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Abstract

Superconductors are commonly used in many magnet systems available to-

day. One of the most popular is Nb3Sn, due to its high upper critical field

and uncomplicated structure. It is however, not particularly well under-

stood at the microscopic scale with respect to grain boundaries and strain.

Grain boundaries appear when forming the material and are used as an ef-

fective way to increase the upper critical field by increasing the normal state

resistivity, but there is a trade-off, as the critical current density drops as

the material becomes more disordered. In addition, when the material is

strained by magnetic fields, the superconducting properties will vary. Much

experimental work has been performed to study these experimental effects,

but a first-principles study gives a unique insight into the intrinsic proper-

ties of the material itself. This thesis gives a record of investigations into

the strain and grain boundary dependence of Nb3Sn as well as determining

whether we can use density functional theory to determine superconducting

properties from first principles. This work includes an efficient implementa-

tion of a method to calculate the electron-phonon coupling matrix elements

from first principles via density functional perturbation theory. This method

is tested on some simple metallic elements and shown to provide coupling

strengths close in agreement to experimental work.
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Chapter 1

Introduction

1.1 Superconductivity

Much of the high impact science performed today depends on being able to

produce large magnetic fields. For example, the fusion project ITER and the

particle accelerators at the Large Hadron Collider all need strong magnetic

fields to contain charged particles. The efficiency of these machines relies

on the use of superconductors to carry currents with little loss of energy.

Superconductors are materials which exhibit no resistance below their

transition(or critical) temperature. They were first discovered in 1911 by

Heike Kamerlingh Onnes who previously had been the first to liquefy helium

in 1908. Upon cooling of mercury below 4.2 K, the electrical resistance sud-

denly vanished. This was found to occur for different materials at different

temperatures and some did not show this property at all. The name super-

conductor is distinguished from perfect conductors. The defining property

of a superconductor is that it acts to expel any magnetic field from its inte-

rior whereas a perfect conductor can have any internal field so long as it is

constant[1].
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It was many years before a microscopic theory of superconductivity came

about, in the form of BCS theory[2], which was realised by John Bardeen,

Leon Cooper, and John Robert Schrieffer in 1957. Cooper had shown[3]

that, with any attractive potential, electrons near the Fermi energy will

form bound pairs. Due to the isotope effect, this attraction was thought to

be linked to the electron-phonon coupling in the material. This coupling

causes non-localised pairs to form which have a large overlap with other

cooper pairs in the material. Due to this overlap, the amount of energy

required to break one of the pairs can be larger than that of thermal atomic

motion. The thermal energy from phonons is not large enough to break

these pairs and so the electron pairs move with effectively no scattering.

This theory was a success in describing ‘low temperature’ superconduc-

tors. The BCS theory predicted a maximum temperature for superconduc-

tors on the order of 30 K[1]. The first high temperature superconductor,

Lanthanum barium copper oxide, with a transition temperature above this

limit, was discovered in 1986[4]. These materials are believed to have a

different mediator than the electron-phonon interaction as their transition

temperatures are much higher than the predicted upper limit for BCS su-

perconductors, and are not fully understood at present.

Although it is easy to characterise the bulk properties of superconduc-

tors experimentally, it is difficult to directly measure microscopic supercon-

ducting properties of the materials at very low temperatures. Many of the

materials with high transition temperatures or high critical magnetic fields

are ceramic and therefore brittle and are produced in a composite wire with

many defects and so it is difficult to separate the intrinsic and extrinsic

effects in an experiment.

Rather we would like to study the materials from a computational per-
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spective using density functional theory(DFT) which allows us to solve the

Schrödinger equation for materials which gives us insight about ground state

properties. As superconducting properties are dynamic, we combine DFT

with perturbation theory to access information about phonon modes. The

interaction of these modes with the ground state electronic structure can

give us the leading terms to describe the electron-phonon interaction in

BCS theory. With knowledge of the average electron-phonon interaction

in the material, BCS theory gives us a way to predict the superconducting

transition temperature. These calculations allow us to easily access prop-

erties which would be difficult in practice, such as changes in the phonon

frequencies due to strain in ceramic materials such as Nb3Sn.

All equations will be given in atomic units unless otherwise stated. Up-

per and lower case indices refer to nuclear and electronic coordinates respec-

tively.

1.2 Thesis Outline

In this work, we seek to perform electronic structure calculations to compute

superconducting properties from first principles. The chapter overviews are

as follows:

Chapter 2

The many body Schrödinger equation is introduced and developed into the

density functional theory framework for ground state calculations. The ap-

plication of Bloch’s theorem and the conversion from direct space to recip-

rocal space is discussed, along with a number of approximations used, in-

cluding the choice of exchange-correlation functional and pseudo potentials.

This framework is then expanded to examine perturbations in materials un-
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der the harmonic approximation and the definition of the electron-phonon

coupling constant.

Chapter 3

The method of computing the calculation of ground state properties in

CASTEP is given. The representation of wavefunctions and densities are

discussed. Methods for maintaining orthonormality and performing total-

energy minimization are given. The effects of symmetry on the memory and

processing requirements are also given.

Chapter 4

The implemented method of computing the phonon dispersion and electron-

phonon coupling of a material is shown. Practical details including how the

Fermi surface is found and how the electron-phonon matrix elements are

calculated are given. Also discussed are the effects of symmetry in reducing

the number of perturbative calculations that need to be performed.

Chapter 5

The chapter details a study of the effect of grain boundaries in Au and

Nb3Sn. The main quantity of interest is the electronic density of states at

the Fermi energy and this is studied both across the whole region and as a

function of distance across the grain boundary. This quantity is of interest

as it is directly related to the superconducting critical temperature and gives

information about which regions act as normal in a polycrystalline sample.
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Chapter 6

The room-temperature body-centered cubic phase of Nb is shown to be

unstable at low temperatures. A new rhombohedral state is investigated

and compared with recent experimental results from the literature.

Chapter 7

The electron-phonon coupling is calculated for a range of simple metals

purely from first principles. The ground state properties, phonon disper-

sion curves and Eliashberg spectral functions are discussed. The expected

superconducting transition temperatures are also calculated.

Chapter 8

The effects of uni-axial strain in Nb3Sn are examined with respect to the

electron-phonon coupling. A range of strains from -1% to +0.5% were sim-

ulated and allowed to relax to their lowest energy geometries. Electronic

and phononic properties were then calculated, and combined to estimate

the overall effects on the electron-phonon coupling.

Chapter 9

In this chapter, general conclusions are presented for the chapters along with

ideas for further work and investigation.
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Chapter 2

Theory

2.1 Introduction

At the ångström-scales of atomic interactions, effects are very much in the

quantum regime and described by quantum mechanics. At the heart of this

is the many body Schrödinger equation. In its unadulterated form, it is

intractable to solve directly so approximations are required to allow ground

state solutions to be found. Approximations in this chapter will lead us to

Hohenberg–Kohn–Sham density functional theory(DFT).

In this work, perturbation theory is used to study dynamical effects close

to these ground state solutions. In particular, to look at the effects of the

nuclear motion on the electronic structure and how an effective interaction

between phonons and electrons can be calculated. Finally quantum field

theoretical techniques can be used to link this effective electron-phonon in-

teraction to macroscopic properties of materials and this is discussed.

The primary goal of study is to calculate how structural changes, stresses

and deformations in materials may change the superconducting properties.

24



2.2 Ground State Electronic Structure

2.2.1 Many-body Schrödinger Equation

The (non-relativistic) Schrödinger Equation describes the behaviour of small-

scale physical systems — effectively those where gravity is not a factor and

velocities are much lower than the speed of light. The general form for a

system of nuclei and electrons is the time dependent equation,

i~
∂

∂t
Ψ ({ri} , {RI} , t) = ĤΨ ({ri} , {RI} , t) , (2.1)

where ~ is Planck’s constant (1 in atomic units), ri is the coordinate of

electron i, Rj is the coordinate of nucleus j, Ψ is the full many body wave-

function, which includes both electronic and nuclear coordinates, and Ĥ

is the Hamiltonian operator. This equation is unwieldy due to the large

number of dimensions involved (3nelectrons + 3Natoms + 1) and the result-

ing wavefunctions can be difficult to interpret due to the time evolution.

Rather than solve this equation directly, we solve for the stationary states

(or orbitals) given by the time independent equation,

EΨ ({ri} , {RI}) = ĤΨ ({ri} , {RI}) , (2.2)

where E is the total ground state energy of the system. These stationary

states can be combined with the time evolution equation (HΨ = i∂Ψ
∂t ). If we

limit ourselves to dealing with nuclei and electrons, we can explicitly write
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the Hamiltonian,

Ĥ = T̂N + T̂ e + V̂ NN + V̂ Ne + V̂ ee

= −1

2

∑
I

1

MI
∇2

RI
− 1

2

∑
i

∇2
ri

+
∑
I>J

ZIZJ
|RI −RJ |

−
∑
i,J

ZJ
|ri −RJ |

+
∑
i>j

1

|ri − rj |
(2.3)

where T̂ is the kinetic energy operator, and V̂ is the potential produced by

the 3 distinct interactions – nuclear-nuclear, nuclear-electron and electron-

electron. ZI , MI and RI are the atomic number, mass and position of

nucleus I and ri is the position of electron i.

The ground state is the state of lowest energy, and this can be found by

minimization of the functional,

Egs = min
Ψ
E[Ψ] = min

Ψ

〈
Ψ
∣∣∣Ĥ∣∣∣Ψ〉
〈Ψ|Ψ.〉

(2.4)

Equations 2.2 and 2.3 have a large number of degrees of freedom; it is a

partial differential differential equation in 3Nnuclei + 3Nelectrons dimensions.

This grows quickly for any realistic system and so some simplifications are

required.

2.2.2 Born-Oppenheimer Approximation

We begin with the adiabatic assumption that the nuclear state is frozen

in some configuration that the electrons explore. One argument for this is

that the nuclei move on much longer time scales and so the electrons will

effectively move into the lowest energy state much more quickly than the

atoms react. Alternatively, this can be phrased that the motion of the ions

is so slow as to allow the electrons, in a spin unpolarised system, to always
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find the minimum energy state for any atomic configuration.

We start by making an ansatz for the form of the full wavefunction,

Ψ, which can be written due to this argument as a nuclear part and an

electronic part that has a parametric dependence on the nuclear state,

Ψ ({ri} , {RI}) = ψN ({RI})× ψeR ({ri}) . (2.5)

The parametric dependence of the electronic wavefunction upon the nuclear

coordinates is expressed by the subscript R. We then define an electronic

Hamiltonian, which is simply the parts of the total Hamiltonian which act

on electron coordinates,

Ĥe
R = T̂ e + V̂ Ne

R + V̂ ee. (2.6)

Writing a version of the Hamiltonian for the electronic wavefunction, we get

an electronic Schrödinger equation,

Ĥe
Rψ

e
R ({ri}) = EeRψ

e
R ({ri}) . (2.7)

The full Hamiltonian is expressed as

Ĥ = [T̂N + V̂ NN ] + Ĥe
R. (2.8)

Applying the full Hamiltonian to the wavefunction product, Ψ, we see

that only the nuclear kinetic energy operator acts directly on the electronic
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wavefunction through the product rule,

T̂NψNψeR = −
∑
I

1

2MI

∂2

∂R2
I

ψNψeR

= −
∑
I

1

2MI

[
∂2ψN

∂R2
I

ψeR + 2
∂ψN

∂RI

∂ψeR
∂RI

+ ψN
∂2ψeR
∂R2

]
.

The full result can be rewritten in a more familiar form,

ĤΨ = T̂NψNψeR + V̂ NNψNψeR + EeRψ
NψeR

= ψeR

[
−
∑
I

1

2MI

∂2

∂R2
I

+ V ({RI}) + EeR

]
ψN

−
∑
I

1

2MI

[
2
∂ψN

∂RI

∂ψeR
∂RI

+ ψN
∂2ψeR
∂R2

I

]
. (2.9)

The final two terms in 2.9 present a problem as they couple the electronic

and nuclear wavefunctions. They introduce coupling between nearby nuclear

states. We can find a loose approximation for the size of the last term, as it

should be of the same order as the derivative with respect to the electronic

positions as they are across the same length scales[5],

1

2MI

∂2ψeR
∂R2

I

∼ 1

2MI

∂2ψeR
∂r2

i

=
p2
e

2MI
ψeR =

me

MI
Eeψ

e
R,

where Ee is the kinetic energy of an average electron. This term is of the

order m/M which will be very small and can be ignored with little loss of

accuracy in systems without light elements.

The second last term is the more interesting. It affects both the electronic

and nuclear coordinates. For a stationary nuclear state, this term is equal to

the rate of change of total charge of the system with respect to the nuclear

coordinates, which is obviously zero. For dynamical systems, it acts as a

coupling between excitations of the nuclear and electronic wavefunctions and
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we can define an electron-phonon operator,

−
∑
I

1

MI

∂ψN

∂RI

∂ψeR
∂RI

= ĤepψNψeR, (2.10)

which acts on both the nuclear and electronic wavefunctions. We will return

to this operator in the discussion of electron-phonon coupling in chapter 3.

For the purpose of our calculations, this term is ignored and then reintro-

duced via perturbation theory as it is difficult to calculate directly as it

would require perturbations in both nuclear and electronic wavefunctions.

Ignoring the coupling terms, we can write,

[
−
∑
I

1

2MI

∂2

∂R2
I

+ V ({RI}) + EeR

]
ψN = EψN , (2.11)

and the problem becomes fully separable as ĤψNψeR = EψNψeR and so the

product wavefunctions are eigenfunctions of the full Hamiltonian.

In practice, the atoms are treated in a semi-classical way and we assume

that their wavefunctions are delta functions in real space. The electronic

Schrödinger equation, 2.7, is solved for fixed nuclear positions and then

optionally, the nuclear system can be solved using these electronic wave-

functions.

The full Schrödinger equation has been simplified to one dealing with

only the electrons in a fixed nuclear potential interacting with one another,

but for any system larger than a few electrons the dimensionality of the equa-

tion is still much too big to be solved using current computing resources[6].

The main difficulty with solving this equation is the electron-electron in-

teraction term. As this term involves interactions between every pair of

electrons, it couples the electrons together leading to correlation between

electronic states. If this term were neglected, equation 2.7 could be reduced
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from 1 N-body equation to N 1-body equations and would be much easier

to solve. Unfortunately neglecting this interaction is far from reality and

so the approximation is not accurate for systems more advanced than the

nearly-free electron model. Instead we will use density functional theory to

help separate these terms into something more manageable.

2.2.3 Density Functional Theory

The Hohenberg Kohn Theorems[7] state that,

1. The ground state energy of a system of electrons is a unique functional

of the ground state electronic density.

2. The true ground state density of the system is the density which min-

imizes the variational energy of the system.

The first of these allows one to write each of the terms that make up the

Hamiltonian as a functional of the density of the system. The second allows

us to find the minimum energy by varying the ground state density, and the

density which gives this minimum must be the true ground state density.

Although these theorems tell us that it is possible to calculate the ground

state density and energy, it does not explicitly tell us how to go about this.

A major advance was in the formulation of the Kohn-Sham equations[8],

where the electrons are non-interacting in a fictitious potential which gives

the same ground state density as the real system. The system interacts

only through the total density, but as this is bijective with the ground state

energy, it should contain the full information about the system. This al-

lows a simplification of the problem into coupled single particle equations
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interacting only through the electronic density,

Eiψi(r) =

(
−1

2
∇2 + VH [n(r)] + VXC [n(r)] + Vext(r)

)
ψi(r), (2.12)

where Ei and ψi(r) are the energy and wavefunction of electron i and

n(r) is the electronic density at point r and given by,

n(r) = 2
∑
i occ

ψ∗i (r)ψi(r), (2.13)

where the index i runs only over occupied bands and the factor 2 comes

from spin degeneracy. Here we assume (and will throughout) that there is

no magnetism present.

Equation 2.12 has several immediately recognizable terms. The first

term with ∇ is the kinetic energy of the Kohn-Sham electrons. The second

term, VH , is the potential of a continuous distribution of charge, also known

as the Hartree potential. The third term, VXC , is known as the exchange

and correlation potential(XC) which is discussed in the next section. The

very last term, Vext, is the external potential due to the fixed nuclei which

is constant.

This separation is only made possible as the ground state density has a

one to one correspondence with the external potential and the total energy.

All the interaction between the individual electrons occurs in this formula-

tion through the density in the middle terms of equation 2.12. Both of the

Hartree and XC terms are functionals of the density and in the case of the

Hartree energy, the form of the functional is known,

VH [n(r)] =

∫
n(r′)

|r− r′|
dr′. (2.14)
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This term represents the interaction of a distribution of charge within the

system, but ignores the discrete nature of electrons in that they will not

interact with themselves. Immediately this tells us that the XC functional

should remove this self-interaction error. For the exchange-correlation po-

tential there is no clear form like this, but in general it is dominated by

the other terms in the equation. For an exact form of the XC functional,

the ground state energy and density would be exact but in practice this is

impossible to achieve.

2.2.4 Exchange and Correlation

The final term in equation 2.12 is VXC , the exchange and correlation poten-

tial. This term effectively contains all the differences between the adiabatic

time-independent Schrödinger equation, and the Kohn-Sham equations. It

is made of two parts, the exchange (X) and correlation (C) potentials. It is

defined as,

VXC =
∂EXC
∂n(r)

, (2.15)

where EXC is the total exchange and correlation energy and n(r) is the

density at a point r.

Electron exchange is a quantum mechanical effect caused by the discrete

nature of the electronic charge. Firstly, every electron will contribute to the

charge density and, if just the bare Hartree energy were used, would have

some interaction energy with itself that is not physical. Secondly as the

electron is a fermion, the all-electron wavefunction must be antisymmetric

with respect to swapping the indices of the electrons. In the single par-

ticle view, this enforces the Pauli exclusion principle and causes a spatial

repulsion between wavefunctions.

The correlation energy is the energy difference between the non(directly)
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interacting system and the true interacting system. In the true case, the

electrons will have correlated positions and are highly unlikely to be found

very close together. Extra degrees of freedom are added to the electronic

wavefunction and the total energy must be lowered. The inclusion of this

term in the single particle KS equation acts to include the effects of these

electronic correlations within the system.

The exchange energy only affects electrons of the same spin as spatial

asymmetry is only required among these. The correlation energy occurs

between all electrons and is a many body effect but is only about 10% of

the magnitude of the exchange energy[9] for the vast majority of materials,

but there are some exotic strongly correlated materials, which have strong

correlation between electronic states. Although it is possible to exactly

calculate the exchange potential, it is computationally expensive as this

involves performing products between every pair of wavefunctions and so

will scale poorly with system size. Calculating the correlation exactly would

require as much effort as solving the many body Schrödinger equation and

so it must be approximated to achieve any gain from using DFT. Usually

both are approximated to make calculations with many electrons feasible.

2.2.5 Exchange and Correlation(XC) Functionals

The simplest (non-trivial) approximation for the exchange and correlation is

called the local density approximation (LDA). This states that the exchange

and correlation energy for an electron at a point r where the density is n(r)

is the same as that in a homogeneous electron gas (HEG) with the same

density. This leads to a functional of the following form,

ELDAXC [n(r)] =

∫
n(r)εHEGXC (n(r))dr, (2.16)
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where εHEGXC (n(r)) is the exchange and correlation energy density for a HEG

with density n(r). The approximation relies on a very slowly varying density

to be valid, and predicts that interactions are isotropic. Despite these issues,

LDA is found to give good results in many materials[10] as the energy relies

on the spherical average[9]. It is local as it only takes into account the

density at the point r.

Another local approximation is to take into account some information

about the gradient of the density at r and this is called the generalised

gradient approximation(GGA)[11], which is a type of semi-local functional.

One issue is that, unlike the LDA case, there is some choice in which form

the gradient should enter the form of εHEGXC , and there are many different

functionals available[12][13]. In general,

EGGAXC [n(r)] =

∫
n(r)εGGAXC (n(r),∇n(r))dr. (2.17)

The form that will be used in this study is that developed by Perdew,

Burke and Ernzerhof (PBE)[14]. This functional retains the better features

from more complicated GGA methods to reproduce the most important

physical results while being relatively simple to implement. Unlike some

functions which rely on tuning parameters, it relies only on fundamental

limits that the correct XC functional should have.

2.2.6 Periodic Boundary Conditions

At this point, we have the basic tools required to solve the Schrödinger equa-

tion for a simple system containing a few tens of electrons, but in trying to

study the properties of bulk materials, we still run into some problems. The

number of electrons and atoms in any macroscopic amount of material is
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huge. Taking the Kohn-Sham equations as they are, and trying to directly

solve for the wavefunctions would be an enormous task and require impos-

sibly large amounts of memory and computational time.

Many of the materials of interest in solid state physics have translational

symmetry. Those that do in 3 linearly independent directions can be de-

scribed by a repeating unit cell of atoms. Taken to infinity, this repeating

unit cell is a good approximation of the bulk regions in crystals where the

atoms and electrons are screened from surface effects.

Since we are generally more interested in bulk effects, the approxima-

tion can be made that the crystal is infinitely repeating in these 3 linearly

independent directions. Bloch’s theorem then allows a vast reduction in

the number of electronic states, and the real-space domain that we must

calculate them over.

2.2.7 Bloch’s Theorem and Plane Wave Basis Sets

In trying to study the properties of bulk materials, we still run into some

problems. The number of electrons in the system will be huge and the

domain of the wavefunctions will also have to be very big in comparison to

atomic scales. As we are interested in crystals, we can take advantage of

the periodic nature of the unit cell. and write the wavefunction as a set of

Bloch waves,

ψ(r)j,k = e−ik.rφj,k(r), (2.18)

where k is a wavevector within the first brillouin zone and j is a band

index. The allowed values of k are defined by the boundary conditions of

the crystal. φ is a function which is periodic over the unit cell.

This converts the problem from being the calculation of the wavefunction

over all space to calculating a periodic function over the unit cell. The most
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natural basis set to expand a periodic function is the plane waves and so we

use this to expand the wavefunction as,

φj,k(r) =
∑
G

Cj,k,Ge
−iG.r, (2.19)

where G is a wavevector within the first brillouin zone and Cj,k,G are the

plane wave coefficients. The full wavefunction is then given by,

ψ(r)j,k =
∑
G

Cj,k,Ge
−i(k+G).r. (2.20)

The problems are thus alleviated by this transformation to reciprocal

space and sampling over a limited range of k. Due to the periodicity of

reciprocal space, the calculation of ψk can be restricted to within the first

Brillouin zone as the solutions outside of this are degenerate with those

inside.

Alternative basis sets can be used, for example linear combinations of

atomic orbitals or Gaussian functions. The advantage with these is that

the required size of the basis set is much smaller, and the Hamiltonian

easier to construct and diagonalise. The main disadvantage is that they are

not particularly well suited to describing electrons in metallic systems, add

additional terms to operators, and are more computationally intensive to

transform between phase space and real space.

2.2.8 Pseudopotentials

Most of the physical properties of atoms in crystals are due to the electrons

which are far from the nucleus. The core electrons are shielded from the

environment by the outer or valence electrons and conversely, the valence

electrons are shielded from the nucleus by the core electrons. In general,
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changes to the wavefunctions of the core electrons are small compared with

changes to the valence electrons which are involved with bonding. The

computational effort involved scales as N3
e as the wavefunctions must be

orthonormal in the Kohn-Sham scheme. This restricts the size of the systems

that can be studied. Additionally, as the outer electrons must be orthogonal

to core electrons, very large basis sets are needed to allow high frequency

oscillations near the nucleus.

As the core electrons are relatively insensitive to the chemical environ-

ment, it is preferable to combine the potential of these electrons with the

nuclear potential to create a pseudopotential for an ion. These are created

such that the wavefunctions of valence electrons are identical to the all elec-

tron results outside of a certain radius rc and that they have no nodes within

this radius.

This decreases the computational complexity for several reasons:

• Reducing the short wavelength oscillations close to the nucleus, leading

to a much lower basis set size.

• Decreasing the number of electronic states that must be calculated.

• Certain atoms have non-negligible relativistic effects for core electrons

and these can be included in the pseudopotential.

Figure 2.1 shows an example of the all-electron and pseudo wavefunctions

for Sn. The wavefunctions are identical above the cutoff radius, but the

pseudo wavefunctions are much smoother inside the core region.

For plane wave methods, pseudopotentials are generally employed be-

cause of these reasons. Another optional requirement for pseudopotentials

is that the normalisation of the wavefunctions should be preserved. The

integral of the square amplitude of the valence pseudo-wavefunctions should
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Figure 2.1: The all electron(dashed) and pseudo-partial(solid) wavefunctions
from a pseudopotential for Sn. Only the 5s(red) and 5p(blue) electrons are
considered as valence. The cutoff radius is shown as a dashed line at 2.28
Bohr.

be equal to that of the all-electron wavefunctions. These normalisation pre-

serving pseudopotentials help to ensure the scattering properties of the ion

are reproduced correctly. These pseudopotentials have the general form

Vps = V loc
ps +

∑
i,j

Di,j |Pi〉 〈Pj |, (2.21)

where Di,j is a matrix unique to each pseudopotential and is parametrized

by reference to the all electron result and Pi is a projector onto an angular

momentum state, i. The all-electron KS equations are replaced by

(T + Vps + V v
H + VXC) |ψpsi 〉 = εpsi |ψ

ps
i 〉 , (2.22)
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where V v
H is the hartree potential from only the valence electrons and i runs

only over the valence states. The requirements for pseudopotentials are that

εpsi = εKSi and that |ψpsi (r)〉 =
∣∣ψKSi (r)

〉
when r > rc.

The norm-conservation requirement can be relaxed by allowing the norm

of the pseudo-wavefunctions to differ from the all electron result within rc at

the expense of additional computational effort in calculating the KS equa-

tions but allows further reduction in basis set size. In general the reduction

in basis set size outweighs the computational effort to calculate the addi-

tional terms required but this is not the case for perturbative calculations

and will not be used in this study.

2.3 Dynamics of Nuclear Motion

2.3.1 Introduction

Ground state properties can give us basic information about condensed mat-

ter systems. These include properties like lattice constants, band gaps and

total energies. For the majority of physical systems, it is the dynamics of

interactions that are of interest. We want to study what happens when a

perturbation is introduced into the system and how the ground state picture

is affected.

2.3.2 Lattice Dynamics

Dynamical processes in materials can be extraordinarily complicated and

generally infeasible to calculate directly. Electronic interactions happen very

rapidly in comparison with nuclear interactions due to the same arguments

as with the Born Oppenheimer approximation. For a direct time dependent

simulation of a single phonon mode, many instantaneous timesteps would
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have to be calculated to conserve the energy of the system. This would have

to be repeated for many possible phonon configurations to build up a sample

of atomic vibrations in the material.

A major simplification is to assume that we can work in the harmonic

approximation. This allows the separation of phonons into well defined

modes that add linearly. The potential wells that the atoms feel are only

dependent on the position up to the 2nd order derivative.

If we separate the position of an atom as

Rl,s = Rl + τ s + µl,s, (2.23)

where l = (la, lb, lc) is the index of the unit cell in which the atom is, s is the

index of the atom within a single unit cell, Rl is the position of the origin

of cell l, τ s denotes the equilibrium position of atom s within a single unit

cell and µl,s is the deviation from the equilibrium position of atom s in cell

l.

For a total energy E given at the equilibrium position as E0, we can

expand in a Taylor series in µl,s,

E = E0 +
∑
l,s

∂E

∂µl,s
µl,s +

1

2

∑
l,s,m,t

∂2E

∂µl,s∂µm,t
µl,sµm,t + ... , (2.24)

where the derivatives are given at the equilibrium positions of the atoms.

Since the equilibrium point is defined where the forces on any atom are 0,

the first order derivatives must also be 0, therefore

E ≈ E0 +
1

2

∑
l,s,m,t

∂2E

∂µl,s∂µm,t
µl,sµm,t. (2.25)

These second derivatives of the energy are called the interatomic force
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constants(IFCs) by analogy to the spring constant of a simple harmonic

oscillator. They are defined as

Cl,m,s,t =
∂2E

∂µl,s∂µm,t
. (2.26)

2.3.3 Boundary Conditions

We are still left with the problem that these IFCs must be calculated between

pairs of atoms across the entire crystal. By applying Born-von Karman

boundary conditions to the problem, we can then make it tractable. If we

assume our crystal is very large, it becomes very likely that the phonon

displacements repeat across some integer number, T = (Ta, Tb, Tc), unit

cells. Applying Bloch’s theorem, we find that the allowed phonon modes

are of the form

µl−m,s = eiq.Rmµl,s, (2.27)

where l,m are unit cell indexes, s the atom index in the unit cell and Rm is a

vector to the origin of cell m. The allowed values of the phonon wavevector

q are given by

q = (
2π

Ta
,
2π

Tb
,
2π

Tc
) = (

2πna
La

,
2πnb
Lb

,
2πnc
Lc

), (2.28)

where na, nb, nc are integers, and as L → ∞, q becomes a continuum as

in the electronic case. The wavelength of a phonon is given by λ = 2π
|q| .

Thus we only need to calculate the eigenvectors for phonons within the first

Brillouin zone, and the others are related to these by equation 2.27.

Now as the IFCs can only depend on relative positions of unit cells rather

than absolute positions, the IFCs cannot directly depend on l and m but

only upon the differences. We write a new form for the IFCs and then take
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the Fourier transform,

Cs,t(l −m) = Cl,m,s,t, (2.29)

Ds,t(q) =
1

N

∑
l,m

Cs,t(l −m)eiq.(Rl−Rm), (2.30)

=
∑
l

Cs,t(l)e
iq.Rl , (2.31)

where N is the number of atoms and the second line comes from translational

invariance or alternatively by the substitution l’ = l−m. Ds,t(q) is known

as the dynamical matrix and governs the atomic interactions for a specific

phonon wavevector.

2.3.4 Solving the Dynamical Matrix

With knowledge of the dynamical matrix, we can search for harmonic so-

lutions. We first write the equation of motion which follows from equation

2.25:

Msµ̈l,s =
∑
l,s,m,t

Cs,t(l −m)µm,t, (2.32)

where Ms is the mass of atom s. We write an ansatz for the form of the

solution,

µl,s =
1

2
√
Ms

es(q)ei(q.r−ω(q)t), (2.33)

where es(q) are the phonon eigenvectors (or modes) and ω(q) are the fre-

quencies. Substituting this into equation 2.32, the equations reduce to

ω2(q)es(q) =
∑
t

Ds,t(q)√
MsMt

et(q). (2.34)

This equation can be solved directly for the phonon eigenvector, es(q), and

squared frequency, ω2(q). It is usually solved by standard generalised eigen-
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value methods as the number of atoms tend to be much fewer than the

number of plane wave basis states.

2.3.5 Derivatives of the Total Energy

Many physical properties depend on the response of a system to some exter-

nal stimuli. For example, polarization is the response to an external electric

field. Lattice dynamics is the response of the system due to ionic displace-

ment from the equilibrium value. The forces on an atom are given by the

Hellman-Feynman theorem[15],

∂E

∂λi
= 〈ψ| ∂H

∂λi
|ψ〉 =

∫
∂V

∂λi
n(r)dr. (2.35)

Only the ground state density is required to calculate the first order response

of the total energy to external perturbations. Unfortunately for second order

energy derivatives, the first order response of the charge density is required:

∂2E

∂λi∂λj
=

∫
∂2V

∂λiλj
n(r)dr +

∫
∂V

∂λi

∂n(r)

∂λj
dr. (2.36)

These are the first two terms of the 2n + 1 theorem which states that the

response of the total energy can be calculated up to order 2n + 1 with

knowledge of only up to the nth derivative of the electronic wavefunctions.

To calculate the IFCs, we will need to calculate the first order response to

an external perturbation, in this case a phonon of wavevector q.

2.3.6 Perturbation Theory

As we are already able to calculate the ground state of the system, the

obvious place to start to attempt to calculate the 2nd order energy change

is by using perturbation theory. Firstly, we expand the external potential
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in terms that are constant, linear, quadratic and of higher orders in some

external parameter λ:

vext(λ) = v
(0)
ext + λv

(1)
ext + λ2v

(2)
ext + ... . (2.37)

We can expand any physical quantity, X, in terms of how they respond

to a change with respect to this variable, λ

X(λ) = X(0) + λX(1) + λ2X(2) + ... , (2.38)

where X is the physical quantity in question and λ is a small value so that

these results converge.

The values of the X(n) are given by Taylor’s theorem:

X(n) =
1

n!

∂nX

∂λn

∣∣∣∣
λ=0

. (2.39)

If we now write out the Schrödinger equation in these new forms, and

separate into powers of λ, we find that

H
(0)
KS

∣∣∣ψ(0)
n

〉
= ε(0)

n

∣∣∣ψ(0)
n

〉
, (2.40)

and

H
(1)
KS

∣∣∣ψ(0)
n

〉
+H

(0)
KS

∣∣∣ψ(1)
n

〉
= ε(1)

n

∣∣∣ψ(0)
n

〉
+ ε(0)

n

∣∣∣ψ(1)
n

〉
. (2.41)

Equation 2.40 is just the ground state HKS equation. Equation 2.41 can

be rearranged to give us the Sternheimer equation,

(H
(0)
KS − ε

(0)
n )

∣∣∣ψ(1)
n

〉
= −(H(1) − ε(1)

n )
∣∣∣ψ(0)

〉
. (2.42)

From standard first order perturbation theory, the correction to the 1st
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order wavefunctions can be given by a sum over states:

∣∣∣ψ(1)
n

〉
=
∑
n6=m

∣∣∣ψ(0)
m

〉 〈ψ(0)
m

∣∣∣H(1)
∣∣∣ψ(0)
n

〉
εn − εm

. (2.43)

Expanding equation 2.13 for the density, we find,

n(1)(r) = 2
∑
n occ

ψ(1)∗
n (r)ψ(0)

n (r) + ψ(0)∗
n (r)ψ(1)

n (r)

= 4Re
∑
n occ

ψ(0)∗
n (r)ψ(1)

n (r)

= 4Re
∑
n occ

∑
m 6=n

ψ(0)∗
n (r)ψ(0)

m

〈
ψ

(0)
m

∣∣∣H(1)
∣∣∣ψ(0)
n

〉
εn − εm

.

We see that the contributions from pairs of occupied bands cancel and the

first order densities are only affected by coupling to unoccupied bands. The

value of the index m is thus restricted to the conduction bands. This allows

a modification of equation 2.42 by projecting the first order wavefunctions

onto the conduction manifold using the projection operator,

Pc =
∑

c unocc

∣∣∣ψ(0)
c

〉〈
ψ(0)
c

∣∣∣ = 1−
∑
v occ

∣∣∣ψ(0)
v

〉〈
ψ(0)
v

∣∣∣ (2.44)

where 1 is the identity matrix. The second form of this equation is used

in practice, so as to avoid a sum over unoccupied states which may not be

converged. This is important as the occupied subspace is much smaller than

the unoccupied subspace.

Equation 2.42 can be then made invertible by only considering changes

in this region,

Pc(H
(0) − E(0)

n )
∣∣∣ψ(1)
n

〉
= −PcH(1)

∣∣∣ψ(0)
〉
. (2.45)
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This formulation does not take into account the possible change in oc-

cupation levels at the Fermi energy due to infinitesimal perturbations (eg

equation 2.13). This is acceptable in semiconductors and insulators as we

would not expect to see any change as the energy gap is normally much

larger than the phonon energy. A finite density of states at the Fermi en-

ergy is required for our current theories of superconductivity and so we must

further look to extensions to allow for partial band occupations.

2.3.7 Metals

Ground State

A metal is defined by having a finite density of states at the Fermi energy.

This is due to the highest occupied band only being partially filled, whether

it be due to having an odd number of electrons in the unit cell or by the

shape of the bands themselves. The Fermi surface is the collection of points

in the Brillouin zone where a change between the number of bands being

occupied and unoccupied occurs. Different bands may cross at different

gradients and some may cross the Fermi energy for only a very small region

of phase space. To accurately capture the physics around these points, a

high sampling of the Brillouin zone is required.

Another problem presents itself due to the sharp cut-off defined by the

Fermi-Dirac distribution at low temperature. There is a discontinuity in

which electronic states contribute to the total density. This creates problems

in attempting to solve the Schrödinger equation whereby minima-finding

algorithms may be unstable around a solution by band occupation number

changing due to very small changes in band energy levels. This effect is

known as charge-sloshing.

One solution to this is to attempt to interpolate the electronic band
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Figure 2.2: The Fermi surface for Au shown within the first Brillouin zone.

energies between sampling points. This procedure divides the Brillouin zone

into symmetry breaking phase space elements and attempts to infer the band

energies from the values at the vertexes.

Another solution is to smear the electron distribution by a finite amount.

This allows bands above the Fermi energy to be sampled as part of the

electronic minimization. A smearing function is defined as

δσ (ε) =
1

σ
δ̃(ε/σ), (2.46)

where δ̃(x) is a function which integrates to 1 and is an approximation of

the delta function. The energy of a band is modified to have a spectrum of

values around the sampled value. The ground state density is modified to

n(r) = 2
∑
i

θ̃

(
εf − εi
σ

)
ψ∗i (r)ψi(r), (2.47)

where θ̃(x) =
∫ x
−∞ δ̃(x)dx is a smooth approximation to the heaviside step

function. In the limit where σ is small, it is seen to reduce to equation

2.13. We can define occupation numbers fi = θ̃
(
εf−εi
σ

)
which simplify the
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notation.

The total number of states below the Fermi energy must be equal to the

number of electrons so we have the constraint

N =
∑
i

∫ εf

−∞
δ̃(εi)dε =

∑
i

θ̃

(
εf − εi
σ

)
, (2.48)

which defines the Fermi energy in this case. The total energy is no longer

variational and we must instead minimize the free energy:

F = E − σ
∑
i

S

(
εf − εi
σ

)
, (2.49)

where σ may be seen as an effective temperature for the case of the Fermi-

Dirac distribution. S is the entropy of the particular distribution. In prac-

tice, this entropic contribution is taken as part of the kinetic energy, T .

For this form to actually be useful, we must pick a function to use as the

smearing function. Many reasonable choices exist, and the only constraint is

that it must integrate to 1 and be smooth. Commonly used functions are the

Gaussian error function, or the Fermi-Dirac distribution. There are issues in

that the ground state that we end up in effectively has a fictitious electronic

temperature. Furthermore, in some materials with low lying conduction

bands, the total energy will be slightly modified from the 0 K result by the

slight occupation of these levels and this will be discussed in a later chapter.
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Perturbations

The modifications for metals in the ground state also modify the first order

equations. In particular, the first order density is modified as

n(1)(r) = 2
∑
n

fn

[
ψ(0)∗
n (r)ψ(1)

n (r) + c.c.
]

+ δσ (εf − εi) (ε
(1)
f − ε

(1)
n )ψ(0)∗

n (r)ψ(0)
n (r).

(2.50)

The density is modified by an additional term which is due to the variation

of occupation numbers and possibly in the Fermi energy. Changes in the

Fermi energy can only be caused by phonons at the Γ point and for a general

case can be ignored. We can rewrite the remaining expression as

n(1)(r) =
∑
n,m

ψ(0)∗
n (r)ψ(0)

m (r)
fn − fm
εn − εm

〈
ψ(0)
m

∣∣∣H(1)
∣∣∣ψ(0)
n

〉
, (2.51)

where the extra term in equation 2.50 is represented by the diagonal n = m

term in the equation. This equation is numerically stable for any finite

smearing width. It has been shown by de Gironoli[16] that the Sternheimer

equation is modified to be,

[HKS +Q+ εn]
∣∣∣ψ(1)
n

〉
= − [fn − Pn]H(1)

∣∣ψ0
n

〉
, (2.52)

with

Q =
∑
k

αk |ψk〉 〈ψk| Pn =
∑
m

βn,m |ψm〉 〈ψm| , (2.53)

and

βn,m = fnθ̃

(
εn − εm

σ

)
+ fmθ̃

(
εm − εn

σ

)
+ αm

fn − fm
εn − εm

θ̃

(
εm − εn

σ

)
,
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where α is chosen to make the system non-singular for all nonzero
∣∣∣ψ(1)
n

〉
.

This is achieved by setting αk = max(εf + ∆ − εk, 0) with ∆ = 3σ. These

restrictions makes Q and P require only sums over occupied and partially

occupied states. This formalism allows the use of finite temperatures within

the perturbative framework. The main advantage is that the sampling re-

quired in the Brillouin zone is not as high as the contributions of states just

above and below the Fermi energy are slightly smeared giving an approxima-

tion to the true distribution of energy levels. It again has the disadvantage

that it may not be a good approximation to the properties of the crystal at

low temperatures.

2.3.8 Electron-Phonon Coupling

To calculate the transport properties of electrons from the wavefunctions, it

is necessary to reintroduce the electron-phonon term in equation 2.10 that

were neglected in the Born-Oppenheimer approximation. This term depends

on the rate of change of the wavefunction of the electrons with respect to

the change in nuclear positions. In neglecting these terms, we have ignored

coupling between excited nuclear and electronic states.

Rather than try to apply the operator Ĥep directly, it is more physically

insightful to look at the first-order nuclear-electron potential in the system.

The most basic form could be calculated by taking the direct change in the

ionic potential (the ’naked’ or ’bare’ potential) due to the perturbation, but

this is a very poor approximation. The electrons in the system move in

response to this change in potential, effectively screening the ’bare’ poten-

tial. Instead, the fully self consistent ’dressed’ potential is used to allow the

reaction of the electrons to be taken into account. The dressed deformation
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potential is given by

δVq,j =
∑
I

δẽq,j,I .
∂V SCF

q

∂µI
, (2.54)

where the sum is over atoms, ẽq,j,I is the mass reduced phonon eigenvector of

atom I in the phonon q, j and V SCF
q is the self consistent potential derived

from perturbative calculations.

The electron-phonon matrix element, gq,j
k,i,k′,i′

represents the scattering of

an electron
∣∣k′, i′〉 from/to a state |k, i〉 by adsorbing/emitting a phonon of

wavevector q, j. These matrix elements can be calculated between arbitrary

states of k,i,k′,i′ and q but only those on the Fermi surface have any physical

relevance for electron transport. The matrix elements are given by

gg,j
k,i,k′,i′

=

√
~

2ωq,j

〈
k′, i′

∣∣ δVq,j |k, i〉 , (2.55)

where δV SCF
q is the derivative of the self consistent potential in the Kohn-

Sham equations with respect to the atomic positions and ωq,j are the phonon

eigenfrequencies.

These matrix elements are closely related to the Eliashberg Spectral

Function[17], α2F (ω), which describes the scattering of electrons between

states due to the interaction of all the electronic states with phonons of

frequency ω. As the phonon energy scales are of the order of meV which is

much less than the electronic energy scale, we make the approximation that

only electrons on the Fermi surface can be scattered and that they scatter

into states on the Fermi surface. Also for conservation of crystal momentum,

the values of k′ are restricted such that k′ = k + q. The spectral function
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becomes

α2F (ω) =
1

Nf

∑
q,j

∑
k,i,i′

|gq,jk,i,k+q,i′ |
2δ(εf − εk,i)δ(εf − εk+q,i′)δ(~ω − ~ωq,j),

(2.56)

which is a sum over every possible initial and final state but which is re-

stricted by the delta functions involving the Fermi energy, εf to those states

which lie on the the Fermi surface. The electron-phonon matrix elements

determine the probability of the scattering occurring. Together these com-

bine to determine the overall strength of scattering for a particular phonon

frequency. This form is strictly valid only at 0 K but can be used as an

approximation for low temperatures. The equation shows the conservation

of crystal momentum as a phonon of wavevector q can only scatter electrons

between states k and k + q.

The Eliashberg spectral function is linked to an important parameter

for superconducting materials – λ, the electron-phonon coupling constant

which gives a dimensionless indicator of the strength of the electron-phonon

interaction in the material[17]:

λ = 2

∫
α2F (ω)

ω
dω. (2.57)

This quantity can be inferred experimentally and is relevant for those in the

experimental superconductivity community as it measures the strength of

the electron-phonon coupling and the attractive energy between electrons in

the superconducting state.

With these theoretical methods, we will try to build a practical method

of calculating the electron-phonon coupling constant in the follow chapters.
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Chapter 3

Ground State Calculations in

Practice

3.1 Introduction

Although we have set out theoretically how the electron-phonon coupling

quantities would be calculated, there are many practical issues to be consid-

ered. For example, we do not want to directly minimize all the Kohn-Sham

states as we are generally only interested in the occupied bands and need

to choose a minimisation method that suits this. We will go into detail on

these choices and how they affect ground state calculations in this chapter.

3.2 Ground State

The first quantity required to calculate any physical property using DFT is

the ground state total energy and density. This must be calculated efficiently

and within a limited amount of memory and with a reasonable amount of

CPU time.
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3.2.1 Total Energy and Density

Quantities such as the total energy must be self consistent for the DFT argu-

ments to be valid. That is the process used to generate a quantity must also

give that quantity when they are used as the input. The primary example

is the density which is generated from the occupied Kohn-Sham orbitals,

which in turn depend on the Kohn-Sham potential which is generated from

the density. Only in the case where self consistency is achieved, will the

total energy and other related quantities be the ground state quantities. As

the relationship between ground state density and ground state energy is

bijective, this is equivalent to getting self consistency in the total energy at

a minimum of the energy landscape.

We start with a trial set of wavefunctions, ψi,k which generate a trial

density n(r). This is used to calculate the Kohn-Sham potential vKS and

the starting energy E. The total energy is then minimized with respect to

the wavefunctions under the KS potential to give a new set of wavefunctions

ψi,k which in turn give a new ground state density, n(r), and total energy E.

This total energy is compared with the total energy from previous iterations.

If it is within an an arbitrary tolerance, it is considered to be converged as

the energy has not varied by more than the tolerance between cycles and so

must be near the minimum. This process is shown in figure 3.1

3.3 Basis Sets

The electronic states are given as an Fourier expansion and due to memory

constraints and computational effort, this series must be truncated at some

point, Ng

ψj,k(r) =

Nk∑
G=0

cj,k,Ge
i(k+G).r. (3.1)
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Start

Read calculation
parameters

Generate Pseudopotentials

Randomly seed initial wavefunctions

Calculate density, n(r)

Calculate Kohn-Sham states

Update band occupan-
cies and fermi energy

∆E < Ec?

Export density and energy
as ground state

Finish

∆E < Ec

∆E ≥ Ec

Figure 3.1: A flowchart showing the process used to calculate the ground
state density and total energy.
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It is most efficient to rewrite the Hamiltonian operator into a mixture of

operators on the normal space and Fourier space coefficients. In particular,

the kinetic energy has a very simple diagonal form in Fourier space,

T [ψi,k(r)] =

Nk∑
G=0

ci,k,G
|k + G|2

2
. (3.2)

Restricting ourselves to basis states below a certain kinetic energy gives a

natural way to definite the limit of the Fourier series, |k + Gmax|2 ≤ Ecut.

The local potentials, such as the XC potential, are diagonal in real space,

as they only depend on r. The operators are applied by transforming the

density into real-space, applying the operator directly and transforming back

to reciprocal space. This is made efficient by the use of fast fourier trans-

forms (FFTs) as the size of the basis set is chosen to be a multiple of small

prime numbers. These operations are performed to avoid operators that are

non-local and would be expensive to calculate.

3.3.1 Wavefunctions

The KS wavefunctions are solutions of the one particle KS equations given

by equation 2.12. This equation when written in matrix form is simply

an eigenvector problem and can be solved by matrix diagonalisation with

the caveat that there is the possibility of degenerate eigenvalues(energies).

Direct matrix diagonalisation is proportional to n3
pw, with npw being the

number of basis set elements. For codes where the basis set is small, such

as Gaussian basis sets, this is not the bottleneck in the calculation. On the

other hand when using plane wave basis sets, npw may be ∼ 100, 000 and

this diagonalisation becomes much more expensive.

As the Hamiltonian matrix is of size n2
pw, direct diagonalisation give npw
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wavefunctions which is orders of magnitude more than the number of occu-

pied states. An alternative to the direct diagonalisation is to use an iterative

minimization technique. This allows an arbitrary number of lowest-energy

wavefunctions to be found by directly minimizing their energy through the

Kohn-Sham Hamiltonian.

For insulators, the number of bands can be restricted to the number of

electrons in the spin polarized system, or the number of electron pairs in an

unpolarised system. For metallic systems, the value of n must be larger so as

to encompass bands which are only partially occupied across the Brillouin

zone.

3.3.2 Real Space Grids

A finite Fourier series must be used as we do not have infinite memory to

hold our wavefunctions. The Nyquist-Shannon sampling theorem[18] states

such a series can be represented exactly by a discrete set of points in real

space which can fully represent all the information stored in the Fourier

series. If the Fourier space is a grid of Nx, Ny, Nz components, the size of

the real space grid is Nx × Ny × Nz. Conversion is performed by Fourier

expansion using fast Fourier transforms (FFT) which work by a divide and

conquer algorithm and reduce the computational complexity.

The use of FFTs requires that the number of coefficients be a multiple

of small prime numbers. For the case of powers of 2, the Cooley-Tukey

FFT algorithm divides the Fourier transformation into two smaller Fourier
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transforms,

Xk =
N−1∑
n=0

xne
− 2πi

N
nk

=

N/2−1∑
n=0

x2me
− 2πi

N
(2m)k +

N/2−1∑
n=0

x2m+1e
− 2πi

N
(2m+1)k

=

N/2−1∑
n=0

x2me
− 2πi

N
(2m)k + e−

2πi
N
k

N/2−1∑
n=0

x2m+1e
− 2πi

N
(2m)k

= Ek + e−
2πi
N
kOk.

(3.3)

The two smaller Fourier transforms operate on the even, Ek, and odd, Ok el-

ements of the original FFT. There is a futher identity, due to the periodicity

of these size-N/2 Fourier transforms,

Xk+N/2 = Ek − e−
2πi
N
kOk. (3.4)

Thus by doing the two smaller Fourier transforms, we actually get two el-

ements of the full Fourier transform. This process is recursively applied to

these smaller Fourier transforms to reduce them to trivial Fourier transfor-

mations of size 1. These smaller Fourier transforms can also be performed

in parallel. The increase in efficiency comes from caching the intermediate

results of the smaller Fourier transformations. This process has been gen-

eralized for other prime numbers and is most efficient when the number of

elements to be Fourier transformed has only small prime factors.

For terms which are products of wavefunctions, for example the density,

higher order Fourier components are produced up to twice those in the

wavefunctions, as a result of the convolution theorem. This requires both

a larger basis set to represent and a finer grid in real space. Furthermore,

for derivatives of quantities on the grid, even higher order terms can be
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produced and require even finer grid sizes. The fine detail often has a very

small effect on the total energy or density which allow us again to limit the

size of our Fourier series for these quantities. The grid scale is the ratio

of the Fourier series for product terms, such as the density to that of the

wavefunctions. For our calculations, the ratio of grid to fine grid was 2 to

ensure accuracy.

3.3.3 Reciprocal Space Sampling

The electronic states need to be sampled at some number of points in the

Brillouin zone to accurately solve for the wavefunction of the infinite crystal.

The only interaction between these points in the Kohn-Sham equations is

through the density which gets updated at the end of a KS minimization

step and thus the KS equations can be solved very efficiently in parallel. For

sampling, we use an unbiased grid of evenly spaced points in a 3 dimensional

grid, called a Monkhurst-Pack grid[19]. This set is useful, as an n × n × n

grid captures interactions with up to the nearest nth neighbour unit cells.

3.4 Orthonormality

As electronic states are eigenstates of the Hamiltonian, they should be or-

thogonal. Unfortunately as we are not directly diagonalizing the Hamilto-

nian, we do not naturally achieve this orthogonality. Instead it must be

imposed upon the wave functions. This is achieved by applying an orthogo-

nalisation scheme to both the original trial wave functions and to the search

directions.

The Gram-Schmidt scheme is chosen due to its simplicity and ease of

implementation. Each vector in turn is orthogonalised to the set of vectors

which have been already orthogonalised. This is done by calculating the
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projector of the vector onto this set and removing this projection from the

original non-orthogonal vector. In this way, a set of vectors {vn}, can be

orthogonalised in turn,

v′n = vn −
∑
i<n

(
vn.v

′
i

v′i.v
′
i

)
vi. (3.5)

This is applied band by band to achieve a set of orthogonal trial wave

functions. It has the disadvantage that it scales particularly poorly for

systems with large numbers of electrons as there is a projector between each

pair of vectors calculated. The scheme scales as O(n2
b) and so will come to

dominate with large numbers of bands.

The vectors can then be normalised using,

v′′n =
v′n
|v′n|

(3.6)

to create a set of orthonormal vectors.

The advantage in using this scheme is that the lowest bands are allowed

the most freedom to find the energy minimum and this speeds the conver-

gence of the Kohn-Sham energy eigenstates. Alternative mixing methods,

such as that used in the Car-Parrinello method tend to leave mixed states

which can make convergence difficult[6].

3.5 Minimization

Given the Kohn-Sham equations, one can formulate a method to find the

energy minimum. The steepest descent direction (ie the vector in configura-

tion space along which the total energy decreases most rapidly), including
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the constraint of normalization, is given by

|ζi〉 = − ∂E

∂ 〈ψi|
= −(H − εi) |ψi〉 , (3.7)

where

εi = 〈ψi|H |ψi〉 (3.8)

is the expectation value of the Kohn-Sham energy of the band. Expanding

equation 3.7 in terms of Kohn-Sham states, we find

|ζi〉 = −
∑
α

(H − εi) |ψα〉 . (3.9)

Moving the KS states in this direction will lower their energy, but will break

orthogonality. To correct for this, the search directions, ζi, are orthogo-

nalised using the Gram-Schmidt scheme.

3.5.1 Steepest Descents

The most basic minimization scheme using this information is the steepest

descents algorithm. From a trial starting configuration, x1, a quadratic line

minimizer is used to find the lowest energy point, x2, along the direction, ζi

search direction. The line minimizer operates by sampling the value of the

function at a trial point along the search direction and then extrapolating a

quadratic function to find an approximate minimum.

This point is then used as the starting point for the next line minimiza-

tion. As the total energy is a minimum along this direction by definition,

successive search directions will be orthogonal. This restriction can lead to

difficulties when the energy landscape is not quadratic around the energy

minimum, and it can take this minimizer a long time to find the actual
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minimum.

3.5.2 Conjugate Gradients

The requirement that successive steps in the minimisation of the total energy

must be orthogonal can be relaxed by methods such as conjugate gradients.

In this method, rather than the search directions being orthogonal, they are

made to be conjugate to one another with respect to the gradient operator,

G,

〈dn|G |dm〉 = 0 for n 6= m, (3.10)

where |dm〉 is the conjugate search direction for step m.

At first glance, this would seem to require knowledge of all previous

search directions, but by construction, we can create a set of vectors which

are mutually conjugate using only the previous search direction, |dm−1〉 and

the current gradient, |gm〉,

|dm〉 = |gm〉+ γm |dm−1〉 , (3.11)

where

γm =
〈gm| gm〉
〈gm−1| gm−1〉

. (3.12)

This method takes into account the gradient at previous trial points into

the current descent direction to improve the rate of convergence. With

conjugate search directions, the minimization steps are independent of each

other and should converge at a rate of one dimension in the vector space per

iteration. When the dimensionality is reduced to 0, the local minimum has

been found although it generally takes many less steps than this to actually

achieve convergence due to preconditioning.

62



3.5.3 Preconditioning

The energy landscape has a very large dimensionality due to the number

of plane waves in the basis set. It is generally well behaved and (in non-

magnetic systems) has a single global energy minimum. Unfortunately, the

gradient of the total energy puts greater emphasis on high energy basis states

due to the high kinetic energy of these states, as in equation 3.9 and these

will tend to be optimised first.

To alleviate this situation, we can amend the search direction by “pre-

conditioning” it to favour the lower energy basis states. In principle, it is

possible to find a perfect preconditioning matrix which would nullify the

prefactor of (H − ε) but this would be very computationally expensive to

calculate and apply as it would be a matrix of n2
pw.

As the highest energy eigenstates are dominated by their kinetic energy,

an approximation to the perfect preconditioning matrix can be given by a

diagonal matrix which is the inverse of the kinetic energy operator for high

energy eigenstates. For low energy eigenstates, the potential and kinetic

energies are comparable and so this should tend towards unity for these

states.

3.5.4 Charge Sloshing and Density Mixing

Charge sloshing is the oscillation of charge between iterations of the self-

consistent field. As the density is only recalculated when the KS states have

converged, one can imagine a system whereby the electrons repeatedly move

from regions of high to low density in one step, only to move back in the

next iteration as the density is updated.

Density mixing dampens these oscillations by mixing the new electronic

density with previous electronic densities. This mixed density is then used
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to generate the potential used for electronic minimization. Linear mixing

combines the current and previous density in a linear way:

ρn+1
in = αρnout − (1− α)ρnin, (3.13)

where ρnin and ρnout are the densities at the beginning and end of SCF cycle n

and α is the mixing coefficient. Although linear mixing is computationally

fast and easy to implement, it is found to converge slowly as it discards

information from the subspace explored after the next iteration.

Alternative mixing schemes include Kerker mixing[20], which mixes low

spatial frequency(long-range) components more strongly than high frequency

components as they contribute more to charge sloshing. It is defined by the

operator,

Kρ = α
G2

G2 +G2
0

ρ, (3.14)

with G being the Fourier wavenumber and G0 being an arbitrary value

defining a long-range for electronic coordinates. The new density is given

by

ρn+1
in = ρnin +K [ρnout − ρnin] . (3.15)

Generally the Broyden and Pulay schemes[21] are used which use den-

sities from N previous iterations. The Pulay mixing scheme assumes the

residual and density are assumed to be close enough to the true solution

that they are linear combinations of previous residuals and densities. It

constructs an error vector which is given by

Rn+1 =

n∑
i=n−N

βi
[
ρiout − ρiin

]
. (3.16)

The value, |Rn+1|2 is minimized with respect to βi under the constraint that
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∑n
i=n−N βi = 1. The new density is then given by,

ρn+1
in =

n∑
i=n−N

βi
[
ρiin +K

(
ρiout − ρiin

)]
(3.17)

Although this method requires more computation to calculate the values of

the βi coefficients, it is able to reduce the sloshing much better than straight

linear mixing. As this method has knowledge of the previous N steps, it can

effectively dampen charge sloshing with periods up to N.

Broyden mixing is a similar scheme but builds a Jacobian matrix from

finite differences between SCF cycles. This is then used to give values for

the βi coefficients in equation 3.17. Both Broyden and Pulay schemes are of

competitive speeds and the better mixing algorithm to use depends on the

system in question.

3.5.5 Occupancy and Fermi Energy

Once the Kohn-Sham equations have been converged for an input potential

and density, the energy eigenvalues will have changed unless the system

has reached absolute convergence. In a metallic system, there are empty

or partially filled bands which will change in energy relative to the Fermi

energy. The occupancies, fi,k of these bands must be updated after the KS

states have been changed. The simplest way to do this is to simply populate

the lowest energy states until the total number of electrons are placed. After

this, the electronic density is recalculated.

Doing so breaks the variational nature of a SCF step as the occupa-

tion numbers and KS are not then consistent with the density generated.

Electronic smearing and density mixing help to alleviate this problem, but

sloshing can still occur, especially in larger systems.
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In Ensemble-DFT (EDFT), the density is updated every time the wave-

functions and occupation numbers are changed. This makes the whole

scheme variational as the energy always decreases at each step, but as

the density must be recalculated often, EDFT is much slower than non-

variational density mixing. It can be useful in finding high precision solu-

tions in systems that are susceptible to sloshing instabilities.

3.5.6 Convergence Tolerance

The convergence tolerance is the chosen limit in the change in total energy

between several cycles that counts as being converged. This is decided upon

based on the energy accuracy required for the results that are to be obtained.

For example instantaneous nuclear forces require a higher convergence toler-

ance than large energy differences in defect formation energies. For energy

differences on the order of 10 meV, a convergence tolerance of 1 meV would

be required and smaller values of the tolerance would give better precision.

3.6 Symmetry

The unit cells of real crystals have many symmetries which we can utilize to

reduce the computation required to solve the Kohn-Sham equations. Sym-

metries in real-space such as reflections in atomic positions cause symmetries

in the electronic structure and these apply both in real- and reciprocal-space.

Even in cases where the crystal only has P1 symmetry, there is still trans-

lational symmetry (discrete Fourier coefficients rather than a continuum).

There is also time-reversal symmetry which is present in every system and

is due to the invariance of physical laws under a reversal of time. The

Hamiltonian is time-invariant and so from Kramer’s theorem[22], there is a
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degenerate state corresponding to every KS state, ψi,k, given by

Θψ(r)j,k = Θe−ik.rφj,k(r) = eik.rφ∗j,k(r) = ψ(r)j,−k, (3.18)

where Θ is the time reversal operator which has the effect of complex con-

jugation. This can be optimised further as the density from both points in

the BZ will be equal and thus the wavefunctions at these points need not

even be calculated.

We require solutions to the Kohn-Sham equations at each k-point, but

some of them will be related by symmetry. In the simplest case of an inver-

sion in real space will lead to the degeneracy of energy eigenvalues at ±k

and the states are related as ψi,k = ψ∗i,−k. Only a subset of the k-points

are actually required to be solved directly and these are referred to as the

irreducible wedge as they are the minimum set of independent k-points.

Futhermore, physical quantities such as the density and potentials must

also obey these symmetries and this allows additional constraints to be im-

posed to reduce the degrees of freedom in the KS equations. Symmetry

can also be used to restrict degrees of freedom in geometry optimization,

as the forces and displacements on atoms and cell parameters must all be

commensurate with the symmetry group.

3.7 Conclusion

We have given a practical method for the calculation of ground state prop-

erties as is performed in the CASTEP package. The methods chosen are

suited best for small to medium periodic systems which are normally those

of interest in condensed matter physics. In particular, they are well suited

to studying BCS superconductors as these are generally bulk crystalline.
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In the following chapter, we will show how this is expanded to calculate

dynamics information about the electron-phonon interaction.
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Chapter 4

Electron-Phonon Coupling

4.1 Introduction

In this chapter, we will show how the linear response algorithm works in

practice. As we are calculating the first-order electronic response to a per-

turbation in the position of the ions, we require that we have a well defined

ground state and that the energy landscape is smooth around this minimum

as we will be examining its derivatives.

4.2 Ground State

The perturbative method gives the second order energy which is closely

related to the second derivative of the total energy with respect to the motion

of each ion. If we are not close enough to the true minimum, the result will

not be the quantity that we are trying to calculate. This is especially likely

in systems with anharmonic potential wells as the second derivative will

change about the potential well.
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4.3 Fermi Surface

The calculation of the Fermi surface is necessary to calculate only the matrix

elements which link partially occupied bands in reciprocal space. Crystal

momentum conservation requires that the final state satisfies kf = ki ± q

where q is the phonon wavevector. Energy conservation requires that the

scattering of an electron is to a state with energy Ekf ,j′ = Eki,j±~ωq. There

is no restriction on the band index that may be scattered to so long as it

obeys the energy and crystal momentum conservation. As the energy scale

of phonons is much lower than that of the electrons, only occupied states

within a few hundredths of an electron-volt of the Fermi energy will be

within the phonon energy to an empty state. As this is a very small margin,

we approximate this continuum of states by a surface of points which lie on

the Fermi surface.

To actually find the Fermi surface, we must first finely sample the Bril-

louin zone. In order to do this, we require the ground state density which

is calculated as shown in the previous chapter. This is then used for a se-

ries of non self-consistent calculations at a regular array of points across the

Brillouin zone.

A regular array of points spanning the Brillouin zone is chosen depending

on how accurately the Fermi surface is required to be. This is reduced by

symmetry to an irreducible wedge of points in the Brillouin zone which

are unique and do not map to any other point by any of the symmetry

operations.

A non-self consistent solution of the Kohn-Sham equations is performed

at each of these points using the self-consistent ground state density to

get the energy eigenvalues at each point. This consists of solving the KS

equations a single time at these points using the self-consistent ground state
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density.

Comparing with the Fermi energy from the self-consistent calculation,

we consider the eigenvalues below the Fermi energy to be occupied and those

above to be unoccupied with a sharp cut-off. For each point we can calculate

the number of occupied bands.

The irreducible wedge is then mapped, by symmetry, to give the maxi-

mum number of equivalent sampling points spread across the Brillouin zone.

These will include the original regular array that was chosen, but may also

include others that do not necessarily lie on the MP grid.

Voxels (3d pixels) are formed with corners lying at the original grid

points. These voxels have two associated values - a minimum occupancy

number, Omin(x, y, z) and a maximum occupancy number, Omax(x, y, z) of

wave function sampled within or on the edge of it.

For each point which matches an original grid point, the occupancy is

compared with that of the 8 voxels around it. The minimum and maximum

values are modified to include the new value. For points which are not on an

original grid point (i.e. they lie inside a voxel), the occupancy of the point

is compared with just the cell that it lies in.

When this process has been completed for each k-point sampled, an array

exists of the occupancies of the voxels. Any voxel in which the minimum

and maximum values are not equal must contain a Fermi surface crossing

(by virtue of the intermediate value theorem). All such points are added to

an array of Fermi surface points. Furthermore, the values of Omax(x, y, z)

and Omin(x, y, z) show which bands cross the Fermi energy in this region,

as every band between 1 + Omin(x, y, z) and Omax(x, y, z) is only partially

occupied in this region.

This process will cause aliasing in the calculated Fermi surface, as the
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Figure 4.1: A 2d example of how the Fermi surface finding algorithm works
for a spherical Fermi surface in a system with 1 band crossing the Fermi
surface. Brillouin zone k-points are shown as circles. Red circles indicate
the k-point has an occupation number 1 less than in blue circles. The green
shaded area is the regions in which a band must cross the Fermi energy.

resulting points are restricted to a grid, but this can be reduced by using

a fine sampling mesh. As this is only being used for a non-self consistent

calculation, the computational complexity scales linearly with the symmetry

reduced number of sampling points.

With knowledge of the full Fermi surface, a set of phonon-wavevectors

can be constructed. The difference, qf,i = kf−ki is calculated for every pair.

These are reduced by symmetry to find those which are most representative

of the total set of wavevectors linking Fermi surface points. We then proceed

to the perturbative part of the calculation to study the properties of these

phonons.
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4.4 Perturbation

To be able to calculate phonon properties, we require the second order energy

due to an atomic displacement in each of the Cartesian directions. Now

many of these will be the same due to the space group of the crystal, but

we still require an actual method of calculation.

There are two main methods of calculating the second order energy due

to an atomic displacement: finite displacement and linear response.

4.5 Finite Displacement

The first is to directly move an atom a slight distance from the equilibrium

point and calculate the resulting force on each atom in the system. This

method requires that the displacements be periodic with the simulation cell

and thus is restricted to phonon wavelengths that are commensurate with

the unit cell, and the Γ point. It is particularly easy to visualise and to

implement as it only requires properties that are available by ground state

calculations. Each atom is shifted in both positive and negative directions,

and the forces are calculated by the central difference approximation,

∂2E

∂uκ,α∂uκ′,α′
=
∂Fκ, α

∂uκ′,α′
≈
F+
κ,α − F−κ,α
2∆uκ′,α′

, (4.1)

where Fκ, α is the force on atom α in unit cell κ and ∆uκ′,α′ is the finite

displacement distance. The + and − superscripts indicate displacements in

the positive and negative direction. As each displacement gives the force on

each atom in the system, it will give an entire row of the dynamical matrix

without requiring further electronic structure calculations. This means that

only 3Nsup ground state calculations are required, but the number of atoms
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in the simulation cell Nsup will vary with the phonon wavevector as the

wavevector must be commensurate with the unit cell. To compute a phonon

wavevector that is not commensurate with the unit cell, a supercell must

be used which requires additional computational effort and this method will

perform poorly.

4.6 Linear Response

The linear response perturbative method is an alternative method to di-

rectly calculate the total energy derivatives for perturbations. It has similar

computational difficulty to the ground state system in terms of calculations

per perturbation, and does not require the use of supercells for non-Γ point

phonons. Linear response uses the Sternheimer equation to solve directly

for the first-order wavefunctions and second order energies which directly

give the second order energy derivatives.

The solution method is similar to the ground state method. A trial

solution for the first order wavefunctions is taken, and these are used to

calculate the first-order density. The Sternheimer equation is used to solve

for the next step of wavefunctions and these are used to calculate a new

first-order density. This process is repeated until self consistency is achieved

to within the required tolerance.

4.6.1 Full Sternheimer Equation in Bloch form

The biggest advantage of DFPT is that the response to different phonon

wavevectors are decoupled from each other. The Sternheimer equation (2.52)

given in Bloch form for metallic systems[16] is,

[
HKS +Qk+q + εn

] ∣∣∣ψ(1)
n,k+q

〉
= −

[
fk+q
n − Pk+q

n

]
H(1)

∣∣ψ0
n,k

〉
(4.2)
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where, P and Q are projection operators onto the occupied and unoccupied

subspaces as defined in equation 2.53 The first order change in the Hamil-

tonian is simply the change in external potential. We rewrite this in Fourier

components,

H(1) =
∑
q

v
(1)
q (r)eiq.r (4.3)

The Sternheimer equation can then be written in terms of the Bloch

functions as,

[
Hk+q
KS +Qk+q + εkn

] ∣∣∣φ(1)
n,k+q

〉
= −

[
fk+q
n − Pk+q

n

]
v

(1)
q

∣∣∣φ(0)
n,k

〉
. (4.4)

As can be easily seen, this contains only terms at a single phonon

wavevector, q. The first order response of the electronic wavefunctions k+q

is dependent on the states at k + q. All the terms are lattice periodic with

the result that supercells are not required for arbitrary phonon wavevectors.

The resulting situation is that we can calculate the response of the system

to arbitrary monochromatic phonons at any point in the Brillouin zone with

comparable computational effort to calculating the ground state properties.

4.6.2 Brillouin Zone Sampling

The ground state wavefunctions are calculated using the method in the pre-

vious chapter at a regular array of points within the Brillouin zone. For the

case of an arbitrary phonon with wavevector, q, we may have the situation

where k+q does not lie on one of the calculated points. In this case, we use

the already calculated ground state density and non-variational solution of

the Kohn-Sham equations to calculate the wavefunctions at arbitrary points

in the Brillouin Zone.
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4.6.3 Solving the Sternheimer Equation

The problem in solving equation 4.4 is that again we do not wish to invert

the operator on the LHS directly, as the computational complexity of this

task scales as N3
pw. The result will also contain the first order response of

unoccupied KS states which are not required and do not affect the total

energy to second order.

Instead, the equations are solved using the conjugate gradients algorithm

to get only the first-order response of at KS states which are at least partially

occupied. Furthermore, no details of unoccupied states from the ground

state are required due to equation 2.44 which expresses the projector onto the

unoccupied states as a sum over occupied states. The combination of these

two factors allow the calculation to proceed with comparative computational

effort to the ground state calculation.

4.6.4 Second-Order Energy

With the first-order density for a particular perturbation sufficiently con-

verged, equation 2.36 can be computed to give a row of the dynamical ma-

trix. Using symmetry, further elements of the dynamical matrix can be set

based on the values calculated.

4.7 Electron-Phonon Coupling

Calculation of the electron-phonon coupling matrix elements (EPMs) require

the first-order potential which consists of two parts.

The first order contribution to the external nuclear potential is calculated

from analytic derivatives of the ground state pseudopotentials.

The other is local and variational, and contains the contributions from
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the Hartree, exchange and correlation parts of the Hamiltonian. These are

due to to the interaction of the ground state and first order electron densities.

The local contributions are calculated directly as functionals of the first order

density.

The local contributions to the potential are calculated as a side-effect of

solving the Sternheimer equation. Once all the required perturbations have

been calculated, the matrix elements are calculated from these stored poten-

tials and the diagonalisation of the DM. The non-local parts are calculated

as required as analytic modifications of the pseudopotentials which is fast

as they are not variational.

4.8 Symmetry

The symmetry of a crystal will be reduced by lattice perturbation as the

atoms are moved from their symmetry positions. The remaining symme-

tries will be a subgroup of the full space group of the crystal which are

commensurate with the phonon-wavevector; the symmetries will be those

which leave the wavevector invariant. A symmetry operation remains in the

presence of a phonon with wavevector q if

q = Snq, (4.5)

where Sn is a symmetry operation of the full space group.

The remaining symmetry operations allow us to reduce the total number

of perturbative calculations as they must apply to the electronic response

in these systems. In the majority of cases we break the ground state time-

reversal symmetry, as 2q 6= G and so −q 6= q ±G. There is an additional

symmetry, St due to the time reversal symmetry of the phonon itself under
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which q→ −q and phyiscal properties undergo fq → f∗−q. Although neither

of these operations independently are commensurate with q, in conjunction

they do leave it invariant. This allows an inversion-like symmetry to be used

if the system has a ground state inversion symmetry, I.

SI,t = StSi (4.6)

This time-inversion symmetry is useful either by itself (i.e. with the

identity matrix) or in combination with one of the symmetry operations.

Finally, if the direction is antiparallel to the one we require, this can be

fixed by multiplication of the potential by −1 by the definition of the first

order potential,

V 1
q (α, i) =

∂V

∂µα,i
=

∂V

−∂µ−α,i
= −V 1

q (−α, i) (4.7)

For the actual perturbative calculations, the symmetry is reduced further

by the perturbation of a specific ion i in a direction α. The quantities Ri

and α are invariant under these symmetry operations as well as the phonon

wavevevector.

The symmetry operations are used to transform the first-order local po-

tentials between symmetry related atoms. An example would be the sym-

metry of a phonon with q = (0, 0, 0.2) in a crystal with a single atom at

the origin. The potential due to a perturbation in the x and y directions is

related by the symmetry operation where x → y and y → x. The result is

that we can reduce the number of perturbations that must be performed.

A further improvement in using the remaining symmetry operations is that

they will improve the accuracy of the result by enforcing physically necessary

conditions on the first order density and wavefunctions.
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4.8.1 Finding Symmetry Operations

When a q-point is initialised, the symmetry operations that exist, Sfull, are

tested to see whether they leave q invariant. If so, they are added to a list

Sq for that q-point. These apply to the dynamical matrix and various first

order parameters.

The perturbation further reduces the symmetry for the purposes of cal-

culating the 2nd order energy change but we can use the larger group Sq to

relate first order potentials.

When one of the first order potentials V 1(α, i) is found for an atom i

in a direction α, a check is performed to find any atoms which match by a

symmetry operation.

Every valid symmetry operation in q, Sq,n, is applied to the original

position, Ri, and direction, Dα,

Rtest = Sq,n.Ri (4.8)

Dtest = Sq,n.Dα. (4.9)

Every other atom j position, Rj , and direction, Dβ, is then selected in turn

and compared against these test positions to see where both

Rtest = Rj +mG (4.10)

and

Dtest = Dβ (4.11)

where G is a lattice translational vector.

If these are true, then V (1)(β, j) = Sq(n).V (1)(α, i). The symmetry

operations are performed in reciprocal space, to simplfy the effect of any
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displacement part of the symmetry operation as these become phase changes.

This operation is performed until every symmetry related potential has been

found. The potentials have the same symmetries as the diagonal parts of the

dynamical matrix as these values have a one to one correspondence through

the Kohn-Sham theorem.

4.9 Interpolation

With the dynamical matrix at a point, q, the resulting phonon modes and

frequencies can be found quickly by diagonalisation. If we wish to accu-

rately sample phonon frequencies across the Brillouin zone, a large number

of DFPT calculations would have to be performed, as one would have to be

performed at each point of interest.

The dynamical matrix elements themselves can be interpolated, using

Fourier transformations, across the BZ to find an approximation to the DM

at arbitrarily positioned q-points. A relatively accurate set of reciprocal

space force constant matrices(FCMs), at an equally spaced set of q-points is

first found. The reverse of the Fourier transform, in equation 2.31, can be

used to find the FCMs in real space. These constants are short-ranged due

to the screening action of the electrons. This can be Fourier transformed

back into reciprocal space to get the FCM at any arbitrary q-point.

This is generally used by finding the DM on a regular array of points

within the BZ and then applying the interpolation along a path within the

BZ to create band-structure diagrams or in the case of electron-phonon

coupling to find the phonon frequencies on the Fermi surface.

While interpolation can be used directly on phonon properties, it requires

further work to interpolate the EPMs. The general method is given by

Giustino[23] and involves projecting the perturbed electronic states onto
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Wannier functions in real space and utilizing the localisation of these states.

This is not currently implemented. Interpolation is used to improve the

shape of the Eliashberg spectral function, by giving the fine detail of the

phonon spectral function, F (ω).

4.10 Acoustic Sum Rule

The position of the origin in a unit cell is completely arbitrary. A shift

of the entire crystal in space should not affect the observable properties of

that crystal. This symmetry manifests itself in the phonon spectrum as

the acoustic branches going to zero frequency at the Γ-point in non-polar

materials. The symmetry is expressed as

∑
s

Ds,t(q = 0) = 0. (4.12)

This is partially broken in the calculations by several terms being calculated

in real space, such as the XC energies, and insufficient electronic Brillouin

zone sampling, which yields DMs which are not converged to large enough

ranges in real space. This insufficient sampling can cause the frequencies to

go to a constant rather than to zero at the zone centre and thus violate the

translational symmetry of real space.

The first method of correction is to increase the sampling of the real space

grids by increasing the plane wave basis size or the density grid scale. The

density must be on a grid of at least twice the density of the wavefunctions

because otherwise aliasing can occur which can easily affect the results of

these calculations. Furthermore, with the GGA functionals, higher sampling

is required to calculate derivatives of the density accurately and so will affect

the exchange correlation[24].
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An alternative method of correction is to calculate the dynamical matrix

at the Γ-point and subtract this from the dynamical matrix by

Ds,t(q)→ Ds,t(q)− δs,t
∑
r

Ds,r(q = 0). (4.13)

This both enforces the correct behaviour at q = 0 as well as when q → 0,

and so leaves the function continuous. It is commonly used as it reduces

the sampling required to get the analytic result, but its use is not rigorously

justified and it can lead to other artifacts appearing as seen in figure 4.2

where it causes a discontinuity at M . These problems can be alleviated by

increasing the sampling of the real space grid so as to improve the accu-

racy of the dynamical matrices. This directly leads to smaller values of the

correction but generally requires very fine sampling. As the perturbations

break most of the symmetries of the BZ, the scaling of cubic systems goes as

O(N3
mp) rather than the symmetry reduced O(N2

mp) found in ground state

calculations, where Nmp is the size of the Monkhurst-Pack grid along one

reciprocal lattice direction. This makes increasing the size of the sampling

more costly than in the ground state calculations and there is an advantage

to using this correction.

4.11 Convergence

As in the case of ground state electronic structure, the calculation of linear

response requires that the system be sufficiently converged to get accurate

answers. Correct diagonalisation of the DM to get the phonon frequencies

and eigenvectors requires that the DM be sufficiently converged. The DM

being converged relies on the accurate solution of the Sternheimer equation

which again relies on the cutoff energy and the Brillouin zone sampling.
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Figure 4.2: An example of the effects of enforcing the acoustic sum rule
on an under-converged phonon spectrum in Nb3Sn. One coarse and fine
sampling dispersion curve are shown in blue and red respectively. The linear
dispersion at the zone centre as calculated from the ground state is shown
in dashed lines. The anomaly is circled at the M point.

The perturbative calculations are performed with the same basis set and

Brillouin zone sampling as the ground state calculations so that aliasing and

other unphysical interactions are avoided. All of the examples shown in this

section were performed with face-centred cubic Au with a lattice parameter

of 4.08 Å and using the PBE XC functional. The pseudopotential used

considered the electrons in the 5p and 6s shells to be valence.

4.11.1 Basis Set Size

Figures 4.3 and 4.4 shows an example of the convergence of phonon frequen-

cies and electron-phonon coupling constants with cutoff energy at a single

phonon wavevector in Au. The frequency converges smoothly with cutoff

energy above 300 eV, but that is not necessarily true if the basis set is much

too small to be physical. At 200 eV, it is seen that the dynamical matrix fails
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to diagonalise the two transverse solutions into non-degenerate modes. The

frequencies of branches 2 and 3 are also lower than the converged values.
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Figure 4.3: Frequency of the 3 phonon branches in Au as a function of cutoff
energy used at an arbitrary q = (0.1, 0.2, 0.3). The Brillouin zone sampling
grid was 18 × 18 × 18. to ensure that the calculation was converged with
respect to BZ sampling.

An energy cutoff of 600 eV was found to satisfy the convergence criteria

for the ground state of |∆Etot| < 0.01 eV per 100 eV change in Ecut. This

suggests that the same cut-off energy can be used for perturbative proper-

ties as for accurate ground state properties. The electron-phonon matrix

elements converge at approximately the same rate as the frequency as they

depend linearly on the phonon modes produced by diagonalisation. This

suggests that the accuracy of the EPMs can be inferred by the accuracy of

the phonon frequencies.

The scaling of computational time with the basis set size is shown in

figure 4.5. The lack of smoothness in the line is ascribed to the FFT re-

quirement that the basis set be a multiple of small prime numbers (ie < 7)
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Figure 4.4: Modulus of the electron-phonon matrix element calculated be-
tween two arbitrary bands for the phonon branches shown in figure 4.3. The
phase information was discarded as only the amplitude is necessary to find
transition probabilities for electron-phonon scattering events.
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Figure 4.5: Comparison of the computational time with the cutoff energy
used in the calculations. Plotted also is an E2

cut fit to the graph displaying
the superlinear scaling of the calculation. The calculation was performed in
serial to negate the effects of interprocess communication.
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for efficiency. In comparison with figure 4.3 , it is obvious that above a

certain point, large increases in computational effort result in only small

increases in accuracy. At 600 eV, where the ground state is converged to

within 0.01 eV, an increase of 100 eV in the cut-off energy results in a 56%

time increase but only a 0.02% increase in accuracy in the EPMs.

4.11.2 Brillouin Zone Sampling

The sampling of the Brillouin zone shows a marked difference from the

ground state in figure 4.6. This system was found to have ground state

properties converged with a sampling grid of 8×8×8. The phonon frequen-

cies are found to vary by large margins up to a sampling size of 16×16×16.

This is likely due to the sampling of the Fermi surface being insufficient as

these are the only states which can interact with phonons. It is also seen

that the error does not necessarily go down with increased sampling sizes.

This is due to the exact placement of sampling points within the Brillouin

zone as they are evenly spread and centered around the Γ point.

The electron-phonon matrix elements, in figure 4.7, show an even stronger

dependence on the Brillouin zone sampling than the frequencies. This is due

to their dependence on the exact diagonalisation of the dynamical matrix.

At 12 × 12 × 12 sampling, there appears to be unrepresentative sampling

of the Fermi surface states and so the dynamical matrix diagonalises in a

slightly different way than for the cases of sampling sizes just above and

below.

Again the accuracy of the phonon frequency gives us a guide as to

whether our electron-phonon matrix elements will be converged. That the

phonon frequencies are converged is used as the basic requirement of getting

accurate EPMs.
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Figure 4.6: Frequency of the 3 phonon branches in Au as a function of Bril-
louin zone sampling grid (N×N×N) used at an arbitrary q = (0.1, 0.2, 0.3).
The cutoff energy was set at 600 eV
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Figure 4.7: Modulus of the electron-phonon matrix element calculated be-
tween two arbitrary bands for the phonon branches shown in figure 4.6. The
phase information was discarded as only the amplitude is necessary to find
transition probabilities for electron-phonon scattering events.
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As mentioned, most of the symmetry of the system is broken by arbitrary

phonon-wavevectors and the computational-time scaling for an N × N ×

N MP grid goes as N3. This is the main hindrance in performing these

calculations. The ground state calculation for a 20 × 20 × 20 grid in this

system has 770 unique k-points in the irreducible wedge. The symmetry in

this system maps these points to 32000 points in the full Brillouin zone for

which the Sternheimer equation must be solved.

4.11.3 Optimisation

The Sternheimer equations for each k-point are effectively independent of

one another and so may be solved in parallel. The results are combined as

the first order density by using MPI reduce instructions. This allows scaling

of these problems to large supercomputing clusters – much larger than the

ground state calculations – due to the huge number of k-points involved.

As the calculations do not require the use of larger basis set sizes than the

ground state, no further optimization is required there beyond those for the

ground state. As we deal almost entirely in local potentials, only a small

amount of memory is required for each k-point and memory usage effectively

scales linearly with the number of Brillouin zone sampling points.

Symmetry often allows a reduction in the number of phonon-perturbations

required. In the case of Nb3Sn, with 8 atoms in the primitive unit cell, 24

perturbations would be required. This is reduced to 9 or 15 perturbations

depending on the exact phonon-wavevector, offering a saving of ∼ 50% com-

putational time.
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4.12 Calculation Summary

An overview of the steps for the calculation of the electron-phonon ma-

trix elements are given in figure 4.8. Each self-consistent solution of the

Sternheimer equation (the innermost loop) is of the same computational

complexity as that of a ground state calculation. This is repeated 3Natoms

times for each wavevector of interest. To get an accurate sampling of the

electron-phonon coupling across all the transitions possible, a large number

of q-points must be sampled – at least hundreds for simple metals.
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Figure 4.8: The process used to calculate the electron-phonon matrix ele-
ments from the ground state wavefunctions.
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Chapter 5

Grain Boundaries in Au and Nb3Sn

5.1 Introduction

Grain boundaries (GBs) control many properties of polycrystalline mate-

rials such as mechanical strength[25] and electron transport[26] and thus

their manipulation has attracted a lot of interest in many fields including

superconductivity[27] and semiconductor devices[28, 29] as they provide a

relatively easy way to change the properties of a material.

In superconducting materials it has been found that increasing the disor-

der in the material can cause a large increase in the upper critical field, BC2 ,

of materials. This can be controlled by changing the grain size[30] although

it is difficult to model on the atomic scale. Empirical models based on BCS

theory[2] employ parameters such as the normal state resistivity to calculate

BC2 along with several other parameters that are more difficult to measure,

like the electron-phonon coupling[31].

In trying to characterise these materials, it is useful to look at the effects

of grain boundaries as these defects begin to dominate materials’ properties

as the surface area to volume ratio increases. In particular, it is informative
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to examine how the electronic structure changes as a function of distance

from the grain boundary as this will affect both normal state conduction

and superconducting properties through the interface. We can also probe

the effects of isolated grain boundaries in materials to understand their indi-

vidual effects rather than the entwined properties of many different defects,

as would be observed experimentally.

Experimental study of defects in crystals can be difficult, due in part

to the difficulty of isolating and probing defects at the atomic level, both

close and far away from the surfaces. If the crystals are cleaved to allow di-

rect surface observation of the grain boundaries, more complicated surface

reconstructions may form which are not representative of GBs in the bulk.

Ab-initio study of these grain boundaries can give insight into the electronic

structure deep inside the material without suffering these effects. Due to

the complexity of even the simplest grain boundaries, the majority of publi-

cations arising from calculations have used the embedded atom method[32]

or even simple pair potentials[33] . These methods are very fast in compar-

ison to full electronic structure calculations, but take a simplified view of

distortions in the material. Although it is possible that these may give qual-

itatively correct results in many cases, they are known to perform poorly

outside the crystal structure in which they have been parametrised[34].

Unlike point defects where the structural changes can be small and semi-

empirical methods sometimes work well[32], grain boundaries tend to consist

of large regions of local disorder where the structure is quite unlike that of

the perfect crystal. A proper description of these regions requires that the

electronic structure be dealt with in a more general way, such as density

functional theory (DFT), with no empirical or semi-empirical parameters.

Other calculations have tended to use computationally cheap methods, for
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example tight binding model and muffin tin models to decrease the com-

putational cost of the calculation, but again these methods are somewhat

restricted in not being able to directly calculate local atomic distortions[35]

and so will suffer from a loss of accuracy.

Pseudopotential based DFT is a prime candidate for calculating total

energies and electronic structure properties of the defect regions as it does

not rely on properties of the perfect crystal. Previous calculations which

have used DFT[36, 37, 38] have tended to examine twist grain boundaries

as they offer a smaller periodic system to look at, but tilt grain boundaries

may have unique features not represented in pure twist GBs and so are of

interest to study.

The difficulty in studying metallic systems is enhanced by the fact that

they are conductors and exhibit no band gap. This gives these systems extra

electronic degrees of freedom due to partially occupied bands. Modern linear

scaling methods have been developed for large systems and generally require

that all electrons be localised to some extent so as to keep the density matrix

sparse[39]. This restriction means that the linear scaling of the calculation

complexity with electron number does not apply to metallic systems where

electrons may be completely delocalised and these methods are generally

unsuitable.

Here, we examine the structural and electronic changes in the locality of

symmetric tilt grain boundaries of conducting materials, using the ground

state theory described in the previous chapters, to determine how different

the microscopic environment is in these regions. In particular, we examine

the density of states (DOS) at the Fermi energy, n(εf ). Periodic boundary

conditions are naturally fulfilled in a bulk crystal, but are more difficult

to provide in defect systems and hence a method of creating periodic tilt
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grain boundaries is discussed. Nb3Sn was chosen as the representative BCS

superconductor to study due to the large body of scientific study on this

material, its relatively simple unit cell and common commercial use. Au

was also studied as a representative conducting but non-superconducting

material.

5.2 Periodic Grain Boundaries

Grain boundaries are challenging to study computationally due to the large

amount of disorder and consequentially are of lower symmetry. However,

grain boundaries with high translational symmetry along the direction of

the interface have been found to be more common than those with longer

more disordered structure due to the lower energy of systems with frequent

common lattice sites[40].

When studying grain boundaries, the main issue is that at any arbitrary

orientation, the crystals may not be of commensurate periodicity in direc-

tions parallel to the grain boundary. It is usually not possible to find a

length that is a multiple of both crystal orientations parallel to the grain

boundary due to these lengths being irrational. If periodicity is imposed in

these cases, by using an approximately commensurate periodic length, there

will be additional forces introduced which are not physical and are purely

artefacts of the calculation[41]. In this study, we examine an idealised grain

boundary which has a sharp divide between the two crystal orientations us-

ing the commensurate site lattice model to form periodic grain boundaries.
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5.3 Commensurate Site Lattice

Highly symmetric tilt grain boundaries can be described by the commensu-

rate site lattice (CSL) model[42]. These boundaries generally have atoms

on or near the boundary which lie on a site which would be part of both

lattices. At certain angles between grains, there are periodic common lattice

sites between the two orientations of crystal and these are termed coinci-

dence lattice sites. These individual atoms are at high symmetry positions

and greatly decrease the extent of the disorder in the system by giving an

atomic structure closer to that of the bulk material with only small regions

of disorder.

In a cubic crystal, the CSL model assigns a value to a grain boundary

based on the spacing between these periodic atoms (along the boundary line

between the two crystal orientations) in terms of the lattice constant a. A

Σ5 GB would thus have a commensurate site with a periodicity of
√

5a.

This is shown in figure 5.1 for a simple crystal.

The angles giving these high symmetry situations are constructed by

defining a vector which is a multiple of the real space lattice vectors. Both

materials chosen are cubic which simplifies this calculation. We can define a

generating vector which is a multiple of the real space lattice vectors which

will be orientated along the a-axis. Another orthogonal axis must be chosen

to keep fixed to fully describe the grain boundary. In this case, we have

chosen the c-axis as it simplifies the rotations. If the crystal is cubic, as

in the ones we have chosen, this will lead to a larger but still orthorhombic

repeating unit. If this is reflected across the plane formed by the two vectors

already chosen, we will create a grain boundary at the interface.

If the generating vector chosen is given by (a,b,c), the corresponding Σ

value will be given by Σ = a2 + b2 + c2. In our case, we have fixed the c axis
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Figure 5.1: The simplest Σ5 grain boundary in a simple cubic material with
rotations about the c-axis (into the plane). It involves a mismatch angle of
53.13◦. Figure a.) shows the original unit cell and the generating vector (1
2 0). Figure b.) shows two crystals rotated in opposite directions by half of
this amount overlapped. Shown in black are the overlaps of atoms. Finally,
Figure c.) shows the resulting periodic grain boundary in its simplest form.

so the vector cannot have any component in this direction. If the Σ value

would be even, there is always a more primitive commensurate unit cell that

can be picked, although this is not necessarily periodic when attached to its

mirror image as seen in figure 5.2. In these cases, the simulation cell is larger

than indicated by the CSL Σ value.

5.3.1 Materials Studied

Metals can very loosely be split into two categories – those with a slowly

changing density of states, with respect to energy, at the Fermi energy and
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Figure 5.2: The second Σ5 grain boundary in a simple cubic material with
rotations about the c-axis (into the plane). It involves a mismatch angle of
36.87◦ . Figure a.) shows the original unit cell and the generating vector (1
3 0). Figure b.) shows two crystals rotated in opposite directions by half of
this amount overlapped. Shown in black are the overlaps of atoms. Finally,
Figure c.) shows the resulting periodic grain boundary in its simplest form
including the extra commensurate lattice site in the centre of the unit cells.

those with a quickly changing density of states. To representatively capture

the essence of these situations, a material was chosen which fall into each

of these groups. Pure face-centred cubic (fcc) gold was chosen as it has

effectively a constant density of states close to the Fermi energy which is

due to orbitals with sp-type character. There are d-like orbitals which give

more complicated structure but these lie more than 3 eV below the Fermi

energy.

Nb3Sn was chosen as a material with a quickly changing DOS as the

Fermi energy lies just on a peak in the density of states. It has a cubic
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A15 crystal structure[43] with a body-centred cubic (bcc) Sn lattice with

Nb ribbons arranged along the sides of the unit cell as shown in figure

5.3. Grain boundaries in this material are of special interest due to their

ability to increase superconducting parameters like BC2 [44] by increasing

the normal-state resistivity in these materials.

Figure 5.3: The unit cell of Nb3Sn with Sn atoms at the corners and the
centre and Nb atoms arranged on the sides as ribbons.

A range of simple GBs were created for Au and Nb3Sn using the CSL

method and are shown in Table 5.1. Atom pairs which were too close to-

gether (< 1 Å) were removed and replaced by a single atom in the average

position of the pair as these closely compressed positions were unlikely to be

energetically favourable. A single asymmetric Σ5 GB of Au was created for

98



comparison by taking a 5×5×1 supercell of Au. This was the minimum size

of supercell that could produce a Σ5 GB. This was rotated by 53.13◦, which

was calculated to be commensurate with the unrotated crystal as shown in

figure 5.4 .

Figure 5.4: The periodic unit cell for an asymmetric Σ5 grain boundary in
Au. The cubic unit cell is shown in the top left with a lattice parameter of
4.078 ÅAn example of the commensurate site lattice is shown as the larger
square in the centre. As expected, the CSL cell has a volume of 5 times that
of the simple unit cell.

The effect of two common impurities in Au was tested by repeating the

calculation with a defect atom inserted into the grain boundary. These were

chosen by the most commonly found impurities in highly refined Au and

were selected to be Ag and Ne. These were placed in the central region of

the grain boundary and relaxed to their local energy minimum.

The defect formation energy, ∆HD as calculated by the formula of Lany

and Zunger[45]:

∆HD = [ED − EH ] +
∑
α

nαµα, (5.1)

where ED is the total energy of the supercell containing the defect, EH is

the supercell without the defect and nα describes whether atoms of species

α are removed (+1) or added (-1) . The chemical potential µα is calculated
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as the normally occuring state of the species. For Ne this is an isolated atom

and the bcc structure for Sn.

Material Generating Σ Mismatch Atoms in
Vector Angle Calculation

Au (1 2 0) 5 53.13◦ 38
(1 3 0) 5 36.87◦ 40
(2 3 0) 13 22.62◦ 52

Nb3Sn (1 2 0) 5 36.87◦ 40

Table 5.1: The range of symmetric grain boundaries studied along with the
angles and vectors to create them. Also shown is the minimum number of
atoms required to create the cell and achieve convergence with respect to
GB separation.

In Nb3Sn there were multiple atoms which could be linked by the same

vector using our simple grain boundary generation: The Sn or the Nb atoms

which are symmetrically equivalent to all atoms of their own species. This

means that multiple grain boundaries could be generated from the same

generating vector. To observe if this had an effect, we performed the calcu-

lation using both orientations. This was not the case in Au, as the atoms

were all symmetrically equivalent.

5.4 Results

5.4.1 Grain Boundaries in Gold

The PBE lattice parameter of Au was found to be 4.16 Å , which compares

well with an experimental value of 4.08 Å[46]. The density of states at the

Fermi energy was calculated to be 0.14 eV-1Å-3, which corresponds to the

carrier concentration of a good metal. The high DOS between −7 eV and

−3 eV is due mainly to d-like orbitals and has a sharp density of states

corresponding to localised orbitals as can be seen in figure 5.5. The density

of states at the Fermi energy on the other hand has more of a sp-hybrid
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character and is effectively constant in the region within kT of the Fermi

energy where dynamical scattering effects can occur.
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Figure 5.5: The density of states in fcc Au decomposed into angular mo-
mentum channels around atomic sites.

The formation energies for the Au grain boundaries are shown in Table

5.2 as calculated as

Ef =
Egb −NgbEfcc

Agb
, (5.2)

where Egb and Ngb are the total energy and number of atoms of the grain

boundary cell, Efcc is the total energy of the fcc unit cell, and Agb is the

area of the faces of the unit cell acting as a grain boundary region. The

general trend is that as the interfacial area between CSL sites increases, the

formation energy decreases.

The DOS of Au showed very little change for both the Σ5 GBs to within

the accuracy of the calculation. This is shown in Figure 5.6. In both cases,

the detailed peaks in the 5d region was broadened and the peak heights
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Grain Boundary Interfacial Area per Cell Formation Energy
(Å2) (meV/Å2)

Σ5 (1 2 0) 14.2 47±1.0
Σ5 (1 3 0) 36.5 33.6±0.2
Σ13 (2 3 0) 36.9 25.7±0.3

Asymmetric Σ5 43.3 23.4±0.2

Table 5.2: The calculated formation energies for each of the grain boundaries
in Au. Also shown for comparison are the interfacial areas in the smallest
unit cell that can represent these boundaries. The error quoted is obtained
from the numerical convergence criteria of 10 meV in the total energy of the
relaxed systems.

reduced but these still remained more than 1 eV below the Fermi energy. In

the region of the Fermi energy, the bands are s-like and very flat. There was

little effect from the grain boundaries in these regions.

In the more disordered Σ13 grain boundary, shown in Figure 5.7, a drop

of approximately 14% is seen in the DOS in the region around the Fermi

energy. There is also a more substantial broadening of the d band region

and it has been pushed 0.2 eV upwards in energy.

The asymmetric grain boundary density of states, seen in Figure 5.8,

shows similar results to the Σ13 grain boundary with a more significant drop

around the Fermi level. Compared with the symmetric grain boundary, it

can be seen to have similar peaks that do not exist in the bulk material, but

there are important differences. The energy eigenvalues associated with the

d-band electrons have shifted to higher energies and a more significant drop

is seen in the DOS at the Fermi energy.

5.4.2 Impurities in Au Grain Boundaries

The calculated defect formation energy for a Ne impurity is 1.98 eV which

suggests that this defect is not energetically favourable and is not likely to

be observed in the GB. The defect formation energy for the Sn impurity is
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Figure 5.6: The density of states of the two Σ5 symmetric tilt grain bound-
aries plotted against the bulk density of states for pure fcc Au. The energy
is given relative to the Fermi energy(0 eV). The DOS has been normalised
per unit volume to allow comparison between different GB volumes.
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Figure 5.7: The density of states of the larger symmetric Σ13 tilt grain
boundary compared with that of the perfect bulk Au crystal. The energies
are relative to the Fermi energy.

−0.94 eV which suggests that this is a favorable position for Sn defects to

form. This is likely because the Sn atom is smaller and more easily fits into

the voids in the GB region.

The density of states for the GBs of Au containing Ne and Ag are shown

in Figure 5.9 compared with the pure GB with no interstitial atoms. In

the case of a Ag impurity, there is very little change from the pure Σ5

grain boundary and no observable effect in the region of the Fermi energy.

Placing a Ne impurity into the grain boundary on the other hand does have

a noticeable effect on the DOS, although at an energy much lower than the

Fermi level. When a partial density of states is calculated for the Ne atom,

it is seen that it only contributes to the total DOS in this region at −8 eV,

and these localised states can be seen in the Kohn-Sham orbitals in Figure

5.10. In neither impurity is any change detected in the DOS at the Fermi
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energy larger than 1%.
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Figure 5.8: A comparison of the volume normalised density of states in the
symmetric and asymmetric Σ5 grain boundaries in Au.

5.4.3 Grain Boundaries in Nb3Sn

In the bulk A15 structure of Nb3Sn, the lattice parameter was found to be

5.32 Å. This is close to the experimentally measured value of 5.29 Å[47].

The DOS for the perfect A15 structure is shown in Figure 5.11 combined

with the partial density of states from each of the constituent atoms. As

can be seen, the Fermi energy coincides almost perfectly with a peak in the

DOS which is concentrated almost entirely around the Nb atoms.

The atomic relaxations were found to only be significant for the atoms

immediately on the boundary, and even 2nd neighbours were very close

to their bulk positions but the total energy required further separation of
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Figure 5.9: The density of states of a symmetric Σ5 with Ag and Ne im-
purities introduced in the grain boundary region. The energy scale is given
relative to the Fermi energy.

Figure 5.10: The localised states corresponding to the Ne atoms placed in
the GB are shown in blue. The Au atoms are shown in gold and the Ne
atoms in blue.

106



-6 -4 -2 0 2
ε (eV)

0

0.05

0.1

0.15

g(
ε)

 (
eV

-1
 Å

-3
)

Total DOS
Nb pDOS
Sn pDOS

Figure 5.11: The total density states of Nb3Sn compared with the partial
density of states for each of the Sn and Nb atoms in the pure A15 structure.
Every atom of each species is symmetry equivalent in the structure and has
the same pDOS.
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the GBs to achieve convergence. For this case, it is observed that there

is a large drop in the density of states at the Fermi energy. The peaks are

broadened from their bulk values and the density of states at the Fermi level

has dropped from 0.132 eV-1Å-3 to 0.082 eV-1Å-3.
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Figure 5.12: The density of states of bulk Nb3Sn compared with that from
the two main types of Σ5 grain boundary which could be created. The Fermi
energy is marked at 0 eV.

A comparison between the different repeating cell units that could be

chosen for Nb3Sn are shown in Figure 5.12. Although both are of similar

character, there are differences observed, especially in the height and broad-

ening of the peaks. Most importantly, the peak closest to the Fermi level

differs noticeably and this leads to a difference of 7.2× 10−3 eV-1Å-3 which

is approximately 12% of the total decrease from the bulk value. In either
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case, the density of states at the Fermi energy is observed to have a ∼40%

decrease due to the presence of this simple grain boundary.

The formation energy for the grain boundary with Sn on the CSL site was

calculated to be 0.167 eV/Å2 compared with the formation energy calculated

with the Nb atom on the interface, 0.243 eV/Å2 and thus we would expect

the Sn atom CSL site to be the dominant form of these two boundaries

found in the material.

Figure 5.13: The partial density of states at the Fermi energy associated
with each atom in the grain boundary relative to the bulk value. The origin
has been shifted so that the grain boundaries are at 1

4 and 3
4 of the horizontal

axis. The local DOS was found by projecting the total DOS onto atomic
orbitals centred around each atom.

In Figure 5.13, it is seen that the grain boundary causes an effect on the

electronic structure that penetrates much further into the material than the

atomic relaxation shown in figure 5.14. Although there are several peaks

in the grain boundary region, the density of states at the Fermi level in

this region is much lower and only approaches its bulk value a considerable
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distance into the material, on the order of 5 Å . The atoms within a few

Ångstrom of the grain boundary have their density of states much reduced

from the bulk value, and even at 11.7 Å from the boundary, n(εf ) is still

about 5% percent less than the bulk value, showing the large length scales for

the relaxation of the electronic structure to the bulk result. This calculation

was only performed for Nb3Sn as Au did not show any major change in the

DOS at the Fermi energy. There is a single atom in the centre of the the GB

region which has a much higher n(εf ) than the surrounding environment.

This atom corresponds to the commensurate lattice sites in the CSL model.

Further insight can be gained by visualising the Kohn-Sham orbitals at

and above the Fermi energy, as in Figure 5.15. The changes in density in the

GB region are very similar to the atomic reconstruction and the density is

actually bulk-like right up to the interface between grains. The KS orbitals

at the Fermi energy are almost entirely in the bulk regions with an isolated

state being found to form around the Nb atom which corresponds to the

peak in Figure 5.13. The states which would correspond to the same kind

of orbitals but in the grain boundary regions are found to have been shifted

higher in energy to above the Fermi energy and so are unable to contribute

to current flow in the material.

5.5 Discussion

5.5.1 Gold

The formation energy of these grain boundaries is relatively small. Thus we

would expect to, and do, see many of them in experiment[40]. The values

calculated are about twice of those calculated using the embedded atom

method on a twist grain boundary[48], and this is likely to be an example
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Figure 5.14: Example of atomic relaxation in Nb3Sn for the GB with Sn on
the CSL lattice site. a.) Unrelaxed unit cell, which is effectively two bulk
regions with different orientations. b.) Relaxed unit cell where atoms were
free to move to the local minimum. Only the atoms very close to the grain
boundary show any noticable change.
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Figure 5.15: a.) The total ground state density of the Σ5 grain boundary in
Nb3Sn. b.) An example of the electron density of orbitals whose eigenvalues
cross the Fermi energy. c.) The electron density from the KS orbitals whose
eigenvalues lie just above the Fermi energy.
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of material in these regions being very different from the bulk.

The simplest grain boundary structures do not appear to show changes

in the DOS around the Fermi level. This is likely because it is highly periodic

along directions parallel to the grain boundary. In the CSL model, this would

indicate that a large number of the atoms along the GB lie on coincidence,

energetically-favourable sites for both orientations of crystals. The fact that

the formation energy is slightly higher for these structures is because the very

low order Σ grain boundaries repeat often and that there is an interaction

energy involved in having these defects close to each other as the different

orientations have less space along the GB to allow relaxation. In the larger

Σ values, the defects are spaced further apart and this interaction energy

is reduced. The high symmetry in this case also prevents much relaxation

around the boundary and so there is little broadening of the energy levels.

For the more complicated structure of the Σ13 boundary, there are more

atoms which are not on CSL sites and become further perturbed from their

positions in the perfect crystal. There is more disordered structure in the

grain boundary region and this leads to further broadening of the DOS.

Overall, for Au grain boundaries, almost no change is seen in the density

of states around the Fermi level. This is because even though bands are

broadened in energy, the density of states for Au is constant within 0.2 eV

of the Fermi energy as it is made entirely of sp-like states which produce a

flat density of states due to the quite delocalised electronic states. These

states are effectively unchanged by broadening until the distortions are large

enough to push the 5d electrons into this region. When this occurs, it

actually induces a drop in the DOS as more states gain d-like character.

The negligible change in n(εf ) indicates that, as far as the electronic

structure is concerned, the entire region retains the same number of charge
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carriers available for conduction as the bulk. There are also the same number

of states available at the energies around the Fermi energy and so we would

not expect to see large reflections of electrons at this interface.

Important to note is that these symmetric tilt grain boundaries studied

here are special low energy cases as predicted by the CSL model and may

not be representative of every grain boundary in the material. The large

asymmetric grain boundary has a large amount of mismatch along the inter-

face, and so may be more similar to general grain boundaries. Even in this

case, only a small change is observed in the DOS at the Fermi energy and

so it can be concluded that these tilt grain boundaries do not have much

effect on n(εf ).

5.5.2 Nb3Sn

In Nb3Sn, it is observed that even the simplest repeating grain boundary

shows a significant drop in the density of states at the Fermi energy. This is

because this material has a much more rapidly varying DOS, with numerous

peaks of small widths, in the region near the Fermi level .

The formation energies for the GBs in Nb3Sn are much higher than that

in Au, implying that they will be more rarely observed. This may be offset

by the common preparations of Nb3Sn strands where they are normally

sintered at high temperatures for many days. Non-stoichiometric Sn content

is used to avoid formation of the cubic phase[49] and this may also encourage

formation of the GBs as Sn atoms preferentially occupy the GB interface.

Further study would be required to examine this effect including calculating

the formation energies of alternative structures of the grain boundary with

varying numbers of Nb and Sn atoms in the region of the GB.

The calculations presented here show that grain boundaries with the
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same Σ value can have a substantial, 12%, difference in their effect on the

density of states at the Fermi energy as the relaxation of the atoms in the

GB region will depend on the coordination numbers of the atoms at the

CSL site. This magnitude of variance is also seen in experimental work in

bicrystals in resistivity measurements[42]. The Σ5 grain boundary is also

seen to affect the electronic structure on much larger scales than those over

which the electronic structure relaxations occur. The large length scale that

n(εf ) is seen to vary over may be related to the sharp peak in the DOS that

the Fermi energy lies on in the bulk, as even a small variation in energy will

cause a large drop in the density of states.

In terms of the electronic contribution to the resistivity, the grain bound-

ary will have the effect of scattering electrons which would otherwise conduct

through the region as there are fewer states at the Fermi energy in the grain

boundary region. This will lead to an increase in resistivity across the grain

boundary. A rudimentary calculation using the Drude model, assuming the

electron mobility remains constant in the grain boundary region, gives an

increase of 81% in the resistivity over the bulk value in a region extending

11.7 Å on either side of the grain boundary. As the upper critical field, BC2,

is proportional to the normal state resistivity, the changes observed in these

materials by the artific/ial introduction of GBs can be explained by this

increase in resistivity.

The conducting bands in the region of the grain boundary are pushed to

higher energies by the disorder in the atomic positions. This pushes them

higher than the Fermi energy and so they cannot take part in electronic

conduction through the GB. In practical terms, any conduction through the

GB will be due to tunnelling through the region to the defect state centred

around the Nb atom from the bulk regions. This region is approximately
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10 Å wide where the DOS is lower than half of its bulk value. Due to the

exponential dependence of tunnelling on distance, the relatively large region

between the bulk and the hopping site will lead to a highly resistive region.

The electron-phonon coupling is, to first order, equation 2.57, propor-

tional to the number of states at the Fermi energy[50]. The severe decrease,

of 81% in n(εf ) in the GB regions will effectively leave them as normal-state

regions when the bulk is superconducting unless the temperature is much

lower than the critical temperature, Tc of the material. For Nb3Sn, Tc is

18.3 K[51], and the material would require that the temperature be brought

down to the order of 8 K for the GB region to be superconducting. The

Josephson junction model[52] is thus a good description of the conduction

through the region in most experiments above this temperature as it can

be thought of as superconducting bulk with sandwich layers of GB-regions

between.

5.6 Conclusion

The GB interaction distance of 25 Å in both Au and Nb3Sn gives a lower

bound to the size of nanocrystals before they no longer contain any bulk-

like material due to the overlap of GBs. Below this size, the grains will be

entirely made of amorphous regions with material that is quite unlike the

bulk.

The grain boundaries in gold are observed to have relatively little effect

on the density of states at the Fermi energy. In this respect, it is not likely

that these boundaries contribute much to resistivity in the material. The

simplest grain boundaries are high angle and are of high formation energy.

As the mismatch angle decreases for the CSL grain boundaries, the energy

decreases as they are further separated. There is negligible change in this
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material as the density of states is effectively constant in a large region

around the Fermi energy. This is likely to be the case with grain boundaries

in any material with a featureless DOS in this region. These GBs may be

plentiful, but are of little interest in the dynamics of the material.

Nb3Sn displays a much richer structure in the density of states around

the Fermi level, with the Fermi energy actually lying on a peak. As it

is much easier for a change to occur in the DOS by shifting some of the

states in energy, n(εf ) is more sensitive to changes in the atomic structure.

The decrease observed in the DOS is thus large even with the simple grain

boundaries studied and will lead to a large drop in carrier concentrations in

GB regions. These regions were found to actually extend much further into

the material than would be suggested by the atomic relaxations, which were

only significant in the atoms close to the interface. The electronic structure

perturbations are much longer in range and can extend multiple unit cells

into the crystal. The drop in the density of states means that this region

may be in the normal state when the bulk is superconducting at liquid He

temperatures.

Considerable differences are seen for grain boundaries which would fall

into the same classification in the CSL model and this obviously raises issues

with the use of this model to group the electronic structure effects of grain

boundaries. In this material, grain boundaries are found to create large

resistive regions, and can thus be used to increase the upper critical field.

Due to the large drop in n(εf ) in the disordered regions, they are a prime

candidate to be modelled as Josephson junctions.
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Chapter 6

Nb Low Temperature Phase

6.1 Introduction

Niobium metal is a common superconductor, having the highest critical

temperature of any elemental material at standard pressure. It is easy to

work with, being malleable and ductile. It is also a component in many of

the high field magnetic compounds used commercially, Nb3Sn and Nb3Ge.

The structure of the ground state atomic positions in the pure metal Nb

have been measured multiple times[53][54][55], and found to be body-centred

cubic (bcc) at and above room temperature.

Recent experimental work by Bollinger et al.[56] has observed a struc-

tural distortion forming between the different crystal axes in single crystal

Nb upon cooling from 300 K. Their work shows the linear thermal expansion

is different along all 3 crystallographic axes and that this is incommensurate

with the material being cubic. Knowledge of the actual crystal structure is

important to our understanding of superconductivity as Nb is the element

with the highest superconducting transition temperature at room pressure

and thought to be a standard BCS superconductor and thus should be a
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good theoretical test of calculating electron-phonon coupling.

This work examines the ’ideal’ bcc Nb structure for instabilities through

the use of both ground state density function theory(DFT) and density

functional perturbation theory(DFPT) to examine whether there is a lower

energy structure and if the bcc structure is dynamically unstable at low

temperatures.

6.2 Method

The primitive unit cell of Nb was created with lattice parameters taken from

experimental values in the literature[54]. This was then allowed to relax to

the lowest energy state with symmetry imposed, restricting the lattice angles

to that of the bcc primitive unit cell, and only the length a = b = c allowed

to change. This was performed with a 40 × 40 × 40 MP grid across the

Brillouin zone and a 700 eV cut-off energy to observe small energy changes

of the order of 10 meV.

A DFPT calculation was performed using the Baroni method[57] to ex-

amine if this structure should be stable. This was performed at a sampling of

12× 12× 12 points across the Brillouin zone which should take into account

interactions between atoms up to 34 Å apart. The dynamical matrices were

Fourier interpolated to produce dispersion curves for the structure along

high symmetry directions and also a phonon density of states was produced.

The geometry of a primitive cell was then relaxed from a symmetry

broken initial position with no symmetry enforced with the same sampling

and cut-off energies. This was analysed to find the symmetry group of the

resulting structure.

A DFPT calculation was performed on this new structure to test for sta-

bility with the same Brillouin zone sampling as the unit cell had not changed
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drastically in any dimension. A phonon dispersion curve was produced along

the same directions as with the bcc unit cell.

6.3 Results

The lattice parameters and total energies for both structures are shown in

table 6.1. The structures are very similar, with very small adjustments to

the individual lattice parameters between them. The total energy is lowered

by 73.86 meV/atom by this phase change which is of the order of the thermal

energy KT at the transition temperature of 25.85 meV.

bcc Rh

a=b(Å) 2.85 2.79
c(Å) 3.04
α = β 109.47◦ 111.30◦

γ 107.58◦

Energy (eV/atom) -142.34337 -142.41724
Volume(Å3) 17.80 17.73

Table 6.1: Comparison of the body-centered cubic and rhombohedral struc-
tures of Nb. Duplicate values are omitted for the cubic structure where the
lattice parameters are equivalent.

The phonon dispersion curve for the body-centred cubic form of Nb is

shown in figure 6.1. It can be seen that there is an imaginary phonon mode

between Γ and H(1
2 ,−

1
2 ,

1
2). This indicates that the structure is dynamically

unstable with respect to atomic motion commensurate with this wavevector.

The fact that the frequency goes to zero at the gamma point is an artefact

of the imposed symmetries and the enforcement of the accoustic sum rule

which is unavoidable without extremely high BZ sampling.

The phonon dispersion for the fully relaxed rhombohedral structure

(space group R3̄M) is shown in figure 6.2. The general shape of the disper-

sion is similar with a few notable differences. The unstable phonon mode
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Figure 6.1: Phonon dispersion curves for the bcc-form of Nb. It was calcu-
lated with an energy cut-off of 700 eV and a Brillouin zone sampling grid of
40 × 40 × 40. Negative phonon frequencies are used to indicate imaginary
phonon modes.

does not occur in the rhombohedral structure which indicates that it is dy-

namically stable within the harmonic approximation.

Several of the bands which crossed in the bcc phase, have now become

avoided crossings due to the reduction in the symmetry. Finally, the fre-

quency of the highest phonon mode is approximately 10% higher in the

rhombohedral phase than in the bcc phase.

The density of states for both structures is shown in figure 6.3. It can

be seen that the frequencies of most of the modes are higher in the rhombo-

hedral structure. The large peaks have been broken into broader sub peaks

of much smaller amplitude.
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Figure 6.2: Phonon dispersion curves for the relaxed low temperature struc-
ture of Nb. The special points used the same points from the bcc structure.
It was calculated with an energy cut-off of 700 eV and a Brillouin zone sam-
pling grid of 40× 40× 40.
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Figure 6.3: The phonon density of states of both bcc and
rhombohedral(R3̄M) structures of Nb. These were sampled at wavevectors
on a 40 × 40 × 40 grid in the Brillouin zone. Negative phonon frequencies
indicate modes which are unstable.
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6.4 Discussion

The imaginary phonon mode for the bcc structure shows that it must be

unstable at 0 K. That it is only unstable in a few small symmetry-related

regions of the Brillouin zone shows that there is a preferred low energy

structure that any small perturbation will cause it to fall into.

The resulting rhombohedral structure is reached by only a slight change

in lattice parameters, and this is commensurate with a martensitic or diffu-

sionless transition as the number of atoms in each unit cell remains constant.

As the degeneracy of the bcc structure is broken, it is natural for the

peaks in the phonon DOS to broaden and thus some are pushed to higher

energies. In particular the highest phonon branch is now broken away from

the other phonon modes by broken degeneracies at the symmetry points and

avoided crossings elsewhere.

The rhombohedral structure is very slightly more dense than the bcc

structure and this may account for the higher phonon frequencies as the

atoms repel each other more strongly.

Ignoring the imaginary modes, the phononic contribution to the electron-

phonon coupling in the bcc structure appears to be much higher as the

phonon density of states is higher at low frequency. This change would

almost certainly lead to an incorrect calculation of superconducting param-

eters from the bcc phase.

6.5 Conclusion

Nb metal appears to undergo a phase change at low temperatures to a rhom-

bohedral phase. The transition is found to be martensitic and only involves

very slight changes to the bcc primitive cell. The phase change would be
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spontaneous as the structure is not stable with respect to perturbations

along the (1,-1,1) direction. This rhombohedral phase is calculated to be

stable to 2nd order in energy as there are no imaginary phonon frequencies

and the unconstrained forces are zero.

Further work is needed to understand why the structure becomes bcc at

higher temperatures as simple entropic arguments would suggest that the

state with lower symmetry would be thermodynamically favourable.
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Chapter 7

Electron-Phonon Coupling in Simple

Metals

The ability to calculate the electron-phonon coupling for a material can tell

us a lot about macroscopic properties. Some of the most easily observ-

able macroscopic properties, thermal and electrical conductivity, can be ex-

tracted from the interaction of the electrons and phonons. We can also link

the interaction to superconducting theories through the Eliashberg spectral

function[17].

The aim of this chapter is to calculate the electron-phonon interaction for

the case of simple materials. For materials to be BCS superconductors, there

must be the possibility of electron scattering occurring. This means that

there must be some partially filled bands as the energy change in scattering

is very small, on the order of KT . The only materials at 0 K that this

can occur in are, by definition, metals. It would be possible to look at

semiconductors where the transitions can only occur between maxima or

minima in the valence and conduction bands using the methods set out

earlier but here we will restrict ourselves to the superconducting properties
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of materials, and so we will study metallic elements.

The simple materials also provide a useful test of the electron-phonon

calculations as they have a small number of valence electrons in the unit cell.

The main aim of this chapter is to calculate the superconducting transition

temperatures of some simple metallic elements: Au, Nb, Mo and Zr.

7.1 Calculation of the Eliashberg Spectral Function

The Eliashberg spectral function is the central quantity which quantifies the

strength of the electron-phonon coupling as a function of phonon frequency.

It is defined as

α2F (ω) =
1

Nf

∑
q,j

∑
k,i,i′

|gg,jk,i,k+q,i′ |
2δ(εf − εk,i)δ(εf − εk+q,i′)δ(~ω − ~ωq,j),

(7.1)

where gg,jk,i,k+q,i′ is the electron-phonon matrix element for scattering from

a state k to a state k+q, εf and Nf are the Fermi energy and DOS, εk,i

is the energy of a KS state at k with index i, and ωq,j is the frequency

of a phonon of wavevector q and branch index j. It is a weighted sum of

the matrix elements which includes only those whose initial and final states

which lie on the Fermi surface.

It is linked to several macroscopic quantities through the Boltzmann

transport equation, namely the thermal and electrical conductivity. It also

governs the superconducting transition temperature through either the McMil-

lan equation[58] for strong coupling or the full Eliashberg superconductivity

equations[17]. It is therefore a very useful quantity to be able to calcu-

late and is given directly from the matrix elements and the phonon modes.

The electron-phonon coupling constant is defined in terms of the Eliashberg
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spectral function as

λ = 2

∫
α2F (ω)

ω
dω. (7.2)

To construct the spectral function, we can use a similar method to that

used for producing density of states from the electronic eigenvalues at dis-

crete points. In the case of the DOS, we require a continuous function that

is built from discrete samples (energy eigenvalues in the Brillouin zone) that

should represent the continuous nature of the real Brillouin zone. We repre-

sent each discrete sample by a normalized Gaussian function which should

represent both the point but also those in the locality of the point.

The Eliashberg spectral function is built in almost exactly the same way,

except that the delta functions(and so Gaussian) should have an integral

equal to the norm of the electron-phonon matrix element, given in equation

2.55, at the corresponding frequency for that phonon wavevector.

Now doing this directly for phonon calculations leads to anomalous re-

sults. Some phonon modes at low frequencies are under represented, and

the factor of 1
ω in equation 7.2 exacerbates the situation. For any material,

as the frequency goes to zero, the spectral function should also go to zero at

least as quickly as linearly. If this is not the case, the integrals for the cou-

pling constants go to infinity as they are weighted with a further factor of 1
ω .

Thus any problems in the low frequency regions will make the calculation

more inaccurate than in the higher frequencies.

7.1.1 Splitting the Eliashberg Spectral Function

The solution to this is to separate the spectral function into two parts –

the phononic part, F (ω) which is the density of states of phonons linking

points on the Fermi surface, and coupling strength part, α2(ω) which is the

squared modulus of the EP matrix elements as a function of frequency.
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The electron-phonon coupling, α2F can be written as the product of two

parts,

α2F (ω) = α2(ω)F (ω) (7.3)

where the phononic spectral part, F (ω) is defined as,

F (ω) =
1

N0

∑
k,q

δ(εk − εf )δ(εk+q − εf )δ(~ω − ~ωq) (7.4)

The electron-phonon coupling part, α2(ω), can be approximated from the

electron-phonon coupling elements. The number of phonon wavevectors

linking points on the Fermi surface is proportional to the number of pairs

of elements that can be made, which is proportional to N2
0 , the density of

states on the Fermi surface. The density of states on the Fermi surface,

N0 is proportional to F (ω), so we can define a normalised spectral function

F̃ (ω) by,

F (ω) = N0F̃ (ω). (7.5)

The phononic part, F (ω), is found using interpolation of a very fine

sampling of the Fermi surface to get the correct low frequency behaviour

with a large number of phonon wavevectors across the frequency range.

This produces the correct low frequency behaviour that the DOS should be

quadratic at low energies.

To find the coupling strength part, we cannot use interpolation so we

must do a limited number of samples across the frequency range. These

values are assigned into bins of 50 samples and the average of the samples

in the region is taken as the value of α2(ω) at the centre of the region. This

is shown in figure 7.1 for Nb along with a piecewise cubic spline used as an

interpolation function to avoid discontinuities. Frequencies above or below
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the measured range are assumed to have the same coupling strength as the

lowest and highest frequency bins.
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Figure 7.1: Demonstration of the interpolation of the EP coupling strength
as a function of frequency. The bins show the average EP matrix element
magnitude across 200 sample points.

These quantities are then simply multiplied at each value of ω. Piecewise-

cubic interpolation is used between the values for α2(ω) so as to avoid dis-

continuities in the spectral function. An example of the final result for Nb

is given in figure 7.11. As can be seen, there are no spurious peaks at low

frequencies and the low frequency behaviour has the correct quadratic form

and so a finite value for the electron-phonon coupling constant.

7.2 Modified McMillan Transition Temperature

With knowledge of the Eliashberg spectral function, we can find the electron-

phonon coupling constant, λ, from equation 7.2. This is related to the super-
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conducting transition temperature by the McMillan transition temperature

formula[58], modified by Allen and Dynes[59],

kBTc =
~ω0

1.20
exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
, (7.6)

where ω0 is a measure of the average phonon energy given by

ω0 = ωref exp

[
2

λ

∫
dω

ω
α2F (ω) ln(

ω

ωref
)

]
, (7.7)

and µ∗ is the effect of Coulomb repulsion on this interaction, referred to

as the “Coulomb pseudopotential,” and ωref is a reference frequency. The

phonon frequency measure, ω0, is calculated directly using equation 7.7 and

then substituted into equation 7.6. The reference frequency, ωref, is an arbi-

trary value that determines a unit frequency. For example, if the reference

frequency is chosen to be 1 Hz, the resulting ω0 will also be in hertz and

this is the simplest choice as the resulting transition temperature will be

in kelvin. Alternatively, the equations may be solved in atomic units, and

ωref and ω0 would be in units of EH/~ where EH is the Hartree energy.

The constants ~ and kB in equation 7.6 must be in the same units as this

reference frequency for the equations to be consistent. For this work, we

have used a reference frequency of ωref = 1 Hz for the simplicity of working

in SI units on these macroscopic properties.

The µ∗ term effectively wraps up the entirety of the screened long-range

electron-electron repulsion in superconductivity, which tends to depress the

transition temperature. Experimentally, this term is found by inverting the

McMillan equation using experimental values of the transition temperature

and EP coupling parameter. It can be shown to be small (and with a

value in the region 0.10-0.14) as long as the effective expansion parameter in
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Eliashberg theory,
λωph
Eel

is smal[60]. In theory, it can be found by performing

an average cross the Fermi surface of the GW[61] corrections to the single

particle Kohn-Sham equations and rescaling this to the the length scales of

phonon interactions[61], but the evaluation of this is very computationally

expensive and beyond the scope of this project.

The numeric factors in the McMillan equation come from the numerical

solution of the Eliashberg equations which are a set of coupled equations

that can be solved self-consistently to obtain information about the super-

conducting state in a material. These are complicated and require many

iterations to achieve convergence[59], and so it is much more convenient to

use this approximation.

Thus with knowledge of the Eliashberg spectral function, we have all the

tools needed to compute the superconducting transition temperature.

7.3 Materials Studied

Au forms a face-centred cubic solid at room temperatures and below. It

does not become superconducting at any temperature which it is currently

possible to attain. Nb is conventionally thought to be body-centred cubic

solid which becomes superconducting at 9.25 K but as shown in the previous

chapter, is found to convert to a rhombohedral form at low temperatures

in agreement with recent experimental measurements[56]. Mo and Zr are

elemental superconductors with similar numbers of electrons to Nb but with

much lower transition temperatures. This is shown in table 7.1
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Material Tc (K)

Au 0
Nb 9.25
Mo 0.92
Zr 0.61

Table 7.1: Experimental[62] superconducting transition temperatures for
the materials studied.

7.4 Method

The unit cell of each material was created using experimental data as a start-

ing point. They were then tested for ground state convergence by increasing

the cut-off energy and the Brillouin zone sampling so that the relative change

was less than 0.01eV. The exchange-correlation functional used was PBE.

Next, each had its unit cell and atomic positions relaxed, using the

atomic forces, to find the lowest energy configuration. The convergence

criteria was that the stresses on the unit cell had to be below 0.01 GPa so

that the atoms were very close to their equilibrium positions.

A band structure and density of states calculation was performed across

the Brillouin zone to measure the density of states at the Fermi energy, and

to give insight into the location of bands involved in scattering at the Fermi

energy. OptaDOS[63] was used to improve the accuracy of the DOS plots by

including information about the KS band energy gradients into the width

of the Gaussian functions which form the DOS.

A linear response calculation was performed to calculate the phonon

spectrum at a regular array of points across the Brillouin zone, as well

as to find the Γ point dynamical matrix for the acoustic sum rule to be

enforced. These perturbative calculations were performed at q-points on

a MP grid that had been shifted to include the Γ-point as this has been

found to improve the quality of interpolation as it necessarily includes the
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static forces. The phonon frequencies were then combined with the list of

Fermi surface points to interpolate an accurate approximation of the phonon

spectral function F (ω).

An electron-phonon calculation was then performed using the algorithm

explained in the previous chapters. This was performed for 500 possible

q-vectors which linked points on the Fermi surface. This value was chosen

as it converged the spectral function for Au to within 5%.

The results from this were then interpolated to find the strength of the

electron-phonon coupling strength, α2(ω) across the range of frequencies.

This was then multiplied by the phonon spectral function to get the Eliash-

berg spectral function, α2F (ω).

7.5 Results

7.5.1 Structure

The relaxed geometry structures along with experimental data from the

ICSD are shown in table 7.2 where possible. The cubic structures are all

slightly larger than the experimental values but by less than 0.1 Å.

Material Structure Calculated (Å) Experimental (Å)
a c a c

Au fcc 4.132 4.09[64]
Nb rhom 3.350 –
Mo bcc 3.176 3.1472[65]
Zr hexagonal 3.142 5.202 3.23[66] 5.14[66]

Table 7.2: The relaxed structures of the simple metals studied compared
with experimental results taken from the ICSD. The lattice constant b is
equal to a in all of these structures and c is omitted for cubic structures
where it is fixed by symmetry.

Zr has a hexagonal unit cell with a lower symmetry than the other mate-

rials and thus has two degrees of freedom. For this material, the relaxed unit
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cell was slightly taller and thinner than the experimental result, although

both are within 0.1 Å.

7.5.2 Electronic Properties

The band structure for Au shows localized d-type bands lying just below the

Fermi energy. The only bands present at the Fermi energy are of an s-type

and so the corresponding density of states is relatively flat as these bands

tend to be relatively delocalised. It is also quite low as there is only a single

band crossing the Fermi energy, leading to only one Fermi surface band.
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Figure 7.2: The electronic band structure and density of states for Au. The
DOS was sampled on a grid of 50×50×50. The band structure was sampled
on points that were a maximum of 0.01 Å apart.

In contrast to Au, the other elements (Zr, Nb and Mo) all have a Fermi

energy that lies within the flat localized bands of the d-subshell. This gives

a higher n(εf ) for these materials.
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Figure 7.3: The electronic band structure and density of states for Zr. The
density of states was sampled on a grid of 50× 50× 50. The band structure
was sampled on points that were a maximum of 0.01 Å apart.
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Zr has a Fermi energy that lies almost exactly on a peak in the DOS.

There are also a large number of bands which cross the Fermi energy which

will give rise to a large number of scattering areas in the Brillouin zone.
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Figure 7.4: The electronic band structure and density of states for Nb. The
density of states was sampled on a grid of 50× 50× 50. The band structure
was sampled on points that were a maximum of 0.01 Å apart.

The Fermi energy in Nb again lies almost exactly on a peak. There are

multiple bands crossing the Fermi energy in the region from H to N which

correspond to two nearby sheets of Fermi surface. Furthermore, the bands

are much more dense around the Fermi energy and this leads to a higher

density of states here.

The electronic structure and density of states in Mo are very similar to

that of Nb but the states are pushed slightly down in energy relative to the

Fermi energy and it now lies between two regions of high DOS. However,

the density of states is still much larger than in the s-band regions of the

136



H N P Γ NΓ-10

0

10

20

ε 
(e

V
)

0 2 4
g(ε) (eV-1)

Figure 7.5: The electronic band structure and density of states for Mo. The
density of states was sampled on a grid of 50× 50× 50. The band structure
was sample on points that were a maximum of 0.01 Å apart.
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DOS.

The Fermi energy density of states values are given in table 7.3, showing

the DOS at the Fermi energy in Au, and to some extent Mo, being much

lower than the other materials.

Material n(εf )(eV−1)

Au 0.2797
Zr 2.3893
Nb 2.234
Mo 0.6113

Table 7.3: The density of states at the Fermi energy for the materials stud-
ied. The values were measured from the density of states graphs.

7.5.3 Phonon DOS

The phonon density of states for Au is shown in figure 7.6. The band

frequencies are linear with respect to distance from the zone centre across

a large region of the Brillouin zone which gives a quadratically increasing

phonon DOS.

In figure 7.7, the phonon branches of Nb are shown to peak at a slightly

higher frequency than in Au, although the overall phonon DOS is simi-

lar. The degeneracy of the phonon branches is broken by the rhombohedral

distortion and there are some avoided crossings along the high symmetry

directions. The bulk of the phonon DOS is above 100 −1, but the contribu-

tion at low frequencies is not insignificant. There is a slight bending of the

phonon branches along the Γ to H symmetry line which leads to the DOS

being linear in this region.

The phonon branches in Mo, figure 7.8 vary rapidly with the distance

to the Γ point. This indicates a high speed of sound in the material. These

branches lead again to an approximately quadratic variation in the phonon
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Figure 7.6: The phonon dispersion and density of states for Au. DFPT
calculations were computed for phonon wavevectors on a 9 × 9 × 9 grid
across the Brillouin zone and interpolated to find the dispersion and DOS.
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Figure 7.7: The phonon dispersion and density of states for Nb. DFPT
calculations were computed for phonon wavevectors on a 12×12×12 origin-
shifted grid across the Brillouin zone and interpolated to find the dispersion
and DOS.
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Figure 7.8: The phonon dispersion and density of states for Mo. DFPT
calculations were computed for phonon wavevectors on a 10×10×10 origin-
shifted grid across the Brillouin zone and interpolated to find the dispersion
and DOS.
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density of states at low energy, but the density of states is much smaller

than in comparison with Au. The majority of the DOS is between 100 cm−1

and 250 cm−1.

Figure 7.9 shows the phonon spectrum for α-Zr which has two atoms

per unit cell and hence 6 phonon branches which give a higher phonon DOS

than in the other materials. The branches also have a more complicated

structure with more low frequency modes. but half of these do not go below

25 cm−1. These are in agreement with previous experimental and theoretical

results[67]. The minimum at 30 cm−1 is caused by sheets of Zr sliding in

opposite directions, and this has a lower energy when the whole sheet is in

phase. The highest energy mode is when the sheets vibrate towards each

other.
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Figure 7.9: The phonon dispersion and density of states for Zr. DFPT
calculations were computed for phonon wavevectors on a 24×24×20 origin-
shifted grid across the Brillouin zone and interpolated to find the dispersion
and DOS.
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7.5.4 Spectral Function and Superconducting Transition Temperature

The spectral function in Au, figure 7.10 shows a marked difference to the

phonon DOS. The peak at lower frequency is enhanced by the electron-

phonon coupling. The electron-phonon coupling is weak across the entire

frequency range, due to the low number of partially occupied states. This

leads to the Eliashberg spectral function being low.
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Figure 7.10: The Eliashberg spectral function for Au.

The Eliashberg spectral function for Nb, figure 7.11, again shows a large

difference between the phonon DOS and the spectral function. The func-

tion rises more quickly to a plateau at 2 THz which is causes by the EP

coupling being stronger at low frequencies. The coupling strength is found

to be higher than the other materials at low frequency which are of greater

importance in calculating λ.

The Eliashberg spectral function for Mo, figure 7.12 is similar to the

DOS in all but magnitude. This indicates that the strength of the coupling
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Figure 7.11: The Eliashberg spectral function for Nb.

(α2) is almost constant across the frequency range. The same triple peaked

structure is obtained and the strength of the coupling tends rapidly to 0

below 1 THz.

Finally, the spectral function for Zr is shown in figure 7.13. Although

the spectral function is of lower magnitude than both Nb and Mo, the low

frequency peak at 2 THz is enhanced by the EP coupling and the higher fre-

quency peak is diminished. As in Nb, a plateau is formed at approximately

1 THz.

The calculated values for λ using equation 2.57 are shown in table 7.4

along with the estimated superconducting transition temperatures calcu-

lated using the modified McMillan formula (equation 7.6) and these are

compared with experimental values.

Au, which is not found experimentally to be superconducting, has a

low EP coupling constant. This is consistent with its high temperature
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Figure 7.12: The Eliashberg spectral function for Mo.
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Figure 7.13: The Eliashberg spectral function for Zr.
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Material Calculated λ Experimental λ Calculated Tc (K) Experimental Tc (K)

Au 0.18 0.15 0.00 0
Nb 1.05 0.82 16.4 9.25
Mo 0.38 0.41 0.80 0.92
Zr 0.34 0.41 0.11 0.61

Table 7.4: Calculated values of the electron-phonon coupling constant. Cal-
culated values of the superconducting transition temperatures from the Mc-
cMillan weak coupling equation are also shown. These Tc values were calcu-
lated with a coulomb repulsion constant, µ∗, of 0.11. Experimental values
are also shown for comparison[62].

coefficient of resistance compared with the other materials studied. The low

coupling causes the superconducting transition temperature to be found to

be extremely low, although the McMillan coupling formula is parameterised

for strong coupling and so it is not accurate here. Nonetheless, the very

small coupling strength will cause superconductivity to be very weak in this

material.

The EP coupling constants for the superconducting materials (Nb, Mo,

Zr) are found to be 7-28% different from the experimental values which were

found by inverting the McMillan equation. The result for Nb is close to the

experimental λ from electron tunnelling measurements[68] (1.05), but this

data is not available for the other elements. Calculations using the LDA

exchange-correlation functional have shown values as high as 1.23[69] for

the electron-phonon coupling in Nb.

The superconducting temperatures were derived from the modified McMil-

lan equation. The values are close to the experimental values but due to the

exponential, small errors are magnified. The estimates for the low coupling

Tc values can also be shifted by changing the value for the Coulomb pseu-

dopotential, µ∗, which is effectively a free parameter in these calculations

and higher values of this parameter decrease the transition temperature.

The chosen value of 0.11 is consistent with the range estimated in the liter-
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ature for these materials (0.10 to 0.15), but the transition temperature can

vary in this range; ie for Nb, Tc dropped by 50% with a µ∗ of 0.15.

7.6 Discussion

7.6.1 Structure

The structures of Au, Nb and Mo show the classic GGA effect of under-

bonding and the lattice constants are all larger than the experimental val-

ues. As these structures have only one free parameter and the atoms are

equivalent, this is the only effect that can be observed.

The hexagonal structure of Zr shows a bigger deviation from the experi-

mental values, although they do attempt to preserve the volume of the unit

cell. It is known that local XC functionals are not particularly good at de-

scribing highly localized electrons and so these states may be more dispersed

within the unit cell and will affect the bonding, especially when it is in an

efficient packing state such as these.

7.6.2 Electronic Properties

The flat s-band energy levels in Au and similar metals are parabolic and so

give a flat DOS over a large region. Although this means that the Fermi

energy DOS does not vary much due to the presence of sparse defects (as

shifts in the Fermi energy do not change the carrier concentrations), they

tend to have low carrier concentrations and do not make particularly good

superconductors.

The fact that the Fermi energy in Zr, Nb and Mo happens to lie on a

region of high DOS is not completely surprising. If the Fermi energy were to

lie anywhere in the d-subshell region, one would expect it to lie in a region
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of high density of states. In a metal, the Fermi energy has to be on a state,

and as these energy regions have a high number of states, this is where

we expect to find the Fermi energy. One would expect these materials to

be good superconductors due to the large number of partially filled states,

which increase the number of electrons that can be scattered by phonons and

ultimately increases the electron-phonon coupling in the material, but the

coupling strength also depends on their crystal structure as this generates

the phonon modes.

7.6.3 Phonon Properties

The phonon spectra are calculated to be of lower frequency than experimen-

tally observed. This is likely due to the slightly longer GGA bond lengths

which will affect the curvature of the nuclear energy wells. With the atoms

spaced further apart, there is likely a more shallow energy basin around the

ground state position which decreases the energy of the phonon modes. It

is currently unclear on the best way to solve this issue as artificially using

the experimental lattice parameters would introduce empirical parameters

and would rely on the material being synthesized.

It was observed that the pseudopotential that was used could affect the

frequencies obtained by up to 10% for Au. This is because the pseudopoten-

tial fixes the number of electrons that can react to a change in environment.

This can be improved by using the most transferable pseudopotentials but

this can be computationally expensive.

In general, the other features of the phonon dispersions are in agreement

with those found for the various crystal structures in the literature with

the exception of Nb, which was shown to have a previously unknown low

temperature structure in the previous chapter.

148



7.6.4 Electron-Phonon Coupling

The electron-phonon coupling is found to be within 28% of the experimental

values, which themselves have a large uncertainty[59]. This is a reasonable

error considering the approximations that were made in computing these

values.

The reduced phonon frequencies from the slightly longer bond lengths

will directly lead to higher values of the electron-phonon coupling as both the

matrix elements and the electron phonon coupling are both weighted by a

factor of 1
ω . Any downward shift in the frequencies will cause a corresponding

increase in the Eliashberg spectral function and an even larger effect in the

electron-phonon coupling constant, λ.

The superconducting transition temperatures are very sensitive to the

exact value of λ due to the exponential in the McMillan formula and small

changes in the coupling constant could change the transition temperature

by an order of magnitude for the more weakly coupling elements.

There will also be higher order anharmonic effects in real crystals which

will act as to disperse phonon modes and so will decrease the strength of

the coupling and cannot be considered properly within the harmonic ap-

proximation. It would be possible to calculate higher order terms for the

electron-phonon coupling but these would be very computationally expen-

sive.

There is also a reasonable amount of vagueness in the literature over

values for the coulomb constant µ∗[70]. It is often used as a fitting param-

eter or inferred from the transition temperatures. Computational power is

approaching the point where we are able to calculate these directly from

first principles which should give a more self-consistent calculation of the

transition temperatures[71].
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7.7 Conclusion

Density functional perturbation theory can be used as a guide as to the

strength of electron-phonon coupling in a material. A large difference may

be observed between calculated and experimental estimates which may be

due to several effects. Overall, these results indicate that it is possible to

use this method to determine whether a material is a good candidate for

BCS superconductivity.

Anharmonic phonon effects may dampen interactions between electrons

thus reducing the effective electron-phonon coupling in the McMillan for-

mula. This is in agreement with the observation that for Nb, the electron-

phonon coupling as measured by tunnelling experiments is in much better

agreement with the calculated values.

It is found that for Au which is not observed to be superconducting, the

transition temperature is found to be extremely small. The superconducting

elements Nb, Mo and Zr are calculated to have electron-phonon coupling

constants that are within a factor of 2 from the experimental estimates.

Further experimental tunnelling spectroscopy data for these elements

would be useful as to compare with the theoretical predictions as these

allow the electron-phonon coupling to be measured directly.
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Chapter 8

Nb3Sn under Uni-Axial Strain

The two most commonly used research and commercial superconductors are

NbTi and Nb3Sn[72]. The most common, NbTi, is a ductile alloy that is easy

to manufacture and draw into wires with an upper critical field of 15 T[73].

Nb3Sn on the other hand is an crystalline ceramic material and so is brittle

and more difficult to manufacture with. The main advantage is that it has

an upper critical field of 30 T which allows the production of much stronger

magnetic fields than NbTi. As research and commercial applications demand

higher magnetic fields, there is a trend towards the use of Nb3Sn magnets.

Indeed, Nb3Sn is the material of choice for the toroidal field magnets in the

ITER fusion tokamak[74]. In this chapter, we will examine the structure of

Nb3Sn and perform DFPT calculations to study the effects of strain on the

material in these situations.

8.1 Background

Due to the brittle nature of Nb3Sn, it is normally encased as a powder in

a metallic matrix which is normally made of Cu with a Cr barrier[72][75].

This matrix, shown in figure 8.1 provides support for the material itself, and
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also offer a route for current to flow if there is a quench of the magnet that

could otherwise damage the superconducting strands.

Figure 8.1: Schematic of one of the common structures for Nb3Sn wires.

In producing a magnet, wires made from this matrix are wound around

a core and then heat treated to cause the Nb3Sn powder to form a poly-

crystalline superconductor[74]. As discussed in chapter 5, there is a resistive

effect due to grain boundaries in the material and so large crystals are prefer-

able as they prevent current decay and ohmic heating but this is offset by

the need to sustain high magnetic fields[76].

Due to this heating process, various sections of the material including the

Cu sheath expand at different rates. When the material is cooled to room

temperature, and further to the superconducting transition, the Nb3Sn is

strained within the wire[47]. This means that even when no external stress

is present, the strain on the superconducting material is not zero.

One area of interest is the response of the material to stresses caused by
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the magnetic field acting upon the wires when they are used in a magnet[75].

These stresses cause the material to stretch or compress and the induced

effects on the superconducting parameters are not fully understood.

8.2 Strain

8.3 Literature Review

The experimental relationship between strain and superconducting proper-

ties has been studied by many groups[77][75]. In particular, D.M.J. Tay-

lor et al.[78] performed external strain measurements on single strands of

Nb3Sn. They found a decrease in Tc of approximately 20 ± 5% at 1.2%

strain, but their wires contained additional strains from manufacturing that

were not taken into account. Higher than this, the deformation was found

to be non-reversible and the superconducting properties of the unstressed

material were not recovered as the material was damaged, for example, the

polycrystalline layer physically being torn apart.

A. Nijhuis et al[75] have estimated the thermal pre-strain on commer-

cially available Nb3Sn wires to be in the range -0.014% to -0.58% depending

on the exact configuration of the containing wire and the heat treatment.

These present experimental difficulties in understanding which effects are

due to the Nb3Sn itself, which are due to the polycrystalline nature of the

Nb3Sn and which are due to mechanical interactions with the Cu cladding.

Previous calculations have been performed by De Marzi et al[79], show

the general features that are seen experimentally, namely the drop in su-

perconducting properties away from the unstrained unit cell, but there are

several issues with this paper. The electronic properties appear undercon-

verged and the Fermi energy is not correctly positioned on a peak. The
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decrease in superconducting properties is only about half of what is seen

experimentally which may be due to these issues, as it is not possible for

the DOS at the Fermi energy to decrease by as much as if it were higher.

As the experimental work is so problematic, we must turn to theory to

separate the effects of the material itself and the way it was produced. We

will investigate the superconducting crystal itself so as to test the intrinsic

strain function of Nb3Sn, which will allow experimentalists a deeper under-

standing of which properties come from bulk properties and which are due

to grain effects.

8.3.1 Method

Density functional theory calculations were performed initially on ground

state unit cells of Nb3Sn(figure 8.2) with strains between −1.0% and +0.5%

It was found that a 500 eV cutoff was sufficient to converge the total

energy to less than 10 meV. A Brillouin zone sampling grid of 8× 8× 8 was

similarly sufficient to achieve this level of accuracy.

Initially, a unit cell of Nb3Sn was relaxed to find the ground state geom-

etry with no strain. This was to allow us to observe the unstrained state of

the material and to gain some insights to basic physical properties. Phonon

convergence tests were performed on this unit cell to get appropriate values

to use for the strained materials. This was done by increasing the basis set

size, the Brillouin zone sampling and the real-space grid size until there was

little change in the phonon spectrum. A series of finite displacement calcula-

tions were also performed to get the elastic constants for the material. This

allowed the speed of sound along various phonon branches to be compared.

A range of 10 unit cells with strain values from -1% to +0.5% were

created using this perfect unit cell by setting the c-axis to appropriate values
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Figure 8.2: Crystal structure of Nb3Sn which consists of a bcc Sn cell with
Nb ribbons running along the edges.

to give strains relative to the unstrained cell. These cells were then allowed

to relax with this axis fixed to find the lowest energy atomic configuration

for each strain state.

Using the separation of the Eliashberg spectral function that was dis-

cussed in the previous chapter, the DOS and phononic contributions were

then calculated. A density of states calculation was performed at a fine grid

of 40 × 40 × 40 points in the Brillouin zone to find the density of states at

the Fermi energy, N0.

The phonon spectrum was calculated at a 4× 4× 4, grid of wavevectors

across the Brillouin zone. These were then interpolated to get an accurate

sampling of the phonon spectrum, F̃ (ω). It was found for these calculations

that the reciprocal-space grid had to be increased to 12×12×12 and the real-
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space density grid had to be increased to 4 times that of the wavefunctions

to avoid unphysical symmetry breaking in the dynamical matrix and to

improve the accuracy of the Γ-point IFCs so that the sum rules could be

applied.

Due to the large number of possible scattering events in this material,

it is infeasible to calculate the EP matrix elements themselves. For simple

metals, coupling is strong between most of the low energy phonons, but due

to the vast number of modes available in Nb3Sn (figure 8.4) and the necessity

of calculating matrix elements for every one, the calculation is computation-

ally prohibitive. This is primarily due to the computational time to perform

even a single perturbative calculation, and that up to 24 perturbations may

be required to produce the matrix elements for a single phonon wavevector.

Additionally, we are interested in the fully converged spectral functions, and

we would need a huge number of these matrix-elements to achieve that, and

unlike the direct phonon case interpolation is not possible, and so these

matrix elements are assumed to remain constant across the perturbations.

8.3.2 Results

Unstrained cell

The lowest energy unstrained unit cell was found to be cubic with a lattice

constant of 5.359 Å which is compared with the experimentally measured

value of 5.25±0.3 Å. Further attempts to improve the accuracy by increasing

the basis size to 800 eV, increasing the Brillouin zone sampling to 14×14×14

and decreasing the electronic smearing to a tiny value did not affect this.

The band structure and density of states for Nb3Sn is shown in figure

8.3. There are a collection of 6 bands which cross the Fermi level at dif-

ferent points in the Brillouin zone. The Fermi surface for these is shown
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Figure 8.3: The band structure and density of states for cubic Nb3Sn for a
path across the Brillouin zone.

in figure 8.4. Nb3Sn is interesting because of the large amount of nesting

that is possible by the large regions of the Brillouin zone that lie on the

Fermi surface. These sheets are close together and so low energy accoustic

phonons can cause scattering events between them. These low energy scat-

tering modes are the most important as they are the most common at low

energies.

The large number of bands around the Fermi energy give rise to a large

density of states at the Fermi energy as shown in figure 8.3. The Fermi

energy is shown to lie just on a peak in the density of states and this gives

rise to an anomalously large value for N0 of 0.14 eV-1Å-3

The phonon spectrum for the unstrained unit cell is shown in figure 8.5.

There are 24 separate phonon branches for this material with the majority

lying above 50 cm−1 and so there are many possible electron-phonon interac-
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Figure 8.4: The Fermi surface for Nb3Sn with bands going from a.) lowest
to f.) highest Kohn-Sham index. Of note are the similar bands around
the edges of the BZ which are almost parallel and close together which
allow additional low energy scattering interactions. This calculation was
performed with a 40× 40× 40 MP grid across the BZ.
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tions for each pair of points on the Fermi surface. The modes of the bands

in the central cluster between 50 cm−1 and 150 cm−1 involve excitations

along the Nb chains. Only the lowest and highest phonon modes involve the

Sn atoms moving to any large extent. The phonon modes calculated agree

with the finite displacement calculation of the accoustic modes around the

Γ-point.

Figure 8.5: The phonon dispersion spectrum for cubic Nb3Sn is shown in
red for a path across the Brillouin zone. The dashed lines indicate accoustic
modes around the Γ-point that were calculated by the linear displacement
method. The lower of these modes is the transverse accoustic mode and the
higher mode is the longitudinal mode (speed of sound).

Examining the phonon modes at the Γ point, we find that the lowest

modes which tend to zero are the acoustic branches as would be expected.

The next branches contains optical modes where the sheets of the material

are out of phase and slide past each other. The next collection of modes

involve mainly the Nb ribbon bands which run along the edges of the unit
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cell which can vibrate in various ways with no motion of the Sn atoms.

Finally the top phonon modes are similar to the lowest optical branch but

the wave travels longitudinally.

8.3.3 Strain

Geometry

Figure 8.6: The unrestricted lattice parameter compared with the fixed
(strained) lattice parameter. Shown in red is the line where the lattice
parameters are equal.

The dependence of the a and b axes compared with the strain on the c-

axis are shown in figure 8.6. The unit cell volume increased gradually across

the region of strain but the change was only 0.3% between the smallest and

largest unit cell volumes. The Poisson ratio was calculated to be 0.38±0.02

which is close to the experimental value of 0.36[80]. For the discussion here,

we will refer to the point where all the axes are equal at the cubic point.
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Internally, the effect of the strain is to break the symmetry between the

three sets of Nb ribbons that are parallel to the Cartesian axes. The atoms

along the x-axis, which are located at (±0.25, 0.5, 0), are shifted to (±(0.25−

δ), 0.5, 0) and those along the y-axis (0,±0.25, 0.5) move to (0,±(0.25 +

δ), 0.5) as shown in figure 8.7. A comparison of δ and the strain can be seen in

figure 8.7. At zero strain, as expected, the value of δ is 0. As the magnitude

of the strain increases, so does the value of delta. The only exception is at

the strain of −0.541% and this corresponds to a slight deviation from the

straight line in the lattice parameters at 5.34Å.

Figure 8.7: Comparison of the δ value (a measure of the distortion of the
Nb ribbons) with the strain for the full range of pressures.

Density of states

The density of states for the near zero strain case is shown in comparison

to the compression and tension strains in figures 8.8 and 8.9. For both
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Figure 8.8: A sample of the DOS around the Fermi energy with decreasing
strain values from the cubic point, calculated by sampling the Brillouin zone
on a grid of 40× 40× 40

increasing and decreasing strain, the effect is to break the symmetry between

orbitals in different directions. This causes the states about the Fermi energy

to begin to separate in energy and so reduces the single high peak into two

separate peaks, each either side of the Fermi energy. The effect is fairly

symmetric around the cubic lattice values. To first order, the electron-

phonon coupling constant is proportional to the density of states at the

Fermi energy and this quantity in shown in figure 8.10

8.3.4 Phonon Spectral Function

The phonon density of states between points on the Fermi surface is shown

in figures 8.11 and 8.13 for a subset of the stresses calculated moving away

from the cubic lattice point.

Looking in detail as Nb3Sn moves into compression, the phonon frequen-
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Figure 8.9: A sample of the DOS around the Fermi energy with increasing
strain values from the cubic point calculated by sampling the Brillouin zone
on a grid of 40× 40× 40

Figure 8.10: The overall effect of strain on the DOS at the Fermi energy in
Nb3Sn for the range of strain values from −1% to +0.5%
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Figure 8.11: The phonon spectral function, F (ω) for decreasing values of
the strain from just below the cubic point. These values were interpolated
from a grid of 4× 4× 4 samples of the 2nd order energy across the Brillouin
zone.
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Figure 8.12: The phonon spectral function, F (ω) for values approaching the
cubic point from compression. These values were interpolated from a grid
of 4× 4× 4 samples of the 2nd order energy across the Brillouin zone.

cies are pushed higher, but the general structure remains fairly unchanged

other than a broadening of the peaks. The effect is fairly smooth which

should lead to a steady decrease in the EP coupling due to the weighting in

the Eliashberg spectral function of 1
ω

There is a rapid change that occurs at strains close to the cubic point

which is shown in figure 8.12. There is a large increase in frequency of all

the modes which leads to a decrease in the coupling strength.

With the exception of the anomaly near the cubic point, the increase

in strain pushes the frequency gradually higher as the anisotropy increases

at approximately the same rate than in the compression regime. Again the

peaks begin to split and separate as the degeneracy is further broken.

Finally we show the value of our integrated spectral function
∫
F̃ (ω)dω

in figure 8.14. The integral increases approaching the cubic point, but has
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Figure 8.13: The phonon spectral function, F (ω) for increasing values of the
strain from the cubic point. These values were interpolated from a grid of
4× 4× 4 samples of the 2nd order energy across the Brillouin zone.

a large drop at the cubic point and has decreased values above that. This

was repeated for several values of strains close to that of the drop which all

confirmed this sudden change around the cubic point.

Overall Effect of Strain

Combining the effects on the density of states and the phonon spectral func-

tion on the electron-phonon coupling constant we arrive at figure 8.15. It

is calculated for slight uniaxial compression, the coupling should increase

by 10% after which it decreases rapidly. Under tension, the EP coupling

gradually decreases from the cubic point.
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Figure 8.14: The value of
∫ F (ω)

ω dω plotted against the strain.

Figure 8.15: The electron-phonon strain function for Nb3Sn around the
cubic point. These values have been normalised to the highest value as that
is commonly used as the zero strain point in experimental work.
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8.3.5 Discussion

Unstrained cell

The exchange-correlation functional, PBE, is known[6] to underestimate

bond energies and so overestimate bond lengths in many materials com-

pared with the all-electron results. The deviation from the experimental

value is not very large and so it can be reasonably expected that the elec-

tronic structure is a good approximation to the full interacting electronic

states. The lack of any structural changes with respect to the basis set size

and the Brillouin zone sampling indicate the ground state is converged with

respect to these parameters.

The position of the Fermi energy on a peak is in agreement with the band

structure which shows a collection of bands which are flat at this energy.

The large number of bands crossing the Fermi energy create a compli-

cated structure for the Fermi surface with 6 separate sheets. There is a

fair amount of nesting possible due to parallel regions of different bands.

The fact that the Fermi energy lies directly on a peak, means that any

translation of the Fermi energy or increase in disorder in the material which

causes a smearing of these energy levels, can drastically affect the density

of states at the Fermi energy. It also suggests an easy mechanism for the

superconducting properties to be affected by the strain.

The large number of phonon modes offer a wide variety of different scat-

tering potentials to contribute to the electron-phonon coupling. However,

most of these will be optical modes and so contribute less due to the inverse

frequency weighting of the Eliashberg spectral function. The positioning of

the lowest peak has the biggest effect on the coupling strength.
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8.3.6 Strain

Geometry

The increasing value of δ with increasing lattice asymmetry is in agreement

with previous studies[51] on the tetragonal transition in Nb3Sn where the

tetragonal transition was shown to cause this kind of distortion in the atomic

structure. This allows the atoms to pack together better in clusters and

keeps the electrons forming bonds in the regions of lower nuclear potential.

Density of States

The changes in the density of states can be almost entirely ascribed to

symmetry breaking. As the atoms are pushed further from the symmetry

positions, the previously degenerate energy levels are pushed further apart.

The fact that the Fermi energy lies on a peak amplifies this change.

The shape of the Fermi surface is not changed significantly as the bands

are only slightly shifted in energy by a small amount which generally only

changes the points in the BZ by a distance inversely proportional to the

gradient of the band. As the bands change very rapidly in energy above and

below the Fermi energy, these changes in position of the Fermi surface are

small and so visually there is no significant change.

Phonon Spectral Function

As the magnitude of the strain is increased in compression, the phonon

frequencies are shifted to higher values. This indicates that the screened

interatomic potentials are higher order than quadratic in this region, as

otherwise the phonon frequencies would not change, and as such the atoms

are experiencing different environments. In compression, we see the bonds
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along the z-direction being compressed and so the potential well is more

sharply defined as the atom has a smaller region in this direction in which

to move. Due to the Pauli exclusion and Coulomb repulsion as we attempt

to push electrons closer together in a bond, the energy will increase. This

leads to higher interatomic force constants and thus phonon frequencies.

Conversely, the atoms that have been pulled apart will lie in more flat wells

as they have a larger region of space to move in. This will decrease the

energy of these modes. The more strain that is applied, the bigger the

difference between these compressed and decompressed directions will be.

The phonon frequencies show a large increase in energy and a corre-

sponding drop in the electron-phonon coupling constant as the material is

brought through the cubic point from compression into tension. The grad-

ual decreasing of the non-strained lattice parameters causes the atoms to

move slightly closer together parallel to the strain and further apart in the

directions perpendicular to the strain.

This gradual change will not change the shape of the dynamical matrix

eigenvectors significantly until there is a change in the symmetry of the

dynamical matrix. Once the lattice constants move through the cubic point,

there is a change in form of the eigenvectors as the system goes from having

one axis shorter than two others to having one axis longer than the others

as well as δ switching signs from negative to positive. The interatomic

potentials in the longer directions will have less curvature as the atoms are

physically further apart and so modes can be of lower energy than in the

cubic form.

As the most important phonon modes for superconductivity are the low-

est modes which are those of sheets sliding over one another, we consider

the effect of strain upon them. As the strain is increased, the magnitude of
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δ increases, disturbing the sheet-like structure of the material. Small values

of δ may decrease the strength of linking between sheets but not bring the

atoms so far out of the plane as to repel against others from neighbouring

sheets in this motion. This would decrease the phonon frequency by lowering

the interatomic forces between these sheets. It would also give the Nb atom

more degrees of freedom in the direction of motion as it is no longer trapped

by symmetry. When δ becomes larger, the overlap between neighbouring

atomic shells in the sheets becomes high and causes the layers to not slide

past one another easily thus increasing the energy of these modes.

Strain Function

The overall effects on the strain function are to cause a gradual decrease in

electron-phonon coupling away from a maximum. This in turn decreases the

strength of any superconducting effect. This maximum lies not at the cubic

point, but instead at a slight compression. There is also a slight asymmetry

between positive and negative strains from this maximum. The coupling

strength decreases much more rapidly with strain in compression than in

tension. At a strain of −1%, the coupling constant falls to approximately

66% of the maximum. For strong coupling, Tc is, to first order, proportional

to the square root of the electron phonon coupling[59], and this would give

an 18.7% drop in the superconducting transition temperature. Experimen-

tally, for a −1% strain, it has been found that the drop in superconducting

properties is on the order of 20%[30] and so these are in fairly good agree-

ment.

Comparing these results with experiment is fairly difficult as single crys-

tal Nb3Sn is very brittle. Experimentally, the Nb3Sn is created in situ within

a matrix of bronze and copper under heating to 1000 K[49]. This often leads

171



to pre-straining on the crystals due to the differential thermal expansion of

the superconducting crystal and the metal matrix which supports it. Fur-

thermore by the polycrystalline nature of the material, the strain may not

be applied directly to the superconducting crystal structure itself, but rather

to the grain boundaries between them. Both of these make it hard to find

experimental data on tension in these materials, as it is not reproducible.

Finally, as the material is polycrystalline, it is difficult to compare the ef-

fects of a uniaxial strain with a combination of random strains on different

grains.

Even ignoring these issues, the consistent drop from a maximum under

tension and compression is observed in both experimental data and this

computational study. The strain function calculated drops slightly less than

the experimental would has found and that difference can be ascribed to

polycrystalline effects.

8.4 Conclusions

The lattice constants and ground state values for Nb3Sn agree with exper-

imental values and those from previous studies. The material has a large

number of Fermi surface sheets which cause a large amount of nesting such

that almost any lattice vector will link two points on the Fermi surface. The

large number of atoms in the unit cell give rise to 24 phonon modes but most

of these lie at too high energies to give a strong electron-phonon coupling.

The mode that most strongly adds to the electron-phonon coupling

strength is that of the acoustic modes and of the first optical mode which lies

at a relatively low wavenumber in the range of 50cm−1 to 100cm−1 across

the Brillouin zone. Furthermore, the phonon frequencies agree with those

calculated using a finite displacement method which suggests that for low
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phonon amplitudes, the harmonic approximation is valid.

In terms of strain, we find that the the main effect of strain on the unit

cell is to create a deformation in the unit cell among the Nb atom ribbons.

Those in the directions perpendicular to the strain axis move by ±δ from the

symmetry positions. The atomic orbitals at the Fermi energy are localised

around these atoms meaning that any changes in the environment of these

atoms will directly affect the density of states at the Fermi energy. These

changes are found to be symmetric around the cubic point (zero strain).

The strain also causes a change in the phonon frequencies by affecting the

phonon modes in subtle ways. The lowest phonon modes are due to sheets

in the material sliding over each other. Increases in tension lead to a large

decrease in the phonon frequencies as more degrees of freedom are introduced

and the interactions between neighbouring sheets can be decreased and thus

the phonon frequencies decrease. As δ continues to increase, these atoms

start to interfere with the sliding of the sheets and the phonon frequencies

increase again. There is a more subtle interaction with the phonon modes

which causes an asymmetry in the strain function, the exact cause of which

is unknown.

Although in many materials, high hydrostatic pressure is used to tweak

superconductivity, the effects are not necessarily comparable with uniaxial

strain. This is because the material is free to relax in the perpendicular di-

rections to the strain. In the case of Nb3Sn, it maintains an almost constant

volume and so the effects are different enough to not be directly comparable

to hydrostatic pressure measurements.

Overall, the strain function shows a maximum at a slight compression on

the order of 0.3%. This is on the order of the tetragonal distortion in Nb3Sn

that is often encouraged experimentally using non-stoichiometric ratios to
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improve superconducting properties[6]. The strain function calculated de-

creases slightly slower than that observed experimentally but this may be

explained by only part of the strain being applied to the Nb3Sn bulk, as the

polycrystalline structure itself will allow alternative strain relief mechanisms.

Finally, it is hard to determine whether the strong coupling in this ma-

terial may lead to a physical distortion other than those calculated in the

Born-Oppenheimer approximation. The electron-phonon interaction is as-

sumed to be small but in this material it is quite large. Further studies

should be performed to attempt to calculate this interaction energy using

the electron-phonon spectral function itself but this would require a larger

self-consistent cycle combining geometry optimisation and perturbative cal-

culations.
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Chapter 9

Conclusion

The aim of this work was to develop and test methods for calculating su-

perconducting parameters from first principles calculations. The theoret-

ical basis for the work was given in chapter 2, reducing the many body

Schrödinger equation into several separately solvable parts. Methods to

solve the equations for ground state electronic and nuclear properties were

given in chapter 3.

Grain boundaries are important in determining the critical current and

upper critical field in crystalline superconductors such as Nb3Sn. Chapter 5

examined the changes to the density of states for idealised symmetric tilt

grain boundaries. For Au, which has a slowly varying electronic density of

states; the presence of even large amorphous grain boundary regions did

not greatly affect the density of states. However, Nb3Sn showed a drastic

reduction in the DOS at the Fermi energy due to the smearing effects of the

region of disorder. In terms of local density of states, the grain boundary

regions showed a greatly depressed density of electrons at the Fermi energy.

In materials like this, the grain boundaries act as barriers to electrons mov-

ing across them and this explains the change in superconducting properties
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obtained by decreasing the grain size experimentally. This also gives exper-

imentalists a measure of the smallest grain size in Nb3Sn that will still have

a bulk-like region as the effects extended much further into the crystal than

was apparently from the atomic positions, and was on the order of 11 Å.

Methods for dealing with the more complicated perturbation equations

were developed in chapter 4 and give a practical way to calculate the electron-

phonon coupling taking advantage of symmetry to reduce the number of per-

turbations required. Convergence was also examined and it was shown that

the electron-phonon coupling matrix elements converge at approximately the

same rate as the phonon frequencies, although large errors can be caused by

incorrect diagonalisation of the dynamical matrix. In general, the phonon

frequencies need to be well converged in order to perform accurate electron-

phonon coupling calculations. On top of this, a large number of samples

of EP matrix elements are needed to achieve convergence in terms of the

electron-phonon coupling constant.

One of the standard test cases for electron-phonon coupling (Nb) is ex-

amined in chapter 6. It is shown that the commonly accepted literature

structure – bcc – is actually unstable at 0 K. Allowing a relaxation of the

structure without symmetry constraints, it is seen to convert through a

martensitic transition to a rhombohedral structure. The resulting structure

is commensurate with experimental measurements of the lattice expansion

upon cooling. This indicates that the majority of the theoretical work in

the literature which overestimates the electron-phonon coupling constant in

the material may be because the incorrect phase was being studied.

The application of these methods to simple metals in chapter 7 showed a

large difference in calculated and experimental values of the electron-phonon

coupling constant. These values are closer to the experimentally derived
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values than the literature values which use LDA. This is most likely due to

more accurate lattice parameters given by the use of the GGA in metals.

The method is seen to give a good approximation of the strength of the

superconducting effect in the material and offers a method to test novel

materials for BCS superconductivity.

Finally the effects of strain on the superconducting properties of Nb3Sn

was examined in chapter 8. It is seen that the ground state and electronic

properties agree well with experimental values. Uni-axial strain is shown to

cause a deformation in the pairs of Nb atoms which run perpendicular to

the strain direction. The density of states is reduced for either positive or

negative strain from the cubic unit cell. It was found that this deformation

in the Nb ribbons would cause an asymmetry in the strain-Tc curve. This

suggests that the maximum electron-phonon coupling is actually found at a

small compressive strain of 0.15% . This is in contrast to the literature where

it is assumed that the peak occurs at zero strain and that any deviation is

due to internal strain caused by the manufacturing process. This shows

the difficulty experimentally in measuring Nb3Sn in the complex way that

it is formed into wires. The decrease in the superconducting transition

temperatures at a strain of −1% was found to be 18.7% which is in good

agreement with experimental measurements of approximately 20%.

One clear direction to improve the calculation of electron-phonon cou-

pling would be to implement the interpolation suggested by Guistino et

al[23]. This would allow the same style of interpolation that is currently

used for the phonon dispersion curves to be used for the electron-phonon

matrix elements which would vastly reduce the complexity of the calcula-

tions. This would be ideal for further calculations on the strain of Nb3Sn as

the electron-phonon spectrum needs to be well converged in order to make

177



comparisons between the strain states.
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