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Bright solitary waves and non-equilibrium dynamics

in atomic Bose-Einstein condensates

Thomas Paul Billam

Abstract

In this thesis we investigate the static properties and non-equilibrium dynamics of
bright solitary waves in atomic Bose-Einstein condensates in the zero-temperature
limit, and we investigate the non-equilibrium dynamics of a driven atomic Bose-
Einstein condensate at finite temperature.

Bright solitary waves in atomic Bose-Einstein condensates are non-dispersive and
soliton-like matter-waves which could be used in future atom-interferometry exper-
iments. Using the mean-field, Gross-Pitaevskii description, we propose an exper-
imental scheme to generate pairs of bright solitary waves with controlled velocity
and relative phase; this scheme could form an important part of a future atom in-
terferometer, and we demonstrate that it can also be used to test the validity of the
mean-field model of bright solitary waves. We also develop a method to quanti-
tatively assess how soliton-like static, three-dimensional bright solitary waves are;
this assessment is particularly relevant for the design of future experiments.

In reality, the non-zero temperatures and highly non-equilibrium dynamics occur-
ring in a bright solitary wave interferometer are likely to necessitate a theoretical
description which explicitly accounts for the non-condensate fraction. We show
that a second-order, number-conserving description offers a minimal self-consistent
treatment of the relevant condensate – non-condensate interactions at low temper-
atures and for moderate non-condensate fractions. We develop a method to obtain
a fully-dynamical numerical solution to the integro-differential equations of motion
of this description, and solve these equations for a driven, quasi-one-dimensional
test system. We show that rapid non-condensate growth predicted by lower-order
descriptions, and associated with linear dynamical instabilities, can be damped by
the self-consistent treatment of interactions included in the second-order descrip-
tion.
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Introduction

Bright solitary matter-waves

Mean-field description of an atomic Bose-Einstein condensate

The standard theoretical description of an ultracold atomic Bose-Einstein conden-
sate (BEC) is the mean-field, Gross-Pitaevskii description [1]. In addition to the
assumption that the temperature T → 0 (and hence that T � Tc, where Tc is the
condensation temperature) this description assumes that all atoms occupy a single,
condensate, mode. In dimensionless form this macroscopic wavefunction, or order

parameter, ψ(r), then obeys the Gross-Pitaevskii equation (GPE):

i
∂ψ(r)
∂t

=

[
−∇

2

2
+ V(r) + g3D|ψ(r)|2

]
ψ(r) , (1)

where V(r) is an external trapping potential, g3D the effective interaction strength,
which is dependent on the s-wave scattering length as, and ψ(r) is normalized to
the atom number N. Since the realization of the first atomic BECs [2, 3] this has
been the description of choice for theorists and experimentalists in the field, and
has proved very successful in predicting atomic BEC dynamics at low temperatures
and close to equilibrium. Whilst the dynamics of the underlying quantum field can
be thought of as fulfilling a linear, many-particle Schrödinger equation, the GPE
effectively re-casts them in terms of a nonlinear equation for a classical field. This
nonlinearity means the GPE supports a wide variety of topological excitations, and
a great deal of work on atomic BECs has focused on identifying, understanding and
observing these phenomena, which include vortices [4, 5], vortex lattices, [6, 7] and
dark [8, 9] and bright [10–12] solitons.

Bright solitons and bright solitary waves

Solitons are non-dispersive, solitary waves that behave in a particle-like manner,
emerging from mutual collisions intact except for shifts in their position and rel-
ative phase [13]. The GPE [Eq. (1)] only supports true solitons in the homoge-
neous, quasi-one-dimensional limit; here it reduces to the one-dimensional nonlin-

12
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ear Schrödinger equation (NLSE)

i
∂ψ(x)
∂t

=

[
−1

2
∂2

∂x2 + g1D|ψ(x)|2
]
ψ(x) . (2)

In addition to atomic BECs, the NLSE emerges in the description of a diverse range
of physical phenomena, including deep-ocean waves [14] and optical fibres [15, 16],
and its integrability leads to a spectrum of dark and bright soliton solutions [17–19].
Bright soliton solutions in particular have been extensively studied in the context of
nonlinear optics [18, 19], where they occur in the case of a focusing nonlinearity;
the atomic BEC analogue — a coherent, localized, non-dispersive matter-wave —
occurs in the case of attractive inter-atomic interactions.

Outside the limit in which the system is described by a one-dimensional NLSE
integrability is destroyed, precluding true solitons; however, solitary wave solu-
tions with similar properties persist. In the inhomogeneous (trapped) quasi-one-
dimensional limit these bright solitary waves remain particle-like for long times,
and even display particle-like chaotic dynamics [20, 21]. Outside the quasi-one-
dimensional regime bright solitary waves exist only for sufficiently low values of
g3D [22, 23], due to the instability against collapse of attractively-interacting Bose-
Einstein condensates [24–26] but have nonetheless been observed in experiments
[10–12]. Although the lack of integrability and the presence of the collapse insta-
bility significantly alters the collision dynamics of three-dimensional bright solitary
waves [22, 27, 28], causing the degree to which they emerge from collisions un-
scathed to be strongly dependent on the trap geometry and their relative phase,
there remain many stable parameter regimes where the soliton-like properties of
bright solitary waves can be observed and potentially exploited.

Potential for precisionmeasurement

Over the last two decades the advent of atom interferometry [29] has led to signif-
icant improvements in metrological precision for real-world measurements of, e.g.,
rotation [30] and the acceleration due to gravity [31]. The development of atomic
BECs has enabled a new form of atom interferometry in which a trapped BEC is
coherently split and recombined after a period of differential evolution. Following a
pioneering early experiment [32], many BEC interferometers have been constructed
based around the principle of a raised, and subsequently lowered, double-well po-
tential [33–37]. This scheme allows long interaction times [38], and the small spa-
tial scale potentially permits accurate measurements of, e.g., the Casimir-Polder
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potential of a surface [37]. Provided the raising of the barrier is sufficiently fast, the
GPE can provide a good description of the dynamics, in the sense that nearly all
atoms remain in a single mode, which is coherent across the barrier [39]. The inter-
acting nature of the BEC also provides the opportunity to exploit non-classical states
to achieve quantum enhancement of the measurement precision [38, 40]. However,
interactions also cause undesirable phase diffusion during the interaction time, and
for this reason experiments have typically chosen to reduce or eliminate them where
possible [36, 38, 40].

The properties of bright solitary waves offer a novel solution to the problem of
inter-atomic interactions: one can envisage an analogue to the optical Mach-Zender
interferometer in which a BEC is split into two coherent, non-dispersive, spatially-
localized bright solitary waves, which are manipulated and eventually recombined
using a time-dependent external potential. Proposals exist for the coherent beam-
splitting of solitons in this fashion using potential barriers [41–43]. Interferometry
devices based on bright solitary waves offer improved sensitivity in the measure-
ment of atom-surface interactions [44], and possibly of rotation, using a Sagnac
interferometer configuration in a toroidal trap [45–47].

Finite-temperature and non-equilibrium dynamics

Even at T = 0, atomic BECs contain a (typically small) non-condensate component
due to inter-atomic interactions. The necessity of operating at finite temperatures,
and the potential for further dynamical depletion [48, 49] of the condensate during
collisions and manipulations of the bright solitary waves, makes it likely that any
real bright solitary wave interferometer will involve far-from-equilibrium dynamics
occurring in the presence of a non-negligible non-condensate fraction. An under-
standing of such dynamics, and the prospect of creating future devices, thus requires
a fully-dynamical, finite-temperature theoretical description going beyond the GPE.
Due to the complexity of such descriptions, the far-from-equilibrium dynamics of
atomic BECs in the presence of a significant non-condensate fraction (thermal or
dynamically-depleted) remains a largely open problem [50, 51].

Bright solitary waves provide an excellent experimental test-bed for these complex,
beyond-mean-field treatments: their size is experimentally controllable — their typ-
ical size (. 1000 atoms) requires a theoretical description accounting for finite-size
effects and not tied to the thermodynamic limit, but by gradually increasing the atom
number one could probe the transition to mean field behaviour; their complex col-
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lisional dynamics require a fully dynamical description capable of accounting for
the effects of macroscopic quantum coherence — or lack thereof — between bright
solitary waves; their direct relation to the integrable nonlinear Schrödinger equation
in the quasi-one-dimensional limit provides an opportunity to explore the loss of in-
tegrability across the quasi-one-dimensional – three-dimensional transition; and,
finally, the possibility of generating bright solitary waves at different temperatures
offers a potential test of these theoretical descriptions across the T = 0 to T = Tc

temperature range.

In the context of a bright solitary wave interferometer, extremely cold initial states
would help to increase sensitivity. Consequently, the regime most relevant for bright
solitary wave interferometry is that in which a low temperature, highly condensed
equilibrium state (T � Tc) is driven by the external potential, leading to dynami-
cal depletion. Previous work in this regime has focused on atomic BEC analogues
of quantum chaotic kicked systems; e.g., the kicked accelerator [52, 53], kicked
harmonic oscillator [48, 54, 55], and kicked rotor [56–60]. While superficially ap-
pearing uncomplicated, these systems in fact offer an excellent test bed for exploring
generic issues of quantum chaos [58, 61], quantum superposition [62], quantum res-
onances [54, 59, 60], dynamical instability and dynamical depletion [48, 56, 59, 60],
and even entropy, thermalization and integrability [63–65].

In this low-temperature regime, correctly capturing the interplay between driving,
condensate, and low-lying non-condensate excitations is vital, and using a theo-
retical description which self-consistently includes this interplay is of paramount
importance. A particular example of this can be seen in the case of the δ-kicked-
rotor-BEC [56–60]: for this system a first-order treatment of the non-condensate, as
given by C. Gardiner [66] and Castin and Dum [67], predicts a general tendency for
rapid, unbounded growth of the non-condensate due to the initial linear instability
of the system. However, the equation describing the condensate in this first-order
treatment is simply the GPE. Consequently, the condensate feels no-back action
from the growing non-condensate, leaving open the question of whether the rapid
growth of the non-condensate could be slowed or halted by the inclusion of a consis-
tent back-action. A promising theoretical description, which includes a completely
self-consistent back-action of this kind, is the second-order, number-conserving dy-
namical description of S. Gardiner and Morgan [68]. This description was used
highly successfully by Morgan [69–71] within a linear response treatment to calcu-
late the excitation frequencies of a BEC at finite temperature, as measured in exper-
iments at JILA [72, 73] and MIT [74, 75]. However, due to the complexity of the
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nonlocal terms appearing in the second order equations of motion, this description
has not previously been implemented in a fully dynamical way.

Thesis outline

In this thesis, we take five principal steps toward a further understanding of the
non-equilibrium dynamics of bright solitary waves in atomic BECs:

• Using the mean-field, Gross-Pitaevskii description, we identify a new method
which could be used in experiment to create pairs of bright solitary waves with
controlled velocity and relative phase. Such a method could form a key part
of future bright solitary wave interferometry experiments.

• By analysing, using the GPE, the dynamics of bright solitary waves created
using the above method and allowed to periodically re-collide at the centre
of a harmonic trap, we demonstrate that the relation between the longevity of
these waves and their relative phase can be used as a test of the accuracy of
the mean-field description.

• We quantitatively assess the relationship between real bright solitary wave
solutions at zero temperature and the bright soliton solutions of the one-
dimensional NLSE, and show that the regime in which bright solitary waves
are highly soliton-like is experimentally challenging.

• We develop the second-order number-conserving description of S. Gardiner
and Morgan, and cast the integro-differential equations of motion in a form
amenable to a fully dynamical numerical solution. We implement this nu-
merically for a quasi-one-dimensional, periodic system — the δ-kicked-rotor-
BEC — initially at zero-temperature equilibrium.

• Using this numerical implementation, we study the dynamics of the δ-kicked-
rotor-BEC, and show that rapid non-condensate growth is indeed damped by
the self-consistent back action included in the second-order description.

Thesis structure

Prelude: Atomic Bose-Einstein condensates

This thesis commences with a single-chapter prelude (Chapter 1) in which we dis-
cuss the background to Bose-Einstein condensation in weakly interacting, dilute
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atomic gases. The material here — including a summary of the realization of atomic
BEC, a review of experimental applications, a discussion of the basic theoretical
concepts and the physical properties of atomic BECs, and an introduction to the
mean-field and beyond mean-field descriptions — is common to both subsequent
parts of this thesis.

Part I: bright solitary waves

In Part I of this thesis, we consider the phenomenon of bright solitary matter-waves
in atomic BECs, working within the zero-temperature, mean-field description.

• In Chapter 2 we review the properties of, and the history of experimental and
theoretical interest in, these intriguing non-dispersive, nonlinear wavepackets.
In particular, we emphasise that in certain parameter regimes they can be
directly theoretically connected to bright solitons of the focusing nonlinear
Schrödinger equation, and can display soliton-like dynamics.

• In Chapter 3 we analyse the soliton-like dynamics of bright solitary waves
further, and propose an experiment in which pairs of such waves could be
created with controlled velocity and relative phase. If realized, this exper-
iment would facilitate tests of mean-field theory for bright solitary waves,
and possibly pave the way for future interferometry experiments using bright
solitary waves.

• In Chapter 4, we use variational and numerical methods to address the issue
of how soliton-like the ground state of an atomic BEC is, in various real-
istic experimental parameter regimes. Although we work in the mean-field
description, our results in this Chapter are particularly important for future
experiments seeking to exploit beyond-mean-field effects in bright solitary
waves.

Part II: Instabilities and self-consistent non-equilibrium dynamics

In Part II of this thesis, we study the dynamics of driven BECs at finite temperature
and far from equilibrium.

• In Chapter 5 we review existing theoretical descriptions of atomic BECs at
finite temperature in some detail, and identify some of the major theoretical
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and computational hurdles that exist in this field. In particular, we concen-
trate on the suitability of the various descriptions to describe the coupled,
non-equilibrium dynamics of both the condensate and non-condensate in a
driven atomic BEC in a self-consistent fashion; we argue that a second-order
number-conserving description, if implemented in a fully dynamical fashion,
would be the most suitable description for such a system.

• In Chapter 6 we introduce in detail the second-order description of S. Gar-
diner and Morgan. By recasting this theory in an unusual form we develop
a feasible numerical method for computing a fully-time-dependent numerical
solution.

• In Chapter 7, we implement this numerical method for a quasi-one-dimensional
test system: the δ-kicked-rotor-BEC. Our implementation allows us to explic-
itly demonstrate a damping of condensate depletion due to the self-consistent
back-action of the non-condensate in the second-order description. This is in
contrast to the first-order description used previously, which predicts general,
rapid, unbounded growth of the non-condensate. This Chapter is followed by
our final conclusions.
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Chapter 1: Bose-Einstein condensation in
weakly-interacting atomic gases

1.1 Introduction

The primary unifying theme in this thesis is the theoretical description of dilute
gases of bosonic atoms in the ultracold, quantum-degenerate regime. Such gases,
first realized in 1995 [2, 3], are now routinely created in atomic physics experiments.
The behaviour of these gases is dominated by the presence of a Bose-Einstein con-
densate (BEC) — a single-particle eigenmode occupied by a macroscopic number
of atoms. Due to the relatively weak interactions between the atoms, at experi-
mentally feasible temperatures this condensate can easily comprise over 99% of
the atoms. Consequently, such a gas is almost universally referred to as an atomic

Bose-Einstein condensate [1, 82, 83]. The macroscopic quantum coherence asso-
ciated with the condensate mode makes atomic BECs an intriguing system where
quantum effects can be observed on a macroscopic scale [32, 41, 42, 81, 84, 85].
Among other potential impacts, this property opens the door to exciting possible
applications for atomic BECs in the field of precision metrology [33–36], for exam-
ple offering the potential to test developing theories of gravitation [86, 87], and to
improve our understanding of atom-surface interactions [37, 44].

In this Chapter we briefly describe the physics of atomic BECs, and introduce the
mean-field description of their dynamics. In Part I of this thesis we use this mean-
field description to describe the dynamics of an atomic BEC at (and close to) T = 0.
In Part II we use it as a starting point, from which we develop and numerically
implement a consistent description of atomic BEC dynamics at finite-temperature.

We begin with a brief review of atomic BEC experiments in Section 1.2: in Section
1.2.1 we give a summary of the physical properties of a typical atomic BEC, and in
Section 1.2.2 we review some of the investigations and applications of atomic BEC
to date. In Section 1.3 we present the underlying theoretical model of an atomic
BEC we use in this thesis. Central to this is the concept of an inhomogeneous and
weakly-interacting Bose gas. This provides an excellent model of an alkali-atom
BEC as generally realized in experiment. Having introduced the system Hamilto-
nian in Section 1.3.1, we introduce the condensate mode; this can be rigorously

21
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defined in terms of the Penrose-Onsager criterion and the presence of off-diagonal
long-range order (Section 1.3.2).

Unfortunately, the model of a weakly-interacting Bose gas is intractable in its full
form, and approximations must be introduced in order to understand the behaviour
of atomic BECs. In Section 1.4 we describe the most common such approxima-
tion; the concept of Bose symmetry-breaking. As we show in Section 1.4.1, this
essentially consists of describing the condensate as a classical field, and introduc-
ing non-condensate creation and annihilation operators, which can be assumed to be
small at low temperature. The symmetry-breaking technique leads to a description
of an atomic BEC expressed in powers of these operators. Considering only the
part of the Hamiltonian which is linear in the non-condensate creation and annihila-
tion operators, in Section 1.4.2 we derive the mean-field, Gross-Pitaevskii equation.
This equation describes the dynamics of the condensate at T = 0 and with total
occupation of the condensate, and is the canonical description of an atomic BEC at
low temperature; we use it extensively in Part I of this thesis. In Section 1.4.3 we in-
troduce the minimal treatment of the non-condensate within a symmetry-breaking
approach. This treatment consists of the static Bogoliubov-de Gennes equations,
the solutions of which can be used to diagonalize the part of the Hamiltonian which
is quadratic in the non-condensate creation and annihilation operators.

This diagonalization leads on to the final Section, 1.4.4, where we review super-
fluidity. This is the perhaps the most well-known phenomenon associated with the
weakly interacting Bose gas, and hence atomic BECs, and can be understood in
terms of the diagonalization of the quadratic part of the Hamiltonian. We highlight
in particular the differences and similarities between an atomic BEC and liquid 4He
— in a historical sense the “canonical” superfluid.

1.2 Experimental realization

1.2.1 Formation of atomic BECs

Formation of the macroscopically-occupied single-particle state which constitutes
a Bose-Einstein condensate is only possible in many-body systems obeying Bose-
Einstein statistics. These statistics require that the many-body quantum state of such
a system is completely symmetric under particle exchange. On a microscopic level,
through the famous spin-statistics theorem [88] this means the particles themselves
must be bosons and possess integer spin. This connection between statistics and
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spin applies to both elementary and composite particles, provided we consider the
latter in a situation where their interactions occur at an energy that is small com-
pared to the energy of their internal structure [89]. Consequently atomic species
with integer spin behave as composite bosons at low temperature, and macroscopic
occupation of a single-particle state by such atoms is permitted. Thanks to advances
in experimental atomic physics within the last quarter-century it has become pos-
sible to trap and dilute atomic gases of a bosonic species, and cool them until the
onset of this quantum degeneracy [90]. In this Section we review the production
and physical aspects of these atomic BECs.

Atomic BECs were first realized in 1995, using the alkali metals 87Rb [2] and 23Na
[3]. Since these pioneering experiments, atomic BEC has been realized in the other
stable bosonic alkali metal isotopes — 7Li [91], 39K [92], 41K [93], 85Rb [94], 133Cs
[95] — and in a variety of other atomic species suitable for laser cooling; 52Cr
[96], 40Ca [97], 84Sr [98, 99], 86Sr [100], 88Sr [101], 174Yb [102], 170Yb [103],
176Yb [104], 164Yb [105] , 164Dy [106], 1H [107], and metastable 4He [108, 109].
Alongside the flourishing of atomic BECs, Bose-Einstein condensation (or close
analogues of it) have also been observed in condensed matter systems such as
exciton-polariton fluids in semiconductor microcavities [110], magnons in magnetic
insulators [111, 112], and in photons in an optical cavity [113].

Several of these atomic species, and the non-atomic systems, lead to “exotic” con-
densates. For example 52Cr [96] and 164Dy [106] display long-range dipolar interac-
tions, an exciton-polariton condensate is a strongly interacting and non-equilibrium
[110] system, magnons interact strongly with the underlying lattice [112], and the
photon condensate realized to date is extremely weakly interacting [113]. This “ex-
otic” behaviour is in contrast to the “vanilla” atomic BEC which we will generally
consider in this thesis; such an atomic BEC is characterized by short-range interac-
tions which are well-described by an effective s-wave scattering length as, coupled
with sufficient diluteness (n1/3as � 1) that three-body collisions are negligible1 and
the model of a weakly-interacting Bose gas (discussed in the following Sections)
is applicable. Alkali metal atom condensates are the most directly experimentally
available system which meet these criteria, and the theoretical descriptions pre-
sented in this thesis can be taken to apply primarily to such systems. For the bosonic
alkali metal species a typical atomic BEC consists of between 103 and 107 atoms,
with a typical number density around 1011–1015 cm−3, and a critical temperature for

1Although, where three-body recombination leads to atom losses from a trap, this can to some
extent be added in phenomenologically where appropriate.
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Bose-Einstein condensation around 10–100 nK [90].

1.2.2 Experimental applications

Since 1995, the field of atomic BEC has burgeoned both experimentally and theo-
retically. A key feature of the field today is the substantial level of control afforded
by coherent manipulation of atoms with lasers and magnetic fields, which has led
to a diverse range of experimental applications for atomic BECs.

As will be shown in Section 1.4.4, an atomic BEC is a superfluid. This allows
one to observe the same dynamical excitations observed in liquid 4He [114–116],
and more recently also observed in non-equilibrium exciton-polariton condensates
[117, 118], such as quantized vortices [4, 5, 7] and vortex lattices [6, 119]. Recently,
atomic BECs have become a system of interest in the study of classical and quantum
turbulence [120–127].

Another interesting dynamic excitation exhibited by atomic BECs are solitons; non-
dispersive nonlinear waves, stabilized by the inter-atomic interactions. These were
first observed in the form of dark solitons [8, 9], which correspond to a mobile den-
sity “notch” within a condensate with repulsive inter-atomic interactions. Their
counterparts in an attractively-interacting BEC are bright solitons, which corre-
spond to self-stabilizing individual wavepackets. While BECs with attractive inter-
atomic interactions were first created soon after the first atomic BECs [91, 128],
these condensates are in general more difficult to work with. Indeed, a homo-
geneous BEC with attractive interactions is unstable to collapse, and an inhomo-
geneous atomic BEC is only stable in a particular regime of trap- and interac-
tion strength. An important tool in their study is thus the use of Feshbach reso-
nances to alter the s-wave scattering length of a BEC using external magnetic fields
[129, 130], providing control over the magnitude and sign of the s-wave scattering
length. This technique has allowed studies of the trap- and interaction strength-
dependent instability threshold of attractively-interacting BECs [24, 91, 128, 131],
and the creation of bright solitons [10–12], the theoretical investigation of which
forms the subject of Part I of this thesis.

The realization of atomic BEC provides an intriguing way to extend the already
well-developed field of atom interferometry [29], thanks to the macroscopic quan-
tum coherence of BECs, as first demonstrated by the observation of interference
between condensates [32]. Since then, BEC interferometers have been realized
based on the raising and lowering of a double-well potential [33–37]. Such a BEC
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interferometer offers the intriguing possibility of observing quantum effects on a
macroscopic scale [41, 42, 81, 84, 85], and admits the possibility of using quantum
effects to enhance measurement sensitivities [84, 132], thanks to the unique prop-
erties of BEC. Coherent beams of atoms emitted from a BEC — a so-called atom
laser — have also been demonstrated [133–135]. We consider the possibility of
atomic BEC interferometry using bright solitary waves in Chapter 7.

Another field which has seen significant development in the last decade is that of
the trapping and manipulation of atomic BECs. A strong motivation for much re-
search in this field is the quest to realize a “quantum simulator” of condensed mat-
ter systems using cold atoms [136, 137]. In particular, atomic BECs in optical
lattices [138, 139] and magnetic microtraps and atom-chip traps [140] are heavily
researched areas. Another growing area in the field of trapping and manipulation,
which is relevant in particular to the δ-kicked-rotor BEC considered in Chapter 7 of
this thesis, is that of toroidal atom traps [46, 47, 141–146]; such traps can be created
by blocking the central region of a harmonic trap with a strong, blue-detuned laser
[46], using radio-frequency dressing techniques [141], time-averaged “painted” op-
tical traps [146], and most recently using Laguerre-Gaussian laser beams [47]. The
periodic geometry of such traps makes them ideal for observing the ideal, inviscid
flow of a superfluid [46, 47], and potentially for measuring the superfluid fraction
of an atomic BEC [147].

While 20 years ago any kind of atomic BEC would have been regarded as extremely
exotic, the rapid expansion of the field has also led to the realization of the new
types of condensate lying outside the regime of validity of the weakly-interacting
Bose gas model discussed in the previous Section. BECs of molecules of weakly
bound fermions have been created [148, 149], leading to detailed exploration of
the BEC-BCS crossover in such systems [150]. Two-component condensates, with
atoms of different elements [151], or the same element but different spin states [152]
have also been realized. As first proposed in Ref. [153], such a mixture presents
one possible starting point for the creation of a molecular BEC of ground-state
molecules, which has yet to be realized. Proposals also exist to introduce long-
range interactions into BECs through excitation to Rydberg states [154], and even
to engineer the interactions between Rydberg atoms to create a variation on the
bright solitons discussed in Part I of this thesis [155].
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1.3 Theoretical model

1.3.1 Many-body Hamiltonian

The theoretical model underlying the descriptions of alkali-metal atomic BECs de-
veloped and used in this thesis is that of the weakly-interacting Bose gas. This
model was originally introduced by Bogoliubov [156] in the context of liquid 4He.
It has been the subject of a vast amount of study since, and reviews covering a much
broader range of topics than this thesis can be found in, e.g., Refs. [50, 83, 157–
160].

Provided a gas of interacting Bosonic atoms is sufficiently dilute2 that three-body
collisions can be safely neglected, it can be described by the many-body Hamilto-
nian

Ĥ =

N∑
i=1

(
− ~2

2m
∇2

i + V(ri, t)
)

+
1
2

N∑
i, j=1

U(ri − r j) , (1.1)

where the N identical atoms are assumed to have mass m, V(r, t) is the external
(typically trapping) potential, and U(r−r′) is the full two-body interaction potential.
In this, first-quantized, formalism the Bose statistics of the particles are implicit in
the choice of many-body wavefunction ψ(r1, r2, . . . , rN), which must be symmetric
under the exchange of any atoms.

The first-quantized formalism of the many-body wavefunction quickly becomes un-
wieldy and uninsightful for increasing N. In contrast, the formalism of second quan-
tization provides a convenient way to abstract away the Bose statistics and particle
indices [161, 162]. In this formalism, the primary descriptor of the system is no
longer the wavefunction, but the field operator

Ψ̂(r) =
∑

m

âmφm(r) , (1.2)

and its hermitian conjugate Ψ̂†(r). In this expression the operators âm and their
hermitian conjugates â†m are, respectively, annihilation and creation operators for
the complete orthonormal basis of single-particle modes φm(r); their action on a
Fock, or number, state [161, 162] is defined by

âm|n0, n1, . . . , nm, . . .〉 =
√

nm|n0, n1, . . . , nm − 1, . . .〉 , (1.3)

2The typical diluteness criterion can be stated as n1/3as � 1, where n is the number density of
atoms, and as the s-wave scattering length [83].
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where nm represents the number of particles occupying single-particle mode φm(r).
Consequently, the field operators can be thought of as removing [Ψ̂(r)] or adding
[Ψ̂†(r)] an atom to the system at position r. The bosonic nature of the field is implicit
in the commutation relations of the field operators;[

Ψ̂(r), Ψ̂†(r′)
]

= δ(r − r′) , (1.4)[
Ψ̂(r), Ψ̂(r)

]
=

[
Ψ̂†(r), Ψ̂†(r)

]
= 0 . (1.5)

Equivalent relations hold for âm and â†m. In this second-quantized formalism, the
Hamiltonian for the weakly-interacting Bose gas becomes

Ĥ =

∫
dr Ψ̂†(r)

[
− ~2

2m
∇2 + V(r, t)

]
Ψ̂(r)

+
1
2

"
dr dr′U(r − r′)Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r) . (1.6)

As we have already hinted, a standard approximation to make for an ultracold, dilute
gas is to replace the actual inter-atomic interaction U(r−r′) with a contact potential;

U(r − r′) = U0 δ(r − r′) . (1.7)

Firstly, this amounts to replacing the true inter-atomic potential, which diverges as
|r − r′| → 0, with a short-range, smooth, effective potential with identical low-
momentum scattering properties [83]. Secondly, the Fourier transform of this effec-
tive potential is replaced with a constant, leading to the δ-function pseudopotential

of Eq. (1.7) [161]. At long wavelengths, and in the first Born approximation, one
finds [83, 161]

U0 =
4π~2as

m
, (1.8)

where as is the s-wave scattering length. This replacement is entirely justified at
the order of the mean-field, Gross-Pitaevskii description, which we derive in Sec-
tion 1.4.2 and use extensively in Part I of this thesis. However, when going beyond
mean-field theory — as is necessary in the finite-temperature theory developed in
Part II of this thesis — replacing U(r − r′) with the contact pseudopotential is the
source of many ultraviolet divergences3. While we encounter the first such diver-
gence later in this Chapter (Section 1.4.3), we defer a detailed treatment of this
issue and the introduction of procedures to renormalize these divergences (see, for

3Note that this ultraviolet divergence is suppressed in effectively one-dimensional descriptions,
which we introduce in Chapter 2.



Chapter 1: Bose-Einstein condensation in weakly-interacting atomic gases 28

example, Ref. [163] or Ref. [68] and Refs. therein) until Chapter 5. For now, we
simply introduce the contact potential into the Hamiltonian [Eq. (1.6)] “as-is”. This
produces the Hamiltonian

Ĥ =

∫
dr Ψ̂†(r)

[
− ~2

2m
∇2 + V(r, t) +

U0

2
Ψ̂†(r)Ψ̂(r)

]
Ψ̂(r) , (1.9)

which suffices at the mean-field order of description considered in Part I of this
thesis.

1.3.2 Condensate mode and off-diagonal long-range order

Condensation in trapped, weakly-interacting Bose gases

Deriving the statistical behaviour of a homogeneous ideal (non-interacting) Bose
gas in the thermodynamic limit, using the grand canonical ensemble, is a perennial
favourite of statistical physics texts; under these conditions, and in three dimen-
sions, there is a true thermodynamic phase transition to Bose-Einstein condensation
— macroscopic occupation of the ground state — at a critical temperature Tc [164].
However, it has also become a common text-book practice to explain Bose-Einstein
condensation in a finite-sized, weakly-interacting atomic BEC in a harmonic trap
by analogy to the former system. While such analogies undoubtedly can aid phys-
ical intuition, there are significant differences between the two cases. Indeed, a
careful experiment can easily demonstrate that the condensation temperature of a
trapped atomic BEC is different from the ideal gas prediction [165]. It is therefore
worthwhile to guard against over-extension of analogies by carefully defining what
is meant by the critical temperature, and indeed by Bose-Einstein condensation, in
an atomic BEC.

In typical, homogeneous, condensed matter systems the number of particles is
> 1023, and edge effects can be safely neglected. Although any real such system
is finite-sized, to experimental accuracy it exhibits infinitely sharp thermodynamic
phase transitions, and the associated critical temperatures can be accurately pre-
dicted using the thermodynamic limit. In contrast, atomic BECs contain many or-
ders of magnitude fewer particles, and the harmonic trap introduces “edge” effects
in a global way [166]. While it is possible to define a thermodynamic limit, and
hence obtain a critical temperature, in an atomic BEC, taking finite-size effects into
account leads to a noticeably smoothed pseudo-phase transition [166, 167] even
in the absence of interactions. As this pseudo-phase transition is no longer a true
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thermodynamic one, the critical temperature Tc should be understood to be rede-
fined in terms of some measure of the onset of condensation — typically taken to
be the point at which the condensate fraction disappears [167, 168]. This critical
temperature is not correctly predicted by the thermodynamic limit, even in the non-
interacting case [165–167]. Inter-atomic interactions alter this picture still further,
as was highlighted in a recent experiment [169]. For example, the shift in critical
temperature due to interactions is a long-standing issue which has been addressed
using some of the finite-temperature methods we discuss in Chapter 5 [170, 171],
and in a recent experiment [168, 172].

Defining the condensate in trapped, weakly-interacting Bose gases

Having identified these discrepancies between the reality of an atomic BEC and
the thermodynamic phase transition to Bose-Einstein condensation predicted in a
homogeneous ideal gas, the question arises is an atomic BEC really an example of

Bose-Einstein condensation? Naturally, one can choose the answer to this question
by choosing how one defines a Bose-Einstein condensation [166]. In this thesis, we
arrange an affirmative answer by taking macroscopic occupation of a single-particle
mode to be the condition for Bose-Einstein condensation.

In more rigorous terms, we adopt the definition of Bose-Einstein condensation, ap-
plicable to finite-size and interacting Bose systems, introduced by Penrose and On-
sager [173]; this definition makes use of the single-particle density matrix, defined
in terms of the field operator as

ρ(r, r′, t) =
〈
Ψ̂†(r′)Ψ̂(r)

〉
. (1.10)

In Eq. (1.10) the brackets 〈· · · 〉 denote an expectation value with respect to the full
many-particle density matrix; at finite-temperature this involves thermal, as well as
quantum, averaging (see Part II of this thesis).

The single-particle density matrix ρ(r, r′, t) is hermitian. Thus, at any time t, it can
be diagonalized to yield a complete orthonormal set of single-particle eigenstates
φm(r, t) with real eigenvalues Nm(t) satisfying∫

dr ρ(r, r′, t)φm(r′, t) = Nm(t)φm(r, t) . (1.11)

The eigenvalue Nm(t) expresses the average occupation of the single-particle eigen-
state φm(r, t), and one thus has

∑
m Nm(t) = N. Penrose and Onsager defined a Bose-
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Einstein condensate as an eigenstate of the single-particle density matrix φc(r, t)
which is macroscopically occupied; that is, for which the average occupation is of
order N, and consequently much greater all the others4. In this thesis, we refer to
φc(r, t) as the condensate mode.

The physical significance of such a macroscopically occupied condensate mode can
be seen through the concept of off-diagonal long-range order, also introduced by
Penrose and Onsager [173]. Separating out the contribution of φc(r, t) to the single-
particle density matrix yields

ρ(r, r′, t) = Nc(t)φ∗c(r′, t)φc(r, t) +
∑
m,c

Nm(t)φ∗m(r′, t)φm(r, t) . (1.12)

In an infinite, homogeneous system, one can consider the limit |r − r′| → ∞: in this
limit the final term representing non-condensate is an incoherent summation which
tends to zero. In contrast the first term representing the condensate remains finite
and, in the case of a uniform, static condensate is equal to the condensate density,
nc(t) for all |r − r′|:

lim
|r−r′ |→∞

ρ(r, r′, t) = Nc(t)φ∗c(r′, t)φc(r, t) = nc(t) . (1.13)

While the case of finite and inhomogeneous systems does not accommodate the
limit |r − r′| → ∞ in a rigorous way, similar behaviour does occur: the non-
condensate summation decays rapidly with |r − r′|, while the term representing the
condensate remains non-zero for |r − r′| of the same order as the length of the con-
densate [159]. If one interprets the single-particle density matrix as representing the
probability amplitude to add an atom to the system at r′ and immediately remove it
at r, these non-zero values of the single-particle density matrix represent a non-zero
amplitude for this process in the off-diagonal and long range limit (large |r − r′|).
This off-diagonal long-range order presents a physical picture of the condensate as
a macroscopic quantum body which mediates coherent interactions between atoms
over a long distance, regardless of the range of the actual interaction potential be-
tween the atoms.

Considerations in low-dimensional systems

In this thesis, we will often consider (quasi-) one-dimensional (1D) systems, in
which the constituent atoms are “frozen” into the lowest energy eigenstate of an ex-

4Using big-o notation one has O(Nc) = O(N), while O(Nm) = 1 for m , c.
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ternal trapping potential in two directions. Similar (quasi-) two-dimensional (2D)
systems may be created by similarly “freezing” the motion in one direction only.
The definition of Bose-Einstein condensation requires further care in these systems,
because an infinite, homogeneous Bose gas in 1D or 2D does not undergo a conden-
sation phase transition at finite temperature [83]. Consequently, these systems do
not possess off-diagonal long-range order in the limit |r − r′| → 0 as defined above.
However, this does not constitute a major problem for the theoretical description
applied in this thesis:

Firstly, in finite, trapped 1D and 2D systems, a condensation transition leading to
macroscopic occupation of the ground state and long-range phase coherence can
still be observed at finite temperature [174]. At temperatures slightly above this con-
densation temperature long-range phase coherence is destroyed, but density fluctu-
ations remain suppressed, yielding a “quasi-condensate” [174] for temperatures up
to a second critical temperature Tq. In the case of finite, trapped 1D systems, the
theoretical description applied in this thesis applies below the “true” condensation
temperature Tc.

Secondly, while we also consider infinite and homogeneous 1D systems in this the-
sis, we only do so for the case of attractive inter-atomic interactions. In this case,
the eigenstates of the full many-body (Lieb-Liniger [175]) Hamiltonian are local-

ized over a length scale determined by the interaction strength and atom number.
This length scale can be associated with an effective condensation temperature, be-
low which phase coherence is maintained over the solution length scale. Below
this temperature the descriptions of atomic Bose-Einstein condensates we present
in this thesis are applicable to such systems. Indeed, it can be explicitly shown
that the ground states of the mean-field, Gross-Pitaevskii description we develop in
Section 1.4.2 — which take the form of classical bright solitons — correspond to
the exact ground states of the Lieb-Liniger Hamiltonian — which have been termed
“quantum solitons” [41] — in the appropriate regimes of temperature, interaction
strength, and atom number [176].

1.4 Theoretical description at low temperature

1.4.1 Spontaneous symmetry breaking

Working in the Heisenberg picture [161], the many-body Hamiltonian for the weakly-
interacting Bose gas [Eq. (1.9)] can be directly inserted in to the Heisenberg equa-



Chapter 1: Bose-Einstein condensation in weakly-interacting atomic gases 32

tion

i~
∂Ψ̂(r)
∂t

= [Ψ̂(r), Ĥ] , (1.14)

to yield a full equation of motion [50]. Unfortunately the resulting equation of
motion is intractable. This necessitates the development of approximate methods
in order to describe and understand the dynamics of atomic BECs. The most com-
mon such approximate method is the symmetry-breaking technique: Today, the con-
cept of spontaneous symmetry-breaking is commonly associated with the physics
of elementary particles, where it is of crucial importance [177]. However, symme-
try breaking actually has a longer history in the field of condensed matter physics
[160]. In particular, it has a long and distinguished role in the history of the weakly-
interacting Bose gas, having been first applied to this system by Bogoliubov [156].

As applied to the weakly-interacting Bose gas, the symmetry-breaking technique is
reviewed in depth elsewhere, both in the formalism of equations of motion for field
operators as used here [1, 50, 83, 158, 160, 178] and in the alternative formalism
of many-body and finite-temperature Green’s functions [179, 180]. It essentially
consists of re-writing the field operator Ψ̂(r) as its own expectation value, plus an
operator-valued fluctuation:

Ψ̂(r) =
〈
Ψ̂(r)

〉
+

(
Ψ̂(r) −

〈
Ψ̂(r)

〉)
≡ Ψ(r, t) + δ̂(r, t) . (1.15)

The notational simplicity of this manoeuvre belies the powerful concept underneath.
The most obvious effect of introducing the macroscopic wavefunction Ψ(r, t), here
chosen to be normalized to the number of condensate particles Nc(t), is the break-
ing of the global U(1) symmetry of the Hamiltonian (1.6). Bogoliubov’s original
motivation for doing so can be understood with reference to the Penrose-Onsager
definition of Bose-Einstein condensation5; separating out the contribution of the
condensate mode to the field operator [83] yields

Ψ̂(r) = âcφc(r, t) +
∑
m,c

âmφm(r, t) . (1.16)

The symmetry-breaking partition of the field operator follows from replacing the
operator âc with a complex number

√
Nc(t)eiΦ, where Φ is an arbitrary phase. This

replacement [Eq. (1.15)], which results in the symmetry-breaking condensate wave-
function Ψ(r, t) =

√
Nc(t)eiΦφc(r, t), can be justified in the limit Nc(t) = 〈â†c âc〉 � 1;

for large particle numbers the operators âc and â†c approximately commute [their

5Although, we note, this definition had yet to be formulated at the time.
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commutator, equal to one, is much less than their magnitude
√

Nc(t)]. However,
as we discuss in detail in Chapter 5, this symmetry-breaking partition breaks the
original U(1) gauge symmetry of the Hamiltonian, leading to non-conservation of
the total atom number.

In terms of the off-diagonal long-range order considered in the previous Section,
Ψ(r, t) can also be viewed as a macroscopic wavefunction introduced to give a non-
zero value of the single-particle density matrix in the long range limit

lim
|r−r′ |→∞

ρ(r, r′, t) = Ψ∗(r′, t)Ψ(r, t) , (1.17)

without any microscopic justification. Hence, the symmetry-breaking approach can
be viewed as making a connection between the microscopic picture of the weakly-
interacting Bose gas below the critical temperature Tc, and the macroscopic picture
of a quantum fluid exhibiting off-diagonal long-range order described by a macro-
scopic order parameter.

At lowest order, as we present in the next Section, the symmetry-breaking approach
leads to the Gross-Pitaevskii equation for Ψ(r, t). This equation describes the dy-
namics of the condensate, which at this (lowest) order comprises all the atoms. At
higher orders it is possible to obtain descriptions of coupled condensate and non-
condensate dynamics, in terms of coupled equations for ψ(r, t) and δ̂(r, t), using the
same symmetry-breaking approach [50]; such descriptions are discussed in detail in
Chapter 5, in Part II of this thesis. However, as we shall demonstrate in Chapter 5,
such equations cannot be made to preserve orthogonality between ψ(r, t) and δ̂(r, t)
in a self-consistent way. This blurring of the distinction between condensate and
non-condensate during dynamical evolution can be undesirable, and avoiding such
blurring motivates the introduction of alternative, number-conserving, approaches
to coupled condensate – non-condensate dynamics [66–71, 163, 181] which we ex-
tend and apply in Part II of this thesis.

1.4.2 The Gross-Pitaevskii equation

Symmetry-breaking fluctuation expansion

Equations of motion for the weakly-interacting Bose gas based on Bogoliubov’s
original symmetry-breaking approach are obtained through a fluctuation expansion

in terms of the operator δ̂(r, t). This operator is a well-defined fluctuation operator;
its expectation value is equal to zero, giving Ψ̂(r) a mean value of Ψ(r, t), and the
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expectation values of second-order products of δ̂(r, t) and δ̂†(r, t) are analogous to
the variance of a distribution about the mean Ψ(r, t) [68]. Importantly, because
δ̂(r, t) scales with the number of non-condensate atoms, we can justifiably neglect
terms of high order in δ̂(r, t) or δ̂†(r, t) when dealing with a low-temperature atomic
BEC with large condensate fraction.

After making the replacement (1.15) in the weakly-interacting Bose gas Hamilto-
nian (1.9), we can collect the terms in the resulting expansion together into powers
of δ̂(r, t) and δ̂†(r, t). Because of the number non-conservation in the symmetry-
breaking treatment, it is appropriate to work with a grand canonical Hamiltonian
Ĥ′ = Ĥ − µN̂, where N̂ is the number operator Ψ̂†(r)Ψ̂(r) and µ is the chemical
potential [50]. In the remainder of this Chapter, we drop the prime and write Ĥ

directly in grand canonical form as

Ĥ = H0 + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 , (1.18)

where

H0 =

∫
dr Ψ∗(r, t)

(
Hsp(r, t) − µ +

U0

2
|Ψ(r, t)|2

)
Ψ(r, t) , (1.19)

Ĥ1 =

∫
dr

[
δ̂†(r, t)

(
Hsp(r, t) − µ + U0|Ψ(r, t)|2

)
Ψ(r, t) + h.c.

]
, (1.20)

Ĥ2 =

∫
dr

[
δ̂†(r, t)

(
Hsp(r, t) − µ + 2U0|Ψ(r, t)|2

)
δ̂(r, t)

+
U0

2

(
Ψ∗2(r, t)δ̂(r, t)δ̂(r, t) + h.c.

)]
, (1.21)

Ĥ3 = U0

∫
dr

[
Ψ(r, t)δ̂†(r, t)δ̂†(r, t)δ̂(r, t) + h.c.

]
, (1.22)

Ĥ4 =
U0

2

∫
dr δ̂†(r, t)δ̂†(r, t)δ̂(r, t)δ̂(r, t) . (1.23)

Here, h.c. denotes the Hermitian conjugate, and we have defined the single-particle

Hamiltonian

Hsp(r, t) = − ~2

2m
∇2 + V(r, t) . (1.24)

Gross-Pitaevskii equation

Naturally, the lowest-order approach to the weakly-interacting Bose gas in this for-
mulation is to discard all terms except H0. This term has no operator character and
is simply a complex-number quantity; consequently, this lowest-order approach is
equivalent to treating the condensate as a classical field. The equation of motion for
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Ψ(r, t) can be obtained simply by taking the functional derivative of H0 with respect
to Ψ∗(r, t),

i~
∂Ψ(x, t)
∂t

=
δH0[Ψ(r, t)]
δΨ∗(r, t)

. (1.25)

This yields the Gross-Pitaevskii equation (GPE)

i~
∂Ψ(x, t)
∂t

=
[
Hsp − µ + U0|Ψ(r, t)|2

]
Ψ(r, t) , (1.26)

where we have implicitly taken Nc(t) = N because at this lowest order of description
all atoms can be considered to be in the condensate. In Part I of this thesis we will
also make frequent reference to the equation satisfied by stationary solutions of
Eq. (1.26), the time-independent GPE[

Hsp − µ + U0|Ψ(r)|2
]
Ψ(r) = 0 . (1.27)

It is also possible to derive the GPE by attempting to construct a zeroth-order equa-
tion of motion for δ̂(r, t); this alternative is more insightful when one comes to
extend the approach to higher orders in δ̂(r, t). In this case to obtain a zeroth-
order equation of motion one substitutes Eq. (1.15) and a first-order Hamiltonian
Ĥ = H0 + Ĥ1 into the Heisenberg equation of motion [Eq. (1.14)]. Subsequently
taking an expectation value and using the identities〈

δ̂(r, t)
〉

= 0 , (1.28)

and [
δ̂(r, t), δ̂†(r′, t)

]
= δ(r − r′) , (1.29)

both of which follow from Eq. (1.15), yields the GPE of Eq. (1.26).

Alternative interpretations

The derivation of the GPE presented above is valid for temperatures approaching
T = 0 in the presence of a macroscopically-occupied mode. In particular, it involves
the approximation that all atoms occupy this mode. Hence, in this regime, the GPE
can be interpreted as describing a single-particle wavefunction, Ψ(r, t) which is
shared by all particles through a many-particle wavefunction of the Hartree product
form

Ψ(r1, r2, . . . , rN) =

N∏
i=1

Ψ(ri, t) . (1.30)
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However, this Hartree-product interpretation is not the exclusive many-body in-
terpretation of the GPE. The same GPE can also be considered as a classical field
description of a multi-mode quantum field in the regime where many modes are
highly occupied (typically taken as ni & 5 [182]). This interpretation is central
to the description of finite-temperature BECs using c-field methods [171], and for-
mally arises through a truncated Wigner expansion of the quantum field [171, 182].
In particular, the GPE is the leading-order description of the quantum field in the
regime close to Tc, where many modes are highly occupied, and the temperature
is sufficiently high for quantum fluctuations to be neglected; the truncated Wigner
description appears at the next order [183]. In rigorous c-field approaches this GPE
is slightly modified by the presence of an explicit projector into the c-field regime,
yielding the so-called projected GPE (PGPE) [171, 184]: the application of c-field
methods to finite temperature atomic BECs are briefly reviewed in Chapter 5.

This PGPE has been used successfully to treat problems around Tc, such as the
interaction-shift of Tc [170]. The “pure” GPE (with no explicit projector) has also
been used successfully in this regime, for example in studies of quantum turbulence
[123–126]. This interpretation of the pure GPE has also been shown to be useful
for driven systems at low temperature of the type considered in Chapter 7 [60].
Intriguingly, a recent study of quasi-1D scattering between a bright soliton and a
δ-function has shown that even in a zero-temperature situation the GPE can evolve
to a configuration where a simple Hartree-product interpretation of the many-body
wavefunction is energetically forbidden [81]. Thus, whilst a Hartree-product in-
terpretation of the GPE remains the most widely appropriate interpretation at low
temperature, one must be wary of it when describing complex dynamics.

1.4.3 QuadraticHamiltonianandstaticBogoliubov-deGennes

equations

Since the realization of atomic BEC in 1995 the GPE has proved to be a remark-
ably good quantitative description of this new phenomenon. Indeed, the GPE pro-
vides quantitatively useful results at temperatures up to Tc/2 [1]. However, at low-
temperature equilibrium, it can be safely interpreted as assuming all atoms to be
in the condensate (the aforementioned Hartree-product interpretation). In an in-
teracting atomic BEC this is never quite the case: even at T = 0 inter-atomic in-
teractions lead to a quantum depletion of the condensate, and the introduction of
quantum correlations into the system. Understanding the dynamics of atomic BEC
at finite temperatures and far from equilibrium — where the non-condensate frac-
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tion is significant, interacts strongly and exchanges population with the condensate,
and introduces significant correlations into the system — requires a higher-order
approach.

The development and implementation of higher-order dynamical approaches forms
the basis of Part II of this thesis, and we defer a substantive introduction to Chap-
ter 5. However, an explanation of one of the defining features of an atomic BEC
— its superfluidity — is facilitated by a brief consideration of the simplest possible
symmetry-breaking treatment beyond the GPE; this takes into account the quadratic
part of the Hamiltonian, Ĥ2, for a static condensate. This quadratic Hamiltonian can
be written as:

Ĥ2 =

"
dr dr′

[
δ̂†(r)L(r, r′)δ̂(r′) +

1
2
δ̂†(r)M(r, r′)δ̂†(r′) +

1
2
δ̂(r)M∗(r, r′)δ̂(r′)

]
,

(1.31)

where
L(r, r′) = δ(r − r′)

[
Hsp(r′) − µ + 2U0|Ψ(r′)|2

]
, (1.32)

and
M(r, r′) = δ(r − r′)U0Ψ

2(r′) . (1.33)

Provided Ψ(r) satisfies the time-independent GPE [Eq. (1.27)], Ĥ2 is the only operator-
valued part of the Hamiltonian up to second-order in δ̂(r): satisfaction of the time-
independent GPE causes Ĥ1 to vanish identically, and H0 is not operator valued.
Using the commutation relation [δ̂(r), δ̂†(r′)] = δ(r− r′), Eq. (1.31) can be rewritten
in the form

Ĥ2 =
1
2

"
dr dr′

(
δ̂†(r),−δ̂(r)

)  L(r, r′) M(r, r′)
−M∗(r, r′) −L∗(r, r′)

  δ̂(r′)
δ̂†(r′)


− 1

2

"
dr dr′ δ(r − r′)L(r, r′) . (1.34)

While non-standard, the representation we use in Eq. (1.34) is chosen to closely
match that used in Part II of this thesis. Unfortunately this has the side-effect of
leaving the divergence in the final term of Eq. (1.34) somewhat opaque. This term
contains an ultraviolet divergence which arises from use of the first-order Born ap-
proximation for U0 beyond its regime of validity; however, this divergence can be
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renormalized by appropriate application of the second-order Born approximation
[83, 161]. In order to reduce the non-divergent, operator part of Ĥ2 to diagonal
form, one can make the Bogoliubov transformation δ̂(r)

δ̂†(r)

 =
∑

k

b̂k

 uk(r)
vk(r)

 + b̂†k

 v∗k(r)
u∗k(r)

 , (1.35)

where the mode functions uk(r) and vk(r) diagonalize the matrix operator of Eq. (1.34)

∫
dr

 L(r, r′) M(r, r′)
−M∗(r, r′) −L∗(r, r′)

  uk(r′)
vk(r′)

 = εk

 uk(r)
vk(r)

 . (1.36)

Eq. (1.36) are commonly known as the Bogoliubov-de Gennes equations (BdGE).

The operators b̂†k and b̂k are quasiparticle creation and annihilation operators. If one
additionally imposes the normalization condition∫

dr [|uk(r)|2 − |vk(r)|2] = 1 , (1.37)

on the quasiparticle mode functions uk(r) and vk(r), then these operators obey the
canonical commutation relations [b̂k, b̂

†
l ] = δk,l and [b̂k, b̂l] = [b̂†k , b̂

†
l ] = 0 and diag-

onalize the quadratic Hamiltonian Ĥ2 to give

Ĥ2 =
∑

k

[
εkb̂
†
k b̂k − εk

∫
dr |vk(r)|2

]
, (1.38)

where we have correctly renormalized the divergent constant term (see above). In
Eq. (1.38), we have a description of a weakly-interacting Bose gas, up to second-
order in δ̂(r), which consists of non-interacting Bogoliubov quasiparticles. These
quasiparticles are thus the elementary excitations of the system, and their dispersion
relation is given by εk. While only valid up to second-order in δ̂(r), this already
provides an extremely useful physical insight into the weakly-interacting Bose gas.

1.4.4 Superfluidity

Perhaps the most interesting property of the weakly-interacting Bose gas is its su-
perfluidity. The first experimental realization of superfluidity was in liquid 4He,
observed jointly by Kapitza [114] and Allen and Misener [115] in 1938. It was sug-
gested almost immediately by London [185] and Tisza [186] that the phenomenon
of superfluidity was due to the presence of a Bose-Einstein condensed fraction in
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Figure 1.1: Origin of superfluidity in a homogeneous weakly-interacting
Bose gas [for convenience, we set ~ = m = U0nc = 1, where nc is the
(uniform) condensate density]: (a) illustrates an external impurity moving
with velocity v in a static fluid, which can elastically scatter elementary
excitations in the fluid with wavevector k, if the condition ε′(k) = ε(k) is
satisfied. Here ε(k) is the energy of an elementary excitation with wavevec-
tor k, and ε′(k) is the energy change associated with the elastic scattering
event. (a)(i) shows the situation in a superfluid where v exceeds the critical
velocity vc [or, equivalently, the case of a normal fluid with dispersion re-
lation ε(k) = k2/2]. In this case it is always possible to satisfy ε(k) = ε′(k)
for some θ, as shown in (b), leading to creation of quasiparticle excitations.
The resulting transfer of momentum gives rise to viscosity. (a)(ii) Shows
the case of a weakly-interacting Bose gas with v < vc. In this case, as shown
in (b), the Bogoliubov dispersion relation [Eq. (1.39)] makes it impossible
to satisfy ε(k) = ε′(k), and hence the impurity cannot create quasiparticle
excitations, giving rise to superfluidity.

the gas. However, this interpretation remained controversial for some time, espe-
cially when the first quantitatively successful description of superfluidity in 4He,
given by Landau in 1941 [187], made no reference to Bose-Einstein condensation
[157, 160]. Instead, Landau considered the role of the excitation spectrum of el-
ementary excitations in a fluid. Using this approach he showed, through a simple
physical argument, that the observed excitation spectrum of liquid 4He suppressed
the creation of elementary excitations below a certain threshold velocity [Fig. 1.1.]
However, this phenomenological explanation made no attempt to explain how an
excitation spectrum leading to superfluidity arises in liquid 4He on a microscopic
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level.

In the case of a weakly-interacting Bose gas, the pioneering work of Bogoliubov
[156] on the static quadratic Hamiltonian — which we have outlined in the previous
Section — provides exactly such an explanation. In the infinite, homogeneous case,
with uniform condensate, the quasiparticle modes are simply plane waves: uk(r) =

Ukeik·r, vk(r) = Vke−ik·r. The dispersion relation is given by

ε(k) =

√
~2k2

2m

(
~2k2

2m
+ 2U0nc

)
, (1.39)

where n is the number density of the condensate. This celebrated Bogolibov disper-

sion relation is free-particle like at large momentum k, but phonon-like at small mo-
mentum. This feature immediately gives rise to superfluidity via the mechanism in-
troduced by Landau, as illustrated in Fig. 1.1, with critical velocity vc =

√
U0nc/~m.

However, while Bogoliubov demonstrated that a weakly-interacting Bose gas gives
rise to superfluidity, the interactions in liquid 4He are in reality quite strong, and
lead to an elementary excitation spectrum which is significantly different from the
Bogoliubov spectrum [Eq. (1.39)]. Consequently the GPE, and higher-order de-
scriptions of the weakly-interacting Bose gas, fail to give a general quantitative
description of liquid 4He. The presence of a condensate at T = 0 in equilibrium
liquid 4He has been demonstrated using quantum Monte-Carlo methods [189], but
the condensate fraction is estimated to only be around 10% due to the considerable
strength of the interactions6. Despite this low condensate fraction, the superfluid
fraction of liquid 4He remains significant (>90%) for T � Tc because there are few
thermally excited quasiparticles, and below the critical velocity it is impossible to
excite more. Indeed, the fact that the large quantum-depleted fraction participates in
superflow is what makes a description of superfluid 4He in terms of a macroscopic
order parameter possible.

The distinction between non-condensate fraction and superfluid fraction is often ig-
nored in the field of atomic BECs, where the quantum depletion is typically less than
1% [see Fig. 1.2]. Here the condensate and superfluid fractions can be considered
to be equivalent for many purposes. Nonetheless, proposals to experimentally de-
termine the superfluid fraction independently of the condensate fraction exist [147],
and offer an interesting challenge for future experiments.

6It is interesting to note that Penrose and Onsager achieved a very accurate prediction of the
non-condensate fraction, 8%, using an approximate many-body wavefunction, in Ref. [173].
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Figure 1.2: Illustrated condensate-to-non-condensate ratios for Bose gases
at various interaction strengths and temperatures. Whilst the ideal (non-
interacting) Bose gas, (a), has no non-condensate fraction at T = 0, the
weak interactions present in atomic Bose gases create a small [less than
1% for typical experimental atom numbers [188]] non-condensate fraction
even at T = 0, (b). The non-condensate fraction in atomic Bose gases
grows with temperature, (c), but sufficiently slowly that condensate-only
equations of motion yield useful results at temperatures as high as Tc/2.
Because of strong inter-particle interactions, the non-condensate fraction
of liquid 4He, (d), at T = 0 is estimated to be around 90% [173, 189].
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Chapter 2: Solitons and solitary waves in
atomic Bose-Einstein condensates

2.1 Introduction

Bright solitary waves [10–12] are nonlinear, self-focusing wavepackets occurring
in atomic BECs with attractive inter-atomic interactions (with negative s-wave scat-
tering length as < 0). In the quasi-one-dimensional (quasi-1D), homogeneous limit,
bright solitary waves become completely analogous — within the mean-field (GPE)
description — to classical bright solitons of the 1D, focusing nonlinear Schödinger
equation (NLSE) [190–192]. The classical bright soliton solutions of this equation
have been extensively studied in the context of optical solitons [16–19, 193, 194].
The same equation, and its bright soliton solutions, appear in many other fields,
including biophysics, astrophysics and particle physics [195], and in the study of
deep ocean waves [14]. Within the context of this thesis, bright solitary waves in
atomic BECs have the potential to form a rich and fertile testing ground for theo-
retical descriptions going beyond the mean-field model, which we discuss in Part II
of this thesis. Several of the properties of bright solitary waves are relevant in this
regard: they typically contain. 1000 atoms, placing them well-outside the thermo-
dynamic limit and potentially outside the reach of the mean-field description; they
constitute macroscopic quantum objects, and hence the coherence between bright
solitary waves plays a key role in their collisions, and must be correctly accounted
for in any theoretical model; and, finally, their dynamics can provide a sensitive
experimental test of the various theoretical descriptions discussed in Chapter 5, po-
tentially over a large portion of the T = 0 to T = Tc temperature range.

In this Chapter we give an overview of the properties of bright solitary waves, in
various regimes of trap and interaction strength, in the mean-field description. We
emphasise two properties in particular: Firstly, the analogy of bright solitary waves
to the bright soliton solutions of the NLSE; it is this analogy which underlies their
soliton-like properties of non-dispersion, robustness against mutual collisions, and
propagation along particle-like trajectories. Secondly, we emphasise the importance
of the collapse instability of attractive condensates in three dimensions (3D); this
instability means that bright solitary waves can only be realized in a restricted pa-
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rameter regime, and that they only ever represent a metastable state of the system.

We begin by defining the quasi-1D limit of the GPE, obtained in the limit of strong
radial trapping (Section 2.2.1). In the case of an axially homogeneous external po-
tential this quasi-1D reduces to the 1D focusing NLSE. We then review the bright
soliton solutions of this equation — which are solitons in the exact mathematical
sense of the inverse scattering transform; in Section 2.2.2 we describe the single-
bright soliton solution, and in Section 2.2.3 the multiple-bright soliton solution.
In Section 2.2.4 we review the dynamics of NLSE bright solitons, which can be
described by a phase-independent particle model with short-range interactions be-
tween solitons. In Section 2.3 we consider the bright solitary waves which exist in
the quasi-1D GPE with a harmonic external axial potential. While these no longer
satisfy the mathematical requirements to be true solitons (Section 2.3.1), their dy-
namics are nonetheless highly soliton-like, and can be described by an adapted par-
ticle model (Section 2.3.2).

In Section 2.4 we discuss bright solitary waves in 3D. The properties of such waves
are fundamentally linked to the collapse instability of attractive condensates in 3D,
which we introduce in Section 2.4.1. The collapse instability restricts the realization
of bright solitary wave solutions to certain parameter regimes, which we explore in
Section 2.4.2 and Section 2.4.3, using variational and numerical methods. Finally,
in Section 2.4.4, we discuss the dynamics of 3D bright solitary waves in waveguide-
like (axially homogeneous) trap potentials.

Having introduced this relevant background, in the remainder of Part I of this the-
sis (Chapters 3 and 4) we explore the experimental production of bright solitary
waves, and the dynamics and soliton-likeness of 3D bright solitary waves in prolate
harmonic traps. We also discuss the role of beyond mean-field effects on solitary
wave dynamics and propose an experimental test of the applicability of the mean-
field description, examine the possibility of constructing a bright solitary wave in-
terferometry device, and quantitatively assess the feasibility of conducting future
experiments which realize the effective quasi-1D limit we introduce in this Chapter.
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2.2 Bright solitons in the NLSE

2.2.1 Quasi-one-dimensional limit

Quasi-one-dimensional GPE

As outlined in Chapter 1, the mean-field description of an attractively-interacting,
3D atomic BEC in a general potential V(r) is given by the Gross-Pitaevskii equation
[83]

i~
∂ψ(r)
∂t

=

[
− ~2

2m
∇2 + V(r) − 4π~2N|as|

m
|ψ(r)|2

]
ψ(r) , (2.1)

where N is the number of atoms, and the macroscopic wavefunction, or order pa-
rameter, ψ(r), is normalized to unity. In typical experiments the external potential
V(r) is approximately harmonic and of the form V(r) = m(ω2

xx2 + ω2
yy2 + ω2

z z2)/2;
within Part I of this thesis we will generally assume such a potential. Attractive
interactions imply that the s-wave scattering length as < 0.

The time-independent eigenstate solutions of Eq. (2.1) obey the stationary GPE[
− ~2

2m
∇2 + V(r) − 4π~2N|as|

m
|ψ(r)|2 − µ

]
ψ(r) = 0 , (2.2)

where µ is a (real) eigenvalue, equivalent to the chemical potential at mean-field
level (Chapter 1). The lowest-energy solution to Eq. (2.2) represents the static
mean-field ground state of the BEC.

The quasi-1D limit is associated with cylindrically symmetric (ωy = ωz = ωr) and
highly anisotropic, prolate (ωr � ωx) traps. For sufficiently strong radial confine-
ment, one can assume that the radial modes of the condensate will remain “frozen”
into the relevant harmonic oscillator ground state, allowing the factorization

ψ(r) =

√
mωr

π~
exp

[−mωr(y2 + z2)
2~

]
ψ(x) . (2.3)

Integrating over the y- and z-directions (and dropping constant terms) then yields
the quasi-1D GPE for ψ(x) [20, 45];

i~
∂ψ(x)
∂t

=

[
− ~2

2m
∂2

∂x2 +
mω2

xx2

2
− 2~ωrN|as||ψ(x)|2

]
ψ(x) . (2.4)

This reduces to the standard focusing 1D NLSE in the axially untrapped limit (ωx →
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0). In the static case, one obtains the stationary quasi-1D GPE[
− ~2

2m
∂2

∂x2 +
mω2

xx2

2
− 2~ωrN|as||ψ(x)|2 − µ

]
ψ(x) = 0 , (2.5)

which describes the bright solitary wave stationary states of the system.

This factorization has often been applied in the study of attractively-interacting
condensates (in both dynamic and static situations) [20, 21, 196–199]. However,
the regime in which this factorization is valid can be significantly restricted for
attractively-interacting condensates; we will revisit this issue in detail in Chapter 4.

One-dimensional equations with 3D effects

Alternatives to the factorization presented above exist; these yield quasi-1D equa-
tions retaining more 3D character than the quasi-1D GPE of Eq. (2.4) by choosing
to incorporate the coupling between axial and radial modes, and time-dependent dy-
namics of the radial modes [200–203]. These effects are manifested in the resulting
quasi-1D equation through the appearance of higher-order terms. Consequently, the
resulting equations have a wider range of validity than the quasi-1D GPE [Eq. (2.4)],
but are no longer isomorphous to the NLSE in the axially untrapped limit ωx → 0.

For example, Salasnich et al. [200, 201] chose to factorize the 3D GPE wave-
function into a slowly-varying axial function, multiplied by a rapidly varying radial
function. The radial function was also given a dependence on the axial function
itself; this incorporates the effect unique to attractive interactions in a cigar-shaped
trap, where an increase in axial density leads to an associated increase in radial den-
sity. A variational calculation then yields [200] the non-polynomial Schrödinger
equation

i~
∂ψ(x)
∂t

= − ~2

2m
∂2ψ(x)
∂x2 +

mω2
xx2

2
ψ(x) +

2~2|as|N |ψ(x)|2ψ(x)

mar

√
1 − 2|as|N|ψ(x)|2

+
~ωx

2

 1√
1 − 2|as|N |ψ(x)|2

+
√

1 − 2|as|N|ψ(x)|2
ψ(x) . (2.6)

When |as|N|ψ(x)|2 � 1 for all x, this reduces first to an effective 1D equation with
both cubic and quintic nonlinearities [203], and then to the quasi-1D GPE itself. An
even more general approach can be taken, incorporating even fewer assumptions
about the form of the ground state, but leading to a coupled system of effective
1D equations [202]. Similar reductions also exist for the case of axially rotating
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BECs [204] and for effectively 2D situations [205]. However, aside from discussing
results obtained by other authors, we do not make use of reductions with extra 3D
effects such as Eq. (2.6) in this thesis.

2.2.2 Single-bright-soliton solution

In the homogeneous limit ωx → 0, the quasi-1D GPE [Eq. (2.4)] becomes

i~
∂ψ(x)
∂t

=

[
− ~2

2m
∂2

∂x2 − 2~ωrN |as||ψ(x)|2
]
ψ(x) , (2.7)

which is exactly the standard form of the focusing 1D NLSE [195]. The 1D NLSE
is a classical field equation which is integrable, in the sense that its solutions possess
an infinite and complete set of conserved quantities [13, 206]. This is analogous to
a discrete system which possesses as many conserved quantities as it does degrees
of freedom [13, 207]. The integrability of the focusing NLSE leads to a spectrum of
true bright soliton solutions [13, 208], first analytically described by Zakharov and
Shabat in Ref. [17] using the inverse scattering technique. This technique is a gen-
eral and powerful framework for identifying analytic solutions to several nonlinear
PDEs arising in mathematical physics, including the NLSE [208]. A detailed review
of the mathematical details exceeds the scope of this thesis; however, it is informa-
tive to understand in principle how soliton solutions arise within the inverse scatter-
ing framework. The interested reader would be advised to consult Refs. [208, 209]
for a deeper overview, and Refs. [13, 17, 18, 206] for advanced technical details.

Put briefly, the inverse scattering technique for the NLSE consists of drawing an
analogy between Eq. (2.7) and a so-called Zakharov-Shabat (ZS) system of the
form

iζ

 u(x, t)
v(x, t)

 =

 − ∂
∂x

ψ(x, t)

−ψ∗(x, t)
∂

∂x


 u(x, t)

v(x, t)

 , (2.8)

where ψ(x, t) is a solution of Eq. (2.7). It can be divided into three stages:

Scattering transform Find the eigenvalues of the scattering problem Eq. (2.8) at
an initial time ti, with ψ(x, ti) as an initial condition. The spectrum of the
problem consists of discrete eigenvalues — corresponding to solitons — and
a continuous component — corresponding to the radiation (non-soliton) com-
ponent.

Time evolution of scattering spectrum With some mathematical insight, one can
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choose a time evolution equation for [u(x, t), v(x, t)]T such that the compatibil-
ity condition ∂xt[u(x, t), v(x, t)]T = ∂tx[u(x, t), v(x, t)]T guarantees that ψ(x, t)
solves the NLSE [Eq. (2.7)]. Constructing such an equation allows one to
determine the time-evolution of the scattering problem spectrum: while the
evolution of the continuous (radiation) component is generally complicated,
the discrete (soliton) eigenvalues are time-independent.

Inverse scattering transform The scattering transform can be inverted through an
integral equation at a final time tf to yield ψ(x, tf).

One can carry out the above procedure analytically for an M-soliton solution, ob-
taining an expression in terms of 4M real parameters. In the case of a single soliton
(M = 1) one obtains

ψ(x, t) =
a

2
√

bx
sech

(
a(x − x0 − vt)

2bx

)
× exp

(
i
[
m
~

{
v(x − x0) +

v2t
2

+
ω2

r |as|2N2a2t
2

}
+ Φ

])
. (2.9)

which can be easily verified to solve [Eq. (2.7)]. This solution describes a single
bright soliton with norm1 a, velocity v, displacement x0, and phase Φ. It propagates
at velocity v without dispersing. The parameter bx ≡ ~/2mωr|as|N is a length scale
characterizing the soliton’s spatial extent.

The static case in the homogeneous limit ωx → 0 is described by the static NLSE[
− ~2

2m
∂2

∂x2 − 2~ωrN|as||ψ(x)|2 − µ
]
ψ(x) = 0 . (2.10)

The single-soliton ground state of Eq. (2.10) is given exactly by Eq. (2.9) with
a = 1, v = 0, and arbitrary Φ and x0. The quantity Φ can be chosen arbitrarily be-
cause it corresponds to a global phase of the wavefunction, and Eq. (2.10) possesses
a U(1) global phase symmetry. Similarly, the displacement x0 may be chosen arbi-
trarily because the static 1D NLSE [Eq. (2.10)] possesses a translational symmetry.
However, the choice of displacement x0 in Eq. (2.9) for the ground state breaks this
symmetry; in the context of atomic BECs, this symmetry-breaking is a feature of
the mean-field description. This feature is at odds with a fully quantum-mechanical
treatment; in the latter, the ground state of the system retains the translational sym-

1In contrast to our definition here, a common convention in the literature is to define an amplitude
A such that the norm is 2A [19]
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metry of the equation, leading to a delocalized ground state [176].

2.2.3 Multiple-bright-soliton solutions

In multiple-bright-soliton solutions each soliton has a similar form to Eq. (2.9) when
well-separated from the others. In such multiple-soliton solutions, the total norm of
all solitons is given by

∑
j a j, where a j is the norm of the jth soliton. If the solution is

entirely composed of solitons, then
∑

j a j = 1 is necessary to satisfy our convention
that the norm of ψ is 1. These multiple-soliton solutions contain additional, dynamic
phase and position shifts to account for the nonlinear interactions between solitons.

The most general M-soliton solution to Eq. (2.7), containing no radiation, can be
written as [19]

ψ(x, t) =

M∑
j=1

ψ j(x, t) , (2.11)

where the functions ψ j(x, t) satisfy the simultaneous equations

M∑
j=1

γ−1
k + γ∗j
λk + λ∗j

ψ j(x, t) =
1√
bx
, (2.12)

for k = 1 . . . M. Here we have defined the quantities

λ j =
a j

2
+

iv j

2ωr|as|N , (2.13)

and

γ j = exp
(
λ j

[
x − x j

bx

]
+ iλ2

j
2mω2

r a2
s N2

~
t + iΦ j

)
, (2.14)

in addition to the characteristic soliton length bx. Each soliton is described by a real
amplitude a j, velocity v j, position offset x j, and phase Φ j. In the case that the jth
soliton is well-separated from the other M − 1 solitons, the linear system defined by
Eq. (2.12) can be approximately solved to give [19]

ψ(x, t) =
a j

2
√

bx
sech

(
a j(x − x j − v jt)

2bx
+ q j

)
× exp

i m
~

v j(x − x j) +
v2

j t

2
+
ω2

r a2
s N2a2

j t

2

 + Φ j + Ψ j

 . (2.15)

Here, q j and Ψ j are time-dependent position- and phase-shifts which appear as a
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result of collisions with the other N − 1 solitons. They are given by

q j + iΨ j =
∑
k, j

± log
(
a j + ak + i(v j − vk)/2ωr|as|N
a j − ak + i(v j − vk)/2ωr|as|N

)
, (2.16)

where the sign is positive when the jth soliton is to the left of the kth, and vice
versa [19]. While the jth soliton is well-separated these shifts remain approximately
constant, and only change significantly during collisions.

2.2.4 Bright soliton dynamics and collisions

Particle model for multiple solitary waves

With zero (or constant) background potential, the dynamics of a single bright soli-
ton in the NLSE are determined entirely by their nonlinear interactions with the
remainder of the solution. We shall focus primarily on dynamics due to soliton-
soliton interactions (i.e., on the dynamics of soliton-only solutions) in this thesis.
The interaction of solitons with radiation is generally complicated [18, 194, 210–
214], and we will deal with it only when the need arises in Chapter 3.

In the absence of radiation, the dynamics of multiple bright solitons are dominated
by the interactions and collisions between solitons. One of the defining charac-
teristics of true solitons, associated with the integrability of the system, is that
they survive mutual collisions entirely unchanged in form. The only observable
effects of the collision are the asymptotic position and phase shifts introduced in
Section 2.2.3. The main characteristics of soliton dynamics are illustrated in a so-
lution where two equal-amplitude solitons collide at the origin; this is shown, for
various relative phases ∆Φ = Φ1 −Φ2, in Fig. 2.1. As expected, the solitons survive
such a collision completely unchanged in form, and the position shifts q j are visible
as the deviation of both solitons from their initial linear trajectories. Although the
wave dynamics of the collision itself differ with the relative phase ∆Φ, the position
shift q j is unchanged.

This independence of the position shifts q j from the solitons’ relative phase ∆Φ

allows one, in principle, to predict their asymptotic trajectories independently of
their phase. Disregarding the phase information in this way leaves each soliton
described by a position, velocity, and amplitude. One can then treat the solitons
as classical particles with an effective mass proportional to their norm and some
appropriate inter-particle potential. This approach was developed for optical NLSE
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Figure 2.1: Bright soliton collisions in the nonlinear Schrödinger equation,
for solitons with equal amplitude and relative phase ∆Φ = 0 (a), π/2 (b), π
(c), and 3π/2 (d). In each case the density profile of the solution is super-
imposed with the soliton trajectories predicted by a particle model [20, 21].
This phase-independent model fails to describe the dynamics of the colli-
sion in detail, but correctly incorporates the asymptotic position shift of the
solitons.

solitons [215–218], using the inter-particle potential

V(x j − xk) = −2η jηk(η j + ηk)sech2
(
2η jηk(x j − xk)

bx(η j + ηk)

)
, (2.17)

where the solitons are treated as classical particles of effective mass η j = a j/4.
This potential reproduces the correct asymptotic position shifts provided the veloc-
ities and effective masses satisfy the condition |η j − ηk| � |v j − vk|/4ωr|as|N [20].
The particle model therefore reproduces the asymptotic shift exactly for the equal-
effective-mass collisions in Fig. 2.1. For non-equal-effective-mass collisions the
particle model becomes correct in the limit of a high collision velocity.

2.3 Bright solitary wave dynamics in quasi-1D

2.3.1 Destruction of integrability: bright solitary waves

In the presence of axial harmonic trapping, and assuming a quasi-1D description
is appropriate, the mean-field description of atomic BEC dynamics is given by the
quasi-1D GPE [Eq. (2.4)] with ωx > 0. Unlike the 1D NLSE [Eq. (2.7)], this
equation is non-integrable. Consequently, it contains no true soliton solutions, in the
sense of discrete eigenvalues of a well-defined scattering transform. Nonetheless,
as we illustrate in this Section, the quasi-1D GPE with ωx > 0 continues to support
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bright solitary wave solutions, which take the same form as the static eigenstate
solutions of the quasi-1D GPE. While they do not satisfy the strict mathematical
requirements to be solitons [13, 208], these solutions are soliton-like in so far as:
(a) they are non-dispersive due to the attractive inter-atomic interaction; (b) they
are extremely robust to mutual collisions; (c) their dynamics can be described by a
particle-like model [20, 21].

The possibility to observe solitary waves of this type was examined in considerable
generality by Morgan et al. in Ref. [219]. In this work, 1D, 2D, and 3D nonlinear
Schrödinger equations were considered, with a generalized nonlinear term and both
an arbitrary static external potential and an arbitrary time-dependent external poten-
tial. Two conditions were found to be necessary for the static eigenstates (i.e., those
obtained with the arbitrary time-dependent potential set to zero) to behave as soli-
tary waves: firstly, the nonlinearity must be decoupled from the absolute position —
a requirement immediately satisfied by the conventional cubic form of the nonlin-
earity appearing in the GPE. Secondly, the potential experienced by the eigenstate
in a moving frame (including the time-dependent external potential) should differ
no more than linearly in the spatial coordinates from the static potential. In the case
of the quasi-1D GPE we consider, this second condition is satisfied for any time-
dependent potential which is at most linear in x. In this Section we consider only
the “non-driven” case with zero time-dependent potential. However, the retention
of solitary-wave characteristics under an external linear potential provides an excel-
lent means for experimental control of bright solitary waves; indeed, this concept
underpins our work on soliton-splitting in Chapter 3.

We shall also restrict our attention to solitary waves whose form is that of the bright
solitary wave ground state; that is, the lowest-energy static eigenstate solution of
the quasi-1D GPE. Like NLSE bright solitons, these solitary waves have a single-
peak density profile2. In this case, and with no time-dependent external potential,
the solitary wave has the same spatial profile as the ground state, but its centre of
mass moves as a classical particle in the static harmonic potential. If free from
the influence of other solitary waves or other components of the solution, its centre
of mass undergoes simple harmonic motion [20, 21, 219]. This oscillation of the
mean-field GPE ground state is analogous to the Kohn mode of the many-body
ground state [176]3.

2It is also possible to consider multiple-peak solitary waves formed from higher-energy nonlinear
stationary states of the quasi-1D GPE, as examined in Ref. [220].

3The Kohn mode arises from the Kohn theorem, which guarantees that the true quantum mechan-
ical ground state of N bosons in a harmonic trap can be expressed as a separable tensor product of a
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2.3.2 Particle model for multiple solitary waves

Isolated bright solitary waves in the quasi-1D GPE behave as classical particles
in a harmonic potential provided they are well-separated from other components
of the solution. However, if they are not well-separated their dynamics are influ-
enced by the nonlinear interaction with the other solitary waves4. For true bright
solitons in the NLSE, the asymptotic effects of such interactions are entirely de-
scribed by phase and position shifts (Section 2.2.4). For bright solitary waves this
is no longer strictly true, but can be considered a satisfactory approximation assum-
ing: (a) that the external potential is approximately constant over the region of the
collision, and (b) that the solitary waves are approximately bright-soliton-shaped.
Making these approximations, one can combine the particle model of soliton col-
lisions (Section 2.2.4) with the behaviour of a particle in a harmonic trap. This
leads to a combined particle model for multiple bright solitary waves in a harmonic
trap, which is most accurate for: (a) weaker harmonic traps; (b) faster solitary wave
collisions, and; (c) in-phase solitary wave collisions [20, 21].

The dynamics of binary bright solitary wave collisions in the quasi-1D GPE are
illustrated in Fig. 2.2. This shows the resulting dynamics when two copies of the
bright solitary wave ground state of the trap are displaced by equal and opposite
distances from the trap centre. Each ground state contains N/2 atoms, such that
the total atom number remains fixed at N. As anticipated by the particle model
(shown with red lines in Fig. 2.2), the dynamics are dominated by harmonic particle-
like motion when the waves are well-separated; however, when the waves collide,
periodically, at the trap centre, a soliton-like collision results in a position shift.
There is no overall phase shift between collisions [20]. The complex dynamics of
three or more solitary waves oscillating and colliding in a harmonic trap can be
effectively predicted using the particle model; interestingly, the model is itself non-
integrable for three or more solitary waves, leading to chaotic particle-like dynamics
[20, 21].

single-body wavefunction in the centre of mass coordinate with a general N − 1-body wavefunction
in the remaining inter-particle coordinates.

4Potentially, solitary waves can also interact with non-solitary-wave excitations such as sound
waves [221], although we will not consider such interactions in detail in this thesis.
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Figure 2.2: Bright solitary wave collisions in the quasi-1D Gross-Pitaevskii
equation, with a harmonic axial trap potential. The initial solitary waves are
ground states of the trap potential displaced by ± ≈ 10.35 in x and with zero
initial velocity and relative phase ∆Φ = 0 (a), and π (b). In each case the
density profile of the solution is superimposed with the soliton trajectories
predicted by a particle model [20, 21]. This phase-independent model pre-
dicts the trajectories well over short times, as shown here. However, over
longer times deviations from the model do build up; these deviations are
due to the variation of the harmonic axial potential over the characteristic
length scale of the collision, and appear first in the case ∆Φ = π [20, 21].

2.4 Bright solitary waves in three dimensions

2.4.1 The collapse phenomenon and the critical parameter

While a 3D, attractively-interacting BEC is, in general, unstable to collapse, by
introducing harmonic trapping in two or three dimensions one can ensure the ex-
istence of metastable bright solitary wave ground states in a restricted parameter
regime [24–26, 128, 131, 222–225]. The collapse instability in trapped, attractively-
interacting atomic BECs has been the subject of much theoretical investigation
[23, 26, 200, 222, 226–235], and a series of experiments have investigated collapse
dynamics by tuning the s-wave scattering length as, using a Feshbach resonance
[130], to a negative (attractive) value outside of the range of condensate stability
[24, 25, 128, 131]. The resulting dynamics are the subject of continuing theoretical
study [28, 236–239].
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In addition to the study of collapse dynamics, much research has focused on the
identification of the parameter regimes where a metastable bright solitary wave
ground state either does, or does not, exist. To answer this question in the mean-field
description is to identify the parameter regimes where the 3D GPE has a metastable
ground-state solution. Numerous studies have focused on identifying the parame-
ters associated with the onset of collapse in various geometries, using variational
[23, 200, 231, 232], perturbative [233], and numerical [23, 26, 222, 231, 234, 235]
methods.

We illustrate the phenomenology of 3D attractive BECs associated with the collapse
instability for the case of a cylindrically symmetric trap potential. Not only is this
specific case the easiest to compare with the quasi-1D limit (which corresponds
to tight radial and weak axial trapping), it has also been shown that the results for
completely asymmetric trap potentials are not qualitatively different [234, 235]. For
a cylindrically symmetric trap, we write the stationary 3D GPE as[

− ~2

2m
∇2 +

mω2
r

2
(λ2x2 + r2) − 4π~2|as|N

m
|ψ(r)|2

]
ψ(r) = 0, (2.18)

where r2 = y2 + z2, and we have set ωy = ωz = ωr = ωx/λ. Hence, λ represents
the anisotropy of the trap potential, with λ < 1 (> 1) corresponding to a prolate
(oblate) trap. The existence of a bright solitary wave ground state is dependent on
the relative strength of the trap and the inter-atomic interactions, and also on the
trap geometry. In the cylindrically symmetric traps we consider, this dependence is
best illustrated by considering the interaction strength parameter [23]

k ≡ |as|N
ar

, (2.19)

where ar =
√
~/mωr is the harmonic oscillator length in the radial direction. The

choice to use the radial harmonic oscillator length here is advantageous as it allows
us to consider the case of zero axial trapping (λ = 0) with relative ease. Note, how-
ever, that in many other works k has been defined in terms of a geometric average
of trap frequencies (e.g. Refs. [12, 25, 26, 226–230, 233–235]).

The collapse phenomenon results in the disappearance of metastable bright solitary
wave ground states when the interaction strength parameter k exceeds a critical
value kc. The critical parameter kc is dependent on the exact trap geometry. Within
the subset of cylindrically symmetric trap geometries we consider four cases in
particular, distinguished by different values of the anisotropy λ:
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λ2 = 0 Zero axial trapping (ωx = 0), resulting in a waveguide-like trap. Realizing a
quasi-1D limit in such a trap would result in a system exactly described by the
1D NLSE with a constant potential, exhibiting true bright soliton solutions.

0 < λ2 ≤ 1 A prolate, or isotropic, trapping potential (ωx ≤ ωr). While the quasi-
1D limit for such a trap, reached at low λ, is the non-integrable quasi-1D GPE
rather than 1D NLSE, this is nonetheless a more readily accessible regime
for experiments to realize bright solitary waves [10, 12]. The case λ = 1
corresponds to an isotropic trap.

1 < λ2 An oblate trapping potential (ωx > ωr). The existence of bright solitary
wave ground states in such traps has been investigated theoretically [235].
However, experimental and theoretical studies of bright solitary waves have
not focused on this geometry, primarily because the lack of a direct analogy
to bright solitons in the 1D NLSE.

λ2 < 0 The self-trapping nature of a bright solitary wave means it can exist in
weakly expulsive axial potential (|ωx| < ωr, ω2

x < 0). Such a potential, with
an expulsive harmonic trap (λ2 < 0), was realized in the bright solitary wave
experiment of Ref. [11].

The parameter regime where metastable solutions of the 3D GPE with as < 0 exist
can be determined numerically, by solving the 3D GPE. While this is the most ac-
curate method, analytic variational methods give a more generally insightful view
of the problem. In the next Section (Section 2.4.2) we introduce two variational
ansatzes to treat this problem — a Gaussian ansatz with Gaussian radial and axial
profiles, and a soliton ansatz with a Gaussian radial profile and a sech axial profile
— and discuss the numerical methods that can be used to provide a more quanti-
tatively accurate solution. In the subsequent Section (Section 2.4.3) we discuss the
results obtained using these methods, for the four aspect ratio categories enumer-
ated above. For the variational ansatzes these results are summarized in Figs. 2.3
and 2.4. Details of the analytic and numerical techniques needed to solve the ansatz-
energy-minimization equations appearing in the following Sections can be found in
Chapter 4, alongside details of an accurate pseudospectral numerical solution of the
stationary GPE. In Section 2.4.4 we briefly review previous work on the dynamics
of bright solitary waves in 3D; these dynamics form a key part of Chapter 3.
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2.4.2 Variational and numerical analysis

Variational analysis: Gaussian ansatz

The solution of the 3D GPE for a cylindrically symmetric trap [Eq. (2.18)] can be
approximated by a normalized Gaussian ansatz of the form 1

π3/2a3
r`

2
r,G`x,G

1/2

exp

− 1
2a2

r

 x2

`2
x,G

+
r2

`2
r,G

 , (2.20)

where `x,G and `r,G are, respectively, axial and radial variational length parame-
ters associated with the Gaussian ansatz. Such an ansatz has been considered in
Refs. [23] and [232], is used in Chapter 4, and is most appropriate in parameter
regimes where the strength of the trap potential dominates over the strength of
interactions in all directions (axial and radial). Substituting this Gaussian ansatz
[Eq. (2.20)] into the classical field Hamiltonian for Eq. (2.18),

H3D[ψ] =

∫
dr

[
~2

2m
|∇ψ(r)|2 + V(r)|ψ(r)|2 − 2πN|as|~2

m
|ψ(r)|4

]
, (2.21)

where V(r) = mω2
r (λ2x2 + r2)/2, yields

H3D[ψ] = ~ωr

 1
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4
+
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r,G

2
− k√

2π`2
r,G`x,G

 . (2.22)

Differentiating this variational energy functional with respect to the axial and radial
lengths `x,G and `r,G produces, respectively, the conditions

λ2`4
x,G +

2k`x,G√
2π`2

r,G

− 1 = 0 , (2.23)

and
`4

r,G +
2k√

2π`x,G

− 1 = 0 , (2.24)

which must be satisfied by the variational energy-minimizing lengths. Simultane-
ously solving Eqs. (2.23) and (2.24) to obtain a consistent physical solution, where
one exists, must generally be done numerically. In the case of prolate and oblate
trap potentials this can be implemented as a straightforward iterative procedure,
and for the axially free case an analytic solution can be found (see Chapter 4 for
details). The energy of this Gaussian variational ansatz is shown for various system
parameters in Fig. 2.3.
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Figure 2.3: Per-particle energy functional, H3D, determined using a Gaus-
sian ansatz [Eq. (2.20)] for a BEC in a cylindrically symmetric, harmonic
trap potential. Trap anisotropies shown are; (a) λ = 0, (b) λ = 1/2, (c)
λ = 1, (d) λ = 2, (e) λ2 = −4 × 10−4 (expulsive axial potential). The top
row [sub-label (i)] shows the case k = 0.35, for which all the trap geome-
tries are stable to collapse. In this case there is a stable local minimum in the
Gaussian ansatz variational energy, which corresponds to the (metastable)
bright solitary wave ground state. The bottom row [sub-label (ii)] shows
the case k = 1.1, for which all the trap geometries are unstable to collapse.

Variational analysis: soliton ansatz

Similarly to the case for the Gaussian ansatz, the 3D GPE for a cylindrically sym-
metric trap [Eq. (2.18)] can be solved using a normalized soliton ansatz of the form 1

4πa3
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2
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2a2
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2
r,S

 , (2.25)

where `x,S and `r,S are, respectively, axial and radial variational length parameters.
Such an ansatz has been considered in Refs. [23] and [231], and is most appropri-
ate in parameter regimes where the strength of the radial trap potential dominates
over the strength of interactions, but the strength of interactions dominates over the
strength of the axial trap potential. Substituting this soliton ansatz [Eq. (2.25)] into
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Figure 2.4: Per-particle energy functional, H3D, determined using a soliton
ansatz [Eq. (2.25)] for a BEC in a cylindrically symmetric, harmonic trap
potential. Trap anisotropies shown are; (a) λ = 0, (b) λ = 1/2, (c) λ = 1, (d)
λ = 2, (e) λ2 = −4×10−4 (expulsive axial potential). The top row [sub-label
(i)] shows the case k = 0.35, for which all the trap geometries are stable to
collapse. In this case there is a stable local minimum in the soliton ansatz
variational energy, which corresponds to the (metastable) bright solitary
wave ground state. The bottom row [sub-label (ii)] shows the case k = 1.1,
for which all the trap geometries are unstable to collapse.

the classical field Hamiltonian Eq. (2.21) yields

H3D[ψ] = ~ωr
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Differentiating this variational energy functional with respect to the axial and radial
lengths `x,S and `r,S produces the conditions

λ2`4
x,S +

4k`x,S

π2`2
r,S

− 4
π2 = 0 , (2.27)

and
`4

r,S +
2k

3`x,S
− 1 = 0 , (2.28)

which must be satisfied by the variational energy-minimizing lengths. As for the
Gaussian ansatz, numerically solving Eqs. (2.27) and (2.28) simultaneously to ob-
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tain a consistent physical solution, where one exists, can be implemented as a
straightforward iterative procedure (again, see Chapter 4). The soliton ansatz yields
a variational energy surface, shown in Fig. 2.4, which is quantitatively very similar
in structure to that yielded by the Gaussian ansatz [23, 231]. Again, we analyse this
structure in detail in Section 2.4.3.

Numerical analysis

A variational approach to the stability of bright solitary waves in 3D yields con-
siderable qualitative insight, particularly with regard to the collapse phenomenon.
However, the approach is not particularly accurate in its prediction of the critical pa-
rameter kc; the imposition of a certain shape on the wavefunction via the variational
anstatz causes variational methods to consistently over-estimate kc. Consequently,
a great deal of work in the field of attractively-interacting BECs has focused on
accurately identifying kc, for various trap configurations, using numerical methods
[240]. The numerical and variational results can also be compared in order to in-
vestigate how bright-soliton-like the bright solitary wave metastable ground-states
become in cases which approach the quasi-1D limit: such an analysis forms the
subject of Chapter 4.

Studies have investigated traps with spherical [26, 222] and cylindrical [234] sym-
metry, cylindrically symmetric waveguides without axial trapping [23], and the case
of a generally asymmetric trap [235]. Several works also investigated the config-
urations of specific experiments in detail [27, 231]. A wide variety of numeri-
cal methods have been deployed, including imaginary-time propagation on both
finite-difference [234] and pseudospectral [231] grids, an adiabatic ramping method
within a Crank-Nicolson scheme [23, 222], and a modified Newton method in a
pseudospectral scheme as we use in Chapter 4 (see also Appendix B). All the meth-
ods above are standard techniques for the GPE [240], and the resulting values of kc

are in reasonable agreement with each other.

2.4.3 Bright solitarywavemetastableground stateproperties

Constant axial potential

The case of a constant axial potential, resulting in a waveguide-like trap, effec-
tively removes one of the two free parameters of the cylindrically symmetric 3D
GPE [Eq. (2.18)], since λ = 0. This leads to some algebraic simplification and, in
the case of the soliton ansatz, the variational energy-minimizing lengths `x and `r
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and the critical parameter kc = 3−1/4 can be found analytically (see Ref. [231] and
Chapter 4).

More insight into the physical situation can be gleaned from the energy surfaces
shown in Figs. 2.3(a) and 2.4(a): these show the variational per-particle energy
H3D, for Gaussian and soliton ansatzes respectively, as a function of the variational
lengths `x and `r in parameter regimes where a metastable solitary wave ground state
either; (i) exists, or (ii) does not exist. For both ansatzes the energy surface forms
a relatively flat “plain” for larger `x and `r, with sharply rising “ridges” occurring
when either length becomes small. However, the (negative) interaction term in the
energy functional leads to a distinct “chute” [231] at the meeting point of these two
ridges (when both `x and `r are small). For low k a raised saddle point separates the
chute from the plain; as k increases this saddle lowers, until at k = kc it disappears
and the entire parameter regime of the plain becomes unstable. For the soliton
ansatz, this occurs at exactly kc = 1/31/4 ≈ 0.76 [231]. For the Gaussian ansatz the
critical value is kc ≈ 0.778 [232]. For comparison, the non-polynomial Schrödinger
equation (an extended quasi-1D approach) predicts kc = 2/3, through a simpler
calculation [201].

In regimes where a metastable bright solitary wave ground state does exist, the en-
ergy of the saddle point relative to that of the local energy minimum on the plain sets
an energy scale at which the bright solitary wave will be unstable to collapse when
excited. Excitations with sufficient energy could allow the condensate to overcome
the barrier formed by the saddle point and lead to a dynamical collapse in which `x

decreases to zero [23, 223, 231]. A second channel of instability also arises; because
the lack of an axial trap results in a finite-valued energy as `x → ∞; thus, there ex-
ists a “dispersive channel” in which excitations of the metastable ground state above
a certain energy threshold can lead to dynamics where `x increases without bound
[23, 231].

Prolate and isotropic trap potentials

The addition of a harmonic axial trapping potential to the previous case results
in a 3D GPE with two free parameters (expressed here as the interaction strength
parameter k, and the trap anisotropy λ = ωx/ωr). For anisotropies 0 < λ < 1
the trap has a prolate geometry, and for λ = 1 it is spherically symmetric. In
such cases it is not possible to find entirely analytic variational solutions for either
Gaussian or soliton ansatz; however, only a simple numerical procedure is required
(see Chapter 4).
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The energy landscape for prolate trap potentials is similar to that for the waveguide
trap λ = 0 in and around the region of the collapse instability (low `x and `r),
and is shown in Figs. 2.3(b) and 2.4(b) [ Figs. 2.3(c) and 2.4(c) show the isotropic
case λ = 1]. Again there is the same structure of chute and plain, separated by a
saddle point in the metastable case (i), and connected without a saddle point in the
unstable case (ii). The exact structure is dependent on the trap geometry, however,
and therefore the critical parameter for collapse, kc, varies with λ. Although the
energy landscape around the collapse instability remains similar, in the high-`x limit
the potential energy of the trap leads to an infinite total energy in the limit `x → ∞,
eliminating the dispersive channel altogether.

Oblate trap potential

If the axial trap frequency is increased to the extent that it exceeds the radial trap
frequency, one obtains an oblate trap potential (λ > 1). Such a geometry is not
typical for the study of bright solitary waves, as in this geometry no clear analogy
can be drawn with an integrable NLSE supporting bright soliton solutions.

Nonetheless, when an oblate trap possesses a metastable ground state it is a solitary
wave [219], and such ground states have been previously studied using the 3D GPE
[23], and 2D reductions with 3D effects [205]. The appearance of such a ground
state is directly determined by the collapse instability in a similar way to the pro-
late and isotropic traps, as can be seen from the variational energy surface for the
oblate case shown in Fig. 2.3(d) for the Gaussian ansatz and Fig. 2.4(d) for the soli-
ton ansatz. Interestingly, the soliton ansatz gives a similar picture to the Gaussian
ansatz in this case despite its apparently inappropriate shape in this geometry. Both
ansatzes give a similar picture to the prolate and isotropic traps, although the critical
parameter k is lower in the oblate case.

Expulsive axial potential

The self-trapped nature of bright solitary waves means they can withstand being
placed in a trap with a weakly expulsive harmonic axial potential (λ2 < 0) without
dispersing. This was the case in the experiment of Ref. [11], and the stability and
form of such potentials have been the subject of subsequent theoretical investigation
using the 3D GPE [23, 231].

The variational energy surfaces for the Gaussian and soliton ansatzes are shown,
respectively, in Figs. 2.3(e) and 2.4(e); again in each case the parameters in (i) ad-
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mit the existence of a metastable ground state, while (ii) shows a parameter regime
unstable against collapse. However, in addition to the collapse channel, an expul-
sive potential leads to a second instability, which has been termed the “expansive
channel” [23]. This is similar to the “dispersive channel” in the waveguide-like trap
(λ = 0), and corresponds to axial spreading of the solutions `x → ∞. In contrast
to the dispersive channel — which never completely prevents the existence of a
metastable ground state, but renders it unstable to (potentially very small) excita-
tions — the expansive channel can destabilize the solitary wave. Like the collapse
channel’s “chute”, the expansive channel is separated from the ground state by a
saddle point, which disappears for sufficiently low k, or high |λ|. In addition to the
critical parameter due to collapse, kc, this introduces a critical parameter due to ex-
pansion ke, such that one must have ke < k < kc in order to observe a metastable
ground state. In particular, |λ|must be relatively close to zero to avoid the cusp point
where kc = ke, and metastable solutions are no longer found.

2.4.4 Bright solitary waves dynamics in 3D

Overview

In 3D situations, it is not only the addition of trapping which leads to a loss of in-
tegrability, but but also three-dimensional effects. While the metastable 3D ground
state is still a solitary wave [219], 3D effects can lead to much more significant de-
viations from soliton-like behaviour than are observed in the quasi-1D GPE with
ωx > 0. Nonetheless, there are regimes where highly soliton-like dynamics can still
be observed. We will consider the dynamics of 3D bright solitary waves in prolate
traps in detail in Chapter 3. However, we introduce here some of the previously
known results relating to bright solitary waves in waveguide-like traps (ωx = 0).

Bright solitary wave dynamics in a waveguide

In the absence of analytic solutions for binary solitary wave collisions in a waveguide-
like trap, such collisions must be simulated numerically. This can be done from an
initial condition composed of two copies of the (numerically obtained) ground state
for N/2 particles, displaced from each other by some distance and given some ve-
locity toward each other5. This is similar to the procedure used in Fig. 2.2 in the
quasi-1D case. For equal-sized solitary waves the resulting collisions can be studied

5Such a velocity is imparted numerically by applying a spatially varying phase of e±ivx. Exper-
imentally, this could be achieved by applying a linear external potential to each solitary wave for a
short time; a related scheme is explored in detail in Chapter 3
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within the parameter space of collision velocity v, interaction strength parameter k,
and relative phase ∆Φ [27].

As in the case of the metastable ground state itself, the key parameter determin-
ing the stability of collisions of this type is the interaction strength parameter k;
this must remain below some threshold kcol in order to avoid a dynamically-induced
collapse when the waves meet. However, kcol itself is dependent on the other colli-
sion parameters. In particular, kcol is larger for faster collisions, and for collisions
with a relative phase closer to π. The latter effect is most noticeable for low ve-
locities, with the phase-dependence of kcol disappearing in the high-velocity limit.
At low velocity, this phase-dependence can be understood from the collision pro-
files illustrated for the NLSE in Fig. 2.1; in the case ∆Φ = π the density profile
of the collision itself resembles two solitons interacting repulsively [19] and never
overlapping, whereas in the case ∆Φ = 0 the solitons overlap, leading to a strong
density peak. While this peak is of no consequence in the NLSE or the quasi-1D
GPE, in the 3D GPE this peak in the atomic density can trigger the collapse instabil-
ity. This phase dependence of the collisional stability is also predicted by effective
1D equations retaining more 3D character than the quasi-1D GPE [203].

The dependence of kcol on the collision velocity v can be understood in terms of the
relationship between the characteristic time for collapse of the condensate, tcollapse,
and the characteristic time for the collision-interaction to take place, tint. In Ref.
[27] it was illustrated, for the parameters of the JILA solitary wave experiment
[12], that the critical collision velocity, below which collapse occurred in numerical
simulations of collisions, corresponds to a collision-interaction time tint approxi-
mately equal to the experimentally measured collapse time, tcollapse. Theoretical
investigation of the role of the two timescales has not proceeded further to date,
in part because the GPE has not been generally considered an accurate predictor
of tcollapse. However, recent results suggesting that the GPE can accurately predict
tcollapse when a three-body loss term with the correct coefficients is included [239]
offer the possibility of further progress in this area.

Population transfer in solitary wave collisions

Another effect occurring as a result of the 3D nature of the system is that of pop-
ulation transfer between bright solitary waves. In both the 1D NLSE, and in the
3D GPE for a waveguide trap, collisions between solitons or solitary waves with
relative phases ∆Φ = 0 and π have a density profile which remains completely
symmetric in x after the collision; in this respect the 1D NLSE and 3D GPE are
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analogous. The two descriptions lead to very different dynamics for intermediate
phases 0 < ∆Φ < π and π < ∆Φ < 2π, however. In the 1D NLSE the density pro-
file, which is initially symmetric in x, loses its symmetry during the collision and
regains it afterwards. In the 3D GPE for a waveguide trap, the initially-symmetric
density profile loses its symmetry during the collision, and this loss of symmetry
leads to population transfer between the two waves: the first solitary wave grows in
amplitude and slows down, while the second wave loses amplitude and speeds up.
In addition to the 3D GPE, this effect can also be seen in effective-1D approaches
retaining extra 3D character [203].

This transfer can be approximated using a simple two-mode model [27], which
bears considerable analogy to the model of a Josephson junction between supercon-
ductors and displays similar behaviour [241]. The amount of population transferred
shows interesting dependences on the relative phase and velocity of the solitary
waves: for fast collisions the amount of population transfer depends sinusoidally on
the relative phase; the maximum transfer occurs at ∆Φ = π/2 and ∆Φ = 3π/2, and
the magnitude of this transfer decreases with velocity. At lower velocities, however,
this dependence becomes skewed, with the maximum transfer occurring closer to
∆Φ = 0: this seems to be a consequence of nonlinear effects, and in certain param-
eter regimes almost certainly involves the collapse instability [27].



Chapter 3: Bright solitary wave production,
splitting, and interferometry

3.1 Introduction

The unique properties of bright solitary waves makes them promising candidates
for a variety of future applications. Areas of current research towards future ap-
plications include the development of soliton atom-lasers [242–244], the stabiliza-
tion and manipulation of bright solitary waves using spatially and temporally vary-
ing traps and inter-atomic s-wave scattering lengths [245, 246], manipulation of
bright solitary waves in periodic potentials [247, 248], with the potential for ap-
plications in quantum information [249], and for use in the study of atom-surface
interactions [44]. Other current research areas include dipolar [250–252], Rydberg-
induced [155], and Bose-Fermi [253, 254] bright solitary waves. One particularly
interesting possibility is the development of interferometry devices based on bright
solitary waves [10, 41–44, 80]; we focus on this possibility in this Chapter.

We begin, in Section 3.2, with a brief review of experimental and beyond-mean-field
aspects of bright solitary waves, both of which represent vital considerations in the
construction of a viable interferometric device. We briefly review the production of
bright solitary waves in atomic BEC experiments, and discuss the mean-field inter-
pretation of their observed dynamics (Section 3.2.1). In the case of multiple bright
solitary waves the mean-field analysis of previous experiments suggests an prefer-
ence for the formation of out-of-phase solitons. Studies of bright solitary waves
beyond the mean-field treatment have attempted to elucidate the cause of this pref-
erence (Section 3.2.2); while these studies agree with each other that many-body
effects will lead to the breakdown of the mean-field picture of the dynamics over
relatively fast timescales, there remains some underlying discrepancy with previous
experimental observations which, we propose, can be best be resolved by further
experiments.

In Section 3.3 we propose a new experimental technique which would allow one to
answer the question are experimentally observed atomic bright solitary waves well-

described by an effective single-particle wavefunction, propagated by the GPE?

Specifically, we propose a method to split the ground state of an attractively in-
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teracting atomic BEC into two bright solitary waves with controlled relative phase
and velocity (Section 3.3.1 and 3.3.2). Using the GPE, we analyse the stability of
these waves against their subsequent re-collisions at the centre of a cylindrically
symmetric, prolate harmonic trap as a function of relative phase, velocity, and trap
anisotropy; we do this both in quasi-1D (Section 3.3.3) and in 3D (Section 3.3.4).
We show that the collisional stability is strongly dependent on relative phase at
low velocity, and we identify previously unobserved oscillations in the collisional
stability as a function of the trap anisotropy. This analysis constitutes a testable
prediction of the mean-field description. An experimental implementation of our
method, which we demonstrate the feasibility of in Section 3.3.5, could be used to
explore the regime of validity of the mean field description of bright solitary waves.

Finally, our phase-controlled splitting method could also form an important step
towards atom interferometry experiments involving bright solitary waves. In Sec-
tion 3.4.1 we review the possibility of, and current proposals for, bright solitary
wave interferometers. In contrast to our phase controlled technique, current propos-
als favour the use of potential barriers for the splitting and recombination of bright
solitary waves. We review this technique, and discuss the relevance of beyond-
mean-field effects — including the possibility to exploit macroscopic quantum su-
perpositions of bright solitary waves to enhance measurement precision, in Sec-
tion 3.4.2.

3.2 Experimental aspects of bright solitary waves

3.2.1 Experimental production and solitary wave dynamics

As discussed in Chapter 2, bright solitary waves require attractive interatomic inter-
actions in order to form. However, due to the collapse instability, atomic BECs with
attractive interactions (negative s-wave scattering length as) are difficult to produce
experimentally. Much of the inherent difficulty can be overcome by selecting an
atomic species and hyperfine state where a Feshbach resonance can be used to tune

the interactions simply by applying an external magnetic field. In the case of an
optically-trapped BEC and a Feshbach resonance between two hyperfine levels of
the atomic species, one can adjust the magnetic field to obtain a very wide range
of different s-wave scattering lengths without affecting the harmonic confinement
[130].

Control of interactions using Feshbach resonances has been central to the experi-
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ments to date which have observed both individual [11] and multiple [10, 12] bright
solitary waves. In each case, these solitary waves were realized as collapse rem-

nants from a larger atomic BEC which was rendered unstable by rapidly tuning the
scattering length from a positive value to a negative one outside the regime of sta-
bility. During this collapse the majority of the atoms in the original condensate are
lost to the thermal cloud, while those that remain group into one or several bright
solitons, each containing less than the critical number of atoms. The species used
in these experiments have been 7Li [10, 11] and 85Rb [12].

As we have already seen (Chapter 2) bright solitary waves retain, in the mean-field
description, many soliton-like characteristics, including an absence of dispersion
and the existence of a well-defined relative phase between bright solitary waves.
The bright solitary waves observed in experiment were capable, in the case of mul-
tiple bright solitary waves, of surviving many mutual re-collisions at the trap centre
[10, 12]. The experiment of Ref. [10] operated close to the quasi-1D regime; here
the observed bright solitary wave motion has been shown to match the GPE de-
scription of bright solitary waves with relative phase Φ = π between neighbouring
solitary waves [10, 197, 255]. In contrast, the experiment of Ref. [12] operated in
a 3D regime. Here bright solitary waves are not universally stable against multiple
re-collisions (see Chapter 2). However, numerical simulations of the 3D GPE have
indicated that slow 3D bright solitary waves retain their form for fewer collisions
when their relative phase, Φ, is equal to 0 than when Φ = π [22, 27]. The long life-
times of 3D bright solitary waves seen in the experiment of Ref. [12] thus seem to
also imply that the relative phase of neighbouring solitary waves is Φ = π [22, 27].

3.2.2 Relativephaseand the roleofbeyond-mean-fieldeffects

Working largely within a mean-field model, the mechanism of modulational insta-
bility, and the shorter lifetime of colliding 3D bright solitary waves when Φ = 0,
have been identified as contributory causes to these apparent anti-phase relations
in both experiments [22, 27, 197, 198, 255]. In Ref. [198] in particular it was
proposed that modulational instability in the mean field model could be seeded by
initial beyond-mean-field fluctuations imparted by the collapse process. While this
mechanism would not guarantee Φ = π phase relations of itself, it has been pro-
posed that the fragility of in-phase bright solitary waves against collisions could
lead to such phase relations [198].

While they are considerably more complex than simulations of the mean-field GPE,
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studies of bright solitary waves beyond the mean-field description have now been
conducted for a range of specific configurations [28, 41–43, 238, 256, 257]. These
studies can be divided into two broad categories: Refs. [28, 43, 238, 256] added in
the effects of quantum noise using the truncated Wigner method (see Chapter 5),
while Refs. [41, 42, 257] used approximate analytic and numerical methods to sim-
ulate the full quantum many-body problem. Within these works, those of Refs. [41–
43] focused on the case of bright solitary waves colliding with fixed potential barri-
ers, to which we return in Section 3.4.

Of the remaining studies, those of Davis and co-workers [28, 238, 256] focused
on simulating bright solitary wave collisions using the truncated Wigner method.
Their results suggest that the effects of quantum noise on such collisions is to make
them resemble mean-field bright solitary wave collisions with relative phase Φ =

π (see Fig. 2.2(b)) for all initial phases. Potentially, this provides an alternative
explanation for the fact that observed dynamics of multiple bright solitary waves are
well-described by the mean-field GPE with Φ = π; however, only single collisions
were simulated in Ref. [28] — the full long-time dynamics of multiple 3D bright
solitons repeatedly re-colliding at the centre of a harmonic trap has not yet been
fully explored.

A similar study was undertaken by Streltsov and co-workers in Ref. [257], using
the MCTDHB computational method [258, 259]. They also found that many-body
effects rapidly give rise to an effective repulsive interaction between bright solitary
waves, which they also predict to rapidly become incoherent, fragmented objects
[257]. However, they also find: (a) that this fragmentation occurs on a much faster
timescale than the bright solitary wave dynamics observed in experiment (partic-
ularly in Ref. [10], to which they explicitly make a comparison), and (b) that the
effective repulsive interactions between the fragmented remnants are much weaker
than the mean-field interactions with Φ = π. In light of these two predictions, and
those of Davis and co-workers, the full answer to the question of how the mean-
field description with Φ = π succeeds so well at predicting the observed dynamics
remains somewhat murky. Answering this question incontrovertibly will prove ex-
tremely difficult without recourse to further bright solitary wave experiments, and
the ability to generate bright solitary waves with controlled initial relative phase

would be a significant advantage to future experiments investigating this question.
In the next Section we propose exactly such a method to, in a velocity- and phase-
controlled way, split a single bright solitary wave in an axisymmetric harmonic trap
into two outgoing bright solitary waves which repeatedly re-collide at the trap cen-
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tre. By investigating the subsequent mean-field dynamics of these solitary waves in
detail, we provide a benchmark prediction of the mean-field description which can
be experimentally tested.

3.3 Controlled, phase-coherent splitting of bright

solitary waves

3.3.1 Physical system and soliton units

In order to realize velocity- and phase-controlled splitting of bright solitary waves,
we consider an atomic BEC of N atoms of mass m and (attractive) s-wave scattering
length as < 0, held within a cylindrically symmetric, prolate harmonic trap V(r) =

m[ω2
xx2 +ω2

r (y2 + z2)]/2. As described in Chapter 2, with strong radial confinement
the system can be described by the quasi-1D GPE

i~
∂Ψ(x, t)
∂t

=

[
− ~2

2m
∂2

∂x2 +
mω2

xx2

2
− 2~ωrN|as||Ψ(x, t)|2

]
Ψ(x, t). (3.1)

This problem features two key length scales; the harmonic length ax =
√
~/mωx,

and the soliton length bx = ~/2mωrN|as|. A mathematically convenient way to
express the single free parameter of Eq. (3.1) is as the square of the ratio of these
two length scales;

ω ≡
(
bx

ax

)2

≡ ~ωx

4mω2
r |as|2N2 . (3.2)

To do so, we work in a system of “soliton units” [260] by moving to the dimension-
less variables

x′ =
x
bx

=
2mωrN|as|

~
x, (3.3)

t′ =
4mω2

r N2|as|2
~

t, (3.4)

ψ(x, t) =
√

bxΨ(x, t) =

√
~

2mωrN|as|Ψ(x, t), (3.5)

and rescaling to energy units of 4mω2
r N2|as|2. This system of units can be codified as

~ = m = g1DN = 1. Dropping primes from herein, this produces the dimensionless
1D GPE

i
∂ψ(x, t)
∂t

=

[
−1

2
∂2

∂x2 +
ω2x2

2
− |ψ(x, t)|2

]
ψ(x, t). (3.6)
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Here, the parameter ω = (b0/a0)2 can be interpreted as a dimensionless effective
trap strength.

3.3.2 Splitting protocol

To develop our desired splitting mechanism, we consider the effect of abruptly in-
creasing the magnitude of the (negative) s-wave scattering length in an attractively-
interacting atomic BEC. Specifically, we consider changing the scattering length
from an initial value of a0

s to a final value of as = α2a0
s , where α > 1 (and hence

as, a0
s < 0). We assume that this change can be performed quasi-instantaneously

(hence giving an interaction-strength “quench”) for the modulated initial condition

ψ(x, t = 0) = ψ0(x) = ψα(x) cos
(

kx
2α2 +

Φ

2

)
, (3.7)

where ψα(x) is the bright solitary wave ground state of the BEC at the initial scatter-
ing length a0

s . In the quasi-1D limit, which we consider first, a stable ground state
ψα(x) always exists. However, when we subsequently consider the same problem in
3D, we restrict our attention to regimes of |a0

s | below the critical value for the onset
of collapse, |ac

s|, in which a metastable ground state ψα(r) exists.

The ground state ψα(x) may be made by using a magnetic Feshbach resonance to
adiabatically change the scattering length from an initially repulsive to a weakly
negative value, a0

s , with |a0
s | < |ac

s|. While this mechanism for “smoothly” creating
a single bright solitary wave has not been experimentally realized to date, such a
technique is expected to be feasible in the Durham 85Rb BEC experiment currently
being developed [261]. The subsequent rapid change from a0

s to as = α2a0
s could

then exploit the same Feshbach resonance.

The density modulation that transforms ψα(x) into ψ0(x) may be achieved by using
a second internal atomic state in an interference protocol: denoting two relevant
atomic states by |+〉 and |−〉, we write the total state of the condensed atoms as

|ψ〉 = ψ+(x)|+〉 + ψ−(x)|−〉, (3.8)

we begin with all atoms in internal state |+〉, such that

ψ+(x) = ψα(x), (3.9)

ψ−(x) = 0. (3.10)
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Applying a resonant π/2 pulse to the internal state transition transforms this [45] to

ψ+(x) = ψ−(x) =
ψα(x)√

2
. (3.11)

The heart of our interferometric protocol now follows, which consists of imprinting
equal and opposite momenta on the two internal states, giving

ψ±(x) =
e±i(Kx+Φ)/2

√
2

ψα(x). (3.12)

This is then transformed into

ψ+(x) = cos [(Kx + Φ)/2]ψα(x), (3.13)

and
ψ−(x) = i sin [(Kx + Φ)/2]ψα(x), (3.14)

by a second resonant π/2 pulse. By rapidly expelling atoms in state |−〉 from the
trap — using, for example, a resonant light pulse — we leave the remaining atoms
in the state

ψ+(x) = ψ0(x), (3.15)

ψ−(x) = 0, (3.16)

where ψ0(x) is exactly the desired initial condition [Eq. (3.7)], with k = α2K, and
with Φ determined by the phase accumulated at the centre of the bright solitary
wave. Note that the loss of atoms between ψα(x) and ψ0(x) [an apparently inevitable
consequence of the nonunitarity of multiplying ψα(x) (in isolation) by a sinusoid]
is balanced by the change in normalization; N explicitly denotes the initial atom
number, and ψ0(x) is normalized to 1/2. There are many potential implementations
of this protocol; we explicitly consider one based on 85Rb atoms in Section 3.3.5.

3.3.3 Quasi-1D dynamics

Neglecting the axial trapping (setting ω = 0) the 1D GPE [Eq. (3.6)] reduces to the
dimensionless NLSE

i
∂ψ(x, t)
∂t

=

[
−1

2
∂2

∂x2 − |ψ(x, t)|2
]
ψ(x, t). (3.17)
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Figure 3.1: The structure of a multi-soliton pulse. The panels show the
soliton amplitudes a j, velocities v j, and fractions associated with the initial
condition ψ0(x) [Eq. (3.18)] in the NLSE [Eq. (3.17)], computed using a
numerical scattering transform [210], as a function of spatial modulation
frequency k. Panels (a–c) correspond to α = 2 and (d–f) to α = 2.2. Rel-
ative phases are Φ = 0 (+), π/4 (×), π/2 (4), 3π/4 (�), π (◦). Soliton
fraction is the ratio of the combined norm of the constituent solitons,

∑
j a j,

to the total norm
∫ ∞
−∞ |ψ0(x)|2dx. In the limit k → ∞, when α = 2, a j → 1/4

[
∑

j a j →
∫ ∞
−∞ |ψ0(x)|2dx→ 1/2], and v j → ±k/8 [193, 194].

In this limit, the ground state of the BEC before the change in scattering length,
ψα(x), is a single, stationary bright soliton. After density modulation this has the
form

ψ0(x) =
1

2α
sech

( x
2α2

)
cos

(
kx

2α2 +
Φ

2

)
, (3.18)

which is no longer simply a bright soliton solution.

While they were not explored in Chapter 2, solutions of the NLSE for the initial con-
dition Eq. (3.18) are well-known in the context of nonlinear optics [18, 193, 194].
The case k = 0 was studied analytically by Satsuma and Yajima [18] using the in-
verse scattering transform: for integer α = J, Eq. (3.18) is exactly a bound state,
or multi-soliton pulse, of J solitons with unequal amplitudes a j and zero velocity
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(v j = 0). For non-integer α = J + β (with 0 < β < 1), Eq. (3.18) consists of J

solitons plus radiation, with the norm of the soliton component given by
∑

j a j [18]
(see Chapter 2), and does not admit an exact analytic solution. The modulated case
(general k) has been considered both analytically and numerically by Kodama and
Hasegawa [193] and Afanasjev and Vysloukh [194]. Fig. 3.1 shows how the modu-
lation alters the character of a two soliton pulse (α & 2): beyond a certain threshold
value of k the pulse “splits” into two solitons with equal amplitudes, opposite veloc-
ities, and relative phase Φ, plus a negligible radiation component. Crucially, control
of the modulation corresponds to control over the relative velocity and phase of a
pair of generated bright solitons.

While the soliton parameters shown in Fig. 3.1 can be obtained by analytic methods
of approximation, this is a lengthy and involved process [193, 194]. In practice,
a much simpler method is to generate them numerically from the initial condition
ψ0(x) by solving the Zakharov-Shabat scattering problem associated with the NLSE
[Eq. (2.8)] numerically. Details of how to perform such a discrete scattering trans-

form using a propagator method can be found in [210].

In the presence of axial trapping (ω > 0) the quasi-1D GPE no longer supports
bright solitons (see Chapter 2); in this case we study the dynamics of initial con-
dition ψ0(x) numerically. For simplicity, we concentrate on the case α = 2. Other
cases α & 2 are similar except for a slightly altered relationship between k and
the resulting soliton speed; consequently an experiment would need to achieve only
the latter condition (α & 2) in order to observe qualitatively similar dynamics. In
this axially trapped case, a pair of equal amplitude bright solitary waves are gen-
erated with relative phase Φ and velocities controlled by k [Fig. 3.2]. The axial
trap confines the outgoing bright solitary waves and causes subsequent re-collisions
at the trap centre, for which the relative phase upon re-collision is always identi-
cal to the original imposed relative phase [20]. The bright solitary waves remain
highly soliton-like: the density profile during bright solitary wave collisions is sim-
ilar to that for bright solitons [19] [Fig. 3.2(d,f)], the bright solitary wave trajecto-
ries are well described by the particle model introduced in Chapter 2 [20, 21, 247]
[Fig. 3.2(c–f)], and the bright solitary waves are stable against their mutual colli-
sions. Indeed, they retain their form for a sufficiently large number of collisions that
atom losses, unaccounted for in the GPE, would be the lifetime-limiting factor in
an experiment.
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Figure 3.2: Generation of bright solitary waves with controlled relative
phase via the interference protocol, in the quasi-1D limit. Panels (a–f) show
the evolution of 1D GPE with trap frequency ω = 0.02 [ω = 0 inset in (a–
d)] and initial condition ψ0(x) for α = 2, Φ = 0 and k = 0 (a), k = 2
(b), k = 4 (c), k = 6 (d), and Φ = π and k = 4 (e), k = 6 (f), computed
using a pseudospectral split-step method (see Appendix B). Particle model
[20, 21] bright solitary wave trajectories, for effective masses and velocities
obtained from the numerical scattering transform of ψ0(x), are overlaid as
lines in (c–f). Panels (e) and (f) reproduce (c) and (d) for the case Φ = π

to show the difference in collision profile. The density (colour) axes are
normalized by c = 0.35 (inset c = 0.25) in (a) and c = 0.12 (inset c = 0.07)
in (b–f).
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3.3.4 3D dynamics

Moving beyond the quasi-1D regime, we can generate pairs of 3D bright solitary
waves with controlled velocity and relative phase using the same method. However,
dynamics in the radial directions can affect the stability of the bright solitary waves;
in certain cases this drastically reduces the number of collisions for which they
retain their form.

With respect to the quasi-1D GPE, the 3D GPE has a second free parameter, which
we choose to express as the (dimensionless) trap anisotropy

κ =
ωr

ωx
. (3.19)

Note that this is the inverse of the anisotropy λ defined in the previous Chapter;
however, κ proves more appropriate for our purposes in this Chapter, and those in
Chapter 4. Hence, we write the 3D GPE as

i
∂ψ(r, t)
∂t

=

[
−∇

2

2
+ V(r) − 2π

κω
|ψ(r, t)|2

]
ψ(r, t), (3.20)

where V(r) = ω2[x2 + κ2(y2 + z2)]/2, and ensuring unit norm for ψ(r, t) requires
ψ(r, t) = b3/2

0 Ψ(r, t). We use the same soliton variables as in Eq. (3.6); one advan-
tage of this choice is that the integrated axial density

ρaxial(x, t) =

" ∞

−∞
|ψ(r, t)|2dy dz , (3.21)

is equivalent to the quasi-1D density |ψ(x, t)|2. We again study the dynamics of
the bright solitary waves numerically, quantifying their stability against collisions
in terms of their positions and maximum integrated axial densities at the point of
maximum separation — this being much easier to measure, on typical experimental
scales, than the exact density profile during the collision. Fig. 3.3(a) shows how the
number of 1D-like collisions C1D (taken to be those where the positions and max-
imum integrated densities of the BSWs subsequently return to within 75% of their
original values) depends on velocity, relative phase, and trap anisotropy. We term
these collisions 1D-like because all collisions of quasi-1D bright solitary waves sat-
isfy these criteria (C1D → ∞).

As expected, Fig. 3.3(a) shows that C1D is strongly dependent on the relative phase
at low velocity, with the bright solitary waves being most stable around Φ = π when
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outside the quasi-1D regime1. At higher velocity this phase-dependence weakens
and the quasi-1D regime is reached at lower anisotropy. Fig. 3.3(a) also reveals
a previously unobserved feature: C1D shows a strong, oscillatory dependence on
the anisotropy at all velocities. This dependence arises from the bright solitary
waves being broken up by the transfer of energy to radial oscillations [Fig. 3.3(b–
d)]. These oscillations are started by the abrupt change in scattering length, and
subsequently amplified by collisions if the bright solitary waves collide when their
radial width is close to its oscillatory maximum. Consequently, one observes en-
hanced stability of the solitary waves if the axial trap period is a whole multiple
of the period of the solitary waves’ radial oscillations, and reduced stability if the
axial trap period is an odd multiple of half the period of the solitary waves’ radial
oscillations. Since the frequency of the radial oscillations is primarily determined
by ωr; this leads to the observed oscillations of C1D as a function of κ. The am-
plifying effect of collisions decreases with the bright solitary wave velocity, and
at low velocity a phase-dependent amplification of the radial oscillations emerges
[Fig. 3.3(e–g)], which we attribute to the higher densities at the point of collision
when Φ = 0 delivering a larger “kick” than when Φ = π. However, for inter-
mediate phases symmetry-breaking population transfer [27, 203] during collisions
also contributes to the reduction in C1D [Fig. 3.3(f)]. Within the GPE description,
Fig. 3.3 represents a comprehensive prediction of the bright solitary wave dynamics
resulting from our splitting protocol. Experimental observation of the dynamics we
predict would support the validity of the GPE description of bright solitary waves
and, in the case of the oscillatory dependence of C1D on κ, open the possibility of
controlling the bright solitary wave lifetime directly.

3.3.5 Summary and experimental implementation

In the preceding Sections we have proposed an experiment that produces a pair of
bright solitary waves with controlled relative phase and velocity in a harmonically
trapped atomic BEC, and we have analysed the subsequent collisions of these bright
solitary waves using the GPE. In the quasi-1D regime the bright solitary waves are
highly soliton-like and stable against their re-collisions. In the fully 3D regime, we
confirm that the collisional stability of the bright solitary waves depends on their
relative phase and velocity, and demonstrate for the first time a strong oscillatory
dependence on the trap anisotropy. The presence, or absence, of these effects in ex-
periments provides a direct test of whether experimentally observed atomic BSWs

1In the case k = 3 quasi-1D behaviour is reached (the phase dependence of C1D ends) at κ ≈ 20,
but this has been omitted from the plotted range for clarity.
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Figure 3.3: Stability of bright solitary wave collisions in 3D. Panel (a)
shows the number of 1D-like bright solitary wave collisions, C1D, as a func-
tion of k, Φ, and κ. In the case k = 3 quasi-1D behaviour is reached (the
phase dependence of C1D ends) at κ ≈ 20, but this has been omitted from the
plotted range for clarity. Effective trap frequency ω = 0.02 and α = 2. Also
shown is the evolution of the positively displaced bright solitary wave po-
sition, xs (dashed green line, right vertical axis), and the full width at half
maximum of the integrated radial density distribution, σr (solid red line,
left vertical axis), at the indicated points on the k = 4 (b–d) and k = 3.25
planes in (a). These quantities demonstrate the enhanced stability which
arises when the radial breathing period of the waves is commensurate with
the axial trap period.
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can be described in terms of a coherent effective single-particle wavefunction, prop-
agated by the GPE.

We now consider the question of the experimental feasibility of our interferometric
splitting protocol. Using a two-component GPE, we have simulated an implemen-
tation that uses 85Rb atoms in the quasi-1D regime with an applied magnetic field
gradient to transfer momentum: we find this simple prototype to be capable of
generating initial conditions close to Eq. (3.7) using current experimental technol-
ogy. We consider an experiment using the hyperfine ground states |F = 2,m f = −2〉
and |3,−2〉 of 85Rb. We assume an instantaneous π/2 pulse on the two-photon
rf/microwave transition coupling |2,−2〉 and |3,−2〉, and evolve the resulting state
for time τ under a linear applied magnetic field B given by

B = [B0 + C(x − x0)]B̂ , (3.22)

where B0 is a background constant value, and C the field gradient. We assume the
scattering length of the |3,−2〉 state and the inter-state scattering length is a∞ =

−443a0; this choice for the interspecies scattering length represents a “worst-case”
scenario. The |2,−2〉 state has a prominent Feshbach resonance centred on BF =

155.0 Gauss [262]. We account for the consequent spatial variation in scattering
length for this state using the model

as = a∞

[
1 − ∆

|B| − BF

]
, (3.23)

where ∆ = 10.7 Gauss is the measured width of the resonance [262]. In soli-
ton units, the components experience potentials (in additional to the harmonic trap
potential V(r), which we assume to be generated by all-optical means) U(x) =

Γ ± γ(x − x0), where

Γ =
|gF ||m f |µB(B0 − BF)

4mω2
r |as|2N2 , (3.24)

and
γ =

|gF ||m f |µBC~
8m2ω3

r |as|3N3 . (3.25)

After time τ we assume another instantaneous π/2 pulse, and subsequent instan-
taneous expulsion of the |3,−2〉 component with resonant light. A good approx-
imation to the initial condition ψ0(x) [Eq. (3.7)] is obtained when, for example
ωx ≈ 2π (10 Hz), ωr ≈ 2π (150 Hz), N ≈ 800, as ≈ −20a0 (B0 ≈ 166 Gauss),
C ≈ 75 Gauss cm−1 and τ ≈ 10µs. The resulting bright solitary wave evolution is
shown in Fig. 3.4.
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Figure 3.4: Two-component quasi-1D GPE simulation of the interferomet-
ric soliton splitting protocol. Following simulation of the splitting with a
two-component quasi-1D GPE, as described in Section 3.3.5, we show the
evolution of the resulting split bright solitary waves in a harmonic trap. Pa-
rameters are as described in Section 3.3.5, and the red line indicates the
particle model trajectories for the bright solitary waves.

3.4 Bright solitary wave interferometry

3.4.1 Proposals for a bright solitary wave interferometer

As we have already discussed in the introduction to this thesis, the non-dispersive
nature of bright solitary waves in atomic BECs potentially offers a novel solution to
the interaction-problem in atomic BEC interferometers [36, 38, 40]. In contrast to
a BEC interferometer based on a double-well [33–37], a Mach-Zender interferome-
ter using bright solitary waves could exploit their non-dispersive nature to suppress
the problems commonly associated with repulsive interactions. Furthermore, their
small size has led to them being proposed as an ideal tool to study atom-surface in-
teractions [44], as well as for general interferometry [10, 43, 263] and in a Sagnac-
interferometer configuration in a toroidal trap [80]. In such a bright solitary wave
analogue of the optical Mach-Zender interferometer, a BEC would be split into two
coherent, non-dispersive, spatially-localized bright solitary waves, which are sub-
sequently manipulated so as to take separate paths and then eventually recombined
using a time-dependent external potential. Despite the apparently rapidly decoher-
ing nature of many-body effects [28, 257], such an interferometer could potentially
be feasible for sufficiently short interrogation times.

The method for phase-controlled coherent splitting of bright solitary waves devel-
oped in the previous Section represents one potential realization of the splitting part
of a bright solitary wave interferometer. However, contemporary proposals for such



Chapter 3: Bright solitary wave production, splitting, and interferometry 81

interferometers [43, 80] instead focus on the use of a narrow potential barrier to
realize both splitting and recombination of solitary waves. In the next Section we
review the operation of these interferometers in the mean-field picture, and consider
carefully the potential role of beyond-mean-field effects.

3.4.2 Realizing a solitary wave interferometer

Splitting bright solitary waves at a potential barrier

A simple method to split bright solitary waves is afforded by collisions with a po-
tential barrier. In return for experimental simplicity, however, this method lacks
the same fine-grained control over the relative phase. Within the mean field de-
scription, the dynamics of NLSE bright soliton collisions with potential barriers
and wells has been widely explored (see, e.g., [212, 264–267] and Refs. therein).
The behaviour of bright solitary waves is similar in soliton-like regimes; in par-
ticular, fast bright solitary wave collisions with a narrow barrier lead to smooth
splitting of an incoming solitary wave into transmitted and reflected solitary waves
[43, 80, 81, 263, 267]. This behaviour is analogous to bright solitons in the NLSE
scattering from a δ-function potential: it can be analytically demonstrated in such a
situation that the incoming bright soliton is split into transmitted and reflected com-
ponents, each of which consist mainly of a bright soliton, plus a small amount of
radiation [267]. Bright solitary waves interacting with barriers much narrower than
their width largely follow this prediction [43, 80, 263].

In addition to providing a bright solitary wave beamsplitter, a narrow potential bar-
rier can also be used for phase-sensitive recombination of bright solitary waves
[43, 80]. When two roughly equal-sized bright solitary waves collide at a narrow
barrier the number of atoms emerging to the left (right) of this barrier following re-
combination, NL (NR), is sensitive to the relative phase difference δΦ. In particular,
nonlinear effects make the relative number difference (NL −NR)/N a rapidly chang-
ing function of δΦ for small phase differences. A wide-ranging quasi-analytical
treatment of this recombination process (and the splitting process) within the mean-
field description has been presented by Helm and co-workers (including the present
author) in Ref. [80].

Potential barrier collisions of this nature have been proposed as another means
to realize bright solitary wave interferometers, potentially based on solitary wave
molecules [263], oscillating bright solitary waves in a harmonic trap [43] and bright
solitary waves in a toroidal trap [80]. In Ref. [43], Martin and Ruostekoski consider
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a bright solitary wave interferometer in which a bright solitary wave consisting of N

atoms, oscillating in a quasi-1D harmonic trap, is split into two equal-sized waves
by a narrow Gaussian potential raised at the trap centre. Exactly half an oscillator
period after this beamsplitter stage the bright solitary waves are recombined again
when they return to the potential at the trap centre. In Ref. [80] a related set-up
using two narrow barriers in a quasi-1D toroidal trap is proposed. In both cases the
enhancement of the relative number difference (NL−NR)/N due to nonlinear effects
offers the potential to construct a very sensitive interferometric device. In the set-up
of Ref. [80] this device would be able to measure rotation.

Beyond-mean-field effects

To fully understand the operation of such an interferometer, however, one must
quantitatively account for number fluctuations. This is especially important with re-
gard to achieving sub-shot-noise measurement precision [38, 40, 43, 84, 132, 268,
269]. The mean-field GPE yields no definitive information on number statistics.
Although the GPE is often interpreted as describing a system with a wavefunction
of Hartree product form (that is, a single macroscopically occupied single particle
mode) and hence free of many-body correlations [42], this is not the sole interpre-
tation: it can also give an appropriate a classical-field description of a multi-mode
system with multiple macroscopically occupied modes, as in the widely-used c-field
methods [171] (see also Chapter 1 and Chapter 5). Indeed, a recent work (involving
the present author) work explicitly demonstrates that, for the exact case of a bright
soliton split by a δ-function potential, the GPE can evolve itself into a state where a
Hartree-product interpretation is energetically forbidden [81]. Hence, one should at
least be wary of universally using the Hartree product assumption to state that the
GPE implies zero number fluctuations, as in Refs. [42] and [257].

In Ref. [43] a truncated Wigner method [171] (see Chapter 5) is used to study num-
ber fluctuations. This study reveals that the enhanced sensitivity due to nonlinear
effects is generally destroyed by enhanced number fluctuations, although the authors
suggest that a change of experimental scheme could alleviate this difficulty. How-
ever, the truncated Wigner method only allows for a limited degree of macroscopic
superposition between the split solitons [43]; for any state approaching a maximally
entangled “NOON” state [268] of solitons a full many-body approach is required
[41, 42]. Such an approach for scattering a BEC bright soliton on a potential is
challenging; even in 1D, with a potential barrier the many-body Hamiltonian can
no longer be solved using the Bethe ansatz [41]. Nonetheless it was demonstrated
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in Ref. [41], using an effective potential approximation, that a condensate bright
soliton of 100 atoms could be placed in a coherent macroscopic superposition be-
tween reflected and transmitted solitons via a slow collision with a wide Gaussian
barrier — a state entirely dominated by many-body correlations rather than free of
them. Similar collisions were investigated in Ref. [42] using the MCTDHB many-
body computational method [258, 259]. In this work, the condensate was found
to fragment, leaving two macroscopically occupied orbitals. One of these orbitals
corresponded to a transmitted, and the other to a reflected, bright soliton, implying
creation of a macroscopic coherent superposition between spatially distinct states.

This potential to realize macroscopic quantum effects using bright solitary waves of-
fers exciting potential for future interferometric devices, as states with macroscopic
quantum superposition could be exploited to achieve quantum enhancement of the
measurement precision [38, 40, 84, 85]. Typically, when discussing the precision
of interferometric schemes, one considers precision relative to: (a) the shot-noise

limit, which is defined by a measurement precision scaling as N−1/2 — where N is
the number of particles — and corresponds to the limit imposed by classical, pois-
sonian statistics; and (b) the Heisenberg limit, which is defined by a measurement
precision scaling as N−1 and corresponds to the absolute quantum limit of precision
achievable with non-interacting [132]. While interferometric schemes exploiting
quantum effects using non-interacting particles can be used to surpass the shot-
noise limit [84], a more spectacular improvement in precision can, in principle,
be obtained in interacting systems; in a system where all possible k-body interac-
tions appear a measurement precision scaling up to N−k, and hence surpassing the
Heisenberg limit, can in principle be achieved [270]. While without the use of en-
tangled initial states this precision scaling is reduced to N−(k−1/2) [270], a bright
solitary wave interferometer operating with a non-entangled, mean-field input such
as we describe above has the potential to achieve a measurement precision scaling
as N−3/2, surpassing the Heisenberg limit.



Chapter 4: Realizing a soliton-like regime
with bright solitary waves

4.1 Introduction

In the preceding two Chapters we have explored in some detail the dynamics and
collisions of bright solitary waves, in both quasi-1D and 3D regimes. In particu-
lar we have demonstrated that bright solitary waves can display highly soliton-like
dynamics in three-dimensional (3D) parameter regimes (Chapter 3). However, we
have not directly addressed the question of exactly how soliton-like the (metastable)
ground state of the system is. In this regard, the experimental feasibility of reaching
the quasi-1D limit of an attractively-interacting BEC, and hence obtaining a highly
soliton-like ground state, remains an area lacking a thorough quantitative explo-
ration. Obtaining such a ground state, in addition to being interesting in its own
right, would be highly advantageous in experiments seeking to probe quantum ef-
fects beyond the mean-field description [41, 42, 258], and possibly to exploit the
effects of macroscopic quantum superposition to enhance metrological precision
as discussed in the previous Chapter [84, 132]. Similar concerns regarding adverse
residual 3D effects in interferometric protocols prompted a recent perturbative study
of residual 3D effects in highly anisotropic, repulsively-interacting BECs [271].

The potential instability to collapse of attractively-interacting BECs [23–25, 131,
222, 223, 234–236, 239] is the key obstacle to realizing soliton-like behaviour in
a 3D BEC. This instability was explored at length using variational methods in
Chapter 2. To recap, previous studies of bright solitary wave dynamics, using vari-
ational and numerical solutions of partially-quasi-1D GPEs [200–203] [reductions
of the GPE to a 1D equation which retain some 3D character, in contrast to the
full quasi-1D limit] and the 3D GPE [22, 23, 27], have shown the collapse insta-
bility to be associated with non-soliton-like behaviour. However, previous studies
of metastable bright solitary wave ground states — including the analysis in Chap-
ter 2 — have focused on identifying the critical parameters at which collapse occurs
[23, 196, 201, 222, 231, 233–235, 272].

In this Chapter we use analytic variational and highly accurate numerical solutions
of the stationary GPE to systematically and quantitatively assess how soliton-like

84
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the ground state of an attractively-interacting BEC in a prolate, cylindrically sym-
metric harmonic trap is, over a wide regime of trap and interaction strengths. Begin-
ning with previously-considered variational ansatzes based on Gaussian [23, 196,
272] and soliton [23, 231] profiles (which we also introduced in Chapter 2) we ob-
tain new, analytic variational solutions for the GPE ground state. Comparing the
soliton-ansatz variational solution to highly accurate numerical solutions of the sta-
tionary GPE, which we calculate over an extensive parameter space, gives a quanti-
tative measure of how soliton-like the ground state is. In the regime where the axial
and radial trap strengths dominate over the interactions, we show that the Gaussian
ansatz variational solution gives an excellent approximation to the true ground state
for all anisotropies; in this regime the ground state is not soliton-like. In the regime
in which the interactions dominate over the axial, but not the radial, trap strength we
demonstrate that the soliton-ansatz variational solution does approximate the true,
highly soliton-like ground state. However, we show that the goodness of the ap-
proximation and the extent of this regime, where it exists at all, is highly restricted
by the collapse instability; even at large anisotropies it occupies a narrow window
adjacent to the regime where interactions begin to dominate over all trap strengths,
leading to non-quasi-1D, non-soliton-like solutions and, ultimately, collapse.

Our results have substantial practical value for future experiments using attractively-
interacting BECs; primarily they define the challenging experimental regime re-
quired to realize a highly soliton-like ground state, which would be extremely use-
ful to observe quantum effects beyond the mean-field description such as macro-
scopic superposition of solitons [41, 42, 258]. We note that bright solitary wave
experiments to date have not reached this regime [10–12]. Secondarily, our quan-
titative analysis of a wide parameter space provides a picture of the ground state
in a wide range of possible attractively-interacting BEC experiments. In particular,
it indicates the regimes in which a full numerical solution of the 3D GPE is well-
approximated by one of our analytic variational solutions, which are significantly
easier and less time-consuming to determine.

We begin by introducing the most general classical field Hamiltonian and stationary
GPE we consider in Section 4.2, and we discuss the quasi-1D limit and our choice
of soliton units in Section 4.3. Our variational ansatzes are motivated by the limit-
ing behaviours of the solution in the quasi-1D case; in this case we define them as
Gaussian and soliton profiles, parametrized by their axial lengths. In Sections 4.3.2
and 4.3.3 we find, analytically, the energy-minimizing axial lengths for each ansatz
as a function of the dimensionless effective trap strength ω. Comparison of the
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resulting ansatz solutions to highly accurate numerical solutions of the stationary
quasi-1D GPE allows us to determine, in the quasi-1D limit, the regimes of low ω

in which highly soliton-like ground states can be realized (Section 4.3.4). We then
consider the 3D GPE in Section 4.4, which has a second free parameter in κ, the
(dimensionless) trap anisotropy. In Sections 4.4.2 to 4.4.5 we define 3D Gaussian
and soliton ansatzes, adapted from their quasi-1D analogues and each parametrized
by an axial and a radial length, and find the energy-minimizing lengths for each
ansatz. In general this requires only a very simple numerical procedure, and in the
limit of a waveguide-like trap can be expressed analytically (Section 4.4.6). In Sec-
tion 4.4.7 we compare the ansatz solutions to highly accurate numerical solutions
of the stationary 3D GPE and, in Section 4.5, assess the potential for realizing truly
soliton-like ground states. We provide a final summary of the results of this Chapter
in Section 4.6.

4.2 System overview

As in previous Chapters, we consider a BEC of N atoms of mass m and (attractive)
s-wave scattering length as < 0, held within a cylindrically symmetric, prolate (the
radial frequency ωr is greater than the axial frequency ωx) harmonic trap. The
ground state is described by the stationary Gross-Pitaevskii equation[

− ~2

2m
∇2 + V(r) − 4πN|as|~2

m
|ψ(r)|2 − µ

]
ψ(r) = 0, (4.1)

where the trapping potential V(r) = m[ω2
xx2/2 + ω2

r (y2 + z2)/2], µ is the chemical
potential, and the Gross-Pitaevskii wavefunction ψ(r) is again normalized to one.
This equation is generated by the classical field Hamiltonian (through the functional
derivative δH[ψ]/δψ∗ = µψ)

H[ψ] =

∫
dr

[
~2

2m
|∇ψ(r)|2 + V(r)|ψ(r)|2 − 2πN |as|~2

m
|ψ(r)|4

]
. (4.2)

This functional of the classical field ψ describes the total energy per particle, and
the ground state solution minimizes the value of this functional.

When dealing with variational ansatzes for the ground state solution, we proceed
by analytically minimizing an energy functional in the same form as [Eq. (4.2)]
for a given ansatz. In contrast, highly accurate numerical ground states are more
conveniently obtained by solving a stationary GPE of the same form as [Eq. (4.1)].
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4.3 Quasi-1D limit

4.3.1 Soliton units

As in Chapter 2, for sufficiently tight radial confinement (ωr � ωx), such that
the atom-atom interactions are nonetheless essentially 3D [as � (~/mωr)1/2], it is
conventional [20, 21, 196, 200, 201, 272] to assume a reduction to an quasi-1D
stationary GPE[

− ~2

2m
∂2

∂x2 +
mω2

xx2

2
− 2~ωr|as|N|ψ(x)|2 − µ

]
ψ(x) = 0. (4.3)

Here, we remind the reader that this equation [identical to Eq. (2.5)] arises from
the assumption that ψ(r) can be factorized into ψ(x) and the radial harmonic ground
state. In the absence of the axial harmonic confining potential (ωx → 0) the exact
bright soliton solutions to this equation have the general form [Eq. (2.9)]

ψ(x, t) =
a

2
√

bx
sech

(
a(x − x0 − vt)

2bx

)
× exp

(
i
[
m
~

{
v(x − x0) +

v2t
2

+
ω2

r |as|2N2a2t
2

}
+ Φ

])
, (4.4)

where we recall that bx = ~/2mωr|as|N is a length scale characterizing the soliton’s
spatial extent, v is the soliton velocity, x0 is an arbitrary displacement, and Φ is an
arbitrary phase.

As in Chapter 3, we use a system of soliton units (Section 3.3.1) in order that the
dimensionless effective trap strength ω = (bx/ax)2 is the single free parameter. This
yields the dimensionless, stationary, quasi-1D GPE[

−1
2
∂2

∂x2 +
ω2x2

2
− |ψ(x)|2 − µ

]
ψ(x) = 0. (4.5)

The corresponding classical field Hamiltonian is

H1D[ψ] =

∫
dx

[
1
2

∣∣∣∣∣ ∂∂x
ψ(x)

∣∣∣∣∣2 +
ω2x2

2
|ψ(x)|2 +

1
2
|ψ(x)|4

]
. (4.6)

The choice of ω for the single free parameter in the 1D GPE [Eq. (4.5)] and the clas-
sical field Hamiltonian [Eq. (4.6)] can be most directly pictured as choosing to hold
interaction strength constant while varying the axial trap strength, parametrized by
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ω. Experimentally, however, any of ωx, ωr, as, and N may be varied in order to vary
ω. In the case ω = 0 the exact ground state solution is a single, stationary bright
soliton: ψ(x) = sech(x/2)/2. In the following Sections we develop analytic varia-
tional solutions ψ(x) for general ω. Comparing these solutions to highly accurate
numerical solutions of the quasi-1D GPE then gives a picture of the behaviour of
the ground state with ω. Furthermore, these quasi-1D variational solutions motivate
the later 3D variational solutions and yield several mathematical expressions which
reappear in the more complex 3D calculations.

4.3.2 Variational solution: Gaussian ansatz

We first consider the Gaussian variational ansatz

ψ(x) =

(
ω

π`2
G

)1/4

e−ωx2/2`2
G , (4.7)

where the variational parameter, `G, quantifies the axial length. In the trap-dominated
limit (ω → ∞), the true solution tends to a Gaussian with `G = 1. Substituting
Eq. (4.7) into Eq. (4.6) yields (using identities from Appendix A.2)

H1D(`G) =
ω

4

(
`2

G +
1
`2

G

− 2
(2πω)1/2`G

)
, (4.8)

where H1D is now expressed as a function of the axial length `G. Setting ∂H1D/∂`G =

0 reveals that the variational energy described by Eq. (4.8) is minimized when `G is
a positive, real solution to the quartic equation

`4
G +

`G

(2πω)1/2 − 1 = 0. (4.9)

The positive, real solution to this quartic is (see solution in Appendix A.3)

`G =

[
χ(ω)

]1/2

24/3(πω)1/6


( 2
χ(ω)

)3/2

− 1
1/2

− 1

 , (4.10)

where we have, for notational convenience, defined χ to have ω-dependence such
that

χ(ω) =

1 +

(
1 +

1024π2ω2

27

)1/21/3

+

1 − (
1 +

1024π2ω2

27

)1/21/3

. (4.11)
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4.3.3 Variational solution: soliton ansatz

Secondly, we consider a soliton ansatz

ψ(x) =
1

2`1/2
S

sech
(

x
2`S

)
, (4.12)

where the variational parameter, `S, again quantifies the axial length. In the axially
un-trapped limit (ω → 0), the true solution tends to a classical bright soliton, as
described by the above ansatz with `S = 1. The variational energy per particle is
given by (using identities from Appendix A.2)

H1D(`S) =
π2ω2

6

(
`2

S +
1

4π2ω2`2
S

− 1
2π2ω2`S

)
, (4.13)

which is minimized when

`4
S +

`S

4π2ω2 −
1

4π2ω2 = 0. (4.14)

Again, this quartic can be solved analytically (see solution in Appendix A.3) to give
the positive, real minimizing value of `S;

`S =

[
χ(ω)

]1/2

211/6(πω)2/3


( 2
χ(ω)

)3/2

− 1
1/2

− 1

 , (4.15)

with χ defined as in Eq. (4.11).

4.3.4 Analysis and comparison to 1D numerical solutions

The energy-minimizing axial lengths `G and `S, defined by Eq. (4.10) and Eq. (4.15)
respectively, are shown as a function of ω in Fig. 4.1(a). There is no collapse in-
stability in the quasi-1D GPE, and solutions are obtained for all (positive, real) ω.
As intended by the chosen forms of the ansatzes, the limiting cases are `G → 1 as
ω → ∞ and `S → 1 as ω → 0. To evaluate the accuracy of the ansatzes for general
ω, we compare each ansatz with the numerically determined ground state of the
quasi-1D GPE. The computation of a numerically exact ground state ψ0(x), and the
corresponding ground state energy E1D, uses a pseudospectral method in a basis of
symmetric Gauss-Hermite functions; this is a simplified version of the pseudospec-
tral method used for 3D calculations, which is explained in more detail in the next
Section, and in Appendix B. Several quantities are compared in Fig. 4.1(b–d): the
variational minimum energies H1D for each ansatz and the numerical ground state
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Figure 4.1: Comparison of quasi-1D variational and numerical solutions as
a function of the ratio between trap strength and interaction strength, ω: (a)
Energy-minimizing axial lengths `G (Gaussian ansatz, squares) and `S (soli-
ton ansatz, circles) for the quasi-1D GPE. (b) Minimum variational energy
compared with the numerically calculated ground state energy E1D (black
line) for each ansatz: for low ω we show H1D (solid symbols), which tends
to −1/24 as ω → 0; for high ω we show H′1D = H1D/ω (hollow symbols),
which tends to 1/2 as ω → ∞ (H′1D is equal to the energy expressed in the
“harmonic units,” ~ = m = ωx = 1). (c) Relative error in the variational
energy, ∆ = (H1D − E1D)/E1D. (d) Normalized maximum deformation of
the best-fitting ansatz wavefunction ψAnsatz with respect to the numerical
ground state ψ0, ∆ψ = max(|ψAnsatz − ψ0|)/max(ψ0), expressed as a per-
centage. For clarity in (a,b) [(c)], every 16th [20th] datum is marked by a
symbol.
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energy E1D are shown in Fig. 4.1(b); the relative error between H1D and E1D, defined
as ∆ = (H1D−E1D)/|E1D|, is shown for each ansatz in Fig. 4.1(c); and the maximum
difference between the most appropriate ansatz wavefunction (that with lowest ∆)
and the numerical ground state wavefunction, expressed as a percentage of the max-
imum value of the numerically exact ground state, ∆ψ = max(|ψAnsatz−ψ0|)/max(ψ0)
[Fig. 4.1(d)]. All the shown computed quantities are insensitive to a doubling of the
numerical basis size from 500 to 1000 states.

Both the Gaussian and soliton ansatzes provide an excellent approximation to the
exact solutions over a large range of ω. In the regimes where the relative error in the
energy ∆ becomes significantly lower than 10−9 in particular, the difference between
the ansatz solutions and numerical solutions becomes generally indistinguishable
from numerical round-off error. For the Gaussian ansatz the convergence to this
regime is noticeably slower than for the soliton ansatz [Fig. 4.1(c)]. This effect is
a consequence of the parametrization in terms of ω and the corresponding “soliton
units”: increasing ω leads not only to to higher trap strength, but also to higher peak
densities |ψ(x)|2, and hence a stronger nonlinear effect.

For later comparison to the 3D case, it is useful to define a benchmark value of the
relative error ∆ that indicates excellent agreement between the ansatz and the nu-
merically exact solution. Such a definition, however, will vary according to purpose.
As our objectives in this Chapter relate significantly to the shape of the ground state,
this forms the basis of our benchmark; a maximum deformation of the wavefunction
below 0.1% of the peak value [as measured by ∆ψ in Fig. 4.1(d)] corresponds very
closely to ∆ < 10−5. Because the relative error ∆ saturates to a background value of
≈ 10−1 in regimes where the chosen ansatz is inapplicable, a value of ∆ four orders
of magnitude below this background value thus corresponds to an excellent match
in shape between the ansatz and the numerically exact solution. With respect to
this benchmark, the Gaussian ansatz represents an excellent fit for log10(ω) > 1.15,
while the ground state is highly soliton-like (the soliton ansatz represents an excel-
lent fit) for log10(ω) < −0.95.

4.4 Bright solitary wave ground states in 3D

4.4.1 Rescaling to effective 1D soliton units

We now consider the cylindrically symmetric 3D Gross-Pitaevskii equation given
by Eq. (4.1). Compared to the quasi-1D effective Gross-Pitaevskii equation of
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Eq. (4.5), three-dimensionality introduces an additional relevant length scale, the
radial harmonic length ar = (~/mωr)1/2. As in Chapter 3 we incorporate this into
the dimensionless trap anisotropy κ ≡ ωr/ωx, which forms an additional free pa-
rameter. Expressed in the same “soliton units” as Eq. (4.5), Eq. (4.1) becomes[

−1
2
∇2 + V(r) − 2π

κω
|ψ(r)|2 − µ

]
ψ(r) = 0, (4.16)

with corresponding energy functional

H3D[ψ] =

∫
dr

[
1
2
∇ψ(r) · ∇ψ∗(r) + V(r)|ψ(r)|2 − π

κω
|ψ(r)|4

]
, (4.17)

where V(r) = ω2[x2 + κ2(y2 + z2)]/2.

In the following Sections we obtain variational solutions for general κ and ω using
ansatzes similar to the Gaussian and soliton ansatzes employed in the previous Sec-
tion, with an additional variable-width Gaussian radial profile. Contrary to the case
in the quasi-1D limit, a self-consistent energy-minimizing solution for both the ax-
ial and radial length parameters cannot be expressed entirely analytically. However,
we reduce the numerical work required to the simultaneous solution of two equa-
tions, and introduce a straightforward iterative technique to achieve this. We also
consider the case of a waveguide-like trap (ωx = 0) separately, where an entirely
analytic variational solution exists (Section 4.4.6). Subsequently, in Section 4.4.7,
we again compare the ansatz solutions to high-accuracy numerics.

4.4.2 Variational solution: Gaussian ansatz

We first consider an ansatz composed of Gaussian axial and radial profiles. We
phrase this as

ψ(r) =
κ1/2ω3/4kG

π3/4`1/2
G

e−κωk2
G(y2+z2)/2e−ωx2/2`2

G . (4.18)

Here, the first variational parameter, `G, quantifies the axial length of the ansatz in
analogy to the quasi-1D case. The reciprocal of the second variational parameter,
k−1

G , quantifies the radial length of the ansatz. In the trap-dominated limit (ω → ∞)
both these lengths approach unity ({`G, kG} → 1). Substitution of this ansatz into
Eq. (4.17) yields (using identities from Appendix A.2)

H3D(`G, kG) =
ω

4

(
`2

G +
1
`2

G

− 2k2
G

(2πω)1/2`G
+ 2κk2

G +
2κ
k2

G

)
. (4.19)
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Setting the partial derivatives with respect to both `G and kG equal to zero, we de-
duce that `G must solve the quartic equation

`4
G +

k2
G`G

(2πω)1/2 − 1 = 0, (4.20)

and that kG must solve

kG =

(
(2πω)1/2κ`G

(2πω)1/2κ`G − 1

)1/4

. (4.21)

From Eq. (4.21) it follows that we must have `G > 1/(2πω)1/2κ to obtain a physi-
cally reasonable solution, i.e., a real, positive value of kG, consistent with our initial
ansatz. For a given such value of kG, Eq. (4.20) is solved (see solution in Ap-
pendix A.3) by

`G =

[
χ
(
ωk−4

G

)]1/2
k2/3

G

24/3(πω)1/6



 2

χ
(
ωk−4

G

)
3/2

− 1


1/2

− 1

 , (4.22)

with χ defined as in Eq. (4.11).

4.4.3 Analysis of Gaussian ansatz solution

Contrary to the quasi-1D limit, minimization of the variational energy in 3D re-
quires simultaneous solution of two equations for the radial length, k−1

G , and the
axial length, `G. These equations are, respectively, Eq. (4.21) and [rearranged from
Eq. (4.20)]

kG =

[
(2πω)1/2

`G

(
1 − `4

G

)]1/2

. (4.23)

These equations dictate that physical solutions must have

1
(2πω)1/2κ

< `G < 1, (4.24)

and hence that ω > 1/2πκ2 must be satisfied in order for physical solutions to exist.

Where solutions exist, they must be found numerically. However, a very practical
method of numerical solution follows from the shape of the `G surface defined by
Eq. (4.22), and shown in Fig. 4.2(a), which is a decreasing function of kG for all
(real, positive) ω. The method can be considered graphically, in terms of locating
the intersection(s) of Eq. (4.21) and Eq. (4.23). These curves are shown, for various
κ, in Fig. 4.2(b–d), along with the lower bound from inequality Eq. (4.24). Below a
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Figure 4.2: Energy-minimizing variational parameters for the 3D GPE us-
ing a Gaussian ansatz: (a) axial length `G as a function of the radial length
k−1

G and the parameter ω [Eq. (4.22)]. Lines show the simultaneous solu-
tions of Eqs. (4.21) and (4.23) for the axial length `G and radial length k−1

G ,
for different anisotropies κ and values of ω. Projections of these solutions
on theω–`G plane are also shown; here the black line indicates the quasi-1D
result [from Fig. 4.1(a)]. (b–d) Illustration of the intersections of Eq. (4.21)
[lines with vertical asymptote `G = 1/(2πω)1/2κ shown with fine dashes]
and Eq. (4.23) for various κ: the higher-`G intersection, which corresponds
to a physical solution for the axial length `G and radial length k−1

G , can be
found using a “staircase” method starting from kG = 1. The numerical so-
lutions obtained this way, and shown by points in (a), are shown by crosses
in (b–d). The lowest values of ω plotted in (b–d) are the lowest for which a
self-consistent Gaussian ansatz solution is found.
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κ-dependent threshold value of ω the curves fail to intersect, indicating instability of
the BEC to collapse. At the threshold value [dotted curves in Fig. 4.2(b–d)] there is
exactly one intersection, and above the threshold value [other curves in Fig. 4.2(b–
d)] there are two intersections. In the latter case the higher-`G intersection, which
smoothly deforms to the limiting case {`G, kG} → 1 as ω → ∞, represents the
physical, minimal-energy variational solution. This solution can be located using a
simple “staircase” method: substituting a trial value k̄G, satisfying 1 ≤ k̄G < kG, into
Eq. (4.22) produces a trial value, ¯̀G, satisfying `G < ¯̀G ≤ 1, and subsequently sub-
stituting this trial value into Eq. (4.21) produces an iterated trial value, k̄′G, satisfying
k̄G < k̄′G < kG. Thus, beginning with k̄G = 1, iteration of this process converges the
trial values to the true kG and `G.

The physical solutions to Eqs. (4.20) and (4.21) for different anisotropies κ are
shown on the `G surface, and projected into the `G–ω plane, in Fig. 4.2(a). These so-
lutions are also shown as black crosses in the `G–kG plane in Figs. 4.2(b–d), where
they form a line connecting the physical-solution intersections of Eqs. (4.21) and
(4.23) for the various ω shown. In Fig. 4.2(a) the collapse instability is manifest as
a rapid rise in kG — corresponding to a decrease in radial extent — and fall in `G

— corresponding to a decrease in axial extent — just above a κ-dependent thresh-
old value of ω. There are no self-consistent solutions for these quantities below
this collapse threshold. For increasing anisotropies κ, this collapse threshold oc-
curs at lower values of ω. For the highest two values of κ considered the collapse
threshold lies in the regime where `G is already approaching 0; our analysis of the
Gaussian ansatz in the quasi-1D limit indicates that the 3D Gaussian ansatz will be
a poor approximation to the true solution in this regime. Importantly, for ω above
the collapse threshold the projected curves for each anisotropy agree well with the
Gaussian ansatz in the quasi-1D GPE, suggesting that the Gaussian ansatz gives a
good approximation to the true solution here.

4.4.4 Variational solution: soliton ansatz

Secondly, we consider a soliton ansatz composed of a axial sech profile and a radial
Gaussian profile. We phrase this as

ψ(r) =
ω1/2κ1/2kS

(2π`S)1/2 e−κωk2
S(y2+z2)/2sech(x/2`S). (4.25)

As with the 3D Gaussian ansatz, the first variational parameter, `G, quantifies the
axial length of the ansatz and the reciprocal of the second variational parameter,
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Figure 4.3: Energy-minimizing variational parameters for the 3D GPE us-
ing a soliton ansatz: (a) axial length `S as a function of the radial length k−1

S

and the parameter ω [Eq. (4.29)]. Lines show the simultaneous solutions of
Eqs. (4.32) and (4.33) for the axial length `S and radial length k−1

S , for dif-
ferent anisotropies κ and values of ω. Projections of these solutions on the
ω–`S plane are also shown; here the black line indicates the quasi-1D result
[from Fig. 4.1(a)]. (b–d) Illustration of the intersections of Eq. (4.32) [lines
with vertical asymptote `S = (π/3)/(2πω)1/2κ shown with fine dashes] and
Eq. (4.33) for various κ: the higher-`S intersection, which corresponds to a
physical solution for the axial length `S and radial length k−1

S , can be found
using a “staircase” method starting from kS = 1. The numerical solutions
obtained this way, and shown by points in (a), are shown by crosses in
(b–d). The lowest values of ω plotted in (b–d) are the lowest for which a
self-consistent soliton ansatz solution is found.
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k−1
G , quantifies its radial length. In the quasi-1D limit both lengths consequently

approach unity ({`G, kG} → 1). Substituting this ansatz into Eq. (4.17) yields (using
identities from Appendix A.2)

H3D(`S, kS) =
π2ω2

6

(
`2

S +
1

4π2ω2`2
S

− k2
S

2π2ω2`S
+

3κk2
S

π2ω
+

3κ
π2ωk2

S

)
. (4.26)

Once again, setting partial derivatives with respect to both `S and kS equal to zero
allows us to deduce that:

`4
S +

k2
S`S

4π2ω2 −
1

4π2ω2 = 0, (4.27)

and that kS must solve

kS =

(
6κω`S

6κω`S − 1

)1/4

. (4.28)

From Eq. (4.28) it follows that we must have `S > 1/6κω to obtain a physically rea-
sonable solution, i.e., a real, positive value of kS, consistent with our initial ansatz.
For a given such value of kS, Eq. (4.27) is solved (see solution in Appendix A.3) by

`S =

[
χ
(
ωk−4

S

)]1/2
k2/3

S

211/6(πω)2/3



 2

χ
(
ωk−4

S

)
3/2

− 1


1/2

− 1

 , (4.29)

with χ defined as in Eq. (4.11).

4.4.5 Analysis of soliton ansatz solution

As in the case of the Gaussian ansatz, minimization of the variational energy in
3D requires the simultaneous solution of equations for the radial length k−1

S and the
axial length `S. These equations are, respectively, Eq. (4.28) and [rearranged from
Eq. (4.27)]

kS =

[
1
`S

(
1 − 4π2ω2`4

S

)]1/2

. (4.30)

These equations dictate that physical solutions must have

1
6κω

< `S <
1

(2πω)1/2 , (4.31)

and hence that ω > (π/3)2/2πκ2 must be satisfied in order for physical solutions to
exist. These equations and constraints can be further simplified by casting them in
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terms of `′S = (2πω)1/2`S; this yields two equations,

kS =

(
(2πω)1/2κ`′S

(2πω)1/2κ`′S − π/3
)1/4

, (4.32)

and

kS =

[
(2πω)1/2

`′S

(
1 − `′S4

)]1/2

, (4.33)

and an inequality,
π/3

(2πω)1/2κ
< `′S < 1, (4.34)

which are extremely similar to those encountered in the case of the Gaussian ansatz.
The numerical solution of these equations for the physical solution, which can only
exist when ω > (π/3)2/2πκ2, follows the same procedure as used for the Gaussian
ansatz.

Variational-energy-minimizing solutions to the soliton ansatz equations for different
anisotropies κ are shown in Fig. 4.3; these are shown superimposed on the `S surface
and projected into the `S–ω plane in Fig. 4.3(a), and alongside Eqs. (4.27) and
(4.28) and Eq. (4.34) in Fig. 4.3(b–d). The collapse instability is even more evident
in the soliton ansatz than in the Gaussian ansatz, since it occurs in a region with
a larger background value of `S. Once again, the collapse is manifest as a rapid
rise in kS and drop in `S — corresponding to both axial and radial contraction of
the solution— immediately prior to a κ-dependent threshold value of ω. Below
the threshold, no self-consistent solutions exist. For increasing anisotropies κ, this
collapse threshold again occurs at lower values of ω. In contrast to the case of the
Gaussian ansatz, however, the collapse instability precludes solutions in exactly the
limit where one expects the soliton ansatz to be accurate (ω→ 0). This property of
the collapse instability severely restricts the possibility of observing highly bright-
soliton-like ground states in 3D. The solution curves in Fig. 4.3(a) illustrate that
this effect is worst for low trap anisotropies κ, but is to some extent mitigated for
higher κ. However, a full comparison with numerically exact solutions is necessary
to quantify these effects; we undertake such a comparison in Section 4.4.7.

4.4.6 Variational solution: waveguide configuration

In broad experimental terms, the collapse instability sets a maximum value for the
ratio of interaction strength to trap strength (equivalent to a minimum value of
ω) which increases (and hence the minimum value of ω decreases) with the trap
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anisotropy κ. In the context of atomic BEC experiments one would typically think
of controlling the interaction–trap strength ratio by varying either |as| or N while
holding ωr and ωx constant; in this situation the collapse instability places a trap-
anisotropy-dependent upper limit on the product |as|N. However, the minimum
value of ω does not increase without limit in the trap anisotropy κ: In an experiment
one can, in principle, remove all axial trapping to create a waveguide-like configura-
tion; in this case ωx = 0 and the trap anisotropy κ → ∞, while the parameter ω→ 0.
In this limit a reparametrization is necessary, and only needs to be performed for
the soliton ansatz, which is clearly more appropriate in this context.

Elimination of the axial trap eliminates one of the two free parameters of the 3D
GPE [Eq. (4.16)]. The remaining free parameter is Ω = ωκ = (ar/2|as|N)2, where
ar = (~/mωr)1/2 is the radial harmonic oscillator length scale. The soliton ansatz
may be re-written in terms of Ω as

ψ(r) =
Ω1/2kS

(2π`S)1/2 e−Ωk2
S(y2+z2)/2sech(x/2`S). (4.35)

Substituting this into Eq. (4.17) with ωx = 0 yields (using identities from Ap-
pendix A.2),

H3D(`S, kS) =

(
1

24`2
S

− k2
S

12`S
+

Ωk2
S

2
+

Ω

2k2
S

)
, (4.36)

from which we deduce that the energy-minimizing variational parameters satisfy

`S =
1
k2

S

, (4.37)

and

kS =

(
6Ω`S

6Ω`S − 1

)1/4

. (4.38)

Contrary to the more general 3D case, an analytic simultaneous solution of Eqs. (4.37)
and (4.38) exists when `S satisfies the depressed cubic equation

`3
S − `S +

1
6Ω

= 0. (4.39)

Using the general solution for a depressed cubic equation from Appendix A.3, one
finds that the physical root (with real, positive `S satisfying the limit `S → 1 as
Ω→ ∞) is given by

`S =

− 1
12Ω

+
1

33/2Ω

(
3

16
−Ω2

)1/21/3

+

− 1
12Ω

− 1
33/2Ω

(
3
16
−Ω2

)1/21/3

. (4.40)
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Figure 4.4: Comparison of 3D variational and numerical solutions in a
waveguide configuration (ωx = 0: (a) Energy-minimizing axial length `S

and radial length k−1
S for the soliton ansatz. Solutions, given by Eq. (4.40),

exist for all Ω = κω > 31/2/4. (b) Relative error in the minimum variational
energy of the soliton ansatz, ∆ = (H3D − E3D)/E3D, where E3D is the nu-
merically determined ground state energy. The shaded area represents the
parameter regime of previous bright solitary wave experiments (see Table
4.1).

Consequently, solutions only exist for Ω > 31/2/4, as shown in Fig. 4.4(a).

4.4.7 Comparison to 3D numerical solutions

The variational energy-minimizing axial lengths `G and `S are shown as functions
of ω in Fig. 4.5(a) for the general 3D case; for the waveguide limit both axial and
radial lengths `S and k−1

S are shown as functions of Ω in Fig. 4.4(a). As in the quasi-
1D case, we quantitatively evaluate the accuracy of the ansatz solutions for general
ω (Ω) by comparing the variational minimum energy H3D with the numerically de-
termined ground state energy E3D. We calculate E3D using a pseudospectral method
in a basis of optimally-scaled harmonic oscillator eigenstates; this is formed from a
tensor product of symmetric Gauss-Hermite functions (axial direction) and gener-
alized Laguerre functions (radial direction). The ansatz with the lowest variational
energy is used both to optimize the scaling of the basis functions and as an initial
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Figure 4.5: Comparison of 3D variational and numerical solutions: (a)
Energy-minimizing axial lengths `G (Gaussian ansatz, solid symbols) and
`S (soliton ansatz, hollow symbols). (b) Scaled variational energies H′3D =

κH3D/ω(κ+ 1/2) [a similarly scaled ground state energy E′3D = κE3D/ω(κ+

1/2) tends to 1 in the limit ω→ ∞ for all anisotropies κ] compared with the
numerically calculated ground state energies E3D (black dots). (c,d) Nor-
malized relative error in the variational energy ∆ = (H3D−E3D)/E3D for the
Gaussian (c) and soliton (d) ansatzes. For clarity every 4th datum is marked
by a symbol in (a–d).
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Experiment κ log10(ω) log10(Ω)
Rice [10] 11.4 -1.04 0.014
ENS [11] ? ? 0.11
JILA [12] 2.5 -0.41 -0.0074

Table 4.1: Typical parameters associated with previous bright solitary wave
experiments. No ω or κ values are given for the ENS experiment [11] as
it featured an expulsive axial potential, incompatible with the variational
analysis presented in this chapter. In each case an approximate value of
Ω is estimated by assuming a waveguide-like trap could be produced by
complete removal of the axial potential in each experiment, regardless of
the actual feasibility of this procedure.

estimate for the solution. Expanding the stationary 3D GPE in such a basis produces
a system of nonlinear equations which are solved iteratively using a modified New-
ton method; a detailed explanation is given in Appendix B. A similar method was
used to solve a similar cylindrically symmetric, stationary 3D GPE, with repulsive
interactions, in Ref. [71].

As in the quasi-1D case, we compare several quantities between the ansatz and
numerical solutions. Fig. 4.5(b) shows the scaled energy H′3D = (H3D/ω)/(1 +

1/2κ) in the general 3D case. This scaling is such that E′3D — which is defined
analogously to H′3D with respect to E3D — tends to 1 as ω → ∞. Figs. 4.5(c) and
(d) show the relative error in the variational minimum energy ∆ = (H3D − E3D)/E3D

for the Gaussian and soliton ansatzes, respectively. The same quantity ∆ is shown
for the waveguide limit in Fig. 4.4(b). All quantities shown in Figs. 4.5 and 4.4
are computed using between 2000 and 12000 basis states (κ-dependent) and are
insensitive to a doubling of the number of basis states.

In the general 3D case, a close inspection of Fig. 4.5(b–d) is necessary to reveal the
overall relation between the ansatz solutions and the numerically obtained ground
state. In the high-ω limit Fig. 4.5(b) shows that both the Gaussian variational en-
ergies (solid symbols) and the ground state energy E3D (black dots) approach 1
as ω → ∞, whereas the soliton ansatz energies (hollow symbols) tend to higher
energies. This corresponds to the actual ground state most closely matching the
Gaussian ansatz in this limit, as one would expect. Indeed, the relative error in
variational energy, ∆, for the Gaussian ansatz [Fig. 4.5(c)] continues to drop expo-
nentially with ω for all anisotropies κ, making it possible to find regimes of ωwhere
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the Gaussian ansatz gives an excellent approximation to the true ground state.

In the opposite, low-ω limit, collapse occurs at a κ-dependent value of ω; this corre-
sponds to the points in Fig. 4.5(a–d) where solution curves abruptly cease. Prior to
collapse (at higher values of ω) the relation between the Gaussian ansatz, the soli-
ton ansatz, and the actual ground state is highly dependent on the trap anisotropy
κ [Fig. 4.5(b)]. In the case of a spherically symmetric trap, where the anisotropy
κ = 1, the soliton ansatz variational energy is never closer to the true ground state
energy E3D than the Gaussian ansatz variational energy. A regime of soliton-like
ground states consequently cannot exist at this low anisotropy; as the soliton ansatz
is intrinsically asymmetric, this is to be expected. For higher anisotropies, the soli-
ton ansatz energy is closer to E3D than the Gaussian ansatz energy in a small regime
prior to collapse. Exactly how soliton-like the ground state is in this regime can
be quantitatively assessed using the relative error ∆. This is shown for the soliton
ansatz in [Fig. 4.5(d)]. For each κ the “background” value of ∆ in the limitω→ ∞ is
different; this effect is due to the decreasing size of the axial part of the energy with
respect to the radial part for increasing ω. In the opposite, low-ω, limit ∆ increases
sharply close to the collapse point as the ground state wavefunction rapidly con-
tracts. The maximum extent to which ∆ decreases from its high-ω limit, before this
increase due to collapse-related contraction at low ω, quantifies how soliton-like
the ground state becomes in this regime. Even for the highest anisotropy shown,
κ = 256, the regime of ω over which ∆ drops below its background value is rather
narrow, and the actual drop in ∆ is only one order of magnitude. Compared to
benchmark of Section 4.3.4, this indicates that the true ground state remains con-
siderably deformed with respect to the soliton ansatz. The minimum error in the
soliton ansatz energy does, however, improve with increasing anisotropy κ. Excel-
lent agreement can be achieved in the waveguide limit (κ → ∞): Fig. 4.4 shows that
excellent agreement, with respect to the benchmark figure of Section 4.3.4, can be
obtained for Ω > 103/2.

4.5 Physical interpretation of results

A physical interpretation of the above results follows from considering two condi-
tions that must be satisfied in order to realize a soliton-like ground state; (1) the
radial profile should be “frozen” to a Gaussian, thus realizing a quasi-1D limit; and
(2) interactions should dominate over the axial trapping. On first inspection these
conditions seem mutually compatible, and satisfiable simply by increasing the ra-
dial trap frequency ωr with other parameters held constant. However, condition (1)
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can only be satisfied if the maximum density remains low enough to avoid any de-
formation of the radial profile due to the collapse instability. Increasing ωr leads to
exactly such deformation, and ultimately to collapse, as it has the secondary effect
of strongly increasing the density. This strong increase in density with ωr is partic-
ular to the case of attractive interactions. Increasing ωr in a repulsively-interacting
BEC likewise acts to increase the density, but this increase is counteracted by the
interactions; these act to reduce the density, and cause the BEC to expand axially. In
the attractively-interacting case the response of the interactions is the opposite: in-
creasing ωr leads to axial contraction of the BEC. Consequently condition (1) is far
harder to satisfy for an attractively-interacting BEC than a repulsively-interacting
one. Responding to this problem simply by reducing the interaction strength (either
through |as| or N) leads to violation of condition (2). The nature of the problem is
made particularly clear by considering the waveguide limit: here condition (2) is
automatically satisfied (ωx = 0). This makes it possible to achieve a highly soliton-
like ground state by satisfying condition (1) alone. However, such a ground state
is achieved by lowering the product ω1/2

r |as|N, and thus by progressing towards the
limit of extreme diluteness.

This physical behaviour of the system presents considerable challenges for exper-
iments aiming to realize a highly soliton-like ground state. In essence, the most
desirable configuration is to have extremely high anisotropies κ, while keeping ωr

as low as possible. Realizing such a configuration through extremely low, or zero,
axial trap frequencies ωx is problematic: such frequencies are hard to set precisely
experimentally as they require a very smooth potential to be generated, potentially
over a considerable length. Furthermore, in the case ωx = 0 the mean-field approxi-
mation ceases to be valid for an attractively-interacting BEC; the true wavefunction
should be translationally invariant in this case, but the mean-field solution breaks
this symmetry [273]. Even for very low but non-zero ωx the mean-field approxima-
tion can lose validity due to the extreme diluteness of the BEC, and the energy gap
from the ground state to states with excited axial modes can become low enough to
cause significant population of the excited states at experimentally feasible temper-
atures.

It is informative to consider the parameters used in bright solitary wave experiments
to date [10–12], listed in Table 4.1. None of these aimed to realize highly soliton-
like ground states in the sense considered here. However, they nonetheless indicate
regimes which have proved to be experimentally accessible and offer a guide to fu-
ture possibilities. All have operated outside the regime of highly soliton-like ground
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states; direct comparison of the experiments of Refs. [10] and [12] with our results
reveals that κ is too small in these experiments (κ ≈ 11 and κ ≈ 3 respectively) to
achieve a highly soliton-like ground state. The experiment of Ref. [11] featured
an expulsive axial potential, which does not yield a value of κ suitable for direct
comparison with our results. However, it is possible to assume the waveguide limit
ωx = 0 in each experiment and compare the values of Ω with our results, as given in
Table 4.1 and indicated on Fig. 4.4: in each case Ω lies outside the regime of highly
soliton-like ground states. Thus, experiments with weaker traps and lower densities
than previously realized with attractive condensates appear to be necessary in order
to achieve a highly soliton-like ground state.

4.6 Summary

In this Chapter we considered attractively-interacting atomic BECs in cylindrically
symmetric, prolate harmonic traps, and introduced variational ansatzes, based on
Gaussian and bright-soliton profiles, for the GPE ground state. We compared new,
analytic variational solutions based on these ansatzes with highly accurate numeri-
cal solutions of the GPE over an extensive parameter space, and hence determined
how soliton-like the ground state is. Initially assuming the quasi-1D limit to be
valid, we showed that the true solution to the GPE is (not) soliton like when inter-
actions do (not) dominate over the trap strength. In 3D, this picture is complicated
by the collapse instability; in the regime where all trap strengths dominate over the
interactions a Gaussian variational ansatz gives an excellent approximation to the
true, and non-soliton-like ground state. In contrast to the quasi-1D limit, however,
we have shown that the regime in which the ground state is truly soliton-like (well
approximated by a soliton variational ansatz) is either non-existent, or highly re-
stricted, depending on the trap anisotropy. For low anisotropies, as one raises the
strength of the interactions such that they approach and exceed the strength of the
axial trap the true ground state ceases to be well-described by a Gaussian varia-
tional ansatz, but does not become well-described by a soliton variational ansatz
before the interaction strength also exceeds the radial trapping strength, leading to
collapse. Only by raising the anisotropy significantly can one open a parameter
window in which the true ground-state becomes soliton-like before the interaction
strength is sufficient to cause collapse.

Our results describe the nature of the ground state over a wide parameter regime,
and offer a straightforward, accurate approximation to the full 3D GPE solution in
many cases. Our results are particularly relevant for experiments using attractively-
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interacting condensates, as they identify the potentially challenging parameter regime
required to observe a truly soliton-like ground state. In particular, we have shown
that for previous experimental configurations even complete elimination of the axial
trap is not sufficient to reach a soliton-like regime: one must also adjust other pa-
rameters so as to achieve roughly an order-of-magnitude increase in the parameter
Ω (see Fig. 4.4). Experimentally, this would require lowering of any combination of
the radial trap frequency ωr, scattering length magnitude |as|, and atom number N

so as to achieve an order-of-magnitude decrease in the product ωr|as|2N2. Based on
the difficulties associated with producing and imaging small and dilute condensates,
we suggest that lowering |as| may be the most viable option, although this would
require extremely good magnetic field stability and control.

Nonetheless, reaching a regime with a highly soliton-like ground state will be ad-
vantageous for experiments seeking to explore and exploit beyond-mean field ef-
fects such as a macroscopic superposition of bright solitons. Also, given that pre-
vious studies have shown that the dynamics and collisions of bright solitary waves
can be soliton-like over a much wider parameter regime than our approach reveals
the ground state to be, extending the variational approach used here to dynamical
situations is an interesting direction for future work.
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Chapter 5: Atomic Bose-Einstein
condensates at finite temperature

5.1 Introduction

In Part I of this thesis we have applied the zero-temperature, mean-field, Gross-
Pitaevskii description of an atomic BEC to the study of bright matter solitary waves.
In Part II, we now turn our attention to the description of atomic BECs at finite tem-
perature, with an emphasis on describing non-equilibrium dynamics at low tem-
peratures, where the quantum nature of the interaction between the condensate and
non-condensate plays a crucial role. In particular, we seek a theory which describes
both the condensate and non-condensate fractions of an atomic BEC, and the inter-
actions between the two, in regimes where the relative size of the non-condensate
is small but non-negligible. The size of the non-condensate is determined by three
primary factors:

1. Interaction strength: The strength of inter-atomic interactions determines
the magnitude of the non-condensate fraction — the quantum depletion — at
zero temperature.

2. Finite-temperature: Temperatures greater than T = 0 lead initially to a ther-
mal population of the elementary quasiparticle excitations of the system, and
ultimately to the loss of a condensate altogether above Tc.

3. Dynamical depletion: Non-equilibrium dynamics provide a dynamical mech-
anism, even when beginning at T = 0 equilibrium, for atoms to leave or enter
the condensate. Such dynamics can be caused by, for example, external driv-
ing or an interaction strength quench.

These factors should not be viewed as entirely independent: in particular finite-
temperature and dynamical depletion are fundamentally related in the sense that a
system that is temporarily driven, and hence dynamically depleted, would, if al-
lowed to rethermalize, then have a higher temperature. However these factors form
a useful motivating check-list for the capabilities of beyond-mean-field theories we
consider in Part II of this thesis; specifically, we seek a theory capable of describing
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an atomic BEC with: (a) sufficiently weak interactions that the quantum depletion
is around 1%; (b) temperature T > 0 such that the total non-condensate fraction
considerably exceeds the quantum depletion; and (c) doing so in a completely dy-

namical way. In view of the intimate link between non-equilibrium dynamics and
finite temperatures, a theoretical description satisfying (c) without satisfying (b) is
impossible.

A theoretical description which correctly captures non-equilibrium dynamics of
condensate and non-condensate in a consistent fashion is our central goal in Part
II of this thesis. Such a description represents an important extension to the GPE
for describing driven, or otherwise excited, atomic BECs, potentially useful for ex-
ploring phenomena such as dynamical chaos, thermalization, and integrability in
non-equilibrium atomic BECs. In particular, this description would provide a log-
ical pathway to extend the analysis of bright solitary waves in Part I of this thesis
to account for the role of the non-condensate; such an extension will likely be nec-
essary to further understand the operation of bright solitary wave interferometry
devices in the future. Importantly, in developing a theoretical description we will
place greater emphasis on successfully describing non-equilibrium dynamics at low
temperatures, even if this comes at the expense of being able to describe behaviour
(either equilibrium or non-equilibrium) at higher temperatures.

With this central goal in place, in this Chapter we review in some detail the the-
oretical finite-temperature descriptions of atomic BECs currently available. We
begin with the symmetry-breaking descriptions encountered in Chapter 1, which
we review in Section 5.2. After summarizing the previously introduced symmetry-
breaking approach (Section 5.2.1), we introduce the Hartree-Fock-Bogoliubov de-
scription, which represents the highest possible order symmetry-breaking mean-
field treatment of condensate and non-condensate in the static case (Section 5.2.2).
This description extends the zero-temperature quadratic Hamiltonian which we di-
agonalized in the static case in Chapter 1, and gives an ideal introduction to sev-
eral issues which arise when developing beyond-quadratic-Hamiltonian treatments
— particularly the issues of ultraviolet divergences and energy gaps in the excita-
tion spectrum, which we discuss in Section 5.2.3. Having introduced these issues,
and their potential cures, we discuss symmetry-breaking descriptions of coupled
condensate and non-condensate dynamics in Section 5.2.4. However, while these
descriptions have proved highly successful at higher temperatures, they fail to pro-
vide the consistent treatment of condensate and non-condensate interactions at low
temperature which we desire (Section 5.2.5).
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The problems with the symmetry-breaking description, for our purposes, can be
avoided by instead adopting a number-conserving description. We give an overview
of number-conserving descriptions in Section 5.3; in such descriptions the neces-
sary partition of the field operator (Section 5.3.1) and fluctuation expansion (Sec-
tion 5.3.2) is similar to the symmetry-breaking approach. However, enforcing ex-
plicit number-conservation leads to non-local terms which guarantee orthogonality
between the condensate and non-condensate, and lead to a correct description of
the phonon-like character of non-condensate excitations at low temperature in both
static (Section 5.3.3) and dynamic (Section 5.3.4) formulations. In particular, the
dynamical, second-order, number-conserving description of S. Gardiner and Mor-
gan, introduced in Section 5.3.4, fulfils our central goal: it is this description which
we proceed to develop in Chapter 6 and implement in a fully dynamical calculation
in Chapter 7.

Finally, we briefly review alternative, “c-field”, descriptions of finite temperature
atomic BECs (Section 5.4). These methods are developed along different theoret-
ical lines to the symmetry-breaking and number-conserving descriptions, and have
proved very successful at temperatures around Tc. However, they do not represent
as good a description of low-temperature non-equilibrium dynamics as the number-
conserving description, and consequently we do not use c-field methods further in
this thesis.

5.2 Symmetry-breaking descriptions

5.2.1 Partition of field operator and fluctuation expansion

The symmetry-breaking approach, as introduced in Chapter 1, offers perhaps the
least mathematically complicated route to a finite-temperature description of atomic
BECs. To recap, the symmetry-breaking approach involves replacing the annihila-
tion operator for the condensate mode with a complex number: âc →

√
Nc(t)eiΦ

(where Φ is an arbitrary phase). This replacement leads to the following partition
of the field operator

Ψ̂(r) = Ψ(r, t) + δ̂(r, t), (5.1)

where the non-condensate field operator δ̂(r, t) is a well-defined fluctuation oper-

ator, since its expectation value is equal to zero;
〈
δ̂(r, t)

〉
= 0. This gives Ψ̂(r)

a mean value of ψ(r, t), and the expectation values of second-order products of
δ̂(r, t) and δ̂†(r, t) are analogous to the variance of a distribution about the mean
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ψ(r, t) [68]. Importantly, δ̂(r, t) scales with the number of non-condensate atoms,
allowing one to justifiably neglect terms of high order in δ̂(r, t) or δ̂†(r, t) when the
non-condensate is small compared to the condensate, as is the case in atomic BECs
sufficiently below Tc.

In the case of the weakly-interacting Bose gas considered here, this fluctuation ex-

pansion procedure [68] corresponds to substituting Eq. (5.1) into the Hamiltonian
Eq. (1.9), and subsequently collecting powers of δ̂(r, t) and δ̂†(r, t) to give

H0 =

∫
dr Ψ∗(r, t)

(
Hsp(r, t) − µ +

U0

2
|Ψ(r, t)|2

)
Ψ(r, t) , (5.2)

Ĥ1 =

∫
dr

[
δ̂†(r, t)

(
Hsp(r, t) − µ + U0|Ψ(r, t)|2

)
Ψ(r, t) + h.c.

]
, (5.3)

Ĥ2 =

∫
dr

[
δ̂†(r, t)

(
Hsp(r, t) − µ + 2U0|Ψ(r, t)|2

)
δ̂(r, t)

+
U0

2

(
Ψ∗2(r, t)δ̂(r, t)δ̂(r, t) + h.c.

)]
, (5.4)

Ĥ3 = U0

∫
dr

[
Ψ(r, t)δ̂†(r, t)δ̂†(r, t)δ̂(r, t) + h.c.

]
, (5.5)

Ĥ4 =
U0

2

∫
dr δ̂†(r, t)δ̂†(r, t)δ̂(r, t)δ̂(r, t) ; (5.6)

this expression has already been given in Eq. (1.19), but is repeated here for con-
venience. With δ̂(r, t) scaling with the size of the non-condensate, truncating the
Hamiltonian at some finite order provides perturbative descriptions of the systems,
as was done for the example of the quadratic Hamiltonian (H0 + Ĥ1 + Ĥ2) in Chap-
ter 1.

5.2.2 Static description: Hartree-Fock-Bogoliubov (HFB)

We have already discussed the symmetry-breaking Bogoliubov quasiparticle de-
scription in the static case in Chapter 1, which arises from considering the quadratic
Hamiltonian (H0 + Ĥ1 + Ĥ2). In the context of static, finite-temperature descrip-
tions using the symmetry-breaking formalism, a key role is played by the Hartree-
Fock-Bogoliubov (HFB) Hamiltonian: this extends the simple quadratic Hamilto-
nian H0 + Ĥ1 + Ĥ2 by including some effects of Ĥ3 and Ĥ4 perturbatively. This
is achieved by applying the cubic and quartic Hartree-Fock factorizations (we sup-
press position- and time-dependence for clarity in the following two expressions)

δ̂†δ̂δ̂ ≈ 2
〈
δ̂†δ̂

〉
δ̂ + δ̂†

〈
δ̂δ̂

〉
, (5.7)
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and

δ̂†δ̂†δ̂δ̂ ≈ 4
〈
δ̂†δ̂

〉
δ̂†δ̂ +

〈
δ̂†δ̂†

〉
δ̂δ̂ +

〈
δ̂δ̂

〉
δ̂†δ̂† − 2

〈
δ̂†δ̂

〉2 − 2
〈
δ̂δ̂

〉 〈
δ̂†δ̂†

〉
, (5.8)

to Ĥ3 and Ĥ4 respectively. These factorizations are motivated by Wick’s theorem
[50, 161], which in this context implies that all higher-order correlation functions
of a non-interacting gas at equilibrium can be exactly expressed in terms of first-
and second-order correlation functions. Applied to an interacting gas, as here, these
factorizations constitute a fairly rough approximation. In terms of inter-atomic col-
lisions, the cubic factorization approximation [Eq. (5.7)] is equivalent to ignoring
collisions in which; (a) two non-condensate atoms collide, with one atom being
scattered into the condensate; (b) a condensate and a non-condensate atom collide,
with the former atom being scattered out of the condensate. In similar terms, the
quartic factorization approximation [Eq. (5.8)] is equivalent to ignoring collisions
between two non-condensate atoms in which neither is scattered into the conden-
sate. The cubic factorization approximation has thus been identified as ignoring
effects leading to growth and decay of the condensate which can be important at
finite temperatures [50, 274, 275]. However, we note that at low temperatures these
effects are small; the dominant growth and decay effects at low temperature are due
to Bogoliubov pair excitations, which lead to transfer of population into, or out of,
the condensate in non-equilibrium situations.

Two distinct pair averages of fluctuation operators appear above (allowing for the
possibility of off-diagonal pair averages, which do not appear in Eqs. (5.7) and (5.8)
but will appear in later expressions):

ñ(r, r′, t) =
〈
δ̂†(r′, t)δ̂(r, t)

〉
, (5.9)

m̃(r, r′, t) =
〈
δ̂(r′, t)δ̂(r, t)

〉
. (5.10)

We refer to these as the normal and anomalous pair averages. The diagonal part
of the normal average, ñ(r, r, t) gives the non-condensate density. As suggested by
the name, neither the diagonal nor the off-diagonal parts of the anomalous average
m̃(r, r, t) have a similarly simple interpretation. They are loosely analogous, how-
ever, to anomalous correlations appearing in the BCS theory of superconductivity
[50, 159, 161].

The above procedure leads to the HFB Hamiltonian

ĤHFB = H0 + δH0 + Ĥ1 + δĤ1 + Ĥ2 + δĤ2. (5.11)
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Here δH0 and δĤ2 represent terms which are, respectively, scalar and quadratic in
the fluctuation operators and which appear as a result of the quartic factorization
approximation [Eq. (5.8)] on Ĥ4. Similarly, δĤ1 represents terms which are linear
in the fluctuation operators and appear as a result of the cubic factorization approx-
imation [Eq. (5.7)] on Ĥ3 (see, e.g., Ref. [50] for exact expressions).

In this description, Ψ, ñ, and m̃ play the role of generalized mean-fields1. The static
condensate wavefunction resulting from ĤHFB obeys a generalized GPE (which we
term the HFB-GGPE)[

Hsp(r) − µ + U0|Ψ(r)|2 + 2U0ñ(r, r)
]
Ψ(r) + U0m̃(r, r)Ψ∗(r) = 0 , (5.12)

containing diagonal normal and anomalous pair averages. As was shown for the
simple quadratic part of the Hamiltonian, Ĥ2, in Chapter 1, the quadratic part of the
HFB Hamiltonian can be diagonalized by the Bogoliubov transformation Eq. (1.35),
where the mode functions satisfy the new Bogoliubov-de Gennes equations

∫
dr′

 LHFB(r, r′) MHFB(r, r′)
−M∗

HFB(r, r′) −L∗HFB(r, r′)

  uk(r′)
vk(r′)

 = εk

 uk(r)
vk(r)

 . (5.13)

The operators appearing in these modified Bogoliubov-de Gennes equations (which
we term the HFB-MBdGE) differ from those in Chapter 1 through the inclusion of
the diagonal parts of the normal and anomalous pair averages, and can be written as

LHFB(r, r′) = δ(r − r′)
[
Hsp(r′) − µ + 2U0|Ψ(r′)|2 + 2U0ñ(r′, r′)

]
, (5.14)

and
MHFB(r, r′) = δ(r − r′)

[
U0Ψ

2(r′) + U0m̃(r′, r′)
]
. (5.15)

Within this description, the effects of finite-temperature can be taken into account
by thermally populating the (modified) Bogoliubov quasiparticle modes according
to 〈

b̂†k b̂l

〉
= δklNk = δkl

(
e(εk−µ)/kBT − 1

)−1
, (5.16)〈

b̂kb̂l

〉
=

〈
b̂†k b̂†l

〉
= 0. (5.17)

Here, εk are the energies of the quasiparticle modes, and the thermal distribution Nk

of the non-interacting, bosonic quasiparticles is assumed to be of the Bose-Einstein

1This terminology should not be confused with our prior use of ‘mean-field’ to refer to the GPE-
only description!
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form [276]. Through the Bogoliubov transformation [Eq. (1.35)] this implies the
following relations for the pair averages

ñ(r, r′) =
∑

k

Nkuk(r, t)u∗k(r′, t) +
∑

k

(Nk + 1)v∗k(r, t)vk(r′, t) , (5.18)

m̃(r, r′) =
∑

k

Nkuk(r, t)v∗k(r′, t) +
∑

k

(Nk + 1)v∗k(r, t)uk(r′, t) . (5.19)

In principle, this system of equations can be solved self-consistently to yield the
equilibrium values of Ψ, ñ, m̃, and the quasiparticle energies εk at finite temperature
T [50, 276–278]. However, the HFB approach presented here suffers from two
particular issues which affect its usefulness.

5.2.3 Problems with HFB: Divergences and energy gap

The two issues occurring with the symmetry-breaking HFB description are not spe-
cific to HFB, but plague the description of weakly-interacting Bose gases at finite
temperature. They also appear in other descriptions, in modified form, whenever
one seeks to include effects forming part of Ĥ3 and Ĥ4 in the symmetry-breaking
description.

The first such issue is that of ultra-violet divergences due to the use of the contact
potential approximation [Eq. (1.7)]. Specifically, the sum over quasiparticle modes
in the diagonal part of the anomalous average m̃(r, r) diverges as k → ∞. Due to the
complicated nature of the true inter-atomic interactions in an atomic BEC, however,
the contact potential approximation is vital to obtaining a computationally tractable
finite-temperature theory: for example, treating two-body collisions perturbatively
in terms of the true inter-atomic interaction would be impossible [68] . Fortunately,
the ultra-violet divergences do not arise through a fundamental problem with the
contact approximation; this constitutes a small and well-controlled approximation
for low-energy scattering in dilute gases. Rather, the divergences arise through a
crude application of the contact potential to describe high-energy collisions.

Rather than approximating the two-body interaction potential, the contact interac-
tion is the zero-momentum limit of the two-body T -matrix [50, 68, 83, 160, 163,
279–281]. However, the T -matrix is defined by a (convergent) sum over an infinite
series of virtual two-body collisions, each described by a “ladder diagram” [282],
and hence implicitly includes two-body effects to all orders [68]. A close inspection
of the quasiparticle summation defining the diagonal part of the anomalous average
[Eq. (5.19)] reveals that these two-body effects are inadvertently double-counted.



Chapter 5: Atomic Bose-Einstein condensates at finite temperature 115

This can be demonstrated explicitly in the homogeneous case, where the quasipar-
ticle mode functions uk and vk approach an analytic free-particle limit as k → ∞;
substituting this analytic limit into Eq. (5.19) and carefully comparing terms reveals
that the same summation already included by the contact approximation reappears
[281]. It is therefore generally valid, and necessary, to eliminate this double count-
ing through the ultraviolet renormalization of the anomalous average [50]:

m̃(r, r)→ m̃R(r, r) = m̃(r, r) − lim
k→∞

uk(r)v∗k(r) . (5.20)

One particular occasion where this is not necessary is when describing systems in
the quasi-1D limit, as defined in Chapter 2 [282]2. We will consider such systems
extensively in the following Chapters.

The second issue arising in the HFB description, and other finite-temperature de-
scriptions, is the appearance of a spurious energy gap in the quasiparticle spectrum.
In the case of a homogeneous weakly-interacting Bose gas, the Hugenholtz-Pines
theorem requires that the energy of an elementary excitation relative to the conden-
sate should vanish as k → 0 [163, 281, 283]3; within a symmetry-breaking treat-
ment this can also be viewed a consequence of the Goldstone theorem [50]. How-
ever, while the Bogoliubov dispersion relation [Eq. (1.39)] associated with the sim-
ple quadratic Hamiltonian is correctly gapless, self-consistently solving the static
HFB-GGPE and HFB-MBdGE leads to an excitation spectrum with a gap at k → 0
[50].

Within the symmetry-breaking description this is generally dealt with in one of
two ways. In the first method, one simply discards all terms in the HFB-GGPE
and HFB-MBdGE involving the (renormalized) anomalous average m̃R, resulting in
what has commonly been referred to as the HFB-Popov approximation [160, 188,
284, 285]. Interestingly, this approximation has been found to be highly accurate at
higher temperatures T . Tc where | ˜m(r, r)| � ˜n(r, r), but inaccurate for T � Tc

where | ˜m(r, r)| ≈ ˜n(r, r) [286]4.

In the second method, one seeks to eliminate the gap by adding, rather than re-
moving, terms; there are several approaches to doing this, leading to so-called

2Note that our quasi-1D case is distinct from the true 1D case, in which the atomic scattering
occurs strictly in 1D. This latter case is the main subject in Ref. [282], hence our quasi-1D case is
(potentially confusingly) referred to as “quasi-3D” in that work.

3Note that the theorem as stated here only applies to repulsive interactions, as an attractively
interacting BEC is unstable in 3D (see Chapter 2).

4The authors of Ref. [286] also argue against the use of Popov’s name in relation to this method.
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generalized HFB descriptions. For example, the off-diagonal terms appearing in
the HFB-MBdGE (MHFB) can be interpreted as introducing a many-body T -matrix
description of atomic interactions, explicitly accounting for the fact that the inter-
actions take place in the presence of the background medium of the condensate
[281, 282]. However, the diagonal terms (LHFB) only describe interactions at the
level of the two-body T -matrix. One can thus argue that “upgrading” the descrip-
tion of interactions in LHFB is provides a consistent way to eliminate the gap; such
generalized descriptions have been considered in Refs. [163, 277, 287–289]. An
alternative example is provided by Ref. [286], where the gap is eliminated by intro-
ducing separate chemical potentials for the condensate and non-condensate, based
on a thermodynamic argument.

5.2.4 Dynamical descriptions

Obtaining a dynamical description of condensate and non-condensate in the HFB
approximation is mathematically straightforward. The full Heisenberg equation of
motion for the field operator Ψ̂(r) is given by

i
dΨ̂(r)

dt
=

[
Hsp(r, t) − µ

]
Ψ̂(r) + U0Ψ̂

†(r)Ψ̂(r)Ψ̂(r) . (5.21)

Treating the the final “triplet” of field operators using the cubic mean-field factor-
ization Eq. (5.7), and taking the expectation value of the resulting equation (see, for
example, Ref. [276]) yields the time-dependent HFB-GGPE

i
∂ψ(r, t)
∂t

=
[
Hsp(r, t) − µ + U0|Ψ(r, t)|2 + 2U0ñ(r, r, t)

]
Ψ(r, t) + U0m̃(r, r, t)Ψ∗(r, t) .

(5.22)
Carefully combining Eq. (5.22) and Eq. (5.21), using the symmetry-breaking par-
tition of the field operator, reveals the accompanying equations of motion for the
non-condensate quasiparticle modes to be the time-dependent HFB-MBdGE

i
∂

∂t

 uk(r, t)
vk(r, t)

 =

∫
dr′

 LHFB(r, r′, t) MHFB(r, r′, t)
−M∗

HFB(r, r′, t) −L∗HFB(r, r′, t)

  uk(r′, t)
vk(r′, t)

 , (5.23)

where LHFB and MHFB are defined as in Eqs. (5.14) and (5.15) (although now with
explicit time-dependence).

This dynamical version of the HFB description suffers from the same problems of
gaplessness and inconsistent treatment of interactions as the static version consid-
ered in the previous Section, and has not been employed in a fully time-dependent
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implementation without adjustments. It was, however, employed by Giorgini [290]
within a linear response framework to describe condensate excitations at finite tem-
perature [290]: within this perturbative framework the energy gap justifiably ceases
to be a problem, and only the ultra-violet renormalization discussed in the previous
Section is necessary to ensure the consistent treatment of interactions.

Aside from the work of Giorgini, the dynamical HFB description is typically altered
either by making the “Popov approximation” m̃ = 0, or by adding a self-consistent
perturbative treatment of the remaining parts of Ĥ3 and Ĥ4, or by some combination
of the above. Implementations of the HFB-Popov description, with varying levels
of dynamical freedom, have been applied to the study of finite-temperature excita-
tions [188, 285, 291, 292]. A range of kinetic descriptions, which perturbatively
include the remaining parts of Ĥ3 and Ĥ4, have been developed by Walser et al.

[293, 294] and Proukakis et al. [274, 275]. These descriptions have been proven
to be equivalent to each other, and to an alternative cumulant formalism [295]. The
beyond-mean-field treatment of ñ and m̃ in these descriptions is equivalent to ac-
counting more fully for collisions between condensate and non-condensate atoms,
and introducing the effect of collisions between non-condensate atoms. These con-
siderations enter the dynamical description in the form of collision integrals which,
although they result in a more complete description of the dynamics at higher tem-
peratures, can be particularly cumbersome to deal with [50].

A compromise between the (relatively) simple HFB-Popov and the aforementioned
kinetic descriptions is offered by the method of Zaremba, Nikuni and Griffin (ZNG)
developed in Ref. [296], and reviewed at length in the monograph by the same au-
thors [160]. In the ZNG method a form of Popov approximation is made5, and

perturbative treatment of non-condensate collisions is introduced through a quan-
tum Boltzmann equation. This coupling is made self consistent through enforced
local conservation of energy and momentum. The ZNG description has been used
to model a variety of dynamics at finite temperatures, including elementary exci-
tations [297, 298], vortices and vortex nucleation [299, 300], and dark solitons in
trapped condensates [301]. As such, it has proved to be the most successful numer-
ically implemented symmetry-breaking description of finite-temperature dynamics
in atomic BECs.

However, while these descriptions are all highly successful in some aspects, there

5As this approximation is made in the context of a reformulation of the Hamiltonian it can be
considered to have a wider range of validity than the simple m̃ = 0 approximation [160].
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remain distinct weaknesses in each description. HFB-Popov suffers at low temper-
ature from an inconsistent treatment of the anomalous average, and at high tem-
perature from approximate treatment of non-condensate collisions. The ZNG de-
scription provides a tractable treatment of non-condensate collisions, making it very
useful at higher temperatures. However, its enforcement of local energy and mo-
mentum conservation and neglect of the anomalous average implicitly ignores any
non-local quantum effects; thus the description poorly models the phonon-like ex-
citations which dominate the weakly-interacting Bose gas at low temperature. The
alternative kinetic descriptions can potentially bridge these two regimes, but their
complexity has precluded any fully time-dependent implementations to date.

5.2.5 Issues with symmetry-breaking

Lack of explicit number-conservation

As discussed in Chapter 1, the symmetry breaking partition of the field operator
[Eq. (5.1)] breaks the global U(1) symmetry of the Hamiltonian (1.9) and is equiva-
lent to assuming a coherent state for the field6 [see Fig. 5.1]. While such an assump-
tion can be justified in the limit N → ∞, as previously discussed in Section 1.3.2 an
atomic BEC is a distinctly finite-sized system which is not necessarily correctly de-
scribed by a thermodynamic limit. Indeed, the applicability of the thermodynamic
limit and the grand canonical ensemble to atomic BECs can both be questioned
[166, 303].

With regard to the atom number in particular, there is a very strong argument that the
state of an atomic BEC system ought to be an eigenstate of the total atom number
operator N̂; while all atomic BEC experiments to date undoubtedly involve some
experimental uncertainty in the atom number in any given “shot”, in the absence
of any mechanism for quantum coherence between shots, this uncertainty must be
regarded as statistical in nature. Within the (presumably appropriate) framework of
non-relativistic quantum mechanics, this implies a fixed atom number7. However,

6At finite temperatures 〈· · · 〉 should be interpreted as including a thermal as well as a quantum
average; consequently a finite value for this average does not imply a coherent state of the field.
Nonetheless, the symmetry-breaking procedure as outlined here can be rigorously developed in terms
of thermal averages by introducing an infinitesimal symmetry-breaking term into the Hamiltonian
[160, 178, 302]. Crucially, the issue of atom-number non-conservation we discuss in this Section
continues to apply at finite temperature [158, 160].

7This argument is justified in the absence of atom-losses due to, e.g., three-body recombination or
imperfections in the vacuum. It is thus restricted to timescales where these processes are negligible
and the weakly-interacting Bose gas Hamiltonian applies; in this thesis we make no attempt to go
beyond these timescales. If one attempted to take consistent account of these experimental atom
losses further complications to this argument would probably be introduced. However, it is not at all
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Figure 5.1: Q-function [Q(φ) = | 〈α|φ〉 |2/π, where |α〉 is a general coherent
state] representations of a number state (a) and a coherent state (b), for a
single particle mode with creation and annihilation operators â† and â. The
U(1)-symmetric number state (a) has a well-defined number of particles
and an undefined phase Φ, whereas the coherent state (b) has an uncer-
tainty in both phase and number. However, as N → ∞, the relative number
uncertainty of the coherent state δN/N → 0; hence the symmetry-breaking
formalism is justified in this limit.

taking the expectation value of Ψ̂(r) for an eigenstate of total particle number yields
(in illustrative schematic form):

〈N |Ψ̂(r)|N〉 =
√

N〈N|N − 1〉 = 0 , (5.24)

and hence that δ̂(r, t) = Ψ̂(r). This potential issue with the symmetry-breaking de-
scription in an atomic BEC system can, however, be overcome by adopting one of a
variety of number-conserving descriptions described in the following Section; these
methods explicitly conserve the total atom number N. The lack of explicit atom-
number-conservation in symmetry-breaking descriptions is potentially a strong ar-
gument in favour of these number-conserving alternatives. However, the above crit-
icism of the symmetry-breaking methodology remains controversial; indeed, in the
literature one can find spontaneous symmetry-breaking viewed as anything from a
genuine physical reality [178] through to a convenient mathematical construction
only having validity in the high-N limit [158].

clear that such considerations would favour a symmetry-breaking approach.
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Lack of orthogonality between condensate and non-condensate

The lack of explicit atom-number-conservation is not the only issue with dynamical
symmetry-breaking descriptions of atomic BECs, however. A second issue arises
in that the symmetry-breaking non-condensate operator, δ̂(r, t), is not strictly or-
thogonal to the condensate Ψ(r, t) in an inhomogeneous system. That this is the
case can be seen by applying the symmetry-breaking partition of the field operator
[Eq. (5.1)] following a partition using the Penrose-Onsager definition of the con-
densate [see Eq. (1.16)]

Ψ̂(r) = âc(t)φc(r, t) +
∑
m,c

âmφm(r, t) , (5.25)

= âc(t)φc(r, t) + δΨ̂(r, t) , (5.26)

where, by the Hermiticity of the single-particle density matrix [see Section 1.4.1]
δΨ̂(r, t) is explicitly orthogonal to φc(r, t). This yields

Ψ(r, t) = 〈âc(t)〉 φc(r, t) +
〈
δΨ̂(r, t)

〉
, (5.27)

δ̂(r, t) = [âc(t) − 〈âc(t)〉] φc(r, t) +
[
δΨ̂(r, t) −

〈
δΨ̂(r, t)

〉]
. (5.28)

In a general inhomogeneous case
〈
δΨ̂(r, t)

〉
, 0, and consequently the symmetry-

breaking macroscopic wavefunction Ψ(r, t) will contain a contribution from non-
condensate modes. In such a case, Ψ(r, t) and δ̂(r, t) are no longer strictly orthogo-
nal.

While we stress that this argument does not demonstrate in any way that symmetry-
breaking is incorrect, it does highlight a problem which arises if one wishes to
self-consistently determine coupled condensate and non-condensate dynamics in
a symmetry-breaking description; namely, that the ambiguous distinction between
condensate and non-condensate makes it difficult to formulate, and to interpret the
results of, such a description. In a number-conserving description, on the other
hand, the condensate and non-condensate are always explicitly orthogonal; this
makes the formulation and interpretation of a theory of coupled condensate and
non-condensate dynamics considerably easier [68]. This issue takes on an enhanced
relevance with reference to the dynamical HFB-Popov and ZNG methods when
working at low temperatures: here the phonon nature of the elementary excitations
is more important than collisions within the non-condensate, and a theory which
consistently treats the dynamical coupling between condensate and non-condensate
through the anomalous average is preferable [70]. The number-conserving descrip-
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tions we review in the next Section allow one to construct exactly such a theory, an
example of which we will develop and implement in the following Chapters.

5.3 Number-conserving descriptions

5.3.1 Number-conserving partition of field operator

The second direction from which a theoretical description of atomic BECs at finite
temperature can be approached is a number-conserving approach. In contrast to
the grand-canonical symmetry-breaking approach, number-conserving approaches
yield a canonical description of the system in which the total atom number N is
a fixed parameter. The development of such number-conserving descriptions of
atomic BECs have been pioneered by C. Gardiner [66], Castin and Dum [67, 181],
Morgan [68–71, 163], and S. Gardiner [68]. However, these number-conserving de-
scriptions also represent something of a “re-discovery” and extension of techniques
which had already been introduced for weakly interacting Bose gases in the homo-
geneous case [304–307] long before the advent of atomic BEC (see, e.g., Ref. [281]
for a more comprehensive overview of these previous treatments).

Like symmetry-breaking descriptions, a partition of the field operator lies at the core
of number-conserving descriptions. However, in number-conserving descriptions
this partition is based exactly on the Penrose-Onsager definition of the condensate
mode φc(r, t):

Ψ̂(r) = âc(t)φc(r, t) + δΨ̂(r, t) . (5.29)

Here
δΨ̂(r, t) =

∑
m,c

âm(t)φm(r, t) ; (5.30)

the components φc(r, t) and δΨ̂(r, t) represent the condensate and non-condensate
respectively, and the operator âc(t) annihilates a particle from the condensate mode
φc(r, t). The condensate mode φc(r, t) is the eigenmode of the single-particle den-
sity matrix ρ(r, r′, t) having a macroscopically large eigenvalue (occupation) Nc, in
accordance with the Penrose-Onsager definition [173] [Fig. 5.2] (see Chapter 1).

This partition [Eq. (5.29)] is identical to that introduced to illustrate that Ψ(r, t)
and δ̂(r, t) are not orthogonal in a symmetry-breaking treatment [Eq. (5.25)]. The
condensate mode φc(r, t) is explicitly orthogonal to the non-condensate operator
δΨ̂(r, t). Using this orthogonality, one can use Eq. (5.29) to derive projections from
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Figure 5.2: The Penrose-Onsager definition of Bose-Einstein condensation,
presented pictorially. The condensate mode, φc(r, t), is defined as the in-
stantaneous eigenfunction of the single-body density matrix ρ(r, r′, t) =〈
Ψ̂†(r′)Ψ̂(r)

〉
with a macroscopically large eigenvalue Nc — which is equal

to the occupation of the condensate mode. The action of the projector
Q(r, r′, t) [defined in equation (5.33)], which projects onto the subspace
of non-condensate particles, is illustrated in red.

the full field operator Ψ̂(r) to the operators âc(t) and δΨ̂(r, t):

âc(t) =

∫
dr φ∗c(r, t)Ψ̂(r) , (5.31)

δΨ̂(r, t) =

∫
dr′Q(r, r′, t)Ψ̂(r′) , (5.32)

where we have introduced the projector Q(r, r′, t), defined by

Q(r, r′, t) = δ(r − r′) − φc(r, t)φ∗c(r′, t) ; (5.33)

the action of Q(r, r′, t) is also shown pictorially in Fig. 5.2.

The projection equations [Eqs. (5.31) and (5.32)] allow one to obtain commutation
relations for âc(t), δΨ̂(r, t), and their Hermitian conjugates in terms of the com-
mutation relations of Ψ̂(r) and Ψ̂†(r). The only non-zero commutators that can be
obtained this way are [68] [

âc(t), â†c(t)
]

= 1 , (5.34)[
δΨ̂(r, t), δΨ̂†(r′, t)

]
= Q(r, r′, t) . (5.35)
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5.3.2 Number-conserving fluctuation operator

Requirements for a suitable operator

Having made a number-conserving partition of the field operator [Eq. (5.29)], the
approach of number-conserving descriptions is similar to that of the symmetry-
breaking descriptions, in that it consists of identifying a suitable fluctuation op-
erator in terms of which the equations of motion can be perturbatively expanded.
We wish such a fluctuation operator to retain as many of the favourable properties
of the symmetry-breaking operator δ̂(r, t) as possible. In particular, δ̂(r, t) has the
following key properties:

〈
δ̂(r, t)

〉
= 0: The fluctuation operator is indeed a true fluctuation operator (pro-

vided this is true in a non-trivial sense [68]).[
δ̂(r, t), δ̂†(r, t)

]
= δ(r − r′): The fluctuation operator describes bosonic quasiparti-

cles.

δ̂(r, t) ∝ √Nt(t): The fluctuation operator scales with the number of non-condensate
atoms.

In trying to find a number-conserving operator with such properties, the first hurdle
which arises is that the expectation values of all creation and annihilation opera-
tors are trivially equal to zero when working in a number-conserving formalism. In
consequence, the non-condensate field operator δΨ̂(r, t) cannot be used as a fluc-
tuation operator because its expectation value is trivially zero. However, one can
instead find a suitable basis for a fluctuation operator by recourse, once again, to the
Penrose-Onsager definition of Bose-Einstein condensation. Recalling that φc(r, t)
is an instantaneous eigenstate of the single-body density matrix, with eigenvalue
Nc(t), we can write ∫

dr′ ρ(r, r′, t)φc(r′, t) = Nc(t)φc(r, t) . (5.36)

Making the replacement ρ(r, r′, t) =
〈
Ψ̂†(r′)Ψ̂(r)

〉
, and then substituting for the field

operators using Eq. (5.29), one can obtain the relations〈
â†c(t)âc(t)

〉
= Nc(t) , (5.37)〈

â†c(t)δΨ̂(r, t)
〉

= 0 . (5.38)
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The product of operators â†c(t)δΨ̂(r, t) appearing in Eq. (5.38) is a good candidate
for the basis of a number-conserving fluctuation operator as it has a non-trivial, zero
expectation value.

However, the scaling of â†c(t)δΨ̂(r, t) is not correct, and it does not have bosonic
commutation relations: while the latter are not essential, they can be a considerable
convenience when considering quasiparticles and elementary excitations at a later
stage in the treatment. Unfortunately, it appears to be an unavoidable consequence
of the number-conserving description that one cannot find a fluctuation operator
which exactly fulfils the expectation, commutation and scaling requirements. We
now briefly review three fluctuation operators which have been introduced in the
literature; each of these represents a different compromise with respect to fulfilling
these requirements.

Candidate fluctuation operators

The first fluctuation operator we consider is

Λ̂c(r, t) =
1√

N̂c(t)
â†c(t)δΨ̂(r, t) . (5.39)

Here N̂c(t) is the condensate number operator, â†c(t)âc(t), the square root of which
scales with Nc like â†c(t). The fluctuation operator Λ̂c(r, t) has two main advantages;
firstly, the commutator of Λ̂c(r, t) with its Hermitian conjugate is exactly equal to
Q(r, r′, t); [

Λ̂c(r, t), Λ̂†c(r′, t)
]

=
[
δΨ̂(r, t), Ψ̂†(r′, t)

]
= Q(r, r′, t) . (5.40)

This leads to bosonic quasiparticles8. Secondly, Λ̂c(r, t) scales exactly with the
number of non-condensate particles;∫

dr Λ̂†c(r, t)Λ̂c(r, t) =

∫
dr δΨ̂†(r, t)δΨ̂(r, t) = N̂t(t) . (5.41)

Unfortunately, despite its useful properties, Λ̂c(r, t) has a fundamental flaw as a
fluctuation operator; due to the introduction of the renormalizing factor 1/

√
N̂c(t),

the expectation value
〈
Λ̂c(r, t)

〉
is not exactly equal to zero. Hence Λ̂c(r, t) is not a

well-defined fluctuation operator.

A second approach to rescaling the fluctuation operator is that introduced by C. Gar-
8Technically, they are only bosonic in the space orthogonal to the condensate, but within a

number-conserving description this technicality is unimportant.
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diner and Castin and Dum [66, 67]. In this approach â†c(t)δΨ̂(r, t) is rescaled using
the total number operator N̂ to give the fluctuation operator

Λ̂(r, t) =
1√
N̂

â†c(t)δΨ̂(r, t) . (5.42)

Since we assume the total number of atoms to be fixed and constant, the expectation
value

〈
Λ̂(r, t)

〉
is indeed zero at all times. Thus Λ̂(r, t) represents a well defined

fluctuation operator. However, Λ̂(r, t) scales like√
Nc(t)Nt(t)

N
=

√
Nt(t)

N − Nt(t)
N

; (5.43)

consequently the scaling of Λ̂(r, t) is only correct — that is, equal to
√

Nt(t) — in
the limit Nt(t) � N. In general, the norm of Λ̂(r, t) is only approximately equal to
the number of non-condensate atoms. Secondly,[

Λ̂c(r, t), Λ̂†c(r′, t)
]
≈

[
δΨ̂(r, t), Ψ̂†(r′, t)

]
= Q(r, r′, t) , (5.44)

leading to commutation relations for quasiparticles which are only approximately
bosonic.

A third and final fluctuation operator was definied by S. Gardiner and Morgan [68];

Λ̃(r, t) =
1√

Nc(t)
â†c(t)δΨ̂(r, t) , (5.45)

where Nc(t) =
〈
N̂c(t)

〉
. Since this definition only rescales â†c(t)δΨ̂(r, t) by a scalar

factor, the expectation value
〈
Λ̃(r, t)

〉
is exactly equal to zero at all times and Λ̃(r, t)

is a good fluctuation operator. It also scales correctly as
√

Nt(t). Unfortunately,
as in the case of Λ̂(r, t), the operator Λ̃(r, t) leads to only approximately bosonic
quasiparticles;

[
Λ̃(r, t), Λ̃†(r′, t)

]
=

N̂c(t)
Nc(t)

Q(r, r′, t) − 1
Nc(t)

Ψ̂†(r′, t)δΨ̂(r, t) . (5.46)

Summary

Of the three candidates for a number-conserving fluctuation operator, none is com-
pletely ideal. The “obvious” choice, Λ̂c(r, t), scales correctly and gives bosonic
quasiparticles, but turns out not to be a well-defined fluctuation operator at all. The



Chapter 5: Atomic Bose-Einstein condensates at finite temperature 126

first alternative, Λ̂(r, t), is a well-defined fluctuation operator, but it gives only ap-
proximately bosonic quasiparticles and scales only approximately correctly. The
final alternative, Λ̃(r, t), is also a well-defined fluctuation operator; it too gives only
approximately bosonic quasiparticles, but unlike Λ̂(r, t) it does scale correctly.

As none of these candidate fluctuation operators can be said to be superior to the
others in general, the choice of which fluctuation operator to use is strongly influ-
enced by exactly what type of calculation one wishes to conduct. For example, in
an extensive calculation of static properties at finite temperature (described in the
next Section) Morgan chose to use the first candidate fluctuation operator Λ̂c(r, t)
[163]: in the context of this calculation bosonic quasiparticles are a considerable
convenience, while the fact that

〈
Λ̂c(r, t)

〉
, 0 results (indirectly) in needing to

expand inverse-square-root number-operators in Taylor series to a consistent order
[68, 281].

In the development of a dynamical description to first-order in the fluctuation op-
erator, C. Gardiner [66] and Castin and Dum [67, 181] chose to use the operator
Λ̂(r, t), largely because the difference between N̂ and ˆNc(t) is unimportant at this or-
der. In developing the second-order dynamical description we consider in detail in
the following Chapters, S. Gardiner and Morgan [68] chose to use Λ̃(r, t), since the
property

〈
Λ̃(r, t)

〉
= 0 is of particular use when obtaining coupled equations of mo-

tion for condensate and non-condensate (although, to the order of the calculation,
the same results can also be obtained using Λ̂c(r, t) [69–71]).

5.3.3 Static descriptions

While our intended purpose for number-conserving descriptions is a self-consistent
description of coupled condensate and non-condensate dynamics, in this Section
we briefly review the static number-conserving description of Morgan [163, 281].
In relation to the static symmetry-breaking descriptions discussed in Sections 5.2.2
and 5.2.3, this description constitutes a beyond-HFB treatment which remains self-
consistent and gapless. However, the perturbative treatment of high-order terms
leads to a complex series of integrals for quasiparticle energy-shifts which have not
yet been numerically implemented [281].

For comparison to the symmetry-breaking description, Morgan’s approach is ef-
fectively9 to expand the Hamiltonian in terms of the fluctuation operator Λ̂c(r, t),

9Note that in Refs. [163] and [281] a formalism of second quantized creation and annihilation
operators and single-particle matrix elements is adopted, rather than the field operator formalism we
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yielding an expansion analogous to Eq. (5.2) with

Ĥ0 =

∫
dr φ∗cN̂c

(
Hsp +

Ũ
2

N̂c − 1
Nc
|φc|2

)
φc , (5.47)

Ĥ1 =

∫
dr

[
Λ̂†c

√
N̂c

(
Hsp + Ũ

N̂c − 1
Nc
|φc|2

)
φc + h.c.

]
, (5.48)

Ĥ2 =

∫
dr

[
Λ̂†c

(
Hsp(r, t) + 2Ũ

N̂c − 1
Nc
|φc|2

)
Λ̂c

+
Ũ
2

(
φ∗c

2 N̂c

Nc
Λ̂cΛ̂c + Λ̂†cΛ̂

†
c

N̂c

Nc
φc

2
)]
, (5.49)

Ĥ3 =

∫
dr

Λ̂†cŨ

√
N̂c

Nc
Λ̂†cΛ̂cφc + h.c.

 , (5.50)

Ĥ4 =

∫
dr Λ̂†c

√
N̂c

Nc
Λ̂†c

Ũ
2(N̂c − 1)

Λ̂c

√
N̂cΛ̂c , (5.51)

where we have grouped products of the effective coupling constant Ũ = NcU0,
and we have omitted position and time arguments (r, t) for clarity. Following this
expansion, which remains exact, the condensate number operators appearing above
should be expanded to an order consistent with the calculation being undertaken.
Note that this Hamiltonian, unlike its symmetry-breaking equivalent [Eq. (5.2)], is
not written in the grand canonical ensemble; hence there is no equivalent of the
chemical potential µ appearing in the Hamiltonian itself.

At lowest order one obtains, from functional differentiation of Ĥ0 (after correct
expansion of N̂c and ordering of terms [163])[

Hsp(r) + NcU0|φc(r)|2 − λ0

]
φc(r) = 0 , (5.52)

where λ0 is the nonlinear eigenvalue defined by

λ0 =

∫
dr φ∗c(r)

[
Hsp(r) + NcU0|φc(r)|2

]
φc(r) . (5.53)

Note that at this level of approximation Nc = N and Eq. (5.52) is the same static GPE
as obtained using symmetry-breaking treatments. At this level of approximation,
therefore, λ0 can be identified with the chemical potential.

The first difference from a symmetry-breaking treatment is encountered at the level

adopt here, and some quantities are defined slightly differently. However, the Hamiltonian presented
here captures the essence of the approach within the formalism and definitions we have made, and
avoids the need to introduce further notation.
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of the simple quadratic Hamiltonian Ĥ2 (again, subject to consistent expansion of
N̂c and ordering of terms). In a similar manner to symmetry-breaking treatments,
this can be diagonalized by the Bogoliubov transformation Λ̂c(r)

Λ̂
†
c(r)

 =
∑

k

b̂k

 uk(r)
vk(r)

 + b̂†k

 v∗k(r)
u∗k(r)

 , (5.54)

to yield static number-conserving modified Bogoliubov-de Gennes equations (MB-
dGE)

∫
dr′

 L(r, r′) M(r, r′)
−M∗(r, r′) −L∗(r, r′)

  uk(r′)
vk(r′)

 = εk

 uk(r)
vk(r)

 , (5.55)

where

L(r, r′) =δ(r − r′)
[
Hsp(r′) + U0Nc|φc(r′)|2 − λ0

]
+ U0Nc

∫
dr′′Q (

r, r′′
) |φc(r′′)|2Q (

r′′, r′
)
,

(5.56)

and
M(r, r′) = U0Nc

∫
dr′′Q (

r, r′′
)
φ2

c(r′′)Q∗ (r′′, r′) . (5.57)

The appearance of the projector Q in the static MBdGE acts to explicitly orthogo-
nalize the quasiparticle modes with the condensate.

The beyond-quadratic-Hamiltonian theory developed by Morgan proceeds further
by, firstly, including the quadratic averages associated with Ĥ3 and Ĥ4 in a modified
quadratic Hamiltonian as in the symmetry-breaking HFB theory; this results in an
“upgrade” of the GPE to a number-conserving GGPE containing terms including the
projector Q which are not found in the HFB-GGPE, and an “upgrade” of the terms
L andM in the number-conserving MBdGE to include the non-condensate normal
and anomalous averages (now defined by ñ(r, r′) =

〈
Λ̂
†
c(r′)Λ̂c(r)

〉
and m̃(r, r′) =〈

Λ̂c(r′)Λ̂c(r)
〉
). Secondly, further effects of Ĥ3 and Ĥ4 are included perturbatively

in order to make the resulting theory gapless. The resulting theory is, however,
complex for even static calculations, and we refer the reader to Refs. [163] and
[281] for details.
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5.3.4 Dynamical descriptions

Overview

Having introduced the number-conserving description to quadratic order in a static
treatment, we now briefly review the development, and applications, of fully dy-
namical treatments within the number-conserving description. We shall, for now,
omit the mathematical details, as these are dealt with extensively for the second-
order case in Chapter 6.

As with dynamical symmetry-breaking treatments, dynamical number-conserving
treatments consist of a consistent expansion of the equation of motion for the field
operator Ψ̂(r) up to some order in the chosen fluctuation operator. To date, essen-
tially equivalent treatments including terms up to first (linear) order in the fluctua-
tion operators have been given by C. Gardiner [66] and Castin and Dum [67], while
treatments including terms up to second (quadratic) order in the fluctuation opera-
tors have been Morgan [69–71], and S. Gardiner and Morgan [68]. As discussed in
Section 5.3.2, there are three particular fluctuation operators which these previous
authors have employed: Λ̂ [66, 67], Λ̂c [69–71], and Λ̃ [68]. However, in consis-
tent expansions up to linear order these fluctuation operators are all equivalent. At
quadratic order Λ̂c and Λ̃ remain essentially equivalent [68].

First-order description

The first-order description of C. Gardiner and Castin and Dum, which we derive
as a limiting case of a second-order description in Chapter 6, consists of a time-
dependent version of the GPE and number-conserving MBdGE presented in the
previous Section:

i
∂φc(r, t)
∂t

=
[
Hsp(r, t) + NcU0|φc(r, t)|2 − λ0

]
φc(r, t) , (5.58)

and

i
∂

∂t

 uk(r, t)
vk(r, t)

 =

∫
dr′

 L(r, r′, t) M(r, r′, t)
−M∗(r, r′, t) −L∗(r, r′, t)

  uk(r′, t)
vk(r′, t)

 , (5.59)

where

L(r, r′, t) =δ(r − r′)
[
Hsp(r′, t) + U0Nc|φc(r′, t)|2 − λ0

]
+ U0Nc

∫
dr′′Q (

r, r′′, t
) |φc(r′′, t)|2Q (

r′′, r′, t
)
,

(5.60)
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and
M(r, r′, t) = U0Nc

∫
dr′′Q (

r, r′′, t
)
φ2

c(r′′, t)Q∗ (r′′, r′, t) . (5.61)

The nonlinear eigenvalue λ0 retains its previous definition [Eq. (5.53)] for an equi-
librium initial condition. This first-order description has been widely used to ex-
plore non-condensate growth, starting from low-temperature equilibrium, in driven
atomic BECs [48, 56, 57, 59, 181, 308]. This is exactly the scenario where a
number-conserving description’s consistent treatment of the anomalous average be-
tween condensate and non-condensate and exclusion of collisions between non-
condensate atoms constitute an advantage over a symmetry-breaking treatment; we
discuss exactly such a system (using a second-order approach) extensively in Chap-
ter 7.

To actually evolve Eqs. (5.58) and (5.59) in this way requires an initial equilib-
rium initial condition. This can be obtained in a self-consistent fashion by ini-
tially setting Nc = N and then repeating the following steps until convergence:
(a) solve the static GPE Eq. (5.52) for the condensate mode φc(r, 0) and eigen-
value λ); (b) use the obtained condensate mode and eigenvalue to solve the static
number-conserving MBdGE [Eq. (5.55)]; (c) compute the expected non-condensate
population Nt =

〈
N̂t

〉
=

∫
dr ñ(r, r) though Eq. (5.18), using a Bose distribution to

find the quasiparticle populations, and set Nc = N − Nt. It should be noted, how-
ever, that this procedure first-order description will only yield valid results at low
temperatures� Tc where Nt � Nc.

As in the static case the projector Q acts to keep the condensate and non-condensate
orthogonal, in this case in a dynamical sense. In principle, the presence of the
projector Q makes the numerical evolution of these equations a highly non-trivial
problem. However, one can in fact prove that the evolution generated by Eq. (5.59)
is exactly equivalent to an “un-projected” evolution with Q = 1, followed by a
separate action of Q on the non-condensate, equivalent to projection of the quasi-
particle modes orthogonal to the condensate mode [48, 309]. The fundamental rea-
son such a simplification of the dynamical evolution can be achieved is that the GPE
[Eq. (5.58)] evolves in isolation from the non-condensate: the only non-condensate-
dependent term appearing in the GPE is Nc, but at the order of this calculation this
is formally time-independent.

This separation between GPE and MBdGE also constitutes the primary drawback of
the first-order description, as the non-condensate population Nt is time-dependent
and the non-condensate can grow, but this has no back-action on the condensate.
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The description thus exhibits rapid and unbounded growth of the non-condensate in
regimes where the condensate dynamics have a linear instability [48, 49]. Attempt-
ing to fix this instability using the ad-hoc procedure of adjusting Nc to be time-
dependent according to Nc(t) = N − Nt(t) does not eliminate this rapid growth, and
leads to unphysical negative condensate populations very quickly in linearly unsta-
ble regimes. To consistently incorporate the back-action of the non-condensate on
the condensate, and hence determine whether such a back-action has a restraining
effect on condensate depletion, a second-order approach is required [49].

Second-order description

The second-order description of S. Gardiner and Morgan [68–71], which we derive
in detail in Chapter 6, yields a number-conserving generalized GPE (GGPE) for the
condensate

i~
∂φ(r, t)
∂t

=

{
Hsp(r, t) + Ũ

[(
1 − 1

Nc

)
|φ(r, t)|2 + 2

ñ(r, r, t)
Nc

]
− λ2

}
φ(r, t)

+ Ũ
m̃(r, r, t)

Nc
φ∗(r, t)

− Ũ
∫

dr′ |φ(r′, t)|2
(
ñ(r, r′, t)

Nc
φ(r′, t) +

m̃(r, r′, t)
Nc

φ∗(r′, t)
)
,

(5.62)

coupled to the same MBdGE for the non-condensate quasiparticles as in the first-
order description [Eq. (5.59)]. Note that, in general, the anomalous average m̃ ap-
pearing in Eq. (5.62) must be renormalized to prevent ultraviolet divergence (see
Section 5.2.3). The GGPE eigenvalue λ2 is given by

λ2 =

∫
dr φ∗c(r, t)

{
Hsp(r, t) + Ũ

[(
1 − 1

Nc

)
|φ(r, t)|2 + 2

ñ(r, r, t)
Nc

]}
φ(r, t)

+ Ũ
∫

dr
m̃(r, r, t)

Nc
φ∗2(r, t) .

(5.63)

Importantly, this eigenvalue is in general complex, allowing a transfer of popula-
tion between condensate and non-condensate; Nc(t) and Nt(t) are now both time-
dependent and satisfy Nc(t) + Nt(t) = N. The final term can be interpreted as a
dynamic projection which ensures that the condensate and non-condensate remain
orthogonal despite the presence of population transfer (see Chapter 6).

This self-consistency of number-dynamics is a key feature of this second-order de-
scription; indeed, second-order is the minimal order at which such self-consistency
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can be non-trivially realized10. This number-self-consistency arises directly from
not “upgrading” the MBdGE for the non-condensate to include the normal and
anomalous averages ñ and m̃, as in the symmetry-breaking HFB description (Sec-
tion 5.2.2), or the static number-conserving description of Morgan (Section 5.3.3).
This is an important, and somewhat counter-intuitive result [68].

An implementation of this second-order description in the linear response regime
was used by Morgan to model the shift of excitation frequencies at finite-temperature
in an atomic BEC — as measured at JILA [72, 73] and MIT [74, 133]; this involved
calculation is described in Refs. [69–71]. In particular, the second-order number-
conserving description was shown to successfully capture the upward shift, at finite
temperature, of the frequency of the m = 0 quadrupolar oscillation in a cylindri-
cally symmetric and slightly prolate harmonic trap, as observed at JILA [73]. In
this context, the number-conserving treatment yields results quantitatively closer to
experiment than symmetry-breaking descriptions such as the ZNG description [50],
and also demonstrates the origin of the shift to be a transition from direct driving
of the condensate by the time-dependent perturbing potential to indirect driving via
the non-condensate [69].

In Part II of this thesis, our aim is to extend the reach of this theory beyond the per-
turbative, linear response regime used successfully by Morgan by realizing a fully
dynamical implementation. This is a computationally involved problem, and we
therefore restrict our initial implementation to quasi-1D systems. Nonetheless, even
with the restriction to quasi-1D, the fully time-dependent second-order description
we implement in this thesis allows one to explore the issues of, and the links be-
tween, condensate depletion, instability and dynamical chaos, quantum coherence,
and thermalization and integrability in driven BECs.

5.4 c-field descriptions

Overview

Common to both the symmetry-breaking and number-conserving descriptions we
have discussed in this Chapter so far is the notion of a perturbative fluctuation ex-
pansion of the Hamiltonian and/or the equations of motion of the field. We conclude
this Chapter by briefly discussing an alternative approach which avoids such an ex-
pansion and builds on a different premise: the classical field or c-field approach. A

10Technically, the zero-order (GPE-only) description is self-consistent, but this is trivially guar-
anteed, since in this description Nt ≡ 0.
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variety of successful recent applications of this approach strongly justifies its brief
inclusion in this overview of finite-temperature and beyond-mean-field methods. A
thorough and relatively recent overview of c-field methods was given by Blakie et

al. [171].

Using the GPE at finite temperature

In the symmetry-breaking and perturbative descriptions already discussed in this
Chapter, and in Chapter 1, the GPE has consistently appeared as the zeroth-order
description of the quantum field in the case of a single macroscopically occupied
mode. In this role it constitutes an entirely zero-temperature description; it contains
no treatment of the non-condensate. However, as hinted at in Section 1.4.2, the
GPE is fundamentally a classical field equation; consequently it can be used to
describe the classical aspects of a general quantum field [183]. As well as for a
zero temperature condensate with one highly occupied mode, this classical field
approximation can be accurate for a field with multiple occupied modes, provided
all the modes are highly occupied (Nk � 1). Exactly such a situation in fact arises in
atomic BECs at temperatures Tc/2 . T . Tc [302, 310–313]. The GPE therefore
provides an approximate description of such a finite-temperature system, essentially
because classical thermal effects dominate over quantum effects.

The classical field described by the GPE can be expanded in terms of the appropriate
single-particle modes as

Ψ(r, t) =
∑

m

am(t)φm(r) . (5.64)

The use of the GPE in such a finite-temperature situation typically proceeds as fol-
lows: (a) populate the modes of the system with essentially arbitrarily chosen ak

[314]. However, these ak should be chosen to be consistent with the desired atom
number and total energy, as this description constitutes a microcanonical approach
[171]; (b) evolve this randomized initial condition in the GPE. This evolution con-
serves the total energy, but the nonlinearity of the equation rapidly acts to thermalize
the system, distributing energy amongst the modes according to a classical thermal
distribution; (c) although the exact details of the dynamics predicted by the GPE
may be dependent on the intial condition, the evolution can reasonably be assumed
to be ergodic [171]. Hence, with all microstates being equally likely to be visited
by the evolution over long times, the time-averaged value of an observable over a
sufficiently long evolution corresponds to the microcanonical ensemble-average in
the steady-state [314, 315]. It is also possible to extract a “dynamical temeperature”
from such an evolution [316, 317]. This use of the GPE as a leading order descrip-
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tion of a finite temperature quantum field has been adopted in, for example, studies
of quantum turbulence [123–126].

The projected GPE

The technique of using the GPE at finite temperature can potentially suffer from the
problem of the nonlinear evolution leading to sparsely populated modes, and the
equation consequently evolving itself outside of its own regime of validity. Fortu-
nately this problem is typically restricted implicitly by the finite size of a numerical
grid in any simulation. However, one can carefully control the evolution to re-
main within a defined classical field region using a projection term; the resulting
projected GPE (PGPE) then represents the lowest rung of the hierarchy of c-field
methods, which are based upon a division of the system into a classical field region
with high mode occupation, and an incoherent region with sparse mode occupation.
This incoherent region is itself restricted by a high-energy cut-off, yielding an effec-
tive field theory free of the problems of ultraviolet divergences due to the use of the
contact potential discussed in Section 5.2.3 (although this raises the new non-trivial
problem of where to position this cut-off) [171].

Despite its relatively recent introduction by Davis, Morgan and Burnett [184, 314,
318] the PGPE has been widely applied to atomic BECs (see Ref. [171] for a com-
prehensive review). In particular it has been used for the study of the shift of Tc due
to interactions [170] and vortex formation [319].

The truncatedWigner PGPE

As has been shown by Polkovnikov, the first correction to the GPE description of
a highly-occupied multi-mode quantum system is given by the truncated Wigner
method [183]. This method can be thought of as extending the PGPE treatment to a
regime where quantum fluctuations are no longer dominated by thermal ones. It can
be developed by writing the equation of motion for the Wigner function of the full
quantum field, and subsequently truncating this equation by removing higher-order
derivatives. Rather than solving for the evolution of the entire Wigner function,
one can interpret the Wigner function as a quasi-probability distribution and esti-
mate its evolution by evolving an appropriate ensemble of single trajectories [50].
Adopting such an approach, the evolution equation for each trajectory is simply
the PGPE [171]. The most commonly adopted sampling technique is based on the
static number-conserving MBdGE of Eq. (5.55) [320–322]. The truncated Wigner
PGPE has been applied to diverse problems in atomic BECs, such as vortex lattice
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formation [323], colliding [324], reflecting [325] and collapsing [238, 256] conden-
sates, collisions of bright solitary waves [28], and atom interferometers [43, 326].
However, as the truncated Wigner method can be viewed as introducing a one-half
quantum of noise per mode, the evolution of trajectories in the PGPE can give rise
to spurious thermalization; consequently, the dynamics predicted by the truncated
Wigner method are limited to short times and close-to-equilibrium dynamics [322].

The stochastic PGPE

The final c-field method we discuss here is the stochastic projected GPE (SPGPE)
[182, 327–329]. Although different in formulation, the SPGPE is similar in overall
outlook to the symmetry-breaking ZNG method [160, 296] in which the GPE de-
scription of the condensate is consistently coupled to a quantum Boltzmann equa-
tion for the non-condensate by enforcing local momentum and energy conservation
(see Section 5.2.4). In the SPGPE case it is the truncated Wigner PGPE description
of the low-lying c-field region which is coupled to an incoherent reservoir which is
assumed to be in local equilibrium. Indeed, the space between the c-field SPGPE
approach and the ZNG theory is home to an alternative stochastic GPE description
(SGPE) formulated by Stoof [330, 331], which has been extensively reviewed and
implemented by Proukakis and Cockburn [50, 332–334].

The first key feature of the inherently grand-canonical SPGPE approach is a con-
sistent treatment of interactions predicated on the upper energy cut-off for the inco-
herent region: this eliminates the problems of ultraviolet divergence and the need
to introduce the many-body T -matrix into non-condensate collisions. Secondly, the
use of a c-field (truncated Wigner PGPE) treatment of the low-lying modes leads
to inclusion of non-local quantum effects up to T = Tc: in the ZNG theory these
are ignored, and in the SGPE these are not treated consistently as T → Tc. These
features, combined with the (as yet unrealized) possibility to consistently model
the dynamics of the incoherent reservoir, make the SPGPE ideal for simulating the
formation of atomic BECs. Indeed, the SPGPE has proved remarkably success-
ful both in this role [329, 335], and in the study of quantized vortex dynamics and
superfluid turbulence [122, 329, 336]. However at low temperatures, where the in-
coherent region is unimportant, the SPGPE reduces to the truncated Wigner PGPE.
As such, it too fails to give the completely consistent account of coupled condensate
and non-condensate dynamics, particularly those occurring over long times and in
highly non-equilibrium situations, offered by a fully dynamical number-conserving
treatment.



Chapter 6: Self-consistent,
number-conserving dynamical description

6.1 Introduction

In the preceding Chapter we discussed a wide range of theoretical descriptions
which have been successfully applied to atomic BECs at finite temperatures. Among
these descriptions, we identified the second-order number-conserving description of
S. Gardiner and Morgan [68] as the most promising description of non-equilibrium
dynamics involving both condensate and non-condensate at low temperature. This
description’s conservation of total atom number, preservation of orthogonality be-
tween condensate and non-condensate, and its full and consistent treatment of the
anomalous average — which ensures that it successfully captures the phonon-like
nature of excitations at low temperature — constitute its particular strengths in this
area.

However, the only previous treatment of atomic BEC dynamics using this theory has
been the calculation of finite-temperature excitation frequencies performed by Mor-
gan [69–71]. While highly successful (see, for example, the comparison of theoret-
ical descriptions in Ref. [50]) this calculation was restricted to the linear response
regime. In this Chapter we outline the first fully-dynamical implementation of the
second-order number-conserving equations of motion, which we subsequently ap-
ply, in the following Chapter, to the case of an initially-zero-temperature, quasi-1D
atomic BEC driven by δ-kicks from an external potential.

We begin by introducing in detail the second-order, number-conserving descrip-
tion of the dynamics, which was briefly summarized in the previous Chapter (Sec-
tion 5.3.4): In Section 6.2 we construct, via a number-conserving fluctuation ex-
pansion (Section 6.2.1) and consistent Gaussian fluctuation approximation (Sec-
tion 6.2.2), the approximate cubic Hamiltonian upon which the second-order de-
scription is based. This Gaussian fluctuation approximation necessitates a Hartree-
Fock factorization of third order terms; this is, however, consistent with the order
of the description. In Section 6.3 we derive the second-order equations of motion
(Sections 6.3.1 and 6.3.2), although we omit some details which can be found in
Ref. [68] (the notation of which we largely adhere to). We then present a thorough
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discussion of the validity of the necessary approximations and the resulting de-
scription at higher temperatures (Section 6.3.3). In particular, we discuss potential
problems finding equilibrium initial conditions at higher temperatures. However,
these problems are not critical for our purposes in this thesis, as we restrict our
consideration to zero-temperature initial conditions and low depletion.

In Section 6.4 we develop a pseudospectral, split-step numerical method to compute
the time evolution of the second-order equations of motion. This method is devel-
oped via a re-normalizing re-definition of the condensate mode (Section 6.4.1), ex-
pansion of the non-condensate equations of motion in terms of initially-equilibrium
Bogoliubov quasiparticles (Section 6.4.2), and a recasting of the coupled equations
for the condensate and quasiparticle modes into a matrix equation in a spinor super-
space (Section 6.4.3). This re-casting of the equations exploits underlying symme-
tries between the condensate and non-condensate equations of motion, explicitly
includes the projection terms which maintain orthogonality between the conden-
sate and non-condensate, and is amenable to numerical treatment using a split-step
method (Section 6.4.4).

6.2 Cubic Hamiltonian

6.2.1 Fluctuation expansion

As discussed in Section 5.3, we develop a number-conserving description by ex-
panding the total Hamiltonian in terms of a suitable number-conserving fluctuation
operator. To recap, the total Hamiltonian (in the contact potential approximation) is
given by

Ĥ =

∫
dr Ψ̂†(r)

[
Hsp(r, t) +

U0

2
Ψ̂†(r)Ψ̂(r)

]
Ψ̂(r) , (6.1)

[Eq. (1.9)]. We partition the field operator into a condensate mode φc(r, t), as de-
fined by Penrose and Onsager [173], and a non-condensate part δΨ̂(r, t) which is
explicitly orthogonal to the condensate

Ψ̂(r) = âc(t)φc(r, t) + δΨ̂(r, t) , (6.2)

(see Section 5.3.1). We then collect products of the number-conserving fluctuation
operator Λ̃(r, t), defined by

Λ̃(r, t) =
1√

Nc(t)
â†c(t)δΨ̂(r, t) . (6.3)
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In this choice of fluctuation operator we follow S. Gardiner and Morgan [68],
as Λ̃(r, t) in particular avoids the need to consistently expand inverse-square-root
number-operators when expanding the Hamiltonian (see Section 5.3.2).

We proceed by substituting Eq. (6.2) into the Hamiltonian Eq. (6.1) and collecting
powers of Λ̃. For this purpose the identity

âc
1

âc

1

â†c
â†c ≡ âc

1
N̂c

â†c ≡ 1 , (6.4)

is particularly useful. Note that, in Eq. (6.4), we work with the inverse creation and
annihilation operators of the form

1
â†
|n〉 =

1√
n
|n − 1〉 , (6.5)

1
â
|n〉 =

1√
n + 1

|n + 1〉 , (6.6)

and an inverse number-operator of the form

1
N̂
|n〉 =

1
n
|n〉 =

1
â

1
â†
|n〉 . (6.7)

This number-conserving expansion of the Hamiltonian yields Ĥ = Ĥ0 + Ĥ1 + Ĥ2 +

Ĥ3 + Ĥ4, where

Ĥ0 = Nc

∫
dr φ∗c(r)

N̂c

Nc

(
Hsp(r) +

Ũ
2

N̂c − 1
Nc
|φc(r)|2

)
φc(r) , (6.8)

Ĥ1 =
√

Nc

∫
dr

[
φ∗c(r)

(
Hsp(r) + Ũ

N̂c − 1
Nc
|φc(r)|2

)
Λ̃(r) + h.c.

]
, (6.9)

Ĥ2 =

∫
dr

[
Λ̃†(r)

(
Hsp(r) + 2Ũ

N̂c − 1
Nc
|φc(r)|2

)
Nc

N̂c
Λ̃(r)

+
Ũ
2

(
φ∗c(r)2Λ̃(r)2 + h.c.

)]
, (6.10)

Ĥ3 =
Ũ√
Nc

∫
dr

[
Λ̃†(r)

Nc

N̂c
Λ̃(r)2φ∗c(r) + h.c.

]
, (6.11)

Ĥ4 =
Ũ

2Nc

∫
dr Λ̃†(r)2 N2

c

N̂c(N̂c − 1)
Λ̃(r)2 . (6.12)

Note that we have omitted temporal arguments (t) in Eqs. 6.8–6.12 for clarity.
While we will in general retain spatial arguments in subsequent expressions, we
will generally continue to omit temporal arguments for the same reason.
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6.2.2 Reduction to cubic form and Gaussian approximation

While Eqs. 6.8–6.12 are grouped into powers of the fluctuation operators in a sim-
ilar way to symmetry-breaking treatments, number-operator terms remain which
must be consistently expanded in order to develop equations of motion. In order
to obtain obtain final equations of motion to second-order in the non-condensate
fluctuation operators it is necessary to consistently expand the Hamiltonian to cubic
order in the same operators [68].

A consistent expansion of N̂c in terms of Λ̃(r) can be deduced from explicit number-
conservation: formally, the number fluctuations of condensate and non-condensate
must be equal and opposite. This requires that

N̂c = Nc +

∫
dr

[〈
δΨ̂†(r)δΨ̂(r)

〉
− δΨ̂†(r)δΨ̂(r)

]
. (6.13)

Replacing δΨ̂(r) with Λ̃(r) yields

N̂c = Nc +

∫
dr

[〈
Λ̃†(r)

Nc

N̂c
Λ̃(r)

〉
− Λ̃†(r)

Nc

N̂c
Λ̃(r)

]
. (6.14)

To obtain high-order expressions for N̂c it would generally be necessary to expand
Nc/N̂c in powers of N̂c/Nc − 1 as

Nc

N̂c
=

1
1 + (N̂c/Nc − 1)

= 1 −
(

N̂c

Nc
− 1

)
+

(
N̂c

Nc
− 1

)2

− · · · . (6.15)

However, noting that the first correction beyond Nc/N̂c = 1 would appear at quartic
order in Λ̃(r), for a consistent expansion of the Hamiltonian to cubic order the
highest order expression for N̂c we require is thus the quadratic expression obtained
simply by setting Nc/N̂c = 1;

N̂c = Nc +

∫
dr

[〈
Λ̃†(r)Λ̃(r)

〉
− Λ̃†(r)Λ̃(r)

]
. (6.16)

A consistent, third-order expansion of the Hamiltonian is then obtained by: (a)
discarding Ĥ4; (b) substituting N̂c = Nc in Ĥ3 and Ĥ2; (c) substituting Eq. (6.16)
in Ĥ1 and Ĥ0; (d) discarding terms which are of quartic order in the fluctuation
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operators, or of equivalent magnitude. This yields

Ĥ(3) =Nc

∫
dr φ∗c(r)

(
Hsp(r) +

Ũ
2
|φc(r)|2

)
φc(r)

+
√

Nc

∫
dr

[
φ∗c(r)

(
Hsp(r) + Ũ |φc(r)|2

)
Λ̃(r) + h.c.

]
− Ũ

2

∫
dr |φc(r)|4

+

"
dr dr′ φ∗c(r)

(
Hsp(r) + Ũ |φc(r)|2

)
φc(r)

[〈
Λ̃†(r′)Λ̃(r′)

〉
− Λ̃†(r′)Λ̃(r′)

]
+

∫
dr Λ̃†(r)

(
Hsp(r) + 2Ũ |φc(r)|2

)
Λ̃(r) +

Ũ
2

∫
dr

[
φ∗c(r)2Λ̃(r)2 + h.c

]
− Ũ√

Nc

∫
dr

[
φ∗c(r)|φc(r)|2Λ̃(r) + h.c.

]
+

Ũ√
Nc

"
dr dr′

[
φ∗c(r)|φc(r)|2

{〈
Λ̃†(r′)Λ̃(r′)

〉
− Λ̃†(r′)Λ̃(r′)

}
Λ̃(r) + h.c.

]
+

Ũ√
Nc

∫
dr

[
Λ̃†(r)Λ̃(r)2φ∗c(r) + h.c.

]
,

(6.17)

where the terms are grouped in descending order of magnitude.

We wish to obtain, to second order in the fluctuation operators, a final equation of
motion in closed form. However, terms appearing in the equation of motion, for ex-
ample the explicit time dependence of Λ̃(r), potentially introduce even higher-order
products of fluctuation operators. To prevent this we work within a consistent Gaus-
sian approximation [68]; that is, we require that in our final equations of motion all
quadratic products of operators take the form of pair averages. This constitutes a
Gaussian approximation in the sense that we assume that all higher-order moments
of the fluctuation distribution can be described in terms of the variance [or in this
case the variances

〈
Λ̃†(r)Λ̃(r)

〉
and

〈
Λ̃†(r)Λ̃(r)

〉
] [295].

In order for this to be the case in the final equations of motion, we must approximate
all cubic products of fluctuation operators appearing in Ĥ(3) into products of single
fluctuation operators multiplied by pair averages. This approximation is identical to
the Hartree-Fock factorization of the cubic terms in the symmetry-breaking Hamil-
tonian in Section 5.2.2 [Eq. (5.7)]. Hence in Ĥ(3) we make the replacement

Λ̃†(r)Λ̃(r′)Λ̃(r′) ≈ 2
〈
Λ̃†(r)Λ̃(r′)

〉
Λ̃(r′) +

〈
Λ̃(r′)Λ̃(r′)

〉
Λ̃†(r) , (6.18)
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and so on, to obtain

H̃(3) =Nc

∫
dr φ∗c(r)

(
Hsp(r) +

Ũ
2
|φc(r)|2

)
φc(r)

+
√

Nc

∫
dr

[
φ∗c(r)

(
Hsp(r) + Ũ |φc(r)|2

)
Λ̃(r) + h.c.

]
− Ũ

2

∫
dr |φc(r)|4

+

"
dr dr′ φ∗c(r)

(
Hsp(r) + Ũ |φc(r)|2

)
φc(r)

[〈
Λ̃†(r′)Λ̃(r′)

〉
− Λ̃†(r′)Λ̃(r′)

]
+

∫
dr Λ̃†(r)

(
Hsp(r, t) + 2Ũ |φc(r)|2

)
Λ̃(r) +

Ũ
2

∫
dr

[
φ∗c(r)2Λ̃(r)2 + h.c

]
− Ũ√

Nc

∫
dr

[
φ∗c(r)|φc(r)|2Λ̃(r) + h.c.

]
− Ũ√

Nc

"
dr dr′ |φc(r)|2

[
φ∗c(r)

{〈
Λ̃†(r′)Λ̃(r)

〉
+

〈
Λ̃(r′)Λ̃(r)

〉∗}
Λ̃(r′) + h.c.

]
+

Ũ√
Nc

∫
dr

[
φ∗c(r)

{
2
〈
Λ̃†(r)Λ̃(r)

〉
+

〈
Λ̃(r)2

〉∗}
Λ̃(r) + h.c.

]
.

(6.19)

As we have already identified, this approximation of cubic terms is equivalent to
that used in the Hartree-Fock-Bogoliubov approach. As discussed in detail in Sec-
tion 5.2.2, this procedure potentially leads to an inconsistent treatment of interac-
tions. However, as was explicitly demonstrated by Morgan in the development of
his static number-conserving description, the primary problem with Hartree-Fock
factorization of the cubic operator products is that it omits terms of cubic order in
the fluctuation operators which are larger than quartic terms which are retained by
the quartic Hartree-Fock factorization [Eq. (5.8)] of the quartic term [163, 281].
In the description presented here this inconsistency does not arise, since we have
consistently neglected all quartic terms.

Hence, the Gaussian fluctuation approximation is internally consistent and leads to
self-consistent equations of motion to quadratic order in the fluctuation operators.
A feature of the resulting self-consistent equations of motion, as we shall see in
the next Section (see also Section 5.3.4), is that the non-condensate is described by
a MBdGE which does not contain pair averages of the non-condensate operators.
This has the effect of making the identification of self-consistent initial conditions
impossible at high temperatures. To extend the theory to these temperatures would
require both (a) inclusion of quartic-order terms in the Hamiltonian and (b) relax-
ation of the Gaussian fluctuation approximation on the cubic terms in order to treat
such terms consistently.
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6.3 Equations of motion

6.3.1 Deduction of explicit time dependences

Coupled equations of motion for condensate and non-condensate to second order in
the fluctuation operators can be deduced from the Heisenberg equation of motion
for the fluctuation operator

i~
d
dt

Λ̃(r) =
[
Λ̃(r), H̃(3)

]
+ i~

∂

∂t
Λ̃(r) . (6.20)

The explicit time derivative in Eq. (6.20) can be expanded as

i~
∂

∂t
Λ̃(r) = −i~

∂Nc

∂t
1

2Nc
Λ̃(r) +

1√
Nc

i~
∂â†c
∂t
δΨ̂(r) +

1√
Nc

â†ci~
∂

∂t
δΨ̂(r) . (6.21)

Using the identities

i~
∂Nc

∂t
= 0 , (6.22)

i~
∂â†c
∂t

=

∫
dr Ψ̂†

[
i~
∂φc(r)
∂t

]
, (6.23)

i~
∂

∂t
δΨ̂(r) = −âc

∫
dr′Q(r, r′)

[
i~
∂φc(r′)
∂t

]
− φ(r)

∫
dr′

[
i~
∂φ∗c(r′)
∂t

]
δΨ̂(r′) ,

(6.24)

proved in Ref. [68], this reduces to

i~
∂

∂t
Λ̃(r) = − N̂c√

Nc

∫
dr′Q(r, r′)

[
i~
∂φc(r′)
∂t

]
− φc(r)

∫
dr′

[
i~
∂φ∗c(r′)
∂t

]
Λ̃(r′)

+

∫
dr′ φ∗c(r′)

[
i~
∂φc(r′)
∂t

]
Λ̃(r)

+
1√
Nc

∫
dr′

[
i~
∂φc(r′)
∂t

]
Λ̃†(r′)

Nc

N̂c
Λ̃(r) .

(6.25)

As these terms will appear in the final equation of motion, to remain within the
Gaussian fluctuation approximation of Section 6.2.2 it is necessary to remove all
beyond-quadratic products of field operators, and consistently replace all quadratic
products with their expectation values. Expanding the number-operators in this way
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gives

i~
∂

∂t
Λ̃(r) = −

√
Nc

∫
dr′

Q(r, r′) −
〈
Λ̃†(r′)Λ̃(r)

〉
Nc

 [i~∂φc(r′)
∂t

]
− φc(r)

∫
dr′

[
i~
∂φ∗c(r′)
∂t

]
Λ̃(r′) +

∫
dr′ φ∗c(r′)

[
i~
∂φc(r′)
∂t

]
Λ̃(r) .

(6.26)

The commutator appearing in Eq. (6.20) will require evaluation of the commutator
between two fluctuation operators, given exactly by

[
Λ̃(r), Λ̃†(r′)

]
=

N̂c

Nc
Q(r, r′) − 1

Nc
δΨ̂†(r′)δΨ̂(r) . (6.27)

To the quadratic order of approximation we require, this reduces to [using Eq. (6.16)]

[
Λ̃(r), Λ̃†(r′)

]
= Q(r, r′)

1 +

∫
dr′′

〈
Λ̃†(r′′)Λ̃(r′′)

〉
− Λ̃†(r′′)Λ̃(r′′)

Nc

− Λ̃†(r′)Λ̃(r)
Nc

,

(6.28)
and enforcing the Gaussian fluctuation approximation reduces this further to

[
Λ̃(r), Λ̃†(r′)

]
= Q(r, r′) −

〈
Λ̃†(r′)Λ̃(r)

〉
Nc

. (6.29)

Equation (6.29) is the highest-order form of the commutator we require in order to
deduce quadratic equations of motion. For second- and third-order terms in the cu-
bic Hamiltonian H̃(3) a lower-order approximation to the commutator is appropriate
to avoid higher-order terms appearing; this is given by[

Λ̃(r), Λ̃†(r′)
]

= Q(r, r′) . (6.30)

6.3.2 Deduction of equations of motion

We now expand the formal equation of motion for the fluctuation operator [Eq. (6.20)]
using the appropriate approximation to the explicit time derivatve [Eq. (6.26)], and
the full commutator with the Hamiltonian H̃(3), in which terms linear in the fluc-
tuation operators are expanded using the quadratic approximate commutator of
Eq. (6.29) and terms quadratic or cubic in the fluctuation operators are expanded
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using the zero-order approximate commutator of Eq. (6.30). This produces

i~
d
dt

Λ̃(r) =
√

Nc

∫
dr′Q(r, r′)


Hsp(r′) + Ũ

(1 − 1
Nc

)
|φc(r′)|2 + 2

〈
Λ̃†(r′)Λ̃(r′)

〉
Nc


− i~

∂

∂t

}
φc(r′) + Ũφ∗c(r)

〈
Λ̃(r′)2

〉
Nc


− 1√

Nc

∫
dr′

{〈
Λ̃(r′)Λ̃(r)

〉 [
Hsp(r′) + 2Ũ |φc(r′)|2 − i~

∂

∂t

]
φc(r′)

− Ũφ∗c(r′)
〈
Λ̃(r′)Λ̃(r)

〉
|φc(r′)|2

}
+

∫
dr′Q(r, r′)

{[
Hsp(r′) + 2Ũ |φ(r′)|2

]
Λ̃(r′) + ŨΛ̃†(r′)φc(r′)2

}
− φc(r)

∫
dr′

[
i~
∂φ∗c(r′)
∂t

]
Λ̃(r′)

− Λ̃(r)
∫

dr′ φ∗c(r′)
[
Hsp(r′) + Ũ |φc(r′)|2 − i~

∂

∂t

]
φc(r′) .

(6.31)

Taking the expectation value of this expression, and performing an iterative re-
substitution in which beyond-quadratic terms are consistently eliminated [68] one
obtains the number-conserving generalized GPE

i~
∂φc(r)
∂t

=

{
Hsp(r) + Ũ

[(
1 − 1

Nc

)
|φc(r)|2 + 2

ñ(r, r)
Nc

]
− λ2

}
φc(r)

+ Ũφ∗c(r)
m̃(r, r)

Nc

− Ũ
∫

dr′ |φc(r′)|2
(
ñ(r, r′)

Nc
φc(r′) + φ∗c(r′)

m̃(r, r′)
Nc

)
,

(6.32)

where we have re-introduced the normal and anomalous average notation intro-
duced in Chapter 5 [Eqs. (5.9) and (5.10)], and the GGPE eigenvalue λ2 is given
by

λ2 =

∫
dr φ∗c(r)

{
Hsp(r) + Ũ

[(
1 − 1

Nc

)
|φc(r)|2 + 2

ñ(r, r)
Nc

]
− i~

∂

∂t

}
φc(r)

+ Ũ
∫

dr φ∗c(r)2 m̃(r, r)
Nc

.

(6.33)

To obtain consistent equations of motion for the non-condensate, to which the
GGPE must be coupled, one can substitute Eq. (6.32) into Eq. (6.31) while neglect-
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ing higher-order terms1. This yields the number-conserving modified Bogoliubov-
de Gennes equations

i~
∂

∂t

 Λ̃(r)
Λ̃†(r)

 =

∫
dr′

 L(r, r′) M(r, r′)
−M∗(r, r′) −L∗(r, r′)

  Λ̃(r′)
Λ̃†(r′)

 , (6.34)

where

L(r, r′) = δ(r − r′)
[
Hsp(r′) + Ũ |φc(r′)|2 − λ0

]
+

∫
dr′′Q(r, r′′)Ũ |φc(r′′)|2Q(r′′, r′) , (6.35)

and
M(r, r′) =

∫
dr′′Q(r, r′′)Ũφ(r′′)2Q∗(r′′, r′) . (6.36)

These equations are equivalent to the previously stated number-conserving MBdGE
[Eq. (5.59)]; the latter are obtained from Eq. (6.34) and its complex conjugate by an
expansion in terms of Bogoliubov quasiparticles.

6.3.3 Discussion

The generalized Gross-Pitaevskii equation [Eq. (6.32)] and the modified Bogoliubov-
de Gennes equations [Eq. (6.34)] complete the fully dynamical, second-order, and
number-conserving description obtained by S. Gardiner and Morgan [68], and used
within a linear response treatment by Morgan [69–71] (see Section 5.3.4). In this
thesis, we develop these equations into a form where fully dynamical time evolution
can be realized numerically. However, before we begin to outline our method for
the simultaneous numerical solution of Eqs. (6.32) and (6.34), a few comments are
in order.

Firstly it is important to note that, in contrast to the GPE eigenvalue λ0 — which
can be considered a low-order approximation to the chemical potential — λ2 is a
complex eigenvalue. The meaning of the imaginary part of λ2 can be understood
by considering the (implicit) time dependence of Nc, which is given (to quadratic

1Neglecting higher-order terms is, in fact, equivalent to substituting in the ordinary GPE [68].
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order) by

i~
dNc

dt
= i~

d
dt

[
N −

∫
dr

〈
Λ̃†(r)Λ̃(r)

〉]
,

= −
∫

dr
{〈

Λ̃†(r)
[
i~

d
dt

Λ̃(r)
]〉

+

〈[
i~

d
dt

Λ̃†(r)
]
Λ̃(r)

〉}
,

= Ũ
∫

dr
[
φ∗c(r)2m̃(r, r) − m̃∗(r, r)φc(r)2

]
,

= (λ2 − λ∗2)Nc .

(6.37)

Thus, the imaginary part of λ2 acts to keep the condensate mode φc(r) normalized
to unity despite the growth or decay of the condensate population. This illustrates
the presence of consistent number dynamics in the coupling between the GGPE and
MBdGE, which constitutes a very desirable feature of this second-order description.
In the first-order description (see Section 5.3.4) one obtains the same MBdGE cou-
pled to the ordinary GPE: this combination manifestly does not lead to consistent
number dynamics, because the condensate size is fixed while the non-condensate
size is not. Indeed, the first-order description can only exhibit consistency when it
is viewed as the limit of the second-order description as N → ∞, in which the con-
densate constitutes an infinite atomic reservoir [68]. The zeroth-order description,
consisting of the GPE alone, is trivially number-consistent, as it ignores the growth
and decay of the condensate altogether. The number-dynamic consistency of the
zero-, first-, and second-order descriptions are illustrated schematically in Fig. 6.1.

Secondly, we note that the terms L(r, r′) appearing in the MBdGE consist only of
an “ordinary” GPE Hamiltonian and the “ordinary” GPE eigenvalue, and that the
terms M are also in no way altered from the first-order description. As has been
previously stated (see Sections 5.2.2, 5.2.3, 5.3.4, and 6.2.2) this certainly appears
inconsistent. In particular, for the MBdGE coupled to a solution of the zero-order
ordinary GPE, φ(0)

c (r), the eigenvalue λ0 is well-defined, and the spinors [φ(0)
c (r), 0]T

and [0, φ(0)∗
c (r)]T are exact, zero-energy solutions of the MBdGE. When coupled to

a solution of the generalized GPE, φ(2)
c (r), however, these properties are lost and

any attempt to restore them by upgrading the MBdGE alone results in inconsistent
number-dynamics.

This problem of the GGPE wavefunction φ(2)
c (r) appearing in the MBdGE is par-

ticularly acute at high temperatures, where it eventually makes it impossible to
find self-consistent equilibrium solutions to the second-order description. It can
be viewed purely as a consequence of applying the theory outside of its regime of
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GPE GPE

BdG

GGPE

BdG

(a) (b) (c)

Figure 6.1: Schematic representation of the zeroth-, first-, and second-
order number-conserving equations of motion. At zeroth order, (a), the
non-condensate is ignored and the condensate mode φc(r) is described by
the Gross-Pitaevskii equation (GPE) [Eq. (5.58)]. At first order, (b), the
GPE is coupled to modified Bogoliubov-de Gennes equations (MBdGE)
[Eq. (6.34)] for the non-condensate fluctuation operator Λ̃(r). At this or-
der, the evolution of Λ̃(r) depends on the evolution of φc(r), but the con-
verse is not true; this order of approximation can be interpreted as treating
the condensate as an infinite atomic reservoir. At second order, (c), the
non-condensate is again described by the MBdGE. However, the evolution
of the condensate is now determined by the generalized Gross-Pitaevskii
equation (GGPE) [Eq. (6.32)]; this pairing of equations produces fully self-
consistent number dynamics.

validity. This problem was discussed in detail by Morgan [70] in his study of con-
densate excitations at finite-temperature [69–71]; in this work he demonstrated that
the second-order description remains self-consistent at high temperatures provided
one restricts oneself to a linear response treatment, in which a self-consistent equi-
librium solution is not necessary. As we wish to give a fully dynamical treatment,
and thus require a self-consistent equilibrium initial condition, we are thus restricted
to low temperatures where such self-consistent solutions can be found.
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6.4 Numerical implementation

6.4.1 Elimination of complex eigenvalue

In this Section we develop a pseudospectral split-step method for evolving the com-
bined GGPE and MBdGE system. In order to do so, it is of great convenience to
eliminate the imaginary part of the GGPE eigenvalue λ2 [Eq. (6.33)] by describing
the condensate by a mode function normalized to the condensate population Nc.
Hence, we define

ψ(r) =
√

Ncφc(r) , (6.38)

in terms of which the GGPE can be written [using Eq. (6.37)] as

i~
∂ψ(r)
∂t

=
[
Hsp(r) + U0|ψ(r)|2 − λ2

]
ψ(r) + U0

[
ñ(r, r) − |ψ(r)|2

Nc

]
ψ(r)

+ U0ñ(r, r)ψ(r) − U0

Nc

∫
dr′ ψ(r′)|ψ(r′)|2ñ(r, r′)

+ U0m̃(r, r)ψ∗(r) − U0

Nc

∫
dr′ ψ∗(r′)|ψ(r′)|2m̃(r, r′) ,

(6.39)

and the MBdGE as

i~
∂

∂t
Λ̃(r) =

[
Hsp(r) + U0|ψ(r)|2 − λ0

]
Λ̃(r)

+ U0|ψ(r)|2Λ̃(r) − U0

Nc

∫
dr′ ψ∗(r′)|ψ(r′)|2Λ̃(r′)ψ(r)

+ U0ψ(r)2Λ̃†(r) − U0

Nc

∫
dr′ ψ(r′)|ψ(r′)|2Λ̃†(r′)ψ(r) .

(6.40)

Here, we have chosen to write the equations in a form which emphasises the sig-
nificant structural analogies between the GGPE and the MBdGE. The eigenvalues
appearing in these equations are (1) the “GPE eigenvalue” λ0:

λ0 =
1
Nc

∫
drψ∗(r)[Hsp(r) + U0|ψ(r)|2]ψ(r) , (6.41)

and (2) the adjusted “GGPE eigenvalue”:

λ2 ≡ λ0 + λ′ = λ0 +
U0

Nc

∫
drψ∗(r)

[
2ñ(r, r) − 1

Nc
|ψ(r)|2

]
ψ(r)

+
U0

2Nc

[
ψ(r)∗2m̃(r, r) + ψ(r)2m̃∗(r, r)

]
.

(6.42)

Both these eigenvalues are now explicitly real.
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6.4.2 Quasiparticle decomposition at T = 0

Assuming we start at thermal and dynamical equilibrium, we can use the Bogoli-
ubov quasiparticle decomposition of the non-condensate introduced previously Λ̃(r)

Λ̃†(r)

 =
∑

k

b̃k

 uk (r)

vk (r)

 +
∑

k

b̃†k

 v∗k (r)

u∗k (r)

 . (6.43)

Assuming all time-dependence to reside in the mode functions uk(r) and vk(r), with
the quasiparticle creation and annihilation operators b̃†k and b̃k time-independent, the
MBdGE take the form

i~
∂

∂t
uk(r) =

[
Hsp(r) + U0|ψ(r)|2 − λ0

]
uk(r)

+ U0|ψ(r)|2uk(r) − U0

Nc

∫
dr′ ψ∗(r′)|ψ(r′)|2uk(r′)ψ(r)

+ U0ψ(r)2vk(r) − U0

Nc

∫
dr′ ψ(r′)|ψ(r′)|2vk(r′)ψ(r) ,

(6.44)

and

i~
∂

∂t
v∗k(r) =

[
Hsp(r) + U0|ψ(r)|2 − λ0

]
v∗k(r)

+ U0|ψ(r)|2v∗k(r) − U0

Nc

∫
dr′ ψ∗(r′)|ψ(r′)|2v∗k(r′)ψ(r)

+ U0ψ(r)2u∗k(r) − U0

Nc

∫
dr′ ψ(r′)|ψ(r′)|2u∗k(r′)ψ(r) .

(6.45)

Assuming the following pair averages for the quasiparticle creation and annihilation
operators [see Eq. (5.16)];〈

b̂†k b̂l

〉
= δklNk = δkl

(
e(εk−µ)/kBT − 1

)−1
, (6.46)〈

b̂kb̂l

〉
=

〈
b̂†k b̂†l

〉
= 0, (6.47)

we obtain quasiparticle expressions for the non-condensate density matrix and anoma-
lous average [see Eqs. (5.18) and (5.19)]

ñ(r, r′) =
∑

k

Nkuk(r)u∗k(r′) +
∑

k

(Nk + 1)v∗k(r)vk(r′) , (6.48)

m̃(r, r′) =
∑

k

Nkuk(r)v∗k(r′) +
∑

k

(Nk + 1)v∗k(r)uk(r′) . (6.49)

In the above we have implicitly assumed the quasiparticles to have bosonic com-
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mutation relations; in reality this is only approximately true due to the definition
of Λ̃(r) (see Section 5.3.2). While it is hard to comment on the general validity
of this assumption [79] we note that Morgan’s work at finite temperature [69–71]
does not seem to be affected by this assumption, and that to the (quadratic) order of
approximation we have considered, using the alternative fluctuation operator Λ̂c(r)
(Section 5.3.2), which does produce bosonic quasiparticles, ultimately yields the
same results [68]. Therefore, certainly for the zero-temperature initial conditions
we study, the issue of exact quasiparticle commutation relations can be neglected.

Starting at T = 0 Eqs. (6.48) and (6.49) become

ñ(r, r′) =
∑

k

v∗k(r, t)vk(r′, t) , (6.50)

m̃(r, r′) =
∑

k

v∗k(r, t)uk(r′, t) , (6.51)

(6.52)

yielding for the diagonal terms in particular

ñ(r, r) =
∑

k

|vk(r, t)|2 , (6.53)

m̃(r, r) =
∑

k

uk(r, t)v∗k(r, t) . (6.54)

(6.55)

Using these relations we proceed, in the next Section, to re-cast the GGPE in terms
of the quasiparticle mode functions, and re-cast the combined GGPE and MBdGE
in the final form which we will use to conduct a simultaneous numerical solution.

6.4.3 Re-casting of equations

The primary difficultly in working with the coupled GGPE-MBdGE system is the
problem of orthogonalization: both equations contain terms which function to main-
tain orthogonality between the condensate and non-condensate. This is in contrast
to the case of the first-order GPE-MBdGE system, where the GPE evolves in iso-
lation from the MBdGE; in this first-order system the evolution of the MBdGE can
be computed by ignoring the projector terms throughout the evolution and simply
applying them at the end (see Section 5.3.4 and Ref. [309]). If one were to similarly
ignore the projectors during the evolution of the second-order GGPE-MBdGE sys-
tem one would then have to re-orthogonalize both the condensate and quasiparticle
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modes with respect to an unknown basis at the end of the evolution. Consequently,
the projection terms must be explicitly included in any evolution scheme. In this
Section we develop such a scheme, by re-casting the GGPE and MBdGE in a form
which exploits their apparent symmetries, and allows us to include the projection
terms within a split-step method that can be implemented numerically.

After substituting the T = 0 expressions for the non-condensate density and anoma-
lous average [Eqs. (6.50) and (6.51)] into the GGPE [Eq. (6.39)], the GGPE and
MBdGE can be recast in the form

i~
∂ψ(r)
∂t

= [HGP(r) + B(r)]ψ(r) +
∑

k

Ak(r)v∗k(r) , (6.56)

i~
∂uk(r)
∂t

= HGP(r)uk(r) + Ak(r)ψ(r) , (6.57)

i~
∂v∗k(r)
∂t

= HGP(r)v∗k(r) + A∗k(r)ψ(r) , (6.58)

where

HGP(r) = Hsp(r) + U0|ψ(r)|2 − λ0 , (6.59)

B(r) = U0

∑
k

|vk(r)|2 − |ψ(r)|2
Nc

 − λ′ , (6.60)

Ak(r) = U0
[
vk(r)ψ(r) + uk(r)ψ∗(r) − Ik

]
, (6.61)

Ik =
1
Nc

∫
dr

[
vk(r)ψ(r) + uk(r)ψ∗(r)

] |ψ(r)|2 . (6.62)

This reformulation of the problem allows one to write the coupled evolution of the
condensate wavefunction and the first M quasiparticle modes as a nonlinear matrix
equation in a 2M + 1-dimensional spinor space:

i~
∂

∂t
ζ(r) = Γ(r)ζ(r) . (6.63)

Here the vector ζ(r) is defined by

ζ(r) =
[
ψ(r), v∗1(r), v∗2(r), . . . , v∗M(r), u1(r), u2(r), . . . , uM(r)

]T , (6.64)
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and the operator Γ(r) is defined by

Γ(r) =



HGP + B A1 A2 . . . AM 0 0 · · · 0
A∗1 HGP 0 · · · 0 0 0 · · · 0
A∗2 0 HGP · · · 0 0 0 · · · 0
...

...
...

. . .
... 0 0 · · · 0

A∗M 0 0 · · · HGP 0 0 · · · 0
A1 0 0 · · · 0 HGP 0 · · · 0
A2 0 0 · · · 0 0 HGP · · · 0
...

...
...

...
...

...
...

. . .
...

AM 0 0 · · · 0 0 0 · · · HGP



, (6.65)

where we have omitted the position argument (r) of all terms for clarity. In any
actual calculation, this spinor space is rendered finite-dimensional by the need for a
finite quasiparticle momentum cut-off M. Consequently, all subsequent summations
over quasiparticle index k appearing in this Chapter should be taken to run from 1
to M.

As we have already accounted for all creation and annihilation operators through
the quasiparticle decomposition, each entry in the matrix defining Γ can be thought
of as an operator in the first-quantized sense2. From an analytic perspective, this
notation seems to achieve little more than ‘tidying’ — abstracting away much of
the detail. Importantly, however, all the operators which are off-diagonal in the
spinor space [the operators Ak(r)] are diagonal in the position representation (they
multiply by a spatially-varying function). In contrast, all the operators which have
off-diagonal components in the position representation [that is, the kinetic energy
operator implicitly contained in Hsp(r) and hence in HGP(r)] appear only on the
diagonal in the spinor space.

From a numerical perspective this property is extremely useful, as it makes the
evolution amenable to a split-step approximation (see Appendix B). This is achieved
by splitting Γ(r) into the sum of a term due to linear parts of the evolution, ΓL(r),
and a term representing nonlinear parts of the evolution, ΓN(r). These are defined

2That is, an operator which could appear on the right side of a single-particle Schrödinger equa-
tion.
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by

ΓL =


HL 0 · · · 0

0 HL · · · ...
...

...
. . . 0

0 · · · 0 HL


, (6.66)

and

ΓN =



HN + B A1 A2 . . . AM 0 0 · · · 0
A∗1 HN 0 · · · 0 0 0 · · · 0
A∗2 0 HN · · · 0 0 0 · · · 0
...

...
...

. . .
... 0 0 · · · 0

A∗M 0 0 · · · HN 0 0 · · · 0
A1 0 0 · · · 0 HN 0 · · · 0
A2 0 0 · · · 0 0 HN · · · 0
...

...
...

...
...

...
...

. . .
...

AM 0 0 · · · 0 0 0 · · · HN



, (6.67)

where we have also defined

HL(r) = Hsp(r) − λ0 , (6.68)

and
HN(r) = HGP(r) − HL(r) = U0|ψ(r)|2 . (6.69)

We re-iterate at this point that all terms appearing in ΓL and ΓN are implicitly
position-dependent, but this is omitted for clarity in all matrix-form expressions.

Written in this form, ΓL contains all kinetic energy terms; while these terms are
not diagonal in the position representation, they do all lie on the diagonal in the
spinor space. Consequently, the evolution due to the kinetic energy terms can be
computed for each mode function separately. In contrast, while ΓN does contain off-
diagonal elements in the spinor space, each element of ΓN is diagonal in the position
representation. Consequently, the evolution due to these terms can be computed
straightforwardly over a discrete spatial grid.
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6.4.4 Split-step evolution

In the spinor space, the split-step approximation for the evolution of the system over
short times δt is given by

ζ(r, t + δt) = e−iΓ(r)δt/~ζ(r, t) ≈ e−iΓN(r)δt/2~e−iΓL(r)δt/~e−iΓN(r)δt/~ζ(r, t) , (6.70)

where each of the three evolution operators on the right is assumed to act instan-
taneously, and the symmetrization reduces the error to the order of δt3 (see Ap-
pendix B). Since ΓL is diagonal in the spinor space, we have

e−iΓLδt/~ =


e−iHLδt/~ 0 · · · 0

0 e−iHLδt/~ · · · ...
...

...
. . . 0

0 · · · 0 e−iHLδt/~


. (6.71)

Numerically, this can easily be implemented using a pseudospectral method, in
which one works with a discrete representation of each of the mode functions [ψ(r),
uk(r), etc.] on a suitable pseudospectral grid determined by the eigenfunctions of
HL(r). With respect to this discrete representation a matrix operator for e−iHLδt/~ can
be constructed, and applied to each mode function individually (see Appendix B).

The operator ΓN is more problematic because it is not diagonal in the spinor space,
and because of the orthogonalization terms it contains. However, each of its entries
is diagonal in the position representation, meaning we only need exponentiate ΓN in
the spinor space in order to obtain an operator we can evaluate and use for short-time
propagation: such an operator — in distinct contrast to e−iΓLδt/~ which consists of
an application of e−iHLδt/~ to each mode individually — couples the mode functions
by acting on all modes at once. The advantage of such an operator is that it al-
most entirely3 overcomes the orthogonalization problem inherent in any uncoupled
treatment of the modes.

The evolution due to the term e−iΓNδt/~ can be obtained by considering the matrices
Γ̃

(M)
N , which we define to be 2M + 1-dimensional matrices of complex numbers

which share the structure of ΓN; that is, they are defined by an expression equivalent

3A correction for numerical round-off error is still required in order to preserve orthogonality
over long times, which can be achieved by explicitly orthogonalizing the quasiparticle modes with
respect to the condensate. Our experience of this correction is that applying it after every timestep
does not cause decay of the total atom number, indicating that it does indeed operate only at the level
of machine precision (see Chapter 7).
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to Eq. (6.67) but with the diagonal matrices Ak, A∗k etc. replaced with complex
coefficients representing the actual values of the functions Ak(r), A∗k(r) etc. at a
specific value of r. Within a numerical calculation, these matrices inhabit the 2M +

1-dimensional spinor space only, with one such matrix for every spatial grid point
in r. At each individual grid point, the evolution due to e−iΓNδt/~ is thus produced by
the action of e−iΓ̃(M)

N δt/~ within the spinor space.

One could proceed by numerically diagonalizing, and thence exponentiating, Γ̃
(M)
N

for each spatial grid point in turn. However, because the structure of Γ̃
(M)
N is indepen-

dent of r, one can avoid the high computational cost of numerical diagonalization
by finding an analytic form for e−iΓ̃(M)

N δt/~. In principle, this only needs to be done for
the specific number of quasiparticle modes M one wishes to propagate. The actual
analytic calculation of e−iΓ̃(M)

N δt/~ for specific M is best left to a computer algebra sys-
tem (e.g., Wolfram Mathematica [337]). However, for all M > 2 we have observed
that the results can be written in the general form

e−iΓNδt/~ =

Tcos − BTsin/2 −A1Tsin −A2Tsin . . . −AMTsin 0 · · · 0
−A∗1Tsin A1A∗1Tmix A2A∗1Tmix · · · AMA∗1Tmix 0 · · · 0
−A∗2Tsin A1A∗2Tmix A2A∗2Tmix · · · AMA∗2Tmix 0 · · · 0

...
...

...
. . .

... 0 · · · 0
−A∗MTsin A1A∗MTmix A2A∗MTmix · · · AMA∗MTmix 0 · · · 0
−A1Tsin A1A1Tmix A2A1Tmix · · · AMA1Tmix 0 · · · 0
−A2Tsin A1A2Tmix A2A2Tmix · · · AMA2Tmix 0 · · · 0

...
...

...
...

...
...

. . .
...

−AMTsin A1AMTmix A2AMTmix · · · AMAMTmix 0 · · · 0



+


0 0 · · · 0
0 Texp · · · 0
...

...
. . .

...

0 0 · · · Texp


, (6.72)
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where

Texp = e−iHNδt/~ , (6.73)

Tcos = e−i(HN+B/2)δt/~ cos

 √
B2 + 4

∑
k |Ak|2δt

2~

 , (6.74)

Tsin =
2ie−i(HN+B/2)δt/~√
B2 + 4

∑
k |Ak|2

sin

 √
B2 + 4

∑
k |Ak|2δt

2~

 , (6.75)

Tmix =
Tcos + TsinB/2 − Texp∑

k |Ak|2 . (6.76)

At any specific point r on the computational grid, the expression Eq. (6.72) allows
one to compute the time evolution due to ΓN immediately after evaluating the func-
tions Ak(r) etc. at that specific point. Note, however, that these functions themselves
can only be computed at an individual grid point once the necessary non-local in-
tegrals have been numerically evaluated over the entire grid. The resulting time
evolution can be succinctly expressed as 2M + 1 coupled equations:

ψ(t + δt) =

(
Tcos − BTsin

2

)
ψ(t) − Tsin

∑
k

Akv∗k(t) , (6.77)

v∗k(t + δt) = −A∗kTsinψ(t) + Texpv∗k(t) + Tmix

∑
j

A∗kA jv∗j(t) , (6.78)

uk(t + δt) = −AkTsinψ(t) + Texpuk(t) + Tmix

∑
j

AkA jv∗j(t) . (6.79)

Applying these coupled equations separately at each value of r on the appropriate
computational grid then reproduces exactly the action of e−iΓNδt/~, as desired. In
the next Chapter we consider, in detail, a specific application of this method to a
test system: a quasi-1D, periodic, δ-kicked atomic BEC, which constitutes a BEC
analogue of the well-known quantum kicked-rotor.



Chapter 7: Coherence and instability in a
driven Bose-Einstein condensate

7.1 Introduction

In this Chapter we apply the split step numerical method for evolving the second-
order, number-conserving equations of motion, developed in Chapter 6 and consist-
ing of coupled GGPE and MBdGE, to a test system: the δ-kicked-rotor-BEC. This
system consists of a quasi-1D, toroidally trapped atomic BEC driven by periodic δ-
kicks from a spatially-varying potential of sinusoidal form. In contrast to first-order
descriptions, which predict rapid, unbounded growth of the non-condensate in res-
onant parameter regimes, the consistent treatment of condensate depletion in our
fully-time-dependent, second-order description acts to damp this growth, leading
to oscillations in the (non-)condensate population and the coherence of the system.
Although our description leads to different dynamics around resonant parameter
regimes, these regimes occur where the GPE predicts them. Furthermore, our de-
scription retains some, but not all, of the features of the dynamics predicted by the
GPE.

We begin by introducing the δ-kicked-rotor-BEC (Section 7.2), which constitutes
a generalization to the interacting case of the atom-optical kicked rotor. We dis-
cuss previous work on the system, using both the GPE and the first-order number-
conserving description of GPE plus MBdGE. In Section 7.3 we outline our second-
order description of the δ-kicked-rotor-BEC (Section 7.3.1), including the introduc-
tion of appropriate dimensionless units which we then use to express the second-
order number-conserving equations of motion of the system (Section 7.3.2). We
then give the specific details of the numerical solution method for this system (Sec-
tion 7.3.3). In Section 7.4 we give a thorough discussion of our results, which
illustrate the advantages of our self-consistent, second-order description.

7.2 The δ-kicked-rotor-BEC

Our chosen test-system is a quasi-1D, toroidally-trapped, repulsively-interacting
atomic BEC driven by δ-kicks from a spatial cosine potential [Fig. 7.1], which we
term the δ-kicked-rotor-BEC. This system is a BEC analogue of the quantum δ-

157
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(b)

Figure 7.1: The δ-kicked-rotor-BEC system considered in this chapter: An
atomic Bose-Einstein condensate is held in a quasi-1D, toroidally-shaped
trap (a), and driven by δ-kicks from a sinusoidal perturbing potential (b).

kicked rotor [338–342], a paradigm quantum-chaotic system in which periodic driv-
ing leads to complex behaviour, including dynamical localization [338, 339, 342]
and quantum resonances (associated with ballistic increase in the kinetic energy)
[338–341]. Atom-optical realizations of such systems [341–344] comprise an ex-
citing area of research into quantum-chaotic phenomena. Extension of such systems
into the regime of BECs has also become an active area of research, in which several
new phenomena have been predicted [48, 56–60, 308, 345–347]. In the mean-field
approximation, the nonlinearity of the GPE introduces the potential for true wave
chaos to enter the system, and this can strongly influence δ-kicked-rotor-BEC dy-
namics [58, 345, 346]; in particular, the structure of nonlinear quantum resonances
in the δ-kicked rotor-BEC was recently elucidated [60], revealing previously unob-
served resonance profiles with a sharp asymmetric cut-off.

However, as we have noted in previous Chapters, even at T = 0 in a system of
finite size there is always a finite non-condensate fraction. The influence of the
non-condensate on the dynamics can be accounted for using a variety of theoretical
descriptions, as we have discussed in detail in Chapter 5. Highly important in a
driven system such as this, however, is the tendency of the far-from-equilibrium
dynamics resulting from the driving to cause significant particle transfer from the
condensate to the non-condensate fraction. This tendency for dynamical depletion
has been observed under quite general circumstances [48, 49, 56, 57, 59, 181, 308]
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and, when rapid, such dynamical depletion has commonly been supposed to presage
destruction of the BEC as a coherent entity.

As discussed in Chapters 5 and 6, the study of dynamical depletion due to driv-
ing at low temperatures is an ideal target for number-conserving descriptions. The
first-order, number-conserving description of Castin and Dum [181] (the GPE and
MBdGE system — see Section 5.3.4) has been the approach of choice in the study
of such systems, and in particular of δ-kicked BEC systems such as we consider
here [48, 56, 57, 59, 308]. This work has revealed a general tendency towards
rapid growth in the number of non-condensate atoms Nt, and has commonly been
interpreted as demonstrating that driving rapidly destroys the condensate in such
systems. It is appropriate to consider what is occurring in a little more detail, how-
ever.

The growth of the non-condensate is at its most rapid in parameter regimes associ-
ated with (nonlinear) quantum resonances, and as such this growth can be seen to
result directly from linear dynamical instabilities in the GPE; that is, sensitivity to
initial conditions in the linearized regime. These dynamical instabilities are a direct
manifestation of the true wave chaos which enters into the GPE due to its nonlinear-
ity [49]. We note that the presence of such instabilities is a generic feature of most
nonlinear systems, and is in no way unique to the δ-kicked rotor. However, a treat-
ment of a system posessing such linear instabilities using the first-order number-
conserving description is hampered by this description’s lack of self-consistency
with regard to the total atom number [48, 56, 57, 59, 308]. In particular growth in
the non-condensate number Nt should, in reality, be exactly matched by depletion
in the condensate number Nc; hence, as atoms transfer from Nc to Nt, qualitatively
one expects mean-field interactions and hence further transfer to “switch off” at
some stage. Within a first-order description such a “switch-off” is prevented by the
lack of a consistent back-action of the non-condensate growth on the condensate
dynamics: as shown in Fig. 6.1 the linearized, first-order description treats the con-
densate as an effectively undepletable “particle bath” which feels no effect from the
non-condensate.

Consequently, whether or not a successful “switch-off” of non-condensate growth
can, or ever does, occur before the destruction of the condensate has remained an
open question. By applying the second-order number-conserving description of
S. Gardiner and Morgan to this problem in the fully dynamical form outlined in
Chapter 6, we are able to demonstrate that such a “switch-off” can, and in many
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Figure 7.2: Evolution of condensate and non-condensate fractions nc =

Nc/N and nt = Nt/N in (a) first- and (b) second-order number-conserving
descriptions (N = 104, gT = 2.5 × 10−4, Tp = 9.255, κ = 0.5). In (c) we
show the coherence measure C [Eq. (7.27)] in the second-order description,
and the fidelity, F [Eq. (7.28)], of the condensate mode between descrip-
tions.

parameter regimes does, occur in the δ-kicked-rotor-BEC. We do this by numer-
ically exploring resonant parameter regimes which, in the first-order description,
lead to rapid, unbounded growth of the non-condensate. Our principal finding is
the damping of this growth in the second-order description [Fig. 7.2(a,b)]. We also
compute the coherence of the system and the departure of the second-order descrip-
tion from the GPE [Fig. 7.2(c)] for varying total atom number N. We show that,
despite considerable differences in dynamics between the descriptions around reso-
nant parameter regimes, the GPE accurately predicts the location of these resonant
parameter regimes. The sharp, asymmetric cut-offs identified in [60] are qualita-
tively preserved, however we show that the accompanying exponential oscillations
are strongly modified for experimentally realistic atom numbers.

7.3 Second-order, number-conserving description

7.3.1 Physical system

We consider N bosonic atoms of mass m, held in a toroidal potential VT (ρ, z) =

mω2[(ρ − R)2 + z2]/2 [Fig. 7.1(a)], interacting with repulsive s-wave contact inter-
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actions, and subject to a temporally and spatially periodic driving potential V(θ, t)
[Fig. 7.1(b)]. We have already noted in Chapter 1 that toroidal potentials similar
to VT can be created and precisely controlled using all-optical methods [47, 143].
As in Chapter 2, we assume sufficiently strong radial and axial confinement, and
that the harmonic length r ≡ √~/mω is much less than the external radius R of the
toroidal potential [45], in order to reduce the system Hamiltonian to a dimensionless
(length unit R, time unit mR2/~), one-dimensional form [60]:

Ĥ =

∫
dθ Ψ̂†(θ)

[
−1

2
∂2

∂θ2 + V(θ, t) +
gT

2
Ψ̂†(θ)Ψ̂(θ)

]
Ψ̂(θ) . (7.1)

Here, the (dimensionless) interaction strength gT = 2asR/r2. The approximation
that the system is quasi-one-dimensional requires that the total energy remain small
compared to ~ω; in a driven system, such as we consider, this places a time-limit
on its validity. However, when beginning with a large, zero-momentum condensate
satisfying this condition, the approximation can be expected to hold reasonably well
as long as a majority of the atoms remain in the zero-momentum mode.

As in previous studies of the δ-kicked-rotor-BEC [56, 57, 59, 60], we model the
driving potential as a train of δ-kicks

V(θ, t) = κ cos(θ)
∞∑

n=0

δ(t − nTp) , (7.2)

with (dimensionless) kicking period Tp. Such a kicking potential may be approx-
imated in experiment using short pulses of off-resonant laser light [340–342]. For
example, a qualitatively similar driving potential, V2(θ, t) = V(2θ, t), could be gen-
erated using counter-propagating Laguerre-Gaussian laser modes [348], in which
case κ = Ω2tp/8∆ (for laser detuning ∆, Rabi frequency Ω, and pulse duration tp).
Alternatively, the exact V(θ, t) we use here could be generated by applying a lin-
ear potential κx/tpR throughout the trap [347] using, for example, magnetic field
gradients as in Chapter 3.

7.3.2 Dimensionless equations of motion

As described in detail in Chapters 5 and 6 we define the condensate mode ψ(θ)
(with corresponding creation operator â†c) as the eigenfunction of the single-body
density matrix 〈Ψ̂†(θ′)Ψ̂(θ)〉 with the largest eigenvalue Nc (the number of conden-
sate atoms), to which it is normalized; that is,

∫
dθ |ψ(θ)|2 = Nc ≡ 〈â†c âc〉. Following

the procedure of Chapter 6 we expand the field operator according to the number-
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conserving partition
Ψ̂(θ) = âcψ(θ)/

√
Nc + δΨ̂(θ) , (7.3)

where
δΨ̂(θ) ≡

∫
dθ′ Q(θ, θ′)Ψ̂(θ′) , (7.4)

and the projector Q(θ, θ′) takes the form

Q(θ, θ′) = δ(θ − θ′) − ψ(θ)ψ∗(θ′)/Nc . (7.5)

After introducing the number-conserving fluctuation operator

Λ̃(θ) ≡ â†cδΨ̂(θ)/
√

Nc , (7.6)

the non-condensate normal and anomalous averages

ñ(θ, θ′) ≡ 〈Λ̃†(θ′)Λ̃(θ)〉 , (7.7)

m̃(θ, θ′) ≡ 〈Λ̃(θ′)Λ̃(θ)〉 , (7.8)

and
f̃ (θ) ≡ 1

Nc

∫
dθ′ |ψ(θ′)|2 [

ñ(θ, θ′)ψ(θ′) + ψ∗(θ′)m̃(θ′, θ)
]
, (7.9)

the ultimate result of this expansion is identical to that in Chapter 6, but now in
one-dimensional and dimensionless form, and consists of the GGPE

∂ψ(θ)
∂t

=

{
HGP(θ) − λ2 + gT

[
2ñ(θ, θ) − |ψ(θ)|2

Nc

]}
ψ(θ) + gT m̃(θ, θ)ψ∗(θ) − gT f̃ (θ),

(7.10)
where

HGP(θ) ≡ −1
2
∂2

∂θ2 + V(θ, t) + gT |ψ(θ)|2 , (7.11)

and

λ2 = λ0 +
U0

Nc

∫
dr

{
ψ∗(θ)

[
2ñ(θ, θ) − 1

Nc
|ψ(θ)|2

]
ψ(θ)

+
U0

2Nc

[
ψ(θ)∗2m̃(θ, θ) + ψ(θ)2m̃∗(θ, θ)

]}
, (7.12)

and
λ0 = (1/Nc)

∫
dθ ψ∗(θ)HGP(θ)ψ(θ) , (7.13)
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and the MBdGE for the quasiparticle mode functions;

i
∂

∂t

 uk(θ)
vk(θ)

 =

∫
dθ′

 L(θ, θ′) M(θ, θ′)
−M∗(θ, θ′) −L∗(θ, θ′)

  uk(θ′)
vk(θ′)

 , (7.14)

where the quasiparticle mode functions {uk(θ), vk(θ)} are normalized by
∫

dθ [|uk(θ)|2−
|vk(θ)|2] = 1, and

L(θ, θ′) = δ(θ − θ′)[HGP(θ′) − λ0] + gT

∫
dθ′′ Q(θ, θ′′)|ψ(θ′′)|2Q(θ′′, θ′), (7.15)

M(θ, θ′) = gT

∫
dθ′′ Q(θ, θ′′)ψ(θ′′)2Q∗(θ′′, θ′) . (7.16)

In order to use the numerical method developed in the previous Chapter, and for
consistency with previous studies [56, 57, 59, 60], we begin at zero temperature,
and thus express the normal and anomalous averages as

ñ(θ, θ′) =

∞∑
k=1

[
vk(θ′)v∗k(θ) + v−k(θ′)v∗−k(θ)

]
, (7.17)

m̃(θ, θ′) =

∞∑
k=1

[
uk(θ′)v∗k(θ) + u−k(θ′)v∗−k(θ)

]
. (7.18)

Here, the k index quantifies the momentum associated with the equilibrium quasi-
particle eigenmodes, prior to application of the driving potential V(θ, t)1. There
is no need to renormalize ultraviolet divergences due to the anomalous average m̃

as described in Chapter 5; such infinities formally do not arise in one dimension,
making this procedure unnecessary here.

For comparison, in the δ-kicked-rotor-BEC system the first-order description of
S. Gardiner and Castin and Dum [66, 181, 304, 305], used previously in time-
dependent studies of non-condensate dynamics in δ-kicked BECs [48, 56, 57, 59,
308], consists of the ordinary GPE

i
∂ψ(θ)
∂t

= [HGP(θ) − λ0]ψ(θ) , (7.19)

coupled to the MBdGE [Eq. (7.14)]. The GPE alone constitutes a zeroth-order de-
scription, although it may be possible to infer higher-order processes from a pure

1Note that, unlike the k index in previous Chapters which has implicitly been restricted to k ≥ 0,
k here has been chosen to run over all (positive and negative) integer values except 0, as this makes
counting more convenient
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GPE treatment [60] (see also Section 5.4). Unlike the first-order description consist-
ing of GPE plus MBdGE, the GPE alone at least constitutes an internally consistent
theoretical description in terms of number-dynamics.

7.3.3 Numerical simulation

We take the T = 0 equilibrium state, in the absence of driving, as our initial con-
dition. The initial condensate mode is therefore spatially homogeneous: ψ(θ) =√

Nc/2π. This sets λ0 = gT Nc/2π, and the initial stationary quasiparticle modes to
be  uk(θ)

vk(θ)

 =
1
2

 Ak + A−1
k

Ak − A−1
k

 eikθ

√
2π
, (7.20)

where

Ak = A−k =

(
k2

k2 + 4λ0

)1/4

. (7.21)

These mode functions display the correct behaviour in both the limit of no inter-
particle interactions — since vk(θ) = 0 if gT = 0, and we recover the momentum
eigenstates for free particles on a ring — and in the limit of high kinetic energy —
since vk(θ) → 0 as |k| → ∞, regardless of the (finite) value of gT , and we recover
the free-particle momentum eigenstates. Hence, the number of non-condensate par-
ticles is

Nt ≡ N − Nc =

∫
dθ ñ(θ, θ) =

1
2

∞∑
k=1

(
Ak − A−1

k

)2
, (7.22)

and we set

λ2 =
gT

2π

N − 1 +

∞∑
k=1

[
A2

k − 1
] . (7.23)

To numerically determine a self-consistent T = 0 solution to Eqs. (7.10) and (7.14),
for given values of N and gT , we set Nc = N, and then; (a) calculate Ak up to a
cut-off momentum |k| = m; (b) determine Nt from the Ak; (c) make the replacement
Nc = N−Nt. We repeat steps (a)–(c) until convergence. To determine the driven dy-
namics, we evolve Eqs. (7.10) and (7.14) using the pseudospectral split-step method
outlined in Chapter 6 on a Fourier grid (see Appendix B for details of the Fourier
pseudospectral implementation). The δ-kicks from the external potential can be
incorporated into the dynamics quasi-analytically by implementing the mappings

ψ(θ)→ e−iκ cos θψ(θ) , (7.24)

uk(θ)→ e−iκ cos θuk(θ) , (7.25)

vk(θ)→ eiκ cos θvk(θ) , (7.26)
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numerically, for every mode and at the instant of every kick.

As explained in detail in Chapter 6, evolving the GGPE-MBdGE system involves
diagonalizing Eqs. (7.10) and (7.14), expressed as a nonlinear integro-differential
equation in a 2M+1-dimensional spinor space, analytically for small timesteps, and
reorthogonalizing {uk, vk} with respect to ψ after each timestep to prevent build-up
of rounding errors. All simulations have been checked for convergence in timestep,
grid size, and quasiparticle cut-off momentum M. Figure 7.3 illustrates the con-
vergence of the method in M; interestingly, while quantities such as the anomalous
average are known to converge rather slowly in M when one calculates them for
equilibrium situations [70, 71], the overall time-evolution given by the split-step
method converges much more rapidly; M = 4 is numerically indistinguishable from
M = 64 (our typical choice in this Chapter) over the evolved time. This can be
understood as a feature of the δ-kicked-rotor-BEC, in which the driving couples the
condensate particularly strongly to only a few quasiparticle modes [59, 60].

7.4 Numerical results and discussion

7.4.1 Results

In Fig. 7.2 we plot the condensate and non-condensate fractions (nc = Nc/N and
nt = Nt/N) for parameters which, in the first-order description, lead to rapid growth
of the non-condensate (becoming unphysical after ∼ 20 kicks) [Fig. 7.2(a)]. In
the second-order description [Fig. 7.2(b)] the self-consistent “back-action” of the
non-condensate rapidly damps out this growth, leading instead to complementary
oscillations in nt and nc. We also track the overall coherence of the system through
the spatially-averaged coherence measure

C =

"
dθ dθ′ g1(θ, θ′)g1(θ′, θ), (7.27)

where g1(θ, θ′) =
〈
Ψ̂†(θ′)Ψ̂(θ)

〉
/N is the first-order correlation function, and com-

pare the evolution of ψ in the GGPE with the GPE prediction (ψGPE) through the
fidelity

F =

∣∣∣∫ dθ ψ∗GPE(θ)ψ(θ)
∣∣∣2

NNc
. (7.28)

The spatially-averaged coherence measure C is equal to unity only in the limit
of a pure condensate, where the non-condensate fraction is exactly zero (i.e., the
single-body density matrix is exactly factorizable). The GGPE then reduces to the
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Figure 7.3: Convergence of second-order number-conserving dynamics in
the number of quasiparticle modes propagated. The evolution of the num-
ber of non-condensate atoms in the δ-kicked-rotor-BEC when N = 105,
gT = 10−5, T = 10, and κ = 0.2, is shown for different numbers of prop-
agated quasiparticle modes (this number being equal to twice the quasi-
particle cut-off momentum M) . In each case the number of spatial grid
points around the ring is 64, and the numerical timestep is chosen from this
using the Courant-Freidrichs-Lewy condition (see Appendix B). Reducing
the timestep further at the same grid size does not change the result, nor
does using a larger number of points. One sees that, whilst quantities such
as the anomalous average may converge rather slowly in M when one cal-
culates them statically [70, 71], the evolution conducted using the split-step
method converges much more rapidly.

GPE, and F = 1. Otherwise both C and F take values between zero and unity. In
Fig. 7.2(c) we show the time evolution of C and F. The evolution of C is linked to
the purity of the state, and hence shows oscillations which closely mirror those in
nt. The evolution of F shows a strong initial decrease as the non-condensate begins
to influence the dynamics. This is followed by a series of larger-amplitude oscilla-
tions with strong revivals; these revivals indicate re-phasing effects, occurring due
to the small number of well-occupied momentum modes, as evidenced by the rapid
convergence in M shown in Fig. 7.3.

Similar behaviour persists across the Tp–gT parameter space covered by Fig. 7.4,
which we note is accessible to recent experiments (e.g., effective gT in excess of
10−3 and atom numbers up to 3×105 are reached in [47]). In Fig. 7.4(a) we show
the time averaged response to weak driving (κ = 0.5), by plotting the occupation of
modes with non-zero momentum, 1 − n0, averaged over the first 100 kicks. Here,
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Figure 7.4: BEC response in the second-order description (N = 104,
κ = 0.5): (a) relative population of k , 0 momentum modes among all
atoms, 〈1 − n0〉, and non-condensate fraction, 〈nt〉; (b) coherence measure
〈C〉 [Eq. (7.27)]; and (c) 〈1 − n0〉 as predicted by the GPE, minus its value
in the second-order description. Averages are taken over the first 100 kicks.
The black circle in (a) indicates the parameters used in figures 3 and 4.

we have defined the momentum mode occupation

nk =

〈
â†k âk

〉
N

, (7.29)

where â†k creates an atom with momentum k. This notation for momentum mode
occupation should not be confused with our notation for the condensate fraction
(nc) and non-condensate fraction (nt). The occupations nk are easily obtained as the
diagonal elements of the momentum-representation single-particle density matrix:
nk = ρ(k, k). The latter can be obtained numerically as the Fourier transform of
the position-representation single-particle density matrix; within our second-order
treatment this is given by

ρ(θ, θ′) = ψ∗(θ′)ψ(θ) +

∞∑
k=1

[
vk(θ′)v∗k(θ) + v−k(θ′)v∗−k(θ)

]
. (7.30)

We note that this gives the occupation of momentum mode k among all atoms, not
solely the condensate or non-condensate. However, the same occupations among
only the condensate or non-condensate atoms can also be easily computed, by se-
lecting only the relevant part of the single-particle density matrix in Eq. (7.30). The
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Figure 7.5: Comparison of first- and second-order descriptions close to a
nonlinear resonance explored in [60] [parameters gT N = 2.5, Tp = 6.12,
κ = 0.5, corresponding to the black circle in Fig. 7.4(a)]. Condensate and
non-condensate fractions nc and nt, coherence measure C [Eq. (7.27)], and
the fidelity of the condensate mode between descriptions, F [Eq. (7.28)],
are shown. Columns correspond (left to right) to N = 104, 108, and 1012;
agreement of the initial growth in nt between the second-order (dependent
on gT and N) and first-order (dependent on gT N) descriptions over such a
range is a useful test of the second-order numerics.

structure of this response over the range of Fig. 7.4(a), modelled with the GPE alone,
was recently elucidated by Monteiro et al. in Ref. [60]: the response is dominated
by linear resonances corresponding to the first two primary quantum resonances of
the δ-kicked rotor as gT → 0 [340]. Higher-order linear resonances are generally
seen to decay with increasing gT , while nonlinear resonances appear, having no ana-
logue in the linear regime [60]. In the first-order description (GPE plus MBdGE) all
these resonant areas of parameter space are associated with rapid growth of the non-
condensate fraction nt due to linear instabilities in the GPE dynamics [56, 57, 59].
In contrast, we find that in the second-order description (GGPE plus MBdGE) this
growth is damped out: throughout Fig. 7.4(a) the 100-kick average of nt remains
below 0.6. Nonetheless, we find that the resonances are located in the same regions
of parameter space in both descriptions, and that the asymmetric profiles and sharp
cut-offs seen in Ref. [60] remain.

7.4.2 Discussion

The detailed response of the system in the second-order description, accompanying
the general damping of non-condensate growth, falls into three regimes with respect
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Figure 7.6: Relative populations, nk, of low momentum modes in the
first- and second-order descriptions (parameters as in Fig. 7.5). In the
second-order description nk is shown among all atoms and among the non-
condensate atoms; in the first-order description nk is shown among con-
densate atoms (as a bar chart) and among the non-condensate atoms (with
a three-period moving average). Columns correspond (left to right) to
N = 104, 108, and 1012.

to the first-order description. The first regime occurs far from the main resonances
[i.e., in regions of low 〈1 − n0〉 in Fig. 7.4(a)]. Here the non-condensate growth is
insignificant over the 100-kick timescale in both the first- and second-order descrip-
tions. Hence, the first-order description agrees well with the second-order descrip-
tion in this regime. The second regime occurs close to the main resonances [large
〈1 − n0〉 in Fig. 7.4(a)]. Here the second-order description results in significantly
different dynamics, as shown by the behaviour of 〈C〉 [Fig. 7.4(b)] and the differ-
ence in response between descriptions, as measured by the difference in 〈1 − n0〉 and
shown in [Fig. 7.4(c)]. Most importantly, the unbounded non-condensate growth
seen in the first-order description is damped out in the second-order description.
The average non-condensate fraction 〈nt〉 does, however, remain enhanced in the
second-order description in this regime [Fig. 7.4(a)]. In cases of significant en-



Chapter 7: Coherence and instability in a driven Bose-Einstein condensate 170

hancement the small parameter of the theory, nt/nc, approaches or exceeds 0.5,
indicating that a higher-order or potentially non-perturbative description would be
necessary to quantitatively follow the dynamics up to and beyond 100 kicks.

The third, and most interesting, regime occurs towards the edges of the main res-
onances and at subsidiary, nonlinear resonances [Figs. 7.5 and 7.6]: here nt/nc re-
mains within the range of validity of the second-order description, but the dynamics
differ significantly from the zero- and first-order descriptions. In Figs. 7.5 and 7.6
we illustrate this regime by comparing the first- and second-order descriptions, for
varying N but fixed gT N, close to a nonlinear resonance studied in Ref. [60] [black
circle in Fig. 7.4(a)]. Figure 7.5 shows that the dynamics in the second-order de-
scription match the GPE for times which increase with N. This increase is slow,
however; for realistic N (� 108) the loss of coherence, unaccounted for in the
GPE and measured by decay in C, quickly becomes significant. Furthermore, in
Fig. 7.6 we see that, on the same timescales associated with significant decay in C,
the dynamics of the relative populations nk, as studied in Ref. [60] using the GPE,
noticeably differ in our second-order description. Compared to the first-order de-
scription, rapid growth of the non-condensate begins at the same time in our second-
order description. However, transfer of population to the non-condensate is driven
by, and sensitive to, atom-atom interactions. Hence, decreasing population of the
condensate, consistently accounted for in the second-order description, reduces the
mean-field interactions, and hence the rate of population transfer.

We observe population oscillations between condensate and non-condensate frac-
tions, accompanied by oscillations in the coherence C and fidelity F [Fig. 7.5]. In
Fig. 7.6 we also observe the exponential oscillations in the population, n2 + n−2,
of the second momentum mode reported in Ref. [60]; however, for realistic atom
numbers the frequency of these oscillations is quickly increased by the presence
of a significant non-condensate fraction. The significant differences between the
second- and first-order descriptions in this regime, where nt/nc remains small for
long times, suggest that the self-consistency of the second-order description, rather
than its higher-order treatment of fluctuations, is the fundamental cause of its im-
proved description of coupled condensate and non-condensate dynamics.



Conclusions
In this thesis we have investigated the static properties and non-equilibrium dynam-
ics of bright solitary matter waves in zero-temperature atomic BECs, and explored
the non-equilibrium dynamics of a driven atomic BEC at finite temperature using a
second-order, number-conserving description.

Working within the zero-temperature, mean-field (Gross-Pitaevskii) description, we
analysed the non-equilibrium dynamics of bright solitary matter-waves in three-
dimensional situations. Inspired by the analogy between bright solitary matter
waves and the bright soliton solutions of the nonlinear Schrödinger equation, we
proposed a feasible experimental scheme for generating pairs of bright solitary
waves with well-controlled velocities and relative phases. This scheme has two
important potential applications: Firstly, it could potentially be used as the first
stage of a bright solitary wave interferometer. Secondly, we have explicitly demon-
strated that the stability of repeatedly re-collided bright solitary waves created using
this scheme provides a potential experimental test of the accuracy of the mean-field
description of these waves.

We have also assessed, in detailed quantitative terms, the relationship between static
bright solitary waves in the Gross-Pitaevskii description and the static bright soliton
solutions of the nonlinear Schrödinger equation. Although our analysis is restricted
to zero temperature, it is sufficient to show that the regime in which bright soli-
tary waves are highly soliton-like will be a challenging one to reach in experiment.
This has important implications for experiments attempting to realize many of the
currently-proposed manifestations of beyond-mean-field effects in bright solitary
matter waves — for example the formation of macroscopic quantum superpositions
— as these current proposals implicitly assume the quasi-1D, nonlinear Schrödinger
limit to be reached.

With a view to describing the operation of a real bright solitary wave interferometer,
we have considered in detail several theoretical descriptions of finite-temperature
dynamics. Among these, we have identified the second-order, number-conserving
description of S. Gardiner and Morgan as the best candidate for a description of
coupled condensate and non-condensate non-equilibrium dynamics at low temper-
atures, as appropriate for a bright solitary wave interferometry experiment. We
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have reviewed in detail the theoretical foundations of this description, and cast the
integro-differential equations of motion in a form which can be solved numerically
in a fully dynamical way.

Finally, we have implemented such a numerical solution for a quasi-one-dimensional,
periodic, driven test-system — the δ-kicked-rotor-BEC. We have shown that the
rapid depletion of an initially zero-temperature equilibrium state due to the driving,
a central prediction of the first-order number-conserving description, can in fact be
damped by the self-consistent “back-action”, of the non-condensate on the conden-
sate included in the second-order description.

Possible future work

A primary direction for future work would be to extend the fully-dynamical number-
conserving description we have implemented, for the δ-kicked rotor BEC, in Part
II of this thesis, and apply it to the study of the same bright solitary wave dynam-
ics considered in Part I. An advantage of studying these systems with a number-
conserving approach is that it would allow one to follow the dynamics of the system
— in particular keeping track of the depletion and overall coherence of the system
as we have done for the δ-kicked rotor BEC — for relatively long times at low
temperatures; this is in contrast to previous treatments using the truncated Wigner
PGPE [43], which are restricted to short times [171].

In addition to bright solitary matter wave dynamics in the low-temperature regime,
it would be interesting to consider equilibrium initial conditions closer to Tc (or
after dynamical depletion to the extent that Nt & Nc). However, while such sit-
uations have been treated using the second-order number-conserving description
within a linear response treatment by Morgan [69–71], it seems that an extension
of the second-order dynamical description will be required to correctly describe
such regimes in a fully dynamical way. Such an extension poses a considerably
challenging goal for future research. Alternatively, the application of a c-field de-
scription of the dynamics through the SPGPE [171], which may in fact be more
appropriate in this regime, also remains largely unexplored. With parallel progress
on number-conserving and c-field methods in this area, it may even be possible to
find an “overlap regime” of temperatures at which the two descriptions agree: if this
were the case then the two descriptions, when taken together, would give a tractable
beyond-mean-field description of non-equilibrium dynamics, valid for long times,
in atomic BECs from T = 0 up to T & Tc. This would represent a considerable
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theoretical achievement.

Another interesting direction of research is into the links between non-equilibrium
dynamics and the process of thermalization in kicked systems. The thermaliza-
tion of closed quantum systems, and its links to integrability and quantum chaos
[63, 64], is a topic at the forefront of fundamental experimental [349, 350] and
theoretical [65, 351–355] research. Kicked systems such as the kicked-rotor-BEC,
which offer the possibility to adjust the degree of integrability by changing the exter-
nal potential, interaction strength and atom number, present an attractive target for
application of these ideas. In particular, the emergence of thermodynamic behaviour
[351] in such systems as the atom number increases is a fundamental question that
remains to be addressed fully. The second-order number-conserving description we
have implemented numerically for the δ-kicked-rotor-BEC in this thesis, and per-
haps higher-order modifications of it, could provide an important transitional link
between the mean-field description and the full many-body dynamics of the system;
in particular as they capture considerably more information about the system than
the former, but remain more computationally tractable than the latter.



Appendix A: Solutions to integrals and
equations arising in variational methods

A.1 Overview

This Appendix lists several integral identities, and the general solution of a specific
form of quartic equation, which arise when determining ansatz approximations to
the solution of the 3D GPE in Chapter 4. These identities and the quartic solution
were originally obtained by S. A. Gardiner and S. A. Wrathmall, in a different
notation to that used in Chapter 4. Here, we present them within the notation of
Chapter 4 for convenience.

A.2 Useful integrals

Considering a Gaussian ansatz to be proportional to e−k2 x2
, for completeness we

reprise the following sequence of well-known integral identities, all of which are
necessary to determine the corresponding variational energy functional:∫ ∞

−∞
dx e−2k2 x2

=

√
π/2
k
⇒

∫ ∞

−∞
dx e−4k2 x2

=

√
π

2k
, (A.1)∫ ∞
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dx x2e−2k2 x2

= − 1
4k

∂

∂k

∫ ∞
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= 4k4
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Comparable integral identities exist when considering an ansatz proportional to
sech(kx). Thus: ∫ ∞

−∞
dx sech2(kx) =

[
tanh(kx)

k

]∞
−∞

=
2
k
, (A.4)∫ ∞
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all of which are necessary to determine the energy of a standard bright soliton solu-
tion to the nonlinear Schrödinger equation. However, we also require a contribution
arising from the existence of an external harmonic confining potential. Hence, we
determine∫ ∞

−∞
dx x2sech2(kx) =2

∫ ∞

0
dx x2sech2(kx)

=
2
k3

[
Li2

(
−e−2kx

)
+ kx

{
kxtanh(kx) − kx − 2 ln

(
1 + e−2kx

)}]∞
0

=
2
k3 [Li2(0) − Li2(−1)]

=
2
k3η(2) =

π2

6k3 ,

(A.7)

where Liy(x) ≡ ∑∞
n=1 xn/ny is a polylogarithm, and −Liy(−1) = η(y), the Dirichlet η

function, with η(2) = π2/12.

A.3 Solution to the quartic equations

We require a general solution to a quartic in ` of the form

`4 + b` − c = 0, (A.8)

where b and c are positive real constants, and ` must also take positive real values
to be physically meaningful. This can be rephrased as the product of two quadratics
in `: [

`2 + α` +
1
2

(
α2 − b

α

)] [
`2 − α` +

1
2

(
α2 +

b
α

)]
= 0, (A.9)

so long as (b2/α2 − α4)/4 = c. Hence, α, which remains to be determined, must
solve α6 + 4cα2 − b2.

Defining ξ = α2, the problem of determining α reduces to finding values of ξ to
solve the depressed cubic equation

ξ3 + 4cξ − b2 = 0. (A.10)
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27
, (A.11)
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the three roots of Eq. (A.10) are given by:

ξ1 =A + B, (A.12)

ξ2 = − (A + B)/2 + i
√

3(A − B)/2, (A.13)

ξ3 = − (A + B)/2 − i
√

3(A − B)/2. (A.14)

Any one of these will solve Eq. (A.10), however we choose ξ1; as b and c are
assumed positive real, ξ1 is also conveniently guaranteed positive real.

Substituting in α =
√
ξ1, we can apply the quadratic formula to both the factors

(enclosed in square brackets) on the left hand side of Eq. (A.9). This reveals the
four roots to be

`1 =
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√
−ξ1 + 2b/
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2
, (A.15)
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2
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−ξ1 − 2b/
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ξ1

2
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Recalling that b and ξ1 are positive real, `3 and `4 are clearly complex, and therefore
not of interest to us. Noting that

ξ3
1 = A3 + B3 + 3AB(A + B) = b2 − 4cξ1, (A.19)

we can see that A3 + B3 ≡ b2 > ξ3
1, hence 4b2 > ξ3

1 and thus 2b/
√
ξ1 > ξ1. Roots `1

and `2 are therefore real, but `2 is guaranteed negative. However, from Eq. (A.19) it
also follows that

b > ξ1

√
ξ1 ⇒2b/

√
ξ1 > 2ξ1 ⇒ 2b/

√
ξ1 − ξ1 > ξ1

⇒
√
−ξ1 + 2b/

√
ξ1 >

√
ξ1.

(A.20)

Hence `1 is guaranteed positive real, and is the only solution of interest.
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Thus, the single positive real root of Eq. (A.8) is

` =
χ1/2b1/3
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with
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and where values of all fractional powers are taken to be real, and positive when a
positive root exists.



Appendix B: Pseudospectral methods for
PDEs

B.1 Basis expansion

In this thesis we are generally concerned with solving nonlinear partial differential
equations (or integro-differential equations) of the time-dependent form

i
∂ψ(r, t)
∂t

=

[
−1

2
∇2 + V(r) + δV(r, t) +N(r, t, ψ)

]
ψ(r, t) , (B.1)

and of the stationary form[
−1

2
∇2 + V(r) +N(r, 0, ψ)

]
ψ(r, 0) = 0 . (B.2)

Here, we have explicitly split the potential into a time-independent term V(r), and
a time-dependent perturbation satisfying δV(r, t = 0) = 0. The final term N(r, t, ψ)
is a general nonlinear term, which may contain non-local integral terms1.

A particularly convenient basis for the solution of Eqs. (B.1) and (B.2) is given
by the scaled orthonormal eigenstates of the time-independent, linear, Hermitian
operator

L(r) = −1
2
∇2 + V(r) . (B.3)

Specifically, a truncated expansion in this basis is given by

ψ(r, t) =

N∑
j=1

c j(t)χ̃ j(r) , (B.4)

where
χ̃ j(r) = αχ j(r̃) . (B.5)

Here c j(t) are time-dependent, complex coefficients and the real functions χ j(r)
satisfy the eigenvalue equation

Lχ j(r) = ε jχ j(r) , (B.6)

1It should not, however, contain inverse powers of ψ.
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Depending on the form of L(r) and the boundary conditions of the problem, the
basis functions χ̃ j(r) generally take the form of an orthogonal polynomial of order
i, potentially multiplied by an exponential factor, or of plane waves in the case
V(r) = 0. They thus obey the orthonormalization relation∫

dr χ j(r)χ∗k(r) = δ jk . (B.7)

The rescaled vector r̃ is defined in m spatial dimensions by

r̃ = [γx1 x1, . . . , γxm xm]T , (B.8)

where γx j are independent, real scaling factors. To clarify, in this notation the orig-
inal vector r is given by

r = [r1, . . . , rm]T . (B.9)

Finally, the factor α =
√∏m

j=1 γx j guarantees the orthonormality of the scaled basis
functions, ∫

dr χ̃ j(r)χ̃∗k(r) = δ jk . (B.10)

This choice of basis is advantageous for three primary reasons:

• The basis functions satisfy the boundary conditions associated with L(r),
which should generally also be satisfied by the solutions to Eqs. (B.1) and
(B.2)2

• Construction of a discrete operator form of L(r) in this basis is reasonably
straightforward. Indeed, if γ j = 1 for all j then this is simply the diagonal
matrix δ jkε j.

• If the nonlinear term is sufficiently large to alter the length scale of the so-
lution, the scaling factors γ j allow one to adapt the basis to the new length
scale, while still satisfying the appropriate boundary conditions and leaving
the construction of a discrete form of L(r) relatively straightforward.

2A potential exception is when the nonlinear termN(r, t, ψ) contains inverse powers of ψ; hence
our choice not to consider this case.
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B.2 Quadrature grid

A discrete spatial representation of the wavefunction is given by

ψl(t) = ψ(rl, t) =

N∑
j=1

c j(t)χ̃ j(rl) , (B.11)

with spatial grid points rl. In a pseudospectral method, the connection between
this discrete spatial representation ψl(t) and the spectral coefficients c j(t) is made by
choosing the points rl to lie on an appropriate Gaussian quadrature grid; specifically,
with the appropriate Gaussian quadrature grid points rl and weights wl, one can
express the integral

ck(t) =

∫
drψ∗(r, t)χ̃k(r) , (B.12)

as

ck(t) =

N∑
l=1

ψ∗l (t)χ̃k(rl)wl . (B.13)

Although the details vary with the form of the basis functions, the quadrature points
are typically given by the zeros of the (N + 1)th basis function χ̃(r), and the quadra-
ture rule Eq. (B.13) is generally exact. For example, if the basis functions take the
form of orthogonal polynomials multiplied by an exponential weight factor then the
appropriate quadrature will be valid for an overall polynomial factor of up to order
2N + 1 [356].

The quadrature rule allows one to cast transformations between the discrete position
representation and the truncated spectral representation, both written in vector form,
in terms of the matrix M;

~c(t) = M~ψ(t) , (B.14)

~ψ(t) = M−1~c(t) , (B.15)

where

Mkl = χ̃k(rl)wl , (B.16)

M−1
kl = χ̃l(rk) . (B.17)

That MM−1 = M−1M = 1 is easily verified using the orthonormality of the χ̃k;

(MM−1)kl =

N∑
j=1

χ̃k(r j)w jχ̃l(r j) = δkl . (B.18)
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Once in possession of the appropriate quadrature grid and weights, and hence the
matrices M and M−1, one can construct a matrix form of the operator L(r) which
acts on the discrete position representation vector ~ψ(t). This matrix form is given
by

P = M−1LM (B.19)

where the entries of the matrix L are the matrix elements

Lkl =

∫
dr χ̃l(r)L(r)χ̃k(r) . (B.20)

These matrix elements can be analytically determined for a given set of basis func-
tions. As stated above, in the unscaled case (that is, when γx j = 1 ∀ j) one has the
simple result Lkl = δklεk.

B.3 Solution scheme

B.3.1 Static solution

Because δV(r, t) and N(r, t, ψ) are diagonal in the discrete position representation,
once in possession of the matrix P one can construct a matrix form, R(t, ~ψ), of the
entire operator L(r) + δV(r, t) +N(r, t, ψ) at a given time. The elements of R(t, ~ψ)
are given by

Rkl(t, ~ψ) = Pkl + δklδV(rl, t) + δklN(rl, t, ψl) . (B.21)

In the static case, dropping the t argument, one has

Rkl(~ψ) = Pkl + δklN(rl, ψl) , (B.22)

and hence one seeks a solution ~ψ to the system of nonlinear equations

R(~ψ)~ψ = 0 . (B.23)

Solving such a nonlinear system is a well-known numerical problem which can in
principle be solved by a simple modified Newton method. However, the venerable
MINPACK implementation of the Powell hybrid method provides a highly efficient
numerical solution [357, 358]. Convergence can be considerably improved by pro-
viding this algorithm with the Jacobian matrix,

Jkl =
∂

∂ψl

∑
l

R(~ψ)klψl , (B.24)
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in analytical form. Helpfully, this is possible for the nonlinear operators N(r, t, ψ)
we consider in this thesis, although the resulting expressions for the GGPE are
extremely lengthy.

In principle, one should also variationally minimise the energy of the resulting so-
lution with respect to the scaling factors γx j in order to achieve the best possible
numerical solution for a given basis size N. However, it is typically a less com-
plicated numerical process to pick a suitable set of γx j — for example, these are
chosen based on the ansatz solutions in the computations of Chapter 4 — and sim-
ply to increase N until convergence is reached.

B.3.2 Dynamic solution

Matrix multiplication

The pseudospectral method also lends itself directly to a split-step method for com-
puting the time-evolution of the system. This is achieved by writing the approximate
formal solution in the discrete position representation

~ψ(t + δt) ≈ e−iR(t,~ψ)δt~ψ(t) . (B.25)

Here, within the exponential operator ~ψ is assumed to be constant over the timestep.
Defining the nonlinear matrix Q(t, ~ψ = R(t, ~ψ)−P, this can be further approximated
by

~ψ(t + δt) ≈ e−iQ(t,~ψ)δt/2e−iPδte−iQ(t,~ψ)δt/2~ψ(t) , (B.26)

where the error is of order δt3. Again, all terms in the exponential operators are
assumed to be constant over a given portion of the time step. The matrix e−iPδt can
be computed from P once at the beginning of the evolution, and used, unmodified,
for all subsequent time steps. In order to exponentiate P it is necessary to find its
eigenvalues and eigenvectors, and the largest eigenvalue of P, pmax, can be used
to calculate an appropriate timestep from the Courant-Friedrichs-Lewy condition
[359, 360];

pmaxδt . 1 . (B.27)

Fast Fourier transforms

In the case V(r) = 0 and with periodic boundary conditions, complex Fourier series
are the most appropriate choice of basis functions. These basis functions offer two
main advantages: Firstly, the appropriate quadrature grid is uniformly spaced, and
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does not require one to find the zeros of high-order polynomials. Secondly, the
basis scaling factors γx j are extraneous and can be set to unity. Finally, one does
not need to conduct a matrix multiplication — which requires O(N2) floating point
operations — to apply the operator e−iPδt. Indeed, because all scaling factors can
be set to unity the matrix L is necessarily diagonal, with elements Lkl = δklk2/2.
Consequently one can expand multiplication by e−iPδt as

e−iPδt~ψ = M−1e−iLδtM~ψ . (B.28)

Noting that for a Fourier basis M and M−1 are, respectively, forward and inverse dis-
crete Fourier transforms, one can thus achieve the whole operation with O(N log N)
floating point operations using a suitable fast-Fourier transform library [361]. A
similar saving can also be made, albeit in a more complex form and on a non-
uniform grid, in the case of hard-wall boundary conditions where Chebyshev poly-
nomials are the most appropriate basis functions [360].
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