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ABSTRACT

   Over the past decades, the over-reliance on herbicides during corn production has caused

severe environmental and biological problems such as pollution in the soil and underground

water, and the emergence of the herbicide-resistant weed species. A potential solution to reduce

the use of herbicides while maintaining adequate weed control lies in the combined use of

chemical and mechanical weeding, in which weeds are controlled adaptively according to their

reaction to herbicides. Accurate weed identification is a prerequisite for accomplishing such a

control strategy.

   A machine vision system for weed identification, which utilized the morphological

properties of weed leaves, was developed in this research. The system incorporated a new

image segmentation algorithm, termed the ‘Pixelwise method’ to binarize the color weed

images for subsequent image processing and feature extraction procedures. Subsequently, a

Support Vector Machine (SVM) based classifier was constructed to distinguish various weed

species using seven morphological features.

   2,325 indoor images consisting of six weed species were acquired during the first five

weeks after emergence of the plants. Among 1,006 test images, the SVM system achieved over

94% accuracy in crop (corn) versus weed discrimination and 95% in grass versus broadleaf

weed discrimination. The average classification accuracy for individual weed species was

approximately 86%. In addition, the system obtained the best classification result after the

second week after plant emergence. In field tests, the SVM classifier based on the indoor image

library was able to identify 71.1% of 270 weed plants in the field. With an adaptive median

filter to enhance the image quality, the accuracy was raised to 75.9% at the expense of extra

image processing time.

   Both of the laboratory and field tests showed that the SVM method with reasonable

accuracy is feasible for weed identification during their early growth season.
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CHAPTER 1

INTRODUCTION

1.1 Background and Research Motivations

Weed control in corn (Zea mays L.) relies heavily on the use of herbicides. From 1999 to

2003, chemical usage surveys (Table 1.1) from several states across the United States show that

an average of 94.4% of the corn acres received one or more application of herbicides. The

amount of herbicides applied per planted acreage remained at similar levels throughout the

survey years (NASS, 2000-2004).

Table 1.1. Herbicide usage in Corn in the United States from 1999-2003.

Acres TreatedCalendar
Year

Atrazine Acetochlor

Total
Amount
Applied

(1,000 lbs)

Planted
Acreage
(million
acres)

Application
Rate

(lbs per acre)

Surveyed
States

1999 70% 27% 96,394 68.3 1.41 15
2000 68% 25% 92,371 73.8 1.25 18
2001 75% 26% 102,940 70.7 1.46 19
2002 62% 25% 60,355 51.4 1.17 7
2003 68% 26% 96,531 72.8 1.33 18

The widespread use of herbicides has effectively suppressed weed infestations and

promoted agricultural production in the past decades, however, worldwide concerns about the

environmental impact of these chemicals have resulted. This research is dedicated to the

reduced use of herbicides, by making use of the following properties. First, weeds tend to occur

in patches and thus they are less likely to distribute uniformly across the field. Marshall’s work

(1988) showed that only 20.4% to 72.6% of sampled field areas, depending on the weed species,

were infested by weeds. In this context, conventional practice of broadcasting herbicides evenly

on an entire field is uneconomical, as areas with no or few weeds would receive the same dose

of herbicide as the weed-infested areas.

Secondly, soil-applied herbicides such as atrazine and alachlor, which account for 71.2
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percent of corn acres treated on average through 1999 to 2003 (NASS, 2000-2004), pose

environmental risks such as soil and groundwater pollution. Increasing public concerns about

health risks associated with herbicide residues put great pressure on producers to reduce levels

of agrichemicals in streams, rivers and soil.

In addition, the genetic diversity within weed species enables them to cope with

pressures imposed by the environment. Thus more and more weed species are found to be

herbicide-resistant following repeated treatment with herbicides. For instance, common

waterhemp (Amaranthus rudis) and tall waterhemp (A. tuberculatus) are reported to be the most

problematic weed species in Illinois, which is mainly attributed to their high genetic variability,

prolific seed production and differential responses to herbicides (Hager et al., 1997).

To address the challenges described above, adaptive weed control with site-specific

capacity appears a promising solution. The control method here is defined as one with the

ability to perform either mechanical or chemical weeding, dependent upon the weed’s response

to herbicides and proximity to the weed. In addition, sensors can be implemented such that

weeding will not be executed until a weed or patches of weeds are detected, analyzed and

classified. In this way, unnecessary herbicide from uniform application can be avoided and in

addition, herbicide-resistant weeds can be removed mechanically.

A key requirement for adaptive weed control is accurate weed detection and

identification. Many studies have been conducted using machine vision to identify weeds

(Dickson et al., 1995; Hemming and Rath, 2001; Meyer et al., 2003; Perez et al., 2000;

Woebbecke, 1995). However, most of these researches were conducted under controlled

conditions or limited to a specific plant growth stage without considering the change in

biological features of weeds as a function of time.

Various forms of classifiers were the primary tools for weed identification, among which

the artificial neural network (ANN), Bayesian classifier, decision trees, and discriminant

analysis were common in previous researches. In this research, a new method – the support

vector machine (SVM) was introduced and tested under various conditions to identify weeds.
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The SVM is a novel supervised machine learning method in the field of artificial intelligence

(AI), which was developed based on the theory of statistical learning (Vapnik, 1995). In

comparison to other popular classifiers such as the ANN, the SVM model is easy to implement.

Moreover, through employing a superior structural risk minimization (SRM) principle, SVM

achieves better control on the generation error by minimizing an upper bound on the risk

function (Gunn et al., 1997). In this way, the common over-fitting problem in ANN models can

be prevented (Karimi et al., 2008). Therefore, the SVM method always produces a high

accuracy over a wide range of classification cases (Furey et al., 2000; Kim et al., 2002; Tong

and Koller, 2002). The hypothesis of this research is that SVM can be implemented with the

machine vision technology to identify corn and weed species for the adaptive weed control

strategy.

1.2 Outline and Objectives

The overall goal of this research is to develop a methodology to detect and identify

inter-row weed plants in the early growth stages of corn. This is to be accomplished with the

following activities:

Develop an automated system for image acquisition;

Grow weeds in the greenhouse and use an imaging system to construct an image library

of the plants in the early growth stages;

Develop an SVM-embedded, morphology-based machine vision algorithm

incorporating a refined image segmentation method for weed identification;

Conduct laboratory and field experiments to verify the feasibility and efficiency of the

proposed method. In addition, through analyzing the identification results, determine the

optimal time for weed control in corn production.

1.3 Summary of Results

An SVM based machine vision system, which utilized the geometric characteristics of the

plant, was developed. Laboratory and field tests verified that the SVM method with reasonable
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accuracy is feasible for weed identification during their early growth stage. A total of 2,325

indoor images consisting of 6 weed species were acquired during the first 5 weeks after

emergence of the plants. A new segmentation algorithm – the Pixelwise method – was

developed to binarize the raw color images with a correct segmentation rate of 96.3%. Then a

SVM classifier was constructed, using seven morphological features extracted from the training

set composed of 1,319 images. Among the remaining 1,006 testing images, the SVM system

accomplished an overall accuracy of 94.41% in crop (corn) versus weed discrimination, and

over 95% in grass versus broadleaf weed discrimination. Among weed species, each weed

species achieved a classification rate well above 85%, except for waterhemp, which had an

accuracy of 51.6% due to a lack of sample images for the classifier. To investigate the optimal

time for inter-row weed identification at the early stage, the corn images were excluded from

the test set. The classification accuracy for the remaining 5 weed species as a function of time is

shown in Figure 1.1.

Figure 1.1. Identification accuracy for the undesired weed species at various growth stages
during the laboratory experiment.

   In the field tests, 107 images including 3 weed species were captured in two separate

days during the early growth stage of weeds. Although weed occlusion was not considered in

this research, the field images were more complicated due to imperfect segmentation and

boundary plants. Therefore, extra image processing procedures were developed to reconstruct
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individual plants and eliminate boundary objects before classification. The SVM model, which

was based on the indoor weed image library, was able to identify 192 out of the 270 (71.1%)

weed plants in all the field images, with a processing time of 1.47s/image. To improve the

performance, an adaptive median filter, which reduces blur and distortion in images, was

implemented in the Pixelwise algorithm before classification. With the improved images, the

SVM system acquired an accuracy of 75.9% at the expense of taking 4.42 second to process

each image.
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CHAPTER 2

LITERATURE REVIEW

2.1 Weed Interference in Corn

   Corn is the major feed grain in the United States, accounting for 94.6 percent of the total

feed grain production and use with a planting area of 80 million acres across the country (ERS,

2009). Weeds pose a large threat to corn production, since weeds reduce yields by directly

competing against crops for nutrient, moisture, and sunlight. According to a study by Stall

(2009), due to weed competition an annual loss of 146 million pounds of fresh market sweet

corn and 18.5 million pounds of sweet corn for processing was encountered in the United States

from 1975 to 1979. This represents a monetary value of $13,165,000 and $9,155,000,

respectively. Thus, weed management is essential in assuring high crop yield and quality.

2.2 Critical Period for Weed Control

   Although weed control is crucial in corn production, it is unnecessary and impractical to

maintain a weed-free condition during the entire growth season of the crop. This is because if

weed control is performed too early when weeds are still small and sparse, late-season weed

abundance and competition would result due to their asynchronous emergence characteristic.

On the other hand, season-long weed control would be uneconomical in the late crop season

when corn grows tall enough to shade and out-compete the weeds. The critical period for weed

control (CPWC), defined to be the period in the crop growth cycle during which weeds must be

controlled to prevent unacceptable yield losses, is useful for making decisions regarding the

need for and timing of weed control (Knezevic et al., 2002).

   Numerous researches have been conducted around the world in an attempt to determine

CPWC in corn; nevertheless, high variability in the results was found because CPWC is highly

subject to weed species and characteristics, weed density, climatic conditions and planting date

(Halford et al., 2001; Mahmoodi and Rahimi, 2009; Martin et al., 2001). Those factors were

largely attributed to various locations and cultural practices where the studies were carried out.
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Hence, the prediction of CPWC should be made site-specifically, taking into account the weeds’

generic, environmental and cultural factors.

   Related research is also available particularly in Illinois. Williams (2006) used logistic

and Gompertz equations to determine the influence of planting date on CPWC in corn. It was

found that for corn planted in early May, the CPWC began as early as the V4 and ended at the

V8 crop growth stage (CGS) (corresponding to 18 to 31 days after crop emergence (DAE)) to

assure yield loss of less than 5%.

2.3 Weed Control Practices

   Traditional weed management methods can be categorized into three groups: cultural

practices, chemical application and mechanical weeding. Cultural practices include a wide

variety of weed management methods such as crop rotation, cover crops, black fallow, planting

date, planting density and row spacing optimization (Lyon et al., 1999). However, most of these

methods are unable to handle existing or upcoming weeds immediately, or may prohibit

continuous cropping (i.e. black fallow) which hampers profitability. As a result, cultural

practices are commonly carried out as a pre-treatment prior to chemical or mechanical weeding

(Nalewaja, 1999) and are therefore not part of this study.

2.3.1 Chemical Weeding

   Since the introduction of synthetic organic chemicals in the late 1940s, U.S. farmers

have used herbicides extensively for weed control (Gianessi and Reigner, 2007). The

development of selective herbicides and widespread use of glyphosate-resistant crops also

contributed to the popularity of chemical weeding in agricultural production. Currently,

herbicides are the primary tools to control weeds. It is reported that 87 million ha of cropland

receives herbicide treatment and herbicides sprayed for weed control consume up to 60% of the

volume and 65% of the expenditures for all pesticides used by U.S. farmers (Donaldson et al,

2002).

   The quick adoption of herbicides in the U.S. could be explained by the desire to reduce



8

weed control costs because labor became deficient and more expensive after World War II. With

the help of herbicides, growers in Mississippi were estimated to have saved $10 million per

year compared with hiring workers for hand weeding (Gianessi and Reigner, 2007). Besides

economic considerations, chemical weeding outperforms other weeding methods in many

aspects such as efficiency, and the ability to reduce plant diseases and increase crop yields.

   The importance of herbicides is significant in agricultural production. On the other hand,

the side effects accompanied with the use of herbicides are not negligible. One major concern

about herbicide usage is its potential adverse environmental impacts. Groundwater and surface

water pollutions have been reported in many cases during the past decades, and intensive

herbicide use was often the major cause (Liu and O’Connell, 2002; Spliid and Koeppen, 1998).

Herbicides also pose a potential threat to human health, as there are inevitably pesticide

residuals in the crop and water. These concerns have led to legislative directives in several

European countries to limit the use of herbicides in agricultural production (Lotz et al., 2002).

2.3.2 Mechanical Weeding

   Interest in mechanical weeding has grown steadily over the past two decades, partly

because of its reduced impact on the environment. Mechanical weeders range from basic hand

tools to sophisticated tractor driven or self-propelled machines. Commonly used mechanisms

include duckfoot or “A width” hoes, rotary hoes, rolling cultivators and power take-off

(PTO)-driven cultivators (Bowman, 1997). Mechanical weeding is mostly applied in row crops

such as sugar beet and corn for inter-row weed control, which is mainly because the spacing

among the rows (typically 300 to 700 mm) can prevent the crop plants from being affected by

the tools (Mattsson et al., 1990). Many researches have been carried out to assess the efficacy of

mechanical weed control methods. Forcella’s study (2000) achieved about 50% weed control by

purely adopting rotary hoeing in the absence of herbicides. Donald (2007) reported that

inter-row mowing systems for controlling both winter annual and summer annual weeds could

reduce herbicide inputs by 50%. In addition, cultivation could potentially increase crop yields

in that it can reduce tuber greening caused by exposure to sunlight, increase water infiltration
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and soil aeration (Bailey et al., 2001).

   Although mechanical weeding can help reduce herbicide usage, especially in the

scenario of organic farming, it also has potential negative effects both on economy and

environment. The disadvantages include potential crop damage, dependence on favorable

weather and soil conditions, occasionally high labor requirements, soil erosion and nutrient loss,

spread of weed species, and even promoting germination of other weeds while eliminating the

existing ones (Belvins et al., 1998; Dallyn, 1971; Hatcher and Melander, 2003). A survey

conducted by Napier et al. (2000) showed that only 17% of corn fields were mechanically

cultivated in Missouri, which indicated that widespread adoption of mechanical weeding is

unlikely.

2.3.3 Adaptive Weeding and Site-Specific Weed Management Strategy

   Although herbicides are very effective in controlling weeds, their adverse impacts on

environment (pollution) and plant biology (develop of resistance) urge farmers to seek

alternative methods of weed management. Meanwhile, mechanical methods are

environmental-friendly and efficacious compared to hand weeding, despite decreased weed

control consistency, crop yield and economic return if adopted alone (Mount Pleasant et al.,

1994). Therefore, the combined use of mechanical and chemical weeding methods is worth

investigating, because it has the potential of reducing the over-reliance on herbicides while

maintaining satisfactory weed control.

   Amador-Ramirez et al. (2001) evaluated weed control and dry bean response to

mechanical and chemical treatments. Herbicides were applied exclusively and in combination

with rotary hoeing and in-row cultivation. It was found that at low weed densities either

mechanical tillage or herbicides spraying were sufficient in suppressing weeds. When weed

densities were high however, combined use of herbicide and mechanical weeding methods was

required.

   Donald et al. (2001) studied the effectiveness of inter-row mowing combined with

band-applied herbicide in weed control. In this research, soil residual herbicides such as
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atrazine + alachlor were applied shortly before or after the planting of corn. Two or more

inter-row mowings were carried out afterwards to control summer annual weeds. The results

showed that this weeding method controlled weeds and yielded as well as or better than

broadcast application of herbicide at the same rates. Also, the amount of soil-applied herbicides

was reduced by 50% as a result of banded treatment in which only 50% of the field area was

sprayed.

   Other researchers reported that weeds could be controlled by applying lower rates of

herbicides in combination with mechanical weeding (Buhler et al., 1995; Mulder and Doll

1993). In fact, the adaptive weeding method, with combined use of mechanical and chemical

weeding dependent upon the characteristics of the targeted plant, is an example of the popular

integrated pest management (IPM) strategy (Buhler et al., 2000). Both weed control tactics

share a common objective, which is to reduce weed density and minimize herbicide input costs

without compromising crop yields. A site-specific strategy is an essential approach to realizing

this goal, because of the patchy distribution characteristic of weeds in agricultural fields

(Cousens and Woolcock, 1997).

   Site-specific weed management has been intensively studied and implemented as a

herbicide application strategy. Its significance in lowering herbicide use (up to 48%-54%) has

been advocated by a number of researchers (Tian et al., 1999; Timmermann et al., 2001).

Moreover, site-specific applications also fit well in the framework of Integrated Pest

Management (IPM) (Mortensen et al., 1998). This is because the site-specific strategy would

only target areas infested by weed patches that would affect crop yield or quality. Once weed

patches are located, instead of solely applying herbicides, an adaptive weeding system would

activate nozzles or mechanical weeders depending on the weed species and proximity to the

crop plants. In this context, the system has the potential of saving chemicals as well as

eliminating herbicide-resistant weeds in a mechanical way.
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2.4 Weed Identification

   An essential part of the adaptive weed control system as discussed previously is the

ability to identify weeds in the field in real time. Earlier attempts have focused on simply

distinguishing the weeds from the crop and treating everything but the crop as a weed. Due to

the emergence of herbicide-resistant species, and the need to decide on treating weeds in a

mechanical or chemical way, there is a requirement to identify the weed species in real time.

Three types of methods in weed identification can be found in the literature: airborne remote

sensing, photo-detector based sensing and machine vision based sensing. Numerous studies

have been conducted in the use of these methods; however, few high-accuracy weed

identification algorithms or devices have been realized due to the complexity of the field

environment, wide variety of species and morphological variation of plants in various growth

stages.

2.4.1 Airborne Remote Sensing

   Airborne remote sensing (RS) is generally used for locating and identifying weed

patches. Sensors mounted on balloons, airplanes, remote control aircraft, and satellites are

commonly used for data collection. After the data are processed to create weed maps, decisions

can be made regarding where and how much herbicide to apply before the sprayer enters a

field.

   Conventional color (CC) and color infrared (CIR) photography was the first airborne RS

technology utilized to distinguish weeds from agricultural crops (Everitt et al., 1992; Menges et

al., 1985). Later, many other tools and techniques were adapted and implemented for RS weed

mapping. Everitt et al. (1993) successfully tested the feasibility of using color-infrared

photographic, videographic and SPOT satellite images in distinguishing shin oak (Quercus

havardii) on rangelands. In addition, they concluded that satellite imagery was most useful in

mapping large areas of shin oak, while aerial photography and videography were more efficient

in small populations of shin oak detection because of better resolution. Lass et al. (1996) used

digital images to distinguish yellow starthistle (Centaurea solstitialis) and common St.
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Johnswort (Hypericum perforatum) from other vegetation. Images were obtained from four

charge-coupled devices (CCD) with spectral filters mounted in an airplane, with a spatial

resolution of 0.5, 1, 2, and 4m respectively. The experiment showed that yellow starthistle and

common St. Johnswort were detectable at all those resolutions when their densities were as low

as 30% ground cover. Medlin et al. (2000) analyzed the use of multispectral digital images for

detecting weed infestation in soybean (Glycine max). An aircraft mounted, four-band CCD

array camera was utilized for image acquisition, followed by data manipulation using

discriminant analysis techniques. It was reported that the proposed remote sensing method had

reached at least 75% accuracy in detecting infestations of sicklepod (Senna obtusifolia), pitted

morningglory (Ipomoea lacunosa) and horsenettle (Solanum carolinense). Lass et al. (2002)

investigated hyperspectral remote sensing with the purpose of detecting spotted knapweed

(Centaurea maculosa) in Farragut State Park, Idaho. The study used an imaging hyperspectral

spectrometer that sampled the reflected solar region of electromagnetic spectrum ranging from

440 to 2543 nm for image recording. The data was classified according to a spectral angle

mapper (SAM) algorithm. Field experiments revealed that areas with over 70% spotted

knapweed cover were identified; on the other hand, areas with less than 40% spotted knapweed

infestation were detected with an overall classification error of 7%.

In airborne remote sensing-based weed detection, differences in spectral reflectance or

texture between weeds, crop plants and the background are required. As a result, in most cases,

spectral information alone is insufficient for robust crop/weed discrimination due to similarities

in weeds and crop reflectance (Zwiggelaar, 1998). In addition, the spatial resolution of the

sensor must be high enough, because low spatial resolution will result in spectral mixing, in

which plant and soil spectra are combined in the same pixel such that weed patches and crop

plants are not discriminable (Brown and Noble, 2005).
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2.4.2 Weed Detection Using Photo-Detectors

   The physical limitations on infrastructure cost and spectral and spatial resolutions have

restricted airborne RS to large-area weed map sensing in most occasions. In contrast, the use of

digital cameras or spectral sensors on a ground-based platform to detect weeds could be much

more economical, while achieving a higher spatial resolution than airborne or satellite RS.

Therefore, ground-based sensing has been extensively studied and photo-detectors were popular

tools for early-stage research.

   Photo-detectors are non-imaging sensors that distinguish vegetation from a background

through calculating the ratios or linear combinations of reflected light in visible and near

infrared wavebands. Hooper et al. (1976) designed a photoelectric sensor fitted with a

tungsten-halogen light beam to detect plants. The sensor measured the reflected intensities of

NIR and visible radiation, which were used for computation of indexes based on spectral band

ratios. The ratio for vegetation would be less than that for soil because vegetation absorbed

visible red radiation through its chlorophyll. To detect crop plants, a weed-free bed was

required because the sensor was unable to discriminate weeds from crop plants. Also, the

performance of the sensor was dependent upon sunlight intensity as well as soil reflectance

properties. Shropshire et al. (1990) analyzed a “Reflectance Ratio Meter” (RRM) for weed

detection. This optical device measured the ratio of NIR red light reflected from a target area,

which was converted to a voltage as an indicator of soil or plant. Bargen et al. (1992) developed

an optical reflectance sensor that utilized a pair of Red and NIR photo-detectors to detect plants.

Reflectance data from five Red (620 nm), NIR (800 or 850 nm) pairs together with the

reference reflectance were utilized to compute the normalized difference indices

( - )
( )

NIR RedNDI NIR Red , which would provide a strong indication whether plants were

present within the field of view of the sensor. Commercial devices such as Detectspray and

Weedseeker (NTech Industries, Ukiah, CA) were also available for real-time detection of

vegetation patches using the differences in spectral characteristics of plant and background

materials. Performance tests on the spray systems built upon these two sensors showed that the
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sensor-controlled sprayers reduced herbicides usage from 63% to 85% with the same control

effect as conventional system (Hanks and Beck, 1998). However, most of the photo-detector

approaches were ineffective in weed/crop and weed/weed discrimination (Felton and McCloy,

1992; Shearer and Jones, 1991). In addition, these devices were sensitive to seedling size, plant

density and lighting conditions (Brown and Noble, 2005; Thorp and Tian, 2004). For instance,

Wang et al. (2000) tested their spectrometer-based weed detection system under varying field

conditions with planting densities of 400, 200, 80, and a single plant per square meter. Their

study showed that when the weed density was above 200 plants/ 2m , the classifier identified

weeds at higher than 70% accuracy. In contrast, the classification rate dropped to below 50%

when only a single weed was present against the soil background, with the remaining weeds

misclassified as bare soil, which was mainly attributed to the limited spatial resolution of the

photo-detectors.

2.4.3 Machine Vision

   Machine vision technology has been widely studied and proposed for weed identification.

Compared with airborne remote sensing and photo-detectors, machine vision provides

sub-centimeter spatial information, as well as spectral and textual information by using high

resolution cameras. Image acquisition is accomplished using ground-based camera systems and

image processing routines are performed to discriminate weeds against crop and background. In

general, three categories of visual characteristics have been used in plant species identification,

which include morphology, spectral characteristics, and visual texture.

2.4.3.1 Image Segmentation

   The first stage in a typical weed identification procedure is segmentation of vegetation

from the soil background. Color based vegetation indices (consisting of Red-Green-Blue or R,

G, B components) are frequently considered in this stage because of the fact that vegetation

pixels have a strong green component in comparison to background pixels. Woebbecke et al.

(1995) developed several color vegetation indices using chromatic coordinates (r, g, b) and
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modified the hue component to distinguish living plants from soil and residuals. Experiments

showed that the normalized excess green index (ExG = 2g – r – b) and modified hue were most

efficient in providing a near-binary image outlining the plant region of interest, but modified

hue was more computationally expensive. They also found that vegetation indices alone could

not discriminate dicotyledon plants from monocotyledon plants consistently. Meyer et al. (1998)

defined an excess red vegetative index ( 1.3ExR R G ), which was theoretically based on the

fact that there are 64% red, compared with 4% blue and 32% green cones in the retina of the

human eye, thus the excess red color might facilitate visual perception. However, no further

research has proven the validity of this index. Perez et al. (2000) used pixel values in the green

and red channel to construct a normalized difference index (NDI), which was defined as

( - )
( )

Green RedNDI Green Red . Meyer and Neto (2008) proposed an improved vegetation

index: Excess Green minus Excess Red (ExG-ExR). Segmentation quality tests for both

greenhouse and field images of soybean were conducted, in which the accuracy of ExG-ExR

index was compared to that of ExG and NDI indices. The contrast experiment results (where

quality factor of 1 meant perfect delineation of the region of interest) were shown as follows:

for a greenhouse based set, the ExG-ExR index had a quality factor of0.88 0.12 while ExG and

NDI indices had factors of 0.53 0.39 ; for field image sets, both ExG-ExR and ExG had higher

quality factors of 0.88 0.07 while NDI had a factor of 0.25 0.08 . In addition, the superiority

of the proposed ExG-ExR index lied in that sunlight and dry/wet conditions of residuals and soil

had little effect on its separation performance. Besides various color vegetation indices derived

in the RGB space, other color components or models were introduced. Philipp and Rath (2002)

compared six color spaces transformed from the RGB components to optimize the separation of

vegetation and background. These models included discriminant analysis (calculation of the

probability of each pixel belonging to each group based on a discriminant function), canonical

transformation (calculation of the optimal linear combinations of R, G and B to maximize the

between-group variance), i1i2i3 (linear transformation of the RGB components by a factor – the

covariance matrix of the distribution of the RGB values), HSI (hue, saturation and intensity),
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HSV (hue, saturation and value/brightness), and Lab (L: a factor of brightness, a: the content of

red or green, and b: the content of yellow or blue). A comparative study regarding the accuracy

of segmentation showed that the logarithmic discriminant analysis attained the best

classification result with a misclassification rate at about 2% (misclassification of plant pixels:

2.0% and misclassification of soil pixels: 2.1%). However, processing one single image using

this color space would take up to 10 min, which was excessively computationally intensive for

practical use.

   Choosing a color space to process an R-G-B image into a gray-scale sub-binarized image

is usually a pre-treatment in a vegetation segmentation procedure. Therefore, an essential step,

termed thresholding is needed to binarize the monochrome images. The selection of the

thresholding method is often related to the color space or model used to produce the

sub-binarized image, because different color spaces result in different image histograms

delineating the vegetation and background regions. Lee et al. (1999) utilized a color look-up

table (LUT) based on a Bayesian decision rule in the HSI space to segment plant and non-plant

regions in an image. However, outdoor performance results for the system showed that 24.2%

of tomatoes (Lycopersicon esculentum) were misclassified, while only 47.6% of the weeds were

recognized. Astrand and Baerveldt (2002) developed a plant perception module to be used on

an autonomous mobile robot for mechanical weed control. The color vision system used the

normalized green component to obtain a corresponding gray-level image. After that, Otsu’s

method (Otsu, 1979) in which iterations were used in search of the best parameter to separate

classes based on variance, was adopted to find the proper threshold to separate plants from the

background in a greenhouse environment. Variable outdoor lighting conditions pose a great

challenge in plant segmentation, because direct sunlight causes substantial intensity differences

in the form of shadows and highlights within the images (Steward and Tian, 1999). To

overcome the influence of unpredictable lighting condition in an outdoor field, Tian and

Slaughter (1998) proposed an environmentally adaptive segmentation algorithm (EASA) with

automatic look-up table (LUT) generation capacity for vegetation segmentation under natural
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illumination. Normalized coordinates were used for image clustering, with the purpose of

emphasizing the color of the object. Field experiments indicated that despite a great

improvement compared with static segmentation techniques, the EASA algorithm only

recognized 45%-66% of all tomato seedlings.

2.4.3.2 Machine Vision Based Weed Identification

After the vegetation is segmented from the background, weeds are to be distinguished

from the crop using of various visual plant characteristics. For this purpose, spectral reflectance

has been applied. Franz et al. (1991) investigated the use of broadband reflectance to identify

soybean, ivyleaf morningglory, velvetleaf and foxtail. Spectral features such as skewness in the

red waveband, and the mean and variance in the NIR and blue bands were selected as the

optimal set of features for discriminant analysis. Results of the greenhouse experiment showed

that when leaf orientation was controlled, the classifier recognized over 93% of the 48

observations. Feyaerts and van Gool (2001) collected multi-spectral images of soybean and five

weed species under field conditions. A normalized ratio derived from the NIR and Red

wavelength, together with the use of a multi-layer neural network with nonlinear mapping

(MLNLM) classifier gave the best identification accuracy, where 80% of the soybean and 91%

of the weeds were correctly identified. Vrindts et al. (2002) used a reflectance-measurement

based machine vision system to discriminate sugarbeet (Beta vulgaris), maize and seven weed

species. In laboratory tests, reflectance spectra in the 400 to 2,000 nm wavelength range were

recorded under controlled lighting, and a limited number of wavelength band ratios were

utilized for classification. With only 3 wavelength ratios, the system achieved over 99% and

98% classification rates for maize/weed and sugarbeet/weed combinations, respectively. Spectra

in the 480 to 820 nm range were used for field measurements under natural sunlight, and less

than 10% of the crop and weeds were misclassified.

Other than the reflectance properties, a few studies have investigated the use of plant

textural information for weed identification. Tang et al. (1999) developed a Gabor wavelet

based feature extraction and neural network-based pattern identification system to discriminate
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between broadleaf and grass species. The system achieved 100% classification accuracy over

40 sample images. In addition, the algorithm was computationally efficient giving it the

potential for real-time application. Burks et al. (2000) utilized the color co-occurrence matrices

(CCM) to calculate textural information from soil and five weed species including giant foxtail,

crabgrass, velvetleaf, lambsquarters, and ivyleaf morningglory. The system had a classification

accuracy of 93% when using 11 texture features in the hue and saturation color spaces, and the

computational load was reduced up to one third since the intensity statistic was not included.

  An alternative method for weed identification involved the use of morphologic features

such as the leaf shapes. Guyer et al. (1986) attempted shape-based machine vision technology

to identify plant seedlings. The four features used in their study being complexity,

elongatedness, central moment and principle axis moment, were derived from grayscale images

of eight plant species. Subsequent studies introduced many more shape features, such as aspect

ratio, roundness, circularity, convexity and ratios among length, width, and perimeter

dimensions (Guyer et al., 1993; Woebbecke et al., 1995). Recent articles have explored various

forms of classifiers or techniques for shape-based weed identification. Cho et al. (2002)

evaluated discriminant analysis and artificial neural networks (ANN) in identifying radish from

weeds. Among the eight shape features extracted from the plants, aspect ratio, elongation and

perimeter to broadness were selected as the significant set for the discriminant analysis model,

which showed an identification rate of 92% for the radish and 98% for the weeds. In contrast,

the ANN model efficiently identified radish from the weeds with 100% accuracy. Neto et al.

(2006) developed an Elliptic Fourier (EF) method in weed identification, based on leaf shape.

They found that the EF method combined with principle component analysis and linear

discriminant models achieved the best classification results during the third week after the

plants’ emergence. Here, 77.9% of redroot pigweed (Amaranthus retroflexus), 93.8% of

sunflower (Helianthus pumilus), 89.4% of velvetleaf (Abutilon theophrasti Medicus) and 96.5

% of soybean (Glycine max) were correctly classified. By combining the leaf information from

the second and the third weeks, classification rates for the corresponding plants reduced to
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76.4%, 93.6%, 81.6%, 91.5% and 90.9%, respectively. Sogaard (2005) reported a new

shape-based machine vision method for classification of 19 weed species. In this work, Active

Shape Models (ASM) were generated using a set of points on the boundaries of the leaves for

each species, and weed identification was performed by fitting weed images to training sets.

Three weed species were tested, each with 100 samples, and the system identified 77% of

shepherd’s purse (Capsella bursa-pastoris), 65% of scentless mayweed (Tripleurospermum

inodorum) and 93% of charlock (Sinapis arvensis). However, the algorithm could only work

with weeds within the two-leaf growth stage and required weed images without mutual

overlapping.

As mentioned previously, a large proportion of the past plant-shape-based studies that

achieved high identification rates were conducted under controlled conditions where the shape

of the entire leaf was well displayed. Leaf occlusion, changes of leaf size and shape as a

function of growth stage, and leaf orientation relative to the camera still pose the most

challenging issues in implementation of the real-time shape-based machine vision technology

for weed identification (Thorp and Tian, 2004).

2.5 SVM and Shape-based Machine Vision Weed Identification

   Previous researches on the weed identification problem have involved a large number of

statistical methods and classifiers. The artificial neural networks (Burks et al., 2005; Tang et al.,

2003), bayesian classifier (Marchant and Onyango, 2003; Tian and Slaughter, 1998), decision

trees (Goel et al., 2003; Yang et al., 2004), and discriminant analysis (Burks et al., 2000; Cho et

al., 2002) are widely studied and implemented with varying success. As an alternative, in this

project, a novel approach in Artificial Intelligence – the support vector machines (SVM) is

proposed to classify weed species.

SVM is a supervised machine learning method, which was developed in the 1990s based

upon the theory of statistical learning (Vapnik, 1995). Essentially, SVM is a binary classifier,

which searches for the optimal separating hyperplane that maximizes the margin between two

(or more) classes and minimizes the generalization errors. The SVM is well-known for its
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robust performance in the presence of sparse and noisy data (Furey et al., 2000), as well as

user-friendless (Karimi et al., 2005). Therefore, this technology has been intensively studied for

the last few years and applied to a wide range of classification problems, such as text

classification (Tong and Koller, 2002), speaker identification (Schmidt and Gish, 1996; Wan

and Campbell, 2000), face detection (Kim et al., 2002), tissue classification (Furey et al., 2000),

object recognition (Blanz et al., 1996), as well as corn root classification (Zhong et al., 2009).

In most of these researches, SVM either substantially outperformed or at least matched the

comparable methods. Although SVM is receiving increasing popularity due to its promising

classification accuracy, its application in agriculture has not been fully explored (Karimi et al.,

2008).

   Wu and Wen (2009) investigated the use of SVM in classifying corn seedlings against

four weed species at the early growth stage. Ten texture features of the plant were extracted

based on the Gray Level Co-occurrence matrix (GLCM) and the histogram distribution from

the gray level images. Subsequently, four combinations of these features were selected by the

principle component analysis (PCA) as input vectors of the SVM classifier. The SVM

classifiers with various feature selections maintained a high classification accuracy ranging

from 92.31% to 100%. In comparison, the back-propagation (BP) neural-network model could

only achieve 80% accuracy on the same image set. However, this study merely focused on

weed-corn discrimination, while the more complicated identification scenarios among weed

species were not considered.

   Karimi et al. (2005) evaluated the capability of the SVM to analyze hyper-spectral

images for identifying weed and nitrogen stresses in corn. Images were collected using an

airborne spectrographic imager with 72 wavebands ranging from 408.73 to 947.07 nm during

early growth stage. Four weed treatments (no weed control, control of grass, control of

broadleaf, and full weed control), as well as three nitrogen application rates (low nitrogen (60

kg N/ha), normal nitrogen (120 kg N/ha), and high nitrogen (250 kg N/ha)) were used

separately or in combination, to evaluate the SVM classifier. The results showed that the
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support vector machines method obtained 69% accuracy for combined weed and nitrogen

application factors: 86% and 81% classification accuracy was achieved when weed and

nitrogen treatments were investigated separately. In addition, the SVM model outperformed the

competing artificial neural network (ANN) method in each of the three classification categories,

where ANN achieved 58.3%, 81.2% and 69.4% accuracy, respectively.

   In summary, SVM is an artificial-intelligence method for data mining, which has

demonstrated superior classification performance over traditional models in the field of

weed-corn classification research. However, more in-depth application of the technology in

weed identification among different species is still rare. In addition, most of the previous

studies only evaluated the classification models at one or a few random dates, but not on a

consistent basis throughout the early crop season. As leaf shapes and other biological features

of plants change at different growth stages, identification of weed species against time would be

predictably more difficult. Textural and spectral features have also been successfully used for

weed classification (Karimi et al., 2005; Wu and Wen, 2009). Whether the third visual

characteristic of plant, being morphological features, could improve the SVM classifier to

achieve accurate identification performance is worthy of investigation.
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CHAPTER 3

METHODS AND MATERIALS

To develop a novel SVM-embedded machine vision system for weed identification, the

project was divided into two stages. Firstly, laboratory experiments were conducted from which

the identification algorithm was derived and tested using plant samples grown in a greenhouse.

Secondly, field trials were conducted, in which outdoor plant images were utilized to assess the

feasibility and efficiency of the proposed algorithm. Each stage included procedures such as

image acquisition, image processing, and object identification, which will be described in detail

in the following sections.

3.1 Laboratory Experiments

Six of the most common weed species in Illinois were selected for this study (Figure

3.1), which included three broadleaf weeds – common lambsquarters (Chenopodium album),

velvetleaf (Abutilon theophrasti) and waterhemp (Amaranthus rudis), and three grass weeds –

barnyardgrass (Echinochloa crus-galli), large crabgrass (Digitaria sanguinalis), and corn (Zea

mays). Since the experiment was conducted in the late spring, this stage of the study was

conducted in a greenhouse environment for better control of temperature, humidity, and

lighting.
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Figure 3.1. Common weed species in Illinois.
Top: common lambsquarters, velvetleaf, and waterhemp;

Bottom: barnyardgrass, large crabgrass, and corn, respectively.

3.1.1 Greenhouse Treatment

   All six weeds species were planted in the Turner Hall greenhouse at the University of

Illinois, Urbana-Champaign, using Com-Packs Bedding Plant Containers (Hummert

International, East City, MO, USA) and a custom 1:1:1 (Soil: peat: torpedo sand) soil mix. Each

container consisted of 18 cells containing a single weed species, with a single plant in each cell.

Every weed plant was moved to approximately the center of each cell for improved image

recording purposes, while excess plants in any cell were eliminated. Room temperature was

maintained around 27 degrees Celsius during the growing period, and supplemental lighting,

pest control as well as fertilization were utilized to promote vigorous plant growth.

3.1.2 Image Acquisition

   Considering the threat of a high humidity environment to electronic equipment in the

greenhouse, the images used for this study were collected in Lab 126 of the Agricultural

Engineering Science Building, at the University of Illinois. To achieve a high accuracy and

efficiency, an automated image acquisition system was devised, which consisted of a digital

camera, power supply, computer, control module, and infrastructure module (Figure 3.2).
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Figure 3.2. Automated image acquisition system devised for imaging plants grown
in the greenhouse.

The image acquisition system was based on a dual-axis belt-driven linear positioning

table (XY-18, Arrick Robotics, Tyler, TX, USA). The positioning table is commonly used for

positioning sensors and performing pick-and-place robotic operations, which was accomplished

by activating stepper motors on the X and Y directions, driving a top plate attached to the drive

belts. For the purpose of analyzing leaf shape features, overhead images of plants were desired.

Therefore, the XY positioner was placed upside-down. To accommodate the weight of the

camera module on the positioner, the original motors were replaced by two 12VDC unipolar

stepper motors (Jameco Electronics, Belmont, CA, USA), which have a holding torque of 6

kg-cm and a detent torque of 725 g-cm (Figure 3.3a). A TMFire-i 701c FireWire industrial

camera (Unibrain Inc., San Ramon, CA, USA), coupled with a C mount 6mm F1.2 lens (Pentax

Co., Golden, CO, USA) constituted the camera module for weed imaging. The camera features
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a1/ 2"interline CCD solid-state image sensor (ICX205AK, Sony Co. LTD, Tokyo, Japan, cell

size: 0.465 0.465mm mm ), which provides an image size ranging from320 240 to

1388 1036 pixels. The lens has a focal length of 6 mm, and has a horizontal view angle of 57

degrees. A diaphragm and focal ring allowed manual adjustment of the aperture and focal

distance of the lens. The camera module, facing downwards, was mounted on the top plate of

the XY positioning table through an anchor plate (Figure 3.3b). Two serial bipolar stepper

motor drivers (KTA-5197A, QKits Limited, Kingston, ON, Canada) were used to control the

stepper motors on the X and Y axis, through enabling or disabling the motor power output pins

on the drivers. The two drivers were linked together using a 2 5 (10-pin) IDC connector cable

(MicroController Pros Corp., Reno, NV, USA). The driver boards were connected to a

computer (Pavilion a6110n, AMD Athlon™ 64 2 Dual Core Processor 4400+ 2.31 GHz, 2.0

GB of RAM, 320 GB hard drive, Hewlett-Packard, Palo Alto, CA, USA) with a 9-pin

straight-through serial cable and an IDC connector cable (Figure 3.3c). A control strategy was

established by sending serial signals from the computer to the motor drivers to enable/disable

the stepper motors. The camera was controlled through a FireWire cable from a single

MATLAB® (The MathWorks, Natick, MA, USA) program. The main purpose of this program

was to establish serial communication between the computer and the motor drivers, send

commands to move the top plate to designated positions, trigger the camera and save the images

(Appendix A1).
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Figure 3.3. Core modules of the automated image acquisition system. From top to bottom:
(a) Stepper motor drives the top plate through the pulley and driving belt;

(b) Camera module mounted on the top plate through the anchor plate;
(c) Linked stepper motor drivers connecting to the PC with a serial cable.

Besides the core modules described above, other components were added to the system,

such as lights for enhancing light intensity in the lab environment, and a 12V DC power supply

(1760A, B&K Precision Corp., Yorba Linda, CA, USA) for the stepper motors drivers. Before

the image collection procedure, several problems had to be considered:

1. Positioning calibration. In this study, the weed container was placed at a fixed position,

and the camera mounted on the top plate was required to access all 18 cells in each

container. Thus, the spinning rates of the motors were determined a priori, such that the

motors would transport the camera to cover each cell in sequence. In addition, due to the
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high accuracy of the low-stretch timing belt ( 0.83 /mm m ) and homing procedure

performed after imaging each container of plant, the repeatability of the system was

high and only one calibration was necessary.

2. Camera calibration. The distance between the camera and the top of the container was

approximately 0.37m (19.5") and the zoom factor of the lens was set to 0.4. Thus using

an image size of 640 480 pixels, the image could cover an area of0.21 0.155m m

(8.4" 6.2" ), which was larger than the size of a cell ( 0.076 0.076m m ). According to

the movement pattern and calibration of the positioning system, the camera triggered

when centered above each cell. Therefore, the position of a targeted cell in each image

was identical (if the positioning calibration was accurate enough), and by cropping each

image with the same frame size ( 281 261pixels), images containing single plants were

obtained.

After the calibration procedures, the automated image acquisition system was

established. The layout of the system is shown in Figure 3.4 and the objectives of the system

were accomplished using the following substeps.

1. The MatLab® program first initiated the camera channel and serial communication

between the computer and the motor drivers, which were powered by the 12VDC power

supply.

2. Control commands were sent through the serial port to the motor drivers to move the

camera module to the pre-determined position above a cell.

3. Upon arrival of the camera module, the stepper motors were deactivated and held in

place. Meanwhile, the camera was triggered through the FireWire cable, resulting in a

YCbCr- format 640 480 image. This image was then cropped and converted to an RGB

image containing a single cell and plant. [4] Steps [2] and [3] were repeated such that

the system handled the remaining cells and at the end, a homing command was sent to

direct the camera back to the pre-set starting point. At this point, the imaging of a

container was completed.
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The planting date was April 2nd, 2009 for all weed species, and daily image collections

started from April 7th, 2009 as soon as any weed plant emerged from the soil. The greenhouse

experiment lasted approximately 5 weeks, corresponding to the VE to V7 growth stages of corn.

A total of 2,325 plant images were collected during this period.

Figure 3.4. Flow chart of the automated image acquisition system.
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3.1.3 Image segmentation

   After the image acquisition procedure, the next step was image segmentation. This step

is used to produce binary images from the acquired RGB images with the goal of separating the

plant-related pixels from background-related pixels. This is a critical step in morphology-based

weed identification systems, because high-quality images provide important leaf shape

information for the feature extraction and plant classification procedures (Meyer and Neto,

2008). Numerous studies were conducted in the attempt of delineating the plant region from

non-plant background using various color spaces. Normalized Excess Green and Modified Hue

were frequently reported (Jafari et al., 2006; Meyer et al., 1998; Tang et al., 2003; Woebbecke

et al., 1995) as the superior methods due to their low sensitivity to background noise and

lighting conditions. In this section, the fundamentals and limitations of these two methods will

be discussed, and a new Pixelwise plant segmentation method is proposed and compared to the

Normalized Excess Green and Modified Hue methods.

3.1.3.1 Normalized Excess Green (NExG)

   The derivation of NExG index used the RGB color space. However, as non-normalized

RGB coordinates were sensitive to illumination (Woebbecke et al., 1995), a better way to define

NExG was through the use of chromatic coordinates (or chromaticities):

2NExG g r b                            (3-1)

Where r, g, and b are the chromaticities obtained from the transformations:
Rr

R G B
, Gg

R G B
, Bb

R G B
               (3-2)

Where R, G, and B are the non-normalized red, green, and blue channel pixel intensities,

respectively, with the constraint: if 0R G B , then 0NExG .

   After the chromaticity conversion, the original RGB image was converted to a grey-scale

image with the plant region being highlighted. To binarize the grey-scale image, a threshold

value, which maximized the variance between the plant group and non-plant group pixels, was

chosen using OTSU’s method (Gonzalez et al., 2004). An alternative thresholding method
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involved visual examination of the NExG histogram, where the “valley” position would be

selected manually as the threshold value for plant segmentation.

   A program was written in MatLab® to implement the NExG method with both automatic

and manual thresholding (Appendix A2). Computer trials with the weed images taken during

the laboratory image acquisition procedure showed the following: In general, NExG was

capable of handling shadows or dark parts on the weed leaves, while high-intensity spots

remained problematic. This was because the plant pixels on those reflecting spots had almost

identical R-G-B values ( R G B for white color), which would be grouped to the background

pixels after thresholding ( 2 - - 0g r b ). In addition, NExG could be erroneous in processing

images with a low green plant pixel rate and a high background pixel rate, because in that case,

the histogram of NExG no longer had the characteristic “valley” which separates the plant from

the background. This made it difficult to choose a threshold value in either thresholding method

(Figure 3.5). To summarize, NExG with automatic OTSU was efficient in outlining the

approximate shapes of the plant leaves at the expense of losing some details such as small stems.

In comparison, manual histogram thresholding achieved better segmentation results with most

of the weed images, but it is highly undesirable for real-time weed identification.
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Figure 3.5. Comparison of NExG algorithm with automatic (Otsu)/manual (Histogram) thresholding
methods in processing images of weed at various growth stages.
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3.1.3.2 Modified Hue

   HSI (hue, saturation, intensity) is a color system that describes color as points in a

cylinder (Figure 3.6). This color system is commonly considered more appropriate to describe

color than the RGB system as far as the way human perceive and interpret color sensations is

concerned (Gonzalez et al., 2004). Of the three components that constitute the HSI space, hue is

regarded as a key component because it represents the dominant wavelength in mixed light

waves (Tang et al., 2000) and it is not subject to highlights and shadows (Cheng et al., 2001). In

general, hue is defined to be an angle between a reference color line and the selected color point

ranging from 0 to 360 degrees, which can be converted from the RGB coordinates as:

H             if B G

Or 360H        if B G                      (3-3)

Where 1
2 1/2

2cos ( )
2[( ) ( )( )]

R G B
R G R B G B

             (3-4)

Figure 3.6. The HSI color cylinder represented by the three components, which includes Hue, Saturation, and
Intensity.
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The Hue value can be further normalized to the range of [0, 1] through dividing H

by o360 . Nevertheless, non-removable singularities exist along the intensity axis (R = G = B) of

the HSI color cylinder, which makes the RGB-to-HSI transformation sensitive to subtle changes

in input values and causes discontinuities in the representation of colors (Cheng et al., 2001).

Thus in the modified hue algorithm the hue value was forced to 0 at the singularity,

where 3 min( , , )1- 0R G BSaturation
R G B

.

A MatLab® program was written encoding the Modified Hue algorithm (Appendix A3).

To simplify the thresholding method, a versatile range in the histogram of hue channel

specifying the “plant greenness” was to be determined. 50 sample images were randomly

selected from the weed image collection and the distribution of hue component for each sample

image was inspected. With hue and saturation being normalized to 0-255 and hue being 0 at the

singularity, an empirical hue range at [65, 120] for plant segmentation was concluded through

histogram segmentation based on manual selection of thresholds. Computer trials were

conducted using the same set of weed images as used in the NExG test. The segmentation

results from adopting the empirical range of hue, together with that from manually adjusting the

thresholds showed that modified hue with empirical thresholding worked only partially

satisfactorily. In most cases, one or both threshold values had to be manually adjusted. In

addition, high intensity leaf and background pixels as well as dark leaf pixels caused

segmentation errors (Figure 3.7). This is because bright background pixels, although ‘white’ in

RGB space, can contain considerable greenness, which make it possible for such pixels to fall

in the selected ‘plant greenness’ range. On the other hand, shaded leaf pixels, whose hue values

might be out of the range due to poor intensity of light reflection, would be erroneously

classified as the background.
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Figure 3.7. Examples of using the Modified Hue method with empirical thresholding and manually-adjusted
thresholding to segment weed images at various growth stages.
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3.1.3.3 Pixelwise Segmentation Method

Neither the NExG nor the Modified hue algorithm with global thresholding was able to

perform high quality image segmentation consistently. This is because global thresholding,

where the complete image is used to determine the threshold value, is prone to fail when the

background illumination is uneven (Gonzalez et al., 2004). Another essential problem lies in the

fact that both the NExG and the Modified hue algorithm reduce a three-dimensional matrix

(RGB) to a one-dimensional vector. This results in loss of spatial and color information, which

can be crucial in the plant segmentation procedure. For instance, background pixels being

highlighted were frequently misclassified as plant related pixels, because both of the algorithms

relied on ‘greenness’ as the only measure. These segmentation errors are difficult to remedy

even with manual thresholding, due to the similar chromatic property of the noise and the plant

pixels. To alleviate this problem, the interrelationship among the R-G-B channels of each pixel

belonging to the plant and non-plant region was investigated. The aim was to find possible

complementary classification criteria to delineate weeds from the soil and residual background.

44 sample images at four imaging dates were chosen from the weed database for

segmentation analysis. Among those images, 10 images were selected from date 04/11, 10 from

date 05/01, 12 from date 04/15, and 12 from date 04/23. The first two groups included five

weed species, and the remaining groups included six weed species, depending on availability of

weed images, which accounted for various germination times among the weed species. The

sample images were first segmented using the NExG index with OTSU’s automatic

thresholding method. Then manual adjustment on the threshold was applied based on the

histogram until the optimal segmentation result (by visual judgment) was achieved (Appendix

A4). At this point, plant regions were delineated with all ‘1’s and background with ‘0’s in the

binarized images, so were the corresponding regions in the original color images. The means

and ratios of the R, G, and B components were calculated for pixels within the plant and

non-plant regions as shown in Table 3.1.
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Table 3.1. Comparison of the means and ratios of the RGB channels between plant pixels
and background pixels.

(a) Statistical summary
Type Date R G B R/B G/B G/R

04/11 116.13 150.49 116.13 1.02 1.32 1.30
04/15 116.66 150.10 116.66 1.03 1.34 1.30
04/23 104.04 136.52 104.04 1.13 1.47 1.31

Plant

05/01 104.97 135.95 104.97 1.15 1.50 1.30
04/11 43.97 43.10 43.51 1.00 0.99 1.00
04/15 31.15 29.75 31.42 1.01 0.97 0.96
04/23 21.98 21.16 22.46 0.97 0.94 0.98

Non-Plant

05/01 18.63 17.63 19.18 1.00 0.93 0.95

(b) Mean of the above statistics
Type R G B R/B G/R G/R
Plant 110.45 143.27 110.44 1.08 1.41 1.30

Non-Plant 28.93 27.91 31.64 1.00 0.96 0.97

In generating the Pixelwise segmentation method based on interrelationship of the RGB

components, a few major concerns should be pointed out:

1. It is near impossible to achieve a 100% segmentation rate especially without manual

thresholding, due to uneven illumination (even in the laboratory environment) and color

variation among weed species or even among the same species at various growth stages.

Thus the objective of developing this new algorithm was to achieve automatic

performance while maintaining an accurate segmentation rate compared to other

methods such as NExG and Modified Hue.

2. Table 3.1 showed steady distribution patterns of the RGB components of the pixels

within the plant and non-plant regions such as the R, G and B components, as well as

the G/B, G/R ratios of plant pixels that had greater mean value than that of the non-plant

pixel. However, extreme conditions should also be considered because the statistics

given on the table were mean values derived from pixels under varying lighting

conditions. For instance, bright background pixels would have high R-G-B values and

dark plant pixels have low values, which indicated that proper adjustment and offsets on
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the limits of the means and ratios for the algorithm are necessary.

3. Introduction of additional judging criteria would aid accurate segmentation but in return

require more handling time, which is not desirable for real-time operation.

Refined judging criteria were proposed based on statistics from Table 3.1 as well as

empirical modifications on the limits of the means and ratios of the RGB components, which

were obtained from repeated computer trials with the weed database using different limits. The

final algorithm was defined as:

( 1.02 ) & &( 1.02 ) & &( 0.6 ) & &( 35)G R G B R B G         (3-5)

   As mentioned, the proposed segmentation method was based on sampling of images

obtained under similar illumination conditions such as during laboratory or shaded imaging in

the field. Therefore, to apply formula 5 to a different scene, the parameters are to be determined

using the sampling method described above on a few images taken in the new scene. Despite of

this, an essential improvement of the Pixelwise method lied in that all of the three channels in

the RGB image were used, thus potential loss of color information due to dimension reduction

could be avoided. Nevertheless, only a raw binary image resulted for any color image that had

undergone the Pixelwise segmentation procedure. Small salt and pepper noise and other random

noise remained because of the existence and scatter of high intensity background pixels.

Therefore, multiple image filtering was implemented to minimize segmentation errors, among

which the median filter was used to handle salt and pepper noise, and a size filter based on pixel

area was utilized to remove aggregated random noise. The image segmentation was finalized

with the completion of the filtering procedure. The complete segmentation algorithm is shown

in Figure 3.8.
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Figure 3.8. Flow chart of the complete image segmentation procedure.

3.1.4 Weed Identification

 With the completion of vegetation segmentation, binary images resulted where the plant

region was displayed in white and the background in black. To implement the Support Vector

Machine (SVM) method, morphological features were extracted from the images as the input

vector of the system. In addition, internal parameters of the SVM model needed to be

determined prior to the weed classification procedure.
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3.1.4.1 Fundamentals of the SVM Algorithm

Linear Support Vector Machines

The working of the Support Vector Machine can be summarized as the search for an

optimal separating plane that maximizes the margin and minimizes the generalization errors

among classes. Figure 3.9 illustrates the principle of SVM through a simple linear binary

classification problem.

(a) A hyperplane with small margin.         (b) Optimal hyperplane with maximal margin.

Figure 3.9. Schematic of a linear hyperplane between two classes.

Given is a set of training data { ( , ), 1,2, ,i ix y i n }, where { 1, 1}iy  denotes the

class labels and d
ix R  are the d-dimensional input vectors. To separate the two classes, any

hyperplane in this example can be expressed as the set of points x  satisfying:

0w x b                                  (3-6)

Where w  is a normal vector to the hyperplane; | b |/ w  represents the distance from the

origin to the hyperplane along the normal w , and w  is the Euclidean norm of w (Burges,

1998).

   It is obviously possible to have an infinite number of hyperplanes able to separate the

data groups (see plane P  in Figure 3.9 a and b); however, geometrically, the ideal separating
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plane should have the largest distance from both of the classes so that minor disturbances of the

input data would not affect the accuracy of the system.

Define the parallel supporting planes as 1w x b  and 1w x b  for class +1

and -1, respectively, such that all points belonging to one class are on or on one side of the

plane (see 1P , 2P  in Figure 3.9). In this context, the perpendicular distances from the origin to

the supporting planes will be 1 b / w  and 1 b / w . Thus the hyperplane margin being

2 / w , can be calculated via subtraction of the two. Here, the optimal classification problem

becomes maximizing the margin 2 / w , in other words, minimization of the norm w  with

the constraint that no data points fall in the margin. This is equivalent to a quadratic

programming optimization (QP) problem with w  substituted by 21
2

w  without changing

the solution (Burges, 1998):

  Minimize: 21
2

w            (in w , b )                           (3-7)

  Subject to: 1w x b        for ix class  +1  and                  (3-8)

1w x b       for ix class  -  1.                     (3-9)

With a Lagrangian formulation of the problem, the optimization problem can be

transformed into the Lagrangian dual form, which is only a function of the support vectors

(Burges, 1998):

 Maximize:
1 ,

1
2

n

i i j i j i j
i i j

a a a y y x x      (in ia )                   (3-10)

 Subject to:
1

0
n

i i
i

a y  and 0ia    for  any 1,2, ,i n           (3-11)

Where ia  are the support vectors (also called Lagrangian multipliers), the training data that lie

on the supporting planes. The desired Lagrangian multipliers ia  can be obtained by solving

equation (10) with constraint (11). Hence the optimal separating hyperplane is given by (Gunn,
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1998):

1

n

i i i
i

w a y x  and 1 [ ( )]
2 p qb w x x               (3-12)

Where px  and qx  are any support vectors from each class satisfying:

0, qpa a , 1, 1qpy y                          (3-13)

The corresponding classifier can be defined as:

( ) sgn( )f x w x b                       (3-14)

   For more general cases where input data overlap each other, it is virtually impossible to

find a hyperplane that can linearly separate two data sets at 100% accuracy. Instead, SVM will

trade off part of the accuracy and seek for an optimal balance between maximizing the margin

and minimizing the classification errors. This is achieved by introducing an upper bound on the

number of training errors through the use of the “positive slack variables” (Cortes and Vapnik,

1995) in the constraints.

Non-Linear Support Vector Machines

   For training samples that are not linearly separable, the input vectors are mapped into a

higher dimensional space (referred to as “feature space”), where the optimal separating

hyperplane can be constructed. Such non-linear transformation incorporates the use of a “kernel

function”, ( , )i jK x x  to resolve the computational complexity on the feature space (Boser et al.,

1992). In this context, the optimization problem in equation (10) becomes:

  Maximize:
1 ,

1 ( , )
2

n

i i j i j i j
i i j

a a a y y K x x                          (3-15)

  Subject to:
1

0
n

i i
i

a y  and  0 ia C                           (3-16)

Where ( , )i jK x x  replaces the dot product i jx x , and C  is a user-chosen parameter which

reflects the noise in the data and determines the tolerance to misclassification errors (Gunn,
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1998). The classifier corresponding to the optimal separating hyperplane in the feature space

becomes:

( ) sgn( ( , ) )i i i
si SV

f x a y K x x b                         (3-17)

where
1

( , )
n

i i i
i

xw a y K x x                                 (3-18)

1

1 [ ( , ) ( , )]
2

n

i i i p i p
i

b a y K x x K x x                     (3-19)

  Previous discussions are based on the binary classification schemes; however, the concept

of SVM can also be extended to multi-category classification, where the number of classes is

larger than 2. The primary idea is to reduce the single multi-category problem into multiple

binary schemes, which is commonly accomplished by introducing a decomposition and

reconstruction procedure. In general, there are two decomposing methods: [1] “1-versus-rest”,

where one class has the label +1 and the remaining patterns are labeled -1; [2] “1-versus-1”, in

which ( 1)/2M N N sets of binary machines are to be constructed, where N is the number of

classes (Hsu and Lin, 2002). These decomposing treatments are followed by a parallel

reconstruction phase with different decision strategies for classification: for “1-versus-rest” case,

a “winner-take-all” strategy will be applied, where the class of the instance is decided by the

classifier with the highest output function; while in the “1-versus-1” case, a “max-wins voting”

strategy determines the instance classification by counting the most votes from each of the

binary classifiers (Angulo et al., 2000).

3.1.4.2. Feature extraction

Several shape features describing the geometric properties of the weed canopy were

extracted from the binary images obtained from the image segmentation procedure. Table 3.2

lists the calculation of six shape features used for weed identification for a given binary image

shown in Figure 3.10.
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Table 3.2. Description of various shape features of weed.

Feature Description

Area ( 2pixel )
Total number of pixels in each segmented region

Perimeter ( pixel ) Number of the boundary pixels in each segmented region

Width ( pixel ) Horizontal dimension of the segmented region

Height ( pixel ) Vertical dimension of the segmented region

Major Axis Length ( pixel ) Length of the major axis of the ellipse that has the same normalized second
central moments as the segmented region

Minor Axis Length ( pixel ) Length of the minor axis of the ellipse that has the same normalized second
central moments as the segmented region

Figure 3.10. Geometric definition of the weed canopy.

While the objective of this project is to identify weed species in the early growth stage,

the features listed above may not be appropriate for direct use as the input of a classifier. This is

because these features tend to change along with time and the growth stage of the targeted weed

plant. Therefore, several geometric parameters (Cho et al., 2002; Lee et al., 1999; Tian et al.,

1997) aiming at better describing the plant pattern instead of outward dimensions, were used as

follows:

1. Ratio of Area to Length (ATL): ratio of the segmented area to the major axis length.
Area

ATL =          ( )
Major Axis Length

pixel                 (3-20)
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2. Compactness (CMP): ratio of the segmented area to the perimeter squared.

2

Area
CMP = 16

Perimeter
                    (3-21)

3. Elongation (ELG): difference of the best-fit ellipse axis lengths divided by the sum of the

of the axis lengths.
Major Axis Length - Minor Axis Length

ELG =
Major Axis Length + Minor Axis Length

         (3-22)

4. Aspect (ASP): ratio of the major axis length to the minor axis length.
 Major Axis Length

ASP =
Minor Axis Length

                        (3-23)

5. Logarithm of the Ratio of Height to Width (LHW): common logarithm of the ratio of the

vertical to horizontal dimensions of the segmented area.

10

 Height
LHW = log

Width
                            (3-24)

6. Ratio of Perimeter to broadness (PTB): measurement of a convex region.
Perimeter

PTB =
2 (Height + Width)

                       (3-25)

7. Ratio of Length to Perimeter (LTP): measurement of the 2-D distribution pattern of the

boundary of the segmented region.
Major Axis Length

LTP =
Perimeter

                        (3-26)

3.1.4.3. Feature Selection

   Feature selection is the technique with which a subset of relevant features will be

selected for building robust learning models. It is an effective way of reducing the training

sample size and the operational time, although at the risk of affecting the generalizing rate of

the classifier. Thus with a real-time facilitation purpose, it is necessary to explore the

interrelationship between the classification accuracy and the efficiency of the system.

   The minimum-Redundancy-Maximum-Relevance method (mRMR) is a unique feature

selection technique for machine learning (Peng et al., 2005). To construct an optimal feature

subset that describes the statistical property of a target classification variable, the mRMR
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method selects features that are mutually dissimilar to each other, while highly correlated to the

classification variable. Such a scheme was used in this project to determine the most critical

features. In the implementation of the mRMR method, the continuous feature data should be

discretized first to achieve accurate results (Peng et al., 2005). Table 3.3 lists the selection

results according to various threshold values for data discretization, from which the ATL, PTB,

and ELG were selected as the best feature combination.

Table 3.3. Feature selection results using mRMR with various thresholds.

Priority K=0 K=0.5 K=1
1 ATL ATL ATL
2 PTB PTB PTB
3 ELG LHW ELG
4 ASP ELG LHW
5 LHW ASP ASP

Note: K is the threshold chosen to discretize the data, i.e., mean +/- K*STD.

3.1.4.4. Implementation of the SVM Method

   To evaluate the performance of the SVM method, it is common practice to separate the

complete data set into two parts. A training set is used to develop a predictive model after which

the unknown testing set is used to assess the validity of the model and the performance of the

SVM classifier.

The first step in implementing the SVM method is to choose the kernel function (Table

3.4). For a particular multi-class categorization problem, the Radial Basis Function (RBF)

kernel is an ideal first choice in most cases. This is because the RBF kernel is capable of

handling nonlinear SVM problems, is less prone to numerical difficulties, and easy to

implement (Keerthi and Lin, 2003).

The next step is to construct the characteristic model based on the training samples. Two

parameters have to be identified and optimized such that the classifier can predict unknown data

precisely. Of this parameter pair (C , ), C is the regularization parameter that defines the error

bound, while  is the characteristic parameter of the kernel function that specifies the Gaussian

model structure. A common method to accomplish this is through the use of cross validation. In
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this project, a five-fold cross-validation (CV) method (Chang and Lin, 2007) was adopted, in

which the training set was divided into five subsets, and each subset (the validation set) was

tested using the classifier trained on the remaining four subsets. The CV accuracy was then the

average of prediction accuracy on the validation set. In this context, each instance of the whole

training set was predicted once and accordingly the best (C , ) pair could be determined by

comparing the cross-validation accuracy.

Finally, to determine the relationship between the number of features used against

accuracy and operational time of the SVM classifier, two distinct models based on the three

selected features and the complete seven features were constructed with the same training set.

The two models were then used to classify the testing set consisting of 1,006 images. The

complete identification procedure, including cross-validation, model-construction and label-

prediction, was carried out in MatLab®, incorporating the use of the LIBSVM MatLab®

Toolbox (Chang and Lin, 2001).

Table 3.4. Some common kernels for nonlinear SVM.

Kernel Function

Linear ( , )K x y x y

Sigmoid ( , ) tanh( )K x y x y c

Polynomial
( , ) ( ) , 0dK x y x y c

Radial Basis Function (RBF) 2( , ) exp( ( ) ), 0K x y x y
Note: , c , and d are kernel parameters.

3.2 Field Testing

Since the proposed identification algorithm is expected to be implemented on an

adaptive weed suppression device for real-time weed control, field tests were conducted. In

addition, with the aim of achieving inter-row weeding, weed species spreading between the

cornrows were the focus of this project.
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3.2.1 Field Experiment Setup and Data Acquisition

Five weed varieties, including three broadleaf weed species – lambsquarters, velvetleaf

and waterhemp, and two grass species – barnyardgrass and large crabgrass were manually

planted at the University of Illinois Agricultural Engineering Research Farm on the 1st July,

2009. Each species was planted in a plot, measuring 0.76 6.35m m ( 30" 250"), which was

separated by corn rows (Figure 3.11).

Figure 3.11. Field test layout: VL – velvetleaf, LQ – lambsquarters, WH – waterhemp,
BG – barnyardgrass, CG – crabgrass.

   A TMFire-i  industrial camera (model 701c, Unibrain Inc., San Ramon, CA) featuring a

C mount 6mm F1.2 lens (Pentax Co., Golden, CO, USA) was employed to acquire field images.

The camera was mounted at a height of 1.87 m ( 73.5") on a custom-made camera holder,

which was attached to a utility tractor (model 1024D, New Holland North America Inc., New

Holland, PA) via a supporting frame. A portable computer (model TMStudio 15, Intel TMCore 2

Duo Processor, 2.96 GB of RAM, Dell Inc, Round Rock, TX) was used to control the camera

through a MatLab® program (Appendix A5). A Fire-repeater (model TM400 1394a, Unibrain

Inc., San Ramon, CA), powered by a 12v battery (model BP 12-12, B&B Battery USA Inc.,

Commerce, CA), was used to link the camera with a 1394a interface and the computer with a

1394b interface. The computer, battery, and Fire-repeater were placed on a custom holder plate,

whose extended connecting piece was attached to the tractor (Figure 3.12 a – d).
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Figure 3.12. Facilities used for image acquisition during the field test.
(a) Image acquisition platform;

(b) Laptop, Battery and Fire-repeater;
(c) Custom holder plate and its connecting piece;
(d) Custom camera holder and supporting frame;

(e) Custom shading plate.

   For image acquisition, the camera was used to capture an area of0.425 0.315m m

(17 12.5inch inch ) at a resolution of800 600pixels, with a 0.3 m zoom setting on the lens.

Thus the spatial resolution for the imaging system was approximately 5.3 5.3mm mm

( 0.2" 0.2") per pixel. The aperture was fixed at F7 and exposure was set at 40 to reduce light

absorption. However, under strong sunlight, these settings still resulted in poor image quality

due to the automatic white balance function of the camera. A simple solution was to create an

artificial shadow over the imaging area by adding a shading plate made of photography

exclusive ripstop nylon fabric (Hancock Fabrics, Champaign, IL), (Figure 3.12 e). In this way,
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excessive sunlight was blocked, leaving a homogeneous illumination condition over the

imaging area (Figure 3.13). Images were taken while the tractor was moving at a low speed of

around 0.7 km/h (0.4 miles/hour). This travel speed, in combination with an image capturing

rate of 1,200 frames per second minimized speed blur to an acceptable level.

(a) Over-illuminated waterhemp image          (b) Shaded waterhemp image

Figure 3.13. Contrasting images of waterhemp taken without and with the shading plate.

The experimental field was maintained weed-free except for the planted species.

However, during the field experiment, few lambsquarters survived due to the influence of the

growth season, management and extreme weather conditions. In addition, at the date of imaging,

it was discovered that smooth crabgrass was planted in the field whereas large crabgrass was

planted in the greenhouse. Hence, this experiment only considers the remaining species, being

barnyardgrass, velvetleaf and waterhemp. Two sets of images were recorded on two days in the

fourth and fifth weeks after seeding, which corresponded to the V4 and V5 growth stage of corn.

The first set of images (including 60 samples) was taken in the afternoon of July 26th, 2009

under cloudy conditions, and the other set (consisting of 47 images) was taken at noon of July

29th, 2009 under sunny conditions. The raw images were in the YCbCr format, which were

converted to 24-bit RGB images and saved for future analysis.
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3.2.2 Weed Identification

   Weed identification in the field followed similar steps compared to the laboratory

experiment, those being image segmentation, feature extraction and weed classification.

Modifications in the algorithm were made to accommodate real-time application and images

containing multiple weeds.

   In the laboratory experiments, the complete image set was divided into two parts. The

training set was used to construct the SVM model in use of the known labels (weed species)

and the corresponding morphological features as input vectors: The test set was used to classify

the samples where predictions of the unknown labels were made based on the SVM model and

features input from the test set. However, in the field experiment, all weed images were

considered as the unknown test set. Label prediction was based on the model using the

complete greenhouse image set excluding corn images. Subsequently, cross validation was

performed on the greenhouse image set, and the resulting optimal parameters were utilized to

construct the SVM model. This model was consequently preloaded to the system before any test

image input.

   For image segmentation, new thresholds obtained from sampling of 30 field images were

used to implement the Pixelwise method for all images. A significant difference between the

laboratory and field segmentation procedures is that for the greenhouse image only a single

plant was present and every segmented component other than the background was considered

part of the plant. However, in a field scenario, every field image may contain multiple as well as

partially recorded plants crossing the image boundary. In addition, a single plant might be

divided into several parts due to segmentation errors. Therefore, to reunite the separated parts of

a plant and various plants in an image, the centroid for each segmented part was calculated.

Then the adjacent parts were joined together or labeled with diverse numbers depending on the

distances of their corresponding centroids among each other. Partially recorded plants were

discarded from each image (Figure 3.14), because the shape-based machine vision system relies

on feature information extracted from the complete weed plant or plant leaf.
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Figure 3.14. The detailed image segmentation procedure for field images.
(a) Original RGB image.

(b) Segmented image with centroids of each separated part marked.
(c) Reunion of parts and separation of plants.

An adaptive median filter (Gonzalez et al., 2004), which was able to choose the filtering

window size automatically according to the characteristics of the image, was an optional

additional component to the Pixelwise method. The advantage of the adaptive median filter is

its ability to eliminate salt and pepper noise while preserving the sharpness and detail of the

image. A disadvantage aspect lies in its high computational cost, which is undesirable in a

real-time scenario.

As soon as the binary image was acquired, each plant labeled with various numbers

passed through the feature segmentation procedure, where the seven features, being the Ratio of

Area to Length (ATL), Compactness (CMP), Elongation (ELG), Aspect (ASP), Logarithm of
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the Ratio of Height to Width (LHW), Ratio of Perimeter to broadness (PTB), and Ratio of

Length to Perimeter (LTP) were computed. Finally, the preloaded model was used to predict the

class/classes of each weed plant in the input image based on the calculated features. The weed

identification process was completed automatically through a MatLab® program (Appendix

A7). A flowchart is shown in Figure 3.15.
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Figure 3.15. Flow Chart of the weed identification algorithm for field images.
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CHAPTER 4

RESULTS

4.1 Results of the Laboratorial Image Segmentation

To evaluate the proposed Pixelwise segmentation method, 101 laboratory images were

chosen randomly from growth dates 04/08, 04/16 and 04/30 (covering various growth stages of

the weeds), and manually segmented until optimal segementation results were achieved. In the

process, three automatic segmentation methods including the NExG with OTSU’s method,

Modified Hue with fixed color range [65, 120] and the Pixelwise method with empirical limits

based on sampling were implemented. Each segmented image was compared pixel-by-pixel

with the corresponding hand-segmented image. Two variables were determined in this

experiment, where the correct segmentation rate (CSR) was defined as the ratio of the number

of plant pixels segmented in agreement with hand segmentation and the total number of plant

pixels obtained from hand segmentation. The incorrect segmentation rate (ISR) was defined as

the ratio of the sum of plant pixels misclassified as background and background pixels

misclassified as plant, relative to the total number of plant pixels obtained from hand

segmentation (Figure 4.1).

Figure 4.1. Hand-segmented plant image (P0) VS. Image segmented using other automatic Methods (P1)
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Test results are shown in Table 4.1 as well as Figure 4.2, where CSR and ISR were computed

as:

0 1

0

CSR= P P
P

   , 0 1 0 1

0

ISR= P P P P
P

                (4-1)

Where

0P = number of pixels hand-segmented as plant in the image.

1P = number of pixels segmented as plant in the image segmented as plant in the image

using NExG, Modified Hue or Pixelwise methods..

Table 4.1. Mean values of the CSR and ISR for various segmentation methods.

(a) Segmentation performance across various growth stages of weeds
Sample Images Methods CSR (%) ISR (%)

NExG 88.3 50.1
Modified Hue 92.2 17.2

04/08
(17 samples)

Pixelwise 94.6 10.5
NExG 94.6 54.4

Modified Hue 88.9 18.1
04/16

(49 samples)
Pixelwise 97.2 10.1

NExG 93.5 14.2
Modified Hue 80.8 21.5

04/30
(35 samples)

Pixelwise 96.9 4.4

(b) Overall comparison among the three segmentation methods
Sample Images Methods CSR

 (%)
ISR
(%)

Elapsed Time
(ms per image)

NExG 92.1 39.6 187.8
Modified Hue 87.3 18.9 287.6

Total
(101 samples)

Pixelwise 96.3 8.4 226.6
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(a) Comparison of CSR values across various plant growth stages

(b) Comparison of ISR values across various plant growth stages

(c) Comparison of program elapsed times for images with various sizes

Figure 4.2. Segmentation performance of the NExG, Modified Hue and Pixelwise methods
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Based on the experiment results listed in the tables as well as the corresponding charts,

the following conclusions were drawn:

1. Both of the CSR and ISR values are important parameters denoting the efficiency of the

segmentation methods. Of these two indicators, CSR quantifies the percentage of plant

pixels that are segmented correctly by the automatic segmentation methods: ISR

represents the rate of the sum of plant pixels that were classified as background and

background pixels classified as plant relative to the ‘real’ plant pixels. Thus an ideal

segmentation method should achieve a high CSR value and maintain a low ISR level.

2. The Pixelwise segmentation method outperformed the NExG and Modified Hue

methods in both of the categories, achieving the highest CSR values ranging from

94.6% to 96.9%, and lowest ISR values ranging from 4.4% to 10.5%. In addition, the

NExG and Modified Hue methods were not consistent in plant segmentation across

various growth stages of the weeds (notice the abrupt rise and decline on the CSR or

ISR curves for these two methods in Figure 4.2 (a) and (b)). However, the proposed

Pixelwise algorithm attained a consistent performance in producing high CSR and low

ISR levels throughout the experiment.

3. The processing time was another important consideration due to the ultimate goal for

real-time weed identification. Two image formats were used in the test: cropped size

( 281 261) for small weeds confined within a cell and full size ( 640 480 ) for larger

plants with leaves stretching out of the cell. It is clear from Figure 4.2 (c) that the

elapsed time for all of the three methods remained at a low level in processing cropped

images, while they increased dramatically for full-size images. Of the three, the NExG

method accomplished the best time-efficiency in the test and the Modified Hue attained

the worst. Nevertheless, there was less than 0.1 second (0.0998 s) difference between

the mean values of processing time among these segmentation methods.

In summary, the Pixelwise method achieved significantly higher accuracy in weed

segmentation compared to the NExG and Modified Hue methods. On the other hand, although
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not as fast as the NExG method, the Pixelwise algorithm still performed efficient segmentation

with an average handling time of 226.6 ms/image, which was only 0.0387 s slower than the

NExG algorithm.

4.2 Results of the Laboratory Weed Identification

1,319 binary images (56.7%) were randomly selected from the weed images database to

form the training set, and the remaining 1,006 images (43.3%) were kept for evaluation. Two

SVM models were derived using the three selected features (ATL, PTB, and ELG) and the

complete seven features (ATL, PTB, ELG, CMP, LHW, LTP, and ASP). The kernel parameter

and error bound C for the SVM models were determined through five fold Cross Validation

(CV), where the CV search ranges were set at C (0.5, 8,192) and (0.00098, 2) . The

returned optimal parameter pairs were (8,192, 0.002) with a maximum CV accuracy of 68.84%

for the three-feature model, and (8,192, 0.001) with maximum CV accuracy of 82.48% for the

seven-feature model, respectively.

However, the parameter pair (8,192, 0.002) was found later to have achieved a higher

accuracy than (8,192, 0.001) for the seven-feature model in identifying the unknown weed

spices in the testing set. This is because during CV, the subdivision of the training set is

completely random; subsequently the parameter pair that has the highest accuracy for the

“one-versus-rest” classification according to such random data arrangement will be considered

the best. On the other hand, because CV may be affected by factors such as coupling among

features and skewness of the data set (i.e. the number of classes far exceeds the number of

features or vice versa), it is possible that the returned parameters would slightly deviate from

the optimal values. In this context, the “mistakenly-selected parameter” is theoretically

explainable due to the different constitution of data between the CV and the prediction

procedures as well as the nature of the classification problem itself. Therefore, the optimal

parameters for the both of the models were determined to be (8,192, 0.002), and the

classification accuracies, training time and predicting time for the three-feature and

seven-feature models against the testing image set were listed in Table 4.2.
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Table 4.2. Overall classification results for the three-feature and seven-feature models.

 Model Basis Parameter Pair Accuracy
 (%)

Training Time
 (s)

Predicting Time
(s)

3-features (8192, 0.002) 70.48 3.281 0.109
7-features (8192, 0.002) 86.58 2.781 0.125

It is clear that the SVM model using the complete seven features achieved higher

classification accuracy (as much as 16%) over the one using the selected three features. On the

other hand, the three-feature model has a slight advantage (0.016s) over the seven feature model

in prediction speed, while it is slower than the complete model in model construction by 0.5s.

Considering the three factors that determine the performance of a classifier, the seven-feature

SVM model performs equal or better than the three-feature model in every category. Thus the

seven-feature model was used for model construction, and the following discussion will only

focus on this complete model.

To explore the experiment results in more detail, the parameter pair (8192, 0.002) that

acquires a classification rate of 86.58% was used to construct the SVM model with the

complete seven features. Two variables were defined to quantify the error terms for each

interested category. For a given weed species A, the calculation of the error terms are as

follows:
# of  Other Weed Species Misclassified as Weed ACommission Error (CE) =

# of Weed A
    (4-2)

# of Weed A being Classified as Other Species
Omission Error (OE)      =

# of Weed A
             (4-3)

The classification results are shown in Table 4.3:

Table 4.3. Classification results split using the seven-feature model with parameter (8192, 0.002)

(a) Classification rate between crop and weeds (all five species).
Weed Species Accuracy CE OE
Crop (Corn) 94.41% 5.59% 5.59%

Undesired Weed 99.07% 0.93% 0.93%
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Table 4.3. cont.
(b) Classification rate for Grass and Broadleaf weed.

Weed Species Accuracy CE OE
Grass 95.87% 4.13% 4.59%

Broadleaf 96.49% 3.51% 3.16%
Notice: Grass includes: corn, barnyardgrass, and crabgrass;
    Broadleaf includes: lambsquarters, velvetleaf, and waterhemp.

(c) Classification rate for each weed species.
Weed Species Accuracy CE OE

Corn 94.41% 5.59% 5.59%
Barnyardgrass 86.36% 14.77% 13.64%

Crabgrass 90.24% 10.24% 10.73%
Lambsquarters 85.96% 14.47% 17.45%

Velvetleaf 88.56% 11.81% 29.52%
Waterhemp 51.56% 48.44% 7.81%

(d) Classification rate for each weed species versus time (on a weekly scale).
Weed Week 1 Week 2 Week 3 Week 4 Week 5 Sum

Test Size 56 61 26 143Corn
Accuracy 87.5% 100% 96.15% 94.41%
Test Size 19 19 21 22 7 88Barnyard

grass Accuracy 68.42% 94.74% 100% 90.91% 57.14% 86.36%
Test Size 39 39 46 56 25 205Crabgrass
Accuracy 97.44% 92.31% 93.48% 89.29% 72.0% 90.24%
Test Size 43 49 50 60 33 235Lambsquarters
Accuracy 83.72% 91.84% 70% 91.67% 93.94% 85.96%
Test Size 53 55 37 58 68 271Velvetleaf
Accuracy 94.34% 92.73% 91.89% 91.38% 76.47% 88.56%
Test Size 10 11 15 15 13 64Waterhemp
Accuracy 80.0% 81.82% 53.33% 33.33% 23.08% 51.56%

 (e) Summary of the classification rate for undesired weed species
All 5 weeds Week 1 Week 2 Week 3 Week 4 Week 5 Sum
Testing Size 164 173 169 211 146 863

Accuracy 88.42% 91.91% 83.43% 86.73% 73.97% 85.28%
Note: Corn is excluded.
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Table 4.3 (a) shows the performance of the SVM classifier in discriminating a crop (corn)

plant from all other desired weeds (5 species). The system has demonstrated high classification

ability: 138 out of 143 (94.41%) corn images were correctly classified, and 855 out of 863

(99.07%) non-crop images were classified as weeds. Combined with the prediction accuracy of

corn against time as shown in Table 4.3 (d), it can be concluded that the first week after the

emergence of corn plants is the most error-prone time for corn-weed discrimination, as most of

the misclassification cases of corn in the experiment took place during this period.

   Table 4.3 (b) illustrates the classification results of the SVM classifier for a binary case,

in which three weed species were grouped as the “Grass” category, and the remaining three as

the “Broadleaf” class. The system again showed good performance, since merely 18 Grasses

were misclassified as Broadleaf, and 20 Broadleafs were misclassified as Grasses among the

testing set containing 1,006 weed images.

   Table 4.3 (c) compares the performance of the SVM method for each weed species

considered in this project. Among the six species, the SVM classifier achieved the best

prediction in corn with an accuracy of 94.41%, a commission error of 5.59% and omission error

of 5.59%. Theoretically, this is largely due to the highest growth rate and largest canopy area of

corn, which make it the easiest to identify based on morphology. The lowest classification rate

is in waterhemp with 51.56% prediction accuracy and up to 48.44% commission and 7.81%

omission errors. The main reason for this result is the limited number of weed samples: Only

five out of 18 waterhemp plants survived during the laboratory imaging process, which lasted

for more than five weeks. Therefore, compared to other species, there were insufficient

waterhemp prototypes to construct the SVM model, which led to low classification accuracy.

Secondly, the error terms for most of the species except corn were quite high, ranging from

7.81% to 48.44%. However, in comparison to Table 4.3 (b), it seems reasonable to conclude

that most of the misclassification occurred in the “Within Category”. For example,

lambsquarters possesses a higher probability of being classified as one of the other three

broadleaf species, than as one of the grass species. This phenomenon may caused by the similar



62

morphological characteristics within the weed categories.

   Table 4.3 (d) shows the classification accuracy per species as a function of time. From

the table it is evident that the classification rates for corn, lambsquarters and velvetleaf remain

relatively constant throughout the experiment. For crabgrass and barnyardgrass, the accuracies

stay at high levels in the early stages until week five, where the rate dropped significantly

because of the reduction of available weed images for both model construction and prediction.

Finally, waterhemp, which lacked image quantity, achieved the lowest and decreasing

accuracies as shown in Figure 4.3.

Figure 4.3. Classification accuracy for individual weed species at various growth stages
after emergence.

   Since the main purpose of this research is to apply the SVM method for inter-row weed

identification, weed species spreading between the corn rows are a major concern. Hence, the

accuracy variation versus time for the undesired weed species is listed in Table 4.3 (e) and

illustrated in Figure 4.4. The system demonstrates even classification performance over the 5

weeks experiment period, which validates the feasibility and stability of the SVM method. The

drop in accuracy during the final week was undoubtedly caused by a reduced sampling size.
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Figure 4.4. Classification accuracy for the collective undesired weed species at various
growth stages after emergence.

4.3 Results of the Field Test

   As the focus of this project was on inter-row weed identification, 306 corn images were

removed from the weed image library. To maintain generality, the remaining images consisting

of five species were used to construct the SVM model, although only three weed species were

present in the field. In use of the complete seven features, the cross validation had the highest

CV accuracy of 85.34%, with the selected optimal parameters (4096, 0.0078) for the model.

166 weed plants were included in the 60 images captured on July 26th, and 104 were included in

the 47 images taken on July 29th. The number of each weed species on either image set varied,

which was decided upon availability. The identification results are shown in Table 4.4.
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Table 4.4. Results for weed identification field test based on SVM.

(a) Test results for the SVM method without the adaptive median filter.
Date Species # of images # of weed

plants
Accuracy

(%)
Average Time

(s/Image)
Barnyardgrass 14 22 31.8% 1.09

Waterhemp 17 38 57.9% 2.9507/26
Velvetleaf 29 106 85.8% 1.19

Barnyardgrass 15 22 50.0% 0.83
Waterhemp 11 21 47.6% 1.7407/29
Velvetleaf 21 61 80.3% 1.03

Total 107 270 71.1% 1.47

(b) Test results for the SVM method with the adaptive median filter.
Date Species # of images # of weed

plants
Accuracy

(%)
Average Time

(s/Image)

Barnyardgrass 14 22 31.8% 4.10
Waterhemp 17 38 62.4% 5.7607/26
Velvetleaf 29 106 88.7% 4.20

Barnyardgrass 15 22 59.1% 3.76
Waterhemp 11 21 61.9% 4.7107/29
Velvetleaf 21 61 85.3% 4.01

Total 107 270 75.9% 4.42

   Both of the SVM models have achieved a lower accuracy compared to the laboratory

experiment, which was largely due to various interfering factors during field tests. The

morphological difference between the weed plants grown in the field and greenhouse has a

significant influence on the classification results, which were obtained using the SVM model

based on the greenhouse image library. This is a common challenge for shaped-based machine

vision systems due to inherent variability present in the biological realm. In addition, natural

factors such as wind, rain, contamination, and time of day may change the original morphology

of the plants. Other systematic factors such as the angles at which the images are taken, and

segmentation flaws affecting the quality of the images, will also jeopardize successful

identification.

   In spite of these challenges, the proposed SVM method yielded a reasonably accurate
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and consistent identification performance (see Figure 4.5) over the 107 sampling images and

270 weed plants over two imaging days. The original SVM model obtained an average

classification accuracy of 71.1%, with a low processing time of 1.47 s. This was improved by

adding the adaptive median filter, which raised the accuracy to 75.9%, by trading off to

processing time, which was as much as 2.95s solely for the filtering procedure.

Figure 4.5. An example of successful weed identification procedure by the SVM method.
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CHAPTER 5

Discussion and Recommendation for Future Research

An automated Pixelwise image segmentation algorithm and shape-based SVM classifier

were developed to identify weeds in their early growth stage. The Pixelwise method is a

modified Normalized Excess Green method, where refined thresholding criteria on individual

RGB component are imposed based on advanced sampling to binarize color images. Seven

features including the Ratio of Area to Length (ATL), Compactness (CMP), Elongation (ELG),

Aspect (ASP), Logarithm of the Ratio of Height to Width (LHW), Ratio of Perimeter to

Broadness (PTB), and Ratio of Length to Perimeter (LTP) were calculated in use of the

geometrical parameters extracted from the binary images. The SVM model was subsequently

constructed based on these morphological features as well as kernel parameters acquired from

the cross validation procedure.

   Six weed species were planted in the greenhouse, whose images were recorded on a

daily basis using an automated image acquisition system throughout their early growth stages.

101 sample images were randomly selected among three imaging days to evaluate the

performance of the segmentation algorithm. Comparative results showed that the Pixelwise

method achieved a correct segmentation rate (CSR) of 96.3% and an incorrect segmentation

rate (ISR) as low as 8.4%, which were both superior to the classic normalized excess green

(NExG) and modified hue methods (Table 5.1).

Table 5.1. Comparison of segmentation performance among three segmentation methods

Sample Images Methods CSR
 (%)

ISR
(%)

Elapsed Time
(ms per image)

NExG 92.1 39.6 187.8
Modified Hue 87.3 18.9 287.6

Total
(101 samples)

Pixelwise 96.3 8.4 226.6



67

To investigate the classification ability of the SVM method, laboratory and field

experiments were conducted. In the laboratory experiments, 2,325 indoor weed images were

acquired, among which 1,319 were used as the training set, while the remaining 1,006 images

were treated as the test set for classification. The results showed that the SVM algorithm was

highly effective in crop-weed, and grass-broadleaf weed classification, both with accuracy over

94% and errors below 6%. For each individual weed species, the accuracy ranged from 51.6%

(waterhemp) to 94.4% (corn), which was largely dependent upon availability of plant images to

construct the SVM model. In addition, the contrast between the high classification error rate for

each weed species and the low percentage for each weed category (i.e. grass and broadleaf)

indicated that most of the classification error occurred within-category rather than

among-category. To determine the best time to identify weeds for the requirement of inter-row

weeding, the relationship of the classification accuracy for the undesired weeds against time

was investigated (see Figure 5.1). The SVM method achieved a consistently high classification

performance during the entire early growth season of weeds, and weeds in the second week

after emergence were classified with the highest accuracy of 91.9%.

Figure 5.1. Classification accuracy of the SVM method for the undesired weed species at various growth
stages after emergence.

   During the field trials, 107 images of three weed species were collected using a digital

camera mounted on a utility tractor. These images were processed offline by firstly applying the
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Pixelwise segmentation method and subsequent exposure to the SVM model based on the entire

greenhouse weed image library (except corn). Because more interfering factors were involved

in the field scenario, two additional measures were applied: first, plant reunion was applied to

reconnect parts of plant images that were disconnected in the imaging process. Secondly,

boundary plants in each image were removed (Figure 5.2). Classification results revealed that

the SVM classifier system was able to reach a classification rate of 71.1% at a processing time

of 1.47s/image. With an optional adaptive median filter used to improve image quality, the

accuracy could be raised to 75.9% at a cost of increasing the processing time to 4.42s/image.

(a) Original Image        (b) Classifying individual weed plant

Figure 5.2. Field weed identification using the SVM method.

 In summary, the proposed method in this research was effective in identifying various weed

species. The classification accuracy was reasonable, considering the task was executed during

the early growth season. Overall, the SVM algorithm has shown great potential in agricultural

applications, especially in assisting in real-time weed identification systems. For future research,

several recommendations are made upon this research:

To construct a more solid SVM model, larger numbers of weed images are needed. An

important reason for the low classification accuracy in waterhemp was that only five plants

survived during the laboratory image acquisition procedure. As the natural characteristics

of biology, the variation in leaf shape among individual weed plants (even within the same
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species) is expected. Therefore, the larger the weed image library, the easier the SVM can

find the support vectors and locate the hyperplanes to separate each species.

For indoor image acquisition, the distance between the camera and the weed plant should

be increased. Some weed species (such as corn) in this research grew rapidly within a short

period, such that their leaves extended out of the imaging area of the camera. To assure a

clear view of weeds when they are small and keeping the whole plant in the field of view

when they grow, an appropriate distance needs to be determined or a platform with

adjustable height or a zoom lens would be desirable.

An effective and efficient image enhancement method needs to be implemented in the

image processing procedure. Even though the Pixelwise algorithm performed accurate

segmentation in this research, there existed segmentation errors in the form of “plant holes”,

noise background pixels and leaf boundary distortions. The comparative field experiments

with or without the adaptive median filter showed that images with higher quality increased

the classification accuracy, albeit at the expense of processing time. While the real-time

identification practice requires both accuracy and efficiency, measures such as erosion,

dilation or other forms of filters that might improved image quality with a short processing

time should be considered.

A study needs to be conducted using an SVM model built on a field image library to

identify weeds in the field. The shapes and development rate of the greenhouse plants

compared to and field plants can vary, which attributed to the differences in cultivating

environment such as soil, lighting, moisture, and cell depth. Hence, the SVM model

constructed based on the laboratory weed images may not be able to reflect the real features

of the field plants, and lower classification accuracy for the field test should be expected.

A study should be conducted combining the use of other features such as spectral and

textural features to identify weeds. An important disadvantage of the proposed algorithm is

its inability to handle the occlusion problem, which is a common difficulty for all

shape-based machine vision systems. Incorporating additional visual characteristics would
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enable the system to detect among-species occlusion, rather than considering the

overlapped leaves as a belonging to a single plant. On the other hand, by introducing more

features to construct the SVM model, it is likely that the classification rate would be

increased. This is because there would be more limitations to define the hyperplanes so

results that are more accurate should be expected.
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APPENDIX

A1. MATLAB® Program for Laboratory Image Acquisition

AcquireImage.m

% AcquireImage records indoor plant images using the automated image
% acquisition system based on the XY positioning device. Plants are
% recorded according to inputs of the record date and name of the plant.
% Author : Chufan Lin
% Date    : Feb 21st, 2009

clc
close all
clear all

% reset imaging and instrument devices
imaqreset
instrreset

% ===== Setting camera properties =====
vid = videoinput('dcam',1,'Y422_640x480');
triggerconfig(vid,'manual');
set(vid,'FramesPerTrigger',1);
set(vid,'TriggerRepeat',inf);
start(vid);

% ===== Setting up Serial Communication =====
s = serial('COM4');
set(s,'Baudrate',9600);
set(s,'Databits',8);
set(s,'Parity','none');
set(s,'StopBits',1);
set(s,'Terminator','CR');

% adjust speed of the motors
fopen(s)
fprintf(s,'@00 rate 150');
fprintf(s,'@01 rate 150');
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% ===== Timer Setup =====
t = timer('StartDelay',2,'TimerFcn'...
    ,'disp([''Taking Image of Pot No. '' num2str(PotNum)])');
% @00 long shaft motor, horizontal shaft, Col;
% @01 short shaft motor, vertical shaft, Row;

% ===== Image Acquisition =====
Date = input('Type in recording date, eg. 0216: ','s');
Type = input('Type in plant species, eg. waterhemp: ','s');

% Make Folder for recording
folder = ['C:\Documents and Settings\lin33\Desktop\Research\MatLab®
\Final\image ' num2str(Date)];
pass = exist(num2str(folder),'file');
if pass == 0
   mkdir(['image ' num2str(Date)]);
end
dir = ['C:\Documents and Settings\lin33\Desktop\Research\MatLab®
\Final\image ' num2str(Date) '\'];

while Type ~= '0'
    Col = 1;
    Row = 1;
    PotNum = 1;

% Distance from one pot to another
MoveStep = 690;
while Col <= 3

while Row <= 6
          start(t);
          wait(t);
          trigger(vid);
          image = getdata(vid,1);
          image = ycbcr2rgb(image);
          imshow(image,[])

% Chopping the image
          figure,imshow(image(110:370,190:450,1:3))
          title(['figure' num2str(PotNum)])

% Save the image
          imwrite(image, [num2str(dir) num2str(Type) ...
                    num2str(PotNum) '.bmp'], 'bmp');
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          Row     = Row + 1;
          PotNum = PotNum + 1;
          pause(2)

if Row < 7
                fprintf(s,['@00 rmov ' num2str(MoveStep)])
               pause(5)
               disp('done moving to next row')

end
end

        MoveStep = MoveStep*(-1);
        Col = Col + 1;
        Row = 1;

if Col < 4
            fprintf(s,['@01 rmov ' num2str(abs(MoveStep))])
            pause(12)
            disp('done moving to next column')

end
end

% ====== Moving Home ======
   pause(2)
   clc
   disp('Finish image aquisition, moving home')
   fprintf(s,'@00 rmov -3450')
   fprintf(s,'@01 rmov -1380')

   close all
   pause(25)
   disp('Procedure done')
   Type = input('Type in next weed species, type ''0'' to quit: ','s');
end

clc
disp('Work Done')
stop(vid);
fclose(s);

% ======== End ========
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A2. MATLAB® Implementation of the Normalized Excess Green Method

NExG.m

% NExG.m transfers a color image into gray-scale using the
% normalized excess green index. Then threshold values are selected using
% automatic OTSU's method or manual pick-up value based on observation of
% the NExG histogram. The step is accomplished by the callback function
% ‘getthreshold.m’.
% Author: Chufan Lin
% Date  : Feb 27th, 2009

clc
clear all
close all
Index = 1;
next  = 1;

while Index ~= 0
% Open a dialog and select an image file

[FileName,FilePath,Index] = uigetfile('*.bmp', 'Open Imagefile ')
if Index == 0

        disp('Procedure Done')
break;

end
    f  = imread([num2str(FilePath) FileName]);
    [a,b,c] = size(f);
    f  = f(100:a-100,180:(b-180),1:c); % for 6mm lens
    figure, imshow(f,[]), title('Original Image')

f1 = f;

% Normalized Excess Green Method
R = im2double(f(:,:,1));
G = im2double(f(:,:,2));
B = im2double(f(:,:,3));
[m,n] = size(B);
Den = R+G+B;
% to avoid R = G = B = 0, such that denominator equals to zero
for i = 1:m

for j = 1:n
if Den(i,j) == 0
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            Den(i,j) = 0.001;
end

end
end

% obtain chromatic coordinates
r = R./Den;
g = G./Den;
b = B./Den;

% normalized excess green representation
ex_g = 2.0*g - r - b;
ex_g = im2uint8(ex_g);

% use a 3 by 3 median filter for eliminating ‘Pepper’ noise
for i = 1:3
    ex_g = medfilt2(ex_g,[3 3]);
end

figure,imshow(ex_g,[]),title('NExG grayscale')
% call function ‘getthreshold’ to figure out both of the threshold values
 [Otsu, Hist] = getthreshold(ex_g);

% figure generated by OTSU's Method
ExG2  = im2bw(ex_g,Otsu/255);
for i = 1:3
     ExG2 = medfilt2(ExG2,[3 3]);
end
figure,imshow(ExG2,[]), title('Exg with Otsu')

% figure generated based on the observation of the histogram
ExG3  = ex_g;
for i = 1:m

for j = 1:n
if ExG3(i,j)  <= Hist

            ExG3(i,j)   = 0;
else ExG3(i,j) = 1;
end

end
end
for i = 1:3
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    ExG3 = medfilt2(ExG3,[3 3]);
end
figure,imshow(ExG3,[]), title('ExG with Histogram')
end

Getthreshold.m

function [Otsu, Hist] = getthreshold(image)
% Getthreshold.m implements different thresholding methods,
% including OTSU and Histogram methods
% Author: Chufan Lin
% Date  : Feb 27th, 2009

%  OTSU's Method: pick a value that maximizes the between-class
%  variance
Otsu = graythresh(image)*255;

% Based on Histogram: threshold value equals to the first valley
% value of the histogram
figure, imhist(image),title('adjusted Histogram')
[x,y] = ginput(1);
Hist = x;
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A3. MATLAB® Implementation of the Modified Hue Method

ModifiedHue.m

% ModifiedHue.m converts the weed images from RGB into HSI space, among
% which Hue chanel is modified and used for plant segmentation. The
% thresholding method is based on visual judgment and empirical value over
% a couple of sample images.
% Author: Chufan Lin
% Date  : Feb 28th, 2009

clc
clear all
close all
scrsz = get(0,'ScreenSize');
Index = 1;
next  = 1;

while Index ~= 0
% Open a dialog and select an image file
[FileName,FilePath,Index] = uigetfile('*.bmp', 'Open Imagefile ') if

Index == 0
        disp('Procedure Done')

break;
end

    f = imread([num2str(FilePath) FileName]);
    [a,b,c] = size(f);
    f = f(100:a-100,180:(b-180),1:c); % for 6mm lens
    figure('Position',[0 -50 scrsz(3) scrsz(4)]),

subplot(2,2,1),imshow(f,[]), title('Original Image')

f = im2double(f);
R = f(:,:,1);
G = f(:,:,2);
B = f(:,:,3);
Den  = R+G+B;
[m,n]=size(R);

% Convert to the hue component
num1 = 0.5 *((R-G)+(R-B));
Den1 = sqrt((R-G).^2+(R-B).*(G-B));
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theta1 = acos(num1./(Den1+eps));
H1 = theta1;
H1(B>G) = 2*pi-H1(B>G);
H1 = H1/(2*pi);

% Convert to the saturation component
num3 = min(min(R,G),B);
den3 = R+G+B;
den3(den3 == 0) = eps;
S1 = 1 - 3.*num3./den3;
H1(S1==0)=0;
H1 = im2uint8(H1);
H2 = H1;
% empirical threshold values originated from sample images
threshold_low  = 70;
threshold_high = 120;
for i = 1:m

for j = 1:n
if H2(i,j)<= threshold_high && H2(i,j)>=threshold_low

              H2(i,j)=1;
else H2(i,j)=0;
end

end
end

for i = 1:5
    H2 = medfilt2(H2,[3 3]);
end
subplot(2,2,3),imshow(H2,[]),title('B/W Modified Hue')

subplot(2,2,2),imhist(H1),title('Histogram,Modified Hue')
satisfy = 1;
% change the color range if the segmentation isn’t satisfactory
while satisfy == 1
          H3 = H1;
    satisfy = input('press 1 to change the range, press 0 to go to next image :

');
if satisfy == 0

break
else

    subplot(2,2,2),imhist(H1),title('Histogram,Modified Hue')
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              [x,y] = ginput(2);
threshold_low  = min(x(:));

    threshold_high = max(x(:));
         value_low  = 1:1000;
        value_high = 1:1500;
        hold on
         plot(threshold_low,value_low,'g',threshold_high,value_high,'r')
text(threshold_low-20,1300,['threshold1 = ' num2str(threshold_low)]);
text(threshold_high-20,1800,['threshold2 = ' num2str(threshold_high)]);
        hold off

for i = 1:m
for j = 1:n

if  H3(i,j)<= threshold_high && H3(i,j)>=threshold_low
               H3(i,j)=1;

else H3(i,j)=0;
end

end
end

for i = 1:5
         H3 = medfilt2(H3,[3 3]);

end
    subplot(2,2,4),imshow(H3,[]),title('B/W Modified Hue')

end
end

% terminate the program or proceed into next image
    next = input('next image? press Enter: ','s');

if next == '0'
break

else
        close all
        pause(0.2)

continue
end

end
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A4. Explore the Interrelationship among the RGB Channels

RGBrelation.m

% RGBrelation.m explore the interrelationship of the RGB components
% through manual-thresholding using Normalized Excess Green Method.
% In applying the NExG Method, first turn the RGB info into
% chromaticity coordinates, then using manually selected threshold value
% for segmentation between the plants and soil. After Best segmentation
% result is achieved, calculate the mean and ratios using the R, G, B value
% of the soil and plant pixels respectively. In the end, the acquired values
% will be saved in an Excel file % for analysis.
% Author: Chufan Lin
% Date  : April 3rd,2009

clc
clear all
close all

Index = 1;
scrsz = get(0,'ScreenSize');
filepath = 'C:\Documents and Settings\lin33\Desktop\lately used files\';
filename = 'RGBrelation.xls';
filedir   = [filepath filename];

% initiate communication between MatLab®  and excel
channelactivity = 0;
channel = ddeinit('excel',filedir);
if channel == 0
    error(['Please Open File: ' num2str(filename)]);
else
    channelactivity = 1;
end

% when the communication channel is active
while channelactivity ~= 0

if channelactivity == 0
        disp('===== Procedure Done =====')
        pause(0.2)

break
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end
    ddepoke(channel,'r1c1:r1c1', 'IamgeID')
    ddepoke(channel,'r1c2:r1c2', 'R_Soil' );
    ddepoke(channel,'r1c3:r1c3', 'G_Soil' );
    ddepoke(channel,'r1c4:r1c4', 'B_Soil' );
    ddepoke(channel,'r1c5:r1c5', 'R_Plant' );
    ddepoke(channel,'r1c6:r1c6', 'G_Plant' );
    ddepoke(channel,'r1c7:r1c7', 'B_Plant' );
    ddepoke(channel,'r1c8:r1c8', 'R_B_Soilratio' );
    ddepoke(channel,'r1c9:r1c9', 'G_B_Soilratio' );
    ddepoke(channel,'r1c10:r1c10', 'G_R_Soilratio' );
    ddepoke(channel,'r1c11:r1c11', 'R_B_Plantratio' );
    ddepoke(channel,'r1c12:r1c12', 'G_B_Plantratio' );
    ddepoke(channel,'r1c13:r1c13', 'G_R_Plantratio' );

    row = 2;
while Index ~= 0
% Open a dialog and select an image file

[FileName,FilePath,Index] = uigetfile('*.bmp', 'Open Imagefile ');
if Index == 0

        channelactivity = 0;
break;

end
    f = imread([num2str(FilePath) FileName]);
    figure('Position',[1 1 scrsz(3) scrsz(4)]), subplot(2,2,1)
    imshow(f,[]), title('Original Image')

% chop the image to remove the edges of the container
        [x,y] = ginput(4);
        hor_min = round(min(y));
        hor_max = round(max(y));
        ver_min = round(min(x));
        ver_max = round(max(x));

if hor_min < 1
            hor_min = 1;

end
if hor_max > a

            hor_max = a;
end
if ver_min < 1

            ver_min = 1;
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end
if ver_max > b

            ver_max = b;
end

    f = f(hor_min:hor_max,ver_min:ver_max,:);
    [a,b,c] = size(f);
    hold off
    subplot(2,2,1),imshow(f,[]), title('Original Image')

% Normalized Excess Green Method
    R = im2double(f(:,:,1));
    G = im2double(f(:,:,2));
    B = im2double(f(:,:,3));
    [m,n] = size(B);
    Den = R+G+B;

% to avoid R = G = B = 0, such that denominator equals to zero
for i = 1:m

for j = 1:n
if Den(i,j) == 0

            Den(i,j) = 0.001;
end

end
end

% obtain chromatic coordinates
r = R./Den;
g = G./Den;
b = B./Den;

% normalized excess green representation
ex_g  = 2.0*g - r - b;
ex_g  = im2uint8(ex_g);
for i = 1:3
    ex_g = medfilt2(ex_g,[3 3]);
end
subplot(2,2,2), imhist(ex_g),title('NExG histogram')

% Initial Thresholding using OTSU’s Method
Otsu = graythresh(ex_g)*255;
ExG2 = im2bw(ex_g,Otsu/255);



93

hold on
value = 1:3000;
plot(Otsu,value,'r');
text(Otsu,3500,['Otsu = ' num2str(Otsu)]);
hold off
for  i = 1:3
  ExG2 = medfilt2(ExG2,[3 3]);
end
subplot(2,2,3),imshow(ExG2,[]), title('Exg with Otsu')

% Thresholding using Histogram
Hist =1;
while Hist ~= 0
    ExG3 = ex_g;
    Hist = input('Enter threshold, press 0 to process next image : ');

if Hist == 0
break

else
for i = 1:m

for j = 1:n
if  ExG3(i,j) <= Hist

                    ExG3(i,j) = 0;
else ExG3(i,j) = 1;
end

end
end
for i = 1:3

          ExG3 = medfilt2(ExG3,[3 3]);
end

     [ExG3_Num, num] = bwlabel(ExG3,8);
% remove remaining noise, in the view of object size
for k = 1:num

if numel(find(ExG3_Num == k)) < 50
                ExG3_Num(ExG3_Num == k) = 0;

end
end

subplot(2,2,4),imshow(ExG3_Num,[]), title('NExG with Histogram')
end

end

% discriminate plant pixels and non-plant pixels; then calculate the mean
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% and different ratios among R,G,B components
PlantIndex = find(ExG3_Num ~= 0);
SoilIndex  = find(ExG3_Num == 0);
R1 = im2uint8(R);
G1 = im2uint8(G);
B1 = im2uint8(B);

MeanPlantRed   = mean2(R1(PlantIndex));
MeanPlantGreen = mean2(G1(PlantIndex));
MeanPlantBlue  = mean2(B1(PlantIndex));
MeanSoilRed    = mean2(R1(SoilIndex));
MeanSoilGreen  = mean2(G1(SoilIndex));
MeanSoilBlue   = mean2(B1(SoilIndex));

R_B_PlantRatio = MeanPlantRed/MeanPlantBlue;
G_B_PlantRatio = MeanPlantGreen/MeanPlantBlue;
G_R_PlantRatio = MeanPlantGreen/MeanPlantRed;
R_B_SoilRatio  = MeanSoilRed/MeanSoilBlue;
G_B_SoilRatio  = MeanSoilGreen/MeanSoilBlue;
G_R_SoilRatio  = MeanSoilGreen/MeanSoilRed;

ddepoke(channel,['r' num2str(row) 'c1:r' num2str(row) 'c1'],
FileName)
ddepoke(channel,['r' num2str(row) 'c2:r' num2str(row) 'c2'],
MeanSoilRed);
ddepoke(channel,['r' num2str(row) 'c3:r' num2str(row) 'c3'],
MeanSoilGreen);
ddepoke(channel,['r' num2str(row) 'c4:r' num2str(row) 'c4'],
MeanSoilBlue);
ddepoke(channel,['r' num2str(row) 'c5:r' num2str(row) 'c5'],
MeanPlantRed);
ddepoke(channel,['r' num2str(row) 'c6:r' num2str(row) 'c6'],
MeanPlantGreen);
ddepoke(channel,['r' num2str(row) 'c7:r' num2str(row) 'c7'],
MeanPlantRed);
ddepoke(channel,['r' num2str(row) 'c8:r' num2str(row) 'c8'],
R_B_SoilRatio);
ddepoke(channel,['r' num2str(row) 'c9:r' num2str(row) 'c9'],
G_B_SoilRatio);
ddepoke(channel,['r' num2str(row) 'c10:r' num2str(row) 'c10'],
G_R_SoilRatio);
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ddepoke(channel,['r' num2str(row) 'c11:r' num2str(row) 'c11'],
R_B_PlantRatio);
ddepoke(channel,['r' num2str(row) 'c12:r' num2str(row) 'c12'],
G_B_PlantRatio);
ddepoke(channel,['r' num2str(row) 'c13:r' num2str(row) 'c13'],
G_R_PlantRatio);

    next = input('next image? press Enter: ');
if next == 0

        channelactivity = 0;
break

else
        close all
        disp('==================================')
        row = row + 1;
        pause(0.2)

continue
end
end

end
close all
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A5. MATLAB® Implementation of the Pixelwise Segmentation method

PixelwiseSeg.m

% PixelwiseSeg.m used the multiple criteria based on the R,G,B
% interrelationship for image segmentation. The parameters for
% those criteria originates from sampling in use of the program in A4.
% Author: Chufan Lin
% Date  : April 20th,2009

clc
clear all
close all

Index = 1;
scrsz = get(0,'ScreenSize');
while Index ~= 0
% Open a dialog and select an image file
[FileName,FilePath,Index] = uigetfile('*.bmp', 'Open Imagefile ');

if Index == 0
        disp('Procedure Done')

break;
end

    f = imread([num2str(FilePath) FileName]);
% chop the image to remove the edges of the container

    [a,b,c] = size(f);
f = f(120:a-120,200:(b-200),1:c);
figure('Position',[1 1 scrsz(3) scrsz(4)]), subplot(2,2,1)

    imshow(f,[]), title('Original Image')

    f = double(f);
    R = f(:,:,1);
    G = f(:,:,2);
    B = f(:,:,3);
    [m,n]  = size(B);
    Image  = zeros(m,n);
    Image1 = zeros(m,n);

for i = 1:m
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for j = 1:n
if   G(i,j) > 1.0*B(i,j) && G(i,j) > 1.0*R(i,j) && R(i,j) >0.6*B(i,j)

&& G(i,j)>30
                Image(i,j) = 1;

else Image(i,j) = 0;
end

end
subplot(2,2,2)
imshow(Image,[]),title('Pixelwise threholding ')

% median filter remove small salt & pepper noise
for i = 1:3
      Image = medfilt2(Image,[3 3]);
end
 [Image_Num, num] = bwlabel(Image,8);

% size filter remove remaining noise, in the view of object size
for k = 1:num

if numel(find(Image_Num == k)) < 350
         Image_Num(Image_Num == k)   = 0;

else
         Image_Num(Image_Num == k)   = 255;

end
end
 subplot(2,2,3)
 imshow(Image_Num,[]),title('final segmentation')

    next = input('next image? press Enter: ');
if next == 0

        channelactivity = 0;
break

else
        close all
        disp('==================================')
        pause(0.2)

continue
end

end
close all



98

A6. MATLAB® Program for Acquiring Field Images

FieldImgAcq.m

% FieldImgAcq waits for "Enter" to take an image and save it during the
% field experiment.
% Author: Chufan Lin
% Date  : June 20th, 2009.
clc
close all
clear all

% Disconnect and Delete imaging and instrument objects
imaqreset
% Initiate camera & set camera properties
vid = videoinput('dcam',1,'Y422_800x600');
triggerconfig(vid,'manual');
set(vid,'FramesPerTrigger',1);
set(vid,'TriggerRepeat',inf);
camera = getselectedsource(vid);
set(camera,'shutterMode','Manual');
set(camera,'AutoExposure',40);
set(camera,'Shutter',1200);

preview(vid)
start(vid);
figure

% Image Aquisition
Date = input('Type in recording date, eg. 0216: ','s');
% Make Folder
folder = ['C:\Documents and Settings\lin33\Desktop\Experiment\image '
num2str(Date)];
mkdir(num2str(folder));
dir = ['C:\Documents and Settings\lin33\Desktop\Experiment\image '
num2str(Date) '\'];

Type = 1;
t     = timer('StartDelay',1,'TimerFcn'...
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         ,'disp([''Taking Image of Pot No. '' num2str(Position)])');

while Type ~= '0'
       Type = input('Type in name of the plant species: ','s');

if Type == '0'
         disp(' ===== Procedure Done ===== ')
         pause(0.8)
         clc

break
end

      mkdir([num2str(dir) 'image ' num2str(Type)]);
      dir2 = ([dir 'image ' num2str(Type) '\']);
      Position = 1;
while  Position ~= 0
         Position = input(['Type in the Position number of the current weed

species -- ' num2str(Type) ': ' ]);
if Position == 0

             disp([' ===== Image Acquisition Done for ' num2str(Type) ' =====
'])

             pause(0.8)
             clc

break
end

            start(t)
            wait(t)
            trigger(vid);
            image = getdata(vid,1);
            image = ycbcr2rgb(image);
            imshow(image,[])
            title(['image triggered at position: ' num2str(Position)

' for plant: ' num2str(Type)])
            imwrite(image, [num2str(dir2) 'Position '

num2str(Position)'.bmp'], 'bmp');
end

end

closepreview
stop(vid);
close all
% ======== End ========
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A7. MATLAB® program for Weed Identification using the SVM Method

FieldWeedIdentify.m

% FieldWeedIdentify.m uses the all of the weed images obtained from
% laboratorial experiment to construct the SVM model. And such model is
% used to classify the weed image captured in the field.
% Those weed image include:
% 2, Barnyardgrass
% 3, Crabgrass
% 4, Lambsquarters
% 5, Velvetleaf
% 6, Waterhemp
% notice: 1, corn is not include
% Author: Chufan Lin
% Date  : Oct 17th, 2009

close all
clear all
clc

nocorn = xlsread('C:\ClassifiedImages\Fieldimages\wocorn.xls');
label1 = nocorn(:,16);
inst1  = nocorn(:,9:15);

% [bestcv1,bestc1,bestg1] = CVselect(label1,inst1);
% returned CVs and best (c,g):
% for nocorn data: best (c,g) = (4096, 0.0078), CV = 85.34%;
% Accuracy = 91.53%;
load model1.mat

time  = [];
scrsz = get(0,'ScreenSize');
plant = 1;
date = 1;
while date ~= 0;
    date = input('type in the date to be processed: ');

if date == 0
        disp('procedure done, exiting...')
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        close all
break

end

    dir_old = ['C:\ClassifiedImages\Fieldimages\image 0' num2str(date)
'\'];

    dir_new = ['C:\ClassifiedImages\Fieldimages\BWimages\image 0'
num2str(date) '\'];

if exist(num2str(dir_new),'file') == 0
        mkdir(num2str(dir_new)); % make a new directory

end
while plant ~= '0'

           plant = input('type in weed name: ','s');
if plant == '0'

               disp(['*** processing for date 0' num2str(date) ' is
done ***'])

           close all
break
end

switch plant
case 'corn'

                label = 1;
case 'barnyardgrass'

                label = 2;
case 'crabgrass'

                label = 3;
case 'lambsquarters'

                label = 4;
case 'velvetleaf'

                label = 5;
case 'waterhemp'

                label = 6;
otherwise

                disp('unknown method, please type in the weed species
again..')

                weed = input('Type in plant name: ','s');
end

        folder = ['image ' num2str(plant) '\'];
        weedpredict = zeros(100,1);
        figure('Position',[0 -50 scrsz(3) scrsz(4)])



102

for pos = 1:30
if exist([ dir_old folder 'Position ' num2str(pos)

'.bmp'],'file')==0
                 disp(['image ' plant num2str(pos) 'does not exit'])

continue
else

        f = imread([num2str(dir_old) num2str(folder) 'Position '
num2str(pos) '.bmp']);

        [a,b,c] = size(f);
         subplot(2,2,1),imshow(f,[]),

title(['Original Image for Position ' num2str(pos)])

        f1 =f;
        t1 = cputime;

% Automatic Pixelwise Segmentation
        f  = double(f1);
        R  = f(:,:,1);
        G  = f(:,:,2);
        B  = f(:,:,3);
        [m,n] = size(B);
        Img1  = zeros(m,n);

for i = 1:m
for j = 1:n

if G(i,j)>1.03*R(i,j) && G(i,j)>1.03*B(i,j) && R(i,j)
>0.60*B(i,j)&& G(i,j) >50

                            Img1(i,j) = 1;
else    Img1(i,j) = 0;
end

end
end

        t1 = cputime - t1;
        t2 = cputime;

for i = 1:3
             Img1 = medfilt2(Img1,[3 3]);

end
       [Img1, num1] = bwlabel(Img1,8);

for k = 1:num1
if numel(find(Img1 == k)) < 240

                Img1(Img1 == k) = 0;



103

end
end

%      Fil_Img1=Img1;
       Fil_Img1 = adpmedian(Img1,7);
       t2 = cputime - t2;
       subplot(2,2,2)
       imshow(Fil_Img1,[]),title('adaptive filtering ')
       hold on
       t3 = cputime;
        s = regionprops(Fil_Img1,'centroid');
%         group plants

for k = 1:numel(s) %isnan
          i = 1;

while i <= numel(s) && i ~= k
                 dist = sqrt((s(k).Centroid(1)-s(i).Centroid(1))^2

+(s(k).Centroid(2)-s(i).Centroid(2))^2);
if dist < 100

% if the distance between two centroid is less than a certain value
% consider the two objects belong to one
                     Fil_Img1(Fil_Img1==i)=k;

end
                 i = i+1;

end
          plot(s(k).Centroid(1),s(k).Centroid(2),'r*');

end
hold off
s = regionprops(Fil_Img1,'centroid');
for k = 1:numel(s)

if ~isnan(s(k).Centroid)
% if s(k).Centroid is not a NaN

            [r,c] = find(Fil_Img1 ==k);
% that's f_BW == k exist where k ~= 0

             r_min = min(r);
             r_max = max(r);
             c_min = min(c);
             c_max = max(c);

if r_min == 1 || r_max == a || c_min == 1 || c_max == b
                Fil_Img1(Fil_Img1 == k) = 0;

continue
else
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            width  = c_max - c_min;
            height = r_max - r_min;
            f_sep  = Fil_Img1(r_min:r_max, c_min:c_max);
            ind    = find(f_sep ~= k);

% remove other pixvels in that territory
            f_sep(ind) = 0;
            area = regionprops(f_sep,'Area');
            perimeter = regionprops(f_sep,'Perimeter');
            majoraxis = regionprops(f_sep,'MajorAxisLength');
            minoraxis = regionprops(f_sep,'MinorAxisLength');

% feature calculation
            par(1) = area(k).Area;
            par(2) = perimeter(k).Perimeter;
            par(3) = majoraxis(k).MajorAxisLength;
            par(4) = minoraxis(k).MinorAxisLength;
            par(5) = height*(0.000326/0.000528);
            par(6) = width*(0.000326/0.000528);

% ratio of area to length(ATL)
par(7) = par(1)/par(3);
% compactness (CMP)
par(8) = 16*par(1)/(par(2))^2;
% elongation (ELG)
par(9) = (par(3)-par(4))/(par(3)+par(4));
% logarithm height to width (LHW)

           par(10)= log10(par(5)/par(6));
% ratio of perimeter to broadness(PTB)

           par(11)= par(2)/(2*(par(5)+par(6)));
% ratio of length to perimeter(LTP)

           par(12)= par(3)/par(2);
% ratio of major axis to minor axis length (ASP)

           par(13)= par(3)/par(4);

inst = [par(7), par(8), par(9), par(10), par(11), par(12),
par(13)];

           disp('unscaled result...')
           [predict,accuracy,d] = svmpredict(label, inst, model);

switch predict
case 1

                name = 'corn';
case 2

                name = 'barnyardgrass';
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case 3
                name = 'crabgrass';

case 4
                name = 'lambsquarters';

case 5
                name = 'velvetleaf';

case 6
                name = 'waterhemp';

end
           weedspecies(k) = predict;
           disp(['weed is ' num2str(plant) ';  prediction is ' name]);

end
end

end

        subplot(2,2,3)
        imshow(Fil_Img1,[]),title('after grouping ')
        hold on
        s = regionprops(Fil_Img1,'centroid');

for k = 1:numel(s)
             plot(s(k).Centroid(1),s(k).Centroid(2),'r*');

end
        hold off
        subplot(2,2,4)
        imshow(Fil_Img1,[]),title('weed identification ')
        hold on
        s = regionprops(Fil_Img1,'centroid');

for k = 1:numel(s)
switch weedspecies(k)
case 1

                   name = 'corn';
case 2

                   name = 'BG';
case 3

                   name = 'CG';
case 4

                   name = 'LQ';
case 5

                   name = 'VL';
case 6

                   name = 'WH';
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end
plot(s(k).Centroid(1),s(k).Centroid(2),'r*');
text(s(k).Centroid(1),s(k).Centroid(2), num2str(name),
'Fontsize',6,'BackgroundColor',[.7 .9 .7],'HorizontalAlignment',
'left','VerticalAlignment','top')

end
      hold off

      satisfy = input('if satisfied, type in 0, otherwise 1 to quit: ');
if satisfy == 1

break
else

          clc
          pause(0.1)

continue
end

end
           t3 = cputime - t3;
           t = [t1,t2,t3];
           time = [time;t];

end
end

end
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