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Abstract

In this paper, we discuss the concept of stable polynomials. We go
through some properties of these polynomials and then two applications:
Gurvits’ proof of the van der Waerden Conjecture and a proof that there
exists an infinite family of d–regular bipartite Ramanujan graphs.
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1 Real Stable Polynomials, and basic properties

In this paper we will discuss the concept and use of real stable polynomials, a
seemingly simple concept that has lead to complex and involved results. Define
the subspaces z ∈ C+ if Re(z) ≥ 0 and z ∈ C++ if Re(z) > 0. Also Cn+ =
{(z1, . . . , zn) : zi ∈ C+, 1 ≤ i ≤ n} and Cn++ = {(z1, . . . , zn) : zi ∈ C++, 1 ≤
i ≤ n}. An n variable polynomial p(z1, . . . , zn) is called real stable if it has real
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coefficients and all of its roots lie in the closed left half plane. Namely, we say
that p(z1, . . . , zn) is real stable if p(z1, . . . , zn) 6= 0 for all (z1, . . . , zn) ∈ Cn++.

The above definition of stability is in fact only one of many definitions found
in mathematical literature. Generally, a stable polynomial can refer to any
polynomial that does not have roots in a defined region of the complex plane.
The single variable version of our definition is called a Hurwitz polynomial.
Another type is called Schur polynomials, which are multivariable polynomials
that contain all of their roots in the open unit disk, for example 4z3+3z2+2z+1.
Also of some interest are polynomials that have no roots in the upper half of
the complex plane (we will be looking at these in Section 3).

It also should be noted that it is easy to transform a polynomial under one
definition of stability into that of another, as we can use a transformation to
map the defined subset with no roots onto the other. For example we can test
to see of a polynomial P (x) of degree d is a single variable Schur polynomial by
examining the polynomial:

Q(z) = (z − 1)dP

(
z + 1

z − 1

)
.

If Q(z) is Hurwitz stable, then P (z) is a Schur polynomial, as the Möbius
transformation z → z+1

z−1 maps the unit disk to the right half plane.

1.1 Examples

A basic example of a real stable polynomial is

x2 + 4x+ 4

which factors to (x+ 2)2.
A multivariate example of a stable polynomial is

1 + xy.

Call x = r1e
iθ and y = r2e

iφ for r1, r2 > 0 and −π < θ, φ ≤ π. In order to be a
root of this polynomial θ + φ = π or θ + φ = −π. However for eiψ ∈ C++ it is
the case that −π2 < ψ < π

2 , meaning that there is no solution to 1 +xy in C2
++,

therefore this polynomial is real stable.
A more complicated example is that of a Kirchhoff Polynomial, which is

strongly related to a method of finding the number of spanning trees of a graph
in polynomial time. Let G = (V,E) be a connected graph with vertex set V
and edges E. Each edge e is given a variable xe. The Kirchhoff polynomial is

Kir(G,x) =
∑
T

∏
e

xe

where x is the set of variables xe and T signifies the set of spanning trees of G.
As an example of the Kirchoff polynomial, take the graph in Figure 1 with

the given variables. The Kirchhoff polynomial is

x1x2x3 + x1x2x4 + x1x3x5 + x1x4x5 + x2x3x4 + x2x3x5 + x2x4x5 + x3x4x5
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Figure 1: An example of the Kirchhoff polynomial

Proposition 1.1. For a connected graph G, the Kirchhoff Polynomial Kir(G,x)
is real stable.

We assume that G is connected considering that otherwise Kir(G,x) = 0.
For a graph G = (V,E) call n = |V | the number of vertices of G. We number

the vertices v1, . . . , vn and give each edge e ∈ E the variable xe. We define the
n× n adjacency matrix A(x), such that ai,j = xe if and only if there is an edge
between vi and vj with variable xe. Otherwise ai,j = 0.

We define the diagonal matrix D(x) as an n×n matrix such that ai,i =
∑
xf

for f ∈ F where F is the set of edges adjacent to the vertex vi. If i 6= j then
ai,j = 0.

We define the Laplacian matrix L(x) = D(x) − A(x). We will now use a
result that can be found in various sources such as [2] and [24].

Lemma 1.2 (Matrix-tree theorem). Kir(G,x) of a graph is equal to the deter-
minant of the Laplacian matrix L(x) with one row and column deleted.

For example, using the graph in Figure 1, we find that the Laplacian is:
x1 + x4 + x5 −x5 −x1 −x4
−x5 x2 + x5 −x2 0
−x1 −x2 x1 + x2 + x3 −x3
−x4 0 −x3 x3 + x4


By deleting a row and column, for example the third, and calling this reduced
matrix L3(x) we have that

det(L3(x)) = ((x1 + x4 + x5)(x2 + x5)− x25)(x3 + x4)− (x2 + x5)x24

= x1x2x3 + x1x2x4 + x1x3x5 + x1x4x5 + x2x3x4 + x2x3x5 + x2x4x5 + x3x4x5

= Kir(G,x)

We can now proceed with the proof of the above proposition.

Proof. Call x = {xe}e∈E . L(x) is the Laplacian matrix with each variable xe
assigned to edge e. Namely L(x) = BXBT , where B is the directed edge vertex
matrix for any orientation of G and X is a diagonal matrix of the xe values.
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Delete the nth row and column of the Laplacian matrix. Call this new matrix
Ln(x). By the matrix-tree theorem, we have that if Kir(G,x)=0 for some x in
Cn++, then det(Ln(x)) = 0. Therefore there must be a nonzero vector φ such
that φLn(x) = 0. We can extend this by adding a 0 in the nth column. Call
this extended vector (φ, 0). We must then have that (φ, 0)L(G,x) = (0, s) for
some s ∈ C. Therefore

(φ, 0)L(x)(φ, 0)∗ = 0.

Moreover

(φ, 0)L(x)(φ, 0)∗ = (φ, 0)BXBT (φ, 0)∗ =
∑
e∈E

∣∣(BT (φ, 0)∗
)∣∣2 xe.

Because G is connected, we know that B is invertible, so BT (φ, 0)∗ 6= 0.
Therefore the only way that this sum can be 0 is if there is some e such that
Re(xe) ≤ 0, meaning that x /∈ C++ and Kir(G,x) is real stable.

One final example will require use of Hurwitz’s theorem [26].

Theorem 1.3 (Hurwitz’s theorem). Call U ⊂ Cm a connected open set. Call
fn : n ∈ N a sequence of analytic functions that are non-vanishing on U . If
the fn converge to a limit function f on compact subsets of U , then f is non-
vanishing on U or identically zero.

An n× n matrix A is called Hermitian if ai,j = aj,1. Namely, A is equal to
its own conjugate transpose. Moreover, an n× n Hermitian matrix A is called
positive semidefinite if xTAx ∈ R+ for any 1 × n column vector x with real
components.

Proposition 1.4. For 1 ≤ i ≤ m, assign an n×n matrix Ai and a variable xi.
Call x = (x1, . . . , xn). If each Ai is positive semidefinite and B is a Hermitian
matrix, and if we define f(z) as

f(z) = det(A1z1 +A2z2 + . . .+Amzm +B)

then f(z) is stable in the upper half of the complex plane. Namely if Im(zi) > 0
for 1 ≤ i ≤ m, then f(z) 6= 0.

Proof. Call f̄ the coefficient-wise complex conjugate of f . We know that Āi =
Ai

T and B̄ = BT , so we know that f = f̄ . Therefore f is a real polynomial.
Because we can write each Ai as the limit of positive definite matrices, we need
only prove that if each of the Ai is positive definite then f is real stable, and
then proceed by using Hurwitz’ theorem. Consider vector z ∈ Cm++ = a + bi.

Define Q =
∑m

i=1biAi and H =
∑m

i=1aiAi + B. Because Q is positive
definite it also has positive definite square-root. H is Hermitian, so

f(z) = det(Q) det(iI +Q−1/2HQ−1/2).

Since det(Q) 6= 0, if f(z) = 0, then −i is an eigenvalue of Q−1/2HQ−1/2.
However this is impossible as Q−1/2HQ−1/2 cannot have imaginary eigenvalues.
Therefore f(z) 6= 0, so f is stable in the upper half of the complex plane.
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1.2 Transformations

Stable polynomials are useful tools, as they maintain their stability under many
transformations with each other. Here are two important but quick properties
that we will use later on.

Theorem 1.5. Call f and g stable polynomials and λ ∈ C∗.

(1) fg is stable

(2) λf is stable

Proof. For (1), note that the roots of fg are simply the roots of f and the roots
of g. Therefore if f and g are stable, then so is fg.

For (2), λf has the same roots as f .

For composition of functions, if f and g are stable and we desire f(g(x))
to also be stable, we must guarantee that g preserves the right half plane. For
example if g is the function g(z) = 1/z, then as g(C++) = C++, we know that
f(g(z)) is real stable.

1.2.1 Real-part-positive functions

Call D a domain in Cn and f : D → C a function analytic on D. f is called
real-part-positive if Re(f(x)) ≥ 0 for all x ∈ D. Similarly, f is called strictly
real-part-positive if Re(f(x)) > 0.

Proposition 1.6. Call D a domain in Cn. Define a function f : D → C which
is analytic and real-part-positive. Then either f is strictly real-part-positive or
f is an imaginary constant.

Proof. By the open mapping theorem, we know that f(D) is either open or
f is constant. If f(D) is open, then the image must be contained in C++

and therefore f is strictly real-part-positive. If f(D) is a constant, then either
Re(f(D)) = 0, meaning f is purely imaginary, or Re(f(D) > 0), meaning f is
strictly real-part-positive.

Proposition 1.7. Call D a domain in Cn. Define f and g as analytic on
D. Assume that g is nonvanishing on D and f/g is real-part-positive on D.
Then either f is non vanishing or identically zero. In particular, call P and
Q polynomials in n variables with Q 6≡ 0. If Q is stable and P/Q is real-part-
positive on Cn++, then P is stable.

Proof. By Proposition 1.6 we know that f/g is a constant function or is strictly
real-part-positive. If it is a constant, then it is identically 0 (if (f/g)(D) = 0) or
is nonvanishing if (f/g)(D) = c where c 6= 0. If f/g is strictly real-part-positive,
then f is nonvanishing.
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However this property is not simply limited to when g is non vanishing. We
call the set Z(g) the set such that z ∈ Z(g) if g(z) = 0. Z(g) is a closed set
and has empty interior if g 6≡ 0, so we can use Proposition 1.7 on the open set
D\Z(g). This may seem limiting, but by the following proposition, it is in fact
general.

Proposition 1.8. Call P and Q non trivial polynomials in n complex variables
with P and Q relatively prime over C. Call D a domain in Cn. If P/Q is real
part positive on D\Z(Q) then Z(Q) ∩D = ∅.

Proof. Assume that there is a z0 ∈ D such that Q(z0) = 0. If P (z0) 6= 0,
then Q/P is analytic in some neighborhood U of z0 and is non constant, so
by the open mapping theorem, (Q/P )(U\Z(Q)) contains a neighborhood of 0.
Call this neighborhood V . Therefore (Q/P )(U\Z(Q)) contains V \{0}, which
contradicts the assumption that P/Q is real-part-positive on D\Z(Q).

If P (z0) = 0, then from [23] 1.3.2 we know that for every neighborhood U
of z0, we have (P/Q)(U\Z(Q)) = C, which once again violates the assumption
that P/Q is real-part-positive on D\Z(Q).

2 The Permanent

Even though they are a simple concept, real stable polynomials prove useful in
a variety of ways. What we will show here is not the first use of real stable
polynomials, but nevertheless, this, the proof given by Leonid Gurvits concern-
ing the van der Waerden’s conjecture, provided a unique look at how to apply
them.

The permanent of a square matrix A is as follows. Take a single element
from each row of A. Multiply all of your chosen numbers together. Then add
all possible permutations of this action. Formally, the permanent of a matrix A
is

perA =
∑
π∈Sn

n∏
i=1

ai,π(i)

for all possible Sn. For example, taking an n × n matrix where every element
is 1, the permanent is n!, considering each product taken is 1 and there are n!
possible products.

The permanent, like the determinant, is a function that can be performed
on square matrices. However, unlike the determinant, which can be discovered
in polynomial time, finding the permanent is an NP-complete problem.

2.1 The van der Waerden Conjecture

The renowned 20th century mathematician Bartel Leendert van der Waerden,
famous for writing the first modern algebra book, made a conjecture on the
permanent in 1926. The van der Waerden Conjecture states that for a square
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matrix A that is non-negative and doubly stochastic, (namely the sum of each
row and column is 1), the permanent is such that

per(A) ≥ n!

nn
,

the minimum being reached when all elements are 1/n. This remained an un-
solved problem for 50 years until a proof was conceived by Falikman and Ego-
rychev in 1980 and 1981 respectively. However, in 2008 many were surprised
by a simpler proof by Leonid Gurvits, who at the time was a researcher at Los
Alamos National Laboratory.

Gurvits used a perhaps counterintuitive approach to find the lower bound,
looking at a polynomial related to the permanent, using properties of real sta-
bility, and then proving the desired result about the original polynomial.

For a given matrix A, consider the polynomial pA such that

pA(x1, . . . , xn) :=

n∏
i=1

 n∑
j=1

ai,jxj

 .

Notice that the coefficient of x1x2 · · ·xn is exactly per(A). In other words,
if we define x = (x1, . . . , xn),

∂np(x)

∂x1
∂x2

. . . ∂xn

∣∣∣∣
x1=...=xn=0

= perA.

Therefore, our main objective is to deduce the desired lower bound on the
above derivative.

We now define a quantity called the capacity. The capacity of a polynomial
p is defined such that

cap(p) = inf p(x)

taken over x ∈ Rn such that
∏n
i=1 xi = 1.

Lemma 2.1. If A is doubly stochastic, then cap(pA) = 1.

Proof. We shall use the geometric-arithmetic mean inequality. Namely if λ1, . . . , λn,
x1, . . . , xn ∈ R+, and

∑n
i=1 λi = 1, then

n∑
i=1

λixi ≥
n∏
i=1

xλi
i .

We can now quickly deduce

pA(x) =

n∏
i=1

 n∑
j=1

ai,jxj

 ≥∏
i

∏
j

x
ai,j
j =

∏
j

∏
i

x
ai,j
j =

∏
j

x
∑

i ai,j
j =

∏
j

xj = 1.

Therefore cap(pA) ≥ 1. However pA(1, . . . , 1) = 1, so cap(pA) = 1.
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 a1,1 · · · a1,n
...

. . .
...

an,1 · · · an,n


 x1

...
xn


Figure 2: The polynomial p(x) takes the product of the inner product of each
row of A with (x1, . . . xn)T .

We define another quantity qi for 0 ≤ i ≤ n.

qi(x1, . . . , xi) =
∂n−ipA

∂xi+1 · · · ∂xn

∣∣∣∣
xi+1=···=xn=0

.

Note that q0 =per(A) and qn = pA(x).
The method we shall use is to prove that

per(A) ≥
n∏
i=1

g(min{i, λA(i)})

where g(0) = 1 and g(k) = (k−1k )k−1 for k = 1, 2, . . . and λA(i) is the number
of non zeros in the ith column of A.

For the polynomial p(x1, . . . , xk), define the quantity

p′(x1, . . . , xk−1) =
∂p

∂xk

∣∣∣∣
xk=0

.

Note that qi−1 = q′i.
Before we can prove Gurvits’ inequality, we must prove an important rela-

tionship between cap(p) and cap(p′).

Theorem 2.2. Call p ∈ R+[x1, . . . , xn] a real stable polynomial that is ho-
mogenous of degree n. Then either p′ ≡ 0 or p′ is real stable. Moreover
cap(p′) ≥ cap(p)g(k), where k is the degree of xn in p.

In order to obtain this result, we must use the following lemma.

Lemma 2.3. Define p ∈ C[x1 . . . , xn] as a real stable and homogenous polyno-
mial of degree m. Then if x ∈ Cn+, then |p(x)| ≥ |p(Re(x))|.

Proof. By continuity we can assume that x ∈ Cn++. Because p is real stable,
we know that p(Re(x)) 6= 0. Therefore if we consider p(x+ sRe(x)) a degree m
polynomial in s, we can write it as

p(x+ sRe(x)) = p(Re(x))

m∏
i=1

(s− ci)

for some c1, . . . , cm ∈ C. For each 1 ≤ j ≤ m, we know that as p(x+cjRe(x)) =
0, x+ cjRe(x) /∈ Cn++ since p is real stable.
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Call cj = aj + bji for aj , bj ∈ R. Then because x + cjRe(x) /∈ Cn++, by
looking at the real part of this expression we know that (1 + aj)Re(x) < 0, so
aj < −1. Therefore |cj | ≥ 1, so

|p(x)| = |p(x+ 0Re(x))| = |p(Re(x))|
m∏
i=1

|ci| ≥ |p(Re(x))|.

What we wish to prove is the following:

Theorem 2.4. Let p ∈ R+[x1, . . . , xn] be a real stable polynomial that is ho-
mogenous of degree n. Then for y such that

∏
Re(yi) = 1, y ∈ Cn−1++

(1) if p′(y) = 0 then p′ ≡ 0.

(2) If y is real, then cap(p)g(k) ≤ p′(y)

With this, p′ is real stable or equivalent to 0, as by (2) it must be greater
than or equal to 0 when y is real, and if p′(y) = 0 then by (1) p′ ≡ 0. Therefore
this theorem proves Theorem 2.2.

Proof. First we will prove that for t ∈ R++

cap(p) ≤ p(Re(y), t)

t
.

Call λ = t−1/n and x = λ(Re(y), t). Note that
∏n
i=1 xi = λn

(∏n−1
i=1 Re(yi)

)
t =

1. Then, as p is homogenous of degree n, we have

cap(p) ≤ p(x) = λnp(Re(y), t) =
p(Re(y), t)

t
.

We will now prove the theorem in 3 different cases. For the first case,
assume that p(y, 0) = 0. Then 0 = |p(y, 0)| ≥ |p(Re(y), 0)| ≥ 0. Therefore
p(Re(y), 0) = 0.

From this we have that

p′(y) = lim
t→0+

p(y, t)− p(y, 0)

t
= lim
t→0+

p(y, t)

t

and

p′(Re(y)) = lim
t→0+

p(Re(y), t)− p(Re(y), 0)

t
= lim
t→0+

p(Re(y), t)

t
.

By Lemma 2.3, we know that p(Re(y), t) ≤ |p(y, t)| for t ≥ 0. Therefore

cap(p) ≤ lim
t→0+

p(Re(y))

t
= p′(Re(y)) ≤ lim

t→0+

|p(y, t)|
t

= |p′(y)|.

Therefore, if p′(y) = 0, then p′(Re(y)) = 0. As all of the coefficients of p
are non-negative, this means that p′ ≡ 0. Thus we have (1). We have (2) as
g(k) ≤ 1 regardless of k.
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For the second case, assume that the degree of t in p is at most 1. This
means that the degree of t in p(Re(y), t) is at most 1 as p(Re(y), t) ≤ |p(y, t)|.
By L’Hôpital’s Rule we know that

lim
t→∞

p(y, t)

t
= p′(y) and lim

t→∞

p(Re(y), t)

t
= p′(Re(y)).

Therefore, using once again the result from above,

cap(p) ≤ lim
t→∞

p(Re(y), t)

t
= p′(Re(y)) ≤ lim

t→∞

|p(y, t)|
t

= |p′(y)|.

(2) follows immediately. (1) does as well, as if p′(y) = 0 then p′(Re(y)) = 0, so
all the coefficients must be 0.

Finally the third case comprises all other cases, namely when p(y, 0) 6= 0
and degt(p) ≥ 2.

Because p(y, 0) is nonzero, we can write p(y, t) as a polynomial in t. By
defining k = degt(p), we can rewrite the polynomial as

p(y, t) = p(y, 0)

k∏
i=1

(1 + ait).

for some a1, . . . , ak ∈ C. Therefore p′(y) = p(y, 0)
∑k
i=1 ai. Also because the

degree of t is at least 2, we know that there must be at least one aj 6= 0. Define
the cone of a set of numbers such that

cone{y1, . . . , yn} = z ∈ C : z =

n∑
i=0

ciyi for ci ∈ R+.

We now claim that a−1j ∈ cone{y1, . . . , yn}. Assume not. Then there is

some λ ∈ C such that Re(λa−1j ) < 0 and Re(λyi) > 0 for each 1 ≤ i ≤ n − 1.

Therefore (λy,−λa−1j ) ∈ Cn++. However we know that

p(λy,−λa−1j ) = λnp(y, 0)

k∏
i=1

(1− aia−1j ) = 0

which is a contradiction as p is stable. Therefore a−1j ∈ cone{y1, . . . , yn} and

Re(aj) > 0. Thus p′(y) = p(y, 0)
∑k
i=1 ai 6= 0 so in this case p′ is real stable

and gives us (1).
For (2), assume that y is real. Therefore each ai is real non-negative. Let

us assume that p(y, 0) = 1 and set t = k
(k−1)p′(y) .

We shall now use the geometric-arithmetic mean inequality one more time.
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Figure 3: The non-negative linear combination of the yi forms a cone, marked
as the dotted region in the complex plane. Clearly if a−1j is not in the cone of
y1 . . . yn−1 then we can find a λ ∈ C that would give us our desired rotation.

p(y, t) =

k∏
i=1

(1 + ait) =

 k

√√√√ k∏
i=1

(1 + ait)

k

≤

(
1

k

k∑
i=1

(1 + ait)

)k
=

(
1

k
(k + p′(y)t)

)k
=

(
1 +

1

k − 1

)k
=

(
k

k − 1

)k
.

Therefore we have that

cap(p) ≤ p(y, t)

t
≤ 1

t

(
k

k − 1

)k
= p′(y)

(
k

k − 1

)k−1
giving us the second desired property.

Having proved this theorem, we can now apply this directly to the perma-
nent.

Theorem 2.5. Call λA the number of nonzero entries in the ith column of A.
If A is a non-negative doubly stochastic matrix, then

per(A) ≥
n∏
i=1

g(min{i, λA(i)}).
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Moreover,

per(A) ≥ n!

nn
.

Proof. Firstly note that pA(x) = 0 implies that 〈ai, x〉 = 0 for some i, meaning
that there is a zero row. Because A is doubly stochastic we know this cannot
be the case, therefore pA is real stable.

In qi, all nonzero terms that contain xi must be of the form xα1
1 · · ·x

αi
i xi+1 · · ·xn

in the polynomial pA(x). As pA(x) is homogenous of degree n, αi = degxi
(qi) ≤

i. Similarly in pA we know that degxi
(qi) ≤ λA, as a higher degree would involve

the multiplication of a 0 term and therefore have coefficient 0. Moreover, g is
monotone nonincreasing.

Therefore for 1 ≤ i ≤ n,

cap(qi−1) ≥ cap(qi)g(degxi
(qi)) ≥ cap(qi)g(min{i, λA(i)}).

Once again pA = qn and perA = q0. Moreover, from Theorem 2.1, cap(pA) =
1. Therefore by taking the above inequality iteratively n times, we have

per(A) ≥
n∏
i=1

(
i− 1

i

)i−1
=

n∏
i=1

i
(i− 1)i−1

ii
=

n!

nn

giving us the desired lower bound on the permanent.

3 Ramanujan Graphs

3.1 Graph Overview

We now move from the concept of matrices and the permanent into another
area of combinatorics, namely that of graph theory. Srinivasa Ramanujan, one
of the most accomplished mathematicians of the early 20th century, discovered
a number of results without the benefit of a formal mathematical education.
The result that we will focus on is not in fact discovered by Ramanujan, but
was based on his work. This is the concept of the Ramanujan graph.

Call a graph G = (V,E) d–regular if the number of edges incident to each
vertex v ∈ V is d. Moreover a graph is bipartite if there exist subsets X,Y ⊂ V
such that X ∪ Y = V and E ⊆ X × Y . Namely each edge in E is between a
vertex in X and a vertex in Y .

For a d–regular graph G, its adjacency matrix A(G) always has the eigen-
value d. If G is bipartite, then −d is also an eigenvalue of A. We call d (and
−d if G is bipartite) the trivial eigenvalues of G. G is then called a Ramanujan
graph if all of its non trivial eigenvalues are between −2

√
d− 1 and 2

√
d− 1.

Ramanujan graphs are examples of expander graphs, which, intuitively speak-
ing, are graphs for which every small subset of vertices has a large set of vertices

12



Figure 4: Four examples of Ramanujan graphs

adjacent to it. Practical applications of this therefore include telephone and tele-
graph wiring. Interestingly, one of the ways that these graphs were first used
was to examine the ability for codes to be transmitted over noisy channels [17].

One question proposed is whether there is an infinite family of Ramanujan
graphs with a set degree d. It turns out that in fact there are infinite families
of bipartite Ramanujan graphs, and that the Ramanujan bound is the tightest
on the eigenvalues of the adjacency matrix that we can make for an infinite
regular family. One method of finding an infinite family of bipartite graphs uses
real stable polynomials. The advantage to finding an infinite family of bipartite
graphs is that the eigenvalues of the adjacency matrix of a bipartite graph are
symmetric around 0. Therefore we only need to prove one side of the bound.
For this chapter, we shall consider stability over the upper half plane as opposed
to the right half plane. Namely, for a polynomial p(z1, . . . , zn), p is referred to
as stable if p(z1, . . . , zn) when Im(zi) > 0 for 1 ≤ i ≤ n.

3.2 Bound of an Infinite Family

As motivation, we will show that this is in fact the tightest such that we can
create an infinite family of graphs.

Let G = (V,E) be a regular graph. λ0 ≥ λ1 ≥ . . . ≥ λn−1 represent the
eigenvalues of the adjacency matrix of G. We use Theorem 1 from [20].

Theorem 3.1. Let G = (V,E) be a graph of maximum degree d such that the
distance between two sets of edges is at least 2k + 2. Then

λ1 ≥ 2
√
d− 1

(
1− 1

k + 1

)
+

1

k + 1
.

13



Given this theorem, we can show that Ramanujan graphs provide the small-
est infinite family of d–regular graphs.

Corollary 3.2. Call Gdn an infinite family of d–regular graphs with n vertices.
Then

lim
n→∞

inf
G∈Gd

n

λ1 ≥ 2
√
d− 1.

Moreover Ramanujan graphs provide the smallest infinite family of d–regular
graphs.

Proof. As n→∞ but d stays the same, the highest distance between two series
of edges goes towards infinity. With n ≥ 2d2k+1 + 1, take an edge e1 ∈ V . As
G is d–regular, there are at most 2d2k+1 vertices that are distance 2k + 1 away
from v1. Thus there exists a vertex v′1 that is at least distance 2k + 2 from e1.
Call an edge of v′1 e

′
1. Now take an edge that has vertices apart from those of

e1 and e′1. This must also have a corresponding edge of at least distance 2k+ 2.
Therefore as n→∞ we can take k →∞, meaning that

lim
n→∞

inf
G∈Gd

n

λ1 ≥ 2
√
d− 1.

Therefore, the Ramanujan bound of |λ| ≤ 2
√
d− 1 for λ a nontrivial eigen-

value is in fact the best possible bound.

3.3 Bilu Linial Covers

We will now use as background an important result from Bilu and Linial concern-
ing the eigenvalues of a covering of a graph, and then apply this to Ramanujan
graphs.

Consider two graphs Ĝ and G. A map f : Ĝ → G is called a covering
map if f is surjective and locally isomorphic, namely for each v ∈ Ĝ there is a
neighborhood U 3 v such that f(U) is an isomorphism. We call Ĝ a covering
graph if there exists such a map f(z). We can also call Ĝ a lift of G. More
specifically, we can call Ĝ an n− lift of G if ∀v ∈ G, the fiber of v f−1(v) has
n elements.

We wish to find a covering of G that has eigenvalues satisfying the Ramanu-
jan property. To do so we will introduce a way to create a 2–lift of a graph. A
signing s : E → {1,−1} of G is an assignation of either a positive or negative
value to each edge. We define the adjacency matrix As(G) such that the entries
of As are s({i, j}) if {i, j} is an edge in A. Otherwise the entries are 0.

From Bilu and Linial, we find a 2–lift of a graph G in the following way.
Consider two copies of the original graph G1 and G2 and a signing of the graph
G. The edges in the fiber of edge {x, y} are {x0, y0} and {x1, y1} if s({x, y}) = 1,
but are {x0, y1} and {x1, y0} if s({x, y}) = −1.

We now use the important result from Bilu and Linial [1]:

14



Figure 5: An example of the Bilu Linial cover. We take two copies of the original
graph. All the edges assigned 1 in the original graph are preserved. If the edge
is assigned -1, then we delete the edge, and then connect the corresponding
vertices from one graph to the other.
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Lemma 3.3 (Bilu and Linial). Call G a graph with adjacency matrix A(G).
Call s a signing with adjacency matrix As(G), associated with a 2–lift Ĝ. Ev-
ery eigenvalue of A and every eigenvalue of As are eigenvalues of Ĝ, and the
multiplicity of the eigenvalues of Ĝ is the sum of the multiplicities in A and As.

Proof. Consider

2A(Ĝ) =

(
A+As A−As
A−As A+As

)
Call u an eigenvector of A. Then (u, u) is an eigenvector of Ĝ with the same

eigenvalue. Call us an eigenvector of As(G). Then (us,−us) is an eigenvector
of Ĝ with the same eigenvalue.

This will be the first tool we use towards our final result.

3.4 Interlacing

To prove that there is an infinite family by using real stable polynomials, we
must first provide a series of lemmas and definitions.

Firstly, we define the matching polynomial as follows. A matching M is a
subset E′ ⊂ E such that there do not exists two edges e1, e2 ∈ E′ such that
e1 = {v1, v′1}, e2 = {v2, v′2} such that v1 or v′1 = v2 or v′2. Namely, a matching
is a set of edges that do not contain common vertices. Call mi the number of
matchings of a graph G with i edges.

We define the matching polynomial as

µG(x) =
∑
i≥0

(−1)imix
n−2i.

We also must introduce the concept of interlacing, a relation between two
polynomials.

Call f(z) and g(z) two real rooted polynomials of degree d. We say g(z)
interlaces f(z) if the roots of the two polynomials alternate, with the lowest root
of g lesser than the lowest root of f . Namely if the roots of f are r1 ≤ . . . ≤ rd
and the roots of g are s1 ≤ . . . ≤ sd, g interlaces f if

s1 ≤ r1 ≤ s2 ≤ r2 ≤ . . . ≤ sd ≤ rd.

Also, if there is a polynomial that interlaces two functions f and g, then we
say they have a common interlacing. Although the following result from 3.51 of
Fisk’s book Polynomials, Roots and Interlacing [10] is relatively straightforward,
it features much computation:

Lemma 3.4. Call f(z) and g(z) two real polynomials of the same degree such
that every convex combination is real-rooted. Then f(z) and g(z) have a common
interlacing.

The second lemma we will use towards our objective is the following:
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Lemma 3.5. Call f(z) and g(z) two real polynomials of the same degree that
have a common interlacing and positive largest coefficients. The largest root of
f(z) + g(z) is greater than or equal to one of the largest roots of f(z) and g(z).

Proof. Call h(z) the common interlacing of f(z) and g(z). If α is the largest
root of f , β is the largest root of g and γ is the largest root of h, then we know
that γ ≤ α and γ ≤ β. Because f and g have positive largest coefficient, as
z →∞ then f, g →∞. Therefore f + g > 0 for all z ≥ max{α, β}. The second
largest roots of f and g are both at most γ, so here f(γ) ≤ 0 and g(γ) ≤ 0.
Therefore f(z) + g(z) ≤ 0 for z ∈ [γ,min{α, β}], and either α or β is at most
the largest root of f + g.

For k < m, a set S1× . . . ,×, Sm, and assigned values σ1 ∈ S1, . . . , σm ∈ Sm,
we define the polynomial

fσ1,σ2,...,σk
=

∑
σk+1,...,σm∈Sk+1×···×Sm

fσ1,...,σk,σk+1,...,σm
.

We also define

f0 =
∑

σ1,...,σm∈S1×···×Sm

fσ1,...,σm
.

We call the polynomials {fσ1,...,σm}S1,...,Sm an interlacing family if for all k
such that 0 ≤ k ≤ m−1 and for all (σ1, . . . , σk) ∈ S1×· · ·×Sk, the polynomials
{fσ1,...,σk,τ}τ∈Sk+1

have a common interlacing.

Theorem 3.6. Call {fσ1,...,σm
} an interlacing family of polynomials with pos-

itive leading coefficient. Then there is some σ1, . . . , σm ∈ S1, . . . , Sm such that
the largest root of fσ1,...,σm

is less than the largest root of f0.

Proof. The fα1
for α1 ∈ S1 are interlacing, so by 3.5, we know that one of the

polynomials has a root at most the largest root of f0. Proceeding inductively
we see that for every k and any σ1, . . . , σk there is a choice of αk+1 such that
the largest root of fσ1,...,σk,αk+1

is at most the largest root of fσ1,...,σk
.

3.5 The Upper Half Plane

Consider the family of polynomials fσ = det(xI − Aσ) taken over all possible
signings σ of the adjacency matrix A(G). We now wish to show these polyno-
mials form an interlacing family. The easiest way to do this is to prove that
common interlacings are equivalent to qualities of real-rooted polynomials. Thus
we will show that for all pi ∈ [0, 1], the following polynomial is real rooted:

∑
σ∈{±1}m

( ∏
i:σi=1

pi

)( ∏
i:σi=−1

(1− pi)

)
fσ(x).

This result would be equivalent towards finding an interlacing family if we
utilize Theorem 3.6 from [7]:
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Lemma 3.7. Let f1, f2, . . . , fk be real rooted polynomials with positive leading
coefficients. These polynomials have a common interlacing if and only if

k∑
i=1

λifi

is real rooted for all λi ≥ 0,
∑k
i=1 λi = 1.

We will begin in the following manner

Lemma 3.8. Given an invertible matrix A, two vectors a and b, and p ∈ [0, 1],
it is the case that

(1 + p∂u + (1− p)∂v) det(A+ uaaT + vbbT )
∣∣
u=v=0

= p det(A+aaT )+(1−p) det(A+bbT ).

Proof. The matrix determinant lemma, from various sources such as [15] tells
us that for a non-singular matrix and real value t,

det(A+ taaT ) = det(A)(1 + taTA−1a)

By taking a derivative in respect to t, we obtain Jacobi’s formula saying that

∂t det(A+ taaT ) = det(A)(aTA−1a).

Therefore

(1 + p∂u + (1− p)∂v) det(A+ uaaT + vbbT )
∣∣
u=v=0

(1)

= det(A)(1 + p(aTA−1a) + (1− p)(bTA−1b)) (2)

By the matrix determinant lemma, this quantity equals

pdet(A+ aaT ) + (1− p) det(A+ bbt)

We then use one of the main results from [3].

Lemma 3.9. Call T : R[z1, . . . , zn]→ R[z1, . . . , zn] such that

T =
∑

α,β∈Nn

cα,βz
α∂β

where cα,β ∈ R and is zero for all but finitely many terms. Then call

FT (z, w) =
∑
α,β

zαwβ .

T preserves real stability if and only if FT (z,−w) is real stable.

From this we can find a useful corollary.
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Corollary 3.10. For r, s ∈ R+ and variables u and v, the polynomial T =
1 + r∂u + s∂v preserves real stability.

Proof. We need only show that 1−ru−sv is real stable. To see this, consider if
u and v have positive imaginary part. Then 1− ru− sv has negative imaginary
part, so it is necessarily non-zero.

Theorem 3.11. Call a1, . . . , am and b1, . . . , bm vectors in Rn, p1, . . . pm real
numbers in [0, 1], and D a positive semidefinite matrix. Then

P (x) =
∑
S⊆[m]

(∏
i∈S

pi

)(∏
i/∈S

(1− pi)

)
det

(
xI +D +

∑
i∈S

aiai
T +

∑
i/∈S

bibi
T

)

is real rooted.

Proof. We define

Q(x, u1, . . . , um, v1, . . . , vm) = det

(
xI +D +

∑
i

uiaiai
T +

∑
i

vibibi
T

)
.

By Proposition 1.4, Q is real stable.
We want to show that if Ti = 1 + pi∂ui

+ (1− pi)∂vi then

P (x) =

(
m∏
i=1

Ti|ui=vi=0

)
Q(x, u1, . . . , um, v1, . . . , vm)

In order to do this, we will show that(
k∏
i=1

Ti|ui=vi=0

)
Q(x, u1, . . . , um, v1, . . . , vm)

equals

∑
S⊆[k]

(∏
i∈S

pi

) ∏
i∈[k]\S

(1− pi)

det

xI +D +
∑
i∈S

aiai
T +

∑
i∈[k]\S

bibi
T +

∑
i>k

(uiaiai
T + vibibi

T )


We will do so by induction on k. When k = 0 this is the definition of Q.

The inductive step is proved using Lemma 3.8. When we induct up to the case
where k = m we have proved the desired equality.

If we consider the stable function f(x1, . . . , xn), clearly the function
f(x1, . . . xn−1)|xn=z is real stable if Im(z) > 0. Therefore if we take z → 0, Hur-
witz’s theorem implies that if we set some variables of f to 0, we will maintain
real stability or the function will be zero everywhere. We then can use Corollary
3.10 to show that P (x) is real stable. As P (x) is real stable and a function of
one variable, it is real rooted.
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Showing that P (x) is real stable gives us the following result:

Theorem 3.12. The following polynomial is real rooted:

∑
σ∈{±1}m

( ∏
i:σi=1

pi

)( ∏
i:σi=−1

(1− pi)

)
fσ.

Proof. Call d the maximum degree of G. We will prove that

R(x) =
∑

σ∈{±1}m

( ∏
i:σi=1

pi

)( ∏
i:σi=−1

(1− pi)

)
det(xI + dI −As)

is real rooted, which would imply that our original polynomial is as well, con-
sidering their roots differ by d. Notice that dI−As is a signed Laplacian matrix
plus a non-negative diagonal matrix. Call eu the vector with a 1 in the ith row,
where i is the row associated with the vertex u in As. We then define the n×n
matrices L1

u,v = (eu − ev)(eu − ev)T and L−1u,v = (eu + ev)(eu + ev)
T . Call σu,v

the sign attributed to the edge {u, v}. We then have

dI −As =
∑

{u,v}∈E

Lσu,v
u,v +D

where D is the diagonal matrix where the ith diagonal entry is d − du, where
u is the ith column in As. D is non-negative, so it is positive semidefinite. We
set au,v = (eu − ev) and bu,v = (eu + ev). Therefore R(x) is

∑
σ∈{±1}m

( ∏
i:σi=1

pi

)( ∏
i:σi=−1

(1− pi)

)
det

xI +D +
∑

σu,v=1

au,va
T
u,v +

∑
σu,v=1

bu,vb
T
u,v


Therefore, R(x) must be real rooted by Theorem 3.11, so our original func-

tion is also real rooted.

Corollary 3.13. The polynomials {fσ}σ∈{±1}m form an interlacing family.

Proof. We wish to show that for every assignment σ1 ∈ ±1, . . . , σk ∈ ±1, λ ∈
[0, 1]

(λfσ1,...,σk,1 + (1− λ)fσ1,...,σk,−1) (x)

is real-rooted.
However to show this we merely use Theorem 3.12 with p1 = (1 + σi)/2 for

1 ≤ i ≤ k, pk+1 = λ and pk+2, . . . , pm = 1/2.

We can now provide the finishing touches.

Lemma 3.14. Call Kc,d a complete bipartite graph. Every non-trivial eigen-
value of Kc,d is 0.
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Proof. The adjacency matrix of this graph has trace 0 and rank 2, so besides
the necessary eigenvalues of ±

√
cd all eigenvalues must be 0.

For an n vertex graph G we now define the spectral radius ρ(G) such that

ρ(T ) = max{|λ1|, . . . , |λn|}

where the λi are the eigenvalues of A(G).
We borrow our preliminary result from [16] theorems 4.2 and 4.3, who showed

the following.

Lemma 3.15 (Heilmann). Call G a graph with universal cover T . Then the
roots of µG are real and have absolute value at most ρ(T ).

For the final pieces, we will use two results from C. Godsil. First, we now
use a result from Godsil’s book Algebraic Combinatorics, namely Theorem 5.6.3
from [11].

Proposition 3.16. Let T be a tree with maximum degree d. Then ρ(T ) <
2
√
d− 1.

For the second result, we can consider the characteristic polynomial of a
signing of a graph G. By averaging over all potential signings, we obtain a
value known as the expected characteristic polynomial. The second important
result from Godsil is Corollary 2.2 from [13].

Proposition 3.17. The expected characteristic polynomial of As(G) is µG(x).

Theorem 3.18. Call G a graph with adjacency matrix A and universal cover
T . There is a signing s of A such that all of the eigenvalues of the corresponding
matrix As are at most ρ(T ). Moreover if G is d–regular, there is a signing s
such that the eigenvalues are at most 2

√
d− 1.

Proof. By Corollary 3.13, there must be a signing s with roots at most those of
µG, and by Lemma 3.15 we know that these roots are at most ρ(T ). The second
part follows as the covering of a d–regular graph is the infinite d–regular tree,
which has spectral radius of 2

√
d− 1 from Proposition 3.16.

Theorem 3.19. For d ≥ 3, there is an infinite sequence of d–regular bipartite
Ramanujan graphs.

Proof. By Lemma 3.14 we know that Kd,d is Ramanujan. Call G a d–regular
bipartite Ramanujan graph. By Theorem 3.18 and Lemma 3.3 we know that
every d–regular bipartite graph has a 2–lift such that every non-trivial eigenvalue
has absolute eigenvalue at most 2

√
d− 1. The 2–lift of a bipartite graph must

be bipartite and the eigenvalues of a bipartite graph must be centered around
0, therefore this 2–lift is a regular bipartite Ramanujan graph.

Therefore by starting at Kd.d, we can create an infinite family of Ramanujan
graphs by taking the 2–lift of the previous graph to create a new one with twice
as many vertices that still satisfies the Ramanujan property and is d–regular
bipartite.
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We have thus found our infinite family of Ramanujan graphs. Once again, al-
though the method is slightly more haphazard, we see that the unique properties
of real stable polynomials have lead us to a surprising result of combinatorics.
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