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ABSTRACT 

 

The complexity of the hydrologic system challenges the development of models. One issue 

faced at model development stage is the uncertainty involved when calibrating and validating the 

model. Model inputs and parameters can introduce large amount of uncertainties that can be 

propagated non-linearly to the model outputs. Additionally, several sets of parameters may also 

exist that acceptably represent the system (i.e., equifinality). As a result, converting model 

outputs into important environmental decisions become challenging. The main objective of this 

study was to define a framework that facilitates model development while evaluating uncertainty 

to assess the impacts of land management practices at watershed scale. A two-step probabilistic 

approach to model calibration and parametrization was implemented using global uncertainty 

and sensitivity analysis. The Agricultural Policy/Environmental eXtender (APEX) model was 

developed for the Lake Creek Watershed in Oklahoma using probabilistic parameters to derive 

the spectrum of responses of the model for water yield and nitrogen loads. A variance-based 

sensitivity analysis was used to identify the most important parameters, and their ranges, that 

drive these spectrum of responses. The baseline APEX model, composed of twenty-seven 

different sets of parameters, was then applied to estimate the water yield and N loads in the 

watershed for 7 years (2007-2013) under different land management scenarios. The total 

monthly water yield was found to range from 0.17 to 41.5 mm with an uncertainty of 11%, while 

the total monthly Nitrogen loads can vary from 0 to 5.3 kg/ha with uncertainty of 50%. Four 

alternative land use scenarios (75% Pasture, 100% Pasture, 75% Winter Wheat, and 100% 

Winter Wheat) and two alternative land management scenarios (conventional tillage for grain, 

and conventional tillage for graze out) were proposed and simulated over the study area to 

observe their effects on the monthly N loads. Results suggested that changes in land use and land 
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management did not affect the total water yield at watershed scale. However, the N loads showed 

a high variability ranging from 0.1 to 1.2 kg/ha during summer and fall seasons, with uncertainty 

of up to 77%. The 100% Pasture scenario was the most effective alternative in reducing nitrogen, 

the N loads in this scenario did not exceed 0.9 kg/ha in any season. This methodology 

demonstrated that the modeling process, coupled with the evaluation of uncertainty and 

equifinality, facilitate the adjustment of input/parameters and quantify the uncertainties in the 

model outputs. By considering all possible parameter combinations that represent the response of 

the system, the most likely ranges of hydrologic outcomes can be established under changing 

scenarios while accounting for the associated uncertainty.   
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CHAPTER 1 

INTRODUCTION 

 

The physical processes occurring at the watershed scale involve the interaction of many 

environmental and land management variables (e.g., rainfall, temperature, evapotranspiration, 

land use, crop) that continuously change in time and space. Understanding the temporal and 

spatial patterns of these variables is essential to assess and quantify the response of the system 

under changing conditions. This may be achieved through long-term monitoring and research 

(Starks, et al., 2014; Tomer & Locke, 2011) that can also support the evaluation of conservation 

practices and provide data for model development. However, long-term datasets with high 

spatio-temporal resolution are scarce and expensive to collect (Moriasi et al., 2014a). In addition, 

the complexity linked to agro-production systems does not allow social and cost-effective 

experimentation at large scales (Gassman, et al., 2007). A primary approach to assess these 

problems is through the use of numerical models and small scale experimentation. However, to 

better assess long-term systemic responses, the evaluation of expected model outcomes must 

include uncertainty analysis that reveals the full spectrum of system behavior driven by 

probabilities rather than monotonic evaluation. 

The use and development of environmental models (e.g., hydrologic and water quality) 

implies dealing with uncertainties from different sources. Uncertainty is present in input data 

(e.g., climate data, elevation, land cover, soil), data processing (e.g., rainfall and runoff data 

aggregation and interpolation), model parameters, spatio-temporal discretization, model 

structure, etc. (Guzman, et al., 2015b). By using a model, uncertainties can be propagated non-

linearly to the model outputs (e.g., runoff, nutrient concentration, sediment load). Evaluating the 
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uncertainties in the model and how they are propagated to the model outputs will help ensure the 

reliability of these outputs, and thus build confidence in the model (Chu-Agor et al., 2011). On 

the other hand, ignoring uncertainty during model development may lead to bias conclusions and 

perhaps simulated responses outside the expected boundaries of the system being simulated 

(Ajami et al., 2007). Therefore, results should be presented with the full disclosure of the risks 

associated with the outputs uncertainty. 

Model parameterization that involves calibration may introduce another layer of 

uncertainty to the results while improving model performance metrics. Multiple acceptable 

parameter combinations for a set of model inputs may exist that can represent the observed 

watershed systemic behavior (i.e., Equifinality). Equifinality makes it difficult to determine 

whether or not the selected set of parameters is the most appropriate to represent the system 

response. However, Beven (2006) argued that evaluation of equifinality should be given serious 

consideration not because of the difficulty of identifying parameter values but as an 

identification of multiple functional hypotheses about how the system is working.  

One of the most critical impacts of uncertainty occurs when model results are used to 

support important environmental decisions and policies. It is crucial that the results are 

interpreted in light of the risk associated with model output uncertainty (Cariboni et al., 2007; 

Guzman et al., 2015b). Moreover, quantifying input-output uncertainties and equifinality during 

model parameterization can cultivate the consciousness of “model accountability” while helping 

define model outputs’ range of validity. Identifying which components, and at what ranges, 

contribute the most to the uncertainty and equifinality of the model will facilitate parameter 

adjustments improving model robustness. 
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CHAPTER 2 

OBJECTIVES 

 

The objective of this study was to define a framework that facilitates model 

parameterization while evaluating uncertainty to assess the impacts of land management 

practices at watershed scale. A two-step probabilistic approach for model calibration and 

parametrization was implemented to the Agricultural Policy/Environmental eXtender (APEX) 

model using global uncertainty and sensitivity analysis. The model was then used to estimate the 

changes in Nitrogen loads under different land management practices scenarios in the Lake 

Creek watershed located in south-central Oklahoma, USA. The specific objectives of this study 

are to: 

 Parameterize an APEX model for the Lake Creek watershed using a two-step 

probabilistic approach using global uncertainty and sensitivity analysis. 

 Estimate the full spectrum of total monthly Water Yield and total monthly Nitrogen 

Loads at the Lake Creek watershed for the period of simulation. 

 Simulate different Land Management Practices at the Lake Creek watershed and compare 

their effect on Nitrogen Loads. 
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CHAPTER 3 

REVIEW OF LITERATURE 

 

The study of water quality impairment due to the use of pesticides and fertilizers in 

agricultural practices in the United States has been one of the most important concerns of the 

U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA) 

and the U.S. Geological Survey (USGS) (Reibich & Demcheck, 2007). Since the 1930s, the 

USDA has promoted the implementation of agricultural conservation practices along the country 

to mitigate land degradation and reduce environmental impacts. Landowners receive financial 

incentives from USDA to implement these conservation practices. However, there were no 

controls over the actual environmental benefits of these practices (Tomer & Locke, 2011). Only 

after 1989 the Management Systems Evaluation Areas program (MSEA) (USDA, 1994) 

proposed the estimation of conservation practices effects on environmental quality at a field scale 

but the benefits at the watershed scales remained unknown (Richardson et al., 2008).  

Agricultural impacts on water quality need to be addressed at watershed scales since the 

primary public benefit is observed at that scale (Richardson et al., 2008). However, field 

experiments to evaluate the effects of conservation practices at watershed scales are hampered by 

several factors such as private areas of agricultural lands, or the high cost of instrumentation and 

the long time that they may require. Experimentation at smaller scales (e.g., field scale) is more 

accessible but results should not be extrapolated to larger scales since large watershed responses 

are not replicable from field-scale experiments (Tomer & Locke, 2011). Then, computer-based 

watershed models are commonly used as a cost-effective alternative to simulate the watershed 

processes (Guzman, et al., 2015). Some of those models are based on empirical equations and 
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may require few input data to represent the response of a watershed. This is the case of APEX 

model, which was designed to assess the influence of conservation practices on water quality 

applying equations such as the SCS curve number or the Hargreaves PET. These equations 

depend on measured precipitation or temperature data which can be retrieved from climate 

stations. These features make this model easy to apply, but at the same time accurate at 

watershed scale. 

This literature review introduces the concept of hydrological and water quality models, and 

their application in assessing watershed responses under different conservation management 

practices. It describes the different types of models used to date, the process of parameterizing a 

model, and the interpretation of model outputs considering the uncertainty inherent in the 

modeling process. 

 

3.1 Hydrological and water quality models 

Hydrological and water quality models are mathematical and computed-based tools that 

support the assessment of watershed processes (Moriasi et al., 2007; Tomer & Locke, 2011). 

These processes include, for example, the estimation of the water yield at the outlet of the 

watershed and concentration of nutrients and contaminants. As the conditions, land uses, or 

agricultural practices in watersheds may vary in time and space, the processes in the watershed 

are also impacted. Then, hydrological and water quality models are also powerful at simulating 

the effect of land use and agricultural practices changes on hydrology and water quality over 

long-time periods (Tomer & Locke, 2011). The simulated results may guide environmental 

decisions and policies to mitigate soil and water degradation by determining suitable 

conservation programs (Moriasi et al., 2007; Guzman et al., 2015). 
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Different types of models have been developed according to the different needs in 

watershed analyses (Arnold et al., 1998). These needs may require a particular time step, 

different degree of accuracy, or certain spatial resolution. As computer hardware and software 

have advanced, models became more computationally efficient allowing more detailed 

assessments that can be continuous in time and space. The use of GIS/spatial interfaces have 

facilitated the model development process and the input of higher quality inputs, which enabled 

in simulation of larger areas. This section describes the different types of models available to 

date and the benefits and drawbacks of developing and using hydrological and water quality 

models. 

 

3.1.1 Types of models 

The classification adopted in this review divides the hydrological and water quality models 

mainly into two categories: conceptual, and physically-based models. Each category can be 

subdivided, according to the spatial discretization assumed in the model, into: lumped, semi-

distributed, and distributed models. Then, a model can be defined as “conceptual and lumped” or 

“physically-based and distributed”. The two categories and the subdivisions are intrinsically 

related (Wagener and Gupta, 2005). Conceptual models are those that represent hydrological 

processes by empirical algebraic equations or differential equations based on simplified 

hydraulic laws (Arnold et al., 1998). These equations may just simulate the processes as linear 

and additive, or capture the nonlinear and non-additive character of hydrologic system (Kirchner, 

2006). If the processes are assumed linear and additive, as any curve can be considered linear 

over small segments, these approaches can provide good approximations over short periods of 

time and give reasonable answers to practical questions. But if the answers for the problems 
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remains beyond the linear domain, these simplifications may provide unreliable predictions 

(Kirchner, 2006).   

Physically-based models are those that represent hydrological processes by differential 

equations derived from conservation of mass, energy, and momentum laws (Arnold et al., 1998); 

for example, Darcy’s law, Richards equation, or the advection-dispersion equation. The solution 

for these equations may require the use of grid networks with the spatial distribution of 

watershed parameters. This means that the data requirements are substantial compared to 

conceptual models (Jain et al., 1992). However, physically-based models may discretize the 

system into smaller units and each unit is an individual entity (distributed models), instead of 

treating the system as a whole and assuming homogeneity (lumped models). Then, the most 

complex models are both physically-based and distributed, while the simplest are both 

conceptual and lumped. Yet, using one type of model over other depends mainly on the quantity 

and quality of data available, and the temporal and spatial dimensions of the problem. Not 

always a physically-based model is preferred over a conceptual model. Sometimes a conceptual 

model may solve the problem easier than the physically-based and achieve similar accuracy. This 

means, both types of models have strengths as well as weaknesses.  

 

3.1.2 Benefits and drawbacks of models 

As stated previously, hydrological and water quality models can save time and money for 

watershed analyses compared to field experiments. They can also assess larger areas that field 

experiments may hardly cover. However, models cannot replace field monitoring or physical 

networks that measure the real response of watersheds. Models actually depend on monitoring 

networks in order to be calibrated and validated. Then, they complement each other. The 
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advances in hydrologic sciences depend on new approaches to modeling hydrologic systems as 

well as on improvements in the measurement networks (Kirchner, 2006). There is no reason of 

developing more elaborated models if the monitoring systems are not improved. On the other 

hand, new methods for analyzing hydrologic data are also needed, especially for analyzing and 

quantifying the uncertainty of model outputs (Guzman, et al., 2015). Independently of how 

complex and elaborated the model is, it will always produce output with some level of 

uncertainty.  

Uncertainty is inherent in the model development process and is always propagated to the 

model outputs. The uncertainty of model outputs can be estimated using statistical metrics that 

contrast the simulated data against the measured data. This gives an approximate value of how 

well the model fits the response of the real system. The process of getting an acceptable model fit 

through the statistical metric, i.e., the calibration process, is carried out by adjusting the different 

model parameters. This methodology is usually applied as an iterative and operational process 

that may result in mathematical success, but the internal assumptions and approximations of the 

model are rarely analyzed (Kirchner, 2006). This means the rationale of model outputs is not 

always questioned.  

Model simplifications should be also considered, firstly because physical laws behind the 

equations solved in models have been derived for small scales. There is no certainty whether 

these laws are applicable to larger scales and heterogeneous systems. In fact, physically-based 

and distributed models can be calibrated to data from one time interval but if they are tested 

against data from another time interval with different patterns of rainfall, they often perform 

poorly (Seibert, 2003). This questions the model’s ability to predict the response of the same 

system under different conditions. 
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3.2 Model parameterization process 

3.2.1 Input data 

Hydrological and water quality models are mathematical tools that depend mainly on field 

data and its quality. Without sufficient and good quality data, a model will never represent 

properly a particular hydrologic system (Benedini & Tsakiris, 2013). Most of models require at 

least some climate data (e.g., rainfall and/or temperature), information of soil properties, and 

land use distribution. The quality of this data relies primarily on the accuracy of measurement 

instruments and the way the information is processed. The data is commonly measured and 

collected at some points within the study area and then extrapolated to the whole area. This 

extrapolation of data, at watershed scales, usually disregards the spatial heterogeneity of the 

measured variables (Guzman, et al., 2015). Since the hydrological variables are spatiotemporal 

dependent (Hiebeler & Michaud, 2012), the quality of data is being affected and more 

uncertainty is being added to this input information. 

The input uncertainty is one of the sources of model output uncertainty. The input data 

uncertainty is propagated and reflected in the level of uncertainty and variability displayed in the 

model output. The impact that input uncertainty has on the model simulation accuracy is 

substantial (Moriasi & Starks, 2010); the model may result in simulated responses outside the 

expected boundaries of the system being simulated or undesired trends (Ajami et al., 2007). 

Therefore, the quality of observed data should be taken into serious consideration (Harmel et al., 

2006). Aside from input data measured on field, models also require the parameterization of 

some constants defined in the equations internally solved. These values cannot be defined on 

field measurements, because either it is not possible or they are seldom estimated.  Most of them 
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were defined based on laboratory experiments for specific conditions and were included in 

empirical equations. Therefore, these unknowns are usually parameterized through the model 

calibration process (Guzman, et al., 2015) and may add another layer of uncertainty. This layer 

of uncertainty will depend on how accurate the model was calibrated. 

 

3.2.2 Calibration and parameterization 

The calibration and parameterization of a hydrological and water quality model is the 

process of adjustment and estimation of those model parameters that cannot be obtained from 

field observations and measurements. This process is carried out by comparing the model output 

with the measured output in the watershed (Moriasi, et al., 2007). The calibrated outputs can be 

streamflow, contaminant loads or concentrations, suspended sediments, etc. The calibration and 

parameterization process should follow a logical sequence, i.e. it is nonsense to calibrate the 

model, for example, for suspended sediment loads first and then for streamflow. It should be 

calibrated first for streamflow and then for suspended sediment loads, because the computations 

of suspended sediments depend on the streamflow, while the computations of streamflow are 

independent of the amount of sediments. Then, the parameters involved in the estimation of 

streamflow are commonly adjusted first based on approximate and feasible ranges of values 

often found in literature, or suggested by the user’s manual of each particular model, or simply 

defined using some scientific intuition. 

The process of finding the appropriate value for each parameter, and the appropriate 

combination of those parameter values, in a way that the model output can mimic the real 

watershed output is usually carried out either by trial and error or by optimization algorithms. 

Since the 1970s, the Monte Carlo method has been applied in hydrology as an optimization 
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algorithm for model calibration (e.g. Whitehead & Young, 1979; Hornberger & Spear, 1981). 

General procedures for model calibration have also been reported (e.g. Donigian, 2002; Moriasi 

et al., 2007). However, there are no universally accepted guidelines for model calibration and 

parameterization (Moriasi et al., 2012); each user may apply any method or strategy that seems 

convenient. Furthermore, each user may select a different statistical metric to compare the 

simulated and measured data, and different criteria for accepting the simulated values. All of this 

challenges the comparison of different studies.  

The statistical metrics commonly used in hydrology for model calibration are: the Nash-

Sutcliffe Efficiency Coefficient (NSEC; Nash & Sutcliffe, 1970), the Percent Bias (PBIAS), and 

the Root Mean Square Error (RMSE). Moriasi et al. (2007) proposed some general performance 

ratings to classify the statistical metric estimations during model calibration, in an attempt to 

standardize the criteria for acceptable simulations. They defined four categories of model 

performance: “Very good”, “Good”, “Satisfactory”, and “Unsatisfactory”. Thus, optimization 

algorithms simply evaluate one or more of the statistical metrics to find one set of parameters 

that satisfy the metric criteria. However, it has been accepted that not only one but many 

different parameter combinations may satisfy the criteria. This issue was called “equifinality” 

(Beven, 1993). Moreover, the parameter combinations that may acceptably represent the system 

for the calibrated period, may perform poorly if the watershed conditions are changed. Therefore, 

the calibration and parameterization of hydrological and water quality model is still a matter of 

research.  
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3.3 Model output interpretation 

3.3.1 Uncertainty 

Every output computed by a hydrological and water quality model is always associated 

with some degree of uncertainty (Shirmohammadi, et al., 2006). Uncertainty, in this context, can 

be defined as any deviation of the simulated data from the measured data (Guzman, et al., 2015). 

Moreover, the variability of the model output is another sign of uncertainty in the computations. 

Scattered outputs to represent the response of the watershed system may indicate lack of 

precision in the estimates. Uncertainty in modeling complex systems can arise at any stage of the 

model development (Kirchner, 2006), since it comes from different sources: input data, data 

processing, model parameters, spatio-temporal discretization, or model structure. The uncertainty 

can propagate non-linearly to the model output and be also amplified due to parameterization 

(Beven, 1993). 

Model simulations should always be interpreted in light of the risk associated with the 

output uncertainty (Cariboni et al., 2007). Even though the model parameters can be adjusted and 

acceptable model metrics can be obtained, it does not mean that the model is now able to 

represent any response of the watershed system, and that its results can be extrapolated to predict 

future scenarios. Hydrological and water quality models usually produce very different estimates 

for the same hydrological system if the conditions of the system change (Kirchner, 2006). The 

model output and its accuracy depend always on the particular period of time used for calibration 

and the conditions establish during that period. Therefore, predictions should always be made 

after understanding the system behavior under changing conditions, considering that different set 

of parameters may be needed to represent new scenarios in the watershed, and estimating the 

output uncertainty in each case. 
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3.3.2 Equifinality 

As it was stated previously, many model parameter combinations may acceptably represent 

the particular response of a hydrologic system; i.e., equifinality may exist in the modeling 

process. Then, several sets of parameters may give almost identical fits to the calibration data. 

Equifinality was firstly introduced into hydrological modeling by Beven (1993). It is explained 

as the result of the overparameterization of hydrological and water quality models, which means 

that these models depend on dozens of free parameters to estimate the outputs.  

Equifinality hinders the selection of one set of parameters over other that may also 

represent the system response. However, Beven (2006) argued that evaluation of equifinality 

should be given serious consideration not because of the difficulty of identifying parameter 

values but as an identification of multiple functional hypotheses about how the system is 

working. The consideration of equifinality may also help to assess the uncertainty associated 

with model predictions. Beven and Binley (1992) proposed a methodology to address 

equifinality, which was called Generalized Likelihood Uncertainty Estimation (GLUE). This 

methodology was developed based on empirical studies that obtained good model fits to 

observed data. On the other hand, Kirchner (2006) claimed that the most appropriate way to 

solve the problem of equifinality is not by learning how to tackle it, but by reducing the 

overparameterization of the models. This can be achieved if reduced-form models (i.e., models 

in terms of very few parameters) are developed. This author cited the example of Jakeman and 

Hornberger (1993), who showed that a rainfall-runoff time series can be simulated with a model 

that considers only up to four free parameters. 
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3.3.3 Simulation of future scenarios 

The Conservation Effects Assessment Project (CEAP) was the first project that tried to 

quantify the effects of land management practices at watershed scales in the United States 

(Richardson et al., 2008). The main reason behind this initiative was to carry out a national 

assessment of the benefits that the land management practices, promoted by the USDA, had over 

the environmental quality. Since at watershed scales field experiments are not feasible, the use of 

models was increasingly necessary. Then, many efforts were combined to tackle all issues that 

model development and implementation may have (e.g., output uncertainties, equifinality, loss of 

accuracy under changing scenarios), in order to make model outputs useful for water quality 

estimations, comparison of scenarios, and decision-making (e.g. Moriasi et al., 2007; Moriasi et 

al., 2012; Wagener and Gupta, 2005). If high-quality data is used, and a proper evaluation of the 

output uncertainty and equifinality is performed, models are then the best representation of the 

hydrological system available to date. It is also important to analyze the multiple functional 

hypotheses of each system’s behavior and to interpret the output uncertainty in a way that it is 

clear how reliable the results are. This will definitely support each assessment and the predictions 

that can be made from the simulations. 
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CHAPTER 4 

METHODOLOGY 

 

4.1 Study area 

 

The Lake Creek watershed is one of the three main sub-watersheds that composed the Fort-

Cobb Reservoir Experimental Watershed (FCREW) located in southwestern Oklahoma. It drains 

an approximate area of 154 km2 towards the Fort-Cobb reservoir located near the main FCREW 

outlet (Figure 1) (Guzman et al., 2015a). The FCREW region is mostly agricultural land 

composed of croplands and pastures. Soils are mostly fine silty loams of different erodibility 

(Steiner J. L., et al., 2008). The climate in southwestern Oklahoma is sub-humid with long and 

hot summers, and short and temperate winters. The mean daily temperature during summer is 

about 28°C while in winter is 3°C. The annual precipitation is approximately 800 mm with the 

largest monthly average at the end of spring (May-June) and beginning of fall (September-

October) (Steiner J. L., et al., 2008). 

The Fort-Cobb reservoir is an important source of public and domestic water supply. 

However, it has been added to the list of water bodies that do not meet the water quality 

standards as given in the Clean Water Act (Steiner J. L., et al., 2008). The agricultural practices 

in this watershed release nutrients, especially Nitrogen (N) and Phosphorus (P), to the surface 

streams that feed the Fort-Cobb reservoir resulting in eutrophication (Steiner J. L., et al., 2008). 

On the other hand, several agencies such the Oklahoma Water Resources Board, Oklahoma 

Department of Environmental Quality, and Oklahoma Conservation Commission recognized the 

FCEW as an experimental land to improve water quality through land conservation practices. In 

fact, several agronomic management practices have been adopted in the watershed such as no-
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tillage management, conversion of cropland to grassland, installation of fencing to exclude cattle 

from streams, and various structural and water management practices (Storm et al., 2006). 

Figure 1. The Lake Creek watershed is one of the three sub-watersheds of the Fort-Cobb Reservoir 

Experimental Watershed (FCREW) located in southwestern Oklahoma. 

 

4.2 Model set-up  
 

The Agricultural Policy/Environmental eXtender (APEX) model (Williams et al., 1995) is a 

conceptual and distributed hydrologic and environmental model. It simulates the different 

hydrologic processes at a watershed scale while evaluating the impacts of conservation and best 

management practices on water quality (Wang, et al., 2012). The primary inputs to the model are 

elevation, soil, land use, and time series of climate variables. Outputs are time series of the 

computed hydrologic variables, nutrients, and crop yields at different time steps (annual, 

monthly, and daily) and different spatial scales (subareas or watershed).  

The main outputs of APEX used to evaluate the impacts of the land management practices 

were the water yield (WYLD) and the Nitrogen load (N). The WYLD (in mm) was computed in 
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APEX model using the SCS curve number (CN) equation (USDA-Soil Conservation Service, 

1972) given as follows: 

                                                     𝑊𝑌𝐿𝐷 =
(𝑃−0.2𝑆)2

𝑃+0.8𝑆
                                                      (1) 

where P is the daily rainfall (mm), and S is a retention parameter (mm). The parameter S 

implicitly depends on the curve number (CN) expressed as S = 254(100/CN – 1). The N load (in 

kg/ha) was computed separately for surface runoff, lateral flow, quick return flow, and horizontal 

pipe flow (for drains) using the equation: 

                                                    𝑁 = 𝑊(1 − 𝑒−
𝑄𝑖
𝑘𝑉)                                                      (2) 

where W is the nitrogen load contained in a layer at the beginning of the day (kg/ha), Qi is the 

flow through the layer, V is water storage volume, and k is the fraction of V occupied by 

percolating water. The Nitrogen load in the stream is the sum of the four components.  

In this study, the GIS interface for APEX (ArcAPEX) was used to build the model for the 

Lake Creek. This interface requires three different data layers: the Digital Elevation Model 

(DEM), soils, and land use. In addition, weather data (precipitation and temperatures) and 

information on land management operations were also needed. The DEM and land cover maps 

were obtained from USGS (USGS, 2016) while the soil map from the Web Soil Survey (USDA, 

2016).  

Measurement of hydrological variables and water quality in the FCREW began in late 

2004, as part of the Conservation Effects Assessment Project (CEAP). This project was designed 

to estimate the environmental benefits of conservation practices implemented on agricultural 

lands (Mausbach & Dedrick, 2004). Fifteen climate stations, known as the Micronet stations, 

were installed in the FCREW to measure weather and soil observations (e.g., rainfall, solar 

radiation, and air temperature). Daily precipitation and temperature (minimum and maximum) 
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time series for Lake Creek were obtained from these stations (Guzman et al., 2014). Land 

management data were collected from literature and reports of conservation and management 

schemes implemented in the watershed from 2005 onward (Storm et al., 2006). Nitrogen 

concentration collected at USGS streamflow sites was part of a water quality monitoring 

program in the FCREW for dissolved O2, pH, total N, total P, and suspended sediment 

concentration (Starks et al., 2014b; Moriasi et al., 2014). Water yield, WYLD, and total Nitrogen 

loads, N, were simulated at daily time step for 9 years (2005-2013) and evaluated with 

observations. However, the first two years of simulations were used to warm-up the model and 

were not considered in the analysis. 

4.3 Global uncertainty and sensitivity analysis  
 

Sensitivity analyses are commonly used to optimize the process of model development 

(Saltelli, et al., 2008). They facilitate the adjustment of model parameters by establishing their 

impact on model output. The most common type of sensitivity analysis, the local one-at-a-time 

approach, is based on derivative and evaluates the impact of changing one parameter on the 

output while considering a constant value for other parameters. This approach is, however, 

problematic if the inputs are uncertain or the linearity of the model is unknown since this 

approach provides information only at the point where they were taken and do not provide for an 

exploration of the entire input space (Saltelli, et al., 2008). Most of the time, no a priori 

knowledge of the linearity of the model is available or the linearity can change with changes in 

model assumptions. As a result, the derivative equation used to quantify sensitivity may no 

longer apply. In contrast, the global approach explores the entire sampling space of the inputs 

and evaluates the impact of each parameter by varying simultaneously several parameters over a 

defined range (Zhou & Lin, 2008). This approach does not require a priori information of the 
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linearity of the model and it also allows evaluation of the interactions among the different 

parameters. 

 In this study, a two-step probabilistic approach using global uncertainty and sensitivity 

analysis (GUSA) was implemented to develop the APEX model for Lake Creek watershed. The 

global uncertainty analysis quantified the output uncertainties propagated from uncertain APEX 

parameters. A variance-based sensitivity analysis was then performed to divide the output 

uncertainty according to the contribution of each of the model parameters (Figure 2). The general 

process of performing GUSA is described in Figure 2. The first step is to assign probability 

distribution functions (pdf) to the uncertain model input/parameters. Each pdf is then sampled 

using a particular method (e.g., Sobol method). These sample points were used to run the model 

from which a spectrum of model outputs (e.g., discharge, crop yield) can be obtained. Using the 

variance of the output of interest, sensitivity analysis determines the sensitivity indices of each 

contributing input/parameter. 

 

Figure 2. Schematic diagram of the Global Uncertainty and Sensitivity Analysis. Global uncertainty analysis 

determines the spectrum of model output due to uncertainty in model inputs/ parameters while global 

sensitivity analysis quantifies the contribution of each model parameter to output uncertainty. 
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The Sobol method (Sobol, 1993) is a variance-based sensitivity analysis method that 

evaluates the sensitivity of each parameter based on the principle of variance decomposition. The 

sensitivity analysis is computed via the first sensitivity index (Si) that represents the direct 

contribution of each parameter to the variance of the output. It is expressed as: 

                                                       Si = vi /V                                                                    (3) 

where vi is the part of the variance due to the input parameter xi, and V is the total variance of the 

model output. This variance-based analysis is also capable of quantifying the influence of the full 

range of variation of each parameter and their interaction effects (Saltelli, et al., 2008). On the 

other hand, the difference 100−∑Si can be used as an indicator of the linearity of the model. If 

this difference is equal to 0, this means that the model is linear, otherwise it is nonlinear. The 

total effect index (STi) accounts for the total contribution to the outputs variation of each input 

parameter xi, i.e., its first-order effect (Si) plus all the higher-order effects due to interactions 

(Saltelli, et al., 2008). For example, for three input parameters x1, x2, and x3, the STi of parameter 

xi can be expressed as:  

                                                      STi = S1 + S12 + S13 + S123                                                 (4) 

where ST1 is the total sensitivity index of xi, S1 is the first-order effect of x1, S12 is the interaction 

effect between x1 and x2, and S123 is the interaction effect between x1, x2, and x3. Using equation 

(2), ST1–S1 provides a measure of how much x1 is involved in interactions with any other input 

factors (Saltelli, et al., 2008). The number of sample points (N) required for Sobol method is 

given as: 

                                            N = M(2k + 2)                                                                   (5) 

where M is the sample size of each index, typically taken between 500 and 1000 (Chu-Agor et 

al., 2011; Chu-Agor et al., 2012), and k is the number of parameters. 
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Upon evaluation of the different parameters in APEX, 44 parameters were found to be 

uncertain and independent and were used to estimate water yield, WYLD, (i.e., the runoff) (Table 

1) and 15 to estimate Nitrogen loads (Table 2). The Nash-Sutcliffe Efficiency Coefficient 

(NSEC) was used as the main output of interest and as a metric in filtering the simulations that 

are considered acceptable. The global uncertainty and sensitivity analysis were performed using 

SimLab (version 2.2), a software designed for Monte-Carlo based uncertainty analysis (Saltelli et 

al., 2004). 

Table 1. APEX parameters for water yield (WYLD) simulation 

No. Parameter Description Distributiona 

1 acsf Adjusts climatic stress factor U(40-100) 

2 BWD Channel bottom width/depth (m/m) U(0-40) 

3 CHSO Average upland slope in watershed (m/m) U(0.0001-1) 

4 cmeq Coefficient in MUST equation U(1-4) 

5 cnrp Expands CN Retention Parameter U(0-3) 

6 dlhc Estimates drainage system lateral hydraulic conductivity U(0.00001-20) 

7 DTHY Time interval for flood routing (hours) U(0.1-24) 

8 ecri Exponential coefficient used to account for rainfall intensity on CN U(0-3) 

9 FCW Floodplain width/channel width (m/m) U(1-100) 

10 fevl Flood evaporation limit  U(0.001-2) 

11 FPSC Floodplain saturated hydraulic conductivity (mm/hr) U(0.0001-20) 

12 GWSO Maximum groundwater storage (mm) U(0-200) 

13 gwst Groundwater storage threshold U(0.001-1) 

14 hdvp Hydrograph development parameter U(0.01-2) 

15 hpec Hargreaves PET equation coefficient U(0.0023-0.0032) 

16 hpee Hargreaves PET equation exponent U(0.4-0.8) 

17 lwtm Limits daily water table movement U(0.001-1) 

18 QCF Exponent in watershed area flow rate equation U(0.1-1) 

19 QG Channel capacity flow rate (mm/hr) U(0.1-200) 

20 QTH Routing threshold (mm) U(0-500000) 

21 rcfc RUSL C-factor coefficient U(0.1-2) 

22 rcfx RUSL C-factor coefficient 2 U(0.1-2) 

23 rcia Runoff CN Initial Abstraction U(0.01-1) 

a Probability distribution function and its parameters: U = Uniform distribution (left boundary, right boundary). 
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Table 1 (cont.). APEX parameters for water yield (WYLD) simulation 

No. Parameter Description Distributiona 

24 rfic Rainfall interception coefficient U(0.01-0.5) 

25 RFPO Return flow/(return flow + deep percolation) U(0-1) 

26 RFTO Groundwater residence time (days) U(0-365) 

27 rgss Root Growth Soil Strength U(0-3) 

28 ripc Maximum rainfall interception by plant canopy (mm) U(0-30) 

29 rrap Runoff CN Residue Adjustment Parameter U(0-0.5) 

30 rrfs Reduces NRCS runoff CN retention parameter for frozen soil U(0.01-1) 

31 rvad Runoff volume adjustment for direct link U(0.1-2) 

32 scsc SCS CN index coefficient U(0.1-3) 

33 secf Soil Evaporation plant Cover Factor U(0-1.5) 

34 sevc Soil Evaporation Coefficient U(0.1-5) 

35 ssff Subsurface flow factor U(1-10000) 

36 STND VSC routing used when storage > standing U(0-500000) 

37 swll Soil Water Lower Limits U(0-1) 

38 swul Soil water upward flow limit U(0.01-2) 

39 ulrp Upper limit of CN retention parameters U(0.1-4) 

40 wdrm Winter dormancy U(0-1) 

41 wswc Water stress weighting coefficient U(0-2) 

42 wtrc Water table recession coefficient U(0.001-10) 

43 wtre Water table recession exponent U(0.1-2) 

44 YWI Number of years maximum monthly 0.5 hour rainfall available (years) U(0-50) 

a Probability distribution function and its parameters: U = Uniform distribution (left boundary, right boundary).  

 

Table 2. APEX parameters for Nitrogen load (N) simulation 

No. Parameter Description Distributiona 

1 BME Biological mixing efficiency U(0-1) 

2 DNSW denitrification soil-water threshold U(0.9-1.1) 

3 MDBM Max. depth for biological mixing (m) U(0-1) 

4 NERC N enrichment ratio coefficient for routing U(0-1) 

5 NERE N enrichment ratio exponent for routing U(0-1) 

6 NFIX Nitrogen fixation U(0-1) 

7 NLR Nitrate leaching ratio U(0-1) 

8 PLR Pesticide Leaching Ratio U(0-1) 

a Probability distribution function and its parameters: U = Uniform distribution (left boundary, right boundary). 
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Table 2 (cont.). APEX parameters for Nitrogen load (N) simulation 

No. Parameter Description Distributiona 

9 PNFG Partitions Nitrogen flow from groundwater U(0-20) 

10 SRTC Sediment routing travel time coefficient U(0.5-10) 

11 ULDN Upper Limit of Daily Denitrification rate U(0.0001-0.5) 

12 ULNV Upper limit of Nitrification/Volatilization U(0-1) 

13 UNFL Upper Nitrogen Fixation Limit (kg/ha/day) U(0.1-20) 

14 VNPC Volatilization/nitrification partitioning coefficient U(0-1) 

15 WSNL Water Storage N Leaching U(0-1) 

a Probability distribution function and its parameters: U = Uniform distribution (left boundary, right boundary). 

 

4.4 Modeling framework 

 A modeling framework was developed to facilitate model parameterization and 

validation. The framework was divided into three main parts: (I) parameterization for hydrology, 

(II) parameterization for contaminants (or nutrients), and (III) definition of the baseline model 

(Figure 3). Each part transitions to the next part through global uncertainty and sensitivity 

analysis (GUSA). The GUSA is used to define the variability of the outputs, identify the most 

important parameters that drive this variability, and identify the simulations that satisfied the 

requirements for acceptable model performance. The starting ranges for hydrology parameters 

were determined based on acceptable default values, field estimates, or as reported from the 

literature. Uniform probability distribution functions were assigned to these parameters when 

only the base value was known, the range was considered finite, and no explicit knowledge of 

the distribution was available (McKay, 1995). This conservative assumption allows an equal 

probability of occurrence of the parameters along the probability range (Muñoz-Carpena et al., 

2010).  

 The first GUSA analysis (GUSA 1 in Figure 3) was performed to identify the most 

important hydrology parameters that controlled the variability of the hydrology output. The 

ranges of these important parameters were further narrowed down by filtering the simulations 
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that resulted in acceptable model outcomes based on metrics used to evaluate the model (e.g., 

NSEC). The ranges of parameters from these simulations were used as basis in defining the new 

narrowed ranges. The important parameters identified in GUSA 1 plus the starting nutrient 

parameters were used in the second GUSA run (GUSA 2; Figure 3). From GUSA 2, new list of 

important parameters and their new probability distribution functions were identified and used to 

define the baseline model. The baseline model consisted of several APEX models, each of which, 

has different parameter combination that resulted in acceptable model performance. Using the 

baseline models, WYLD and N were simulated resulting in a family of time series each one 

representing the possible systemic response of the watershed. 

The development of the APEX model for the Lake Creek watershed was performed using 

the following steps: 

• Model run 1: Global uncertainty analysis of APEX was performed using the 44 WYLD 

parameters (Table 1) to determine the spectrum of NSEC and identify the most important 

(sensitive) parameters for WYLD (i.e., hydrology). 

• Model run 2: The ranges of the important parameters identified in run 1 were adjusted 

based on the acceptability of the model (i.e. NSEC > 0.5). Global uncertainty analysis was then 

performed using the adjusted important parameters plus the 15 uncertain Nitrogen parameters 

(Table 2) to determine the spectrum of NSEC for both WYLD and N. The new set of important 

parameters were also determined. 

• Model run 3: The baseline model was defined using the important parameters for both 

WYLD and N and the updated probability distribution functions (ranges and distribution) of 

these important parameters.  
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4.5 Land management practices scenarios 

The land management scenarios adopted in the study were divided into two general 

categories: change in management operation and change in land use (Table 3). The impacts of 

land management practices were quantified using six additional scenarios, two with changes in 

management operations (scenarios 2 and 3) and four with changes in land use (scenarios 4-7). 

The baseline model (scenario 1) was defined according to the land use characteristics presented 

in Moriasi et al. (2014a). 

 

Figure 3. Modeling framework used to parameterize the APEX model. The important hydrology parameters 

were first identified through GUSA 1. These important parameters were then combined with the starting 

nutrient parameters for GUSA 2. The final list of important parameters and their updated pdf were used to 

define the baseline model. 
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The main land uses in the Lake Creek watershed were winter wheat crops and pasture. 

About one half of the watershed area is covered with winter wheat crops and the other half with 

pasture. For this reason, 50% of the subareas in the APEX model were assigned with winter 

wheat and the other 50% with pasture. The land management practices defined for the baseline 

model were based on a survey of agricultural land types and practices in the FCREW carried out 

by Storm at al. (2006). For the winter wheat, the crops from previous harvests were killed in June 

and then the land was prepared for new planting using tandem disk plows. In august, 

approximately 67 kg/ha of N (46-0-0) and 4.5 Kg/ha of P205 were applied to the crops (winter 

wheat). Planting takes place in the middle September. For pasture, grazing activities take place 

all year around.   

In APEX, the agricultural management practices were simulated through the Operational 

Schedule file (*.OPS). APEX generates as many OPS files as there are crops defined in the 

model set-up process. Each file contains the dates and equipment used in each stage of crop 

growth and management (e.g., planting, fertilizer application, and harvesting). The two 

alternative management scenarios (scenarios 2 and 3) started also in June with the killing of the 

previous winter wheat crops followed by the land preparation for new planting. In scenario 2 

(conventional), the land was tilled in early July using springtooth harrows and the same fertilizer 

and amount used in scenario 1 (approximately 67 Kg/ha of N (46-0-0) and 4.5 Kg/ha of P205) 

was applied in August. Planting occurred also in the middle September. In scenario 3 (graze out), 

the land was tilled in early July using springtooth harrows. Fertilizer application and planting 

followed the same schedule and amounts used for scenario 2, however, there was an extra 

fertilizer application of approximately 45 kg/ha, N (46-0-0), on the second week of February. In 
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the case of subareas with pasture, grazing activities was assumed over the entire year for both 

scenarios (2 and 3). 

The other four alternative scenarios (scenarios 4-7) were defined considering the same 

management practices for winter wheat and pasture used in the baseline model, but different land 

use distribution. The land use percentages were redistributed into the subareas (Table 3). The 

OPS of the baseline models was replaced with that of the individual scenarios to simulate the 

effects of different land management practices on WYLD and N. 

Table 3. Summary of the land management scenarios used. 

No. Scenarios % of pasture % of winter wheat Tillage practices 

1 Baseline 50 50 conservation 

2 Conventional 50 50 conventional  

3 Graze out 50 50 conventional  

4 75% Pasture 75 25 conservation 

5 75% Winter Wheat 25 75 conservation 

6 100% Pasture 100 0 conservation 

7 100% Winter Wheat 0 100 conservation 

 

The OPS files of the baseline models were modified to incorporate the land management 

practices implemented for scenarios 2 and 3 while retaining their land use distribution. For 

scenarios 4 to 7, the OPS file of the baseline models were left unchanged while the land use 

distribution was modified accordingly. Each scenario, like the baseline models, is composed of 

several parameter combination models. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 Model calibration and parameterization 

The probabilistic approach for model calibration and parameterization, described in Figure 

3, was divided into three model runs. For the first model run (model run 1) the model was run 

varying the 44 parameters considered for WYLD (Table 1) resulting in 46,080 simulations. The 

output of interest (i.e. NSEC) was computed for each simulation to generate the full spectrum of 

model performance (Figure 4). This spectrum ranged from negative NSEC values up to a 

maximum of 0.51. The contribution of each parameter to the variability of the output was also 

computed using the Sobol’s 1st order sensitivity index (Si) (Table 4). From the 44 parameters, 

only 20 of them directly influenced the estimation of the water yield, WYLD. The Expands CN 

Retention Parameter (cnrp) was found to be the most important parameter contributing 

approximately 50% to the model output variability over a total of 79%. The sum of all Si was less 

than 100% which indicates that the models are non-linear and hence, interactions between 

parameters exist. 

The water yield, WYLD, in APEX model is computed using the SCS curve number (CN) 

equation (USDA-Soil Conservation Service, 1972). This empirical equation is in terms of the 

daily rainfall and the CN retention parameter. The role of the “cnrp” parameter (i.e., the most 

sensitive in this case) in the SCS CN equation is to expand the CN retention parameter. Since the 

computed WYLD is inversely proportional to the retention parameter, values of cnrp greater than 

1.0 will reduce the water yield. The initial range of cnrp considered in run 1 was 0-3 (Table 1) 

however, simulations with NSEC greater than 0.4 had cnrp values between 1.5 and 1.8. 
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Figure 4. Model spectrum performance for daily Water Yield in model run 1. 

 

The variance-based analysis showed the presence of interactions between parameters and 

the non-linear property of the APEX model; i.e., the empirical equations (e.g. SCS CN equation) 

used in the model are capturing the non-additive behavior of the hydrologic system at the Lake 

Creek watershed. This behavior is expected in most watershed response since the hydrologic 

system is not linear and additive at all. 

Table 4. Direct contribution of the WYLD parameters. 

No. Parameter Si No. Parameter Si 

1 cnrp 48.6% 23 rcfx 0% 

2 ulrp 9.5% 24 CHSO 0% 

3 rgss 9.3% 25 acsf 0% 

4 scsc 2% 26 cmeq 0% 

5 wswc 1.8% 27 dlhc 0% 

6 rrap 1.6% 28 DTHY 0% 

7 hpee 1.2% 29 hdvp 0% 

8 rfic 0.97% 30 lwtm 0% 
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Table 4 (cont.). Direct contribution of the WYLD parameters. 

No. Parameter Si No. Parameter Si 

9 YWI 0.76% 31 QTH 0% 

10 rcia 0.71% 32 rrfs 0% 

11 ripc 0.66% 33 rvad 0% 

12 hpec 0.6% 34 STND 0% 

13 ecri 0.56% 35 swul 0% 

14 FCW 0.52% 36 wtrc 0% 

15 sevc 0.35% 37 wtre 0% 

16 FPSC 0.12% 38 gwst 0% 

17 secf 0.09% 39 RFPO 0% 

18 ssff 0.04% 40 wdrm 0% 

19 RFTO 0.02% 41 GWSO 0% 

20 swll 0.01% 42 BWD 0% 

21 rcfc 0% 43 fevl 0% 

22 QCF 0% 44 QG 0% 

TOTAL 79.2%    

 

For the second run (model run 2), the 20 WYLD sensitive parameters were considered 

along with the 15 Nitrogen parameters (Table 2) to simulate the N loads. In total, 35 parameters 

were sampled for this second run requiring a minimum of 36,864 simulations. The ranges of the 

20 WYLD parameters were redefined according to the model performance obtained in run 1. 

From the full spectrum, almost the 10% of the simulations (4,701/46,080) had a NSEC≥0, 

however, only 2 of them reached NSEC>0.5. These two sets of parameters were then used to 

narrow down the initial wide ranges of the 20 WYLD parameters (Table 5). The ranges were 

redefined towards those values that produced higher NSEC. The original uniform distribution of 

these parameters was kept. 
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Table 5. Redefinition of sensitive WYLD parameters ranges. 

No. Parameter Initial Range New Range 

1 cnrp 0  - 3 1.3  - 2 

2 ulrp 0.1  - 4 2  - 3.2 

3 rgss 0  - 3 0.4  - 0.75 

4 scsc 0.1  - 3 0.3  - 0.6 

5 wswc 0  - 2 1.5  - 1.7 

6 rrap 0  - 0.5 0.3  - 0.5 

7 hpee 0.4  - 0.8 0.55  - 0.8 

8 rfic 0.01  - 0.5 0.01  - 0.2 

9 YWI (years) 0  - 50 15  - 40 

10 rcia 0.01  - 1 0.65  - 0.85 

11 ripc (mm) 0  - 30 2.5  - 26 

12 hpec 0.0023  - 0.0032 0.0023  - 0.003 

13 ecri 0  - 3 0.1  - 1.5 

14 FCW (m/m) 1  - 100 15  - 100 

15 sevc 0.1  - 5 1.8  - 3.8 

16 FPSC (mm/hr) 0.0001  - 20 7  - 10 

17 secf 0  - 1.5 1.2  - 1.5 

18 ssff 1  - 10000 1500  - 10000 

19 RFTO (days) 0  - 365 150  - 200 

20 swll 0  - 1 0.1  - 1 

 

In model run 2, the model performance (NSEC) was evaluated separately for WYLD and 

N. After narrowing down the ranges of the 20 WYLD parameters, the highest NSEC value 

computed for daily WYLD estimation improved from 0.51 to 0.63. More than 5,800 simulations 

(near 15%) obtained NSEC greater than 0.4 (Figure 5). In addition, 134 simulations (0.36%) had 

NSEC>0.6. The strategy of narrowing the parameter ranges down produced an increase of the 

model equifinality but a substantial improvement of the model performance for water yield 

estimation. As a result, there were more than 100 simulations that acceptably represent the 
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hydrologic outcome for the period of simulation. However, the variability of the spectrum is high 

(i.e., the NSEC values were distributed from -8.0 to 0.63) with more than 10,000 simulations 

(approximately 28%) resulted in NSEC lower than -2.0. 

 

Figure 5. Comparison of model spectrum performance for daily Water Yield between run 1 and 2. 

 

In the case of Nitrogen, the variability of the spectrum (Figure 6) was even higher than the 

WYLD’s spectrum in model run 2. More than 27,000 simulations (75%) obtained NSEC lower 

than -2.0. However, 4,600 (12.5%) had positive NSEC and, among them, 163 simulations 

(0.44%) were acceptable (i.e., reached NSEC>0.6) with the highest metric of 0.74. This high 

variability was expected since the 15 N parameters were sampled with the wide initial ranges and 

were varied along with the 20 WYLD parameters. The large variability in the input was 

propagated to the outputs through the model. 

A new sensitivity analysis was performed using the Nitrogen spectrum (Table 6). Only 10 

parameters directly influenced the variability of the N load estimation. Out of the 10 parameters, 

just three were exclusively N parameters. These three parameters were the Nitrate Leaching 
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Ratio (NLR), which is the ratio of nitrate concentration in surface runoff to nitrate concentration 

in percolate; the Volatilization/nitrification partitioning coefficient (VNPC), which is the fraction 

of process allocated to volatilization; and the Upper Limit of Daily Denitrification rate (ULDN), 

which is the maximum fraction of NO3 in a soil layer subject to denitrification. From these three, 

the NLR had the greatest contribution to the N load output (approximately 6%). This means that 

the partition between surface runoff and percolation is partly driving the estimation of N loads. 

However, the two parameters that mostly influenced the N model output were the Hargreaves 

PET equation parameters (hpee and hpec). They controlled more than the 60% of output 

variability over a total of 73%. 

 

Figure 6. Model spectrum performance for monthly Nitrogen in model run 2. 

 

In APEX model, the Hargreaves method (Hargreaves & Samani, 1985), which estimates 

the potential evapotranspiration as a function of the solar radiation and air temperature, was 

modified for the local US conditions by replacing the fixed temperature difference exponent 
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(usually used as 0.5) with the “hpee” and the incoming solar radiation with the “hpec” 

parameters. In APEX high values of hpee and hpec result in high evapotranspiration. Steglich & 

Williams (2013) suggested a range of 0.5-0.6 for hpee and 0.0023-0.0032 for hpec. The 

suggested range for hpec was kept but the range of hpee was widen to 0.4-0.8 in model run 1 

(Table 1) and narrowed down to 0.55-0.8 for model run 2 (Table 5). The acceptable simulations 

in model run 2 showed that the hpee values were mostly ranged from 0.7 to 0.8. This means that 

the evapotranspiration should be higher to fit the observed N loads. The reason for this is, since 

plants take up nitrogen during transpiration, the nitrogen consumed should be proportional to the 

transpiration; i.e., the higher the transpiration is, the more nitrogen is taken up. 

 

Table 6. Direct contribution of the 20 WYLD sensitive + 15 Nitrogen parameters at computing N loads. 

No. Parameter Si No. Parameter Si 

1 hpee 49.8% 19 NFIX 0% 

2 hpec 14% 20 PLR 0% 

3 NLR 5.8% 21 UNFL 0% 

4 scsc 1.6% 22 DNSW 0% 

5 cnrp 1.2% 23 SRTC 0% 

6 secf 0.1% 24 NERC 0% 

7 rfic 0.075% 25 NERE 0% 

8 rcia 0.067% 26 FPSC 0% 

9 VNPC 0.02% 27 WSNL 0% 

10 ULDN 0.01% 28 RFTO 0% 

11 MDBM 0% 29 FCW 0% 

12 rgss 0% 30 ssff 0% 

13 BME 0% 31 ecri 0% 

14 YWI 0% 32 swll 0% 

15 wswc 0% 33 ripc 0% 

16 PNFG 0% 34 rrap 0% 
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Table 6 (cont.). Direct contribution of the 20 WYLD sensitive + 15 Nitrogen parameters at computing N 

loads. 

No. Parameter Si No. Parameter Si 

17 ULNV 0% 35 sevc 0% 

18 ulrp 0%    

TOTAL 72.8%    

 

The two sensitivity analyses performed at this point were used to determine the ranges of 

input/parameters to be used in deriving the baseline model for the Lake Creek watershed. 20 

WYLD parameters were identified in model run 1, and 10 Nitrogen parameters were added in 

model run 2. Of the 10 N parameters, 7 also belong to WYLD (Figure 7) and only three were 

exclusive to Nitrogen. The variability of the system response, as measured by NSEC, is 

controlled by 23 parameters (Figure 7). This indicated that the rest of the WYLD and N 

parameters (36 parameters) can take the default values without affecting the outputs (i.e., NSEC).  

The original 59 parameters (44 WYLD + 15 N) were sampled using a uniform distribution. 

This distribution was used since only the parameter ranges were known. After two runs, some 

parameter combinations have resulted in NSEC≥0.6 for both WYLD and N load estimations. 

Considering only these acceptable simulations (i.e. 134 simulations for WYLD and 163 for N; 

some of them in common), the values of the 23 final model parameters were then plotted 

separately and their pdfs were then constructed (Figure 8). Most of the identified distributions 

were either normal or triangular distributions (Table 7). 

For the third run (model run 3) the 23 parameters (24,576 simulations) were sampled 

considering the updated distributions listed in Table 7. In this run, the NSEC was estimated 

separately for WYLD and N, as in run 2. The model performance spectrums can be found in 

Figures 9 and 10 respectively. 
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Figure 7. Parameters shared by WYLD and N computations and considered for the baseline model. 

 

In the case of WYLD, there was a reduction in the output variability and negative NSEC 

values. In this run, only 0.8% of the simulations obtained a NSEC≤ -1.0 as opposed to run 2 

where 33% of its simulations had NSEC≤ -1.0. Also the equifinality (i.e., number of acceptable 

models) was reduced. In run 2, 0.36% of the simulations obtained a NSEC≥0.6 while in run 3 

only 0.2% reached that value. In the case of Nitrogen, the reduction in the output variability and 

negative NSEC values was even higher than in WYLD (run 3). In model run 3, 4% of the 

simulations obtained a NSEC≤ -1.0 while in run 2 more than 78% of the simulations had NSEC≤ 

-1.0. Also, the model performance was improved from NSEC=0.74 in run 2 to a highest 

NSEC=0.78 in run 3. 

Model run 3 produced 49 acceptable simulations for WYLD and 853 for N. Since the 

baseline model will be used to estimate both water yield and nitrogen loads at different land 

management scenarios, it was necessary to identify the simulations that can predict both WYLD  
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Figure 8. Parameter distribution for Baseline model. 
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Table 7. Final parameter distribution for Baseline model. 

a Approximate distributions and their parameters: N = Normal distribution (mean, standard deviation); T = Triangular distribution 

(minimum, peak, maximum); U = Uniform distribution (left boundary, right boundary). 

 

and N with the same parameter combinations; i.e., the simulations in common for water yield 

and nitrogen. Due to the differences in sensitive parameters between the two estimations (e.g. 

cnrp controlled WYLD while hpee controlled N) the acceptable WYLD simulations did not 

match the acceptable N ones at all. Most of the acceptable N simulations (i.e., those with 

NSEC>0.6) were related to WYLD simulations with NSEC between 0.4 and 0.5. On the other 

No. Parameter Description Distributiona 

1 hpee Hargreaves PET equation exponent N(0.76, 0.04) 

2 hpec Hargreaves PET equation coefficient T(0.0024, 0.0027, 0.003) 

3 NLR Nitrate leaching ratio T(0.015, 0.9, 1.1) 

4 scsc SCS CN index coefficient T(0.38, 0.58, 0.63) 

5 cnrp Expands CN Retention Parameter T(1.3, 1.65, 2.1) 

6 secf Soil Evaporation plant Cover Factor T(1.2, 1.4, 1.6) 

7 rfic Rainfall interception coefficient N(0.15, 0.02) 

8 rcia Runoff CN Initial Abstraction T(0.7, 0.83, 0.89) 

9 VNPC Volatilization/nitrification partitioning coefficient T(0, 0.9, 1.1) 

10 ULDN Upper Limit of Daily Denitrification rate T(0, 0.3, 0.55) 

11 ulrp Upper limit of CN retention parameters T(2, 2.3, 3.1) 

12 rgss Root Growth Soil Strength U(0, 3) 

13 wswc Water stress weighting coefficient N(1.65, 0.03) 

14 rrap Runoff CN Residue Adjustment Parameter T(0.35, 0.45, 0.55) 

15 YWI 
Number of years maximum monthly 0.5 hour rainfall 

available (years) 
N(33, 5) 

16 ripc Maximum rainfall interception by plant canopy (mm) T(4, 15, 26) 

17 ecri 
Exponential coefficient used to account for rainfall 

intensity on CN 
T(0.4, 0.7, 2) 

18 FCW Floodplain width/channel width (m/m) T(15, 30, 95) 

19 sevc Soil Evaporation Coefficient N(3.4, 0.2) 

20 FPSC Flood saturated hydraulic conductivity (mm/hr) N(8.5, 0.8) 

21 ssff Subsurface flow factor T(1500, 9000, 11500) 

22 RFTO Groundwater residence time (days) N(190, 8) 

23 swll Soil Water Lower Limits T(0.3, 1, 1.1) 
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hand, most of the acceptable WYLD simulations produced N outcomes with NSEC between 0.5 

and 0.6. Therefore, the criteria for acceptable N simulations was redefined to NSEC>0.5. Thus, 

those simulations that simultaneously estimated the WYLD with NSEC>0.6 and the N loads 

with NSEC>0.5 were accepted as the baseline model. In summary, 27 parameter combinations 

satisfied this condition. 

 

Figure 9. Model spectrum performance for daily Water Yield in model run 3 in comparison with runs 1 and 2. 

 

5.2. Output uncertainty and model estimates 

Once the Lake Creek watershed model was calibrated using the two-step probabilistic 

approach, the estimation of water yield (WYLD in mm) and Nitrogen loads (N in kg/ha) was 

carried out. The baseline model of Lake Creek was composed of 27 different acceptable 

parameter combinations, i.e., the total model output consisted of 27 time series of WYLD and 

total Nitrogen loads. 
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Figure 10. Model spectrum performance for monthly Nitrogen in model runs 2 and 3. 

 

The WYLD time series were computed at a daily time step while the N loads at monthly 

time step. The purpose of considering all acceptable sets of parameters is to account for the 

multiple functional hypotheses of response that the system may have, and as a result, establish 

the most probable values of WYLD and N loads at a given time under alternative land use and 

land management scenarios.  

For the purpose of visually presenting the results of WYLD for the baseline model, 

monthly time step was used to plot the total WYLD for the whole period of simulation (7 years, 

2007-2013) (Figure 11). This figure contains only the maximum, the minimum, and the mean of 

the computed values from all 27 time series at each time step. At first glance, the differences 

between the maximum and minimum values through the 7 years seem small. The highest 

difference observed was 2.7 mm while the average difference was 0.84 mm. However, the 

average of all computed values was 7.4 mm which means that the WYLD was estimated with an 

uncertainty of roughly 11% (0.84*100/7.4) at each monthly time step. The highest WYLD 
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magnitude estimated (17 mm, Figure 11) occurred the first year (2007) after the warm-up period 

(2005-2006). This peak value was considerably high compared to the rest of the peak values; all 

of the rest were lower than 14 mm. This is due to the fact that 2007 was an extremely wet year 

for the FCREW region. 

 

Figure 11. Monthly time series of simulated WYLD for baseline model. Only maximum, mean, minimum values were 

plotted. 
 

The 2,133 computed WYLD values (79 months x 27 time series) were then plotted as a 

frequency distribution function (Figure 12). The values are spread from 0.17 mm to 41.5 mm, 

however, the most likely WYLD values in the Lake Creek watershed range between 5 and 25 

mm per month. 

(c) Uncertainty distribution band: WYLD

(b) Uncertainty band: N
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Figure 12. Monthly WYLD distribution of Baseline model. 

 

A similar analysis was performed to the estimated Nitrogen loads. The maximum, the 

minimum, and the mean N loads at monthly time step were also plotted for the whole period of 

simulation (Figure 13). Like the WYLD time series, the highest N load value was observed in 

2007 (5.3 kg/ha). This showed a direct relationship between the water yield and the nitrogen in 

the computations. The more the water yield produced in the watershed, the higher the nitrogen 

loads observed. Some other peak values in both time series may confirm this relationship. For 

example, the peak WYLD values in 2008 and 2009 coincided with peak values in the N time 

series (compare Figure 11 and 13).  

The uncertainty in the nitrogen estimations was also analyzed by evaluating the differences 

between the maximum and minimum values. The highest difference observed was 0.42 kg/ha 

while the average difference was 0.07 kg/ha. Considering that the average of all computed N 

loads was 0.14 kg/ha, they were estimated with an approximate uncertainty of 50% 

(0.07*100/0.14) at monthly time step. This uncertainty was much higher than the uncertainty of 
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WYLD estimation (just 11%); but this was expected since the nitrogen estimations were 

accepted at a lower NSEC value. The magnitudes of monthly nitrogen loads ranged from 0 to 5.3 

kg/ha. However, a frequency distribution plot showed that the most likely N load values in the 

Lake Creek watershed ranged approximately between 0.1 and 0.9 kg/ha (Figure 14). 

 

Figure 13. Monthly time series of simulated N loads for baseline model. Only maximum, mean, minimum values were 

plotted. 

 

 

A more detailed analysis of the N loads was carried out by seasons. The 27 times series 

were rearranged by seasons and then plotted as frequency distribution functions (Figure 15). It 

can be observed that the distributions came out very similar for spring and winter, where the 

maximum N loads were found to be lower than in fall or summer. The probability to have N 

loads greater than 0.8 kg/ha in summer and fall is higher than in winter or spring. This can be 

due to the fact that land preparation for winter wheat planting and pesticide application at 

FCREW region starts in summer. 

(c) Uncertainty distribution band: WYLD

(b) Uncertainty band: N
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Figure 14. Monthly Nitrogen loads distribution of baseline model. 

Figure 15. Seasonal Nitrogen loads distribution of baseline model. 

 

Frequency distribution functions at a monthly step were also plotted to compare the 

alternative scenarios (defined in Table 3) with the baseline model for WYLD and N load outputs 

(Figures 16 and 17). The overall period of simulation (2,133 values) was considered when 

plotting the pdf for each scenario for both outputs. For WYLD (Figure 16), the baseline model 



45 
 

and the different land management scenarios resulted in approximately the same distribution 

with a most likely value between 5 to 25 mm per month. The differences in land preparation 

methods and land uses did not particularly affect the water yield at the Lake Creek watershed. 

This was expected since land management practices implemented in FCREW were meant for the 

purpose of reducing nutrients and not flow.  

In the case of N loads, the differences between the baseline model and the scenarios, and 

between the scenarios themselves, were more evident. It can be observed that the pdfs were 

increasingly spreading out (i.e., their ranges were increasing) from the 100% Pasture scenario to 

the 100% Winter Wheat scenario (Figure 17). The 100% Pasture pdf was narrower than the 

100% Winter Wheat one (the most scattered). However, their most likely values were in fact the 

same. It seems that management practices only affected the higher extreme values not the mean. 

Even though the 100% Pasture scenario did not include the application of pesticides or 

fertilizers, the computed did not show any major changes since grazing activities also generate 

certain amount of nitrogen that is added to the nutrient cycle. 

Figure 16. Monthly WYLD distribution of Scenarios. 
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Figure 17. Monthly Nitrogen loads distribution of scenarios. 

 

This general analysis of the nitrogen output, performed for the whole period of simulation, 

at the Lake Creek watershed showed minor differences with regards to the overall N load 

magnitudes between the baseline scenario and the alternative scenarios. The highest difference 

was observed between two of the land use change scenarios; the 100% Pasture and the 100% 

Winter Wheat scenarios which are the two opposing ends of the management spectrum. This 

difference may represent a reduction of 0.2 kg/ha in nitrogen loads in the 100% Pasture scenario 

compared to the 100% Winter Wheat. In the case of the land management scenarios (i.e., 

conventional and graze out), their pdfs were not exactly the same but the load magnitudes did not 

differ from each other; which may imply that the land management practices were not primarily 

driving the nitrogen amounts estimated for the whole period of 7 years. However, a seasonal 

analysis revealed greater differences between the scenarios, especially for the fall season.  
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The 27 times series of each scenario were rearranged by seasons (as it was done before for 

the baseline scenario) and then plotted as frequency distribution functions (Figure 18). For winter 

and spring, there were no notable differences between the scenarios but it can be noticed that the 

N loads in these seasons were smaller than the ones estimated for the overall period. It was stated 

before that N loads between 0.1 and 0.9 kg/ha can be expected at any scenario except for the 

100% Pasture scenario, where N loads ranged between 0.1 and 0.7 kg/ha. In case of winter and 

spring, the N loads ranged approximately between 0.1 and 0.7 kg/ha (including the 100% Pasture 

scenario). For summer and fall the N loads were eventually greater. In summer, where the land 

preparation for winter wheat planting and pesticide application at the FCREW region begin, 

there was an evident increase in N loads. In any scenario (except 100% Pasture) the N loads may 

be even greater than 1.2 kg/ha. This magnitude was very unlikely in the analysis of the overall 

period of simulation. 

For fall, the N load magnitudes diminished compared to summer in most of the scenarios 

but the differences between the pdfs were higher, especially between the Graze Out and the 

conventional and baseline scenarios. The Graze Out scenario displayed a broader range of 

possible N loads at this season compared to the others. The N magnitudes may exceed 1.2 kg/ha 

similarly to summer time. This is due to the fact that the tillage operations in the Graze Out occur 

only one week before the application of fertilizer while in the conventional and baseline 

scenarios occur more than one month in advance. In the case of Graze Out, the soil may be more 

exposed to nitrogen, which can mix with rainfall and reach the streams easier if the soil has been 

recently eroded. Even though the land preparation and fertilizer application activities were 

carried out in August (still considered summer), nutrients can reside longer in the stream until the 

fall season. 
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Another comparison of the total monthly N load with the baseline model was carried out by 

taking the mean, minimum, and maximum values of the 27 simulations comprising each scenario 

and contrasting them with the banded baseline N load (Figure 18). The deviation of the 

maximum and minimum N of each scenario (dots) from the baseline scenario (band) represents 

the impacts of the land management practices taking into account the uncertainties brought about 

by parameter selection. The uncertainties in N loads due to parameter estimation for the different 

land management practices can reach up to 0.36 Kg/ha for the conventional scenario. The lowest 

uncertainty is for 100% pasture at 0.24 Kg/ha while the rest of the scenarios remained the same 

as the baseline uncertainty. 

The rise and fall in N loads for both the conventional and graze out scenarios follow the 

same pattern as the baseline model where increases happened during the early fall following 

fertilizer application for the winter wheat (Figure 19a and b). Increasing the amount of winter 

wheat in the area also increased N loads (Figure 19d and f) higher than the baseline model while  

Figure 18. Seasonal Nitrogen loads distribution of scenarios. 
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the opposite happened when pasture cover was increased (Figure 19c and e). In general, changes 

in land use (Figure 19c to f) had more notable impacts on the N loads than the conservation 

practices did (Figure 19a and b). 

Figure 19. Comparison of the six land management scenarios with the baseline model. The band represents the 27 

parameter combination of the baseline model while the dots the maximum and minimum values of the 27 models 

comprising each scenario. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 

 

 

The most challenging part in modeling is understanding the capabilities and limitations of 

the model given the uncertainties involved in the process. The challenge of finding the most 

appropriate combinations of input parameters to represent the response of the system is an issue 

faced by environmental scientists and managers. In particular, the simulation of a complex 

environmental system like the hydrologic system requires the consideration of the interaction of 

many variables with varying ranges and distributions. This study developed a methodology to 

address this issue. A two-step probabilistic approach, using global uncertainty and sensitivity 

analysis, was implemented to develop a hydrologic model that was used to simulate the systemic 

response of the watershed. Probabilistic inputs were used to derive the full spectrum of system 

response and, therefore, the multiple functional hypothesis of the system behavior. 

The output of interest in the calibration process was the Nash-Sutcliffe Efficiency 

Coefficient (NSEC). This coefficient was used to measure the model performance in estimating 

the water yield (i.e., the hydrologic component, WYLD) and the Nitrogen loads in the watershed. 

The different uncertain and independent parameters of the model were sampled using uniform 

distributions within wide, but physically feasible, ranges. These inputs generated model output 

spectrums with high variability that was gradually reduced as new parameter distributions and 

narrower ranges were defined through the evaluation of uncertainty and sensitivity indexes. The 

model performance was also improved with the use of new parameter ranges and distributions. It 

allowed the definition of criteria for acceptable simulations (i.e., those parameter combinations 
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that can acceptably represent the system response) which composed the baseline model of the 

study area.  

This study demonstrated that quantification of input-output uncertainties and equifinality 

can be incorporated in the model development process. This coupled process facilitated the 

adjustment of input/parameters as well as the accountability of model uncertainties. The use of 

probabilistic inputs resulted in a more efficient way to deal with the many input/parameters 

considered in hydrological models. In the case of the APEX model developed for the Lake Creek 

watershed, 20 parameters were found to control the estimation of WYLD and 10 the estimation 

of N loads (7 of them also WYLD parameters). However, the computation of the Sobol’s 1st 

order sensitivity index (Si) also revealed that only one parameter for WYLD and only two 

parameters for N loads controlled over 50% (out of 80%) of the full spectrum of response of 

each output. The most important parameter that controlled WYLD was the Expands CN 

Retention Parameter (cnrp) while for Nitrogen were the two Hargreaves PET equation 

parameters (the Hargreaves PET equation exponent (hpee), and the Hargreaves PET equation 

coefficient (hpec)). 

Results showed that 27 sets of parameters can acceptably represent the hydrologic 

responses of Lake Creek watershed. The total monthly water yield can range from 0.17 to 41.5 

mm estimated with an uncertainty of 11%. The months of highest uncertainty were the first three 

months of the first year (2007) after the warm-up period (2005-2006). The total Nitrogen loads 

can vary from 0 to 5.3 kg/ha at monthly time step with uncertainty of 50%. The months of 

highest N loads and highest uncertainty were also the first three months of the first year (2007).  

Results from the simulation of land management practices scenarios suggested that changes 

in land use and land preparation did not affect the total water yield at watershed scale. As the 
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alternative scenarios were proposed to reduce the nitrogen loads, the WYLD was not impacted. 

In fact, the same range of probable total monthly WYLD for the baseline and all alternative 

scenarios was identified. The model simulated a water yield between 5 and 25 mm per month 

even if the physical and operational conditions were partially or completely modified, according 

to the scenarios defined.  

The seasonal analysis of N loads at the Lake Creek watershed revealed that summer and 

fall seasons generated the highest variability between the scenarios. This seasons coincided with 

the land preparation season, summer in this case, and its subsequent season (i.e., fall). In summer 

and fall, N loads greater than 1.2 kg/ha can be expected in any scenario, except the 100% 

Pasture; while in winter and spring, the N loads did not exceed 0.7 kg/ha in any scenario 

(including the 100% Pasture). The Graze out scenario displayed the broadest range of possible N 

loads and the highest probability to register N loads greater than 1.2 kg/ha in fall season. This 

was due to the shorter time lag between plowing and application of fertilizers.  

The methodology developed in this study was able to quantify the full spectrum of system 

responses, the uncertainty associated with them, and the most important inputs that drive their 

variability. The full spectrum of model outputs can provide robust information on the achievable 

responses of the watershed given the different land management practices in place and planned. 

Similarly, by knowing the parameters that drive the variability of the outputs, future research can 

be prioritized to collect more information about these parameters resulting in a more efficient use 

of resources. Results from this study can be used to develop strategic decisions on the risks and 

tradeoffs associated with different management alternatives that aim to increase productivity 

while also minimizing their environmental impacts.     
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