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Abstract

From galaxies, to clusters, to the Cosmic Microwave Background, there is strong

gravitational evidence that the matter content of the Universe is not restricted to the

particles of the Standard Model. Specifically, observations indicate that there must

also be a large relic population of non-luminous Dark Matter. However, the character

of this Dark Matter remains unknown: in particular, to what extent does it interact

with the particles of the Standard Model, and with itself, through non-gravitational

means? We seek to answer this question in this thesis. We first present constraints

on the interaction of Dark Matter with quarks, through an analysis of data from

the XENON100 and CoGeNT Direct Detection experiments. In order to do so, we

develop a Bayesian technique, which aims to maximise the amount of information

we can extract from the data. After this, we discuss potential constraints on the

charge of Dark Matter due to its interactions with galactic magnetic fields, and the

potential for constraints on its self-annihilation cross section from Cosmic Ray data.

We also consider Dark Photons, which partner Dark Matter in many models, and

place bounds on their couplings to quarks using the quark-gluon plasma, produced in

heavy-ion collisions. We place emphasis on a multi-scale approach and on the robust

statistical treatment of Dark Matter data. Our main scientific result comes from the

analysis of CoGeNT data, where we show that there is less than 1σ evidence for DM

recoils, in contrast to previous claims. We show that the ‘region of interest’ derived

in previous analyses, is the result of a bias in the analysis from a particular choice

of functional fit for the energy-dependence of the fraction of bulk events. When we

account for this bias the preference for Dark Matter vanishes.
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Chapter 1

Introduction: Evidence for Dark

Matter

1.1 Dark Matter

Multiple observations at different scales are consistent with the presence of a massive

relic population of non-luminous particles. The presence of structure at galactic

scales disfavours the neutrino as a candidate, hence it seems necessary to introduce

at least one new particle into our frame-work, which we will call Dark Matter. Much

about this particle is unknown: does it interact with the particles of the Standard

Model? How much can we constrain its interaction with photons? What is the

mass of the Dark Matter particle? What is the spin of the Dark Matter particle?

Does it have any additional interactions and gauge symmetries? We will attempt

to address many of these questions in this thesis, and indeed we will focus on the

interactions of the Dark Matter with itself, and with the Standard Model. Before

we begin, we will summarise the evidence mentioned above, and follow with a firm

theoretical grounding and the development of a robust set of statistical tools with

which to look for Dark Matter.

1



1.2. Big Bang Cosmology 2

1.2 Big Bang Cosmology

In the standard cosmological model, the Universe, and all of space-time, began

approximately 13.7 billion years ago with the Big Bang. In this model, the Universe

started as being very hot and very small (possibly even singular), and both cooled

and expanded as it evolved through time. Here we list the major features of the

evolution of the Universe to the present day:

1. The early stages of the history of the Universe are difficult to study, with per-

haps the most dramatic event in this period being Inflation, a period of rapid

super-luminal expansion [5], which is theorised to have pushed the Universe

towards flatness (zero curvature).

2. One tends to describe the evolution of the Universe using the scale factor a,

which gives the size of the Universe relative to its current size. The rate of

change of the scale factor ȧ relative to its size is called the Hubble parameter,

given by H = ȧ/a.

We can describe the expanding Universe using General Relativity along with

the Friedmann-Robertson-Walker metric (FRW). This metric defines a line-

segment in (four-dimensional) spacetime ds2, assuming a Universe which is

isotropic and homogeneous on large-scales, and is given by,

ds2 = dt2 −R2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]
, (1.2.1)

where R(t) is the time-dependent scale size (a(t) = R(t)/R(t0)), and r is

the co-moving radial distance (θ and φ are angles in a co-moving spherical

coordinate system). For k = 0 the metric describes a flat Universe, while

otherwise k > 0 represents positive curvature (also known as a closed Universe,

analogous to the surface of a sphere) and k < 0 negative curvature.

From this metric, one can use the Einstein equations to derive the so-called

Friedmann equation [5], which describes the evolution of the Universe,

Ṙ2

R2
+
k2

R2
=

8πG

3
ρ. (1.2.2)
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From this, one can see that for a flat Universe the overall density ρ equals the

critical density, which is defined as ρc = 3H2
0/8πG, where H0 is the Hubble

parameter today and G is Newton’s gravitational constant. We define the relic

abundance Ω as the density of a species relative to the critical density.

3. Our first accurate picture of the early Universe comes from the Cosmic Mi-

crowave Background (CMB). This is radiation from a time when the Universe

became almost completely transparent due to the formation of neutral atoms

from electrons and nuclei. At its formation (a time known as recombination),

the CMB was a black body photon distribution at a temperature of 3000

kelvin, which has red-shifted now to another black body distribution with a

temperature of approximately 2.7 kelvin.

4. We can use the CMB to determine the composition of the Universe at a time

∼ 106 years into its lifetime. From this, one can extrapolate back to earlier

times to obtain a rough history of the Universe, using also that due to the

conservation of 4-momentum we know that ρ̇ = H(3ρ + 3P ), where P is

the pressure and ρ denotes density. Since radiation experiences a pressure

P = ρ/3, its density ρr scales with scale-factor as ∝ a−4. However for matter

P = 0 and so the matter density scales as ρm ∝ a−3. This implies that before

∼ 105 years into its life (but after inflation) the Universe was dominated by

radiation, and not matter.

5. It is at some point before this time (when the temperature cooled to the scale

of Electroweak symmetry breaking) that the gauge group1 of the Standard

Model (SM) was spontaneously broken, and the fundamental particles of the

SM were all formed.

6. The period after the formation of the CMB saw the formation of galactic clus-

ters due the collapse of over-densities under gravity. The collapse continued,

1This is the set of symmetries which describe all of the interactions of the particles we have

observed, i.e. the Standard Model.
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following with the formation of galaxies and then stars and planets, including

our own Earth and Sun.

1.3 What is the Universe made of?

To some extent, this question depends on the distance and energy scale being con-

sidered. The world immediately relevant to us is constructed of electrons, protons,

neutrons and photons.

However, upon closer inspection it is clear that the particle content of the local

Universe is more subtle and diverse. All of the particles discovered so far are con-

tained within the Standard Model of particle physics, and their interactions obey

the SU(3)×SU(2)×U(1) gauge group (the SM gauge group), which is broken spon-

taneously by the Higgs mechanism [6].

The experimental verification of the SM was to some extent completed with the

discovery of the Higgs boson [7, 8], but started long before with the discovery of the

W+/W− and Z0 bosons [9, 10], and the tauon [11], muon and the quarks and gluons

of quantum chromodynamics (QCD). However, there are also neutrinos, which are

light electrically-neutral particles, and, due to their non-zero (eV-scale) mass [12],

may constitute the first hint of beyond the Standard Model physics.

All of the above essentially describes the Universe at the current epoch and

within the confines of our own Solar System. We have good reason to believe that

the rest of the Universe should also be described by the Standard Model, due to

observations of many stars and galaxies other than our own. However, this may not

be entirely the case, and we must extend our discussion to larger distance scales,

beyond the confines of our own Solar System, in order to proceed.

1.4 Galactic scales

Almost all of the luminous matter in our own galaxy is distributed in a rotating

disc. The disc contains gas and other star systems which are constructed of the

same Standard Model matter as the Earth and Sun. Rather strangely, however, is
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the observation that matter towards the outskirts of the disc seems to be rotating

significantly faster2 then one would expect [13, 5]. This can be understood by

considering the circular rotation velocity vc(r) under Newtonian gravity,

vc(r) =

√
2GM(r)

r
, (1.4.3)

where r is the radial distance from the galactic centre and M(r) = 4π
∫
ρ(r)r2 dr,

the mass within a sphere of this radius. A measurement of vc for the Milky Way,

along with some candidate mass models, is shown in figure 1.1.

Figure 1.1: Rotation curve measurement of the Milky Way from [13], along with models for the

galactic disc, bulge and DM halo. The latter is a spherical distribution of Dark Matter which

surrounds the galactic disc (see text for details), and is required to give a good fit to the rotation

curve data.

As can be seen in figure 1.1, for large radii vc is observed to be roughly constant

with r and so can be fit by a matter component distributed spherically with density

ρ ∼ r−2. However, the luminous matter in the galaxy is distributed almost entirely

in the disc, with a density which drops approximately exponentially with radius [13].

Hence in order to fit these rotation curves we introduce an extra invisible matter

2The rotational velocity of the disc can be measured, for example, by the doppler shift of

spectral lines.
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component to the galaxy3. We will refer to this as Dark Matter or DM. Since the

Dark Matter is non-dissipative, unlike baryonic matter, it would form into a roughly-

spherical halo rather than a disc, and so can naturally account for these flat rotation

curves if its density ρ ∼ r−2.

Numerical simulations of these DM halos imply departures from the simple r−2

dependence. The most prominent example of a profile derived from these simulations

is the Navarro-Frenk-White (NFW) profile [14], which is consistent with a variety

of rotation curve measurements [15]. The NFW profile is given by the equation,

ρNFW =
ρ0

r
Rs

(
1 + r

Rs

)2 , (1.4.4)

where ρ0 and Rs are a scale density and radius respectively, which vary between

galaxies.

At first glance though this seems consistent with the particles we have already

introduced, since neutrinos have mass and are neutral, and so would be a good

candidate for an invisible halo of matter. However we know that neutrinos are light

and so have been relativistic for much of the lifetime of the Universe. Hence, in the

time it takes a galaxy to form i.e. ∆t ∼ 109 years4 the neutrinos will have travelled

a distance of approximately c∆t ≈ 3 × 10−4 × 109 = 3 · 105 kpc. This should give

an order-of-magnitude estimate of the smallest astrophysical objects that neutrinos

can form, which are ∼ 103 times larger than the average size of a galaxy. More

realistically, the neutrino may not be relativistic up until the present day, and the

free-streaming scale can be expressed as [5],

λFS = R(t0)

∫
v(t)

R(t)
dt ≈ 20 Mpc

[ mν

30 eV

]−1

, (1.4.5)

where mν is the neutrino mass. Hence for an eV-mass neutrino this scale is again

much larger than the sizes of galactic clusters.

It seems implausible for the neutrinos to be this Dark Matter then, and so we are

forced to look for a candidate which would form these invisible halos, but is heavy

3This implies that Dark Matter should likely also be present in our Solar System, however it is

likely not to be dense enough for its gravitational effects to be observed.
4This is a conservative estimate, since the oldest stars in the Milky Way are approximately 1010

years old, based on the abundance of long-lived radioactive isotopes [16].
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enough to be non-relativistic for much of the history of the Universe. This is not

our only evidence for Dark Matter however, and we can learn more by moving to

even larger scales.

1.5 Cluster scales

Galaxy clusters are large groups of galaxies of approximately 1 to 10 Mpc in size,

which constitute some of the largest structures in the Universe. Just as in the case

with galaxies, there is strong evidence for a massive non-luminous matter component

in many different clusters [17]. However, for clusters the kinematics of luminous

matter is not the only evidence for Dark Matter, as it was with the rotation curves.

In this case, astronomers have found strong evidence for Dark Matter at large scales

from weak lensing [17]. This is where the gravitational potential of the Dark Matter

(or indeed any gravitating source) perturbs light from distant sources on its way to

Earth, which can be observed through a change for example in the ellipticities of

distant galaxies.

Additionally, there is one particular cluster, usually called the Bullet cluster [18],

for which Dark Matter may offer a compelling explanation. In this case, the Bullet is

actually a merger of clusters, where the luminous matter (by ‘luminous’ we mean in

the X-ray, rather than the optical frequencies) is seen to be concentrated towards the

centre (as shown in figure 1.2). The majority of this baryonic matter is in the form

of a hot plasma, present between the clusters and observable by its X-ray emission,

and not the galaxies themselves.

However, the mass density, as observed from lensing measurements, seems to

be located in separate regions either side of the luminous matter [19]. This seems

to imply that the Dark Matter content of the initial clusters has passed straight

through the centre, while the luminous matter (dominated by the plasma), being

collisional, has concentrated towards the centre.
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Figure 1.2: Image of the Bullet Cluster from [19]. The blue contours trace the mass distribution,

as determined from lensing measurements, while the pink contours follow the distribution of X-ray

light. The X-rays trace the distribution of the hot plasma between the clusters. Since the mass is

located far from the centre of X-ray emission, this has been taken as evidence for the existence of

Dark Matter in this cluster.

1.6 Cosmic Microwave Background and Large-scale

Structure

This is not the whole picture however. Indeed, there is more to be learned by mov-

ing to even larger scales, and earlier times. As mentioned previously, when the

Universe was young, it was radiation dominated. This meant that the baryons were

so strongly coupled to photons that they underwent a phenomenon known as Baryon

Acoustic Oscillations (BAO), which resulted from the competing forces of gravita-

tional attraction and radiation pressure. These have been observed through their

effects on matter at large scales [20]. As such, the baryons at this time essentially

behaved like a driven harmonic oscillator [21], with the photon pressure providing

the restoring force, and gravity acting as the driving force. This can be understood

through the fluid equations in Fourier space,

∂2
t δ + 2H∂tδ +

(
c2
sk

2

a2
− 4πGρ̄

)
δ = 0, (1.6.6)
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where here ∂t represents a time-derivative, k is the wavenumber, cs is the sound

speed and δ is the deviation of the density from the average ρ̄ i.e. ρ = (1 + δ)ρ̄.

For baryons, the photon-pressure induces a non-zero sound speed such that when

c2sk
2

a2
> 4πGρ̄, the BAO could occur. After radiation-domination this inequality

was reversed (when the photon-baryon interactions ‘froze-out’, a phenomenon we

discuss in the next section), causing the BAO to end and the baryons to collapse

under gravitational attraction.

However the picture is further complicated since, by contrast, the Dark Matter

would not have undergone such oscillations, as it did not couple strongly to the

radiation ‘bath’ of the early universe. This meant that the DM also obeyed equation

1.6.6, but in this case cs = 0 and so it did not undergo acoustic oscillations, but

instead collapsed under gravity to form structure.

Hence, the baryon and Dark Matter populations were coupled through the ρ̄

term in equation 1.6.6, but behaved in fundamentally different ways. The coupling

of DM to baryons through gravity, and the growth of small-scale structure through

gravitational collapse, would have introduced higher order modes in the harmonic

oscillator.

This can be observed through the Cosmic Microwave Background (CMB). This

is made up of photons left over when the Universe became opaque i.e. when the tem-

perature of the Universe became low enough for electrons and nuclei to recombine

into neutral atoms. Hence, the CMB, and in particular anisotropies in its distri-

bution, will strongly reflect the distribution of baryons at this time, since both the

photon and baryon populations were tightly-coupled in a plasma state.

The CMB is usually analysed through a spherical harmonic decomposition i.e.

an expansion in its fundamental frequencies5, an example of which is shown in

figure 1.3. Since the CMB traces baryonic density perturbations δbaryon, the most

prominent harmonic of the CMB comes from the fundamental mode of the baryon-

photon harmonic oscillator, at the largest scales. As mentioned already, higher-order

harmonics arise from perturbations to this oscillator (i.e. to δ in equation 1.6.6),

5The CMB is also polarised due to Compton scattering at the time of recombination [21], which

can also be expressed as a similar expansion in fundamental modes.
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primarily from Dark Matter.

Figure 1.3: Power spectrum of temperature fluctuations in the CMB, as observed by Planck [22].

Hence, by measuring the size of these peaks, the mass of baryons and Dark

Matter in the Universe can be inferred. This was done most recently by the Planck

collaboration [22], who determined a Dark Matter fraction of Ωch
2 = 0.1199±0.0027

(h is the Hubble parameter in units of 100 km/sec/Mpc), which is significantly larger

than the total inferred baryon fraction of Ωbh
2 = 0.02205± 0.00028 6. As such, the

size of the CMB harmonics strongly indicates that there must have been a massive

population of particles present at the time of recombination, for which gravitational

interactions dominated over those from photons i.e. Dark Matter. Furthermore,

this Dark Matter should form the dominant component of matter in the Universe.

1.7 Summary of Observations

We have discussed evidence for the existence of Dark Matter at three different scales:

• Galactic scales, through the anomalous behaviour of rotation curves at large

radii, which imply the existence of a halo of non-luminous Dark Matter.

6There is also an additional component called Dark Energy, which makes up the remaining

fraction of the Universe, such that the combined value of Ω is at or close to one.



1.7. Summary of Observations 11

• Cluster scales, where lensing measurements, along with those from stellar kine-

matics, imply that there is mass which does not emit light i.e. Dark Matter.

• The Cosmic Microwave Background (CMB), which exhibits harmonic pertur-

bations consistent with two distinct populations of matter, namely baryonic

matter and the far more massive Dark Matter component.

It seems clear that the Dark Matter paradigm provides a good explanation for

all of these observations. By this we mean the presence of matter which is distinct

from the luminous baryonic matter (which makes up the stars, planets etc.), mainly

in that it does not interact significantly with light or other SM particles.

This forms part of the successful ΛCDM paradigm [21, 22], in which the Uni-

verse today is composed of ∼ 27% Dark Matter, ∼ 5% luminous matter and an extra

component called Dark Energy which makes up the remaining ∼ 68% (there is ad-

ditionally a small contribution from relic neutrinos and the photons of the CMB).

The latter is a vacuum energy field Λ which exerts negative pressure, resulting in

the observed accelerated expansion rate of the Universe. Each of these components

dominates in a different epoch, with the Universe transitioning from radiation dom-

ination, to matter domination and finally to Dark Energy domination.

The baryon content of the Universe is also predicted accurately by the Big Bang

model within ΛCDM, due to a process called nucleosynthesis, which describes the

formation of the light elements. This constrains the overall amount of baryons in the

Universe based on the observed amounts of light elements such as helium-4, helium-

3, deuterium and lithium, which were formed in the early Universe [21]. From Big

Bang Nucleosynthesis, the baryon fraction is inferred to be much smaller than the

total matter fraction, and hence we infer that the Dark Matter can not be made of

baryons.

However, beyond gravitational evidence we know little about the Dark Matter,

especially in terms of particle physics. Hence, we will proceed to discuss models for

this Dark Matter, including how it could have been produced in the early Universe.



Chapter 2

Dark Matter Theory

2.1 Thermal Production of Baryonic Matter

At early times, the Universe was so hot that all particles were in equilibrium with

each-other. However, the rates of the interactions which govern equilibrium depend

on the temperature T , and so at some particular temperature these rates became

too low for equilibrium to be maintained. A general scale for a process to drop out of

equilibrium is when its rate Γ . H, where H is the Hubble parameter. This relation

states that equilibrium is lost when the process will need a time longer than the age

of the Universe to occur, on average. This is generally referred to as ‘freeze-out’.

We can use the Boltzmann equation [21] to calculate the relic abundance of

baryons today. For an expanding Universe this reads as follows,

dn

dt
+ 3Hn =

∫
d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4

|M|2[f(p1)f(p2)− f(p3)f(p4)](2π)4δ4(P1 + P2 − P3 − P4), (2.1.1)

where we have assumed a process such that X1X2 ↔ Y3Y4, where X and Y are some

particles, |M|2 is the squared matrix element1, P represents a 4-momentum and p

is a 3-momentum. The distribution f is defined as f = dN
d3xd3p

, where N represents

particle number and n = dN
d3x

, the number density. We can simplify this expression

1The matrix element is proportional to the amplitude for a process in quantum field theory.

By taking the squared modulus of this quantity, we arrive at the probability for a particular

quantum-level process to occur.

12
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since the X and Y particles are assumed to be thermally distributed and so (also

assuming E1 + E2 = E3 + E4),

f(p1)f(p2)− f(p3)f(p4) = e−(E1+E2)/T
[
e(µ1+µ2)/T − e(µ3+µ4)/T

]
, (2.1.2)

where µi is the chemical potential of the particle species i. We also know that eµ/T

is equal to the ratio of the number density n to its equilibrium value n0, and so,

f(p1)f(p2)− f(p3)f(p4) = e−(E1+E2)/T

[
n1n2

n0
1n

0
2

− n3n4

n0
3n

0
4

]
. (2.1.3)

Substituting this back into the Boltzmann equation we have that,

dn

dt
+ 3Hn = n0

1n
0
2〈σv〉

[
n1n2

n0
1n

0
2

− n3n4

n0
3n

0
4

]
, (2.1.4)

where 〈σv〉 is the thermally-averaged annihilation cross section, defined as,

〈σv〉 =
1

n0
1n

0
2

∫
d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4

|M|2e−(E1+E2)/T (2π)4δ4(P1 + P2 − P3 − P4). (2.1.5)

If one assumes that quarks and anti-quarks have always existed in equal abun-

dances, then one finds that the abundance of baryons at freeze-out is ∼ 109 times

smaller than we observe it to be [5]. Along with the fact that the Universe has been

observed to be dominated by matter, and not antimatter, this is strong evidence for

the existence of a matter-antimatter asymmetry.

Indeed, the generation of such an asymmetry between baryons and anti-baryons

in the early Universe is only possible if the so-called Sakharov conditions are met

[23]. These require, firstly the existence of baryon-number violating processes, sec-

ondly the presence of CP-violating processes (i.e. those that behave differently

towards matter and antimatter), and finally a period when the Universe was out of

equilibrium, since otherwise CPT (charge-parity-time) symmetry would reduce to

CP, violating the second condition.

2.2 Thermal Production of Dark Matter

At some point during the evolution of the Universe, the relic Dark Matter population

will have been produced. We wish to know if it is plausible for particle Dark Matter
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to be produced in the quantities needed to explain the observations of the previous

chapter, and to what extent this depends on the interactions of the DM with SM

particles.

If the Dark Matter was produced thermally, like the SM particles, then it would

also have been in equilibrium with the other particles in the early universe. We

can use the Boltzmann equation (equation 2.1.1) to calculate the relic abundance

of a DM particle today, with the replacement that X = χ, the DM, and Y are SM

particles which are in equilibrium such that nY = n0
Y . The Boltzmann equation

then reads as [21] ,

a−3 d(nχa
3)

dt
= 〈σv〉

[
(n0

χ)2 − n2
χ

]
, (2.2.6)

where nχ is the number density of DM as a function of time t, n0
χ is the equilibrium

DM density and 〈σv〉 is thermally averaged annihilation cross section. We assume

that the DM annihilates to one or more lighter states via processes such as (though

not necessarily) χχ ↔ e+e−, χχ ↔ uū etc. In the early Universe we have that

the DM was in equilibrium and so nχ = n0
χ. As the Universe cooled n0

χ became

suppressed by a factor2 exp(−mχ/T ), which is essentially because the backwards

process to produce χχ pairs becomes kinematically disfavoured, as the DM mass is

much larger than that of the light states it annihilates into e.g. e+e−, uū etc. Hence,

the longer the DM was in equilibrium for, the lower nχ would have been when the

DM finally froze out.

Eventually the rate for these DM production/annihilation processes dropped

below the Hubble rate, and so equilibrium was lost i.e. nχ 6= n0
χ. Since the DM

annihilation/production rate depends on 〈σv〉, this forms a vital piece in determining

the relic density. If it is too large, then by the time of freeze-out the value of nχ

was too small to give the correct relic density, and conversely if 〈σv〉 is too small

then nχ ends up too large. Indeed, to get the correct relic density (as observed

e.g. by Planck [22]) one needs 〈σv〉 ≈ 3 · 10−26 cm3s−1. Since the DM should only

2This arises since the equilibrium density n0
χ ≈

∫
d3p

(2π)3 e
−E/T , and for a non-relativistic particle

E = m+ p2

2m .
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be weakly-coupled to the SM particles, one would expect 〈σv〉 to be much smaller

compared to that for the baryons, resulting in a larger relic abundance.

Hence, we have shown that it is eminently plausible that the Dark Matter was

produced in the early Universe along with the Standard Model particles, and that

also this depends on its interactions with the particles of the Standard Model through

〈σv〉. Assuming only the Standard Model plus an extra neutral particle for the Dark

Matter (coupled to the SM via the Weak interaction), the correct relic density can be

obtained (for fermionic Dark Matter) provided that the DM mass is & 2 GeV [24].

We will see however in section 2.4 that models of Dark Matter are not restricted to

the SM interactions alone.

Annihilation of DM around the time of recombination can also affect the CMB

[25]. For example, the DM annihilation can increase the fraction of ionised electrons,

which results in more scattering for the CMB photons. This will damp the temper-

ature perturbations in the CMB, and enhance the polarisation modes by increasing

the amount of Compton scattering which occurs. We will see later on that this can

be used to place bounds on the couplings of Dark Matter.

2.3 Cold, Warm and Hot Dark Matter

Structure formation can give us some idea of the form which the Dark Matter must

take. We have already discussed a Hot Dark Matter candidate: the neutrino. Such

particles were relativistic when they decoupled, and as discussed already tend to

wash out structure below the size of a large cluster, due to free-streaming.

Cold Dark Matter (CDM), on the other hand, is non-relativistic at the time of

decoupling, and does not free stream to any significant degree. Hence it is able to

form structures as small as galactic halos. Candidates for such CDM are either heavy

neutral particles with masses & 1 MeV, or axions which are light but are produced

non-relativistically [26]. Typically the distribution of CDM in galaxies and clusters

is fit to one of several empirical functions, which are themselves derived from N-

body simulations [27, 28], the most prominent of which is the Navarro-Frenk-White

(NFW) profile [14].
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Somewhere in between the two is Warm Dark Matter (WDM). Candidates for

such DM typically have masses of order a keV, and undergo a small amount of free-

streaming, typically washing out structure much below the size of a galactic DM

halo. This may be favoured by the relative lack of observed galactic sub-halos [29],

although CDM within some of the models below may also provide a solution. The

profile of WDM in galactic halos may also be more cored than those of CDM, due to

the small-scale structure being washed out by free-streaming in the galactic centre.

2.4 Dark Matter (and Dark Photon) Models

There exist many and varied models of Dark Matter, from simple models with a few

extra particles, to those with a rich dark sector. We seek to summarise the main

categories here, however this list is not exhaustive, and some models may overlap

into multiple categories.

2.4.1 Vanilla Dark Matter

The most basic model for Dark Matter is a particle which is neutral, to avoid scatter-

ing with photons, and stable, such that the particles can form the relic population of

DM we observe today. One predominant example is the neutralino from the Minimal

Supersymmetric Standard Model [30].

In supersymmetry, each particle of the SM has a so-called ‘super-partner’, with

different spin, and so the neutralino is a superposition of the fermionic counterparts

to the neutral bosons of the SM (e.g. the photino for the photon). The neutralino

is made stable by conservation of R-parity. This is a symmetry imposed by hand to

ensure that protons do not decay within supersymmetric models. All SM particles

have R-parity of +1 and all super-partners have R-parity of -1, and so a supersym-

metric particle can not decay to only SM particles without violating R-parity.

The neutralino typically has a mass of ∼ 100 GeV, and has been a major CDM

candidate for decades. These DM candidates are also sometimes referred to as

Weakly Interacting Massive Particles (WIMPs).
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2.4.2 Dark Photons

In addition to a Dark Matter particle (usually a fermion or a scalar) many models

include also an additional U(1) gauge symmetry which the DM particle obeys [31, 32,

33]. This can mix with the SM gauge group to give e.g. a dark photon γ′ with vector

interactions, or a Z ′ with additional pseudo-vector couplings. The Dark Matter (or

more generally the dark sector) can then couple to particles of the Standard Model

(the visible sector) through mixing of this dark gauge boson with e.g. the photon.

One example is kinetic mixing [34], where the dark gauge potential Xµν mixes

with that for the Standard Model U(1) symmetry Bαβ via the term in the Lagrangian

χXµνB
µν . This allows for interactions between the DM and SM particles via a vertex

suppressed by a factor of χ, which can be very small. The dark gauge boson does

not need to be massless, and constraints exist over a wide-range of mass scales [34].

2.4.3 Charged Dark Matter

Although by its very nature Dark Matter must not have significant interactions with

photons, it is not necessary for it to be perfectly dark. Indeed, it is interesting to

consider exactly how dark these DM particles must be. DM-photon interactions

can manifest themselves through models with a (small) DM charge [35], or through

mixing with a dark U(1) gauge boson γ′ as described above [36], which can generate

an effective DM charge related to the kinetic mixing parameter χ.

2.4.4 Self-interacting Dark Matter

The Dark Matter particles may have potentially large interactions between them-

selves, possibly through a dark gauge group as described above. These models are

popular as they allow the DM density profile to flatten out near the core [37], due

to their repulsive force, while pure CDM tends to have a large density spike in

this region. Astrophysical measurements such as lensing data from clusters [38] im-

ply that density profiles may possess flatter cores than those obtained from CDM

simulations, and so the self-interacting DM model may provide a better fit.
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2.4.5 Light Dark Matter

If one assumes that the Dark Matter is a fermion with only Standard Model interac-

tions, then it can not have a mass below ∼ 2 GeV, due to the Lee-Weinberg bound

[24]. This states that if the DM is a fermion and couples only to SM particles then

below this mass the annihilation cross section 〈σv〉 would result in a relic density

which is too large, since for a Weak contact interaction one has that 〈σv〉 ∝ G2
Fm

2
χ,

where GF is the Fermi constant.

However, one can avoid this bound by increasing 〈σv〉 via an additional interac-

tion, such as the Z ′ described above, in which case, the DM can be as light as a few

MeV [39]. The DM could also be a scalar [40], in which case the annihilation cross

section does not have the same simple property of scaling with m2
χ.

2.4.6 Excited Dark Matter

In this case the dark sector consists of two almost degenerate states, and the heavier

of the two makes up around half of the Dark Matter; this is sometimes referred to

as exothermic DM [41]. The excited state can de-excite in collisions with nuclei

(or other SM particles) producing a potential signal in direct-detection experiments

(see chapter 3). Provided that this state does not couple strongly to light particles

such as neutrinos or electrons, it will not decay substantially and so can remain as

a large relic population at the present time.

2.4.7 Asymmetric Dark Matter

In asymmetric Dark Matter models the origin of the DM is related to the asymme-

try between the number of baryons and anti-baryons [42]. Since the DM is charged

under B -L, the difference between baryon and lepton number, the baryon asym-

metry generated in the early Universe affects the DM thermal production, and so

consequently its relic abundance. For ∼ 10 GeV Dark Matter this may explain why

the number density of baryons and DM particles are so similar.
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2.4.8 Non-thermal Dark Matter

The Dark Matter may be produced by non-thermal processes, in contrast to the

thermal mechanism described in section 2.2. Axions for example arise from the

breaking of a Peccei-Quinn symmetry and so were never in thermal equilibrium with

the Universe [34], meaning they can have sub-keV masses and be CDM candidates.

One can also imagine that the DM is produced via the decay of a heavier particle

in the dark sector, possibly in addition to being produced via the standard thermal

annihilation mechanism.

2.5 Probing the Dark Matter Couplings

In principle the Dark Matter could be composed of any of the models described

above, or some combination thereof. Hence, to discover DM and understand its

interactions we need to employ many different approaches. A summary of these

approaches is given below, a subset of which will be the focus of this thesis. Note

that there is no clear separation between bounds, and the exact overlap depends on

the model of DM being considered.

• Dark Matter couplings to quarks can be studied for example by Direct De-

tection experiments (see chapter 3), capture in the Sun (either through helio-

seismology [43] or neutrino flux measurements [44]) and collider searches [45].

Much of this thesis will be devoted to Direct Detection. We present our own

technique for analysing Direct Detection data in chapter 4, and apply this

to data from the XENON100 and CoGeNT experiments in chapters 5 and 6,

respectively.

• Constraints on the DM-lepton coupling exist from the LEP experiment [46],

the CMB [47] and a re-analysis of data from XENON10 [48].

• Apart from CMB bounds [49], the Dark Matter photon coupling (i.e. the DM

charge) is not directly constrained, however it can be related to the DM self-

interaction cross section [50, 51, 52] or the annihilation cross section [53, 54].

We will address our own potential bounds on the DM charge in chapter 7.
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• The Dark Matter coupling to neutrinos is probably the most difficult inter-

action to probe. As for photons there exist bounds from the CMB [55], and

additional bounds from neutrinos from Supernova 1987a travelling to Earth

[56].

• The coupling of DM with itself can be constrained either through astrophysical

measurements (e.g. cluster cores [37]) or through its self-annihilation cross

section [57]. We present our own method for probing the self-annihilation

cross section in chapter 9.

• Dark photons coupling to either Dark or normal luminous matter can be stud-

ied using a variety of methods, depending on their mass. We discuss such

constrains in chapter 8, as well as our own bound on GeV-mass dark photons

coupling to quarks.



Chapter 3

Direct Detection of Dark Matter

3.1 Introduction

Since the Dark Matter particles are gravitationally bound, the virial theorem pre-

dicts that they should have an average velocity dispersion of around 200 kms−1.

Additionally, the Dark Matter halo is expected to rotate at velocities considerably

smaller than the rotational velocity of the galactic disc, for example as implied by

results from N-body simulations [58, 59].

Direct Detection experiments aim to exploit this relative velocity between Dark

Matter particles in the halo and the Earth (which is in the disc), due to both the

DM dispersion and the net relative motion of the halo and disc, in order to search

for particles of DM scattering off terrestrial detectors. For DM particles heavier

than the proton mass, the ∼ 200 kms−1 relative velocity should result in ∼ keV

energy recoils, between the DM and nucleons in the Earth-based detector. As such,

these experiments provide a potentially very sensitive probe of the DM-quark cross

section.

In principle then, the expected signal is simple to search for, however the major

difficulty of such a search is the separation of such signal events, from the poten-

tially vastly more numerous background events. For example, almost all Direct

Detection experiments are located deep underground, in order to provide shielding

from terrestrial events which could mimic a Dark Matter recoil signal. Additionally,

all searches place a veto on multiple-scatter events, the motivation being that if the

21
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DM scatters so rarely, any signal involving more than one scatter is highly unlikely

to be due to DM.

We begin by calculating the expected spectrum of a Dark Matter recoil in a Di-

rect Detection experiment in section 3.2, before discussing the various experimental

searches, with particular attention to how they separate DM from background, in

section 3.3.

3.2 Dark Matter Recoil Spectra

3.2.1 Spin-independent elastic scattering

Let us first consider the simplest case of DM scattering elastically with nucleons,

via a scalar-scalar or vector-vector interaction. Since we expect the DM particles

to have non-relativistic velocities, the kinematics of their interactions with nucleons

is quite simple. Indeed, the recoil spectrum (in units of counts per day per kg per

keV) takes the form of [60],

dR

dE
=

ρχ
mNmχ

∫ ∞
vmin

vf(v + ue)
dσ

dE
d3v, (3.2.1)

where mN is the mass of the nucleus in the detector, mχ is the DM particle mass, ρχ

is the local DM density, which we take to be 0.3 GeVcm−3 [61], vmin =
√
EmN/2µ2,

and dσ
dE

is the differential interaction cross section. The velocity integral accounts

for the fact that a DM particle does not have to deposit all of its energy in the

detector upon collision, and indeed any particle with a velocity greater than vmin

can impart a kinetic energy of E to the nucleus. All velocities in equation 3.2.1

are in the Earth’s rest frame, hence we use ue to boost the distribution of galactic

DM velocities f(v) into the correct frame. Since the relative direction of the Earth’s

velocity with respect to the DM wind can vary over the year, this boost could exhibit

an annual modulation.

One can further simplify this formula, by expanding the differential cross section

in terms of recoil velocity v, and taking only the lowest-order term, leading to the

expression,
dσ

dE
=
σmNF (E)

2µ2
Nv

2
, (3.2.2)
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where σ is the ‘zero-momentum’ DM-nucleus cross section, µN is the DM-nucleus re-

duced mass. The function F (E) is the nuclear form-factor, which for spin-independent

interactions is essentially a Fourier transform of the nucleus [62]. Hence, we obtain

for the DM-nucleus recoil rate the expression,

dR

dE
=
σρχF (E)

2µ2
Nmχ

∫ ∞
vmin

f(v + ue)

v
d3v. (3.2.3)

We would ideally like to probe the coupling of the DM directly with nucleons.

If we assume that the DM couples equally to protons and neutrons, we can further

expand the DM-nucleus cross section as,

σ(E) = σ0

(
µN
µp

)2

A2, (3.2.4)

where σ0 is the zero-momentum DM-nucleon cross section, µp is the DM-proton

reduced mass and A is the atomic number of the nucleus with which the DM in-

teracts. Assuming equal couplings to protons and neutrons is not necessary, and

relaxing this assumption may reduce or enhance the rate depending on the particular

nuclear target.

3.2.2 Spin-dependent elastic scattering

The Dark Matter could potentially also couple to the axial charge of the nucleus i.e.

its total spin, via a γµγ5 interaction. In this case, the differential cross section can

be expressed as [60],

dσ

dE
=

16mN

πv2
Λ2G2

FJ(J + 1)
S(E)

S(0)
, (3.2.5)

where GF is the Fermi constant, J is the total spin of the nucleus, S(E) is the spin

form factor and Λ = 1
J

[ap〈Sp〉 + an〈Sn〉], with 〈Sp〉 and 〈Sn〉 being the expectation

values for the spin of the proton and neutron respectively, and ap and an are coupling

constants for the proton and neutron.

Since the spin-dependent interaction strength depends on the spin of the nucleus,

and not on A2 as for spin-independent scattering, the rate will be highest for nuclei

with large overall spins, and not necessarily more massive elements.
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3.2.3 Inelastic and Exothermic Scattering

Up until now, we have made the assumption that the DM scatters elastically with

the nucleus. However, one can also consider either inelastic or exothermic scattering,

the former involving the DM converting to a heavier state upon scattering, while the

latter has the DM in an initially excited state, and de-exciting upon scattering [63].

The effect of such scattering is to modify vmin in the velocity integral of equations

3.2.1 and 3.2.3,

vmin =

∣∣∣∣δ +
mNE

µ

∣∣∣∣ 1√
2EmN

, (3.2.6)

where δ is the energy-difference between the two Dark Matter states, being positive

for inelastic scattering and negative for exothermic. A non-zero value of δ can

significantly alter the spectrum of a DM recoil, as can be seen in figure 3.1.
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Figure 3.1: Example DM recoil spectra assuming collisions between a 10 GeV DM particle and

a germanium nucleus, with a cross section of 10−36 cm2. For inelastic DM we take δ = 50 keV,

and for exothermic we use δ = −50 keV.

For the exothermic and inelastic recoils, the spectra peak at values of the recoil

energy greater than zero, as set by the δ parameter.

3.2.4 Velocity-Dependent Scattering

The elastic scattering picture generally assumes that DM interacts with the nuclei

via a heavy mediator, which can be integrated to obtain the low-energy cross section.
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However, if such an interaction proceeds via a light or massless mediator, such as a

γ′, then it can not be integrated out. Hence, the cross section σ can retain a velocity

dependence, such as σ ∝ v2 [64].

3.2.5 Velocity distribution

In order to calculate the DM recoil spectrum, one needs to know the distribution

of DM velocities in the galaxy f(v). Unfortunately, no direct measurements of f(v)

exist. One has broadly two options: the first of which is to solve the Jeans equation

[65], which takes as input the DM density profile to obtain an analytic form for f(v).

The most common solution makes the assumption of an isothermal sphere of

DM, implying that f(v) takes the form of a Maxwell-Boltzmann distribution [60].

Indeed, this is the standard assumption made during analyses of Direct Detection

data: one takes f(v) to be a Maxwell-Boltzmann with a dispersion of σv =
√

3/2vc,

where vc = 220 kms−1, cut off at the galactic escape velocity vesc ≈ 550 kms−1.

This is generally known as the Standard Halo Model (SHM), and is given by the

expression,

f(v) =
1√

2πσv
exp

(
−|v|

2

2σ2
v

)
, (3.2.7)

for v ≤ vesc and is zero otherwise. Note that the circular velocity of the galactic disc

vc and the velocity distribution of the DM σv are related due to the virial theorem,

since both the DM in the halo and luminous matter in the disc are bound within

the same gravitational potential.

However, this is almost certainly an oversimplification [65], since the Dark Matter

would be required to have completely thermalised, which it can only do in principle

through its gravitational interactions (though it may have additional interactions,

as discussed in the previous chapter).

Alternatively f(v) can be obtained from theoretical N-body simulations, which

can then be fit to an empirical formula. The results of N-body simulations have been

observed to deviate systematically from the SHM [66]. Indeed, recent studies [67, 68]

have identified an effective parameterisation of f(v) in terms of two variables: p, the

slope of the distribution as it approaches the cut-off at the escape velocity vesc, and
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Figure 3.2: Plots of the Dark Matter galactic velocity distribution f(v) for both the Standard

Halo Model (SHM) and for the empirical formula f(v) = A exp(−v/v0)(v2
esc − v2)p. For the latter

we show several different values of p for vrms = 4π
∫

dv v4f(v) = 0.42 vesc. All distributions are cut

off at the galactic escape velocity vesc = 544 km/s. The value of p determines the slope as f(v)

approaches the escape velocity.

the RMS velocity vrms of f(v). The formula for this distribution is,

f(v) = A exp(−v/v0)(v2
esc − v2)p, (3.2.8)

where v is the velocity modulus and f(v) = 0 for v > vesc, and we define A such

that 4π
∫

dv v2f(v) = 1. A plot of this distribution for several different values of

parameters and the SHM is shown in figure 3.2.

This is not the only empirical formula known to fit to results from N-body

simulations [69, 65, 70, 71, 67]. There are many alternatives, such as the Osipkov-

Merritt model [69], which allows for an anisotropic velocity distribution, or the

Tsallis distribution [72], which also fits well to results from N-body simulations.

Hence, even within the context of N-body simulations there is uncertainty in the

form of the velocity distribution and we will discuss methods of accounting for such

an uncertainty in this and the following chapters.
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3.3 Experimental Searches

There exist a wide range of Direct Detection experiments searching for Dark Matter

recoils. In this section we will attempt to summarise the major current experiments,

focusing on how they separate the potential DM signal from backgrounds.

The dominant sources of backgrounds in Direct Detection experiments are:

• Gammas (and also beta emission) from radioactive components in the de-

tector materials, which generally dominate the electronic recoil background.

For XENON100 examples are uranium-238, thorium-232, potassium-40, and

cobalt-60 [73]. These are problematic for CoGeNT also [74].

• Neutrons from radioactive materials external to the detector (e.g. in the rock

of the cavern in which the detector is housed [74]) and as induced from cosmo-

genic muons. For detectors which can separate nuclear and electronic recoils,

neutrons are the most dangerous background as they also induce nuclear-recoils

just like a DM recoil signal.

• Misidentified events e.g. from detector noise, partially reconstructed events

where only some of the energy deposit is recorded, surface events mimicking

bulk events and double-scatters which look like single-scatters.

Such techniques operate mainly on three principles: the Dark Matter particles

interact only once in the detector, DM particles interact only with nuclei (not elec-

trons) and DM particles make no distinction between the surface and bulk of the

detector, in contrast to background events which may interact more at the surface

than in the bulk.

In addition, since the relative direction between the Earth and the DM wind

will vary over the year i.e. the velocity ue is actually time-dependent, than the DM

signal would be expected to exhibit a feature called ‘annual modulation’. Many

experiments choose to neglect this feature, since it can be difficult to search for, and

focus instead on the time-integrated or ‘unmodulated’ rate.

This summary is not a complete list of all Direct Detection experiments, but

should reflect the current status of experimental searches.
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3.3.1 XENON100

The XENON100 detector is a two-phase xenon experiment, located in the Gran

Sasso underground laboratory. An illustration of the XENON100 detector is shown

in figure 3.3. It is composed of both liquid and gaseous xenon, with an electric field

applied between the cathode and the gate grid, and a stronger field applied between

the gate grid and the anode. Photomultipliers at either end of the experiment are

used to detect potential flashes of scintillation light, which may indicate a DM recoil.

The detector identifies events by using two distinct signals [73]: primary (S1) and

secondary (S2) scintillation. The S1 signal is due to scintillation light originating

from the liquid part of the detector soon after the initial recoil. The recoil also

induces ionisation in the liquid xenon. The liberated electrons drift towards the

gate grid under the electric field and are then extracted into the gas by the stronger

field between the gate grid and the anode. During this extraction the electrons

release scintillation light, which produces the S2 signal. As can be seen in figure 3.3

the S1 signal is observed before S2, and the time between these signals depends on

the distance of the event from the gate grid. The x,y position of each event can also

be calculated based on the pattern of light observed by the photomultipliers.

Such signals could result from a DM particle recoiling with a xenon nucleus, or

alternatively one of the many potential backgrounds.

The XENON100 collaboration employ a variety of techniques, in addition to

placing the detector behind strong shielding, to separate signal from background.

For example, volume fiducialisation is used to remove background events based on

their position in the detector volume. The detector itself is composed of 62kg of

liquid xenon, however in their most recent analysis [75] only the innermost 34kg of

xenon are actually used for the analysis-proper. This is because events occurring

on the outside edge of the volume are ignored, since any potential backgrounds will

interact preferentially with the surface layer of the xenon. Hence, the xenon acts as

a self-shield for its inner volume.

Potentially the most powerful method of separating background and signal comes

from distinguishing electronic and nuclear recoils. The vast majority of background

events within the fiducial volume of XENON100 are electronic-interactions i.e. in-
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Figure 3.3: Diagram of the XENON100 experiment from [73] and example signals from a nuclear

and electronic recoil event. A Dark Matter particle impacts with a nucleus in the liquid xenon,

and the resulting keV-scale energy transfer causes a flash of scintillation light i.e. the S1 signal.

The recoil also partially ionizes the xenon, causing the release of electrons which drift to the gate

grid under the electric field. A stronger electric field between the gate grid and the anode extracts

these electrons into the gas. During this extraction the electrons emit scintillation light, which

constitutes the S2 signal, occurring some time after S1 as indicated by the ‘drift time’. If the event

is due to an electronic recoil, instead of a nuclear recoil, the ratio of S2 to S1 will be larger on

average.

teractions with the electrons of the xenon atoms, and not their nuclei. These origi-

nate from beta and gamma radiation from the decay of radioactive isotopes in the

shielding of the detector. Since electronic and nuclear recoils give characteristically

different ratios of the S2 and S1 signals (this can be seen in figure 3.3), these dif-

ferent populations can be separated, at least statistically. We will examine this in

more detail in the next chapter.

Up until recently, the XENON100 experiment has set the strongest upper limits

on the Dark Matter-nucleon cross section in three data releases with 11.7 live days

[76], 100 live days [77] and 225 live days [78]. In each release, the XENON100

collaboration have found no evidence for Dark Matter recoils in their detector.
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3.3.2 LUX

The LUX experiment is also a two-phase xenon experiment, very similar in oper-

ation to XENON100, located in the Sanford Underground Research Facility. LUX

operates with a fiducial mass ∼ 3 times larger than that of XENON100, at 100 kg

[79]. Their most recent data-release [79] and analysis finds no evidence for Dark

Matter recoils, allowing the LUX collaboration to set the strongest current upper

limits for DM masses above 8 GeV.

3.3.3 CoGeNT

The CoGeNT experiment [74] operates rather differently to XENON100 and LUX:

it is a germanium-based detector, which searches for DM-recoils via small voltage

pulses in the bulk of the apparatus. A DM particle would be expected to recoil with

a nucleus, imparting ∼keV of kinetic energy. Due to this the excited atom would

move through the detector ionising atoms along its path, and the liberated electrons

from this ionisation then constitute the signal observed by the detector.

An example of an event in CoGeNT is shown in figure 3.4. As can be seen in the

lowest panel, a recoil event induces a sharp change in the measured voltage. The

size of this change is proportional to the deposited energy from the recoil and the

duration is quantified by the rise-time, which is of the order of a micro-second. The

voltage then relaxes back to its original value.

In this case the event corresponds to a ∼ 2.5 keVee recoil. For lower energies it is

clear that the actual event becomes harder to separate from noise, which will affect

the measurement of the rise-time. We will see in chapter 6 that this results in the

rise-times of low-energy events being spread over a wider range of values than their

high-energy counterparts.

CoGeNT has in principle a lower threshold than either of the xenon experiments,

allowing it to search for light-DM recoils more effectively. However it lacks either

volume fiducialisation or the ability to separate electronic and nuclear recoils, making

its background rejection much less effective than either XENON100 or LUX. Indeed,

for CoGeNT there is a large low-energy background from events occurring on the
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Figure 3.4: An example ∼ 2.5 keVee recoil event in the CoGeNT detector. A recoil induces a

sharp change in the measured voltage proportional to the deposited energy. The duration of this

rapid change, on the order of a microsecond, is quantified as the rise-time.

surface of the detector, which may mimic a DM-recoil signal. The collaboration seek

to separate this surface population from the bulk events, which may contain either

background or a DM-recoil signal, using the rise-time. This is different (on average)

for bulk and surface events. We will return to this issue in chapter 6.

Also in contrast to XENON100 and LUX, the CoGeNT collaboration claim to

have observed Dark Matter recoils in their detector [80, 74], and additionally an

annual modulation in their event rate [81, 82]. The CoGeNT collaboration have

used their time-integrated (i.e. unmodulated) event rate to obtain a best-fit region

in the Dark Matter parameter space of mχ and σ0, which differs depending on

the particular analysis [80, 74], however both regions are ruled out by LUX and

XENON100.
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3.3.4 CDMS

The current incarnation of CDMS (Cryogenic Dark Matter Search) uses both germa-

nium and silicon semiconductor detectors (approximately 4.6 kg of germanium and

1.2 kg of silicon), operated at low-temperatures to reduce background noise [83].

The CDMS experiment uses the ratio of ionisation to phonon energy to separate

nuclear and electronic recoils, similarly to the S1 and S2 signals used by the xenon

experiments.

The CDMS collaboration claim to have observed potential DM recoils in their

silicon data [83] from running between 2007-2008, but not in their data from the

previous year’s running [84]. Whether or not these events are due to DM is unknown,

however the best-fit region is in strong tension with the upper limits from LUX and

XENON100.

3.3.5 CDMSlite and SuperCDMS

In addition to CDMS, there are also the recent runs of CDMSlite [85], which is a

partial upgrade to CDMS as part of the SuperCDMS program, and of SuperCDMS

itself [86]. Both of these searches are capable of combining a low-background envi-

ronment with a low-threshold, allowing them to set strong limits on light (around 5

GeV) mass DM.

3.3.6 DAMA

The DAMA experiment [87] operates using approximately 250 kg of NaI. It has the

most long-standing claim to have observed a signal of annual modulation, consistent

with a Dark Matter recoil signal. The presence of such a modulation in the DAMA

data is not disputed, however it is not clear whether this is actually due to DM,

especially since the best fit region of parameter space is ruled out by LUX and

XENON100.

It may be that the annually modulated signal is in fact due to cosmogenic muons,

which can penetrate the shielding of DAMA due their high energies. However this is

disfavoured by the large phase difference between the DAMA signal and the annually
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modulated muon flux measurements from LVD [88]. This is an experiment located

in the same lab as DAMA, but which looks specifically for cosmic muons, and has

measured an annual modulation in the muon event rate. Additionally, there has been

some discussion as to whether the DAMA collaboration have correctly accounted for

their backgrounds [89, 90], which could present problems for their DM fit. Hence,

although the DAMA signal can not be ignored, it remains to some extent enigmatic.

3.3.7 Future experiments

There are a large number of Direct Detection experiments either in construction

or in the planning stages. Many of these are upgrades to current experiments, for

example XENON1T [91] is a larger version of XENON100 and LZ [92] is a larger

version of LUX.

In addition, there is the planned experiment DM-Ice [93], which is an NaI ex-

periment being constructed in the ice of Antarctica. Interestingly, since it will be

in the southern hemisphere, DM-ice could provide an interesting cross-check of the

annual modulation signal observed by DAMA, in the context of DM recoils.

There are also several experiments looking at directional detection (see e.g. [94,

95]), which could provide strong background rejection, since DM particles would

have a characteristic incident direction.



Chapter 4

Statistical Theory

In this chapter we will introduce the statistical tools needed to analyse data from

Direct Detection experiments. We will focus on the development of a novel technique

for searching for a Dark Matter signal in this data, which we term ‘information

theory’.

Some experiments employ analyses which are close to our method e.g. XENON100

while others e.g. CoGeNT are more simplistic. In the case of the XENON100 col-

laboration our analysis is essentially the unbinned extension of the method they

employ i.e. they separate the data into a number of discrete bands, while we use a

finer separation into pixels instead, which may improve the ability of the analysis to

discriminate between signal and background. We then take the limit where the pixel

size becomes infinitesimal. We will see in the next chapter how much difference this

actually makes to the final result. For CoGeNT we will be more concerned with

the treatment of uncertainties in the background, and their incorporation through

marginalisation, a technique which the collaboration do not employ (but we do).

We discuss varying the functional form for the energy dependence of the fraction of

bulk events in the data, which the CoGeNT collaboration do not do.

4.1 Bayesian Statistics

Bayesian methods present us with the machinery necessary to evaluate the fit of a

particular model to experimental data. For example, one may have a theoretically

34
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motivated model, with a free parameter x, and wish to know to what extent it

is consistent with experimental data, and for which values of x is the model most

favoured. Before analysing a particular data-set d, one starts with the Prior distribu-

tion P(x), which gives the probability density function (PDF) for the parameter x.

Hence, the prior probability that our theoretical parameter x takes a value between

x0 and x0 + ∆x is,

pbefore =

∫ x0+∆x

x0

dxP(x), (4.1.1)

where we assume that P(x) has been normalised such that the integral over all

values of x is unity. Generally, one has no particular prior motivation to pick any

value of x, and so P(x) is taken to be constant i.e. it is a flat prior. In practice, one

can not scan over an infinite range in x, and so usually one relies upon some prior

information to bound this region from above and below.

We wish to know how the probability changes, given a new data-set d. To do

this, we can make use of Bayes’ theorem,

P(x|d) =
P(d|x)P(x)

P(d)
, (4.1.2)

where P(x|d) is the Posterior distribution, the equivalent of the Prior but after the

data-set d has bee analysed, P(d) is the prior for the data-set itself (which generally

becomes important only if one wishes to weight one data-set more than another),

and P(d|x) is the Likelihood function. The Likelihood tells us, given the data-set d,

how compatible is it with a particular choice of x. It can take many forms, however

generally it is chosen to be one of the distributions given in section 4.2.

Bayes’ theorem updates our degree of belief on which values of x are most

favoured experimentally, given a particular data-set d. One can use this recursively:

a Posterior from a previous analysis can be used as a Prior for a second analysis,

and so on. Hence, the probability that x takes a value between x0 and x0 +∆x after

analysing the data d is,

pafter =

∫ x0+∆x

x0

dxP(x|d). (4.1.3)

The Posterior, when normalised, contains all of the information we need to de-

termine which values of x are most compatible with d and any prior data-sets, and

can be used to set limits or discovery regions, as discussed in section 4.4.3.
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4.2 Example Distributions

In this section we give some common statistical distributions used to analyse data.

This list is not exhaustive, but summarises the major statistical tools we will use in

this thesis.

4.2.1 Poisson

The Poisson function gives the probability that one observes n independent events,

given that one expects a value λ [96], and follows the expression,

P =
λne−λ

n!
. (4.2.4)

It is particularly useful when fitting to histograms of data, where each bin contains

a number of discrete events. In the case of many bins, the Likelihood is the product

of a Poisson for each individual bin.

4.2.2 Gaussian

Due to the Central Limit Theorem [96], the sum of a large number of independent

random variables should be distributed according to a Gaussian distribution. Hence,

it is applicable to a wide-range of statistical problems. The distribution takes the

form of,

P = exp

[
−
∑
j

(dj − f(xj))
2

σ2
j

]
, (4.2.5)

where dj is the value of the data in a bin j, f(xj) is the theoretical expectation for

the value in this bin, and σ2
j is the expected variance of the data in this bin.

4.2.3 χ2

The χ2 distribution describes the sum of the squares of independent random vari-

ables, and is useful in frequentist hypothesis testing. It is given by the expression,

P =
xk/2−1e−x/2

2k/2Γ(k/2)
, (4.2.6)

where x is the variable, Γ is a gamma function and k is the number of degrees of

freedom.
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4.3 Frequentist vs Bayesian Methods

Frequentist methods present an alternative way of analysing data. To some extent,

these can be considered as a set of approximations to the Bayesian method, which

can speed up computation in certain situations.

Generally the difference between the two is one of interpretation: a Bayesian

result gives the degree to which the data are compatible with a given model, while a

frequentist result tells you how many times you would have to run your experiment

independently to obtain a given result. A frequentist approach does not use Priors,

and Bayesian methods will agree with their frequentist counterparts when there is

enough data such that the Priors are unimportant.

In general where a Bayesian solution requires an integration, the frequentist

method uses only one point in the parameter space (this is not always the case, but

is true for a wide variety of cases). For example, to test the preference of one model

over another in a frequentist manner, one would use a Likelihood ratio test. To do

so one calculates the ratio R, given by

R = −2ln

[
Likelihood(M1)

Likelihood(M2)

]
, (4.3.7)

to compare modelsM1 andM2. Due to Wilks’ theorem, R will itself be distributed

according to a χ2 distribution, with degrees of freedom equal to the difference be-

tween the number of free parameters ofM1 andM2. One can use this fact to derive

a p-value, which gives the relative frequency with which the data will look more like

M1 compared to M2. Generally one chooses to compare the Likelihood for the

best-fit parameters to the background-only solution, and so model M1 would be

for x = xmax, i.e. the signal parameter(s) where the Likelihood is largest, and M2

would be for the scenario without any signal.

Alternatively, the Bayesian method would be to calculate the Bayes factor B,

given by

B =

∫
M1
P(d|x)P(x) dx∫

M2
P(d|x)P(x) dx

, (4.3.8)

essentially the integral of the Likelihood P(d|x) and Prior P(x) over the parameter

regions favoured by either modelM1 and modelM2. A positive Bayes factor would

favour M1, while a negative one would favour M2.
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Both methods should give similar results, though this will depend on the priors

to some extent. The frequentist method is generally less computationally intensive,

since it does not involve integration.

The treatment of so-called nuisance parameters also follows a similar pattern.

These are parameters which one would like to remove from the final result, as they

may be uninteresting to the current analysis. The frequentist approach is to use the

profile Likelihood method, where one replaces the Likelihood functions in the calcu-

lation of R (equation 4.3.7) with versions maximised over the nuisance parameters.

This means that for each value of the parameters of interest x, one scans over each

value of the nuisance parameters y and chooses the largest value of the Likelihood.

For a Bayesian analysis, one instead marginalises over these nuisance parameters.

This just means that the nuisance parameters are integrated out as below (also

applying Bayes’ theorem),

P(x|d)P(d) = P(d|x)P(x) =

∫
dyP(d|x, y)P(x)P(y), (4.3.9)

where P(y) is the Prior for the nuisance parameter y, which describes the uncer-

tainty in our knowledge of its value. In this case one can see when the frequentist

and Bayesian methods agree: if the Likelihood P(d|x, y) is strongly peaked for a

particular value of y, and P(y) is roughly constant (i.e. a flat prior), then the inte-

gral above will be dominated by one particular choice of y. Hence, the result will be

largely similar to just picking the value of y which maximises the Likelihood. The

methods will disagree however if P(d|x, y) is flat over a large range of parameter

space, as is the case when the data-set is not strong enough to favour a particular

model.

4.4 Information theory

We need to be able to exploit the various techniques used by the experiments out-

lined in chapter 3, to separate signal from background, and incorporate this into

a statistical analysis. Our approach is to employ Bayesian statistics to exploit the

different distributions of signal and background directly in the ‘data-space’. By this,

we refer to the multi-dimensional space of experimentally relevant parameters, e.g.
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for XENON100 and LUX this would be S1 and S2 (or some function thereof), for

CoGeNT this would be energy and rise-time (and potentially also the time-stamp

values). In some sense, one can compare our approach to pattern recognition i.e.

attempting to quantify to what degree the data resemble a particular combination

of signal and background.

We will introduce this method from a first-principles approach, however we note

that the various experimental collaborations employ analytical methods which re-

semble this approach to varying degrees. For example the LUX [79] and XENON100

[78] collaborations use a profile likelihood method to set upper limits on the DM-

nucleon cross section (as do CDMS [97]).

4.4.1 Dividing the Data-space into a Grid

We will develop our approach in the data-space itself. Since most Direct Detection

experiments employ two different parameters to separate signal and background, we

will focus on a 2D data-space here, however our method is easily extended to data

with only one parameter or several.

Our general strategy is to treat any data-set effectively as an image, which we

pixelate and analyse using a technique similar to pattern recognition. Said differ-

ently, we map the data contained in a 2D plot onto a 2D data-space Ω. A point x

in this space is identified by its two coordinates α and β, which are both the coor-

dinates of the initial plot and the discrimination parameters used to identify events

(e.g. scintillation intensity, ionisation, phonon signals). We show this in figure 4.1:

the black dots are the data-points, as shown in the first panel. In the second we

have an expected signal and background distribution, and we wish to know if these

are actually reflected in the data themselves.

The next step is to then grid the data-space by pixelating it into M two-

dimensional bins of equal size in α-β given by ∆xj = (∆α,∆β) and labelled with the

index j. This is shown in the third panel of figure 4.1, where the grid-lines represent

pixels. If such 2D-bins are chosen to be small enough, the ability of the analysis to

discriminate between signal and background will be maximised. Within a pixel j at

position xj = (αj, βj) in the α-β plane there will be a certain number nj of exper-
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4 data points in a pixel
where we expect mostly
signal, implies good �t to
Dark Matter recoils.

Data
points

Expected
Signal

Background

Combine all of the pixels into 
a single Likelihood analysis.

1 2

3

4

Pixelate the data-space

Reduce the size of the pixels to
improve resolution. For a perfect
experiment we can make the pixels
as small as the data-points themselves.

Figure 4.1: Steps of our analysis for a hypothetical data-set. The process starts in the first panel

with the data-set itself. We wish to know to what extent the signal distribution, shown in panel 2,

can be said to fit to this data-set, when added to the expected background distribution. To do so,

we pixelate the data-space in panel 3, and count the number of points in each pixel. These pixels

can be reduced to infinitesimal size, such that each pixel can at most contain one data-point, to

maximise the resolution of our analysis.
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imental data-points, each of which are identified by their coordinates xdata
i (with i

running from 0 to N , the total number of data-points in the whole space). For the

same pixel, the theoretically expected number of points is given by λj = λ(xj)∆xj.

Hence we can compare nj to λj given fluctuations in the latter, which we assume

obey Poisson statistics. The function λ(xj) is the expected distribution of events,

which constitutes the theoretical expectation of both the background and possible

signal in a pixel xj, as shown for example in panel 3 of figure 4.1. The experimental

data can be thought of as a discrete sample of the theoretical distribution λ(x).

4.4.2 Defining a Likelihood and Posterior

35 Data Points4 Data Points

Signal becomes approximately 10x more intense,
and so r  is around 10 times r . Intensity changes
with r, but expected signal shape is una�ected.

12

r  = 1 r  = 101 2

Figure 4.2: Demonstration of our information theory method in a case where there are only a

few DM events (left) and where there are 10 times more (right). The higher intensity of events

affects only the amplitude, through r, and not the overall expected shape.

We can now develop a statistical framework, with which analyse experimental

data using the method described above. The main issue is to find for which values

of the theoretical parameters is λj closest to nj for all pixels j, within Poisson

fluctuations i.e. what intensity of the signal distribution (see figures 4.1 and 4.2)

gives the right number of events in each pixel, above background? If there is no DM
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signal in the data, one expects that for the configuration where λj is closest to nj

that the former is equal to the theoretically expected number of background events

in each pixel.

For this purpose, we will define a Poisson likelihood to describe the theoretical

number of background and signal-like events in each pixel j. Here λj represents the

mean expectation value of the number of points expected in each pixel j. Such a

Likelihood is given by,

P(d|r,mχ) =
M∏
j=1

λ
nj
j e
−λj

nj!
. (4.4.10)

In this expression, d represents the data, mχ is the DM mass and r controls the

interaction strength. We will assume that mχ is fixed for now and treat r as the

only theoretical parameter, for simplicity.

We can introduce a potential DM signal component to our expectation, and so

λ(xj) now equals the sum of a DM component F(xj) and a background component

b(xj), leading to λ(xj) = F(xj) + b(xj). This Poisson Likelihood then is essentially

comparing the number of data-points in each pixel to the expectation from signal

and background, analogous to panel 3 in figure 4.1.

Since both the number of events and the location are important, and since the

location depends on the DM mass (i.e. can be computed once for each mass), we

have explicitly separated out these two contributions:

λ(xj) = f(xj) r + b(xj) (4.4.11)

where the term f(xj) represents the signal position (or shape), which is a function of

mχ, in the data-space and r its magnitude (or intensity). For the standard picture

of a non-relativistic WIMP, the interaction rate depends linearly on cross section σ,

and hence r ∝ σ.

The number of events is governed by the interaction cross section σ between the

Dark Matter and the nucleons of the detector. If the shape of the signal matches

that of the data points (above background), then a count of the number of events

should reveal the value of the cross section, and therefore the strength of the DM

interactions, as demonstrated in figure 4.2. On the other hand, if the shape does not

match the data-point distribution, one can set a limit on the DM interaction cross
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section. In practice the finite experimental sensitivity means we can only exclude

values of σ which would lead to too large a signal, as discussed in section 4.4.3.

We will work with the ratio r ≡ σ/σ0, so that r ≡ σ/σ0 provides us with a direct

measurement of the intensity of the signal, as shown in figure 4.2. We take σ0 to be

our largest allowed value of the cross section. If we had absolutely no prejudice on

the prior value of σ, we would have to take σ0 → ∞. However in practice we can

take σ0 to be very large but finite, such that we are confident that the probability

of finding DM with this interaction strength is vanishingly small, given previous

experimental knowledge. An exclusion limit is then set by determining the smallest

r = rlimit value that still leads to too many signal-like events, so that all r > rlimit

are excluded, while keeping values of r which the experiment is not sensitive to.

The number of expected signal events in a pixel at xj is given by fj r = f(xj)r∆xj

1. To proceed, we must now define a prior for r. We have no theoretical prejudice

on its value and therefore consider a flat prior i.e. assign to all possible cross section

values r ∈ [0, 1] the same a priori probability density function P(r) = const.

We can now combine the Likelihood P(d|r,mχ) and prior P(r) into the joint data

and signal probability P(d, r,mχ) = P(d|r,mχ)P(r). In order to proceed further,

we will work with the information Hamiltonian,

H = −lnP(d, r,mχ) =
∑

pixel j

(λj − njlnλj) + . . . , (4.4.12)

where the . . . indicates signal-independent terms, which do not contribute to the

determination of the ratio r. Inserting our decomposition for λ(xj) (cf Eq.4.4.11 )

and rearranging we obtain,

H = −lnP(d, r,mχ) =
∑

pixel j

(fjr + bj − njln[fjr + bj]) + . . . , (4.4.13)

and inserting that fj r = f(xj)r∆xj, the Hamiltonian becomes,

H =
∑

pixel j

(f(xj)r∆xj + b(xj)∆xj − njln[f(xj)r∆xj + b(xj)∆xj]) + . . . . (4.4.14)

1We will assume here that the overall normalisation for the background is known. However

in cases where this is not true one can parameterise the unknown normalisation with a nuisance

parameter and associated prior, and then marginalise over it.
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We can now rearrange in order to separate out the signal and background terms,

H =
∑

pixel j

(
f(xj)r∆xj + b(xj)∆xj − njln

[
b(xj)∆xj

(
1 +

f(xj)r

b(xj)

)])
+ . . . .

(4.4.15)

and split H into two separate sums,

H =
∑

pixel j

(
f(xj)r∆xj − njln

[
1 +

f(xj)r

b(xj)

])
+
∑

pixel j

(b(xj)∆xj − njln [b(xj)∆xj]) .

(4.4.16)

Since the background-only terms have no dependence on r, they can be considered

as a constant shift and essentially disregarded,

H =
∑

pixel j

(
f(xj)r∆xj − njln

[
1 +

f(xj)r

b(xj)

])
+ . . . (4.4.17)

The limit can now be taken where ∆xj → 0, so that each pixel can only contain

either 1 or 0 data-points i.e. we shrink the pixels to the size of a data-point, as shown

in the fourth panel of figure 4.1. Hence in this limit nj tends to a delta-function and

the Hamiltonian becomes

H =

∫
Ω

dx

[
f(x)r − ln

(
1 +

f(x)r

b(x)

)
δN(x− xdata

i )

]
+ . . . (4.4.18)

where the δ-function picks out the positions of the N data-points xdata
i . We define

F =
∫

Ω
dx f(x), the total number of reference signal (nuclear-recoil from Dark

Matter) events in the data-space calculated at σ0.

4.4.3 Setting Limits and Signal Regions

With this Hamiltonian we are ready to look for a Dark Matter signal in our data

and we now outline this process explicitly (see also [98]).

We seek to minimise the Hamiltonian. There is a positive identification of a DM

signal in the experimental data only when the Hamiltonian possesses a minimum.

In this case the shape of the signal f(x) matches the distribution of the data points,

in some region of data-space where b(x) is expected to be small. The strength of the

DM-nucleon interaction is given by the intensity of the signal, rbest, corresponding

to ∂rH(d, rbest) = 0, as is shown in figure 4.3.
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Best-fit value

Integrate to
define a region
of credibility.

(a) Plot of exp [−H(r)], where a value of r

around 150 gives a good fit to the data. We

therefore define a region of credibility by in-

tegrating over the shaded region.
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(b) Value of the Hamiltonian, showing that

this possesses a minimum where the Posterior

is at maximum.

Figure 4.3: Posterior and Hamiltonian in the case where the data are consistent with a signal

hypothesis, with a best-fit value of r around 150.

To define the goodness of the fit in the frequentist approach, one would then

consider all r (or equivalently σ) values leading to χ2 = χ2
best + δ where δ is fixed by

the confidence level that one wants to have. Here we shall proceed slightly differently:

we define the significance of the signal by integrating the Posterior distribution

P(r,mχ|d) =
P(d, r,mχ)

P(d)

f.p.
= P(d|r,mχ), (4.4.19)

over r, retaining in particular r values around rbest.

Note that the last equality holds only for flat priors (f.p.), and assuming that

P(d) = P(r). However, in the following we will take out the normalisation of

P(d|r,mχ) explicitly, such that the Posterior is:

P(r,mχ|d) =
P(d|r,mχ)∫
drP(d|r,mχ)

(4.4.20)

=
exp[−H(r)]∫
dr exp[−H(r)]

. (4.4.21)

Hence in our case a discovery will be established at a confidence level X, for a

particular mass mχ, by using the definition,∫ rbest

rlow

drP(r,mχ|d) =

∫ rup

rbest

drP(r,mχ|d) = X/2, (4.4.22)
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where the discovery region is bounded from below by rlow and from above by rup.

Such a region is therefore a two-sided region of credibility (an example is shown in

figure 4.3a), while an exclusion limit by contrast is said to be one-sided.

However one may find that the Hamiltonian possesses no minimum, and so the

Posterior has no maximum. An example of such a Posterior is shown in figure 4.4 (we

will sometimes refer to a Posterior without a maximum as ‘featureless’). In this case

there is no value of r for which the data is compatible with the signal distribution,

no matter how intense this distribution becomes. One can not completely rule out

Dark Matter however, since we know that our experiment has finite sensitivity, but

we can set a limit, hereafter referred to as rlimit, on the DM interactions.

10-2 10-1 100 101 102 103

r
10-4

10-3

10-2

10-1

100

101

Ex
p[

-H
(r

)]

Figure 4.4: Example of the behaviour of the Posterior (∝ exp[−H]) in the case where there is no

evidence for a signal in a given data-set. In this case, one can define an upper limit by integrating

up from r = 0, as shown by the shaded region.

Since the experiment is not sensitive to DM cross section values smaller than

σlimit = rlimit × σ0, all r values below rlimit are equally good (or equally bad). Hence

there is a region of the parameter space corresponding to r < rlimit where the

Posterior probability P(r,mχ|d) is practically constant, as the experiment cannot

discriminate between these values of the cross section (for a given exposure). We

show this in figure 4.4, where the value of e−H , proportional to the Posterior with

flat priors, is constant below a certain value of r.

The allowed region below rlimit is thus characterised by a constant P(r,mχ|d)

while the excluded region above rlimit (where one expects too much signal) is iden-
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tified by a sharp cut-off in the posterior probability. To determine the exclusion

limit (i.e. rlimit), we thus seek to quantify this cut-off. We have some freedom in

choosing its value: it will depend on the confidence with which we set out limit. For

example to set an exclusion limit at a confidence of Y (e.g. for 90% confidence we

take Y = 0.9), we define rlimit analogously with our best-fit region, as∫ rlimit

0

drP(r,mχ|d) = Y. (4.4.23)

By integrating the constant region of the posterior probability until the integration

reaches the value that we set, we identify rlimit and the cut-off. All of the above can be

seen in figure 4.4: we see that e−H has a constant value for smaller r, before rapidly

dropping at values of r which the detector is sensitive to, and by integrating up from

r = 0 we can define an exclusion limit which quantifies the detector sensitivity.

Note also that for ease of calculation we tend to use the Hamiltonian in the form

of,

H = F r −
N∑
i=1

ln (1 + wir) , (4.4.24)

where F =
∫

dx f(x), i sums over all N data-points at positions xi and wi are data

weights with wi = f(xi)/b(xi), which are large for data-points in locations where

one expects a lot of signal, and small where one expects mostly background. We

can see this from figure 4.5, where we highlight two points, one in a region where we

expect the most signal, resulting in a large weight value, and one in a background

dominated region, where the weighting is smaller. Hence, large weights indicate the

presence of data-points in regions where the signal is expected to be larger than the

background.

For setting a limit the first term in eqn. (4.4.24) Fr is data-independent and

gives the absolute limit in the case where no signal-like events are observed in the

data, while the second term accounts for potential signal-like events present in the

data, and weakens the limit. This is shown in figure 4.6, where we plot e−H and its

two components, such that e−H = e−Fr · e
∑N
i=1 ln(1+wir).

The larger the values of wi, the weights at the positions of the data-points, the

larger the size of the peak in the Posterior at the best-fit value of r. In the case

where all of the wi are zero then e−H = e−Fr and so has no peak, as one would
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w = 72

w = 0.015

Figure 4.5: Expected signal (green/blue) and background (red/orange) distributions along with

a synthetic data-set, where lighter regions indicate larger values for the distributions. One can see

that for the two highlighted (starred) data-points the weight values differ markedly, since the lower

is in a region dominated by signal, while the one at larger β is in a background dominated region.

expect since this means the data are incompatible with the signal hypothesis for

any value of r. Conversely, large wi imply the presence of data-points where one

expects signal, and so the Posterior is likely to possess a peak, indicating a good fit

for a certain non-zero value of r. We also note that only the data-points where wi

are large make a difference to the Posterior, and points where one expects mostly

background generally have negligible impact.

4.4.4 Signal Nuisance Parameters

In practice, an analysis of Direct Detection data may contain several parameters

which are not known perfectly, which are generally referred to as nuisance param-

eters. We can incorporate such uncertainty into our analysis by defining priors for

these values, and integrate over them to obtain a marginalised posterior.

One major source of uncertainty in the DM recoil rate is the velocity distribution

f(v), as discussed in section 3.2.5. If we choose to use the form from eqn. 3.2.8,

as motivated by N-body results (i.e. f(v) = A exp(−v/v0)(v2
esc − v2)p), then we
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exp[-Fr]

exp[-H]

exp[Σ ln(1+w r)]i i

Figure 4.6: Illustration of the effect of positive weights on the Posterior. If there are many

data-points for which wi is large, then the green dashed line will pull the Posterior such that it

peaks at a best-fit value of r.

can marginalise over its free parameters with appropriate priors. Indeed, priors for

these parameters have been determined from fits to the Rhapsody and Bolshoi

simulations to be

p ∈ [0.0, 3.0] (4.4.25)

vrms ∈ [0.35 vesc, 0.53 vesc], (4.4.26)

where the RMS velocity vrms is then defined as [68],

vrms = 4π

∫
dv v4f(v). (4.4.27)

The extent of these priors represents the, relatively large, degree variation be-

tween simulated halos seen in [67]. One major reason for such variation is that

the actual extent of the DM halo in our galaxy is unknown, and so there is un-

certainty in how to relate the position of the Sun in the galaxy to a position in

the simulated galaxy. Furthermore, it has been shown in [99] that both the DM-

only ErisDark and the DM+Baryon simulation Eris give distributions which fit

within these prior ranges. For the former (vrms, p) = (0.42vesc, 1.5) and for the latter

(vrms, p) = (0.49vesc, 2.7).

Within this Bayesian framework, marginalisation is very simple. We work with

the Posterior distribution P(r|d), however in this case we first integrate over the
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parameters p and vrms with the priors given above. Applying Bayes theorem [98, 100],

this calculation is,

P(r|d)P(d) =

∫
dp dvrmsP(d|r, p, vrms)P(p)P(vrms)P(r), (4.4.28)

where r = σ/σ0, the ratio of the cross section σ to a reference cross section σ0, and

P(d|r, p, vrms) is the likelihood (proportional to the information Hamiltonian i.e.

eqn. 4.4.24). The priors P(p) and P(vrms) are constant within the ranges defined in

equations 4.4.25 and 4.4.26 and zero outside.

There are many other nuisance parameters we can incorporate, as we will discuss

in the following chapters.

4.4.5 Background Nuisance Parameters

In addition to uncertainties in the expected signal distribution, the background may

also possess a degree of uncertainty, in either its magnitude and/or its spectral shape.

Incorporation of such uncertainties is of vital importance, as will be demonstrated

in the context of the CoGeNT experiment in chapter 6.

4.4.6 Bayes Factors

As discussed in section 4.3, the Bayes factor B can be used to compare various mod-

els, and obtain quantitative statements from a particular analysis. One commonly

wants to compare the DM+background model to the background-only scenario,

where σ = 0, giving the expression,

B =

∫
dσ
∫

dmP(m,σ|d)

P(m,σ = 0|d)
. (4.4.29)

The size of the Bayes factor determines the preference the data has for either model

[101], with B = 1 giving an inconclusive result, B < 1 giving preference for to the

background-only model, while B > 1 would imply preference for DM+background.

4.4.7 Application to experimental data

We are now in a position to apply our method to data from Direct Detection exper-

iments. In chapter 5 we consider the application to data from XENON100 (and to



4.4. Information theory 51

some extent LUX), and in chapter 6 we analyse data from the CoGeNT experiment.



Chapter 5

Analysing XENON100

5.1 Introduction

In the previous chapter we introduced a novel technique with which to analyse Direct

Detection data. Let us know apply this to data from the XENON100 experiment

[78]. We can identify the measured parameters S1 and S2 (see section 3.3.1) with

our discrimination parameters α and β from section 4.4.1, though here we choose

instead to take α = S1, β = Log(S2/S1), to match more closely the method used

by the XENON100 collaboration themselves (and also the LUX collaboration [79]).

The values of S1 and S2 are expressed in terms of number of detected photoelectrons

(PE).

We start by deriving the signal and background distributions for our analysis, in

sections 5.2 and 5.3 respectively, before performing an analysis of XENON100 data

in section 5.4 directly within the data-space itself. However, at this stage it becomes

apparent that one needs to take account of uncertainties, which we do in section 5.5.

Specifically we study the variation of our results due to astrophysics (specifically the

velocity distribution of DM) and detector-specific effects, and a study of the effects

of using more of the data-space (section 5.6).

We seek only to demonstrate our statistical method here, since we do not possess

the full XENON100 data (e.g. the spatial position of each event and the 232Th ER

background calibration data).

52
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5.2 Signal Distribution

5.2.1 DM Recoil Spectrum

Potential DM events are characterised by their recoil spectra dR
dE

. We assume spin-

independent scattering, and use the formalism described in section 3.2. For this

section, we assume the standard halo model such that f(v) is given by a Maxwell-

Boltzmann distribution cut off at an escape velocity of vesc = 544 kms−1 (this is the

central value determined from the RAVE survey [102] within a 90% confidence range

between 498 kms−1 and 608 kms−1), however we will generalise to the distribution

of equation 3.2.8 when discussing nuisance parameters in section 5.5. For the 225

Live Days data-set (225LD) we use a value of 224.6 days for the exposure and 34 kg

for the mass, and for the 100 Live Days data (100LD) we use 100.9 days and 48 kg.

5.2.2 Calculation of S1 and S2 for Nuclear-Recoils

In this section we now take our knowledge of dR/dE and convert this into a distri-

bution into the data-space of S1 and S2. A nuclear recoil event will impart some

kinetic energy to the impacted atom. This results in the generation of a number of

scintillation photons Nγ and ionisation electrons Ne. An anti-correlation has been

observed between these two quantities. This is expected since the total amount of

energy per event is conserved, and so if most of the energy goes into scintillation

there is little left for ionisation and vice versa. Hence the probability of these two

values is a combined function P(Nγ, Ne). There will also be correlation between the

ionisation electrons themselves which should be accounted for in P(Nγ, Ne).

The average ratio of Nγ to Ne is different for nuclear and electronic recoils,

with the latter generating on average a greater fraction of ionisation electrons than

the former. This means that the two types of event can be discriminated by their

distribution in S1 and S2, a fact which we will exploit later in our statistical analysis.

Following the XENON100 collaboration [103] we make the approximation (for

nuclear recoils) that at low energies P(Nγ, Ne) ≈ P (Nγ) · P (Ne), where P (x) rep-

resents a Poisson distribution with expectation value x i.e. we approximate both

quantities by independent Poisson distributions. This is justified since the uncer-
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tainties in Nγ due to statistical fluctuations are dominant at the energies relevant

for a DM search, but the approximation will fail at higher energies. The S1 signal

is then approximately proportional to P (Nγ) and the same for S2 and P (Ne).

Within our approximate scheme, at a given nuclear-recoil energy E (this is some-

times expressed in units of keVnr) the expected primary (S1exp) and secondary

(S2exp) scintillation signals are obtained from the following formulae [103, 104, 105,

106],

S1exp ≈ P

(
E · Leff(E) · Ly ·

Sn
Se

)
(5.2.1)

S2exp ≈ Y · P (E ·Qy(E)) , (5.2.2)

where Y is the light amplification factor (dependent on the mechanism by which the

accelerated electrons excite atoms in the xenon gas) with mean 19.5 photoelectrons

(PE) per electron and width σ = 6.7 PE/e− [107], Ly = 2.20 ± 0.09 PE keV−1,

Sn
Se

= 0.95/0.58 , Leff(E) is the relative scintillation efficiency and Qy(E) is the

ionisation yield. For Qy there is a degree of uncertainty on its functional form [107];

we use the model of [106] in this work, however we have obtained similar results with

the best-fit curve from [107]. Leff is obtained from a cubic spline fit, as discussed

further in section 5.5.2.

To obtain the S1obs and S2obs signals observed in the detector, we must include

the finite detector resolution and the cuts imposed by the XENON100 collaboration

on the data [107, 103, 77]. Both S1exp and S2exp are blurred with a gaussian of width

0.5
√
n for n photoelectrons (PE) to take account of the finite photomultiplier (PMT)

resolution [76]. The effect of cuts is then implemented using the cut-acceptance

curve as a function of S1 [107, 103] after applying the resolution effect. Additionally

a threshold cut is applied before gaussian blurring, cutting away all points with

S1 < 1 PE [78].

There is additionally position information for each S1/S2 event which we have

suppressed here. This is used to obtain location information on the event, important

for volume fiducialisation. The pattern of scintillation light from the S1 signal gives

accurate information on the x,y position of the event and the timing between the

S1 and S2 signals allows the z position to be determined. The latter is due to the
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drift time of the ionisation electrons under the electric field.

Using the procedure discussed above we have generated a simulated nuclear recoil

data-set assuming a constant energy spectrum. We show in figure 5.1 values of the

mean and spread in 2 PE bins for this simulated data, compared with those for the

241AmBe calibration data which we show as grey pixels. We calculate the mean and

3σ values by fitting gaussian distributions to the data in each 2 PE bin [104]. Note

however that the distribution of values around the mean is not perfectly gaussian

for either the calibration or simulated data. Specifically this is due to a small tail of

events below the mean, which is in excess of the gaussian fit. Hence these fits serve

as a useful tool for comparison, but are not indicative of a pure gaussian distribution

for the data itself.
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Figure 5.1: Comparison of the mean and spread from our simulated nuclear recoil events with

those from the 241AmBe calibration data. The spread is obtained by fitting gaussian distributions

in each S1 bin. The data are only approximately gaussian distributed around the mean and so

these 3σ values give a good (but not perfect) approximation to the spread of values.

The means for the simulated and calibration data agree very well. For the 3σ

values the spread of the simulated data is slightly too narrow. The reason for this is

not clear: at low energy it is likely due to our choice of Leff or Qy and indeed when
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we vary these functions we can reproduce the spread in the data more accurately

at low-energy. However at high energy the discrepancy may be the result of our

approximations being used outside of their range of validity.

Since our simulated data and the 241AmBe calibration data agree well we now

proceed to discuss the calculation of a DM recoil signal in S1 vs. S2.

5.2.3 Expected Dark Matter signal in XENON100

The expected signal distribution for a given WIMP mass in the data-space f(x) can

now be calculated using dR/dE of section 5.2.1 (i.e. dR
dE

= σρχF (E)

2µ2Nmχ

∫∞
vmin(E)

f(v+ue)
v

d3v),

at a value of the reference cross-section σ0 = 10−35 cm2 (or 10−34 cm2 for m <

10 GeV). This is the same σ0 used in the r parameter (r = σ/σ0), which we intro-

duced in section 4.4. The process to generate the signal distribution follows these

steps:

1. The energy range between 1 keV and 60 keV is separated into bins of size

∆E = 0.01 keV.

2. For each binned energy Erec we calculate S1obs and S2obs a total of Nrec times,

where Nrec = dR
dE

(σ0, Erec)∆E, to obtain the full signal distribution as expected

in XENON100.

3. This is then placed into a two-dimensional histogram in S1 vs. log(S2/S1),

and f(x) is obtained by interpolating between the bins of the histogram, to

give a value of the function at all points in the data-space.

The result is shown for two different masses in fig. 5.2. Similar simulations of the

signal distribution expected from XENON100 have been performed in [108, 109, 107],

however our method goes further and directly links these to the analysis through

the weight function w(x) = f(x)/b(x), as shown in figure 5.2. The signal and

background distributions have been flattened in these plots i.e. we have determined

the mean of the electronic recoil band by fitting to the 60Co data and subtracted

this off.
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Figure 5.2: The upper four panels show the 225 Live Days dataset [78], while the lower two

display the data for 100 Live Days of the XENON100 experiment [77]. The left panels show the

expected signal f(x) and background b(x) distributions used for our analysis (the background is

derived entirely from 60Co data). For the signal distribution, each contour is 1.2 times less than

the previous, from light to dark blue, while for the background the ratio is 1.5 from orange to red.

The data are shown as black circles. For the 225 Live Days data, the two most signal-like points

have been highlighted with yellow stars and are referred to as “hint” points in the text. In the

right panels we show the function Ln(1+w(x) · r), where r = 10−8 here and w(x) = f(x)/b(x), the

weight distribution of eqn. 4.4.24. We bin w(x) in units of ∆S1 = 0.5 and ∆Log(S2/S1) = 0.01,

and interpolate between these bins for the analysis. The y-axis is shifted by the mean of the

electronic-recoil band, as shown by “ER Mean”.
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5.3 Background Distribution in XENON100

The expected distribution of electronic-recoil background events bER(x) is deter-

mined from fits to 60Co calibration data [77, 76]. There are two issues to consider

here:

1. The calibration data is collected from a pure gamma source and so does not

model the electronic background from other sources (e.g. β-emission) [103].

This is justified for the 225LD data-set as the ER background is dominated by

γ-events, however the 85Kr leakage in the 100LD run contributed an additional

source of β-emission. This data also will not include a contribution from

potential backgrounds below the NR band in S2/S1.

2. The XENON100 collaboration used also 232Th calibration data in addition to

60Co for the 225LD [78] run. Since this is not publicly available we can not do

the same and so this may affect the results of our statistical analysis. We also

therefore have less available statistics from which to generate our background

distribution, resulting in some coarse-graining.

Although the electronic recoil events appear mostly Gaussian distributed, the

XENON100 collaboration noticed the presence of an anomalous (non-Gaussian)

background component [77]. This could be due to double-scatter gamma events,

where only one of the gammas contributes to the S2 signal. Both such components

of the ER background are included, indeed the anomalous component can be seen

in figure 5.2 predominantly at low-S1. The distribution is normalised by the to-

tal number of expected background events, whose rate takes the constant value of

0.0053 counts per day per kg per keVee [110, 78]. For 100LD the background is

larger due to krypton contamination in the experimental apparatus, taking a value

of 0.022 counts per day per kg per keVee [77].

Since we only use the 60Co data, this may not be representative of the full

ER background in this data, especially since the 85Kr β-events in the 100LD data

will not contribute to the anomalous γ background component. To ensure that our

conclusions are not strongly affected by this assumption we have tested how our final
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exclusion limits change under variations in the ER background e.g. reducing and

increasing the size of the anomalous component relative to the gaussian component.

We also model the nuclear-recoil background due to neutrons bNR(x). The dis-

tribution is calculated as for the signal distribution, but replacing dR/dE with the

expected energy spectrum of neutron scatters in the detector [111]. Hence the total

background distribution is b(x) = bER(x) + bNR(x).

10-46 10-45 10-44 10-43 10-42 10-41

WIMP-nucleon cross-section (cm2 )

10-3

10-2

10-1

100

101

102

Li
ke

lih
oo

d 
P(
d
|s

)

8 10 20 50 100 400
WIMP Mass (GeV)

10-46

10-45

10-44

10-43

10-42

10-41

W
IM

P-
nu

cl
eo

n 
cr

os
s-

se
ct

io
n 

(c
m

2
)

225 Live days dataset
Upper limit of 90% region.
Upper limit of 20% region.

8
G

eV

10
G

eV

20
G

eV

50
G

eV

100
G

eV

10-46 10-45 10-44 10-43 10-42 10-41

WIMP-nucleon cross-section (cm2 )

10-3

10-2

10-1

100

Li
ke

lih
oo

d 
P(
d
|s

)

8 10 20 50 100 400
WIMP Mass (GeV)

10-46

10-45

10-44

10-43

10-42

10-41

W
IM

P-
nu

cl
eo

n 
cr

os
s-

se
ct

io
n 

(c
m

2
)

225 Live days - no "hint" points
Upper limit of 90% region.
Upper limit of 20% region.

8
G

eV

10
G

eV

20
G

eV

50
G

eV

100
G

eV

10-46 10-45 10-44 10-43 10-42 10-41

WIMP-nucleon cross-section (cm2 )

10-3

10-2

10-1

100

Li
ke

lih
oo

d 
P(
d
|s

)

8 10 20 50 100 400
WIMP Mass (GeV)

10-46

10-45

10-44

10-43

10-42

10-41

W
IM

P-
nu

cl
eo

n 
cr

os
s-

se
ct

io
n 

(c
m

2
)

100 Live days dataset
Upper limit of 90% region.
Upper limit of 20% region.

8
G

eV

10
G

eV

20
G

eV

50
G

eV

100
G

eV

Figure 5.3: Plots showing exclusion limits and regions of credibility, derived from applying our

analysis to data from the XENON100 experiment [78]. For the left-most 225LD analysis, there is a

weak preference for low-mass DM, which vanishes under more stringent cuts (central) or with the

100LD data (right). The upper panels show examples of the (un-normalised) Likelihood function

P(d|r,mχ) for various WIMP masses, while the lower panels show the result of integrating the

posterior from r = 0 up to some limiting value, in order to define an exclusion limit for a given

significance. The region between the two dashed lines shows exclusion curves with significance

increasing linearly from darker to lighter shading. One can indeed consider this region as one of

70% significance. For the left panels we have used the full 225LD dataset (all points between

S1low = 3 PE and S1up = 30 PE), while for the central panels the analysis has been performed with

the two most signal-like (labelled as “hint”) data-points removed by cutting off the data-space

below S1low = 4 PE. The right-most panels show results for the 100LD data.
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5.4 Posterior Scans without Nuisance Parameters

Now that we know how to calculate the expected signal and background distributions

f(x) and b(x), we are ready to apply our method to the data from the XENON100

experiment. All relevant ingredients are displayed in fig. 5.2; the left panels show the

regions where the expected signal and background are expected to be largest, while

the right panels show plots of Ln(1+w(x)·r) as used directly for our analysis (see e.g.

equation 4.4.24). The discrimination between signal and background is maximised

provided the two-dimensional bins for w(x) = f(x)/b(x) are small enough: data-

points where w(x) is large are more likely to be due to signal than background,

while the opposite is true for points located where w(x) is small. This is then fed

directly into our analysis, hence figure 5.2 contains all of the main ingredients of our

method.

Shown in figure 5.3 are the results of applying the method introduced in section

4.4, to the data. In order to understand the effect of data-points consistent with

a signal interperetation, we have performed the analysis with both the full dataset

(with a lower cut on S1 at S1low = 3 PE), and with a reduced dataset, where the

two “hint” data-points (i.e. the starred points in figure 5.2 ) have been removed

by cutting away the data-space below S1low = 4 PE 1. The former is displayed in

the left panel of fig. 5.3, while the results for the reduced dataset are shown on the

central panel. Results from the 100LD data are shown on the right.

As discussed in section 4.4.3 we can define regions of credibility (either exclusion

limits or potential discovery regions) by integrating under the normalised posterior

P(r,mχ|d). Hence in the lower panels of figure 5.3 we show exclusion limits for

various levels of confidence, between 20% and 90%, calculated by integrating the

posterior from r = 0 up to the limiting value of r, for each mass value mχ. One

can equivalently consider the parameter space between these limits as a region of

1We could instead have moved the low-S2 cut from 150 PE to 300 PE, as for the 100LD data-set,

which would remove one of these points.
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70% credibility. The 90% limit for the full 225LD data-set can be compared with

the result from [78], while the shaded band represents how the limit changes with

different confidence.

The upper panels show the dependence of the Likelihood P(d|r,mχ) as a func-

tion of σ for various DM masses. One can see directly that for the full 225LD

dataset the Likelihood function has a maximum (corresponding to a minimum in

the Hamiltonian), indicating a preference for the data of a particular value of σ,

which is strongest for lighter DM. Indeed this can also be observed in the exclusion

curve as we change the significance value: particularly for lighter DM the region of

credibility between the 20% and 90% limits is denser as compared to heavier DM.

This is due directly to the presence of a maximum in the Posterior and Likelihood,

something we will return to in section 5.6.

By contrast when the two “hint” data-points are removed from the analysis by

the more stringent low-S1 cut (see figure 5.2 for details), there is no maximum in

the Likelihood and Posterior for any DM mass, as one would expect since all points

are in a region where the weight w(x) = f(x)/b(x) is small. Indeed the density of

the posterior is now less for all masses than for the full data-set, with the contrast

particularly stark for lighter DM. The same is seen for 100LD, for which no hint

of signal is present. In addition, the limits without the “hint” points are stronger

since the data are now almost completely consistent with a negative result. If the

XENON100 collaboration were to observe additional signal-like points in their data,

one would expect the density of the posterior to increase around the best-fit region.

In any case this demonstrates the ability of our method to accurately set limits

or define potential discovery regions. All of the relevant information is contained

within the posterior P(r,mχ|d), which can be integrated over to define the degree

of belief that a given region of parameter space is consistent with the data.

5.4.1 Comparison with results from XENON100

It is interesting to compare our results to those previously found by the XENON100

collaboration. Shown in figure 5.4 is our 90% confidence limit (identical to the one in

figure 5.3), compared with the limit derived by the XENON100 collaboration with
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the same 225 live days dataset [78], but their own profile Likelihood analysis [76].

In addition, in the lower panel of figure 5.4 we also show the results of applying

our method to the 100 live days dataset, along with the limit from the XENON100

collaboration using their profile Likelihood method, and a limit we have indepen-

dently derived using the same method, but with identical inputs to our information

theory analysis2.
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Figure 5.4: A comparison of various limits set with either 225 live days [78] or 100 live days

[77] of XENON100 data. Limits from information theory refer to those derived using the method

presented in this work. For the 100 Live Days data we also compare the result of a profile Likelihood

analysis performed by the XENON100 collaboration with that from an analysis we have done using

the same profile Likelihood method, but where the inputs are identical to those for our Bayesian

method, such as fNR(x) and b(x). The limit from our Bayesian information theory method agrees

with the XENON100 published limit for 225LD, but is several times stronger for 100LD.

The exclusion limit derived with our information Hamiltonian method agrees

with that derived by the XENON100 collaboration for the 225 live days data-set

for large masses. For lighter DM our limit is stronger, though this is likely due to

uncertainty in the low-energy extrapolation of Leff [2]., which we discuss in section

5.5.2.

2We derived this limit using the frequentist method presented in [77], but using our expected

signal and background distributions (f and b respectively) to generate the simulated data-sets

required by the analysis.
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There are undoubtably other small differences between our inputs and those used

by the XENON100 collaboration, however the agreement of both limits indicates

that our method does indeed perform correctly when analysing Direct Detection

data. Note also that for the “hint”-removed data-set, where the low-S1 cut is moved

to S1low = 4 PE, the limit is stronger for heavy DM due to the removal of the signal-

like points by the cut. This is not so for lighter DM, since much of the region where

one expects to see signal is cut away in addition to the “hint” points.

We note however that when applying our method to the 100LD data [77] that our

information theory limit is stronger than that derived using the profile Likelihood

analysis, both performed directly by the XENON100 collaboration and from an in-

dependent analysis we have carried out. Since the latter two limits are in agreement,

it would be difficult to blame the inputs of the analysis on this discrepancy between

the limits, hence it is possible that the coarse-graining3 of the profile Likelihood

analysis has resulted in the derivation of an over-conservative limit.

The reason for this discrepancy arising only for the 100LD dataset is not entirely

clear. Potentially this is because the increased background in this dataset relative

to that from 225 live days [78] (due to the krypton leakage) has effectively fooled

the analysis used by the XENON100 collaboration, into treating too many points

as potential signal, thereby weakening the limit. It may instead be however that

our approximations made in determining the signal and background distributions

affected our final exclusion limit. In any case we have demonstrated how our method

is applied to the XENON100 data in order to derive an exclusion limit or discovery

region.

3Specifically we refer to the splitting of the data-space into a finite number of bands for the

profile Likelihood method used by the XENON100 collaboration, which necessarily limits the

amount of information extracted from the data, as opposed to our method where the data-space

is pixelated (see figure 5.2).



5.5. Uncertainties for light Dark Matter 64

5.5 Uncertainties for light Dark Matter

Up until now, our analysis has assumed that both the signal and background dis-

tributions are perfectly known. This is an oversimplification, and we will focus on

three sources of uncertainty in this section:

1. How is the Dark Matter fit affected by uncertainties in the velocity distribution

f(v)? Can we account for this using marginalisation?

2. How do our results depend on detector uncertainties, specifically the relative

scintillation efficiency Leff? This controls the conversion between energy and

S1.

3. How does the fit of light (. 10 GeV mass) Dark Matter depend on the choice

of cuts on the data, specifically at low values of S1?

Unfortunately, this is made significantly more complex since the uncertainties

above can not be considered in isolation. Indeed, we will consider multiple com-

binations of these three issues, in order to understand to what extent their effects

are correlated. Since this could rapidly become confusing, we present our main

conclusions in boxes throughout this section.

We focus on light Dark Matter, with a mass around 10 GeV, since this is the

parameter region preferred by the various hints from e.g. CoGeNT [74], DAMA [87]

and CDMS-Si [83]. However we will see in chapter 6 that the first of these is the

result of a systematic bias in the analysis and is not due to Dark Matter.

5.5.1 Uncertainties from the velocity distribution f(v)

We know for example from section 4.4.4 that the distribution of DM velocities

possesses some uncertainty, and can be marginalised over (so far we have been

assuming the SHM i.e. that f(v) is a Maxwell-Boltzmann distribution). Indeed,

such uncertainties are particularly important for low-mass DM around 10 GeV. For

example, figure 5.5 shows distributions of the expected signal from a 10 GeV elastic

DM recoil, under two different assumptions for the form of f(v), using equation

3.2.8 i.e. f(v) = A exp(−v/v0)(v2
esc − v2)p.
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Figure 5.5: Expected signal and background as compared to data from the XENON100 experi-

ment [75], for a 10 GeV WIMP. The left panel shows the distribution assuming that f(v) takes the

form of equation 3.2.8 (i.e. f(v) = A exp(−v/v0)(v2
esc − v2)p) with p = 0 and vrms = 0.53, while

for the right panel we take p = 3 and vrms = 0.35. We assume the best-fit form for Leff for both of

these plots. The dashed lines indicate the cuts at S1 = 3 PE and S2 = 150 PE. The values written

on the contours give the ratio relative to the largest value of f within the data-space.

As can be seen from figure 5.5, the expected light DM distribution in the data-

space, can vary rather strongly with p and vrms. Hence, the particular choice of

these parameters could in principle have a strong effect on the final result.

We will proceed to marginalise over p and vrms (where vrms = 4π
∫

dv v4f(v)),

as outlined in section 4.4.4, using the same formalism as in the previous section.

In practice, this means we perform the same analysis for each value of p and vrms,

and sum over each of the separate posterior functions to obtain the marginalised

posterior. The range of parameters is dominated by the uncertainty in converting

the size of the simulated halo to the DM halo in the Milky Way. Since f(v) depends

on the radial distance from the centre of the halo it is important to calculate it at

the correct location, however it is not obvious where the position of the Sun actually

is in any particular N-body simulation.

The velocity distribution can significantly affect the spectrum of DM. We will

use the empirical function f(v) = A exp(−v/v0)(v2
esc − v2)p, with p ∈ [0.0, 3.0]

and vrms ∈ [0.35 vesc, 0.53 vesc], where vrms = 4π
∫

dv v4f(v).
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5.5.2 Uncertainties from Leff

The signal distribution in XENON100 and LUX depends not only on the DM prop-

erties such as f(v), but also on more detector-specific quantities, particularly Leff

and Qy, used to calculate S1 and S2 (see section 5.2.2).

Indeed, the value of S1 relies critically on the relative scintillation efficiency

Leff(E), which converts between values of E and S14. This quantity has been mea-

sured in several experiments [112, 113, 114, 115], and theoretical models also exist

[106, 116, 117]. The approach of the XENON100 collaboration has been to either fit

a cubic spline to these measurements [75, 77, 118], or more recently to deduce Leff

indirectly using fits to nuclear-recoil calibration data [107]. The LUX collaboration

choose instead to use a theoretical model called NEST [116, 117].
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Figure 5.6: Cubic spline fit to data from [112, 113, 114, 115], showing the best fit as a solid line

and the one-sigma uncertainty band as a shaded region. The various possible extrapolations used

below 3 keV, where no data is present, are also shown, and the hard-cut on Leff is shown as a

dashed line. The red squares indicate the positions of the knots on the x-axis, which are kept fixed

for all splines.

We have thus far adopted this cubic spline approach, using the best-fit function

as shown in figure 5.6. We will refer to the best-fit spline (the yellow solid line in

figure 5.6) as the ‘best Leff ’. However we will also use the splines which trace the

4There is also an equivalent function for S2: the ionisation yield Qy. This has its own set of

uncertainties, however those from Leff are likely to be dominant for light-DM.
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upper and lower edges of the one-sigma contour from the fit of figure 5.6, which we

label as ‘upper Leff ’ and ‘lower Leff ’ respectively. There is some difficulty for energies

below 3 keV, where no current data exists. Hence we extrapolate below this energy,

with a constant extrapolation for ‘best Leff ’ and ‘upper Leff ’, and an extrapolation to

zero at 2 keV for ‘lower Leff ’. Also shown is the hard-cut on Leff at 3 keV, as used by

the XENON100 and LUX collaborations to give the most conservative limit. Since

this cut results in the smallest number of low energy events, any Leff uncertainties

we discuss in this work will actually result in a limit stronger than those in the

literature, especially at low mass.

Since the energies below 3 keV are the most important for light-DM, this ex-

trapolation should be vital for the correct understanding of the XENON100 data.

The lack of data here means we can not define a robust prior in order to perform

an effective marginalisation over the cubic spline fit, hence we restrict ourselves to

these three extreme forms for Leff . This is by no means perfect, and we will see in

chapter 6 that using only extreme values can cause problems.

The conversion from energy to S1 requires knowledge of Leff . This is not well

known at low energy, and so one has many choices as to its form below 3 keV.

5.5.3 Marginalising over f(v)

The marginalisation process, as discussed in section 4.4.4, provides us with a way

of dealing with the uncertainties in f(v), by treating it as a nuisance parameter. In

figure 5.7 we show the various Likelihoods for each value of p and vrms (within their

prior ranges p ∈ [0.0, 3.0] and vrms ∈ [0.35 vesc, 0.53 vesc]), along with the marginalised

result and that from assuming the SHM, all for a 10 GeV DM particle recoiling with

nuclei in the XENON100 experiment.

The black solid line in figure 5.7 is the marginalised result, after summing up

the Likelihoods for each astrophysical distribution according to the previous section.

Hence in this case it is in some sense an average over f(v) = A exp(−v/v0)(v2
esc−v2)p,

but with the weighting given by our choice of a flat prior in p and vrms. This is a
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Figure 5.7: Likelihoods for each value of p ∈ [0.0, 3.0] and vrms ∈ [0.35 vesc, 0.53 vesc] along with

the marginalised result, as a black solid line. Shown also is the resulting Likelihood when assuming

the Standard Halo Model for f(v), as the blue dashed curve. All Likelihoods have been normalised

such that their value equals unity at σ = 0.

graphical representation of the marginalisation process described by equation 4.4.28,

where the solid line is the result of the full integration.

We can then combine this Likelihood with a Prior for σ (we choose it to be

linearly flat), and use the resulting Posterior to define a 90% confidence limit on σ.

We note however that there is a substantial peak present in all of the Likelihoods,

which may suggest compatibility of XENON100 data with a non-zero DM cross

section. Indeed the maximum Likelihood value is slightly higher for the marginalised

result, as compared with the SHM, and so setting a limit may not be appropriate.

This will be discussed in more detail in section 5.6.

The resulting limit from the astrophysical marginalisation is shown in figure 5.8,

along with limits assuming f(v) = A exp(−v/v0)(v2
esc − v2)p with different values of

p and vrms , compared with the same limit using the Standard Halo Model (SHM),

which takes f(v) to be a Maxwell-Boltzmann distribution with a sharp cut-off at

vesc.

The limit from marginalising over f(v) = A exp(−v/v0)(v2
esc − v2)p is system-

atically weaker than that from the SHM. This trend is seen most strongly for the

distributions with larger values of p and smaller values of vrms. Effectively larger
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Figure 5.8: Limits at 90% confidence derived using either f(v) from the SHM or various empirical

fits using the formula of [67, 68] i.e. f(v) = A exp(−v/v0)(v2
esc − v2)p. The limit resulting from

marginalising over these distributions is also shown. Note that it is systematically weaker than the

limit from the SHM.

values of p mean that f(v) is more strongly suppressed at higher velocities, translat-

ing to a reduced value for the DM mean speed i.e. the velocity integral in equation

3.2.3 (η =
∫∞
vmin

f(v+ue)
v

d3v).

This can also be observed in figure 5.5, where we show the expected background

and signal distributions in XENON100, for two different assumptions regarding the

velocity distribution f(v). One can see that, for the right-most panel, the spectrum

is less spread out, since we have taken p = 3 here, while for the panel on the left we

use p = 0, resulting in a more gradual transition to the cut-off when v = vesc.

We marginalise over the free parameters p and vrms = 4π
∫

dv v4f(v), using

the function f(v) = A exp(−v/v0)(v2
esc − v2)p. Our priors are flat in the ranges

p ∈ [0.0, 3.0] and vrms ∈ [0.35 vesc, 0.53 vesc]. The marginalised limit is weaker

than the one derived assuming that f(v) is given by the SHM.

5.5.4 Uncertainties from Leff for the marginalised limit

Interestingly, not only is the marginalised limit systematically weaker than that

derived using the SHM, it is also more strongly affected by uncertainties in the

relative scintillation efficiency Leff . Indeed, this can be seen clearly by comparing

the limits from the SHM, or when marginalising over astrophysics, in figure 5.9.
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When marginalising over astrophysics, and in the most extreme case of Leff cut

to zero below 3 keVnr (the same conservative approach used by the XENON100

collaboration [75]) the limit is almost 104 times weaker for a 6 GeV DM particle,

compared to the case of a constant extrapolation below 3 keVnr (Best-fit Leff). Of

course this is a rather extreme example, perhaps a more realistic comparison can be

made to the so-called ‘Lower Leff ’, which is the bottom curve of the 1σ band from

the spline fit, as discussed in section 5.5.2.

The effect of changing Leff on the marginalised limit can be compared to the case

where one assumes the SHM for f(v). In this case the uncertainties from the relative

scintillation efficiency are much smaller, even at low masses. For example for the

case of Leff cut to zero below 3 keVnr the limit is now only ∼ 102 times weaker than

assuming a constant extrapolation, compared to 104 for the marginalised limit.
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Figure 5.9: Comparison of various limits set by marginalising over f(v) from empirical fits to

N-body simulations, using various forms for Leff . The dashed limits have been calculated assuming

that f(v) follows the SHM, while the solid lines represent limits resulting from marginalising over

p and vrms.

The reason for this behaviour can be understood in terms of the recoil spectrum

dR/dE (equation 3.2.3), as shown in figure 5.10. Compared to the SHM, the vast

majority of spectra from N-body simulations exhibit a sharper drop to zero for

energies near Emax, the energy where a DM particle would need to have a velocity
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Figure 5.10: Illustration of the effects of Leff on the recoil spectrum. The expected S1 signal

in the detector is proportional to the convolution of the top panel with the bottom one, along

with detector resolution and cut-acceptance corrections. Upper panel: Recoil spectra from a

DM particle impacting with xenon nuclei, assuming either the Standard Halo Model or f(v) =

A exp(−v/v0)(v2
esc − v2)p, using p and vrms within their prior ranges. Lower panel: Number of

events which pass the S1 > 3 PE cut, verses nuclear recoil energy, for various parameterisations of

Leff .

above the escape velocity vesc in the galactic frame. This is due mainly to the fact

that most distributions f(v) have p > 0, resulting in a more rapidly falling recoil

spectrum.

For forms of Leff where the scintillation efficiency drops to zero at low energy

(e.g. lower Leff), this results in the smaller recoil energies being effectively irrelevant,

since they can not generate enough events above threshold (see lower panel of figure

5.10). Hence only the larger energy events contribute, where the difference between

recoil spectra is greatest. By contrast, if Leff is larger (e.g. best-fit Leff), especially

at low-energy, then the lower energy events can also contribute, where the recoil

spectra are more similar.

Hence, turning on Leff at low energies allows the low energy region of dR/dE

to contribute, which has a larger effect for p > 0, since in this case the difference

between the spectrum at low and higher energies is greater, as opposed to the SHM
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case.

The limit when marginalising over f(v) = A exp(−v/v0)(v2
esc−v2)p has larger

Leff uncertainties than when f(v) is given by the SHM only. This implies that

they are correlated, especially for low-mass Dark Matter.

5.6 Variation of Data Cuts

As discussed in section 5.4, there are two points in the most recent XENON100

data-set [75] which are close to the region expected from a DM recoil signal (shown

as starred points in figure 5.11), with values between S1 = 3 and S1 = 4. Hence

the position of the low-S1 cut is vital in determining to what extent a DM signal

(especially from light-DM) is consistent with the XENON100 data, since the analysis

only picks out these points when using the less restrictive condition of S1 > 3 PE. It

would be interesting to extend this discussion even further, and to consider moving

the S1 cut to lower values, such as 2PE (as is done by the LUX collaboration [79]) or

1PE. However, we face three difficulties regarding moving the low-S1 cut to smaller

values:

• The first issue is that the background below S1 = 3 PE may not be well un-

derstood, especially from noise in the photomultipliers (PMTs). For example,

a one photoelectron signal could originate from dark counts in the PMTs i.e.

false signal observed even when there is no incident light. Due to this, if the

cut is placed too low the detector will trigger on false events. The 3 PE cut is

therefore a conservative choice pre-blinding to ensure such false events are not

included in the data-set. We will restrict ourselves to signal-only statements,

and make no comment on the background below 3 PE.

• The second, is that the choice of cut is made before unblinding of the data,

and so if one were to change the cut a posteriori, one may be biasing the

analysis. Hence, any result quoted with a lower cut can only be considered as

a projection i.e. an estimate of the sensitivity were a different cut chosen before
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unblinding. We seek only to understand what may have been, as motivation for

the next data-release from XENON100. Note also, that the LUX collaboration

do not perform a blinded analysis, and so the actual effect of blinding may not

be so important.

• Lastly, any statement regarding the expected DM signal relies critically on the

assumption that the XENON100 cut-acceptance is well-known below 3 PE.

Indeed, the cut-acceptance is given in [75] down to 1 PE (below this value, a

hard-cut is imposed, removing all events), however no uncertainties are quoted.

We will assume that this cut-acceptance is correct down to 1 PE, which is likely

to be a fair assumption.

Hence, we shall proceed to consider the effect of moving this cut below 3 PE,

however the above three points must be kept in mind throughout the discussion.

5.6.1 10 GeV Dark Matter

The greatest effect of changing the low-S1 cut should be for light-DM, since as can

be seen from figure 5.11, much of the expected signal for a light DM particle is below

S1 = 3 PE. This is especially relevant for the two points at low-S1 and S2 (shown as

stars in figure 5.11), since their attractiveness as a signal depends crucially on the

low-S1 cut.

We seek to make a background-independent statement, and as such will not

actually analyse the data below S1 = 3 PE i.e. we will comment only on the

expected signal. Hence, we need to develop a factor which quantifies how much

one can trust a potential signal in XENON100, based on the fact that most of the

expected signal may be below the cut.

This can be done by considering the Poisson Likelihood used for the information

theory analysis. Recall that, in the limit of infinitesimal pixel size the Likelihood of

section 4.4 is given (up to a constant pre-factor) by,

L = exp

[
−
∫
rf(x)dx+

∑
data i

Ln

(
1 +

fir

bi

)]
, (5.6.3)
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Figure 5.11: Expected signal and background as compared to data from the XENON100 exper-

iment [75], for a 10 GeV WIMP . We assume the Standard Halo Model for this plot, however our

analysis incorporates extensions from this simplified model. Shown also are some possible low-S1

cuts and also the cut imposing S2 > 150 PE, as a dashed yellow line. The stars indicate the two

data-points most consistent with light DM.

where the index i sums over each data-point within the cut-space, and the integral

over f(x) is over the data-space within the cuts. Additionally fi = f(xi) and

bi = b(xi), i.e. the values of the expected signal and background distributions at the

data-points xi.

Hence the Likelihood of equation (5.6.3) is proportional to a factor exp
[
−
∫
rf(x)dx

]
,

which takes account of the pixels where one expects signal, but sees no data-points,

and is essentially background-independent5. The reason is that the actual size of

the background does not affect the best-fit value of σ when there are no data-points

present, since the best-fit will always be σ = 0.

We can therefore make use of this to model the effect of extra signal below the

S1 = 3 PE cut, by including this extra signal in the analysis. Hence we define the

zero-event Likelihood at low-S1 (for a given choice of p and vrms) to be,

L0
low(p, vrms) = exp

[
−
∫ S1=3 PE

S1=1 PE

rf(x, p, vrms)dx

]
. (5.6.4)

5This is a generic feature of the Poisson Likelihood in the limit of infinitesimal pixels: the first

term accounts for pixels where no data is present, and the second corrects for pixels which contain

a data-point. This is discussed in more detail in section 4.4.
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We motivate L0
low by the fact that we see no data-points below the S1= 3 PE cut in

figure 5.11, in the region where we expect most of the signal to be. Hence we can

use L0
low as a weight for each cross section σ, without making any statements which

would require us to assume a background model below the S1= 3 PE cut. This is

equivalent to saying that we have split the Likelihood into the product of two pieces,

L = Llow × P(d|r, p, vrms) (5.6.5)

Llow = exp

− 3PE∫
1PE

rf(x)dx+
∑
<3PE

Ln

(
1 +

fir

bi

) (5.6.6)

and made the approximation that the first signal-only term in Llow dominates, such

that Llow ≈ L0
low and we can neglect the second term, which depends on the back-

ground below 3 PE. Note here that the sum over S1i < 3PE means we take only

data points whose S1 value is between 1 PE and 3PE, and that P(d|r, p, vrms) is

the Likelihood from the previous section, identical to equation 5.6.3 when using the

same cuts as the XENON100 collaboration.

This will be accurate provided there are no data-points below the cut where the

signal is expected to be strong, and the background is expected to be weak, since

then the second term in the exponential of equation (5.6.6) will dominate (i.e. we

need fi/bi � 1 for S1 < 3 PE). Hence the factor L0
low goes essentially part of the way

to extending the analysis towards lower cuts, but we stop short of a full analysis,

since the background may be poorly understood.

Shown in figure 5.12 is a plot of the marginalised Likelihood from figure 5.7 (the

marginalised version of P(d|r, p, vrms)), along with L0
low =

∫
dp dvrms L0

low(p, vrms).

Hence the product of P(d|r, p, vrms) and the factor L0
low forms essentially a weighted

Likelihood, where one prefers values of σ where there is not too much signal below

3 PE, where the background is not well-understood. When including priors for p

and vrms, we can use this to form a Posterior for the Bayesian analysis. Crucially

this does not rely on any assumption regarding the background model below 3 PE.

As an example of the effects of including L0
low in our analysis, consider the DM-

signal for a mass of 10 GeV and a cross section of σ = 10−43 cm2. Averaging over all

of the forms of f(v) we consider in this work, we find that one expects 3.5 events

above S1= 3 PE, and 10 events below the cut. Hence, as can be seen in figure 5.12,
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Figure 5.12: Demonstration of the effect of including the signal below S1 = 3 PE on the Likeli-

hood, for 10 GeV Dark Matter. The factor L0
low essentially incorporates the fact that one expects

more signal below the low-S1 cut at 3 PE, in a region where no data-points are actually observed,

thereby down-weighting larger cross sections. The dashed blue line is the result of integrating

L0
low(p, vrms)× P(d|r, p, vrms) over p and vrms.

although the Likelihood is large for this cross section, the value of L0
low is suppressed.

This is because one also expects even more events below the cut, where none are

seen in the expected signal region. Hence when incorporating our knowledge of the

signal below the S1 = 3 PE cut after unblinding, there is almost no significance of

a signal for DM.

This serves as a strong indication that the XENON100 experiment will only be

able to make reliable statements about light Dark Matter if it relaxes its S1 cut,

before unblinding, for the next data-release.

Most of the signal for light DM is below the 3 PE cut on S1. We include

this extra signal as a weight, for the analysis, leading to a significantly worse fit

for light-DM in XENON100 data. This is because the data no longer trace the

expected signal below 3 PE.
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5.6.2 Leff uncertainty combined with the low-S1 cut

As discussed in section 5.5.4, uncertainties in the relative scintillation efficiency Leff

can strongly affect the relation between nuclear-recoil energy and the measured data-

values S1 and S2. Hence, it is important to examine to what extent the findings of

section 5.6.1 remain valid when one varies the form of Leff .

Shown in figure 5.13 are plots of the Likelihood with and without the L0
low factor,

and also three different functional forms of Leff , representing the extremities of the

cubic spline fit to the most recent data-sets [2].
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Figure 5.13: Likelihoods as in figure 5.12, but for the ‘upper Leff ’ in the left-hand plot, and the

‘lower Leff ’ on the right. Notice that for the right-hand plot, where the extrapolation is to zero at

low energy, that the fit to light DM is even worse.

As can be seen from figure 5.13, the trend observed in the previous section is

largely retained for different forms of Leff i.e. incorporating the fact that we expect

even more signal below the low-S1 cut, dramatically weakens the significance of any

DM discovery.

Indeed, we also see that the fit of light-DM to the data from XENON100 is gen-

erally worse for the smaller Leff , for the low-S1 cut at 3 PE. This can be understood

using figure 5.14, which shows the signal distribution now using the ‘lower Leff ’.

Since the contours of the expected DM signal are now stretched over a wider range

of S1, there is a greater region over which one expects to see signal, but where no

data-points are present (besides the starred points).



5.6. Variation of Data Cuts 78

1 2 3 4 5 6 7 8
S1

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Lo
g(

S2
/S

1)
 - 

ER
 M

ea
n

0.07

0.11

0.18

0.28

0.45

0.72
WIMP Mass = 10 GeV 
         Lower Leff

XENON100 Data
DM Distribution
Background Distribution

Figure 5.14: Expected signal and background as compared to data from the XENON100 exper-

iment [75], for a 10 GeV WIMP (assuming the SHM), and the smallest one-sigma allowed Leff ,

including an extrapolation to zero at 2 keVnr.

Changing Leff at low energy gives a similar conclusion: including the signal

below S1 = 3 PE makes the light-DM fit worse, regardless of Leff .

5.6.3 Frequentist p-values

We can approach this discussion more quantitatively by using a Likelihood-ratio test

(as introduced in section 4.3), to compare the size of the Likelihood at its maximum

point, to that when σ = 0 i.e. testing the best-fit DM+Background scenario against

that where only Background is present. This ratio is defined as,

R =
L(σ̂, m̂)

L(σ = 0,m)
, (5.6.7)

where m̂ and σ̂ are the parameter values which maximise the Likelihood L. In our

case we will take L to be P(d|r, p, vrms), after integrating over both p and vrms as

before6.

We scan over both mass and cross section, and so can use a χ2 test with two

degrees of freedom to calculate the p-value associated withR, using also that ∆χ2 =

2Ln(R). Our results are shown in table 5.1.

We can see from table 5.1 that for the pure Likelihood there is approximately

a 2σ DM signal in the XENON100 data. Even so, what is clear is that when we

6We could have used the Profile Likelihood method to calculate R. In this case we would

extremise the Likelihood over p and vrms instead of summing, however the results are very similar

in either case.
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Best Leff Low Leff Upper Leff

p-values using data above S1 = 3 PE p = 0.033 p = 0.055 p = 0.038

p-values using also the signal below 3 PE p = 0.590 p = 0.704 p = 0.485

Table 5.1: P-values for various forms of Leff . Lower p-values correspond to a greater significance

of signal, with p < 0.05 indicating (at least) a 2-sigma significance and p < 0.32 for 1-sigma.

account for the signal below 3PE, by multiplying by the factor L0
low, the significance

of the maximum Likelihood essentially vanishes, confirming the conclusions of the

previous section, but for all DM masses. As an example, for the best-fit spline for

Leff , and the Likelihood-only test, we obtain a p-value of P = 0.033, for best-fit

parameters of (m,σ) = (8 GeV, 2.63 ·10−43cm2). Whereas, for the same Leff but also

multiplying the Likelihood by L0
low we calculate a p-value of P = 0.59 for best-fit

parameters of (m,σ) = (12 GeV, 4.90 · 10−45cm2). Hence, moving the low-S1 cut to

1 PE should reduce the significance of a light-DM discovery from 2σ to less than

1σ, and shift the best-fit mass to larger values.

The implication is that the fit to light-DM in XENON100 is largely coincidental,

simply due to the fact that since light-DM is so close to threshold, it will pro-

duce events only at threshold and not much above. However when incorporating

knowledge of the signal below S1 = 3 PE, we see that the significance effectively

vanishes. The lack of data where one expects signal works against light-DM, which

is a statement we can make independently of the (potentially unknown) background

below the cut. Hence, with more of the data-space available, it appears that the

starred points no longer trace the expected distribution from light-DM recoils in

XENON100.

There is less than one-sigma evidence for light DM recoils in XENON100

data, when accounting for the extra signal below the 3 PE cut, using the L0
low

factor. The fit is even worse if one takes Leff to drop to zero at low energy.
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5.6.4 Bayesian Exclusion Limits

Given that the XENON100 data appear inconsistent with light-DM, we can instead

define an exclusion limit by integrating under the normalised Posterior, formed from

the Likelihood and Prior as in section 4.4. As such we have defined 90% confidence

limits with and without the L0
low factor, while additionally marginalising over the

astrophysical parameters p and vrms, as shown in figure 5.15.
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Figure 5.15: Projected exclusion limits for light Dark Matter, after marginalising over the galactic

velocity distribution.

In agreement with the Likelihoods of figure 5.12, we see that the exclusion

limit strengthens considerably for low-mass DM, when including the factor L0
low

in the Likelihood. Using this factor, the upper limit is a projection of the limit the

XENON100 could have set, were the S1 cut relaxed before unblinding.

For heavier DM there is little change, since their spectra are less strongly-peaked

at low-energy, and so are distributed more evenly in S1. Indeed, since the distri-

bution of light-DM is mostly located at low-S1, the projected limit strengthens by

many factors when including L0
low, since we are down-weighting cross sections and

masses where one is only sampling the tail-end of the expected DM distribution.

The upper limit gets ∼ 10 times stronger for low mass DM, when accounting

for the fact that one expects more signal below the 3 PE cut.
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5.7 Conclusion

We have applied the Bayesian method introduced in the previous chapter to data

from the XENON100 experiment [78]. We demonstrated that our new method can

produce a complementary analysis to the one currently used by the XENON100

collaboration, where the data are placed into bands. Indeed our limit and theirs

agree for the most recent 225 Live Days data-set [78], however ours is several times

stronger for the data from 100 Live Days [77]. The reason for this disagreement for

the older data-set is not clear. However it is possible that since the background was

higher due to krypton contamination, there was a greater proportion of background

events leaking into the region where signal was expected (i.e. the more signal-like

bands of the analysis used by the XENON100 collaboration), which may have fooled

their analysis into setting too weak a limit.

The consistency of light-DM with data from the XENON100 experiment [75]

depends strongly on astrophysics, systematic uncertainties and the choice of cuts

used to analyse the data. This can be summarised as:

• The expected DM signal depends strongly on the form of the velocity distri-

bution f(v). We have marginalised over the free parameters p and vrms =

4π
∫

dv v4f(v), using the function f(v) = A exp(−v/v0)(v2
esc − v2)p. Our pri-

ors are flat in the ranges p ∈ [0.0, 3.0] and vrms ∈ [0.35 vesc, 0.53 vesc]. The

marginalised limit is weaker than the one derived assuming that f(v) is given

by the SHM.

• The relative scintillation efficiency Leff , which allows for conversion between

values of energy and S1, is not well known at low energies. Hence, one can

either extrapolate, or make a cut at 3 keV, below which no data exists.

• The lack of knowledge of Leff at low energy contributes to a large uncertainty

in the upper limit at low DM masses. This uncertainty is even larger for

the limit obtained when marginalising over f(v), since the difference between

dR/dE at high and low energies is greater.

• Additionally, we have discussed the potential for altering the low-S1 cut. Al-
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though we can not actually move this cut post-unblinding, we can perform a

background independent check of the effects of changing the cut, by incorpo-

rating our knowledge of the expected signal below 3PE. Since the data do not

trace the expected signal below 3PE, we find less than one-sigma evidence for

a DM signal in XENON100 data.

• Our conclusion regarding the low-S1 cut does not change much using different

low-energy forms for Leff . When using Leff which drops to zero at low energy,

the quality of the DM fit gets even worse.

• Hence, this indicates that XENON100 and LUX would benefit from using less

stringent cuts on low values of S1, in future analysis runs, where this cut

choice can be made before unblinding. However this study was done without

considering the effect of additional backgrounds below the cut, and so may

not be possible without introducing uncertainties from PMT noise.

This is summarised in figure 5.16, where we show our limit after marginalising

over f(v) and incorporating the extra signal below 3 PE. The limit for the case of

an extrapolation for Leff below 3 keV is several orders of magnitude stronger at low

DM masses, indicating that the XENON100 limit may get much stronger when Leff

is measured at low energies.

By performing our analysis in the data-space, we are not required to choose a

particular coordinate with which to set limits, or to define a signal box [119] or

analysis bands [103]. Hence, our Bayesian method has allowed us to perform a

comprehensive analysis of XENON100 data, while also incorporating uncertainties

in the astrophysics, and allowing us to study the dependence of the DM fit on the

choice of cuts on the data-space and the form of Leff .
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Figure 5.16: Projected upper limit from this work after marginalising over f(v) and accounting

for the extra signal between S1 = 3 and 1 PE, along with the uncertainty due to Leff . The green

band is bounded by the limits using two different extreme scenarios for the relative scintillation

efficiency Leff . Shown also are the XENON100 collaboration’s published limit [75], the limit from

the most recent run of LUX [79], the 90% ROI given by the CoGeNT collaboration [74] and the

best-fit region from CDMS [83], derived assuming the SHM.



Chapter 6

Analysing CoGeNT

We now move on to a different Direct Detection experiment: CoGeNT [74, 82], which

is a p-type point-contact germanium detector located at the Soudan Underground

Laboratory (an image of one of the modules used in the CoGeNT experiment is

shown in figure 6.1). In this chapter, we present an independent analysis of data

from the CoGeNT experiment. This is especially interesting since the collaboration

claim to have observed a positive identification of signal in both their modulated [82]

(i.e. time-varying) and unmodulated [74] (integrated over running time) spectra.

Figure 6.1: A photograph of one of the modules used in the CoGeNT experiment.

For the former, the observed rate of events in the CoGeNT detector appears to

vary over a period of approximately one year, which would be consistent with a Dark

Matter recoil, as discussed in section 3.2. For the latter, the CoGeNT collaboration

84
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claim to have observed an excess of events above background at low-energies (around

0.5 keV), which is consistent with light DM recoils in the detector. We will focus

on the latter claim in this work.

The best-fit region in DM parameter space (due to the excess in the unmodulated

data) has been claimed to be in agreement with that derived by the CDMS-Si

experiment [83], but is excluded by both XENON100 [75] and LUX [79]. Hence, it

is vital that the origin of this signal is understood. For the unmodulated data, the

largest background is from surface events, which can mimic a Dark Matter signal

[74, 82, 80]. Indeed, the removal of this background is difficult, which goes some way

to explaining why two analyses of CoGeNT data [74, 80] have reported very different

significances and best-fit regions (see also [120]). Hence there are potentially large

uncertainties at low energies, precisely where this excess of events, claimed to be

consistent with DM, is meant to be.

Our analysis is motivated by this uncertainty. We seek to define statistically

robust confidence regions, by fitting to the unmodulated CoGeNT data (from 1136

live days of running), which incorporate this surface event background, and any

uncertainties in its size or spectral shape. We will quantify to what extent such

uncertainties can change the best fit DM recoil spectrum, and indeed if there is any

need to invoke a DM recoil explanation for CoGeNT data.

In section 6.2 we separate the surface and bulk populations using the rise-time

data. To do so, we follow the CoGeNT collaboration and fit two separate log-normal

distributions to this data in discrete energy bins. We use these fits to calculate the

bulk fraction R(E). At this point we depart from the method used by CoGeNT

and parameterise the energy-dependence of the bulk fraction using cubic splines.

Marginalising over all splines, we show that there is less than 1σ evidence for dark

matter recoils in the 1136 live days data.

In section 6.5.2 we analyse the older 807 live days data, used by the CoGeNT

collaboration to define their ‘region of interest’. Our method stays even closer to

their own analysis in that we use their calculated values of the bulk fraction, however

we differ in our choice of function for its energy-dependence R(E): the collaboration

employ a one-parameter exponential, while we use a variety of cubic spline fits. From
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this, we show that the choice of exponential function biases the analysis towards a

dark matter signal.

6.1 The CoGeNT Experiment and Data-set

As discussed in section 3.3.3 a Dark Matter particle would (hypothetically) collide

with a germanium nucleus in the CoGeNT detector, causing a transfer of kinetic

energy. This would set the germanium atom in motion through the detector, par-

tially ionising some of the atoms along its path. The subsequent release of electrons

would induce a short voltage increase in the bulk of the detector, shown in figure

3.4. However, there are also significant backgrounds, for example from radioactive

decay in the shielding material [74], which can induce recoils in both the bulk and

surface of the detector via collisions with either the nuclei or the electrons of the

germanium atoms.

The detected energy of a candidate DM event depends broadly on two quantities:

the quenching factor and the charge collection efficiency. The former determines

the amount of nuclear recoil energy transferred to the ionisation electrons, which

are then measured by the CoGeNT experiment [74]. The latter determines what

fraction of these ionisation electrons are actually detected. If the efficiency is less

than one then an event will be measured with a lower energy.

Indeed, the CoGeNT data-set [82] contains two separate populations of events:

a group of events which occur in the bulk of the detector, and a separate set of

events from the surface of the apparatus [74]. We can be more specific by looking

at the properties of the CoGeNT detector itself: the bulk of the detector is a p-

type semiconductor, where the dominant charge-carriers are positive holes, however

this breaks down near the surface and transitions to the outer ‘dead layer’ (the

location of the electrical contact for the detector). This thin transition region is

where the surface events occur (and indeed is how we define the surface layer), and

is not a perfect p-type semiconductor, meaning that the charge collection efficiency

is less than unity. Due to this, surface events will be preferentially measured with

lower-energies and so their spectrum will mimic that of a light-DM recoil.
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Events in this transition region also typically have a longer duration than those

in the bulk. This is shown in figure 6.2, however the actual definition of ‘slow’ and

‘fast’ events is possible only statistically, as we discuss in section 6.2.1.

V
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Bulk

Surface

Pure p-type Transition

Figure 6.2: Sketch of the two populations of events in the CoGeNT detector and data-set. Bulk

events are defined as any event occurring in the pure p-type region, where the charge collection

efficiency is unity. Any event outside of this region is defined as a surface event, where the charge

collection efficiency is less than one and events have longer rise-times on average.

Since the surface layer is so thin (on the scale of millimetres [74] i.e. the very

outside edge of the module shown in figure 6.1), these events are considered to be

entirely background, from the perspective of a DM search (see section 3.3), while

the bulk could be background and/or potentially DM recoils. This is somewhat

analogous to the volume fiducialisation method employed by XENON100 and LUX,

however in this case the actual thickness of the transition layer is fixed. Note also

that since the surface event spectrum will mimic a light-DM recoil, their removal is

especially vital for a DM search.

Hence, the removal of the surface events is not perfect: the argument is that we

know those events occurring in the transition layer are almost certainly background

events (and so we want to remove them), however this is not to say that those

occurring in the bulk are not also background, and indeed it is likely that many of

these also originate from the outer edges of the detector. Hence, our definition of

surface events contains only a subset of those found at the geometric surface. We

illustrate this in figure 6.3: the surface event definition used here catches a large

part of the background, but there would likely be a lot of leakage into the bulk.

Following from this, the two populations are characterised by their ‘rise times’
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Figure 6.3: Sketch of the CoGeNT detector: the outer transition layer is shaded blue and labelled

as ‘surface’, while the bulk is shaded in white. Example background events, clustered towards the

outside of the detector are shown in red, while example DM events are shown in orange. We can

see that the geometric surface (where most of the background will occur) and the surface we define

using the transition layer are not necessarily the same. Indeed, the actual geometric surface could

be more volumous than the central bulk region for CoGeNT. However, by removing those events

occurring in the transition/surface layer, we know that we are removing a substantial background

population.

(denoted by τ in this work), i.e. the time an event takes from depositing 10% to 90%

of its total energy in the detector. The rise-times of both populations are expected to

be distributed according to log-normal distributions, with the bulk events generally

occurring faster (and so having smaller rise-times) than the surface events [74] (this

can be seen in figure 6.5). Hence, before analysing CoGeNT data for a potential

DM signal, we need to separate these two populations1.

1We will assume for this analysis that the separation between these populations is well-defined.

However, it is not clear that this is entirely true, since the surface events seem to be essentially

any event for which the charge collection efficiency is less than one, and one may imagine that this

definition could be broken up further into sub-categories.
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6.2 Analysis Method

Each event in CoGeNT is characterised by a voltage increase over some finite time.

The size of the voltage change is proportional to the recoil energy deposited in the

detector, while the finite duration is what we term the ‘rise time’.

Ideally then, we would form a data-space out of the energy and rise-time values,

and perform the analysis of section 4.4 in this space. The CoGeNT data [82] in

this data-space is shown in figure 6.4. One can already see from the figure certain

features, for example the L-shell peak (originating from electronic capture of x-ray

photons by the various elements in the detector) is present in the bulk population,

manifest as a collection of events at low rise-times around energies of 1.3 keVee
2.

The background from surface events is also present, at larger rise-times.
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Figure 6.4: Data from the CoGeNT experiment [82], plotted as rise-time vs. electron-equivalent

recoil energy.

Hence, in principle we can form a background distribution b(E, τ) composed

of the L-shell peak, the bulk event background and the surface event background,

and the expected DM distribution f(E, τ), which is a convolution of the DM recoil

spectrum and the expected rise-time distribution of bulk events.

2The CoGeNT collaboration quote energies in electron-equivalent energies (ee), which refers to

the ionisation energy of the electrons.
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The L-shell peak originates from radioactive isotopes distributed uniformly through-

out the CoGeNT modules (and hence the dominant signal will be in the bulk) [80].

These isotopes (of which germanium-68 forms the dominant contribution) were cos-

mogenically activated when the detector was above ground and decay over time re-

leasing X-ray photons, which are rapidly re-absorbed by the detector, contributing

to a distinct peak for each isotope. These decays can also result in neutrino emis-

sion, however these pass through the detector and so can not be used for triggering

purposes. The L-shell peaks are present around 1.1 keVee down to ∼ 0.6 keVee,

there are also higher energy K-shell peaks which are more clearly separated for each

isotope.

Unfortunately, the expected rise-time distributions of surface and bulk events

are not known a priori, due mostly to a lack of calibration data for the CoGeNT

experiment [82]. Hence, we can not generate b and f in this data-space as we could

for XENON100 in the previous chapter.

To proceed, we are forced to make one of two choices, both of which should give

equivalent results:

• Use the actual CoGeNT data in place of calibration data to determine the

rise-time distribution of bulk and surface events. Such a treatment would be

inferior to using calibration data, but is possible.

• Follow the CoGeNT collaboration and reduce our data-space to a one-dimensional

problem (i.e. using only the energy co-ordinate), performing the analysis on

only the bulk events. Again this requires us to fit to the rise-time data to

determine what fraction of the events are from the bulk population.

Both such methods require a multi-parameter fit to the rise-time data, as dis-

cussed in section 6.2.1. We will employ the latter of the two in this work, and so

attempt to remove the surface events before performing an analysis for DM recoils.
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6.2.1 Rise-time Fits

Separating the data into energy bins

To proceed we must separate the data in to energy bins first and then compile these

events into a histogram by their rise-time values, as is done also by the CoGeNT

collaboration. Two examples are shown in figure 6.5, which can be thought of as

binned slices of figure 6.4. Indeed, we can see clearly now the two populations

discussed in the previous section. These populations are fit with two distinct log-

normal distributions, one at short rise-times for the fast/bulk events and one at long

rise-times for the slow/surface events, as we discuss in the next section.
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Figure 6.5: Log-normal fits to rise-time data for the energy bin between 0.5 keVee and 0.9 keVee

(left) and between 1.3 keVee and 1.7 keVee (right). The bulk event distribution is shown in red,

while the surface events are given by the blue curve. The fraction R is then the number of bulk

events divided by the sum of the surface and bulk event numbers.

To maximise statistics, we have chosen energy bins for the rise-time fits which

are larger than those used for the spectrum. Indeed, to demonstrate this we show

in figure 6.6 rise-time histograms for two different bin sizes.

Compare the plots of figure 6.6, which use a bin size of 0.2 keVee, to figure 6.5,

where we use a 0.4 keVee bin. For the smaller bin used in the former fits, there does

not appear to be enough statistics to easily identify and separate the two populations

of events. Hence, we have chosen to use 0.4 keVee bins for our rise-time fits, to ensure

that our determination of R(E) is accurate. We will proceed now to discuss how

these two populations, i.e. the bulk and surface, are fit for each of these energy bins.
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Figure 6.6: Rise-time histograms and log-normal fits for the energy bins between 0.5 keVee and

0.7 keVee (left), and between 0.7 keVee and 0.9 keVee (right). These bins are too small for a

meaningful determination of the bulk fraction. For the left-panel it is not obvious if there is are

any bulk events present in this bin and the data can be fit with only a surface event population.

Fitting Log-normals to determine the bulk fraction

In order to remove the surface event population, we need to calculate the fraction

of bulk events for each of these energy bins, given by

R =
Number of bulk events

Total number of events
, (6.2.1)

which may be dependent on energy.

The fits in fig. 6.5 were performed using a Poisson likelihood to compare rise-time

data to the theoretical distribution, which is itself a sum of two different log-normal

distributions. The formula we use to fit these populations is given by,

ftotal(τ) = fbulk(τ) + fsurface(τ) (6.2.2)

ftotal(τ) =
1

τ
√

2π

(
Ab
σb

exp

[
−(lnτ − µb)2

2σ2
b

]
+
As
σs

exp

[
−(lnτ − µs)2

2σ2
s

])
,

where Ab and As are the amplitudes of the bulk and surface distributions respec-

tively, σb and σs are the variances and µb and µs the mean values.

Hence, the fit involves scanning over six parameters: the amplitudes of both log-

normal distributions, and their respective mean and variance values. In practice this

is done by first initialising these parameters to be within large ranges of values and

calculating the χ2 goodness-of-fit (assuming Poisson errors, so here χ2 = −2LnL,

where L is the Poisson Likelihood) for 105 different combinations of parameters. We

then keep all of those with χ2 < 300, and use the range of parameters which pass
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this condition as input for a second run. We repeat this process using smaller and

smaller allowed values of χ2 until a good fit is obtained, which gives us our best-fit

parameters.

We then need to calculate the value of R for the best-fit surface+bulk distri-

bution, and use the uncertainty from the fit to calculate the uncertainty on R, for

each energy bin. This is in principle quite difficult, since the fit was performed on

six parameters, of which R is some function thereof, and so there is no reason to

assume that R will have well-behaved Gaussian errors. Indeed, this six-parameter

space may be strongly multi-modal, and there may be many different combinations

which give good fits with rather different values of the ratio R i.e. the parameter

space is strongly degenerate.

We seek to capture the uncertainty on R by performing the same above fit 500

times, each time giving us a best-fit surface-bulk distribution. We then histogram

these χ2 values and fit this to a χ2 probability distribution function. We integrate

under this PDF from the minimum (i.e. best-fit) χ2 until 68% of the total volume

is enclosed. This defines our ∆χ2, the difference between the boundary of the 68%

region and the minimum χ2.

We can then use this resulting one-sigma value of ∆χ2 to define our errors on

R. Hence, the value of R corresponding to the best-fit from our 500 runs becomes

the central value, and the largest and smallest values of R which fall within the

one-sigma ∆χ2 form our one-sigma errors.

This should capture the size of the uncertainties on R from our log-normal fits.

We could instead have used error propagation formulae to calculate the uncertainty

onR directly from the individual uncertainties on the six parameters of the fit. How-

ever this should give similar error bars provided the distributions are approximately

gaussian.

As a test we show in figure 6.7 a comparison between a log-normal fit performed

by the CoGeNT collaboration [82] and one we have performed. We see that there is

excellent agreement between our fits and theirs. Furthermore we show in figure 6.8 a

comparison of the best-fit log-normal parameters from our own fit (right) and those

from [121] (left). The error bars are obtained from the uncertainty in fitting the two
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Figure 6.7: Comparison of a log-normal fit performed by the CoGeNT collaboration [82] (left)

with our own fit to the same data (right) for the 0.5 keVee to 2.0 keVee bin.

log-normals. Good agreement is seen between our fits and those from [121], however

we prefer to use larger energy bins to improve the statistics for our log-normal fits.

Finding a form for the bulk fraction as a function of energy

We now know the value of R and its uncertainty for each of the 0.4 keVee bins, from

our log-normal fits to the rise-time spectra. We chose these rather large bins to

maximise statistics, and make the fitting of the bulk and surface populations easier.

However, we want to use smaller bins, of size 0.05 keVee for the energy-spectrum

(e.g. figure 6.11), to make sure all of the features can be clearly resolved. So we

know R for the 0.4 keVee bins between 0.5 and 3.0 keVee, but we need its value for

much smaller bins in order to perform our analysis.

Hence we are forced either to find an empirical form for R(E) which we can fit

to data, or to interpolate between measured values of R for each bin, to obtain its

energy-dependence3 (essentially a data-driven analysis). Since no empirical function

exists, we will perform this interpolation using a cubic spline fit to data for R, given

a set of knots on the energy-axis. We can then scan over these knots to generate a

Likelihood function P (d|ki), where the ki represent the positions of the knots in the

space of R and energy. In practice we scan over the x and y positions of the two

3The bulk-fraction will also have temporal dependence, since the L-shell peak originates from

radioactive isotopes which decay over time (e.g. germanium-68 has a half-life of 271 days). This

could provide additional information useful for a DM search.
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Figure 6.8: Values of µ and σ from log-normal fits in [121] (left) compared with those from our

own fits (right). We see there is good agreement within error bars between our fits and those from

[121]. Note that ‘fast’ equals ‘bulk’ and ‘slow’ equals ‘surface’.

lowest energy knots in uniform bins.

To find the best-fit spline, we choose to take a Gaussian Likelihood, in the form

of,

P (dR|ki) = exp

[
−
∑
j

(dj − S(xj))
2

σ2
j

]
, (6.2.3)

where j represents a particular energy bin, dj is the value of the data in that bin,

σj is the uncertainty in the data, and S(xj) is the value of the cubic spline. Note

that S(x) depends on both the x and y axis positions of the knots. Hence we have

a potentially different Likelihood for each knot configuration ki.

As before, in order to obtain the Posterior, we need priors for these values of the

knots P(ki). We take flat priors for each, between values of 0 and 1 on the R axis.

Hence we scan over each knot between these values, and so obtain a Likelihood for

each configuration.

We form a Posterior function from the Likelihood of eq. 6.2.3 (and priors for the
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various knot configurations ki).

P(ki|dR) =
P(dR|ki)

∏
iP(ki)

P(dR)
. (6.2.4)

Using this Posterior, we can find the best-fit function R(E) and its confidence

bands, for any given knot configuration ki. A plot of the best-fit spline and its 68%

confidence region is shown in figure 6.9, for knots at energies of 0.6 keVee, 1.2 keVee,

2.0keVee and 2.5keVee. This confidence region has been formed from the Posterior

for each knot, by marginalising over the other three knots to form a 1D Posterior,

from which a confidence interval can be easily derived.
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Figure 6.9: Values of the ratio of bulk events to total R as derived from the lognormal fits

to rise-time data, along with the best fit cubic spline and its 68% confidence band, for knots at

energies of 0.6 keVee, 1.2 keVee, 2.0keVee and 2.5keVee. Our choice of bins splits the L-shell peak

in two, which is also done by the CoGeNT collaboration. The collaboration have not made their

own determinations of the bulk fraction available for this data-set, and so we can not compare our

own values to theirs.

As observed from the rise-time fits, it appears from fig. 6.9 that the fraction

of bulk events is roughly constant for high energy, but drops significantly at low

energy. Indeed, at 0.5 keVee only 20% of events are from the bulk, where we said we

would expect a DM signal, and 80% are surface events. We will see in the following

sections what effect this has on the low-energy excess in CoGeNT data, where the

evidence for light DM recoils should be most prominent. Note also that there are

fairly substantial uncertainties in the fit, and in the choice of knot positions, which
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will have to be accounted for.

6.2.2 Energy Spectrum

Now that we have a formalism for removing the surface events, we can apply this

to the CoGeNT data. The basic idea is shown in figure 6.10, where the bulk event

spectrum is obtained by multiplying the CoGeNT data by the bulk-fraction R(E).

This is the same principle employed by the CoGeNT collaboration in [74].

X

=

Surface and 
Bulk events

Bulk events
only

Figure 6.10: Removal of surface events using the bulk-fraction. The CoGeNT spectrum is

multiplied by the bulk-fraction R(E), which we obtain using a cubic spline fit, to give a resulting

spectrum which should contain only bulk events. We use the best-fit spline from figure 6.9 to

parameterise R(E) here.

We can construct a binned-Poisson Likelihood with which to analyse spectral

data from the CoGeNT experiment. This Likelihood can then be combined with

appropriate priors for signal and nuisance parameters to give the Posterior, which

we can use to set limits and define regions of credibility (as discussed in section 4.4).

In addition to the correction for the surface event population using R, the data

must be divided by the combined microphonic and trigger cut-efficiency [74, 82].

Finally, one must subtract the L-shell peak present in the data around ∼ 1.3 keVee.
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This can be achieved by first fitting to the K-shell peaks present in the data above

4 keVee; one can then use the ratio of the L to K shell amplitudes to determine the

form of the L-shell peak, and subtract this from the data [122, 82]. We represent

the data as a histogram in recoil energy, after such treatment, by dE. Indeed, this

is shown in fig. 6.11, using the best-fit spline from fig. 6.9 (as for figure 6.10) to

account for the surface event fraction.

Bulk fraction R(E)

Figure 6.11: Example removal of the surface event contamination and L-shell peak. The original

data is shown as the green solid line, where one can see the excess at low-energies, which may be

consistent with a DM recoil signal. In order to account for the presence of surface events, this is

multiplied by the bulk fraction, parameterised here by the best-fit spline from figure 6.9. Hence,

the red solid line is the product of the green raw spectrum with the bulk fraction (dashed black

line). What is left should only be bulk events and the L-shell peak, which can be easily subtracted

from the data, leaving the blue spectrum. The left-hand y-axis corresponds to the three CoGeNT

data plots, while the right-hand axis is for the bulk event fraction (dashed line).

If the surface event contamination (and the L-shell peak) was removed correctly,

then the cut data, shown as a blue solid line in fig. 6.11, should contain only bulk

events. This therefore is what we need to fit our prospective Dark Matter signal

to, i.e. it is the spectrum dE. Hence we have in principle reduced our analysis to

a one-dimensional problem, however we will see that the removal of surface events

comes with its own uncertainties, which we will need to account for.
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The Likelihood we will use to assess the fit to a DM recoil signal takes the form,

P(dE|m,σ,R) =
N∏
i=1

λnii e
−λi

ni!
, (6.2.5)

where i runs over the N bins over which the electron-equivalent energy (Eee) is sepa-

rated into, ni is the number of data points in each bin (after various subtractions, as

described below) and λi = fi(m,σ)+ bi is the sum of signal f(m,σ) and background

b in each bin. Note that background here refers to that from bulk events only, we

assume that the surface events have already been removed by the rise-time ratio

function R.

We generate the DM recoil spectrum f(m,σ) using equation 3.2.3 (i.e. f(m,σ) =

dR
dE

= σρχF (E)

2µ2Nmχ

∫∞
vmin

f(v+ue)
v

d3v). We convert nuclear-recoil energy Enr into electron-

equivalent energy Eee using the relation Eee = 0.2E1.12
nr [74]. This analysis will focus

only on elastic scattering between DM and nucleons (and will assume the SHM for

f(v)), however the expected recoil spectrum could be significantly different if one is

willing to consider inelastic or momentum-dependent scattering.
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Figure 6.12: The central panel shows two different splines for the bulk-fraction, when compared

to our data for R. In the left panel are the CoGeNT data after these two different forms of the

bulk-fraction R(E) have been applied, leading to the solid blue and dashed red lines. The bulk

background is additionally shown as black bars, while a sample 10 GeV mass DM recoil is shown

in green. In the right panel we show the resulting Likelihoods (again for 10 GeV DM) as a function

of cross section σ, for these two choices of R. For the red line, there is room for a DM signal above

background at low energy, resulting in a peak in the Likelihood. However, for the blue case, there

is no low-energy excess and so no strong preference for a DM signal.

An example of this fit for 10 GeV DM, using two different forms for R(E) is
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shown in figure 6.12. The data after the bulk-fraction has been applied using the

best-fit spline of fig. 6.9 is shown as the blue solid line, while the expected bulk

background and a sample DM signal are shown as black and green bars respectively.

In the right panel of figure 6.12 we see the Likelihood of equation 6.2.5 when applied

to this data, also in solid blue. It has no discernible maximum (and so could be

described as ‘featureless’) and one may expect that the DM does not provide a good

fit, when using the best-fit spline from fig. 6.9 for the bulk fraction. This is because

under this parameterisation for R(E) the low-energy excess has vanished from the

data, as it has all been attributed to surface event contamination.

However, this is not the end of our analysis, as we know that the bulk-fraction

has considerable uncertainties, as shown in figure 6.9. If one instead performs the

analysis using a form for R(E) which does not drop so sharply at low energies, then

one gets the results shown by the red dashed lines in 6.12. In this case, we can see

that the data rises a little more at low energies, which causes the Likelihood to peak

at a non-zero value of σ, implying a good fit for DM recoils above background.

How do we know which spline to choose for R(E)? It seems that we can not

make any conclusions regarding a Dark Matter signal with CoGeNT data unless we

incorporate the uncertainty in R(E). We will therefore proceed to outline how we

will deal with this uncertainty using nuisance parameters.

6.2.3 Bayesian Marginalisation

We seek an answer to the question: Is there evidence for Dark Matter recoils in

CoGeNT data above the backgrounds, focusing particularly on the surface events?

Our difficulty is that, since there is uncertainty in the fraction of bulk events in the

data, no one spline or function can be said to remove the surface event contamination

with absolute certainty. Hence, we are forced to find a way of incorporating all of

the possible forms for R(E), along with a weighting representing how likely this

particular form is to be the ‘real’ bulk-fraction. This is why we need to employ a

Bayesian technique.

We know that there is a lot of uncertainty in the surface events at low energy,

precisely where the DM signal would be, and so we want a robust way of incorpo-
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rating this into our analysis. Since we do not know R precisely, we will treat it as a

nuisance parameter with an appropriate prior P(R), and marginalise it out of our

analysis, as alluded to in section 4.4.5. This leads to the following Posterior function

which can be used to set upper limits or define confidence intervals,

P(m,σ|dE)P(dE) =

∫
P(dE|m,σ,R(E))P(R)P(m,σ) dR, (6.2.6)

where here P(m,σ) = P(σ)P(m).

In order to make this marginalisation simpler, we can use the spline fits from

section 6.2.1 to directly parameterise the uncertainty in the bulk-to-surface ratio

R. Indeed, since we have no theoretical prejudice as to the functional form of R,

the different splines parameterise our ignorance of this function. Given no preferred

choice for R(E), one is forced to make all possible choices, weighted by the quality

of the fit to the rise-time data, for each energy bin4.

Hence, we use the Posterior from the spline fitting routine as our prior on R and

so set P(R) = P(ki|dR) (equation 6.2.4). By doing so, we allow the data to make

the choice of functional form for R(E). Hence, the exact form of the function, cubic

spline or otherwise, should not significantly affect our final result.

As such, the full Posterior for the Bayesian analysis of CoGeNT data reads,

P(m,σ|dE) ∝
∫
P(dE|m,σ,R)P(m,σ)P(dR|ki)

∏
i

P(ki) dki (6.2.7)

In practice, we discretise this integral, thereby giving,

P(m,σ|dE) ∝
∑
knots

P(dE|m,σ,R)P(dR|ki)P(m,σ). (6.2.8)

Marginalising over R(E) is now expressed as the sum over the positions of the

spline knots, weighted by the quality of the fit to data on R from the lognormal

4A similar marginalisation could be done using an empirical formula for the surface event

fraction, however one must be careful not to bias the choice of R(E), unless there is a strong

reason to do so. Indeed, this would be equivalent to defining a prior for the knot configurations ki

which is not constant. In this sense, our choice of flat priors on ki means our current analysis is

purely data-driven.
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fits5. As such, the problem of marginalising over R(E) has been converted to a

marginalisation over the positions of the spline knots.

For a particular knot configuration ki, the unintegrated Posterior is proportional

to the product of the two Likelihoods from the fits to the energy and rise-time

spectra. We show this product in the right-most panel of figure 6.13. The final

(marginalised) Posterior is then obtained by summing the Likelihood that there

is a DM signal in the bulk data, when using each spline for the form of R(E),

but weighted by how well this spline fits to the data for R from the rise-time fits.

Algorithmically this follows the procedure:

1. Start with four positions for the spline knots on the energy (E) axis. We keep

the upper two knows fixed at E3 = 2.0 keVee and E4 = 2.5 keVee , while the

lower two are within the ranges E1 ∈ [0.5, 0.9] keVee and E2 ∈ [1.0, 1.8] keVee.

2. Given a particular knot placement on the E-axis, vary the R-axis positions of

the lower two knots (i.e. the value of the bulk-fraction at the knot position on

the E-axis) between 0 and 1, while keeping the two high energy knots fixed at

their best-fit values.

3. Each knot configuration gives a spline, which has a particular Likelihood

P(dR|ki) (equation 6.2.3), measuring its quality of fit to the data from the

log-normal fits to rise-time data.

4. For a given spline, use this to represent the function R(E) i.e. the bulk-

fraction. Multiply this by the raw data to give the bulk-only spectrum as in

figures 6.10 and 6.11.

5. Use the Poisson Likelihood P(dE|m,σ,R) (equation 6.2.5) to determine how

well the DM fits to this bulk-only spectrum, when added to the bulk back-

ground.

5The marginalisation can be thought of as integrating out the spline degrees of freedom [123,

124], weighted by the fit to R data. Hence, the spline itself has no significance in the final result,

beyond working as a useful parameterisation.
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6. Repeat this process for many different splines within the above defined ranges,

and sum up the products of P(dE|m,σ,R) and P(dR|ki) to give the marginalised

Posterior (when also including P(m,σ)).

If the bins we use are small enough, then we should have incorporated the freedom

in the choice of R(E) into our DM fit to CoGeNT data.

6.2.4 Frequentist Profile Likelihood

From a frequentist perspective, one can replace the marginalisation of the previous

section with a profile Likelihood analysis. In this case, one forms a joint-Likelihood

from the product of the Likelihoods for the fit of R(E) to the bulk-fraction data and

that for the DM+background fit to the energy spectrum. The profiled Likelihood

function is then formed by finding the maximum value of this product for each value

of mχ and σ. Hence, we can express this as,

L̂(mχ, σ) ∝ maxknots[P(dE|mχ, σ,R)P(dR|ki)], (6.2.9)

where ki represents a particular knot configuration for the R(E) spline. We can use

the profiled Likelihood function L̂(mχ, σ) to define p-values using the Likelihood

ratio test, and we will use this along with Bayesian marginalisation in the next

section. The maximisation is essentially an approximation to the Bayesian sum of

the previous section, and works in the case where one term in the sum dominates.

6.3 Results

The results of our analysis (for a particular choice of E-axis knot positions) are

summarised in figure 6.13 for an 10 GeV Dark Matter particle. The central panel

shows five possible cubic spline fits to the bulk-to-surface ratio values, while the left

panel shows the CoGeNT data after using each of these splines to parameterise the

form of R(E), leaving what should be only bulk events (analogously to figures 6.11

and 6.12, but for many splines). We weight these splines by how well they fit to data

for R, in the central panel. The right panel gives the resulting Likelihood values for
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Figure 6.13: Analysis of CoGeNT data for a 10 GeV DM particle scattering elastically with

the nuclei in the CoGeNT detector. We parameterise the fraction of bulk events R(E) with five

different splines, which are shown in the central panel, with knots fixed at energies of 0.6 keVee,

1.2 keVee, 2.0keVee and 2.5keVee. The quality of the fit of the spline to the data for R (green

circles) is measured by the Likelihood P(dR|ki). Using the same colour scheme, the spectra of bulk

events using each of these splines to represent the bulk-fraction R(E), are shown in the left panel

as solid lines. If the particular form of R(E) is correct, then the data should contain no surface

events. These are compared with the bulk background (black bars) and a 10 GeV DM recoil signal

(green bars), giving a Likelihood P(dE |m,σ,R) as a function of σ. For each spline, the products

of P(dR|ki) and P(dE |m,σ,R) are shown plotted on the right panel as a function of cross section

σ. Some of these Likelihood products possess peaks, indicating a positive fit for DM, since the

height of any peak is approximately equal to ∆χ2/2, used to calculate the p-value in frequentist

tests. However these are washed out in the marginalised result, shown as the black dashed line,

and so there is no evidence for DM when accounting for uncertainties in R(E).

the quality of the fit between the CoGeNT data and the background + DM scenario,

as a function of the DM-nucleon cross section σ, weighted by the quality of the spline

fit to the bulk-to-surface ratios. This can be compared directly to equation 6.2.8:

the left-most term corresponds to the fit performed in the left panel of fig. 6.13,

likewise for the central term and central panel, while the right-most panel shows

each element of the sum in eqn. 6.2.8 and the final marginalised Posterior, as the

dashed line. The result instead from a frequentist profile Likelihood, where the sum

is replaced with extremising over R(E) (equation 6.2.9), is almost identical to that

from Bayesian marginalisation.

What figure 6.13 shows is that, while some spline choices give a strong preference

for a light-DM signal in CoGeNT data (e.g. the mauve spline), other choices give
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vanishing or weak evidence for light-DM recoils in CoGeNT (e.g. the cyan spline).

The overall result is therefore that, since the surface-event contamination varies

so dramatically, the marginalised Posterior, or the profiled Likelihood, possesses

no clear maximum, and so there is no statistically significant DM signal in data

from the CoGeNT experiment. This is effectively a graphic representation of the

marginalisation process: the final Posterior is a sum over the Likelihoods for each

spline choice, weighted by their priors. Hence, the freedom in the choice of bulk-

to-surface ratio, especially at low energy, results in an effective washing-out of any

potential DM signal.

We emphasise that the limited selection of splines in fig. 6.13 is for illustrative

purposes only; for the full analysis we scan over ∼ 40, 000 different splines. We

choose all splines with four-knots, and vary the R and E axis positions of the two

lowest energy knots, while keeping the two high-energy knots fixed (due to limited

computing resources).

This should give a good representation of the functional freedom in R(E). Since

the spline degrees of freedom are integrated out, the results do not depend strongly

on the number of knots chosen for the analysis, especially for low mass DM. This is

mainly because the recoil spectrum for light DM is strongly peaked towards lower

energies, and so only the few low-energy bins are important for the fit. Hence the

analysis is largely unaffected by the particular nature of the spline, provided the

functional variability is captured at low energy.

For heavier DM the quality of the signal-fit is even worse. Indeed, performing

a scan over both mass and cross section, we find a p-value of 0.57 when profiling-

out R(E), representing a fluctuation of less than one sigma, and a Bayes factor of

ln(B) ≈ −0.5 when marginalising, indicating weak preference for a background-only

interpretation. Hence, there is no evidence for a statistically significant DM-recoil

signal in CoGeNT data. As such, we can use our marginalised Posterior distribution

to set an upper limit on the DM-nucleon cross section, using the CoGeNT data. For

a given DM particle mass m, the limiting cross section (at 90% confidence) is defined

by integrating the Posterior up from σ = 0, until 90% of its total volume is enclosed.

The resulting exclusion curve is shown in figure 6.14.
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Figure 6.14: Comparison of the upper limit on the DM-nucleon cross section set using CoGeNT

data in this work, and the 90% upper limit set by the LUX collaboration [79] and CDMSlite [85].

After marginalising over the uncertainty in the surface event contribution, we

see that the CoGeNT experiment is capable of setting a strong upper limit on the

DM-nucleon cross section, for low mass Dark Matter. Indeed, due to the long

exposure time of CoGeNT (1136 live days), this limit is stronger above ∼ 4.5 GeV

than that set by the CDMSlite experiment [85], with a published exposure of only 10

days. Hence, with a robust treatment of the surface event background, the CoGeNT

experiment can be used to place strong contraints on ∼ GeV mass DM. However, we

note that this mass range is limited, since the LUX limit becomes dominant above

∼ 6.5 GeV.

We note that these constraints have been obtained under the assumption of

elastic scattering between DM and nucleons. For the case of other interaction types

(e.g. inelastic or momentum-dependent) the results of this analysis may be different.

However we expect that the uncertainties in the surface event contribution would

limit the ability of the CoGeNT detector to claim discovery with any significance.
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6.4 Further Considerations

We additionally have the choice to make a cut on the rise-times of the events.

Although this is not strictly necessary, our result should be robust against such cuts.

For example, we can choose to place our cut where the best-fit surface and bulk log-

normals cross, for each energy bin. This was done by the CoGeNT collaboration [82],

motivated by the fact that events with rise-times longer than the cut value will likely

be surface events.

Hence, we keep only the events below this rise-time crossing point, and correct

for the bulk-to-total fraction as before, as well as a correction for the fraction of

bulk events cut away when fitting the DM recoil signal (we refer to the product of

the first with the inverse of the second as the ‘Corrected fraction of bulk events’).

The result of our analysis using this rise-time cut is show in figure 6.15. As before
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Figure 6.15: Our CoGeNT analysis when cutting away all events with rise-times above the

crossing point of the best-fit surface and bulk log-normals. The corrected bulk fraction is the

product of the fraction of bulk-to-total events below the cut value, and the inverse of the fraction

of bulk events which survive the cut, and so can be larger than one.

we obtain no evidence for a DM recoil signal. Indeed, this scenario is now even less

favoured, since most of the surface events have been cut away.

Our conclusions should also be robust against changes in the functional form for

the bulk background in CoGeNT. In figure 6.16 we show the results of the same fit

as for fig. 6.13, but using the flat+neutron bulk background from [80].

Again, we see from fig. 6.16, that using this new bulk background has little
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Figure 6.16: Results from the fit to CoGeNT data as in fig. 6.13, but using the bulk background

from [80], comprised of a flat component and a rising component from neutrons. As for fig. 6.13,

we find no significant evidence for light Dark Matter recoils in CoGeNT data.

effect on the final marginalised Likelihood, which still exhibits no evidence of a

significant preference for DM scatters in CoGeNT data. Hence, our result is not

strongly dependent on the exact choice of bulk background, as the freedom in the

choice of R at low energies is still huge.

6.5 Comparison with Other Results

6.5.1 1136 Live Days Data

A separate analysis of the most recent CoGeNT data-set was performed by the

authors of [80], in which the surface events were modelled using Monte Carlo results,

instead of being subtracted using the rise-time fits. In principle, both this and our

own method should give similar results if the uncertainties on the surface background

are treated in the same way. However, the analysis of [80] finds a ∼ 2.5σ contour

region around 11 GeV, in contradiction with our own < 1σ significance.

It is possible that the uncertainties on the surface background were not properly

accounted for in [80], resulting in too optimistic a conclusion regarding a DM signal

in CoGeNT data. Indeed, we note that their analysis claims to incorporate such

errors using “both extrema of the energy distributions” for the surface events. These

extrema were not obtained from the Monte Carlo simulation used to determine
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the surface event spectrum, but were obtained from an analysis of the rise-time

distributions from log-normal fits, similar in some ways to our approach. However,

using the extreme values of the background is not equivalent to marginalising over

the background between these extrema, as demonstrated by fig. 6.17.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Energy [keVee]

0

50

100

150

200

250

300

Co
un

ts

10-43 10-42 10-41 10-40

DM-Nucleon Cross Section [cm2 ]

10-103

10-102

10-101

10-100

10-99

10-98

10-97

10-96

10-95

10-94

Li
ke

lih
oo

d

(a) Likelihoods resulting from using ampli-

tudes of the surface background which are

15% larger or smaller than the normal.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Energy [keVee]

0

50

100

150

200

250

300

Co
un

ts

10-43 10-42 10-41 10-40

DM-Nucleon Cross Section [cm2 ]

10-103

10-102

10-101

10-100

10-99

10-98

10-97

10-96

10-95

10-94

Li
ke

lih
oo

d
(b) Same as (a), but using amplitudes be-

tween the two extrema.

Figure 6.17: Replication of the CoGeNT analysis performed in [80] for an 11 GeV DM particle,

in order to demonstrate the effect of using only the extreme values of the uncertainty on the surface

event spectrum. The black lines represent the various components of the bulk background, while

the coloured lines represent the different choices of surface background. The green bars represent

the recoil signature expected from an 11 GeV mass DM particle.

The comparison of figure 6.17 is only illustrative, and it is likely that the au-

thors of [80] vary the amplitude of the surface events differently for low and high

energies. However, what is clear is that the result using only the extreme values of

the uncertainty may not be correct, and one has to be careful not to over-bin the

data.

The results for figure 6.17a, using only the extrema, gives a best-fit cross sec-

tion remarkably similar to that found in [80]. Since the extrema are, by definition,

extreme choices, they both give poor fits and so lower Likelihood values than the

central choice. However, when using amplitudes between these extrema, the signif-

icance of any signal is washed out, leaving a result similar to our own. Hence, the

best-fit region of [80] is almost certainly artificial.
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6.5.2 807 Live Days Data

The ‘region of interest’ of Dark Matter mass and cross section, claimed by the

CoGeNT collaboration to best-fit their data [74, 82], has been derived using the older

807 days data-set. Hence, if we want to know why our results differ so much from the

collaboration’s own rather strong discovery claim, we have to look at this data-set.

For a direct comparison, we will use the bulk ratios derived by the collaboration

using their own log-normal fits (as we performed ourselves with the 1136 days data

in section 6.2.1). These values are shown in figure 6.18. Note that the collaboration

also used an energy-dependent cut on the rise-time, which is partially why the bulk-

ratio values drop smoothly at low energy.
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Figure 6.18: Values of the bulk-fraction from [74], used in the analysis of the 807 live days

CoGeNT data-set. We also show the best-fit exponential and its uncertainties as claimed by

CoGeNT, and a cubic spline fit along with its uncertainties.

As shown in figure 6.18, the CoGeNT collaboration chose to fit a one-parameter6

6One potential criticism of our method is that our cubic spline has four free parameters, and so

is more complicated than the one-parameter model used by CoGeNT [74]. However, this argument

is rather naive for several reasons: firstly, we integrate out the spline degrees of freedom in our

marginalisation, we do not fit them as free parameters. Secondly, the spline is essentially a place-

holder in the absence of any theoretically-motivated model; it is possible that a complicated theory

could give a simple functional form for R, or indeed the converse could be true, but without any

idea of what this theory could be we simply do not know either way.
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exponential function (1 − exp[−α · E], where α is the free-parameter) to the data

for the bulk fraction (essentially R from section 6.2.1). They found a best-fit value

of α = 1.21 ± 0.11; each of these functions i.e. the functions corresponding to the

best-fit and error bars on α are shown in mauve in figure 6.18. What is clear is that

this fit underestimates the uncertainty at low-energy, where all the light-DM signal

is expected to be, since the fit is essentially dominated by the smaller error bars at

high energy.

If one instead considers a spline fit, as we did for the 1136 data in section 6.2.1,

then the error bars are considerably larger at low energies. Hence, it seems that

by choosing this one exponential function, without any real reason to do so, the

CoGeNT collaboration have biased their analysis. We can consider this scenario

further by performing the same marginalised analysis as for the 1136 days data. An

example of this is shown in figure 6.19, the equivalent of figure 6.13 but for the 807

days data.

10-42 10-41 10-40

Cross Section [cm2 ]

50

40

30

20

10

0

10
Ln

 L
ik

el
ih

oo
d

Marginalised Result

CoGeNT
Exponential

0.5 0.6 0.7 0.8 0.9
Energy [keVee]

30

40

50

60

70

80

90

100

110

120

Co
un

ts
 p

er
 0

.0
5 

ke
V e

e

CoGeNT
Exponential

Alternative
Splines

Background + DM 
 (m=8 GeV, σ = 2.8e-41)
Background estimate

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Energy [keVee]

0.0

0.2

0.4

0.6

0.8

1.0

Bu
lk

 fr
ac

tio
n 
R

Data
Points

CoGeNT
Exponential

Alternative
Splines

Figure 6.19: Analysis of the 807 live days data for 8 GeV dark matter. From left to right: the

effect of the different functional fits for the bulk fraction R(E) on the data spectrum, the bulk

fraction spline fits themselves and the relevant Likelihoods. We show the exponential function used

by the CoGeNT collaboration for R(E), and two alternative cubic splines. Using the exponential,

we obtain the same best-fit parameters as CoGeNT. However, the cubic splines are also viable

choices for R(E), but give small or vanishing evidence for a signal. Marginalising over all splines,

we find less than 1σ evidence for dark matter.

What one can see from figure 6.19 is that, as before, the freedom in the choice of

function means that their is no significance for a light-DM recoil signal in CoGeNT
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data, after integrating out R(E). Furthermore, the Likelihood for the exponential

fit, shown in green, peaks at exactly the best-fit cross section claimed by the Co-

GeNT collaboration. Indeed, we recover their ‘region of interest’ if we use only this

exponential function to remove surface events. Clearly though, this is one of many

choices, and our spline fit essentially captures the freedom in functional form for the

bulk fraction.

We can be more quantitative still by using the Bayes factor [101] to determine to

what extent marginalising over the bulk fraction R affects our conclusions regarding

the compatibility of CoGeNT with a DM interpretation. Hence we calculate the ratio

of the Posterior with a DM+Background fit to a fit using only the Background, where

the former is marginalised over m and σ using a variety of priors. The results are

shown in figure 6.20.
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Figure 6.20: Values for the logarithm of the Bayes factor, for two different DM mass ranges,

where the surface events have been removed using the spline and marginalising over the knots, or

using only the exponential function, as the CoGeNT collaboration did. The symbols represent the

various possible priors: ? corresponds to a prior flat linearly in mass and logarithmically in σ, 3 is

logarithmically flat in both σ and mass, 4 is linearly flat in m and σ and • is flat logarithmically

in m and linearly in σ.

One can see that in the case where we use the best exponential from the CoGeNT

collaboration for the bulk fraction, that there is extremely strong evidence for a

discovery of DM, especially with a mass between 5 GeV and 12 GeV. This is in
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agreement with the claims of CoGeNT and demonstrates the efficacy of the Bayes

factor as a measure of goodness of fit.

However, if we instead use the spline fit to parameterise our uncertainty on the

bulk fraction, and marginalise over the knots as above, we see that the evidence for

a DM discovery has completely vanished. After marginalisation, there is either no

preference for either scenario, or a preference for the Background-only case.

We have used four different priors: with mass and cross section σ distributed

either linearly or logarithmically. For the exponential case, the choice of prior makes

little difference, as the Likelihood and Posterior are dominated by the strong peak

from light DM. Hence it doesn’t matter how one scans over m and σ, provided the

bins are small enough to resolve this peak. However for the marginalised case, this

peak has completely vanished and the Likelihood is now more evenly distributed

over m and σ, and so there is more prior dependence. However for all priors there is

no reason to believe DM is consistent with CoGeNT data for the marginalised case.

As such, we are drawn to the conclusion that, not only is the 807 days CoGeNT

data inconsistent with a DM interpretation (especially light DM), but that it is fully

consistent with the background within the uncertainties quoted by the CoGeNT

collaboration [74]. Hence we see that the DM-recoil signal claimed by the CoGeNT

collaboration [74] is nothing more than the result of a biased analysis. By using the

cubic spline and integrating out its degrees of freedom in a marginalised analysis,

we again obtain no evidence for light DM recoils in the 807 live days CoGeNT data.

6.6 Conclusion

We have analysed the 1136 live days data from the CoGeNT experiment, focusing

on the potential for a Dark Matter recoil signal in their time-integrated data [82].

Particular attention has been paid to the background from surface events, and the

uncertainties in its spectral shape.

Ideally, we would like to apply our Bayesian method from section 4.4 to the 2D

data-space of rise-time vs. energy, to exploit the separation in rise-times between

surface (which can only be background) and bulk (which may be DM or back-



6.6. Conclusion 114

ground). However, since no calibration data exists for CoGeNT, we do not know

the distributions of signal and background events in rise-time a priori. Hence, we

have performed our DM analysis using only the energy co-ordinate, and attempted

to remove the surface events based on their rise-times. Our main conclusions from

this analysis are as follows:

1. We have derived the fraction of bulk and surface events in CoGeNT data, as

a function of energy, by fitting log-normal distributions to the rise-times of

CoGeNT events. The fraction of bulk events in the data is parameterised by

an energy-dependent function R(E). Since we have no empirical model for

this function, we use a cubic-spline fit, whose lowest energy knots are allowed

to float freely. The bulk-only spectrum is then obtained by multiplying the

raw CoGeNT spectrum by R(E), and we can use this spectrum to look for a

DM recoil signal.

2. In principle any of these splines could represent the ‘true’ fraction of bulk

events i.e. we are not 100% certain that any one of these splines is the correct

one. However, we know from our log-normal fits that some of these splines

are more likely to be correct than others. Hence, we integrate out the spline

degrees of freedom, effectively marginalising over the surface event background

spectrum, but using the quality of the fit of these splines to the data on the

bulk-fraction as a weight.

3. The results of this Bayesian analysis imply no statistically significant signal for

elastically scattering DM in CoGeNT data. This results from the huge freedom

in the form of the surface event background, especially at low energies, where

it can mimic a Dark Matter recoil signal. There is too much uncertainty in

the number of surface events at low energy, and so CoGeNT can not observe

light DM recoils to any statistical significance.

4. In the absence of any theoretically-motivated function, the spline is a place-

holder which can be used to marginalise over all possible functional choices.

We must consider all splines, unless one has a good reason not to i.e. without
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a good theoretical model, we have no reason to disregard any functional fit,

no matter how complex. We find that upon marginalisation, any significance

of a DM signal is washed-out, leaving a featureless Posterior, which we can

use to set upper limits on the DM-nucleon cross section.

5. Additionally, we have found our analysis to be robust against making a hard

cut on the rise-times of events, and against changing the bulk background

model to that from [80].

6. We have also considered the older 807 days CoGeNT data, where the col-

laboration originally claimed to have observed DM recoils. The CoGeNT

collaboration fit a function of form f(E) = 1 − exp[−α · E] to the energy-

dependent fraction of bulk events, with one free parameter α. We instead use

a cubic spline, which more accurately characterises the uncertainties in R(E)

at low energy. By using this exponential, the CoGeNT collaboration bias their

analysis towards a positive identification of Dark Matter, while in fact they

are actually fitting their signal to surface events. By correctly incorporating

the uncertainties in the bulk-fraction R at low energy we show that the Co-

GeNT claim is not statistically robust, as the uncertainties in the surface event

background are large, and were not accounted for by their exponential fit.



Chapter 7

Dark Matter Interactions with

Photons

7.1 How dark is Dark Matter?

As discussed in section 2.4.3, there exist models of DM which allow it to possess a

small coupling to photons. The basic principle is that the DM is a Dirac fermion

with a charge many orders of magnitude smaller than that of the electron. The

DM halo in these models is composed of a plasma of DM particles χ and their

anti-particles χ̄ in equal amounts. Hence these halos are neutral overall (as is the

Universe itself [50]) and so do not induce large-scale electric fields throughout the

Universe.

The DM can acquire a suppressed electromagnetic charge (we will refer to this

simply as ‘charge’ from now on) for example in models where the DM possesses a

charge under a new U(1) gauge symmetry. Kinetic mixing between the dark photons

of this new U(1) and the photons of the Standard Model allow the DM to acquire a

charge, suppressed by the size of the mixing. Indeed this mixing is a natural feature

of many DM models with a dark sector, motivating the study of the phenomenology

of DM with a suppressed charge.

Strong constrains on such charged DM arise from the requirement that it de-

couples from the baryon-photon plasma before the formation of the CMB [51, 50],

and hence DM-photon scattering does not affect the CMB between its formation

116
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and the present time (see also [49]). Additional constraints arise since DM with

the same charge as an electron would lose energy during galactic evolution and fall

into a disc [125, 126]. There are also bounds on the annihilation cross section of

the charged χ and χ̄ from gamma rays [53, 54] and bounds on the self-interaction

of the charged DM [51, 52]. Provided that the charged DM has a mass of a few

GeVs and a charge suppressed by ∼ 10−6 to that of the electron, it is possible for

such a χχ̄ plasma to constitute the DM halo, while also evading all of these bounds.

Since the plasma is neutral the gravitational force will dominate at large-scales, as

for uncharged DM, and so galactic dynamics are unaffected i.e. gravity is the only

long-range force between galaxies.

Here we show that it is not enough for the plasma to be neutral overall, and

that even stronger constraints arise from the interaction of charged DM particles

with the magnetic field of the disc in spiral galaxies i.e. a neutral χχ̄ plasma is not

immune from the Lorentz force within the galaxy itself.

7.2 Dark Matter and Magnetic Fields

In this chapter, we consider the possibility that a halo composed of a χχ̄ plasma,

surrounding the disc of a spiral galaxy, would be dominated by forces from the

interaction between the magnetic field from the disc and the net rotational velocity

of the halo. As discussed previously the halo itself is neutral, but its constituent

particles possess a small charge. If our assumptions are correct, these forces would

rapidly perturb the DM distribution away from a gravitationally bound system,

unless the DM charge is small.

Before proceeding with a more detailed analysis, we can obtain an estimate of

the size of the disruption to the DM halo from a large-scale Lorentz force. As such,

we seek an estimate of the ratio R of the gravitational to magnetic force in a volume

element dV with mass density ρχ and number density nχ,

R =

[
GM(r)ρχ(r)dV

r2

]
[εqenχ(r)dV |v ×B|]−1 (7.2.1)

=
GM(r)mχ

r2εqe|v ×B|
, (7.2.2)
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where G is Newton’s Gravitational constant, mχ is the Dark Matter mass, r is the

radius from the galactic centre, v is the rotational velocity of the halo, M(r) is

the total DM mass within a sphere of radius r, qe is the electronic charge, ε is a

suppression factor for the DM charge and B is the magnetic field strength in the

halo. We assume that the DM halo itself rotates with some (potentially small)

velocity v, as predicted by N-body numerical simulations [58, 59]. Indeed the halo

can acquire angular momentum through its initial development, or through accretion

of satellites throughout its lifetime [59].

Let us assume that a typical spiral galaxy contains a mass of 1012MSun within a

radius of 100 kpc. We assume that the DM halo is made up of particles with masses

of 10 GeV, and that it rotates at 10 kms−1 (based on N-body simulations [58]), with

an axis aligned with that of the disc’s own rotation axis (this assumption will be

relaxed later). Additionally we take the galactic magnetic field to have a strength of

1µG away from the disc (based on the observation of polarised light from electron

synchrotron emission [127]). Under such assumptions, we obtain that R ∼ 10−12/ε.

This implies that, without a strong suppression of the DM electromagnetic charge,

the gravitational force on DM is significantly weaker than the force from the disc

magnetic field. Hence, unless ε . 10−12, one might expect the DM distribution to

depart strongly from distributions such as NFW [14], which are derived assuming a

dominant gravitational force on DM.

Rotation curve measurements (see section 1.4) indicate that N-body distribu-

tions, such as NFW, fit well to a wide-range of spiral galaxies [15]. As such, the lack

of any significant deviation from a gravitationally-bound DM halo can be interpreted

as a constraint on the DM-photon coupling.

7.3 Forces in the halo

7.3.1 Directionality

The effect of the magnetic force will depend on the relative direction between the

field itself and the rotational velocity of the DM halo. Shown in fig. 7.1a is a

diagram of the respective forces on the DM halo, assuming that ε > 0, when the
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Figure 7.1: Schematic representation of the expected force induced by a halo of Dark Matter

rotating through the magnetic field generated by the disc. The relative size of the magnetic and

gravitational forces depends on the charge and mass of the DM particles, respectively. Here green

represents rotation out of the plane and blue rotation into the plane. In both cases, the magnetic

interaction should generate an DM distribution which deviates strongly from spherical symmetry,

unless the DM charge is suppressed substantially. We assume the magnetic field follows an ‘X-

shape’ structure away from the disc [127, 128].

DM halo rotational axis is aligned with that of the disc. For the magnetic field, we

assume the extended ‘X-shape’ field structure observed in multiple spiral galaxies

[127, 128]. It is not known whether this is a property intrinsic to all spiral galaxies,

or only a subset. However, provided that the majority of spiral galaxies possess

an extended magnetic field away from the disc, then the exact shape of the field is

not important for setting approximate constraints, but would be needed for a more

direct comparison.

Under the particular alignment shown in figure 7.1a, the expected magnetic force

points towards the axis of rotation, assuming that the magnetic field lines point away

from the disc. Hence if our initial estimates are correct (a topic we will analyse in

more detail in the next section), then the DM halo should deviate strongly from a

gravitationally-dominated system, unless ε is suppressed.

We can extend our analysis to the case where the axis of rotation for the DM

halo is not aligned with that of the disc. The schematic of such a scenario is shown

in figure 7.1b. It should be noted that N-body simulations imply that the inclination
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of the rotational axis of the DM halo, relative to that of the disc, actually varies with

radius [58], with the inner axis misaligned with that of the whole halo by ∼ 25◦.

Hence the net motion of the DM, under a Lorentz force from the rotation of the

halo, would likely be more complex than the illustrations of figure 7.1. However,

the general trend towards an asymmetric distribution should remain.

When the halo rotational axis is (nearly) perpendicular to the disc axis, the

magnetic force should push the DM distribution towards asymmetry, as the magnetic

force now points roughly parallel to the halo rotation axis. One may therefore expect

that, for a broad range of spiral galaxies, the DM distribution should be strongly

asymmetric, unless the DM charge is suppressed. We will proceed in the next section

to obtain a more quantitative handle on this effect.

7.3.2 Magnitude

We can obtain a more accurate value for R by considering the entire DM halo.

We assume that the DM follows an NFW distribution [14], and normalise based on

best-fit parameters for the Milky Way i.e. we require that ρ(rSun) = 0.3 GeVcm−3

and M(r = 100 kpc) = 1012MSun [13]. For the rotational velocity of the DM halo,

we use the angular velocity profile from [58]. For the total mass within radius r, we

assume spherical symmetry such that M(r) =
∫ r

0
4πr̃2ρ(r̃)dr̃. The magnetic field is

assumed to have a magnitude of B = 1µG, which is the same order of magnitude as

the ‘X-shape’ magnetic field observed in NGC5775 [127]. In so doing, we are making

the assumption that these are typical parameters for all, or most of, the observable

spiral galaxies, which should be reasonable for an order of magnitude estimate, but

is still an assumption on which our discussion relies.

We show the resulting radially-dependent values of R in fig. 7.2. The value of R

is largest towards the centre of the halo, but drops off with radius due to the 1/r2

suppression. Since we are interested in taking a conservative estimate of the value

of ε for which magnetic forces would disrupt the halo, we will use the value of R at

smaller radii for our calculations.
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Figure 7.2: Value of the ratio R as a function of radius from the galactic centre, assuming a 10

GeV Dark Matter particle, and ε = 1. Our calculation assumes a Milky Way-like spiral galaxy,

with an extended magnetic field with magnitude of 1µG, away from the disc.

7.4 Halo Evolution

Clearly then the force from the magnetic field is considerably stronger than gravity

unless the DM is very heavy, or its charge is strongly suppressed. However, it is not

obvious from such a statement over what time-scale one would expect the magnetic

force to take effect, and for example generate a large Dark Matter asymmetry. If the

DM halo has started rotating only recently1, then the magnetic force may not have

had time to take effect. Alternatively, the charged DM could potentially generate

its own magnetic field as part of a feedback mechanism, which could have acted to

stop the halo rotation long before the present day.

Assuming that the relative direction between the magnetic field and the rota-

tional velocity does not change, we can estimate the time-scale ∆t required for the

Dark Matter to be accelerated to 100 kms−1 by the Lorentz force; at this velocity

1One may ask: why should the halo even rotate at all? We have no direct evidence that is does

so, hence it may seem reasonable to simply demand that the halo does not rotate, and thereby

evade our bounds on charged DM. However, N-body simulations [59, 58] indicate that the rotation

of the DM halo is intrinsic to its formation. As such, if one forces a static halo, one must also seek

a completely new mechanism of halo formation, while also explaining why N-body results fit so

well to rotation curve data [15].
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the DM halo should be significantly perturbed from the N-body result. Assuming

a 10 GeV Dark Matter particle, and identical parameters to before, we obtain that

∆t ≈ ε−1 ·10−5 yr. Hence even if the DM halo were spun up only within the last 105

years, we would need ε ∼ 10−10 in order to prevent potentially large asymmetries

developing in the DM distribution.

Along the same lines, we can calculate the time-scale over which a DM particle

in the halo, initially at rest, can be accelerated by the magnetic field to travel a

distance of one kiloparsec. Again, we are assuming that if this were the case, the

DM halo could be said to be perturbed from the standard gravitationally-bound

distribution. A plot of this time-scale against the ratio of mass to ε is shown in fig.

7.3.
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Figure 7.3: Approximate time-scale required for the galactic magnetic field (B ∼ 1 µG) to

accelerate a charged Dark Matter particle in the halo from rest such that it travels a distance of 1

kpc in this time, as a function of the ratio of mass to ε.

What is clear from figure 7.3 is that unless the Dark Matter halo acquired its

angular momentum very recently, then the magnetic force will have significantly

perturbed the halo distribution unless ε is small or m is very large. Numerical

studies suggest that the DM halo should have acquired angular momentum fairly

early into its evolution, potentially through accretion of galactic satellites [59], or

through intrinsic angular momentum present at the formation of the halo [58]. Hence

∆t ∼ 108 years seems a reasonable time-scale, placing strong bounds on mχ/ε, in
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agreement with our estimates using R.

This is perhaps slightly too strong a statement, since the relative direction be-

tween the halo and magnetic field will change over the lifetime of the galaxy, due

to rotation. However, a DM particle 10 kpc out from the galactic centre will take

∼ 109 years to complete one orbit, at a rotational velocity of 10 kms−1, and so in

∼ 108 years the direction between v and B will not change significantly. Even so, it

may be more reasonable to ask that the DM halo was spun up at or before 107 years

ago, which means that one would need mχ/ε > 1010 GeV to avoid destabilising the

halo, at least approximately.

As such, the acquisition of angular momentum by the halo, at an early time in

its evolution, seems inevitable even for charged DM. However, as has already been

mentioned, the charged DM could potentially have set up its own magnetic fields

after being accelerated by the mechanism discussed in the previous section, which

could act to stop the halo rotating and nullify the Lorentz force on the halo.

If this feedback was still occurring at the present time, it would presumably

generate magnetic fields, which would have to be small to remain unobserved2.

Alternatively, it could have occurred some time in the past, halting the halo rotation

long before the present time. However, it is unlikely given the above discussion that

this could have occurred without significant disruption to the halo, as the feedback

will have taken place on the same time-scale to any induced motion of the DM.

After such a significant perturbation, there is no reason to assume that gravity

alone could drive the system back to anything close to an NFW solution. A more

detailed simulation is needed, taking into account potential non-linearities, to fully

confirm this though.

We note that this is potentially compatible with the idea that DM interacting

with electrons could seed the galactic magnetic field (which is then magnified by

a dynamo-like effect in the disc), at an early point in the galactic evolution [129].

However, if these interactions are due to a DM charge, then our constraints should

2However, there exist magnetic field measurements for only a subset of the spiral galaxies we

know of. Hence, it may be that we have just not made measurements of those galaxies for which

such magnetic feedback is taking place.
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still apply.

The Dark Matter halo would also potentially thermalise itself through self-

interactions (see section 2.4.3), which could destroy any net rotation and so reduce

our constraints. However the rates of such self-interactions will be proportional to

ε2, and so are likely to be suppressed for ε < 1. This may not be true however for

models where Dark Matter self-interactions are enhanced.

Hence although the system may well drive itself towards equilibrium, it seems

highly unlikely that this would bear much resemblance to the standard N-body

result, for GeV-mass DM with ε & 10−10, since such a system is not stable to

magnetic forces.

7.5 Model Constraints

We have argued that charged DM, formed initially under gravitational collapse,

would be subsequently perturbed by the Lorentz force far from the standard N-

body result. However, rotation curve data are consistent with N-body distributions

such as NFW [15], and so one must insist on the gravitational force being the

dominant formation mechanism for the DM halo. Hence, strong constraints on ε

can in principle be derived, as shown in fig. 7.4, along with bounds from other

works. Our bound has been calculated assuming that we need R ≥ 1 for a stable

halo, and taking R ∼ 10−11/ε (for a 10 GeV DM particle) from figure 7.2.

The comparison of our tentative upper limit with those from other searches,

shown in figure 7.4, depends to some extent on the model being tested. For exam-

ple, the Bullet Cluster actually constrains the Dark Matter self-coupling [51, 52],

and an upper limit has been derived by assuming that this is entirely due to DM-

photon interactions. Additionally, the limit labeled ‘DM-Baryon decoupling’, which

is derived from requiring the Dark Matter to decouple from the photon-baryon

plasma before recombination, is actually dominated by the interaction of the DM

with baryons [51]. In principle our method provides a more direct test of the DM-

photon coupling, and could be used to actually probe for a signal of Dark Matter

interacting with photons. Even so, we do not claim complete model-independence,
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Figure 7.4: Comparison of upper bounds on the coupling strength between Dark Matter and

photons. The limit for the Bullet Cluster is derived from bounds on the DM self-interaction cross

section [51, 52]. The upper bound from DM-baryon decoupling comes from the requirement that

the Dark Matter density fluctuations are not damped significantly at recombination, forcing the

DM to decouple from the photon-baryon plasma before this time [51]. We use ε to represent the

ratio of the Dark Matter charge to that of the electron. Our proposed bound on ε represents the

inconsistency between DM with even a small interaction with photons, and a rotating halo of DM

dominated by gravitational interactions, as considered in N-body simulations. It has been derived

by assuming that R = 10−11/ε.

and the constraints each of these methods impose may become stronger or weaker

depending on the nature of the particle content in the dark sector.

We have assumed that the galaxies for which rotation curve data exists have

extended magnetic fields similar to the ‘X-shape’, as shown in figure 7.1. There is

good reason to believe that this, or a similar extended magnetic field, is a common

feature of spiral galaxies [128]. Indeed, the rotation curve of NGC5775, for which

an X-shape magnetic field has been observed [127], appears fairly typical for a spiral

galaxy [130, 131]. However, this issue can only be fully resolved using a galaxy

for which the magnetic field structure has been measured, and a fit of NFW or a

similar N-body distribution has been performed. Ideally we could also compare such

measurements with results from hydrodynamical simulations of charged DM halos.

We note also that our constraints may be evaded by multi-component models

of charged Dark Matter, where the interacting component is not distributed in the



7.6. Conclusion 126

halo (e.g. Double-Disk DM [132]). Our discussion pertains only to charged DM

which is assumed to make up the bulk of the matter in galactic halos.

7.6 Conclusion

Our argument is summarised as follows: the DM halo surrounding a spiral galaxy is

expected to have formed over a billion years ago under gravitational collapse. Early

into its formation, it is expected to have acquired angular momentum, causing it to

begin to rotate coherently, at least to some extent [58, 59]. The luminous disc of

this galaxy would also form early on and develop a strong magnetic field, such as

the ‘X-shape’ field observed in several spiral galaxies [128, 127]. If this rotating DM

halo is in fact formed of particles with a small charge, the resulting Lorentz force

would begin to dominate over gravity, unless the charge is strongly suppressed,

and would rapidly perturb the DM distribution. This would result in a present-

day DM distribution which deviates strongly from NFW, or similar N-body results,

which assume only gravitational interactions and are successful in explaining galactic

rotation curves [15]. Hence, the success of N-body simulations disfavours even nano-

charged DM.

More specifically, if Dark Matter couples to photons with the same strength as

an electron, this force should be ∼ 1011 times stronger than gravity, for 10 GeV mass

Dark Matter. Hence, unless the DM charge is strongly suppressed, the distribution

of DM in the halo of a spiral galaxy should deviate strongly from kinematic obser-

vations, which are consistent with a formation mechanism dominated by gravity e.g.

from N-body simulations, where the halo acquires angular momentum early into its

evolution. We have used this to set a tentative upper bound on the charge of Dark

Matter, many orders of magnitude stronger than from previous searches.

Our bounds will remain speculative until a full numerical simulation is carried

out, taking into account the evolution of the galactic halo and disc. Until this is done,

we do not know for certain that such a distribution would deviate radically from

those consistent with rotation curve measurements. However, we have still presented

an interesting consideration for model-builders. Additionally, the macroscopic effects
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of charged DM interactions with the galactic magnetic field could be used to search

for a potential signal of DM with a suppressed (but non-vanishing) charge, instead

of simply setting constraints.



Chapter 8

Dark Photon Constraints and the

Quark-Gluon Plasma

8.1 Dark Photons

We propose to look for a new resonance in the dilepton (in this case an e+e− pair)

spectrum associated with heavy ion collisions, in order to search for light (GeV)

gauge bosons, relevant to DM scenarios. We are motivated by the observation of an

excess of photons at dilepton invariant masses of GeV scale [133], possibly produced

by the quark-gluon plasma, and where one may be able to see a resonance arising

from the presence of GeV-mass dark gauge bosons.

A number of constraints have been placed on new (spin-1) gauge boson cou-

plings. Generally one assumes either purely vectorial (in which case the dark boson

is referred to as γ′ or dark photon) or vectorial and axial (Z ′) couplings. Heavy dark

boson couplings to quarks have been constrained in [134, 135, 136, 137], assuming a

mass & 50 GeV. Light (sub-GeV) dark photons coupling to quarks have also been

constrained using hadronic decay channels (e.g. φ → e+e− [138, 139], η and η′ de-

cays [140], Kaon decays [141] and J/ψ decays [142]). Additional limits on the quark

and lepton couplings were set from parity-violation experiments [143, 32] (on the

relative size of the axial and vector couplings, in the case of a Z ′ boson) and, in the

case of gauge bosons lighter than . 1 GeV, from neutrino experiments [144, 145],

beam dump as well as fixed-target experiments [146, 147, 148, 149].

128
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However the GeV-10 GeV range remains relatively unconstrained. At present

the most relevant limit in this mass range has been set using data from the BaBar

experiment [139, 149, 150, 151, 152]. Assuming universal couplings to all leptons,

the ratio of the dark photon-lepton coupling to the ordinary photon-lepton was

constrained to be χe ∼ 2 · 10−3 for mγ′ ∈ [0.5, 10] GeV. However at present no

robust bound on the coupling to quarks has been set yet.

8.2 Constraints from the Quark-Gluon Plasma

Dilepton signals are tracers of the formation of a Quark-Gluon plasma (QGP) in

heavy-ion collisions and have been studied in detail by the PHENIX collabora-

tion [133], and more recently at the ALICE experiment at CERN [153], for both

proton-proton and heavy ion collisions. By investigating the presence (or lack) of a

resonance in the dilepton spectrum, from heavy-ion collisions, in the Intermediate

Mass Range (IMR) (the region between 1 GeV and 3 GeV in figure 8.2) with respect

to the theoretical predictions, we show that it is possible to obtain meaningful con-

straints on new GeV gauge bosons coupled to both quarks and leptons (and possibly

to the dark matter). The IMR has been chosen since it is free of strong hadronic

resonances, lying between those from φ and J/ψ decay, and features an excess of

dileptons postulated to originate from thermal QGP radiation.

Note that we will focus on the contribution from thermal partonic production

in the QGP, and neglect prompt collisions (e.g. Drell-Yan from partons in the

colliding nuclei), which are significantly weaker than the thermal emission in the

IMR (see section 8.4). Indeed a new GeV-mass gauge boson resonance from thermal

QGP interactions should be significantly easier to detect than the one potentially

produced in prompt proton-proton collisions, as discussed in detail in section 8.5.1.

In Section 8.3, we discuss the present status of dilepton production in the Quark-

Gluon plasma. In Section 8.4, we determine the signature of new gauge bosons

in QGP experiments such as PHENIX and derive constraints on the gauge boson

couplings. We discuss possible improvement on this limit, including a comparison

of the potential for searches in heavy-ion and proton-proton collisions in Section 8.5
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and conclude in Section 8.6.

8.3 Quark-Gluon plasma

The formation of a QGP in high energy heavy-ion collisions has been debated for

decades, however recent experimental data have confirmed its existence. A simple

picture of the QGP is as a thermal gas of de-confined quarks and gluons, formed

in the early stages of high-energy heavy-ion collisions due to the large QCD energy

densities present, as shown in figure 8.1. Under such conditions a phase transition,

or possibly a crossover, occurs, where the partons are no longer bound into hadrons

or mesons, and remain so until the energy density (or temperature) drops below

some critical value. This is characterised in lattice simulations as a rapid increase

in the number of relevant degrees of freedom, as the temperature of the matter

produced in nuclear collisions rises above this critical value [154, 155].

Protons inside nuclei collide
releasing prompt emission

e.g. Drell-Yan.

1. Nuclei Collide

Proton Proton

Electron
Positron

Nucleus Nucleus Quark-Gluon Plasma

2. QGP Formed

Electron

Positron

Quark

Quark

QGP formed between the nuclei
after collision. Quarks and Gluons can

interact, producing dilepton pairs.

3. Quarks Hadronise

The QGP cools below its critical temperature
allowing the quarks and gluons to form

into a gas of mesons and baryons.

Baryon

Meson

Figure 8.1: Illustration of the formation of the QGP. The nuclei collide, producing prompt

emission, such as Drell-Yan, where the protons collide to produce dilepton pairs. After this, a hot

plasma of unbound quarks and gluons is formed between the two nuclei, called the quark-gluon

plasma. This eventually cools as the nuclei move apart, until the quarks hadronise into baryons

and mesons.

In what follows we first discuss the evidence and theoretical efforts to model the

QGP formation and dilepton signals.
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8.3.1 Experimental evidence

A strong indication for QGP formation in heavy-ion collisions is an excess of dilep-

tons over the predicted contributions from hadronic decays and Drell-Yan produc-

tion, for an invariant mass mee of GeV-scale [133, 156, 157, 158, 159]. Multiple

theoretical explanations have been proposed as to the origin of this excess: an en-

hanced contribution from decays of c and c̄ quarks was successful in fitting early data

[157]. However with more data [133, 156] such a model was disfavoured (evidence

actually indicates a reduced cc̄ contribution for nuclear collisions [133, 160]), and was

replaced instead with the far more successful scenario of dileptons originating from

partonic interactions in a quark-gluon plasma (QGP), formed in nuclear-collisions,

as can be seen in figure 8.2.
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Figure 8.2: Dilepton spectra measured by the PHENIX collaboration [133]. On the right we see

a close-up of the Intermediate Mass Region: if the cc̄ background is suppressed, then there is an

excess of dileptons consistent with thermal production from the QGP.

Although observations of a dilepton excess provide compelling evidence for the

formation of a QGP in heavy-ion collisions, such an emission could originate from an-

other unknown source or enhanced background. However the observed suppression

of high-energy hadrons in nuclear collisions, known as jet quenching, with respect

to proton-proton collisions [161, 162, 163] provides additional arguments in favour

the QGP scenario. The latter has a natural explanation in terms of the transit of

their constituent partons through a strongly-interacting medium (supposed to be the
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quark-gluon plasma) causing them to lose energy through collisions and stimulated

gluon emission [164]. We demonstrate this graphically in figure 8.3.

Figure 8.3: Illustration of the phenomenon of jet quenching, from [164]. The lower quark’s path

takes it through a significant portion of the QGP, causing it to lose energy through stimulated

gluon emission. By contrast the upper quark spends most of its time in vacuum, and so is not

significantly quenched.

Given such evidence, we will proceed to analyse the production of dileptons by

the QGP in more detail, with the ultimate aim of fitting it to experimental data

from the PHENIX experiment [133].

8.3.2 Modelling

To determine the signature of light dark bosons, we first need a reliable estimate of

dilepton production in heavy ion collisions. In the GeV energy range, it is possible to

use a perturbative treatment1 to model the quark and gluon interactions responsible

1It is not clear at what energies one can model the QGP using perturbation theory i.e. when

one use only the lowest order Feynman diagrams for the quantum processes. However we will

assume that perturbativity is valid at the energies considered in this paper.



8.3. Quark-Gluon plasma 133

in the QGP for dilepton production [165, 166]. However since the plasma exists at

finite temperature the perturbative series itself must be modified to account for its

existence.

For this purpose, it is convenient to consider the plasma constituents as quark

and gluon partons with non-zero thermal masses (in the perturbative regime) [167]2.

These thermal masses regulate singularities in the amplitudes of photon production

processes [168, 169] and are also required to improve the agreement with the findings

from lattice field theory [168]. They scale with the temperature as mq ≈ gT [160,

170, 171, 172, 173], where T is the QGP temperature and g =
√

4παs, the strong-

interaction coupling.

In this work we will adopt the relation mq =
√
CfgT/2, where αs = 0.4 and

Cf = (N2
c − 1)/(2Nc), with Nc = 3, the number of colours [168, 174]. For gluons

we take mg =
√

2
3
παs(Nc +Nf/2)T [175], with Nf = 3, the number of light quark

flavours (u, d, s) in the QGP. We will also model the dilepton excess observed in

heavy ion collisions using perturbative thermal theory.

8.3.3 Possible caveats

Such a resummation for obtaining thermal masses may not be enough to guarantee

the accuracy of a perturbative approach, since it effectively treats the thermal par-

tons as collision-less [176]. A full treatment of dilepton production would require the

inclusion of processes due to scattering effects in the plasma, both through multiple

scattering (as shown in figure 8.4) [177, 176, 178] and processes where the quark

single-scatters then annihilates [179].

Multiple scattering (via gluon exchange) occurs when the effective length for

a quark to travel before emitting a low-invariant mass photon is larger than the

mean free path in the plasma. In the non-thermal theory the diagrams for such

scattering processes would appear at higher-order in the perturbative expansion,

2This resummation also results in the modification of the quark-gluon vertex for soft momenta

(∼ gT ). This could potentially affect the q + g → q + e+e− and q + q̄ → g + e+e− processes,

but should have only a small effect here since we work in the regime where the dilepton pair mass

mee > T .
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Figure 8.4: Diagram of a quark undergoing multiple scattering in the QGP [179]. Due to thermal

effects, these ladder diagrams can be of the same order in αs as tree-level diagrams.

but in the plasma each extra thermal quark propagator can effectively decrease the

order of a diagram by m−2
q ∝ α−1

s in the collinear regime [177]. These are generally

referred to as ladder diagrams [168], representing an infinite series of scattering via

gluon exchange inside a quark loop, and must be further resummed for a collisional

medium such as the QGP [177, 178]. In this case the scatterings can not be treated

independently and will interfere with each other, which is a manifestation of the

Landau-Pomeranchuk-Migdal (LPM) effect [176]. Furthermore the effect of giving

the quarks and gluons a finite width, due to multiple scattering interactions, is also

considered in [176, 169]. There are also tree-level contributions from the decays of

thermal quarks and gluons, with the latter only possible in the plasma due to the

gluon thermal mass [169].

In each case the effects of such additional processes are at their largest when the

virtual photon is approximately light-like, which corresponds to the low invariant

mass regime [177, 180] (in particular for the direct pair annihilation of qq̄). In addi-

tion lattice results indicate that the weakly-coupled perturbative model of thermal

partons works reasonably well at energy scales roughly at least several times larger

than the QGP critical temperature Tc ≈ 170 MeV [166, 168]. As an example, a

lattice simulation performed in [154] determined the fluctuations in baryon number,

strangeness and charge of the QGP. At energies a few times that of Tc such fluctua-

tions came only in packets consistent with a gas of free quarks (e.g. charge fluctuated

only in units of the bare quark charge), indicating only weak modifications to the

quarks behaviour from that of a collision-less gas.

Hence we restrict our analysis to the region where the dilepton invariant mass

mee is larger than the QGP temperature (specifically the region 1.2 GeV < mee <

2.6 GeV) and consider the simplest case of a plasma of thermal partons, since con-
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tributions from non-perturbative effects should be sub-dominant. To compute the

contributions from the multiple-scattering processes and resummation effects men-

tioned above, we use a publicly-available code [181] but we do not compute such

corrections for the dark gauge boson. Note however that this does not mean it is

exempt from LPM effects; it is possible that such processes (and for example the

ISR of a γ′ or Z ′) could have interesting effects beyond a simple resonance, perhaps

even affecting dilepton emission at lower mee.

8.3.4 Dilepton production for 1.2 GeV < mee < 2.6 GeV

At GeV-scale, the QGP is expected to be an abundant source of dileptons [133, 182,

169, 159, 172, 183, 171, 160, 184, 158], owing to the exchange of a virtual photon in

q + q̄ → e+e−, q + g → q + e+e− and q + q̄ → g + e+e− processes [172, 169, 185].

To obtain the full thermal dilepton spectra we will integrate over the phase-space

and (simplified) space-time evolution of the plasma, assuming the quarks and gluons

to be thermally distributed [182]. For quarks we take the Fermi-Dirac distribution

(fFD) and for gluons that of Bose-Einstein (fBE). Before performing the space-time

integration, the expression for dilepton production takes the form,

dN

d4x
=
∏
i

[∫
d3pifth(Ei)

(2π)32Ei

]
|M|2(2π)4δ4

(∑
j

Pj

)
(8.3.1)

where |M|2 is the amplitude, i runs over the participating particles with four-

momentum Pi = (Ei, pi) and fth(E) = fFD/BE(E) for initial-state coloured particles

or fth(E) = 1± fFD/BE(E) for final-state coloured particles, with + for bosons and

− for fermions.

For simplicity one can assume that the QGP is in thermal and chemical equilib-

rium, in which case the chemical potential µ can be set to zero, and the densities of

quarks and gluons are effectively equal. However this is likely to be too simplistic an

assumption, as the QGP is expected to reach equilibrium only towards the end of

its lifetime [186]. In the initial stages of its out-of-equilibrium evolution one expects

the QGP to be gluon-dominated [187, 186], which can be represented by different

values of µ for quarks and gluons, which change also as the plasma evolves. As a

result, in this early phase the processes q + g → q + e+e− is enhanced relative to
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q+q̄ → g+e+e− and q+q̄ → e+e−. We shall model this using temperature-dependent

fugacities (λ) (see [186], however there exist alternative models e.g. [158]), leading

to a modified out-of-equilibrium distribution f(E) of the form,

fnon−eq(E) =
λq,g(T )

eE/T ± λq,g(T )
. (8.3.2)

The fugacity works as an effective pressure for the plasma and is related to the

chemical potential by µ = µ0 + kBT lnλ, with µ0 = 0 in our case.

As one can see the equilibrium is restored when λ = 1. Additionally the fugacity

itself can be temperature-dependent and be different for quarks and gluons. Note

that the thermal quark and gluon masses are modified slightly in the non-equilibrium

case [174].

To account for the space-time evolution of the plasma, we integrate from its ini-

tial creation, from which it cools from a temperature Tmax to the critical temperature

T0 = 170 MeV. We define d4x = V (τ)dτ , where for the volume V and tempera-

ture T of the plasma we use the Bjorken model [188]. This takes the plasma as

forming in the region between two relativistic nuclei just after the collision; the high

energy-density in this region allows the formation of coloured partons, which quickly

thermalise through collisions. The expansion of this thermal plasma is longitudinal

and homogeneous, hence we have [182],

V = 2πR2
Nτ (8.3.3)

T ∝ τ−1/3. (8.3.4)

The expressions are parameterised in terms of the plasma evolution time τ , RN is

the nuclear radius and T (τ = 0.2 fm) = Tmax.

In order to calculate the dilepton spectrum as a function of invariant-mass mee we

integrate Eqn. 8.3.1 (after integrating over d4x) in discrete-bins of mee and divide by

the bin-size to get the average. We take a bin-size of ∆mee = 0.25 GeV, to facilitate

the comparison with experimental data. Note that there is some subtlety involved

in this calculation. First we integrate over the time τ in the inertial frame of the

plasma itself [188], while we seek to determine the dilepton spectrum in the lab

frame.
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These frames may actually differ due to the potential bulk motion of the plasma

as it expands from the collision point. However since the dilepton spectrum is

Lorentz-invariant our calculation should not be affected by any plasma bulk motion.

There may be nevertheless some issues with cuts in pseudo-rapidity and pT in the

data, since the cuts themselves are frame-dependent. This will likely affect the

overall normalisation of the signal, which we discuss later.
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Figure 8.5: Invariant mass spectra of dileptons produced thermally by various processes in the

QGP, with initial temperature labelled as Tmax. The spectra in the top panel have been calculated

assuming a plasma in equilibrium (i.e. equal fugacity for quarks and gluons λ = 1), while the

lower panel takes the fugacities of quarks and gluons to be different [186], and gluon-dominated

during the initial stages of evolution. The shaded bands indicate uncertainty in the Monte Carlo

integration.

The dilepton spectra for the processes discussed above are shown in fig. 8.5.

A common feature to these spectra is the exponential drop with larger mee [184,

172, 159, 160, 189] for mee & 1 GeV. As one can see from this figure, the process

qq̄ → e+e− is the dominant mechanism of dilepton production for mee & 1 GeV,

which is in agreement with other calculations of the dilepton spectrum in the IMR

[184, 172, 160, 159].

As expected, in the case of a non-equilibrium plasma both processes with initial

state qq̄ are suppressed relative to q + g → q + e+e−. Since the plasma is only
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strongly gluon-dominated during its initial stages, such an enhancement of the qg

process is not enough to make it competitive with the qq̄ → e+e− process in the

invariant-mass range considered here. Note also that the out-of-equilibrium plasma

is expected to be slightly hotter [187], hence the overall rate from all three partonic

processes is largely unchanged. Finally we find that the contribution from multiple-

scattering, i.e. the Landau-Pomeranchuk-Migdal resummation (LPM) for dilepton

production, is size-able, but remains nevertheless sub-dominant in the IMR.

Here we have taken the strong-coupling constant to be temperature-independent

and fixed at αs = 0.4. Finally another point to consider is the initial temperature

of the plasma. The latter has a strong effect on the overall rate [182, 189]. For the

Relativistic Heavy Ion Collider (RHIC) a reasonable estimate of the initial temper-

ature3 (and the value we use for our analysis) is Tmax = 400 MeV, assuming that

nuclei collide at a centrality of 0%-20% [172].
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Figure 8.6: Left panel: Dileptons from q + q̄ → e+ + e− in the QGP calculated in [159]. Right

panel: Dileptons from partonic production in the QGP (labelled as ‘partonic yield’) from [172, 133].

This results in a photon spectrum with the same spectral shape as those from

previous calculations [172, 159], shown in figure 8.6. However comparing our result

with that of the right-panel of figure 8.6 (the spectrum is obtained from the compar-

ison in [133]) we see that our spectrum, although having a similar mee dependence,

is larger overall. The reason for this discrepancy is not known, however it is likely

3There is ambiguity in this value, with several models for photon/dilepton production using

different values in an approximate range from 300 MeV-600 MeV [190].
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due to the use of a different hydrodynamical model, or perhaps a different initial

value of τ (which we take as 0.2 fm). We will proceed to use our calculated spectrum,

however the impact on our results of altering the overall size, to match that of [172],

will be discussed in sec. 8.4.4.

8.4 Searches for new gauge bosons at PHENIX

Since our calculations successfully reproduce previous determinations of the ex-

pected thermal QGP dilepton spectra, we can now study the contribution of a new

virtual gauge boson to these spectra and confront our results to the Au-Au data

from the PHENIX experiment [133].

8.4.1 New gauge boson characteristics

The simplest implementation of a dark photon is to consider a new (massive) par-

ticle with vector-like interactions, proportional to that of the photon (see [34] for a

review). The ratio of the γ′ coupling to that of the photon is labelled as χi, with

i any SM particle that is electromagnetically charged. We thus have the following

relation Q′i = χiQi, where Qi is the charge of the SM particle i). Alternatively one

can consider a gauge boson with possibly both vectorial and axial-vector couplings

to quarks and leptons, like a Z boson. Such a particle is generally referred to as a

Z ′ and can have a different mass mZ′ and also suppressed couplings to the Standard

Model particles, relative to the Z (also labelled χi). For simplicity hereafter we will

assume a universal suppression for all quark flavours, but one can easily extend our

results to non universal couplings.

Light (sub 10 GeV) dark gauge bosons are expected to contribute to dilepton

production through the same processes as virtual photons. The Feynman diagrams

for the dilepton production processes qq̄ → e+e−, q + g → q + e+e− and q + q̄ →

g + e+e− are shown in fig. 8.7, mediated by either a γ′ or Z ′. The rate for such

a process should be greatly enhanced when the invariant mass of the pair mee is

around the mass of the new gauge boson, due to the s-channel resonance (even if

the couplings are suppressed).
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Figure 8.7: Feynman diagrams for the QGP processes qq̄ → e+e−, q + g → q + e+e− and

q + q̄ → g + e+e−. In each case the e+e− production is mediated by either the exchange of a

virtual γ′ or Z ′. We define Qi as the SM charge of species i relative to the elementary charge

unit e. For the Z ′, Vi and Ai are the SM vector and axial-vector couplings for species i and

g̃ = e
2 sin θW cos θW

. Note that t-channel and u-channel versions of the gluonic diagrams are also

present.

Here we propose to exploit such a resonance to set limits on new, GeV-mass, dark

gauge bosons. Before we proceed, it is worth considering whether such a signal could

be detected in dilepton spectra from proton-proton collisions at GeV-scale, as well

as from the QGP in heavy-ion collisions. The signal from Drell-Yan production of

dileptons, used to set bounds for heavier gauge bosons [136, 137], is approximately an

order of magnitude below the hadronic background for GeV-scale invariant masses

[190, sec. 4.1]. Hence any enhancement due to the exchange of a dark gauge boson

would be effectively invisible in prompt (proton-proton) collisions. The situation

is different for heavy-ion collisions, since the QGP presents an additional thermal

source of dileptons for mee of GeV-scale, which is much stronger than that from non-

thermal prompt production [191, 192, 158]. This is why we focus only on thermal

production from the QGP in this work and disregard the sub-dominant non-thermal

production.

We will therefore search for an enhancement due to a γ′ or Z ′ in the Au-Au

dilepton spectrum for 1.2 GeV < mee < 2.6 GeV, where the contribution from the

QGP is expected to be largest, and competitive with the hadronic background. To

calculate the dilepton spectrum for γ′ or Z ′ we follow the same method as for virtual

photons in sec. 8.3.4, but replace the photon in the propagator by the dark gauge

boson, as in the processes of fig. 8.7.
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8.4.2 Dilepton backgrounds at PHENIX

The background for dilepton emission, over the full possible invariant mass range,

originates from various hadronic decays, referred to collectively as the “cocktail”. In

the IMR, there is some ambiguity in exactly how large the hadronic background is.

One nevertheless expects the dominant background to be from semileptonic decays

of charm and anti-charm quarks4; where the electrons and positrons are mistaken

for dilepton pairs originating from a single vertex [193, 133, 194, 191].

In proton-proton collisions the production of c and c̄ quarks results in correlated

decays, since they are themselves produced back-to-back from the same vertex.

Hence the correlated opening angle of the detected e+ and e− from the decaying

c and c̄ is more likely to be close to π than 0, increasing the likelihood that they

will be mistaken for a high invariant-mass pair. This results in a large dilepton

background in the IMR, precisely where we hope to see a signal from the QGP in

heavy-ion collisions.

However for Au-Au there is evidence to indicate that c and c̄ scatter in the nuclear

medium [195, 196], which should effectively destroy such a correlation, resulting in

smaller opening angles on average and hence a softer cc̄ background for nuclear

collisions [193, 133, 160, 197]. The first such scenario is referred to as the “cocktail”

with correlated cc̄ background, while the second is described as originating from

random cc̄ and is referred to as “cocktail” plus random cc̄. In principle the expected

background is somewhere in between the two scenarios, depending on the degree to

which cc̄ scatter in the nuclear fireball. Hence both backgrounds are considered when

setting limits in this work, similarly to the method of the PHENIX collaboration

[133].

8.4.3 Signature of the new gauge boson

Shown in figure 8.8 is an example of the dilepton spectra originating from thermal

quark interactions in the QGP in presence of a new gauge boson (fγ′(mee, χ), here

4There is also a similar background from decays of b and b̄, but this is sub-dominant to the cc̄

background in the IMR.
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Figure 8.8: Spectra of dileptons produced via qq̄ → e+e−, where the quarks exist as thermal

partons in the QGP and the mediator is either a virtual photon or γ′. This is compared with

PHENIX heavy-ion data [133] and the hadronic background cocktail, dominated by either random

cc̄ (top) or correlated cc̄ (bottom). The resonance from the virtual γ′ is just visible due to its

suppressed couplings to quarks and leptons. The photon and γ′ spectra have been calculated at

the measured values of mee and binned in units of ∆mee = 0.25 GeV (shown as � when added to

the background). Their normalisation has been allowed to vary, with the best-fit value used here.

The lines are obtained by interpolating between these points, hence the width of the resonance is

only an approximation to the true decay width to e+e−, as discussed in the text.

taken to be a γ′ for the sake of the illustration with a mass of 1.6 GeV) and in the

case of virtual photons only fphoton(mee). Additionally the two hadronic background

scenarios fbg(mee) are displayed, as mentioned above. The couplings in this figure

have been chosen so that the contribution of the γ′ becomes visible above the photon

signal and background. Note that only the qq̄ → e+e− process has been used here,

since it is dominant in the invariant mass region considered, and the plasma has been

assumed to be in equilibrium throughout its evolution. However the same resonance

is present in all partonic spectra (e.g. q + q̄ → g + e+e−), and so our results are

largely independent of the exact production process, provided perturbation theory

holds.

The sum of these contributions (f(χ,N) in eq. 8.4.9) is represented by the red

solid line in fig. 8.8. There should also in principle be a contribution from the hot

hadron gas (HHG) i.e. dileptons from interactions between the mesons and baryons

produced in the nuclear fireball [158, 182, 172, 184, 198]. The dilepton rate from the

HHG should be subdominant to that from the QGP for the range of mee considered

here, and so is not incorporated into our analysis. The same is also assumed for
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prompt Drell-Yan production of dileptons [199, 191, 192, 158, 160], produced when

the nucleons collide before the plasma is formed. Note that these are additional

potential sources of a dilepton enhancement due to a γ′ or Z ′ and their inclusion

would likely strengthen our derived limit5.

The results are compared with the most recent Au-Au data from the PHENIX

experiment [133]. As one can see the main feature of the new gauge boson is an

excess of dileptons, from thermal production in the QGP, at 1.6 GeV (for mγ′ = 1.6

GeV) in the total spectrum, due to the resonance in the s-channel production of

the dilepton final state. Replacing the γ′ with a Z ′ results in a similar resonance,

hence it should be possible to set strong limits on the quark and lepton couplings,

similarly to searches in proton-proton dilepton spectra for heavier gauge bosons.

One can draw a direct comparison between the resonance here, from the s-channel

exchange of a new gauge boson in thermal dilepton production, and those from

hadronic decays such as φ and J/ψ. The signature for either should be largely

similar, however in our case the width of the resonance will depend on χqχe and

potentially also on a coupling to dark matter. One can obtain a first-order estimate

of the width by requiring dNγ′/dmee ≥ dNphoton/dmee, since the photons constitute

an irreducible background to the new gauge boson resonance. Following this method

we obtain an approximation for the width of the γ′ resonance6 ∆m to be,

∆m = mγ′

(
1√

1−√χqχe
− 1

)
. (8.4.5)

Hence assuming a value of χqχe = 10−3, a negligible coupling to dark matter and

mγ′ = 2 GeV we obtain an approximate resonant width of 30 MeV. This is about an

order of magnitude below the bin-size used in fig. 8.8, hence a more sensitive search

using smaller bins should be eminently suitable to discover or set bounds on such

a resonance. Indeed the PHENIX collaboration have measured the J/ψ resonant

5Indeed, although the prompt Drell-Yan contribution is smaller than the cc̄ background in this

invariant mass region, a limit could also be set in principle using this prompt signal. However

such a limit would always be weaker than that set using the larger thermal yield from the QGP,

or using both signals together.
6The formula for the Z ′ width is more complicated in principle, due to the potential axial-vector

couplings which are absent for the photon, but the size should be similar to that of the γ′.
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width to an accuracy of ∼ 35 MeV [200], indicating that such an improvement is

potentially possible. Adding a coupling to dark matter would change the estimate

of the width and introduce invisible decay modes if mγ′,Z′ > 2mDM .

Due to the uncertainties in the choice of the background, we have introduced a

normalisation to estimate the QGP contribution. However we marginalise over it to

set our limits, separately for either background scenario, as discussed in more detail

in the next section. In figure 8.8, the normalisation factor for the photon and γ′

signal has been chosen to be close to the value for which the fit between signal and

data is best.

Comparing the two background scenarios in the fits of fig. 8.8, it appears that the

dilepton signal from the QGP must be suppressed to fit the data when combined with

the correlated background (as compared to the case of random cc̄), and hence the

enhancement from the virtual γ′ is less visible. Hence if indeed the cc̄ background

is correlated as with proton-proton collisions, then the suppressed QGP emission

should also result in weakened bounds on the γ′ and Z ′ couplings.

However for an uncorrelated charm-background the QGP emission provides a

much larger contribution to the total spectrum. Hence there is a clear excess of

the data above the uncorrelated cc̄ background (in the IMR) which the QGP emis-

sion fills. One would therefore expect the bounds on the γ′ or Z ′ resonance to be

correspondingly stronger.

8.4.4 Constraints on the new gauge boson couplings

As one can already see from fig. 8.8 if modelling efforts for the QGP production of

dileptons are indeed correct [182, 169, 159, 172, 183, 171, 160, 184, 158, 179, 177],

then bounds can be placed on the coupling of GeV-scale new gauge bosons to quarks

and leptons.

For this purpose, we shall define the limit by integrating under the posterior

volume P(f(χ,N)|d). For our purposes this is defined as the normalised form of the

joint signal and data probability P(f(χ,N), d) = L(d|f(χ,N))P(χ)P(N). Here N

is the normalisation of the signal defined above (common to both the photon and

γ′ signals) and χ =
√
χqχe. The latter two functions are the priors, which will be
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assumed to be linearly flat, and L is the likelihood. We use the following definitions,

P(N) ∈ [0, Nmax] (8.4.6)

P(χ) ∈ [0, 1] (8.4.7)

L = exp

[
−
∑
i

(fi(χ,N)− di)2

σ2
i

]
(8.4.8)

f(χ,N) = N · (fphoton + fγ′(χ)) + fbg, (8.4.9)

where i sums over the mee bins used for the analysis and σi is the uncertainty in

each value of the data di. The functions fbg, fphoton and fγ′ are identical to those

discussed in the previous section, with the latter incorporating also an interference

term between virtual photons and γ′. Since we claim no prior knowledge on the

normalisation N , we should take the limit where Nmax → ∞. However this would

result in an improper prior which we can not use to set a limit. Hence we choose

Nmax to be finite, but significantly larger than any feasible normalisation for the

QGP signal, such that its exact value has no effect on the final limit.

For the actual value of N one has two options, both of which we consider: the

first is to pick a value of N and then set a limit by integrating under P(f(χ,N)|d)

with N fixed at a value N0. The second is to marginalise P(f(χ,N)|d) over N , to

obtain the probability distribution P(χ|d), which we use to set a limit on χ.

In the first case we are presented with several choices for N0. Limits can be set

using the value of normalisation for which the QGP dilepton signal fits the data from

PHENIX best, as shown in figure 8.8 (labelled as Scenario 1). As discussed earlier

in this best-fit scenario, the signal from the QGP is suppressed for the correlated cc̄

background, relative to that from random cc̄.

However this is not the only possibility within this method: one can instead take

a scenario where such a fit is not realised. For example as mentioned previously our

calculations result in a dilepton signal larger overall than in a previous work [172]

(and the comparison to data in [133]). Hence we have also set limits on χ with N0

such that our expected QGP signal is of the same size as in this work (Scenario 2).

Of course we can also set N0 = 1 for either background scenario, thereby assuming

no alteration to our calculated spectrum in setting limits.

It appears difficult to justify using any one value of N0 to set a limit. To make
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sure that our limit is independent of the choice of N0, we use instead the method

of marginalisation over N0 which allows one to set a limit while taking account of

many different possible values of N (Scenario 3)7. In practice this means that any

limit we set on χ will receive contributions from all values of N within the range

[0, Nmax], weighted by the quality of the fit to the PHENIX data. In addition one can

effectively treat N as a proxy for uncertainties in for example the initial temperature

Tmax and formation-time of the plasma (although these could also affect the mee-

dependence of the spectrum, for large deviations from our values), as well as the

effect of cuts on the data.

The value of χ for which 95% of the volume of P(χ|d) (or P(f(χ,N = N0)|d)

if we do not marginalise over N) is contained will define the limit for a given value

of mγ′ , the mass of the γ′ gauge boson. A similar procedure is also followed for

a potential enhancement from virtual Z ′ exchange, with fγ′(χ) replaced by fZ′(χ).

In this case we have taken χq as being the Z ′ coupling to quarks as a ratio to the

coupling of the Z (both vector and axial-vector), and similarly for leptons. Though

there is no reason in general for the Z ′ axial and vector couplings to be related in

the same way as for the Z.

By fitting such spectra to PHENIX data [133], for a range of γ′ and Z ′ masses,

limits at 95% confidence have been derived assuming either a completely correlated

or uncorrelated cc̄ background for the dilepton signal. Shown in fig. 8.9 are such

exclusion bounds for the combined coupling of the new gauge bosons to quarks and

leptons χqχe, for both background scenarios (and also marginalising over N).

Our strongest limit for the γ′ corresponds to masses between 1.5 GeV and 2.5 GeV

(which was to be expected given the invariant mass range used here). In this regime

χqχe is forced to be smaller than ∼ 10−3. Hence if one assumes the most favourable

scenario of a random cc̄ background then such limits can be combined with those

from purely leptonic experiments to bound the quark-γ′ coupling χq. As an example,

7We have taken the prior for N to be flat, indicating that we have no prejudice as to its expected

value. However with a more expert analysis into the variability of the spectrum with parameters

such as Tmax, this could change. One could even extend this method and marginalise over the

effect of uncertainties in both the shape and size of the dilepton spectrum from the QGP.
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Figure 8.9: Upper limits at 95% confidence on the coupling of a new gauge boson to quarks and

leptons from the QGP dilepton signal in the IMR. For the γ′ χq (χe) is the relative coupling to

quarks (charged leptons) as compared to the photon. For the Z ′, χq and χe are taken relative to

the Standard Model Z-boson coupling to quarks and charged leptons.

taking χe ≈ 2 · 10−3 from the BaBar limits [151, 152] one obtains χq . 0.5 for

mγ′ ∈ [1.5, 2.5] GeV. For masses outside of this range the limit rapidly drops away,

due to the potential enhancement being at the boundary of the IMR (for larger mee

the data are dominated by the J/ψ peak and the QGP contribution becomes small).

It is important to study to what degree the limit changes if we do not marginalise

over the normalisation, and instead employ one of the scenarios mentioned above,

where N is fixed at a value N0. Limits under all such scenarios are displayed in the

table below.

For the γ′, the weakest limit is in the case of the correlated background, for all

scenarios. For a random cc̄ background we see that Scenario 2 gives the weakest

limit, since the signal from the QGP has been suppressed to match more closely the

result from [172]. However even with this suppression there is still a strong potential

for the QGP to place bounds on the coupling of a γ′ to quarks and leptons. The

limit for the Z ′ behaves almost identically under each scenario.

In conclusion our preferred limit is that from Scenario 3 (fig. 8.9), where the nor-

malisation has been marginalised over. However limits derived in the other scenarios
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Rnd. Corr.

Scenario 1 - Best-Fit 1.0 · 10−3 5.0 · 10−3

Scenario 2 - Suppressed 3.0 · 10−3 5.0 · 10−3

Scenario 3 - Marginalised 1.5 · 10−3 5.0 · 10−3

Table 8.1: Comparison of upper limits on χqχe for the γ′, derived under the various scenarios for

the normalisation, as discussed above, for a new gauge boson of mass 1.6 GeV. For Scenario 1 we

use the value of N for which the QGP fits the data best when added to the background, and for

Scenario 2 the QGP signal is suppressed to match that from [172]. Scenario 3 is the limit in the

case where N is marginalised, as shown in fig. 8.9. We do not claim accuracy beyond 0.5 · 10−3.

are also valid, and do not deviate strongly from the marginalised bound.

Previous bounds on the coupling of the γ′ in particular have generally taken

χq = χe = χ [34], in which case our limit on the universal coupling χ is weaker than

that from the BaBar experiment in the same mass range [139, 151, 152]. However

although universal couplings are motivated by simple models for the γ′, the validity

of such a quark-lepton universality must still be tested. Hence our method, based

fundamentally on quark (and gluon) interactions and dilepton production via a new

gauge boson, can be seen as complementary to that from e+e− colliders such as

BaBar, and should provide one with a test of new light gauge bosons without any

specific assumptions about their characteristics (see e.g. [201, 202]). Additionally

if interactions of the new gauge boson are to help mitigate the tension between the

Direct Detection experiments [83, 203] a bound based purely on leptonic couplings,

such as the one set using data from the BaBar experiment, has limited relevance

compared to our result, where the quark-coupling is probed directly.

We note that results from simulations imply that correlations between c and c̄

are almost entirely lost [160, 193] in nuclear collisions. Hence the (stronger) limit

for a random cc̄ background in fig. 8.9 is likely to be more plausible.
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8.5 Prospects for future searches

8.5.1 Thermal dileptons in heavy-ion collisions vs. Drell-

Yan in proton-proton

Our work focuses on searches for new GeV-mass gauge boson resonances in the

dilepton spectrum of heavy-ion collisions, produced via thermal quark and gluon

interactions in the QGP. In this section we will justify such a search in comparison

to using the Drell-Yan prompt dilepton signal from proton-proton collisions, focusing

primarily on the LHC experiments. Our justification is two-fold: first, the thermal

rate from the QGP does not depend on proton pdfs, while the Drell-Yan rate does.

This is important as such pdfs are highly uncertain at low-Q2, hence our limit is

an important complementary result which has no such uncertainties. Secondly, we

will show that although the luminosity for proton-proton collisions at ATLAS and

CMS is ∼ 103 times higher than for heavy-ion collisions at the LHC, the stronger

signal from thermal interactions in heavy-ion collisions compared to Drell-Yan in

proton-proton compensates for the greater collision rate of protons, when including

also systematic/modelling errors from the hadronic cocktail.

Concerning the first point, the quantum-level processes responsible for dilepton

production in Drell-Yan or thermal QGP interactions are the same8. However the

momentum-space distributions of the quarks and gluons are approximately thermal

for the latter, while one uses proton pdfs for the former. Indeed the uncertainties in

the pdfs are substantial for low-mass Drell-Yan [204]. This is likely the reason why

previous searches for new gauge bosons using Drell-Yan in proton-proton collisions

[136, 137] have a lower dilepton mass limit of ∼ 50 GeV. By contrast the bounds in

this work have been set using thermal QGP interactions, which have no susceptibility

to these pdf uncertainties. Hence one can consider our bounds as a complementary

result to limits on GeV-scale new gauge bosons from proton-proton collisions. We

would like to remark also that no such constraints from proton-proton collisions

8Though one must use thermal field theory, with modified quark and gluon masses, for the

QGP interactions.
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exist, hence our work is the first to bound χqχe for GeV-mass new gauge bosons.

For the second point, in order to look for a resonance in the dilepton spectrum,

we would need the size of the resonance in a particular bin of mee to be visible

above the irreducible background from γ → e+e− processes. However in order to

define a meaningful discovery or exclusion limit this is not enough. We also need the

resonance, relative to the γ-spectrum, to be roughly of the same size or larger than

the uncertainties in the measured dilepton rate dN/dmee, as is shown for example

in figure 8.8. Hence it is vital to understand the uncertainties in dN/dmee, both

statistical and systematic.

We can get a good estimate of the expected statistics in proton-proton or heavy-

ion collisions at the LHC by considering for example, the 2011 run [205]. Indeed,

we see that ALICE collected of the order of 4.84 pb−1 worth of data for proton-

proton collisions and 132.62µb−1 for Pb-Pb. Since heavy-ion collisions also involve

a larger target one must multiply the latter integrated luminosity by A2 [206], where

A = 207.2, the atomic mass of lead; in which case one obtains 132.62 · A2 µb−1 =

5.69 pb−1 . Hence the ALICE collaboration actually records similar amounts of data

for proton-proton and Pb-Pb. This is not surprising however, since the luminosity

in ALICE is limited by pile-up due to the large drift-time in the detector [207],

and is therefore intentionally reduced for proton-proton collisions. For ATLAS and

CMS the integrated luminosities collected in the same period are much higher, at

5.32 fb−1 and 5.37 fb−1 respectively. Hence the proton-proton luminosity at these

experiments is ∼ 103 times higher than that for either proton-proton or heavy ion

data in ALICE. Due to this, one would expect better statistics in these experiments,

and therefore smaller statistical uncertainties.

The same for ALICE is also true for the PHENIX experiment at RHIC. For

example in 2011 there were ∼ 190 pb−1 of data recorded at RHIC for Au-Au col-

lisions (this is including the A2 factor), while for proton-proton by comparison the

integrated luminosity was ∼ 100 pb−1 [208]. Hence this fares more favourably than

ALICE, when compared to proton-proton searches at ATLAS and CMS, which only

recorded ∼ 30 times more data.

Since the integrated luminosity in proton-proton collisions at ATLAS and CMS
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is so much higher than for heavy-ions, one must answer the following: what effect

would a GeV-mass new gauge boson have on the total dilepton yield at ATLAS and

CMS, for higher mee? We can answer this question by calculating the cross section

for e+e− production from prompt Drell-Yan9, mediated by either a photon or a

γ ′/Z ′. We include only events with mee > 50 GeV, motivated by the lower limit in

searches from [136, 137]. For such a purpose we have made use of CalcHep. Indeed

the cross section for producing e+e− via Drell-Yan mediated by γ ′/Z ′ (with a mass of

1.6 GeV) is σγ ′/Z′ = 16χ2
eχ

2
q pb, where we have included the suppressed couplings to

electrons and quarks, while for photon mediation (there is also a small contribution

from the Z) we have σγ = 160 pb. Let us take as an example χeχq = 10−3, equal to

the value of our constraint set using the QGP in this work. Hence for ATLAS with

5.32 fb−1 of data one would expect 0.085 events from the γ ′/Z ′, compared to 8.5 ·105

from standard Drell-Yan mediated by γ. Hence one would need significantly more

data to have any change of observing a GeV-mass new gauge boson at mee > 50 GeV,

since the γ ′/Z ′ signal is far below uncertainties in the dilepton spectrum from γ-

mediation.

However, one may also consider the visibility of such a new gauge boson for mee

near its mass i.e. on-resonance, in proton-proton collisions at ATLAS or CMS. For

this purpose we must compare the cross section for production of a GeV-mass γ ′/Z ′

to the cross section for cc̄ quark decays, which we know to be the dominant back-

ground in the IMR (see section 8.4.2). Indeed the cc̄ cross section has been measured

by the PHENIX collaboration to be σcc̄ = 544±34±142±200µb, where the first error

is statistical, the second is systematic and the third is from modelling uncertainties

[209, 133]. The statistical uncertainty may decrease given the higher luminosity

at the LHC, however the much larger systematic and modelling uncertainties will

remain the same. For the gauge boson, let us take a γ ′ with a mass of 1.6 GeV and

calculate the cross section for prompt production (dominated by processes involving

both quarks and gluons), in the range 1.475 GeV < mee < 1.725 GeV i.e. using

the same bins as in our analysis of the QGP. Again with CalcHep, we find a cross

9In all such cases we calculate the three processes qq̄ → e+e−, q + g → q + e+e− and qq̄ →

g + e+e−, with the quarks and gluons distributed according to MRST proton pdfs.
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section for production of e+e− via the γ ′ of σγ ′ = 100χ2
eχ

2
q µb in this region of mee,

while for photons we calculate σγ = 1µb. Indeed, we see that even if the couplings

to the γ ′ are not suppressed, then the cross section σγ ′ is actually smaller than the

error on the background cross section σcc̄. For χeχq = 10−3 we get σγ ′ = 10−4 µb,

which is essentially invisible above the charm quark background in the IMR.

Finally we can also consider a wider-range of mee values of GeV-scale. For ex-

ample if we consider a γ′ with a mass of mγ′ = 2.2 GeV, we calculate the production

cross section of qq̄ → e+e− to be σγ′ = 11.5χ2
eχ

2
q µb, for interactions mediated by

such a γ′, and with 2 GeV < mee < 5 GeV. Similar results can be found also for

q + g → q + e+e− and qq̄ → g + e+e−. Indeed again with χqχe = 10−3 we find a

cross section considerably smaller than the uncertainties in σcc̄, taking a value of

σγ′ = 11.5 pb.

Hence it should be clear that searching for a GeV-mass new gauge boson in dilep-

ton spectra arising from proton-proton collisions is prohibitively difficult, despite the

larger luminosity. Indeed if we set the suppressed couplings χqχe equal to the upper

limit found in this work with the QGP, it is essentially impossible to observe the

resonance above the cc̄ background. Without the additional source of dileptons from

thermal production in the QGP, there are simply not enough events to make the

resonance visible above the systematic uncertainties in the cc̄ background.

8.5.2 QGP signals at ALICE

As discussed in section 8.4.4, the current precision results in an exclusion limit on χq

for γ′ which is only just smaller than unity, when combined with the latest bounds on

χe from purely leptonic experiments. Ideally one would hope that with the increased

sensitivity and centre-of-mass energy of future heavy-ion experiments (for example,

the ALICE experiment at the LHC [153]), the prospect of discovering a new gauge

boson with couplings weaker than the bound set here would be eminently possible,

provided they are not too small.

Alternatively if no discovery signal is seen, ALICE and other future experiments

could improve the bound set in this work by several orders of magnitude at least (due

in part to the stronger signal expected from the QGP [198]). Rather encouragingly,
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an observation of an excess of GeV-scale direct photons by ALICE has already been

made [210], which is consistent with production from the QGP. With more precise

data, the ability of the QGP to discover or set limits on new GeV gauge bosons

should improve, especially if the bin-size of the data in mee is reduced by an order

of magnitude, which should make the γ′ or Z ′ enhancement more prominent.

There is also cause for optimism from the QGP itself, since it is expected that the

higher collision energy of nuclei at the LHC should result in the plasma being formed

at a higher initial temperature and therefore lasting for longer before reaching Tc

[198]. One estimate for the initial temperature at the LHC is Tmax ≈ 500 MeV,

compared with ∼ 400 MeV for RHIC [172]. As remarked upon earlier, the expected

dilepton yield from the QGP depends strongly on Tmax [182], and is several times

larger for the potentially hotter plasma formed at the LHC, as compared to RHIC.

Hence provided the background in the IMR does not also increase by the same

factor10, the hotter and longer-lived plasma produced in nuclear collisions at the LHC

should provide an even stronger limit on the γ′ or Z ′ coupling to quarks and leptons,

due to the potentially better signal-to-background ratio achievable. The hope is that

with a stronger signal, limits from the QGP will able to complement those from a

future dedicated fixed target experiment [139, 149] for 1 GeV . mγ/Z′ . 2.6 GeV,

as well as limits from parity-violation [143], meson/baryon [142, 138, 140, 141] and

heavy-quark [212] decays and proton-proton collisions at the LHC [135, 136, 137].

8.6 Conclusion

By searching for an enhancement in the thermally-produced dilepton spectrum origi-

nating from the QGP in the invariant mass range 1.2 GeV < mee < 2.6 GeV, we have

bounded the product of the coupling of a new gauge boson to quarks and leptons

to be χqχe . 10−3 at 95% confidence for a γ′. Similar limits have also been derived

for the Z ′. One very powerful aspect of this work is that not only does it probe

10Results from ALICE indicate the suppression of D-mesons in central heavy-ion collisions [211],

which could imply the loss of correlation for the cc̄ background (as discussed in sec. 8.4.2) at the

LHC also.
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a new region of the gauge boson parameter space, by alleviating the non-universal

couplings assumption, but it also enables us to constrain the couplings to quarks

and leptons simultaneously.

Our bound was derived assuming that the dominant background from c and c̄

decays [133, 194, 191] was suppressed due to interactions in the nuclear fireball,

which destroyed any correlation between cc̄ produced in the same interaction [133,

160]. Although the case for such interactions is compelling [195], weaker limits can

still be derived in the case of a correlated cc̄ background. As such it is possible

to consider the correlated cc̄ case as the most conservative limit set in this work,

especially in the case where N is marginalised over also to mitigate the effect of

uncertainties in the signal size. It would thus be difficult to justify setting a limit

weaker than this with current PHENIX data [133].

The dilepton spectra, for virtual photon, γ′ and Z ′ exchange, were calculated

within perturbation theory at leading-order, modified to include thermal masses for

quarks and gluons due to a resummation of their propagators in the thermal medium

[167]. Although this is expected to work well for the dilepton masses considered in

this work, it is still to some extent an approximation and constitutes a source of

uncertainty to the derived limits. Contributions to the dilepton rate from additional

processes such as multiple scattering [179, 177, 169] were included using code from

[181]. The effect on the new gauge boson resonance remains to be studied. The

modification of the thermal QGP dilepton signal due to non-equilibrium effects was

also studied; the rate of q+g → q+e+e− is enhanced relative to the other processes,

though not substantially. For the plasma at the LHC these processes may perhaps

be competitive with qq̄ → e+e−. However in such a scenario the resonance due to

new gauge bosons would still be present.

Further sources of uncertainty arise from ambiguity in the initial temperature

of the QGP [182, 189] and additional sources of dileptons such as Drell-Yan pro-

duction [213] and the hadronic gas [158, 182, 172, 184]. To an extent some of this

uncertainty, especially in the initial temperature, is accounted for by marginalising

over the normalisation of the photon and γ′/Z ′ signal. Although such extra sources

of dileptons should be sub-dominant to the QGP production in the IMR, their con-
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tribution should be included in a more precise analysis, and would likely enhance

the resonance associated with the new gauge bosons. This in turn would result in

stronger limits being derived.

Despite such uncertainties, we have shown that by exploiting the thermal dilep-

ton signal from the QGP formed in heavy ion collisions, it is possible to set lim-

its on the coupling of new gauge bosons to both leptons and quarks, at energy

scales difficult to probe with previous collider searches (see section 8.5.1). This

is due to the stronger signal from thermal QGP radiation for invariant masses

1.2 GeV < mee < 2.6 GeV, which is at least an order of magnitude larger than

the non-thermal prompt signal, used previously to search for heavier gauge bosons.

Constraining the coupling of GeV-mass new gauge bosons to quarks is of particular

interest for both Cosmology [214, 40] and Dark Matter Direct Detection experiments

[63, 215, 216, 217], for example in alleviating the tension between CDMS [83] and

both XENON100 [203] and LUX [79].

Of course such bounds rely upon the existence of such a dilepton signal, however

there is an abundance of evidence [133, 156] and theoretical models to indicate this is

a fair assumption [182, 169, 159, 172, 183, 171, 160, 184, 158, 177]. With upcoming

data from the ALICE experiment [153], there is the very real prospect of detecting

a new gauge boson with a mass of GeV scale, or else setting strong limits on its

couplings to quarks and leptons, especially considering the hotter QGP predicted to

form at the LHC [198]. Additionally, we chose to search for a resonance only in the

IMR, due to the large expected QGP contribution and smooth background, however

there is no reason why this could not be extended to lower or higher masses for a

future study. There is perhaps potential even for the QGP to provide the means to

probe other new physics scenarios beyond new gauge bosons [218].



Chapter 9

Dark Matter Self-Annihilations

The Dark Matter self-coupling controls both the DM self-interaction cross section

and self-annihilation cross section. We focus on the latter here. Dark Matter self-

annihilation presents possibly the best prospect for an astrophysical signal in a

variety of environments [53, 54]. Since the rate for annihilation will depend on ρ2
χ,

the annihilation signature will be strongly enhanced in regions of high DM density.

We consider a new site of self-annihilation: at regions where diffuse shock accel-

eration is expected to occur. By this we refer to the process (sometimes known as the

Fermi mechanism) by which a discontinuous shock wave passes through a medium,

for example a gas of protons and electrons, accelerating particles as it passes through

a particular region. After particles cross the shock wave, they can either escape, or

scatter and cross the shock again, resulting in a further energy gain. This process

of shock crossing will repeat itself for fewer and fewer particles each time, resulting

in a power law spectrum of accelerated particles [219]. The slope of this power-law

spectrum depends on how powerful the shock is and on whether or not the shock is

relativistic.

This could be especially powerful, since shocks are expected to occur in re-

gions where Dark Matter should be especially dense, such as Active Galactic Nuclei

(AGN), or supernovae near the galactic centre. We focus on the prospect for Dark

Matter to inject SM particles, such as e+e− and pp̄, in these same regions of shock

acceleration. These accelerated particles could be observed on Earth as Cosmic Rays

(CR), and due to their non-thermal injection spectrum they may contribute to a

156
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unique feature in the CR spectrum.

In section 9.1 we discuss the potential cosmic ray signatures of Dark Matter

injected particles in both AGN jets and diffuse non-relativistic shocks. In section 9.2

we discuss the potential signatures of injection at supernovae near the galactic centre

and compare to data from AMS-02, and in section 9.3 we compare the expected

high-energy cosmic rays from injection at AGN jets to data from Kaskade.

9.1 Shocks in Active Galactic Nuclei

Active Galactic Nuclei are a well-known example of astrophysical shocks. In princi-

ple they should exhibit two broadly distinct shock features [220]: a diffuse roughly-

spherical non-relativistic shock surrounding the outflow from the central source, and

a bow shock driven by a relativistic jet with Γs ≈ 3-10. Both such shocks are poten-

tial acceleration sites via the Fermi mechanism and could contribute to a potentially

observable injection signal.

9.1.1 Protons from Relativistic Jets

We will consider the acceleration only of protons (and anti-protons) here, since they

are more likely to reach Earth without substantial energy losses (to be discussed

later in the paper), however our discussion could in principle be applied to e+e−

also. In order to calculate the spectrum of protons/anti-protons after acceleration

by the jet we need to solve the diffusion equation, taking into account production of

pp̄ from DM annihilation, and acceleration by the shock mechanism over the length

of the jet. This reads as,

∂

∂t

dn

dE
+

p

mp

· ∇
[

dn

dE

]
=

∂

∂E

[
b(E, x)

dn

dE

]
(9.1.1)

+ Q(E, x) + shock terms,



9.1. Shocks in Active Galactic Nuclei 158

where mp is the proton mass, Q(E, x) is the source term from DM annihilation1,

and b(E, x) is the proton energy loss rate in GeV/s. We use x to denote the spatial

coordinate in three-dimensions, while r denotes the radial distance from the AGN

core.

Solving equation 9.1.2 is a demanding task, especially considering the potentially-

complicated shock dynamics (represented by ‘shock terms’ in equation 9.1.2), and

that energy-losses could in principle be large. However since we are interested only in

an estimate of the expected spectrum, we can simplify our calculation by exploiting

the separation of scales for injection/energy-losses and acceleration. We emphasise

that we take a phenomenological approach here, however more accurate calculations

of the expected spectrum would require the use of simulations (e.g. [221, 219]).

Although the jet to some extent picks up most of the protons in the first few

parsecs, it is likely that it emits cosmic rays over a much larger scale, as the protons

are continually reaccelerated along the ∼ 10 kpc jet [222]2. The overall effect is shock

acceleration over a much longer distance-scale than the core of the AGN itself.

Hence we will assume that the shock can be split into two separate regions, with

the injection of protons and their energy losses due to e.g. e+e− pair production

effectively occurring first in a region near the core of the AGN, followed by the

shock acceleration over the whole jet. This can be justified by considering the

energy-loss term b(E, x). This term has contributions from Inverse-Compton effects,

pair-production process p + γ → p + e+e−, and also photo-pion production. All of

these terms are proportional to the density of radiation which the protons experience

near the AGN core, which can be estimated to be Urad,AGN ∼ L/4πr2c, where L is

1Assuming that the DM particles annihilate at rest, one can obtain a simple expression for

the source term as Q(E, x) = (ρχ(x))2〈σv〉δ(E − mχ)/m2
χ. This however ignores the fact that

DM annihilation produces quarks first, which then hadronise into protons, which would broaden

the spectrum. We have neglected hadronisation in this work, since we are interested only in an

estimate of the spectrum from shock acceleration.
2It is not entirely clear as to how this occurs in an AGN, however it may be that there is an

initial acceleration near the core of the AGN, whose products serve as seeds for a second, less

relativistic, shock further out.
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the AGN luminosity and r is the distance from the core3. Since L ∼ 1045 erg/s,

this could be considerably larger than the density of ambient radiation, which is

Urad,am ≈ 0.6 eV/cm3 [223].

Our approximate spectrum is generated by assuming that protons are injected

completely within the 1pc region closest to the AGN core (which we term Region I),

and travel radially outward from this region, experiencing energy losses due to pair-

production and photo-pion production, where Urad,AGN is large. This spectrum is

then used as the ‘initial’ spectrum for shock acceleration over the 10kpc jet (which

we call Region II). Hence, we assume that injection and energy-losses dominate

in Region I, and that shock acceleration dominates in Region II. As such, we are

neglecting energy-losses of the protons/anti-protons after shock acceleration, in the

jet, since we assume that energy losses are small outside the inner 1pc radius.

In reality of course there is no such clear separation, however the amount of

shock acceleration in Region I should be negligible compared to the rest of the jet.

Inclusion of spatial diffusion in Region I would only serve to blur the low-energy

cut-off for the protons, since some particles would be accelerated to high energies

and so lose energy faster. Likewise, almost all of the energy-loss and injection of

protons will take place in Region I, where ρχ and Urad are large. Hence, to reiterate,

we solve for Region I first, then use this solution as the initial condition for Region

II.

Dark Matter Injection

Before we can calculate the spectrum of protons after the shock, we must know

the proton spectral density dn/dE in the vicinity of the AGN core (i.e. Region

I). Using the diffusion equation, and an expression for the losses (due to inverse-

Compton emission, pair-production and photo-pion emission), we can calculate the

expected equilibrium spectrum of protons from DM self-annihilation.

3This scaling should break down for r . 1 pc, since the radiation from the AGN is expected to

originate from a disc of material being accreted by the central black hole, and not a point-source.
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Neglecting spatial dependence, the diffusion equation in Region I is,

∂

∂t

dn

dE
=

∂

∂E

[
b(E)

dn

dE

]
+Q(E, r). (9.1.2)

We solve this equation numerically to obtain the spectrum dN
dE

in Region I (here

n represents number density, and we use N to denote a total number in a given

volume). The source term Q(E, r) is calculated by performing the phase-space

integration of the matrix element for Dark Matter self-annihilation. It is a function

of the square of the DM number density and the annihilation cross section into

protons 〈σv〉. We assume that the DM particles are non-relativistic, which may be

invalid close to the AGN core, which would result in a broadening of the expected

distribution of protons, produced by the DM annihilations.

We model the jet by assuming spherical expansion, but only within some opening

angle Ωop. Hence, we take the total spectrum of protons before the shock to be,

Fps ≡
dN

dE
= Ωop

∫
dr 4πr2 dn

dE
, (9.1.3)

where dn
dE

depends on r through the square of the dark matter density ρχ. We will

take the opening angle to be Ωop ∼ (0.1 rad)2, based on observed AGN jets [224].

As in [225], we use the Gondolo-Silk cored DM distribution [226], normalised to

the uncertainty in the measured mass of the core of the AGN, as shown in figure

9.1. This is dependent on both the DM mass and annihilation cross section.

The normalization has been chosen based on the uncertainty in the AGN core

mass from [225]. As discussed in the previous section, it is clear that the vast

majority of the protons from DM annihilation will originate from within a parsec of

the AGN core.

Note that the value of 〈σv〉 considered here may be different to the annihilation

cross section into protons, since the DM could additionally annihilate into leptonic

or more exotic channels. We can either assume that the DM only annihilates into

protons (or neutrons), in which case the value of 〈σv〉 which enters the density

formula is identical to the one which enters the calculation of Q(E). Alternatively

we can assume that the two are independent parameters, and choose the total cross

section to be e.g. 10−26 cm3s−1. We will assume the latter to be the case here,
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Figure 9.1: Dark matter density for a particle with mass 10 GeV and various values for 〈σv〉.

We have based our normalisation on the M87 galaxy, assuming a black hole lifetime of 108 years

[225].

although when we come to compare our potential signal to data, this choice makes

little difference.

The Post-Shock Spectrum

We are now in a position to discuss the jet acceleration i.e. Region II. The physics

of particle acceleration at relativistic shocks is essentially universal, resulting in a

spectrum obeying a power-law with index α ≈ −2.3 [219]. We can use this to

generate our cosmic ray spectrum from the output of Region I. Furthermore, the

same models also predict the initial energy gain when the shock encounters the

upstream particles [219]: this is given by Ef ≈ Γ2
sEi, where Ef is the particle energy

after encountering the shock, Ei is the initial energy and Γs is the relativistic gamma

factor of the shock. Hence the algorithm for generating the post-shock spectrum

dNs/dEs from the initial particle spectrum dNi/dE from Region I is as follows.

1. We bin the energies of the particles from Region I into discrete values E with

bin-size ∆E. For each of these energies we then calculate the minimum cosmic

ray energy by multiplying by Γ2
s.

2. For each of these bins we then calculate the cosmic-ray spectrum at the shock

by requiring that it have the form dN/dE = AEα. Where A is set by requiring



9.1. Shocks in Active Galactic Nuclei 162

that the total integral over E equals the total number of events in the particular

bin before the shock, times an efficiency factor ε, which we assume to be the

same for all bins. The integration has limits between Emin = Γ2
sEi and Emax,

which is also set by the shock dynamics and can be taken to be very large4.

For a bin with width of ∆E, we set A using,

A =
εFps(Ei)∆E (1 + α)

(Emax)1+α − (Γ2
sEi)

1+α
, (9.1.4)

where Ei is the energy of the bin pre-shock (i.e. Region I) and we assume that

∆E is sufficiently small.

3. We repeat this process for all bins Ei from the distribution Fps(Ei), and sum

the spectra to obtain the particle distribution at the AGN.

4. As a final step, one must account for the fact that cosmic ray protons should

lose energy in their transit from their source to Earth. We simulate this by

dividing the spectrum by Es−α, where s is the index of the observed power-

law distribution of cosmic ray data, which we take to be equal to −2.78 [219].

This will serve well to obtain a first order estimate, however a more complete

treatment would require a numerical simulation of the cosmic ray energy losses,

during their transit to Earth. Indeed, the energy losses through the transit

of these extra-galactic cosmic rays may be greater than our naive estimate,

which could result in an alteration of our predicted spectrum, and a potential

broadening of the low-energy cut off.

5. To obtain the flux on Earth, we divide by 4πd2, where d is the distance to the

source (assumed to be 10 Mpc). All fluxes in this work should be considered

as being per solid angle.

Signatures of Dark Matter

The extent to which the proton energies are close to the DM mass depends upon

the rate of energy losses, which as discussed in section 9.1.1 depends upon the

4Indeed, for relativistic shocks we have that Emax = eBΓsβsRs, where Rs is the linear size of

the shock, e is the elementary charge, and B is the magnetic field strength [219].
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radiation density which the protons experience. We have assumed a value of Urad = 1

GeVcm−3 in Region I, which should be a good approximation for the protons at a

distance of . 1 pc from the core, assuming an AGN luminosity of L ∼ 1045 erg/s,

and point-source emission. This is clearly only approximate, however it would be

difficult to obtain a more accurate expression for Urad close to the AGN. One may

expect Urad to be larger close to the core, however since the emission is expected to

be from a disc of accreting gas, the dependence on r should not be as dramatic as

that for a point-source.

For larger values of Urad we would only expect a slight broadening of the pre-

shock distribution, and our conclusions would not be altered significantly. The

cosmic ray spectrum is therefore mostly robust against changes in the energy-loss

rate or time-scale, provided these changes are not too drastic.

Hence, a potential signal that the cosmic rays are originating from dark matter

injection is a cut-off near Γ2
smχ, and a change in the spectral index at Γ2

smχ. These

features could help distinguish the DM-induced cosmic rays from the more diffuse

background, which we discuss in section 9.3. We also see that if our assumption

about the energy-loss rate were different, this would simply sharpen or blur this

cut-off below Γ2
smχ.
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Figure 9.2: Expected cosmic ray flux J from protons accelerated by a relativistic shock in a jet

originating from an AGN, with a gamma factor of Γs = 10 and various annihilation cross sections.

We assume a Dark Matter mass of 10 TeV and a single source which is 10 Mpc from Earth.
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To summarise, we calculate the spectrum over a scale of 1 pc using Urad = 1

GeVcm−3. This is then used as the injected spectrum for shock acceleration over

the ∼ 10 kpc jet, which we derive by insisting on a power-law solution. The final

result for a 10 TeV mass DM particle is given in figure 9.2. We will compare such

spectra to data in section 9.3, where our focus will be on heavy DM, since their

self-annihilation can produce cosmic rays with enough kinetic energy to penetrate

our galaxy.

9.1.2 Protons from diffuse non-relativistic shocks

In addition to the relativistic shock in the jet, one would expect further cosmic

rays from the non-relativistic shock acceleration which surrounds the AGN core

[220]. This has several differences from the relativistic case: one would expect

the spectral index to depend upon the Mach number M of the shock [227], which

should be between M = 2-5. The efficiency of the shock in accelerating particles

should also in principle depend upon M, and is generally called the volume filling

factor, giving the actual proportion of particles which the shock accelerates for a

particular volume (similarly to an efficiency factor). Note additionally that as the

Mach number changes over the size of the shock, one should expect the spectral

index to change over the shock duration [228].

In order to calculate the diffuse signal we repeated the method of section 9.1.1,

but setting Γs = 1 since the shock is non-relativistic, and using a value of 4π for

the opening solid-angle, since the non-relativistic shock should be roughly spherical.

Additionally, we calculated the spectral index α using the expression 2α = M2+3
1−M2

[227].

9.2 Galactic Centre Supernovae and AMS-02

Supernovae are expected to be prime candidates for shock acceleration, many of

which should be located towards the galactic centre [229], where we expect the

DM density to be large. As before, we can consider the possibility that DM self-

annihilation injects protons (for example) into these shock regions. After being
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accelerated by a non-relativistic shock (with a Mach number ofM = 5), we assume

that these particles are trapped for a period of ∼ 108 years (as required for example

for the generation of Fermi bubbles, see e.g. [230]), after being injected, and can

be observed by e.g. the AMS-02 experiment [231] as cosmic rays, when they es-

cape. During this trapping period, the protons can loose energy to pair-production

or synchrotron radiation, which may broaden the expected spectrum. We show a

comparison of the expected spectrum from such acceleration in figure 9.3, compared

with data from AMS-02 [231].
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Figure 9.3: Cosmic ray protons produced by self-annihilating Dark Matter, with a mass of 1

TeV, and accelerated by supernovae in the galactic centre, assuming 100,000 sources over a period

of 108 years. This predicted spectrum is compared with data from AMS-02 [231], for two different

values of the annihilation cross section 〈σv〉, when added to a power-law background.

We have assumed that the galactic centre experiences approximately 100,000

supernova events in the 108 year trapping period, which seems reasonable, but is

perhaps a little optimistic considering that an injection model in the inner 1.5 deg

for filling the Fermi bubbles with injected cosmic ray protons is based on the IRAS-

inferred star formation rate of ∼ 0.08M�yr−1 [229]. For the size of the supernovae,

we have assumed a scale of 30 parsecs, however a larger scale could potentially

increase the expected number of cosmic rays injected into the shock zone. Even so,

under the assumption of a thermal annihilation cross section, there is the potential

for a feature to be present in the cosmic ray spectrum, which is just within the
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current error bars of AMS-02. There is a very real prospect of detecting evidence

for Dark Matter self-annihilating near supernovae, in the near future.

Note also that realistically not all supernovae will have the same shock charac-

teristics. We have assumed the same Mach number for all shocks for example, while

realistically this can vary between M ≈ 2-5 [229]. The size of the shock will also

be different for each supernovae. With these effects included we would expect the

signal feature to broaden by approximately a factor of two.

9.3 AGN jets compared with Kaskade

We can also compare our predicted spectra for extra-galactic cosmic rays to data for

protons, this time from the Kaskade experiment. Our focus will be on high-energy

(E & 106 GeV) cosmic rays here, as these are the energies expected for cosmic rays of

extragalactic origin. Hence only cosmic rays produced by injection from high-mass

DM self-annihilation will be observable on Earth.

We will assume a power law background with an arbitrary amplitude. Since

we do not have a good knowledge of the background, our current search has no

discovery potential and can be used only to set limits. We should be able to set our

strongest limits on 〈σv〉 using cosmic rays from jet acceleration, due to the distinct

low-energy cut-off in the spectrum, around a value of Γ2
smχ. We focus on relativistic

acceleration since it is expected to give the clearest signal, however searches with

non-relativistic shock acceleration should also be possible.

One issue is that the exact value of Γs is not known. A value of Γs of between

3 and 10 should be suitable for an AGN jet [222, 219], but within this range the

low-energy cut-off can vary significantly. Hence we should expect some degeneracy

between limits set on various values of mχ, due to this uncertainty in Γs.

An example of the spectrum, when compared to data from the Kaskade exper-

iment [232], is shown in figure 9.4 for 10 TeV mass DM . Even assuming 10 separate

sources and an efficiency of ε = 1, we see that the expected break in the cosmic ray

spectrum from jet-accelerated cosmic rays is smaller than the uncertainties on the

data.
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Figure 9.4: Plot of the expected signal from 10 M87-like AGN jet sources at a distance of 10 Mpc

away, assuming a shock gamma-factor of Γs = 10, when added to a power-law background. The

protons have been produced near the core of the AGN by 10 TeV Dark Matter self-annihilation,

with a variety of cross section values. The data-points represent flux measurements from the

Kaskade experiment [232].

Even so, we can set a tentative upper limit on 〈σv〉 = 10−23 cm3 s−1 at 90%

confidence for a DM mass of 10 TeV, using this Kaskade data. We have obtained

this by performing a Bayesian parameter scan of 〈σv〉 (with a logarithmically flat

prior), including a power-law background component, whose spectral index and

amplitude have been marginalised over. Such a limit should be taken with some

caution, since it is unlikely that all AGN jets have such large values of Γs = 10.

However, we have assumed 10 jet-like sources in our comparison with data, and so

one would need only a fraction of the AGN jets to be strongly relativistic5.

However, future observations of extra-galactic cosmic ray should be able to set

more stringent limits without requiring so many sources, since for example the Ams-

02 experiment [231] can measure the flux to much greater accuracy, although cur-

rently for smaller values of the proton kinetic energy. Hence our method provides a

novel way of probing self-annihilation of heavy DM with m & 10 TeV, and therefore

5For example, the authors of [233] identify 253 AGN-like objects, while [234] describes there

being 862 AGNs within 100 Mpc of Earth. This does also assume a shock efficiency of ε = 1, and

so the number of sources required for an observable signal may actually be larger.
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could provide a test for heavy-DM models, such as those discussed in [235].

9.4 Conclusion

We have introduced a new method of constraining the DM self-annihilation cross

section 〈σv〉. If the DM annihilates near the sites of diffuse shock acceleration, the

resulting protons and electrons could be injected into these shocks, and accelerated

to Cosmic Ray energies. We have showed that this may result in a characteris-

tic bump in the spectra of Cosmic Rays at AMS-02, in the case of injection by

supernovae near the galactic centre, and at Kaskade for acceleration by AGN jets.

There is potential for further tests of this scenario: for example DM self-annihilation

could enhance the production of exotic particles such as anti-deuterons [236] or in-

crease the proton-to-helium ratio (if DM annihilation produces protons without a

corresponding increase in neutron and electron production) for certain energies.



Chapter 10

Conclusion: Dark Matter

Interactions Revisited

The intention of this thesis was to study the interactions of Dark Matter with both

itself and the Standard Model particles, using a wide-range of techniques.

In chapter 5 we performed our own fit to data from the XENON100 experiment

[78], using the information theory method introduced in chapter 4. We showed

first that the constraints set by the collaboration themselves are fairly robust, but

will likely become stronger for low-mass DM due to the conservative cuts placed

on the relative scintillation efficiency Leff at recoil energies below 3 keV. We also

used Bayesian techniques to marginalise over uncertainties in the galactic velocity

distribution of DM f(v), and examined the dependence of the DM fit on the cuts

placed on the data.

Still focusing on the DM-quark interaction, we presented our own analysis of data

from the CoGeNT experiment in chapter 6. This experiment suffers from a large

background from surface events, which can mimic a light DM recoil signal. Hence, we

focused on the removal of this background, and demonstrated that, by marginalising

over the spectral shape of the surface events, that there is no significance for a DM

recoil signal in CoGeNT data. This is in contrast to claims from the CoGeNT

collaboration themselves [74]. However, this can be explained by their incomplete

treatment of the surface event background, which biased their analysis towards a

positive identification of a DM signal. We were able to set upper limits on the DM-

169
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nucleon cross section using CoGeNT data, with the surface event background now

correctly accounted for.

In chapter 7 our focus shifted to the interaction of DM with photons. We con-

sidered the implications of having a DM halo formed of particles with a small but

non-zero charge. In particular, the particles in this halo would experience not only

the gravitational force, but also a Lorentz force, induced by the net rotation of the

halo and the magnetic field of the galactic disc. Unless the DM charge is strongly

suppressed compared to the electronic charge, by a factor of approximately 10−11

for 10 GeV mass DM, this force would dominate over gravitational attraction. This

would result in a DM halo mass distribution radically different from that produced

under gravitational collapse. We argued that since the halo should naturally acquire

angular momentum under gravitational collapse, that there is no way of having a

Cold Dark Matter halo composed of even nano-charged DM. Hence, one can only

have one or the other, and the success of CDM in fitting to spiral galaxies implies

strong constraints on the DM charge.

We next considered the constraints on the interactions of Dark Photons, which

arise along with Dark Matter in a range of models. In chapter 8, we presented a new

constraint on the interaction of such new gauge bosons with quarks, by searching for

a resonance in the dilepton signal produced by the Quark-Gluon plasma in heavy-ion

collisions. We set constraints on these couplings for Dark Photons with masses in

the GeV range, which is a region difficult to constrain with proton-proton collisions

due to the large backgrounds.

Chapter 9 shifted our focus again to the DM self-annihilation cross section. We

presented a novel potential signal of Dark Matter self-annihilation near sites of shock

acceleration. The DM self-annihilation would inject electrons and protons into these

shock sites with a non-thermal spectrum, which are then accelerated to Cosmic Ray

energies by the shock mechanism. This could result in a characteristic feature in

Cosmic Ray spectra, from sources such as AGN jets and supernovae near the galactic

centre.

Our constraints are by no means total, and there is much left to do in probing

the DM interactions (and also its mass). What we have shown is that this can only
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be done by using many different techniques at various energetic and spatial scales.

Only in such a way do we have a chance at discriminating between the various

models of Dark Matter, such as those introduced in chapter 2, and at ultimately

understanding its character.

Further work could be done developing the ideas introduced in chapters 7 and 9.

For the former it would be interesting to test specific models of Dark Matter with a

charge resulting from kinetic mixing, as we have shown that even if the halo is neutral

overall issues can arise with DM on a macroscopic scale. Additional work on the

Direct Detection of more exotic DM candidates such as sterile neutrinos needs to be

done, as well as more detailed studies of the irreducible neutrino background [237]. It

would also be interesting to perform a more detailed study of the annual modulation

signals in CoGeNT and DAMA, especially in light of chapter 6. Studies of further

astrophysical probes of DM such as a possible explanation of the PeV neutrinos seen

in IceCube [238] or the potential galactic centre excess [239] are also interesting for

future research.
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