin et al., 2013)). Farm management, logistics planning, facility allocation, and ethanol 

distribution modules are the models developed in this study. The clouds represent output data. 
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The integrated optimization model is a mixed integer linear programming (MILP) model 

that was developed on the GAMS platform using the CPLEX solver. A list of set names, decision 

variables, and parameters used in the model is provided in “Nomenclature” (Tables C.1 to C.3 of 

Appendix C). The model was developed through the integration of key equations from the 

previously developed BioFeed (Shastri et al., 2010; Shastri et al., 2012b) and BioScope models 

(Lin et al., 2013 (or see Chapter 4)) to coordinate and optimize the entire supply chain as a single 

problem rather than considering strategic or tactical decisions individually. In addition to being a 

MILP model that optimizes strategic spatial related decisions such as farm and facility locations, 

the integrated model is also a discrete time optimization model that optimizes tactical temporal 

related decisions such as biomass harvesting and delivery schedules.  The objective of the 

integrated model is to minimize annual biomass-ethanol production costs ( ), which consists of 

five parts: biomass procurement costs (  ), transportation costs (  ), CSP facility related costs 

(  ), biorefinery related costs (  ), and ethanol distribution costs (  ) (Eq. 5.1).  

                 (5.1) 

5.2.1 Farm management module  

Biomass production on farms consists of four major unit operations: harvesting, packing, in-field 

transportation, and handling. Biomass procurement costs are estimated from the equipment 

capital related costs, operating costs, and opportunity costs of cropland allocated to energy crops 

(Eq. 5.2). Given the nature of crop growth and standing loss, biomass needs to be harvested in a 

limited time period. If more equipment can be operated during the high biomass yield period, 

more biomass could be harvested, which could reduce the unit biomass operating costs; however, 

this would increase equipment capital related costs. Different types of equipment have their 
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unique operating capacity and performance that could be suited for different sizes of farms. 

Therefore, farm selection (  
   

), equipment selection ( 
 

      
), and harvesting and other farm 

operating schedules ( 
 

        
) are the key decisions for farm management, where i represents 

biomass supply county, j represents farm number, t represents time period, and 
fm represents 

farming equipment (e.g. harvesting and baling machines). Related to these decision variables, 

annualized equipment cost ( 
 

  
), unit operating costs ( 

 

  
), farm area (    ), and county-level 

cropland opportunity costs (  
 ) are the key input parameters. 

   ∑∑∑ 
 

        
 

  

    

 ∑∑∑∑ 
 

          
 

  

     

 ∑∑       
   

   
 

  

 (5.2) 

The size of farm affects the biomass production costs, where large farms could purchase 

and implement large equipment gaining high productivity; however the BioFeed model cannot 

select the appropriate farm for production (Shastri et al., 2010). Farm selection is a key strategic 

decision added in this integrated model, to help biofuel producers procure biomass efficiently 

(Eq. 5.3). The harvesting schedule is designed to monitor the cumulative harvested area of each 

farm by that time period (      ). If a farm is selected for biomass production (the binary variable 

  
   

 will be set equal to 1), all its farmland area (    ) needs to be harvested completely by the 

end of the harvesting season (    ); whereas if a farm is not selected, its cropland will not be 

harvested at all.  

                 
   

 (5.3) 

The equations regarding farm equipment selection ( 
 

      
) and biomass production 

schedules ( 
 

        
) are based on the previously developed BioFeed model (Shastri et al., 2010). 
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The model assumes that once harvested all the biomass needs to be packed, transported, and 

stacked to be available for delivery at farm gate within the same time period. Therefore, given 

the amount of biomass required for operating during each time period, the type and number of 

equipment required for each unit operation can be optimized. Given the optimized harvesting 

schedules and the temporal changes of biomass yield, the amount of daily biomass delivered to 

farm gate at any time period (   

     
) can be estimated. Detailed constraints regarding farm 

activities can be found in Shastri et al. (2010). 

The harvested biomass inventory at each farm at the end of each time period (  
     

) is 

monitored based on the accumulation of the differences between the daily biomass delivered at 

farm gate and its daily delivery schedules to all the CSP facilities (        ) while considering 

daily biomass losses at farms (  ), where    represents the length of that time interval (Eq. 5.4).  

Since biomass inventory cannot be negative at any time, the amount of biomass delivered from 

each farm is limited by biomass availability at the farm gate, which links farm management with 

logistics planning. The model assumes all the biomass at each farm needs to be delivered to the 

CSP facilities by the end of each year (    ) (Eq. 5.5).  

  
     

    
       

     

     
 ∑        

 

                (5.4) 

  
        

   (5.5) 

5.2.2 Logistics planning module 

Biomass transportation costs (  ) consist of fleet equipment capital related costs (   
), operating 

costs (   
), and handling costs (   

) (Eq. 5.6-5.9). The model assumes the producers own the 
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fleet and can manage logistics to realize just-in-time delivery for processing. Key decisions 

include delivery schedules (            and  
        ) and fleet vehicle selections (  

  ). Related to 

these decision variables, annualized vehicle costs (  
  ), unit operating costs (  

  ) and handling 

costs (   
 and    

) are key input parameters. 

      
    

    
 (5.6) 

   
 ∑  

   

  

  
  

 (5.7) 

   
  ∑∑∑∑∑                     

      

 ∑∑∑∑                 

     

    
  

 (5.8) 

   
 ∑∑∑∑            

 ∑∑∑          

       

 (5.9) 

Weight and volume constraints are the two major issues for biomass transportation. 

Different types of vehicles have different weight (  
  ) and volume capacities (    

  ). Based on 

weight and volume constraints of each type of vehicle and biomass density data (    ), the 

number of trips required for each type of vehicle during each time period (           ) is estimated 

(Eq. 5.10 and 5.11). Similar equations will be applied to estimate the number of trips needed for 

each type of vehicle between CSP facilities and biorefineries (         ). The shortest travelling 

distances between facilities are calculated based on the existing road networks (Lin et al., 2013). 

Given typical travelling speeds within the road network, the shortest travelling time between 

facilities for each type of vehicle (          and        ) is estimated. Given the planned delivery 

schedules and travelling time as well as daily work time ( ), the daily number of vehicles needed 

during each time period (  
    ) is determined (Eq. 5.12). To ensure that there exist sufficient 
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vehicles for delivery at any time period, the total fleet size should not be smaller than the 

required number of vehicles at any time period (Eq. 5.13).  

         ∑  
   

  

            (5.10) 

        

    
 ∑    

   
  

            (5.11) 

  
       ∑∑∑                     

   

 ∑∑                 

  

 (5.12) 

  
     

    
 (5.13) 

5.2.3 Facility allocation module 

The costs related to CSP (  ) and biorefinery facilities (  ) are composed of annual operating 

and capital related costs (Eq. 5.14 and 5.15). Annual operating costs include the costs for 

utilities, maintenance, labor, supervision, insurance, laboratory charges, and waste treatment. In 

this study, it is assumed that the facilities with different capacities incur the same unit operating 

costs (   and
 
  ). Therefore, annual operating costs are linearly dependent on the amount of 

biomass processed. Facility capital related costs are estimated by considering fixed (   
  and  

   
 ) and variable (   

  and    
 ) capital costs. Because of the economies of scale, fixed and 

variable facility capital costs vary at different ranges of capacity. A piece-wise linear 

approximation approach was previously developed to estimate the associated capital costs at 

different capacity scales (Lin et al., 2013) and applied to this study. The key decisions for the 

facility module include facility capacities (  
   

 and   
   

) and locations (  
  and   

 ) on the 
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strategic level and facility operating capacity (  
   

and   
   

) and inventory monitoring (  
   

) on 

the tactical level. 

   ∑∑   
   

    
    

   
    

  

  

 ∑∑  
      

  

 (5.14) 

   ∑∑   
   

    
    

   
    

  

  

 ∑∑  
      

  

 (5.15) 

The amount of biomass received at a CSP facility at each time period (  
   

) can be 

estimated based on the daily delivery schedules from all farms (        ) considering biomass loss 

during transportation and handling (  ) (Eq. 5.16). The integrated model assumes that all the 

biomass feedstock received at a facility would be stored in a biomass input storage site first and 

then be handled for preprocessing. Given the differences between the amounts of biomass 

received and processed (  
   

) at the each time period, the amount of unprocessed biomass 

feedstock inventory (  
   

) could be monitored at each time period considering the unprocessed 

biomass storage loss (   
) (Eq. 5.17). The designed facility capacity (  

 ) should be greater than 

or equal to the amount of biomass processed at any time period (Eq. 5.18). A piece-wise linear 

approximation is applied to estimate the economies of scale for CSP facilities (Eq. 5.19 to 5.21), 

and similarly for biorefineries. The sum of the capacities at each capacity level (  
   

) equals the 

CSP facility capacity for that county (Eq. 5.19). The facility capacity at each capacity level is 

constrained by the capacity range of each level (  
 
 and   

 ) and its capacity level selection (  
   

) 

(Eq. 5.20). If there exists a facility in county  , the binary variable   
  will be set equal to one, 

and exactly one binary variable   
   

 will be allowed to equal one (Eq. 5.21). Alternatively, if no 

facility exists in county  ,   
 will be set equal to zero, and all binary variables   

   
 must be 



93 

 

equal to zero (Eq. 5.21). Preprocessed biomass inventory at each CSP facility by the end of each 

time period (  
   

) can be estimated by the accumulated differences between the amounts of 

biomass processed and biomass delivered to all biorefineries (      ) taking into consideration the 

processed biomass storage loss (   
) (Eq. 5.22).  

∑∑               
  

   
   

 (5.16) 

  
   

    
         

      
               

    
 

(5.17) 

  
      

  (5.18) 

∑  
   

 

   
  (5.19) 

  
 
   

      
      

    
   

 (5.20) 

∑  
   

 

   
 

 (5.21) 

  
   

    
         

    ∑      

 

            
     (5.22) 

This study assumes the biorefinery adopts just-in-time operations, where the amount of 

biomass processed at a biorefinery facility at any time period (  
   

) is estimated based on the 

biomass delivery schedules from all CSP facilities and accounting for biomass loss by 

transportation and handling (Eq. 5.23). This can be used to set a low-end constraint for a 

biorefinery design capacity (  
 ) (Eq. 5.24). For each biorefinery, the amount of ethanol produced 

(  is the biomass-ethanol conversion rate) should be greater than or equal to the amount of 

ethanol transported from its facility to all blending locations (Eq. 5.25).  
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∑          

 

      
   

 (5.23) 

  
      

  (5.24) 

∑  
   

 

   ∑∑      

  

 (5.25) 

5.2.4 Ethanol distribution module 

Ethanol distribution costs (  ) are estimated based on the unit ethanol transportation cost (  ), 

ethanol transportation patterns, and the distance between biorefineries and blending stations as 

well as between blending stations and ethanol consumption sites (Eq. 5.26). The model assumes 

ethanol producers would outsource ethanol distribution to third-party logistics companies based 

on a unit transportation cost, in terms of $ gal
-1

 km
-1

. Ethanol distribution patterns between 

ethanol plants and blending stations (      ) and between blending and gas stations (      ) are 

the key decision variables, whereas unit ethanol transportation cost (  ), transportation distances 

(     and     ), and county-level ethanol consumption demand (  ) are key input parameters. 

For each ethanol blending station, the total amount of ethanol received from all 

biorefineries should be greater than or equal to the amount of ethanol distributed to all possible 

ethanol consumption locations (Eq. 5.27). For each ethanol consumption site, the total amount of 

ethanol sourced from all possible blending stations should meet its ethanol consumption demand 

(  ) (Eq. 5.28).  

    ∑∑∑           

   

 ∑∑∑           

   

     (5.26) 

∑∑      

  

 ∑∑      

  

 (5.27) 
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∑∑      

  

    (5.28) 

5.3 WORKFLOW OF THE INTEGRATED MODEL 

Based on our preliminary tests, the integrated strategic and tactical optimization model requires 

significant computational resources and could become challenging for large-scale systems 

optimization. Therefore, a two-step workflow was proposed in order to develop an efficient 

approach to optimize a large-scale biofuels production system (Figure 5.2). The strategy behind 

this approach is first to select a sub-optimal supply chain region using a strategic planning 

model, and then to optimize both strategic and tactical planning decisions simultaneously within 

the sub-optimal region using the integrated optimization model.  

Given an analysis region defined by users, county-level biomass production costs and 

biomass availability will be estimated first via the BioFeed model (Shastri et al., 2010). Biomass 

yield, farm size, and equipment data are the key input parameters for farm production 

optimization. The estimated biomass production costs and availability, together with system 

supply and demand requirement, will be passed as inputs to the previously developed strategic 

model, the BioScope model (see details in Chapter 3). The BioScope model will be executed to 

select the optimal biomass supply chain region to meet the defined biomass demand. Since the 

BioScope model was developed to optimize long-term planning decisions, only general 

estimations of biomass supply, processing, and storage performance are considered in the model. 

To ensure that the selected region would meet the targeted biomass demand in the detailed 

analysis, a conservative estimate of biomass provision performance, such as biomass loss rate 

during biomass harvesting, transportation, and storage, will be applied in the BioScope model. 

As a result, the selected biomass supply area from the BioScope model should require larger 
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areas than what the true optimal solution would select. The selected sub-optimal area will be 

passed as the possible biomass supply counties for the integrated strategic and tactical 

optimization in the second step. The strategic and tactical decisions will then be optimized 

simultaneously within that sub-optimal area, based on the constraint equations listed in the 

previous section. 

 

Figure 5.2: A two-step workflow of strategic and tactical supply chain optimization for large-scale biofuels 

production. The first step is to select a sub-optimal biomass supply area to meet the demand, and the second 

step is to optimize both strategic and tactical decisions within that sub-optimal area. 
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Through this two-step workflow, the selected potential biomass supply chain region after 

the first step could be much smaller than the initial user defined region. The reduced number of 

possible supply counties and farms would save significant computational effort in solving the 

integrated strategic and tactical optimization. The model is capable of providing logistics 

decisions from a daily basis to a weekly basis in accordance with the user’s requirement. 

5.4 CASE STUDY FOR MODEL APPLICATIONS 

5.4.1 Basecase scenario  

To illustrate the use of the integrated biomass supply chain optimization model, we chose a 

Miscanthus-ethanol supply chain in Illinois for a case study. In the baseline case, 5% of cropland 

at each of 102 counties in Illinois was assumed to be allocated for Miscanthus production. Given 

the number of farms and their cropland size distributions (USDA, 2010), 5% of farms in each 

size category in each county would be considered as potential biomass supply sites. The number 

of possible farms in each county of Illinois ranged from 4 to 82. The largest city in each county 

of Illinois was considered a candidate location for building CSP and biorefinery facilities, where 

either stage had 102 candidate locations. The base-case study was designed to produce sufficient 

ethanol to replace 1% of gasoline consumption in the eight counties of the greater Chicago area. 

The county-level gasoline consumption data are based on county-level populations (US Census 

Bureau, 2012) and per capita gasoline consumption (US EIA, 2011).  The total ethanol 

requirement was approximately 31.7 million gallons per year for 1% gasoline replacement in the 

greater Chicago area (Figure 5.3), which required about 400,000 Mg of biomass annually. 

Among these eight counties, four counties had existing blending facilities (Figure 5.3). 
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Figure 5.3: A total of 31.7 million gallons of ethanol is required for 1% gasoline replacement in the eight 

counties of the great Chicago area. Diamonds represent blending station locations.  

Miscanthus production in Illinois reaches its peak yield in winter and peak yield data in 

each county were based on the MISCANMOD model (Jain et al., 2010). Miscanthus was 

assumed to be harvested from January to April in this study. During the harvesting season, the 

Miscanthus dry matter yield was reduced by approximately 0.07 Mg ha
-1

 d
-1

 from the peak yield, 

while the moisture content was reduced by 0.1% d
-1

 from 25% to a minimum of 15% (Shastri et 

al., 2010). The probability of a working day during the harvesting season varied with time as 

well (Shastri et al., 2012b). Given the existing interstate and state highway road network data 

(US Census Bureau, 2011), ArcGIS was used to calculate the shortest pathway between any 

potential biomass supply sites, CSP sites, and biorefinery sites. Due to the lack of specific farm 

location information, the transportation distance within each county from a farm to the largest 
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city was approximated as a stochastic number from zero to the radius of a circle with the same 

area as the county. 

Farm management includes the following unit operations: harvesting, baling, in-field 

transportation, and stacking. Biomass was stacked in bales at the farm-gate for delivery. Trucks 

were used to serve both stages of biomass transportation, from farms to CSP facilities and from 

CSP facilities to biorefineries. The capital costs and operating data of farm equipment and 

vehicles were adopted from Shastri et al (2010). CSP facilities were designed to reduce biomass 

particle size through tub-grinding. The ground biomass was further tapped to increase the density 

to 200 kg m
-3

, higher than 150 kg m
-3

 of baled biomass (Sokhansanj et al., 2009).  

Due to the economy of scales, the facility capital investment costs for biorefineries and 

CSP facilities was estimated using a scaling factor of 0.7 (Lin et al., 2013). The baseline case 

costs were $422 million for a biorefinery at a capacity of 2,144 Mg d
-1

 (Humbird et al., 2011) 

and $19 million for a CSP facility at a capacity of 2,016 Mg d
-1

 (Hess et al., 2007). An 

annualized cost factor of 13.7% was used to estimate the annualized capital related costs (Lin et 

al., 2013). The capacity level and its associated capital and operating costs for both CSP and 

biorefinery facilities were based on Lin et al (2013).  

All the costs used in this study have been converted to year 2007 using three cost indices. 

The costs of equipment related to farm operations and biomass size reduction were adjusted 

through the Index of prices paid by growers for farm machinery in the USDA’s Agricultural 

Prices (USDA, 2007). For the equipment related to biomass handling and storage at CSP and all 

the equipment at the biorefinery, the Chemical Engineering Plant Cost Index was used to adjust 

the prices (Chemical Engineering, 2010). Labor costs were adjusted according to the Bureau of 

Labor Statistics index (US Department of Labor, 2010).  
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5.4.2 Scenario analysis of Miscanthus yield change 

As would be expected with crop growth, Miscanthus yield is highly dependent on moisture 

stress, which varies from season to season. A sensitivity analysis was conducted to illustrate 

impact of changes in Miscanthus peak yield on the optimal biomass supply chain configuration. 

The county-level Miscanthus peak yield was considered at 100%, 75%, and 50% of the data 

from the MISCANMOD model (Jain et al., 2010) for each county in Illinois. 5% of cropland was 

allocated for producing Miscanthus and the ethanol demand was targeted for 1% of gasoline 

replacement in the Greater Chicago Area in all three scenarios. 

5.4.3 Scenario analysis of demand change 

A sensitivity analysis was conducted to illustrate the impact of the change of biomass demand on 

the optimal biomass supply chain configuration. Three levels of ethanol demand were considered 

at 1%, 2%, and 4% of gasoline consumption replacement in the Greater Chicago Area, 

respectively. The required biomass demand increased from 400,000 to 1,600,000 Mg per year at 

4% gasoline replacement rate. A cropland area of 5% of the total available was allocated for 

producing Miscanthus in all three scenarios. 

5.5 RESULTS AND DISCUSSION 

5.5.1 Base Case Scenario  

The results showed that two counties (Iroquois and Kankakee counties) were selected to support 

an annual demand of 31.7 million gallons of ethanol production (425,000 Mg of biomass), 

replacing 1% gasoline consumption in the Greater Chicago Area. The model suggested building 

one centralized storage and preprocessing (CSP) facility and one biorefinery in Kankakee 
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County. Although biomass yield is relatively high in southern Illinois counties, the selection of 

these two counties, which are located near the Chicago ethanol consumption area, is the result of 

balancing the tradeoff between biomass procurement costs and ethanol distribution costs. The 

optimal Miscanthus-ethanol production costs were $218.5 Mg
-1 

of biomass, or
 
$0.72 L

-1 
($2.73 

gal
-1

) of ethanol. Biorefinery related costs were the largest cost component, accounting for 62% 

of the system costs, followed by biomass procurement, CSP related costs, biomass transportation 

costs, and ethanol distribution costs (Figure 5.4). Because biorefinery related costs have a 

significant impact on the total costs, it is worthwhile to build a large-scale facility to gain the 

economies of scale. The average biomass procurement costs were $52.8 Mg
-1

, which is in the 

previously observed range of $41 to 54 Mg
-1

(Khanna et al., 2008). The unit biomass production 

cost (excluding the land opportunity costs) was $23.1 Mg
-1

, where baling is the most expensive 

farm operation, followed by harvesting, in-field transportation, and handling. The cost is lower 

than a cost of $31.2 Mg
-1 

from the baseline tactical model (Shastri et al. 2010) and $40 Mg
-1

 in 

Khanna et al. (2008), which possibly results from the large farm selection and high deliverable 

yield of Miscanthus in the current study. Biomass land opportunity costs, $28.9 Mg
-1

, accounted 

for more than half of the procurement costs.   
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Figure 5.4: The breakdown of biofuel production costs ($218.5 Mg
-1

) when 5% cropland is allocated to grow 

Miscanthus to support an annual demand of 31.7 million gallons of ethanol. 

Within the two selected counties, 40 out of 126 possible farms were selected to produce 

Miscanthus (Table 5.1). All the selected farms are large farms due to their relatively low biomass 

production costs, where the size of farms ranged from 180 to 1610 ha, or 445 to 3977 acres. The 

deliverable biomass yield ranged from 29.6 to 31 Mg ha
-1

, which represents 80% of peak yield. 

The average deliverable yields of these two counties selected are higher than a state-level 

average yield of 22.3 Mg ha
-1

 in Illinois (Khanna et al., 2008). The biomass loss on farms mainly 

results from three parts: standing biomass dry matter loss in the field, equipment operating loss, 

and storage loss. The number of pieces of farm equipment required for each farm varied 

significantly given the differences in their cropland areas. Based on the results, some selected 

farms only needed one machine for each unit operation, while some large farms needed more 
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than five harvesters and 10 balers to fulfill their production goals. The largest farm selected in 

this study could provide 34,752 Mg of biomass annually. This farm requires 5 harvesters, 14 

balers, 8 in-field truck trailers, and 4 loaders.  

Table 5.1: County level data regarding the number of farms selected to produce biomass, their area, biomass 

average deliverable yield, capture rate, and the amount of biomass supplied. 

Biomass 

supply 

county 

Number of 

farms 

selected in 

each county 

Amount of 

selected 

cropland area 

(ha) 

Average 

deliverable 

yield 

(Mg ha
-1

) 

Biomass 

capture rate 

(as of peak 

yield) 

Supply 

amount 

(Mg) 

Iroquois 23 of 75 8779 28.3 80% 248,600 

Kankakee 17 of 41 6584 26.9 80% 176,860 

 

The proposed delivery schedule recommended delivering more biomass from farms to 

the CSP facility in the biomass harvesting season (first 120 days), to reduce biomass losses on 

farm fields. The CSP facility operated at a constant rate of 1136 Mg d
-1

. The CSP biomass input 

rate was much larger than its preprocessing rate in the first 120 days, which resulted in an 

accumulation of biomass feedstock inventory (Figure 5.5). The biomass feedstock inventory 

peaked at the end of harvesting season with the amount of 248,285 Mg, which requires 106 acres 

of land for biomass feedstock storage. The accumulated baled biomass would be further 

preprocessed during the last 240 days of the year to maintain the design processing rate. The 

total operating capacity of the CSP facility was 408,915 Mgs, which is 3.7% lower than the total 

supply of biomass from all farms at 425,000 Mgs. The 3.7% biomass loss is a result of 

preprocessing operation loss and biomass feedstock storage and handling loss at CSP facilities. 



104 

 

 

Figure 5.5: The daily CSP biomass input information from two supply counties. 

The delivery rate of preprocessed biomass (ground biomass with compaction) is constant 

throughout the year. The system achieved just-in-time biomass delivery for a biorefinery 

operating at a daily operating capacity of 1,130 Mg d
-1

. With the management of logistics 

planning, the system required 54 vehicles to fulfill the delivery schedules. Among them, 49 

vehicles were assigned for delivery between farms and CSP facilities, as a result of distributed 

locations of biomass supply farms.  

5.5.2 Miscanthus yield change impact  

The optimal biofuel production costs increased to $242.5 Mg
-1

 from $218.5 Mg
-1

, or an 11% 

increase, if the Miscanthus peak yield would be 50% of that in the base case. The key factor is 

the increase of biomass procurement and ethanol distribution costs (Figure 5.6). The significant 

increase of the biomass procurement costs is largely due to the increase of the unit land 
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opportunity costs of growing Miscanthus. In order to convince farmers to grow Miscanthus, the 

model assumes that farmers would gain at least the same profit per unit area as producing corn 

and soybean on the same land (Khanna et al., 2008). The decreased biomass yield, therefore, 

would result in the increased land opportunity costs per unit biomass procured.  

 

Figure 5.6: The comparison of biofuel production costs at different biomass yield rates. The base case 

Miscanthus yield is based on Jain et al. (2010), where the county-level peak yield ranges from 38 to 48 Mg ha
-1

 

in Illinois. 

With the decrease of biomass yield, the selected biomass supply counties were moved to 

southern Illinois, where relatively high biomass yields were still available (Figure 5.7). The 

results showed that the increase of biomass procurement costs outweigh the savings of ethanol 
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distribution costs if biomass supply remained near the Chicago area. At low biomass yield rate, 

the system would choose a high biomass yield area as its supply, located in Southern Illinois.  

 

Figure 5.7: The impact of Miscanthus yield change on the optimal biomass supply chain configuration: (a) 

base case where peak Miscanthus yield is based on Jain et al. (2010); (b) Miscanthus peak yield rate at 75% 

of that in the base case; (c) Miscanthus peak yield rate at 50% of that in the base case. 5% of cropland is 

allocated for Miscanthus production to supply ethanol production to replace 1% gasoline consumption in 

eight counties of great Chicago area (greyed area). Triangles ( ) represent CSP facilities, stars ( ) represent 

biorefineries, and diamonds ( ) represent blending stations. A commonly colored area represents one 

biomass supply region served by a CSP facility. 

The required number of biomass supply counties increased from two to five, when 

biomass yield rate reduced to half of the base case (Table 5.2). The number of farms increased to 

58 from 40 in the base case, with larger average farm size in the Southern Illinois counties. 

Although the projected biomass yield at each county was reduced to half of the base case, the 
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required production area increased to 23,453 from 15,363, representing only a 50% increase of 

the base case, due to the relative high biomass yield in Southern Illinois. 

Table 5.2: County level data regarding the number of counties and farms selected to produce biomass, their 

area, and biomass average deliverable yield at different levels of biomass yield. 

Scenario analysis 

of biomass yield 

Number of 

selected 

counties 

Number of 

farms 

selected  

Selected 

cropland area 

(ha) 

Average 

deliverable yield 

(Mg ha
-1

) 

Base case 2 40 of 116 15,363 27.7 

75% of base case 3 37 of 123 18,425 23.1 

50% of base case 5 58 of 219 23,453 18.1 

 

5.5.3 Miscanthus demand change impact  

The total demand of biomass increased from 400,000 to 1,600,000 Mg annually at a 4% gasoline 

replacement rate. The optimal biofuel production costs were reduced with higher annual biomass 

demand, from $218.5Mg
-1

 of base case to $195 Mg
-1

 at an annual demand of 1.6 million Mg 

(Figure 5.8). In all three scenarios, the system suggested building a centralized biorefinery to 

gain the economies of scale, while the number of biomass supply counties and CSP facilities 

increased with the demand increase. Because of the economies of scale, the biorefinery related 

costs could be reduced by about $27 Mg
-1

 if biorefinery capacity was four times that of the base 

case. The savings in biorefinery related costs exceeded the increases in biomass procurement and 

transportation costs as a result of a larger biomass source area.  
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Figure 5.8: The comparison of biofuel production costs with different annual biomass demand cases. 

With higher demand, the system suggested a distributed biomass supply chain 

configuration with more CSP facilities (Figure 5.9). The system required 203 farms from eight 

counties to support 4% gasoline replacement, whereas 40 and 83 farms were required for 1% and 

2% gasoline replacement, respectively (Table 5.3). The total required biomass production area 

increased from 15,363 to 57,450 ha when the ethanol demand increased to replace 4% of 

gasoline consumption. The fleet size also increased from 54 vehicles for the base case to 156 

vehicles for the largest demand case. 
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Figure 5.9: The impact of gasoline replacement rate change on the optimal biomass supply chain 

configuration: (a) base case at 1% gasoline replacement; (b) 2% gasoline replacement; (c) 4% gasoline 

replacement. 5% cropland is allocated for Miscanthus production. Triangles ( ) represent CSP facilities, 

stars ( ) represent biorefineries, and diamonds ( ) represent blending stations. A commonly colored area 

represents one biomass supply region served by a CSP facility, whereas a greyed area represents the target 

ethanol demand market in the eight counties of Great Chicago area. 

 

Table 5.3: County level data regarding the number of counties and farms selected to produce biomass, their 

area, and biomass average deliverable yield at different levels of biomass demand. 

Scenario analysis 

of gasoline 

replacement rate 

Number of 

selected 

counties 

Number of 

farms selected  

Selected 

cropland area 

(Ha) 

Average 

deliverable yield 

(Mg Ha
-1

) 

1%  2 40  15,363 25.8 

2% 4 83 27,413 28.9 

4%  8 203 57,450 27.6 
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5.6 CONCLUSIONS 

An integrated strategic and tactical supply chain optimization model was developed to minimize 

biomass-biofuel production costs. The scope of a biofuel production system to be analyzed 

includes five major steps: biomass production, preprocessing and storage, biorefinery, blending, 

and end consumption. By considering spatial and temporal constraints, the model can be used to 

identify how long term decisions, such as facility locations and capacities, interact with short-

term decisions, such as weekly biomass production and delivery schedules. A case study of 

Miscanthus-ethanol production in Illinois was presented to illustrate the usage of the model. The 

baseline case was set to replace 1% of annual gasoline consumption, or 32 million gallons, in the 

greater Chicago area with cellulosic ethanol and Miscanthus was assumed to be grown on 5% of 

cropland in Illinois. The base case results showed that unit Miscanthus-ethanol production costs 

were $0.72 L
-1 

($2.73 gal
-1

) of ethanol, or $218.5 Mg
-1 

of biomass. Biorefinery related costs 

account for 62% of the cost, followed by biomass procurement, CSP, biomass transportation, and 

ethanol distribution costs. To meet the proposed ethanol demand, forty large farms, providing 

15,350 ha of cropland, were selected in Iroquois and Kankakee counties to grow Miscanthus. 

The system chose to locate a biorefinery and CSP facility in Kankakee County. Biomass delivery 

schedules varied seasonally, with large volumes of biomass being delivered to the CSP facility 

during the harvesting season. The results of scenario analyses showed that the changes of 

biomass yield and ethanol demand caused a significant impact on costs and supply chain 

configurations. When biomass yields are low, the proposed biomass supply chain system would 

move to southern Illinois counties to gain savings in biomass land opportunity costs due to the 

relatively high yields in those counties. Miscanthus-ethanol production costs increased due to the 
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higher land opportunity costs. When ethanol demands are high, the system would require large 

cropland areas to meet the demand. The savings of biorefinery related costs by achieving 

economies of scales exceeded the increases in transportation costs, which would drive down the 

system production costs.  

 The integrated strategic and tactical planning model developed in this study could be 

applied to facilitate biomass provision considering different feedstocks such as other types of 

energy crops and agricultural residues. The model would also be used to evaluate different 

preprocessing and conversion technologies by incorporating detailed processing information. For 

the long term, it is expected that the supply chain optimization model could be integrated with 

environmental and life cycle analysis tools for sustainable biomass provision analysis.    
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CHAPTER 6 

CYBERGIS-ENABLED DECISION SUPPORT 

PLATFORM FOR BIOMASS SUPPLY CHAIN 

OPTIMIZATION 

This chapter describes the development of a CyberGIS-based decision support platform for 

optimization of biomass feedstock provision. The platform aims to improve the computational 

efficiency of complex problem solving and facilitate large scale applications. The platform was 

developed through the integration of a web-based user interface, GISolve middleware (Wang et 

al., 2013), optimization models, and advanced cyberinfrastructure . A detailed workflow was 

presented to illustrate the major work steps of a typical service application. Model accessibility 

and scalability performance were evaluated through the implementation process. This 

implementation example could be served as a protocol for further integration development of 

cyberinfrastructure, operations research, and geospatial analysis and modeling. 

This study cannot be completed without successful teamwork. The team includes Tao 

Lin, Hao Hu, Yan Liu, Luis Rodríguez, and Shaowen Wang. Mr. Lin led the overall research 

design, drafted the manuscript, identified the model input and output, and participated in the 

interface design. Mr. Hu led the interface design and spatial visualization, whereas Mr. Liu led 

the service integration and assisted the draft revision. Drs. Rodríguez and Wang participated in 

the overall research design and results discussions, and led the draft revision.  

The primary tasks conducted by Mr. Lin include: 1) designed the overall workflow of the 

system, 2) integrated the optimization model with cyberinfrastructure the for data input and 
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output parsing, 3) worked together with Mr. Hu to design and implement the CyberGIS Gateway 

interface for model input submissions. The development of the CyberGIS Gateway is supported 

in part by the National Science Foundation under Grant Number 1047916. Any opinions, 

findings, and conclusions or recommendations expressed in the Gateway are those of the 

author(s) and do not necessarily reflect the views of the National Science Foundation.  

This chapter will be further edited to submit to one of the possible journals including 

Bioresource Technology, Decision Support Systems, and GCB-bioenergy. 
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Abstract. Biomass supply chain optimization models are considered to facilitate large-

scale biofuels production by improving the efficiency and effectiveness of biomass feedstock 

provision. Most existing models are not web based, limited by the accessibility for large scale 

applications. A CyberGIS-enabled biomass supply chain decision support platform was 

developed to improve model accessibility and computational performance. The platform includes 

four major components: BioScope optimization model, GISolve middleware, high-performance 

cyberinfrastructure, and an interactive web interface. The workflow and functions of each 

component are provided to illustrate the development and usage of the platform. High 

performance and high throughput computational evaluations were conducted to demonstrate the 

utility of the CyberGIS-enabled decision support platform. The results showed that by leveraging 

cyberinfrastructure resources, computational efficiency could be improved for both single and 

multiple job submissions. The improved computational performance could support the decision 

support platform for group-based applications.  

Keywords. Biomass feedstock provision, cyberinfrastructure, cyberGIS, decision support, GIS, 

optimization 
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6.1 INTRODUCTION  

Biofuels are considered as an important component of renewable energy, which could improve 

energy independence, reduce greenhouse gas emissions, and improve rural economics. Biomass 

feedstock, however, is distributed and has low energy and bulk density. How to supply biomass 

efficiently and effectively is one of major challenges for large-scale biofuels production.  

Biomass supply chain optimization is important to the development of large-scale 

biomass provision systems. Recently, several biomass supply chain optimization and simulation 

models have been developed to minimize biomass production costs by determining optimal 

supply chain network designs (Panichelli and Gnanasounou, 2008; Kim et al., 2011) as well as 

biomass production and delivery schedules (Shastri et al., 2011; Zhang et al., 2013). Most 

existing optimization models have been developed using the mixed integer linear programming 

method, which requires significant computational resources for large-scale problem solving. 

Several studies have been proposed to develop and apply approximation methods to improve 

computational efficiency and scalability, including Lagrangean relaxation (Fisher, 1985), 

Lagrangean decomposition (Chen and Pinto, 2008), and bi-level decomposition (You et al., 

2010). However, the reduction of computational time by using approximation methods is at the 

expense of result quality. Moreover, most optimization models are developed based on 

sequential computing and for single user access, not for online sharing, which limits the model 

accessibility. 

Visualization is another major challenge for interpreting and understanding results of 

complex spatial decision-making problems. Biomass production and distribution is spatially 

explicit, as influenced often by weather and soil differences. Therefore, spatial visualization 
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facilitates the understanding of biomass supply chain analysis. Several models have been 

developed to apply Geographic Information Systems (GIS) to manage biomass availability (Jain 

et al., 2010), production costs (Khanna et al., 2008), and visualize numerical results from 

optimization models on maps (Tittmann et al., 2010).   

To improve model accessibility and result visualization and sharing, several web-based 

spatial decision support platforms have appeared in literature for renewable energy development: 

including strategic planning of wind farm (Simao et al., 2009; Mari et al., 2011) and woody 

based biomass production (Frombo et al., 2009). However, most of these platforms have not 

addressed any significant computational challenges. 

It is expected that model accessibility and throughput as well as visualization and sharing 

of modeling results are key limiting factors for large-group decision-making applications. 

Cyberinfrastructure (CI) is designed to integrate computing systems, data storage systems, 

advanced instruments, and visualization environments together by software and high 

performance networks to facilitate complex problem solving (Stewart et al., 2010). GIS based on 

advanced CI – defined as CyberGIS – provides a seamless integration of CI, GIS, and spatial 

modeling analysis, which is becoming important to facilitate large-scale problem solving, model 

accessibility, and visualization capabilities (Wang et al., 2012). The GISolve middleware is an 

important element of CyberGIS software, which is composed of service-oriented GIS 

components, spatial middleware, a suite of parallel and distributed GIS algorithms, and a set of 

user-interface and collaboration services (Wang, 2010). GISolve has been applied to various 

research areas, including for example analysis of climate change impact (Wang and Zhu, 2008) 

and ecological modeling (Tang and Wang, 2009). 
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In order to improve model accessibility and computational performance for complex 

optimization problem solving, there is a need to develop an integrated system 1) to facilitate 

complex optimization model solving through the support of high-performance distributed 

computational infrastructure; 2) to integrate optimization tools with CyberGIS to improve model 

accessibility and understanding of spatial relationships embedded in modeling results through 

intuitive online visualization. The proposed CyberGIS-enabled decision support platform is 

designed to achieve the following user-centered design: 1) allow users to upload their source data 

to evaluate the system performance; 2) manage historical scenarios analyses; 3) provide spatial 

visualization tools for better result interpretation; 4) reduce computational times in terms of 

single job or multiple job submissions. 

This study describes the development of CyberGIS-enabled decision support platform for 

the optimization of biomass feedstock provision. The content of this study is organized as 

follows: Section Two describes the components and current workflow of the BioScope model, 

with discussions of existing computational and application limitations. Section Three describes 

the components and workflow of the proposed CyberGIS-enabled decision support platform. 

Section Four presents the computational performance evaluation of the BioScope model 

application on the CyberGIS platform.  

6.2 OVERVIEW AND CHALLENGES OF BIOSCOPE 

To minimize annual biomass-ethanol production costs for a three-stage biomass supply chain, a 

BioScope model was developed to select the optimal numbers, locations, and capacities of 

biomass supply sites, centralized storage and preprocessing sites, and biorefineries and identify 

the most efficient biomass flow patterns within the system (Lin et al., 2013). The BioScope 
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model is a mixed integer linear programming model that was developed on the GAMS platform 

using the CPLEX solver (GAMS, 2013). GIS was used to store, manage, and retrieve geospatial 

information, including county level biomass availability, biomass production costs, and 

transportation distances between facilities in the supply chain, and to visualize the optimized 

supply chain configuration on maps. 

6.2.1 Workflow of BioScope model application 

Data collection, mathematic modeling, and result visualization comprise the three major steps of 

the current workflow of the BioScope model application (Figure 6.1). Since the BioScope model 

optimizes a three-stage biomass supply chain configuration, candidate locations of each stage are 

key input information. Furthermore, county-level biomass availability and farm-gate prices for 

the supply candidate locations, transportation distances, annual facility capital costs, and annual 

facility operating costs are the other major inputs for BioScope model. (The details of required 

input data information can be found in Chapter 3.) These data will be saved into multiple 

common separate value (csv) files that can be read by BioScope model to instantiate parameters 

and constraints for analyses. The numerical results from BioScope model will be exported into 

csv files. ArcGIS software (ESRI, 2013) will be further applied to correlate numerical results 

with the corresponding spatial information and visualize the results on the maps. 

The major challenge of the current model application is that the linkages among data 

collection, model solving, and result visualization have not been well integrated, which requires 

certain knowledge and efforts on data transferring, processing, and spatial visualization.  
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Figure 6.1: The workflow of the BioScope model 

6.2.2 Application limitations 

In addition to the lack of an integrated workflow for problem solving and result visualization, the 

application of the Bioscope model has three major limitations: 1) significant computational time 

and memory requirement for complex problem solving, 2) limited model accessibility, and 3) 

lack of high throughput computational capability for scenario analyses by a large group of users. 

The BioScope model is based on mixed integer programming, which is classified as an 

NP-Hard problem. Significant computational challenges could be foreseen for complex problem 

solving. How to design and implement scalable computing by leveraging CI resources would be 

a key to reduce computing challenges. 

The source code of the BioScope model is currently available upon request for research 

and non-profit uses; however, it can only be executed through the GAMS software. Therefore, 

the application of the model requires the installation of the GAMS software and ability with 

GAMS programming. Lack of graphic user interface on the GAMS platform further constraints 

the application accessibility of the model. 

Our previous study showed that an optimal biomass supply chain configuration is highly 

dependent on several input parameters, such as cropland usage rate, biomass yield rate, and 
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transportation cost rate (Lin et al., 2013). In order to provide a solid decision support for a new 

biomass supply chain configuration, many scenario analyses should be conducted to evaluate the 

system performance under various conditions. Currently, the model is operated on a single 

desktop computer where scenario analyses can only be conducted sequentially. The problem 

solving time for a solid decision support case study would be highly dependent on the number of 

scenarios under consideration. Implementation of a high-throughput problem solving workflow 

is effective to reducing computational time of scenario analyses, and this will be even more 

important for large group-based applications. 

6.3 INTEGRATION OF MODEL, USER INTERFACE, AND 

INFRASTRUCTURE 

 The structure of proposed systems integration approach 6.3.1

To facilitate large-scale complex problem solving and improve model accessibility and 

throughput, a CyberGIS-enabled decision support platform has been developed. The platform 

includes four major components: 1) a high performance CI for optimization problem solving, 2) 

the BioScope optimization model where is deployed on the cyberinfrastructure; 3) GISolve 

middleware that includes a set of Open Service APIs and web server PHP functions; and 4) an 

interactive web-based user interface on the CyberGIS Gateway (Wang and Liu, 2009) (Figure 

6.2). 

A web-based user interface is developed to support user management, input data 

submission, job status updating, and geospatial visualization. The design of the web interface 

provides dynamic and interactive functions based on Web 2.0 and HTML5. With its connection 
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to the GISolve middleware, the interface manages to submit user defined input parameters and 

files, retrieve the message of problem solving status in a real time, and provide data and result 

visualization requests. 

 

Figure 6.2: The abstract diagram of a three-tier platform integration of web interface, middleware, and 

cyberinfrastructure. The BioScope model is deployed on cyberinfrastructure to leverage high performance 

and high throughput computing resources. 
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To better integrate web client requests with cyberinfrastructure, GISolve middleware 

manages the complexity of accessing low-level operating software and standards, security, and 

communication protocols to facilitate data interactions, communications, and sharing (Wang et 

al., 2005). The design of GISolve is based on an open service integration framework that 

supports the three integration levels across toolkit, cyberinfrastructure, and web interface by 

managing data and software functions as web services and providing programming interfaces for 

service developers and consumers. This framework provides a unified approach to streamlining 

the encapsulation of CyberGIS data and functions and transparent access to CI for high-

performance computation and large-scale data handling. Functions in the framework are 

established using widely adopted REST services with JSON/XML as the format of service 

request and response messages based on the GISolve open-service APIs. CI provides powerful 

and advanced computational capabilities for large complex models solving and data storage and 

handling. Supported by a queuing and resource management system, CI provides not only high-

performance computing, exploiting large numbers of processors through specialized, high-speed 

interconnections for a job solving, but also high throughput computing, allocating multiple job 

submissions to available computational resources simultaneously. 

 Workflow of an integrated platform development 6.3.2

The integration of web interface, middleware, model, and cyberinfrastructure requries a 

systematic workflow approach. A typical workflow includes three major steps: job submission, 

job status query, and results management, where the realization of each step requires an 

integration across the three layers of the system (Figure 6.3). 
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Figure 6.3: A workflow diagram of the integrated platform. 
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development framework. AJAX was applied to create asynchronous web applications that 
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Markup Language (KML) were applied to visualize geospatial related input and output 

information on web-based maps.  

To operate the system, the user first needs to register to the sytem to get an appropriate 

user privilege for application usage. Once the user logs in to online enviornment, the introduction 

panel page would be poped up for the overview of the platform (Figure 6.4). The introduction 

panel describes the objective and procedures of the application. 

 

Figure 6.4: The user interface of the CyberGIS-enabled decision support platform. 

 In the job panel of the web interface, the user can submit new scenario analysis or retrive 

previously submitted job information (Figure 6.5). To create a new analysis by clicking the green 

“New” button, the user will be asked whether to use existing data source provided by the system 

or upload required input files to instantiate a new job submission. For the BioScope model, it 

requires seven key input files that include the candidate locations of biomass supply counties, 
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centralized storage and preprocessing facility, and biorefinery, county-level biomass yield, 

biomass production costs, and transportation distances between supply counties and CSP 

facilities and between CSP facilities and biorefineries. Furthermore, biomass demand rate, 

cropland usage rate, yield rate, and transportation cost rate are the four key parameters that need 

to be defined for a scenario analysis.  

 

Figure 6.5: The job panel of the CyberGIS-enabled decision support platform. 

If a user chooses to create a new scenario analysis, an upload data window will be 

displayed to let the user define the new job name, upload required input files, and determine the 

critical input parameters (Figure 6.6). If a user chooses to use the existing data source in the 

system, the user would need to define the job name and modify the values for the critical input 

parameters, but cannot upload the input files. The user can download the input files by clicking 

the file tab for the information share and verification (Figure 6.7).  
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Figure 6.6: New job submission panel for using the user uploaded data. 

 

Figure 6.7: New job submission panel for using the existing Illinois case study data. 
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 Once the user completes data submission, GISolve middleware will retrieve these data 

and notify the user of successful job submission. The uploaded data and files will then be 

converted and packaged as a public URL. The middleware will submit a job request to the CI 

through a JSON format that includes the data source URL. Once receiving the job submission 

request, the platform retrives all the necessary data and file from the web server based on the url 

provided in the JSON message.  

Once the job is submitted, the interface will automatically change to a job status panel, 

where the user can view the current job status. The current system provides seven different status 

for users (Figure 6.8).  Each status is visualized as an animation picture on the interface for better 

understanding. The status is updated in a real time manner through the linkage between interface, 

middleware, and CI. Furthermore, in the job status panel, users can also review the status of all 

job submissions (Figure 6.6).  

 

Figure 6.8: The description of status icon for visualizing the current job status (Image courtesy of CIGI 

laboratory).  

GISolve schedules jobs based on the first-in first-out principle while sending status 

request to CI resources to check job running status. Once a job is completed on CI, GISolve 

automatically transfers the results from CI and process the numerical results for geospatial 
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visualization. Currently, optimization results are exported into csv files. By referencing to 

geospatial data, the selected supply counties, CSP, and bioreifnery locations are converted into 

geospatial formats such as as Keyhole Markup Language (KML). The CyberGIS-enabled 

platform supports the mapping of these KML files on web browers.  

In the layers panel, user can visualize resluts from previously completed jobs. Each 

completed job has its unique folder named by the job name, which has three layers including 

biomass supply counties, CSP facilities, and bioreifnery faciliities. Users can check the box next 

to the layers on the web interface to see the optimization model results on a web-based map once 

the job is completed (Figure 6.9). The results map is interactive, where the amount of biomass 

supply from each selected county can be presented by clicking a highlighted county. The results 

are also available for users to download to their own disk for detailed evaluation. 
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Figure 6.9: Results visualization panel of CyberGIS-enabled decision support platform interface. The 

colored areas represent biomass supply counties where each colored area represents the supply counties 

sharing the same CSP facility, the circles represent the proposed locations of CSP facilities, and the triangle 

represents the proposed location of the biorefinery facility. 

 

6.4 COMPUTATIONAL PERFORMANCE EVALUATION 

Both high performance and high throughput computing have been employed in the platform. 

High performance computing aims to reduce the computational time for a submitted job by 

leveraging multiple computing resources of a single high performance computer, usually related 

to parallel programming, High throughput computing aims to reduce total computational time for 

a set of submitted jobs by leveraging more computing nodes or machines, usually related to 

distributed computing.  
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 To evaluate computational performance of the BioScope model, we chose a three-stage 

Miscanthus-ethanol supply chain in Illinois for a case study.  This mixed integer linear 

programming problem had a total of 26,625 variables, including 816 binary variables. 

Miscanthus annual processing demand, cropland usage rate, and Miscanthus yield rate are three 

major input factors affecting the optimal supply chain configuration (Lin et al., 2013). 

Miscanthus yield rate is the percentage of the projected yield by the MISCANMOD model 

(Khanna et al., 2007). The complexity of the problem solving is increased with higher 

Miscanthus demand and lower cropland usage and Miscanthus yield rates.  

 High-performance computing evaluation 6.4.1

High-performance computing was evaluated by the computational time for a scenario analysis 

when Miscanthus demand was 2,000,000 Mg y
-1

 and 2% of cropland was allocated for 

Miscanthus production at the projected yield. The CPLEX solver recently provided a multi-

thread approach to improve computational efficiency for complex problem solving (GAMS, 

2013).  To evaluate the multi-thread computing performance, we tested four scenarios using the 

number of threads from one to eight. By increasing the number of threads from one to four, the 

results showed that the computational time could be reduced significantly, from 1675 seconds 

using one thread to 477 seconds using eight threads (Figure 6.10). 
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Figure 6.10: High-performance computing evaluation using different numbers of threads for one scenario 

analysis by the BioScope model application on the CyberGIS platform 

 High-throughput computing evaluation 6.4.2

A thorough decision support should be provided with the consideration of multiple scenario 

analyses, given the uncertainty of biomass supply and demand changes. High-throughput 

computing was evaluated by the computational time for a group of 60 different scenario analyses. 

The analyses considered ten levels of annual Miscanthus demand ranged from 1,100,000 to 

2,000,000 Mg y
-1

, three levels of cropland usage rate at 4%, 5%, and 6%, and two levels of 

Miscanthus yield rate at 80% and 100% of the projected yield.  The evaluation was conducted by 

leveraging the number of machines nodes from 1, 2, 4, to 8. Each individual scenario analysis 

was solved using single thread computing. By increasing the number of machine nodes, the 

computing time of these 60 scenario analyses could be reduced significantly, from 4411 seconds 

using one node to 894 seconds using eight nodes (Figure 6.11).  
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With more available computing nodes, multiple scenario analyses could be conducted 

simultaneously, rather than solving the problems sequentially using one computing node. The 

computational time of each individual scenario analysis ranged from seven seconds, when 

Miscanthus demand is 1,100,000Mg y
-1

 at 6% cropland usage rate and 100% Miscanthus yield 

rate, to 114 seconds, when Miscanthus demand is 2,000,000Mg y
-1

 at 4% cropland usage rate 

and 80% Miscanthus yield rate. 

 

Figure 6.11: High-throughput computing evaluation using different numbers of computing nodes for 60 

scenario analyses by the BioScope model application on the CyberGIS platform. 

6.5 CONCLUSIONS 

Biomass supply chain optimization models are considered to facilitate large-scale biofuels 

production by improving biomass provision efficiency and effectiveness. Most existing models 

are limited by the computational efficiency and lack of accessibility for large scale applications. 
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A CyberGIS-enabled biomass supply chain decision support platform was developed to improve 

optimization model accessibility and computational performance. The platform is composed of 

four major components, including the BioScope optimization model, GISolve middleware, 

hybrid cyberinfrastructure and an interactive CyberGIS Gateway user interface. The workflow 

and functions of each component are presented to illustrate the development and usage of the 

platform. The results of computing performance evaluations demonstrate that the CyberGIS 

platform can support interactive decision-making analysis for a group of users on solving 

computationally intensive and complex models for biomass supply chain optimization.  
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CHAPTER 7 

CONCLUSIONS 

Biomass feedstock provision has been considered as a key limiting factor for large-scale biofuels 

production. Spatially, biomass availability, production costs, and transportation distances vary 

geographically. Temporally, biomass can be only harvested in a short time window but needs to 

be processed throughout the year. Concurrent Science, Engineering, and Technology (ConSEnT) 

concept was proposed to take a systems approach to improve biomass provision efficiency and 

effectiveness. Three comprehensive optimization modeling tools have been developed to 

optimize both long-term supply chain configurations and short-term operations management for 

large-scale biofuels production. A CyberGIS-enabled web decision support platform has been 

developed to improve model accessibility and computing performance of the optimization 

model. 

Two strategic-level optimization models, BioScope and Dynamic BioScope, have been 

developed to address long-term decisions for a three-stage biomass supply chain system. The 

system includes biomass supply cites, centralized storage and preprocessing (CSP) facilities, and 

biorefineries. BioScope, a mixed integer linear programming model, was developed to minimize 

annual biomass-biofuel production costs by optimizing decisions including the numbers, 

locations, and capacities of facilities and biomass distribution patterns. Built upon the BioScope 

model considering spatial related constraints, the Dynamic BioScope model, a multi-period 

optimization model, was developed to incorporate temporal constraints on the changes of 

biomass supply and changes over time. The Dynamic BioScope model aims to provide decisions 

on how a biomass provision system would best evolve to meet the increasing biofuel demand.  
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Both strategic-level models were applied to address long-term decisions for Illinois 

Miscanthus-ethanol production. BioScope model was applied to evaluate different scenarios 

including different cropland usage rates, annual biomass demands, and transportation modes; 

while Dynamic BioScope model was applied to evaluate how the changes of biomass supply 

contract length would affect the optimal supply chain configurations.  

BioScope model has been applied to quantify the cost differences between two different 

preprocessing technologies including biomass grinding and pelletization. It is expected that with 

more data available on different feedstocks and preprocessing and conversion technologies, 

BioScope model can quantify the cost changes as a result of technology improvement.  

Integrated strategic and tactical planning model was developed to identify how strategic 

planning decisions, such as facility locations and capacities, would interact with tactical planning 

decisions, such as biomass harvesting and delivery schedules. The integrated model is composed 

of four major modules including farm management, logistics planning, facility allocation, and 

ethanol distribution. A base case study of Miscanthus-ethanol production in Illinois showed that 

biorefinery related costs are the largest cost component, followed by biomass procurement, CSP 

related, and transportation costs. The biomass delivery and operating schedules vary by season, 

suggesting preprocessing more biomass during the harvesting period to prevent biomass storage 

losses at farm fields. Scenario analysis showed that when biomass yields are low, the proposed 

biomass supply chain system would move to southern Illinois counties to gain savings in 

biomass land opportunity costs due to their relatively high yields. 

A CyberGIS-based decision support platform was developed to improve BioScope model 

accessibility and throughput and knowledge sharing. The platform was developed through the 

integration of a web-based user interface, GISolve middleware, BioScope model, and high 
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performance distributed cyberinfrastructure. The computational efficiency and throughput 

performance can be significantly improved by leveraging high performance cyberinfrastructure 

and service oriented middleware. Web-based maps are provided to visualize the numerical 

results to facilitate decision support, eliminating the space and hardware constraints of complex 

problem solving. 

The developed optimization tools in this dissertation can serve a solid foundation for a 

comprehensive software suite of Biomass Implementation Optimization Modeling Analysis 

Simulation Software (BIOMASS). Through the integration of optimization models and high-

performance cyberinfrastructure, a CyberGIS-enabled decision support platform would facilitate 

decision making for large-scale biofuel production. 
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CHAPTER 8 

FUTURE WORK 

Systems informatics, modeling and analysis, and decision support platform compromise the three 

major components of the concept of Concurrent Science Engineering and Technology 

(ConSEnT). This dissertation provides a protocol of the application of ConSEnT on biofuels 

production, with the focus on the strategic and tactical planning of biomass feedstock provision. 

The depth and width of the systems analysis of biofuels production could be improved if we can 

achieve the following objectives. 

8.1 DATA AND INFORMATICS 

All the modeling tools and analysis are driven by the data. Most of case studies in this 

dissertation provide analysis for biomass-biofuel production system in Illinois, arguably the most 

important reason is due to the data availability and quality. It would be great if we can develop a 

one-stop biomass-biofuel data center by collecting nation-wide data related to biofuels 

production. The key data includes county-level biomass yield for different feedstock types such 

as Miscanthus, switchgrass, sweet sorghum, energy cane, and crop residues. Biomass 

transportation costs are not negligible based on our previous studies. Nation-wide transportation 

infrastructure data including road, rail, and waterway would be collected and stored in a database 

for regional and national biomass transportation costs evaluation. Operating data of farming 

equipment will be collected from literatures and on-going experimental research from our 

colleagues. The improved farming operating data would facilitate farming management. 
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8.2 MODELING AND ANALYSIS 

Long distance biomass or ethanol transportation could be anticipated as we approaching to 16 

billion gallons annual production target in 2022. Many studies have indicated the importance of 

biomass sourcing and transportation costs, but there exist no complete study on the quantitative 

analysis of long distance biomass/ethanol movement. We are planning to conduct a 

comprehensive study of long distance transportation by using BioScope model. Several key data 

are required for the study: 1) comprehensive understanding of various preprocessing 

technologies such as capital investment requirements, operating costs, product density (Figure 

8.1); 2) estimation of unit transportation costs for different formats of biomass feedstock. The 

unit transportation costs of biomass would be related to product density, weight and volume 

limits of transportation mode, and value of the product (unit rail transportation costs have been 

estimated (see Figure 8.2)); 3) transportation distance data of road, rail, and waterway; and 4) 

biomass yield, availability, and production cost data at different regions.  

 

Figure 8.1: Product density information on different types of biomass formats, shelled corn, ethanol, and coal.  
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Figure 8.2: Unit transportation cost data of different commodities at three levels of shipping distance. Four 

types of preprocessed biomass transportation cost are based on its density difference as compared to the 

transportation cost of coal (Surface Transportation Board, 2009). 

The approach of the long-distance biomass transportation study would be suggested as 

follow: 1) identify and collect all the required data; 2) define the level of biomass transportation 

distance, including short distance (<800 km), medium distance (800-1600 km), and long distance 

(>1600 km); 3) estimate the biomass transportation costs for different formats at different 

distance levels, 4) quantify the differences of sourcing biomass locally versus long-distance 

biomass sourcing, which would be related to biorefinery location issue that is whether to build a 

biorefinery near the consumption area (i.e. California) or near a high biomass availability area 

(i.e. Midwest area). 

It is also anticipated that different preprocessing technology may affect biomass 

conversion rate. BioScope model can be further integrated with detailed biomass conversion 
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processing models to quantify the impact of preprocessing format on the whole supply chain 

configuration. 

Dynamic BioScope model was developed to understand how the whole biomass 

provision system would best evolve to meet the increasing biofuel demand. It is highly possible 

that such a large system might not be controlled or managed by one single entity. Therefore, 

different entities would compete for goods and resources. The Dynamic BioScope model would 

be changed to optimize the system in a sequential approach by minimizing each year production 

costs rather than minimizing the total production costs throughout the planning period. The 

results would be discussed to understand how the optimal supply chain configuration would 

change considering resource competition. Furthermore, the design of biomass supply contract 

would be improved by considering the relationship among purchases prices, contract length, and 

supply amount.  

We have developed strategic and tactical planning models for large-scale biofuels 

production. A detailed operational planning on farm management is proposed to develop to 

understand and optimize farm production activities based on the field operating data. Biomass 

production costs account for more than one third of system production costs. Equipment 

selection, technology improvement, and better operating management would facilitate to reduce 

biomass production costs. A biomass harvesting research group at the Energy Biosciences 

Institute is developing a real-time sensing and control system to improve harvesting efficiency. 

We are working with them to develop a detailed farm operating management model to quantify 

the cost reduction by implementing novel control technologies in biomass harvesting. 

In addition to new model development, how to validate the existing developed models 

would be also important. Since there exists no commercial cellulosic biofuel facility, it would be 
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difficult to validate the model on a large system scale. However, by working with some existing 

pilot facilities, the model could be applied to evaluate whether the modeling results would 

improve their operating efficiency and effectiveness. Moreover, the computational tools 

developed in this dissertation could be cross-validated by evaluating the same system using the 

tools developed from other research groups such as IBSAL model (Kumar and Sokhansanj, 

2007).     

8.3 DECISION SUPPORT PLATFORM 

The integration of BioScope application and CyberGIS-enabled decision support platform 

facilitates model accessibility and improve computational efficiency through the utilization of 

high performance cyberinfrastructure.  

The web-based platform will be further integrated with a spatial-supported database that 

includes regional biomass production related data. Spatial-enabled interactive functions will be 

incorporated into the platform to allow user to define their region of study and candidates as 

model inputs directly from the web-based interactive map. 

Developed optimization tools such as BioFeed and integrated strategic and tactical 

planning model will be further integrated with the platform. The web-based user interface will be 

further modified to improve user experience, including better results analysis and visualization 

tools development, historical scenario analysis results management, and raw data and results 

sharing function. 
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APPENDIX A 

SUPPLEMENTARY MATERIALS FOR BIOSCOPE 

MODEL 

Table A.1: A list of model inputs with each description, unit, value, and source 

Symbol Description Unit Value Source 

   Biomass availability at county level Mg Figure 3.3 USDA (2010)
 
and 

Jain et al (2010) 

   Biomass purchase cost at county 

level 

$ Mg
-1

 Figure 3.4 Shastri et al (2010) 

and USDA (2010) 

  Total biomass required for 

processing 

Mg 2,000,000 User defined 

     Distance between biomass supply 

sites and centralized storage and 

preprocessing (CSP) sites 

km  US Census Bureau 

(2011)
 

     Distance between CSP sites and 

biorefinery sites 

km  US Census Bureau 

(2011)
 

    Unit operating costs for CSP $ Mg
-1

 9.95 Hess et al (2007) 

  
  Variable capital costs for CSP at 

different levels 

$ Mg
-1

 Table A.3  

  
  Fixed capital costs for CSP at 

different levels 

$ Table A.3  

  
  High-end capacity limit of a CSP at 

capacity level l 

Mg Table A.3  

  Annualized cost factor  13.7% User defined 

  Biomass loss rate at CSP  5% User defined 

    Unit operating costs for a biorefinery $ Mg
-1

 48 Humbird et al (2011) 
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Table A.1 (cont.) 

  
  Variable capital costs for a 

biorefinery at different levels 

$ Mg
-1

 Table A.4  

  
  Fixed capital costs for a biorefinery 

at different levels 

$ Table A3.4  

  
  High-end capacity limit of a 

biorefinery at capacity level l 

Mg Table A3.4  
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Table A.2: A list of decision variables in the model, with the nomenclature used in equations, a description of 

the type of variable, and a description of the meaning of each variable 

Symbol Type Description 

     Non-negative continuous variable Amount of biomass flow from supply to CSP 

     Non-negative continuous variable Amount of biomass flow from CSP to biorefinery 

   Non-negative continuous variable The total centralized storage and preprocessing 

(CSP) facility capacity in county j 

  
 
 Binary variable Indicates whether there is a CSP facility located 

in county   

     Non-negative continuous variable The CSP facility capacity in county   at level   

  
   

 Binary variable Indicates whether there is a CSP facility located 

in county   at level   

   Non-negative continuous variable The total biorefinery capacity in county   

  
  Binary variable Indicates whether there is a biorefinery facility 

located in county   

     Non-negative continuous variable The biorefinery capacity in county   at level   

  
   

 Binary variable Indicate whether there is a biorefinery facility 

located in county   at level   
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Table A.3: Estimated capital investment costs for centralized storage and preprocessing (CSP) are estimated 

using a piecewise linear approximation of the power law with a scaling factor of 0.7. Three capacity level 

ranges are defined for each linear approximation: small, medium, and large. Fixed and variable costs are 

defined as a function of the capacity level.  

Capacity level of 

a CSP facility 

Lower limit 

of the range 

(  
 )  

(Mg y
-1

) 

Upper limit of 

the range (  
 ) 

(Mg y
-1

) 

Variable capital 

investment costs 

($ Mg
-1

) 

Fixed capital 

investment costs  

($) 

Small ( =1) 50,000 600,000 24.31 2,521,900 

Medium ( =2) 600,000 1,300,000 16.94 6,697,000 

Large ( =3) 1,300,000 2,000,000 14.32 9,996,800 

 

Table A.4: Estimated capital investment costs for biorefineries are estimated using a piecewise linear 

approximation of the power law with a scaling factor of 0.7. Three capacity level ranges are defined for each 

linear approximation: small, medium, and large. Fixed and variable costs are defined as a function of the 

capacity level. 

Capacity level of a 

biorefinery 

Lower limit 

of the range 

(  
 )  

(Mg y
-1

) 

Upper limit of 

the range (  
 ) 

(Mg y
-1

) 

Variable capital 

investment costs  

($ Mg
-1

) 

Fixed capital 

investment costs  

($) 

Small ( =1) 50,000 600,000 518.83 53,823,000 

Medium ( =2) 600,000 1,300,000 361.6 142,928,000 

Large ( =3) 1,300,000 1,900,000 308.31 209,270,000 
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To consider a scenario where variable cropland usage rates might occur, several new constraint 

equations were defined. In this case, up to 10% of cropland usage rate is assumed for a supply 

county if it lies within a distance of 80 km served by a centralized storage and preprocessing 

(CSP) facility, up to 7% at a distance between 80 and 160 km, and 5% at a distance beyond 160 

km. To enable the study of variable cropland usage rates the previous approach to determining 

biomass availability (Eq. 3.4) is replaced with the approach defined here (Table A.5, Eq. A.4a-

A.4f).  

Table A.5: The nomenclature and definition of additional binary variables for the study of variable cropland 

usage rates within supply counties, as a function of its distance to a CSP facility. 

Symbol Type Description 

  
   

 Binary variable Indicates whether supply county   is located within a 

distance of 160 km to a CSP facility located in county    

  
  Binary variable Indicates whether supply county   is located within a 

distance of 160 km to a CSP facility that serves 

  
   

 Binary variable Indicates whether supply county   is located within a 

distance of 80 km to a CSP facility located in county   

  
  Binary variable Indicates whether supply county   is located within a 

distance of 80 km to a CSP facility that serves 

   Binary variable The cropland usage rate for supply county   

 

Distances from the supply sites to the CSP (    ), calculated via ArcGIS using existing 

road network data, are used to determine whether a supply county is close to a CSP facility. If so, 

the supply county is labeled (  
   

) if it is located with 160 km (Eq. A.4a). If the supply county is 

also within 80 km (Eq. A.4c) it is labeled (  
   

) as being both with 80 and 160 km. It is possible 
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that a supply county may serve more than one CSP facility, thus it is necessary to ensure that if it 

is within the range of at least one CSP facility, at either 80 or 160 km, then it is necessary to 

ensure that its cropland usage rate is allowed to vary to the rate associated with the closest CSP 

(Eq. A.4b and A.4d). Therefore, cropland usage rate (  ) is estimated (Eq. A.4e) and used to 

adjust biomass availability (  ) within each county (Eq. A.4f). 

  
   

 (
   

    
)    

 
 (A.4a) 

∑  
   

 

   
  (A.4b) 

  
   

 (
  

    
)    

 
 (A.4c) 

∑  
   

 

   
  (A.4d) 

              
        

  (A.4e) 

∑    

 

       (A.4f) 
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APPENDIX B 

SUPPLEMENTARY MATERIALS FOR DYNAMIC 

BIOSCOPE MODEL 

Table B.1: A list of sets and indices used in the model 

Index Set name and element labels 

  Biomass supply county, where      

  CSP facility location, where      

  Biorefinery facility location, where      

  Biomass delivery time, where    . 

   Contract signed time, where     .  

  Capacity scale for a facility, where     

 

The biomass delivery time during a contract period (   ) is a subset of T and it is related to the 

contract signing time and the length of the contract. For example, if                    , a 

11-yr contract signed in year 2014 (       ), then                      .   
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Table B.2: A list of decision variables 

Decision 

Variables 

Description 

          The amount of biomass supplied from supply county i to CSP facility j during year t 

by the contract signed in year tc 

     The amount of biomass from supply county i during year t 

       The amount of biomass supplied from CSP facility j to biorefinery k during year t 

       The annual production capacity of a CSP facility at capacity level l located in county 

  during year t 

     The annual production capacity of a CSP facility located in county   during year t  

  
   

 Binary variable: whether a CSP facility is located in county   during year t 

  
     

 Binary variable: whether a capacity level l of the CSP facility is located in county   

during year t 
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Table B.3: A list of model inputs with each description and source 

Input 

Parameters 
Description 

Source for case 

study 

     
Biomass procurement costs in county i during year t 

($ Mg
-1

) 
Lin et al., 2013 

   The total system biomass demand during year t (Mg) User defined 

   Cropland area in county i (ha) USDA, 2010 

   Biomass yield in county i (Mg ha
-1

) Jain et al., 2010 

     Cropland usage rate in county i during year t  User defined 

    

Unit variable transportation cost for unprocessed biomass 

between biomass supply counties and CSP facilities ($ 

Mg
-1 

km
-1

) 

Kumar et al., 

2005 

    
Unit variable transportation cost for processed biomass 

between CSP facilities and biorefineries ($ Mg
-1 

km
-1

) 
Lin et al., 2013 

    

Unit fixed transportation cost for unprocessed biomass 

between biomass supply counties and CSP facilities ($ 

Mg
-1

) 

Kumar et al., 

2005 

    
Unit fixed transportation cost for processed biomass 

between CSP facilities and biorefineries ($ Mg
-1

) 
Lin et al., 2013 

     
Transportation distance between biomass supply counties 

and CSP facilities (km) 

US Census 

Bureau, 2011 

     
Transportation distance between CSP facilities and 

biorefineries (km) 

US Census 

Bureau, 2011 

  
  

Fixed capital investment costs for a CSP facility at 

capacity scale l ($) 
Lin et al., 2013 

  
  

Variable capital investment costs for a CSP facility at 

capacity scale l ($ Mg
-1

) 
Lin et al., 2013 
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Table B.4: The amount of biomass supply from all selected biomass supply counties during the period from 

2012 to 2022 for the 1-year contract scenario. 

 

 

 

 

 

 

 

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Grand Total

Bond 29,105    116,420     232,841     134,886     582,101       1,095,353    

Champaign 360,222       249,000       137,778       747,000       

Clay 25,955    33,058    519,107       578,121       

Clinton 36,149    144,596     216,894     289,192     361,490     433,788     506,086     578,384       650,681       439,817       3,657,075    

Crawford 503,162       503,162       

Edgar 393,459       393,459       393,459       1,180,377    

Edwards 15,307    11,201          26,508          

Effingham 353,063     411,907     470,751       529,595       588,439       2,353,756    

Fayette 36,545    146,182     269,068     438,545     511,635     584,726       603,184       730,908       3,320,792    

Franklin 28,893    57,787    115,574     173,361     231,148     247,327     346,722     324,063     462,296       520,082       577,869       3,085,122    

Gallatin 34,715          34,715          558,459       627,889       

Greene 235,200     294,000     352,799     406,063     179,930       1,467,991    

Hamilton 30,118    60,236    120,472     180,707     72,714       185,332     94,283          602,358       1,346,218    

Jackson 28,448    113,791     170,687     227,582     284,478     341,373     398,269     455,164       512,060       568,955       3,100,806    

Jasper 600,000       600,000       

Jefferson 28,267    56,535    113,069     169,604     226,139     282,673     339,208     395,743     452,277       508,812       565,347       3,137,674    

Jersey 177,008     221,260     265,512     309,764     354,016       350,689       167,432       1,845,679    

Johnson 8,700      104,400     121,800     139,200       156,600       174,000       704,702       

Macoupin 377,091     471,364     565,637     659,910     754,183       848,456       942,729       4,619,371    

Madison 322,857     403,571     280,772     600,000       1,607,199    

Marion 31,654    63,307    126,614     189,922     253,229     316,536     379,843     426,529     377,253       200,000       2,364,887    

Monroe 88,359       39,733       176,719     353,437       397,617       441,796       1,497,661    

Montgomery 355,936     444,920     533,904     622,888     711,872       800,856       889,839       4,360,213    

Moultrie 251,621     23,328       173,660       405,016       853,625       

Perry 26,813    53,626    107,252     160,878     214,504     268,130     321,755     375,381     429,007       482,633       536,259       2,976,238    

Pope 81,801          81,801          

Randolph 31,389    125,554     188,331     251,108     169,560     271,467     502,217       564,994       600,000       2,704,620    

Richland 503          503                

Saline 15,694    188,328     219,716     251,104       282,492       313,880       1,271,213    

Shelby 578,147     674,505     770,863       867,221       963,579       3,854,314    

St-Clair 168,541     107,821     88,359          44,180          408,901       

Union 12,335    148,015     172,684     197,354       222,023       246,692       999,103       

Vermilion 889,778       1,001,000    1,112,222    3,003,000    

Washington 49,429    98,858    197,716     296,573     395,431     494,289     593,147     692,004     790,862       889,720       988,578       5,486,606    

Wayne 42,745    85,490    123,653     251,888       

White 41,399    827,982       869,381       

Williamson 10,552    21,104    42,207       63,311       84,414       105,518     126,622     147,725     168,829       189,932       211,036       1,171,250    

Grand Total 530,000 530,000 1,850,000 1,850,000 4,500,000 4,500,000 7,400,000 7,400,000 11,100,000 11,100,000 17,000,000 67,760,000 



164 

 

Table B.5: The changes of capacities of all CSP facilities during the period from 2012 to 2022 for the 1-year 

contract scenario. 

 

Table B.6: The changes of capacities of all biorefineries facilities during the period from 2012 to 2022 for the 

1-year contract scenario. 

 

 

  

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Grand Total

Bond 600,000       600,000       

Clay 519,107       519,107       

Crawford 503,162       503,162       

Edgar 393,459       393,459       393,459       1,180,377    

Effingham 70,043          70,043          

Fayette 600,000       600,000       

Gallatin 34,715          34,715          558,459       627,889       

Jackson 568,955       568,955       568,955       1,706,866    

Jasper 600,000       600,000       

Jefferson 530,000 530,000 530,000     530,000     530,000     530,000     530,000     530,000     530,000       530,000       530,000       5,830,000    

Macoupin 1,970,000 1,970,000 1,998,624 1,998,624 2,000,000    2,000,000    2,000,000    13,937,248 

Madison 600,000       600,000       

Marion 200,000       200,000       

Monroe 441,796       441,796       441,796       1,325,389    

Randolph 600,000       600,000       600,000       1,800,000    

Shelby 1,621,376 1,621,376 2,000,000    2,000,000    2,000,000    9,242,752    

Union 242,403       242,403       

Vermilion 1,250,000    1,250,000    1,250,000    3,750,000    

Washington 1,320,000 1,320,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000    2,000,000    2,000,000    16,640,000 

White 1,441,541    1,441,541    

Williamson 1,250,000 1,250,000 1,281,075    1,281,075    1,281,075    6,343,225    

Grand Total 530,000 530,000 1,850,000 1,850,000 4,500,000 4,500,000 7,400,000 7,400,000 11,100,000 11,100,000 17,000,000 67,760,000 

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Grand Total

Bond 1,900,000    1,900,000    

Jasper 1,607,696    1,607,696    

Jefferson 503,500 503,500 503,500     503,500     503,500     503,500     503,500     503,500     503,500       503,500       503,500       5,538,500    

Macoupin 1,871,500 1,871,500 1,898,693 1,898,693 1,900,000    1,900,000    1,900,000    13,240,385 

Randolph 1,530,214    1,530,214    1,727,518    4,787,946    

Shelby 1,540,307 1,540,307 1,900,000    1,900,000    1,900,000    8,780,615    

Vermilion 1,561,286    1,561,286    1,561,286    4,683,858    

Washington 1,254,000 1,254,000 1,900,000 1,900,000 1,900,000 1,900,000 1,900,000    1,900,000    1,900,000    15,808,000 

White 1,900,000    1,900,000    

Williamson 1,187,500 1,187,500 1,250,000    1,250,000    1,250,000    6,125,000    

Grand Total 503,500 503,500 1,757,500 1,757,500 4,275,000 4,275,000 7,030,000 7,030,000 10,545,000 10,545,000 16,150,000 64,372,000 
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Table B.7: The amount of biomass supply from all selected biomass supply counties during the period from 

2012 to 2022 for the 11-year contract scenario. 

 

 

 

 

 

 

 

 

 

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Grand Total

Bond 116,420     116,420     232,841     232,841     349,261     349,261     465,681       465,681       582,101       2,910,507    

Calhoun 134,820       134,820       

Clay 25,955    25,955    25,955       25,955       207,643     207,643     311,464     311,464     415,285       415,285       519,107       2,491,713    

Clinton 15,274    15,274    15,274       15,274       15,274       15,274       15,274       15,274       15,274          15,274          111,643       264,383       

Crawford 102,722     102,722     102,722     102,722     102,722       102,722       102,722       719,057       

Edwards 15,307    15,307    15,307       15,307       15,307       15,307       77,877       77,877       244,918       244,918       306,148       1,043,582    

Effingham 235,376     235,376     353,063     353,063     470,751       470,751       588,439       2,706,820    

Fayette 36,545    36,545    105,355     105,355     292,363     292,363     438,545     438,545     584,726       584,726       730,908       3,645,974    

Franklin 28,893    28,893    115,574     115,574     231,148     231,148     292,172     292,172     462,296       462,296       577,869       2,838,035    

Gallatin 27,923    27,923    27,923       27,923       27,923       27,923       27,923       27,923       101,579       101,579       101,579       528,121       

Greene 587,999       587,999       

Hamilton 30,118    30,118    120,472     120,472     240,943     240,943     361,415     361,415     481,886       481,886       602,358       3,072,024    

Jackson 28,448    28,448    113,791     113,791     227,582     227,582     341,373     341,373     455,164       455,164       568,955       2,901,672    

Jasper 31,080    31,080    31,080       31,080       248,639     248,639     372,958     372,958     497,278       497,278       621,597       2,983,665    

Jefferson 28,267    28,267    113,069     113,069     226,139     226,139     339,208     339,208     452,277       452,277       565,347       2,883,268    

Jersey 442,520       442,520       

Johnson 8,700      8,700      34,800       34,800       42,207       42,207       42,207       42,207       139,200       139,200       174,000       708,230       

Macoupin 565,637     565,637     565,637       565,637       942,729       3,205,278    

Madison 807,141       807,141       

Marion 31,654    31,654    126,614     126,614     253,229     253,229     379,843     379,843     506,458       506,458       633,072       3,228,669    

Massac 172,075       172,075       215,093       559,243       

Monroe 150,895       150,895       441,796       743,585       

Montgomery 533,904     533,904     711,872       711,872       889,839       3,381,390    

Perry 26,813    26,813    107,252     107,252     214,504     214,504     321,755     321,755     429,007       429,007       536,259       2,734,922    

Randolph 22,869    22,869    125,554     125,554     251,108     251,108     339,072     339,072     502,217       502,217       600,000       3,081,641    

Richland 219,110     219,110     328,665     328,665     438,220       438,220       547,775       2,519,763    

Saline 15,694    15,694    62,776       62,776       125,552     125,552     159,393     159,393     251,104       251,104       313,880       1,542,918    

St-Clair 842,704       842,704       

Union 12,335    12,335    49,338       49,338       98,677       98,677       98,677       98,677       197,354       197,354       246,692       1,159,452    

Washington 49,429    49,429    197,716     197,716     395,431     395,431     438,121     438,121     770,993       770,993       770,993       4,474,371    

Wayne 42,745    42,745    137,926     137,926     341,959     341,959     512,938     512,938     683,917       683,917       854,897       4,293,865    

White 41,399    41,399    165,596     165,596     169,910     169,910     169,910     169,910     662,386       662,386       827,982       3,246,385    

Williamson 10,552    10,552    42,207       42,207       84,414       84,414       126,622     126,622     168,829       168,829       211,036       1,076,284    

Grand Total 530,000 530,000 1,850,000 1,850,000 4,500,000 4,500,000 7,400,000 7,400,000 11,100,000 11,100,000 17,000,000 67,760,000 



166 

 

Table B.8: The changes of capacities of all CSP facilities during the period from 2012 to 2022 for the 11-year 

contract scenario. 

 

 

Table B.9: The changes of capacities of all biorefineries facilities during the period from 2012 to 2022 for the 

11-year contract scenario. 

 

  

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Grand Total

Bond 116,420     116,420     232,841     232,841     234,363     234,363     465,681       465,681       582,101       2,680,710    

Clay 721,506     721,506     721,506     721,506     721,506       721,506       721,506       5,050,541    

Edwards 244,918       244,918       306,148       795,984       

Effingham 235,376     235,376     235,376     235,376     368,333       368,333       588,439       2,266,608    

Fayette 600,000     600,000     600,000       600,000       875,623       3,275,623    

Franklin 292,172     292,172     292,172     292,172     462,296       462,296       577,869       2,671,150    

Gallatin 101,579       101,579       101,579       304,737       

Greene 587,999       587,999       

Hamilton 434,217 434,217 530,000     530,000     530,000     530,000     530,000     530,000     530,000       530,000       600,000       5,708,435    

Jackson 326,259     326,259     326,259     326,259     455,164       455,164       568,955       2,784,319    

Jasper 31,080    31,080    31,080       31,080       351,361     351,361     475,681     475,681     600,000       600,000       600,000       3,578,403    

Jefferson 218,978     218,978     404,163       404,163       565,347       1,811,630    

Jersey 577,339       577,339       

Johnson 139,200       139,200       174,000       452,401       

Macoupin 565,637     565,637     565,637       565,637       600,000       2,862,549    

Madison 807,141       807,141       

Marion 257,924     257,924     282,464     282,464     282,464     282,464     506,458       506,458       600,000       3,258,619    

Massac 172,075       172,075       215,093       559,243       

Monroe 150,895       150,895       441,796       743,585       

Montgomery 600,000     600,000     711,872       711,872       1,232,568    3,856,311    

Perry 462,962     462,962     462,962     462,962     462,962     462,962     600,000       600,000       600,000       4,577,775    

Randolph 125,554     125,554     251,108     251,108     339,072     339,072     502,217       502,217       600,000       3,035,904    

Richland 234,417     234,417     234,417     234,417     234,417       234,417       469,695       1,876,198    

Saline 101,579     101,579     251,104       251,104       313,880       1,019,245    

St-Clair 949,955       949,955       

Union 197,354       197,354       246,692       641,399       

Washington 64,703    64,703    326,059     326,059     410,705     410,705     410,705     410,705     600,000       600,000       600,000       4,224,344    

Wayne 600,000     600,000     683,917       683,917       857,254       3,425,089    

White 662,386       662,386       827,982       2,152,753    

Williamson 168,829     168,829     168,829     168,829     168,829       168,829       211,036       1,224,009    

Grand Total 530,000 530,000 1,850,000 1,850,000 4,500,000 4,500,000 7,400,000 7,400,000 11,100,000 11,100,000 17,000,000 67,760,000 

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Grand Total

Clay 1,900,000 1,900,000 1,900,000 1,900,000 1,900,000    1,900,000    1,900,000    13,300,000 

Fayette 1,900,000    1,900,000    

Hamilton 503,500 503,500 503,500     503,500     503,500     503,500     600,000     600,000     600,000       600,000       600,000       6,021,000    

Jasper 600,000     600,000     600,000       600,000       600,000       3,000,000    

Jersey 1,520,000    1,520,000    

Lake 130,000     130,000     130,000       130,000       130,000       650,000       

Montgomery 1,900,000 1,900,000 1,900,000    1,900,000    1,900,000    9,500,000    

Perry 1,254,000 1,254,000 1,871,500 1,871,500 1,900,000 1,900,000 1,900,000    1,900,000    1,900,000    15,751,000 

St-Clair 1,900,000    1,900,000    

Wayne 1,900,000    1,900,000    1,900,000    5,700,000    

Williamson 1,615,000    1,615,000    1,900,000    5,130,000    

Grand Total 503,500 503,500 1,757,500 1,757,500 4,275,000 4,275,000 7,030,000 7,030,000 10,545,000 10,545,000 16,150,000 64,372,000 
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APPENDIX C 

SUPPLEMENTARY MATERIALS FOR INTEGRATED 

OPTIMIZATION MODEL 

Table C.1: A list of sets and indices used in the model 

Set Set name and element labels 

  Biomass supply county, where      

  Farm, where      

  CSP facility location, where      

  Biorefinery location, where     

  Blending location, where     

  Ethanol consumption county, where     

  
Time period, where    .    is an element representing the end of the harvesting season 

and    is an element representing the end of the simulation cycle. 

  Type of equipment, where    .    is a subset of    representing farming equipment 

and    is a subset of    representing road vehicles. 

  Capacity scale for a facility, where     
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Table C.2: A list of decision variables used in the model 

Decision 

Variables 

Description 

 
 

      
 The number of each type of equipment required for farm j in county i 

 
 

        
 The operating hours of each type of equipment required for farm j in county i at time 

period t 

   

     
 The amount of biomass delivered to the gate of farm j in county i at time period t 

(Mg d
-1

) 

       The cumulative harvested area for farm j in county i until the end of time period t 

(km
2
) 

  
     

 The biomass inventory data for farm j in county i at the end of time period t 

         The amount of biomass delivered from farm j in county i to CSP facility k at time 

period t (Mg d
-1

) 

  
   The required fleet size of each type of vehicle 

            The number of trips required from farm j in county i to CSP facility at county k by 

vehicle type mv at time period t 

          The number of trips required from CSP facility in county k to biorefinery in county l 

at time period t by vehicle type mv 

  
     The number of vehicle type mv required at time period t 

  
   

 The capacity of CSP facility in county k at the capacity scale s (Mg d
-1

) 

  
   

 The amount of biomass received by CSP facility in county k during time period t 

(Mg d
-1

) 

  
   

 The amount of biomass preprocessed by CSP facility in county k during time period 

t (Mg d
-1

) 

  
   

 The unprocessed biomass feedstock inventory for CSP facility located in county k at 

the end of time period t 

  
   

 The preprocessed biomass inventory data for CSP facility located in county k at the 

end of time period t 
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Table C.2 (cont.) 

       The amount of biomass delivered from CSP facility in county k to biorefinery in 

county l at time period t (Mg d
-1

) 

  
   

 The amount of biomass processed by the biorefinery in county l at time period t (Mg 

d
-1

) 

  
  The capacity of biorefinery in county l (Mg d

-1
) 

       The amount of ethanol delivered from biorefinery in county l to blending station in 

county b at time period t (Mg d
-1

) 

       The amount of ethanol delivered from blending station in county b to ethanol 

consumption site in county e at time period t (Mg d
-1

) 

  
   

 Binary variable: Whether farm j in county i is selected for biomass production  

  
  Binary variable: Whether a CSP facility is located in county k  

  
  Binary variable: Whether a biorefinery is located in county l  

  
   

 Binary variable: Whether a CSP facility is located in county k at the capacity scale s 

  
   

 Binary variable: Whether a biorefinery is located in county l at the capacity scale s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



170 

 

Table C.3: A list of input parameters used in the model 

Input 

Parameters 
Description 

 
 

  
 The unit operating cost of each type of equipment ($ h

-1
) 

 
 

  
 The annual capital related cost of each type of equipment  

     The size of each farm j in county i  (km
2
) 

  
  The unit cropland opportunity cost in county i ($ km

-2
) 

  Operating hours per day 

          
The travelling time from farm j in county i to CSP facility in county k during 

time period t using vehicle type mv (h) 

        
The travelling time CSP facility in county k during time period t to biorefinery 

in county l using vehicle type mv (h) 

  
   The weight limit of each type of vehicle (Mg) 

    
   The volume limit of each type of vehicle (m

3
) 

  
   The annual capital related cost of each type of vehicle 

  
   The unit operating cost of each type of vehicle ($ h

-1
) 

   
 The unit biomass handling cost at CSP facilities ($ Mg

-1
) 

  Ethanol conversion rate (gal Mg
-1

) 

     
The distance between biorefinery location in county l to ethanol blending 

station in county b (km) 

     
The distance between ethanol blending station in county b and ethanol 

consumption in county e (km) 

     The density of delivered biomass from farm j in county i (Mg m
-3

) 

   
  The fixed capital cost to build a CSP facility at the capacity scales 

   
  

The unit variable capital cost to build a CSP facility at the capacity scale s 

($ Mg
-1

) 

   
  The fixed capital cost to build a biorefinery at the capacity scale s 

   
  

The unit variable capital cost to build a biorefinery at the capacity scale s 

($ Mg
-1

) 
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Table C.3 (cont.) 

   The biomass loss rate occurred at farms 

   The biomass loss rate occurred during transportation and handling 

   
 The unprocessed biomass loss rate during storage at CSP 

   
 The processed biomass loss rate during storage at CSP facilities 

   Unit operating cost of ethanol production ($ Mg
-1

) 

   Unit operating cost of preprocessing ($ Mg
-1

) 

   
 The unit biomass handling cost at biorefineries ($ Mg

-1
) 

   The unit ethanol distribution cost ($ gal
-1 

km
-1

) 

 

 


