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ABSTRACT 

 Advances in wireless technology and an increasing demand for new applications that 

require in-field communication are generating more interest in off-road vehicular networks than 

ever before.  Current on-road and off-road  vehicular networking technologies are either cost 

prohibitive, bandwidth limited, or exhibit too much latency.  802.11 standard networks are a low-

cost, readily available technology that have the potential of integrating effectively with current 

off road equipment software and hardware.   

 The main objective of this research was to develop a baseline for the performance of an 

802.11b/g wireless network in a realistic in-field agricultural environment.  While recognizing 

there are many external factors that can degrade the performance and reliability of such a system, 

this research was focused on identifying and measuring the performance effects of varying 

parameters that can be controlled, in particular the data rate, packet size, and the choice of 

802.11b versus 802.11g protocols.  

 The performance of the system was measured by recording packets at both the 

transmitting and receiving devices and calculating the percentage of packets received at varying 

distances between the nodes.  A simple two node network between two tractors was constructed 

for performance testing, and an application was written that used personal computers on each 

tractor to generate and log network traffic simultaneously.  A series of 18 tests were executed 

with varying data rates, protocols, and packet sizes in realistic in-field conditions.  Data were 

then post-processed so that they could be easily analyzed with the aid of Microsoft Excel
TM

. 

 The 802.11b network performed much better in the outdoor environment by transmitting 

data more reliably and farther than the 802.11g network.  802.11g networks exhibited a high 

reliability region, usually at small distances between nodes, and a region with less reliability, at 

larger distances between nodes.   Increasing 802.11g data rates decreased the distance over 

which the network would reliably transmit, but increasing 802.11b data rates had little effect on 

maximum transmission distance, although they decreased the overall reliability of the network.    

For packets between 15 and 1400 bytes in length, small but statistically significant decreases in 

reliability were observed with increasing packet size. For the largest packet size of 2200 bytes, 

more notable reliability decreases were observed.  The network performance was influenced by 
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the angle of the transmitted wave relative to the tractor orientation.  Finally, performance 

degradation due to signal reflections off the soil surface could be observed at distinct distances 

between nodes. 
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To Fred Nelson 

"If I have seen further, it is only by standing on the shoulders of giants." – Sir Isaac Newton 
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CHAPTER 1:  INTRODUCTION 

 Advances in global positioning systems (GPS), wireless communications, and electronic 

technologies have led to several innovations that have increased the efficiency and productivity 

of farmers around the world.  One well-recognized example of such an innovation is the use of 

GPS-enabled navigation. While many factors affect the extent to which GPS-enabled navigation 

can increase agricultural profits, it has been estimated that farms employing this technology 

should boost profits by at least $30 / hectare (Griffin, 2009).  Still, in situations where machine 

interaction is common, or for tasks where multiple machine operations are required, a vehicular 

network offers significant potential to improve performance. 

 Harvesting in the Midwestern part of the United States is an example of a system that 

relies heavily on machine interaction and coordination.  One, two, even as many as ten or more 

combines may be serviced by as many tractors towing grain carts with the throughput of the 

harvesting system being determined by the slowest link in the chain of operations.  One case 

study by Hansen et al. (2003) analyzed a harvesting operation involving two combines and one 

grain cart in a rectangular-shaped field. In this study, one of the two combines sat idle for almost 

10% of the time largely because it was waiting for the grain cart. Yet in the same field, the grain 

cart sat idle 28% of the time.  Communication between the combines and grain cart to improve 

field logistics was identified by Hansen et al.(2003) as an option for improving the overall 

efficiency of the harvesting operation.  Other applications have been identified such as "leader-

follower," where the combine controls the position of the tractor and grain cart during the 

unloading process (Reid, 2004).   These applications were envisioned by Reid (2004) as a natural 

extension of the current GPS-enabled navigation with the addition of an in-field vehicular 

network. 

 There are many instances where the on-road industry, both automotive and trucking, has 

been leveraged for research and technology that can be applied to off-road applications.  The 

topic of vehicular networking so far has been an exception.  Most research initiatives in the on-

road industry have focused on wireless technologies relating to in-cabin or "infotainment" 

networks (Carvalho, 2008; Lupini, 2010).  These networks are designed to communicate 

wirelessly between devices within the vehicle's cabin and are not suitable for in-field 
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communications.  Other products exist that use cellular and satellite-based communications, but 

these products are very similar to products already being offered in the off-road industry and are 

not suitable for reasons stated below. 

 Currently, there are two types of networks used in the off-road equipment area.  The first 

is cellular or satellite-based fleet management and machine tracking networks such as John 

Deere's JDLink
TM

, Caterpillar's Product Link
TM

, Topcon's Tierra Asset Manager
TM

, and 

Trimble's VisionLink
TM

 (Deere and Company, 2010; Caterpillar, 2010; Topcon, 2010; Trimble, 

2010). These networks currently do not have the bandwidth and have too much latency to 

support real-time in-field network communication.  The second type of network is a Real Time 

Kinematic (RTK) network for GPS corrections.  RTK networks are advertised to work at 

distances up to 20 kilometers and because of this requirement, generally use proprietary radios 

(Deere and Company, 2010).  These proprietary radios are normally expensive and require 

custom software to interface with them. 

 Possible alternatives to using proprietary radios and networks are wireless Ethernet or 

IEEE802.11 standard networks (IEEE, 1997), which pose many advantages as wireless 

communication technologies.  The first advantage is the close relationship between the 

IEEE802.11 and IEEE802.3 (Ethernet) standards (IEEE, 1985).  These standards were written 

with the intent of making transitions between the two protocols as easy and as seamless as 

possible by interfacing with adjacent layers using the IEEE802.2 standard (IEEE, 1985).  With 

the use of access points, both a wired and wireless network can be merged into a single network.  

As the on-vehicle network bandwidth requirements continue to increase for off-road vehicle 

networks, 802.3 networks are an attractive candidate to carry large amounts of time-insensitive 

data.  It would then follow that using 802.11 would further simplify many hardware and software 

design aspects.  Next, the large consumer adoption of products conforming to both 802.11 

(Figure 1) and 802.3 standard protocols has driven the hardware cost down.   
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Figure 1.  IEEE 802.11 Chipset Volumes Through 2007 (Behzad, 2008). 

 The industrial community has been increasingly using both 802.11 and 802.3, and as this 

demand increases, so does the availability and selection of durable networking hardware that 

could be used directly in the off-road vehicle environment (McCurdy, 2006; Warren, 2009).  

Lastly, both standards have been updated to stay current with new technology, but have provided 

legacy support for the widely used portions.  Hardware meeting the IEEE802.3i standard from 

1990 can still communicate over today's 802.3 networks due to legacy support provided in 

updates to the 802.3 standards (IEEE, 1990; IEEE, 1995; IEEE, 2008). Similarly, hardware 

meeting the 802.11b standard from 1999 is still compatible with current 802.11 wireless 

technology (IEEE, 1999; IEEE, 2003; IEEE, 2009).  This long history of stable standards and 

backwards compatibility makes these technologies desirable for off-road equipment with longer 

life cycles.   

 In summary, recent advances in GPS technologies, electronics, and wireless 

communications have driven recent agricultural industry productivity and profitability 

improvements.  In-field wireless networks combined with the aforementioned precision farming 

technologies enable the development of new applications that continue to fuel further 

improvements.  Current on-road and off-road technologies are either cost prohibitive, bandwidth 

limited, or they exhibit too much latency.  802.11 standard networks are a low-cost, readily 

available technology that have the potential of integrating well with current off-road equipment 

software and hardware.  This work serves to develop a baseline for the performance of an 

802.11b/g wireless network in a realistic in-field agricultural environment.  
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CHAPTER 2:  OBJECTIVES AND SCOPE OF RESEARCH 

 The primary objective of this research was to develop a baseline for the performance of 

an 802.11b/g wireless network in a realistic in-field agricultural environment.  While recognizing 

there are many external factors that can degrade the performance and reliability of such a system, 

such as crop canopy, terrain, and line of sight issues, this research was focused on identifying 

and measuring the effects of varying parameters that can be controlled – in particular the data 

rate, packet size, and the choice of 802.11b versus 802.11g protocols.  

The following were the specific goals addressed in the research: 

a) Establish a thorough understanding of the existing communication standards and 

protocols in the context of off-road application, 

b) Identify the key factors that could influence the performance and reliability of off-road 

wireless communication systems, 

c) Design and perform experiments to measure and evaluate an off-road wireless 

communication system.  

The performance of the system was measured by recording packets at both the sending and 

receiving devices and calculating the percentage of packets received at varying distances 

between the nodes. 
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CHAPTER 3:  LITERATURE REVIEW 

 This chapter contains a review of the literature relevant to this research.  The first section 

establishes a general framework for networks, called the Open System Interconnection Model.  

The second section introduces the relevant protocols to this work, their standards, and their 

relationship to the Open System Interconnection Model.  One of the key differences between the 

various 802.11 protocols is their modulation techniques, so section three explains the theory 

behind the modulation techniques before introducing the relevant 802.11 protocols in section 

four.  Section five covers the fundamentals of radio wave propagation including sources of signal 

attenuation.  Finally, section six discusses previous work aimed at evaluating the feasibility of 

802.11 for vehicular networks. 

3.1  Open System Interconnection Model 

 The Open System Interconnection (OSI) Model subdivides a network into smaller layers 

for the purpose of coordinating the development of standards and interfacing to the various 

portions of a network (ISO 7498-1, 1994).  The OSI model is a seven-layered general model 

shown in Figure 2 which can be mapped to any kind of a layered network.  Layers at the top of 

the model are usually embodied by an actual application, while layers at the bottom detail 

information relating to drivers or physical hardware.  Figure 2 shows two nodes that are joined 

by a network with their representative OSI networking layers.  The arrows represent the path a 

packet of data will travel along from one node to another.  

 When a packet of data needs to be transmitted over a particular network, it is initiated 

from one of the upper layers and travels in a downward direction between layers, each layer 

potentially adding its own information to the packet until it reaches the lowest layer, which is the 

physical transmission medium or hardware.  Upon receipt at the receiving node, the data packet 

is then passed upward between the layers with each layer stripping off its own relevant data.  The 

uppermost layer of the model is usually closest to the end user of the data, which can either be an 

application or a physical person operating a computer.   
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Figure 2.  The OSI network model showing data path between two nodes (Stallings, 1987). 

 

3.2  Relevant Standards 

 The IEEE 802 family of standards outlines the details of the physical and data link layers 

for multiple network topologies.  Two of the most common types of networks that are defined by 

these standards are Ethernet (IEEE 802.3) and Wireless Ethernet (IEEE 802.11).  The following 

details about these standards have been extracted from the most recently published versions of 

the standards and their amendments (IEEE, 1998; IEEE, 2008; IEEE, 2007).  These two 

standards define the physical layer and a portion of the data link layer, which are referred to in 

the standards as the Physical (PHY) Layer and Media Access Control (MAC) Layer, 

respectively, as shown in Table 1.    Both 802.11 and 802.3 share the same logic for linking the 

MAC layer to the network layer.  This logic is defined in IEEE 802.2 and is commonly referred 
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to as the Logical Link Control (LLC) Layer.  The common LLC layer between the two standards 

is what makes Ethernet and Wireless Ethernet networks seamlessly interchangeable and allows 

them to interact identically with data from the network layer.  The data link layer is generally 

implemented in the device drivers or low level firmware of the physical transmitting device.  For 

most practical situations, an application will interact with the operating system at the transport 

layer because there are features or services provided by the network and transport layers that are 

needed for effective network communication and function.  Internet Protocol packets are a 

standard protocol used for the network layer and are defined by Request for Comment 791 (RFC 

791, 1981).  Internet Protocol (IP) packets contain an address that allows for the packet to be 

dynamically routed to its destination.  This addressing system allows for flexible networks that 

can have their architecture changed easily.  Another important capability that is introduced 

through IP packets is the ability to form sub-networks.  The transport layer serves to take a large 

amount of data and break it into small transportable packets that can be sent across the network.  

At the receiving node, these individual packets are reassembled to identically reconstruct the 

original piece of data.  There are many types of protocols that can be used in the transport layer.  

Two of the most popular are User Datagram Protocol (UDP) and Transmission Control Protocol 

(TCP).  UDP is a simple, lightweight protocol that is defined by RFC 768 (1980).  TCP is more 

complex than UDP but offers the advantage of providing a notification of receipt of the original 

data at the expense of a less-efficient protocol.  It is defined by RFC 793 (1981).   

 For the tests conducted in this research, packets were transmitted and received at the 

transport layer.  Therefore, discussions relating to other layers above the transport layer are 

outside the scope of this work. 
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Table 1.  Summary of Common Communications Protocols. 

OSI Layer 
Communications 

Protocol 
Standard 

Transport UDP or TCP RFC 768 (UDP) or RFC 793 (TCP) 

Network IP RFC 791 

Data Link 
LLC IEEE 802.2 

MAC 

IEEE 802.11 IEEE 802.3 
Physical PHY 

 

 

3.3  802.11 Modulation Techniques 

 Three types of modulation techniques – frequency hopping spread spectrum (FHSS), 

direct sequence spread spectrum (DSSS), and orthogonal frequency division multiplexing 

(OFDM) – are referenced in the 802.11 standards and amendments.  FHSS and DSSS are types 

of spread spectrum techniques, which means the transmission signal is spread over a larger 

portion of the spectrum than what is required to transmit the data (Pickholtz et al., 1982).  OFDM 

works by subdividing a channel into multiple subcarriers that carry portions of the data stream in 

parallel.  A brief overview of these three techniques is provided in the following sections. 

3.3.1  Frequency Hopping Spread Spectrum (FHSS) 

 FHSS systems place data in a narrow band but modulate that carrier frequency in a 

defined pattern often referred to as a code or hopping sequence (Figure 3).   In order to make 

rapid and frequent changes to the carrier frequency, both the transmitting and receiving device 

must share the same code and be designed for rapid frequency changes.  The transmitted signal is 

left unaltered other than to change the carrier frequency.  By changing the carrier frequency, 

interference is averaged between channels instead of directly affecting one channel more than 

any other.  FHSS systems are very common in military applications where a high immunity to 

signal jamming in required (Ipatov, 2005). 
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Figure 3.  Representative FHSS hopping sequence for two node system (Olexa, 2005). 

3.3.2  Direct Sequence Spread Spectrum (FHSS) 

 In contrast, DSSS systems spread the information signal or baseband signal about a fixed 

frequency carrier signal which has much wider bandwidth than the original signal (Figure 4).  

This is accomplished by taking the exclusive disjunction or XOR of the original signal with the 

spreading code.  The transmitted DSSS waveform is usually spread across such a large frequency 

range that the resulting waveform is not distinguishable from the surrounding ambient noise.  

Encapsulating data in a wide frequency band also allows for narrow band interference to be 

easily rejected (Olexa, 2005).  However, if the interference is at a high energy level, DSSS 

systems will completely fail (McCune, 2000).  Lastly, since DSSS systems broadcast low 

amounts of energy over a wide range, they work better in situations where there are many users 

sharing the same portion of the spectrum. 
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Figure 4.  Formation of a DSSS waveform (Olexa, 2005). 

3.3.3  Orthogonal Frequency Division Multiplexing (OFDM) 

 As the push for higher data rates continues, the performance of spread spectrum 

technologies degrades because all of the data are transmitted serially by the wireless signal.  

Because the data rate and symbol duration are inversely related in DSSS systems, the amount of 

spacing between each symbol decreases, and the probability of intersymbol interference 

increases (Li and Stüber, 2006).  OFDM addresses this problem by dividing the channel into 

narrow subchannels or subcarriers which allow the data to be transmitted in parallel across the 

subchannels (Figure 5).  Each subchannel is independently modulated by the radio, allowing for 

more flexibility to maximize throughput.  For example, for a given propagation path, if a 

particular subcarrier encounters fading, the radio can assign a lower order modulation to 

maximize reliability for that subchannel.  If other channels do not experience the same fading, 

they can be modulated at much higher order modulations to maximize throughput.  The tradeoff 

for this extra flexibility is added complexity and hardware cost.  Furthermore, OFDM radios are 
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susceptible to frequency drift, either caused by poorly performing hardware or external sources 

(Olexa, 2005).  Olexa (2005) also states that OFDM radios have a high immunity to multipath 

distortion but are very susceptible to narrowband inference, but as discussed later, 802.11 

systems using OFDM do not always outperform other 802.11 systems when multipath is present 

in outdoor environments (Alexander et al., 2007).  

 

 

Figure 5.  Typical 802.11 OFDM channel showing subcarriers and spectral mask  (Behzad, 

2008). 

 

3.4  IEEE 802.11 History 

 The original IEEE 802.11 standard was ratified in 1997.  This served as the base standard 

for 802.11 devices until it was replaced by the current base standard IEEE (2007).  The original 

802.11 standard defined the MAC layer for all 802.11 devices as well as three different physical 

layer options, which were an infrared physical layer, a FHSS 2.4 GHz layer, and a DSSS 2.4 

GHz layer.  The maximum data rate at the MAC layer for the standard was 2 Mbits/sec.  In 1999, 

the base 802.11 standard was updated to make changes to the MAC layer, and two additional 

physical layer standards were ratified: IEEE 802.11a and IEEE 802.11b.  802.11a defined an 

OFDM physical layer operating in the 5.5 GHz unlicensed band to take advantage of the fact that 
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there is much less spectral competition and interference at the 5.5 GHz band than at the 2.4 GHz 

unlicensed band.  The 802.11b standard expanded the functionality on the original 802.11 DSSS 

2.4 GHz physical layer to allow for a maximum MAC data rate of 11 Mbits/sec while still 

maintaining compatibility with the DSSS portion of the original standard.  802.11b was regarded 

as the most successful 802.11 standard to date, selling millions of pieces of hardware complying 

with the standard (Heegard, 2001).  In 2003, another physical layer specification called 802.11g 

was ratified that allowed for the use of the OFDM modulation techniques of the 802.11a standard 

to be used with a 2.4 GHz physical layer.  This standard once again maintained compatibility and 

coexistence with 802.11b systems while allowing for the MAC data rate to be increased up to 54 

Mbits/sec.  In 2007, many of the amendments to the original 802.11 standard, including 802.11a, 

b, and g, were merged into a single base document named IEEE 802.11-2007 which is the 

current base standard.  Table 2 summarizes the standards' properties and modulation techniques, 

and Table 3 compares the relative advantages and disadvantages of 802.11a, b, and g.   

 The amendments to the 802.11 standards previously mentioned had been narrow in 

scope, focusing on higher data rates and range while maintaining backwards compatibility with 

legacy standards.  The scope of the IEEE802.11n was much larger.  This amendment pushed the 

MAC layer throughput to 600 Mbits/sec by using an antenna technology called multiple-input 

multiple-output (MIMO), which allows multiple spatial streams to be transmitted and received 

by communicating devices.  Additionally, to achieve a MAC layer throughput of 600 Mbits/sec, 

an increase in channel width from 20 MHz (Figure 5)  to 40 MHz was required, allowing for 

more subchannels to be utilized.  However, implementing MIMO technology physically takes 

more space, requires more power, and adds cost – three characteristics not sought by 

manufacturers of mobile handheld devices (Perahia, 2008).  As a result, many of the features of 

802.11n are optional, which means network performance will be largely a function of the 

hardware configuration and options implemented from the standard.  Some other modifications 

made in the standard which contribute to its wide scope are transmit beam forming (TxBF) – 

using an array of antennas to steer or form a directed resultant wave; space-time block coding 

(STBC) – broadcasting identical streams from multiple antennas to be received by multiple 

antennas and using signal processing to aggregate the received signals into the original stream; 

and spatial-division multiplexing (SDM), which allows for antennas to create parallel streams of 



13 

 

data occupying the same frequencies.  On top of this, 802.11n devices are able to coexist and 

communicate with 802.11g devices.    

Table 2.  Summary of 802.11 physical layer standards. 

Standard Year Modulation 
Frequency 

[GHz] 
Maximum physical 

layer data rate [Mb/s] 

802.11 1997 
FHSS 2.4    1 
DSSS 2.4    2 

802.11 a 1999 OFDM 5.5  54 
802.11 b 1999 DSSS 2.4  11 

802.11 g 2003 
DSSS 2.4  11 
OFDM 2.4  54 

802.11 n 2009 OFDM 
2.4 600 
5.5 600 

 Currently there is a purposed standard, IEEE 802.11p, that is gaining significant interest 

in the transportation industry.  This standard, commonly called "wireless access in vehicular 

environment" (WAVE), operates in a licensed, but free portion of the spectrum at 5.9 GHz (Jiang 

and Delgrossi, 2008).  This spectral range is dedicated to short range public safety-related 

vehicle-to-vehicle and vehicle-to-infrastructure communications and is not to be confused with 

the unlicensed band which is centered around 5.5 GHz.  802.11p also uses OFDM modulation, 

and it is expected that hardware meeting the 802.11a standard can be adapted to use this 

protocol.  Amendments are still being proposed to the 802.11p standard, but at this time it is 

expected that changes will be made to the MAC layer which will increase the range and decrease 

the throughput compared to 802.11a (Tonguz et al., 2010). 

Table 3.  Relative Advantages and Disadvantages of 802.11a, b, and g (Reproduced from 

Behzad, 2008). 

Standard 
Existing 

Base 
Data 
Rate 

Range 
Lack of 

Interferers 
Spectrum 

Availability 
Power 

Consumption 
System 

Cost 

802.11b ++++ + ++++ + + ++++ ++++ 

802.11a + ++++ +++ +++ +++ ++ ++ 

802.11g ++ ++++ ++++ + + +++ +++ 
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3.5  Radio Propagation Fundamentals  

 Wireless communications is accomplished by using a transmitter and receiver that emit 

and receive electromagnetic (EM) waves.  Ideally EM waves are freely propagated without any 

destructive alteration and are only governed by the physics of free space propagation.  In 

practice, many factors can alter or disrupt EM wave propagation such as reflection, diffraction, 

absorption, and multipath effects.   While it is not always possible to eliminate these effects, it is 

desirable to understand their underlying principles, learn to identify their effects, and know how 

to minimize undesirable influence from these factors. 

3.5.1  Free Space Propagation 

 The free space propagation model given by Rappaport (2002) shows that the received 

power,   , is a function of the transmitted power,   , the transmitting and receiving antenna 

gains,   and   , the wavelength of the EM wave,  , and the distance separating the transmitter 

and receiver,  . 

       
       

 

       
 (1) 

Equation (1) assumes no internal transmitter or receiver losses,    and    are in the same units, 

  and    are dimensionless quantities, and   is related to the carrier frequency,  , by 

   
 

 
 (2) 

where   is the speed of light in a vacuum and assumed to be 299,792,458 meters / second.  The 

energy field can also be related to the transmitted power by  

   
       

    
 (3) 



15 

 

where    is the transmitted power,    is the dimensionless gain of the transmitting antenna,     

is the intrinsic impedance of free space which is assumed to be      , and   is the distance from 

the transmitter in meters.   

 Equation (1) shows that for a given system where   ,   ,   , and   are constant,    is 

inversely proportional to the square of the transmission distance.  Because of this relationship, it 

is common for the receiver power to change orders of magnitude relative to the transmit power 

for a given system.  Hence, decibels (dB) are used to express the relationship between transmit 

and receive power.  Expressed in decibels, path loss,   , can be defined as the ratio of 

transmitted to received power. 

             
  
  

 (4) 

In Equation (4),    represents the signal attenuation as a positive quantity.  Substituting 

Equation (1) into Equation (4) yields 

              
     

 

       
 (5) 

Equation (5) can then be rearranged a number of ways to separate individual contributors to the 

path loss.  Equation (6) is one example of this. 

                              
 

  
        (6) 

Substituting Equation (2) into Equation (5) and further rearranging yields 

                                               (7) 
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Equations (6) and (7) show increasing frequency and distance result in increasing path loss at a 

rate of 20dB/decade.  Also, increasing the gain of the receiving or transmitting antennas reduces 

path loss. 

3.5.2  Definition of dBi and dBm 

 Decibels are dimensionless relative values and require a defined reference in order to 

make them absolute.  Two standards are commonly used to provide clarity when working with 

wireless networks.  A dBi is defined as the gain relative to an ideal isotropic antenna (Reed, 

2009).  A dBm is a power measurement relative to 1 milliWatt fed into an object such as an 

antenna with a 50 ohm impedance (Reed, 2009).  Antenna gains are commonly referenced in 

dBi, and radio transmission power levels are typically referenced in dBm.  For the remainder of 

this work, all power levels are considered to be in units of dBm, and gains and losses are 

assumed to be in units of dBi. 

3.5.3  Reflection 

 Signal reflections occur when a propagating wave bounces off a surface of which the 

dimensions are much larger than the wavelength.  Some examples for sources of signal 

reflections are buildings, walls, and the earth's surface.  The theory behind signal reflections is 

based on Maxwell's Equations and Snell's Law where a portion of the incident wave is reflected 

and the other portion is transmitted.  Figure 6 depicts an incident wave with energy field   , a 

reflected wave with energy field   , a transmitted wave with energy field    , and a grazing 

angle   . 

 

Figure 6.  Diagram showing incident wave, reflected wave, transmitted wave, and grazing 

angle (Lee, 1997). 
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Equation (7) defines the reflection coefficient,   , as the ratio of energy reflected to the energy 

of the incident wave 

    
  
  

 (8) 

where the range of the reflection coefficient is         and a RC value of -1 indicates a 

phase difference of 180
o
 between the incident and reflected waves.   

 When the propagating wave is traveling in free space, the transverse magnetic (TM) and 

transverse electric (TE) reflection coefficients,      and      , are calculated using 

 

     
                    

                   
 

 

(9) 

      
                 

                 
 (10) 

where    is the relative permittivity of the reflecting medium.  Table 4 lists the relative 

permittivity for some common reflecting mediums. 

Table 4.  List of relative permittivity for common reflecting mediums (Lee, 1997). 

Medium Permittivity 
Copper   1 
Seawater 80 
Rural ground (Ohio) 14 
Urban ground   3 
Fresh water 80 
Turf with short, dry grass   3 
Turf with short, wet grass   6 
Bare, dry, sandy loam   2 
Bare, sandy loam saturated with water 24 
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 Figure 7 and Equations (8) and (9) show that for a grazing angle of zero, a flat object will 

become a perfect reflector, and for small grazing angles, the reflection coefficient will have a 

magnitude near unity. 

 

Figure 7.  Reflection coefficient versus grazing angle for both magnetic and electric 

portions of a wave (modified from Seybold, 2005). 

 Rappaport (2002) showed that when reflection occurs, the resultant field at the receiver, 

    , is the addition of the direct or line of sight field,     , and the reflected field,    or    

(Figure 8).  

 

Figure 8.  Diagram showing incident, reflected and direct waves (Rappaport, 2002). 
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               (11) 

Making the assumption that            (Figure 8), Rappaport derives an equation for the 

total magnitude of the field at an arbitrary distance,   , from the transmitter 

        
     
 

    
      
  

  (12) 

If Equation (12) is evaluated for the field strength at the receiver,     , it can be shown that 

the magnitude of the field will be cancelled out when the following is true. 

 
      
  

           (13) 

3.5.4  Diffraction 

 Diffraction occurs when a wave has to travel around an object in order to propagate from 

transmitter to receiver.  In order for diffraction to occur, the surface the wave must travel around 

must have dimensions that are large compared to the wavelength.  In practice, diffraction is hard 

to accurately predict with loss predictions consisting of a theoretical approximation modified by 

empirical corrections (Rappaport, 2002).  Models have been developed for some simple cases of 

diffraction, but they are beyond the scope of this work.  Common sources of diffraction are 

buildings, hills, vegetation, and other structures. 

3.5.5  Multipath 

 Multipath interference occurs when the transmitted signal is reflected many times and the 

reflected signals arrive at the receiver with varying phase shifts, causing the received wave to be 

distorted (Figure 9).  Characteristics of multipath interference are random signal variations with 

respect to location and time.  As with diffraction, it is challenging to determine signal attenuation 

levels for multipath conditions and is the current subject of advanced modeling research (Reed et 

al., 2009).  
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Figure 9.  Illustration of multipath signals distorting the original transmitted signal (Olexa, 

2005). 

3.5.6  Fresnel Zones 

Fresnel zones are virtual geometric regions, subdivided from the propagation space between the 

transmitter and receiver (Figure 10).  Fresnel zones take the form of an ellipsoid with foci 

located at the transmitter   and receiver   and the following property holds true 

          
  

 
 (14) 

Assuming that     , the radius of the n
th

 ellipsoid,   , can be calculated using the following 

equation. 

     
      
     

 (15) 

It can also be shown that when the maximum radius of the n
th

 ellipsoid is equivalent to the 

ground clearance of the line of sight propagation path at that point, the line of sight wave and 

reflected wave have lengths that are      different (Rappaport, 2002).  When   is an odd 

integer, the interference is constructive, and when   is an even integer, the interference is 

destructive (Figure 11).  Additionally, it has been shown that to prevent signal attenuation due to 

diffraction, at least 55% of  the first Fresnel zone should be kept clear (Figure 11). 
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Figure 10.  Schematic representation of Fresnel Ellipsoids (modified from Sizun, 2005). 

Tate et al. (2008) observed that prediction of signal strength for wireless sensor networks in 

agricultural field environments could be improved by accounting for Fresnel zone clearance and 

reflections associated with proximity to Fresnel zones.  
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Figure 11.  Diffraction and reflection signal attenuation and their relationship to Fresnel 

zone clearance (Lathi, 1965). 

3.5.7  Link Budget Analysis 

 Besides the attenuation sources already listed, free space path loss is not the only source 

of attenuation in a wireless system.  Given the logarithmic nature of free space path loss, it is 

important to preserve as much power as possible in a communication link.  A 6dB change in 

signal power will double or half propagation distance.  Rain, atmospheric losses, and white noise 

can each further attenuate a signal.  Increasing the transmit power, antenna gains, and decreasing 

data rate to increase receiver sensitivity can all increase system performance.  The Federal 

Communications Commission (FCC) limits the maximum Equivalent Isotropically Radiated 

Power (EIRP) to 36 dBm (FCC, 2009).  In simple terms, this means the maximum radio 

frequency power than can be emitted at the transmitter's antenna is 36 dBm.  Assuming no loss 
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in connectors or cables and a radome is not covering the antenna, the calculated EIRP (       is 

given by Equation (16) 

               (16) 

where     is the gain of the transmitter's antenna in dBi.  

 A typical wireless system's received power    can be estimated by Equation (17): 

              (17) 

where    represents the transmitted power,    represents the total gains of the system, and    

represents the total losses of the system.  If the received power is less than the receiving device's 

sensitivity   , the transmission will not be successful.  Link margin,   , is defined as the 

difference between the received power and receiver's sensitivity.  

          (18) 

A high link margin indicates a more robust link than a low link margin.   

 A link budget is a compilation of all of the gains and losses in a communication link.  

While modeling and accounting for all gains and losses is not the goal of this work, portions of a 

link budget can be useful to help analyze various aspects of the system.  Table 5 shows a sample 

link budget that can be used as a guide, though it should be noted that formats for link budgets 

vary greatly in detail and form. 
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Table 5.  Sample Link Budget (Reproduced from Seybold, 2005). 

Source Gain Units 

Tx Power   10.0 dBm 

Tx Loss   -1.5 dBi 

Tx Antenna Gain   32.0 dBi 

Radome Loss   -2.0 dBi 

EIRP   38.5 dBm 

      

Path Loss (FSL) -130.2 dBi 

Tx Pointing Error   -1.0 dBi 

Rain Loss (0.999)  -15.0 dBi 

Multipath   -2.0 dBi 

Atmospheric Loss   -0.2 dBi 

Total Path Losses -148.4 dBi 

      

Radome Loss   -2.0 dBi 

Rx Antenna Gain   32.0 dBi 

Polarization   -0.2 dBi 

Rx Loss   -2.0 dBi 

Rx Pointing Error   -1.0 dBi 

Total Rx Gain   26.8 dBm 

      

Interference Margin   -1.0 dBi 

RSL  -83.1 dBm 

      

Rx Noise Figure    7.0 dBi 

Total Noise Power  -93.0 dBm 

      

Threshold  -88.0 dBm 

Net Margin    3.9 dBm 

        

Notes 

Frequency  38.6    GHz 

Wavelength  0.0078 m 

Link Distance  2.0    km 

Noise Bandwidth 25.0    MHz 

Signal-to-Noise Ratio  8.9    dBi 

Polarization Vertical   

 



25 

 

3.6  Suitability of 802.11 in Vehicular Networks 

 Singh et al. (2002) conducted tests deploying an 802.11b network on automobiles.  Singh 

et al. (2002) was able to maintain a network connection at distances of up to 1000 meters, 

successfully completed transmissions at speeds up to 96 kph, and showed improved connectivity 

through reduction of packet sizes.  Bergamo et al. (2003) also ran tests using 802.11b at speeds 

up to 240 kph and noted no effects on performance.  Bergamo et al. further noted that it took 

considerable time to hand off or transition between networks and the network did not perform 

well with the use of TCP packets, recommending the use of UDP packets.  Ott and Kutscher 

(2004) performed tests on the Autobahn in Germany using one 802.11b transceiver on an 

automobile and another on a tower in a fixed location showing 150 meters usable communication 

radius around the tower.  Ott and Kutscher (2004) also noted that TCP packets perform well 

when towers are topologically close, suggesting TCP might be usable when a robust connection 

can be obtained.  Gass et al. (2006) also did similar experiments to Ott and Kutscher but made 

the observation that access points could detect the presence of a network much farther away than 

they could associate with the network, which suggests the association process could cause 

hysteresis in the bandwidth versus distance measurement. 

 Wellens et al. (2007)  and Shen et al. (2009) compared the performance of 802.11a, b, 

and g in vehicular scenarios, both finding 802.11a performed the least satisfactory, being 

unstable and having the shortest range.  Wellens et al. (2007)  and Shen et al. (2009) also found 

that 802.11b and g supported communication over longer distances, with 802.11g offering the 

highest throughput at close range and 802.11b offering the largest range.  Wellens et al. also 

concluded that network performance can be network dependent and stated that rate adaptation 

mechanisms need to be designed for changing environments in order to not impede performance.  

Riblett and Witzke (2009) also observed noisy degradation in performance of an 802.11g 

network and concluded that 802.11g is very susceptible to multipath interference, but otherwise 

works well in outdoor vehicular scenarios.  This observation is also supported through modeling 

and research done by Alexander et al. (2007) and Matolak (2008) on the OFDM physical layer in 

the 802.11g standard.  Alexander et al. (2007) and Matolak (2008) show that in outdoor 

environments, multipath can induce large Doppler shifts in the reflected waves, causing 
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interference between adjacent symbols in the OFDM subchannels which is not observed in 

indoor environments. 

3.7  Summary 

 Wireless networks are complex entities that use multiple protocols and standards at 

different layers to connect two or more devices.  802.11 is a low level protocol defining function 

at the physical and data link layers of a network.  Since the initial standardization in 1997, many 

amendments have been offered to 802.11, with the most widely used being 802.11b, 802.11g, 

and 802.11n.  These amendments have maintained backwards compatibility for the most widely 

used options while updating the protocols to improve performance.  A new amendment, 802.11p, 

is being drafted for the purpose of safety-related vehicular communication, and is of particular 

interest to the automotive industry. 

 By United States law, radios can only emit 36dBm EIRP, and in free space the power 

density decreases as a function of distance at 20 dBi/decade and a function of frequency at 20 

dBi/decade.  Other factors that influence the performance of a wireless network are reflection, 

diffraction, and multipath.  A Fresnel zone is also an important geometric feature to a 

communication link, and some important behaviors of a network are related to the Fresnel zone's 

dimensions.    

 802.11 networks were designed for indoor use and do not perform optimally in an 

outdoor environment.  802.11a, b, and g networks have been tested in an automotive 

environment.  802.11a performed poorly, which is expected due to its higher frequency.  802.11b 

and g both operate at 2.4 GHz but use different modulation techniques, DSSS for 802.11b and 

OFDM for 802.11g.  OFDM modulation technology was designed to reject multipath 

interference better than DSSS, but the specific implementation in 802.11g does not leave 

sufficient spacing between symbols.  Thus, in practice, 802.11b performs better in outdoor 

environments where multipath is present. 
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CHAPTER 4:  SYSTEM DESIGN AND VALIDATION 

 A simple two node network between two tractors was constructed for performance 

testing.  Tests were devised that allowed both vehicles to be operated simultaneously in order to 

reduce the influence of localized conditions and provide as realistic of a test environment as 

possible.  Personal computers (PCs) on each tractor executed an identical application that created 

both a server and client on each tractor with the client sending data to the opposite server over 

the network.  Georeferenced logs were created for sent and received data on both servers and 

clients for post-processing.   The hardware setup, radio and network configuration, software 

design, system validation tests, and test procedures are covered in detail in the following 

sections. 

4.1  Hardware Setup 

 Figure 12 shows the hardware setup used for the in-field testing in this work.  A John 

Deere 2955 tractor and John Deere 7700 tractor were used to mount the equipment for testing.  

GPS units were mounted to the cab roof using standard brackets purchased from the equipment 

manufacturer.   
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Figure 12.  Two tractors fitted with GPS hardware and radios for field tests. 

The GPS unit was mounted longitudinally down the center of the tractor, almost directly above 

the rear axle.  The 802.11 radios were mounted directly to the side of the GPS unit by 50 cm and 

oriented so the cross-section of the radio would provide the least obstruction to GPS signals, as 

shown in Figure 13.  The lowest point of the 802.11 radio antenna was at least 23 cm taller than 

the next tallest object (the GPS) in order to eliminate any interference from the GPS unit or the 

cab roof.  Because the heights of the cab roofs were different, brackets that attached the radio to 

the tractor were made so the distance from the ground to the radio was the same for each unit.  

The distance from the ground to the bottom of the antenna was measured and recorded for each 

test.   
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Figure 13.  GPS and radio mounted on a tractor showing the layout of the units. 

The GPS unit was connected electronically via OEM production wiring harnesses, part number 

PF90132, which extended down the corner-post into the cab.  The harnessing provided RS232 

NMEA output from the GPS to the laptop computer via a DB9 connector in the tractor cab as 

well as a CAN-bus for connection for other controllers, such as the display.  The display, PN 

PF90423, was used to set up and configure the GPS and was also mounted in the tractor cab.  

The 802.11 radio had an 802.3af interface, allowing a single CAT5 cable to provide data and 

power to the radio.  This cable was also routed down the rear corner-post of the tractor and into 

the cab where it was connected to an interface module.  The interface module supplied power to 

the CAT5 cable, which ultimately powered the radio and provided a separate CAT5 cable for 

data interface to the laptop computer without power on the dedicated wires.  A reliable power 

source was located to supply power both to the GPS wiring harness and the 802.11 radio. 
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4.2  Hardware Configuration 

 Figure 14 shows a system diagram for the test setup.  In order for the system to function, 

the GPS, 802.11 radio and PC on each node must be properly configured.  

 

Figure 14.  System architectural diagram for test setup showing 802.11 radio network and 

supporting hardware. 

 The GPS units were John Deere StarFire
TM

 receivers using a SF1
TM

 corrections signal 

with an advertised pass-to-pass accuracy of +\- 25 cm (Deere and Company, 2010).  The 

receivers were configured to output standard GGA and RMC NMEA 0183 messages at 5 Hz and 

38,400 bits/sec baud. 

 Both laptop computers were equipped with an 802.3-2008 compliant Ethernet card as 

well as an RS232 port for interfacing with the test setup.  The RS232 port was configured by the 

test software, and only the COM port number for the corresponding port was needed in advance.  

For the entire test duration, each computer was assigned a fixed IP address, and the Ethernet 

adapter had to be properly configured to use this address.  The exact addresses used for each 

node could be changed to some extent, but an architecture with fixed IP addresses was chosen so 
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the network architecture could be rigidly established and consistent for all tests.  Figure 15 

illustrates the basic network configuration used for the laptops during testing.  

 

Figure 15.  Network diagram of test setup. 

 The 802.11 radios used in this research were EnGenius
TM

 model EOC-3220-EXT 

802.11b / g compliant radios.  The radios required a one-time initial configuration that is 

documented below as well as some changes between individual tests, which are documented 

later in this chapter.  The process of configuring the radios was accomplished using a web 

browser to log into the radios.  All wireless configuration instructions assumed the radios were 

initially configured to factory defaults.  The first step was to set up one radio as a bridge and the 

other radio as an access point.  Static IP addresses were then assigned to each radio as shown in 

Figure 15.  After this had been finished for both radios, the radio configured as a bridge was 

connected to the network broadcast by the access point.  Once all settings were saved, the radios 

could be powered down and the initial configuration was complete.  Screenshots of the radio 

setup are included in Appendix A. 

4.3  Test Software Design and Implementation 

 In order to measure the performance of the radio link, a software application was created 

to generate, send, receive, and log communications data between nodes.  This application was 

deployed on the PCs and executed during a series of in-field tests.  Significant effort would have 

been required for the in-field application to log data in a format that could be directly analyzed, 

so a second application was required to post-process the field-collected data into meaningful 

information that addressed the objectives of this work.  Finally, Microsoft Excel
TM

 was used to 

plot and statistically analyze the post-processed data.  Figure 16 illustrates the flow through the 

collection, post-processing, and analysis processes.  The in-field data collection and post-

processing software is described further in this chapter, while any software related to the 

presentation or statistical analysis of the data is discussed in the following chapter. 



32 

 

 

Figure 16.  Flow of data through data collection, post-processing, and analysis processes. 

4.3.1  In-Field Application 

 In order to obtain accurate and meaningful results, the in-field application was designed 

to fulfill a number of requirements.  The application generated a packet of data to be sent over 

the wireless network with either a successful or failed outcome.  Each packet transmission was 

georeferenced and logged. The application generated packets of multiple sizes in an alternating 

pattern and properly timed the packet transmissions so the network was never pushed beyond its 

specified bandwidth limits.  Georeferenced logs were created for the received data.  Since large 

amounts of data were transmitted and received over the course of a test, a file format was used 

that was reasonably compact and allowed for many successive tests to be conducted.  The 

application started sending data only after it had received communication from the corresponding 

application at the other node in order to ensure packets were not incorrectly perceived as 

dropped.  The tractor operator at each node had some general indication of the network 

connection quality so tests were not be prematurely stopped or conducted for longer times than 
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necessary.  Finally, the application included basic diagnostics to ensure the system was 

functioning properly while the test is being conducted. 

 Figure 17 is a flow diagram of the in-field application software, and Appendix B contains 

the actual source code for this application.  The software can be subdivided into three broad 

portions that correspond to each of the columns in the diagram:  initialization, main loop 

operation, and shutdown.  The application starts by prompting the user to input a series of 

parameters relevant to the forthcoming test.  The IP address of the receiving node is required so 

each node knows the destination to which it needs to send its data packets.  Next, the network 

baud rate is entered in units of Mbits/sec.  This parameter is used to ensure the application does 

not attempt to send more data over the network than is possible. Lastly, the port number for the 

serial port is required so the software knows which COM port to monitor to receive GPS output.  

Once these three parameters are entered by the user, a series of initializations occur.  These 

initializations are straightforward with the distinction that in all three cases, the initializations are 

non-blocking in nature (Microsoft, 2010).  This is a way of configuring a stream so it will not 

block linear execution while waiting for data to be received, thus allowing the main loop to run 

at a rapid pace and eliminating the need for multiple threads in the application.   
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Figure 17.  Flow diagram of in-field application software. 
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 The main loop of the application is an infinite loop that cycles at a frequency greater than 

1 kHz and is only terminated by typing the command "quit" into the keyboard.  Each time the 

loop cycles, it performs five functions:  handling input data, parsing GPS data, handling received 

data packets, sending data packets, and handling miscellaneous periodic tasks.  Each of these 

tasks are briefly described in the following paragraphs. 

 The user input portion of the main loop maintains a buffer of characters entered by the 

user.  Whenever the user presses the "enter" key, the buffer is parsed and discarded.  Two 

commands, "start" and "quit," are supported.  The "start" command initiates the transmission of a 

special packet over the network that, when successfully transmitted, causes both applications to 

start systematically sending packets of data. The "quit" command sets a flag that ultimately 

causes the main loop to terminate and the program to shut down. 

 The serial port processing portion of the main loop also maintains a serial port buffer 

which, upon receiving a complete NMEA type string, will parse and discard the buffer.  Two 

types of NMEA strings, GGA and RMC, are used to determine the current velocity, position, 

altitude, time and date.  The GPS latitude and longitude are checked for validity, and when it is 

determined that accurate data have been received, a flag is set.  This flag is checked and reset by 

the periodic portion of the main loop to alert the operator if there is a problem with the GPS 

input. 

 The packet receipt and generation portion of the main loop perform the functions that are 

at the core of the in-field application.  The tests conducted by Singh et al. (2002), Bergamo et al. 

(2003), Ott and Kutscher (2004) were designed to measure throughput versus distance among 

other factors.  The objective of this work was to understand the reliability versus distance, and 

using TCP, which automatically retries unsuccessful packet transmissions, would unnecessarily 

complicate the application logic. Thus, UDP was selected as the transport layer protocol.   

 The maximum packet size that can be transmitted over an 802.11 physical layer is 2345 

bytes (IEEE, 2007).  Given that the data link, network and transport layers add 34, 12, and 16 

bytes overhead, respectively, to a typical UDP packet, the maximum amount of actual data a 

single undivided UDP packet can transmit over an 802.11 network is 2283 bytes.   
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 The data content of a UDP packet consists of a sequence number followed by random 

numbers.  Figure 18 shows how the sequence number was repeated for each length packet before 

it is incremented.  Each time a packet is queued for transfer, the theoretical transmission time, 

   , is estimated using the following formula 

     
         

    
 (19) 

where   is the packet length in bytes,     is the CPU processor speed in cycles per second,   is 

the baud rate of the network, and    is a safety factor between 1 and 100. 

 

Figure 18.  Illustration of sequential packet transmission with length, L, and sequence 

number, SN. 

 Each time a packet is received or transmitted, the packet sequence number, packet length, 

latitude, longitude, speed, and time are recorded in a comma separated value (CSV) style file.  

The format of all of these parameters should be self-explanatory with the exception of time, 
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which is expressed as the value of seconds since midnight.  Separate log files were created for 

transmitted and received data. 

 The final portion of the main loop executes once every second and completes a number 

of low-frequency periodic functions related to the user interface display.  An example of the 

application user interface during in-field operation is shown in Figure 19.    For each packet size, 

the application estimates instantaneous and cumulative receipt data and displays them in a 

percentage format. 

 When the user enters the "quit" command, the main loop will terminate and the shutdown 

tasks will be executed.  These tasks include shutting down all ports and sockets as well as 

outputting the total number of packets sent and received. 

Figure 19.  Picture of in-field application user interface displaying instantaneous and 

cumulative number of packets received for each packet length. 
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4.3.2  Post-Processing Application 

 The post-processing application works in two phases as shown in Figures 20 and 21; the 

first phase completes the geospatial portion of the calculations, and the second phase computes 

and aggregates the statistical data for each packet.  Data from the first phase are needed in order 

to complete the second phase.  Figure 20 shows the processing logic in a traditional linear 

programming flowchart, while Figure 21 illustrates the flow of data through the post-processing 

application.  The software initialization, two processing phases and shutdown are described in 

the following paragraphs. 

 The filenames of the four transmit and receive files serve as input to the post-processing 

application and are included in the command string to invoke the post-processing application.  

The filenames of the input files are used to generate filenames for output files and two output 

files are opened: one to contain the spatial information such as position, direction, etc., and the 

second to contain all of the distance-based statistical information. 

 The first processing phase seeks to compute all spatial data related to the given run.  GPS 

data was recorded at 5Hz, but packets are sent across the network at a much higher frequency.  

By scanning both sets of transmit logs for unique and matching time and position-related values 

and only doing computations on those values, the post-processing application will eliminate 

many duplicate calculations in processing the packet statistics.  The distance between nodes was 

calculated using a proprietary coordinate transformation where latitude and longitude were 

converted to a rectangular coordinate system and distance calculations could be done using 

simple algebra.  A determination of whether the nodes were moving towards or away from each 

other was made by looking at successive distance calculations.  If the distance between nodes 

was increasing over time, the machines are moving apart and if the distance is decreasing, the 

machines are moving toward each other.  The output of the first processing phase is a two-

dimensional array that is stored in RAM that contains time, distance, and direction for each GPS 

position and a spatial log file that can be used to plot out spatial information.  The parameters 

contained in the spatial log file are described in Table 6.  The file can easily be converted to a 

standard spatial file type using readily available programs, for example a "kml" file (Google, 

2010), which is compatible with free viewers like Google Earth
TM

. 
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Figure 20.  Flowchart of post-processing application. 
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Figure 21.  Illustration of post-processing application function. 
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Table 6.  List of parameters and their descriptions in spatial output file. 

Abbreviation Description 

SECS Seconds since 12:00 AM (midnight) in units of seconds X 10 

DIST Distance between radios [m] 

TOWARD 0 = Radios moving towards each other 
1 = Radios moving away from each other 

LAT1 Latitude of Radio 1 [decimal degrees] 

LON1 Longitude of Radio 1 [decimal degrees] 

LAT2 Latitude of Radio 2 [decimal degrees] 

LON2 Longitude of Radio 2 [decimal degrees] 

 The second processing phase attempts to determine the outcome of a packet transmission 

by comparing the contents of the transmit and receive files.  Packets from the transmit log file 

are examined one by one.  The contents of the receive file are buffered into RAM for faster 

searching and processing.  The time field of the transmit packet is parsed and used to quickly 

skip to the correct location in the receive data buffer, making the assumption that the packet will 

be received at the same or later time as compared with the transmitted packet.  Packets in the 

receive log are sequentially searched until either a matching sequence number and packet length 

field are found, indicating a successful transmission, or the sequence number in the receive log is 

greater than the sequence number of the transmitted packet, indicating a failed transmission.  

Once the outcome of a transmitted packet is determined, all properties for that packet are known.  

A separate function examines these properties and maintains an aggregate statistical log in RAM.  

The parameters recorded in this log are listed in Table 7. 
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Table 7.  List of parameters and their descriptions in the statistical output file. 

Abbreviation Description 

D Distance between Radios [m] 
TA Total Number of Packet Transmission Attempts for Radios 1 and 2 
SA Total Number of Successful Packet Transmissions for Radios 1 and 2 
R1TA Total Number of Packet Transmission Attempts for Radio 1 
R1SA Total Number of Successful Packet Transmissions for Radio 1  
R2TA Total Number of Packet Transmission Attempts for Radio 2 
R2SA Total Number of Successful Packet Transmissions for Radio 2  

R1IBTA Total Number of Packet Transmission Attempts for Radio 1 when 
machines were moving towards each other 

R1IBSA Total Number of Successful Packet Transmissions for Radio 1 when 
machines were moving towards each other 

R2IBTA Total Number of Packet Transmission Attempts for Radio 2 when 
machines were moving towards each other 

R2IBSA Total Number of Successful Packet Transmissions for Radio 2 when 
machines were moving towards each other 

PK1TA Total Number of Packet Size 1 (15 bytes) Transmission Attempts 
PK1SA Total Number of Packet Size 1 (15 bytes) Successful Transmissions 
PK2TA Total Number of Packet Size 2 (150 bytes) Transmission Attempts 
PK2SA Total Number of Packet Size 2 (150 bytes) Successful Transmissions 
PK3TA Total Number of Packet Size 3 (500 bytes) Transmission Attempts 
PK3SA Total Number of Packet Size 3 (500 bytes) Successful Transmissions 
PK4TA Total Number of Packet Size 4 (1000 bytes) Transmission Attempts 
PK4SA Total Number of Packet Size 4 (1000 bytes) Successful Transmissions 
PK5TA Total Number of Packet Size 5 (1400 bytes) Transmission Attempts 
PK5SA Total Number of Packet Size 5 (1400 bytes) Successful Transmissions 
PK6TA Total Number of Packet Size 6 (2200 bytes) Transmission Attempts 
PK6SA Total Number of Packet Size 6 (2200 bytes) Successful Transmissions 

 

4.3.3  Test Software Validation 

 The functionality of the in-field application was validated using two test scenarios.  

During the first test scenario, the 802.11 radios were replaced with a crossover CAT5 cable, 

effectively eliminating the wireless portion of the system.  Data collection was collected for 5 

minutes, and the number of transmitted and received packets and bytes were compared at each 

node to confirm that all traffic was being accurately accounted for.  A second test, which is 

referenced as run 19 in Table 8, was executed with the identical test setup used in the formal 
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experiments but with stationary tractors approximately 7 meters apart.  The radios were 

configured to operate at 18 Mbits/sec and data collection was initiated for 161 seconds with 

33,864 packets being transmitted and 33,808 packets being received, resulting in a 99.8% 

success rate. 

4.4  Test Procedures 

 The University of Illinois Agricultural Engineering Farm was chosen as the site to 

conduct all tests for this work.  This site was relatively level and free of obstructions such as 

trees and buildings.  A site survey was conducted for competing 802.11b and g networks, and 

other networks were found to be present.  802.11b and g channels were selected so that there was 

maximum spacing between adjacent network channels to minimize interference.  Data were 

collected in a series of 18 runs or tests over the course of two days.   A summary of these runs 

can be found in Table 8.  The data rate, protocol, and antenna height were varied as described in 

Table 8, with unique alterations to each test described in the "notes" column.   
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Table 8.  Summary of runs displaying the various configurations tested. 

Date Run 

Data 
Rate 

[Mb/sec] Protocol 

Antenna 
Base 

Height 
[m] 

Antenna 
Tip 

Height 
[m] Path Notes 

3/18/2010  1  1.0 b 3.38 3.63 A   

3/18/2010  2  2.0 b 3.38 3.63 A   

3/18/2010  3  6.0 g 3.38 3.63 A   

3/18/2010  4 12.0 g 3.38 3.63 A   

3/18/2010  5 18.0 g 3.38 3.63 A   

3/18/2010  6 36.0 g 3.38 3.63 A   

3/18/2010  7 54.0 g 3.38 3.63 A   

3/31/2010  8  5.5 b 3.38 3.63 A   

3/31/2010  9  5.5 b 3.38 3.63 A 1 

3/31/2010 10  5.5 b 3.38 3.63 A 2 

3/31/2010 11  6.0 g 3.38 3.63 A 2 

3/31/2010 12  6.0 g 3.38 3.63 A 1 

3/31/2010 13 18.0 g 3.91 4.16 A   

3/31/2010 14 18.0 g 3.91 4.16 A 1 

3/31/2010 15  6.0 g 3.91 4.16 A 1 

3/18/2010 16 18.0 g 3.38 3.63 B   

3/18/2010 17 18.0 g 3.38 3.63 A 3 

3/18/2010 18 18.0 g 3.38 3.63 A 4 

3/16/2010 19 18.0 g 3.38 3.63 N/A 5 

                

Note Explanation 

1 
Instead of completing a lightbulb turn at the maximum distance 
between nodes, the tractors were shifted into reverse and backed 
along the same path to their starting point. 

2 Tractors executed a lightbulb turn while both radios were 
successfully completing transmissions. 

3 One tractor executed pattern A while the other tractor remained 
stationary. 

4 Configurations were reversed in the radios 

5 Both tractors remained stationary.  Log files not created.  
Summary data recorded from application output. 

 A typical test is illustrated in Figure 22.  The test started out with both tractors within 5 to 

10 meters of each other, as shown by point A.  Both operators initiated the in-field application on 

each PC and entered the relevant information for the run.  One operator entered the "start" 
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command to the application, and both nodes started sending packets of data.  Once operators 

observed the application starting to output summary data similar to Figure 19, the tractors were 

driven forward at approximately 5 km/h at approximate right angles to each other.  When both 

tractors reached a point, labeled point B in Figure 22, they were required to turn because of 

spatial constraints of the area.  The tractors were always driven on grassy paths that can best be 

described as dividers between small plots.  The most extreme points that any run reached are 

labeled point C in Figure 22.  The distance between the nodes at these extreme points was 650 

meters.  If these points were at the corners of a rectangular field, the area covered would be 

approximately 20 hectares.  Unless otherwise noted, the tractors were driven until no successful 

transmissions had been completed for the last 20 seconds. Then the tractors executed a lightbulb 

or three-point-style turn and returned to their starting location. 

 

Figure 22.  Normal path driven by two tractors during a data collection run. 
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4.5  Summary 

 In summary, hardware was setup on two tractors to represent a realistic in-field 

operational scenario to test the performance of an 802.11 network.  Specifics of the hardware 

mounting and configuration were documented in detail.  Two applications were developed to 

collect and post-process the data.  The functionality of these applications was validated before 

deploying the system.  A standardized test procedure was created, and various configurations of 

the 802.11 network were evaluated during two separate days. 
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CHAPTER 5:  RESULTS AND DISCUSSION 

 An initial data set consisting of 10 runs was completed, and the analyzed data revealed 

some unexpected results.  Distinct areas of complete packet loss and a difference in network 

performance based on vehicle orientation were observed.  These results were investigated, and 

additional tests were created and executed on the second day to better understand the causes.  

The findings related to these two observations are discussed in the first two sections on ground 

reflection effects and performance differences due to orientation.  The final three sections discuss 

the results relevant to the stated objectives of this work – namely the effects of protocol, packet 

size, and data rate on the performance of an 802.11 network. 

 The reliability versus distance of any of the 802.11 network configurations evaluated 

produced results that, even when averaged over one meter segments, still displayed considerable 

instantaneous variation.  Riblett and Witzke (2009) also made this observation when trying to 

compare the throughput versus time, and relied heavily on data filtering and outlier elimination 

to process the data so descriptive statistics could be used.   Some trends were more apparent than 

others, but in all cases, attempts were made to develop statistical approaches that mathematically 

quantify performance differences and have a sound theoretical and practical basis.  

5.1  Ground Reflection Effects 

 Figure 23 represents a characteristic plot of the ratio of packets received to transmitted 

(expressed as a percent) versus distance.  At small distances between nodes, the network 

performed reliably, but as distance increased, sharp unexplained drops in the network reliability 

were observed.  These drops consistently occurred at specific distances, with smaller and more 

instantaneous drops at approximately 50 and 65 meters, and much more pronounced outages 

centered at 95 and, if applicable, 190 meters.  An observational run was conducted in a different 

location to determine if the cause of these distinct low-performance regions was associated with 

a particular spatial location or if it was related to the distance between nodes.  Longer duration 

outages were easily observed that were consistent with previous runs during this observational 

run by monitoring the output of the in-field application.   



48 

 

 

Figure 23.  Plot of packets received versus distance using 802.11g at 18 Mbits/sec and 

antenna height of 3.47 meters (Run 5). 

 Further analysis during post-processing of the first 10 runs revealed that the distances at 

which these drops occurred corresponded to distances between nodes where the radii of even-

numbered Fresnel radius equaled the antenna heights.  This observation was made by starting 

with Equation (15) and Figure 10 and making the assumptions that         and      .  

These assumptions could be made because the antenna heights for both nodes were equal with 

the height measurement being made on level terrain.  Using the aforementioned assumptions, 

Equation (15) can be rearranged to the form 

   
   

 

  
 (20) 

where          meters,    corresponds to the radius of the n
th

 ellipsoid and will be the same 

as the height of the antennas at each node, and   is the number of the Fresnel radius.  Table 9 

evaluates Equation (20) for antenna heights of 3.47 meters and 4.00 meters and Fresnel radii 1 

through 10.  It should be noted that for antenna heights of 3.47 meters, the distances between the 
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Fresnel Radii 6, 4, and 2, respectively, which correspond very well with the low-performance 

regions in Figure 23.  

Table 9.  Distance between nodes where Fresnel radius equals antenna height for the first 

10 Fresnel radii. 

Radius 
number 

Antenna Height 
[m] 

3.47 4.00 

1 392.32 521.32 

2 196.16 260.66 

3 130.77 173.77 

4   98.08 130.33 

5   78.46 104.26 

6   65.39   86.89 

7   56.05   74.47 

8   49.04   65.17 

9   43.59   57.92 

10   39.23   52.13 

 The distance where the even-numbered Fresnel radii equal the antenna height also 

corresponds to the location where the reflected wave is 180 degrees out of phase with the direct 

wave.  The effect on the field strength at the receiving node can be calculated by rearranging 

Equation (12) and evaluating it at       and         yielding Equation (21).  

  
    
  

       
    

  
  (21) 

Evaluating Equation (21) as a function of   will yield a value ranging from 0 to 2, with a value 

of 0 indicating complete signal attenuation and a value of 2 indicating complete constructive 

amplification.  Figure 24 uses Equation (21) to show that locations of complete signal 

attenuation also correspond to the results for even-numbered Fresnel radii in Table 9. 



50 

 

 

Figure 24.  Plot of signal attenuation/amplification versus distance for antenna heights of 

3.47 m and 4.00 m. 

 To further confirm this effect, the antenna height was increased to 4.00 meters for 3 runs 

with an expectation that a shift could be anticipated in the distances that exhibit poor 

performance.  Figure 25 shows the performance versus distance that was typical for all 3 runs.  

The network in Figure 25 is identically configured compared to the network in Figure 23, with 

the exception that its mounting height was increased to 4.00 meters.  The low-performance 

region is shifted near the predicted distance of 130 meters. 
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Figure 25.  Plot of packets received versus distance using 802.11g at 18 Mbits/sec and 

antenna height of 4.00 meters (Run 13). 

 Four additional observations can be made concerning signal reflections.  The first is that 

when the distance between nodes equals the distance where the odd-numbered Fresnel radii 

correspond to the antenna heights, constructive signal amplification can occur.  This property 

could potentially be utilized by more intelligent radios with multiple antennas to have a net 

benefit for network performance.  Secondly, the small changes in topography will have large 

effects on the dimension of the Fresnel radii.  In this work, a 0.5 meter change in antenna height 

caused 30-meter and 64-meter changes in distances where destructive interference occurred 

corresponding to the fourth and second Fresnel radii.  Third, it should also be noted the field 

surface could be described as flat but not necessarily smooth.  The field surface was fallow bean 

stubble and had not been leveled for irrigation or drainage purposes.  Networks deployed on 

ground that is leveled for drainage or flood irrigation purposes could experience more 

pronounced reflective effects due to a more ideal reflecting surface.  Lastly, it should be noted 

that the effect of signal reflections was never described in any previous works reviewed in 

preparation for this research.  One possible explanation for this is that the majority of the 

research was performed using automobiles and the radios were mounted much closer to the 

ground.  Decreasing the antenna height would decrease the distances where destructive signal 
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reflections occur.  If the reflections are not perfect, only partial attenuation will occur, and if the 

nodes are close, the strength of the field will be high at the receiving node.  This could result in a 

situation where reflection occurs but the attenuation is not strong enough to reduce the signal 

strength below the receiving node's sensitivity. 

5.2  Performance Differences Due to Orientation 

 Figure 26 illustrates the difference in reliability for nodes that are "inbound" or moving 

closer together compared to nodes that are "outbound" or moving farther away from each other.  

This phenomenon was also consistently observed for all runs where path A was used.  An 

observational test was completed to determine if the behavior was spatially related with the 

results showing that the performance differences due to orientation did not change when the 

location of the run was changed.   

 Special care was taken during the installation process to mount the radio well above any 

other object on the vehicle in order to reduce vehicular effects on the 802.11 network's 

electromagnetic waves.  The radio height was increased from 3.47 meters to 4.00 meters to 

provide a minimum of 75 cm of clearance between the base of the antenna and next highest 

object on the cab roof.  Figure 27 shows the results to an identical run as shown in Figure 26 

with a radio height of 4.00 meters.  The network with increased mounting height also performed 

differently based on vehicle orientation. 
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Figure 26.  Plot of packets received versus distance using 802.11g at 18 Mbits/sec and 

antenna height of 3.47 meters illustrating the performance difference between nodes 

moving closer (Inbound) to each other versus farther away (Outbound). 

 

 

Figure 27.  Plot of packets received versus distance using 802.11g at 18 Mbits/sec and 

antenna height of 4.00 meters illustrating the performance difference between nodes 

moving closer (Inbound) to each other versus farther away (Outbound). 

 Another possible explanation for the difference between inbound and outbound 

performance is due to the overhead required to connect nodes that are currently on the same 
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network.  Since the test procedure involved initiating the test with the nodes in close proximity 

and establishing a network connection, the outbound portion of a run did not have to go through 

an association process.  However, the vehicles were operated until the connection was lost for 

many seconds before turning the vehicles back towards each other.  Gass et al. (2006) observed 

that nodes could identify the presence of a network at larger distances than they could create a 

connection.  Gass et al. also noticed a hysteresis effect, noting that a mobile vehicle passing a 

fixed node transmitted less data approaching the fixed node than when moving away due to the 

association overhead.  Two alterations to the standard run were made to determine if the 

association overhead was producing these performance differences.  The first modification was 

to execute a run where the tractors would turn towards each other and return to their starting 

points well before the network connection was lost.  These runs are denoted with a "2" in the 

notes section of Table 8.  The results from these tests still showed the same inconsistency 

between the inbound and outbound network performance as the original runs.  It was also 

observed that during the turning process the connections were abruptly lost.  A second modified 

run was performed where the vehicles were operated until they were well out of range, and 

instead of executing a turn and driving forward towards each other, they were driven backwards 

in reverse to their original position.  Thus, the nodes still had to re-associate, and the nodes were 

moving towards each other, but the orientation of the vehicles had not changed from the 

outbound portion of the run.  Runs that were completed using this procedure are denoted with a 

"1" in the notes section of Table 8.  Figure 28 shows a much more consistent performance during 

the inbound and outbound portions of the run, indicating the orientation of one or both vehicles 

has an effect on performance. 

 



55 

 

 

Figure 28.  Plot of packets received versus distance using 802.11g at 18 Mbits/sec and 

antenna height of 4.00 meters using a modified driving pattern where illustrating the 

similarity in performance between nodes moving closer (Inbound) to each other versus 

farther away (Outbound). 

 Further attempts were made to better understand the nature of this effect by producing a 

plot of performance versus transmission angle and distance.  However, these plots did not 

produce useful information because they were sparsely populated with data and no clear trends 

could be observed. 

 Since the objective of this work is to demonstrate the potential performance of 802.11 

networks when subjected to agricultural field conditions, the outbound data will be used in the 

following analyses.  However, it should be noted that a thorough understanding of the effect of 

the vehicle on the transmission pattern of the wireless system should be conducted before 

evaluating a wireless network. 
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5.3  Performance of 802.11b Versus 802.11g 

 Figure 29 illustrates the difference in performance between an 802.11b and 802.11 g 

network operating at comparable data rates.  The 802.11b network is influenced by ground 

reflections as expected in the 195-meter range but otherwise provides consistent performance 

until 465 meters.  The 802.11g network offers reliable performance up to approximately 170 

meters with the exception of a drop in performance at 60-70 meters.  At 170 meters, the network 

appears to be influenced by ground reflections and exhibits intermittent performance until 435 

meters.  Both protocols transmit data to nearly the same maximum distances, but 802.11b is 

much more consistent in its performance.

 

Figure 29.  Plot of packets received versus distance using 802.11g at 6 Mbits/sec and 

802.11b at 5.5 Mbits/sec and an antenna height of 3.47 meters (Runs 3 and 8). 

 The 802.11b network is clearly more reliable at distances greater than 200 meters, but 

quantifying this performance difference is not achieved by measuring the maximum transmission 

distance.  In order to distinguish between networks or segments of operation with erratic or 

consistent behavior, the concept of a reliability budget is introduced. 

 A reliability budget is a measure of how much performance is left in the network at a 

given distance.  It can be defined as  
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 (22) 

where       is the percentage of packets received as a function of distance between nodes,  , 

and   is the maximum transmission distance.  Figure 30 shows the reliability budget for the 

same runs as in Figure 29.  Many of the properties of each curve in Figure 29 can be observed as 

a different but related property in Figure 30.  For example, Figure 30 shows the reliability budget 

value of 802.11b is greater than 802.11g at small distances which corresponds to the observation 

that the area under the 802.11b curve in Figure 29 is greater than the area under the 802.11g 

curve.  Also notice the area of poor performance for 802.11g at about 65 meters in Figure 29 

correlates to the instantaneous flat region at 65 meters on the corresponding curve in Figure 30.   

 There are two important properties associated with a reliability budget curve: slope and 

linearity.  Figure 30 also displays the ideal or maximum achievable reliability budget as a 

straight dotted line with a slope that has a magnitude of 1.  A reliability curve for a network that 

has any dropped packets will have a slope less than 1, with a larger slope indicating a more 

reliable system over the operating range.  The more linear the curve is, the more consistent the 

system performs at that reliability level.  An approximate slope was calculated by determining 

the slope for a line that intersects the reliability budget through the endpoints of the reliability 

curve.  The linearity of the curve was determined by using Equation (23) to sum up the 

deviations of the reliability curve from the straight line approximation of the curve formed by 

drawing a line between the two end points of the reliability curve. 

     
                            
   
   

 
 (23) 

In Equation (23),    is the reliability deviation and        is the slope obtained when drawing a 

line between the two end points of the reliability curve. 
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Figure 30.  Plot of reliability budget versus distance using 802.11g at 6 Mbits/sec and 

802.11b at 5.5 Mbits/sec and an antenna height of 3.47 meters (Runs 3 and 8). 

 Table 10 computes the performance statistics for both 802.11b and 802.11g systems 

operating at comparable data rates.  Notice that 802.11b has a larger reliability budget slope, 

indicating an overall more reliable system, as well as a lower reliability budget deviation, 

indicating more consistent performance over the duration of the run. 

Table 10.  Performance statistics comparing 802.11b and 802.11g networks. 

  

Max 
Distance 
[meters] 

Max 
Reliability 

Budget 
[m] 

RB Slope 
[%/m] 

RB 
Deviation 

[%] 

Data 
Rate 

[Mb/s] 

802.11 b     5.5 Mb/s 465 209.07 0.45 24.79 5.5 

802.11 g     6.0 Mb/s 435 144.50 0.34 76.46 6.0 

 

5.4  Effect of Data Rate on 802.11 Reliability 

 Table 11 lists the maximum distances achieved for the different configurations tested.  

Surprisingly, the trend for 802.11b protocols was that increasing the data rate did not have a 
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significant effect on the maximum distance at which the network would transmit data.  However, 

the reliability budgets for 802.11b networks showed better results at lower data rates as 

illustrated by Figure 31.  For 802.11g networks, there was a more defined inverse relationship 

where increasing data rates decreased the maximum distance at which the network would 

transmit data.   However, Figure 32 illustrates that the reliability budget displayed more of a 

consistent bilinear trend, indicating robust performance for shorter distances and then 

inconsistent reliability at distances greater than that point.  This supports the observations by 

Alexander et al. (2007) and Matolak (2008) that document the susceptibility of 802.11g in 

outdoor environments due to multipath effects.  With increasing data rates, the amount of time 

between each symbol decreases, allowing the multipath effect to interfere with adjacent frames at 

closer distances. 

Table 11.  Maximum distance at which packets were received for the protocols tested. 

  

Max 
Distance 
[meters] 

Max 
Reliability 

Budget 
[m] 

RB Slope 
[%/m] 

RB 
Deviation 

[%] 

Data 
Rate 

[Mb/s] 

8
0

2
.1

1
 b

 

1 Mb/s 447 347.96 0.79 16.67  1.0 

2 Mb/s 500 196.59 0.40 26.39  2.0 

5.5 Mb/s 465 209.07 0.45 24.79  5.5 

              

8
02

.1
1

 g
 

6 Mb/s 435 144.50 0.34 76.46  6.0 

12 Mb/s 441 175.37 0.41 65.29 12.0 

18 Mb/s 158 102.83 0.69 12.11 18.0 

36 Mb/s 154   64.93 0.44 21.06 36.0 

54 Mb/s 129   27.02 0.22 23.19 54.0 
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Figure 31.  Plot of reliability budget versus distance for all 802.11b data rates using an 

antenna height of 3.47 meters. 

 

Figure 32.  Plot of reliability budget versus distance for all 802.11g data rates using an 

antenna height of 3.47 meters. 
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5.5  Effect of Packets Size on 802.11 Reliability 

 Figure 33 displays the reliability versus distance for each packet size and is representative 

of a common run.  Packet sizes of 15, 150, 500, 1000, and 1400 bytes usually followed a similar 

curve, while the reliability of the 2200 byte packet was visibly less at times.  Two possible 

explanations exist for the reduced reliability of the largest packet.  The first is that the 2200 byte 

packet is being split up into two smaller packets and broadcast over the network.  The maximum 

frame size for an 802.3 network is 1488 bytes (IEEE, 2008) but the Standard states that when a 

packet is divided into multiple frames, it must be reassembled at the receiving device.  With a 

maximum frame size for an 802.11 network of 2345 bytes (IEEE, 2007), the packet should be 

reassembled and broadcast as a single frame.  In this case, if the packets were divided up into 

two 1100 byte frames, the reliability would be the squared value of the probability of a single 

1100 byte packet making it across the network.  The second explanation is that as packet size 

grows, there is a sharp degradation in reliability.  It is beyond the scope of this work to determine 

the exact explanation for this behavior because it would involve obtaining proprietary 

information specific to the hardware that was used in this research. 

 

Figure 33.  Plot of packets received versus distance using 802.11g at 18 Mbits/sec with an 

antenna height of 3.47 meters for all tested packet sizes (Run 5). 
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 Figure 33 also illustrates the close relationship between the smaller packet sizes that were 

tested.  One-way ANOVAs were completed using the following technique.  For each distance 

interval, data was normalized between all packet sizes.  The normalization process for each 

distance interval helped reduce the variation within a particular packet size.  For example, if a 

particular packet size typically performed the best, it would likely be normalized to 100%, 

reducing the variance between performance measurements for that packet size across varying 

distances.  After each distance interval was normalized, then two one-way ANOVAs were run, 

one to see if there were significant differences between any of the different-sized packets, and 

another to see if there were significant differences between any packet sizes of 15, 150, 500, 

1000, and 1400 bytes. 

 For the first ANOVA that compared all six packet sizes, the results for every run were 

significant to a very high confidence level.  For the second ANOVA that compared packet sizes 

of 15, 150, 500, 1000, and 1400 bytes, 16 of 18 runs had performance differences due to packet 

sizes at a 95% confidence.  Table 12 summarizes the normalized mean packet reliability and 

variance for each packet size and presents the results of both of the ANOVA analyses for each 

run with the two shaded regions indicating results that are not significant.  It was also observed 

that for each run, there was a consistent increase in normalized mean packet reliability with 

decreasing packet size.  This relationship suggests that it might be beneficial to design a system 

utilizing an 802.11 network to transmit important data in small messages separate from 

transmissions of larger, less important data to increase the probability of transmission success. 
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Table 12.  Results of two one-way ANOVA tests to determine if there were significant 

differences between packet sizes 1,2,3,4,5,6 and 1,2,3,4,5.  The shaded regions denote 

analyses that are not statistically significant. 
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Packet Sizes 1,2,3,4,5,6 

One Way ANOVA for 
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RUN 
1 

AVG 89.4 89.1 86.3 84.1 83.4 74.7 
 24.36 2.22 4.72E-24   7.09 2.38 1.13E-05 

VAR 447.5 392.8 505.8 520.4 539.0 763.3 

RUN 
2 

AVG 74.4 71.1 65.4 64.2 64.1 12.9 
241.51 2.22 0.00E+0   9.12 2.38 2.62E-07 

VAR 1231.1 1178.2 1170.2 1162.0 1140.3 483.0 

RUN 
3 

AVG 51.6 51.3 48.8 48.0 48.1 26.0 
 20.47 2.22 4.29E-20    .61 2.38 6.53E-01 

VAR 2158.2 2154.2 2059.7 2044.6 2076.9 1379.4 

RUN 
4 

AVG 68.1 64.0 57.4 55.1 54.3 26.9 
 53.12 2.22 1.24E-52   8.53 2.38 7.88E-07 

VAR 1917.1 1888.1 1767.3 1787.0 1819.2 1099.5 

RUN 
5 

AVG 90.8 90.0 85.0 79.9 79.7 45.5 
 62.66 2.22 4.53E-56   6.02 2.38 9.04E-05 

VAR 577.3 585.8 657.2 863.3 816.3 582.4 

RUN 
6 

AVG 80.6 75.3 65.5 63.5 61.4 37.0 
 24.05 2.22 9.49E-23   6.8  2.38 2.22E-05 

VAR 1451.6 1440.1 1585.5 1545.3 1498.7 988.3 

RUN 
7 

AVG 54.9 42.1 31.7 29.1 28.5 21.3 
 10.65 2.23 6.74E-10   8.68 2.39 8.11E-07 

VAR 2405.6 2037.8 1668.3 1536.5 1393.0 965.0 

RUN 
8 

AVG 79.2 73.6 63.0 60.6 62.5 3.6 
412.75 2.22 0.00E+0  31.55 2.37 8.56E-26 

VAR 1257.0 1281.9 1337.3 1338.6 1302.2 142.0 

RUN 
9 

AVG 96.4 92.9 86.2 86.0 87.2 13.0 
1252.05 2.22 0.00E+0  30.81 2.38 1.56E-24 

VAR 52.8 89.2 319.0 257.6 199.3 325.5 

RUN 
10 

AVG 86.1 77.9 60.2 53.1 55.9 5.9 
485.64 2.22 0.00E+0 116.41 2.38 1.84E-90 

VAR 738.1 805.9 819.7 945.9 861.5 269.0 

RUN 
11 

AVG 42.8 39.2 35.2 32.4 34.7 6.6 
 42.89 2.22 1.62E-42   3.8  2.38 4.38E-03 

VAR 2254.1 2015.3 1726.6 1563.9 1662.0 378.2 

RUN 
12 

AVG 72.6 67.5 59.5 56.1 57.5 6.5 
111.17 2.22 0.00E+0   8.4  2.38 1.09E-06 

VAR 1781.2 1716.6 1484.2 1472.9 1519.7 107.9 

RUN 
13 

AVG 75.8 68.4 58.7 54.6 56.0 23.7 
113.46 2.22 0.00E+0  27.44 2.38 2.45E-22 

VAR 1652.6 1602.0 1528.8 1508.1 1495.1 966.6 

RUN 
14 

AVG 83.6 78.7 69.3 66.8 67.2 17.6 
235.19 2.22 0.00E+0  21.67 2.38 1.38E-17 

VAR 1191.8 1261.4 1367.9 1349.0 1249.7 460.9 

RUN 
15 

AVG 79.0 76.6 68.7 66.6 67.1 7.5 
298.26 2.22 0.00E+0  11.99 2.38 1.20E-09 

VAR 1364.1 1339.9 1242.7 1252.0 1227.1 195.0 

RUN 
16 

AVG 79.7 78.6 74.6 73.1 71.2 45.2 
 26.76 2.22 6.76E-26   2.02 2.38 8.88E-02 

VAR 1546.0 1526.5 1520.8 1447.9 1449.2 975.3 

RUN 
17 

AVG 88.0 85.1 81.3 78.6 76.9 45.7 
 83.63 2.22 4.86E-80   7.46 2.38 5.96E-06 

VAR 984.6 956.8 945.3 944.3 937.1 966.5 

RUN 
18 

AVG 93.7 86.3 74.0 69.9 69.6 21.7 
442.14 2.22 0.00E+0 101.39 2.38 8.12E-80 

VAR 261.0 418.0 629.4 713.6 709.3 1384.9 
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CHAPTER 6:  CONCLUSIONS AND RECOMMENDATIONS 

 A total of 18 runs were completed for the evaluation of an 802.11b/g wireless network in 

a realistic in-field agricultural environment.  Multiple conclusions can be drawn from this 

performance evaluation.   

 Consistent with results from Alexander et al. (2007) and Matolak (2008), the 802.11b 

network performed much better in the outdoor environment by transmitting data more reliably 

and farther than the 802.11g network.  A new parameter, called a reliability budget, was created 

to help quantify performance differences between wireless networks.  Using a plot of 802.11g 

reliability budgets versus distance, a bilinear trend was identified indicating a high reliability 

region, usually at small distances between nodes, and a region with less reliability, at larger 

distances between nodes.  Increasing 802.11g data rates decreased the distance over which the 

network would reliably transmit, but increasing 802.11b data rates had little effect on maximum 

transmission distance but decreased the overall reliability of the network. 

  For packets between 15 and 1400 bytes in length, small but statistically significant 

decreases in reliability were observed with increasing packet size. For the largest packet size of 

2200 bytes, more notable reliability decreases were observed. 

 The network performance was influenced by the angle of the transmitted wave relative to 

the tractor orientation.  The exact reason for this could not be determined, but data considered to 

be affected by this were not used in this analysis.   

 Finally, performance degradation due to signal reflections off of the soil surface could be 

observed at distinct distances between nodes.  This observation confirms the nearly ideal 

reflective properties of the soil and illustrates the need to create a network that is not easily 

affected by these reflections.   

 The following recommendations are made for future investigations into in-field 

agricultural networks: 

1.  Evaluate the performance of 802.11n under the same conditions as this work.  802.11n 

uses OFDM modulation techniques similar to 802.11g, which can have a negative impact 
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on performance, but the addition of MIMO technology should help improve performance, 

especially in multipath environments.  A thorough examination of this technology and 

how it compares to 802.11b and 802.11g would be beneficial.  

2.  Investigate other possible solutions to mitigate performance degradation due to ground 

signal reflections.  Potential solutions might include:  a) using a radio with multiple 

antennas and mounting one antenna above the other;  b) placing a ground plane at the 

base of the antenna; and  c)  integrating a ground plane structure into the vehicle roof.  As 

previously mentioned, these effects will also be present on unlevel ground but in a less 

identifiable pattern.   

3.  Evaluate influences of tractor structure on the antenna pattern.  A test should be 

specifically designed to collect data that will yield a plot of reliability as a function of 

distance and angle. 

 In conclusion, 802.11 networks have a promising future for use in an in-field agricultural 

environment.  The reliable performance over short distances already makes this networking 

technology viable for short-range applications while offering the possibility of extending the 

network across the field.  With continued improvements and new technology, 802.11 will 

eventually find its way from consumer and industrial environments into agricultural fields. 
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APPENDIX A:  ENGENIUS
TM

 802.11 RADIO CONFIGURATION 

 

Figure 34.  Operation mode setup for Engenius
TM

 802.11 radio. 

 

Figure 35.  LAN interface setup for Engenius
TM

 802.11 radio. 
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Figure 36.  Basic wireless settings for 802.11 radio configured as access point. 
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Figure 37.  Advanced wireless settings for 802.11 radio configured as access point. 
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Figure 38.  Basic wireless settings for 802.11 radio configured as bridge. 
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Figure 39.  Advanced wireless settings for 802.11 radio configured as bridge. 
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APPENDIX B:  IN-FIELD APPLICATION SOURCE CODE 

//server and client code 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <conio.h> 

#include <time.h> 

#include <winsock2.h> 

#include <windows.h> 

 

#pragma comment(lib, "ws2_32.lib") 

 

#pragma warning( disable : 4996)  // disable compiler warnings about 

deprecated functions like "scanf", "sprintf", etc. 

#pragma warning( disable : 4305)  // supress warnings about truncation from 

double to float 

 

///////////////////// 

/////Variables/////// 

///////////////////// 

//User inputs 

#define NWORK_LOADING 25   // Percentage that we are going to 

load the network compared to the theoretical limits 

#define NUM_PKT_LEN 6    // Number of different length 

packets that will be used  

 

#define PKT_0 15     // First packet length is 15 

#define PKT_1 150     // Second packet length is 150... 

#define PKT_2 500 

#define PKT_3 1000 

#define PKT_4 1400 

#define PKT_5 2200 

 

#define RX_BLOCK_TIME MAXDWORD  // Time in milliSeconds to receive 

function 

int a1, a2, a3, a4;     // Receiving Server address 

(of other computer) components in xxx.xxx.xxx.xxx form 

unsigned int datarate;    // User Defined data rate 

unsigned int act_data_rate;   // Actual data rate we want to 

achieve through a socket 

unsigned int antenna_gain;   // Antenna Gain as defined by user 

char in_char[2];     // Buffer for user input 

DWORD bytes_received;    // Bytes received from stream such 

as serial port or UDP server 

 

 

 

//serial port variables// 

#define PORTNUMSTR "\\\\.\\"  // Start of the string for the port 

number 

int COMport;      // Variable to represent 

serial port number 

HANDLE SPhandle;     // Handle to the serial port 

char portstring[50];    // Start of port number string 

char port_num[50];     // Final port number string 
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DCB SPprop;       // Properties of serial port  

COMMTIMEOUTS SPtimeouts;   // Timeout properties so the serial 

port does not hang 

char file_name[256];    // Name of file to receive // 

#define SPBUFSIZE 1000    // Serial port buffer size 

char sp_buf[SPBUFSIZE];    // Serial port buffer 

#define PBUFSIZE 1000    // Parse buffer size 

char input_buf[PBUFSIZE];   // Parsing buffer for serial port 

short int bufidx = 0;    // index into parse buffer 

char sp_input_buf[PBUFSIZE];  // Intermediate serial port buffer 

 

 

//GPS variables 

struct GPS  

{ 

 unsigned char diff_type; 

 float   altitude, mph, seconds_today; 

 unsigned char differential; 

 double   latitude; 

 double   longitude; 

 char   hour, min, second, secondX10, day, month, year; 

 int    full_year; 

 char   new_data; 

}; 

struct GPS Position; 

 

 

//General Server / Client Socket Variables 

#define BUFFER_SIZE 5000 

#define PORT_OFFSET 22349   //this number was chosen so I could 

get through the firewall on all the pc's 

WSADATA w;       /* Used to open windows 

connection */ 

 

 

//Receiving Server / Client Socket Variables 

//In this case we are the receiving server and the other computer is the 

sending client 

unsigned short server_port_number;   /* Port number to use */ 

int client_length;     /* Length of client struct */ 

SOCKET ssd;       /* Socket descriptor of 

server */ 

struct sockaddr_in server;   /* Information about the server */ 

char rbuffer[BUFFER_SIZE];   /* Where to store received data */ 

struct hostent *hp;     /* Information about this 

computer */ 

char host_name[256];    /* Name of the server */ 

 

 

//Sending Server / Client Socket Variables 

//In this case we are the sending client and the other computer is the 

receiving server 

unsigned short client_port_number;   /* Port number to use */ 

SOCKET rsd;       /* Socket descriptor of 

server */ 

struct sockaddr_in rserver;   /* Information about the receiving 

serer */ 
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struct sockaddr_in sclient;   /* Information about the sending 

client */ 

char sbuffer[BUFFER_SIZE];   /* Where to store data to send*/ 

int tx_packet_length;    /* Length of the current packet 

being sent*/ 

struct hostent *hp;     /* Information about this 

computer */ 

char host_name[256];    /* Name of the server */ 

 

//Timing variables 

LARGE_INTEGER ticksPerSecond, tick1, tick2, tick3, tick4, tick5; 

signed long long int pktTXtime = 0; 

 

//Packet statistics 

unsigned long int sequence_num = 0;        

    // used to uniquely identify each packet 

unsigned long int total_packet_count = 0, total_packets_received = 0;  

 // total packets out and in 

unsigned long long int total_bytes_sent = 0, total_bytes_received = 0;  

 // total bytes out and in 

unsigned int 

packet_lengths[NUM_PKT_LEN]={PKT_0,PKT_1,PKT_2,PKT_3,PKT_4,PKT_5}; // array 

of packets lengths 

unsigned int packets_sent[NUM_PKT_LEN]={0,0,0,0,0,0};     

  // cumulative packets sent for each size of packet 

unsigned int packets_recv[NUM_PKT_LEN]={0,0,0,0,0,0};     

  // cumulative packets received for each size of packet 

unsigned int st_packets_sent[NUM_PKT_LEN]={0,0,0,0,0,0};    

  // short term packets sent for each size packet 

unsigned int st_packets_recv[NUM_PKT_LEN]={0,0,0,0,0,0};    

  // short term packets received for each size packet 

unsigned char lengthptr = 0;         

    // variable to server as pointer into these arrays 

 

//Logging 

FILE *fFileTX, *fFileRX;    // File pointers 

char fnTX[200], fnRX[200];    // File name character arrays 

int first_packet_received = 0;   // Flag that tells 

application to start sending data 

int send_start = 0, send_quit = 0;  // Flags used to trigger start and 

stop of other application 

 

//temps 

unsigned char u8tmp1; 

signed char   i8tmp1; 

unsigned short int u16tmp1; 

signed short int i16tmp1; 

unsigned long int u32tmp1; 

signed long int i32tmp1, i32tmp2; 

short int i,j,k,n; 

DWORD Error;   

 

/////////////////////// 

//Function Prototypes// 

/////////////////////// 

void set_up_serial_port(void); 

void ParseNMEALine(char *); 
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int  CheckCheckSum(char * GPSbuf); 

void set_up_UDP_server(void); 

void set_up_UDP_client(void); 

void make_master_packet(void); 

void open_log_files(void); 

 

int main(int argc, char **argv) 

{ 

 //****Get Inputs****// 

 printf("Enter the IP address of the receiving device:\r\n"); 

 scanf("%i.%i.%i.%i", &a1, &a2, &a3, &a4); 

 printf("Enter the data rate in Mbit/s:\r\n"); 

 scanf("%u",&datarate); 

 if (datarate > 6) 

 { 

  act_data_rate = 6;  //cap data rate to 6MByte/sec 

 } 

 else 

 { 

  act_data_rate = datarate; 

 } 

 act_data_rate *= (1000000/8);  //convert data rate to MByte/sec 

 printf("Enter the COM port you want NMEA to come in on:\r\n"); 

 scanf("%i",&COMport); 

 printf("Enter the Antenna gain in dB:\r\n"); 

 scanf("%i",&antenna_gain); 

 

 //****Set Up Serial Port****// 

 set_up_serial_port(); //enables reception of GPS messages 

 set_up_UDP_server(); //enables UDP server to listen and log oncoming 

messages 

 set_up_UDP_client(); //enables UDP client to send and log data 

packets 

 make_master_packet(); //populate the big blob of data to be sent 

 open_log_files();  //get ready to write data 

 

 // get the high resolution counter's accuracy 

 QueryPerformanceFrequency(&ticksPerSecond); 

 // what time is it? 

 QueryPerformanceCounter(&tick5); 

 QueryPerformanceCounter(&tick1); 

 tick2.QuadPart = 0; 

  

 while(1) 

 { 

  //make sure we are not supposed to quit 

  if(kbhit()) 

  { 

   in_char[0] = getch(); 

   in_char[1] = 0; 

   if( (in_char[0] == '\r') || (in_char[0] == '\n') ) 

   { 

    if(!strcmp(input_buf, "quit")) 

    { 

     send_quit = TRUE; 

    } 

    if(!strcmp(input_buf, "start")) 
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    { 

     send_start = TRUE; 

    } 

    input_buf[0] = 0; 

   } 

   else 

   { 

    strcat(input_buf, in_char); 

   } 

  } 

 

  //see if new GPS data has arrived 

  ReadFile(SPhandle, (void *)sp_buf, SPBUFSIZE, &bytes_received, 

NULL); 

  if(bytes_received) 

  { 

   i=0; 

   while(bytes_received) 

   { 

    if(sp_buf[i] == '$') 

    { 

     bufidx = 0; 

    } 

    sp_input_buf[bufidx] = sp_buf[i]; 

    if( (sp_buf[i] == '\r') || (sp_buf[i] == '\n') ) 

    { 

     sp_input_buf[bufidx] = 0;  //terminate the 

string 

      

     if(bufidx > 0) 

     { 

      ParseNMEALine(sp_input_buf); 

      Position.seconds_today = (float)( 

Position.secondX10 / 10.0 + Position.second + Position.min*60 + 

Position.hour* 3600); 

     } 

     bufidx = 0; 

    } 

    else 

    { 

     bufidx++; 

    } 

    i++;  bytes_received--;  

   } 

  } 

 

  //see if new UDP data has arrived 

 

  bytes_received = recv(ssd, rbuffer, BUFFER_SIZE, 0); 

 

  if(bytes_received != -1) 

  { 

   send_start = FALSE; 

   first_packet_received = TRUE; 

   if(bytes_received == 6) 

   { 

    if(!strcmp(rbuffer,"Start")) 
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    { 

     pktTXtime=0; 

    } 

   } 

   else if(bytes_received == 5) 

   { 

    if(!strcmp(rbuffer,"Quit")) 

    { 

     break; 

    } 

   } 

   else 

   { 

    total_bytes_received += bytes_received; 

    total_packets_received++; 

   

 fprintf(fFileRX,"%s,%d,%.7f,%.7f,%.1f,%.1f\r\n",rbuffer,bytes_received,

Position.latitude,Position.longitude,Position.mph,Position.seconds_today); 

    for(i=0;i<NUM_PKT_LEN;i++) 

    { 

     if(packet_lengths[i] == bytes_received) 

     { 

      break; 

     } 

    } 

    if(i!=NUM_PKT_LEN) 

    { 

     packets_recv[i]++; 

     st_packets_recv[i]++; 

    } 

   } 

  } 

  QueryPerformanceCounter(&tick2); 

  if( ((tick2.QuadPart - tick1.QuadPart) > pktTXtime ) && 

(first_packet_received == TRUE) && (!send_quit) ) 

  { 

   lengthptr = (unsigned char) total_packet_count % 

NUM_PKT_LEN; 

   tx_packet_length = packet_lengths[lengthptr]; 

 

   i32tmp1 = sendto(rsd,sbuffer,tx_packet_length,0,(struct 

sockaddr *)&rserver,client_length); 

  

 fprintf(fFileTX,"%u,%u,%.7f,%.7f,%.1f,%.1f\r\n",sequence_num,tx_packet_

length,Position.latitude,Position.longitude,Position.mph,Position.seconds_tod

ay); 

 

   packets_sent[lengthptr]++; 

   st_packets_sent[lengthptr]++; 

 

   tick1.QuadPart = tick2.QuadPart; 

   pktTXtime = tx_packet_length * ticksPerSecond.QuadPart / 

(act_data_rate); 

   pktTXtime *= (100 / NWORK_LOADING); 

 

   if(lengthptr == (NUM_PKT_LEN - 1) ) 

   { 
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    sequence_num++; 

    sprintf(sbuffer,"%d",sequence_num); 

   } 

   total_packet_count++; 

   total_bytes_sent+= tx_packet_length; 

 

  } 

 

 

  QueryPerformanceCounter(&tick3); 

  //check to see if one second has elapsed since the last time this 

was done 

  if((tick3.QuadPart - tick5.QuadPart) > ticksPerSecond.QuadPart )   

  { 

   QueryPerformanceCounter(&tick5); 

   if(input_buf[0] != 0) 

   { 

    printf("%s\r",input_buf); 

   } 

   else if (send_quit) 

   { 

    rbuffer[0]='Q'; 

    rbuffer[1]='u'; 

    rbuffer[2]='i'; 

    rbuffer[3]='t'; 

    rbuffer[4]=0; 

    sendto(rsd,rbuffer,5,0,(struct sockaddr 

*)&rserver,client_length); 

    send_quit++; 

    printf("Sending quit command to other unit\r\n"); 

    if(send_quit > 6) 

    { 

     break; 

    } 

   } 

   else if (send_start) 

   { 

    rbuffer[0]='S'; 

    rbuffer[1]='t'; 

    rbuffer[2]='a'; 

    rbuffer[3]='r'; 

    rbuffer[4]='t'; 

    rbuffer[5]=0; 

    sendto(rsd,rbuffer,6,0,(struct sockaddr 

*)&rserver,client_length); 

    printf("Sending start command to other unit\r\n"); 

   } 

   else if( !send_start && !first_packet_received ) 

   { 

    printf("Waiting for start command\r\n"); 

   } 

   else if( (Position.new_data == FALSE) || 

(Position.longitude > -88.0 ) || (Position.longitude < -89.0 ) ) 

   { 

    printf("Check GPS or COM port!\r\n"); 

   } 

   else 
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   { 

    printf("INST RX%:\t"); 

    for(i=0; i<NUM_PKT_LEN; i++) 

    { 

     if(st_packets_recv[i] > st_packets_sent[i]) 

     { 

      st_packets_recv[i] = st_packets_sent[i]; 

     } 

     if( (st_packets_recv[i] + 1) == 

st_packets_sent[i]) 

     { 

      st_packets_recv[i]++; 

     } 

     printf("%d\t",(st_packets_recv[i] * 100 / 

st_packets_sent[i])); 

     st_packets_recv[i] = st_packets_sent[i] = 0; 

    } 

    printf("TOT RX%:\t"); 

    for(i=0; i<NUM_PKT_LEN; i++) 

    { 

     if(packets_recv[i] > packets_sent[i]) 

     { 

      packets_recv[i] = packets_sent[i]; 

     } 

     printf("%d\t",(packets_recv[i] * 100 / 

packets_sent[i])); 

    } 

    printf("\r\n"); 

     

   } 

   Position.new_data = FALSE; 

  } 

 } 

 //print out ending statistics 

 printf("total packets sent = %lu\r\ntotal bytes sent = %llu\r\ntotal 

bytes received = %llu\r\ntotal packets received = %lu\r\n", 

  total_packet_count,total_bytes_sent,total_bytes_received, 

total_packets_received); 

 

 //****clean up everything****// 

  

 CloseHandle(SPhandle);  //shut serial port 

 closesocket(ssd);  //get rid of the server socket 

 closesocket(rsd);  //get rid of the client socket 

 fclose(fFileTX);  //shut the TX log file 

 fclose(fFileRX);  //shut the RX log file 

 WSACleanup(); 

} 

void open_log_files(void) 

{ 

 int erropen; 

 sprintf(fnTX,"C:\\%u_%u_%u_TX.csv",datarate,(client_port_number%2),ante

nna_gain); 

 erropen  = fopen_s(&fFileTX, fnTX, "w" ); 

 if (erropen > 0 ) 

 { 

  printf("FILE %s NOT OPENED \r\nTERMINATING PROGRAM", fnTX); 
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  exit(0); 

 } 

 fprintf(fFileTX,"PN, PL, LAT, LON, SPD, TIME\r\n");   

 //PN is packet number 

 //PL is packet length 

 //LAT is latitude 

 //LON is longitude 

 

 sprintf(fnRX,"C:\\%u_%u_%u_RX.csv",datarate,(server_port_number%2),ante

nna_gain); 

 erropen  = fopen_s(&fFileRX, fnRX, "w" ); 

 if (erropen > 0 ) 

 { 

  printf("FILE %s NOT OPENED \r\nTERMINATING PROGRAM", fnRX); 

  exit(0); 

 } 

 fprintf(fFileRX,"PN, PL, LAT, LON, SPD, TIME\r\n"); 

} 

void make_master_packet(void) 

{ 

 unsigned int i; 

 

 srand( (unsigned)time( NULL ) ); 

 for(i=0; i<BUFFER_SIZE; i++) 

 { 

  sbuffer[i] = (unsigned char)(rand() & 0xFF); 

 } 

 sprintf(sbuffer,"%d",sequence_num); 

} 

 

void set_up_UDP_server(void) 

{ 

 if (WSAStartup(0x0202, &w) != 0) 

 { 

  fprintf(stderr, "Could not open Windows connection.\n"); 

  exit(0); 

 } 

 ssd = socket(AF_INET, SOCK_DGRAM,  IPPROTO_UDP); 

 if (ssd == INVALID_SOCKET) 

 { 

  fprintf(stderr, "Could not create socket.\n"); 

  WSACleanup(); 

  exit(0); 

 } 

 gethostname(host_name, sizeof(host_name)); 

 hp = gethostbyname(host_name); 

 

 /* Check for NULL pointer */ 

 if (hp == NULL) 

 { 

  fprintf(stderr, "Could not get host name.\n"); 

  closesocket(ssd); 

  WSACleanup(); 

  exit(0); 

 } 

 /* Clear out server struct */ 

 memset((void *)&server, '\0', sizeof(struct sockaddr_in)); 
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 i = 0; 

  

 /* Assign the address */ 

 server.sin_addr.S_un.S_un_b.s_b1 = hp->h_addr_list[i][0]; 

 server.sin_addr.S_un.S_un_b.s_b2 = hp->h_addr_list[i][1]; 

 server.sin_addr.S_un.S_un_b.s_b3 = hp->h_addr_list[i][2]; 

 server.sin_addr.S_un.S_un_b.s_b4 = hp->h_addr_list[i][3]; 

 

 server_port_number = hp->h_addr_list[i][3] + PORT_OFFSET; 

 

 server.sin_port = htons(server_port_number); 

 server.sin_family = AF_INET; 

 

 if (bind(ssd, (struct sockaddr *)&server, sizeof(struct sockaddr_in)) 

== -1) 

 { 

  fprintf(stderr, "Could not bind name to socket.\n"); 

  closesocket(ssd); 

  WSACleanup(); 

  exit(0); 

 } 

 else 

 { 

  printf("Receiving Server Socket bound!\r\n"); 

 } 

 

 i32tmp2 = sizeof(i32tmp1); 

 

 if (getsockopt(ssd, SOL_SOCKET, SO_RCVTIMEO, (char*)&i32tmp1, &i32tmp2) 

!= SOCKET_ERROR) { 

  printf("Receive Time Value: %ld\n", i32tmp1); 

 } 

 i32tmp1 = RX_BLOCK_TIME; 

 

 if (setsockopt(ssd, SOL_SOCKET, SO_RCVTIMEO, (char*)&i32tmp1, i32tmp2) 

!= SOCKET_ERROR) { 

  printf("Set Receive Time Value: %ld\n", i32tmp1); 

 } 

 

 if (getsockopt(ssd, SOL_SOCKET, SO_RCVTIMEO, (char*)&i32tmp1, &i32tmp2) 

!= SOCKET_ERROR) { 

  printf("Checked Receive Time Value: %ld\n", i32tmp1); 

 } 

 if (getsockopt(ssd, SOL_SOCKET, SO_MAX_MSG_SIZE, (char*)&i32tmp1, 

&i32tmp2) != SOCKET_ERROR) { 

  printf("Max Message Length: %ld\n", i32tmp1); 

 } 

  

 u32tmp1 = TRUE; 

 i32tmp1 = ioctlsocket(ssd, FIONBIO, &u32tmp1); 

 if(i32tmp1) 

 { 

  printf("Could not set server socket to non-blocking: 

%d\r\n",i32tmp1); 

 } 

 else 
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 { 

  printf("Successfully set server socket to non-blocking\r\n"); 

 } 

} 

void set_up_UDP_client(void) 

{ 

 client_length = sizeof(struct sockaddr_in); 

 rsd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); 

 if (rsd == INVALID_SOCKET) 

 { 

  fprintf(stderr, "Could not create socket.\n"); 

  WSACleanup(); 

  exit(0); 

 } 

 client_port_number = a4 + PORT_OFFSET; 

 

 rserver.sin_addr.S_un.S_un_b.s_b1 = (unsigned char)a1; 

 rserver.sin_addr.S_un.S_un_b.s_b2 = (unsigned char)a2; 

 rserver.sin_addr.S_un.S_un_b.s_b3 = (unsigned char)a3; 

 rserver.sin_addr.S_un.S_un_b.s_b4 = (unsigned char)a4; 

 rserver.sin_port = htons(client_port_number); 

 rserver.sin_family = AF_INET; 

 

 sclient.sin_addr.S_un.S_un_b.s_b1 = server.sin_addr.S_un.S_un_b.s_b1; 

 sclient.sin_addr.S_un.S_un_b.s_b2 = server.sin_addr.S_un.S_un_b.s_b2; 

 sclient.sin_addr.S_un.S_un_b.s_b3 = server.sin_addr.S_un.S_un_b.s_b3; 

 sclient.sin_addr.S_un.S_un_b.s_b4 = server.sin_addr.S_un.S_un_b.s_b4; 

 

 sclient.sin_port = htons(client_port_number); 

 sclient.sin_family = AF_INET; 

 

 if (bind(rsd, (struct sockaddr *)&sclient, sizeof(struct sockaddr_in)) 

== -1) 

 { 

  fprintf(stderr, "Could not bind name to socket.\n"); 

  closesocket(rsd); 

  WSACleanup(); 

  exit(0); 

 } 

 else 

 { 

  printf("Sending Client Socket bound!\r\n"); 

 } 

  i32tmp2 = sizeof(i32tmp1); 

 

 if (getsockopt(rsd, SOL_SOCKET, SO_SNDTIMEO, (char*)&i32tmp1, &i32tmp2) 

!= SOCKET_ERROR) { 

  printf("Receive Time Value: %ld\n", i32tmp1); 

 } 

 i32tmp1 = RX_BLOCK_TIME; 

 

 if (setsockopt(rsd, SOL_SOCKET, SO_SNDTIMEO, (char*)&i32tmp1, i32tmp2) 

!= SOCKET_ERROR) { 

  printf("Set Receive Time Value: %ld\n", i32tmp1); 

 } 
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 if (getsockopt(rsd, SOL_SOCKET, SO_SNDTIMEO, (char*)&i32tmp1, &i32tmp2) 

!= SOCKET_ERROR) { 

  printf("Checked Receive Time Value: %ld\n", i32tmp1); 

 } 

 if (getsockopt(rsd, SOL_SOCKET, SO_MAX_MSG_SIZE, (char*)&i32tmp1, 

&i32tmp2) != SOCKET_ERROR) { 

  printf("Max Message Length: %ld\n", i32tmp1); 

 } 

 u32tmp1 = TRUE; 

 i32tmp1 = ioctlsocket(rsd, FIONBIO, &u32tmp1); 

 if(i32tmp1) 

 { 

  printf("Could not set client socket to non-blocking: 

%d\r\n",i32tmp1); 

 } 

 else 

 { 

  printf("Successfully set client socket to non-blocking\r\n"); 

 } 

} 

 

void set_up_serial_port(void) 

{ 

 //start by making the port name string 

 strcpy(port_num, PORTNUMSTR); 

 sprintf(portstring, "COM%d", COMport); 

 strcat(port_num, portstring); 

 //Open up a handle to the serial port 

 SPhandle = CreateFile((LPCWSTR)port_num, GENERIC_READ | GENERIC_WRITE, 

0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); 

 // Make sure port was opened 

 if (SPhandle == INVALID_HANDLE_VALUE) 

 { 

  printf("Error opening port %i: %s \r\n",COMport, port_num); 

//  exit(0); 

 } 

 else 

 { 

  printf("Opened port %i\r\n", COMport); 

  printf("GPS Baud Rate needs to be set to 38400!\r\n"); 

 } 

 // Get the port properties  

 SPprop.DCBlength = sizeof(SPprop);      /* sizeof(DCB)                     

*/ 

 GetCommState(SPhandle, &SPprop); 

 

    SPprop.BaudRate = 38400;       /* Baudrate at which running       */ 

    SPprop.fBinary = TRUE;     /* Binary Mode (skip EOF check)    */ 

    SPprop.fParity = FALSE;     /* Enable parity checking          */ 

    SPprop.fOutxCtsFlow = FALSE; /* CTS handshaking on output       */ 

    SPprop.fOutxDsrFlow = FALSE; /* DSR handshaking on output       */ 

    SPprop.fDtrControl = FALSE;  /* DTR Flow control                */ 

    SPprop.fDsrSensitivity = FALSE; /* DSR Sensitivity              */ 

    SPprop.fTXContinueOnXoff = TRUE; /* Continue TX when Xoff sent */ 

    SPprop.fOutX = FALSE;       /* Enable output X-ON/X-OFF        */ 

    SPprop.fInX = FALSE;        /* Enable input X-ON/X-OFF         */ 

    SPprop.fErrorChar = FALSE;  /* Enable Err Replacement          */ 
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    SPprop.fNull = FALSE;       /* Enable Null stripping           */ 

    SPprop.fRtsControl = FALSE;  /* Rts Flow control                */ 

    SPprop.fAbortOnError = FALSE; /* Abort all reads and writes on Error */ 

    SPprop.XonLim = FALSE;          /* Transmit X-ON threshold         */ 

    SPprop.XoffLim = FALSE;         /* Transmit X-OFF threshold        */ 

    SPprop.ByteSize = 8;        /* Number of bits/byte, 4-8        */ 

    SPprop.Parity = 0;          /* 0-4=None,Odd,Even,Mark,Space    */ 

    SPprop.StopBits = 0;        /* 0,1,2 = 1, 1.5, 2               */ 

    SPprop.XonChar = FALSE;         /* Tx and Rx X-ON character        */ 

    SPprop.XoffChar = FALSE;;        /* Tx and Rx X-OFF character       */ 

    SPprop.ErrorChar = FALSE;;       /* Error replacement char          */ 

    SPprop.EofChar = FALSE;;         /* End of Input character          */ 

    SPprop.EvtChar = FALSE;;         /* Received Event character        */ 

 

 // Set the port properties  

 if (!SetCommState(SPhandle, &SPprop)) 

    { 

        printf("Could not configure serial port\n"); 

    } 

 else 

 { 

  printf("Serial Port Configured\r\n"); 

 } 

 SetLastError(0); 

 if(!GetCommTimeouts (SPhandle, (LPCOMMTIMEOUTS) &SPtimeouts)) 

 { 

  Error = GetLastError(); 

        printf("Could not get timeouts\r\n"); 

  printf("Error is %d\r\n",Error); 

 } 

 

 // Set the port timeout values 

 SPtimeouts.ReadIntervalTimeout=MAXDWORD; 

 SPtimeouts.ReadTotalTimeoutConstant=0; 

 SPtimeouts.ReadTotalTimeoutMultiplier=0; 

 SPtimeouts.WriteTotalTimeoutMultiplier = 0; 

    SPtimeouts.WriteTotalTimeoutConstant = 0; 

 

 if (!SetCommTimeouts (SPhandle, (LPCOMMTIMEOUTS) &SPtimeouts)) 

    { 

  Error = GetLastError(); 

        printf("Could not set timeouts\r\n"); 

  printf("Error is %d\r\n",Error); 

    } 

 else 

 { 

  printf("Serial Port Timeouts Set\r\n"); 

 } 

 

} 
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APPENDIX C:  PLOTS OF INDIVIDUAL RUNS 

 

Figure 40.  Plot of packets received versus distance using 802.11b at 1 Mbit/sec and 

antenna height of 3.47 meters (Run 1). 

 

 

Figure 41.  Plot of packets received versus distance using 802.11b at 2 Mbits/sec and 

antenna height of 3.47 meters (Run 2). 
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Figure 42.  Plot of packets received versus distance using 802.11g at 6 Mbits/sec and 

antenna height of 3.47 meters (Run 3). 

 

 

Figure 43.  Plot of packets received versus distance using 802.11g at 12 Mbits/sec and 

antenna height of 3.47 meters (Run 4). 
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Figure 44.  Plot of packets received versus distance using 802.11g at 18 Mbits/sec and 

antenna height of 3.47 meters (Run 5). 

 

 

Figure 45.  Plot of packets received versus distance using 802.11g at 36 Mbits/sec and 

antenna height of 3.47 meters (Run 6). 
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Figure 46.  Plot of packets received versus distance using 802.11g at 54 Mbits/sec and 

antenna height of 3.47 meters (Run 7). 

 

 

Figure 47.  Plot of packets received versus distance using 802.11b at 5.5 Mbits/sec and 

antenna height of 3.47 meters (Run 8). 
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Figure 48.  Plot of packets received versus distance using 802.11b at 5.5 Mbits/sec and 

antenna height of 3.47 meters (Run 9).  Tractors drove back to starting position in reverse. 

 

 

Figure 49.  Plot of packets received versus distance using 802.11b at 5.5 Mbits/sec and 

antenna height of 3.47 meters (Run 10). 
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Figure 50.  Plot of packets received versus distance using 802.11g at 6 Mbits/sec and 

antenna height of 3.47 meters (Run 11). 

 

 

Figure 51.  Plot of packets received versus distance using 802.11g at 6 Mbits/sec and 

antenna height of 3.47 meters (Run 12).  Tractors drove back to starting position in 

reverse. 
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Figure 52.  Plot of packets received versus distance using 802.11g at 18 Mbits/sec and 

antenna height of 4.00 meters (Run 13). 

 

 

Figure 53.  Plot of packets received versus distance using 802.11g at 18 Mbits/sec and 

antenna height of 4.00 meters (Run 14).  Tractors drove back to starting position in 

reverse. 
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Figure 54.  Plot of packets received versus distance using 802.11g at 6 Mbits/sec and 

antenna height of 4.00 meters (Run 15).  Tractors drove back to starting position in 

reverse. 

 

 

Figure 55.  Plot of packets received versus distance using 802.11g at 18 Mbits/sec and 

antenna height of 3.47 meters (Run 16). 
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Figure 56.  Plot of packets received versus distance using 802.11g at 18 Mbits/sec and 

antenna height of 3.47 meters (Run 17).  One vehicle remained stationary while the second 

drove pattern A. 

 

 

Figure 57.  Plot of packets received versus distance using 802.11g at 18 Mbits/sec and 

antenna height of 3.47 meters (Run 18).  Radio configurations were swapped for this run.  
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