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Abstract

Escrow and Clawback

by

Jing Wang

Doctor of Philosophy in Mathematics

Carnegie Mellon University

Since the financial crisis in 2008, clawback provisions have been implemented by several

high profile banks and are also required by some regulators to mitigate the cost in case of a

catastrophic shift in business, and also to deter excessive risk taking. In this thesis, we con-

struct a model to investigate the long term effect on the bank’s revenue of a trader’s bonus

payment scheme with escrow. We formulate the problem as an infinite-horizon discrete dy-

namic programming problem. With the proposed model, the trader’s optimal investment

and consumption strategy can be expressed by explicit analytic formulas, both with and

without escrowing the bonus, which enables the calculation and comparison of the bank’s

total expected revenue under these two bonus payment schemes. The final conclusion of

this comparison depends on the parameters describing the trader’s risk appetite, the dis-

count factor and the bank’s level of patience, in addition to the market parameters. In

particular, when the model parameters are such that the bank’s total expected discounted

revenue is finite under both types of bonus payment schemes, and the bank is sufficiently

patient, it is better off when escrowing the trader’s bonus, although not escrowing the

trader’s bonus brings better short term revenue.
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1 Introduction

A clawback provision, as the name suggests, refers to contractual clauses requiring executives of

financial firms to return previously received compensation under certain circumstances, usually

a significant negative shift in business. Clawback provisions are commonly expected to re-

duce incidences of severe managerial misconduct and to provide desirable long term incentives.

Since the financial crisis in 2008, several high-profile banks, including Goldman Sachs Group

Inc., Morgan Stanley, and UBS AG, have implemented clawback provisions for executive com-

pensation, (see, e.g., [3, 9]). Meanwhile, policy makers have called for tighter linkage between

bank employee compensation and long-term firm performance, and the relevant regulations are

becoming increasingly stringent. For example, Section 954 of the Dodd-Frank Act added a new

Section 10D to the Securities Exchange Act of 1934 (the “Exchange Act”), to require clawbacks

of executive incentive compensation in circumstances to be established by the SEC. Also, major

UK financial regulators have recently tightened previously established rules on bonus deferral

and clawback with changes including an extension of the clawback period (see [14]). Because

such regulatory changes aim to curb excessive risk taking, the requirements now apply not only

to the senior management but also to the major deal makers and traders.

In this thesis, we focus on a performance-based compensation provision for a trader who

trades in a financial market on behalf of a bank. The model is formulated as a principal-agent

problem, where the bank (principal) optimizes the total expected revenue recognizing that the

trader (agent) will optimize her total expected utility given the compensation contract. A

main stream of research on principal-agent problems targets the characterization of the optimal

contract, usually in terms of compensation or compensation flow for managers of financial

institutions, see, e.g., static models such as [2, 12] and dynamic models such as [10, 13]. As
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in [13], our model has infinitely many time steps, and a risk-averse agent and a risk-neutral

principal, both discounting the future. With the setup of our model, however, the bank does

not optimize over the contractual parameter of the profit and loss division between the bank

and the trader, as the trader’s optimal strategy does not depend on this parameter. Rather,

in our analysis, the optimization of the compensation contract is between two categories: first,

we find the trader’s optimal strategy under the two bonus payment schemes, namely escrowing

or not escrowing the bonus, respectively; then we investigate which bonus payment scheme is

more beneficial to the bank in terms of total expected revenue.

There is much discussion in academia and industry around bonus deferral and clawback

provisions, and it is commonly accepted that such compensation schemes are helpful for reducing

managerial misconduct that can result in financial restatement and misreporting. Nevertheless,

analytical research on performance-based bonus clawback is relatively limited. The existing

relevant literature mainly focuses on the effectiveness of clawback provisions in providing long-

term incentives for executives, whose efforts may affect the firm’s stock value, while little

can be found on the effect of such compensation schemes on lower-level employees such as

traders, who participate in the market on behalf of the bank but may not affect the bank’s

stock in a direct and immediate fashion. For example, deferred compensation for CEO’s after

employment termination that is tied to the future performance of the firm is studied under a

dynamic programming setting in [11]. Escrow and clawback of a manager’s bonus in a two-

period setting is studied in [7, 1]. Our model is in general different from these lines of research.

In particular, the agent in our model generates profit and loss by trading in the stock market

on behalf of the principal rather than directly impacting the expected return of the firm’s

stock. Moreover, we consider an infinite-time horizon setting where the trader’s bonus may be

escrowed in each time period, while the papers mentioned before all consider a one-time deferral
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and clawback of the bonus.

As mentioned above, the effectiveness of performance-based compensation clawback poli-

cies remains an open question. Specifically, while it is expected that such a compensation

scheme may deter excessive risk taking, it is not clear whether it will cause the trader to be

“too conservative” and thereby reduce the bank’s expected revenue. In this thesis, we investi-

gate how escrowing trader’s bonus affects the bank’s total expected revenue. We formulate the

problem as an infinite-horizon discrete dynamic programming problem. The infinite horizon is

divided into periods with equal length. One may think of one period as one year, which is the

usual bonus cycle in a bank. There are two participants in this problem, namely, the bank and

the trader. Within each time period, the trader continuously trades a risky asset and a risk-free

asset in a complete market on behalf of the bank, which has no direct access to the market.

For simplicity, the risky asset is assumed to have geometric Brownian motion dynamics and the

risk-free asset is a money market account with 0 interest rate. At the end of each time period,

the trader gets a fraction of the wealth won or lost as a bonus or a penalty. Specifically, if the

trader realizes positive earnings, the bank then pays a fraction of these earning as a bonus to

the trader. If the portfolio turns out to have a loss, the trader has to pay out of her pocket a

fraction of the loss as well. In both cases, the bank gets the rest of the gain or loss. At the end

of each period, the trader consumes out of the available bonus and gets utility, described by

either a power function or logarithmic function.

When the trader realizes positive earnings, there are two possible schemes for the bank to

pay a bonus to the trader. The first one is to pay without escrow. With this scheme, the bonus

gained at the end of each period is accumulated in the trader’s bonus account and immediately

becomes available for consumption. The second one is to pay with escrow. With this scheme,

the bonus earned at the end of a period is not available for consumption until the end of the next
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period. If the trader generates a loss, it is always deducted from the trader’s bonus account

immediately. In other words, the bank claws back part of the bonus previously paid to the

trader. With both the non-escrow and the escrow scheme, there is a constraint for the trader:

once the amount in the bonus account becomes zero in any period, the trader cannot trade

from that period onward. One can imagine this as a situation in which the trader loses her job.

We assume the trader has negative infinite marginal utility for zero consumption.

The trader’s objective is to maximize the total discounted expected utility from consump-

tion throughout the infinite time horizon. We solve the trader’s optimization problem by solving

the equivalent Bellman equation. The optimal value function and the corresponding optimal

strategy can be explicitly calculated.

The bank’s outcome is measured by the total expected discounted revenue, which depends

on the trader’s trading strategy. Unlike the case in a typical principal-agent problem, the

principal, i.e., the bank, does not optimize over the contractual constant which defines the

fraction of gain or loss that the trader gets. In fact, it will become clear that the trader’s

optimal value function does not depend on this factor, since the trader will scale her optimal

trading strategy accordingly. The rationale for not describing the bank’s objective through

utility is threefold. Firstly, the bank as a financial institution with a large amount of capital

tends to be more risk neutral than a person. Secondly, it is more sensible to consider the

aggregated revenue from different desks in a bank, but utilities are not additive. Lastly, given

the trader’s optimal strategy, the bank’s total expected revenue can be calculated explicitly,

which permits a tractable comparison between the two bonus schemes. The assumption of the

bank being risk-neutral and the trader being risk-averse is also consistent with mainstream

principal-agent problem literature, such as [2, 10, 13] as well as other relevant research on

clawback provisions, see [11, 7].
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The remaining part of the thesis is organized as follows. In Chapter 2 we provide the

mathematical description of the model. In Chapter 3 we write down the Bellman equation

formulation of the trader’s infinite horizon problem and find its solution. In Chapter 4 we prove

the solution of the Bellman equation is the solution of the trader’s infinite horizon problem. In

Chapter 5, we calculate the bank’s total expected revenue with two bonus schemes and provide

the conclusion of the comparison. Some final discussion is presented in Chapter 6.
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2 The Model

2.1 The Market and the Two Parties

Consider an infinite time horizon [0,+∞) that is divided into intervals of equal length. Without

loss of generality, suppose each interval is of unit length. Assume the bank has no direct access

to the market, and the trader trades in the market on behalf of the bank. The bonus paid by

the bank is accumulated into an account from which the trader consumes.

In the period from time k to k+1, the trader begins with certain amount of initial capital

and invests in a market consisting of a stock with geometric Brownian motion dynamics

dSt = αStdt+ σStdWt,

and a money market account with interest rate 0, where α and σ are non-negative constants,

and W is a Brownian motion under the physical measure P. Let Ξkt , k ≤ t ≤ k + 1 denote

the value of the portfolio that the trader manages at time t during the time period [k, k + 1].

Without losing of generality, we assume the trader’s initial capital at the beginning of each

period is zero. Let Xk+1 , Ξkk+1 denote the portfolio value at the end of this period, which

can be either positive or negative. The gain or loss is split between the bank and the trader

by a contractual multiplicative constant γ ∈ (0, 1). Specifically, at time k + 1, the trader gets

γXk+1 and the bank gets (1−γ)Xk+1. To rule out unexpected behaviors such as the “doubling

strategies” (see, e.g., [6]), we constrain the trading strategy to satisfy the following condition:

γΞkt ≥ −Bk, k ≤ t ≤ k + 1, (2.1)

where Bk is the amount in the trader’s bonus account at time k. An interpretation of this

inequality is that the trader is not allowed to put an unlimited amount of the bank’s capital at

risk.
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At time k+ 1, the trader consumes Ck+1 and gets utility U(Ck+1), where U(·) is a utility

function which will be described in detail in the next section. Then at time k + 1 the bonus

account is updated by the formula

Bk+1 = Bk + γXk+1 − Ck+1. (2.2)

The bonus account must stay non-negative, meaning no consumption from borrowing is allowed

for the trader. The non-negativity condition constrains the trader’s investment and consump-

tion decisions. The bonus scheme can be contracted in two ways, namely with or without

escrowing, which we specify below:

1. If the bonus is not escrowed, then at the end of each period, the trader is allowed to

consume all that is in the bonus account, i.e.,

0 ≤ Ck+1 ≤ Bk + γXk+1. (2.3)

2. If the bonus is escrowed, then the trader can only consume what was already in the bonus

account from the previous period, and must leave the earnings of the current period, if any,

to be escrowed to the next period. However, when the trading activity of a period results

in a loss, the penalty is deducted from the bonus account immediately. In particular,

at the end of period k + 1, if Xk+1 < 0, then the trader can consume no more than

Bk + γXk+1. If Xk+1 ≥ 0, then the trader can consume no more than Bk and must

escrow the more recent earnings to the next period. To summarize, we have

0 ≤ Ck+1 ≤ (Bk + γXk+1) ∧Bk. (2.4)

Notice that in either case, Xk+1 must satisfy

γXk+1 ≥ −Bk, (2.5)
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which is ensured by condition (2.1). Inequality (2.1), together with zero initial capital for each

time period, are the only constraints on the trading strategy Ξk+1.

2.2 Utility Functions

Suppose the trader’s utility from consumption c is given by a function U(c), where U is defined

on (0,+∞), continuously differentiable, strictly increasing, strictly concave, and satisfies the

Inada conditions

lim
c→0+

U ′(c) =∞, lim
c→∞

U ′(c) = 0.

In this thesis, we will consider the family of utility functions with constant relative risk aversion

(CRRA), which allows explicit solutions of the trader’s problem. Specifically, the following three

types of utility functions are considered:

(a) Power utility with positive values:

U(c) =
1

1− p
c1−p, 0 < p < 1; (2.6)

(b) Power utility with negative values:

U(c) =
1

1− p
c1−p, p > 1; (2.7)

(c) Logarithmic utility:

U(c) = log(c). (2.8)

The technical details in solving the trader’s problem with these three types of utility functions

are slightly different and will be discussed separately. However, it will be seen that the solutions

to trader’s problem with these utility functions have similar behavior in many ways, and will

lead to the same conclusion for the bank’s problem.
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Remark 2.1. In this thesis, we adopt the convention that 0 to a negative power is +∞, and

that the logarithm of 0 is −∞. Then the utility functions U defined as above are defined and

continuous on [0,+∞), and take values in the extended set of real numbers R ∪ {−∞}.

2.3 Objectives

2.3.1 Trader’s Objective

We assume the trader’s objective is to maximize the expected total discounted utility over

the infinite time horizon by choosing a trading and consumption strategy in each time period.

Specifically, the trader’s optimal value given the initial bonus B0 = b ≥ 0 is given by

v∗(b) , sup
{(Xk+1,Ck+1)}∞k=0∈A(b)

E

[ ∞∑
k=0

βkTU(Ck+1)
∣∣∣B0 = b

]
, (2.9)

where A(b) is the set of admissible strategies, which we will define later, E is the expectation

under the physical measure and βT ∈ (0, 1) is the trader’s discount factor.

Remark 2.2. Here and throughout this thesis, we use the following convention for expectations.

For a random variable χ and some condition H, which can be an event, a random variable, or

a σ-algebra, if E[χ+|H] = ∞ and E[χ−|H] = ∞, then we define E[χ|H] , −∞. In particular,

this convention also applies to the unconditional expectation. Thus as long as there exists

a strategy such that the expectation on the right hand side of (2.9) is finite, the strategies

{(Xk+1, Ck+1)}∞k=0 ∈ A(b) such that E
[(∑∞

k=0 β
k
TU(Ck+1)

)− ∣∣∣B0 = b
]

= ∞ are ruled out as

optimal for the optimization problem on the right hand side of (2.9).

Now we define the feasible set A(b). Let {Ft} be the filtration generated by W . For
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k ∈ N,1 let

Zk , exp

{
−θ
(
Wk −Wk−1

)
− 1

2
θ2
}
, (2.10)

where θ is the market price of risk, i.e.,

θ =
α

σ
.

In particular, for all k ∈ N, Zk has the same distribution as Z1, which is the Radon-Nikodym

derivative for the “one-period” change of measure, i.e.,

Z1 =
dQ
dP

∣∣∣
F1

,

where P and Q denote the physical measure and the risk-neutral measure, respectively. Notice

also that for any k ∈ N, Zk+1 is independent of Fk.

For k ∈ N and b ≥ 0, define the set of feasible strategies during the k-th period to be

A(k, b) , {(X,C) : X,C are Fk- measurable,E[XZk|Fk−1] = 0, (X,C) ∈ C(b)} , (2.11)

where C(b) denotes a constraint set described below. Specifically,

1. when the bonus is not escrowed,

C(b) , {(X,C) : 0 ≤ C ≤ b+ γX} ;

2. when the bonus is escrowed,

C(b) , {(X,C) : 0 ≤ C ≤ (b+ γX) ∧ b} .

The condition E[XZk|Fk−1] = 0 in (2.11) is the budget constraint that at the end of each

trading period, the expected wealth under the risk-neutral measure Q must be equal to the

initial wealth 0, see Remark 2.3 below.

1In this thesis, we let N denote the set of natural numbers, excluding 0, i.e., N , {1, 2, · · · }.
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Then, we can define the set of feasible strategies for the infinite time horizon problem to

be

A(b) ,
{
π = {(Xk+1, Ck+1)}∞k=0 : (Xk+1, Ck+1) ∈ A(k + 1, Bk),

B0 = b, Bk+1 = Bk + γXk+1 − Ck+1, k = 0, 1, · · ·
}
. (2.12)

To facilitate the analysis in the following chapters, we also define the set of feasible strategies

for the first n periods to be

An(b) ,
{
πn = {(Xk+1, Ck+1)}n−1k=0 : (Xk+1, Ck+1) ∈ A(k + 1, Bk),

B0 = b, Bk+1 = Bk + γXk+1 − Ck+1, k = 0, 1, · · ·n− 1
}
. (2.13)

Remark 2.3. We have the following remarks about trader’s value function.

1. Since our model is complete, for any payoff Xk+1 that satisfies E
[
|Xk+1Zk+1|

]
< ∞,

there is an adapted process ϕt, k ≤ t ≤ k + 1, representing the number of shares of the

risky asset held by the trader at each time t, so that the revenue
∫ k+1

k
ϕtdSt earned by

the trader over the time interval [k, k + 1] is equal to Xk+1. Therefore the choice of

investment strategy on the infinite time horizon is equivalent to choosing a sequence of

(distributions for) random variables Xk+1, k ∈ {0} ∪N, satisfying the budget constraints

E[Xk+1Zk+1|Fk] = 0.

2. Although the interest rate in this market is zero, the discount factor βT reflects the trader’s

preference for recent utility over utility at a future time. Alternatively, the discounting can

be interpreted as incorporating the probability of the trader leaving the current job, where

the exit time is a random variable τ , independent of F∞, with P{τ = k+1} = (1−βT )βkT ,

k = 0, 1, · · · .
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Notice that under this setting, given the constant γ, maximizing the trader’s total dis-

counted expected utility over (Xk, Ck) is equivalent to maximizing over (Yk, Ck), where

Yk , γXk.

Then the updating rule for the bonus can be written as

Bk+1 = Bk + Yk+1 − Ck+1. (2.14)

The no-borrowing and consumption constraints become:

• When bonus is not escrowed,

0 ≤ Ck+1 ≤ Bk + Yk+1; (2.15)

• When bonus is escrowed,

0 ≤ Ck+1 ≤ (Bk + Yk+1) ∧Bk. (2.16)

Finally, the budget constraint becomes

E[YkZk|Fk−1] = 0.

Thus we can see that the trader’s value function, if it exists, does not depend on the wealth

distributing factor γ. Given γ, the trader will scale her investment strategy to achieve this

optimal value. Therefore the bank cannot control the trader’s behavior by choosing the constant

γ.

For simplicity, we slightly abuse our notation and still use A(k, b), A(b) and An(b) to

denote the feasible sets when the strategies are described in the form of (Y,C).

Finally, we point out that the trader’s problem without escrow can be reformulated as

a standard consumption and investment problem and solved by a known method, which we
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present in Appendix A. In this thesis, we instead pose it as an infinite-horizon dynamic pro-

gramming problem and solve it using dynamic programming techniques, because this approach

can be modified to solve the trader’s problem with escrow. Moreover, even though with the

methodology discussed in Appendix A, the trader’s problem without escrow can be solved with

a general utility function, the form of the solution we obtain and use to compute the bank’s

total expected revenue depends on the assumption that the trader’s utility function is a power

function or the logarithmic function. Also, the trader’s problem with escrow cannot be solved

with general utility functions.

2.3.2 Bank’s Value Function

Given an investment strategy {Xk, k ∈ N} chosen by the trader, the bank’s total discounted

expected revenue is

vB(b) = E

[ ∞∑
k=0

βkB(1− γ)Xk+1

∣∣∣B0 = b

]
,

where βB ∈ (0, 1) is the bank’s discount factor. In this thesis, we investigate how the bank’s

total discounted expected revenue is affected by escrowing the bonus for the trader.
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3 Bellman Equation of Trader’s Problem

3.1 Heuristics

We start with some heuristic arguments. At the beginning of an arbitrary trading period

[k−1, k], k ∈ N, let b be the amount in the bonus account. The trader chooses her consumption

and investment strategy for this period based on the current amount in the bonus account.

Let’s denote this strategy by (Y,C). Then at the end of this period, the amount in the bonus

account will be b + Y − C. Suppose the optimal value of the trader’s infinite-time-horizon

optimization problem exists as a function of the current bonus, which we denote by g∗. Then

at the beginning of this time period, the optimal expected utility for the trader is g∗(b). On the

other hand, at the end of this trading period, the trader’s optimal expected utility given the

updated bonus should be g∗(b+ Y − C). Therefore the total expected utility at the beginning

of this period should be E[U(C) +βT g
∗(b+Y −C)]. Then the trader’s optimal strategy should

be the one that maximizes this quantity. In other words, at each time period, the trader is

actually solving the following one-period problem:

sup
(Y,C)∈A(k,b)

E[U(C) + βT g
∗(b+ Y − C)], (3.1)

and the optimal value of this optimization problem should be g∗(b). In the following chapters,

we will make the above argument rigorous by showing that under certain conditions, for the

power and logarithmic utilities defined in Section 2.2, there exists a unique function g∗ such

that g∗(b) agrees with the quantity (3.1), and it is indeed the optimal value function of the

trader’s infinite-horizon problem. For the power and logarithmic utilities, the trader’s optimal

strategy and the optimal value function can be solved explicitly.
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3.2 The O Operator: One Period Problem without Escrow

For a measurable function g : [0,∞)→ R ∪ {−∞}, define the operator O as:

Og(b) = sup
(Y,C)∈A(1,b)

E [U(C) + βT g(b+ Y − C)] , (3.2)

where the constraint C in the feasible set A(1, b) is defined by (2.15). Recall Remark 2.2 to

ensure that the expectation on the right hand side of (3.2) is well-defined. It is obvious that

g1 ≤ g2 implies Og1 ≤ Og2. For a utility function U , define the set of functions

GU = {g : g = A1U +A2, A1 ≥ 0, A2 ∈ R} .

We will show that for any utility function U in the three categories described in Section 2.2, if

g ∈ GU , then Og ∈ GU . We prove this for power utility functions and the logarithmic utility

function, respectively.

3.2.1 Power Utility

Lemma 3.1. Let U be defined as in (2.6) for 0 < p < 1, and (2.7) for p > 1. For p > 0, p 6= 1,

let g : [0,∞)→ R ∪ {−∞} be defined as

g(b) =
A1

1− p
b1−p +A2, b ≥ 0, (3.3)

with constants A1 ≥ 0 and A2 ∈ R. Then

Og(b) =
A′1

1− p
b1−p +A′2, (3.4)

where

A′1 =
(

1 + (βTA1)
1
p

)p
exp

{
θ2(1− p)

2p

}
,

A′2 = βTA2.
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The supremum in the definition of Og is achieved by the strategy (Y ∗, C∗), where

Y ∗ =

[
exp

{
θ2(p− 1)

2p2

}
Z
− 1
p

1 − 1

]
b, (3.5)

and

C∗ =
b+ Y ∗

1 + (βTA1)
1
p

(3.6)

=
b exp

{
θ2(p−1)

2p2

}
Z
− 1
p

1

1 + (βTA1)
1
p

. (3.7)

Let B∗ = b+ Y ∗ − C∗. Then

B∗ =
1

1 + (βTA1)−
1
p

exp

{
θ2(p− 1)

2p2

}
Z
− 1
p

1 b. (3.8)

Proof: For U defined in (2.6) and (2.7), and g defined in (3.3),

Og(b) = sup
(Y,C)∈A(1,b)

E[f(C, Y )],

where

f(c, y) =
1

1− p
c1−p +

βTA1

1− p
(b+ y − c)1−p + βTA2.

For any fixed y, solving

∂

∂c
f(c, y) = 0,

i.e.,

c−p − βTA1(b+ y − c)−p = 0,

we get

c =
b+ y

1 + (βTA1)
1
p

, (3.9)

which is always less than or equal to b+ y for βT ∈ (0, 1) and A1 ≥ 0. Since

∂2

∂c2
f(c, y) = −p

[
c−p−1 + βTA1(b+ y − c)−p−1

]
< 0
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for 0 ≤ c ≤ b + y, the value of c given in (3.9) maximizes f(c, y) over the interval [0, b + y]2.

Thus given any investment strategy Y , the optimal consumption strategy C∗ as a function of

Y is given by

C∗(Y ) =
b+ Y

1 + (βTA1)
1
p

. (3.10)

Substituting this into the right hand side of (3.2), we get

Og(b) = sup
E[Y Z1]=0,Y≥−b

E [h(Y )] , (3.11)

where

h(y) = f

(
b+ y

1 + (βTA1)
1
p

, y

)

=
1

1− p

(
b+ y

1 + (βTA1)
1
p

)1−p

+
βTA1

1− p

(
(βTA1)

1
p (b+ y)

1 + (βTA1)
1
p

)1−p

+ βTA2

=
1

1− p

(
b+ y

1 + (βTA1)
1
p

)1−p [
1 + (βTA1)

1
p

]
+ βTA2

=
1

1− p

(
1 + (βTA1)

1
p

)p
(b+ y)1−p + βTA2.

Since h(y) is strictly increasing and concave with respect to y for y ≥ −b, by, e.g., Theorem

7.6 in Chapter 3 of [6], the optimal Y is given by

Y ∗ = I(λZ1),

where I is the inverse of h′, and the positive constant λ is chosen so that

E[Y ∗Z1] = 0.

We have

h′(y) =
(

1 + (βTA1)
1
p

)p
(b+ y)−p, y ≥ −b,

2Here we adopt the convention that zero to a negative power is +∞. See Remark 2.1.
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and the inverse of h′ is

I(ψ) =
(

1 + (βTA1)
1
p

)
ψ−

1
p − b, ψ ≥ 0.

Notice that regardless of the value λ, we have

I(λZ1) ≥ −b.

We solve for λ from the equation

0 = E[Y ∗Z1]

=
1 + (βTA1)

1
p

λ
1
p

E
[
Z

1− 1
p

1

]
− b

=
1 + (βTA1)

1
p

λ
1
p

exp

{
−θ

2(p− 1)

2p2

}
− b,

where in the last step we used the result of Lemma B.2 on page 93 with a = 1− 1
p . Thus

1

λ
1
p

=
b exp

{
θ2(p−1)

2p2

}
1 + (βTA1)

1
p

,

and therefore

Y ∗ = I(λZ1) =

[
exp

{
θ2(p− 1)

2p2

}
Z
− 1
p

1 − 1

]
b,

which is (3.5). Then from (3.10) we obtain (3.6). Substituting (3.5) into (3.6) we get (3.7).

By (3.6), we have

B∗ =
1

1 + (βTA1)−
1
p

(b+ Y ∗).

Then by (3.5), we get (3.8).

It remains to substitute (3.7) and (3.5) into the right hand side of (3.2) to compute Og(b).
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We compute the two terms on the right hand side of (3.2) separately. In particular,

E [U(C∗)] =
1

1− p

b exp
{
θ2(p−1)

2p2

}
1 + (βTA1)

1
p

1−p

E
[
Z
− 1−p

p

1

]

=
b1−p

1− p

exp
{
− θ

2(1−p)2
2p2

}
(

1 + (βTA1)
1
p

)1−p exp

{
θ2(1− p)

2p2

}

=
1(

1 + (βTA1)
1
p

)1−p exp

{
θ2(1− p)

2p

}
U(b). (3.12)

E [βT g(b+ Y ∗ − C∗)] = E
[
βTA1U

(
(βTA1)

1
pC∗

)
+ βTA2

]
= (βTA1)(βTA1)

1−p
p E [U(C∗)] + βTA2

= (βTA1)
1
pE [U(C∗)] + βTA2. (3.13)

Summing up (3.12) and (3.13), we obtain (3.4).

�

Corollary 3.2. Assume

βT exp

{
θ2(1− p)

2p

}
< 1. (3.14)

Then for U(c) = 1
1−pc

1−p, p > 0, p 6= 1, there exist a unique function g∗ = A∗1U +A∗2 ∈ GU such

that

Og∗(b) = g∗(b), ∀b ≥ 0.

The constants A∗1 and A∗2 are given by

A∗1 =
exp

{
θ2(1−p)

2p

}
(

1− β
1
p

T exp
{
θ2(1−p)

2p2

})p , (3.15)

A∗2 = 0. (3.16)
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Proof: By Lemma 3.1 we must have

A∗1 =
(

1 + (βTA
∗
1)

1
p

)p
exp

{
θ2(1− p)

2p

}
,

A∗2 = βTA
∗
2,

which implies (3.15) and (3.16). By the assumption (3.14),

1− β
1
p

T exp

{
θ2(1− p)

2p2

}
> 0,

and hence A∗1 > 0. �

Remark 3.3. We will prove in Chapter 4 that the fixed point g∗ of the operator O is the

trader’s value function. Therefore, the assumption (3.14), which is necessary and sufficient for

A∗1 to be finite, is necessary and sufficient for the trader to have a finite value function. Notice

that for p > 1, (3.14) holds for all βT ∈ (0, 1) and all θ. Therefore the assumption (3.14) is

needed only for 0 < p < 1.

To facilitate future discussions, we introduce the notation for the mapping from the initial

bonus b and the state of the Radon-Nikodym derivative at the period end, Z1, to the optimizing

strategy and the updated bonus after applying this strategy. Specifically, for p > 0, p 6= 1,

A ≥ 0, b ≥ 0 and a strictly positive random variable Z, define mappings Y(p; ·, ·), C(p,A; ·, ·)

and B(p,A; ·, ·) as

Y(p; b, Z) ,

[
exp

{
θ2(p− 1)

2p2

}
Z−

1
p − 1

]
b, (3.17)

C(p,A; b, Z) ,
b exp

{
θ2(p−1)

2p2

}
Z−

1
p

1 + (βTA)
1
p

, (3.18)

B(p,A; b, Z) ,
1

1 + (βTA)−
1
p

exp

{
θ2(p− 1)

2p2

}
Z−

1
p b. (3.19)
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Then if p is the parameter of the power utility function as defined in (2.6) and (2.7), A1 is the

multiplicative factor on the utility function in the definition of g as in (3.3), and Z1 is the one-

period Radon-Nikodym derivative changing the physical measure to the risk-neutral measure

at the end of the first period, then the optimal strategy (Y ∗, C∗) attaining the supremum in

the definition of Og is given by

Y ∗ = Y(p; b, Z1),

C∗ = C(p,A1; b, Z1).

Moreover, the updated bonus at the end of the time period after applying this optimal strategy

is

B∗ = B(p,A1; b, Z1).

Remark 3.4. Following the notations defined above and in Lemma 3.1, by (3.13), when A2 = 0,

we have

E
[
U
(
C(p,A1; b, Z1)

)]
E
[
βT g

(
b+ Y(p; b, Z1)− C(p,A1; b, Z1)

)] =
1

(βTA1)
1
p

. (3.20)

In particular, this holds when g is the fixed point g∗.

We may slightly generalize (3.20) as the follows. During the (k + 1)-th period, given a

realization of the initial bonus Bk = b, and the Radon-Nikodym derivative at the end of the

period Zk+1, we have

E
[
U
(
C(p,A1;Bk, Zk+1)

)∣∣Bk = b
]

E
[
βT g

(
Bk + Y(p;Bk, Zk+1)− C(p,A1;Bk, Zk+1)

)∣∣Bk = b
] =

1

(βTA1)
1
p

. (3.21)

Notice that the right hand side of (3.21) is a constant that does not depend on b. Therefore

we have

E
[
U
(
C(p,A1;Bk, Zk+1)

)]
E
[
βT g

(
Bk + Y(p;Bk, Zk+1)− C(p,A1;Bk, Zk+1)

)] =
1

(βTA1)
1
p

. (3.22)
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3.2.2 Logarithmic Utility

Lemma 3.5. Let U be defined as in (2.8) and g : [0,∞)→ R ∪ {−∞} be defined as

g(b) = A1 log(b) +A2, (3.23)

with constants A1 ≥ 0 and A2 ∈ R. Then

Og(b) = A′1 log(b) +A′2, (3.24)

where

A′1 = 1 + βTA1,

A′2 = (1 + βTA1)

(
θ2

2
− log(1 + βTA1)

)
+ βTA1 log(βTA1) + βTA2.

The supremum in the definition of Og is achieved by the optimizing strategy (Y ∗, C∗), where

Y ∗ =

(
1

Z1
− 1

)
b, (3.25)

and

C∗ =
b+ Y ∗

1 + βTA1
(3.26)

=
b

(1 + βTA1)Z1
. (3.27)

Let B∗ = b+ Y ∗ − C∗. Then

B∗ =
1

1 + (βTA1)−1
Z−11 b. (3.28)

Proof: For U defined in (2.8) and g defined in (3.23),

Og(b) = sup
(Y,C)∈A(1,b)

E[f(C, Y )],

where

f(c, y) = log c+ βTA1 log(b+ y − c) + βTA2.
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For any fixed y ≥ −b solve

∂

∂c
f(c, y) = 0,

i.e.,

1

c
− βTA1

b+ y − c
= 0.

We get

c =
b+ y

1 + βTA1
, (3.29)

which is always less than or equal to b+ y for βT ∈ (0, 1) and A1 ≥ 0. Since

∂2

∂c2
f(c, y) = − 1

c2
− βTA1

(b+ y − c)2
< 0,

for 0 ≤ c ≤ b+y, the value of c given in (3.29) maximizes f(c, y) over the interval [0, b+y]. The

end points are included due to Remark 2.1. Thus given any investment strategy Y satisfying

Y ≥ −b almost surely, the optimal consumption strategy C∗ as a function of Y is given by

C∗(Y ) =
b+ Y

1 + βTA1
, (3.30)

which is (3.26). Substituting this into the right hand side of (3.2), we get

Og(b) = sup
E[Y Z1]=0,Y≥−b

E[h(Y )], (3.31)

where

h(y) = log

(
b+ y

1 + βTA1

)
+ βTA1 log

(
βTA1(b+ y)

1 + βTA1

)
+ βTA2

= (1 + βTA1) log(b+ y)− (1 + βTA1) log(1 + βTA1) + βTA1 log(βTA1) + βTA2.

Since h(y) is strictly increasing and concave with respect to y for y ≥ −b, again by Theorem

7.6 in Chapter 3 of [6] the optimal Y for the problem (3.31) is given by

Y ∗ = I(λZ1), (3.32)
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where I is the inverse function of h′, and the positive constant λ is such that

E[I(λZ1)Z1] = 0. (3.33)

Also notice that since

lim
y↓−b

h′(y) = +∞,

Y ∗ given by (3.32) automatically satisfies Y ∗ ≥ −b. We have

h′(y) =
1 + βTA1

b+ y
, y ≥ −b,

and the inverse of h′ is

I(ψ) =
1 + βTA1

ψ
− b, ψ ≥ 0.

We solve for λ from the equation

0 = E[Y ∗Z1]

=
1 + βTA1

λ
− b,

where in the last step we used the fact that E[Z1] = 1. Thus

1 + βTA1

λ
= b,

and

Y ∗ =

(
1

Z1
− 1

)
b,

which is (3.25). Substituting (3.25) into (3.26) we have (3.27).

By (3.26), we have

B∗ =
1

1 + (βTA1)−1
(b+ Y ∗).

Then by (3.25), we get (3.28).
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It remains to substitute (3.27) and (3.25) into the right hand side of (3.2) to compute Og.

We compute the two terms on the right hand side of (3.2) separately. In particular,

E[U(C∗)] = log

(
b

1 + βTA1

)
− E[log(Z1)]

= log(b) +
θ2

2
− log(1 + βTA1). (3.34)

E[βT g(b+ Y ∗ − C∗)] = βTE
[
A1 log

(
βTA1b

(1 + βTA1)Z1

)
+A2

]
= βTE [A1 log(βTA1C

∗) +A2]

= βTA1E[U(C∗)] + βTA1 log(βTA1) + βTA2. (3.35)

Summing up (3.34) and (3.35), we obtain (3.24). �

Corollary 3.6. For U(c) = log c, there exist a unique function g∗ = A∗1U +A∗2 ∈ GU such that

Og∗(b) = g∗(b),∀b ≥ 0.

The constants A∗1 and A∗2 are given by

A∗1 =
1

1− βT
, (3.36)

A∗2 =
θ2

2(1− βT )2
+

1

1− βT
log(1− βT ) +

βT
(1− βT )2

log βT . (3.37)

Proof: Solving

A∗1 = 1 + βTA
∗
1

we get (3.36). Substituting (3.36) into

A∗2 = (1 + βTA
∗
1)

(
θ2

2
− log(1 + βTA

∗
1)

)
+ βTA

∗
1 log(βTA

∗
1) + βTA

∗
2

and solving for A∗2, we get (3.37). �
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Remark 3.7. An interesting observation is that equations (3.25) - (3.27), (3.36) and (3.28)

agree with (3.5) - (3.7), (3.15) and (3.8), respectively, if we substitute p = 1 into the latter

equations. This follows from the fact that the derivative of the power utility function U(c) =

1
1−pc

1−p becomes the same as that of the logarithm utility function U(c) = log c when p

converges to 1.

Similarly as for the power utility, we define the mapping from the initial bonus b and

the random variable Z1 to the optimal strategy and the updated bonus after applying this

strategy. For A ≥ 0, b ≥ 0 and a strictly positive random variable Z, define mappings Y(1; ·, ·),

C(1, A; ·, ·) and B(1, A; ·, ·) as

Y(1; b, Z) ,

(
1

Z
− 1

)
b, (3.38)

C(1, A; b, Z) ,
b

(1 + βTA)Z
, (3.39)

B(1, A; b, Z) ,
1

1 + (βTA)−1
Z−1b. (3.40)

Here, in light of Remark 3.7, we use parameter 1 in the notation of these mappings where p is

used in the corresponding notation for the power utility case. Then if A1 is the multiplicative

factor on the utility function in the definition of g as in (3.23), and Z1 is the one-period Radon-

Nikodym derivative changing the physical measure to the risk-neutral measure at the end of

the first period, then the optimal strategy (Y ∗, C∗) attaining the supremum in the definition

of Og is given by

Y ∗ = Y(1; b, Z1),

C∗ = C(1, A1; b, Z1).

Moreover, the updated bonus at the end of the time period after applying this optimal strategy
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is

B∗ = B(1, A1; b, Z1).

3.3 The Õ Operator: One Period Problem with Escrow

Now we define an operator similar to O with the only difference being the admissible set of

the optimization problem on the right hand side of (3.2). This operator corresponds to the

one-period problem of the trader when the bonus is escrowed.

For a measurable function g : [0,∞)→ R ∪ {−∞}, define the operator Õ as:

Õg(b) = sup
(Y,C)∈A(1,b)

E [U(C) + βT g(b+ Y − C)] , (3.41)

where the constraint C in the feasible set A(1, b) is defined by (2.16). Remark 2.2 ensures

that the expectation on the right hand side of (3.41) is well-defined. Again, g1 ≤ g2 implies

Õg1 ≤ Õg2. We will show similar results for the fixed point of the operator Õ, in the set GU ,

for the function U being a power or logarithm utility function.

3.3.1 Power Utility

Lemma 3.8. Let U be defined as in (2.6) for 0 < p < 1, and (2.7) for p > 1. For p > 0, p 6= 1,

let g : [0,∞)→ R ∪ {−∞} be defined by (3.3). Then

Õg(b) =
Ã′1

1− p
b1−p + Ã′2, (3.42)

where

Ã′1 = E
[
(ηZ1)1−

1
p I{ηZ1≥1}

]
+ P {ηZ1 ≤ 1}+ (βTA1)

1
p η1−

1
p exp

{
θ2(1− p)

2p2

}
,

Ã′2 = βTA2,
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and η is the unique solution of the equation

E

[(
η

1
p − Z

1
p

1

)+
]

= (βTA1)
1
p exp

{
θ2(1− p)

2p2

}
. (3.43)

The supremum in the definition of Õg is achieved by the optimizing strategy
(
Ỹ ∗, C̃∗

)
, where

Ỹ ∗ =


b
[
(ηZ1)−

1
p

(
1 + (βTA1)

1
p

)
− 1
]
, ηZ1 ≥ 1,

b(ηZ1)−
1
p (βTA1)

1
p , ηZ1 ≤ 1.

(3.44)

C̃∗ =


b(ηZ1)−

1
p , ηZ1 ≥ 1,

b, ηZ1 ≤ 1,

(3.45)

Following the notation of Lemma 3.8. Let B̃∗ = b+ Ỹ ∗ − C̃∗. Then

B̃∗ = b(βTA1)
1
p (ηZ1)−

1
p . (3.46)

Proof: As in the proof of Lemma 3.1, set

f(c, y) =
1

1− p
c1−p +

βTA1

1− p
(b+ y − c)1−p + βTA2.

For any fixed y, solving c from

∂

∂c
f(c, y) = 0,

we get

c =
b+ y

1 + (βTA1)
1
p

,

which is always less than or equal to b+ y for βT ∈ (0, 1) and A1 ≥ 0. It is less than or equal to

b if and only if y ≤ b(βTA1)
1
p . For fixed y, the function c 7→ f(c, y) is increasing on the interval(

0, b+y

1+(βTA1)
1
p

)
. Thus given any investment strategy Y , the optimal consumption strategy C∗

as a function of Y is given by

C̃∗(Y ) =


b+Y

1+(βTA1)
1
p
, −b ≤ Y ≤ b(βTA1)

1
p ,

b, Y ≥ b(βTA1)
1
p .

(3.47)
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Substituting this into the right hand side of (3.41), we get

Õg(b) = sup
E[Y Z1]=0,Y≥−b

E
[
h̃(Y )

]
, (3.48)

where

h̃(y) =


1

1−p

(
1 + (βTA1)

1
p

)p
(b+ y)1−p + βTA2, −b ≤ y ≤ b(βTA1)

1
p ,

1
1−pb

1−p + βTA1

1−p y
1−p + βTA2, y ≥ b(βTA1)

1
p .

The function h̃ is strictly increasing and concave for −b ≤ y ≤ b(βTA1)
1
p and y ≥ b(βTA1)

1
p ,

respectively. Notice that h̃ is continuous at b(βTA1)
1
p . Indeed,

lim
y↑b(βTA1)

1
p

h̃(y) = lim
y↓b(βTA1)

1
p

h̃(y) =
b1−p

1− p

(
1 + (βTA1)

1
p

)
+ βTA2.

Moreover, we have

h̃′(y) =


(

1 + (βTA1)
1
p

)p
(b+ y)−p, −b < y ≤ b(βTA1)

1
p ,

βTA1y
−p, y ≥ b(βTA1)

1
p .

and h̃′ is defined and continuous at b(βTA1)
1
p with h̃′

(
b(βTA1)

1
p

)
= b−p.

Therefore h̃(y) is continuous and concave on the whole interval [−b,+∞) and the optimal

Y is given by

Ỹ ∗ = Ĩ(λ̃Z1),

where Ĩ is the inverse of h̃′, and the positive constant λ̃ is chosen so that

E[Ỹ ∗Z1] = 0.

The inverse of h̃′ is

Ĩ(ψ) =


ψ−

1
p

(
1 + (βTA1)

1
p

)
− b, ψ ≥ b−p,

ψ−
1
p (βTA1)

1
p , 0 < ψ ≤ b−p.

(3.49)
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Notice that regardless of the value λ̃ > 0, we have

Ĩ(λ̃Z1) ≥ −b.

We solve for λ̃ from the equation

0 = E[Ỹ ∗Z1]

= E
[ (

(λ̃Z1)−
1
p

(
1 + (βTA1)

1
p

)
− b
)
Z1I{λ̃Z1≥b−p} + (λ̃Z1)−

1
p (βTA1)

1
pZ1I{λ̃Z1≤b−p}

]
= E

[
(λ̃Z1)−

1
p (βTA1)

1
pZ1

]
+ E

[(
(λ̃Z1)−

1
p − b

)
Z1I{λ̃Z1≥b−p}

]
.

We multiply by λ̃
1
p , set η = λ̃bp and define Q by dQ

dP = Z1 to obtain

(βTA1)
1
pE
[
Z

1− 1
p

1

]
+ E

[
Z

1− 1
p

1 I{ηZ1≥1}

]
− η

1
pQ {ηZ1 ≥ 1} = 0

By Lemma B.2, we have

E
[
Z

1− 1
p

1

]
= exp

{
θ2

2

(
1− 1

p

)(
−1

p

)}
= exp

{
θ2(1− p)

2p2

}
.

Thus η is characterized by the equation

η
1
pQ {ηZ1 ≥ 1} − E

[
Z

1− 1
p

1 I{ηZ1≥1}

]
= (βTA1)

1
p exp

{
θ2(1− p)

2p2

}
. (3.50)

By Lemma B.3, the left hand side of (3.50) is

η
1
pQ
{

1

Z1
≤ η

}
− EQ

[
Z
− 1
p

1 I{ 1
Z1
≤η

}] = η
1
pP {Z1 ≤ η} − E

[
Z

1
p

1 I{Z1≤η}

]
= E

[(
η

1
p − Z

1
p

1

)+
]
, (3.51)

where EQ denotes the expectation under measure Q. Thus we can rewrite equation (3.50) as

E

[(
η

1
p − Z

1
p

1

)+
]

= (βTA1)
1
p exp

{
θ2(1− p)

2p2

}
,
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which is the equation (3.43) in the statement of Lemma 3.8. The left hand side of the above

equation is 0 when η = 0, converges to∞ as η →∞, and is strictly increasing. Therefore, there

exists a unique η satisfying (3.43). Note that η determined by (3.43) does not depend on b. It

is thus advantageous to write the optimal Ỹ ∗ and C̃∗ in terms of η rather than λ̃. Recall that

η = λ̃bp, λ̃ = ηb−p.

Substituting into (3.49) with ψ = λ̃Z1, we get (3.44). Note that Ỹ ∗ ≤ b(βTA1)
1
p if and

only if ηZ1 ≥ 1. Then by (3.47), we get

C̃∗ =


b(ηZ1)−

1
p , ηZ1 ≥ 1,

b, ηZ1 ≤ 1,

which is (3.45).

It remains to substitute (3.45) and (3.44) into the right hand side of (3.41) to compute

Õg(b). We compute the two terms on the right hand side of (3.41) separately. In particular,

E[U(C̃∗)] =
1

1− p
b1−p

(
E
[
(ηZ1)−

1−p
p I{ηZ1≥1}

]
+ P {ηZ1 ≤ 1}

)
. (3.52)

By (3.45) and (3.44), we can derive (3.46). Indeed,

• When ηZ1 ≥ 1,

B̃∗ = b+ Ỹ ∗ − C̃∗

= b(ηZ1)−
1
p

(
1 + (βTA1)

1
p

)
− b(ηZ1)−

1
p

= b(βTA1)
1
p (ηZ1)−

1
p . (3.53)
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• When ηZ1 ≤ 1,

B̃∗ = b+ Ỹ ∗ − C̃∗

= b+ b(ηZ1)−
1
p (βTA1)

1
p − b

= b(βTA1)
1
p (ηZ1)−

1
p . (3.54)

Thus the second term on the right hand side of (3.41) is

E
[
βT g(b+ Ỹ ∗ − C̃∗)

]
=
βTA1

1− p
b1−p(βTA1)

1−p
p E

[
(ηZ1)−

1−p
p

]
+ βTA2

= (βTA1)
1
p
b1−p

1− p
η
p−1
p exp

{
θ2

2

(
−1− p

p

)(
−1

p

)}
+ βTA2

=
b1−p

1− p
(βTA1)

1
p η

p−1
p exp

{
θ2(1− p)

2p2

}
+ βTA2. (3.55)

Summing up (3.52) and (3.55), we obtain (3.42). �

Corollary 3.9. Assume p > 0, p 6= 1, and (3.14). Then there exists a unique function

g̃∗ = Ã∗1U + Ã∗2 ∈ GU such that

Õg̃∗(b) = g̃∗(b),∀b ≥ 0.

The constant η∗ is the unique solution to(
E

[(
η

1
p − Z

1
p

1

)+
])p

E [(η − Z1)+] + 1
= βT

(
E
[
Z

1
p

1

])p
, (3.56)

and the constant Ã∗1 is determined by

Ã∗1 = η∗Q {η∗Z1 ≥ 1}+ P {η∗Z1 ≤ 1} . (3.57)

The constant Ã∗2 is 0.
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Proof: Firstly, we show that there exists a unique solution η∗ ∈ (0,∞) for (3.56). By Lemma

B.2 on page 93, the right hand side of (3.56) is equal to βT exp
{
θ2

2

(
1
p − 1

)}
, which is obviously

positive, and less than 1 given the assumption (3.14). The left hand side of (3.56) is 0 when

η = 0. To see its limit as η →∞, we divide both the top and the bottom by η∗ to rewrite it as(
E

[(
1−

(
Z1

η

) 1
p

)+
])p

E
[(

1− Z1

η

)+]
+ 1

η

,

which has limit 1 as η →∞. Therefore, (3.56) has a solution. To see that it is unique, we show

that the left hand side of (3.56) is strictly increasing with respect to η. Let

ν1(η) , E

(1−
(
Z1

η

) 1
p

)+


=

∫ η

0

(
1−

(
z

η

) 1
p

)
fZ(z)dz,

where fZ is the probability density function of Z1. Then

ν′1(η) =
1

pη

∫ η

0

(
z

η

) 1
p

fZ(z)dz > 0.

Also let

ν2(η) , E

[(
1− Z1

η

)+
]

+
1

η

=

∫ η

0

(
1− z

η

)
fZ(z)dz +

1

η
,

and compute

ν′2(η) =
1

η

∫ η

0

z

η
fZ(z)dz − 1

η2

=
1

η

(∫ η

0

z

η
fZ(z)dz −

∫ ∞
0

z

η
fZ(z)dz

)
< 0,
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where the second equality follows because E[Z1] = 1. Therefore the derivative of the left hand

side of (3.56) with respect to η is

d

dη

νp1 (η)

ν2(η)
=

1

ν22(η)

[
pνp−11 (η)ν′1(η)ν2(η)− νp1 (η)ν′2(η)

]
> 0.

In other words, the left hand side of (3.56) is strictly increasing in η. Therefore (3.56) has a

unique solution, which we denote by η∗. It is strictly positive since the right hand side of (3.56)

is positive.

From (3.57) and Lemma B.3 we have

Ã∗1 = η∗Q {η∗Z1 ≥ 1}+ P {η∗Z1 ≤ 1}

= η∗Q {η∗Z1 ≥ 1} − P {η∗Z1 ≥ 1}+ 1

= η∗Q
{

1

Z1
≤ η∗

}
− P

{
Z1 ≥

1

η∗

}
+ 1

= η∗P {Z1 ≤ η∗} −Q
{

1

Z1
≥ 1

η∗

}
+ 1

= η∗P {Z1 ≤ η∗} − E
[
Z1I{Z1≤η∗}

]
+ 1

= E
[
(η∗ − Z1)+

]
+ 1. (3.58)

Substituting this into (3.56) and using the fact that3

E
[
Z

1
p

1

]
= exp

{
θ2(1− p)

2p2

}
, (3.59)

we obtain

E

[(
η∗

1
p − Z

1
p

1

)+
]

= (βT Ã
∗
1)

1
p exp

{
θ2(1− p)

2p2

}
. (3.60)

3For calculation of (3.59) see Lemma B.2 on page 93
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From (3.51) and (3.60) we have

η∗Q {η∗Z1 ≥ 1}+ P {η∗Z1 ≤ 1} (3.61)

= (η∗)1−
1
p η∗

1
pQ {η∗Z1 ≥ 1}+ P {η∗Z1 ≤ 1}

= (η∗)1−
1
pEQ

[
Z
− 1
p

1 I{η∗Z1≥1}

]
+
(
βT Ã

∗
1

) 1
p

(η∗)1−
1
p exp

{
θ2(1− p)

2p2

}
+ P {η∗Z1 ≤ 1}

= E
[
(η∗Z1)1−

1
p I{η∗Z1≥1}

]
+
(
βT Ã

∗
1

) 1
p

(η∗)1−
1
p exp

{
θ2(1− p)

2p2

}
+ P {η∗Z1 ≤ 1} (3.62)

According to (3.57), the left hand side of (3.62) is Ã∗1, and hence the right hand side is as well,

i.e.,

Ã∗1 = E
[
(η∗Z1)1−

1
p I{η∗Z1≥1}

]
+ P {η∗Z1 ≤ 1}+

(
βT Ã

∗
1

) 1
p

(η∗)1−
1
p exp

{
θ2(1− p)

2p2

}
. (3.63)

This last equation shows that if η∗ is the unique solution of (3.56), Ã∗1 is given by (3.57), and

we take η = η∗, A1 = Ã∗1, and A2 = 0 in Lemma 3.8, then Ã′1 = Ã∗1 and Ã′2 = 0, i.e., g∗ = Ã∗1U

is a fixed point of Õ.

To see that this is the only fixed point of Õ in GU , we note from Lemma 3.8 that every

fixed point ḡ = Ā1U + Ā2 must have the properties Ā2 = βT Ā2 and Ā1 is a solution to (3.63),

where η∗ is a solution of (3.60). This implies Ā2 = 0 and η∗, Ā1 satisfy (3.62). This shows

that η∗, Ā1 satisfy (3.57). But (3.57) implies (3.58), which combined with (3.60), yields (3.56).

However, we have shown that the solution of (3.56) is unique, and Ā1 is then forced by (3.57)

to be Ã∗1.

�

In the proof of Lemma 3.8, we have computed the updated bonus after applying the

optimal strategy b+ Ỹ ∗− C̃∗. We summarize the result in the following Corollary. Notice that

although the optimal strategy
(
Ỹ ∗, C̃∗

)
has different analytic formulas on the sets {ηZ1 ≥ 1}
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and {ηZ1 ≤ 1}, the formula for the updated bonus turns out to be the same on these sets.

For operator Õ, we again introduce notation for the mapping from the initial bonus b and

the random variable Z1 to the optimal strategy. First, given A1 ≥ 0, we denote the unique

η satisfying (3.43) by η(p;A1). Then, for p > 0, p 6= 1, A ≥ 0, b ≥ 0 and a strictly positive

random variable Z, we define the mappings Ỹ(p,A; ·, ·), C̃(p,A; ·, ·) and B̃(p,A; ·, ·) as

Ỹ(p,A; b, Z) ,


b
[(
η(p;A)Z

)− 1
p

(
1 + (βTA)

1
p

)
− 1
]
, η(p;A)Z ≥ 1,

b
(
η(p;A)Z

)− 1
p (βTA)

1
p , η(p;A)Z ≤ 1,

(3.64)

C̃(p,A; b, Z) ,


b
(
η(p;A)Z

)− 1
p , η(p;A)Z ≥ 1,

b, η(p;A)Z ≤ 1.

(3.65)

B̃(p,A; b, Z) , b(βTA)
1
p
(
η(p;A)Z

)− 1
p . (3.66)

Then, if p is the parameter of the power utility function as defined in (2.6) and (2.7), A1 is the

multiplicative factor on the utility function in the definition of g as in (3.3), and Z1 is the one-

period Radon-Nikodym derivative changing the physical measure to the risk-neutral measure

at the end of the first period, then the optimal strategy
(
Ỹ ∗, C̃∗

)
attaining the supremum in

the definition of Õg is given by

Ỹ ∗ = Ỹ(p,A1; b, Z1),

C̃∗ = C̃(p,A1; b, Z1).

Moreover, the updated bonus at the end of the time period after applying this optimal

strategy is

B̃∗ = B̃(p,A1; b, Z1).
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Remark 3.10. Following the notation defined above and in Lemma 3.8, from (3.52), (3.55),

when A2 = 0, we have

E
[
U
(
C̃(p,A1; b, Z1)

)]
E
[
βT g

(
b+ Ỹ(p,A1; b, Z1)− C̃(p,A1; b, Z1)

)]

=

E
[(
η(p;A)Z1

)− 1−p
p I{η(p;A)Z1≥1}

]
+ P

(
η(p;A)Z1 ≤ 1

)
(βTA1)

1
p η(p;A)1−

1
p exp

{
θ2(1−p)

2p2

} . (3.67)

In particular, this holds when g is the fixed point g̃∗. Notice that the right hand side is a

constant that does not depend on b and depends on Z1 only through the distribution of Z1,

which is the same as the distribution of Zk+1 conditioned on Fk for k = 1, 2, · · · . Therefore

similarly as in Remark 3.4, in the (k + 1)-th period, given an Fk-measurable bonus account

value Bk at the beginning of period k and the Radon-Nikodym derivative Zk+1 at the end of

the period k, we have

E
[
U
(
C̃(p,A1;Bk, Zk+1)

)]
E
[
βT g

(
Bk + Ỹ(p,A1;Bk, Zk+1)− C̃(p,A1;Bk, Zk+1)

)]

=

E
[(
η(p;A)Z1

)− 1−p
p I{η(p;A)Z1≥1}

]
+ P

(
η(p;A)Z1 ≤ 1

)
(βTA∗1)

1
p η(p;A)1−

1
p exp

{
θ2(1−p)

2p2

} . (3.68)

3.3.2 Logarithmic Utility

Lemma 3.11. Let g : [0,∞)→ R ∪ {−∞} be defined by (3.23). Then

Õg(b) = Ã′1 log(b) + Ã′2, (3.69)

where

Ã′1 = 1 + βTA1,

Ã′2 = βTA1

(
log

βTA1

η
+
θ2

2

)
− E

[
log(ηZ1)I{ηZ1≥1}

]
+ βTA2,
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and η is the unique solution of the equation

βTA1 = E
[
(ηZ1 − 1)+

]
. (3.70)

The supremum in the definition of Õg is achieved by the optimal strategy (Ỹ ∗, C̃∗), where

Ỹ ∗ =


b
(

1+βTA1

ηZ1
− 1
)
, ηZ1 ≥ 1,

bβTA1

ηZ1
, ηZ1 ≤ 1,

(3.71)

C̃∗ =


b
ηZ1

, ηZ1 ≥ 1,

b, ηZ1 ≤ 1.

(3.72)

Let B̃∗ = b+ Ỹ ∗ − C̃∗. Then

B̃∗ =
bβTA1

ηZ1
. (3.73)

Proof: Define

f(c, y) = log c+ βTA1 log(b+ y − c) + βTA2.

For any fixed y ≥ −b solving c from

∂

∂c
f(c, y) = 0,

we get

c =
b+ y

1 + βTA1
,

which is always less than or equal to b+y for βT ∈ (0, 1) and A1 ≥ 0. Thus given any investment

strategy Y satisfying Y ≥ −b almost surely, the optimal consumption strategy C∗ as a function

of Y is given by

C̃∗(Y ) =


b+Y

1+βTA1
, −b ≤ Y ≤ bβTA1,

b, Y ≥ bβTA1.

(3.74)

Substituting this into the right hand side of (3.41), we get

Õg(b) = sup
E[Y Z1]=0,Y≥−b

E[h̃(Y )], (3.75)
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where if y ≤ bβTA1, then

h̃(y) = (1 + βTA1) log(b+ y)− (1 + βTA1) log(1 + βTA1) + βTA1 log(βTA1) + βTA2;

and if y ≥ bβTA1, then

h̃(y) = log b+ βTA1 log y + βTA2.

Observe that h̃(y) is strictly increasing and concave with respect to y for −b ≤ y ≤ bβTA1

and y ≥ bβTA1, respectively. Notice also that h̃ is continuous at bβTA1. Indeed,

lim
y↑bβTA1

h̃(y) = lim
y↓bβTA1

h̃(y) = (1 + βTA1) log b+ βTA1 log(βTA1) + βTA2.

Moreover, we have

h̃′(y) =


1+βTA1

b+y , −b ≤ y ≤ bβTA1,

βTA1

y , y ≥ bβTA1.

and h̃′ is defined and continuous at bβTA1 with h̃′(bβTA1) = 1
b . Therefore h̃′ is continuous, h̃

is strictly increasing and strictly concave on the whole interval [−b,+∞], and the optimal Y is

given by

Ỹ ∗ = Ĩ(λ̃Z1), (3.76)

where Ĩ is the inverse function of h̃′, and the positive constant λ̃ is such that

E[Ỹ ∗Z1] = 0. (3.77)

Also notice that since

lim
y↓−b

h′(x) = +∞,

Y ∗ given by (3.76) automatically satisfies Y ∗ ≥ −b. The inverse of h̃′ is

Ĩ(ψ) =


1+βTA1

ψ − b, ψ ≥ 1
b ,

βTA1

ψ , 0 ≤ ψ ≤ 1
b .

(3.78)
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Notice that regardless of the value λ̃ > 0, we have

Ĩ(λ̃Z1) ≥ −b.

We solve for λ̃ from the equation

0 = E[Ỹ ∗Z1]

= E
[(

1 + βTA1

λ̃Z1

− b
)
Z1I{λ̃Z1≥ 1

b} +
βTA1

λ̃Z1

Z1I{λ̃Z1≤ 1
b}

]
=
βTA1

λ̃
+

1

λ̃
E
[
I{Z1≥ 1

λ̃b
}

]
− bE

[
Z1I{Z1≥ 1

λ̃b
}
]
.

We multiply by λ̃ and set η = λ̃b to obtain

βTA1 + E
[
I{ηZ1≥1}

]
− ηE

[
Z1I{ηZ1≥1}

]
= 0,

which can be rewritten as

βTA1 = E
[
(ηZ1 − 1)+

]
. (3.79)

The right hand side is 0 when η = 0, converges to ∞ as η →∞, and is strictly increasing in η.

Therefore, for a given A1, there exists a unique η satisfying (3.79).

Notice that η determined by (3.79) does not depend on b. Similarly to Lemma 3.8, we

write the optimal Ỹ ∗ and C̃∗ in terms of η rather than λ̃. Recall that λ̃ = η
b . Substituting into

(3.78) with ψ = λ̃Z1 we get (3.71). Then by (3.74) we get (3.72).

It remains to substitute (3.72) and (3.71) into the right hand side of (3.41) to compute

Õg(b). Again, we compute the two terms separately.

E[U(C̃∗)] = E
[
log

(
b

ηZ1

)
I{ηZ1≥1} + log bI{ηZ1≤1}

]
= log b− E

[
log(ηZ1)I{ηZ1≥1}

]
. (3.80)

40



By (3.72) and (3.71), we can derive (3.73). Indeed,

• When ηZ1 ≥ 1,

B̃∗ = b+ Ỹ ∗ − C̃∗

= b+ b

(
1 + βTA1

ηZ1
− 1

)
− b

ηZ1

=
bβTA1

ηZ1
. (3.81)

• When ηZ1 ≤ 1,

B̃∗ = b+ Ỹ ∗ − C̃∗

= b+
bβTA1

ηZ1
− b

=
bβTA1

ηZ1
. (3.82)

Thus the second term on the right hand side of (3.41) is

E
[
βT g(b+ Ỹ ∗ − C̃∗)

]
= E

[
βT

(
A1 log

bβTA1

ηZ1
+A2

)]
= βT

(
A1 log

bβTA1

η
+A2

)
− βTA1E[logZ1]

= βT

(
A1 log

bβTA1

η
+A2

)
+ βTA1

θ2

2
. (3.83)

Summing up (3.80) and (3.83), we obtain (3.69).

�

Corollary 3.12. For U(c) = log c, there exist a unique function g̃∗ = Ã∗1U + Ã∗2 ∈ GU such

that

Õg̃∗(b) = g̃∗(b),∀b ≥ 0.
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The constants Ã∗1 and Ã∗2 are given by

Ã∗1 =
1

1− βT
, (3.84)

Ã∗2 =
βT

(1− βT )2

(
log

βT
η∗(1− βT )

+
θ2

2

)
− 1

1− βT
E[log(η∗Z1)I{η∗Z1≥1}], (3.85)

where η∗ is uniquely determined by

βT
1− βT

= E
[
(η∗Z1 − 1)+

]
. (3.86)

Proof: Solving

Ã∗1 = 1 + βT Ã
∗
1

we get (3.84). Substituting (3.84) into (3.79) we get (3.86), which uniquely determines η∗.

Substituting (3.84) into

Ã∗2 = βT Ã
∗
1

(
log

βT Ã
∗
1

η∗
+
θ2

2

)
− E

[
log(η∗Z1)I{η∗Z1≥1}

]
+ βT Ã

∗
2

and solving for Ã∗2 we get (3.85).

�

Similarly as in the previous section, we summarize how the bonus is updated after the

trader applies the optimal strategy, for which the derivation is already performed in the proof

of Lemma 3.11.

Remark 3.13. Similarly as for the O operator, we make the observation that (3.71), (3.72)

and (3.73) agree with (3.44), (3.45) and (3.46) respectively, when p = 1 in the latter equations.

Moreover, the value of Ã∗1 and η∗ determined by (3.84) and (3.86) also agree with those deter-

mined by (3.56) and (3.57) when we take p = 1 in the latter equations. Indeed, when p = 1,
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(3.56) becomes

E[(η∗ − Z1)+]

E[(η∗ − Z1)+] + 1
= βT ,

which implies

E
[
(η∗ − Z1)+

]
=

βT
1− βT

. (3.87)

By Lemma B.3,

E
[
(η∗ − Z1)+

]
= EQ

[
(η∗ − 1

Z1
)+
]

= E
[
Z1(η∗ − 1

Z1
)+
]

= E
[
(η∗Z1 − 1)+

]
.

Thus (3.87) is equivalent to (3.86). Moreover, By (3.59), (3.57) can be written as

Ã∗1 = E
[
(η∗ − Z1)+

]
+ 1 =

1

1− βT
,

where the last step is by (3.87). Therefore we get (3.84).

Finally, we define the mapping from the initial bonus b and the random variable Z1 to

the optimal strategy in this case. First, given A1 ≥ 0, we denote the unique η satisfying (3.70)

by η(1;A1). Then for A ≥ 0, b ≥ 0 and a strictly positive random variable Z, define mappings

Ỹ(1, A; ·, ·), C̃(1, A; ·, ·) and B̃(1, A; ·, ·) as

Ỹ(1, A; b, Z) ,


b
(

1+βTA
η(1;A)Z − 1

)
, η(1;A)Z ≥ 1,

bβTA
η(1;A)Z , η(1;A)Z ≤ 1,

(3.88)

C̃(1, A; b, Z) ,


b

η(1;A)Z , η(1;A)Z ≥ 1,

b, η(1;A)Z ≤ 1.

(3.89)

B̃(1, A; b, Z) ,
bβTA

η(1;A)Z
. (3.90)
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Here again we use subscript 1 to be consistent with the notation for the power utility case,

considering Remark 3.13. Then if A1 is the multiplicative factor on the utility function in the

definition of g as in (3.23), and Z1 is the one-period Radon-Nikodym derivative changing the

physical measure to the risk-neutral measure at the end of the first period, then the optimal

strategy
(
Ỹ ∗, C̃∗

)
attaining the supremum in the definition of Õg is given by

Ỹ ∗ = Ỹ(1, A1; b, Z1),

C̃∗ = C̃(1, A1; b, Z1).

Moreover, the updated bonus at the end of the time period after applying this optimal

strategy is

B̃∗ = B̃(1, A1; b, Z1).
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4 Fixed Points are Value Functions

In the previous chapter, we have shown that for the power and logarithmic utility functions,

under certain conditions, the operators O and Õ have unique affine-type fixed points. In this

chapter, we will show that these fixed points are the value functions of the trader’s infinite-

horizon problem. We will focus on the proof for the case without escrow. The proof for the

case with escrow is similar, and we shall make proper remarks along the way articulating how

the arguments should be adjusted for the case with escrow.

Recall that given k ∈ N and b ≥ 0, A(k, b) denotes the set of feasible strategies at the

k-th period with bonus left from the previous period being b. Moreover, given the current

amount in the bonus account being b, A(b) and An(b) denote the sets of feasible strategies for

the infinite-horizon problem and finite-horizon problem with n periods, respectively.

Given a feasible strategy π = {(Xk+1, Ck+1)}∞k=0 ∈ A(b) for the infinite-period problem

with initial bonus B0 = b, let vπ be the trader’s total discounted expected utility from applying

this strategy:

vπ(b) = E

[ ∞∑
k=0

βkTU(Ck+1)

]
,

and let v∗ be the value function of the infinite-horizon problem:

v∗(b) = sup
π∈A(b)

vπ(b). (4.1)

We are going to show that given the utility function, either power or logarithm, we have

g∗(b) = v∗(b), ∀b ≥ 0,

where g∗ is the fixed point in GU of the operator O (or Õ in the case with escrow).

First we prove a lemma, which says that if the trader only trades a finite number of

periods, then the optimal value of her finite-period problem can be obtained by iterating the
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operator O or Õ in the case without escrow or with escrow, respectively. In addition, the

optimal value of the trader’s finite period problem is attainable.

Lemma 4.1. Let v∗0(b) ≡ 0, ∀b ≥ 0. For any n ∈ N, let v∗n be the value function of the n-period

problem:

v∗n(b) = sup
{(Yk+1,Ck+1)

n−1
k=0}∈An(b)

E

[
n−1∑
k=0

βkTU(Ck+1)

]
. (4.2)

Then

v∗n+1(b) = Ov∗n(b), ∀b ≥ 0,∀n = 0, 1, · · · . (4.3)

In particular,

v∗n ∈ GU , ∀n = 0, 1, · · · ,

and hence is Borel measurable so Ov∗n is defined. In addition, there exists an n-period strategy{(
Y

(n)
k+1, C

(n)
k+1

)n−1
k=0

}
∈ An(b) such that

v∗n(b) = E

[
n−1∑
k=0

βkTU
(
C

(n)
k+1

)]
. (4.4)

Proof: We will prove the lemma by induction. Firstly,

v∗1(b) = sup
π1∈A1(b)

E
[
U(C1)

]
= sup

(Y1,C1)∈A(1,b)

E
[
U(C1) + βT · 0

]
Therefore (4.3) holds for n = 0 with v∗0 ≡ 0. Since v∗0 ∈ GU , by Lemma 3.1 or 3.5, depending

on the definition of the utility function, we have v∗1 ∈ GU .

Let Y
(1)
1 = Y(p; b, Z1), C

(1)
1 = C (p, 0; b, Z1) , where p is the parameter of the power utility

function as in (2.6) and (2.7), or is 1 if the utility function is logarithmic. Then again by Lemma

3.1 or 3.5,
(
Y

(1)
1 , C

(1)
1

)
∈ A(1, b) and

v∗1(b) = E
[
U
(
C

(1)
1

)]
+ βT · 0.
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Therefore the Lemma holds for n = 1.

Next, suppose the Lemma holds for n = 1, 2, · · · , N . We will show that the Lemma also

holds for n = N+1. Let πN+1 =
{

(Yk+1, Ck+1)Nk=0

}
∈ AN+1(b) be any (N+1)-period strategy

with initial bonus b, and v
πN+1

N+1 be the expected discounted utility associated with πN+1:

v
πN+1

N+1 (b) = E

[
N∑
k=0

βkTU(Ck+1)

]
.

Then
{

(Yk+1, Ck+1)Nk=1

}
is an N -period strategy with initial bonus B1 , b+ Y1 − C1, and

v
πN+1

N+1 (b) = E

[
U(C1) + βTE

[
N−1∑
k=0

βkTU(Ck+2)

∣∣∣∣∣B1

]]

≤ E
[
U(C1) + βT v

∗
N (B1)

]
≤ Ov∗N (b).

Notice that v∗N ∈ GU by the induction hypothesis, hence the expectation E[v∗N (B1)] is well

defined with the convention in Remark 2.2. Maximizing over πN+1(b) ∈ AN+1(b), we obtain

v∗N+1(b) = sup
πN+1∈AN+1(b)

v
πN+1

N+1 (b)

≤ Ov∗N (b). (4.5)

On the other hand, by definition of O and v∗N , we have

Ov∗N (b) = sup
(Y,C)∈A(1,b)

E
[
U(C) + βT v

∗
N (b+ Y − C)

]
.

For any (Y,C) ∈ A(1, b), given any realization (y, c) of (Y,C) at time 1, by the induction

hypothesis, there exists an N -period strategy
{(
Y

(N)
k+1 , C

(N)
k+1

)}N−1
k=0

∈ AN (b+ y − c) such that

v∗N (b+ y − c) = E

[
N−1∑
k=0

βkTU
(
C

(N)
k+1

)]
.
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Define the (N + 1)-period strategy
{(
Y

(N+1)
k+1 , C

(N+1)
k+1

)}N
k=0
∈ AN+1(b) as the following:

(
Y

(N+1)
k+1 , C

(N+1)
k+1

)
=


(Y,C), k = 0,(
Y

(N)
k , C

(N)
k

)
, k ≥ 1.

(4.6)

Then

E
[
U(C) + βT v

∗
N (b+ Y − C)

]
=E

[
U(C) + βTE

[
N−1∑
k=0

βkTU
(
C

(N)
k+1

) ∣∣∣∣(Y,C)

]]

=E

[
N∑
k=0

βkTU
(
C

(N+1)
k+1

)]

≤v∗N+1(b).

Taking the supremum over (Y,C) ∈ A(1, b), we have

Ov∗N (b) ≤ v∗N+1(b).

Therefore

v∗N+1(b) = Ov∗N (b).

In other words, (4.3) also holds for n = N+1. Notice that v∗N ∈ GU by the induction hypothesis.

Thus by Lemma 3.1 or 3.5, we have v∗N+1 ∈ GU and there exists (Y ∗, C∗) ∈ A(b) such that

Ov∗N (b) = E [U(C∗) + βT v
∗
N (b+ Y ∗ − C∗)] .

Let
{(
Y

(N+1)
k+1 , C

(N+1)
k+1

)}N
k=0
∈ AN+1(b) be defined as in (4.6) with (Y,C) being (Y ∗, C∗).

Then

v∗N+1(b) = Ov∗N (b)

= E
[
U(C∗) + βT v

∗
N (b+ Y ∗ − C∗)

]
= E

[
N∑
k=0

βkTU
(
C

(N+1)
k+1

)]
.
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Thus we have shown that with the induction hypothesis, the Lemma holds also for n = N + 1.

Therefore the Lemma holds for all n ∈ N. �

Remark 4.2. Lemma 4.1 and its proof also apply to the case with escrow when replacing O

with Õ. The difference in the constraint C in the admissible sets for the cases with or without

escrow does not affect the statement and the proof of this lemma.

In the following sections, we will prove for each utility function defined in Section 2.2

that the fixed point of the operators O and Õ are the optimal value function of the trader’s

infinite-horizon problem without and with escrowing the bonus, respectively.

4.1 Positive Power Utility

In this section, we consider the power utility function with positive values.

Theorem 4.3. Consider the utility function U defined by (2.6). Assume the inequality (3.14)

holds. For any b ≥ 0 let

v∗(b) = sup
{(Yk+1,Ck+1)}∞k=0∈A(b)

E

[ ∞∑
k=0

βkTU(Ck+1)

]
,

and let g∗ be the unique function in GU such that for any b ≥ 0

g∗(b) = sup
(Y,C)∈A(1,b)

E
[
U(C) + βT g

∗(b+ Y − C)
]
.

Then

v∗(b) = g∗(b), ∀b ≥ 0.

Proof: Given b ≥ 0, let v∗n be defined as in (4.2). Then for the utility function U given

by (2.6), we have v∗n ≤ v∗n+1 for all n ∈ N. Indeed, for any feasible n-period strategy, πn =
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{(
Y

(n)
k+1, C

(n)
k+1

)}n−1
k=0
∈ An(b), the (n+ 1)-period strategy πn+1(πn) ∈ An+1(b) defined as

πn+1(πn) =
{(
Y

(n+1)
k+1 , C

(n+1)
k+1

)}n
k=0
,


(
Y

(n)
k+1, C

(n)
k+1

)
, k ≤ n− 1,

(0, 0), k = n,

is a feasible strategy for the (n+ 1)-period problem, and

vπnn = v
πn+1(πn)
n+1 ,

where the notation πn+1(πn) indicates the dependency of πn+1 on πn. Taking the supremum

over all πn ∈ An we have

v∗n = sup
πn∈An

vπnn = sup
πn∈An

v
πn+1(πn)
n+1 ≤ sup

πn+1∈An+1

v
πn+1

n+1 = v∗n+1.

Therefore the sequence {v∗n} has a limit as n→∞. We denote it by v∞.

For any feasible n-period strategy πn =
{(
Y

(n)
k+1, C

(n)
k+1

)}n−1
k=0

∈ An(b), consider the infinite

period strategy

π(πn) =
{(
Y

(∞)
k+1 , C

(∞)
k+1

)}∞
k=0
,


(
Y

(n)
k+1, C

(n)
k+1

)
, k ≤ n− 1,

(0, 0), k > n.

With a similar argument as above, we also have v∗n ≤ v∗ for all n ∈ N. Then

v∞ , lim
n→∞

v∗n ≤ v∗. (4.7)

Given ε > 0, by the optimality of v∗, there exists a feasible strategy πε =
{(
Y εk+1, C

ε
k+1

)}∞
k=0
∈

A(b) such that

E

[ ∞∑
k=0

βkTU
(
Cεk+1

)]
≥


v∗(b)− ε, if v∗(b) <∞,

1
ε , if v∗(b) =∞.
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• If v∗(b) < ∞, then E
[∑∞

k=0 β
k
TU

(
Cεk+1

) ]
< ∞. Then there exists a positive integer nε

such that for all n ≥ nε,

E

[
n−1∑
k=0

βkTU
(
Cεk+1

)]
≥ E

[ ∞∑
k=0

βkTU
(
Cεk+1

)]
− ε

≥ v∗(b)− 2ε.

Notice that
{(
Y εk+1, C

ε
k+1

)}n−1
k=0
∈ An(b). Then by the optimality of v∗n(b), we have

E

[
n−1∑
k=0

βkTU
(
Cεk+1

)]
≤ v∗n(b). (4.8)

Thus for any ε > 0, there exists a positive integer nε such that for all n ≥ nε,

v∗(b)− 2ε ≤ v∗n(b).

Letting n converge to ∞ and then ε converge to 0 we get

v∗(b) ≤ v∞(b). (4.9)

• If v∗(b) =∞, then there exists a positive integer nε such that for all n > nε,

E

[
n−1∑
k=0

βkTU
(
Cεk+1

)]
≥ 1

2ε
.

Meanwhile (4.8) also holds in this case. Therefore we have for all n > nε,

v∗n(b) ≥ 1

2ε
.

Letting n converge to ∞ and then ε converge to 0 we get

v∞(b) =∞.

To summarize, in both cases, we have for all b ≥ 0

v∞(b) = v∗(b).
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By Corollary 3.2, the operator O has a unique fixed point g∗ ∈ GU , which is equal to U

multiplied by a positive constant. Then since U ≥ 0 and v∗0 = 0, we have g∗ ≥ v∗0 . By the

monotonicity of O and Lemma 4.1, we have

g∗ = Og∗ ≥ Ov∗0 = v∗1 .

Then by iterating the above argument, we have

g∗ ≥ v∗n, ∀n ∈ N.

Letting n→∞, we get

g∗ ≥ v∞ = v∗.

Thus

v∗(b) ≤ g∗(b), ∀b ≥ 0. (4.10)

Moreover, since g∗(b) <∞, ∀b ≥ 0, we also have

v∗(b) <∞, ∀b ≥ 0.

Now we will show the opposite inequality

g∗(b) ≤ v∗(b), ∀b ≥ 0.

By Corollary 3.2, for any b ≥ 0, there exists a feasible strategy (Y g1 , C
g
1 ) ∈ A(1, b) that attains

the supremum in the definition of Og∗(b). In particular, Y g1 = Y(p; b, Z1), Cg1 = C(p,A∗1; b, Z1),

where the constant A∗1 is defined by (3.15) and the functions Y and C are given by (3.17) and

(3.18). Then for n ∈ N , we recursively apply Corollary 3.2 and define

Bgn , B
g
n−1 + Y gn − Cgn,

Y gn+1 , Y(p;Bgn, Zn+1),
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Cgn+1 , C(p,A∗1;Bgn, Zn+1),

where we take Bg0 to be b. Then we get a sequence
{(
Y gn+1, C

g
n+1

)}∞
n=0

such that (Y gn , C
g
n) ∈

A(n,Bgn−1), for all n ∈ N, and

g∗(Bgn) = Og∗(Bgn)

= E
[
U(Cgn+1) + βT g

∗(Bgn + Y gn+1 − C
g
n+1)|Bgn

]
, n = 0, 1, 2, · · · ,

Then we can perform the following iteration:

g∗(b) = Og∗(b)

= E [U(Cg1 ) + βT g
∗(b+ Y g1 − C

g
1 )]

= E [U(Cg1 ) + βT g
∗(Bg1 )|B0 = b]

= E
[
U(Cg1 ) + βTE [U(Cg2 ) + βT g

∗(Bg2 )|Bg1 ]
∣∣∣B0 = b

]
= E

[
U(Cg1 ) + βTU(Cg2 ) + β2

T g
∗(Bg2 )|B0 = b

]
= · · ·

= E

[
n−1∑
k=0

βkTU(Cgk+1) + βnT g
∗(Bgn)|B0 = b

]

≤ v∗n(b) + βnTE [g∗(Bgn)|B0 = b] , (4.11)

where the last step follows from the optimality of v∗n. Letting n→∞, we have

g∗(b) ≤ v∞(b) + lim sup
n→∞

βnTE [g∗(Bgn)|B0 = b]

= v∗(b) + lim sup
n→∞

βnTE [g∗(Bgn)|B0 = b] . (4.12)

By the optimality of v∗n,

E

[
n−1∑
k=0

βkTU(Cgk+1)

]
≤ v∗n(b) ≤ v∞(b) = v∗(b) <∞.
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Hence

lim
n→∞

βnTE [U(Cgn)] = 0.

Recall from Remark 3.4 that

E [g∗(Bgn)] = constant · E [U(Cgn)] ,

where the constant is independent of the bonus amount or time index n. Therefore

lim
n→∞

βnTE [g∗(Bgn)] = 0.

Then by (4.10) and (4.12), we have

g∗(b) = v∗(b), ∀b ≥ 0.

�

4.2 Negative Power Utility

In this section, we consider the power utility function with negative values.

Theorem 4.4. Consider the utility function U defined by (2.7). For any b ≥ 0 let

v∗(b) = sup
{(Yk+1,Ck+1)}∞k=0∈A(b)

E

[ ∞∑
k=0

βkTU(Ck+1)

]
,

and let g∗ be the unique function in GU such that for any b ≥ 0

g∗(b) = sup
(Y,C)∈A(1,b)

E
[
U(C) + βT g

∗(b+ Y − C)
]
.

Then

v∗(b) = g∗(b), ∀b ≥ 0.
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Proof: When b = 0, by Corollary 3.2, g∗(b) = a positive constant · U(0) = −∞. Meanwhile,

the only feasible strategy with b = 0 is no trading and 0 consumption for all periods. Indeed,

by constraint (2.5), we have X1 ≥ 0. However, due to the budget constraint E[X1Z1] = 0,

we must have X1 = 0 almost surely. Thus C1 = 0 and B1 = 0 almost surely. Iterating this

argument, we have Xk = 0 and Ck = 0 almost surely for all k ∈ N. Therefore v∗(b) is also

a positive constant · U(0) in this case. Thus we have v∗(b) = g∗(b) = −∞. In the remaining

part of the proof, we consider the case when b > 0.

Given b > 0, let v∗n be defined as in (4.2). Then for the utility function U given by

(2.7), we have v∗n ≥ v∗n+1 for all n ∈ N. Indeed, for any feasible (n + 1)-period strategy,

πn+1 =
{

(Yk+1, Ck+1)
}n
k=0

∈ An+1(b), the first n pairs
{

(Yk+1, Ck+1)
}n−1
k=0

form a feasible

strategy of the n-period problem, denoted by πn(πn+1). Then

v∗n = sup
πn∈An

vπnn

≥ sup
πn(πn+1),πn+1∈An+1

vπn(πn+1)
n

≥ sup
πn+1∈An+1

v
πn+1

n+1

= v∗n+1,

where the second inequality follows from the negativity of U . Then the sequence {v∗n} has a

limit as n→∞. We denote it by v∞. Similarly we have

v∗n ≥ v∗.

Thus

v∞ , lim
n→∞

v∗n ≥ v∗.

Now we prove the opposite inequality v∞ ≤ v∗. Consider the feasible strategy π̂ for the
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infinite-period problem defined as the following:

Yn = 0, Cn = an−1(1− a)b, n = 1, 2, · · · ,

where a ∈
(
β

1
p−1

T , 1

)
. Then for b > 0,

v∗(b) ≥ vπ̂(b)

=

∞∑
n=0

βnTU
(
an(1− a)b

)
=

1

1− p
(
(1− a)b

)1−p ∞∑
n=0

(
βTa

1−p)n
> −∞.

Then we also have v∞(b) > −∞ for b > 0. Thus given b > 0, for any ε > 0, there exists nε ∈ N

such that for any n1, n2 > nε, ∣∣v∗n1
(b)− v∗n2

(b)
∣∣ < ε.

In particular, we have

v∗n1
(b) < v∗n2

(b) + ε.

For any n > nε+1, by Lemma 4.1, there exists an n-period strategy πn =
{(
Y

(n)
k+1, C

(n)
k+1

)}n−1
k=0

that attains the optimal value of the n-period problem. Then

v∗n(b) =

n−1∑
k=0

βkTE
[
U
(
C

(n)
k+1

)]
. (4.13)

Moreover πn−1(πn) ,
{(
Y

(n)
k+1, C

(n)
k+1

)}n−2
k=0

is an (n− 1)-period feasible strategy. Thus

n−2∑
k=0

βkTE
[
U
(
C

(n)
k+1

)]
≤ v∗n−1(b)

< v∗n(b) + ε. (4.14)
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Then from (4.13) and (4.14) we get

βn−1T E
[
U
(
C(n)
n

)]
> −ε.

Since U is negative, we have

βn−1T E
[
U
(
C(n)
n

)]
∈ (−ε, 0). (4.15)

Consider the following ∞-period feasible strategy (for 0 < a < 1):

π∞ =
{(
Y

(∞)
k+1 , C

(∞)
k+1

)}∞
k=0

=



(
Y

(n)
k+1, C

(n)
k+1

)
, k = 0, 1, · · · , n− 2,(

Y
(n)
n , (1− a)C

(n)
n

)
, k = n− 1,(

0, ak−n+1(1− a)C
(n)
n

)
, k = n, n+ 1, · · ·

Then

vπ∞∞ (b) =

n−2∑
k=0

βkTE
[
U
(
C

(n)
k+1

)]
+

∞∑
k=n−1

βkTE
[

1

1− p
a(k−n+1)(1−p)(1− a)1−pC(n)

n

1−p
]

=

n−2∑
k=0

βkTE
[
U
(
C

(n)
k+1

)]
+ βn−1T E

[
U
(
C(n)
n

)] ∞∑
k=0

βkTa
k(1−p)(1− a)1−p.

Denote

M1 ,
∞∑
k=0

βkTa
k(1−p)(1− a)1−p

=
(1− a)1−p

1− βTa1−p
.

For a chosen as before, M1 is a positive finite constant. Notice that M1 converges to ∞ as a

converges to 1. Then a can be properly chosen such that M1 > 1. Then by (4.15), we have

vπ∞∞ (b) = vπnn (b) + (M1 − 1)βn−1T E
[
U
(
C(n)
n

)]
> v∗n(b)− ε(M1 − 1).

On the other hand,

vπ∞∞ (b) < v∗(b).
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Thus

v∗n(b)− ε(M1 − 1) < v∗(b).

Letting n→∞, we have

v∞(b)− ε(M1 − 1) ≤ v∗(b).

Then letting ε→ 0, we have

v∞(b) ≤ v∗(b).

Therefore

v∞(b) = v∗(b).

Again by Remark 3.4, the fixed point g∗ ∈ GU of operator O is equal to U multiplied by a

positive constant. Then since U < 0, we have g∗ < 0. Then by the monotoniciy of O, we have

g∗ = Og∗ ≤ Ov∗0 = v∗1 .

Then by iterating this argument, we have

g∗ ≤ v∗n, ∀n ∈ N.

Letting n→∞, we get

g∗ ≤ v∞ = v∗.

We will then show that

g∗ ≥ v∗.

Again by iterating Corollary 3.2, given b > 0, we can find a sequence
{(
Y gn+1, C

g
n+1

)}∞
n=0

such

that for any n ∈ N,

g∗(b) = E

[
n−1∑
k=0

βkTU(Cgk+1) + βT g
∗ (Bgn−1 + Y gn − Cgn

)]
, n = 1, 2, · · · ,

58



and the right hand side is maximized over An(b). Here Bg0 = b and Bgn+1 = Bgn +Y gn+1−C
g
n+1.

For any ε ≥ 0, let nε be chosen as before. For any n > nε + 1, let πn =
{(
Y

(n)
k+1, C

(n)
k+1

)}n−1
k=0

be

the n-period feasible strategy that satisfies (4.13). Then

g∗(b) = E

[
n−1∑
k=0

βkTU(Cgk+1) + βnT g
∗(Bgn−1 + Y gn − Cgn)

]

≥ E

[
n−1∑
k=0

βkTU
(
C

(n)
k+1

)
+ βnT g

∗
(
B

(n)
n−1 + Y (n)

n − C(n)
n

)]

= v∗n(b) + βnTE
[
g∗
(
B

(n)
n−1 + Y (n)

n − C(n)
n

)]
.

By Remark 3.4,

E
[
g∗
(
B

(n)
n−1 + Y (n)

n − C(n)
n

)]
= M2 · E

[
U
(
C(n)
n

)]
,

where M2 is a constant independent of n. Thus (4.15) implies

−βTM2ε < βnTE
[
g∗
(
B

(n)
n−1 + Y (n)

n − C(n)
n

)]
< 0.

Therefore

g∗(b) > v∗n(b)− βTM2ε.

Letting n→∞, we have

g∗(b) ≥ v∗(b)− βTM2ε.

Then letting ε→ 0, we get

g∗(b) ≥ v∗(b).

We have shown

g∗(b) = v∗(b), ∀b > 0.

�
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Remark 4.5. The statement of Theorem 4.3 and Theorem 4.4 hold for both bonus schemes,

with or without escrow. The proof given here is for the case without escrow. For the case with

escrow, a similar proof applies, with O replaced by Õ, and using Corollary 3.9 and Remark

3.10 instead of Corollary 3.2 and Remark 3.4 in the argument.

4.3 Logarithmic Utility

In this section, we consider the logarithmic utility function.

Theorem 4.6. Consider the utility function U defined as (2.8). For any b ≥ 0 let

v∗(b) = sup
{(Yk+1,Ck+1)}∞k=0∈A(b)

E

[ ∞∑
k=0

βkTU(Ck+1)

]
,

and let g∗ be the unique function in GU such that for any b ≥ 0

g∗(b) = sup
(Y,C)∈A(1,b)

E
[
U(C) + βT g

∗(b+ Y − C)
]
.

Then

v∗(b) = g∗(b), ∀b > 0.

Proof: When b = 0, by Corollary 3.6, g∗(b) = constant ·−∞. By the same argument as in the

first paragraph of the proof of Theorem 4.4, we have v∗(b) = g∗(b) = −∞. In the proof below,

we consider the case when b > 0.

Let B∗0 = b > 0 be given. Starting from B∗0 , let
{

(Y ∗k+1, C
∗
k+1)

}∞
k=0

be the strategy with

B∗k+1 = B∗k + Y ∗k+1 − C∗k+1 where Y ∗k+1(B∗k) and C∗k+1(B∗k) are the strategy such that

g∗(B∗k) = E
[
U
(
C∗k+1(B∗k)

)
+ βT g

∗(B∗k + Y ∗k+1(B∗k)− C∗k+1(B∗k)
)∣∣B∗k].

By a similar iteration argument as in previous sections, we have

E

[
n−1∑
k=0

βkT logC∗k+1 + βnT g
∗(B∗n)

]
= g∗(b). (4.16)
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We will show that

lim
n→∞

E

[
n−1∑
k=0

βkT logC∗k+1

]
= E

[ ∞∑
k=0

βkT logC∗k+1

]
; (4.17)

lim sup
n→∞

E [βnT g
∗(B∗n)] ≤ 0. (4.18)

Then we let n→∞ on the left hand side of (4.16) to get

E

[ ∞∑
k=0

βkT logC∗k+1

]
≥ g∗(b).

By the optimality of v∗, the left hand side is less than or equal to v∗(b). Then we have

v∗(b) ≥ g∗(b).

To show (4.17), we first show

E

[ ∞∑
k=0

βkT (logC∗k+1)−

]
<∞, (4.19)

for which we discuss the cases with and without escrow separately.

• In the case of not escrowing the bonus, by Lemma 3.5 and Corollary 3.6,

C∗k+1 =
(1− βT )B∗k

Zk+1
,

B∗k+1 = B∗k + Y ∗k+1 − C∗k+1 =
βTB

∗
k

Zk+1
.

By iteration, we have

B∗k =
βkTB

∗
0∏k−1

i=0 Zi+1

= βkTB
∗
0e
θWk+

1
2 θ

2k,

and

C∗k+1 = βkT (1− βT )B∗0e
θWk+1+

1
2 θ

2(k+1).
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Therefore

(
logC∗k+1

)−
=

(
log(1− βT ) + k log βT + logB∗0 + θWk+1 +

1

2
θ2(k + 1)

)−
≤
∣∣∣ log(1− βT )

∣∣∣+ k
∣∣∣ log βT

∣∣∣+
∣∣∣ logB∗0

∣∣∣+ θW−k+1 +
1

2
θ2(k + 1).

Since

E
[
W−k+1

]
=
√
k + 1E

[(
Wk+1√
k + 1

)−]

=
√
k + 1

1√
2π

∫ ∞
0

xe−
x2

2 dx

=

√
k + 1

2π
,

we have

E

[ ∞∑
k=0

βkT (logC∗k+1)−

]
≤ E

[ ∞∑
k=0

βkT
(
K1 +K2k +K3

√
k + 1

)]

<∞,

where K1, K2 and K3 are constants.

• In the case of escrowing the bonus, by Lemma 3.11 and Corollary 3.12,

B∗k = B∗k−1 + Y ∗k − C∗k

=
βTB

∗
k−1

(1− βT )η∗Zk

=

(
βT

(1− βT )η∗

)k
B∗0e

θWk+
1
2 θ

2k,

C∗k+1 =


B∗k

η∗Zk+1
, η∗Zk+1 ≥ 1,

B∗k , η∗Zk+1 ≤ 1.

Then

logC∗k+1 = k log
βT

(1− βT )η∗
+ logB∗0 −

(
log(η∗Zk+1)

)
I{η∗Zk+1≥1} + θWk +

1

2
θ2k.
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Notice that

E
[∣∣− ( log(η∗Zk+1)

)
I{η∗Zk+1≥1}

∣∣] ≤ E
[∣∣ log(η∗Zk+1)

∣∣]
= E

[∣∣∣− log η∗ + θ(Wk+1 −Wk) +
1

2
θ2
∣∣∣] ,

which is a constant not depending on k. Therefore

E

[ ∞∑
k=0

βkT (logC∗k+1)−

]
≤ E

[ ∞∑
k=0

βkT
(
K̃1 + K̃2k + K̃3

√
k
)]

<∞,

where K̃1, K̃2 and K̃3 are constants.

We have shown (4.19) holds in both cases. Thus if

E

[ ∞∑
k=0

βkT
(
logC∗k+1

)+]
=∞,

then

E

[ ∞∑
k=0

βkT logC∗k+1

]
=∞.

But

E

[ ∞∑
k=0

βkT logC∗k+1

]
≤ E

[ ∞∑
k=0

βkT
1

1− p
(
C∗k+1

)1−p]
, ∀p ∈ (0, 1).

The right hand side is bounded above by the trader’s value function with power utility with

positive values, which we have shown to be finite in the proof of Theorem 4.3, when the

inequality (3.14) holds. Notice that for any βT ∈ (0, 1), there exists p ∈ (0, 1) such that (3.14)

holds. Therefore

E

[ ∞∑
k=0

βkT logC∗k+1

]
<∞,

and hence

E

[ ∞∑
k=0

βkT
(
logC∗k+1

)+]
<∞.
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Then by the Dominated Convergence Theorem, we have (4.17).

To show (4.18), we will show a more general result: for any feasible strategy {(Yk+1, Ck+1)}∞k=0 ∈

A(b) with Bk+1 = Bk + Yk+1 − Ck+1,

lim sup
n→∞

E [βnT g
∗(Bn)] ≤ 0.

Since Ck ≥ 0 for all k ∈ N,

Bk+1 ≤ Bk + Yk+1.

Then by iteration, we have for n ∈ N,

Bn ≤ b+

n∑
j=1

Yj , Ŷn.

In addition, we define Ŷ0 , b and let Z0 = 1. Then
{(∏n

k=0 Zk
)
Ŷn

}
n

is an Fn-martingale.

Indeed,

E

[(
n+1∏
k=0

Zk

)
Ŷn+1

∣∣∣Fn] =

n∏
k=0

ZkE
[
Zn+1Ŷn+1

∣∣Fn]
=

n∏
k=0

Zk

(
ŶnE[Zn+1|Fn] + E

[
Zn+1Yn+1

∣∣Fn])
=

(
n∏
k=0

Zk

)
Ŷn.

Therefore

E

[(
n∏
k=0

Zk

)
Ŷn

]
= b. (4.20)

By Corollaries 3.6 and 3.12,

g∗(b) =
1

1− βT
log b+A2, (4.21)

where A2 is a constant4. Then the derivative is

d

db
g∗(b) =

1

(1− βT )b
,

4This constant is equal to A∗
2 given by (3.37) in the case of not escrowing the bonus, and is equal to Ã∗

2 given

by (3.85) in the case of escrowing the bonus.
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and its inverse is

Ig(µ) =
1

(1− βT )µ
.

Denote

ζn ,
n−1∏
k=0

Zk+1 = e−θWn− 1
2 θ

2n.

Then the optimal Ŷn that maximizes E
[
g∗(Ŷn)

]
and satisfies (4.20) is

Ŷ ∗n = Ig(λgζn)

=
1

(1− βT )λgζn
,

where the constant λg is chosen such that (4.20) holds. It is straightforward to get that λg =

1
1−βT and hence

Ŷ ∗n =
b

ζn
.

Therefore we have

E [g∗(Bn)] ≤ E
[
g∗
(
Ŷ ∗n

)]
=

1

1− βT
E
[

log b− log ζn
]

+A2

=
1

1− βT

(
log b+

1

2
θ2n

)
+A2.

Then

lim sup
n→∞

E [βnT g
∗(Bn)] ≤ 0.

We have shown v∗(b) ≥ g∗(b). Now we will show the opposite inequality. Let {(Yk+1, Ck+1)}∞k=0 ∈

A(b) be any feasible strategy, and Bk+1 = Bk + Yk+1 − Ck+1. Notice that for any n ∈ N,

Cn ≤ Bn−1 + Yn ≤ Ŷn−1 + Yn = Ŷn.
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Then

E[logCn] ≤ E
[
log Ŷ ∗n

]
= E[log b− log ζn]

= log b+
1

2
θ2n.

Therefore given the initial bonus b,

E

[ ∞∑
k=0

βkT logCk+1

]
≤
∞∑
k=0

βkT
(

log b+
1

2
θ2(k + 1)

)
=

1

1− βT
log b+

1

2
θ2
∞∑
k=0

βkT (k + 1)

,
1

1− βT
log b+M, (4.22)

where M is a constant that does not depend on b. Then for any K ∈ N,

E

[ ∞∑
k=0

βkT logCk+1

]
= E

[
K∑
k=0

βkT logCk+1 + βK+1
T g∗(BK+1)

]
+ E

[ ∞∑
k=K+1

βkT logCk+1 − βK+1
T g∗(BK+1)

]

≤ g∗(b) + βK+1
T E

[
1

1− βT
logBK+1 +M − 1

1− βT
logBK+1 −A2

]
= g∗(b) + βK+1

T (M −A2),

where the inequality is due to the optimality of g∗, (4.21) and (4.22). Letting K →∞, we get

E

[ ∞∑
k=0

βkT logCk+1

]
≤ g∗(b).

Taking the supremum over all feasible strategies in A(b) we get

v∗(b) ≤ g∗(b).

Therefore we have proved

v∗(b) = g∗(b).

�
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5 Bank’s Total Expected Revenue

In the previous chapter, we have shown that the trader’s optimal value for the infinite-time-

horizon problem is the same as the fixed point of the operator O when the bonus is not escrowed,

or Õ when the bonus is escrowed. The optimal investment and consumption strategy that

achieves this optimal total expected utility exists, and has an explicit expression. In this

chapter, we will calculate and compare the bank’s total expected revenue with or without

escrowing the trader’s bonus, given that the trader adopts the optimal strategy in these two

scenarios.

Recall that given an investment strategy sequence {Xk, k ∈ N} with initial bonus b > 0,

the bank’s total expected revenue is given by

vB(b) = E

[ ∞∑
k=0

βk+1
B (1− γ)Xk+1

∣∣∣B0 = b

]

= (1− γ)

∞∑
k=0

βk+1
B E

[
Xk+1

∣∣∣B0 = b
]
, (5.1)

where γ is the contractual constant as described in Section 2.1. During each time period,

the trader chooses the optimal investment strategy based on the bonus b at the beginning

of this period. To calculate the bank’s total expected revenue, we need to switch from the

“Y -notation” for the trader’s investment strategy back to the “X-notation”. Specifically, at

time k, we denote the optimal investment by X∗k(b) , 1
γY
∗
k (b) in the case of not escrowing the

bonus, and by X̃∗k(b) , 1
γ Ỹ
∗
k (b) in the case when the bonus is escrowed. We also introduce

the “X-notation” for the mapping from the initial bonus and the Radon-Nikodym derivative

changing the physical measure to the risk-neutral measure at the end of a period to the optimal

investment strategy: denote X(p; b, Z) , 1
γY(p; b, Z) in the case of not escrowing the bonus,

and denote X̃(p,A; b, Z) = 1
γ Ỹ(p,A; b, Z) in the case of escrowing the bonus. Recall that in this
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notation, p takes values in (0,∞), and p = 1 corresponds to the case when the trader’s utility

function is logarithmic. Given this consistency between the cases when the trader’s utility

function is a power function and the logarithm function, and the fact that the stochasticity of

the bank’s revenue only comes from the trader’s investment strategy, in this chapter, a separate

discussion of the two cases is not needed, and the same set of conclusions apply to both utility

functions.

First, we observe a separable property of the optimal investment strategy that will be

useful for later discussions.

Lemma 5.1. For any given time period [k, k + 1], let Bk be the bonus at the beginning of

the period. Then for p > 0 and A ≥ 0, the optimal investment strategy satisfies the following

equations:

• In the case when the trader’s bonus is not escrowed,

E
[
X(p;Bk, Zk+1)

]
= E[Bk]E

[
X(p; 1, Z1)

]
; (5.2)

• In the case when the trader’s bonus is escrowed,

E
[
X̃(p,A;Bk, Zk+1)

]
= E[Bk]E

[
X̃(p,A; 1, Z1)

]
. (5.3)

Proof:

• When the trader’s bonus is not escrowed, by (3.17) and (3.38), we have:

E
[
X(p;Bk, Zk+1)

]
= E

[
1

γ
Y(p;Bk, Zk+1)

]
= E

[
1

γ

(
exp

{
θ2(p− 1)

2p2

}
Z
− 1
p

k+1 − 1

)
Bk

]
= E[Bk]E

[
X(p; 1, Zk+1)

]
= E[Bk]E

[
X(p; 1, Z1)

]
,
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where in the last two steps, we used the fact that Bk is independent with Zk+1 and that

Zk+1 has the same distribution as Z1.

• When the trader’s bonus is escrowed, by (3.64) and (3.88), we have:

E
[
X̃(p,A;Bk, Zk+1)

]
= E

[
1

γ
Ỹ(p,A;Bk, Zk+1)

]
= E

[
1

γ
Bk
(
η(p;A)Zk+1

)− 1
p (βTA)

1
p I{η(p;A)Zk+1≤1}

+
1

γ
Bk

[
(η(p;A)Zk+1)

− 1
p

(
1 + (βTA)

1
p

)
− 1
]
I{η(p;A)Zk+1≥1}

]
= E[Bk]E

[
X̃(p,A; 1, Zk+1)

]
= E[Bk]E

[
X̃(p,A; 1, Z1)

]
,

where in the last two steps, we again used the fact that Bk is independent with Zk+1, that

η(p,A) does not depend on Bk and that Zk+1 has the same distribution as Z1.

�

With the help of the above lemma, we can calculate the bank’s total expected revenue

for both cases, namely escrowing the trader’s bonus or not, given that the trader chooses her

optimal investment and consumption strategy during each time period.

Lemma 5.2. Let p > 0 be given. Suppose the initial bonus is b ≥ 0 at time 0 and the trader

chooses the optimal investment and consumption strategy during all time periods. Let vB
∗(b)

and ṽ∗B(b) denote the bank’s total expected revenue when the trader’s bonus is not escrowed and

is escrowed, respectively. Assume (3.14). Let A∗1 be the constant defined by (3.15), and η∗ and

Ã∗1 be the constants defined by (3.56) and (3.57)5. Then

5In light of Remarks 3.7 and 3.13, the equations defining A∗
1 and Ã∗

1 when the trader’s utility function is

logarithmic are special cases of their counterparts when the trader’s utility function is a power function, and

hence are not explicitly listed here.
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• when the bonus is not escrowed:

vB
∗(b) =

(1− γ)βBb

1− βBβ
1
p

T exp
{
θ2(1+p)

2p2

}E [X(p; 1, Z1)] ; (5.4)

when βBβ
1
p

T exp
{
θ2(1+p)

2p2

}
∈ (0, 1), and vB

∗(b) = +∞ otherwise;

• when the bonus is escrowed:

ṽB∗(b) =
(1− γ)βBb

1− βB
(
βT Ã∗1
η∗

) 1
p

exp
{
θ2(1+p)

2p2

}E [X̃(p, Ã∗1; 1, Z1)
]
. (5.5)

when βB

(
βT Ã

∗
1

η∗

) 1
p

exp
{
θ2(1+p)

2p2

}
∈ (0, 1), and ṽB∗(b) = +∞ otherwise.

Proof:

• When trader’s bonus is not escrowed, by (3.8), given the bonus B∗k−1 at the beginning of

the k-th time period, the bonus at the beginning of the next time period is

B∗k = B(p,A∗1;B∗k−1, Zk)

=
1

1 + (βTA∗1)−
1
p

exp

{
θ2(p− 1)

2p2

}
Z
− 1
p

k B∗k−1

Then by iteration and the fact that Z1, Z2, · · · , Zk are independent, we have

E [B∗k |B∗0 = b] = E

 1(
1 + (βTA∗1)−

1
p

)k exp

{
θ2(p− 1)k

2p2

} k∏
i=1

Z
− 1
p

i B∗0

∣∣∣∣∣B∗0 = b


=

exp
{
θ2k
p

}
b(

1 + (βTA∗1)−
1
p

)k .
Therefore given the initial bonus b, by Lemma 5.1 the bank’s (undiscounted) expected
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revenue at time k + 1 is given by

(1− γ)E
[
X(p;Bk, Zk+1)

∣∣∣∣B∗0 = b

]
=(1− γ)E[Bk|B∗0 = b]E [X(p; 1, Z1)]

=(1− γ)
exp

{
θ2k
p

}
b(

1 + (βTA∗1)−
1
p

)kE [X(p; 1, Z1)]

=(1− γ)β
k
p

T exp

{
θ2k(1 + p)

2p2

}
bE [X(p; 1, Z1)] , (5.6)

where in the last step we used the value of A∗1 given in (3.15). Hence the bank’s total

expected revenue is given by

vB
∗(b) = (1− γ)

∞∑
k=0

βk+1
B E

[
X(p;Bk, Zk+1)

∣∣∣∣B∗0 = b

]

= (1− γ)

∞∑
k=0

βk+1
B β

k
p

T exp

{
θ2k(1 + p)

2p2

}
bE [X(p; 1, Z1)]

=
(1− γ)βBb

1− βBβ
1
p

T exp
{
θ2(1+p)

2p2

}E [X(p; 1, Z1)] ,

when βBβ
1
p

T exp
{
θ2(1+p)

2p2

}
∈ (0, 1), and vB

∗(b) = +∞ when βBβ
1
p

T exp
{
θ2(1+p)

2p2

}
≥ 1.

• When trader’s bonus is escrowed, by (3.46), given the bonus B∗k−1 at the beginning of the

k-th time period, the bonus at the beginning of the next time period is

B∗k = B̃(p,A∗1;B∗k−1, Zk)

= (η∗Zk)−
1
p

(
βT Ã

∗
1

) 1
p

B∗k−1.

Then again by iteration and the fact that Z1, Z2, · · · , Zk are independent, we have

E[B∗k |B∗0 = b] = E

( η∗

βT Ã∗1

)− kp k∏
i=1

Z
− 1
p

i B∗0

∣∣∣∣B∗0 = b


=

(
η∗

βT Ã∗1

)− kp
exp

{
θ2(1 + p)k

2p2

}
b.
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Therefore given the initial bonus b, by Lemma 5.1, the bank’s (undiscounted) expected

revenue at time k + 1 is

(1− γ)E
[
X̃(p, Ã∗1; 1, Zk+1)

∣∣∣∣B∗0 = b

]
=(1− γ)E[Bk|B∗0 = b]E

[
X̃(p, Ã∗1; 1, Z1)

]
=(1− γ)

(
η∗

βT Ã∗1

)− kp
exp

{
θ2(1 + p)k

2p2

}
bE
[
X̃(p, Ã∗1; 1, Z1)

]
. (5.7)

Hence the bank’s total expected revenue is

ṽB∗(b) = (1− γ)

∞∑
k=0

βk+1
B E

[
X̃(p, Ã∗1; 1, Zk+1)

∣∣∣∣B∗0 = b

]

= (1− γ)

∞∑
k=0

βk+1
B

(
η∗

βT Ã∗1

)− kp
exp

{
θ2(1 + p)k

2p2

}
bE
[
X̃(p, Ã∗1; 1, Z1)

]
=

(1− γ)βBb

1− βB
(
βT Ã∗1
η∗

) 1
p

exp
{
θ2(1+p)

2p2

}E [X̃(p, Ã∗1; 1, Z1)
]
,

when βB

(
βT Ã

∗
1

η∗

) 1
p

exp
{
θ2(1+p)

2p2

}
∈ (0, 1). Otherwise, when βB

(
βT Ã

∗
1

η∗

) 1
p

exp
{
θ2(1+p)

2p2

}
≥ 1,

the bank’s total expected revenue is +∞.

�

Now we consider the more interesting case when the bank’s total expected revenue is finite

both without and with escrowing the bonus. From (5.4) and (5.5) we can see that in order to

compare the total expected revenue for the bank under these two bonus schemes, we need to

make the following two comparisons:

1. η∗ and Ã∗1;

2. E[X(p; 1, Z1)] and E[X̃(p, Ã∗1; 1, Z1)].

In the following Lemmas we present the result of these comparisons.
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Lemma 5.3. Let η∗ and Ã∗1 be the constants defined by (3.56) and (3.57). Then

η∗ < Ã∗1. (5.8)

Proof: From (3.57),

Ã∗1 − η∗ = P(η∗Z1 ≤ 1)− η∗Q(η∗Z1 ≤ 1)

= N

(
−1

θ
ln η∗ +

θ

2

)
− η∗N

(
−1

θ
ln η∗ − θ

2

)
, (5.9)

where N(·) is the cumulative distribution function of the standard normal distribution. Taking

the derivative with respect to η∗, we have

∂

∂η∗
(Ã∗1 − η∗) = −N

(
−1

θ
ln η∗ − θ

2

)
,

which is negative for η∗ < +∞. Meanwhile, by (5.9), when η∗ converges to +∞, the limit of

Ã∗1 − η∗ is 0. Therefore

Ã∗1 − η∗ > 0

for all finite η∗.

�

Lemma 5.4. Let η∗ and Ã∗1 be the constants defined by (3.56) and (3.57). Then

E[X(p; 1, Z1)] ≥ E[X̃(p, Ã∗1; 1, Z1)]. (5.10)

Proof: First we prove the following inequality:

η∗
1
p exp

{
θ2(p− 1)

2p2

}
<
(
βT Ã

∗
1

) 1
p

+ 1. (5.11)

From (3.58) and (3.56) we have

(
βT Ã

∗
1

) 1
p E
[
Z

1
p

1

]
= E

[(
(η∗)

1
p − Z

1
p

1

)+
]
.
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Therefore

η∗
1
p = E

[(
(η∗)

1
p − Z

1
p

1

)+
]
− E

[(
Z

1
p

1 − (η∗)
1
p

)+
]

+ E
[
Z

1
p

1

]

< E

[(
(η∗)

1
p − Z

1
p

1

)+
]

+ E
[
Z

1
p

1

]
= E

[
Z

1
p

1

]((
βT Ã

∗
1

) 1
p

+ 1

)
= exp

{
θ2(1− p)

2p2

}((
βT Ã

∗
1

) 1
p

+ 1

)
,

where the last step is by Lemma B.2 on page 93.

By the inequality (5.11), comparing (3.17) and (3.64), when η∗Z1 ≥ 1 we have

X(p; b, Z1)− X̃(p, Ã∗1; b, Z1) < 0.

Then in order to satisfy the budget constraint

E[X(p; b, Z1)Z1] = E[X̃(p,A∗1; b, Z1)Z1] = 0, (5.12)

we must have X(p; b, Z1) > X̃(p, Ã∗1; b, Z1) on a subset of
{
Z1 ≤ 1

η∗

}
which is not a null set.

When

Z1 ≤
1

η∗
, (5.13)

X(p; b, Z1) > X̃(p, Ã∗1; b, Z1) is equivalent to

b

γ
Z
− 1
p

1

[
exp

{
θ2(p− 1)

2p2

}
− η∗−

1
p (βT Ã

∗
1)

1
p

]
− b

γ
> 0,

i.e.,

Z1 <

[
exp

{
θ2(p− 1)

2p2

}
− η∗−

1
p (βT Ã

∗
1)

1
p

]p
. (5.14)

Notice that due to inequality (5.11),

exp

{
θ2(p− 1)

2p2

}
− η∗−

1
p (βT Ã

∗
1)

1
p < η∗−

1
p .

74



Therefore (5.14) is a stricter inequality than (5.13), and hence is a sufficient and necessary

condition for X(p; b, Z1) > X̃(p, Ã∗1; b, Z1). Then by (5.12) with b = 1,

0 = E
[(
X(p; 1, Z1)− X̃(p, Ã∗1; 1, Z1)

)
Z1

]
= E

[(
X(p; 1, Z1)− X̃(p, Ã∗1; 1, Z1)

)
Z1I{Z1≤z∗}

]
+ E

[(
X(p; 1, Z1)− X̃(p, Ã∗1; 1, Z1)

)
Z1I{Z1≥z∗}

]
,

for any z∗ > 0. Let

z∗ ,

[
exp

{
θ2(p− 1)

2p2

}
− η∗−

1
p (βT Ã

∗
1)

1
p

]p
.

Then since X(p; 1, Z1) − X̃(p, Ã∗1; 1, Z1) ≥ 0 on the set {Z1 ≤ z∗}, and X̃(p, Ã∗1; 1, Z1) −

X(p; 1, Z1) ≥ 0 on the set {Z1 ≥ z∗}, we have

E[(X(p; 1, Z1)− X̃(p, Ã∗1; 1, Z1))z∗I{Z1≤z∗}]

≥E[(X(p; 1, Z1)− X̃(p, Ã∗1; 1, Z1))Z1I{Z1≤z∗}]

=E[(X̃(p, Ã∗1; 1, Z1)− X(p; 1, Z1))Z1I{Z1≥z∗}]

≥E[(X̃(p, Ã∗1; 1, Z1)− X(p; 1, Z1))z∗I{Z1≥z∗}].

Therefore,

E[X(p; 1, Z1)] ≥ E[X̃(p, Ã∗1; 1, Z1)]. (5.15)

�

Remark 5.5. From the above lemmas, one may compare the period-wise expected revenue

under the two bonus schemes. In particular, if starting with the same initial bonus, by Lemma

5.4, the bank has larger expected revenue in the first period without escrowing the trader’s

bonus. However, by comparing (5.6) and (5.7), we can see that as time goes by, the period-wise

expected revenue with escrowing the trader’s bonus catches up, and wins over from period k
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on for

k = inf

i ∈ N :

(
Ã∗1
η∗

) i
p

≥ E[X(p; 1, Z1)]

E[X̃(p, Ã∗1; 1, Z1)]

 .

Recall from Lemma 5.3 that
Ã∗1
η∗ > 1. Therefore the set in the right hand side of the above

equation is not empty and such a number k ∈ N exists.

The comparison of the bank’s total expected revenue under the two bonus schemes depends

on the relative relationship among the parameters describing the trader’s risk appetite and the

bank’s patience, in other words, the preference for future revenue over the near-term revenue.

Specifically, we summarize the comparison of the bank’s total expected revenue with or without

escrowing the bonus to the trader in the following Theorem:

Theorem 5.6. Let η∗ and Ã∗1 be the constants defined by (3.56) and (3.57). Define

βB , exp

{
−θ

2(1 + p)

2p2

}
β
− 1
p

T ,

βB , exp

{
−θ

2(1 + p)

2p2

}(
βT Ã

∗
1

η∗

)− 1
p

,

β∗B ,
E[X(p; 1, Z1)]− E[X̃(p, Ã∗1; 1, Z1)]

β
1
p

T exp
{
θ2(1+p)

2p2

}((
Ã∗1
η∗

) 1
p

E[X(p; 1, Z1)]− E[X̃(p, Ã∗1; 1, Z1)]

) .
Then given the same initial bonus b at time 0,

1. If βB ≥ βB, then the bank has infinite total expected discounted revenue whether escrowing

the trader’s bonus or not;

2. If βB ≤ βB < βB, then the bank is better off in terms of total expected discounted revenue

when escrowing the trader’s bonus;

3. If 0 < βB < βB, then the bank is not worse off in terms of total expected discounted

revenue when escrowing the trader’s bonus if and only if βB > β∗B.
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In particular, the only situation in which the bank should not escrow the trader’s bonus is when

0 < βB < β∗B.

Proof:

1. If βB ≥ βB , then by Lemma 5.2, v∗B = +∞. By (5.8), we also have βB ≥ βB . Then by

Lemma 5.2, ṽB∗ = +∞. In other words, the bank has infinite total expected revenue in

both cases, whether the trader’s bonus is escrowed or not.

2. If βB ≤ βB < βB , then by Lemma 5.2, v∗B is finite while ṽB∗ = +∞. Therefore the bank

is better off when the trader’s bonus is escrowed.

3. If 0 ≤ βB < βB , then the bank has finite total expected revenue in both cases. Due to

Lemma 5.3 and Lemma 5.4, the comparison between v∗B and ṽB∗ depends on additional

information. Specifically, by Lemma 5.2, ṽB∗ > v∗B if and only if the following inequality

holds:

1− βBβ
1
p

T exp
{
θ2(1+p)

2p2

}
1− βB

(
βT Ã∗1
η∗

) 1
p

exp
{
θ2(1+p)

2p2

} >
E[X(p; 1, Z1)]

E[X̃(p, Ã∗1; 1, Z1)]
, (5.16)

which is equivalent to βB > β∗B .

�
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6 Conclusion and Discussion

6.1 Conclusion

From Theorem 5.6, we can see that given the trader’s risk appetite, described by parameter p,

the discount factor βT , and the market price of risk θ, we have the following.

Case 1 When the bank is impatient, in other words, βB is close to 0 so that we are in case

3 of Theorem 5.6 and the left hand side of (5.16) is close to 1 and is less than the right

hand side of (5.16), the bank prefers not to escrow the trader’s bonus.

Case 2 When the bank is patient, in other words, βB is moderately large such that case 2 in

Theorem 5.6 applies or case 3 applies with (5.16), the bank prefers to escrow the trader’s

bonus.

Case 3 When the bank is extremely patient and βB is close to 1, the bank is indifferent about

escrowing the trader’s bonus or not.

As mentioned in several places throughout this thesis, we can see that although the so-

lution for the trader’s optimization problem is derived separately for different utility functions

of the trader, the above conclusion about the bank’s total expected revenue turns out to be

qualitatively consistent whether the trader’s utility is power or logarithmic.

6.2 Numerical Example

To gain further insights about the conclusion, it is worthwhile to visualize the relationship of

the three critical values of βB , namely βB , βB and β∗B with reasonable numerical values for

the model parameters. For this purpose, we consider several combinations of values for the
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market price of risk θ and the trader’s relative risk aversion p, and investigated how βB , βB

and β∗B change with respect to the trader’s discount factor βT . In particular, we let θ take

values in {1, 2, 3}, which are possible values of the annual Sharpe Ratio of hedge funds (see,

e.g., [8]). For the value of p we consider the range [2, 10]. In the relevant empirical studies,

the conclusions about typical values of the relative risk aversion of an individual investor vary

a lot, ranging from around 2 to the order of 20 or even higher (see, e.g., [4, 5]). However, it

seems to be a general consensus that p > 1 for an individual investor. Notice that the values of

the parameters θ and p depend on the assumptions and methodologies used to estimate them,

and the views in relevant literature vary. The values used in this numerical example are not

meant to be comprehensive, but are selected to be within a reasonable range to demonstrate

qualitative trends of the outcomes of our model.

For each pair of values for θ and p, the plots of βB , βB and β∗B against βT are shown in

Figures 1 to 5, where the range for βT is taken to be [0.5, 0.95]. Recall that the region above

(below) the curve of β∗B corresponds to the case where the bank is better off with (without)

escrowing the trader’s bonus. We now discuss some key observations about the behavior of β∗B .

Firstly, for a given value of θ, the plot of β∗B with respect to βT shifts up when p increases.

This means that given the market price of risk, as the trader’s risk aversion increases, there is

less need for the bank to escrow her bonus. Secondly, for a given value of p, the plot of β∗B with

respect to βT shifts down when θ increases. This means that given the trader’s risk aversion,

as the performance of the risky asset increases, there is more need for the bank to escrow the

trader’s bonus. These observations are in line with our intuition as escrowing is expected to

be a mitigation mechanism to prevent the trader from being too risk prone. Thirdly, given the

values of θ and p, β∗B is decreasing with respect to βT . This means that as the trader becomes

more patient, there is more need for the bank to escrow her bonus. This observation may not
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seem as intuitive as the previous two. Heuristically, the reason for this behavior is the following.

As βT decreases, the trader wants to shift consumption forward in time because the future is

more heavily discounted. In the extreme case, as βT goes down to 0, the trader gets benefit

from consuming only after one round of trading. In this case, the optimal strategy for the

trader would be no trading, because losses will reduce her ability to consume after this round

of trading and gains will not be realized. For the bank, it is the high βB values that makes it

advantageous to escrow the trader’s profits. A bank that heavily discounts the future and thus

seeks quick profits will encourage risk-taking by the trader. The trader facing escrow becomes

more conservative as βT decreases, so much so that it becomes detrimental to the bank, and

hence the bank needs a higher degree of patience in order for it to be advantageous to escrow

the trader’s profits. Therefore β∗B increases as βT decreases. Additional analysis illustrating

the extreme case of βT ↓ 0 is provided in Appendix C.

For the other critical values βB and βB , we also have similar observations. Specifically,

for a given value of θ, the plots of βB and βB with respect to βT shift up when p increases. In

other words, given the market price of risk, the more risk averse the trader is, the higher the

level of patience needed for the bank to get infinite total expected revenue and to get higher

total expected revenue escrowing the trader’s bonus. In addition, the three curves (βB , βB and

β∗B ) move closer as p increases. As illustrated in Figures 1, 3 and 5, the distances between

these curves can become invisible when p is sufficiently large.6 In other words, given the market

price of risk, when the trader is sufficiently risk averse, the bank’s total expected revenues with

or without escrowing trader’s bonus are either both finite or both infinite, depending on the

bank’s discount factor. Moreover, For a given value of p, plots of βB and βB with respect to

βT shift down when θ increases. In other words, given the trader’s risk aversion, the better the

6This is also why we didn’t pursue the cases where p takes value greater than 10 in this numerical example.
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investment opportunity is, the lower the level of patience needed for the bank to get infinite

total expected revenue and to get higher total expected revenue escrowing the trader’s bonus. In

particular, as shown in Figure 4, when the performance of the risky asset is exceptionally good

(θ = 3), the bank can get infinite total expected revenue with both bonus schemes even when

the future revenue is discounted very heavily. Finally, in all cases, βB and βB are decreasing

with respect to βT . This means that the more patient the trader is, the lower the level of

patience needed for the bank to get infinite total expected revenue, and this is the case for both

escrowing the trader’s bonus or not.

In general, the distance between βB and β∗B is narrow, implying that Case 2 described

in Section 6.1 is not very typical. On the other hand, depending on the value of θ and p, either

Case 1 or Case 3 can be the most typical. It is interesting to notice in Figure 1 that when

θ = 1, p = 3 or 4, and βT = 0.5, both βB and βB are greater than 1. This means that in this

case, as long as the bank discounts the future revenue, the total expected revenue will always

be finite, both with or without escrowing the trader’s bonus. Also in Figure 1, when p = 4 and

βT = 0.5, β∗B > 1. This means that the bank always gets higher total expected revenue without

escrowing the trader’s bonus.

6.3 Challenges and Potential Areas of Improvement

One of the major challenges of this work is to find a formulation of the problem that permits an

explicit solution of the trader’s optimization problem that allows the calculation and comparison

of the bank’s benefit (or loss) under the two bonus payment schemes. Many simplifying assump-

tions are made as a trade-off for tractability. For example, in our model, the portfolio that the

trader manages restarts with zero initial capital at the beginning of each time period. However,

in practice, the portfolio may continue to vest for a longer time. Moreover, our model does not
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explicitly consider the event of employment termination, although it is partially captured in the

trader’s discount factor. Features associated with the trader’s employment termination, such as

clawback of bonus after termination, bank’s replacement cost, etc, are not considered. Lastly,

our conclusion of whether the bank is better off with or without escrowing the trader’s bonus

is based on total expected revenue, while other risk-related metrics may also be interesting to

consider, given one of the intentions for a clawback provision is to curb excessive risk taking.

For example, it may be worthwhile to investigate whether a clawback provision can help reduce

the probability of bank default. These considerations provide directions for future work.
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Appendices

A A Classical Solution for the Trader’s Problem When

Bonus is Not Escrowed

We notice that when the bonus is not escrowed, the trader’s problem can be formulated as a

standard consumption and investment problem, for which a classical solution exists. In this

section, we present this standard argument for optimal consumption and investment. This

provides a shorter derivation of Theorems 4.3, 4.4 and 4.6.

Consider an agent who begins with initial endowment B0 ≥ 0 and trades in the market

as described in Section 2.1. At each time t, the agent holds ∆t shares of stock, and at times

k = 1, 2, · · · , she consumes a lump sum Ck. Then at each time t, the agent’s capital evolves as

Bt = B0 +

∫ t

0

∆udSu −
btc−1∑
k=0

Ck+1, t ≥ 0, (A.1)

where b·c denotes the floor function. The agent is required to choose ∆t, t ≥ 0, and Ck, k =

1, 2, · · · , so that Bt ≥ 0 for all t. In addition, the agent also has the budget constraint

E

[
ζt
ζs

∫ t

s

∆udSu

∣∣∣∣∣Fs
]

= 0, (A.2)

where

ζt , exp

{
−θWt −

1

2
θ2t

}
, (A.3)

and {Ft} is the filtration generated by Wt. Subject to these constraints, the agent maximizes

total expected utility from consumption

E
∞∑
k=0

βkTU(Ck+1).

85



The utility function U is assumed to be strictly increasing, strictly concave, and to satisfy the

Inada conditions

lim
c→0+

U ′(c) =∞, lim
c→∞

U ′(c) = 0.

If we identify Yk+1 in the trader’s problem with
∫ k+1

k
∆udSu, we see that this problem is the

same as the trader’s problem in the model without escrowing the bonus.

The solution to this problem follows a classical argument, which we present.

Theorem A.1. Let IU be the inverse of U ′. The optimal consumptions for the agent’s problem

described above are

C∗k+1 = IU

(
λ

βkT
ζk+1

)
, k = 0, 1, 2, · · · , (A.4)

where λ > 0 is chosen so that

E
∞∑
k=0

ζk+1IU

(
λ

βkT
ζk+1

)
= B0. (A.5)

Proof: First we show that

ζtBt +

btc−1∑
k=0

ζk+1Ck+1

is an Ft-martingale.Indeed, for 0 ≤ s ≤ t such that bsc ≤ btc − 1, we have

E

ζtBt +

btc−1∑
k=0

ζk+1Ck+1

∣∣∣∣∣Fs


=E

ζtBs + ζt(Bt −Bs) +

bsc−1∑
k=0

ζk+1Ck+1 +

btc−1∑
k=bsc

ζk+1Ck+1

∣∣∣∣∣Fs


=ζsBs +

bsc−1∑
k=0

ζk+1Ck+1 + E

ζt(Bt −Bs) +

btc−1∑
k=bsc

ζk+1Ck+1

∣∣∣∣∣Fs
 .

=ζsBs +

bsc−1∑
k=0

ζk+1Ck+1 + E

ζt ∫ t

s

∆udSu − ζt
btc−1∑
k=bsc

Ck+1 +

btc−1∑
k=bsc

ζk+1Ck+1

∣∣∣∣∣Fs
 , (A.6)
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where we used (A.1) in the last step. Due to the budget constraint for the agent’s trading

strategy,

E

[
ζt

∫ t

s

∆udSu

∣∣∣∣∣Fs
]

=ζsE

[
ζt
ζs

∫ t

s

∆udSu

∣∣∣∣∣Fs
]

=0. (A.7)

Moreover, for any bsc ≤ k ≤ btc − 1,

E
[
ζtCk+1 − ζk+1Ck+1

∣∣∣Fs]
=E
[
E[ζtCk+1 − ζk+1Ck+1|Fk+1]

∣∣∣Fs]
=E
[
Ck+1E[ζt − ζk+1|Fk+1]

∣∣∣Fs]
=0. (A.8)

Then by (A.6), (A.7) and (A.8) we have

E

ζtBt +

btc−1∑
k=0

ζk+1Ck+1

∣∣∣∣∣Fs
 = ζsBs +

bsc−1∑
k=0

ζk+1Ck+1. (A.9)

For 0 ≤ s ≤ t such that bsc = btc, we have

E

ζtBt +

btc−1∑
k=0

ζk+1Ck+1

∣∣∣∣∣Fs


=ζsBs +

bsc−1∑
k=0

ζk+1Ck+1 + E[ζt(Bt −Bs)|Fs]

=ζsBs +

bsc−1∑
k=0

ζk+1Ck+1 + E

[
ζt

∫ t

u

∆udSu

∣∣∣∣∣Fs
]

=ζsBs +

bsc−1∑
k=0

ζk+1Ck+1, (A.10)

where the last step is due to (A.7).
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We have shown that ζtBt +
∑btc−1
k=0 ζk+1Ck+1 is an Ft-martingale. Then since Bt ≥ 0 for

all t, we must have for any consumption sequence {Ck+1}∞k=1 that

E
n∑
k=0

ζk+1Ck+1 ≤ B0

for all n ∈ N. Thus, any consumption sequence must satisfy

E
∞∑
k=0

ζk+1Ck+1 ≤ B0. (A.11)

In addition, because the market in our model is complete, any sequence of consumptions satis-

fying (A.11) can be financed by trading, i.e., there exists an accompanying process ∆t, t ≥ 0,

so that Bt ≥ 0 for all t. Therefore, to prove optimality of
{
C∗k+1

}∞
k=0

, we only need to prove

that the agent gets more utility from
{
C∗k+1

}∞
k=0

than any other sequence {Ck+1}∞k=0 satisfying

(A.11).

It is straightforward to verify that

U
(
IU (y)

)
− yI(y) ≥ U(x)− xy, ∀x ≥ 0, y > 0. (A.12)

Indeed, given any y > 0, from the first and second order derivatives of the function fy(x) ,

U(x)− xy, one can see that fy(x) achieves its maximum over x ≥ 0 when x = IU (y), which is

the left hand side of (A.12). Let {Ck+1}∞k=0 satisfy (A.11). Relations (A.4), (A.5), (A.12) and
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(A.11), used in that order, imply

E
∞∑
k=0

βkTU
(
C∗k+1

)
=E

∞∑
k=0

βkTU

(
IU

(
λ

βkT
ζk+1

))
+ λ

{
B0 − E

∞∑
k=0

ζk+1IU

(
λ

βkT
ζk+1

)}

=E
∞∑
k=0

βkT

{
U

(
IU

(
λ

βkT
ζk+1

))
− λ

βkT
ζk+1IU

(
λ

βkT
ζk+1

)}
+ λB0

≥E
∞∑
k=0

βkT

{
U(Ck+1)− λ

βkT
ζk+1Ck+1

}
+ λB0

=E
∞∑
k=0

βkTU(Ck+1) + λ

{
B0 −

∞∑
k=0

ζk+1Ck+1

}

≥E
∞∑
k=0

βkTU(Ck+1).

�

A.1 Power Utility

We apply Theorem A.1 to the case when the trader’s utility is given by the power function,

namely (2.6) or (2.7). Then

IU (z) = z−
1
p ,

and (A.5) becomes

B0 = E
∞∑
k=0

ζk+1

(
λ

βkT
ζk+1

)− 1
p

= λ−
1
p

∞∑
k=0

β
k
p

T Eζ
1− 1

p

k+1 (A.13)

= λ−
1
p

∞∑
k=0

β
k
p

T exp

{
θ2(k + 1)

2

(
1− 1

p

)(
−1

p

)}

= λ−
1
p

exp
{
θ2(1−p)

2p2

}
1− β

1
p

T exp
{
θ2(1−p)

2p2

} ,
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where we have used Lemma B.1 and Assumption (3.14). From (A.13) We conclude that

λ−
1
p =

B0∑∞
k=0 β

k
p

T Eζ
1− 1

p

k+1

.

Returning to (A.4), we see that

C∗k+1 =

(
λ

βkT
ζk+1

)− 1
p

=
B0∑∞

k=0 β
k
p

T Eζ
1− 1

p

k+1

β
k
p

T ζ
− 1
p

k+1.

Therefore the optimal value for the trader is

E
∞∑
k=0

βkTU(C∗k+1)

=E
∞∑
k=0

βkT
1− p

C∗k+1
1−p

=E
∞∑
k=0

βkT
1− p

B1−p
0(∑∞

j=0 β
j
p

T Eζ
1− 1

p

j+1

)1−p β
k(1−p)
p

T ζ
− 1−p

p

k+1

=
B1−p

0

1− p

 ∞∑
j=0

β
j
p

T Eζ
1− 1

p

j+1

p−1

E
∞∑
k=0

β
k
p

T Eζ
1− 1

p

k+1

=
B1−p

0

1− p

( ∞∑
k=0

β
k
p

T Eζ
1− 1

p

k+1

)p

=
B1−p

0

1− p

exp
{
θ2(1−p)

2p

}
(

1− β
1
p

T exp
{
θ2(1−p)

2p2

})p
=
B1−p

0

1− p
A∗1,

where

A∗1 =
exp

{
θ2(1−p)

2p

}
(

1− β
1
p

T exp
{
θ2(1−p)

2p2

})p
is given by (3.15). With this we have provided a simpler derivation of Theorems 4.3 and 4.4.
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A.2 Logarithmic Utility

In this section, we give the simpler derivation of Theorem 4.6 similarly as in the previous section.

We apply Theorem A.1 to the case when the trader’s utility is given by the power function,

namely (2.8). Then

IU (z) =
1

z
,

and (A.5) becomes

B0 = E
∞∑
k=0

ζk+1 ·
1

λ
βkT
ζk+1

=
1

λ

∞∑
k=0

βkT

=
1

λ(1− βT )
.

Then we have

λ =
1

B0(1− βT )
.

Returning to (A.4), we see that

C∗k+1 =
1

λ
βkT
ζk+1

=
B0(1− βT )βkT

ζk+1
.

Here we again make the observation that the optimal consumption for logarithmic utility is the

same as the one for power utility with p = 1.
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Now we calculate the optimal value of the trader with logarithmic utility.

E
∞∑
k=0

βkTU(C∗k+1)

=E
∞∑
k=0

βkT log

(
B0(1− βT )βkT

ζk+1

)

=E
∞∑
k=0

βkT

[
log
(
B0(1− βT )βkT

)
−
(
−θWk+1 −

1

2
θ2(k + 1)

)]

=

(
logB0(1− βT ) +

θ2

2

) ∞∑
k=0

βkT +

(
log βT +

θ2

2

) ∞∑
k=0

kβkT

=

(
logB0(1− βT ) +

θ2

2

)
1

1− βT
+

(
log βT +

θ2

2

)
βT

(1− βT )2

=A∗1 logB0 +A∗2,

where

A∗1 =
1

1− βT

A∗2 =
θ2

2(1− βT )2
+

1

1− βT
log(1− βT ) +

βT
(1− βT )2

log βT

are given by (3.36) and (3.37), respectively. With this we have provided a simpler derivation of

Theorem 4.6.

B Some Useful Results

In this section, we present some technical results that are useful in the calculations and proofs

in this thesis.

Lemma B.1. For ζt as defined in (A.3), and any constant a,

E [ζat ] = exp

{
θ2t

2
a(a− 1)

}
. (B.14)
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Proof:

E [ζat ] = E
[
exp

{
−aθWt −

a

2
θ2t
}]

= E
[
exp

{
−aθWt −

1

2
(aθ)2t

}
+
θ2t

2
a(a− 1)

]
= exp

{
θ2t

2
a(a− 1)

}
.

�

Notice that ζ1 = Z1, where Z1 is defined in (2.10) with k = 1. Then we have the following

Corollary:

Corollary B.2. For Z1 as defined in (2.10) with k = 1, and any constant a,

E [Za1 ] = exp

{
θ2

2
a(a− 1)

}
. (B.15)

Lemma B.3. Let Z1 be as defined in (2.10) with k = 1. Let P and Q be the physical measure

and the risk-neutral measure, respectively with dQ
dP = Z1. Then 1

Z1
has the same distribution

under Q as Z1 under P.

Proof:

1

Z1
= exp

{
θW1 +

1

2
θ2
}

= exp

{
θWQ

1 −
1

2
θ2
}
,

where WQ
t , Wt + θt, 0 ≤ t ≤ 1 is a Brownian motion under Q. Therefore 1

Z1
has the same

distribution under Q as Z1 under P.

�
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C When the trader becomes impatient

In Section 6.2, we observe that β∗B decreases with respect to βT , which implies that as the

trader becomes more patient, there is more need for the bank to escrow. This may not seem

intuitive since it is not obvious what incentive the escrowing provides when the trader is already

patient. We have discussed heuristically the reasons driving this behavior in Section 6.2. In

this Appendix, we present additional analysis illustrating the extreme case when βT goes down

to 0 and all other parameter values remain fixed.

Consider the case of escrowing the bonus with p 6= 17. Equation (3.56), which characterizes

the constant η∗, is equivalent to(
E

[(
1−

(
Z1

η∗

) 1
p

)+
])p

E
[(

1− Z1

η∗

)+]
+ 1

η∗

= βT

(
E
[
Z

1
p

1

])p
. (C.16)

As βT ↓ 0, the right-hand side of (C.16) converges to 0. In the proof of Corollary 3.9, we have

shown that the left-hand side of (C.16) is strictly increasing with respect to η∗, and goes to 0

when η∗ → 0. Therefore we have

lim
βT ↓0

η∗ = 0. (C.17)

7Similarly as in Chapter 5, in this section, we only reference the optimal trading strategy with power utility.

The optimal trading strategy with logarithmic utility will have the similar behavior.
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Moreover, (3.56) also implies that

βT
η∗

=
1(

E
[
Z

1
p

1

])p ·
(
E

[(
1−

(
Z1

η∗

) 1
p

)+
])p

E [(η − Z1)+] + 1

≤

(
E

[(
1−

(
Z1

η∗

) 1
p

)+
])p

(
E
[
Z

1
p

1

])p .

As η∗ → 0, the upper bound converges to 0. Therefore

lim
βT ↓0

βT
η∗

= 0. (C.18)

From (3.57) and (C.17) we have

lim
βT ↓0

Ã∗1 = 1. (C.19)

If the trader begins with initial bonus B0 = b, according to Lemma 3.8, in the first period,

Ỹ ∗ = b
[
(η∗Z1)−

1
p

(
1 + (βT Ã

∗
1)

1
p

)
− 1
]
I{η∗Z1≥1} + b(η∗Z1)−

1
p (βT Ã

∗
1)

1
p I{η∗Z1≤1}

≤ b(βT Ã∗1)
1
p + b

(
βT Ã

∗
1

η∗

) 1
p

Z
− 1
p

1 ,

C̃∗ = b(η∗Z1)−
1
p I{η∗Z1≥1} + bI{η∗Z1≤1}

≤ b,

B̃∗ = b

(
βT Ã

∗
1

η∗

) 1
p

Z
− 1
p

1 .

From (C.17), (C.18) and (C.19), we have the almost sure convergences

lim
βT ↓0

Ỹ ∗ = 0, lim
βT ↓0

C̃∗ = b, lim
βT ↓0

B̃∗ = 0. (C.20)

Because E
[
Z
− 1
p

1

]
<∞, these convergences are also in L1. This shows that in the extreme case,

as βT ↓ 0, the optimal strategy for the trader would be no trading and consuming all the initial

escrow balance in one period.
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Recall that the bank’s total expected discounted revenue when bonuses are escrowed,

given by (5.5), is

ṽB∗(b) =
(1− γ)βBb

1− βB
(
βT Ã∗1
η∗

) 1
p

exp
{
θ2(1+p)

2p2

}E [ 1

γ
Ỹ ∗
]
.

From (C.17) - (C.20), we conclude that

lim
βT ↓0

ṽB∗(b) = 0. (C.21)

On the other hand, when bonuses are not escrowed, the bank’s total expected discounted

revenue, given by (5.4), is

vB
∗(b) =

(1− γ)βBb

1− βBβ
1
p

T exp
{
θ2(1+p)

2p2

}E [ 1

γ
Y ∗
]
,

where by Lemma 3.1, Y ∗ does not depend on βT . Therefore,

lim
βT ↓0

vB
∗(b) = (1− γ)βBbE

[
1

γ
Y ∗
]
> 0. (C.22)

Thus for sufficiently small βT , in other words, when the trader is extremely impatient, the bank

has higher expected revenue if it does not escrow the trader’s bonuses.
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D Figures

Figure 1: Plot of βB , βB and β∗B against βT with θ = 1 and p = 2, 3, 4. The curves produced with

the same value of θ are shown in the same color (blue, red, or green). The curves corresponding

to the three quantities βB , βB and β∗B are plotted with the solid line, dashed line, and solid

line with circle, respectively. For detailed discussion see Section 6.2
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Figure 2: Plot of βB , βB and β∗B against βT with θ = 2 and p = 2, 3, 4. The curves produced with

the same value of θ are shown in the same color (blue, red, or green). The curves corresponding

to the three quantities βB , βB and β∗B are plotted with the solid line, dashed line, and solid

line with circle, respectively. For detailed discussion see Section 6.2
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Figure 3: Plot of βB , βB and β∗B against βT with θ = 2 and p = 5, 8, 10. The curves produced

with the same value of θ are shown in the same color (blue, red, or green). The curves corre-

sponding to the three quantities βB , βB and β∗B are plotted with the solid line, dashed line,

and solid line with circle, respectively. For detailed discussion see Section 6.2
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Figure 4: Plot of βB , βB and β∗B against βT with θ = 3 and p = 2, 3, 4. The curves produced with

the same value of θ are shown in the same color (blue, red, or green). The curves corresponding

to the three quantities βB , βB and β∗B are plotted with the solid line, dashed line, and solid

line with circle, respectively. For detailed discussion see Section 6.2

.
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Figure 5: Plot of βB , βB and β∗B against βT with θ = 3 and p = 5, 8, 10. The curves produced

with the same value of θ are shown in the same color (blue, red, or green). The curves corre-

sponding to the three quantities βB , βB and β∗B are plotted with the solid line, dashed line,

and solid line with circle, respectively. For detailed discussion see Section 6.2

.
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