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Abstract 

Ruminant animals produce methane through metabolic processes, with implications for 

production efficiency and contributions to atmospheric accumulation of greenhouses gases. A 

Ruminant Emission Measurement System (REMS) was designed, constructed and tested at the 

Metabolism Unit of the Beef Cattle and Sheep Field Laboratory at the University of Illinois at 

Urbana-Champaign to quantify these emission rates for varying dietary components. REMS is a 

hyperbaric positive-pressure ventilated hood-type open-circuit respiration chamber system and 

measures and compares instantaneous methane concentrations between gas entering and exiting 

a chamber in order to calculate emission rate produced by beef cattle. A series of pumps, 

sampling tubes, solenoids, connections and chambers are utilized in the measuring process, and 

therefore many opportunities for dilution or leakage exist. Quality control is crucial in the 

application of this system to ensure the reliability of the emissions measurements, and a Quality 

Assurance Project Plan (QAPP) was developed to ensure consistency and reliability during 

testing. The QAPP presented in this document includes an introduction to all components within 

this system, quality control tests for each of those components, and general guidelines on the use 

and maintenance of the system. The document is arranged in four sections followed by the 

appendix, arranged in chapters for this thesis.  

The first chapter provides a general introduction to this document, including a description of a 

Quality Assurance Project Plan and its implementation.  

The second chapter gives a general description of the system that was constructed, including all 

the components that make up this system and their functionality. The components include: the 

gas sampling multiplexer for switching between and directing gas samples to the analyzer; six 
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orifice meters for measuring and controlling ventilation rates; six individual chambers, in each of 

which the head of one animal is placed during monitoring; a Heating, Ventilating and Cooling 

(HVAC) system for maintaining comfortable temperature and humidity inside the chambers; the 

gas analyzer; and system control software. 

The third chapter focuses on quality assurance tests that were done in order to validate the 

performance of each component. One crucial assumption for the system operation is that the 

chamber and other components do not allow inward leakage to occur, thus a leakage test was 

conducted on the multiplexer, each chamber and the sampling line. In order to show that the 

chambers maintain positive pressure during test conditions, an internal pressure map was 

conducted. A calibration was completed for the orifice meters to ensure reliability of ventilation 

measurements. A calibration was also completed for the gas analyzer to ensure reliability of gas 

concentration measurement. A tracer-gas recovery test was conducted to validate the 

performance of the overall system for measuring generation of gas within each chamber.  

The fourth chapter covers usage and related topics, including the necessary preparations before a 

test, physical or remote monitoring during a test and data analysis upon concluding a test. 

General maintenance issues are also discussed and should be followed closely to ensure the well-

being of the equipment and integrity of data collected during experiments. 

The appendices cover specific instructions on using the system control software, conducting a 

multiplexer leakage test, calibrating the gas analyzer, conducting a system evaluation test, 

conducting a system performance test, preparations for experiments and operation of the building 

ventilation system. 
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Chapter 1: Thesis Introduction 

1.1 Quality Assurance Overview 

A Quality Assurance Project Plan (QAPP) documents the design, construction and testing 

procedures for a project, including quality assurance steps to ensure the system behaves 

according to design. It integrates all the technical and quality aspects of the project in order to 

provide a "blueprint" for obtaining the type and quality of data and information needed for a 

specific decision or use. In addition to the proper usage of the system, regular maintenance issues 

are also discussed and should be closely followed. 

A QAPP is necessary for any innovative system that requires special attention to its design, use 

and maintenance. It will contain important information regarding the proper usage and handling 

of equipment. It will be used by all the people that might work with any piece of the system, 

regardless of how minor their role is. It will also be used by people who may need to duplicate 

all or part of the system for a different project, maybe even implement changes or improvements 

to the system in order to suit their project goals.  

Having a complete, precise and accurate QAPP will reduce time, cost and labor in the operation 

of the system. Users of the current system will have the resource to ensure uniformity in system 

operations and produce valid results on each trial. The information presented here can serve as a 

foundation on which to base new procedures for validating similar systems. For the users of 

other systems, parts of this document contains several Standard Operating Procedures (SOPs) for 

implementing this system in a completely separate application, as most of the quality assurance 

steps will be similar. 
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Previous implementations of quality assurance documents for ruminant emissions show specific 

conditions at which the experiments were conducted, however they do not show the underlying 

basis for how a QAPP should be presented (Johnson et al., 2007). 

This document was prepared with the help of A Quality Assurance Project Plan for Monitoring 

Gaseous and Particulate Matter Emissions from Boiler Housing (Moody et al., 2008). 

1.2 Organizational Introduction 

This document was prepared for conducting experiments using the REMS with live animals. 

Chapter 2 outlines the components that are contained in REMS. Chapter 3 outlines the Quality 

Assurance (QA) tests that were conducted to validate the measurements of REMS. Chapter 4 

outlines general maintenance issues associated with keeping each component of REMS at 

experimental conditions.  
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Chapter 2: Ruminant Emission Measurement System Components 

2.1 System Description 

A Ruminant Emission Measurement System (REMS) was conceptualized, designed, and 

assembled in the animal metabolism laboratory located at the University of Illinois Beef/Sheep 

Research Facility. The REMS is a state of the art greenhouse gas measurement system that will 

be used for quantification of methane emissions from enteric fermentation in beef cattle, and to 

evaluate nutrition, genetics, and management strategies on those emissions. Previous work has 

indicated enteric emissions are greatly affected by animal diet and genetics (Smith et al., 2007). 

The complete REMS consists of six main subsystems: a Gas Sampling Subsystem (GSS), a 

Fresh Air Supply and Measurement Subsystem (FASMS), a Thermal Environmental Controller 

Subsystem (TECS), six Ventilated Hood Chambers, an Infrared Photoacoustic Spectroscopy (IR-

PAS) Multi-Gas analyzer, and Instrument Control Subsystem (ICS). Figure 2.1 is an operational 

schematic showing how each component interconnects with the others. 

Within the GSS, a multiplexer was designed and constructed to allow sampling from seven 

locations (six chambers and the background) to be directed to a single gas analyzer (Section 2.2) 

by switching each solenoid between routing air flow to the analyzer or exhausting to the building. 

The system control software controls a relay to energize the solenoids as needed to sequentially 

switch to the desired sample.  

Within the FASMS, in order to provide a stable, known air flow into the six metabolic chambers, 

low-cost orifice meters were designed, calibrated, and implemented to measure the supply 

ventilation into each chamber (Ramirez et al., 2013). The orifice meters were designed using the  
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chamber. Five more identical chambers are part of the complete system. Each chamber has an individual 

Chamber Air Conditioning Unit. Cold water is supplied by a common water chiller, and all orifice meters are 

supplied by a common blower. 
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existing ventilation system and provide precise ventilation rates (Section 2.3). Bernoulli’s 

principle was the underlying basis for the design of these orifices; as a measureable pressure 

drop occurs as air passes through a sudden reduction in cross sectional area (Rhinehart et al., 

2011).  

Within the TECS, six individual Chamber Air Conditioning Units (CACU) condition the air 

within each chamber and provide comfortable air temperature and humidity in the chambers for 

the animals during emissions monitoring. Temperature and relative humidity are also recorded 

for use in emission rate calculations (Section 2.4). 

The Ventilated Hood Chambers of the REMS provide an enclosed space for the animal’s head 

which captures the gases generated by eructation and respiration (Section 2.5). The animal is 

secured by an existing stanchion in the building. Animals have the ability to stand up or lie down, 

eat and drink, but restrict movement while in the stanchion. A canvas hood attaches to the 

opening of the chamber and secures around the animal’s neck to keep eructated gases inside the 

chamber space. 

An IR-PAS multi-gas analyzer accurately measures and records methane concentration (Section 

2.6). Our specific model was chosen for this application because of its accuracy, ability to 

simultaneously read multiple gases and minimal maintenance requirements compared to other 

gas analyzers. 

The ICS developed using LabVIEW controls the switching of solenoids, records data from the 

temperature/relative humidity sensor and concentrations from the gas analyzer and calculates 

emission rates. The PC containing LabVIEW is connected to the data acquisition unit and relay 
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inside the multiplexer via USB and the gas analyzer via RS-232. It serves as the central control 

unit for operating the REMS and recording data.   
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2.2 Gas Sampling Subsystem (Multiplexer) 

2.2.1 Approach 

The following section documents the overall design parameters of the Gas Sampling Subsystem. 

Section 2.2.2 covers specific details regarding the components.  

The multiplexer directs air samples from the chambers to the gas analyzer for gas concentration 

analysis, and is necessary because there are six chambers plus a background sample but only one 

analyzer. The multiplexer consists of a series of seven solenoid valves, one for each chamber and 

one for the background, with stainless-steel tubing connections. Each solenoid is wired such that 

the normally-open (NO) end leads to the exhaust while the normally-closed end leads to the gas 

analyzer. In this setting, the de-energized solenoid will direct the gas samples back to the 

building and the energized solenoid will direct the gas samples to be analyzed. Relays 1 through 

6 are connected to the six 3-way solenoid valves corresponding to the 6 chambers. Relay 7 

switches the solenoid collecting the background air sample. The multiplexer also houses an 

USB-based 8-channel relay to control the solenoids, a 9V, 1A regulated power source for the 

relay and a Data Acquisition Unit (DAQ) for receiving temperature and relative humidity levels. 

The relay provides eight single-pole double-throw (SPDT) Form C electromechanical relays. The 

relay operates on 5V DC power while everything else runs on AC, thus requiring a power supply 

to convert AC to DC. The DAQ sends the temperature and relative humidity to the software 

which displays the information on the computer screen and saves it to a data file. Only one 

solenoid should be activated at a time, since the air from only one chamber or the background 

can be analyzed. The background is sampled after each chamber to obtain a background 

concentration with which to calculate emission rate. 
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From the multiplexer, a single sample is routed to the analyzer. The sample line is split, with one 

line connected to the analyzer and the other exhausted to the equipment room. A rotameter 

attached to the exhaust measures the exhausted flow rate, typically around 4.0 lpm when the 

analyzer is not sampling (all solenoids closed). A reading of 2.0 lpm and above should be read 

when the analyzer is sampling to guarantee sufficient air flow to the analyzer. Under normal 

experiment conditions, an excess amount of air is pumped from the chambers to ensure that 

sufficient sample is available to the analyzer. 

From each chamber, the air is drawn through a vacuum/pressure pump and directed through 

Teflon tubing to its respective solenoid valve. The pump is located on the inlet side of the 

multiplexer to create a positive pressure from the pump to the gas analyzer. Under this 

arrangement, if a leak occurs, it will not be a source of dilution. The only potential source of 

leakage is at the connection fitting between sampling inlet and the pump, which is under negative 

pressure. This crucial point should be tested for leakage coherent with the general maintenance 

issues discussed in Section 4.1, before every recovery test. Figure 2.2 demonstrates the layout of 

the multiplexer for routing the air samples from each chamber. The system control software 

controls relays inside the multiplexer unit to determine which solenoid to activate.  
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Figure 2.2: Multiplexer schematic showing components inside multiplexer for directing gas samples to the gas 

analyzer, including relay, power supply for relay, data acquisition unit and solenoids. Direction of gas flow is 

indicated by arrows, while solenoid positions are depicted with N/O (normally open), N/C (normally closed) 

and C (common). 

 

2.2.2 Construction and Instrumentation 

A sealed plastic enclosure (J Box Type 4X, QR Clear Cover, Hoffman Inc., Anoka, MN) 

measuring 584 mm x 400 mm x 184 mm (23” x 15-3/4” x 7-1/4”), houses the solenoids (Type 

0330, Burkert, Ingelfingen, Germany, Figure 2.3), relay (USB-ERB08, Measurement  
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Figure 2.3: 3-way Solenoid Type 0330 (Image taken from http://www.bermad.com/product/product=3-way-

solenoid-valve-ww/cat=54118, 2013). 

 

Computing, Norton, MA), relay power source (Condor GLC40, SL Power Electronics Corp., 

Ventura, CA) and data acquisition unit (USB-1608G Series, Measurement Computing, Norton, 

MA). A series of 22.2mm (7/8”) nominal diameter holes were drilled on either side of the box to 

allow for stainless-steel tube connections between each chamber and its solenoid. The holes were 

made slightly greater than the diameter of the connectors such that they could be mounted. 

Silicone was later applied in between the gaps to provide a sealed multiplexer unit (Figure 2.4). 

http://www.bermad.com/product/product=3-way-solenoid-valve-ww/cat=54118
http://www.bermad.com/product/product=3-way-solenoid-valve-ww/cat=54118
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Figure 2.4: Picture showing exhaust (1) and sampling (2) lines of multiplexer. Also showing areas where 

silicon (3) was applied. 

 

Solenoids are mounted onto individual custom plates attached to a larger base plate which is 

mounted inside the enclosure to facilitate access for repairs and maintenance. From each 

solenoid, three compression fittings (1/4” OD, 316SS, Swagelok, Solon, Ohio) provide air-tight 

connections to the inlet, exhaust and sampling line. All sampling lines are constructed using 

Teflon tubes (3.175 (1/8”) ID x 6.35mm (1/4”) OD, Cole-Parmer, Inc., Vernon Hills, IL). All 

connections within the enclosure are custom fit with stainless-steel tubing and various 

compression fittings (Figure 2.5). Stainless steel was selected due to its superior resistance to 

1 

2 

3 
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Figure 2.5: Picture showing solenoid connections from chamber (1), to exhaust (2) and to sampling line (3). 

 

reaction, absorption or permeation with common gases that will be of interest for REMS. Brass 

tubing also manufactured by Swagelok provides exhaust outlets. Seven amber 4.0 mm (5/32”) 

LED lights (Model No. 001-204, Paneltronics, Hialeah Gardens, FL) mounted in the enclosure 

wall and visible from the outside indicate which solenoid is activated (6 for the chambers, 1 for 

the background) and provide a quick verification of which chamber’s sample air is currently 

being analyzed. Seven commercial Temp/RH sensors (HMP50, -40°C to +60°C, 0-98%RH, 

Vaisala, Helsinki, Finland) were wired to the DAQ inside the enclosure, while the physical 

sensors were placed one inside each chamber and one inside the building. Seven 

vacuum/pressure diaphragm pump (PTFE-coated, model EW-79200-30, Cole-Parmer, Inc., 

Vernon Hills, IL. Figure 2.6)  

1 

2
3 
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Figure 2.6: Vacuum pump located on the inlet side of the multiplexer. 

 

placed outside and upstream of the multiplexer provide suction for the gas sampling line. Figure 

2.7 shows the electrical wiring diagram of the multiplexer. 

 

Figure 2.7: Multiplexer internal wiring scheme including wiring for each solenoid, LED, temperature and 

relative humidity sensors, data acquisition unit and relay. 
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2.3 Fresh Air Supply and Measurement Subsystem (Orifice Meter) 

2.3.1 Approach 

The following section documents the overall design parameters of the Fresh Air Supply and 

Measurement Subsystem. Section 2.3.2 covers specific details regarding the components. 

Ramirez et al. (2013) documents the development and implementation of this system with 

greater detail. 

For each metabolic chamber, a custom-designed and constructed orifice meter measures 

ventilation flow rate for providing fresh air into the chamber. An orifice plate is strategically 

placed after the entrance of the meter. When air passes through orifice meter, the smaller 

dimension of the orifice plate opening restricts flow and causes a pressure drop across the orifice 

plate. The orifice meter is equipped with an oil manometer that measures the pressure drop 

across the orifice plate. The relationship between the pressure difference across the orifice and 

the theoretical volumetric flow rate is shown by Equation 2.1. A calibration test that will be later 

introduced (Section 3.3) documents the correction for the relationship between this differential 

pressure and actual volumetric flow rate (Rhinehart et al., 2011). 
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This formula takes into account orifice diameter, length and internal surface coefficient. Since all 

emission calculations are directly based on flow rate, and each orifice meter will have different 

calibration correction equation due to differences in assembly, it is crucial for each orifice to 

behave predictably and consistently.  

2.3.2 Design and Construction 

Each orifice is made from 50.8 (2”) Schedule 40 PVC pipe, with a 508 mm (20”) long entry pipe 

and 254 mm (10”) long exit pipe. Entrance section length was specified to be 10 times the pipe 

diameter to ensure a fully developed flow entering the orifice. Similarly, the minimum allowable 

exit section length was 5 times the pipe diameter. The pipes connect to two thick-walled easy-

connect Schedule 80 PVC flanges (4881K236, McMaster-Carr Supply Company, Elmhurst, IL), 

between which is sealed a 3.2 mm (1/8”) acrylic orifice plate using rubber gaskets and silicone. 

A 20.6 mm (13/16”) orifice diameter was selected based on the design flow rate and the diameter 

 

Figure 2.8: Physical construction of orifice meter, including ball valve (1), entrance pipe (2), orifice plate (3), 

exit pipe (4) and flange taps (5). 

 

of the entrance pipe such that the ratio was between 0.4 and 0.8. Eight flange taps were 

strategically placed on the flanges, 4 upstream and 4 downstream to measure pressure difference 

1 4 

3 

5 2 
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across orifice plate (ASME 2004). An inclined-vertical oil manometer (Series Mark II, Dwyer 

Instruments, Inc., Michigan City, Indiana, USA. Figure 2.9) was used to measure the  

 

Figure 2.9: Inclined-vertical manometer with adjuster and level. 

 

differential pressure by averaging the 4 measurements. A 50.8 mm (2”) PVC ball valve was 

fitted at the entrance of the orifice to control air flow. Variable lengths of 25.4 mm (1”) OD clear 

rubber hoses were connected to either end of the orifice, directing air from the ventilation supply, 

through the meter, and to the chamber. 

E

AB

1.59 cm (5/8")

Orifice

Gasket

Orifice plate

Pressure tap

C

Air Flow

Flange

D
9.53 mm (3/8")

 

Figure 2.10: Internal schematic of orifice meter showing dimensions and location of orifice plate. 
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2.4 Thermal Environmental Control Subsystem (Chamber Air Conditioning Unit) 

2.4.1 Approach 

The following section documents the overall design parameters of the Thermal Environmental 

Control Subsystem. Section 2.4.2 covers specific details regarding the components. 

Temperature and humidity are controlled in each chamber with a Thermal Environmental 

Control Subsystem (TECS, Figure 2.1), with a separate Chamber Air Conditioning Unit (CACU) 

located above each chamber, a common chilled water source and an external blower, both 

located in the Equipment room. Each CACU contains a filter to capture particulates, heat 

exchanger coils for cooling and dehumidifying, an electric resistance heater to raise the 

temperature back to supply set-point conditions, and an internal blower to provide constant air 

circulation within the chambers. The chiller supplies cold water to each individual CACU for 

moisture control. The external blower supplies background air through a manifold and the orifice 

meters to the chambers, providing fresh air for the animals. These components are all identified 

in Figure 2.11.  
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Figure 2.12 is a schematic of the psychrometric processes for air treatment in the CACU. Upon 

entering the heat exchanger, the air passes through a heat exchanger coil that cools the air down 

to saturation (1). When the relative humidity reaches 100%, the air is further cooled to condense 

moisture and lower the humidity ratio (2). Finally, the saturated air is heated up again to reach a 

user-defined supply air set-point (3). This set-point is lower than the set-point temperature for the 

chamber because it will mix with the air in the chamber, which is of higher temperature due to 

the sensible and latent heat produced by the animals. No fresh air (other than that from potential 

leakage) is added by the CACU, which only provides cooling, dehumidification and heating to 

the recirculation air. Fresh air is provided by the external blower and flow is measured by the 

orifice meter (Section 2.3). 
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Figure 2.12: Psychrometric chart showing the air conditioning process: (1) cooling; (2) cooling with 

dehumidification; and (3) reheat. (Image taken from 

http://commons.wikimedia.org/wiki/File:PsychrometricChart-SeaLevel-SI.jpg. Accessed June, 2013).  

 

2.4.2 Construction 

The REMS TECS was custom-constructed based on a set of design criteria, and installed by a 

local contract company (Polar Refrigeration Heating & Cooling Inc., Urbana, IL). The system 

consists of six individual CACUs for each chamber, a central chiller and an external blower.  A 

self-contained air-cooled chiller (Dimplex SV3000, Koolant Kooler, Kalamazoo, MI) with a 

capacity of 10.56 kW is located in the mechanical room adjacent to the animal space. In the main 

animal space, one CACU is mounted above each of the six chambers. Flexible tubing with 25.4 

mm (1”) OD connects the supply/return lines from the chiller to the CACUs, with insulation 

1 

3 

2 

http://commons.wikimedia.org/wiki/File:PsychrometricChart-SeaLevel-SI.jpg
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(25.4 mm (1”) Armaflex, Armacell, Münster, Germany) to prevent condensation. The 

supply/return manifold is equipped with flow bypass to ensure adequate flow being supplied to 

other chambers when one or more chambers are shut. Likewise, 12.7 mm (1/2”) flexible tubing 

with insulation (12.7 mm (1/2”) Armaflex, Armacell, Münster, Germany) provides cold water 

supply/return lines to each individual chamber from the main line. Each conditioning box is 

constructed within a steel frame with insulating 12.7 mm (1/2”) foam-board covering. A pleated 

filter measuring 305 mm x 457 mm x 25.4 mm (12” x 18” x 1”), fitted vertically, prevents any 

particulates from entering the heat exchanging coils. Single-circuit, double-rowed cooling coils 

recirculate the chilled water, providing continuous air cooling for the removal of excess moisture. 

After the air reaches near saturation, a 750 W electrical resistance heater (2XEF7, Tempco 

Electrical Heater Corp., Wood Dale, IL) reheats the air when necessary. Finally, a blower 

(1TDR3, Grainger, Lake Forest, IL) recirculates the air into the chambers. Temperature and 

humidity control is modulated by a controller with analog outputs (System 450 Series, Johnson 

Controls, Milwaukee, WI). A thermostat placed immediately before the supply duct monitors 

supply air temperature from the box to the chamber. This ensures that the air temperature being 

measured is the same as that being pushed into the chamber. 
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2.5 Ventilated Hood Metabolic Chamber 

2.5.1 Approach 

The following section documents the overall design parameters of the Ventilated Hood 

Metabolic Chambers. Section 2.5.2 covers specific details regarding the components. 

The underlying basis on which the REMS operates is that the concentrations measured by the 

system represent the change in concentration due to contributions from the animal. This is only 

true if no infiltration occurs in any part of the system, including the housing unit. In order to 

prevent infiltration, the chambers must be kept at positive pressure continuously. Positive 

pressure between inside and outside the chamber force air to escape outwards, reducing the 

potential for sample contamination with unintended outside air infiltration. This guarantees that 

the concentration of whatever gas is being sampled is diluted only by the known quantity of 

supplied fresh air through the orifice meter, which is being measured. A canvas hood connects to 

the rear of the chamber and allows for closure around an animal’s head while placed in the 

chamber. The opening size is large enough to fit a fully mature animal and the drawstring at the 

end of the hood can be tightened for smaller animals (Figure 2.13). A ventilation port for 

connection to the orifice meter provides constant fresh air for the animal (Figure 2.14). An 

automatic bowl-type drinker dispenses water whenever an animal pushes the nozzle, and a 

removable feed bin (Figure 2.15) allows easy access, weighing, and cleaning. For ease of 

transportation and cleaning, the chambers are made from polycarbonate panels and aluminum 

frames and set on rubber wheels. A transparent material was used to minimize blockage of the 

viewing area for the animals. Animal size was also considered in determining the chamber 

dimensions. Figure 2.16 depicts a completed chamber.
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Figure 2.13: Picture of chamber interior showing 

drinker, feed bin and canvas hood.  

 

 

 

 
Figure 2.15: Front view of feed bin with handles. 

 

 

Figure 2.16: Front view of completed chamber 

with removable door 

Figure 2.14: Internal picture of chamber top 

showing ventilation port and air conditioning unit 

return air duct. 
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2.5.2 Construction 

Each chamber was constructed according to design specifications provided to ShapeMaster Inc., 

a fabrication company based in Ogden, IL, using transparent polycarbonate panels mounted in 

aluminum framing with rubber gasket seals at all joints. These materials were chosen for their 

versatility, durability and air-tightness. The chambers are mounted on four identical rubber 

wheels set on aluminum casters. The drinker (C20103N, Nasco Inc., Fort Atkinson, WI) is 

mounted in the corner of the chamber and is connected to a water line from the top of the 

chamber (Figure 2.13). The custom-constructed acrylic removable feed bin (30” x 24” x 10”, 

Figure 2.15) suspends from a lip around the top of the bin placed on an aluminum frame flange 

near the bottom of the chamber. The feed bin, drinker, and the head of the animal in the 

chambers may be accessed through a hinged door (3/4 the height of the chamber) with rubber 

seals around the edges and latches along the non-hinged side. The door is easily removable if 

needed (Figure 2.16). A drain on the bottom of each chamber was incorporated as a safety 

feature in the event of a burst water pipe, to prevent the chamber from filling with water. The 

back of the chamber is constructed using aluminum sheet with an opening for the animal’s head. 

A zippered canvas hood is bolted to a frame attached to the sheet metal with a drawstring 

opening to create an enclosure around the animal’s head. The animal can stand and lie down 

while secured with its head inside the chamber. Ventilation and gas sampling ports are located in 

the top of each chamber. Dimensions are shown in Figure 2.17. 
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Figure 2.17: Back, top, side and front views of chamber (1.69m * 0.91m * 0.77m), including dimensions. 
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2.6 Infrared Photoacoustic Spectroscopy Multi-Gas Analyzer (INNOVA 1412i) 

2.6.1 Approach 

The following section documents the sampling sequence and frequency settings of the gas 

analyzer. Section 2.6.2 covers specific details regarding the internal working of the INNOVA. 

During normal usage of REMS, 5 gases may be sampled: nitrous oxide (N2O), carbon dioxide 

(CO2), sulfur hexafluoride (SF6), ammonia (NH3) and methane (CH4). For both chamber and 

background concentration measurement, the sampling time is approximately seven minutes to 

sample all gases. This time requirement may be reduced if fewer gases are measured. For all 

gases, a total of 14.43 minutes (866 seconds) is required for each chamber-background sequence. 

For each chamber, 10 measurements are taken over a course of 433 seconds (43.3 seconds per 

measurement) and the average of the last four measurements is considered the considered to be 

representative of the sample concentration. The raw data and average are all saved by the control 

software.  Following sample measurements, 10 measurements of the background air are collected, 

which is used as the background concentration for the emissions calculation (Figure 2.18). In the 

emissions calculations, the last four measurements from the background are averaged and 

subtracted from the average of the last four measurements from each chamber to calculate 

emission rate. Each sample takes 43.3 seconds due to the time it takes to rotate between filters 

for each gas, which is done automatically inside the INNOVA gas analyzer. One complete 

REMS iteration of all 6 chambers and background concentration takes approximately 86 minutes 

to complete. 

 



27 

 

 

Figure 2.18: REMS sampling setup showing sampling sequence and time. Note the background air is sampled 

after each chamber, providing a more reliable background concentration for emission calculations.  

 

2.6.2 Equipment 

The LumaSense Photoacoustic Gas Monitor (INNOVA 1412i, LumaSense Technologies, Inc., 

Santa Clara, CA) is a highly accurate, reliable and stable quantitative field gas monitor. It uses 

the photoacoustic infrared detection method for measuring the sampled gas, allowing it to 

measure almost any field gas that absorbs infrared light. With a unique cross-

compensation feature the gas analyzer compensates for interference between the measured field 

gases. 

Appropriate optical filters are installed in the INNOVA 1412i's filter carousel so that it can 

selectively measure the concentration of up to 5 component gases and water vapor in any air 
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sample. For the purposes of this experiment, the filters required are listed in the following table 

(Table 2.1). The INNOVA 1412i can compensate for interference between the measured field 

Table 2.1: Gas measurement capabilities selected for the INNOVA 1412i implemented in the REMS, 

including required filters and detection limit for each gas. 

Gas Molar Mass Optical Filter No. 

Sample Integration Time 

(SIT)(s) 

Detection limit 

(ppm) 

N2O 44.013 985 1 0.066 

CO2 44.01 985 1 154 

SF6 146.06 975 1 0.022 

NH3 17.031 976 5 0.2 

CH4 16.04 969 5 0.4 

 

gases, using the unique cross-compensation and water vapor compensation feature. The gas 

analyzer detection limit is gas-dependent, and it can detect methane emission as low as 0.4 ppm. 

 

Figure 2.19: (Internal workings of the photoacoustic analyzer) (Reprinted from LumaSense, 2013). 

  

http://www.lumasenseinc.com/EN/products/gas-monitoring/gas-monitoring-instruments/technical-information-of-gas/cross-compensation.html
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2.7 Instrument Control Subsystem (LabVIEW) 

2.7.1 Approach 

LabVIEW (Version 8.2.1, National Instruments, Austin, TX), short for Laboratory Virtual 

Instrument Engineering Workbench uses a visual programming language “G” to create graphical 

block diagrams that correspond to physical pieces of the system for interface, data acquisition, 

and control. In the REMS system, there are three versions of software to implement in various 

operations of the system. The various versions of the control software are capable of: (1) 

receiving and recording the dry bulb temperature, dew point temperature and relative humidity 

outputs collected by the data acquisition unit; (2) outputting on/off signals to the relay which 

controls each solenoid; (3) transferring data to and from the gas analyzer and recording 

concentration measurements; and (4) calculating and recording emission rates as the necessary 

data are collected. The user interface is designed to be easy to understand and simple to use. 

2.7.2 Implementation 

The goal of the ICS created and operated in LabVIEW is to provide an easy way of controlling 

the solenoids and a clear way of recording and displaying measurement results for automation of 

the REMS instrumentation. For the purpose of REMS operation, three programs were developed. 

Appendix A and Appendix E offer additional description and details on the software and 

operation of the system. In order to initiate operation of each program, the “Run” arrow block 

near the top left side of the window should be clicked. In order to end the program, the button 

labeled “STOP” in the lower or upper right-hand side of the window should be clicked. The 

“Stop” block along the top left should not be clicked to end the program.  
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 (1) “XDOUT.VI” controls only the solenoids inside the multiplexer. The physical relay interface 

is configured with 4 double-ended channels, and the controls are separated into two ports. The 

first 4 solenoids are controlled by the low side of the channel (“FIRSTPORTCL”) while the rest 

are controlled by the high side (“FIRSTPORTCH”). For our operation, the channels are 

controlled individually. Manually clicking the switch in this interface energizes the solenoid 

selected. Only one solenoid may be turned on at once, and each solenoid must be turned off 

before exiting the program. Figure 2.20 shows the user interface for “XDOUT.VI”. This code 

does not collect or record any data and is typically used for system troubleshooting. It is also 

useful for conducting system tests when it requires steps not available in existing programs. 

 

Figure 2.20: Screenshot of "XDOUT.VI" showing FIRSTPORTCL, which provides manual control to 

energize and de-energize solenoids 1-4. 
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(2) “Project(2).vi” should be operated for emissions studies with all six chambers active. The 

program follows the sampling strategy for all six chambers, as described in Section 2.6. The 

solenoids are automatically controlled based on the status of the gas analyzer. All parameters 

necessary for calculating emission rate are collected and recorded in a text file, and emission 

rates are automatically calculated and recorded as well. The only user inputs required are the 

flow rates for each orifice meter and barometric pressure. The emissions equation in this file is 

known to have an error, so emissions should be manually calculated following data collection 

when using this version.  

(3)  “Project(3).vi” should be operated for emissions studies with one active chamber at a time, 

such as recovery tests. Only one chamber (and background) will be sampled for the entire 

sequence. The user defines which chamber should be sampled using the pull-down chart on the 

upper right corner prior to initiating the program. This program does not allow the user to input 

orifice meter flow rates or barometric pressure, nor does it perform emission rate calculations. 

Users should record test conditions manually and complete calculations after running the test. 

“Project(3).vi” allows for 10 samples (433.3 seconds) from the background followed by 90 

samples (3899.7 seconds) from the chamber, then repeats this cycle for the duration of the test. 

One cycle was completed in roughly 4333 seconds, or 1.2 hours. All gas concentration, 

temperature and relative humidity raw data are recorded in the saved data file. 

In ”Project(X).vi”, LabVIEW receives temperature and relative humidity sensor outputs that 

were collected by the data acquisition unit and concentration readings from the gas analyzer. 

These readings are displayed onto the screen in real time on the “Display” page (Figure 2.21).  
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Figure 2.21: First page (Display ) of "Program(2).vi" with date and time, gas concentrations and sampling 

counter shown. Arrows show direction of gas flow, the color green indicates active status while red indicates 

stand-by status. 

 

Barometric pressure and orifice flow rates are manually entered on the “Control” page (Figure 

2.22) and are essential for emissions calculations. For barometric pressure, the current reported 

measure should be accessed from www.noaa.gov for Champaign County immediately before 

initializing experiment. Orifice flow rates can be read from vertical-inclined manometers next to 

each chamber (For specific location and details on converting pressure to flow rate, refer to 

Section 2.3 and 3.3.4). The sampling sequence and frequency are automatically followed when 
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the program is started. A counter shows which chamber (or background) is being sampled, along 

with the number of samples already completed in the current sampling cycle.  

 

Figure 2.22: Second page (Control ) of "Program(2).vi", allowing user to choose VISA resource name and 

temperature set-point. 

 

A waveform data chart displays current and previous concentration readings so simple 

visual assessments can be made. 
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2.7.3 Alert System  

For the safety of animals and integrity of experiment, a series of alerts were implemented into 

the LabVIEW program. Upon breaching a set threshold of environmental conditions, such as an 

upper and lower acceptable limit on CO2, an alarm email is sent out to predetermined address, 

which can be directed to one or more computers or mobile phones. CO2 levels are constantly 

measured by this system. CO2 levels that are too high may indicate a faulty ventilation system 

and cause animals to suffocate. Likewise, CO2 levels that are too low may indicate a cow that 

has pulled itself out from the chamber, causing useless concentration readings and false emission 

rates. This system will serve to prevent accidental loss of livestock and time. 

2.7.4 Limitations 

In “XDOUT.VI”, the user must remember to deactivate each solenoid after use. Clicking the 

“STOP” button terminates the program but has no effect on the state of each individual solenoid. 

In order to check whether each solenoid activated, refer to Section 4.1.4.  

In “Project(2).vi”, the emission rate equation is incorrect. Gas concentration, temperature and 

relative humidity raw data should be downloaded from saved files and used to calculate emission 

rate using Equation 4.1. Pressure difference from the inclined-vertical oil manometers should be 

recorded on a separate excel sheet, also needed for ER calculations. Sampling time and sequence 

is set and can only be changed in the code. 

In “Project(3).vi”, there is no input location for manometer readings. Gas concentration, 

temperature and relative humidity raw data should be downloaded from saved files and used to 

calculate emission rate using Equation 4.1. Pressure difference should be recorded on a separate 
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excel sheet, also needed for ER calculations. Sampling time is set and can only be changed in the 

code. Chamber to be sampled can be chosen in the first (Display) page. 
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Chapter 3: Quality Control and Performance Evaluations 

3.1 Description of Tests 

In order to satisfy quality assurance needs, a series of quality control tests were completed, 

including component leakage tests, equipment calibration, chamber pressure mapping and gas 

recovery tests. 

A leakage test was conducted on the gas sampling system to demonstrate integrity of the gas 

samples taken from each chamber by verifying that each part of the sampling system was 

adequately sealed. This is performed by measuring both the quantity of air entering the supply 

side of the multiplexer and exiting the exhaust side and comparing the two values for 

discrepancy. 

Calibration was completed for each orifice meter. Following the ASHRAE Fundamentals 

Handbook and ASME Flow Measurement protocols, a reference Chamber-Nozzle Airflow 

System (CNAS) for calibrating orifice meters was custom designed and assembled using a 

performance standard from ANSI/AMCA Laboratory Methods of Testing Fans for Certified 

Aerodynamic Performance Rating (Ramirez et al, 2013).  

A chamber uniform air distribution test was conducted to ensure the uniformity of air distribution 

within each chamber by observing the mixing of gases inside the chambers and verifying any 

points of leakage into the chamber. This serves to show representative gas concentration is 

obtained at any location inside the chamber. 
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A chamber internal static pressure validation test was conducted to confirm that positive static 

pressure is maintained inside all chambers at all times. A total of 15 readings (5 readings from 3 

heights each) inside each chamber were taken to sufficiently map a pressure chart.  

Calibration was done for the INNOVA 1412i gas analyzer. With reference to Moody et al. 

(2008), a revised calibration method was followed and reported. This revised method takes 

humidity interference into account by using Nafion tubing during calibration. 

A component leakage test was done to validate the integrity of the REMS sampling line and 

locate possible areas of sample contamination or dilution. This test was used to compare the 

concentration of gas before and after entering the REMS sampling line. 

A system performance validation test was conducted to quantify the accuracy of the REMS 

emission calculations. This test shows the reliability of the whole system to detect a known 

quantity of injected gases. 
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3.2 Multiplexer Leakage 

3.2.1 Approach 

The following section documents the approach and method of conducting the multiplexer 

leakage test. For step-by-step instructions, refer to Appendix B. 

A pump (PTFE-coated, model EW-79200-30, Cole-Parmer, Inc., Vernon Hills, IL), a rotameter 

(RMB-50D-BV, Series RCC, Dwyer Instruments, Inc., Michigan City, IN)), the gas sampling 

multiplexer unit and another rotameter (EW-32460-44, Cole-Parmer, Inc., Vernon Hills, IL), 

were arranged in series. The first rotameter was placed between the pump and inlet port of 

solenoid 1 through 6, respectively. The second rotameter was either placed after the exhaust 

manifold or between the energized side of each solenoid and the gas analyzer. An adjustable 

bleeder was placed at a T-junction between the pump and rotameter to allow for control of air 

flow rate being provided. The solenoids were tested under two configurations: 

1: Non-energized solenoids. Each solenoid was tested in its non-energized position (open to 

exhaust, closed to analyzer). The pump was started, allowing gas to flow through the multiplexer 

inlet of one chamber, pass through the solenoid and exit from the exhaust manifold. This test was 

done on each solenoid separately. The gas sampling line inside the multiplexer, including the 

solenoid, was deemed leak-free if reading from Rotameter 1 was identical (within the accuracy 

of the rotameters) to that from Rotameter 2. Rotameter 1 and 2 were operated in both locations 

for this test to ensure identical readings. 
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Figure 3.1: Multiplexer leakage test configuration for non-energized solenoids (example for Solenoid 3): 

Rotameter 1 was shown connected to Solenoid 3, with solenoid off and in its normally-off condition. 

Rotameter 2 was connected to the exhaust manifold. All other solenoids were sealed. 

 

2: Energized solenoids. Each solenoid was individually tested in the energized state (closed to 

exhaust and open to analyzer). Once each solenoid was turned on, the airflow was directed to the 

gas analyzer supply line instead of the exhaust to the room. The pump was started, allowing gas 

to flow through the multiplexer inlet of one chamber, pass through the solenoid and exit through 

the sampling line leading to the gas analyzer. The system was allowed to remain on for 5 minutes 

before conducting the test. Readings from Rotameter 1 and 2 were recorded. The sampling line 

inside the multiplexer, including the solenoid, was deemed leak-free if reading from Rotameter 1 

was identical (within the accuracy of the rotameters) to that from Rotameter 2. Rotameter 1 and 

2 were operated in both locations for this test to ensure identical readings. 
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Figure 3.2: Multiplexer leakage test configuration for energized solenoids (example for Solenoid 3): 

Rotameter 1 was connected to Solenoid 3, with solenoid on, directing flow to the gas analyzer through the 

sampling line. Rotameter 2 was connected to the multiplexer outlet directing the sample to the gas analyzer 

inlet. 

 

Note that the rotameters did not require calibration for this test. This is justifiable by means of a 

simple test. Assuming that a test line is challenged with a standard flow rate of 4 lpm, the 

uncalibrated rotameter is placed at the inlet of the test line is reading 5 lpm. This test line is 

considered leak-free if the rotameter flow rate remains at 5 lpm after being moved to the outlet of 

the line. As long as rotameter readings match at different locations along the sampling line, they 

do not need to be accurate. 

3.2.2 Results 

For testing the gas sampling lines for directing samples to the exhaust, the readings from 

Rotameter 1 were equal to those from Rotameter 2 for all seven gas sampling configurations. 

This result indicates that the sampling lines in the multiplexer, including the solenoid, for each of 

the seven gas samples, are leak-free. 

For testing the gas sampling lines for directing samples to the analyzer, the readings from 

Rotameter 1 were equal to those from Rotameter 2 (state +/- accuracy – based on precision of 
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rotameter scales, ½ of smallest division) for all seven gas sampling configurations. This result 

indicates that the sampling lines in the multiplexer, including the solenoid, for each of the seven 

gas samples are leak-free.  
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3.3 Orifice Meter Calibration 

3.3.1 Approach 

A calibration for the orifice meter was required for accurate ventilation measurement. Since the 

emission rate equation uses ventilation rate as a variable, obtaining an accurate reading is 

required. But since flow rate inside the orifice meter cannot be directly measured, a formula to 

calculate the flow rate using differential pressure across the orifice plate must be derived through 

calibration. Following the ASHRAE Fundamentals Handbook and ASME Flow Measurement 

protocols, a reference Chamber-Nozzle Airflow System (CNAS) for calibrating orifice meters 

was custom designed and assembled using a performance standard from ANSI/AMCA 

Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating (Ramirez et 

al., 2013). 

3.3.2 Construction of calibration setup 

The Chamber-Nozzle Airflow System (CNAS) consisted of two 610 mm x 610 mm (24” x 24”) 

wood tunnels forming the entry and exit sections, with lengths of 1219 mm (48”) and 914 mm 

(36”), respectively (Figure 3.3). The same centrifugal blower (Peerless Blowers, Hot Springs, 

NC, USA ) used in the ventilation supply system to the REMS chambers was relocated for the 

test and placed at the opening of the CNAS to provide a constant air flow simulating actual 

operational conditions.  An iris damper controlled flow rate through the CNAS by exhausting 

excess air from the CNAS to release pressure accumulated upstream of the nozzle.  Three steel 

mesh flow conditioners (25 mm apart from one another) were placed 305 mm (12”) inside the 

leading edge of the entry section to direct air flow and remove turbulence. A 19.05 mm (0.75”) 

nozzle plate mounted in the center of a 610 mm x 610 mm x 12.7mm (24” x 24” x 0.5”) plywood 

board was secured between the entry and exit sections using 16 clamps. Four pressure taps were 
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placed up and downstream of the nozzle. The differential pressure across the nozzle was 

measured using an inclined-vertical oil manometer (Series Mark II, Dwyer Instruments, Inc., 

Michigan City, Indiana, USA).  

Figure 3.3: Schematic of Chamber-Nozzle Airflow System calibration arrangement showing relative location 

of blower, nozzle, and orifice meter. 

 

3.3.3 Calibration of orifice using CNAS setup 

Calibration was completed for an airflow range of 368 to 510 lpm (13 to 18 cfm), including 21 

different flow rates, 10 increasing, 1 peak, and 10 decreasing. Temperature and relative humidity 

were monitored during the calibration using a calibrated handheld device (Hydropalm 23, 

Rotronic Instrument Corp., Hauppauge, NY). Reference flow rate for this calibration method was 

calculated following this equation (AMCA/ASHRAE 2007):  

      √
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Using Equation 3.1, the theoretical flow rate through the orifice meter was calculated using the 

differential pressure, temperature, relative humidity and barometric pressure along with the 

specific design dimensions and parameters for each orifice meter. Differential pressure, 

temperature and relative humidity were measured in the experiment, while barometric pressure 

was calculated from a function of altitude (ASHRAE 2009). The following linear regression 

curve was fitted to the calculated results to model the relationship between reference flow rate 

and orifice meter flow rate: 

   
                                                                   (            ) 

Where: 

                                                             

Reference flow rate provided by the CNAS was plotted on the x axis while actual orifice meter 

flow rate was plotted on the y axis. Using the inversion of Equation 3.2, shown as Equation 3.3, 

the actual flow rate corresponding to any theoretical orifice meter flow rate can be determined: 

     
 

 
    

                                                            (            ) 

Since each orifice meter is slightly different in dimensions, six unique calibration curves were 

generated. These curves can be used to calculate actual flow rates from differential pressure 

readings. Calibration was performed once for each of the six orifice meters, as calibration does 

not require replicates (AMCA/ASHRAE 2007). 
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3.3.4 Results 

The following table (Table 3.1) shows a summary of results pertaining to the linear calibration 

curves for all orifices. Most importantly, the percent error at experiment conditions (481 lpm) is 

less than 0.04% for all chambers, demonstrating a very accurate calibration. 

Table 3.1: Summary of calibration linear regressions for each orifice meter showed each one performed 

differently and thus each one required individual calibration. Relative error at 481 lpm was very small and 

an indicated of an accurate calibration. At the 0.05 confidence level, the slope is significantly different from 1.   

Orifice 

Meter Slope, c 

Standard Error of 

c 

Regression Standard 

Error (lpm) 

Measurement Standard 

Error (lpm) 

% error at 

481 lpm 

1 1.0199 0.00162 0.1068 0.1048 0.02% 

2 0.9650 0.00159 0.1035 0.1073 0.02% 

3 0.9735 0.00157 0.1024 0.1051 0.02% 

4 0.9244 0.00248 0.1604 0.1735 0.04% 

5 0.9865 0.00271 0.1730 0.1754 0.04% 

6 1.0699 0.00250 0.1629 0.1523 0.03% 

 

An example of a calibration curve is shown in Figure 3.4. A regression coefficient of one would 

indicate the instrument performed identical to the theoretical flow of an orifice (Equation 2.1). 

Coefficients of determination from the linear regression were greater than 0.99 for each 

calibration curve. Regressing the flow rates instead of the calibration reference flow rate and the 

orifice meter differential pressure was advantageous because it accounts for the difference in air 

density when the orifice meter is used in conditions other than at calibration. The intercept of the 

calibration curve is forced through zero as no flow through the nozzle should result in zero flow 

through the orifice meter (Ramirez et al., 2013). Current relationships between manometer 

differential pressure and volumetric flow rate are shown in Table 3.2. 
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Figure 3.4: Example of one orifice meter calibration curve showing similar behavior between the theoretical 

orifice meter flow and actual flow (calibration reference). Linear regression was forced through zero as no 

flow at the calibration reference should result in no flow at the orifice meter. 

 

Table 3.2: Volumetric flow rate (m
3
/s) with respect to manometer differential pressure for each chamber, 

where dP is differential pressure read off the manometer (in. wg) and rhoi is incoming air density calculated 

using dry bulb temperature, relative humidity and elevation (kg/m
3
). 

Orifice Meter Volumetric Flow Rate (m3/s) 

1 0.0074517 * (dP/rho_i)^(0.5) 

2 0.0078756 * (dP/rho_i)^(0.5) 

3 0.0078068 * (dP/rho_i)^(0.5) 

4 0.0082215 * (dP/rho_i)^(0.5) 

5 0.0077040 * (dP/rho_i)^(0.5) 

6 0.0071034 * (dP/rho_i)^(0.5) 
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3.4 Chamber Internal Pressure Map 

3.4.1 Purpose 

The design of the chamber required that all chambers maintain a positive internal pressure with 

reference to the background. The positive pressure system operates with intentional leakage 

occurring out of the chamber, eliminating infiltration. In order to confirm a constant positive 

pressure inside all chambers at all times, a chamber internal pressure validation test was 

conducted. 

3.4.2 Approach 

A total of 15 differential pressure readings (5 locations from 3 heights within the chamber, 

Figure 3.5) between inside and outside each chamber were taken to create a pressure chart. The 

orifice meters were completely open, the holes on the bottom of the chambers were sealed, the 

feed bin was inside the chamber, and the opening was maintained at an opening area similar to 

when animals are present. An electronic differential manometer (Model 260-MS4, SETRA, 

Boxborough, MA) was used for this test.  The negative end of the pressure sensor remained open 

to the background air while the positive end was connected to a plastic tube with small bottle 

acting as a buffer attached at the other end. This buffer was included to reduce the readings from 

being affected by drafts inside the chamber. The buffer was affixed to a rigid pole for ease of 

measurement. A series of holes were poked into the sides of the bottle to prevent pressure build-

up. This test was conducted once a day on 3 separate days to assess repeatability of results.  
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Figure 3.5: Location of pressure sample points inside chamber. 

 

3.4.3 Results 

Through analysis of the pressure test results, positive pressure inside the chamber was observed. 

Due to the loose nature of the hood, a small movement might induce a  measurable pressure 

change, i.e. reducing the hood opening area will cause a more positive pressure while increasing 

the hood opening area will cause a near zero pressure. During normal test conditions, when the 

animal is immobile, the internal pressure should be positive for our test.  Table 3.3 shows the 

average reading +/- standard deviation from three trials. The lowest observed pressure was 16.7 

Pascals, which was still sufficiently positive. This shows that the chambers do not have openings 

that are sources of infiltration. 
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Table 3.3: Pressure mapping (unit: Pa) for chambers at five sample locations and three chamber heights; SD 

= standard deviation (unit: Pa); n = number of samples. 

  Differential Pressure (∆Pa) = (Average  ± SD) 

  Sample Location  (n=3)   Region (n=5) 

Chamber 1 2 3 4 5   Upper Middle Lower 

1 25±2.1 25 ± 0.9 23 ± 1.7 24 ± 1.4 24 ± 1.1   23 ± 1.5 25 ± 1.4 24 ± 1.1 

2 23±3.1 22 ± 3.7 21 ± 3.4 19 ± 1.5 19 ± 0.4   22 ± 3.0 22 ± 2.4 18 ± 0.9 

3 23±0.9 22 ± 4.1 21 ± 0.4 24 ± 2.7 21 ± 1.2   24 ± 2.2 21 ± 1.1 22 ± 2.6 

4 20±2.1 21 ± 3.6 22 ± 6.5 20 ± 2.2 17 ± 2.3   17 ± 1.7 22 ± 3.0 21 ± 3.2 

5 33±6.7 35 ± 2.1 35 ± 1.6 35 ± 0.6 33 ± 2.2   35 ± 1.8 35 ± 1.2 32 ± 4.4 

6 19±0.5 19 ± 2.7 17 ± 1.9 17 ± 2.5 20 ± 0.8   17 ± 2.5 19 ± 1.1 19 ± 1.1 
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3.5 Chamber Uniform Air Distribution Test 

3.5.1 Purpose 

In order to verify how well the gas inside the chamber is mixing, a gas mixing test was 

conducted. This test serves as an important tool in verifying that the gas sample taken is 

representative of the entire chamber, that there is not additional ventilation air entering the 

chamber from a location other than the orifice, and that gases generated by the cattle are well-

distributed throughout the chamber and not accumulating in a stagnant air pocket (and thus not 

being measured). 

3.5.2 Approach 

Air mixing was assessed using a smoke test. Since all chambers are identical, this test was only 

conducted on Chamber 1, though it might be advisable to test all chambers periodically as the 

system ages. First, the chamber was prepared for the test.  In addition to supply and return ducts 

for the air recirculation unit, there is a ventilation port supplying fresh air, a sampling port and a 

sampling return port (Figure 3.6). Holes in the top of the chamber for gas sampling were blocked. 

One of the ports was left open to serve as the inlet for the ventilation air. The test was conducted 

without an animal in each chamber. The hood and panel normally used to create an enclosure 

around the animal (Figure 3.7) was partially sealed. 
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Figure 3.6: Bottom view of the top of the chamber 

showing supply (1) and return (2) air ducts, water 

line (3), sampling line (4), sampling return line (5) 

and ventilation port (6). 

 
Figure 3.7: Styrofoam board within a section of 

14" diameter plastic tube acts as an animal's head 

and sufficiently seals the hood.

 

A fog machine (Model 1700, Rosco Laboratories Inc., Stamford, CT) was placed in the feed bin 

inside the chamber. The smoke machine was turned on for 30 seconds. The general movement of 

smoke was observed. The test was only done on chamber 1, but repeated numerous times. 

3.5.3 Results 

Upon turning on the smoke machine, the chamber was filled with gray smoke within 10 seconds. 

Upon meeting the ventilation and supply air, the smoke mixed with chamber air and quickly 

dissipated, escaping through cracks left in the animal hood. Through visual observation of the 

behavior of the smoke inside the chamber, the gas inside the chamber should be observed to mix 

well and quickly. The location of the sampling port is not essential to accurate concentration 

readings as the air inside is well mixed and uniform, providing the same concentration 

throughout the chamber. 
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3.6 INNOVA 1412i Calibration 

3.6.1 Purpose 

The following section documents the approach and method of conducting the gas analyzer 

calibration. For step-by-step instructions, refer to Appendix C. 

In order to maintain levels of high accuracy in gas concentration analysis, the INNOVA 1412i 

gas analyzer should be periodically calibrated, according to the discussion in the following 

section. 

3.6.2 Approach 

The INNOVA’s accuracy should be checked weekly during daily operations. For each gas being 

monitored, a sample of gas with certified concentration should be directly injected into the 

INNOVA. The INNOVA 1412i should be calibrated when the difference between the 

manufacturer-specified concentration of the certified gas and the INNOVA reading is above an 

absolute value of 5%. Otherwise, it is recommended that it be calibrated every 3 months. For the 

calibration of the INNOVA a series of known concentration gases are required. The only upper 

and lower constraints for the concentrations are the INNOVA’s detection limits. A Gas Dilution 

System (Model No. 4040, Environics, Tolland, CT) was used to provide a stable gas flow. A 

water bath capable of reaching between 10 and 30°C was required to control the temperature and 

humidity of the gases, as psychrometric properties are crucial to the calibration sequence. A 

series of Teflon tubes and Swagelok connectors are required to provide leak-free gas connections 

between the calibration gas cylinders and the INNOVA. For N2O, CO2, and CH4, their 

concentrations are affected by humidity, and thus to ensure the same level of humidity while 

calibrating, Nafion tubing was submerged in the water bath to reach similar to chamber operating 
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conditions. A zero-gas calibration using N2 should be conducted first. A water vapor calibration 

should be next, followed by the other gases required in the experiment (N2O, CO2, CH4, NH3 and 

SF6). Remember to reload the INNOVA’s filter after each calibration for the new filter 

calibration settings to take effect. Immediately following the calibration, a post-calibration 

concentration check should be done to verify the accuracy of each gas and ensure a valid 

calibration was done.  
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3.7 System Evaluation (Concentration Recovery) Test 

3.7.1 Purpose 

The following section documents the approach and method of conducting the system component 

leakage test. For step-by-step instructions, refer to Appendix D. 

A system component leakage test was conducted using a tracer-gas in order to identify problems 

with the gas sampling subsystem such as leakage in the lines or a gas analyzer fault. The gas 

sampling line is comprised of the multiplexer unit, 7 pumps, 100 ft of Teflon tubing to route and 

distribute samples and the INNOVA gas analyzer. This allows many potential sources of leakage 

that could dilute the sample analyzed and yield an erroneous emission calculation. This test 

should be performed before every recovery test. 

3.7.2 Methods 

For this test, SF6 (6.293 ppmv ±1%, primary certified) served as the tracer gas and was injected 

directly into the gas sampling port outside the chamber (Figure 3.8). Since the chamber leakage 

test identified no infiltration, the chamber may be regarded as contributing negligible leakage. 

For the sampling system of each chamber, one at a time, SF6 was supplied through the vacuum 

pump, multiplexer, and into the gas analyzer (Figure 3.9). The Teflon coated pump was set at 17 

lpm to mimic actual experiment conditions. Absolute leakage along the gas sampling line was 

quantified by the following formula: 

                            ⁄                                   (          ) 
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Figure 3.8: Picture showing injection tube directed into sampling port. 
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Figure 3.9: Leakage test setup showing gas injection location and direction. Ball valve shows location of 

orifice meter. 

 



56 

 

The INNOVA has a detection limit of 0.006 ppm for SF6. For our injection rate, this accuracy 

equates to a 0.1% difference. Since the INNOVA can readily detect such minute changes, it is 

more than adequate for SF6 concentration detection. 

3.7.3 Results 

The sampling line showed no significant leakage, with differences of within 0.1 ppmv between 

each chamber. Recoveries greater than 100% were within the measurement uncertainty of the 

INNOVA gas analyzer (≤ ±5%). Results indicated that there was no gas dilution or leakage into 

the sampling lines from the chamber to the gas analyzer, ensuring no unexpected uncertainty due 

to differences in the INNOVA (Figure 3.10). 

 

Figure 3.10: Concentration recovery results for all 6 chambers showing measured, target and concentration 

agreement. 
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3.8 System Performance (Mass Recovery) Test 

3.8.1 Purpose 

The following section documents the approach, an overview of the method, and sample results of 

a system recovery test. For step-by-step instructions, refer to Appendix E. 

In order to validate emission calculations with animals, a system performance test was conducted 

to show the accuracy of our system. The integrity of the entire REMS system was quantified 

using a recovery test for system settings simulating those with animals present. SF6 was selected 

for the tracer gas because animals do not produce it through ruminant activities, thus other 

animal activities in the background would not be expected to impact the results of this test. The 

recovery test should be done for all six chambers before and after every emission trial with 

animals.  

3.8.2 Methods 

Recovery tests were performed for one chamber at a time. The LabVIEW file “Project(3).vi” was 

used for this test. Tracer gas (6.293% ppmv ±1%, primary certified SF6) was introduced into only 

the chamber being tested, and the chamber and background concentrations were sampled during 

a test. A Gas Dilution System (GDS) (Model No. 4040, Environics, Tolland, CT) was used to 

provide a constant gas injection rate of 4.0 lpm (+/- 0.04 lpm). The GDS was used for the mass 

flow controller feature with no dilution because it can provide a very stable flow rate. A 30-

minute warm-up period is required prior to use of the GDS. The gas was supplied directly into 

the chamber, with an injection point adjacent to the ventilation port to encourage complete 

mixing with the air inside the chamber (Figure 3.11). The rear hood was loosely blocked, also 

simulating the partial coverage when an animal is in the chamber (Figure 3.7).  
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At the start of the software for this test, 10 samples of background air were taken prior to any gas 

injection. The control software automatically switched to the user specified chamber after 10 

samples of background air. After 5 samples of chamber air, sufficient data for a stable 

background concentration had been collected. At this time, the Gas Dilution System was turned 

on and the injection of SF6 initiated. The system must be at steady state before assessing the final 

concentration, and approximately 20 minutes with constant gas injection were required to attain 

steady state. After attaining steady state, the injection of gas was stopped.  The system continued 

to monitor as the concentration returned to background conditions, which took about 40 minutes 

(Figure 3.12). All gas concentration, temperature and relative humidity raw data were recorded 

and used for emission rate calculation. 

 

 

Figure 3.11: Internal picture of chamber showing injection point (1) next to ventilation port (2). 

1 

2 
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Figure 3.12: Schematic of tracer gas (SF6) mass recovery experimental set-up including all sources of 

uncertainty. 

 

 

The recovery test should be done for each chamber before and after each test or trial with 

animals. After averaging steady state concentrations to provide a background concentration, the 

mass flow rate of the gas being generated was calculated using Equation 3.4.  

 ̇ 
   

     ̇        ̇ 
   

                                (            ) 

Where:  
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Volumetric flow rate can be converted to the correct unit according to the injected flow rate 

while density of cylinder is written on the cylinder. The emission rate calculated using 

measurements made with the REMS during the mass recovery test is found using Equation 3.5. 
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Molar mass and specific volumes can be calculated with simple internet tools. The percent of 

mass recovered come from the mass balance is calculated by the following formula: 

                 ̇  
      ̇ 

    ̇ 
                               (            ) 

For 100% recovered, i.e. the steady state mass of the tracer gas cylinder ( ̇ 
   
) equals steady 

state mass measured by the system ( ̇
  
      ̇ 
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So, with a known ER ( ̇ 
   
) compared to the ERrecovery test (measured by the system), the mass 

recovered can be evaluated by: 

 
               

 ̇ 
                                           (            ) 

3.8.3 Results 

An example of recovery test results is shown in Figure 3.13. The plot displays the recovery rate 

for five tests for each chamber. Results show recovery percentages of between 90% and 100% 

for all chambers over the five tests. Table 3.4 shows the average recovery percentages for all six 

chambers. This is a good result, as a recovery rate of above 90% is deemed acceptable for animal 

emission recovery rates. If the recovery rate was below 90%, suggestions are to look for leaks in 

the sampling line, chamber, or air conditioning unit.  
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Figure 3.13: Recovery test results for 6 chambers from 5 separate tests. Percent recoveries were between 90% 

and 100%. 

 

Table 3.4: Average recovery percentages in respect to chamber, including standard deviation. 

 

  

Chamber 1 2 3 4 5 6 total 

Average recovery percent 92.92 94.67 91.11 90.72 94.35 95.95 93.16 

Standard Deviation 1.15 1.60 1.23 0.58 1.16 1.01 2.15 
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Chapter 4: System Implementation (Assessment of Beef Cattle Emissions) 

4.1 General System Maintenance 

4.1.1 REMS System Maintenance Checks 

The following table (Table 4.1) is a comprehensive list of all maintenance checks and tests that 

should be conducted to maintain the integrity of the REMS. The “Check or Diagnostic Test” 

column indicates the check or test to be performed. The “Frequency/Timing” column indicates 

when or how often the check or test should be performed, if on a regular interval. The “Action 

Trigger” column indicates a parameter that signals the need to perform said check or test. Some 

items have both a frequency and a trigger for the check. The “Method Reference” column 

indicates the text and/or Appendix section that corresponds to the method for performing said 

check or test. 

Table 4.1: Maintenance Checks/Tests, including frequency/timing, action trigger and method references. 

Check/Diagnostic Test Frequency/Timing Action Trigger Method 

Reference 

Building Environmental 

Control System Check 

Before each 

experiment 

Animals in building 4.1.2 

INNOVA Accuracy Test Once every 2 weeks Sampling for gas 

measurements 

3.6; A.C 

Chamber Air Conditioning 

Unit Seal Check 

Once every month CACU opened/filter 

changed 

4.1.4 

Filter Check Variable Animals in chamber; 

building environmental 

control system used 

4.1.3 

Filter Replacement Variable Filter is dirty 4.1.3 

INNOVA Calibration Variable INNOVA Accuracy <95% 3.6; A.C 

Mass Recovery Test Before and after 

each experiment 

Changes to system 

components 

3.8; A.E 

Multiplexer Leakage Test Variable Recovery percent <90% 3.2; A.B 

Component Leakage Test Variable Recovery percent <90% 4.1.5 

Concentration Recovery Test Variable Recovery percent <90% 3.7; A.D 

Vaisala Accuracy Check Variable Recovery percent <90%  
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4.1.2 Building Environmental Control System 

Proper operation of the Building Environmental Control System (BECS) for the building that 

houses REMS is essential to maintain comfort and minimize gas concentrations within the 

building outside the chambers, as well as reduce fluctuations in concentrations to minimize the 

effects of building ventilation on emissions measurements. Before (during) and after (between) 

studies with animals, the settings for all of the building environmental control units should be 

adjusted to the appropriate settings.  

The BECS within the building is provided by two sets of air conditioning units, supplemental 

heating and exhaust elements. One set serves the feed preparation room, computer room and 

bathroom. The other set serves the animal space. This section only discusses the set that serves 

the animal space. For this room, there is a large air handler that provides both heating and 

cooling for outdoor air supplied to the room through ceiling ducts opening near the front end of 

the animals. In cold situations, a supplemental heater provides the additional heat to keep the 

animals comfortable. A separate series of exhaust ducts located at the rear end of the animals 

with a fan in the equipment room facilitates steady ventilation and flow patterns, which result in 

more consistent and uniform air quality and steady background gas concentrations. This exhaust 

fan is only necessary when animals are in the barn. The switch for the exhaust fan is located on 

the east wall of the equipment room.  

The large air handler and exhaust fans should be turned on during all experiments, with the 

appropriate settings selected. For further information on selecting the appropriate settings on the 

air handling units, when to turn on supplemental heater, and locations of thermostats and 

switches, refer to Appendix G.  
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4.1.3 Filters 

Sampling line filters (4.7 cm diameter, CAT No. 1882-047, Whatman, Maidstone, Kent, United 

Kingdom) inside the chambers (Figure 4.1) should be changed every 24 hours if animals are 

present, otherwise once before every separate test.  

 

Figure 4.1: Chamber ceiling showing sampling line filter. 

 

Filters (295 mm x 448 mm x 19 mm, PerfectPleat, American Air Filter International, Louisville, 

KY) for the Chamber Air Conditioning Unit should be inspected for dust coverage every 2 

months and replaced when necessary. 

The filter for REMS ventilation air supply located on South wall (241 mm x 241 mm x 19 mm, 

PerfectPleat, American Air Filter International, Louisville, KY) for ventilation supply to the 

blower (Figure 4.2) should be inspected for dust coverage biweekly and replaced if necessary. 
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Figure 4.2: Filter to blower intake for chamber ventilation, with and background air sampling port (1) and 

temp/rh sensor (2) shown. Located on the south wall of the animal space. 

 

AC and supplemental heater filters (495 mm x 448 mm x 44 mm and 495 mm x 622 mm x 44 

mm, PerfectPleat, American Air Filter International, Louisville, KY) for the Building 

Environmental Control System (Figure 4.3, 4.4) inside the equipment room should be inspected 

every 2 weeks and replaced if necessary. 

1 

 2 
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Figure 4.3: Filters inside Building Environmental Control units for the animal space. Main ventilation supply 

unit (A) and supplemental heating unit (B). Located in Equipment Room. 

A B 
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For filter locations refer to Figure 4.4. 

 

Figure 4.4: Schematic of building showing environmental control equipment and filter locations: (1) six 

sampling line filters inside chamber and six Chamber Air Conditioning Unit filters, (2) one filter for the inlet 

to the chamber ventilation supply, (3) one filter for environmental control unit for non-animal space, (4) one 

set of filters for air handling unit with supplemental heating to feed room, (5) one set of filters for 

environmental control unit for ventilation supply to the animal space, and (6) one filter for air handling unit 

with supplemental heating to the animal space. 

 

4.1.4 Chamber Air Conditioning Unit 

Since the Chamber Air Conditioning Unit maintains a substantial negative pressure, it the most 

significant source of potential leakage. The top cover is sealed with silicone along the edges and 

held tight by 4 butterfly nuts. Whenever the heat exchanger is opened or a low recovery rate 
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(<90%) is observed, the silicone should be replaced and used to seal all openings between cover 

and rest of unit, and duct tape should be applied over the silicone. Other openings around the unit 

may appear over time, and a visual inspection should be conducted every month. A small hatch 

(Figure 4.5) in the middle of the cover provides access to the filter. The edges of this hatch 

should also be taped to seal off leaks. 

 

Figure 4.5: Top view of CACU with filter cover, sealed with tape. Please note location of screws for cover 

taped over (1) and butterfly nuts (2). 

 

2 
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4.1.5 Gas Sampling Line Components 

The pumps, connections and solenoids are a crucial part of the gas sampling system. A leak at 

any location under negative pressure or at the solenoids may dilute the sample, which would 

greatly affect the emission calculated. Leaks under positive pressure would not change the 

concentration of the sample, but it is important that a sufficient flow rate of sample reach the 

analyzer.  The following check is another quick indicator that the leakage is within acceptable 

limits. 

A rotameter (Figure 4.7) located next to the desktop computer in the sample preparation room 

should be used to verify the correct amount of air is being provided by the pumps and that the 

solenoids are opening properly. 

 

Figure 4.6: Rotameter used to check total airflow in the gas sampling line just prior to the analyzer. 

 

Expected flow should be close to 4.0 lpm when the analyzer is not taking samples (all solenoids 

closed). When the analyzer is taking a sample (solenoid to chamber being sampled opened), the 
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flow rate should drop to approximately 2.0 lpm. Please note that this test only serves as an 

indication of a problem; if expected flow is not near 4.0 lpm, troubleshooting steps should be 

taken to identify if a leak occurs at any place within the sampling line, if a solenoid is failing, or 

if another problem has occurred. In this case, each individual component must be checked for 

leakage using a liquid leak detector.  
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4.2 Experimental Startup for Emissions Monitoring with Cattle 

The following steps should be carefully followed when conducting experiments with animals in 

the chambers.  

4.2.1 Prior to introducing cattle 

Feed should be prepared in advance (coordinate with collaborating animal science team). 

Animals should be prepped to be moved. All pumps above chambers should be turned on. A 

recovery test should be completed within one day in advance. All sample line filters should be 

replaced with clean ones. Make sure water drinkers dispense water. Line up the metal chain used 

to hold the cattle’s neck for easy and quick connection. Feed bin should be inside chamber. Gas 

analyzer should be turned on at least one hour before experiment. 

Adjust the settings for the Building Environmental Control System for the animal space, as 

described in Section 4.1.2 and Appendix G. The air handling unit should be on, the operating 

mode selected, and the setpoint temperature selected. The supplemental heating should be on, if 

needed, and the setpoint selected. The exhaust system should be on and in the automatic mode. If 

for any reason the exhaust fans do not start automatically, manually start the fans by pressing the 

green “Start” button on the main exhaust switch located in the equipment room.  

4.2.2 Introducing cattle to chambers 

The cattle staging area should be clear of all debris. Animal hoods should be unzipped and 

chamber doors should be unlocked.  Use metal panels on east wall of the animal space to direct 

the cows into their stalls. All other doors should be closed. Once the animal enters its stall, one 

person should be waiting at chamber door to pull animal in using halter. Firmly hold halter after 

animal’s head enters the chamber to allow chaining and hooding of animal. After animal is 
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chained and hooded, remove halter, then close and lock chamber door. For specific timing to 

introduce each animal, please refer Appendix F. 

4.2.3 Adding feed to chamber 

Feed should be added immediately after each respective chamber has completed the first round 

of sampling. Feed should be evenly distributed in the feed bin, but away from the drinker. 

Remember to lock the chamber doors after feed has been introduced. Note: opening the doors 

while sampling will cause invalid measurements due to dilution. If door must be opened, it 

should be done immediately after the chamber in question has been sampled. Guarantee 20 

minutes of undisturbed operation within each chamber before being sampled.  If this timing 

cannot be granted, a note should be made and corresponding data points should be removed from 

further analysis. 

4.2.4 Initiating software and gas monitoring 

Open “Project (2)” from “C:/REMS”. Enter volumetric flow rates for each chamber (see Section 

3.3.4 for details) on the second page immediately before animal is introduced. Click “Run” on 

the first page. Data will be automatically saved under “C:\REMS\Data”. For more information, 

refer to Appendix A. 

Press “Monitor” on the INNOVA. Press “Proceed” then “Yes”. Make sure “Print Data Log” and 

“Print Error Log” are turned OFF. For more information, refer to Appendix A. 

4.2.5 Periodic checks during data collection 

Routine check-ups on the data collection program should be done every 30 minutes throughout 

the experiment, or as often as possible. A quick check of chamber concentrations could identify 

REMS problems, such as HVAC malfunction indicated by high CO2 concentration. A quick 
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check of the program status could reveal any errors that could result in unsaved data. A quick 

check of the animals should also be done at this time via video cameras to identify other 

problematic situations early, such as animals out of the chamber or excessive condensation build-

up on chamber door.  

The computers at the farm are equipped with TeamViewer, a remote desktop program. Before 

leaving, open TeamViewer on the computer you are trying to access, record the ID number and 

password. These will be required to access the computers. For other people to gain access to 

remote desktop, the ID number and password must be shared. The TeamViewer program is 

required on all computers trying to gain access to the PC at the farm. For download info go to 

www.teamviewer.com. ID and password details should be agreed upon by the monitoring team 

before the experiment begins, and all team members and supervisors should be granted viewing 

access.  

4.2.6 Removing cattle from chambers 

At the conclusion of the data collection period, each animal should be removed following the 

final sample of the respective chamber. Leftover feed should be gathered and weighed separately 

from the feed bin. Buckets and scale are located in the feed preparation room. The feed is then 

dried and weighed again. Analysis of dry matter must be completed to account for water that is 

splashed out of the drinker. Each chamber must be internally cleaned before the next use. Walls 

and floor should be swept and vacuumed. Feed bins should be removed, hosed down, and 

allowed to dry before returning to chamber.  

4.2.7 Shutting down System control software 

After all gas samples are complete and animals are removed, wait for the system to conclude 

sampling the background air before closing the program. Click “Stop” to conclude sampling. For 

http://www.teamviewer.com/
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more information about the program, refer to Appendix A. Press “Monitor” on the INNOVA. 

Press “Yes” when asked if sampling should be stopped. 

4.2.8 Finalizing the system until next use 

A recovery test (Section 3.8) should be done immediately after each sampling period to ensure 

nothing has been damaged or otherwise changed during the experiment. New filters should be 

installed before the recovery test.    
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4.3 Sampling and Analysis Strategies for 24-hour Emissions 

4.3.1 Purpose 

Sampling of animal emission measurements varies depending on the design and operation of the 

quantification system (Perez, 2001). Previous research using the REMS system has taken one 

sample approximately every 1.5 hours (refer to Section 2.6). One potential limitation of this 

approach is that peaks or dips between samples may be undetected and neglected from emissions 

calculations, which could result in over- or under-estimated daily emissions. Since our system 

cycles through all chambers before returning to the first chamber, over one hour passes between 

consecutive samples from each chamber. In order to determine if the emission rates calculated 

with REMS are representative of actual daily emissions, a more complete “fast-sampling” test 

was conducted in which a single chamber with a single animal was sampled once every 43.33 

seconds for 24 hours, including short breaks to sample background. The results of this test were 

compared to a subsample from the full data set that would represent the typical sampling of 

REMS. Data were collected for six animals. 

4.3.2 Approach 

Chamber 1 was used for all fast-sampling tests. Six steers roughly 30 months of age and each 

weighing approximately 1900 pounds were tested over six consecutive days. Each steer was fed 

either a forage or grain-based diet, consistent with the diet each had been receiving for the prior 

two months. A companion animal was housed in the next stall to avoid social isolation effects for 

the test animal. On the morning of the start of each test for each animal, orifice meter flow rate 

and barometric pressure were recorded immediately before the sampling started.  
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The data collection began with the collection of 10 background (building) concentration 

measurements. The animal was placed into the chamber following the 10
th
 sample from the 

background. This was to ensure that sampling occurred immediately following the introduction 

of the animal to the chamber to capture the dynamics of arriving at steady state. Data from the 

first 25 minutes of each chamber was not used in the calculation of emission rate, as the dynamic 

response of the chamber coming to steady state would not represent the actual emission rate. 

After one sampling cycle of 90 measures from the chamber followed by another 10 from the 

background, feed was introduced on the 10
th
 sample of the background. Feed was only 

introduced once at the beginning of the experiment, and enough food was provided for 24 hours. 

Each animal was monitored for 24 hours. 

The first 5 samples for each background and chamber sample were removed to avoid effects 

from transition between chamber and background and vice versa, and an estimated value was 

substituted for those samples in the calculations. The remaining 5 samples from the background 

were averaged to obtain a single background concentration. Linear interpolation was done 

between each background average to provide background concentrations for the full 24-hour 

period, used to calculate emissions rates. The remaining 85 gas concentrations from the chamber 

were used to calculate emission rate. For omitted background sample points, a value was 

generated by linearly interpolating between the previous and next 5-sample average background 

concentration. During the time of background sampling, the chamber concentration (25 samples 

= 5 from the previous chamber sample, 10 from the background, 5 that are omitted, and 5 more 

from the next chamber sample) was estimated by linearly interpolating between the average of 

the last 5 samples of the previous chamber measure and the average of the first 5 samples of the 

following chamber measure. Emission rate was calculated for each sample using Equation 4.1.  
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This formula provides an emission rate in grams/hour. In order to account for a whole day of 

emissions, that value was normalized for 24 hours. Since one sample was taken every 43.33 

seconds, the normalization factor is 43.333 seconds/sample / 3600 seconds/hour to get 0.012 

hours/sample. By multiplying our emission rate and the normalization factor, the result is 

observed in grams/sample. Finally, the results from a full day’s worth of sampling (exactly 24 

hours) are summed to get a final value in grams/24 hrs. This is effectively using the right 

rectangle integration method to calculate the area under the curve.  

In the normal implementation of REMS with six animals, one complete REMS cycle is done 

every 86 minutes. Thus, only 10 samples of a particular chamber are taken in an 86-minute 

period. From the fast-sampling data, the samples corresponding to those taken at the same time 

as those in an 86-minute sampling frequency test are selected. If the samples happen to conflict 
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with the background being sampled, the selected data is shifted later in time until the 6
th

 sample 

of the next chamber sample set because the first 5 chamber samples were discarded to avoid 

erroneous measurements during the transition period between background and chamber. This 

method allows us to mimic normal sampling frequencies using the data set collected for the fast-

sampling test. These results also need to be normalized for 24 hours. Since one sample was taken 

every 86 minutes, the normalization factor is 86 minutes/sample / 60 minutes/hour to get 1.433 

hours/sample. By multiplying our emission rate and the normalization factor, we observe a result 

in grams/sample. Again, the results from a full day’s worth of sampling are summed to get a 

final value in grams/24 hrs.  

In order to determine whether the results from the 86-minute sampling frequency of the REMS 

are representative of results obtained during the 43-second sampling test, the emission rates from 

each method were compared using a t-test. A two-tailed t-test was applied to compare the results 

of the two sampling methods. The null hypothesis for the t-test was μ1 = μ2 and the alternate 

hypothesis is μ1 ≠ μ2, where μ1 is total emission rate from the fast-sampling analysis and μ2 is 

that from the 86-minute sampling frequency test. Visualization of the data to recognize any 

potential diurnal patterns was achieved by a time series plot for each steer’s data set. For more 

robust analysis, two variations of the subsampling were completed: (1) selecting subsamples 

with different lag times from the first usable data point collected (15 minutes, 30 minutes and 45 

minutes) from the placement of the cattle into the chambers; and (2) sampling frequencies with 

shorter gaps between each cycle than the 86-minute sampling frequency. Please note that the 

same method of estimating the chamber concentration during background sampling as the fast-

sampling analysis was used.  The first variation may help us capture any peaks or valleys in the 
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concentration. The second variation creates a smaller rectangle that can more accurately 

represent fluctuations in concentration. 

4.3.3 Results 

Table 4.2 shows the calculated total emission rates from one day of fast-sampling and the 

generated subset representing the same day with 86-minute sampling frequency for all six steers. 

No difference was observed between the emissions calculated using the two sampling 

frequencies (P=0.891). The right rectangle integration applied in this analysis has potential to 

over- or under-estimate the emission rates, depending if sample measures happen at peaks or 

valleys in the instantaneous emission.  

Table 4.2: Total emission rates (g/d) from 24 hours of observations collected at 43-second and 86-minute 

intervals. 

 

From the time series plot (Figure 4.8) no apparent patterns were observed, though large 

fluctuations could be observed throughout the day. Further research is needed to determine the 

variables that affect the peaks and valleys, in order to assess whether or not diurnal patterns exist. 

Steer Sampling Frequency  

43 seconds 86 minutes (5160 seconds) Difference 

325X 57.1 73.8 -16.7 

104X 49.3 42.9 6.4 

390X 54.5 51.3 3.2 

475X 152.6 149.6 3.0 

202X 107.9 125.4 -17.5 

163X 134.2 117.4 16.8 

Average 92.4 93.4 -1.0 

Std Err   5.7 

P-value   0.8910 
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Figure 4.7: Time series plot of emission rate from one chamber with green rectangles showing fast-sampling 

emissions and red and blue rectangles showing 86-minute sampling frequency emissions integrated using 

different estimation methods. 

  

When the subsample start times were shifted, the results showed trends for differences with 

longer lag times but were never statistically different (Table 4.3; P=0.0543 to 0.8910).  The first 

sample point that was used for the analysis was at approximately 30 minutes after sampling 

started. Thus +30 minutes indicates typical experimental conditions, and +45, +60 and +75 

corresponds to a lag time of 15, 30 and 45 minutes, respectively. 
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Table 4.3: Subsamples with different lag times for taking the first chamber sample. Values represent emission 

rate (gram/day) differences between samples collected at 43-second or 86-minute intervals.  

 

Taking subsamples with shorter gaps between each cycle also yielded no differences in emission 

rates (Table 4.4).  

Table 4.4: Subsamples taken at different sampling frequencies. Values represent emission rate (grams/24 hrs) 

differences between samples collected using custom sampling frequency and 43-second sampling frequency. 

 

The results of this study indicate that a sampling frequency of 86 minutes yields an estimated 

daily emission rate with no less accuracy than sampling as quickly as 43 seconds.  More 

exploration is needed to strengthen the conclusiveness of this result and should be further 

explored to verify other scenarios, such as different diets and ages of animals. This test was 

limited to six animals, and more animals would strengthen the result. Additionally, different 

estimation methods such as trapezoid or Simpson’s method should be explored. 

Animal +30 minutes +45 minutes +60 minutes +75 minutes 

325X -16.7 4.6 1.3 8.0 

104X 6.4 -1.1 0.5 -5.5 

390X 3.2 10.8 2.0 -2.3 

475X 3.0 2.9 25.8 -18.8 

202X -17.5 21.5 23.9 -12.1 

163X 16.8 9.8 6.6 -13.1 

Mean -0.8 8.1 10.0 -7.3 

Std Error 5.5 3.2 4.8 3.9 

P-value 0.8910 0.0543 0.0905 0.1186 

Animal 15 minutes 30 minutes 45 minutes 60 minutes 86 minutes 

325X 4.6 0 -1.2 -4.3 -16.7 

104X 1.5 0.6 2.8 -1.9 6.4 

390X 0.4 -0.3 2.4 0 3.2 

475X 5.1 10.2 0.8 7.2 3 

202X 0 7.8 0.4 -2.3 -17.5 

163X 2 6.9 0.8 9.7 16.8 

Mean 2.3 4.2 1 1.4 -0.8 

Std Error 2.1 4.6 1.4 5.7 13.6 

P-value 0.4236 0.1174 0.5802 0.0680 0.0026 
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Appendix A: Using the LabVIEW System control software 

A-1 Starting a new task 

To start a new task, choose the desired program from the correct folder. REMS related files are 

kept in “C:\REMS”. For an emission experiment with six animals, use “Project(2).vi”. For tests 

with one chamber at a time, such as recovery tests or sampling strategy test, use “Project(3).vi”. 

To manually switch on and off each solenoid, use “XDOUT.vi”. 

 

A-2 Program setup 

Before starting the program, go to the “Control” page. “VISA resource name” should be 

“COM1”. Leave “Bar pressure” as “0”.  
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A-3 Starting a new sampling sequence 

To start the program, go the “Display” page and click “Run” on the top left corner. The date and 

time should automatically be displayed, and environmental data and gas concentrations should 

be shown after each sample.  

 

A-4 Stopping a sampling sequence 

To stop the program, click the “STOP” button on the upper right corner of the “Display” page. 

This will stop the program and allow it to be restarted instantaneously. Do not click “Abort 

Execution” on the top bar next to the “Run” icon. This will cause problems in the code execution. 
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A-5 During a sampling sequence 

During the experiment, the sampling line in the Labview system schematic corresponding to the 

chamber being sampled will turn green and the number of samples done for this chamber in this 

iteration will be displayed under “Background Count” for background air and “Sample Count” 

for a chamber. Gas concentration measurements will be displayed on the bottom of the screen, 

under each gas. The “Waveform Chart” will produce a real-time amplitude graph of all gases 

being monitored. 
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A-6 Accessing saved data 

Upon concluding the experiment it will be necessary to access the saved sampling data and do 

further analysis. Saved files are located under “C:\REMS\Data”. Microsoft Office Excel is used 

to analyze the data. Saved files are automatically named by the date the experiment was initiated. 

Each time the program is started, a new file will be created with a numbered suffix appended to 

the file name referring to the number of times the “Start” button is pressed. 
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Appendix B: Multiplexer Leakage Test 

B-1 Experiment Setup 

B-1.1 Purpose 

Conduct a leakage test for the multiplexer using rotameters  

B-1.2 Equipment required 

1 vacuum pump, 2 rotameters with labels, gas sampling multiplexer unit, 3 m of Teflon tube, 

various Swagelog compression fittings and adjustable wrench. 

B-2 Equipment setup 

Note: All connections should be done using Teflon tube and compression fittings.  

Connect pump to Rotameter 1. 

Connect Rotameter 1 to inlet port of solenoid 1 in multiplexer. 

Connect second Rotameter 2 to exhaust port of multiplexer. 

Turn on pump for 5 minutes before initiating test. 

B-3 Conducting the leakage test 

B-3.1 Solenoid check 

To test for leakage for each solenoid, move Rotameter 1 between the inlet ports of all 6 solenoids. 

Figure B.1 shows the setup for checking solenoid 3.  

Read, record and compare readings between Rotameter 1 and 2 for each position. 
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Figure B.1: Leakage test setup with Rotameter 1 at inlet of Solenoid 3 and Rotameter 2 at exhaust. 

B-3.2 Sampling line check 

To test for leakage in the sampling line, move Rotameter 2 to the sampling port (leading to the 

gas analyzer). 

Move Rotameter 1 between the inlet ports of all 6 solenoids. 

Figure B.2 shows the setup for checking the sampling line leading from solenoid 3. 

Read, record and compare readings between Rotameter 1 and 2 for each position.  

Solenoid 

1

Solenoid 

2

Solenoid 

3

Solenoid 

4

Solenoid 

5

Solenoid 

6

Solenoid 

7

OPEN OPEN OPEN OPEN OPENOPEN

CLOSED CLOSED CLOSED CLOSED CLOSEDCLOSED

CLOSED

OPEN

FI

Rotameter

Rotameter

Inlet 

(air supply)

Exhaust

Outlet 

(gas analyzer)

EXHAUST MANIFOLD

FI

 

Figure B.2: Leakage test setup with Rotameter 1 at solenoid 3 and Rotameter 2 at gas analyzer outlet. 
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Appendix C: Gas Analyzer Calibration 

C-1 Pre-calibration 

C-1.1 Purpose 

Calibrate INNOVA 1412i with zero gas (N2), ammonia (NH3), sulfur hexafluoride (SF6), nitrous 

oxide (N2O), carbon dioxide (CO2), and methane (CH4). 

 

C-1.2 Equipment required 

PC with INNOVA Gas Monitoring Software 7034 - Calibration program and Environics Series 

4000 Instrument Control Software installed. 

Gas Analyzer (INNOVA 1412i). 

Gas Dilution System (Environics 4040).  

Water bath (Neslab RTE-221, Cole-Parmer, Inc., Vernon Hills, IL) capable of reaching between 

10 degrees C and 30 degrees C. 

Calibration gases for the gases to be monitored with precise concentrations: zero gas - pure 

nitrogen (N2), ammonia (NH3), sulfur hexafluoride (SF6), nitrous oxide (N2O), carbon dioxide 

(CO2), and methane (CH4). 

1 meter of Nafion tubing, 3 meters of 0.635 mm (¼”) flexible Teflon tubing, Swagelog 

connectors, Teflon tape. 

Adjustable wrench for gas cylinder gasket and Swagelog connectors. 
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C-2 Calibration 

C-2.1 PC setup and connections 

Connect the PC (9-pin) to the INNOVA (25-pin) using a null modem RS-232 cable.  

Connect the PC (9-pin) to the Environics (9-pin) using a null modem RS-232 cable. 

Turn on the INNOVA 1412i at least one hour before calibration.  

 

C-2.2 Communication parameters 

The communication parameters necessary for the monitor to communicate with the Gas  

Monitoring Software 7304 are shown below: 

Baud rate 9600 

Stop bits 1 

Data bits 7 

Parity Even 

Hardwire mode Leased line 

Handshake type Hardwire 

To prevent communication errors, the text line terminator, print data log and print error log must  

be set as shown below: 

Text Line Terminator CR-LF 

Print Data Log YES 

Print Error Log YES 

 

C-2.3 Gas Correction (K) Factors 

Since all gases have different molecular weight, there is a correction (K) factor that the  

Environics software automatically adjusts for. Individual K factors for our gases: 
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NH3: 0.7189; SF6: 0.2643; N2O: 0.7089; CO2: 0.7374; CH4: 0.7192 

 

C-2.4 Gas Dilution System port connections 

Connect tubing from the calibration gas cylinder to Port 1 (Figure C.1) of the Environics 4040 

Gas Dilution System. 

 

 

 

 

 

Figure C.1: Rear view of Environics GDS showing gas sampling ports. 

 

C-2.5 Equipment set-up for zero-point calibration with N2 (zero set point for all gases); 

span-dry calibration for NH3 and SF6 

For zero gas (N2), ammonia (NH3) and sulfur hexafluoride (SF6), a tube is connected from the 

output port to a “T”, distributing the gas to the INNOVA and Rotronic HygroPalm. Compression 

fitting connections to the Rotronic HygroPalm should be secure enough to provide a constant and 

stable flow of gas. A mixing box (Figure C.2) should be affixed to the sensor tip for best  

Output  Port 1 
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Figure C.2: Mixing box with electrionic temperature and relative humidity sensor attached. 

results. The general equipment required to perform the calibration is shown in Figure C.3. 

Cal-Gas

Mixing 
Chamber

T/RH Sensor with 
Psychrometric Calculator:

Rotronics HydroPalm 3 
(NIST Certified)

Environics 4040

INNOVA 1412

 

Figure C.3: Schematic of zero-gas and span-dry calibration set-up for NH3 and SF6. 

Mixing box 
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C-2.6 Equipment set-up for humidity interference calibration (humidity corrections for all 

gases); span-wet calibration for N2O, CO2, and CH4 using the Nafion water-bath system 

For water vapor, nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4), the calibration 

must include action to account for humidity interference in the measure of these gases. One 

meter of Nafion tubing immersed into a temperature controlled water-bath is required to provide 

stable and constant levels of humidity to the gases - the Nafion tubing should be fully submersed 

inside the water bath and should be connected between the diluter and “T”. Water bath should be 

set to the dew point temperature that simulated the humidity expected in the environment of the 

actual measurement, since humidity affects the accuracy of the calibration point. A length of 

flexible tubing extender might be required to reach inside the water bath. 

The general equipment required to perform the calibration is shown in Figure C.4. 

Cal-Gas

Nafion 
Tube

Mixing 
Chamber

T/RH Sensor with 
Psychrometric Calculator:

Rotronics HydroPalm 3 
(NIST Certified)

Environics 4040

INNOVA 1412

Water Bath

 

Figure C.4: Schematic of water vapor and span-wet calibration set-up for N2O, CO2 and CH4. 
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C-2.7 Using the Gas Dilution System 

Open the Environics Series 4000 Instrument Control Software: 

1. Pull down the File Menu. Click New.  

2. Input file name for calibration attempt (Calibration_MMDDYYYY). Instrument is 3924. Click 

OK. 

3. Pull down the Configuration menu. Click Cylinder.  

 

4. Click Add and input Cylinder name for each cal-gas. 

5. Choose the zero gas (N2) as Balance, and the cal-gas as Interest.  

6. Input concentration according to concentration of cal-gas cylinder. K-factors should be 

automatically adjusted. 
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7. Click Close and save changes. 

8. Pull down the Configuration menu. Click Port. 
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9. Choose Cylinder name under Port 1. Symbol, concentration and K-factor for chosen gas 

should show up automatically.  

 

10. Click Close and save changes. 

11. Pull down the Run menu. Click Flow. 

 

12. Click Add to create a new cylinder for each cal-gas. 

13. Under Cylinder, choose the cal-gas created in step 12. 
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14. Change the units to LPM in both target and actual flow rates. 

15. Enter 4.025 under Target Flow rate. 

16. Click Run when ready to inject gas. 

C-2.8 Using the INNOVA Calibration program 

Detach the air inlet tube from the existing sampling manifold. Close the pipe adapter of the 

sampling manifold with a cap or plug.  

Attach the 1412i to a calibration manifold.  

C-2.8.1 Zero (N2) Gas Calibration 

1. Open the Calibration program and create a New task.  
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2. Type in the desired task name (CALIBATION ##_MMDDYYYY) and click OK.  

3. Pull down the Sequence menu. Click Settings. 

 

4. Click on the Calibration index-card, if it is not already at the front.  
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5. Click to select Zero point radio-button.  

6. Click on the Gas index-card and click in the Sample Integration Time field, and select the  

desired time: 5 s for Ammonia, 1 s for CO2, 1 s for Nitrous oxide (N2O), 1 s for propane  

and 5 s for CH4.  
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7. Click on the Sampling index-card and set the flushing time to desired time: Fixed time,  

2 s for Chamber and 3 s for Tube. 
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8. When all the settings are correct, click on OK.  

9. Pull down the Sequence menu and click on Start.  

 

10. Insert the 1/4” ID tubing (from N2 gas regulator) to the flow meter mounted on the side of  

the instrument rack; then open the regulator valve to allow gas flow. Zero gas is now  

flowing from the cylinder to the 1412.  
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11. Adjust regulator valve until vent airflow is about 2.5 L/min (read from bottom of ball of  

the flow meter mentioned above). This provides a little extra zero air to the 1412 and  

keeps the pressure inside the manifold close to the atmospheric pressure.  

12. Record time and analyzer display in lab notebook.  

13. Continuously inject the gas for 15 min after display is stabilized.  

14. Pull down the Sequence menu and click on Stop.  

15. Close regulator and remove Zero gas tubing. 

C-2.8.2 Humidity Calibration 

1. Pull down the Sequence menu. Click Settings.  

2. Click on the Calibration index-card, if it is not already at the front.  

3. Click to select Humidity Calibration. 
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4. Only Select “Humidity Interference Calibration (All Filters)”. Do not select “Perform  

Water Vapor Span Calibration”.  

5. Click on the Gas index-card and click in the Sample Integration Time field, and select the  

desired time as above.  

6. When all the settings are correct, click on OK.  

7. Pull down the Sequence menu and click on Start.  

8. Connect a water bath device between the zero gas regulator and the flow meter mounted  

on the side of the instrument rack; then open the regulator valve to allow gas flow. Zero  

gas is now flowing from the cylinder to the 1412.  
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9. Adjust regulator valve until vent airflow is about 2.5 L/min (read from bottom of ball of  

the flow meter mentioned above). This provides a little extra zero air to the 1412 and  

keeps the pressure inside the manifold close to the atmospheric pressure.  

10. Record time and analyzer display in lab notebook.  

11. Continuously inject the gas for 15 min after display is stabilized.  

12. Pull down the Sequence menu and click on Stop.  

13. Close regulator and main valve and remove zero gas tubing. 

C-2.8.3 Span Gas Calibration 

1. Pull down the Sequence menu. Click Settings.  

2. Click on the Calibration index-card, if it is not already at the front. 

3. Click to select Gas Span Calibration radio-button.  
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4. Click in the Active filter field “###” and select the gas you are calibrating, and check Perform  

Cross Interference Calibration and input the concentration of gas.  

5. Click on the Gas index-card and click in the Sample Integration Time field, and select the  

desired time as above.  

6. When all the settings are correct, click on OK.  

7. Pull down the Sequence menu and click on Start.  

8. Insert the 1/4” ID tubing (from the desired gas cylinder) to the flow meter mounted on the 

side of the instrument rack; then open the regulator valve to allow gas flow. Gas is  

now flowing from the cylinder to the 1412.  
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9. Adjust regulator valve until vent airflow is about 2.5 L/min (read from bottom of ball of  

the flow meter mentioned above). This provides a little extra gas to the 1412 and keeps  

the pressure inside the manifold close to the atmospheric pressure.  

10. Record time and analyzer display in lab notebook.  

11. Continuously inject the gas for 15 min after display is stabilized.  

12. Pull down the Sequence menu and click on Stop.  

13. Close regulator and main valve and remove tubing from the gas cylinder. 

C-2.9 Calculating Calibration Factors 

With the raw measurement data displayed on screen:  

1. Open the Cursor Values dialogue.  

 

2. Use two cursors and the statistical data are displayed in the Cursor Values dialogue to  

locate a suitable range of data. All values in the select interval should be very stable  

and the temperature should be above 40°C. 
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3. When you have the desired region between the cursors, pull down the Sequence menu  
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and click on Mark Interval. 

 

The two cursors are replaced by a pair of green lines. These lines have markings at the end of 

them, which show the type of calibration data lying between the lines.  

The markings are:  

ZP: shows a zero point calibration  

HI: shows a humidity interference calibration  

SHA: shows a span calibration (filter A)  

SHB: shows a span calibration (filter B)  

SHC: shows a span calibration (filter C)  

SHD: shows a span calibration (filter D)  

SHE: shows a span calibration (filter E) 
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4. Select 10 samples for which the calibrated gas is most stable and mark all the intervals for 

every calibrated gas.  

5. Pull down the Values menu and click on Calculate.  

6. When the calculation(s) is complete a Calculation Finished dialogue is displayed.  

C-2.10 Downloading the calculated values 

1. Pull down the Values menu. Click on Download and the Download dialogue is  

displayed.  

2. Select the Zero Point index card  

3. Set ticks in the NH3, CO2, Propane and Methane and Water Vapor check boxes.  

4. Repeat steps 2 and 3 in the Humidity and Gas index cards.  

5. Click on OK. The calibration factors are now downloaded to the monitor. 
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C-3 Post-calibration 

C-3.1 Disconnecting the equipment 

1. Check and close main valves on all cylinders  

2. Calibration of the 1412 monitor is complete  

3. Turn off the 1412 and disconnect 1412 with the PC.  

4. Reconnect the 1412 with compact Fieldpoint and turn on the 1412. 

5. Set the filter sampling integration time back to original setup: 1 s for each filter.  

6. The communication parameters necessary for the monitor to communicate with the  

compact Fieldpoint are shown below:  

Baud rate 9600 

Stop bits 2 

Data bits 7 

Parity Even 

Hardwire mode Leased line 

Handshake type Hard wired 

 

Print data log and print error log must be set as shown below:  

Text line Terminator CR-LF 

Print Data Log Yes 

Print Error Log Yes 

 

C-3.2 Gas Concentration Check 

In order to verify the calibration results, a concentration check is recommended after calibration. 

1. Detach the air inlet tube from the existing sampling manifold. Close the pipe adapter of the 

sampling manifold with a cap or plug.  
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2. Attach the 1412 to a calibration manifold.  

3. Insert the 1/4” ID tubing (from the NH3 gas cylinder) into the manifold connected to the  

valve; then open the regulator valve to allow gas flow. Zero gas is now flowing from the  

cylinder to the 1412.  

4. Adjust regulator valve until vent airflow is about 2.5 L/min (read from bottom of ball of  

the monitoring flow meter). This provides a little extra zero air to the 1412 and keeps the  

pressure inside the manifold close to the atmospheric pressure.  

5. Wait for display to stabilize. Compare measured concentration to gas concentration provided 

by cylinder manufacturer. 

6. Calibration is successful if error is within 1%.If not, recalibrate. 

7. Close regulator and remove tubing from the zero gas cylinder. 
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Appendix D: System Evaluation (Concentration Recovery) Test 

D-1 Experiment setup 

D-1.1 Purpose 

Using tracer-gas to locate any sources of leakage in the sampling line. 

D-1.2 Equipment required 

1PC with INNOVA Gas Monitoring Software 7034 – Online installed, 1PC with Environics 

Series 4000 Instrument Control Software installed, INNOVA 1412i Gas Analyzer, Environics 

4040 Gas Dilution System, SF6 (6.293 ppmv ±1%, primary certified) cylinder with adjustable 

gasket, 10 m of Teflon tube, various Swagelog compression fittings, adjustable wrench. 

D-2 Equipment setup 

D-2.1 Sampling line connections 

Note: All gas connection should be done using Teflon tub and compression fittings. 

1. Connect SF6 cylinder to Port 1 of GDS. 

2. Direct injection tube directly into sampling port (Figure D.1). 
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Figure D.1: Picture showing injection tube directed into sampling port. 

D-2.2 PC connections 

PC with INNOVA Gas Monitoring Software 7034 – Online installed should be connected to 

INNOVA via null-modem RS-232 cable. 

PC with with Environics Series 4000 Instrument Control Software installed should be connected 

to GDS via null-modem TS-232 cable.  

D-3 Conducting the leakage test 

D-3.1 Turning on the gas 

1. Open Knob 1 completely (Refrain from using if Gauge 1 shows <500 psi). 

2. Open Knob 2 slowly until pressure Gauge 1 reads 55 psi (Figure D.2). 
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3. Open Knob 3 completely (Further adjustments to Knob 2 might be required with initial loss of 

pressure). 

 

Figure D.2: Picture of cylinder gasket with knob and gauge labels. 

 

D-3.2 Using the Gas Dilution System 

In the Environics Series 4000 Instrument Control Software: 

1. Pull down the File Menu. Click New. 

2. Input file name for test (Leakage_test_MMDDYYYY). Instrument should be 3924. Click OK. 

3. Pull down the Configuration menu. Click Cylinder.  

Knob 1 

Knob 3 
Knob 2 

Gauge 1 Gauge 2 
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4. Click Add and input Cylinder name (SF6). 

 

5. Click OK. 

6. Choose the zero gas (N2) as Balance, and SF6 as Interest. 
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7. Input concentration according to concentration on SF6 cylinder (3947 ppm). 

 

8. Click Close and save changes. 

9. Pull down the Configuration menu. Click Port.  
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10. Choose Cylinder name (SF6). Concentration for chosen gas should show up automatically.  

 

11. Click Close and save changes. 

12. Pull down the Run menu. Click Flow. 

 

13. Click Add and input Flow Mode (SF6). 
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14. Click OK. 

15. Pull down Cylinder and choose SF6. 
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16. Change the units to LPM for both target and actual flow rates. 

17. Enter 4.025 under target flow rate. 

18. Click Run when ready to inject gas. 

 

D-3.3 Using the LabVIEW program 

1. Open “XDOUT.VI” under “C:\REMS”. 

2. Under PortNum choose “FIRSTPORTCL” for solenoids 1-4, and “FIRSTPORTCH” for 

solenoids 5-7 (The buttons leading to each solenoid are lined up right to left, e.g. solenoid 1 

would be the first button on the right in “FIRSTPORTCL” and solenoid 7 for the background 

would be the third button from the right in “FIRSTPORTCH”). 
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3. Turn off each solenoid after the experiment. 

D-3.4 Using the Online program 

1. Open Task and click New. 
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2. Enter test name (Recovery_test_MMDDYYYY) under Enter Description 

3. Open Sequence and click Settings. 

 

4. Under Sampling, change Tube Length to 1 m. 
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5. Under Gas, choose all gases (A-E) including water vapor (W), choose Advanced Sampling 

Integration Time, then select 1 s for CO2, N2O, SF6 and Water Vapor, and 5 s for NH3 and CH4. 

6. Click Reload Filter Info if this is the first use after a calibration attempt. 

 

7. Click OK. 

8. Open Window and click New Graphic Window then Tile to view graphic table and numeric 

table side by side. 

9. Click Run on the second tab bar. 
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10. Change Sequence Description if necessary, date and time will be automatically recorded.

 

11. Click OK to start test. 
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Appendix E: System Performance (Mass Recovery) Test 

E-1 Experiment setup 

E-1.1 Purpose 

Using tracer gas to detect a known amount of injected gas, in order to assess the integrity of 

REMS for monitoring emissions.  

E-1.2 Equipment required 

1PC with INNOVA Gas Monitoring Software 7034 – Online installed, 1PC with Environics 

Series 4000 Instrument Control Software installed, INNOVA 1412i Gas Analyzer, Environics 

4040 Gas Dilution System, SF6 (6.293 ppmv ±1%, primary certified) cylinder with adjustable 

gasket, Styrofoam board cut-out within a length of plastic tube, 10 m of Teflon tube, various 

Swagelog compression fittings, adjustable wrench. 

E-2 Equipment setup 

E-2.1 Sampling line connections 

Note: All gas connection should be done using Teflon tub and compression fittings. 

1. Connect SF6 cylinder to Port 1 of GDS. 

2. Block hood of chamber 1 using Styrofoam board cut-out within plastic tube (Figure E.1).  
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Figure E.1: Hood blocked using Styrofoam board set within plastic tube. 

 

Figure E.2: Injection point taped next to ventilation port. 
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3. Lead injection tube from Outlet port of GDS to chamber 1 through gaps in the hood. Tape 

injection point to metal enclosure next to ventilation port (Figure E.2). 

E-2.2 PC connections 

PC with INNOVA Gas Monitoring Software 7034 – Online installed should be connected to 

INNOVA via null-modem RS-232 cable. 

PC with with Environics Series 4000 Instrument Control Software installed should be connected 

to GDS via null-modem TS-232 cable.  

 

E-3 Conducting the recovery test 

E-3.1 Turning on the gas 

1. Open Knob 1 completely (Refrain from using if Gauge 1 shows <500 psi). 

2. Open Knob 2 slowly until pressure Gauge 1 reads 55 psi (Figure E.3). 

3. Open Knob 3 completely (Further adjustments to Knob 2 might be required with initial loss of 

pressure). 



127 

 

 

Figure E.3: Picture of cylinder gasket with knob and gauge labels. 

 

E-3.2 Using the Gas Dilution System 

In the Environics Series 4000 Instrument Control Software: 

1. Pull down the File Menu. Click New. 

2. Input file name for test (Recovery_test_MMDDYYYY). Instrument should be 3924. Click 

OK. 

3. Pull down the Configuration menu. Click Cylinder.  

Knob 1 

Knob 3 
Knob 2 

Gauge 1 Gauge 2 
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4. Click Add and input Cylinder name (SF6). 

 

5. Click OK. 

6. Choose the zero gas (N2) as Balance, and SF6 as Interest. 
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7. Input concentration according to concentration on SF6 cylinder (3947 ppm). 

 

8. Click Close and save changes. 

9. Pull down the Configuration menu. Click Port.  
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10. Choose Cylinder name (SF6). Concentration for chosen gas should show up automatically.  

 

11. Click Close and save changes. 

12. Pull down the Run menu. Click Flow. 

 

13. Click Add and input Flow Mode (SF6). 
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14. Click OK. 

15. Pull down Cylinder and choose SF6. 
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16. Change the units to LPM for both target and actual flow rates. 

17. Enter 4.025 under target flow rate. 

18. Click Run when ready to inject gas. 

 

E-3.3 Using the LabVIEW program 

For the recovery test, use “Project(3).vi” under “C:\REMS”. For more details on the software, 

refer to Appendix A. 
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Appendix F: Preparations for Experiments 

The following series of checkups should be done immediately before a new experiment is 

conducted: 

Replace filters on sample line inside each chamber 

Check background air supply filter (replace or rotate if areas of air flow is dark gray in color) 

Check duct tape sealing holes in the bottom of the chamber (retape if not creating seal) 

Check silicone and tape sealing HVAC box (reseal if opened or low recovery rate) 

Check TEC to chamber insulated duct connections 

Fully open all orifice meters (blue/black ball valves) 

Record pressure of each inclined-vertical red oil manometer 

Ensure all 7 gas pumps are on and working (suction in sample port using Manometer) 

Connect and turn on cameras, make sure they are pointed in right direction 

Turn on TeamViewer on desktop computer, record ID No. and Password 

Figure F.1 shows a typical timeline for the day of the experiment, including time to turn on 

INNOVA, introduce cow, introduce feed and collect rumen samples. 
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Appendix G: HVAC System for Beef Metabolism Unit 

This following section was adapted from the report generated by undergraduate students Ana 

Beatriz P. da Silva and Chris Hwang from their summer 2013 independent study. 

G-1: System Description 

The HVAC System in the Building was designed to maintain a setpoint temperature in each of its 

five rooms: Feed Room, Computer Laboratory, Bathroom, Equipment Room and Animal Space.  

A depiction of the total area and its divisions can be seen in the following image: 

 

Figure G.1: Layout of the building. 
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G-2: HVAC Components 

There are a total of five main HVAC components for the building.  

Two HVAC units regulate temperature in the Feed Room and the Computer Laboratory (and 

consequently the Bathroom). These rooms will only be occupied by humans and feed, so the 

temperature is typically kept around 75ᵒ F. The HVAC system to maintain these rooms at this 

temperature consists of: one Small Handler (Unit 1) that conditions and supplies a mixture of 

return and outdoor air, one Supplemental Heater (Unit 2) that heats and supplies 100% outdoor 

air, and two exhaust Fans (just for the milling equipment in Feed Room). Unit 1 can heat or cool 

the three rooms and Unit 2 turns on automatically when the Feed Room fans are operating during 

feed milling. Both components have exhaust pipes for air supply. The Feed Room fans help clear 

out the dust created from the grinding process. 

Three HVAC components are used to regulate temperature in The Animal Space. This room 

holds up to twelve animals simultaneously, including the REMS system for six animals. The 

ideal temperature for this room is 65/70ᵒF, which is maintained with one Large Handler (Unit 3) 

that conditions and supplies 100% outdoor air, one Supplemental Heating Unit  (Unit 4) that 

heats and supplies only return air, and one exhaust fan unit (Unit 5) that takes air from the animal 

space. Additionally, the REMS chambers each have their own small Cooling Unit. Unit 3 can 

provide heating or cooling as needed.  

All of the units have individual thermostat or switch controls, except Unit 2. Thermostat 1 is on 

the wall near the Bathroom in the Laboratory; Thermostat 3 is in the Animal Space, near the door 

to the Feed Room and the unit has a mode switch on the side of the unit in the equipment room; 
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Thermostat 4 is on the back wall of the Animal Space. A switch for Unit 5 is located on the east 

wall of the equipment room.  

G-3: System Operation 

G-3.1: Unit 1 (Small Air Handler) 

The most basic control of the HVAC components is provided by on/off power switches. The 

power switch for Unit 1 is located near the unit, and should remain on at all times except 

periodic maintenance of the unit. When the power switch is on, Thermostat 1 provides control to 

choose the operating mode (heating or cooling), fan state, and setpoint. Figure G.2 shows the 

power switch and Thermostat 1. 

 

Figure G.2: Control Devices for Unit 1. A) Power Switch for Unit 1 (affixed to wall). B) Thermostat 1. 

 

G-3.2: Unit 2 (Supplemental Heating) 

The power switch for Unit 2 is located on the side of the unit. This is the only control for this 

unit; it doesn’t have temperature regulation with a thermostat. When the power is on, this unit 

will turn on automatically when the fans in the feed room are active. Figure G.3 shows the only 

A) B) 

Elevate the temp. 

Lower the temp. 

Settings  Turn on/off 
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control switch for this unit. This unit should be powered in cold weather, but may be switched 

off when the temperatures do not require supplemental heating. 

 

Figure G.3: Power Switch for Unit 2 (affixed to Unit). 

 

G-3.3: Unit 3 (Large Handler) 

The power switch for Unit 3 is located on the side of the unit. Additionally, a mode switch 

located on the side of the unit selects the operating mode (heating or cooling). When the unit is 

on, Thermostat 3 allows the selection of a setpoint and controls the status of the unit within the 

bounds of the operating mode. Figure G.4 shows the power switch, control panel and Thermostat 

3. 
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Figure G.4: Control Devices for Unit 3: (A) Power Switch for Unit 3 (affixed to Unit), (B) Operating Mode 

Selection (heat/cool), and (C) Thermostat 3. 

 

G-3.4: Unit 4 (Animal Space Supplemental Heating) 

The power switch for this unit is located to the right of the thermostat on the south was of the 

animal space. This component is only controlled by Thermostat 4which can be used to turn the 

heater on or off and to change the setpoint temperature. Figure G.5 represents the control device 

for Unit 4. 

B) A) 

C) 

Elevate the temp. 

Lower the temp. 

Turn on/off       

fan 
Turn on/off Settings  
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Figure G.5: Thermostat 4. (A) Front View. (B) Side View. 

 

G-3.5: Unit 5 (Animal Space Exhaust) 

This component should be turned on when there are animals inside the animal space. To control 

this unit, there is a power switch near the unit on the east wall of the equipment room to turn the 

equipment on or off. Additionally, there is an option to have the exhaust run automatically (to 

turn on and off with Unit 3) or to be manually controlled (on when the power is on and off when 

the power is off). Typically, this should be set to manual such that it runs continuously with 

animals in the barn, to prevent large fluctuations in the background gas concentrations.  This unit 

should be turned off when no animals are in the barn to save on energy costs.  Figure G.6 shows 

the control panel for the Animal Space Exhaust Unit. 

A) B) 

Manual Temperature Control 
Turn on/off 

A) B) 
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Figure G.6: Power switch for Animal Space Exhaust Unit. 
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