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BEYOND ΛCDM:
Exploring alternatives to the standard cosmological paradigm

Sownak Bose

Abstract
The highly successful standard model of cosmology is built upon two funda-

mental assumptions: that structure formation proceeds hierarchically through

the gravitational collapse of cold dark matter (CDM), and that the late-time ex-

pansion of the Universe is dominated by dark energy in the form of the cosmo-

logical constant, Λ. While predictions of the ΛCDM model have survived strin-

gent tests spanning a wide range of scales, the true nature of the dark matter

and dark energy remains a mystery. Here, we investigate structure formation in

well-motivated, alternative scenarios. In the first half, we consider dark matter in

the form of sterile neutrinos rather than CDM. We quantify the abundance, for-

mation times and internal structure of sterile neutrino dark matter haloes, before

making a detailed comparison of the properties of their substructures compared

to their CDM counterparts. Using a semi-analytic model of galaxy formation, we

compare observable differences between sterile neutrino and CDM cosmologies

and find that future observations of the high redshift Universe and faint dwarf

galaxies in the Local Group can place strong constraints on the sterile neutrino

scenario. In the second half, the dark matter is assumed to be CDM, but we mod-

ify the underlying theory of gravity according to the f (R) model as an alternative

theory for accelerated expansion. We test the commonly-assumed quasi-static ap-

proximation in f (R) gravity simulations, confirming its validity for a wide choice

of model parameters. We then propose a new method for solving the equations

of motion in f (R) gravity simulations. Using a suite of high resolution simula-

tions, we find that the new method greatly accelerates the convergence rate of the

solutions, improving the efficiency of these simulations by more than a factor of

20 compared to previous methods. This new method will bring us to a new era

for precision cosmological tests of gravity.
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Chapter 1

Introduction

If one describes cosmology as the study of the Universe – its origin, evolution

and eventual fate – the conception of this subject can probably be traced back

to the earliest annals of human history. Oft-repeated fundamental questions of

cosmology such as “Why are we here?” or “How does the Universe work?” put

an almost metaphysical spin on what has, over time, become a precision science.

It is perhaps due to its dual nature – treading a fine line between science and

philosophy – that cosmology has become a subject that has fascinated mankind

for millennia. Starting with early records in the Vedic Rigveda (ca. 12th century

BCE) that describe the Universe as a ‘cosmic egg’, cycling eternally between peri-

ods of expansion and collapse, shifting to the Ptolemaic view (2nd century CE) of

an Earth-centred universe, early cosmological models have ranged from themes

of the theological to the anthropocentric. The evolution of cosmology from a

speculative enterprise to a scientific discipline was made possible through the

increasing availability of astronomical data. Following the first recorded ‘extra-

galactic’ observations of the Andromeda galaxy made by Persian astronomers

(al-Sufi, c.a. 964 CE), the subject of cosmology has undergone a series of meta-

morphoses, spearheaded by the likes of Copernicus, Galileo, Kepler and Newton

(16th–17th century CE). Over the course of the 20th century, a standard paradigm

has emerged that has not only opened up a wealth of new lines of enquiry into the

fundamental questions of cosmology, but has also required a dramatic reassess-

ment of the constituents originally believed to make up our Universe.

1
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1.1 ΛCDM: the emergence of a standard model

While the theoretical groundwork was laid by Einstein in his theory of General

Relativity (GR), the kickstarter for the current standard model of cosmology must

surely originate from the first extragalactic distance measurements made in the

early 20th century. The observed redshifting of spectral lines in ‘extragalactic neb-

ulae’ (Slipher, 1915; Hubble, 1929) provided evidence in favour of an expanding

Universe, for which the initial condition is a singularity at t = 0. In the Hot Big

Bang scenario, the Universe was smaller and denser in the past, as well as being

much hotter then than it is now; the composition of the early Universe is therefore

believed to be a tightly-coupled sea of photons, electrons and quarks, with this

primordial plasma cooling down as the Universe continued to expand. The Hot

Big Bang picture is highly predictive: most chiefly, in the form of the background

radiation.

Approximately 380,000 years after the Big Bang, expansion cooled the Uni-

verse to a temperature at which electrons and protons were able to combine to

form hydrogen at an epoch called recombination. After this time, the Universe

became transparent to photons, allowing them to stream out of the primordial

plasma whilst retaining a memory of the initial composition of the Universe. This

radiation, redshifted to microwave frequencies by the expansion of the Universe,

was detected by Penzias & Wilson in 1964, and was hailed as a monumental dis-

covery in establishing the Hot Big Bang model as the standard paradigm. Due

to the all-pervading, isotropic nature of this relic radiation, it has become known

as the cosmic microwave background (CMB). CMB experiments, particularly in the

last two decades, have become extremely valuable for extracting cosmological in-

formation about the primordial state of the Universe. The measurement of tiny

temperature fluctuations (of the order of ∆T/T ∼ 10−5) in the CMB sky by the

COBE satellite (Smoot et al., 1992) enabled the measurement of cosmological pa-

rameters with unprecedented precision. As subsequent CMB experiments such

as WMAP (e.g. Spergel et al., 2003) and Planck (Planck Collaboration et al., 2014b)

have improved in terms of both sensitivity and angular resolution, the measure-
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ment of cosmological parameters has also become ever more precise.

1.1.1 Dark matter

At around the same time as when observational evidence for the expanding Uni-

verse was beginning to accumulate, a mysterious discovery was made by the

Swiss astronomer Fritz Zwicky. In his measurements, the virial mass of the Coma

cluster, as determined by the observed velocity dispersion of galaxies in the clus-

ter, was estimated to be ∼400× larger than the mass inferred purely from the

luminous stellar component (Zwicky, 1933). Zwicky’s audacious suggestion –

that the majority of the mass of the cluster must exist in a ‘dark’, non-luminous

component – received further support following the measurement of flat rotation

curves in the outskirts of late-type galaxies (e.g. Babcock, 1939; Rubin & Ford,

1970), pointing to the existence of a roughly linearly increasing mass profile for

such galaxies, far beyond the faint tail of their surface brightness profile.

The requirement for dark matter is further realised through a phenomenon

known as gravitational lensing. A prediction from GR, lensing asserts that the tra-

jectory of light rays is perturbed in the presence of matter by an amount that

is proportional to the amount of intervening matter between the source and an

observer. This can be observed as a distortion of the images of background galax-

ies into characteristic lensing arcs around clusters in the foreground. Analysis of

these distortion maps yields a measurement of the mass distribution of the cluster

(e.g. Taylor et al., 1998), which again has been found to exceed the mass calculated

from the stellar profile alone (e.g. Tyson et al., 1990), hinting at the presence of an

additional matter component (though a fraction of the ‘missing’ mass exists in

the form of hot, X-ray emitting gas e.g. Forman et al., 1979; Fabian et al., 1986).

The temperature anisotropies of the CMB constrain the contribution of mat-

ter to the total energy density of the Universe to ∼30%, of which only ∼5% is

in the form of the known baryonic matter. The implication that the remaining

25% is in the form of a non-baryonic component is tantalising; investigations into

determining its nature has been the focus of a significant amount of theoretical

and observational work over the past 30 years. Assuming that the dark matter
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is a fundamental particle, a natural first candidate to consider was the neutrino.

Owing to their very small rest mass (of the order of ∼100 eV), neutrinos travel

at relativistic velocities, and are thus able to free stream out of small-scale per-

turbations, erasing fluctuations smaller than the size of superclusters with mass

∼ 1015M�. Superclusters are therefore the first structures to form in this hot dark

matter (HDM) universe; smaller galaxies form as a result of the fragmentation of

these larger systems. This ‘top-down’ nature of structure formation is in direct

contradiction to what is observed in the real Universe, putting the HDM inter-

pretation in significant tension with the data. A further hammer blow to HDM

was dealt when numerical simulations showed that the large-scale clustering of

matter in these neutrino-dominated universes was very different to the clustering

observed in the CfA redshift survey (White et al., 1983). For these reasons, HDM

soon fell out of favour.

The other limiting case one could consider is where the dark matter is much

‘heavier’, with a rest mass of the order of a few GeV. In the case of this cold dark

matter (CDM), the dark matter is assumed to be composed of weakly-interacting

massive particles (WIMPs; Peebles, 1982), with negligible1 primordial thermal

velocities. As there is now power even on very small scales in CDM, the build-up

of structure proceeds hierarchically (bottom-up), with larger objects being formed

via the merger of smaller clumps. Numerical experiments subsequently demon-

strated a remarkably good match between the large-scale clustering of galaxies in

a CDM universe with that seen in the CfA redshift survey (Davis et al., 1985). As

the size and sophistication of both simulations and data have improved over the

past two decades, the CDM model has been rigorously tested over a wide range

of scales, and it has, for the most part, passed these tests with flying colours.

Cold dark matter has therefore established itself within today’s standard model

of cosmology.

1‘Negligible’ in this context is in comparison to the velocities imparted on the dark matter by
gravitational instability.
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1.1.2 Dark energy

Through the 1980s and early 1990s, several theoretical arguments pointed in the

direction of another uncomfortable realisation. Inflation strongly suggested a flat

geometry for the Universe, requiring a total energy density far in excess of that

contributed by matter (dark and baryonic) alone. At the close of the 20th cen-

tury, observations of Type Ia supernovae in distant galaxies (Riess et al., 1998;

Perlmutter et al., 1999) provided evidence for a Universe that not only expands,

but does so at an accelerating rate. It was posited that this accelerated expansion

could be generated by the extra energy component required to close the Universe

to a flat geometry i.e., contributing the remaining ∼70% of the energy density of

the Universe after accounting for all matter. In the concordance model, the dark

energy is sourced by the vacuum, appearing on cosmological scales in the form

of a cosmological constant, Λ.

Taken together, the two mysterious components – namely, dark matter and

dark energy – that are believed to dominate the total energy density of our Uni-

verse, are two major pillars of the current standard model of cosmology, ΛCDM.

The most startling fact about this is that despite how little is really known about

the properties of the dark matter or the nature of the vacuum energy, predictions

of the ΛCDM model have been very successful at fitting cosmological data. To-

gether with the proposition of a Hot Big Bang (and its own predictions such as the

CMB and the synthesis of light elements), cosmologists have developed a fairly

coherent and complete description of the makeup and evolution of the Universe.

1.2 So, why consider alternatives?

As we have mentioned in the previous section, the concordance ΛCDM model

has met with great success in agreeing with observational data spanning a wide

range of scales. A valid question to then ask is if there is a need to consider

alternatives, to either Λ or CDM, at all – which, indeed, is the subject of this

thesis.
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1.2.1 Beyond cold dark matter

Arguments against CDM are often presented in the context of the so-called ‘small-

scale crises’ in the model. Specifically, this is in reference to the apparent in-

consistencies between the predictions of the CDM model from dark matter-only

numerical simulations and what is observed in the properties and abundances

of satellites in and around the Local Group. The most famous amongst these,

known as the Missing Satellites problem, states that the number of dwarf galaxy

scale dark matter haloes produced in CDM simulations far outstrip the number

of dwarf galaxies actually observed in the Local Group (Kauffmann et al., 1993;

Klypin et al., 1999; Moore et al., 1999).

A second discrepancy between theory and observation, this time with re-

gards to the internal structure of satellite galaxy haloes, was described by Boylan-

Kolchin et al. (2011). These authors noted that CDM simulations of galactic haloes

produced multiple satellites with subhaloes of high internal density (as measured

by their peak circular velocity, Vmax) that had no counterparts in the data. This

claim, dubbed the Too Big to Fail problem, is similar in spirit to the long-standing

cusp-core problem (e.g. de Blok et al., 2001), in which the inner slope of the dark

matter density profile of satellite galaxies, as inferred from their internal kinemat-

ics, is measured to be flatter than the steep inner slope predicted by collisionless,

dark matter-only simulations. Alternative models like warm dark matter (WDM)

have been proposed as potential solutions to these problems, as WDM charac-

teristically reduces the abundance and internal density of dark matter haloes at

precisely the scale of interest (i.e., dwarf galaxies), whilst retaining exactly the

same behaviour as in CDM on larger scales, where it has been shown to be in

good agreement with the observations.

The problem with this way of motivating alternative models to CDM is that

the claims have been made using dark matter-only simulations i.e., neglecting the

impact of baryon physics on the structure of dark matter haloes, and the likeli-

hood of them hosting galaxies. Hydrodynamical simulations that self-consistently

treat processes like reionisation, supernovae and AGN feedback are required to

make the most realistic comparisons between observation and theory. Recent
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works by e.g. Governato et al. (2012); Brooks & Zolotov (2014); Oñorbe et al.

(2015); Sawala et al. (2016b) have offered solutions to the aforementioned small-

scale problems within the context of CDM, without needing to invoke new or

exotic dark matter physics.

In fact, the biggest ‘problem’ with the CDM model is quite simply that, so far,

the particle has evaded detection. One of the prime CDM candidates, the neu-

tralino, is the lightest stable particle predicted by supersymmetry. It was hoped

that such a particle would be detected in the Large Hadron Collider, yet no evi-

dence for supersymmetry has been found so far. While it has been claimed that

CDM particles may have already been observed via their annihilation as an ex-

tended gamma ray emission in the Galactic Centre (e.g. Hooper & Goodenough,

2011), the dark matter interpretation of this signal is questionable; for example,

the contribution of millisecond pulsars or other astrophysical sources to this sig-

nal is unclear (e.g. Abazajian, 2011; Cholis et al., 2015). While the CDM particle

remains undetected, therefore, it is worthwhile to explore viable, well-motivated

alternatives.

The alternative we investigate in the first part of this thesis is the case where

the dark matter is assumed to be in the form of sterile neutrinos (Dodelson &

Widrow, 1994). The existence of these particles was originally motivated by par-

ticle physics: if the Standard Model is extended by adding three right-handed

sterile neutrinos, the mixing between sterile and active neutrinos can be used

to explain neutrino flavour oscillations. Furthermore, when the masses of these

sterile neutrinos are chosen to be below the electroweak scale, it is possible to

also account for the asymmetry between matter and antimatter (e.g. Asaka &

Shaposhnikov, 2005). From a cosmological perspective, the most interesting facet

of this model is that the lightest of the triplet of sterile neutrinos withO(keV) rest

mass can behave as a WDM particle.

The sterile neutrino interpretation of dark matter has received something of

an impetus in the past few years, after the claimed detection of an unidentified

emission at 3.5 keV in the stacked X-ray spectrum of galaxy clusters and the An-

dromeda galaxy (Bulbul et al., 2014b; Boyarsky et al., 2014). The line has since
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also been detected in the Galactic Centre (Boyarsky et al., 2015), the Perseus clus-

ter (Urban et al., 2015) and, most recently, in the Cosmic X-ray Background (Cap-

pelluti et al., 2017), adding weight to the original claims. Just like the case of the

gamma ray excess for CDM, it is unclear as to whether or not the emission has

an astrophysical origin (see, e.g. Malyshev et al., 2014; Jeltema & Profumo, 2015;

Anderson et al., 2015; Riemer-Sørensen, 2016, for alternative explanations). Re-

cently, Jeltema & Profumo (2016) failed to detect any excess at 3.5 keV in a deep

XMM-Newton observation of the dwarf spheroidal galaxy Draco, attributing the

original line detection to an excitation of K VIII.

If, however, the 3.5 keV line is not of astrophysical origin or an instrumental

aberration, it could possibly correspond to the decay of a sterile neutrino with a

rest mass of 7 keV.

1.2.2 Beyond Λ

The situation with the cosmological constant, Λ, is a little more complicated. The

most severe challenge in associating the vacuum energy as the source of the dark

energy is known as the fine-tuning problem. This is in reference to the observed

value of Λ, inferred from cosmology, which is smaller than the zero-point energy

density of the vacuum by at least 60 orders of magnitude. A cancellation of so

many powers of ten, which is needed to reconcile the cosmological value of Λ

with its quantum mechanical value, requires a fine-tuning mechanism that cannot

at the moment be addressed in the Standard Model of particle physics.

A second issue concerns not only the value of Λ, but why it has only just be-

gun to dominate the energy density of the Universe at the present epoch, in what

is known as the coincidence problem. Denoting the cosmological scale factor by a,

where a = 1 corresponds to the present day, when a� 1 (distant past), the mat-

ter density dominates Λ, whereas when a� 1 (distant future), Λ dominates over

matter. The fact that we exist at a ‘special’ time when the relative energy densi-

ties of matter and the cosmological constant are roughly comparable (to within

an order of magnitude) points to an unlikely coincidence. To reconcile these chal-

lenges, anthropic reasoning has often been invoked, suggesting that the existence
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of intelligent life or the progress of galaxy formation necessitates roughly equal

contributions of matter and the cosmological constant to the total energy density

(e.g. Barrow & Tipler, 1986; Weinberg, 1987).

Without appealing to some new kind of symmetry, the fine-tuning problem is

difficult to address even in most commonly-cited theories of gravity that extend

beyond GR plus a cosmological constant. However, these modified gravity mod-

els, which alter the general relativistic force law beyond some model-dependent

scale, are worth investigating primarily because the most rigorous tests of GR

have been made within the extent of the Solar System, but not much beyond that.

In fact, one of the primary objectives of many upcoming surveys like DESI (Levi

et al., 2013) and EUCLID (Laureijs et al., 2011) is to extend these tests of the na-

ture of gravity to larger scales i.e., to look for possible deviations from Λ either in

the form of an evolving equation of state of dark energy, or modifications to the

gravitational force law itself. In anticipation of the vast amount of data that will

soon become available, it is fruitful to quantify any such departures from GR in

models that are representative of whole classes of modified gravity theories.

1.3 Tools for modern cosmology

Over the past three decades, numerical simulations have played an increasingly

prominent role in advancing our knowledge of structure formation in the Uni-

verse. The philosophy underlying the numerical method is to simulate a rep-

resentative patch of the Universe using N discrete point particles to sample the

phase-space of the matter field. Given a set of initial conditions – i.e., a set of start-

ing positions, velocities and masses for the particles – the evolution of matter in

the simulation volume is tracked by integrating the trajectories of these particles

according to Newtonian equations of motion, embedded within a cosmological

background.

The dawn of numerical cosmology can be traced back to the pioneering works

of von Hoerner (1960); Aarseth (1963) & Peebles (1970), which focussed on the

formation and evolution of galaxy clusters using N = 25–300 particles. Since
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then, the availability of larger and more powerful computers, as well as the de-

velopment of more efficient algorithms for computing gravity have allowed for

a tremendous increase in both the size and resolution of N-body simulations. A

notable recent example is that of Potter et al. (2016), where the authors reported

the completion of a simulation with 2 trillion resolution elements, making it the

largest cosmological simulation currently available.

1.3.1 Initial conditions

The first step in running a cosmological simulation involves setting up its ini-

tial conditions (ICs). Creating an accurate set of ICs is fundamental to the final

outcome, as even small errors present at early times can be amplified by growing

modes over the course of the simulation, and may significantly influence the final

result. The simplest particle load that can be generated for the ICs is one where

the particles are distributed uniformly (e.g. in a grid configuration). The particles

are then perturbed from their initial positions and assigned velocities using e.g.

the Zel’dovich approximation (Zel’dovich, 1970), which at intermediate and large

scales works well enough while density fluctuations are still in the linear regime

(high redshift, z & 50).

Often, one would like to select objects of interest from a large volume and

study their structure at much higher resolution. For this purpose, one may em-

ploy the ‘zoom’ technique (Katz & White, 1993). Briefly, this technique identifies

particles in a sufficiently large volume around the object of interest in the parent

simulation, and traces them back to their corresponding location in the unper-

turbed Lagrangian region. In the re-simulation, this Lagrangian patch is pop-

ulated with many more particles, each with a smaller particle mass than in the

parent simulation, thereby achieving higher resolution in the region of interest.

The remaining mass of the cosmological box is sampled coarsely with ‘heavy’

particles, so as to recover the same large-scale tidal field surrounding the new

high resolution region as in the parent simulation. With the added resolution, the

new particle load can be perturbed with shorter wavelength Fourier modes than

in the parent simulation, adding more power on the small-scales that are now
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resolved. The zoom technique therefore enhances resolution where it is desired,

and compromises by sacrificing resolution elsewhere so as not to dramatically

increase the computational cost of the re-simulation.

1.3.2 N-body codes

Once the ICs are in place, N-body codes are required to solve the equations of

motion, compute the accelerations on the particles, and then integrate their or-

bits over multiple timesteps. In this thesis, we make use of two state-of-the-art

simulation codes: GADGET-3 (Springel et al., 2008, based on the publicly avail-

able GADGET-2 code, Springel 2005) and ECOSMOG (Li et al., 2012a, based on

the publicly available RAMSES code, Teyssier 2002). The two codes follow dif-

ferent philosophies to solving gravity: while GADGET-3 is a hybrid code com-

bining a tree algorithm (short-range force) with a high resolution particle-mesh

(long-range force), RAMSES & ECOSMOG employ a multigrid relaxation method

to solve the discretised Poisson equation on an adaptively-refined mesh. N-body

codes like GADGET and ECOSMOG are imperative to follow structure formation

well into the non-linear regime, where collapsed structures form. As we will ex-

plain in Chapter 5, this is particularly important in the case of modified gravity

theories, where a vast amount of complex phenomenology is embedded in the

non-linear equations of motion governing these theories.

All simulations presented in this thesis follow the evolution of the dark matter

component only. Thus, the only relevant interaction between any pair of particles

is the gravitational force between them. Dark matter-only simulations produce

catalogues of haloes and subhaloes and it is the properties of these structures

and statistics of the underlying density field that we wish to compare between

different cosmological models.

1.3.3 Semi-analytic galaxy formation

The real Universe is, of course, made of more than just dark matter. To be able

to test our cosmological simulations against observations, one needs to populate
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dark matter haloes with galaxies whose properties could be dependent on the

properties and assembly history of the halo they are hosted in. One such ap-

proach, known as semi-analytic modelling, has become a particularly useful tool

for better understanding the complex processes involved in galaxy formation and

the connection between galaxies and their host haloes. Once a dark matter-only

simulation has been run, a merger tree, which encapsulates the merging and ac-

cretion history of the dark matter haloes, can be constructed. A semi-analytic

model (SAM) follows the properties of haloes in the merger tree and populates

them with galaxies by solving a set of coupled differential equations treating the

cooling of gas in haloes, star formation, feedback in the form of supernovae and

AGN, chemical enrichment of the intergalactic medium, as well as the synthesis

of stellar populations (White & Frenk, 1991; Cole et al., 2000; Bower et al., 2006;

Croton et al., 2006; Guo et al., 2011; Lacey et al., 2016). SAMs are typically char-

acterised by a number of free parameters that are calibrated by requiring that the

model reproduces a small selection of properties of the local galaxy population.

In this thesis, the specific SAM we make use of is GALFORM (Cole et al., 2000;

Lacey et al., 2016); the model is described in more detail in § 3.3 & 4.2.

Semi-analytic modelling is not without its limitations. For example, unlike

hydrodynamical simulations, a SAM cannot trace the flow of gas in and out of

galaxies, nor can it accurately predict the response of dark matter halo properties

to the presence of baryons or feedback processes. Furthermore, the essence of

SAMs is that all equations pertaining to galaxy formation are dependent on the

properties of the dark matter halo hosting the galaxy, which may only be a very

crude approximation in some cases. That being said, however, SAMs possess

one great advantage over hydrodynamical simulations, which is that they are

computationally relatively inexpensive to run. This makes them ideal for rapidly

exploring a vast parameter space – in terms of both the galaxy formation model

itself, as well as the range of cosmological models being investigated. We exploit

this fact in Chapter 4, where we apply GALFORM to a variety of sterile neutrino

candidates.
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1.4 Thesis outline

The content of this thesis is split into two parts where we consider, in turn, alter-

natives to the two main constituents of the standard model of cosmology: CDM,

and Λ.

In the first part, we consider the case where the dark matter is composed

of sterile neutrinos, rather than CDM particles. In Chapter 2, we introduce the

Copernicus Complexio simulations (COCO; Hellwing et al., 2016a; Bose et al., 2016a),

and compare the properties of sterile neutrino dark matter haloes to CDM haloes.

We establish and compare the mass function of haloes, as well as their structural

properties such as density profiles, the mass-concentration relation, shapes and

spins. In Chapter 3, we focus on the properties of substructures in COCO, such

as their abundance, radial distribution within host haloes, and the effects of tidal

stripping on these substructures. We then run the Durham semi-analytic galaxy

formation model, GALFORM, on our simulations to investigate differences in the

galaxy population between the sterile neutrino and CDM simulations. In Chap-

ter 4, we use GALFORM to investigate if the epoch of reionisation and the present-

day abundance of Milky Way satellites can be used to constrain a range of 7 keV

sterile neutrino models.

In the second part of the thesis, we shift our focus to modified gravity theories,

using the well-known f (R) model as the working example. In Chapter 5, we

test the validity of the widely-used quasi-static approximation, which assumes that

any time variation of the f (R) gravity scalar field is negligible compared to its

spatial variation. In Chapter 6, we present and demonstrate a new and efficient

method for simulating certain classes of modified gravity theories, once again

using f (R) gravity as the representative example. The results of Chapters 5 & 6

will hopefully elevate future numerical simulations to a level that will allow for

precision cosmological tests of modified gravity.

Finally, in Chapter 7, we summarise the results of this thesis and discuss fu-

ture research avenues for constraining models beyond ΛCDM.
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Cosmology with Sterile Neutrinos
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Chapter 2

Statistical properties of warm dark matter
haloes

2.1 Introduction

The identity of dark matter, the dominant matter component of the Universe,

has long been a subject of great interest in cosmology. In the last three decades,

the model of non-relativistic dark matter consisting of heavy weakly-interacting

particles with negligible thermal velocities at early times, the Cold Dark Matter

(CDM) model, has become the cornerstone of the standard cosmological paradigm.

The standard model with dark energy in the form of a cosmological constant, Λ

(ΛCDM, henceforth just CDM) has been very successful in predicting and match-

ing observational data on a wide range of scales, from the temperature fluctua-

tions in the Cosmic Microwave Background (Planck Collaboration et al. 2014a) to

the statistics of galaxy clustering (Colless et al. 2001; Zehavi et al. 2002; Hawkins

et al. 2003; Tegmark et al. 2004; Cole et al. 2005; Eisenstein et al. 2005; for a com-

prehensive review on the subject, see Frenk & White 2012).

With the advent of the LHC it was hoped that one of the best-motivated CDM

candidates, the lightest supersymmetric particle (the neutralino) would be found.

The lack of evidence for supersymmetry at the LHC and the absence of a convinc-

ing direct or indirect signal for CDM (but see Hooper & Goodenough 2011) has

encouraged the exploration of viable alternatives. One of the most promising

alternatives is the sterile neutrino (Dodelson & Widrow 1994; Asaka & Shaposh-

nikov 2005), which behaves as warm dark matter (WDM) due to the particles’

17
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non-negligible thermal velocities at early times. Being collisionless, this leads to

free streaming and the damping of perturbations in the density field, creating a

cutoff in the matter power spectrum on the scale of dwarf galaxies.

A simple extension of the Standard Model of particle physics, called the neu-

trino Minimal Standard Model (νMSM, Boyarsky et al. 2009b), consists of three

right-handed sterile neutrinos in which, for a specific choice of parameters, one

of the sterile neutrinos behaves as a dark matter particle and the model explains

neutrino flavour oscillations. Each one of this triplet of particles has its mass be-

low the electroweak scale; one in the keV scale (denoted by M1), and two in the

GeV scale (denoted by M2 and M3). The former behaves as a relativistic particle

at the time of neutrino decoupling and acts as WDM, and is then redshifted to

non-relativistic energies during the radiation-dominated era. Unlike a thermal

relic, the cutoff in the power spectrum introduced by a sterile neutrino of a fixed

mass depends on a second parameter, the lepton asymmetry. As we explain later

in the following section, it is possible to approximate the sterile neutrino power

spectrum with a WDM thermal relic equivalent, particularly for very low and

very high values of the lepton asymmetry.

The unidentified 3.53 keV X-ray line originally detected in the spectrum of a

stack of galaxy clusters (Bulbul et al. 2014b) and in the spectra of M31 and the

Perseus cluster (Boyarsky et al. 2014) could be a decay signal of sterile neutrino

dark matter, with a particle mass of 7 keV. More recently, Boyarsky et al. (2015)

have also identified a similar line in the centre of the Milky Way. While the ex-

cess at 3.5 keV has been seen in other studies (e.g. Urban et al. 2015), several

groups have questioned the interpretation of this detection. For example, Riemer-

Sørensen (2016) failed to find a signal in Chandra observations of the Milky Way.

Of course, the Galactic centre is heavily contaminated by X-rays, which intro-

duces uncertainties, a point made by Boyarsky et al. (2015).

Systematic effects can result from the atomic data used in modelling the plasma,

as argued by Jeltema & Profumo (2015), who found no excess when re-analysing

the Boyarsky et al. (2014) data and claimed that any signal at 3.5 keV could be

explained by known Potassium (K XVIII) and Chlorine (Cl XVII) lines. Bulbul
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et al. (2014a) put this latter result down to the use of “incorrect atomic data and

inconsistent spectroscopic modelling” by Jeltema & Profumo (2015). A further

non-detection was then reported in the stacked spectra of galaxies from Chandra

and XMM-Newton (Anderson et al. 2015), while most recently, Malyshev et al.

(2014) analysed the spectra of stacked dwarf galaxies from XMM-Newton and

claimed to rule out the Andromeda signal detected by Bulbul et al. (2014b) at

the 4.6σ confidence level. This has spurred other groups (see, for example, Con-

lon & Day 2014) to associate the 3.53 keV signals with the conversion of a sterile

neutrino into an axion, and its subsequent decay into photons. Such a mecha-

nism requires a magnetic field, the presence and strength of which can vary from

galaxy to galaxy, a scenario that could explain why this line is only seen in some

objects.

Clearly, whether or not the 3.53 keV line really does correspond to a sterile

neutrino decay remains an open question. It is, therefore, important to investi-

gate the predictions for the formation of cosmic structures in a model in which

the dark matter consists of particles that could decay producing such a line. Con-

straints on such models can be set from the observed clustering of the Lyman-α

forest at high redshift whose small-scale structure would be erased if the dark

matter were warm. On these grounds, Viel et al. (2013) recently set a (current)

lower limit of 3.3 keV for the mass of a dominant thermal warm dark matter

particle.

Coincidentally, the power spectrum of a 3.3 keV thermal warm dark matter

particle is well approximated by that of a 7 keV sterile neutrino for a lepton asym-

metry of L6 = 8.66. This corresponds to the smallest allowed value of the power

spectrum cutoff length (i.e. to the “coldest” power spectrum possible) for a ster-

ile neutrino of mass 7 keV. This is the model that we will explore in this work.

Ruling out this model from astronomical data on small scales would rule out the

entire family of 7 keV sterile neutrino candidates. To investigate the model we

use high resolution N-body simulations whose results we compare with those of

CDM simulations with the same phases in the initial conditions. We are inter-

ested exclusively in characterising the properties of dark matter haloes of mass
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in the region of the power spectrum cutoff and, in this study, we ignore the ef-

fects of baryons. Such effects must be taken into account when comparing model

predictions with observations. In the case of CDM, relevant baryon effects on the

small scales of interest here have recently been quantified by Sawala et al. 2013,

2015; Schaller et al. 2015; Sawala et al. 2016a)

The layout of this chapter is as follows. In § 2.2 we introduce the concept of

sterile neutrinos, and some terminology that will be important for the rest of this

chapter, as well as Chapters 3 & 4. In § 2.3, we introduce the simulations used in

this work, the modelling of the WDM component, and describe how we tackle

the issue of spurious halo formation in our simulations. In § 2.4 we present our

main results from the comparison of WDM and CDM from our simulations, in

terms of both the large-scale distribution of matter, and the internal structure of

haloes. Finally, in § 2.5, we summarise our findings and look into some future

work that will be carried out with the same set of simulations.

2.2 The sterile neutrino model

Sterile neutrinos1 are relativistic when they decouple and therefore have non-

negligible velocities which smear out density perturbations on small scales. Hence,

sterile neutrinos behave as WDM. In the original model introduced by Dodelson

& Widrow (1994), sterile neutrinos are created by non-resonant mixing with ac-

tive neutrinos in the Standard Model. The scale of the free streaming is deter-

mined solely by the rest mass of the sterile neutrino – the lighter the particle, the

larger the free streaming length, and the larger the scales at which differences

relative to CDM appear.

Shi & Fuller (1999) proposed an alternative production mechanism in which

the abundance of sterile neutrinos is boosted by a primordial lepton asymmetry.

The value of this quantity, which measures the excess of leptons over anti-leptons,

affects the scale of free streaming in addition to the rest mass of the sterile neu-

1These particles are ‘sterile’ in the sense that they do not interact via the weak force, as is the
case for active neutrinos in the Standard Model.



2.3. The Copernicus Complexio simulations 21

trino. Asaka & Shaposhnikov (2005) proposed a model for the generation of the

lepton asymmetry by introducing three right-handed sterile neutrinos in what

is known as the ‘Neutrino Minimal Standard Model’ (νMSM, see also Boyarsky

et al. 2009b). In this model, a keV mass sterile neutrino (labelled N1) is partnered

with two GeV mass sterile neutrinos (N2 and N3). It is N1 that behaves as the

dark matter, with its keV mass (M1) leading to early free streaming. The decay of

N2 and N3 prior to the production of N1 generates significant lepton asymmetry;

this boosts the production of N1 via resonant mixing. Here, we formally quantify

the lepton asymmetry, or L6, as:

L6 ≡ 106
(

nνe − nν̄e

s

)
, (2.2.1)

where nνe is the number density of electron neutrinos, nν̄e the number density

of electron anti-neutrinos and s is the entropy density of the Universe (Laine &

Shaposhnikov, 2008). The scales at which the power spectrum is suppressed for

sterile neutrinos vary non-monotonically as a function of L6. If L6 is very small

(� 1) the power spectrum exhibits a similar abrupt cutoff to that of a thermal

relic. As L6 is increased, the cutoff becomes gentler and khm shifts to larger values.

At some value of L6 (typically between 8 and 25 depending on the sterile neutrino

mass), khm reaches a maximum; for still higher L6, khm retreats to lower k and

returns to its original shape and position (Shi & Fuller, 1999; Abazajian, 2014).

A third parameter in the νMSM is the mixing angle, θ1. The requirement that

the model should achieve the correct dark matter abundance for a given sterile

neutrino rest mass uniquely fixes the value of θ1 for a particular choice of L6. The

X-ray flux, F, associated with the decay of N1 is then proportional to sin2 (2θ1)M5
1.

We refer the reader to Venumadhav et al. (2016) and Lovell et al. (2016b) for a

more comprehensive discussion of the sterile neutrino model.

2.3 The Copernicus Complexio simulations

In this section, we provide an overview of the initial conditions and modelling of

the WDM component in our simulations.
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2.3.1 The simulation set-up

The N-body simulations presented in this chapter are part of the COpernicus

COmplexio (COCO) simulation programme (Hellwing et al., 2016a) being carried

out by the Virgo Consortium. This is a set of cosmological “zoom-in” simulations

(Katz & White 1993; Frenk et al. 1996), as was done in the GIMIC simulations

(Crain et al. 2009). The parent simulation, called the COpernicus complexio LOw

Resolution (or COLOR) simulation, followed the evolution of 4.25 billion particles

in a periodic box of size 70.4 h−1 Mpc. We extracted a roughly spherical region

of radius ∼ 18h−1 Mpc, and centred on the location (42.2,51.2,8.8) h−1 Mpc in

the COLOR volume. Both COLOR and COCO assume cosmological parameters de-

rived from the seven-year Wilkinson Microwave Anisotropy Probe (WMAP 7) data

(Komatsu et al. 2011), with the parameters: Ωm = 0.272, ΩΛ = 0.728, h = 0.704,

ns = 0.967 and σ8 = 0.81. Here, Ω{m,Λ} represents the present-day fractional con-

tribution of matter and the cosmological constant respectively, in units of the crit-

ical density ρc = 3H2
0/8πG, h = H0/100km/s/Mpc is the dimensionless Hubble

parameter, ns is the spectral index of the primordial power spectrum, and σ8 is

the linear rms density fluctuation in a sphere of radius 8 h−1 Mpc at z = 0.

Dark matter particles with three different masses are used in regions simu-

lated at different resolutions within the parent simulation volume. Initially, the

high-resolution region has a shape similar to an amoeba which approximates a

sphere of radius ∼ 17.4h−1 Mpc at the present time. It contains 12.9 billion par-

ticles of mass 1.135× 105 h−1 M�. The volume surrounding this region contains

the medium- (3.07× 106 h−1 M�) and low-resolution (1.96× 108h−1 M�) particles.

We have taken care to minimise contamination of the high-resolution region by

lower mass particles and all the haloes discussed in this study are entirely made

up of the high-resolution particles. The gravitational softening was kept fixed at

ε ∼ 230 h−1 pc for the high-resolution particles, increasing by a factor of 10 each

time for the medium- and low-resolution particles.

The simulation ran from z = 127 to z = 0 using the GADGET-3 code, which

is an updated version of the publicly available GADGET-2 code (Springel et al.,

2001a; Springel, 2005). Phase information for the creation of the initial conditions
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for both COCO-WARM and COCO-COLD was obtained from the public Gaussian

white noise field PANPHASIA (Jenkins 2013), and perturbations thereafter were

calculated using the second-order Lagrangian Perturbation Theory (2LPT) algo-

rithm presented in Jenkins (2010). The details of the simulation, along with the

PANPHASIA phase descriptor, are summarised in Table 2.1.

The distinctive feature of WDM particles are non-negligible thermal velocities

at early times, which result in free streaming that washes out perturbations in the

matter distribution below the free streaming scale (Bond & Szalay 1983; Schneider

et al. 2012; Benson et al. 2013). As a result, we expect the abundance, distribution

and internal structure of WDM haloes to be different from those of CDM haloes.

Indeed, thermal velocities introduce a limit to the fine-grained phase space den-

sity in dark matter haloes, creating cores in the density profile (Macciò et al. 2012;

Shao et al. 2013). However, as shown in these papers, the cores produced by re-

alistic thermal relics are only a few parsecs in size, and thus not astrophysically

relevant. In our simulations we can neglect these thermal velocities, which at

z = 0 are of the order of a few tens of metres per second (Lovell et al., 2012) so,

over the course of the simulation, which starts at z = 127, the particles would

travel only a few kiloparsecs, comparable to the mean interparticle spacing of the

high-resolution particles.

The WDM power spectrum of density fluctuations is often modelled by the

transfer function, T(k), relative to the CDM case:

PWDM(k) = T2(k)PCDM(k) . (2.3.2)

We approximate T(k) using the fitting formula provided by Bode et al. (2001):

T(k) =
(

1 + (αk)2ν
)−5/ν

, (2.3.3)

where α and ν are constants. As computed by Viel et al. (2005), for k < 5 h−1 Mpc,

the value ν = 1.12 provides the best-fitting transfer function. The value of α is
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dependent on the mass of the WDM particle (Viel et al. 2005):

α = 0.049
[mWDM

keV

]−1.11
[

ΩWDM

0.25

]0.11 [ h
0.7

]
h−1 Mpc, (2.3.4)

and determines the scale of the cutoff due to free streaming in the WDM power

spectrum relative to CDM. It should be noted that this transfer function is a fit to

the full thermal relic power spectrum, obtained by solving the Boltzmann equa-

tion.

As we can see in Eq. 2.3.4, the “warmer” the dark matter particle (i.e., the

lower its rest mass is), the larger the scale at which the cutoff in the power spec-

trum occurs.

One way to define the characteristic scale in the power spectrum is through

the “half-mode” wavenumber, khm, where the transfer function in Eq. 2.3.3 drops

by a factor of two:

khm =
1
α

(
2ν/5 − 1

)1/2ν
. (2.3.5)

The associated “half-mode mass”, Mhm, is the mean density enclosed within this

half-mode:

Mhm =
4π

3
ρ̄

(
λhm

2

)3

. (2.3.6)

For the 3.3 keV model, this occurs at around Mhm ∼ 2 × 108 h−1 M� (Colı́n

et al. 2008; Angulo et al. 2013; Viel et al. 2013). We will show later that differences

in the formation time of haloes in WDM and CDM begin to appear below ∼
2× 109 h−1 M�, approximately an order of magnitude above the half-mode mass

scale.

The power spectra used in the COCO simulations are shown as thick lines in

Fig. 2.1: CDM in black, 3.3 keV WDM in red and 7 keV sterile neutrinos with

L6 = 8.66 in blue. All three power spectra agree on large scales. On small scales,

the two warm dark matter models differ from CDM. khm for the sterile neutrino

case occurs at a very similar scale, and the cutoff has a similar shape to that for
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the thermal relic case. On smaller scales still, the sterile neutrino power spectrum

has more power than its thermal counterpart, but the differences only become

significant on scales where the amplitude is, at most, a few percent of the peak

amplitude. These differences are negligible and can be safely ignored in our sim-

ulations. The thin lines in the figure correspond to 7 keV sterile neutrino power

spectra for different values of the lepton asymmetry, L6. The L6 = 8.66 model that

we have simulated corresponds to the “coldest” possible 7 keV sterile neutrino.

2.3.2 Halo identification and matching

Haloes were identified in our simulations using the friend-of-friend (FOF) algo-

rithm (Davis et al. 1985) with a linking length of 0.2 times the mean interparticle

separation, and a minimum of 20 particles. Gravitationally-bound substructures

within these groups were then identified using the SUBFIND algorithm (Springel

et al. 2001b), although in this chapter, we will be mostly concerned with the prop-

erties of the WDM FOF groups. We determine the halo centre using the “shrink-

ing sphere” method of Power et al. (2003). In short, we recursively compute

the centre of mass of all particles within a shrinking sphere, until a convergence

criterion is met. In each iteration, the radius of the sphere is reduced by 5%,

and stopped when only 1000 particles or 1% of the particles of the initial sphere

(whichever is smaller) are left.

Comparing halo statistics between sets of simulations requires consistent def-

initions for the various properties of the haloes. In this work, we make use of

two definitions of mass: MFOF, which is the mass of all particles identified by

the algorithm as belonging to the FOF group, and M200, which is the mass con-

tained within a sphere of radius r200 (centred on the “shrinking sphere” centre

defined above), within which the average density is 200 times the critical density

of the Universe (ρc) at the specified redshift. Another common radius used to

define a halo edge is the virial radius, rvir, within which the density of the halo

ρ̄(< rvir) = ∆ρc, where ∆ ∼ 178Ω0.45
m (motivated by the spherical collapse model,

Eke et al. 1996. Note that this definition is consistent with the virial overdensity

relation in Bryan & Norman 1998). Table 2.2 summarises the total number of
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Figure 2.1: The (dimensionless) matter power spectrum for: a thermal 3.3 keV
WDM (red), a sterile neutrino of mass mνs = 7 keV and lepton asymmetry
L6 = 8.66 (blue) and CDM (black). Both the WDM and sterile neutrino power
spectra have significantly suppressed power at small scales, with the deviation
from CDM case at almost identical scales: log(k) & 1.0 h Mpc−1. Also shown as
thin coloured lines are power spectra for 7 keV sterile neutrinos with different
values of L6, as indicated in the legend.
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Simulation NFOF(z = 0) Nsubs(z = 0)

COLOR-COLD 3,961,192 4,770,041
COLOR-WARM 2,609,122 3,082,275

COCO-COLD 8,896,811 10,502,187
COCO-WARM 2,548,743 2,830,514

Table 2.2: Number of groups and subhaloes identified by the FOF algorithm and
SUBFIND in COLOR and COCO at z = 0.

groups and self-bound substructures identified at z = 0 in our simulations.

Since both COCO-WARM and its COLD counterpart were simulated using the

same initial phases, we are able to match many objects between the two simu-

lations. This also allows us to make object-by-object comparisons in addition to

comparing just statistical distributions of halo properties. In order to correctly

match the haloes we do the following: first, we take the 50 most-bound parti-

cles from a COCO-WARM halo, and look for the COCO-COLD halo in which there

are at least 25 (50%) of these particles. We then confirm the match by repeating

the same process, this time starting with the COCO-COLD haloes, in decreasing

order of mass. This results in a bijective match between haloes in the two sim-

ulations. Using this method, we are able to match around 97% of haloes with

M200 > 108 h−1 M�.

2.3.3 Spurious haloes and their removal

Number counts of haloes and subhaloes are fundamental statistics of the halo

population, so the correct identification of haloes is of primary importance. It

has been known for some time (Wang & White 2007; Angulo et al. 2013; Lovell

et al. 2014) that in simulations in which the initial power spectrum has a resolved

cutoff, as is the case for COCO-WARM, small-scale structure is seeded in part by

the discreteness of the particle set. In other words, a substructure finder will

identify density peaks that have arisen not as a result of gravitational instabilities



2.3. The Copernicus Complexio simulations 29

from a cosmological perturbation, but rather due to gravitational instability from

noise. These artificial fragments can often by identified “by eye” as they tend

to be regularly spaced along filaments of the mass distribution. They produce

a power-law-like upturn at small masses in the WDM mass function. Since this

is just a numerical (and resolution-dependent) artefact of our WDM simulations,

care must be taken to identify these spurious haloes and, if appropriate, remove

them from the halo catalogue. While it is, in principle, possible to eliminate these

structures by increasing the resolution of the simulation, this is computationally

prohibitive: Wang & White (2007) have shown that the mass at which spurious

structures dominate the mass function scales with the number of particles in the

simulation, N, as M ∝ N−1/3.

Lovell et al. (2014) developed an algorithm to identify spurious clumps in

WDM simulations. A large number of them can be removed by performing a

mass cut below a resolution-dependent scale, as suggested by Wang & White

(2007):

Mlim = 10.1ρ̄ d k−2
peak , (2.3.7)

where d is the mean interparticle separation and kpeak is the spatial frequency

at which the dimensionless power spectrum, ∆2(k), has its maximum. Apply-

ing this condition on its own would also remove some genuine haloes that form

below this scale. Lovell et al. (2014) refined this criterion by also making a cut

on the basis of the shapes of the initial Lagrangian regions from which WDM

haloes form. They find that the spurious candidates tend to have much more flat-

tened configurations in their (unperturbed) initial positions than genuine haloes,

as judged from a CDM simulation. Defining the sphericity, s, of haloes as the axis

ratio, c/a, of the minor to major axes in the diagonalised moment of inertia tensor

of the initial particle load, the sphericity cut is made such that 99% of the CDM

haloes at that redshift lie above the threshold.

Following exactly the methodology of Lovell et al. (2014), we clean the COCO-
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WARM catalogue as follows: (1) remove all (sub)haloes with shalf−max < 0.165 2,

irrespective of mass; (2) for those that pass (1), remove (sub)haloes with Mmax <

0.5Mlim. Here, Mmax is the maximum mass attained by a (sub)halo during its

evolution, and shalf−max is the sphericity (= c/a) of the (sub)halo at the half-

maximum mass snapshot. This is chosen so as to identify a (sub)halo at a time

well before it falls into a larger host, when its particles are subject to tidal strip-

ping. The factor of 0.5 in condition (2) is calibrated by matching between reso-

lutions in the AQUARIUS simulations (see Lovell et al. 2014 for details). Having

done so, we find that over 91% of the (FOF) haloes formed in COCO-WARM are in

fact spurious, and are rejected from the halo catalogue when computing proper-

ties like mass functions. The elements of this section are summarised in Fig. 2.2.

2.4 Results

In both cold and warm models, dark matter haloes assemble in a hierarchical

way, acquiring mass by merging with other haloes and by smoothly accreting

ambient mass (e.g. Press & Schechter, 1974; Frenk et al., 1985; Lacey & Cole, 1993;

Wechsler et al., 2002). In this section, we focus on global halo properties such as

formation times, abundance and internal structure. We make a direct compari-

son between our cold and warm dark matter models. On scales much larger than

the WDM suppression scale in the initial power spectrum, we expect the proper-

ties of haloes to be very similar in the two cases, but differences should become

increasingly important at ∼ 2× 109 h−1 M� and below.

2.4.1 Redshift of formation

The absence of primordial perturbations below the cutoff scale in the WDM power

spectrum induces differences in the formation times of the smallest haloes. We

can visualise these differences directly by examining the images displayed in

2The criterion shalf−max < 0.165 is appropriate for haloes identified at z = 0; for higher redshifts,
one needs to determine the 1% sphericity cut at that redshift.
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Figure 2.2: Number density of haloes in the sphericity vs. maximum mass space
in COCO-WARM at z = 0. The dashed black lines show the cuts on sphericity and
mass that we use to clean the halo catalogue. Rejected (spurious) candidates are
those that fail the cuts in the manner described in the text.
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Figure 2.3: Redshift evolution of the projected dark matter density in COCO-COLD
(left) and the 3.3 keV COCO-WARM Universe (right). From top to bottom, the top
three panels show snapshots at z = 10,z = 6,z = 1 of the projected mass density in
cubes of side 2 h−1 Mpc, centred on the most massive group at z = 0. The bottom
panels show zooms of a 5× 1010 h−1 M� halo at z = 0 in a cube of side 150 h−1 kpc.
The emergence of small haloes at early times is apparent in the CDM case, when
the WDM distribution is much smoother. The formation of large haloes occurs
at roughly the same time in the two simulations and the subsequent growth of
these haloes is similar in the two cases. In the zoom shown in the bottom panel,
the lack of substructure in the WDM case compared to its CDM counterpart is
stark.
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Fig. 2.3. At early times, the projected density in COCO-WARM (right panels) is vis-

ibly smoother than the equivalent projection in COCO-COLD (left panels), which

has a “grainier” appearance owing to the very large number of haloes below

∼ 109 h−1 M� that form in this case, well before the first objects have collapsed in

COCO-WARM. Thus, the onset of the structure formation process in this simula-

tion is delayed relative to its CDM counterpart.

In order to quantify the different halo formation epochs in COCO-WARM and

COCO-COLD, we trace the evolution of each FOF group through its merger tree,

and define the redshift of formation as the first time when the mass of the most

massive progenitor exceeds half the final FOF mass: M (zform) = M (z = 0)/2

(e.g. Harker et al. 2006; Neto et al. 2007). Other definitions of halo formation time

also exist in the literature (e.g. Navarro et al. 1996, 1997), which should be borne

in mind when making comparisons.

The result, for all haloes in COCO-WARM (including spurious objects) and

COCO-COLD is shown in Fig. 2.4. The formation redshifts of haloes of mass

M200 & 2 × 109 h−1 M�, are very similar in COCO-WARM and COCO-COLD, as

expected. The difference between the two begins to manifest itself below a mass

of M200 ∼ 2× 109 h−1 M�, an order of magnitude above the half-mode mass scale

for a 3.3 keV WDM particle (c.f. § 2.3.1). For these smaller haloes, zform is lower for

WDM than CDM. The sudden upturn in the WDM zform for M200 < 108 h−1 M�

(shown in the open red circles) is a signature of the spurious haloes described

in § 2.3.3. From here on, we will exclude these spurious haloes and only show

results from the cleaned COCO-WARM sample. The difference in formation times

is a subject we will revisit when comparing the concentration-mass relations of

WDM and CDM in § 2.4.4. Note that in this figure, we include all haloes, and not

necessarily matched between CDM and WDM, which is why the medians at the

largest mass bins are not exactly identical.

We find that the delay in the formation time of COCO-WARM haloes of a given

mass, relative to COCO-COLD, is well described by the fitting function:

zWDM
form

zCDM
form

=

(
1 + a

Mhm

M200

)−b
, (2.4.8)
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where Mhm is the half-mode mass introduced in § 2.3.1, a = 1.23 and b = 0.56.

This fit is shown as the thin red line in Fig. 2.4.

2.4.2 Differential halo mass functions

Counting the number of dark matter haloes as a function of their mass is one

of the simplest and most important population statistics that one can use to dis-

tinguish between WDM and CDM models, since fewer haloes will form in the

former close to the half-mode mass.

In Fig. 2.5, we show the build-up of the halo population as a function of red-

shift in COCO-COLD (solid lines) and COCO-WARM (dashed lines). The shaded

regions and error bars represent the Poisson uncertainty in both cases. Spurious

haloes have been omitted from the WDM differential halo mass function (dHMF)

at each redshift, using the methodology outlined in § 2.3.3. The edge of the grey

region marks the nominal resolution limit of our simulation which corresponds to

a halo with at least 300 particles within r200 (M200 ∼ 3.4× 107 h−1 M�). This 300-

particle limit was derived by comparing the mass function of COCO-COLD with

that of its lower-resolution counterpart COLOR-COLD. Below this limit, the results

of the simulations become increasingly unreliable. The results at high masses are

noisy because of the small number of high-mass haloes formed in the relatively

small volume of our simulations.

The general trend across redshifts is similar: for haloes with M200 > 2× 109 h−1 M�,

the dHMF in COCO-WARM and COCO-COLD are almost identical. The abundance

of haloes below this mass scale is strongly suppressed in COCO-WARM, to the

extent that, at z = 10, there are 5 times fewer ∼ 108 h−1 M� haloes than in COCO-

COLD. The delayed non-linear structure formation below ∼ 2× 109 h−1 M� can

also be seen from the fact that there are as many haloes with M200 = 108 h−1 M�

in COCO-WARM at z = 10, as there are haloes with M200 = 6 × 108 h−1 M� in

COCO-COLD at that redshift.

Within the CDM paradigm, there are a number of analytic predictions for

the differential halo mass function (dHMF), notably the Press-Schechter formula

(Press & Schechter 1974; Bond et al. 1991; Lacey & Cole 1993), and the ellipsoidal
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Figure 2.4: The median redshift of formation of all FOF groups in COCO-WARM
and COCO-COLD, as a function of the halo mass, M200. The redshift zform is de-
fined in the text. The error bars / shaded region represent the bootstrapped errors
on the median in each mass bin in COCO-WARM and COCO-COLD respectively. As
expected, there is good agreement at the high-mass end, whereas the differences
between CDM and WDM become apparent below ∼ 2× 109 h−1 M�. The thin
red line is a fit to the COCO-WARM redshift of formation, using Eq. 2.4.8.
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Figure 2.5: The redshift evolution of the halo mass function in COCO-COLD and
COCO-WARM. The solid lines show the CDM results, with the shaded regions rep-
resenting the associated 1σ Poisson errors. The dashed lines with error bars rep-
resent the equivalent relation from COCO-WARM, with spurious haloes removed.
The different colours show results for a selection of redshifts, as indicated in the
legend. The grey shaded region corresponds to haloes with fewer than 300 parti-
cles within r200.
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collapse model (ST; Sheth & Tormen 1999, although this model is not fully ana-

lytic since it is tuned to numerical simulations). The dHMF is given by:

dn
dlog M

=
ρ̄

M
f (ν)

∣∣∣∣
dlogσ−1

dlog M

∣∣∣∣ , (2.4.9)

where f (ν) is the so-called halo multiplicity function and for hierarchical cosmolo-

gies has a universal form (see e.g. Jenkins et al., 2001; Reed et al., 2007; Tinker

et al., 2008; Angulo et al., 2012). In the ST formalism, it is approximated by:

f (ν) = A

√
2qν

π

[
1 + (qν)−p

]
e−qν/2. (2.4.10)

Here, ν≡ δ2
c (z)/σ2(M), A = 0.3222,q = 0.707 and p = 0.3. In linear theory, δc(z)≡

1.686/D(z), where D(z) is the linear growth rate of perturbations. The value of

δc is appropriate for the Einstein-de Sitter model, but differs slightly in ΛCDM

due to a weak dependence on Ωm(z). Finally, σ2(M) is the variance in the mass

density field on mass scale, M, given by:

σ2(M) =
∫ dk

k
∆2(k)W̃2(k, M) . (2.4.11)

Here, W̃(k, M) is the Fourier transform of a window function containing mass M,

and ∆2(k) is the dimensionless power spectrum as defined in Fig. 2.1.

In the Press-Schechter and Sheth-Tormen formalisms, the rms fluctuation am-

plitude, σ2(M), is assumed to be a monotonically increasing function of M. This

is no longer true for the truncated power spectrum of WDM, so care must be

taken when choosing an appropriate window function. In the CDM, W(k, M)

is usually chosen to be the real-space spherical top-hat function, a choice that re-

sults in an excellent match to the dHMF in cosmological N-body simulations. The

same for WDM predicts an excess of low-mass haloes compared to simulations

(Bode et al. 2001; Menci et al. 2012; Schneider et al. 2012, but see also Schneider

et al. 2013). This problem was solved by Benson et al. (2013), who generalised

the (extended) Press-Schechter formalism by using the correct solution for the

excursion set barrier first-crossing distribution in WDM models. Rather than the
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top-hat real-space window function, they used a sharp k-space filter for WDM, so

that the variance, σ(M), remains flat up to the half-mode mass and then declines

with increasing mass (see Fig. 2.6). In this formalism the smoothing scale, R, is

defined as:

R =
a
ks

, (2.4.12)

where ks = 2πκ/α, α as defined in Eq. 2.3.4, κ = 0.361 and a = 2.5. Benson et al.

(2013) choose the free parameters such that the theoretical mass function turns

over at the same scale as the halo mass function from simulations. This choice of

parameters should be applicable to all thermal WDM models, since the effect of

the WDM suppression is captured in the value of α (Eq. 2.3.4).

In Fig. 2.7, we compare the z = 0 dHMF for COCO-COLD (blue squares), the

full COCO-WARM (genuine and spurious objects; green diamonds), the spurious

COCO-WARM objects only (yellow stars) and the genuine COCO-WARM haloes

only (red circles).

The solid and dashed black lines in Fig. 2.7 show the ST predictions for the

mass functions in CDM and WDM respectively. For M200 > 2× 109 h−1 M�, the

mass functions for CDM and WDM trace one another exactly, as expected. Be-

low this mass, the WDM mass function begins to peel off from the CDM case,

reaching half the CDM amplitude at M200 ∼ 2× 108 h−1 M�. This agrees with the

half-mode mass scale, Mhm, introduced in § 2.3.1. The raw WDM mass function

(green diamonds) is entirely dominated by the spurious objects (yellow stars) be-

low ∼ 4× 107 h−1 M�, where the mass function shows an artificial upturn. On

the other hand, the cleaned WDM sample, represented by the red circles, contin-

ues to fall off smoothly from the regime free of artificial haloes. The feature at

∼ 2× 107 h−1 M� could be related to the cut, Mmax = 3.2× 107 h−1 M�, applied

as part of the cleaning procedure (§ 2.3.3), but, in any case, this is very close to the

resolution limit which is also the mass scale at which the spurious haloes begin

to dominate the mass function.

The main conclusion to be drawn from Fig. 2.7 is that above the resolution

limit, the modified ellipsoidal collapse model reproduces the WDM mass func-
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tion remarkably accurately, over nearly 6 orders of magnitude in mass.

2.4.3 Halo density and mass profiles

Spherically-averaged radial density profiles provide the simplest and most direct

descriptor of halo structure. We calculate profiles in radial shells equally-spaced

in log (r/r200). As we discussed in § 2.3.2, haloes of mass above 108 h−1 M� can

be bijectively matched in COCO-WARM and COCO-COLD. To compare density

profiles in the two models, we stack the individual profiles of matched and dy-

namically relaxed haloes in narrow bins of halo mass of width ∆ log(M200) = 0.3.

To determine whether or not a halo is relaxed, we make use of the criteria for

dynamical equilibrium set out by Neto et al. (2007): (1) the displacement of the

centre of mass from the potential centre should be less than 0.07rvir and (2) less

than 10% of the mass within rvir should be in the form of substructure.

The stacked differential density profiles are shown in Fig. 2.8 for a variety of

mass bins, with the ratio of the densities shown in the bottom panels. For masses

sufficiently larger than∼ 2 × 109 h−1 M�, we expect negligible differences in the

properties of CDM and WDM haloes: this is apparent in mass bins with M200 >

1011 h−1 M�. Systematic differences in the density profiles begin to appear at

around M200∼ 5× 1010 h−1 M�: the WDM haloes have slightly but systematically

lower central densities than their CDM counterparts. This halo mass is two orders

of magnitude higher than the half-mode mass, and an order of magnitude higher

than the scale at which the mass functions begin to differ (Fig. 2.7). The difference

in central density grows as the mass decreases and reaches ∼ 30% at the smallest

mass bin shown, M200 ∼ 1.4× 109 h−1 M�. We discuss the physical reason for

this in the next section.

It is now well established that the density profiles of dark matter haloes in

general are well described by the NFW profile (Navarro et al. 1996, 1997):

ρ (r)
ρc

=
δc

(r/rs) (1 + r/rs)
2 , (2.4.13)

where δc is a characteristic overdensity and rs is a scale radius. These two param-
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Figure 2.8: Stacked spherically-averaged density profiles in COCO-WARM (red)
and COCO-COLD (blue). For each mass bin we compare the profiles of only re-
laxed, matched haloes in the two simulations; the number in each bin is indi-
cated in each subpanel. The vertical dashed line represents the convergence ra-
dius, rconv, and filled symbols indicate the range of the profile above this limit,
whereas open symbols denote the radial range below it. The dashed red and blue
lines are NFW fits to the WDM and CDM profiles respectively. Note that the
density profiles have been scaled by (r/r200)

2 so as to reduce the dynamic range
on the vertical axis. The bottom panels show the ratio of the WDM and CDM
densities in each bin.
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Figure 2.9: Same as Fig. 2.8, but with Einasto fits to the COCO-WARM and COCO-
COLD density profiles.
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eters are strongly correlated and depend only on halo mass (Navarro et al. 1997).

The NFW form is a nearly universal profile in the sense that it approximately

fits the profiles of relaxed haloes of any mass formed by gravitational instability

from all the initial conditions and cosmological parameters that have been tested

so far. The universality of the NFW profile is intimately related to the way in

which haloes are assembled (Ludlow et al. 2013).

We fit NFW profiles to the stacked density profiles of COCO-WARM and COCO-

COLD in Fig. 2.8, between the radial range defined by the Power et al. (2003)

convergence radius, rconv (defined as the radius within which the relaxation time

is of the order of the age of the Universe), and r200, minimising the following

quantity:

σ2
fit =

1
Nbins − 1

Nbins

∑
i=1

[lnρi − lnρNFW (δc;rs)]
2 . (2.4.14)

We obtain the best-fitting values of the scale radius, rs, which defines the halo

concentration, c200 = r200/rs. This parameter provides a unique characterisation

of the NFW density profile; the values of c200 for the stacked profiles are quoted

in Fig. 2.8. There is a clear trend in that for large halo masses, where the den-

sity profiles in COCO-WARM and COCO-COLD are similar, the concentrations are

nearly identical but, for masses below ∼ 5× 1010 h−1 M�, the concentrations of

WDM haloes are systematically lower than those of CDM haloes.

In many cases, even better fits to the density profile are provided by a formula

first used by Einasto (1965) to describe star counts in the Milky Way. This for-

mula, which has an additional free parameter, was dubbed the “Einasto profile”

by Navarro et al. (2004), who showed that it provides a very good fit to CDM

haloes:

ln
(

ρ

ρ−2

)
= −2

α

[(
r

r−2

)α

− 1
]

, (2.4.15)

where ρ−2 is the density at r = r−2, the radius at which the logarithmic slope of the

profile is −2 (or where r2ρ has its maximum). The parameter r−2 in the Einasto

profile is analogous to the scale radius, rs, of the NFW profile. This allows an
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equivalent definition of halo concentration, c200 = r200/r−2. The parameter α (not

to be confused with the one in Eq. 2.3.4) is a shape parameter that controls the

curvature of the profile in the inner regions. A value of α ' 0.17 results in a good

match to CDM haloes over a wide range of masses (Navarro et al., 2004; Gao

et al., 2008).

This is demonstrated in Fig. 2.9, which is similar to Fig. 2.8, but with Einasto

profiles fitted instead of NFW profiles. It is apparent that the shape parameter,

α, allows a better fit to the halo density profiles in both COCO-WARM and COCO-

COLD, especially in the inner parts. It is also interesting to note that the concen-

trations inferred from the Einasto profile fits tend to be slightly lower than those

inferred from the NFW profile fits especially at higher masses.

In Fig. 2.10 we compare the ratio of M200 values for individually matched

haloes in COCO-WARM and COCO-COLD at the present day. We consider only

haloes with M200 > 108 h−1 M� for which we have almost complete matching

(∼ 97%) between the two simulations, and plot the ratio, MWDM
200 /MCDM

200 as a func-

tion of MCDM
200 . The solid red line shows the median ratio, whereas the dashed red

lines represent the 16-th and 84-th percentiles. The masses are very similar for

objects > 5× 1010 h−1 M�, where the ratios agree to within 1%. For masses lower

than this, WDM haloes are systematically less massive than their CDM counter-

parts, with the deficit in WDM halo mass reaching∼ 30% at MCDM
200 = 109 h−1 M�.

Haloes of these masses in WDM form later than their CDM counterparts and thus

have less time to grow.

In Fig. 2.11 we show the cumulative radial distribution of mass in haloes in

COCO-WARM (red lines) and COCO-COLD (blue squares). The ratios are shown

in the lower panels. From Fig. 2.10, we expect the cumulative profiles to be very

similar at r/r200 = 1 except in the lowest mass bin, where WDM haloes are slightly

(∼ 10%) less massive than their CDM matches. The same trend seen in the density

profiles is apparent here: for M200 < 5× 1010 h−1 M�, the profiles are less concen-

trated in the central regions in COCO-WARM than in COCO-COLD. The reason for

this difference is discussed in the next section.
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2.4.4 The concentration-mass relation

As mentioned in the previous section, the density profile of a dark matter halo

is characterised by its concentration. As a result of their hierarchical formation

process, the inner parts of haloes in CDM and WDM are essentially in place even

before the bulk of the halo mass is assembled (Wang et al., 2011). The concen-

tration reflects the mean density of the Universe at the epoch when these inner

regions are in place and the earlier a halo forms, the higher its concentration is

(Navarro et al. 1997).

In § 2.4.3, we found that the Einasto profile provides a slightly better fit to

the density profiles of WDM and CDM haloes than does the conventional NFW

profile. Furthermore, Einasto fits are less sensitive to the radial fitting range (Gao

et al., 2008, but see also Ludlow et al. 2013). For these reasons, we proceed to

derive the concentration-mass relation in our simulations using fits of the Einasto

profile to the density profiles of individual haloes (not the stacks). Again, fitting is

performed between the convergence radius, rconv, and r200, while minimising the

rms of the fit:

σ2
fit =

1
Nbins − 1

Nbins

∑
i=1

[lnρi − lnρEin (ρ−2;r−2;α)]2 . (2.4.16)

To obtain the halo M200− c200 relation we first split the haloes into bins equally

spaced in logarithmic mass. We then fit an Einasto profile to each halo individ-

ually, removing all unrelaxed haloes according to the Neto et al. (2007) criteria.

We then find the median halo concentration in each mass bin and estimate its

uncertainty using bootstrap resampling.

Fig. 2.12 shows the (median) concentration-mass relations for COCO-COLD

(dotted lines and shaded regions) and COCO-WARM (points with error bars) at

redshifts z = 0,0.5,1,2,3 and 4 (different colours as indicated in the legend). These

relations display the same qualitative behaviour seen in the density profiles in

Fig. 2.11. For haloes with mass M200 > 1011 h−1 M�, the concentrations of CDM

and WDM haloes agree well over all redshifts. For masses below this value,

WDM haloes are less concentrated than their CDM counterparts at all redshifts.
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Figure 2.10: Ratio of halo mass (M200) for all (relaxed and unrelaxed) matched
haloes above M200 > 108 h−1 M� in COCO-WARM and COCO-COLD, as function of
MCDM

200 . The solid red line shows the median relation in bins of MCDM
200 , whereas

the dashed red lines indicate the 16-th and 84th percentiles.
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Figure 2.11: Stacked cumulative mass profiles of relaxed, matched haloes in dif-
ferent mass bins for WDM (solid red lines) and CDM (blue squares). The lower
panels show the ratio of the WDM mass to the CDM mass as a function of radius
from the centre of the halo (in units of r200). For haloes with M200 > 1011 h−1 M�,
the mass profiles are nearly identical, but below M200 ≤ 5 × 1010 h−1 M� they
differ noticeably.
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This is a direct result of the later formation epoch of haloes of a given mass in

WDM, and reflects the fact that the mass within r−2 in WDM haloes is assembled

when the background density of the Universe is lower than in the CDM case.

Whereas the CDM halo concentrations continue to increase as power laws

towards lower masses, reflecting hierarchical growth, the WDM halo concentra-

tions turn over at M200 < 5 × 1010 h−1 M� and eventually begin to decrease (see

also Schneider et al., 2012; Macciò et al., 2013). This echoes the finding in Fig. 2.11

that the mass in the central regions of WDM haloes begins to fall below that in the

CDM case roughly below this mass. This mass is an order of magnitude larger

than the mass scale at which the mass functions begin to differ (∼ 2× 109 h−1 M�,

see Figs. 2.4, 2.7). This result is not entirely surprising: the concentration is sen-

sitive to the inner parts of the profile and it is this inner mass (which we can

roughly identify with the matter contained within r−2) which is assembled later

in WDM than in CDM, while most of the mass actually lies in the outer parts of

the halo.

The lower panel of Fig. 2.12 shows the ratio of the concentrations in COCO-

WARM and COCO-COLD, cWDM
200 /cCDM

200 . There are two interesting features of note:

firstly, for all redshifts, the downturn in the WDM halo concentrations occurs

at roughly the same halo mass, M200 ∼ 5× 1010 h−1 M�; and secondly, at fixed

mass, the ratio decreases with decreasing redshift. The fact that the mass at which

WDM halo concentrations begin to peel-off from the CDM relation is almost in-

dependent of redshift reflects the narrow redshift range in which the inner parts

of WDM haloes form.

In COCO-WARM we also find that the evolution of the mass-concentration rela-

tion over redshift can be approximated using a simple functional form motivated

by Eq. 2.4.8 (see Schneider et al., 2012), with an extra redshift-dependent compo-

nent:

cWDM
200

cCDM
200

=

(
1 + γ1

Mhm

M200

)−γ2

× (1 + z)β(z) . (2.4.17)

Here, Mhm is the half-mode mass, z is the redshift of interest, γ1 = 60, γ2 = 0.17

and β(z) = 0.026z− 0.04. The predictions of our model are shown in the upper
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panel of Fig. 2.12 using the thin colour lines. While the model does not fully

capture the relatively flat relationship at z = 3 and 4 in COCO-WARM, it generally

reproduces the trends in the simulation and provides a good fit up to z = 2, over

nearly 5 orders of magnitude in halo mass.

2.4.5 The shapes and spins of haloes

In this section we examine the shapes and spins of WDM haloes. The shapes

are most commonly quantified by the triaxiality, defined through the halo inertia

tensor:

Iij = mp

N200

∑
n=1

xn,ixn,j , (2.4.18)

where N200 is the number of particles within r200, mp is the mass of the simulation

particle, and xn,i is the ith coordinate of the n−th particle relative to the halo cen-

tre. The eigenvalues of the inertia tensor define the axial lengths of an equivalent

uniform density ellipsoid, a ≥ b ≥ c, which can be related to those of the halo

itself (Bett et al. 2007). The sphericity is defined as c/a (as in § 2.3.3): the higher

its value, the less aspherical the ellipsoid’s projection. The triaxiality is defined

as T = (a2 − b2)/(a2 − c2): large values correspond to prolate ellipsoids, small

values to oblate ellipsoids.

The results for our simulations are shown in Fig. 2.13, where blue represents

CDM and red WDM, with the top panel comparing the median triaxiality, and the

lower the median sphericity. Errors on the median quantities were obtained by

bootstrap resampling. Previous N-body simulations of CDM haloes have shown

that triaxiality correlates with halo mass, with triaxiality decreasing with decreas-

ing halo mass (Frenk et al. 1988; Allgood et al. 2006; Muñoz-Cuartas et al. 2011;

Macciò et al. 2013). This trend reflects, in part, the younger dynamical age of

more massive haloes. Fig. 2.13 shows that the same trend is present for WDM

haloes but below M200 ∼ 1010 h−1 M�, WDM haloes are slightly less triaxial than

their CDM counterparts.

A more significant trend is revealed when comparing the spin of haloes in the
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Figure 2.12: The median concentration-mass relation and its redshift evolution
for haloes in COCO-COLD and COCO-WARM. The colour dotted lines show the
median relation over redshift for CDM haloes, as indicated in the legend. The
shaded regions represent the errors in the median, as estimated by bootstrap re-
sampling. The points with the error bars show the corresponding redshift relation
in WDM. Only relaxed haloes are included. The thin colour lines show the results
of the fitting formula introduced in Eq. 2.4.17.
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two simulations. The spin is best characterised by the parameter, λ, defined as:

λ =
J
√
|E|

GM5/2 (2.4.19)

(Peebles, 1969), where J is the magnitude of the angular momentum of the halo, E

is its total energy and M is the mass (which we take to be M200). Haloes acquire a

net angular momentum through tidal torques during growth in the linear regime

which can be subsequently modified and rearranged by mergers (Peebles, 1969;

Doroshkevich, 1970; White, 1984). Since the merger histories are different for

CDM and WDM haloes, we might expect some differences in their final angular

momentum configurations. In particular, given that tidal forces associated with

mergers tend to redistribute angular momentum from the central parts of haloes

to the rest of the halo, the smaller frequency of mergers in WDM might facilitate

the formation of extended spinning galactic disks (Frenk et al., 1988; Navarro &

Benz, 1991; Navarro & White, 1994) 3.

The spin parameters in our two simulations are compared in the top panel of

Fig. 2.14. Previous cosmological CDM simulations showed a very weak corre-

lation between spin and halo mass, with a median value of λ ≈ 0.033, across a

wide range of halo masses (Davis et al., 1985; Barnes & Efstathiou, 1987; Warren

et al., 1992; Steinmetz & Bartelmann, 1995; Cole & Lacey, 1996; Mo et al., 1998;

Bett et al., 2007). Our COCO-COLD simulation reproduces this trend and extends

it to lower masses, M200 = 108 h−1 M�.

For M200 > 5× 1010 h−1 M�, the λ values for WDM haloes are almost iden-

tical to those of their CDM counterparts. However, for smaller halo masses λ

decreases systematically with decreasing mass and is lower than the CDM value

by almost 30% at M200∼ 108 h−1 M�. This is consistent with the results of Bullock

et al. (2002), who found that three out of four haloes below the WDM cutoff in

their simulation had lower values of λ than the equivalent CDM matches. Note

3We note that the inability of many early simulations to form extended disks in the CDM
model – the so-called “angular momentum” problem – is readily solved when appropriate pre-
scriptions for supernovae feedback are included in the simulations (see e.g. Okamoto et al., 2005;
Scannapieco et al., 2011).
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Figure 2.14: Top panel: the median halo spin-mass relation at z = 0 for COCO-
WARM (red points) and COCO-COLD (blue line). Errors on the median for the
WDM (shown by error bars) and for CDM (shown as the shaded region) haloes
were calculated by bootstrap resampling. Bottom panel: the relative contribu-
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black squares show the ratio (CDM to WDM) of the median spin parameters
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which when multiplied together appropriately yield the thick green line, which
show the ratio of the geometric means of λCDM and λWDM. As expected, the
squares trace out the ratio of the geometric means. Note that ratios of all quan-
tities are taken between the bijectively matched COCO-WARM and COCO-COLD
haloes.
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that in the top panel of Fig. 2.14 we include all haloes, not necessarily matches,

which explains why in some of the largest mass bins, the median spins are not ex-

actly the same in WDM and CDM. In addition, we only include haloes with more

than 1000 particles within r200 since particle shot noise dominates the estimates

of angular momentum for low particle numbers (Frenk et al. 1988; Bett et al. 2007,

although we use a more conservative lower limit than the latter’s choice of 300

particles).

To investigate why the spins of dwarf galaxy haloes are lower in WDM than in

CDM we consider the relative contributions of energy, angular momentum and

M200 to λ, illustrated in the bottom panel of Fig. 2.14, this time for bijectively

matched haloes. The ratio of the median spin parameters is shown by the black

squares and the ratio of the geometric means of the quantities that enter into

Eq. 2.4.19 are shown by the other colour lines (magenta for JCDM/JWDM, cyan for

|ECDM/EWDM|1/2 and yellow for (M200,CDM/M200,WDM)5/2). The combination of

these ratios in Eq. 2.4.19 should reproduce the ratio of spin parameters, and this

is shown in the thick green line. Part of the reason for lower WDM spins below

∼ 1010 h−1 M� is their slightly lower total energy which results from their lower

concentration. The dominant factor, however, is their lower angular momentum

relative to CDM haloes, ∼ 25% at 108 h−1 M�. The cause of this could be related

to the differing merger histories in WDM and CDM and the likely more quiescent

mass accretion of WDM haloes which can result in smaller spins (Bullock et al.,

2002; Vitvitska et al., 2002; Hetznecker & Burkert, 2006).

2.5 Summary and discussions

We have presented results from the Copernicus Complexio project, a set of cosmo-

logical “zoom” simulations in which the dark matter is assumed to be either CDM

(COCO-COLD) or a thermal 3.3 keV WDM particle (COCO-WARM). The combina-

tion of mass resolution and volume of our simulations provides a rich statistical

sample of haloes over seven decades in mass. This WDM model is particularly

interesting because it corresponds to the “warmest” particle allowed by current
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Lyman−α constraints (Viel et al., 2013) and has a linear power spectrum cutoff

similar to that for the “coldest” 7 keV sterile neutrino, evidence for which has

recently been claimed to be found in galaxies and clusters (Bulbul et al., 2014b;

Boyarsky et al., 2014). This cutoff – manifest in haloes of M200 ≤ 2× 109 h−1 M�

for our assumed particle mass – is reflected both in the population statistics and

the structure of individual haloes.

The formation of structure begins significantly later in COCO-WARM than in

COCO-COLD. Across all redshifts, differences in the halo mass function between

COCO-WARM and COCO-COLD begin to appear at a mass roughly one order mag-

nitude larger than the nominal half-mode mass. Below ∼ 2 × 109 h−1 M�, the

WDM mass function declines rapidly but there are still some small haloes present

at surprisingly large redshifts: at z = 10, for example, there are almost 5 times as

many haloes with M200 ∼ 108 h−1 M� in COCO-COLD than in COCO-WARM. We

find that the z = 0 halo mass functions in both COCO-WARM and COCO-COLD

are well described by previous analytic fits to the CDM halo mass function (e.g.

Sheth & Tormen, 1999) down to our resolution limit, M200 ∼ 3× 107 h−1 M�, pro-

vided that the window function used to compute the mass variance, σ2(M), in

the WDM case is calculated using a sharp k-space filter, as described by Benson

et al. (2013).

Just as for COCO-COLD, the spherically averaged density profiles of haloes in

COCO-WARM, down to dwarf galaxy scales, are well described by NFW or Einasto

profiles. The concentration-mass relation, M200 − c200 (where we have defined

concentration using the Einasto profile), in COCO-WARM begins to peel off from

the corresponding relation in COCO-COLD at a mass of∼ 5× 1010 h−1 M�, reflect-

ing the later formation epoch of haloes of a given mass in WDM compared to

CDM. This mass is larger than the scale below which the WDM mass function is

suppressed because halo concentration is determined by the epoch when the in-

ner regions of a halo form. The mass at which the concentration begins to differ in

the two simulations is almost independent of redshift out to z' 4. At the present

day, the typical concentration of a halo of mass 109 h−1 M� in COCO-WARM is

c200 ' 8 compared to c200 ' 12.7 in COCO-COLD. The trends and evolution of the
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concentration-mass relation can be approximated by the fitting formula provided

in Eq. 2.4.17.

The generally triaxial shapes of haloes in COCO-WARM and COCO-COLD are

very similar. However, we find that, for masses below ∼ 5× 1010 h−1 M�, WDM

haloes have slightly lower values of the spin parameter, λ, (up to 30%) than their

CDM counterparts.

In principle, gravitational lensing is one of the most promising techniques

for distinguishing between WDM and CDM, as it directly probes the halo mass

function (see for example Vegetti & Koopmans 2009). In the parent volumes of

the COCO simulations, the non-linear power spectrum, P(k), for COLOR-WARM is

suppressed by ∼ 3% relative to COLOR-COLD on scales k ≤ 5hMpc−1 (consistent

with the simulations of Viel et al. 2012, which bracket the 3.3 keV model). While

the weak lensing signal on these scales should be measurable by surveys such as

DESI and EUCLID, this difference is smaller than the differences introduced by

baryon effects on the dark matter-only P(k), which is of the order of 5− 10%, as

seen in hydrodynamic simulations (van Daalen et al., 2014; van Daalen & Schaye,

2015; Hellwing et al., 2016b). It is therefore necessary to use hydrodynamic sim-

ulations to check for any residual signal of the nature of the dark matter species,

both in the power spectrum and in other observable properties of the galaxy pop-

ulation.





Chapter 3

Substructure and galaxy formation in
warm dark matter simulations

3.1 Introduction

Non-linear structure formation in thermally produced WDM cosmologies has

been extensively studied using simulations in the past few years (e.g. Colı́n et al.

2000; Bode et al. 2001; Viel et al. 2005; Knebe et al. 2008; Schneider et al. 2012;

Lovell et al. 2012; Macciò et al. 2013; Lovell et al. 2014; Reed et al. 2015; Colı́n

et al. 2015; Yang et al. 2015; Bose et al. 2016a; Horiuchi et al. 2016). In this chapter

we use the Copernicus Complexio (COCO-WARM) high resolution N-body simula-

tion to investigate the properties of subhaloes in a WDM model. The observed

clumpiness of the Lyman-α forest sets a lower limit to the mass of a dominant

thermally produced WDM particle of mWDM ≥ 3.3 keV at 95% confidence (Viel

et al., 2013); this is consistent with a lower limit set by the observed abundance of

satellites in the Milky Way (Kennedy et al., 2014; Lovell et al., 2016b). The lower

limit to the mass of thermal WDM was increased to mWDM ≥ 4.35 keV (95% confi-

dence) by Baur et al. (2016), who repeated the analysis of Viel et al. (2013) with an

updated sample of QSO spectra from SDSS-III. These limits, however, depend on

uncertain assumptions for thermal history for the intergalactic medium (Garzilli

et al., 2015). In our work, as described in Chapter 2, the initial power spectrum

was chosen to correspond to a thermal 3.3 keV WDM model. This turns out to

have been a fortuitous choice since this power spectrum is very similar to that

of the coldest 7 keV sterile neutrino, so constraints on this model can be readily

59
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extended to all sterile neutrino models with a 7 keV particle mass.

The formation times, mass functions, spins, shapes, mass profiles and concen-

trations of haloes in the COCO simulations were presented in Bose et al. (2016a)

(Chapter 2). Here we focus on the properties of halo substructures.

The COCO simulations are amongst the highest resolution WDM N-body sim-

ulations of a cosmological volume performed to date (see § 2.3). Previous simula-

tions at higher mass resolution have focussed on properties of individual haloes

(e.g. Lovell et al., 2014; Colı́n et al., 2015). Other WDM simulations of compara-

ble mass resolution to ours (e.g. Schneider et al., 2013) followed smaller volumes.

The advantage of the relatively high mass resolution and large volume of COCO

is that it provides a large statistical sample of well-resolved dark matter haloes

spanning nearly seven decades in mass. In particular, resolving the halo mass

function down to ∼ 107 − 108 h−1 M�, as COCO does, is a crucial input to studies

that attempt to distinguish amongst different types of dark matter using strong

gravitational lensing (Vegetti & Koopmans, 2009; Li et al., 2016).

Our simulations are numerically converged down to a halo peak circular ve-

locity of Vmax,≥ 10kms−1, thus allowing statistically meaningful studies of the

satellites of the Milky Way. Furthermore, the high resolution of our simulations

makes it possible to construct accurate merger trees of even such small haloes

and, as a result, we can calculate their observable properties, using the Durham

semi-analytical galaxy formation model, GALFORM (Cole et al., 2000; Lacey et al.,

2016), a flexible and effective method to implement the best current understand-

ing of galaxy formation physics into an N-body simulation.

The layout of this chapter is as follows. In § 3.2 we investigate the main prop-

erties of subhaloes: their population statistics, distribution and internal structure.

In § 3.3 we describe the GALFORM model and the modifications required for the

WDM case, and compare to predictions for the CDM case. Finally, we summarise

our results in § 3.4. A projected density map of the COCO volume at z = 0 is shown

in Fig. 3.1.
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Figure 3.1: Projected density map in a slice of dimensions
(70.4× 70.4× 1.5) h−1 Mpc centred on the COCO high resolution region at
z = 0. The intensity of the image scales with the number density of particles in
the region. The side panels show zooms of a sample of haloes identified at z = 0,
matched between COCO-WARM (left) and COCO-COLD (right)
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3.2 Dark matter substructure

In this section we study the dark matter substructure in the COCO-COLD and

COCO-WARM simulations, quantifying their abundance, distribution and internal

structure. The general trend we find is that the largest subhaloes in COCO-WARM

and COCO-COLD are indistinguishable but differences become increasingly sig-

nificant below ∼ 5× 109 h−1 M�.

3.2.1 The abundance of subhaloes

Fig. 3.2 shows the present-day differential mass function of subhaloes, dn/dlog(Msub),

as a function of mass, Msub, in COCO-COLD (blue) and COCO-WARM before (green)

and after (red) the removal of artefacts. The lower panel shows the ratio of abun-

dances in COCO-WARM relative to COCO-COLD. The mass function, dn/dlog(Msub),

is normalised by noting that the irregular volume of the high resolution region

has a mean density roughly equal to the mean matter density in the Universe.

Combining this with the total mass represented by high resolution particles, we

can estimate the volume of the high resolution region.

For Msub > 1010 h−1 M� the three mass functions agree very well. These haloes

have masses well above the free streaming scale and no spurious objects form on

these scales. Below Msub ∼ 5 × 109 h−1 M�, the COCO-WARM mass function

begins to peel off from COCO-COLD and by ∼ 3× 108 h−1 M� it is suppressed by

a factor of two. This mass is close to the “half-mode mass” defined in Eq. 2.3.6,

which, in the case of a 3.3 keV thermal relic, has a value: Mhm ≈ 2.5× 108 h−1 M�.

Fig. 3.2 shows that the abundance of subhaloes in COCO-WARM is suppressed

by a factor of three at Mhm. Spurious subhaloes begin to dominate the mass

function at a mass an order of magnitude below Mhm. Before that happens, and

still well above the resolution limit, at Msub ∼ 108 h−1 M�, the “cleaned” COCO-

WARM mass function (i.e. after subtraction of spurious objects) is already a factor

of 5 below the CDM case and shows a sharp turnover. The lower panel in the

figure shows these trends more clearly. Removal of the spurious subhaloes is

clearly important to obtain an accurate prediction for the abundance of low-mass
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Figure 3.2: Upper panel: the number density of subhaloes as a function of
subhalo mass, Msub, for COCO-COLD (blue), COCO-WARM with all objects in-
cluded (green), and COCO-WARM with spurious structures removed (red). The
shaded region around each curve represents the Poisson uncertainty in the num-
ber counts in that bin. The vertical black dashed line marks the half-mode mass,
Mhm, for the 3.3 keV thermal relic. The grey shaded region demarcates the res-
olution limit of our simulations, set at 300 particles, which was determined by
requiring convergence of the mass function compared with the lower-resolution
version of COCO-COLD, COLOR-COLD. Lower panel: the ratio of the two COCO-
WARM mass functions to the COCO-COLD mass function.
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galaxies in WDM models.

The statistics in COCO are good enough to allow the subhalo mass function

to be calculated for different parent (host) halo masses. The result is shown in

Fig. 3.3, which gives the (stacked) differential mass functions of subhaloes as a

function of the relative mass, µ ≡ Msub/M200 (i.e., the subhalo mass in units of

the parent halo mass), in three bins of host halo mass. The COCO-COLD functions

are shown with solid lines and the COCO-WARM ones with dashed lines. In both

cases, the lines become thinner for subhaloes with fewer than 300 particles. The

lower panel of Fig. 3.3 shows the ratio of the differential subhalo mass functions

in COCO-WARM to those in COCO-COLD.

The solid lines in the upper panel of Fig. 3.3 illustrate the invariance of the

CDM subhalo mass function, when expressed in terms of µ, previously seen by

Springel et al. (2008), Gao et al. (2012) and Cautun et al. (2014). The relation is well

described by a nearly universal power law (the turnover in the mass function

towards low masses is due to incompleteness caused by the resolution of the

simulations.) The scale invariance is broken in the case of COCO-WARM, where

the mass function deviates from a power law at larger values of µ for smaller host

haloes. This can be understood from the fact that, when expressed in units of the

host halo mass, the cutoff scale (or, equivalently, Mhm) is reached earlier in lower

host masses. The abundance of subhaloes is only slightly affected for a host of

mass M200 = 1013 h−1 M�, but is strongly suppressed for M200 = 1011 h−1 M� (for

which µ = 10−3 corresponds to Msub = 108 h−1 M�).

Given the ambiguity in the definition of subhalo mass, an alternative prop-

erty used to count bound substructures is in terms its value of Vmax , defined as

the maximum of the circular velocity curve. Furthermore, this quantity is mea-

surable for many real satellites (where the rotation curve of the satellite can be

measured) so it provides a better way than the mass to compare the simulations

to observations. The upper panel of Fig. 3.4 shows the “Vmax function,” that is the

number of subhaloes as a function of ν≡Vmax/V200, where V200 is the circular ve-

locity of the parent halo at r200. Springel et al. (2008) found that the convergence

of the Vmax function improves markedly when Vmax is corrected for the effects of
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Figure 3.3: Upper panel: the stacked differential subhalo mass function as a
function of parent halo mass, expressed in units of Msub/M200. The CDM case
is shown with solid lines and the WDM case with dashed lines. The different
colours correspond to different host halo mass ranges as indicated in the legend.
The lines become thinner when a given subhalo has fewer than 300 particles i.e.,
when µ × Mhost

200,mid > 300mp, where Mhost
200,mid is the centre of the host halo mass

bin, and mp is the high resolution particle mass. Lower panel: ratio of the differ-
ential subhalo mass functions in WDM to those in CDM.
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gravitational softening:

Vcorr
max = Vmax

[
1 + (ε/rmax)

2
]1/2

. (3.2.1)

This correction is important for subhaloes whose rmax (the radius at which Vmax oc-

curs) is not much larger than the gravitational softening, ε. The gravitational

softening adopted in COCO (ε = 230 h−1 pc) is quite small and we have checked

that the correction does not have a significant impact on our results. For CDM,

the scale invariance of the subhalo abundance expressed in terms Vmax is much

clearer than when the abundance is expressed in terms of mass, as may be seen by

comparing Figs. 3.3 and 3.4, confirming the earlier results of Moore et al. (1999);

Kravtsov et al. (2004); Zheng et al. (2005); Springel et al. (2008); Weinberg et al.

(2008); Klypin et al. (2011); Wang et al. (2012b); Cautun et al. (2014)

It is clear from Figs. 3.3 and 3.4 that, when expressed in dimensionless units

such as µ or ν, the subhalo abundance in CDM is close to universal, indepen-

dent of parent halo mass. In WDM the cutoff in the power spectrum breaks this

approximately self-similar behaviour and the subhalo abundance is no longer a

universal function.

3.2.2 Radial distribution

Perhaps surprisingly, Springel et al. (2008) found that the normalised radial num-

ber density distribution of subhaloes is approximately independent of subhalo

mass (see also Ludlow et al., 2009; Hellwing et al., 2016a). Han et al. (2016) has

provided a simple analytical model that explains this feature, as well as the shape

of the subhalo mass function in CDM, as resulting from tidal stripping. The sub-

halo radial distributions in COCO are shown in Fig. 3.5, which gives the radial

number density of subhaloes in different mass ranges, normalised by the mean

number density of subhaloes within r50 at z = 0. The distributions are averaged

over 6 parent haloes with mass in the range 1 × 1013 h−1 M� < MHost
50 < 3 × 1013 h−1 M�,

which are the best resolved in the simulation. The radial positions of the sub-

haloes are given in units of r50. Only subhaloes resolved with more than 300
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Figure 3.4: As Fig. 3.3, but with subhalo abundance expressed as a function of
Vcorr

max /V200, where Vcorr
max is the maximum circular velocity, Vmax, corrected for the

effects of gravitational softening as indicated in the legend (see main text). The
lines become thinner when Vmax < 10kms−1, which is the circular velocity to
which the simulations are complete.
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particles are included.

The dashed black lines in Fig. 3.5 give a fit to the CDM subhalo number den-

sity profiles using the Einasto profile (Einasto 1965; Navarro et al. 2004):

ln
(

n
n−2

)
= −2

α

[(
r

r−2

)α

− 1
]

, (3.2.2)

where n−2 is the characteristic number density at the scale radius r = r−2. The

values of r−2 and shape parameter, α, given in the legend. The fit is to COCO-

COLD profile and the same curve is reproduced in the COCO-WARM panel.

The fit to the CDM subhalo profile also provides an excellent fit to the WDM

profile, particularly at large radii. There are, however, differences of detail. The

distribution of the more massive (Msub > 109 h−1 M�) subhaloes beyond r > 0.2r50

is very similar in COCO-COLD and COCO-WARM. This regime is unaffected by

the free streaming cutoff in COCO-WARM. Differences in the radial distribution

of these more massive subhaloes can be attributed to small statistics: only six

∼ 1013 h−1 M� haloes contribute to the average shown in Fig. 3.5. The profiles of

the less massive subhaloes (Msub < 109 h−1 M�) in WDM are somewhat steeper

towards the centre than those in CDM. These subhaloes have masses below the

cutoff scale, Mhm, and their properties are affected by the cutoff. In particular,

they form later than their CDM counterparts of the same mass today and, as a

result, they have lower concentrations. These subhaloes experience more mass

loss from tidal stripping after infall.

The approximate agreement of the subhalo radial distributions in COCO-COLD

and COCO-WARM as well as the differences of detail are consistent with the ana-

lytic model proposed by Han et al. (2016). In this model, the z = 0 radial number

density of subhaloes, n, with mass, m, at distance, R, from the host halo centre is

given by:

dn(m, R)
dlnm

∝ m−αRγρ(R) , (3.2.3)

where α is the slope of the subhalo mass function evaluated at m, ρ(R) is the den-

sity profile of the host dark matter halo, γ = αβ, and β ∼ 1 for an NFW density
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Figure 3.5: Stacked radial number density profiles of subhaloes, n(r), in different
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mass range within r50 (〈n〉50). The profiles are plotted as a function of the dis-
tance from the host halo centre (with mass MHost

50 = [1− 3] · 1013 h−1 M�). Left:
CDM; right: WDM. The dashed black line shows the Einasto profile fit to the
COCO-COLD profiles, with the fit parameters r−2 and α quoted in the plot. Only
subhaloes with more than 300 particles are shown.
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profile. The subhalo number density profile is suppressed relative to the host den-

sity profile by the factor Rγ. In COCO-COLD, the subhalo mass function follows a

single power law but, in COCO-WARM, it has the same slope as in COCO-COLD for

Msub ≥ 1010 h−1 M� and a shallower slope below that (see Fig. 3.2). A shallower

slope results in a smaller value of α and therefore γ. Eq. 3.2.3 then predicts that,

compared to CDM, the radial number density profile of small mass subhaloes

should be suppressed less relative to the halo density profile for subhaloes. This

explains why the two lowest subhalo mass bins in Fig. 3.5 exhibit steeper radial

density profiles than the two highest mass bins.

An alternative way to examine the spatial distribution of substructures is to

plot the fraction of mass within a given radius that is contained in substructures.

This is shown in Fig. 3.6 for different ranges of host halo mass in COCO-COLD

and COCO-WARM. The radial distributions have roughly the same shape in the

two cases but the subhalo mass fractions are systematically lower in COCO-WARM

than in COCO-COLD. In both cases, the substructure mass fractions are higher in

more massive host haloes, particularly in the inner regions. For example, for host

haloes of mass MHost
50 = (1− 3) × 1013 h−1 M� resolved substructures in COCO-

WARM contain about 10% of the halo mass within r = r50, but only about 4% for

host haloes of mass MHost
50 = (1 − 3) × 1011 h−1 M�. For reference, haloes (and

subhaloes) contain 48% of the total mass in the simulation in COCO-WARM and

56% in COCO-COLD. In CDM simulations these fractions depend on resolution,

but not so in COCO-WARM where the cutoff in the power spectrum is resolved.

3.2.3 Internal structure

The density profiles of WDM haloes and subhaloes are cuspy and well described

by the NFW (Navarro et al., 1997) form (Lovell et al., 2012; Schneider et al., 2012).

However, the later formation times of WDM haloes of mass near the cutoff scale,

compared to their CDM counterparts of the same mass, causes them to be less

concentrated. In Bose et al. (2016a) we characterised the density and mass pro-

files of haloes in COCO-WARM over a range of halo masses and obtained the

concentration-mass relation for WDM haloes (see also Ludlow et al. 2016). In
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Figure 3.6: The mass fraction in substructures as a function of dimensionless ra-
dial distance from the halo centre, r/r50, for COCO-COLD (solid blue) and COCO-
WARM (dashed red) at z = 0. The four different panels show results for stacks
of host haloes of different mass as indicated in the legend. Only subhaloes with
more than 300 particles are included. The value of r50 quoted in each panel is the
mean over all haloes in each (COCO-COLD) mass bin (the values are similar for
COCO-WARM).
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summary, the density profiles of the largest haloes in COCO-WARM (roughly two

orders of magnitude above Mhm) are indistinguishable from their matched haloes

in COCO-COLD, but the profiles of haloes of mass M200 < 7× 1010 h−1 M� have

systematically lower concentrations. In contrast with the power-law concentration-

mass relation in CDM, the relation in WDM turns over below ∼ 1010 h−1 M�.

Calculating the concentration of subhaloes from their density profiles is not

straightforward because the mass of a subhalo and therefore its “edge” are am-

biguous. As Springel et al. (2008) showed, the size calculated by the SUBFIND

algorithm (that is the radius of the saddle point in the density profile) coincides

with the ‘tidal’ radius. Defining the concentration of the subhalo using this ra-

dius is not particularly useful because its value varies along the orbit. A more

useful measure of subhalo concentration is the ratio Vmax/rmax. In both WDM

and CDM, the relation between Vmax and rmax has a lower normalisation for sub-

haloes than for “field haloes” because of tidal stripping.

The fractional change in Vmax between the moment of infall and the present

day is shown in Fig. 3.7 for subhaloes (within r50) of the most massive haloes in

COCO-COLD and COCO-WARM, as a function of the present day maximum circu-

lar velocity, Vz=0
max (see also Diemand et al., 2007b; Peñarrubia et al., 2008). The

largest subhaloes, with Vz=0
max ≥ 50 kms−1, experience a reduction in Vmax by a fac-

tor of 1.25− 1.30 after infall in both COCO-COLD and COCO-WARM. Subhaloes of

lower mass show significant differences between the two simulations. For exam-

ple, at Vz=0
max = 20 kms−1, COCO-WARM subhaloes have experienced a reduction

in Vmax by a factor of ∼ 1.35 since infall, compared to ∼ 1.25 for COCO-COLD

subhaloes.

The rmax−Vmax relations in COCO-COLD and COCO-WARM are shown in Fig. 3.8.

For large subhaloes the two are very similar but the relations begin to diverge

at values of Vmax below of a few tens of kilometres per second, depending on

the mass of the host halo. In this regime, haloes of a given Vmax have larger

rmax in COCO-WARM than in COCO-COLD and are therefore less concentrated. In

both COCO-COLD and COCO-WARM subhaloes are more concentrated than field

haloes, as a result of tidal stripping, but the difference between field haloes and
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subhaloes is larger in COCO-WARM than in COCO-COLD. This reflects the greater

tidal stripping experienced by COCO-WARM subhaloes, which have lower con-

centrations when they fall into the host halo. As a result, the concentrations of

subhaloes in COCO-WARM increase more than those in COCO-COLD after infall.

Overall, however, COCO-WARM subhaloes of a given mass (or Vmax ) still have

lower concentrations than COCO-COLD subhaloes. As noted in Hellwing et al.

(2016a), the importance of tidal stripping depends weakly on host halo mass: at

a given Vmax, the reduction in rmax between field haloes and subhaloes is slightly

larger for larger host halo masses.

3.3 Galaxy formation with warm dark matter

Our analysis so far has been restricted to the dark matter properties of a 3.3 keV

thermal relic or, equivalently, a 7 keV sterile neutrino with leptogenesis parame-

ter, L6 = 8.66, the “coldest” 7 keV sterile neutrino compatible with the observed

3.5 keV X-ray line. While future gravitational lensing surveys may provide a

direct way to measure the mass function of dark matter substructures and thus

distinguish CDM from WDM (Vegetti & Koopmans, 2009; Li et al., 2016), it is

worth investigating whether CDM and WDM can be distinguished with current

observations. At high redshift, the observed clumpiness of the Lyman-α forest

has been used to rule out WDM models with thermally produced particles of

mass mWDM ≤ 3.3 kev (Viel et al., 2013). As mentioned in § 3.1, constraints ob-

tained from the Lyman-α forest depend on assumptions for the thermal history

of the IGM.

To compare the models with other astronomical data we need to populate the

dark matter subhaloes with galaxies. This can be done in three ways. One is to

use empirical prescriptions such as “abundance matching” (see e.g. Reed et al.,

2015) but Sawala et al. (2015) have shown that this technique breaks down for

halo masses < 1010 h−1 M� – precisely the scale of interest in WDM. The failure

of abundance matching in this regime is due to the physics of reionisation, which

inhibits the formation of stars in low mass haloes after the epoch of reionisation,
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and to the effects of supernovae feedback. A second technique is hydrodynamical

simulations but these are computationally expensive and, to date, only limited

WDM cosmological simulations have been carried out (e.g. Herpich et al. 2014;

Carucci et al. 2015; González-Samaniego et al. 2016). The third approach, the

one we use here, is semi-analytical modelling of galaxy formation, a flexible and

powerful technique that requires only modest computational resources.

3.3.1 The GALFORM semi-analytic model

The Durham semi-analytic model of galaxy formation, GALFORM, was introduced

by Cole et al. (2000) and has been upgraded regularly as our understanding of

the physical processes involved in galaxy formation improves and better obser-

vational constraints are obtained. For example, Baugh et al. (2005) introduced a

top-heavy IMF in bursts, Bower et al. (2006) introduced AGN feedback and La-

gos et al. (2011) introduced a star formation law that depends on the molecular

gas content of the ISM. The most recent version of the model Lacey et al. (2016)

includes all of these revisions.

We apply the Lacey et al. (2016) version of GALFORM to halo merger trees in

COCO-COLD and COCO-WARM. This model includes detailed treatments of gas

cooling, star formation, metal production, galaxy mergers and instabilities, black

hole growth and feedback from energy released by stellar evolution and AGN.

This model was previously used by Kennedy et al. (2014) to set a lower limit to

the mass of thermally produced WDM particles.

Details of the modelling in GALFORM may be found in the papers presenting

the original formulation of the model (Cole et al., 2000) and its latest version

(Lacey et al., 2016). Here we use this latest model for both COCO-COLD and COCO-

WARM without any modification1.

1Kennedy et al. (2014) found that a small modification to one of the supernovae feedback
parameters was required for their WDM models to produce acceptable bJ and K-band luminosity
functions at z = 0. The particle mass in the model we are considering here, 3.3 keV, is sufficiently
large that not even this minor modification is required.
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3.3.2 Field and satellite luminosity functions

The galaxy luminosity functions in the bJ and K-bands in COCO-COLD (see also

Guo et al. 2015) and COCO-WARM are compared with observational data in Fig. 3.9.

The parameters controlling supernova feedback in GALFORM are calibrated to re-

produce the observed luminosity functions at z = 0 in these bands. The two mod-

els predict essentially identical luminosity functions except at faint magnitudes

where there are slightly fewer galaxies in WDM, as a result of the lower abun-

dance of small mass haloes in this model. At the faintest magnitudes plotted the

difference is only about 25%, smaller than the observational error bars. Due to

the small volume of the COCO high resolution region, there are only a few bright

galaxies in the simulations, as reflected in the large Poisson errors bars at the

brightest magnitudes.

Fainter galaxies than those plotted in Fig. 3.9 are only detectable in the nearby

Universe, particularly in the Local Group. Only a few tens of satellites have been

discovered orbiting the haloes of the Milky Way and Andromeda. This number

is much smaller than the number of small subhaloes seen in CDM simulations

of galactic haloes and this observation has often been used to motivate WDM

models. In fact, it has been shown, using a variety of modelling techniques, that

most of these small subhaloes are not able to make a visible galaxy either because

their gas is heated by reionisation or expelled altogether by supernovae explo-

sions. The earliest explicit demonstration of this simple physics was provided by

the semi-analytic models of Bullock et al. (2000) and Benson et al. (2002) and the

latest by the APOSTLE hydrodynamic simulations of Sawala et al. (2016b).

In fact, WDM models can be constrained by the observed number of faint

satellites because if the particle mass is too small not enough subhaloes would

form to account even for the observed number of satellites in the Milky Way

(which may be underestimated because of incompleteness in current surveys).

Kennedy et al. (2014) used this argument to set constraints on the allowed masses

of thermally produced WDM particles. These constraints depend on the assumed

mass of the Milky Way halo because the number of subhaloes scales with the mass

of the parent halo (as seen, for example, in Fig. 3.3 above). Kennedy et al. (2014)
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Figure 3.9: The z = 0 bJ- (upper panel) and K-band (lower panel) luminosity func-
tions from GALFORM applied to halo merger trees constructed from the COCO-
COLD (blue) and COCO-WARM (red) simulations (see text for details). The sym-
bols represent observational data from Norberg et al. 2002, Cole et al. 2001 and
Driver et al. 2012.
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WARM (red). Each panel shows the average luminosity function for host haloes
in three bins of mass, M200 = 1 − 3 × 1012 h−1 M�, 1.5 − 1.7 × 1012 h−1 M� and
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been corrected for incompleteness and sky coverage by Koposov et al. 2008.
For MV < −11, the histogram shows the direct observational data from Mc-
Connachie 2012. The black diamond is an extrapolation of the luminosity func-
tion to MV ∼ −1 after including the ultra-faint dwarf satellites recently discov-
ered by DES (Jethwa et al. 2016).
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find that all thermal WDM particle masses are ruled out (at 95% confidence) if

the halo of the Milky Way has a mass smaller than 7.7× 1011 h−1 M�, while if the

mass of the Galactic halo is greater than 1.3 × 1012 h−1 M� only WDM particle

masses larger than 2 keV are allowed.

We perform a similar analysis here. Fig. 3.10 shows the cumulative number

of satellites as a function of V-band magnitude, MV , in COCO-COLD and COCO-

WARM for three bins of host halo mass, with median values of 1.2× 1012, 1.6× 1012

and 2.0 × 1012 h−1 M�. The luminosity function of satellites in the Milky Way,

shown by the black solid lines in the figure, include the 11 classical satellites.

For MV < −11, the data has been obtained from the direct observations of Mc-

Connachie (2012). The abundance of ultra-faint satellites found in the SDSS has

been corrected for incompleteness and partial sky coverage by Koposov et al.

(2008). The faint objects recently discovered by DES (Bechtol et al., 2015; Drlica-

Wagner et al., 2015) are represented by the black diamond following the analysis

of (Jethwa et al., 2016) who find that of the 14 newly-detected satellites, 12 have

> 50% probability of having been brought in as satellites of the LMC (at 95%

confidence). Jethwa et al. (2016) extrapolate the detected population to estimate

that the Milky Way should have ∼ 180 satellites within 300 kpc, in addition to

70+30
−40 Magellanic satellites in the V-band magnitude range −7 < MV < −1 (68%

confidence). All observational error bars in Fig. 3.10 are Poisson errors, with vol-

ume corrections made where appropriate. In order to match the observational

selection, only satellites within 300kpc of the central galaxy are included.

The satellite luminosity functions are very similar in COCO-COLD and COCO-

WARM. Only at magnitudes fainter than MV ' − 4 does the number of satellites

in COCO-WARM begin to drop below the number in COCO-COLD. The models

agree with the data so long as the Milky Way halo mass is Mhost
200

<∼ 1.2 × 1012 h−1 M�.

For Mhost
200 ∼ 1.6 × 1012 h−1 M�, both COCO-COLD and COCO-WARM significantly

overpredict the number of satellites even at relatively bright magnitudes, MV ∼ −
10, where the known sample is unlikely to be significantly incomplete. There is

a significant difference in the abundance of satellites with magnitude MV ∼ −1,

the regime where DES has just begun to uncover ultra-faint dwarf galaxies. These
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new data could potentially be used to set strong constraints on the mass of the

WDM particle. It must be borne in mind that the exact location of this (extrapo-

lated) DES data point depends on the DES selection function, detection efficiency,

and assumptions made about isotropy in the distribution of Milky Way satel-

lites. Furthermore, although we have used a well-tested, state-of-the-art model

of galaxy formation, these conclusions depend on assumptions in the model, par-

ticularly on the treatment of reionisation and supernovae feedback (Hou et al.,

2016).

3.3.3 Evolution of the UV luminosity function

The evolution of luminosity function in the rest-frame UV traces the star forma-

tion history in the Universe. Although still rather scarce and uncertain, data now

exist out to redshift z ∼ 10. Since the formation of structure begins later in WDM

models than in CDM we might naı̈vely expect to find fewer star-forming galaxies

at high redshift in COCO-WARM than in COCO-COLD. The actual predictions are

shown in Fig. 3.11, which reveals that, in fact, the result is exactly the opposite:

at z > 5, the UV luminosity function has a higher amplitude in COCO-WARM than

in COCO-COLD. The reason for this is that, in CDM, supernovae-driven winds

limit the reservoir of cold, potentially star-forming, gas in low-mass galaxies at

early times. The brightest UV galaxies at high redshift tend to be starbursts trig-

gered by mergers of these relatively gas poor galaxies (Lacey et al., 2016). By con-

trast in WDM, the first galaxies that collapse are more massive than their CDM

counterparts and more gas rich, thus producing brighter starbursts when they

merge. This makes the formation of bright galaxies at high redshift more efficient

in WDM than in CDM.

Although both COCO-COLD and COCO-WARM somewhat underpredict cur-

rent observations at z > 7, the data have large statistical, and potentially system-

atic errors since these objects are rare and current surveys cover relatively small

volumes. If anything, COCO-WARM is closer to the data than COCO-COLD. This

result is broadly consistent with those of Dayal et al. (2015) who used a simpler

model of galaxy formation to derive the UV luminosity function in WDM models.



3.3. Galaxy formation with warm dark matter 82

−5

−4

−3

−2

−1

lo
g

(Φ
/h

3
M

p
c−

3
m

ag
−

1 )

z = 0.00

Driver et al. 2012
Wyder et al. 2005

z = 3.00

Sawicki & Thompson 2006
Reddy & Steidel 2009

−20−18−16−14−12−10
MAB(UV)− 5 · log (h)

−5

−4

−3

−2

−1

lo
g

(Φ
/h

3
M

p
c−

3
m

ag
−

1 )

z = 7.00

Ouchi et al. 2009
Oesch et al. 2010
Finkelstein et al. 2014
Bouwens et al. 2015
Bowler et al. 2014
Schenker et al. 2013
McLure et al. 2013
Bouwens et al. 2011

−20−18−16−14−12−10
MAB(UV)− 5 · log (h)

z = 10.00

Bouwens et al. 2009
Bouwens et al.2011
Bouwens et al. 2015
Oesch et al. 2014

Figure 3.11: The evolution of the UV luminosity function of all galaxies (centrals
and satellites) for z = 0,3,7,10. The red lines represents COCO-WARM and the
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et al. 2015.
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The existence of a population of star-forming galaxies in COCO-WARM at z > 8 has

the additional benefit that enough ionising photons are produced at early times

to reionise the universe by z ' 8, as required by the optical depth to reionisation

inferred from Planck (Planck Collaboration et al., 2014a). Reionisation in WDM

models is discussed in detail by Bose et al. (2016b).

Fig. 3.12 helps visualise the counter-intuitive result just described. In the left

panel we plot, as a function of redshift, the stellar mass growth, M?(z), aver-

aged over all galaxies with 1 × 107 h−1 M� < M? < 5 × 107 h−1 M� at

z = 7 in COCO-WARM (red) and COCO-COLD (blue). This range of stellar mass

corresponds to galaxies brighter than MAB (UV) ≤ − 17 in Fig. 3.11. M?(z) is

normalised to the stellar mass of the galaxy at z = 7, M?(z = 7). The stellar mass

assembly in COCO-WARM is delayed relative to that in COCO-COLD because the

earliest progenitors form later in COCO-WARM. For 12 > z > 8, the build-up of

stellar mass is gradual in both COCO-COLD and COCO-WARM, although the slope

of the mass growth is steeper in the latter i.e., more stellar mass builds up per

unit redshift in COCO-WARM than in COCO-COLD. This is supported by the right

panel of Fig. 3.12, which shows the evolution of the specific star formation rate

(sSFR) of these galaxies. COCO-WARM galaxies exhibit systematically higher sS-

FRs than COCO-COLD up to z = 8. This is consistent with our earlier suggestion

that COCO-WARM galaxies are formed out of more gas-rich progenitors. Mergers

of these gas-rich progenitors allows galaxies in COCO-WARM to “catch-up” with

those in COCO-COLD after their delayed start of star formation.

At z ≤ 3 the UV luminosity functions in COCO-COLD and COCO-WARM are

indistinguishable even down to magnitudes as faint as MAB(UV) ≈ −10. These

galaxies form in haloes of mass ∼ 1010 h−1 M�, the scale at which the subhalo

mass functions in COCO-WARM just begin to diverge from those in COCO-COLD

(see Fig. 3.2). At even fainter magnitudes (MAB(UV)≥−7, not shown), the lumi-

nosity function for COCO-WARM is strongly suppressed relative to COCO-COLD

but these magnitudes are far below the detection limits of even the JWST.

We have checked that the results in this section are not sensitive to the spe-

cific version of the GALFORM model used. The result in Fig. 3.11 holds for the
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Gonzalez-Perez et al. (2014) model, with and without the assumption of gradual

ram-pressure stripping of hot gas in satellite galaxies (Font et al., 2008), as well as

for the Hou et al. (2016) model in which supernova feedback is much weaker than

in our standard model at high-z and becomes progressively stronger at lower red-

shift. The simpler model by Dayal et al. (2015) is forced to match the observed UV

luminosity function at high-z and cannot, by construction, exhibit any differences

between WDM and CDM.

3.3.4 Other galactic observables

In addition to the galaxy properties just discussed, we have explored a number

of others, such as colour and metallicity distributions; sizes; the Tully-Fisher rela-

tion; and spatial clustering. We do not find any significant, potentially observable

differences between COCO-COLD and COCO-WARM. This conclusion reinforces

the point that, apart from the details discussed in § 3.3.2 and 3.3.3, galaxy forma-

tion is very similar in CDM and in a 7 keV sterile neutrino (or a 3.3 keV thermal

WDM) model.

3.4 Summary and discussions

Using the Copernicus Complexio (COCO) high resolution dark matter simulations

(Hellwing et al., 2016a), we have carried out a thorough investigation of the small-

scale differences between CDM and a model with the same phases but with a cut-

off in the initial power spectrum of fluctuations that can be interpreted either as

that of the “coldest” sterile neutrino model compatible with the recently detected

3.5 keV X-ray line or as a 3.3 keV thermal particle model.

The subhalo mass functions in the two models (COCO-COLD and COCO-WARM)

are identical at high masses but the number density of COCO-WARM subhaloes be-

gins to fall below that of COCO-COLD subhaloes at ∼ 5× 109 h−1 M� and is very

strongly suppressed below ∼ 2.5× 108 h−1 M�, the half-mode mass in the initial

power spectrum, When the number counts are expressed in units of parent halo
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properties such as Msub/M200 and Vmax/V200, we find that the subhalo mass and

Vmax functions in COCO-COLD follow a nearly universal profile with little depen-

dence on host halo mass, confirming earlier results (Moore et al., 1999; Kravtsov

et al., 2004; Zheng et al., 2005; Springel et al., 2008; Weinberg et al., 2008; Wang

et al., 2012b; Cautun et al., 2014). This self-similar behaviour does not occur in

COCO-WARM.

The normalised radial distribution of subhaloes in both models is indepen-

dent of the mass of the subhaloes. In the case of COCO-WARM this behaviour

extends to the smallest subhaloes in the simulation, with Msub ' 108 h−1 M�, al-

though there is a slight steepening of their profile in the very central parts of

the halo. Our findings extend the results from the AQUARIUS and PHOENIX sim-

ulations (Springel et al., 2008; Gao et al., 2012) and lend support to the model

proposed by Han et al. (2016) in which the mass invariance of the radial distribu-

tion results from the effects of tidal stripping. The radial density profiles are well

approximated by either the NFW or Einasto forms.

Subhaloes in both COCO-COLD and COCO-WARM are cuspy and follow the

NFW form. Small-mass WDM haloes, in general, are less concentrated than CDM

haloes of the same mass reflecting their later formation epoch. For WDM sub-

haloes with Vz=0
max ≤ 50 kms−1, the difference is exacerbated because their lower

concentrations make them more prone to tidal stripping after they are accreted

into the host halo.

In order to check if the two models can be distinguished with current obser-

vations, we populated the haloes with model galaxies whose properties were cal-

culated using the Durham semi-analytic galaxy formation model, GALFORM. We

used the latest version of GALFORM (Lacey et al., 2016) without needing to adjust

any model parameters for COCO-WARM. The COCO-COLD and COCO-WARM bJ

and K-band luminosity functions at z = 0 are very similar, except at the faintest

end where there are slightly fewer dwarfs in COCO-WARM; both models give a

good match to the observations. The same is true at the fainter magnitudes rep-

resented by the satellites of the Milky Way: both models agree with current data

provided the mass of the Milky Way halo is less than M200 = 1.2× 1012 h−1 M�.
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The two models could be distinguished if the satellite luminosity function faint-

wards of MV ∼ −3 or −4 could be measured reliably because COCO-WARM pre-

dicts about half the number of satellites as COCO-COLD at these luminosities.

The only other significant difference that we have found between COCO-COLD

and COCO-WARM is in the UV luminosity function at z > 7 where there are more

UV-bright galaxies in COCO-WARM than in COCO-COLD. The qualitative differ-

ence between the UV luminosity functions in COCO-WARM and COCO-COLD is

not strongly affected by the treatment of baryon physics in the GALFORM semi-

analytic model. This difference, however (a factor of ∼ 2 at z > 8), cannot be

detected with current data. None of the other galaxy properties we examined:

colour and metallicity distributions, scaling relations, spatial clustering, etc. dif-

fer in the two models in the regime where these properties can be studied obser-

vationally.

In summary, the “coldest” sterile neutrino model compatible with the identi-

fication of the recently detected 3.5 keV X-ray line as resulting from the decay of

these particles cannot, at present, be distinguished from a CDM model by obser-

vations of galaxies, ranging from the satellites of the Milky Way to the brightest

starbursts at z = 10. The two models are drastically different in their dark matter

properties on subgalactic scales where the sterile neutrino model predicts orders

of magnitude fewer subhaloes of mass M <∼ 108 h−1 M� than produced in CDM.

These small masses are, in principle, accessible to gravitational lensing (Vegetti &

Koopmans, 2009; Li et al., 2016), and it is to be hoped that future surveys will be

able conclusively to rule out one or the other or both of these models.





Chapter 4

Reionisation in sterile neutrino
cosmologies

4.1 Introduction

From the point of view of cosmology, the defining property of keV mass ster-

ile neutrinos is that they behave as warm dark matter (WDM). In contrast to CDM,

warm particles are kinematically energetic at early times and thus free stream out

of small-scale primordial perturbations, inducing a cut-off in the power spectrum

of density fluctuations. On large scales unaffected by the free streaming cut-off,

structure formation is very similar in CDM and sterile neutrino cosmologies (and

in WDM in general), but on scales comparable to or smaller than the cut-off, struc-

ture formation proceeds in a fundamentally different way in the two cases. No

haloes form below a certain mass scale determined by the cut-off and the forma-

tion of small haloes above the cut-off is delayed (see Colı́n et al., 2000; Bode et al.,

2001; Avila-Reese et al., 2001; Viel et al., 2005; Lovell et al., 2012; Schneider et al.,

2012; Bose et al., 2016a,b)

For a 7 keV sterile neutrino, the cut-off mass is∼ 109M�. Thus, potentially ob-

servable differences from CDM would emerge on subgalactic scales and at high

redshifts when the delayed onset of structure formation might become appar-

ent. The Local Group and the early Universe are thus good hunting grounds for

tell-tale signs that might distinguish warm from cold dark matter. There is now

a wealth of observational data for small galaxies in the Local Group (e.g. Ko-

posov et al. 2008; McConnachie 2012), as well as measurements of the abundance

89
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of galaxies at high redshifts (e.g. McLure et al. 2013; Bouwens et al. 2015) and

estimates of the redshift of reionisation (Planck Collaboration et al., 2016). One

might hope that these data could constrain the parameters of WDM models (e.g.

Schultz et al., 2014; Abazajian, 2014; Calura et al., 2014; Dayal et al., 2017, 2015;

Governato et al., 2015; Lovell et al., 2016b; Maio & Viel, 2015; Bozek et al., 2016).

In this work, we address these questions using the Durham semi-analytic

model of galaxy formation, GALFORM (Cole et al., 2000; Lacey et al., 2016), applied

both to CDM and sterile neutrino dark matter. The model follows the formation

of galaxies in detail using a Monte Carlo technique for calculating halo merger

trees and well-tested models for the baryon physics that result in the formation

of visible galaxies. GALFORM predicts the properties of the galaxy population

at all times. This approach has the advantage that it can easily generate large

statistical samples of galaxies at high resolution for a variety of dark matter mod-

els which would be prohibitive in terms of computational time with the current

generation of hydrodynamic simulations.

Here, we are particularly interested in sterile neutrinos that could decay to

produce two 3.5 keV photons. We therefore fix the mass M1 = 7keV. At this mass,

the ‘warmest’ and ‘coldest’ sterile neutrino models that achieve the correct dark

matter density correspond to L6 = 700 and L6 = 8 respectively. By this we mean

that the L6 = 700 model exhibits deviations from CDM at larger mass scales than

the L6 = 8 model, which produces similar structure to CDM down to the scale of

dwarf galaxies.

For the L6 = 700 case, however, the corresponding mixing angle (which we

remind the reader is now fixed) does not lead to the X-ray decay flux required to

account for the observations of Bulbul et al. (2014b) and Boyarsky et al. (2014).

For this reason, we additionally consider the case L6 = 12, which corresponds to

the warmest 7 keV sterile neutrino model that has the correct dark matter abun-

dance and produces the correct flux at 3.5 keV. This information is summarised in

Table 4.1. Here, we also quote the characteristic “half-mode” wavenumber (c.f.

Eqs. 2.3.5 & 2.3.6), khm. We remind the reader that khm characterises the ‘warmth’

of the model. The most extreme case (L6 = 700) has khm = 16.05 h/Mpc, whereas



4.1. Introduction 91

the model closest to CDM (L6 = 8) has khm = 44.14 h/Mpc.

Fig. 4.1 shows the linear power spectrum (in arbitrary units) of these three

models (L6 = (8,12,700)), with the CDM power spectrum also plotted for com-

parison. The power spectra for the sterile neutrino models were computed by

first calculating the momentum distribution functions for these models using the

methods outlined by Laine & Shaposhnikov (2008) and Ghiglieri & Laine (2015),

and using these to solve the Boltzmann equation with a modified version of the

CAMB code (Lewis et al., 2000; Boyarsky et al., 2009a,c; Lovell et al., 2016b). The

cosmological parameters assumed are those derived from Planck Collaboration

et al. (2016): Ωm = 0.307, ΩΛ = 0.693, Ωb = 0.0483, h = 0.678,σ8 = 0.823, and

ns = 0.961. The most striking feature is how, for the same 7 keV sterile neutrino,

the scale of the cut-off (as measured by the half-mode wavenumber, k) changes

with L6. The cutoff in the L6 = 8 power spectrum occurs at a similar scale to that

introduced by a 3.3 keV thermal relic, which, at 95% confidence, is the lower limit

on the WDM particle mass set by constraints from the Lyman-α forest (Viel et al.,

2013, although see Baur et al. 2016 for a revised lower limit). The L6 = 12 case is

therefore in tension with the lower limits from the Lyman-α forest, but it should

be noted that the derived lower limits are sensitive to assumptions made for the

thermal history of the IGM (Garzilli et al., 2015).

The truncated power spectra in the three sterile neutrino models results in a

suppression in the abundance of haloes (and by extension, the galaxies in them)

at different mass scales in the different models. This is illustrated in Fig. 4.2

where we show the z = 0 halo mass functions for CDM and for L6 = (8,12,700),

as predicted by the ellipsoidal collapse formalism of Sheth & Tormen (1999). In

this model, the number density of haloes within a logarithmic interval in mass

(dn/dlogMhalo) is quantified by:

dn
dlog Mhalo

=
ρ̄

Mhalo
f (ν)

∣∣∣∣
dlogσ−1

dlog Mhalo

∣∣∣∣ , (4.1.1)

where ρ̄ is the mean matter density of the Universe, ν = δc/σ(Mhalo), δc = 1.686

is the density threshold required for collapse and σ(Mhalo) is the variance of the

density field, smoothed at a scale, Mhalo (see § 4.2.3). In the ellipsoidal collapse
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Figure 4.1: Top panel: The dimensionless matter power spectra for the different
dark matter candidates considered in this chapter. In addition to CDM, we con-
sider a 7 keV sterile neutrino with three values of L6 = (8,12,700), shown with
the colours indicated in the legend. For the same sterile neutrino mass, different
L6 values lead to deviations from CDM on different scales, with the most extreme
case being the L6 = 700 model. Bottom panel: The ratio of each power spectrum to
that of CDM.
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model the multiplicity function, f (ν), takes the form:

f (ν) = A

√
2qν

π

[
1 + (qν)−p

]
e−qν/2, (4.1.2)

where A = 0.3222,q = 0.707 and p = 0.3. Fig. 4.2 shows how the mass functions

in the sterile neutrino models peel off from CDM at different mass scales directly

related to khm. The halo masses corresponding to these wavenumbers can be

estimated by:

Mhm =
4
3

πρ̄

(
π

khm

)3

, (4.1.3)

giving Mhm =
(
1.1× 108,7.8× 108,2.3× 109) h−1 M� for L6 = (8,12,700) respec-

tively. Clearly, the largest suppression in halo abundance relative to CDM occurs

for the L6 = 700 case, and the least for the L6 = 8 case, consistent with our dis-

cussion of the significance of the characteristic scale khm. For example, at z = 0,

there are half as many ∼ 108 h−1 M� in L6 = 8 as in CDM. By comparison, there

are∼ 150 times fewer haloes at the same mass scale for L6 = 700 relative to CDM.

The L6 = 12 model lies in between these two cases, producing ∼ 20 times fewer

haloes of 108 h−1 M�.

The rest of this chapter is structured as follows. In § 4.2 we describe the astro-

physical motivation behind this work, as well as the semi-analytic model, GAL-

FORM, used in our analysis. Our results are presented in § 4.3 and our main

conclusions summarised in § 4.4.

4.2 Galaxy formation

We begin by discussing the astrophysical quantities and observables that we will

use to constrain sterile neutrino models. We then briefly introduce the specific

implementation of GALFORM that we will use to predict these quantities for both

CDM and sterile neutrino models. We build upon the ideas and methods laid out

by Hou et al. (2016, hereafter Hou15).
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Figure 4.2: The z = 0 halo mass functions for CDM and 7 keV sterile neutrino
models with leptogenesis parameter, L6 = (8,12,700), as predicted by the ellip-
soidal collapse model of Sheth & Tormen 1999, calculated using Eqs. 4.1.1 & 4.1.2.
The different cut-off scales for the sterile neutrino power spectra in Fig. 4.1 are
reflected in the different mass scales at which the corresponding halo mass func-
tions are suppressed below the CDM mass function.
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4.2.1 A galactic “tug-of-war”

One of the most important physical processes involved in galaxy formation is

supernova feedback (SNfb). By ejecting cold gas from galaxies, SNfb regulates

star formation, inhibiting galaxy formation in small mass haloes (Larson, 1974;

White & Frenk, 1991). SNfb is thought to be responsible for the relatively flat

galaxy stellar mass and luminosity functions compared to the steeply rising halo

mass function predicted by N-body simulations for ΛCDM (e.g. Jenkins et al.,

2001; Tinker et al., 2008; Kauffmann et al., 1993; Cole et al., 1994). On the smallest

scales, SNfb, in conjunction with photoionisation of gas in the early Universe, can

explain the small number of faint satellite galaxies seen around galaxies like the

Milky Way in this model (Efstathiou, 1992; Benson et al., 2003; Sawala et al., 2015).

Unless AGN contribute a significant number of ionising photons (Madau &

Haardt, 2015; Khaire et al., 2016), SNfb cannot be so strong as to suppress the

production of ionising photons at high redshift required to reionise the Universe

by z ∼ 6, as inferred from QSO absorption lines (Mitra et al., 2015; Robertson

et al., 2015) and the microwave background data (Planck Collaboration et al.,

2016). Thus, at least in CDM, the small observed number of faint galaxies sets

a lower limit to the strength of feedback, while the requirement that the Uni-

verse be ionised early enough sets an upper limit. Hou et al. (2016) found that

the simple models of SNfb usually assumed in semi-analytic models of galaxy

formation do not satisfy both these requirements, because the default prescrip-

tions are calibrated using z = 0 data and lack flexibility. They proposed instead

a more complicated model in which the strength of SNfb evolves in redshift, as

suggested by the SNfb model of Lagos et al. (2013) (see § 4.2.2 below).

Since in WDM the number of small haloes is naturally suppressed, for a model

to be viable, SNfb must be weak enough so that there are enough ionising photons

at high redshift, as well as leading to the production of a sufficient number of

satellite galaxies to account for observations in the Local Group.
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4.2.2 Supernova feedback in GALFORM

The observational data normally used to constrain and test semi-analytic models

includes galaxies with stellar mass, M? >∼ 108M�. When attempting to extend the

Lacey et al. (2016) model (which was used in Chapter 3) to lower mass galaxies,

Hou et al. (2016) found that the original prescription for SNfb had to be modified

as discussed in § 4.2.1. In the original prescription, the mass loading factor, β, de-

fined as the ratio of the mass ejection rate to the star formation rate, is assumed to

be a power law in the circular velocity, Vcirc, of the galaxy. To match the observed

satellite luminosity function and produce an acceptable metallicity-luminosity re-

lation for Milky Way satellites, Hou15 required a mass loading factor given by a

broken power law with a redshift dependence:

β =




(Vcirc/VSN)

−γSN Vcirc ≥ Vthresh

(
Vcirc/V′SN

)−γ′SN Vcirc < Vthresh,
(4.2.4)

where V′SN is chosen such that the two power laws in Eq. 4.2.4 join at Vcirc =

Vthresh, γSN = 3.2, γ′SN = 1.0, Vthresh = 50kms−1 and:

VSN =





180 z > 8

−35z + 460 4≤ z ≤ 8 .

320 z < 4

(4.2.5)

This redshift dependence is chosen to capture the overall behaviour of Lagos et al.

(2013) supernova feedback model. In the Hou et al. (2016) model, the feedback

strength is assumed to be the same as in Lacey et al. (2016) at z < 4, but is weaker

at higher redshifts and in galaxies with Vcirc < Vthresh = 50kms−1. We will refer

to this feedback scheme as the ‘EvoFb’ (evolving feedback) model.

The values of γSN and Vthresh in this model were calibrated for CDM and need

to be recalibrated for the sterile neutrino models that we are considering. We find

that the values γSN = 2.6 for L6 = 700, γSN = 2.8 for L6 = (8,12) and Vthresh =

30kms−1 for all three values of L6 provide the best-fit to the local bJ and K-band
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luminosity functions, the primary observables used to calibrate GALFORM.

4.2.3 Halo merger trees with sterile neutrinos

We generate merger trees using the extension of the Cole et al. (2000) Monte

Carlo technique (based on the extended Press-Schechter (EPS) theory) described

in Parkinson et al. (2008). In models in which the linear power spectrum, P(k),

has a cut-off, as in our sterile neutrino models, a small correction is required to

the EPS formalism: to obtain the correct variance of the density field, σ(Mhalo),

P(k) needs to be convolved with a sharp k-space filter rather than with the real-

space top-hat filter used for CDM (Benson et al., 2013). This choice results in good

agreement with the conditional halo mass function obtained in N-body simula-

tions (see, for example, Fig. 6 in Lovell et al., 2016b).

Using our Monte Carlo technique rather than N-body simulations to gener-

ate merger trees has the advantage that different sterile neutrino models can be

studied at minimum computational expense while avoiding the complication of

spurious fragmentation in filaments that occurs in N-body simulations with a

resolved cut-off in P(k) (e.g. Wang & White, 2007; Lovell et al., 2014).

4.3 Results

In this section, we present the main results of our models, consisting of predic-

tions for field and satellite luminosity functions and the redshift of reionisation.

We also investigate the sources that produce the ionising photons at high redshift.

4.3.1 Field luminosity functions

As discussed in § 4.2.2, the parameters of the SNfb model in GALFORM were

calibrated so as to obtain a good match to the present-day field galaxy lumi-

nosity functions. The bJ and K-band luminosity function in CDM and the L6 =

(8,12,700) 7 keV sterile neutrino models are shown in Fig. 4.3. In both cases we

have made use of the EvoFb feedback scheme of § 4.2.2. We also consider an ex-
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Figure 4.3: The z = 0 field galaxy luminosity functions in the bJ-band (left panel)
and the K-band (right panel) for the four dark matter models considered in this
work: CDM and 7 keV sterile neutrino models with L6 = (8,12,700). The evolv-
ing feedback (EvoFb) model is used in GALFORM. For the L6 = 700 case, we
also show an extreme model in which the feedback has been completely turned
off (‘NoFb’). The black points are observational estimates (Norberg et al., 2002;
Driver et al., 2012).
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treme model for L6 = 700, in which supernova feedback is turned off completely

(‘NoFb’; photoionisation still occurs), thus maximising the amount of gas that is

converted into stars.

In Fig. 4.3 we see that with the EvoFb scheme the observed luminosity func-

tions are well reproduced in CDM and all our sterile neutrino models. This

should come as no surprise since the EvoFb model parameters were tuned to

match these particular data. As mentioned in § ??, the L6 = 700 model, while

inconsistent with the 3.5 keV line (see Table 4.1), is interesting because it has the

most extreme power spectrum cut-off for a 7 keV sterile neutrino that produces

the correct dark matter abundance. The maximum star formation efficiency in

any model is obtained by turning off SNfb altogether. If in this limiting scenario

the L6 = 700 model produces too few faint galaxies to match the field luminosity

function, this extreme model would be strongly ruled out. As Fig. 4.3 shows, the

resultant luminosity function (shown in green) in fact overproduces faint galax-

ies.

4.3.2 Redshift of reionisation

Since the onset of halo formation occurs later in sterile neutrino models compared

to CDM (e.g. Bose et al., 2016a), star formation in dwarf galaxies is delayed (e.g.

Colı́n et al., 2015; Governato et al., 2015). Since, in addition, there are no haloes

below a cut-off mass, it is unclear that enough sources of ionising photons will

have formed to ionise hydrogen early enough to be consistent with the Planck

limits on the redshift of reionisation (Planck Collaboration et al., 2016).

To answer this question we use GALFORM to calculate the ratio of the comov-

ing number density of ionising photons produced, nγ, to that of hydrogen nuclei,

nH as:

R(z) = nγ

nH
=

∫ ∞
z ε(z′)dz′

nH
, (4.3.6)

where ε(z′) is the comoving number density of Lyman continuum photons pro-
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Figure 4.4: The ratio of the total number of ionising photons produced up to
redshift z as a fraction of the total comoving number density of hydrogen nu-
clei (solid lines in each panel). In each panel, we show the predictions for the
different dark matter models under the EvoFb scheme. The intersection of the
coloured dashed lines marks the redshift at which the Universe is 50% ionised;
the redshifts for 50% (zhalf

reion) and 100% reionisation (zfull
reion) are listed in the bottom

left of each panel. The dashed grey line and shaded grey region demarcate the
observational constraints as obtained from the Planck satellite, zhalf

reion = 8.8+1.7
−1.4 (at

68% confidence).
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duced per unit redshift. The Universe is deemed to be fully ionised at redshift

zfull
reion when the ratio in Eq. 4.3.6 reaches the value:

R(z)|full =
1 + Nrec

fesc
= 6.25. (4.3.7)

Here Nrec is the number of recombinations per hydrogen atom and fesc is the frac-

tion of ionising photons that are able to escape a galaxy into the IGM. Raičević

et al. (2011) advocate a value of Nrec = 1 based on the hydrodynamical simula-

tions of Iliev et al. (2006) and Trac & Cen (2007). Finlator et al. (2012) suggest

that photoheating would smooth the diffuse IGM and reduce the clumping fac-

tor by a factor of three compared with the value derived by Iliev et al. (2006). In

this work, we will adopt a value Nrec = 0.25 (as in Hou15), but we have checked

that our conclusions are insensitive to the exact value of this parameter. Further-

more, we assume fesc = 0.2, which is consistent with the value used by Raičević

et al. (2011). Sharma et al. (2016) present observational and theoretical evidence

in support of this choice of fesc (see also Khaire et al., 2016).

The microwave background data measure the optical depth to the time when

the Universe (re)combined. This is usually converted into an equivalent ‘redshift

of reionisation’ assuming a model of non-instantaneous reionisation. The value

quoted in Planck Collaboration et al. (2016) corresponds to zhalf
reion, the redshift at

which the Universe is half ionised. With our assumptions this corresponds to:

R(z)|half = 3.125. (4.3.8)

Reionisation suppresses galaxy formation in low mass haloes through an effect

known as photoionisation feedback. In GALFORM, this is modelled using the

approximation described in Benson et al. (2003): for haloes with virial velocity

Vvir < Vcrit, no gas cooling takes place for z < zcrit. As in Hou15, we adopt zcrit =

zfull
reion and Vcrit = 30kms−1 (Okamoto et al., 2008).

In the standard Lacey et al. (2016) prescription, SNfb is modelled as a power

law in the circular velocity of the galaxy without any dependence on redshift.

Hou15 found that this model predicts zhalf
reion = 6.1 for CDM, in conflict with the
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bounds by Planck Collaboration et al. (2016): zhalf
reion = 8.8+1.7

−1.4. We expect that ster-

ile neutrino models, in which the formation of galaxies is both suppressed and

delayed, would be in even greater conflict with the Planck observations. For this

reason, in what follows we only consider the predictions of the evolving feedback

(EvoFb) model of Hou15 (§ 4.2.2) which, at least for CDM, predicts an acceptable

value for zhalf
reion.

Fig. 4.5 shows the evolution of R(z) with redshift for CDM and sterile neu-

trino models with L6 = (8,12,700) according to GALFORM with EvoFb feedback.

In each panel, the intersection of the colour dashed lines marks zhalf
reion, where

nγ/nH = 3.125. The dashed grey line and shaded grey region mark the median

and 68% confidence intervals from Planck Collaboration et al. (2016): zhalf
reion =

8.8+1.7
−1.4. In the bottom left of each panel, we give zhalf

reion and zfull
reion predicted for

each model.

All three 7 keV sterile neutrino models have values of zhalf
reion that are broadly

consistent with the Planck data. The L6 = (12,700) models fall just outside the

lower 68% confidence lower limit and the L6 = 8 model just inside. This is a non-

trivial result given the paucity of early structure in these models compared to

CDM. Unsurprisingly, zhalf
reion is higher in CDM 1. Fig. 4.5 already hints at the rea-

son why the sterile neutrino models are able to ionise the Universe early enough.

Comparing, for example, the L6 = 700 model (bottom right panel) to CDM (top

left panel), it is clear that the evolution of log (R(z)) is steeper in the former, that

is more UV photons are produced per unit redshift in the L6 = 700 case, even

though the total number of photons at that redshift is larger in CDM. For L6 = 8,

the most ‘CDM-like’ sterile neutrino model, the gradient of log (R(z)) is shal-

lower. We will return to this feature shortly.

1We note that our results in this section contradict those by Rudakovskyi & Iakubovskyi (2016),
who find that in the 7 keV L6 = 10 model the Universe is reionised earlier than in CDM. This is
ascribed to the lack of ‘mini’-haloes in the sterile neutrino cosmology, which reduces the average
number of recombinations per hydrogen atom. In our analysis this amounts to a reduction in the
value of Nrec in Eq. 4.3.7. However, we have checked that even reducing the value of Nrec by a
factor of 10 does not affect our results significantly.
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Figure 4.5: The ratio of the total number of ionising photons produced up to
redshift z as a fraction of the total comoving number density of hydrogen nu-
clei (solid lines in each panel). In each panel, we show the predictions for the
different dark matter models under the EvoFb scheme. The intersection of the
coloured dashed lines marks the redshift at which the Universe is 50% ionised;
the redshifts for 50% (zhalf

reion) and 100% reionisation (zfull
reion) are listed in the bottom

left of each panel. The dashed grey line and shaded grey region demarcate the
observational constraints as obtained from the Planck satellite, zhalf

reion = 8.8+1.7
−1.4 (at

68% confidence).
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Figure 4.6: Properties of the sources that produce ionising photons as a function
of redshift for CDM and 7 keV sterile neutrino models with L6 = (8,12,700). The
properties shown are stellar mass, M? (top row), halo mass Mhalo (middle row)
and circular velocity (Vcirc). The median (solid lines), 5th and 95th percentiles
(error bars) are determined by weighting the contribution of each galaxy to the
total ionising emissivity at that redshift. The black vertical dashed line in each
case marks the redshift at which the Universe is half ionised.
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z = 10

Bouwens + 2011

Bouwens + 2015

Oesch + 2014
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4.3.3 The galaxies responsible for reionisation

We have seen that in spite of the delayed onset of galaxy formation, even the most

extreme 7 keV sterile neutrino model is able to ionise the Universe early enough

to be consistent with the constraints from Planck. To explore why this is so, we

show in Fig. 4.6 several properties of the sources that contribute the bulk of the

ionising photons at each redshift. Each column in the figure corresponds to a

different dark matter model, while each row corresponds to a different property

of the ionising sources: total stellar mass (M?, first row), halo mass (Mhalo, second

row) and galaxy circular velocity (Vcirc, third row). The black vertical dashed lines

mark zfull
reion, which is given in the top row in each case.

In CDM, the median stellar mass (i.e. the mass below which galaxies produce

50% of the ionising emissivity) at z = zfull
reion is ∼ 108 M�, whereas in the three

sterile neutrino models the median mass is close to ∼ 109 M�. The larger scatter

in M? and Mhalo for CDM is due to the wide range of mass of the galaxies that

contribute to the ionising photon budget. For example, at z = 10, galaxies with

mass in the range 104 M� < M? < 109 M� contribute 90% of the ionising photons,

whereas in the L6 = (12,700) models, 90% of the photons are produced by galax-

ies with mass in the range 106 M� < M? < 109 M� since very few galaxies with

M? < 106 M� form in these models. The result is that the primary sources of ion-

ising photons at high redshift in sterile neutrino are on average more massive than

in CDM.

The build-up of the galaxy population in our models is illustrated in Fig. 4.7

which shows the rest frame far-UV (1500 Å) luminosity functions at z = 7,8,9,10

in CDM and the L6 = (8,12,700) models. As noted in Hou15, in CDM the EvoFb

feedback model predicts luminosity functions that are in good agreement with

the data at all redshifts. EvoFb underpredicts the abundance of the brightest

galaxies (MAB(1500Å) < −21) for all dark matter models compared to the obser-

vations. For these galaxies, however, the data include many upper limits. Fur-

thermore, these rare luminous galaxies are not the dominant sources of ionising

photons (c.f. Fig. 4.6), so we do not expect the underprediction from the Hou15

model to impact our conclusions significantly for the redshift of reionisation in
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this work. For L6 = (12,700), the models also underpredict the abundance of

galaxies fainter than MAB(1500Å) ∼ −20 galaxies at z = 9 and z = 10. Reducing

the strength of SNfb at z > 8 slightly can bring these models into agreement with

the data without spoiling the agreement at z = 0.

An interesting feature of Fig. 4.7 is that while the L6 = (8,12,700) sterile neu-

trino models produce fewer galaxies fainter than MAB(1500Å) ∼ −20 at z = 10,

all three models catch up with CDM by z = 7, roughly the time by which 50%

hydrogen reionisation has occurred. The build-up of the high redshift galaxies there-

fore proceeds more rapidly in the sterile neutrino cosmologies than in CDM. This is

consistent with the behaviour of the rate of ionising photon production seen in

§ 4.3.2, where the slope of log (nγ/nH) was shown to be steeper for sterile neu-

trino models compared to CDM.

The reason for the differing rates of galaxy formation at high redshift in the

different models can be understood as follows. Due to the lack of progenitors be-

low the cut-off mass scale, WDM haloes build up via roughly equal-mass merg-

ers of intermediate mass haloes. Near the free streaming scale, the growth rate

of haloes is therefore more rapid in WDM than in CDM (see, e.g. Ludlow et al.,

2016). This is why soon after the formation of the first galaxies the rate of galaxy

formation in sterile neutrino models ‘catches up’ with the corresponding rate

in CDM. This rapid early evolution, reflected for example in the UV luminos-

ity function, is a generic prediction of WDM, independently of the details of the

galaxy formation model.

4.3.4 Satellites of the Milky Way

The Milky Way satellite luminosity function has been used to set limits on the

warm dark matter particle mass: if the power spectrum cut-off occurs on too

large a scale, too few haloes form to account for the observed number of satellites

(Macciò & Fontanot, 2010; Polisensky & Ricotti, 2011; Lovell et al., 2012; Nieren-

berg et al., 2013; Kennedy et al., 2014). These studies considered non-resonantly

produced thermal relics (but see Schneider, 2016). Lovell et al. (2016b) considered

sterile neutrino models, similar to ours, with different particle masses and values
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Figure 4.8: Cumulative V-band Milky Way satellite luminosity functions at z = 0
for our four dark matter models with EvoFb supernova feedback. In each case,
we have used 100 Monte Carlo merger trees for haloes of final mass in the range
5 × 1011 − 2 × 1012 M�. The smooth solid line indicates the median and the
coloured shaded region the 5th and 95th percentiles over all realisations. The
black histogram labelled ‘Combined data’ shows the observed Milky Way satel-
lite luminosity function obtained by combining two datasets: for MV ≥ −11 the
data are taken from Koposov et al. (2008), which includes corrections for incom-
pleteness in the SDSS DR5 catalogue; for MV < −11, the data are taken from
McConnachie (2012). The solid grey line shows the estimated observed satel-
lite luminosity function from Tollerud et al. (2008) with the grey shaded region
showing the 98% spread over 18,576 mock surveys of the Milky Way halo in the
Via Lactea simulation (Diemand et al. 2007a). The black diamond marks an ex-
tension of the observed satellite luminosity function adding the new ultra-faint
dwarf satellites discovered by DES down to MV ≤ −1 (Jethwa et al. 2016). The
partial sky coverage of the survey is taken into account. All error bars are Poisson
errors, including volume corrections where appropriate.
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of L6 and an earlier version of GALFORM (Gonzalez-Perez et al., 2014). There are

degeneracies between the shape of the WDM power spectrum and some of the

parameters of the galaxy formation model, particularly, of course, the strength

of SNfb (see Kennedy et al. 2014 for a discussion). These degeneracies are miti-

gated in our case by considering a variety of observational constraints involving

a range of halo masses and redshifts.

We have allowed the strength of SNfb to vary with redshift, by assuming that

SNfb is weaker at high redshift. In § 4.3.2, we found that this modification to

the feedback scheme in GALFORM allows CDM and the L6 = (8,12,700) sterile

neutrino models to reionise the Universe early enough to be consistent with the

Planck limits on the redshift of reionisation. It is not clear, however, what the effect

of reducing the strength of feedback will be on observables at lower redshifts. In

particular, we expect the predicted luminosity function of satellites in the Milky

Way to be particularly sensitive to this modification.

To predict the satellite luminosity functions around galaxies similar to the

Milky Way we generate 100 Monte Carlo merger trees in 5 equally spaced bins of

final halo masses in the range 5× 1011 M� ≤ Mhost
halo ≤ 2× 1012 M�. The cumula-

tive V-band satellite luminosity functions at z = 0 are shown in Fig. 4.8 for our

various dark matter models with the EvoFb feedback scheme. Before we attempt

to compare these predictions with observations we note that the two different ob-

servational datasets plotted in the figure disagree with one another at the bright

end of the luminosity function (MV ≤ −8), which is the regime of the 11 “clas-

sical” satellites. There are two reasons for this difference: firstly, McConnachie

(2012), whose measurements are included in the bright end of the ‘Combined

data’ sample includes Canis Major (MV =−14.4), whereas this galaxy is excluded

by Tollerud et al. (2008). Secondly, Tollerud et al. (2008) adopt MV = −9.8 for

Sculptor, compared to McConnachie’s value of MV = −11.1. At the faint end the

differences in the satellite luminosity function arise from differing assumptions

for the radial distributions of the satellites. In particular, Koposov et al. (2008) as-

sume that the satellite distribution follows the NFW profile (Navarro et al., 1996,

1997) of the host halo, whereas Tollerud et al. (2008) assume the subhalo radial
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distribution measured in the Via Lactea simulations (Diemand et al., 2007a). The

radial distribution of subhaloes is similar in CDM and WDM (Bose et al., 2016b).

Fig. 4.8 shows that all of our models, including the most extreme L6 = 700

case, are consistent with the data down to MV ∼ −5. For CDM the EvoFb model

slightly overpredicts the number of the faintest satellites (MV >−8), but here the

data could be incomplete. However, since the number of satellites scales with

the host halo mass (Wang et al., 2012b; Cautun et al., 2014), our sterile neutrino

models would be increasingly in conflict with the observed luminosity functions

for Mhost
halo ≤ 1012 M�. For example, if Mhost

halo ≤ 7 × 1011 M�, both the L6 = 700

and L6 = 12 EvoFb models would be ruled out because they fail to form enough

faint satellites with MV > −10 even after accounting for the large scatter. Only

CDM and our L6 = 8 sterile neutrino models would remain consistent with the

Koposov et al. (2008) and McConnachie (2012) (‘Combined data’) observations in

this case.

The Dark Energy Survey (DES) recently reported the discovery of new ultra-

faint dwarf galaxies (Bechtol et al., 2015; Koposov et al., 2015; Drlica-Wagner et al.,

2015; Jethwa et al., 2016). We can consider their contribution to the observed

luminosity function following the analysis by Jethwa et al. (2016) who find that 12

of the 14 satellites have > 50% probability of having been brought in as satellites

of the LMC itself (at 95% confidence). Extrapolating from the detected population

Jethwa et al. (2016) conclude that the Milky Way should have ∼ 180 satellites

within 300kpc and 70+30
−40 Magellanic satellites in the magnitude range−7< MV <

−1 (at 68% confidence).

The extrapolated contribution of the DES satellites (a total of 250 satellites)

is represented by the black diamond in Fig. 4.8. CDM is consistent with this

number particularly for the larger assumed values of the mass of the Milky Way

halo. On the other hand, the ‘coldest’ 7 keV sterile neutrino, namely L6 = 8, is

only marginally consistent with the extrapolation, while the L6 = 12 and L6 = 700

models are in significant disagreement with the extrapolated number count. The

predicted number of faint dwarfs produced by any of these models is, of course,

sensitive to the details of the SNfb but in the following section we consider a
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limiting case.

4.3.5 Model independent constraints on dark matter

As mentioned in § 4.3.4 our analysis suffers from a degeneracy between the shape

of the initial power spectrum and the strength of SNfb. A model independent

constraint, however, can be derived by assuming that there is no SNfb at all. In

this case, every subhalo in which gas can cool hosts a satellite, thus maximising

the size of the population. In Fig. 4.9 we show the predicted Milky Way satellite

luminosity function in the case of zero feedback (‘NoFb’). The total number of

satellites is determined entirely by reionisation i.e., by the amount of gas cooling

in haloes prior to the onset of reionisation.

In Fig. 4.9 we have assumed zfull
reion = 7.02, as predicted by the EvoFb scheme

for the L6 = 8 model. This produces, on average, ∼ 100 satellites with MV ≤
−1. A fully self-consistent treatment of reionisation for the NoFb model would

result in zfull
reion > 7.02, in which case the number of satellites produced would

be even less than 100. The maximum number of satellite galaxies produced in

Fig. 4.9 is converged with respect to the halo mass resolution. The figure shows

that the extreme NoFb model is only marginally consistent with the extrapolated

DES data for the L6 = 8 case. We recall that this value of the lepton asymmetry

corresponds to the ‘coldest’ possible 7 keV sterile neutrino; ruling this out would

rule out the entire family of 7 keV sterile neutrinos as the dark matter particles.

The exact location of the extrapolated DES data point in the cumulative lumi-

nosity function is subject to a number of caveats, such as the DES selection func-

tion, detection efficiency and assumptions about isotropy. However, it is clear

that the discovery of even more ultra-faint dwarf galaxies could potentially set

very strong constraints on the nature of the dark matter.

4.4 Summary and discussions

We have carried out a detailed investigation of the process of reionisation in

models in which the dark matter particles are assumed to be sterile neutrinos.
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Figure 4.9: Same as Fig. 4.8 for the L6 = 8 model, but in an extreme scenario where
feedback has been turned off completely.
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The free streaming of these particles leads to a sharp cut-off in the primordial

matter power spectrum at the scale of dwarf galaxies (§ ??, Fig. 4.1). On scales

much larger than the cut-off, structure formation proceeds almost identically to

CDM. Near and below the cut-off, sterile neutrinos behave like warm dark mat-

ter (WDM): the abundance of haloes (and therefore of the galaxies they host) is

suppressed and their formation times are delayed relative to CDM. The sterile

neutrino models we consider are motivated by observations of an X-ray excess at

3.5 keV in the stacked spectrum of galaxy clusters (Bulbul et al., 2014b) and in the

spectra of M31 and the Perseus cluster (Boyarsky et al., 2014). This excess could

be explained by the decay of a sterile neutrino with a rest mass of 7 keV.

In addition to their rest mass, sterile neutrinos are characterised by two ad-

ditional parameters: the lepton asymmetry, L6, and the mixing angle. Keeping

the mass of the sterile neutrino fixed at 7 keV, we consider three values of L6: 8,

12, 700. Based on their cut-off scales, the L6 = 8 and L6 = 12 models respectively

correspond to the ‘coldest’ and ‘warmest’ 7 keV sterile neutrinos that are also

consistent with the Bulbul et al. (2014b) and Boyarsky et al. (2014) observations.

The most extreme model we consider, L6 = 700, also decays at 3.5 keV but the

mixing angle is unable to produce a decay flux compatible with the 3.5 keV X-ray

observations (see Table 4.1 for a summary).

To calculate the number of ionising photons produced in CDM and in the ster-

ile neutrino models, we make use of the Durham semi-analytic model of galaxy

formation, GALFORM using the supernova feedback prescription of Hou et al.

(2016). In this model, the parameters controlling the strength and evolution of

supernova feedback are calibrated for CDM by the epoch of reionisation as mea-

sured by Planck, and tested against data for the luminosity function and stellar

mass-metallicity relation of Milky Way satellites (§ 4.2.2). We adopt similar values

of the model parameters for our sterile neutrino models. Our main conclusions

are:

(i) Although reionisation occurs slightly later in the sterile neutrino models

than in CDM, the epoch of reionisation in all cases is consistent with the bounds

from Planck (§ 4.3.2, Fig. 4.5). For the L6 = (12,700) models, the redshifts at
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which the Universe is 50% ionised are just below the 68% confidence interval

from Planck. Reionisation in the L6 = 8 model occurs well within the Planck lim-

its.

(ii) The galaxies that account for the bulk of the ionising photon budget are

more massive in sterile neutrino models than in CDM (§ 4.3.3, Fig. 4.6). By the

time reionisation is complete, 50% of the photoionising budget is produced by

M? . 108 M� galaxies in CDM; the median stellar mass is M? ∼ 109 M� for the

sterile neutrino models.

(iii) From the evolution of the far-UV luminosity function, we infer that the

galaxy population at high redshift (z > 7) builds up more rapidly in the sterile

neutrino models than in CDM (§ 4.3.3, Fig. 4.7). This is particularly pronounced in

the case of the most extreme model, L6 = 700, which produces far fewer galaxies

than CDM at z = 10 but ‘catches up’ with the CDM UV luminosity function by z =

7. This is directly related to the more rapid mass accretion of haloes near the free

streaming scale in WDM than in CDM. The qualitative difference in the growth

of high redshift galaxies between CDM and WDM models does not depend on

the details of the galaxy formation model.

(iv) CDM, as well as the three sterile neutrino models we have considered,

are in good agreement with the present-day luminosity function of the “classi-

cal” and SDSS Milky Way satellite galaxies (§ 4.3.4, Fig. 4.8). For larger values of

the mass of the Milky Way halo (Mhost
halo > 1× 1012M�), even the L6 = 700 model

is consistent with the observations of Koposov et al. (2008) and McConnachie

(2012). On the other hand, if Mhost
halo ≤ 7× 1011M�, both the L6 = 700 and L6 = 12

models can be ruled out.

(v) Extrapolating to the whole sky the abundance of ultra-faint Milky Way

dwarf satellite galaxies recently detected by DES extends that satellite luminosity

function to very faint magnitudes. With this extrapolation, the sheer number of

satellites places strong constraints on the sterile neutrino models which produce

only a limited number of substructures. CDM is consistent with this extrapola-

tion, but the ‘coldest’ 7 keV sterile neutrino (the L6 = 8 model) is only marginally

in agreement even when feedback is turned off completely, a limiting model in
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which the satellite population is maximised. Ruling out the L6 = 8 model, the

coolest of the 7keV sterile neutrino family, would rule out this entire class as can-

didates for the dark matter. However, extrapolating the DES counts to infer the

total number of satellites is still subject to a number of assumptions and uncer-

tainties.
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Chapter 5

Testing the quasi-static approximation in
f (R) gravity simulations

5.1 Introduction

In recent years, theories of modified gravity have become a subject of great in-

terest in alternative approaches to modelling the observed acceleration of the

Universe (Riess et al., 1998; Perlmutter et al., 1999). Einstein’s theory of Gen-

eral Relativity (GR) has been the underlying gravity theory in the standard cos-

mological model of ΛCDM, the dark energy (Λ) and (cold) dark matter (CDM)

components of which remain unresolved challenges to cosmologists. Modified

gravity seeks to answer this question by modifying the theory of gravity itself,

most routinely with the addition of scalar, vector or tensorial modifications to the

Einstein-Hilbert action that governs GR (see Clifton et al., 2012, for a comprehen-

sive review). Of course, one cannot deny the undoubted success of GR in passing

local and Solar System tests of gravity, and so it is necessary for any reasonable

modified gravity theory to also do the same. One process by which a modified

theory reduces to GR on small scales is known as screening (Khoury, 2010), of

which there are three main types: chameleon (Mota & Shaw, 2007), Vainshtein

(Dvali et al., 2000) and dilaton/symmetron screening (Hinterbichler & Khoury,

2010; Brax et al., 2010), with different theories equipped with different screening

mechanisms.

One of the most popular models of modified gravity is f (R) gravity (Carroll

et al., 2005). This theory is built around the addition of a scalar function of the

120
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Ricci curvature scalar to the Einstein-Hilbert action. The scalar field has a poten-

tial, which acts as an effective cosmological constant that accelerates the expan-

sion of the Universe, and also generates a ‘fifth force’ between matter particles.

While the fifth force enhances the standard Newtonian gravity in low-density re-

gions, high-density regions, GR is recovered by means of the chameleon screen-

ing. This mechanism is a consequence of the high degree of non-linearity in the

equations of motion that govern this theory. Its presence makes standard pertur-

bative approaches less useful, and calls for the need to perform N-body simu-

lations at high-resolution to fully understand the cosmological behaviour of this

model.

Numerical simulations for f (R) gravity (and for most other modified gravity

theories) have traditionally been performed in what is known as the “quasi-static

limit”, in which the time derivatives of the scalar field that generates the fifth

force are considered small compared to its spatial derivatives, and can therefore

be safely neglected (Li et al., 2012a; Cai et al., 2014; Hellwing et al., 2013). An ad-

vantage of this approximation is that it considerably simplifies the challenge of

numerically solving the non-linear equations. In GR simulations, this approxima-

tion has been tested as being valid, but while it is consistently made in the case of

f (R) simulations, its validity has not yet been tested rigorously, especially in the

non-linear regime (we note that recently efforts to include non-static effects have

been made in the case of symmetron screening, Llinares & Mota 2014a). Testing

the validity of this approximation is imperative given how widely-studied the

f (R) model is.

The aim of our investigation here is to quantitatively estimate the effects of

excluding the time derivatives in N-body simulations for f (R) gravity. For this

purpose, we have derived field equations in which time derivatives of the scalar

field are consistently included, and implemented these equations in a modified

version of the ECOSMOG code (Li et al., 2012a). By running simulations at dif-

ferent resolutions, we then study how the clustering of matter is affected by the

non-static effects. We find that in low-resolution simulations, the time derivatives

do have an impact on the observables we study, but this diminishes when we re-
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simulate at higher resolution or shorter time steps. As a result, at least for the

f (R) models we have studied, the quasi-static approximation seems to be valid

for the observables we are interested in.

This chapter is organised as follows: in § 5.2, we introduce the Hu-Sawicki (Hu

& Sawicki, 2007) f (R) model, and how chameleon screening is able to recover

GR. § 5.3 and 5.4 describe how we modify the ordinary evolution equations to

account for time derivatives in the non-linear regime, and how these equations

are then discretised for the purpose of solving them on a mesh. In § 5.5, we

present the results of our N-body simulations at different resolutions, while in

§ 5.6, we discuss some numerical aspects that must be taken into account when

interpreting the results of our work. Finally, in § 5.7, we summarise our findings

and their implications.

Throughout this chapter, Greek indices run over 0,1,2,3 (the four space-time

components) whereas Latin indices run over 1,2,3 (the three spatial components).

5.2 An introduction to f (R) gravity

In this section, we will briefly discuss the main features of f (R) gravity, first in

general, and then with the more specific example of the Hu-Sawicki (Hu & Saw-

icki, 2007) model, which is the one we will analyse in the rest of this chapter. We

expect that our findings in this work are at least qualitatively applicable to other

classes of f (R) models as well.

5.2.1 f (R) gravity: an overview

As with most modified gravity theories, the starting point is the Einstein-Hilbert

action. The modification we make is to replace the cosmological constant Λ with

a function of the Ricci scalar, R, as:

S =
∫

d4x
√
−g
[

1
2

M2
Pl [R + f (R)] + Lm

]
, (5.2.1)
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where g is the determinant of the metric tensor gµν, MPl = 1/
√

8πG is the re-

duced Planck mass, G is the Newtonian gravitational constant, and Lm the total

matter (baryonic + dark matter) Lagrangian density. We assume that neutrinos

are massless, and that at late times the contribution from photons and neutrinos is

negligible. The distinction between different f (R) models is in the specific choice

for the function f (R) itself.

By varying the action in Eq. 5.2.1 with respect to the metric gµν, we obtain the

modified Einstein field equations:

Gµν + fRRµν −
[

1
2

f (R)−2 fR

]
gµν −∇µ∇ν fR

= 8πGTm
µν , (5.2.2)

where Gµν = Rµν − 1
2 gµνR is the Einstein tensor, ∇µ is the covariant derivative

compatible with the metric gµν, 2 ≡ ∇µ∇µ, Tm
µν is the energy-momentum tensor

for matter, and fR ≡ d f (R)
dR is the extra scalar degree of freedom of this model,

known as the scalaron. One can straightforwardly obtain the equation of motion

for the scalar field by taking the trace of Eq. 5.2.2:

2 fR =
1
3
(R− fRR + 2 f (R) + 8πGρm) , (5.2.3)

in which ρm is the matter density in the Universe. Since we are interested in

the cosmological properties of these models, we need to derive the perturbation

equations. In order to do this, we will work in the Newtonian gauge:

ds2 = (1 + 2Ψ)dt2 − a2(t)(1− 2Φ)d~x2 , (5.2.4)

where Ψ and Φ are the gravitational potentials, with Ψ 6= Φ for the time being

(non no-slip condition), t is the physical time, ~x is the comoving coordinate,

and a is cosmic scale factor, with a = 1 today. The perturbation is around the

standard Friedmann-Robertson-Walker (FRW) metric, which describes the back-

ground evolution of the Universe (or of a(t)). Given this, we can then write down
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the scalaron equation of motion:

1
a2
~∇2 fR ≈ −

1
3
[R− R̄ + 8πG (ρm − ρ̄m)] , (5.2.5)

and the modified Poisson equation:

1
a2
~∇2Φ ≈ 16πG

3
(ρm − ρ̄m) +

1
6
(R− R̄) , (5.2.6)

where quantities with an overbar signify those defined in the background cos-

mology, and ~∇ denotes the three-dimensional spatial derivative with respect to

~x.

When deriving Eqs. 5.2.5 and 5.2.6, we have assumed that | f (R)| � |R| and

| fR| � 1, which is true for the models we study below. Eqs. 5.2.5 and 5.2.6 are

solved by the standard ECOSMOG code, in which the quasi-static approximation

has been used and time derivatives of the scalaron field fR are neglected. We

will show below how to extend these equations consistently to restore those time

derivatives.

5.2.2 The chameleon screening mechanism

While modifying the theory of gravity to explain the accelerated expansion of the

Universe on a cosmological level, one must bear in mind the tremendous success

of GR in Solar System tests. f (R) gravity incurs a fifth force that enhances gravity

on large scales, which needs to be suppressed locally to pass those experimental

tests. For this reason, viable f (R) models are equipped with a mechanism to

ensure that: (1) gravity is modified (enhanced) on cosmological scales, and (2) GR

is recovered in Solar or similar systems. This is known as the chameleon mechanism.

To see how this is manifest in f (R) gravity, we can construct an effective po-

tential for the scalaron field as:

dVeff ( fR;ρm)

d fR
= −1

3
[R− fRR + 2 f (R) + 8πGρm] . (5.2.7)

In regions of high matter density (ρm � ρ̄m), | fR| �
∣∣ f̄R
∣∣ � 1, and so the GR
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solution R =−8πGρm minimises Eq. 5.2.7, giving rise to an effective mass for the

scalaron field:

m2
eff ≡

d2Veff

d f 2
R
≈ −1

3
dR
d fR

> 0 . (5.2.8)

This fifth force is Yukawa-type, and decays as exp (−meffr), where r is the sepa-

ration between two test masses. According to Eq. 5.2.7, meff depends explicitly

on ρm, and we can see from Eq. 5.2.8 that in regions of high matter density (or

equally, where the Newtonian potential is deep), the fifth force is more strongly

suppressed as meff is larger there (which is because |R| ≈ 8πGρm is large and

| fR| small in high-density regions). The deviations from GR become practically

undetectable, and hence the GR limit is recovered in those regimes.

5.2.3 The Hu-Sawicki model

Thus far, the discussion has been quite general, without specifying the functional

form for f (R). Note that the choice for the form of f (R) completely specifies the

model. The Hu-Sawicki model is one such example, which takes the following

form:

f (R) = −M2 c1
(
−R/M2)n

c2 (R/M2)
n + 1

, (5.2.9)

where M is a characteristic mass scale, defined by M2 = 8πGρ̄m0/3 = H2
0Ωm,

with ρ̄m0 being the background matter density today, and Ωm the present-day

fractional energy density of matter. H0 is the Hubble expansion rate today. c1, c2

and n are free parameters of the theory. One can then show that:

fR = − c1

c2
2

n
(
−R/M2)n−1

[
(−R/M2)

n + 1
]2 . (5.2.10)

Given that:

−R̄ ≈ 8πGρ̄m − 2 f̄ (R) = 3M2
[

a−3 +
2
3

c1

c2

]
, (5.2.11)
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in order to match the ΛCDM background expansion, we set c1/c2 = 6ΩΛ/Ωm. In

this chapter, we use Ωm = 0.281 and ΩΛ ≡ 1−Ωm = 0.719 from WMAP9 (Hin-

shaw et al., 2013). In doing so, we find that −R̄ ≈ 34M2 � M2, so that we can

further simplify Eq. 5.2.10 as:

fR ≈ −n
c1

c2
2

[
M2

−R

]n+1

. (5.2.12)

Finally, we define ξ ≡ c1/c2
2, and essentially reduce the Hu-Sawicki model into a

two-parameter family in (n,ξ). This is because once the background evolution is

fixed to match that of ΛCDM as a good approximation, it is only the combination

c1/c2
2 that appears in the f (R) field equations.

5.3 f (R) equations

5.3.1 The Newtonian-gauge perturbation variables

In what follows, we shall work in the Newtonian gauge, defined in Eq. 5.2.4. With

the usual definitions of the Christoffel coefficients and the Ricci tensor as:

Γγ
αβ =

1
2

gγη
(
∂β gαη + ∂α gβη − ∂η gαβ

)
, and (5.3.13)

Rµν = ∂γ Γγ
µν − ∂ν Γγ

µγ + Γλ
γλΓγ

µν − Γλ
γµΓγ

λν , (5.3.14)

where ∂α is the partial derivative with respect to xα, we find, up to first order in

perturbation variables Φ and Ψ,

Γ0
00 ≈ Ψ̇ ,

Γ0
0i ≈ ∂i Ψ ,

Γi
00 ≈

1
a2 δij∂j Ψ ,

Γi
j0 ≈

(
H − Φ̇

)
δi

j ,

Γ0
ij ≈ a2H (1− 2Ψ− 2Φ)δij − a2Φ̇δij ,

Γi
jk ≈ −∂k Φδi

j − ∂jΦδi
k + ∂iΦδjk , (5.3.15)
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where the overdots indicate derivatives with respect to the physical time t, and

H = ȧ/a. The corresponding Ricci tensor components are:

R00 ≈
1
a2 Ψ,i

,i − 3
(

Ḣ + H2
)

+3Φ̈ + 3H
(
Ψ̇ + 2Φ̇

)
, (5.3.16)

R0i ≈ 2Φ̇,i + 2HΨ,i , (5.3.17)

Rij ≈ (Φ−Ψ),ij + Φ,k
,kδij − a2Φ̈δij

+a2
(

Ḣ + 3H2
)
(1− 2Φ− 2Ψ)δij

−a2H
(
Ψ̇ + 6Φ̇

)
δij . (5.3.18)

By using the definition of the Ricci scalar:

R = gµνRµν , (5.3.19)

in conjunction with Eq. 5.2.4, we obtain:

R ≈ 1
a2

(
2Ψ,i

,i − 4Φ,i
,i

)
+ 6Φ̈ + 6H

(
Ψ̇ + 4Φ̇

)

−6
(

Ḣ + 2H2
)
(1− 2Ψ) . (5.3.20)

Finally, with the definition of the Einstein tensor as:

Gµ
ν = Rµ

ν −
1
2

δ
µ
νR , (5.3.21)

we find:

G0
0 ≈

2
a2 Φ,i

,i + 3H2 − 6H
(
Φ̇ + HΨ

)
,

G0
i ≈ 2Φ̇ ,i + 2HΨ,i ,

Gij ≈ (Φ−Ψ),ij + (Ψ−Φ),k
,k δij + 3a2Φ̈δij

2a2H2 (1− 2Ψ)δij − 3H2a2 (1− 2Ψ)δij

+a2H
(
2Ψ̇ + 6Φ̇

)
δij . (5.3.22)
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5.3.2 The modified f (R) equation of motion

The scalaron equation of motion (Eq. 5.2.5) assumes the quasi-static approxima-

tion (i.e., the time derivatives of the scalaron field are neglected), and hence needs

to be generalised for the study here. We therefore re-derive the equation of mo-

tion in the Newtonian gauge using Eqs. 5.3.13–5.3.22. Using the definition that

2 fR = gµν∇µ∇ν fR, we find that in the Newtonian gauge:

2 fR = (1− 2Ψ) f̈R −
1
a2 f ,i

R ,i

+
[
3H (1− 2Ψ)− Ψ̇− 2Φ̇

] ˙fR . (5.3.23)

When deriving Eq. 5.3.23, we have retained terms involving Ψ Φ̇, Ψ̇, but neglect

second-order terms such as Φ,iΦ,i and ΦΦ̇. In what follows, we also make use of

the following relations:

|Φ| ∼ |Ψ| � 1, | fR| � 1, |Φ̇| ∼ |Ψ̇| � H,

|Φ̈| ∼ |Ψ̈| ∼ H|Ψ̇| ∼ H|Φ̇| � H2 ∼ |Ḣ| , (5.3.24)

so that quantities on the left-hand side of the inequalities can be neglected when

compared to the terms on the right-hand sides.

Since we are interested in the effects of the field perturbations, we need to sub-

tract the contribution of the background quantities from these equations. Denot-

ing such quantities with an overbar, and using Eq. 5.2.3, we write the following

background equation of motion for the scalaron:

¨̄fR + 3H ˙̄fR ≈ 1
3
[
R̄− f̄RR̄ + 2 f̄R(R) + 8πGρ̄m

]

≈ 0, (5.3.25)

where the second equality comes from the assumption that, at the background

level, the scalaron field f̄R always follows the minimum of its effective potential.

In reality f̄R oscillates quickly around the minimum because m2
eff� H2, such that

over many oscillations the above assumption describes the average effect well
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(we will revisit to this point below). Under this assumption, and because the

value of the scalaron itself is quite small (| f̄R| ≤ 10−4 in the models studies here),

we can assume that | f̄RR̄| � |R̄|, and rewrite Eq. 5.3.25 as:

−R̄ = 8πGρ̄m + 2 f̄R(R)

≈ 8πGρ̄m + 32πGρ̄Λ

= 8πGTµ
µ, (5.3.26)

where we have used the fact that when |R| � M2, which always holds for the

models studied here, f (R) remains approximately constant throughout the cos-

mic history (cf. Eq. 5.2.9). Note that the fact that f (R) remains approximately

constant for different values of R means also that its perturbations are small and

can be neglected, namely:

f (R)− f̄ (R) ∼ fRR− f̄RR̄ � R− R̄. (5.3.27)

Subtracting off the background part from the scalaron equation of motion, and

denoting the perturbed quantities as R− R̄ ≡ δR and ρm − ρ̄m ≡ δρm, we find:

f̈R + 3H ḟR −
1
a2
~∇2 fR ≈

1
3
[δR + 8πGδρm] . (5.3.28)

Note that the use of Eq. 5.3.25 implicates that it is f̈R that appears in this equation,

rather than δ f̈R. This is convenient because later we will write δR as a function of

fR instead of δ fR = fR − f̄R.

A quick comparison to the quasi-static version of the f (R) equation of motion

(Eq. 5.2.5) shows that the first two terms on the left-hand side of Eq. 5.3.28 are the

additional terms one is left with when keeping the time derivatives in the scalar

field equation of motion.

5.3.3 The modified Poisson equation

Eq. 5.3.28 is one of the two equations that govern the formation of structure – the

other is the modified Poisson equation. The full Einstein field equations in f (R)
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gravity become:

(1 + fR)Gµν = 8πGTµν +

[
1
2

f (R)− 1
2

fRR−2 fR

]
gµν

+∇µ∇ν fR , (5.3.29)

with the following individual space-time components written in the Newtonian

gauge:

2
a2 Φ,i

,i + 3H2 ≈ 16
3

πGρm −
1
3

R− 1
6

f (R) + f̈R (0− 0 component, full),

2
a2 Φ,i

,i ≈
16
3

πGδρm −
1
3

δR + f̈R (0− 0 component, excluding background),

1
a2 (Ψ−Φ),i

,j + δi
j

[
2Ḣ + 3H2 − 1

a2 (Ψ−Φ),k
,k

]
≈ 8πGTi

j − (5.3.30)

8
3

πGρmδi
j −

1
3

Rδi
j −

1
6

f (R)δi
j −

1
a2 f ,i

R ,j + ḟRHδi
,j

(i− j components, full),
2
a2 (Ψ−Φ),i

,i − 9H2 + 6Ḣ ≈ 8πG (ρm + 3pm) + R +
1
2

f (R) +
1
a2 f ,i

R ,i − 3H ḟR

(Trace of i− j components, including background),
2
a2 (Ψ−Φ),i

,i ≈ 8πG (ρm + 3pm)− 8πG (ρ̄m + 3p̄m) + δR +
1
a2 f ,i

R ,i − 3H ḟR

(Trace of i− j components, excluding background). (5.3.31)

In the above, the equations marked as ‘excluding background’ are obtained by

directly subtracting the ΛCDM background Friedmann equations from the full

(00) and (ij) components of the modified Einstein equations, and using f̄ (R) ≈
16πGρΛ (cf. Eq. 5.3.26). This is why terms such as f̈R and 3H ḟR appear in them,

rather than f̈R − ¨̄fR and 3H ḟR − 3H ˙̄fR.

The Poisson equation can be obtained by taking the trace of the Einstein field

equation, and from this we get:

1
a2
~∇2Ψ ≈ 16πG

3
δρm +

1
6

δR + f̈R , (5.3.32)

where Eq. 5.3.28 has been used to eliminate 1
a2 f ,i

R ,i − 3H ˙fR in Eqs. 5.3.30.

Eq. 5.3.32 alongside Eq. 5.3.28 are the two that we need to solve and use to
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update the simulation particle positions to quantify the effect of non-vanishing

time derivatives of fR.

We would like to make a final note before concluding this section. In principle,

terms such as HΨ̇ can be of the order of H ˙fR, even though we have neglected

them here. In our investigation, however, the aim is not to numerically solve all

possible non-static terms, but rather to consistently investigate the effects of terms

in ˙fR and f̈R. Therefore, even though our equations are in some sense incomplete,

they are sufficient for our specific purpose here.

5.4 Evolution equations in ECOSMOG

Our N-body simulations are performed using the massively-parallelised ECOS-

MOG code (Li et al., 2012a), which is based on the adaptive mesh refinement

(AMR) code RAMSES (Teyssier, 2002). An AMR code can resolve high-density re-

gions by refining (i.e., splitting) a mesh cell into eight sub-cells, when the number

of particles within it exceeds some predefined threshold. This is particularly use-

ful in f (R) gravity simulations, where it is necessary in the high-density regions

to achieve adequate resolution in order to solve the non-linear field equations

and accurately quantify the chameleon effect. The code employs a multigrid re-

laxation algorithm, arranged in V-cycles (i.e., alternating between coarse and fine

meshes to solve the field equations), to accelerate the convergence of the solu-

tion (Press et al., 2002).

5.4.1 Equations in code units

In order to solve Eq. 5.3.28 and Eq. 5.3.32, we need to convert the quantities in

those equations to the superconformal units used by ECOSMOG, summarised in
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the equations below:

x̃ =
x
B

, ρ̃ =
ρa3

ρcΩm
, ṽ =

av
BH0

,

Ψ̃ =
a2Ψ

(BH0)2 , dt̃ = H0
dt
a2 , c̃ =

c
BH0

,

f̃R = a2 fR . (5.4.33)

Here, x is the comoving coordinate, a is the scale factor, ρc the critical density of

the Universe today, v is the particle velocity, Ψ is the gravitational potential and

c is the speed of light. Furthermore, B is the comoving size of the simulation box

in units of h−1 Mpc, whereas H0 = 100 h kms−1 Mpc−1. Under these conventions,

the new terms appearing from the inclusion of the time derivatives become:

ḟR = a−2 ˙̃fR − 2a−2H f̃R

f̈R = a−2 ¨̃fR − 4a−2H ˙̃fR − 2a−2Ḣ f̃R

+4a−2H2 f̃R . (5.4.34)

For the Hu-Sawicki model, this then transforms the modified Poisson equation

(Eq. 5.3.32) and the f (R) equation of motion (Eq. 5.3.28) into:

∇̃2Ψ̃ = 2Ωma (ρ̃− 1) +
1
6

Ωma4



(−na2ξ

f̃R

) 1
n+1

− 3
(

a−3 + 4
ΩΛ

Ωm

)
 (5.4.35)

+

[
a−2 d2 f̃

dt̃2 − 6
H
H0

d f̃
dt̃

+ 2a2

(
2

H2

H2
0
− Ḣ

H2
0

)
f̃R

]
,

∇̃2 f̃R =
−1
c̃2 Ωma (ρ̃− 1)− 1

3c̃2 Ωma4



(−na2ξ

f̃R

) 1
n+1

− 3
(

a−3 + 4
ΩΛ

Ωm

)


+
1
c̃2

[
a−2 d2 f̃

dt̃2 − 3
H
H0

d f̃
dt̃
− 2a2

(
H2

H2
0
+

Ḣ
H2

0

)
f̃R

]
(5.4.36)

Note that all terms in the above equations are dimensionless (dimensional quan-

tities, such as H and Ḣ, are properly normalised using H0). We have also carefully

distinguished between overdots (derivatives with respect to the physical time t)

and d/dt̃ (derivatives with respect to the superconformal time t̃), such that the
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former only applies to purely background quantities such as a and H. Since the

background evolution is approximated in the same way as in ΛCDM, quantities

such as H/H0 and Ḣ/H2
0 can be obtained analytically.

5.4.2 Discretising the equations

In this section, we discretise the equations in Eq. 5.4.35 to make them appropriate

for implementation in ECOSMOG. During its time evolution, the value of f̃R can

be very close to zero, and to avoid numerical problems, we solve for a different

variable, f̃R ≡ −eũ, instead. The current value of a quantity φ in the grid cell

(i, j,k) will be identified as φi,j,k. Since everything presented below is already in

the code units, we will drop tilde symbols in the discretised Poisson and f (R)

equations for clarity wherever this will not cause confusion (we keep the tilde in

c̃, however). Given a cell size h, we obtain for the Poisson equation:

1
h2

[
Ψi+1,j,k + Ψi−1,j,k + Ψi,j+1,k + Ψi,j−1,k + Ψi,j,k+1 + Ψi,j,k−1 − 6Ψi,j,k

]

= 2Ωma
(
ρi,j,k − 1

)
− 1

6
Ωma4

[(
na2ξ

) 1
n+1 exp

(−ui,j,k

n + 1

)
− 3

(
a−3 + 4

ΩΛ

Ωm

)]

+

[
a−2∆t−1

[
d f dt(n)i,j,k − d f dt(n−1)

i,j,k

]
+ 6

H
H0

∆t−1 exp
(
ui,j,k

)(
ui,j,k − u(n−1)

i,j,k

)

−2a2

(
2

H2

H2
0
− Ḣ

H2
0

)
exp

(
ui,j,k

)
]

,

(5.4.37)

where ∆t is the time step in code units adopted by the simulation. The last line in

Eq. 5.4.37 contains the additional terms that arise from going beyond the quasi-

static approximation.

Discretising the f (R) equation of motion is a similar, if slightly more laborious

task. In order to reduce clutter, we define a variable b≡ eu, and write the discrete
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scalaron equation as:

1
h2

[
bi+ 1

2 ,j,kui+1,j,k − ui,j,k

(
bi+ 1

2 ,j,k + bi− 1
2 ,j,k

)
+ bi− 1

2 ,j,kui−1,j,k

]

+
1
h2

[
bi,j+ 1

2 ,kui,j+1,k − ui,j,k

(
bi,j+ 1

2 ,k + bi,j− 1
2 ,k

)
+ bi,j− 1

2 ,kui,j−1,k

]

+
1
h2

[
bi,j,k+ 1

2
ui,j,k+1 − ui,j,k

(
bi,j,k+ 1

2
+ bi,j,k− 1

2

)
+ bi,j,k− 1

2
ui,j,k−1

]

+
1

3c̃2 Ωma4
(

na2ξ
) 1

n+1 exp
(
− ui,j,k

n + 1

)
− 1

c̃2 Ωma
(
δi,j,k − 1

)
− 1

c̃2 Ωma4
(

a−3 + 4
ΩΛ

Ωm

)

+
1
c̃2

[
−a−2∆t−1d f dt(n−1)

i,j,k − a−2∆t−2 exp
(
ui,j,k

)(
ui,j,k − u(n−1)

i,j,k

)

+3
H
H0

∆t−1 exp
(
ui,j,k

)(
u(n)

i,j,k − u(n−1)
i,j,k

)
+ 2a2

(
Ḣ
H2

0
+

H2

H2
0

)
exp

(
ui,j,k

)
]

(5.4.38)

= 0.

Once again, the effect of the time derivatives is incorporated in the terms in the

last two lines of Eq. 5.4.38. Taking the second order derivative with respect to the

x coordinate as an example, this scheme gives:

∂2φ

∂x2 →
1
h2

(
φi+1,j,k − 2φi,j,k + φi−1,j,k

)
,

where h is the size of the mesh cell and the subscript i,j,k refers to the cell that

is i-th in the x direction, j-th in the y direction and k-th in the z direction. Note

that the discrete Laplacian in Eq. (5.4.38) looks slightly more complicated because

∇̃2eu ≡ ∇̃ ·
(
eu∇̃u

)
, and we have defined b ≡ eu such that:

bi+ 1
2 ,j,k ≡

1
2
[
exp

(
ui+1,j,k

)
+ exp

(
ui,j,k

)]
,

bi− 1
2 ,j,k ≡

1
2
[
exp

(
ui−1,j,k

)
+ exp

(
ui,j,k

)]
.

We have seen in Eqs. 5.4.35 that their discrete versions will contain terms like
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d2 f̃ /dt̃2 and d f̃ /dt̃ in our code units. By discretising also in time, we find that:

d f̃
dt̃

= −∆t−1 exp
(
ui,j,k

)(
u(n)

i,j,k − u(n−1)
i,j,k

)

≡ d f dt(n)i,j,k,

d2 f̃
dt2 = ∆t−1

[
d f dt(n)i,j,k − d f dt(n−1)

i,j,k

]
, (5.4.39)

in which u(n)
i,j,k and u(n−1)

i,j,k are respectively the values of the scalaron field in the

current time step (n) and the previous time step (n− 1). Throughout this chap-

ter ui,j,k without a superscript (n) always denotes the value at step (n). In the

simulations, the code records u(n)
i,j,k and d f dt(n)i,j,k for each cell so that in the step

that follows, they can be used as u(n−1)
i,j,k and d f dt(n−1)

i,j,k . Note that in principle we

also need the value u(n−2)
i,j,k to evaluate d2 f /dt2 at step (n), but in practice this is

implicitly included in the calculation of d f dt(n−1)
i,j,k at step (n− 1).

By doing the above, we are incorporating the time derivatives in an implicit

way, in contrast to the explicit method that tries to evolve the scalar field by:

u(n)
i,j,k = u(n−1)

i,j,k +
d
dt

u(n−1)
i,j,k ∆t. (5.4.40)

It is known that the implicit scheme of numerical integration is usually more sta-

ble than the explicit method. However, the main advantage of our method is that

it does not change the property that the f (R) equation, Eq. 5.4.38, is a boundary-

value problem and therefore can be solved using a relaxation algorithm, with

very little change to the code structure of ECOSMOG. The explicit scheme de-

scribed in Eq. 5.4.40, on the other hand, means that the equation becomes an

initial-value problem. Of course, because we are evaluating the time derivatives

in a ‘backward’ manner (that is, we are computing du(n)/dt and d2u(n)/dt2 by

using u(n−1) and u(n−2) rather than using variables evaluated at step (n)), this will

inevitably introduce numerical errors in evolving the differential equation. How-

ever, by making the time steps short enough, the two methods should agree, and

therefore a consistency check can always be done by reducing ∆t to confirm that

the method works properly, as we will demonstrate below.
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Another important point needs to be made at this stage. As mentioned above,

the value of the scalar field, fR, oscillates quickly around the local potential mini-

mum. Therefore, in order to calculate its time evolution, our procedure in Eq. 5.4.39

implicitly performs an average over the many oscillations in each time step of the

simulation. Evaluating a more “instantaneous” time derivative accurately would

require a huge number of time steps, especially in high-density regions, where the

scalaron mass meff is larger and so the scalar field oscillates faster, and is therefore

not practical for our f (R) simulations. For linear terms, such as f̈R and H ḟR, the

order of doing the time average and solving the scalaron equation can be freely

swapped, and therefore the procedure in Eq. 5.4.39 is expected to work without

any problem. On the other hand, for the non-linear terms in the scalaron equa-

tion, such as δR( fR), the order does matter, and using time-averaged values for

fR will introduce errors which are expected to become larger if the non-linearity

gets stronger. For our simulations, however, we do not expect such errors to

be significant enough to affect our conclusions; we will revisit and quantify this

point in § 5.6.3.

Eq. 5.4.38 can be thought of symbolically as an equation involving a non-linear

differential operator, in the form:

Lhui,j,k = 0, (5.4.41)

where the superscript h indicates that the operator is acting on a level where the

cell size is h. The Gauss-Seidel relaxation in ECOSMOG then updates the scalar

field as:

uh, (new)
i,j,k = uh, (old)

i,j,k −
Lh
(

uh, (old)
i,j,k

)

∂Lh
(

uh, (old)
i,j,k

)

∂uh, (old)
i,j,k

. (5.4.42)
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The form of the denominator in the above equation is given by:

∂Lh(ui,j,k)

∂ui,j,k

=
c̃2

2h2 bi,j,k
[
ui+1,j,k + ui−1,j,k + ui,j+1,k + ui,j−1,k + ui,j,k+1 + ui,j,k−1 − 6ui,j,k

]

− c̃2

2h2

[
bi+1,j,k + bi−1,j,k + bi,j+1,k + bi,j−1,k + bi,j,k+1 + bi,j,k−1 + 6bi,j,k

]

− 1
3(n + 1)

Ωma4
(

na2ξ
) 1

n+1 exp
(
− ui,j,k

n + 1

)

+
1
c̃2

[(
3

H
H0

∆t−1 − a−2∆t−2
)

exp
(
ui,j,k

)(
1 + ui,j,k − u(n−1)

i,j,k

)
(5.4.43)

+2a2

(
Ḣ
H2

0
+

H2

H2
0

)
exp

(
ui,j,k

)
]

.

Again, in the above equation, the last line represents the additional terms that

arise from the inclusion of the time derivatives, while the first three lines are

exactly the same as in the ordinary quasi-static case.

For more details about how the above discrete equations are implemented in

ECOSMOG and the associated technical details, such as the boundary conditions,

the interested readers are referred to the original ECOSMOG code paper (Li et al.,

2012a).

5.4.3 Time integration

Since the main goal of our chapter is to assess the importance of time deriva-

tives in f (R) simulations, the choice of time step is of fundamental importance.

In ECOSMOG, this is determined using the Courant-Friedrichs-Lewy (CFL) con-

dition (Courant et al., 1928; Li et al., 2012a), which is required for the stability

of numerical integrations. In our simulations, this condition essentially requires

that the size of a physical time step dt has to be smaller than the time it takes for a

particle to travel to an adjacent grid cell. Denoting the particle velocity by v, and

the physical size of a cell in the grid as dx, then the CFL condition dictates that in
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a particular time step these quantities are linked by:

1
v

dx
dt
≥ O(1) . (5.4.44)

This condition must be satisfied at every time step for the solution to be stable.

Using that v� c, in code units (Eq. 5.4.33), this condition translates to:

dx̃2

a2c̃2dt̃2 � 1 . (5.4.45)

Recall (Eq. 5.4.33) that c̃ = c/BH0, where B is the box size of the simulation. For a

fixed box size, Eq. 5.4.45 then tells us that:

h2� a2c̃2∆t2, (5.4.46)

where h = dx̃ and ∆t = dt̃.

The above equation already hints at the answer to our question regarding the

importance of time derivatives relative to spatial derivatives. It tells us that the

manner in which the size of the time step (∆t) is set is such that it is generally

much larger (with a multiplicative factor of ac̃) than the size of the cell (h). As

a result, in the discrete scalaron equation above (Eq. (5.4.38)), one would expect

the spatial variation of the scalar field (terms proportional to h−2) to be more

significant than its variation in time (terms proportional to (ac̃∆t)−2) – or, in other

words, that a quasi-static approximation is good. In the following section, we will

proceed to perform N-body simulations to confirm our expectation from these

simple order-of-magnitude arguments.

5.5 Results

In this section, we apply our modified ECOSMOG code to perform N-body sim-

ulations of the Hu-Sawicki model, for three different choices of the present-day

value of f̄R, namely | f̄R0| = 10−4,10−5,10−6, which we will refer to as F4, F5 and

F6 respectively. F4 (F6) forms an upper (lower) bound for cosmologically interest-
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ing f (R) models: for
∣∣ f̄R0

∣∣> 10−4, the models are unlikely to satisfy local gravity

constraints in the Milky Way (Schmidt et al., 2009b), whereas for
∣∣ f̄R0

∣∣< 10−6, the

differences from GR are very small. In what follows, we also set the parameter

n = 1 (Eq. 5.2.9).

The cosmological parameters for our N-body simulations are the same as in

the best-fitting WMAP9 cosmology (Hinshaw et al., 2013), with Ωm = 0.281,ΩΛ =

0.719, h = 0.697,ns = 0.972 and σ8 = 0.82. Here, h = H0/(100 km/s/Mpc) is the

dimensionless Hubble parameter, ns is the spectral index of the primordial power

spectrum, and σ8 is the linear rms density fluctuation in a sphere of radius 8 h−1

Mpc, at z = 0. We expect that our findings here should not change with a different

choice of parameters.

We perform low-resolution runs for ΛCDM, F4, F5 and F6 in a box of size

256 h−1 Mpc with 2563 particles, and higher-resolution runs for ΛCDM and F6

in a box size of 128 h−1 Mpc with 2563 particles. In each case, we simulate 5 re-

alisations of initial conditions (the same initial conditions are used for ΛCDM

and f (R) simulations because at the initial time, zi = 49, the effect of modified

gravity is still negligible for F6, F5 and F4). For every f (R) simulation we have

performed for this work, we conduct both a quasi-static run and a time deriva-

tive run, to quantify the impact of including non-static effects. To check for the

influence of changing the size of the time step and of resolution, we simulate

two additional models: L256/2 and L64. The former has the same parameters as

the L256 run, but here we artificially halve the time step that the ECOSMOG code

would naturally adopt. The latter constitutes our highest resolution run, with

2563 particles within a box of 64 h−1 Mpc. In each set of simulations, the regular

simulation mesh has 256 cells on each side, and is adaptively refined when the

number of particles within a cell is greater than 8. A summary of the simulation

details is given in Table 5.1.

5.5.1 The matter and velocity divergence power spectra

As remarked on earlier, the first order difference between f (R) simulations in the

quasi-static approximation and the non-static limit can be seen in changes to the
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Name Model Lbox Particles Realisations
L256 ΛCDM, F4, F5, F6 256 h−1 Mpc 2563 5
L256/2 ΛCDM, F6 256 h−1 Mpc 2563 1
L128 ΛCDM, F6 128 h−1 Mpc 2563 5
L64 ΛCDM, F6 64 h−1 Mpc 2563 1

Table 5.1: Summary of simulations performed in this work.

matter power spectrum (He et al., 2013). In f (R) gravity, one would expect the

scalaron field, through the fifth force it mediates (where the chameleon screen-

ing is not effective), to enhance the ordinary gravitational interaction, thereby

strengthening the clustering of matter. To quantify this further, we define the

dark matter density field ρ (~x, t) as:

ρ (~x, t) = ρ̄(t)[1 + δ(~x, t)], (5.5.47)

where ρ̄ is the background density field at time t, and δ encodes the fluctuations

around that homogeneous background. In order to calculate the power spectrum,

it is first convenient to rewrite the density contrast δ in Fourier space:

δ~k ≡ (2π)−3/2
∫

δ (~x, t) e−i~k.~xd3~x . (5.5.48)

The matter power spectrum is then defined by:

Pδδ (k) ≡ P (k) =
〈∣∣δ~k

∣∣2
〉

. (5.5.49)

To measure the matter power spectrum from our simulation outputs, we make

use of the publicly-available POWMES code (Colombi et al., 2009), which con-

structs the density field of a particle distribution by estimating the Fourier modes

of the distribution using a Taylor expansion of trigonometric functions. We also

compute the velocity divergence power spectra from our simulations, following

the approach in Li et al. (2013c). First, we define the expansion scalar, which is

related to the divergence of the velocity field by:

θ (~x, t) =
1

aH(a)
~∇ · v (~x, t) , (5.5.50)
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where v (x, t) is the cosmic peculiar velocity field and H(a) is the Hubble constant

at epoch a. In a similar vein to the matter power spectrum, we can take the Fourier

transform of the above to get:

θ~k ≡ (2π)−3/2
∫

θ (~x, t) e−i~k.~xd3~x , (5.5.51)

and the corresponding velocity divergence power spectrum:

Pθθ (k) =
〈∣∣θ~k

∣∣2
〉

. (5.5.52)

The velocity field has been shown to be more sensitive than the matter field

to the effects of the fifth force, so any changes due to the inclusion of time deriva-

tives should also have a stronger signal here (Jennings et al., 2011). We measure

θ(~x, t) from our simulation outputs by performing a Delaunay tessellation over

the discrete set of points defining the configuration of our simulation, using the

publicly available DTFE code (Schaap & van de Weygaert, 2000; Cautun & van de

Weygaert, 2011). This has the advantage of calculating a volume-weighted veloc-

ity divergence field, rather than a mass-weighted one, and also circumvents the

issue of empty grid cells.

5.5.1.1 Low-resolution tests

As a first test, we perform simulations with 2563 particles in the L256 box. To

see the difference between the simulation with time derivatives and that in the

quasi-static limit, we measure the enhancement of the power spectrum in each

case relative to ΛCDM. In what follows, we refer to the individual cases using

the notation Fx{q,t}, where x = 4,5,6 indicates the value of | f̄R0|, while q (t) refers

to the simulation in the quasi-static limit (with the inclusion of time derivatives).

We then smooth out the intrinsic noise in the power spectrum as follows. First,

we calculate the relative difference in the power spectrum of Fx{q,t} compared

with ΛCDM in each set of realisations:

∆P(k;Fx{q,t})

P(k;ΛCDM)
=

P(k;Fx{q,t})− P(k;ΛCDM)

P(k;ΛCDM)
. (5.5.53)
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Figure 5.1: Time evolution of excess clustering signal ∆P/P for the lower-
resolution (L256) F4 simulations, over four different redshifts. The open red circles
represent the realisation-averaged relative difference when including the time
derivatives, whereas the filled blue circles show the enhancement with respect
to ΛCDM for the standard quasi-static case. The solid black line is the enhance-
ment for quasi-static F4, relative to ΛCDM as predicted by linear theory. The
procedure for calculating the averages and error bars is as described in the main
text.
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Figure 5.2: Time evolution of ∆P/P for the lower-resolution (L256) F5 simulations,
over four different redshifts. The line/symbol styles are as described in Fig. 5.1.
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We then divide the values of the wavenumber k probed by the simulation into a

number of bins equally spaced in log(k), and average the relative difference in

each bin over all the realisations. The scatter between realisations is represented

by error bars calculated using the standard deviation in each k-bin over all realisa-

tions. The relative difference is taken with respect to ΛCDM, rather than between

the quasi-static and non-static runs themselves, because the residual from the lat-

ter is expected to be very small, and taking the ratios of these small differences

can look larger than they intrinsically are on a plot.

The results of the above procedure in the cases for F4{q,t}, F5{q,t} and F6{q,t}

are shown, respectively, in Fig. 5.1, 5.2 and 5.3. Focusing first on the quasi-static

(blue symbols) simulations only, we note two features consistent in F4, F5 and F6:

Firstly, the enhancement in the matter power spectrum relative to ΛCDM

closely follows the predictions of linear theory at large scales, which is what one

would expect. At smaller scales, linear theory over-predicts the enhancement of

power in the f (R) model with respect to ΛCDM, because it fails to account for the

suppression of the fifth force by the chameleon mechanism and other non-linear

effects. This can also be seen in Fig. 5.1 for the F4 model, which is the one that

deviates most significantly from GR – it shows a better match to linear theory for

k ≤ 1hMpc−1 compared to F5 and F6, because here the chameleon mechanism is

less efficient.

Secondly, we have seen quite distinct features in ∆Pδδ/Pδδ for the three mod-

els. The amplitude of ∆Pδδ/Pδδ at z = 0 increases from F6 to F4, which con-

firms that the effect of the fifth force becomes stronger as the magnitude of the

scalaron field
∣∣ f̄R0

∣∣ increases. F4, for example, shows a distinct peak at around

k = 1 hMpc−1, as demonstrated in Fig. 5.1. In F5, at these scales ∆Pδδ/Pδδ shows

a minor flattening before rising again to smaller scales. In F6, on the other hand,

there are no such noticeable features, and the enhancement of the power spec-

trum increases all the way down to the smallest resolved scales. These features

agree well with the results of (Hellwing et al., 2013), and can be explained by the

different efficiency of the chameleon screening in the different models.

A look at these figures leads us to our main result, that there is no significant
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Figure 5.3: Time evolution of ∆P/P for the lower-resolution (L256) F6 simula-
tions, over four different redshifts. Again, the line and symbol styles follow the
convention in Fig. 5.1.
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change in the clustering properties when we include time derivatives into our

simulations. The differences, as can be gathered from the offset between the red

and blue symbols, are sub-percent. If we now look at the effect of the time deriva-

tives (open red circles), we find that the smoothed results trace their quasi-static

counterparts almost exactly. The error bars here, which represent the scatter in

∆Pδδ/Pδδ across realisations, almost exactly overlap as well. This is particularly

true for the F4 and F5 cases, as can be seen clearly from Figs. 5.1 and 5.2. Towards

smaller scales, the discrepancy between the time derivative and quasi-static runs

becomes slightly more pronounced, which is because the effects of time deriva-

tives on the fifth force will be felt at the smallest scales first, due to the hierarchical

nature of structure formation and the properties of the initial conditions.

Inspection of Fig. 5.3 suggests that the effect of time derivatives is more signif-

icant in F6 than in F4 or F5. Here, a noticeable offset between the time derivative

and quasi-static runs starts as early as z = 0.5. The larger effects of time deriva-

tives could be because ∆Pδδ/Pδδ has a much smaller magnitude (≤ 5% down to

k ∼ 10 hMpc−1) in F6 than in F4 and F5, which makes the small impact of includ-

ing the time derivatives look much stronger, but it may also arise from numerical

issues (e.g., the spatial and time resolutions of our simulations are too low and

the results have not yet converged). To have confidence in using our numerical

simulations to do science, it is important then to understand whether this result

is physical. For this reason, we need to investigate the differences between quasi-

static and non-static runs when re-simulated at higher resolution. We will return

to this in the next subsection.

Finally, Fig. 5.4 illustrates the z = 0 relative difference in the velocity diver-

gence power spectra (∆Pθθ/Pθθ) for F4, F5 and F6. All three models show similar

features as first observed in Hellwing et al. (2013), most markedly the presence

of a dip, after which the ratio ∆Pθθ/Pθθ increases once again. Comparison with

Figs. 5.1-5.3 shows that the enhancement of ∆Pθθ/Pθθ for these models relative

to ΛCDM is a lot stronger than that in the matter power spectra – to almost an

order of magnitude in the case of F6. This reiterates the aforementioned advan-

tage of using the velocity divergence power spectrum as a more sensitive probe
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Figure 5.4: The velocity divergence power spectrum at z = 0 for the F4, F5 and F6
models in the L256 simulation.
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Figure 5.5: Time evolution of ∆P/P for the higher-resolution (L128) F6 simula-
tions, over four different redshifts. Again, the line and symbol styles follow the
convention in Fig. 5.1.
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of modified gravity (Hellwing et al., 2014). Just as in the case of the matter power

spectrum, there does not seem to be any significant difference in the enhance-

ments when including time derivatives, as both the non- static and quasi-static

simulations of the three models seem to be well-converged. Note, however, that

for F6 the effects of including time derivatives on ∆Pθθ/Pθθ appear to be much

smaller than in the case of matter power spectra, which is because of the scale on

the axis.

5.5.1.2 High-resolution tests

We have simulated the F6 model at higher resolution, by keeping the number

of particles at 2563, but using smaller boxes of size 128 h−1 Mpc and 64 h−1 Mpc

(the L128 and L64 simulations in our nomenclature). The result of the former is

displayed in Fig. 5.5, from which we immediately see that the discrepancy we

noticed in Fig. 5.3 is now largely reduced, even at redshift z = 0.5. This is demon-

strated more clearly in Fig. 5.6, where in the upper panels we again plot ∆Pδδ/Pδδ

at z = 0 for both the L256 and L128 runs, and show the difference between the

quasi-static and non-static cases for each in the lower panel. The offset seen ear-

lier in the L256 case is now essentially zero throughout all k for L128, except for the

smallest scales (large k) where we are likely affected by resolution once more. The

case for the L64 simulation is shown in Fig. 5.7, but only for the snapshot at z = 0.5

(which shows the largest difference between the quasi-static and non-static runs

in Fig. 5.5) for brevity. Again, here we see that the difference between the two is

further reduced.

The implications of the results shown in Figs. 5.5 and 5.7 are twofold. First,

it serves as a convergence test of our algorithm to include time derivatives in

the simulations and shows that, with increasing (spatial and time) resolution, the

runs do converge as we anticipated. Second, it resonates our expectations and

findings from F4 and F5 models, that the effect of introducing time derivatives

in the F6 model has a negligible impact on the matter power spectra, compared

with just the quasi-static case (if the resolution is high enough so that simulation
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Figure 5.6: (Left) ∆P/P for the lower-resolution (L256) F6 simulations, shown at
z = 0 in the top panel, with the relative difference between the quasi-static and
non-static runs in the lower panel. There appears to be a systematic increase in
the offset between the two cases with increasing k. We find that this discrepancy
is purely a numerical artefact. (Right) The same is done for the L128 simulation
for F6 at z = 0. It is clear to see that increasing the resolution has led to a much
improved convergence between the quasi-static and non-static cases (except at
the very largest k).
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has converged, of course).

Our conclusion is then that in all models studied in this work (which are also

the most well-studied modified gravity models in the literature), the quasi-static

approximation, which is adopted in almost all numerical simulations to date, is

valid and is adequate to make accurate predictions for the matter and velocity

divergence power spectra.

5.5.2 Configuration space

So far we have focussed on the quantities describing the cosmic density and ve-

locity fields in the Fourier space. Now, for completeness of our considerations, in

this section we will focus on the configuration space. The clustering statistics of

quantities defined in the configuration space provides a complementary picture

of the field properties. The variance and the two-point correlation functions of a

cosmic field are related to its Fourier power spectrum by:

ξ(r) =
∫ dk

2π2 k2P(k)
sin(kr)
(kr)

, (5.5.54)

σ2(r) =
∫ dk

2π2 k2P(k)W2
TH(kr) . (5.5.55)

Here WTH is the Fourier top-hat window and r is the comoving separation (or

smoothing) scale in h−1 Mpc. We have computed both variance and two-point

correlation function for the density and velocity divergence fields for all our L256

runs. For a set of smoothing scales satisfying 1 ≤ r/(h−1 Mpc) ≤ 0.1Lbox the

denoted differences between quasi-static and time derivatives runs were even

smaller then any of the differences we have observed for the density and veloc-

ity power spectra shown in figures from 5.1 to 5.4. Thus we can conclude that

both frequency and configuration space two-point statistics used so far in this

study are fostering a consistent picture. This reassures us that any differences

in the properties of the density and velocity fields between quasi-static and time

derivatives runs must be very small.

Hellwing et al. (2010, 2013) have indicated that the high-order moments are

much more sensitive probes of even minute changes in the cosmic density field.
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Figure 5.7: ∆P/P for the highest-resolution (L64) F6 simulations, at z = 0.5. Note
that this was simulated using only one realisation, so the error bars represent the
scatter in each bin of log(k). One can already see the marked improvement in the
agreement between the quasi-static and time derivative simulations, compared
to equivalent redshift and even z = 0 for the L256 run (Fig. 5.3).
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They have shown in particular, that the clustering amplitudes are well posed to

emphasise even very small differences in the clustering pattern when applied

for modified gravity models. Following method of Hellwing et al. (2013), we

have computed the reduced skewness Sδ;θ
3 ≡ 〈δ3;θ3〉σ−4

δ;θ and the reduced kurtosis

Sδ;θ
4 ≡ 〈δ4;θ4〉σ−6

δ;θ − 3σ−2
δ;θ for our ensemble of L256 simulations. For all the relevant

smoothing scales we have not found any significant differences between quasi-

static and time derivatives realisations in any of our runs.

The results described in § 5.5.1 augmented by our findings concerning the

configuration space clustering statistics clearly demonstrate, that in the statistical

sense the cosmic density and velocity fields produced in quasi-static and time

derivative runs are equivalent down to resolved scales.

Finally, to summarise this section we show in Fig. 5.8 the probability distri-

bution functions (PDFs) of the density field computed at z = 0.5 for our high-

resolution L64 runs. Here we compare only the PDFs of the F6 brand modelled

in our two approaches, with the smoothing scale, r = 0.25 h−1 Mpc (equivalent

to the size of one grid cell in L64). Comparing the PDFs of the two realisations

serves as our final test. So far we have focussed on statistical quantities, in which

any signal coming from relatively small spatial regions would be strongly sup-

pressed. One could imagine that there might exist some special regions in the

density field, where the time derivatives of the scalaron could take bigger val-

ues and hence make a bigger impact the dynamics of the cosmic fields. The very

centres of cosmic voids can serve as one example of such a place. The extremely

low density in those locations could in principle allow for much stronger non-

linear behaviour of the scalar field. However, analysis of the data plotted in the

Fig. 5.8 evidently convinces us that both high and low δ tails of the PDF agree

remarkably well in the compared simulations. All extreme objects, like very deep

voids or very massive clusters, populate the aforementioned tails of the density

PDF. The fact that the both curves agrees also in these regions guarantee that

the scalaron and the matter fields exhibit the same dynamical evolution in both

quasi-static and time derivative simulations.
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Figure 5.8: Probability density functions for the density field δ + 1 in F6 at z = 0.5
computed within a spherical top-hat window, smoothed at r = 0.25 h−1 Mpc. The
distribution for the quasi-static simulation is shown in the blue line, whereas that
of the non-static simulation is displayed in the red circles.
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5.6 Numerical considerations

In this section, we discuss some of the code-specific numerical issues that one

needs to account for in the interpretation of our results above.

5.6.1 Convergence of solutions

In ECOSMOG, between successive relaxation sweeps, one can define a residual dh,

as the difference between the numerical values of the two sides of the equations

being solved. Convergence (or alternatively, the signal to “stop” further relax-

ation iterations) is achieved when the residual gets smaller than some predefined

threshold, the so-called convergence criterion. In practice, however, the accuracy

one would ever achieve when numerically solving our partial differential equa-

tion is fundamentally limited by a numerical error, the so-called truncation error

τh, imposed by the discretisation of the continuous differential equation. The lat-

ter implies that there is no point to further reduce the residual by doing more

relaxation iterations, once it has become smaller than the truncation error (Press

et al., 2002):

∣∣∣dh
∣∣∣ ≤ α

∣∣∣τh
∣∣∣ , (5.6.56)

where α is some constant (∼ 1/3).

Throughout this work, convergence is deemed to have been achieved when

the residual |dh| ≤ 10−8, which is a significantly stronger criterion than that in

Eq. 5.6.56, and further reducing |dh| does not change the results by much. If, how-

ever, one uses
∣∣dh
∣∣≤ α

∣∣τh
∣∣, then the results will be changed, and the change itself

is larger than the offsets caused by including the time derivatives. Obviously,

this is a change that we have no control over. The quasi-static approximation

therefore introduces an error well below that caused by the discretisation of the

differential equation itself 1.

1It is often argued that one should make |dh| as small as practically possible, instead of stop-
ping at |dh| ∼ τh/3, to prevent the numerical errors in solving the differential equation at indi-
vidual steps from accumulating over the many time steps of a simulation. While this is true to
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5.6.2 Box size and resolution

As we have seen in the previous section, the results that we get for the F6 simula-

tions depend on the resolution. This is quite an odd result, and on first instance,

slightly contrary to what one might expect when considering the CFL condition

in Eq. 5.4.45, which is what ECOSMOG uses to determine the size of the integra-

tion time step. Reducing the box size (as we have done here) will reduce dx by

the same factor, but the integration time step is also affected in the same way to

ensure that particles do not move more than a cell size during one time step. As

such, one would expect that adjusting the resolution by means of a increase or

decrease in the size of the simulation box should not affect how different the time

derivative case is from the quasi-static limit. Why then do the higher-resolution

L128 (Fig. 5.5) and L64 runs reduce the discrepancy of this offset seen in the L256

run (Fig. 5.3)?

As a result of decreasing the time step in the higher resolution simulations, the

particles do not travel as far as they do in low-resolution simulations in a given

time step, and so between two consecutive steps, the fR field configuration in real

space does not change as much as in a full time step run, which makes its time

derivatives smaller. In terms of the equations of motion (say in Eq. 5.4.38), this

amounts to saying that the value u(n)
i,j,k − u(n−1)

i,j,k does not change as much when

the time step is reduced. We have tested this in the L256/2 run, by re-running the

L256 simulation in F6, this time artificially halving the time step that ECOSMOG

would naturally use (keeping the force resolution the same), and find that the

offset between the quasi-static and time derivative runs is indeed reduced as in

the L128 simulations.

We thus conclude that with increased resolution, the reduced time steps make

the quasi-static and non-static F6 simulations converge better, and in the conver-

gence limit the time derivatives do not have a big impact on any of our f (R)

gravity simulations.

a certain extent, it is not clear that the discretisation error itself will not accumulate in this case
(recall that, if dh could be brought to zero, then the remaining error is completely from the dis-
cretisation). Again, the way to get away from this problem is to reduce the discretisation error by
increasing the (spatial) resolution, and then check for convergence.
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5.6.3 Inaccuracies due to averaging over oscillations

One of the major caveats behind our analysis is the manner in which we include

the time evolution of fR in our simulations. Since meff � H, the scalaron field

is expected to oscillate very fast about its minimum as it evolves. As mentioned

in § 5.4.2, the time derivative is calculated by averaging fR over the many oscil-

lations. We can make a crude estimate of the error caused by this procedure by

following the methodology of Brax et al. (2012b).

The background evolution of the field scalaron is given by the equation:

f̈R + 3H ḟR +
dVeff

d fR
= 0 , (5.6.57)

where dVeff/d fR =−1/3 (R− fRR + 2 f (R) + 8πGρm) as defined in Eq. 5.2.7. Now,

let us consider small perturbations of the scalaron about its minimum as δ fR ≡
fR − fR,min (note that across this subsection δ fR is not the spatial perturbation),

and derive the following evolution equation for δ fR:

δ f̈R + 3Hδ ḟR + m2
effδ fR = F (t)

≡ − 1
a3

d
dt

[
a3 d fR,min

dt

]
. (5.6.58)

The minimum equation for f (R) gravity is given by:

dVeff

d fR

∣∣∣∣
fR,min

= 0 , (5.6.59)

which has been used to derive the above equation and which also implies that

(by taking the time derivative of the relation R ≈ −8πGρm):

d fR,min

dt
≈ −8πGρm

m2
eff

H . (5.6.60)

The time-dependent force term F(t) then becomes:

F (t) ≈ 8πGρm0

a3
d
dt

[
H

m2
eff

]
. (5.6.61)
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In addition to being driven by the (slow) time evolution of the minimum fR,min,

the scalaron field also experiences a number of “kicks” when relativistic species

become non-relativistic and thus starts to contribute to Tµ
µ ≈ ρm. Because the

transition from relativistic to non-relativistic happens on a relatively short time

scale compared to the Hubble time, we can model this effect as “instantaneous

kicks” (Brax et al., 2004)2:

F ≈ 8πGρm0

a3
d
dt

[
H

m2
eff

]
− β∑

j
κjHjδ

(
t− tj

)
, (5.6.62)

where tj is the time at which the transition from relativistic to non-relativistic

happens and κj ≈ g/g?
(
mj
)
≤ 1, with g the number of degrees of freedom of the

species that is becoming non-relativistic and g?
(
mj
)

the number of relativistic

species at time tj, when the temperature T is equal to the mass mj. β ∼ O(1) is a

constant and Hj is the Hubble expansion rate at tj.

In what follows, we limit ourselves to the time of the electron decoupling, te,

as an example of the analysis:

δ f̈R + 3Hδ ḟR + m2
effδ fR ≈ 8πGρm0

a3
d
dt

[
H

m2
eff

]

−βeκeHeδ (t− te) . (5.6.63)

Defining a new field ψ which satisfies δ fR = a−3/2ψ, this equation can be rewritten

as:

ψ̈ +

[
m2

eff +
9
4

wH2
]

ψ ≈ 8πGρm0a−3/2 d
dt

[
H

m2
eff

]

−βeκeHea3/2
e δ (t− te) , (5.6.64)

where w = P/ρ is the effective equation of state, with ρ, P including contributions

from all matter species. Since m2� H2, we can solve Eq. 5.6.64 using the Wentzel-

2The kick is by the sudden increase in the non-relativistic ρm, as can be seen from dVeff/d fR =
− [R− fRR + 2 f (R) + 8πGρm]/3 – because of the quick change in ρm, fR,min is changed while the
true fR needs time to respond to this.
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Kramers-Brillouin (WKB) approximation, and finally get:

δ fR ≈
8πGρm0

m2
effa

3
d
dt

[
H

m2
eff

]
(5.6.65)

−Θ (t− te)βeκeHe
a3/2

e

a3/2
1√

memeff
sin
∫ t

te
m
(
t′
)

dt′ .

where Θ (t− te) is the Heaviside function, me ≡ meff(t = te), He = H(t = te) and

similarly for βe and κe.

By rewriting:

d
dt

[
H

m2
eff

]
= g(t)

H2

m2
eff

, (5.6.66)

and using:

8πGρm0 = 3H2
0Ωm, (5.6.67)

we can finally average over the rapid oscillations to get:

〈δ f 2
R〉(t) ≈ 9Ω2

mg2(t)
a6

H4
0

m4
eff,0

m4
eff,0

m4
eff(t)

H4

m4
eff(t)

+
β2

eκ2
e

2
a3

e
a3

H2
e

m2
e

me

meff(t)
, (5.6.68)

where, again, a subscript 0 denotes the value at present day.

At late times, e.g., a ∼ 1, the first term in the above expression is of order

(H0/meff,0)
8 and is extremely small (compared to | fR0|) because H0/meff,0 is typ-

ically less than 10−3 for the models studied here. This term appears because of

the shift of fR,min, which itself is due to the evolution of the background matter

density in the Universe. It has nothing to do with the oscillations that we are

interested in here.

The second term characterises the amplitude of the oscillations of δ fR. Up

until the onset of the acceleration phase, we have | f̄ (R)| � 8πGρ̄m and therefore

R̄≈−8πGρ̄m, where ρ̄m has no contribution from radiation even in the radiation-
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dominated era. This relation m2
eff(t) ≈ −(1/3)dR/d fR gives:

m2
eff(t) ≈ H2

0Ωm

3n(n + 1)ξ

[−R
M2

]n+2

≈ 3n+1 H2
0Ωm

n(n + 1)ξ
a−3(n+2). (5.6.69)

By noting that n = 1, 3n+1Ωm ∼ β2
eκ2

e ∼ O(1), we can combine the above two

equations to estimate the amplitude of the oscillation as:

〈δ f 2
R〉1/2(t) ∼ ξa7/2

e Ωra3/2 (5.6.70)

where ξ ≈ 342| f̄R0|, Ωr ∼ 10−4 is the present-day fractional energy density of ra-

diation and ae ∼ 10−9 is the scale factor at te. The late-time dominance of dark

energy slightly alters the relation R̄≈−8πGρ̄m, but nevertheless the above result

still serves as a good order-of-magnitude estimate.

We are more interested in the quantity:

〈δ f 2
R〉1/2(t)

| f̄R,min(t)|
∼ 9a7/2

e Ωra−9/2, (5.6.71)

which is independent of | f̄R,0| and decays over time. A quick calculation shows

that for our simulations (z < 49) the amplitude of the oscillation is always smaller

than 10−27 times f̄R,min, with a value of 10−35 today3.

Evidently, with such tiny amplitudes, the oscillations are unlikely to have any

impact on our result, and the averaging over many oscillations should work ac-

curately. Note also that the smallness of 〈δ f 2
R〉1/2(t) implies that it is probably

unrealistic to follow the oscillations using explicit time integration in a numerical

simulation poised for the study of cosmic structure formation, such as ours here.

Of course, the analysis in this subsection has been greatly simplified. In reality,

the situation could be much more complicated. For example, the scalaron field fR

at a given position of space may not be oscillating around the minimum of its ef-

3Note that we can use ae in the above expressions and estimates, because electrons are the last
species of standard-model particles that become non-relativistic.
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fective potential as determined by matter density at that position, but instead far

from that minimum due to interactions with the density field in the environment;

the oscillations could have a position (or local-density) dependent mass meff(t,~x);

and there can even be ‘micro kicks’ caused by rapid changes of local matter den-

sity due to particles moving to or away from the position, etc.. Such ‘micro kicks’

may not be well approximated as instantaneous kicks because particle velocity

v� c, and they have already been accounted for in our time integration scheme.

5.6.4 Initial conditions

We see from Fig. 5.1-5.5 that the different initial conditions can lead to significant

variations in the results. This can be seen in the form of error bars on the data

points in the figures, which represent the scatter within each k-bin over the five

realisations – the relative enhancement of the power spectra ∆P/P can be lower

or higher than the mean of the bin. Our results demonstrate that the variations

across different realisations dominate the differences induced by including time

derivatives.

5.6.5 The effect of baryons

In this chapter, we have ignored the effect of baryons in our simulations. While

this is not expected to make much of a difference on large scales, the baryonic

effects are more pronounced on non-linear scales, making it more difficult to cor-

rectly measure the power spectrum P(k) in this regime. van Daalen et al. (2014)

found that there can be a discrepancy of more than 10% in the two-point cor-

relation function on sub-Mpc scales between dark matter only simulations, and

those with baryonic effects included. The difference between the inclusion and

non-inclusion of time derivatives in our f (R) gravity simulations is typically sub-

percent, so we expect that any errors from the non-inclusion of baryons signifi-

cantly dominate those caused by the quasi-static approximation.
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5.7 Summary and discussions

In this chapter, we have studied the effect of including time derivatives in the

scalar field equation of motion in numerical simulations of structure formation

for f (R) gravity, which is a departure from the quasi-static approximation usu-

ally used in such simulations. To this end, we have generalised both the f (R)

equation itself (§ 5.3.2) and the Poisson equation (§ 5.3.3), which are the equa-

tions that govern the formation of cosmic structures in this model. We find that,

in both cases, the inclusion of time derivatives results in additional terms enter-

ing the equations compared to the quasi-static case, as seen in Eq. 5.4.35. To solve

these equations, we make use of ECOSMOG, using 2563 particles in different boxes

(of size 256 h−1 Mpc, 128 h−1 Mpc and 64 h−1 Mpc), to test for the effects of res-

olution. In the low-resolution case, we evolve three different Hu-Sawicki f (R)

models: F4, F5 and F6, corresponding to different values of the scalaron field
∣∣ f̄R0

∣∣ (§ 5.5).

By looking at the enhancement of the matter and velocity divergence power

spectra relative to ΛCDM, we find that, in the cases of F4 and F5 (§ 5.5.1.1), the

low-resolution L256 box simulations confirm that including time derivatives in-

troduces only an insignificant difference from the quasi-static approximation,

whereas this difference is larger in the case of F6. To see if changing box size

has any effect on this discrepancy, we perform the F6 simulations in the L128 runs

(§ 5.5.1.2), and find that this large offset becomes smaller. To verify whether this

is actually a consequence of increasing the resolution, we also run two additional

tests. The first is a variation of the original L256 simulation but with its time steps

artificially halved (which we dub the L256/2 simulation). This simulation has the

same mass and force resolution as the low-resolution L256 runs, but it shows the

same decrease of the non-static effect as in L128. The second is an ever higher res-

olution simulation with 2563 particles in a box of size 64 h−1Mpc, which we call

L64. This simulation has even smaller time steps and shows even better agree-

ment between the quasi-static and non-static runs. Finally, we test the statistics

of the configuration space for both the static and non-static cases, and again find
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no discernible differences.

The implications of the additional tests are twofold:

• They confirm that with increasing temporal resolution, our implicit scheme

for time integration does converge, and this is a nontrivial check that our

new code and algorithm works consistently;

• The converged result is that, even for F6, the inclusion of time derivative is

neither crucial nor necessary, and that the quasi-static approximation works

reasonably well for all f (R) models studied here.

We have also discussed numerical issues associated with our algorithm. In

particular, our time-integration scheme assumes implicitly that the code actu-

ally evolves quantities which are averaged over many scalaron field oscillations.

Our qualitative analysis shows that the amplitudes of such oscillations, although

grow in time, are much smaller than the average value (i.e., the oscillation centre)

at all epochs of interest to us, and as a result the implicit time-average should

have no impact on our result in practice. We have also discussed other intrinsic

sources of scatter, such as the different initial conditions (cosmic variance) and

the convergence criterion for our relaxation method, and concluded that they are

all significantly larger than the possible error caused by the quasi-static approxi-

mation.

To summarise: we find that the effects of the scalar field time derivatives are

so small that can be safely neglected for the most practical applications in cos-

mology.

The three models we consider – F4, F5 and F6 – span a wide range in the

strength of the screening mechanism, from very weak to very strong, but in all

these cases the quasi-static approximation holds yielding reliable results. In par-

ticular, F4 corresponds to a model where the chameleon screening is so weak that

it is closer to unscreened theories such as coupled quintessence (Li & Barrow,

2011a,b), and the conclusion can be generalised to those classes of theories.

On the other hand, we must be cautious when trying to generalise the con-

clusion here to other modified gravity theories. An important example is the
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Galileon gravity model (Nicolis et al., 2009; Deffayet et al., 2009), which has the

Dvali-Gabdadze-Porrati (DGP) model (Dvali et al., 2000) as a subclass. Barreira

et al. (2013); Li et al. (2013b) found that neglecting the time derivatives results

in the equations having no real solutions in low-density regions, which does not

occur in the case of f (R) gravity. Furthermore, it was shown in Llinares & Mota

(2014b) that non-static effects can lead to interesting new phenomenology in the

case of the symmetron model. As a result, for those theories, the time derivatives

are likely to have a non-negligible impact on the cosmic fields. It would be inter-

esting to apply our method of including non-static effects to Galileon simulations

and quantify this impact, and this will be left for future work.





Chapter 6

Speeding up N-body simulations of
modified gravity: Chameleon screening

models

6.1 Introduction

Modified gravity theories (Clifton et al., 2012; Joyce et al., 2016) are popular al-

ternatives to the cosmological constant and dark energy models (Copeland et al.,

2006) to explain the observed accelerating expansion of our Universe (Guy et al.,

2010; Percival et al., 2010; Beutler et al., 2011; Reid et al., 2012; Hinshaw et al.,

2013; Riess et al., 2009). Rather than invoking a cosmological constant (Λ)1, or

a new energy component to drive the dynamics of the cosmos, these theories

suggest that the Universe contains only normal and dark matter (which is often

assumed as cold dark matter, or CDM), but the law of gravitation deviates from

that prescribed by Einstein’s General Relativity (GR) on large scales, resulting in

an acceleration of the expansion rate.

Since the law of gravity is universal, deviations from GR on large scales are

often associated with changes in the behaviour on small scales. Any such small

scale changes, however, must be vanishingly small due to the strong constraints

placed by numerous local tests of gravity (Will, 2014). Consequently, viable mod-

ified gravity theories usually have some mechanism by which such modifications

1Note, however, that in many modified gravity theories, such as the one studied in this thesis,
an effective cosmological constant is still required to drive the accelerated expansion.

166
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are suppressed, recovering GR in dense regions like the Solar System, where

those gravity tests have been carried out and their resulting constraints apply.

These are commonly referred to as ‘screening mechanisms’ in the literature, and

are an inherent (instead of an add-on) property which comes from the dynamics

of the theory. The screening effect implies that gravity behaves differently in dif-

ferent environments; this environmental dependence is often reflected in strong

non-linearities in the field equations, which make both analytical and numerical

studies of such theories challenging.

In most theories that are currently being investigated, the modification to GR

boils down to an extra (so-called fifth) force that is mediated by a new scalar

field, and screening in this context means suppression of the fifth force. In one

class of such theories, this is achieved by a coupling of the scalar field to matter

and a non-linear self-interaction potential of the scalar field. With appropriate

choices of the coupling and potential, the dynamics of the scalar field can ensure

that, in high density regions, the fifth force it mediates decays exponentially fast

with distance, or becomes extremely small in its amplitude. Chameleon theories

(Khoury & Weltman, 2004; Mota & Shaw, 2007), with f (R) gravity (Sotiriou &

Faraoni, 2010) (see also Li & Barrow, 2007; Hu & Sawicki, 2007; Brax et al., 2008)

as a representative example, is an instance of the former case, while the dilaton

(Brax et al., 2010) and symmetron (Hinterbichler & Khoury, 2010) models belong

to the latter case.

Amongst the chameleon models, f (R) gravity is currently the most well-studied

case, and there exist numerous works investigating in detail its predictions for

large-scale structure formation in the non-linear regime. This has been made pos-

sible by the continuous development of N-body simulation codes (e.g., Oyaizu,

2008; Oyaizu et al., 2008; Schmidt et al., 2009a; Li & Zhao, 2009; Zhao et al., 2010;

Li & Zhao, 2010; Zhao et al., 2011a,b; Li & Hu, 2011; Li et al., 2012b; Lombriser

et al., 2012; Lee et al., 2013; Jennings et al., 2012; Li et al., 2013c). An efficient

code amongst these is ECOSMOG (Li et al., 2012a), based on the publicly available

N-body and hydro code RAMSES (Teyssier, 2002), which makes large simulations

for f (R) gravity feasible. Using the generic parameterisation for modified gravity
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theories (Brax et al., 2012c,b), ECOSMOG was extended to incorporate chameleon,

dilaton and symmetron models (Brax et al., 2012a, 2013) in general. ECOSMOG

has recently been compared with other codes developed subsequently, includ-

ing MG-GADGET (Puchwein et al., 2013), Isis (Llinares et al., 2014) and MG-ENZO

(Wilcox et al., 2016) and very good agreement was found between all these codes

(Winther et al., 2015).

There are other modified gravity theories, such as the Dvali-Gabadadze-Porrati

(Dvali et al., 2000) (DGP) brane-world model, in which screening is achieved

by non-linear derivative self-couplings of a scalar field. Well-studied examples

include the K-mouflage (Brax & Valageas, 2014a,b) and Vainshtein (Vainshtein,

1972) mechanisms, the latter being originally studied in massive gravity theories

as a means to suppress the extra helicity modes of massive gravitons so that GR

is recovered in the massless limit. In addition to the non-linear massive grav-

ity (de Rham et al., 2011; Sbisà et al., 2012; Chkareuli & Pirtskhalava, 2012) and

braneworld models, the Vainshtein mechanism is also employed in general se-

tups, such as the Galileon models (Nicolis et al., 2009; Deffayet et al., 2009), which

have been the subject of various recent studies (e.g., Chow & Khoury, 2009; Silva

& Koyama, 2009; Ali et al., 2010; Brax et al., 2011; Barreira et al., 2012; Falck et al.,

2015; Barreira et al., 2017; Neveu et al., 2017).

The first two generations of modified gravity simulation codes (e.g., Oyaizu,

2008; Llinares et al., 2008; Li & Zhao, 2010; Zhao et al., 2011a) were either not par-

allelised or had a uniform resolution across the whole simulation box, resulting in

insufficient resolution and inefficiency. The current generation of codes, such as

ECOSMOG, MG-GADGET, Isis and MG-ENZO, are all efficiently parallelised. These

codes solve the non-linear field equations in modified gravity on meshes (or their

equivalents), and employ the adaptive mesh refinement (AMR) technique to gen-

erate ever finer meshes in high density regions to increase resolution. However,

even with these parallelised codes, modified gravity simulations currently are

still very slow compared to the fiducial GR case. As we shall discuss below, this

is partially due to the non-linear nature of the equations to be solved, and partly

due to the specific numerical algorithms used. The greater computational cost
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of modified gravity simulations makes it difficult to achieve the resolution and

volume attained in state-of-the-art simulations of standard gravity.

The coming decade will see a flood of high-precision observational data from

a new generation of cosmological surveys, such as eROSITA (Merloni et al., 2012),

the Dark Energy Spectroscopic Instrument (DESI) (Levi et al., 2013; DESI Collabo-

ration et al., 2016a,b), EUCLID (Laureijs et al., 2011) and the Large Synoptic Survey

Telescope (LSST) (Ivezic et al., 2008). These surveys will provide us with golden

opportunities to perform cosmological tests of gravity (see ref. Koyama, 2016, for

a recent review) and seek a better understanding of the origin of cosmic acceler-

ation. As things stand now, it is the lack of more powerful simulation methods

that limits the accuracy and size that modified gravity simulations can possibly

attain, therefore preventing us from fully exploiting future observations. This has

led to many attempts to speed up simulations using approximate methods (e.g.,

Winther & Ferreira, 2015; Barreira et al., 2015), or develop alternative methods to

predict theoretical quantities (e.g., Li & Efstathiou, 2012; Zhao, 2014; Mead et al.,

2015; Cataneo et al., 2016). These alternative methods are fast substitutes of full

simulations and powerful when quickly exploring a large parameter space is the

primary concern. However, simulations are nevertheless necessary to calibrate

these methods or when better (e.g., %-level) accuracy is needed, as well as to

study the impact of different theories of gravity on galaxy formation.

In Barreira et al. (2015), an approximate method to speed up N-body simu-

lations of Vainshtein-type models was presented and shown to reduce the over-

head2 of solving the modified gravity equation to the level of 50∼ 100%, with the

errors in various cosmological quantities being controlled to well under ∼ 1% or

smaller (comparable to the discrepancies in the predictions of different modified

gravity simulation codes (Winther et al., 2015)). The same method, however, does

not work as accurately in chameleon-type models (see Appendix A.1), the sim-

ulations for which are much more expensive than those for the Vainshtein-type

2Throughout this chapter, the term ‘overhead’ is used to refer to the extra computational time
(using the same machine and number of cores) involved in running a modified gravity simulation
compared to standard gravity. For example, an overhead of 110% means that the modified gravity
run requires 2.1× the CPU time of a ΛCDM simulation.
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models. Given that chameleon models are a large class of modified gravity mod-

els that are of interest to the theoretical and observational community, there is an

equally urgent need for fast simulation methods for them – this is precisely the

purpose of this work.

Unlike the truncated simulation method in Barreira et al. (2015), which arti-

ficially suppresses the solver of the modified gravity equation on higher refine-

ment levels of the AMR meshes, and instead interpolates the solution on lower

(or coarser) refinement levels to find approximate solutions on higher levels, the

method proposed here still solves the full modified gravity equations on all lev-

els. The improved efficiency comes instead from a different way to discretise the

equation on meshes, that makes it less non-linear and greatly enhances the rate of

convergence of the solution. The new scheme boosts the performance of the code

by a factor of 5 for a simulation with a periodic box of size 512Mpc/h and 5123

particles, and by a factor of more than 20, for a higher resolution setup with a box

size of 128Mpc/h and 5123 particles. The method has its own limitation, namely

that the existence of analytical solutions is a particular property of Hu-Sawicki

(HS) f (R) gravity – as well as a few other examples of chameleon, symmetron

(see Appendix A.2) and dilaton – models. However, the generic nature of the HS

model (in the sense that with varying parameters it covers a wide range of cos-

mological behaviours predicted by various other classes of models) and the lack

of a preferred fundamental model make a good argument for using this model as

a testbed, given that it is both impossible and unnecessary to study all chameleon-

type models using simulations.

This chapter will be arranged as follows. In § 6.2 we briefly describe the f (R)

gravity model and the chameleon screening mechanism. In § 6.3 we recap the

method currently employed in f (R) simulations and explain why it is inefficient,

before describing the new method. In § 6.4 we perform some tests as validation

of this new method. Finally, we discuss and summarise in § 6.5.

In keeping with Chapter 5, throughout this chapter we follow the metric con-

vention (+,−,−,−), and set c = 1 except in the expressions where c appears

explicitly. Greek indices µ,ν, · · · run over 0, 1, 2, 3. A subscript 0 denotes the



6.2. The Hu-Sawicki f (R) gravity model 171

present-day value of a quantity.

6.2 The Hu-Sawicki f (R) gravity model

As we have already introduced the f (R) model previously in this thesis (§ 5.2.1),

the discussion in this section is kept brief. We remind the reader, however, that

in the non-linear regime of structure formation in this model, assuming the qua-

sistatic (Bose et al., 2015) and weak-field approximations, the modified Poisson

equation is written as:

∇2Φ =
16πG

3
δρm −

1
6

δR ( fR) , (6.2.1)

which relates the gravitational potential Φ at a given position to the density

(δρm ≡ ρm − ρ̄m, where a bar denotes the cosmic mean of a quantity) and cur-

vature (δR ≡ R− R̄) at that position.

The equation of motion for the scalar field can be written as:

∇2 fR =
1

3c2 [δR ( fR)− 8πGδρm] , (6.2.2)

where fR = d f (R)/dR.

Eqs. (6.2.1) & (6.2.2) need to be solved in cosmological simulations for f (R)

gravity to predict the modified gravitational force that is responsible for struc-

ture formation. It can be seen that Eq. (6.2.2) has a similar form to the Poisson

equation, but δR ( fR) is generally a non-linear function of fR, and this makes it

more difficult to numerically solve this equation.

Of course, to fully specify a f (R) model one must fix the functional form f (R).

Without the guidance of a fundamental theory, it is not hard to imagine that there

is no unique, or even preferred, way to do this. However, there are indeed prac-

tical considerations that mean that the functional form cannot be arbitrary either.

This is because the choice of f (R) must serve the purpose that it is originally de-

signed for: namely, to explain the accelerated cosmic expansion. Moreover, as we

shall see below, the design of f (R) must ensure that any deviation from GR is



6.2. The Hu-Sawicki f (R) gravity model 172

suppressed to an insignificant level in places such as the Solar System, where nu-

merous tests have confirmed compatibility with GR to high precision. Indeed, it

is known (e.g., refs. Brax et al., 2008; Wang et al., 2012a; Raveri et al., 2014; Ceron-

Hurtado et al., 2016) that for any f (R) model to pass Solar System gravity tests,

the background evolution must be close to (practically indistinguishable from)

that of ΛCDM.

The functional form of f (R) we employ in this chapter is the same as that in

Chapter 5, and is the one proposed by Hu & Sawicki (HS, ref. Hu & Sawicki,

2007), and has been shown to satisfy Solar System constraints. It is given as:

f (R) = −M2 c1
(
−R/M2)n

c2 (−R/M2)
n + 1

, (6.2.3)

where n, c1, c2 are dimensionless model parameters, and M2 = 8πGρm0/3 is an-

other model parameter of mass dimension one that defines a characteristic mass

scale for the theory. As in Chapter 5, we set c1/c2 = 6ΩΛ/Ωm (in which Ωm,

ΩΛ are, respectively, the present-day fractional density of non-relativistic matter

and the cosmological constant), which guarantees that the model reproduces a

ΛCDM expansion history at the background level.

The functional form of f (R) is critical in determining if the fifth force can be

sufficiently suppressed in dense environments. For the HS model, it was shown

by Hu & Sawicki (2007) that | fR0| < 10−5 is required to screen the Milky Way,

where fR0 is the background value of fR today. Currently, the strongest constraint

on the value of | fR0| in the HS model comes from the screening of dwarf galaxies,

which requires | fR0|. 10−7 (95% C.L.) (Jain et al., 2013; Vikram et al., 2013). This

is a promising way to constrain f (R) gravity, provided astrophysical systemat-

ics are well controlled and the environmental impact on screening is modelled

accurately (which itself will benefit from high resolution simulations).

In cosmology, there are many constraints on fR0 as well, and for recent reviews

on this topic the readers are referred to Lombriser (2014); Burrage & Sakstein

(2016). In Terukina et al. (2014); Wilcox et al. (2015), X-ray and weak lensing esti-

mates for the mass of the Coma cluster are combined to constrain | fR0| . 10−4.2
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(95% C.L.). Two of the strongest constraints to date both come from cluster abun-

dance. In Cataneo et al. (2015) the authors use X-ray cluster abundance while in

Liu et al. (2016) the counts of high-significance weak lensing convergence peaks

are used as a proxy for cluster counts; both studies find that | fR0| . 10−5.2 af-

ter carefully accounting for systematics, even though the data and analyses are

very different. In Cai et al. (2015), it was found that stacked lensing tangential

shear of cosmic voids could potentially place constraints at a similar level. More

recently, a study by Peirone et al. (2016), which uses Planck Sunyaev-Zel’dovich

cluster counts, constrains | fR0| . 10−5.8, although the result is quite sensitive to

the halo mass function used in the analysis. All the constraints are quoted at 95%

confidence. There are many other cosmological and astrophysical constraints in

the literature (e.g. from stellar evolution, Sakstein, 2015), but it is beyond the

scope of this chapter to mention all of them (some of these studies were carried

out by using linear perturbation theory, which underestimates the effectiveness

of screening and can therefore overestimate the strength of the constraints on the

model – this is why simulations that fully capture the non-linearity of the theories

are useful).

6.3 N-body equations and algorithm

In this section, we describe the N-body equations in appropriate code units and

their discretised versions that ECOSMOG solves in simulations.

6.3.1 The Newton-Gauss-Seidel relaxation method

Like its base code RAMSES (Teyssier, 2002), ECOSMOG adopts supercomoving co-

ordinates (Martel & Shapiro, 1998) to express the field equations in terms of di-

mensionless quantities (see Eq. 5.4.33 for the full list). In terms of these variables,

the Poisson and scalar field equations (Eqs. 6.2.1 & 6.2.2) in the HS model can be
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rewritten as:

∇̃2Φ̃ = 2Ωm(ρ̃− 1)− 1
6

Ωma4



(
−na2ξ

f̃R

) 1
n+1

− 3
(

a−3 + 4
ΩΛ

Ωm

)
 ,(6.3.4)

∇̃2 f̃R = − 1
c̃2 Ωma(ρ̃− 1)

+
1

3c̃2 Ωma4



(
−na2ξ

f̃R

) 1
n+1

− 3
(

a−3 + 4
ΩΛ

Ωm

)
 , (6.3.5)

in which we have used the relation m2 = ΩmH2
0 , and defined c̃ = c/(BH0), which

is the speed of light in code units. Note that these equations are the same as

Eq. 5.4.35, but with the quasistatic approximation applied.

In principle, Eqs. (6.3.4) & (6.3.5) can be directly discretised on a mesh and

can then be solved numerically. For chameleon-type models, however, there is a

further subtlety: namely, the value of− f̃R is very small at early times and in high

density regions. This property is desirable in order that the model can pass Solar

System tests of gravity by virtue of the chameleon mechanism, but it also poses

a challenge when solving Eq. (6.3.5) numerically. In the relaxation method that is

employed to solve the discrete version of this equation,− f̃R in each mesh cell gets

updated until the solution is close enough to the true value (more details below).

This updating procedure is a numerical approximation, and it is possible that

− f̃R can acquire negative numerical values in some cells as a result. Taking the

case of the HS n = 1 model as an example: the quantity (− f̃R)
1

n+1 is not physically

defined if − f̃R < 0, and the code then become unstable.

To overcome this numerical issue, in Oyaizu (2008) Oyaizu proposes to re-

place − f̃R with exp(u) in Eq. (6.3.5). As exp(u) can only be positive, this guar-

antees that the nonphysical situation described above will never appear. This

change of variable has since then been used in all simulation codes of chameleon

models to our knowledge (Oyaizu et al., 2008; Schmidt et al., 2009a; Li & Zhao,

2009; Zhao et al., 2010; Li & Zhao, 2010; Zhao et al., 2011a; Li et al., 2012a; Puch-

wein et al., 2013; Llinares et al., 2014; Wilcox et al., 2016).
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In terms of this new variable, Eq. (6.3.5) can be discretised as:

1
h2

[
bi+ 1

2 ,j,kui+1,j,k − ui,j,k

(
bi+ 1

2 ,j,k + bi− 1
2 ,j,k

)
+ bi− 1

2 ,j,kui−1,j,k

]

+
1
h2

[
bi,j+ 1

2 ,kui,j+1,k − ui,j,k

(
bi,j+ 1

2 ,k + bi,j− 1
2 ,k

)
+ bi,j− 1

2 ,kui,j−1,k

]

+
1
h2

[
bi,j,k+ 1

2
ui,j,k+1 − ui,j,k

(
bi,j,k+ 1

2
+ bi,j,k− 1

2

)
+ bi,j,k− 1

2
ui,j,k−1

]

+
1

3c̃2 Ωma4
(

na2ξ
) 1

n+1 exp
[
− ui,j,k

n + 1

]
− 1

c̃2 Ωma(ρi,j,k − 1)

− 1
c̃2 Ωma4

(
a−3 + 4

ΩΛ

Ωm

)
= 0, (6.3.6)

in which we have used the second order finite difference scheme to calculate

∇̃2 (− f̃R
)
. Defining the left-hand side of Eq. (6.3.6) as the operator Lh, where

a superscript h is used to denote that the equation is discretised on a mesh with

cell size h, the equation can be written symbolically as:

Lh(ui,j,k) = 0. (6.3.7)

This is a non-linear equation for ui,j,k, and the most commonly used method to

solve it is relaxation, which begins with some initial guesses of ui,j,k (for all mesh

cells) and iteratively improves the old guess to get a new guess according to the

Newton-Raphson method (same as the one used for solving non-linear algebraic

equations):

uh,new
i,j,k = uh,old

i,j,k −
Lh
(

uh,old
i,j,k

)

∂Lh
(

uh,old
i,j,k

)

∂uh
i,j,k

, (6.3.8)

until ui,j,k (for all mesh cells) is close enough to the true solution or, equivalently,

some all-mesh average of Lh (ui,j,k
)

gets close enough to zero. A widely used

definition of this all-mesh average (the so-called residual) is given by:

Residual ≡
[
∑
i,j,k

[
Lh (ui,j,k

)]2
]1/2

, (6.3.9)
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where the summation is performed over all mesh cells on a given refinement

level.

The implementation of this method is fairly straightforward in principle, but

in practice there are a number of subtleties that need to be taken into account. For

example, refined meshes usually have irregular shapes and their boundary con-

ditions should be carefully set up by interpolating the values of u from coarser

levels. The relaxation method is also notoriously slow to converge (convergence

here meaning that the residual becomes smaller than some pre-fixed threshold) if

it is only done on a fixed level, and in practice the so-called multigrid method is

commonly used to remedy this (Brandt, 1977). This consists of moving the equa-

tion to coarser meshes, solving it there, and then using the coarse-mesh solutions

to correct the fine-mesh one. These subtleties have been discussed in detail in

the literature; as they are not the main concern of this chapter, we refer interested

readers to, e.g., Li et al. (2012a), for a more elaborate description.

Although the multigrid method improves convergence in general, the rate of

convergence is still very slow in f (R) simulations, and the relaxation is some

times unstable and diverges. One way to improve both the rate of convergence

and the stability of the Newton-Gauss-Seidel relaxation method is to impose the

condition:

∣∣∣Lh(uh,new
i,j,k )

∣∣∣ <
∣∣∣Lh(uh,old

i,j,k )
∣∣∣ ,

i.e., requiring that the residual after the new iteration gets monotonically smaller

than in the previous one. When the condition is not met, we retain the value

of the scalar field from the previous step (uh,old
i,j,k ). While satisfying this condition

can be costly on each step, the overall efficiency of the code can be significantly

increased by the improved numerical stability and reduced number of iterations

required to reach convergence.
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Finally, a similar discretisation can be done for the modified Poisson equation:

1
h2

(
Φi+1,j,k + Φi−1,j,k + Φi,j+1,k + Φi,j−1,k + Φi,j,k+1 + Φi,j,k−1 − 6Φi,j,k

)

= 2Ωma(ρi,j,k − 1)

−1
6

Ωma4
[(

na2ξ
) 1

n+1 exp
(
− ui,j,k

n + 1

)
− 3

(
a−3 + 4

ΩΛ

Ωm

)]
. (6.3.10)

This equation is solved after Eq. (6.3.6), by which time ui,j,k is already known. As

a result, this is a linear equation for Φi,j,k which is easier to solve than Eq. (6.3.6),

and we shall not discuss it further here. Structurally, Eq. (6.3.10) is the same as the

Poisson equation for standard gravity (with a modified source term); hence, one

may simply use the standard RAMSES implementations for solving the Poisson

equation.

6.3.2 The new method

The discretisation used in the scalar field equation (Eq. 6.3.6) has a number of

drawbacks:

• Depending on the value of ξ, the original scalar field equation can be very

non-linear (when ξ is small, the term involving
(
− f̃R

) 1
n+1 is large and non-

negligible, c.f. Eq. 5.2.12) or close to linear (when ξ is large, that term is

small and negligible so that the equation becomes nearly linear in f̃R) 3.

In the former case, introducing the new variable u = log(− f̃R) makes the

equation even more non-linear; in the latter case, it non-linearises an almost

linear equation. The high non-linearity makes the relaxation method very

slow to converge, which is why simulations of f (R) gravity are generally

much more costly than ΛCDM simulations with the same specifications.

Indeed, even with parallelised codes such as ECOSMOG, MG-GADGET, Isis

and MG-ENZO (Zhao et al. in prep.), very large-sized and high resolution

3Note that, on first glance at Eq. (6.3.6), this may appear counter-intuitive. This dependence of
the degree of linearity of Eq. (6.3.6) on the size of ξ can be explained by the fact that as ξ becomes
smaller, the value of f̃R also becomes smaller (c.f. Eq. 5.2.12), making Eq. (6.3.6) on the whole
more non-linear. The converse is true when ξ is large.
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f (R) simulations are currently still difficult to run, and this situation needs

to be improved if we want to compare future survey data to theoretical

predictions to perform accurate tests of modified gravity.

• As we have already seen above, the discrete Laplacian ∇̃2eu is more com-

plicated than the simple discretisation of ∇̃2Φ̃, resulting in a more complex

equation that needs to be solved.

• The code ends up with a lot of exp and log operations. This is not optimal

from a practical viewpoint, because the cost of these operations is gener-

ally much higher than that of simple arithmetic ones, such as summation,

subtraction and multiplication.

The method described here alleviates the non-linearity problem by defining

a new variable u =
(
− f̃R

)1/2, so that the scalar field equation for the HS model

with n = 1 (the most widely studied f (R) model in the literature) becomes a

simple cubic equation in u, which can be solved analytically instead of resorting

to the approximation in Eq. (6.3.8):

u3
i,j,k + pui,j,k + q = 0, (6.3.11)

where:

p ≡ h2

6c̃2 Ωmaρ̃i,j,k +
2h2

3c̃2 ΩΛa4

−1
6

(
u2

i+1,j,k + u2
i−1,j,k + u2

i,j+1,k + u2
i,j−1,k + u2

i,j,k+1 + u2
i,j,k−1

)
,(6.3.12)

q ≡ − h2

18c̃2 Ωma4ξ1/2. (6.3.13)

Note that here we focus on the case of n = 1; other cases will be discussed later.

While Eq. (6.3.11) can be solved analytically (and therefore accurately), it has

three branches of solutions and, depending on the numerical values of p and q,

all these branches can be real. Therefore, extra care has to be taken to make sure
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that the correct branch of solutions is chosen. For this, let us define:

∆0 ≡ −3p,

∆1 ≡ 27q. (6.3.14)

As q < 0 is a constant in a given time step of the simulation, we see that ∆1 < 0.

The case p > 0 can occur in high density regions where u > 0 is small (and u2

smaller still) because of the chameleon screening. In these cases, ∆0 < 0 and thus

∆2
1− 4∆3

0 > 0. The cubic equation then admits only one real solution, which must

be the one we choose:

ui,j,k = −1
3

(
C +

∆0

C

)
(6.3.15)

with

C ≡
[

1
2

(
∆1 +

(
∆2

1 − 4∆3
0

)1/2
)]1/3

. (6.3.16)

Note that Eq. (6.3.16) implies that C = 0 only when ∆0 = p = 0. This ensures that

for the p > 0 case, C 6= 0 in Eq. (6.3.15), and the solution is never undefined.

In the case of p = 0, the solution is simply:

ui,j,k = (−q)1/3. (6.3.17)

p < 0 can occur for density peaks in an overall low density region (where u

and hence u2 can be large). ∆2
1 − 4∆3

0 can then take either positive or negative

values. In the former case, the solution in Eq. (6.3.15) still holds, while in the

latter case the equation has three real solutions:

ui,j,k = −2
3

∆1/2
0 cos

[
1
3

Θ +
2
3

jπ
]

, (6.3.18)

where j = 0,1,2 and cosΘ ≡ ∆1/
(

2∆3/2
0

)
. It is straightforward to decide which

branch we should take: as ∆1 < 0, we have cosΘ < 0 and so Θ ∈ (π/2,π). Given

that we require ui,j,k to be positive-definite:



6.3. N-body equations and algorithm 180

• If j = 0, ui,j,k ∼ −cos
(

1
3 Θ
)
< 0 and is unphysical;

• If j = 1, ui,j,k ∼ −cos
(

1
3 Θ + 2

3 π
)
> 0 and is physical;

• If j = 2, ui,j,k ∼ −cos
(

1
3 Θ− 2

3 π
)
< 0 and is unphysical.

This new method has a few interesting features:

• The discrete equation to be solved is significantly simpler. In particular, q is

the same in all cells, so it only needs to be calculated once for a given time

step and on a given mesh refinement level.

• There is a substantial reduction of costly computer operations as we get

rid of operations. Some cos and cos−1 operations are introduced, but they

will not be executed for all cells (depending on which branch of solutions

we take); even for cells in which they need to be executed, they are only

executed once. In the old method, exp is executed on both the cell and its

neighbours.

• The cubic equation is solved analytically and a physical solution always ex-

ists. The variable redefinition in the old method, f̃R = exp(u), was chosen so

as to the avoid the unphysical solution− f̃R < 0; the new method avoids this

situation automatically by selecting the physical solution u =
(
− f̃R

)1/2
> 0

analytically. As a result, we can expect this new method to be both more sta-

ble (i.e., not suffering from catastrophic divergences due to numerics) and

more efficient (i.e., the solution to Eq. (6.3.11) is exact for each Gauss-Seidel

iteration, while Eq. (6.3.8) implicitly uses the approximate Newton-Raphson

method and may need to be executed many times to arrive at what the new

method achieves in one go).

Note that this new method does not really get rid of Gauss-Seidel relaxation,

because the quantity p in Eq. (6.3.11) depends on the values of the scalar field

in (the 6 direct) neighbouring cells, which are not accurate values but tempo-

rary guesses. It therefore still needs to do the Gauss-Seidel iterations (we use

the standard red-black chessboard scheme here). What it does get rid of is the
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‘Newton-Raphson’ part [Eq. (6.3.8)] of the Newton-Gauss-Seidel (or non-linear

GS, or NGS) relaxation which updates the old guesses using a linear approxi-

mation of the full non-linear equation. The speedup is also largely assisted by

the simplicity of Eq. (6.3.12) compared to Eq. (6.3.6), which comes about due to

the new variable redefinition. Therefore, while Gauss-Seidel iterations are still

required, the savings using the new method can still be significant.

6.4 Tests and simulations of the new method

In this section we present the results of several test runs of the new ECOSMOG

code. In what follows, we will only consider the F6 model of f (R) gravity, in

which the present-day value of the scalar field is given by
∣∣ f̄R0

∣∣ = 10−6. In this

model, the chameleon screening is particularly efficient, meaning that deviations

from GR are very small. To capture the effects of screening, accurately solving the

non-linear scalar field equations is therefore necessary.

We have simulated the F6 model at three resolution levels: ‘Low res’, ‘Medium

res’ and ‘High res’ (the box size and number of particles used in each of these runs

are summarised in Table 6.1). In each case, we have also run a ΛCDM simulation

starting from the same initial conditions. The mesh refinement criteria used for

the ‘High res’ simulation allows us to resolve small scales comparable to those in

the Millennium simulation (Springel et al., 2005). While the ‘Low’ and ‘High res’

runs use Planck 2015 (Planck Collaboration et al., 2016) cosmological parameters

(with Ωm = 0.308,ΩΛ = 0.692, h = 0.6781,σ8 = 0.8149), the cosmological parame-

ters for the ‘Medium res’ run are obtained from WMAP-7 (Komatsu et al., 2011)

data (with Ωm = 0.271,ΩΛ = 0.729, h = 0.704,σ8 = 0.8092).

In Fig. 6.1, we compare the non-linear matter power spectrum, Pδδ(k), from

the ‘Medium res’ simulations using the old and new methods. Pδδ(k) was com-

puted using the publicly-available POWMES code (Colombi et al., 2009). The solid

and dashed curves are Pδδ(k) computed at z = 0 and z = 0.5, respectively, for F6.

The results of the two methods are indistinguishable at both redshifts, and this is

quantified more clearly in the bottom panel of Fig. 6.1, which shows the relative
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Figure 6.1: Top panel: Comparison of the non-linear matter power spectra at z =
0,0.5 for the F6 model using the old method (blue, § 6.3.1) and the new method
(red, § 6.3.2) for solving the scalar field equations of motion. The results shown
are for the ‘Medium res’ simulation. Bottom panel: Ratio of the power spectra
corresponding to the upper panel. The shaded grey band represents a 1% error
region.
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Name Model B Np Speed up Overhead
[Mpc/h] (new method)

Low res ΛCDM, F6 512 5123 5× 110%
Medium res ΛCDM, F6 250 5123 15× 180%

High res ΛCDM, F6 128 5123 > 20× 190%

Table 6.1: Details of the simulations performed in this work. The columns B and
Np, respectively, refer to the comoving box size and number of particles in each
of these runs. The starting redshift in all simulations was zini = 49. The second
last column summarises the factor by which the new method is faster than the
old one in each case. Note that the > 20× speedup for the ‘High res’ simulation
is an estimate - we have not run an F6 simulation at this resolution using the old
method. The last column shows the percentage overhead of the F6 simulations
using the new method compared to ΛCDM. The level of speedup that can be
achieved in the F6 simulations depends on the convergence criteria used: in all
cases, convergence is considered as achieved when the residual is < 10−8 on the
domain level, and < 10−7 on the fine levels.

difference between the old and new methods. The shaded grey band in this panel

represents a 1% error around zero; clearly, the new and old methods agree to well

below 1% at all scales resolved in the simulation. The same is true even at higher

redshift (z = 1,2, not shown). We have checked that the agreement also holds in

the case of the velocity divergence power spectrum, Pθθ(k), which, being just the

first integral of the gravitational acceleration, would be more sensitive to differ-

ences in the gravitational forces between the two methods. Agreement for Pθθ(k),

which is calculated in a volume-weighted way, shows that the two methods agree

well even in regions of the cosmic web that are not mass-dominated. This is not

unexpected: after all, the new method solves the same equation of motion, with-

out needing to use the approximate and inefficient Newton-Raphson scheme. As

a consequence, the simulation is now significantly faster than before: the new

method boosts the speed of the F6 calculation by a factor of 15 relative to the old

implementation in ECOSMOG (see the last column of Table 6.1).

Two-point statistics such as the power spectrum offer a complete description

of clustering properties only for Gaussian fields. Gravitational instability theory

predicts that the non-linear evolution induced by gravity drives away the PDF of

these fields from Gaussianity at late times and small scales (see e.g., Juszkiewicz

et al., 1993; Bernardeau, 1994). This is reflected in the growing skewness and
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Figure 6.2: Enhancement of the F6 matter power spectrum relative to ΛCDM for
the ‘High res’ simulation (B = 128Mpc/h, Np = 5123). The different coloured
curves show the relative difference at different scale factors, as indicated in the
legend. Alongside the legend labels, we also note the percentage overhead asso-
ciated with the F6 run compared to the ΛCDM run at the same scale factor.
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kurtosis of cosmic density and velocity fields. f (R) theories show systematic de-

viations from ΛCDM for these statistics, and these can therefore be used as a test

of the theory (Hellwing et al., 2013). We have computed PDFs and their higher-

order moments for the density and velocity divergence fields to test how well the

old and new methods agree beyond simple two-point statistics. We find that the

differences are very small and comparable to the differences seen in the P(k). As

an additional test, we have also computed the Fourier mode decoherence func-

tions (Strauss et al., 1992; Chodorowski & Ciecielag, 2002), defined as Pearson

correlation coefficients for the Fourier modes of the two fields:

C(k) ≡ 〈 f1 f ∗2 〉
〈 f 2

1 〉1/2〈 f 2
2 〉1/2

,

where f1 and f2 are the density or velocity divergence fields for the f (R) runs

computed using the two methods. C(k) = 1 when both fields being compared

have Fourier modes at given k that correspond exactly. The density and velocity

divergence fields for the F6 runs using the two methods take C(k) = 1 for almost

the entire range of k, up until the Nyquist limit of the simulations. These tests

reassure us that the density and velocity fields produced by the old and the new

method are, for all practical purposes, indistinguishable.

Results from the ‘High res’ simulations are shown in Fig. 6.2, where we plot

the relative difference in Pδδ(k) of F6 with ΛCDM – only results using the new

method are shown. Curves of different colours represent the relative difference

at different scale factors, as labelled in the legend. The legend labels also list the

percentage overhead involved in the F6 simulation compared to the ΛCDM run

at the same scale factor. With the new method, the F6 simulation is now only

∼ 45% slower than the ΛCDM run at a = 0.5 (z = 1), and only ∼ 190% slower at

the final time. Compared to F6 simulations with comparable resolution using the

old method (e.g., ref. Shi et al., 2015), the new implementation is estimated to be

more than 20× faster.

The degree to which the new method improves the efficiency of ECOSMOG

over the old one depends on resolution. Indeed, in going from the ‘Low res’ to
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the ‘High res’ simulations, the gain in performance increases from a factor of 5

to a factor of over 20 (the overhead increases considerably with resolution in the

old method). The improved efficiency of the numerical algorithm will enable us

to run simulations of chameleon models that would previously have been com-

putationally very expensive to perform. Future applications of the method could

include running hydrodynamical simulations (where high resolution is required

to follow accurately the hydrodynamics and to resolve spatial scales important

for star formation and feedback), and running large numbers of low resolution

volumes to estimate the covariance matrix in non-standard gravity.

6.5 Summary and discussions

Modified gravity models are an umbrella group of theories seeking to explain

the apparent accelerated cosmic expansion by assuming modifications to the Ein-

steinian gravitational law on cosmological scales. Usually, such modifications

must be small in high density environments in which gravity is known to be ac-

curately described by GR, and this can be achieved by screening mechanisms,

resulting in highly non-linear field equations. Studying the cosmological impli-

cations of these theories and observational constraints on them is an active re-

search topic in cosmology, but the non-linear nature of these theories means that

one has to resort to numerical simulations, which can be prohibitively slow. This

has, up until now, limited the scope of accurately testing gravity using precision

observational data.

In this chapter, we proposed and demonstrated the power of a new and more

efficient method to solve the non-linear field equation in one of the most popular

modified gravity models – the Hu-Sawicki variant of f (R) gravity. The current

method used to simulate this model is slow mainly because of a variable redefi-

nition aimed at making the relaxation algorithm numerically stable, but has the

negative side effect of making the discrete equation even more non-linear and,

therefore, harder to converge. As a result, modified gravity simulations which

match the size and resolution of the state-of-the-art ΛCDM N-body or hydrody-
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namical simulations have thus far been beyond reach (but see Hammami et al.,

2015; Arnold et al., 2016).

The new method avoids the specific variable redefinition used in the old method,

and therefore does not further increase the non-linearity of the discrete equation

to be solved. More importantly, it enables the discrete equation to be written in a

form that is analytically solvable at each Gauss-Seidel iteration. This is what ulti-

mately makes the method efficient: compare solving a highly non-linear algebraic

equation analytically and solving the same equation using the Newton-Raphson

iteration method (Eq. 6.3.8), and it is clear that the latter is generally much more

inefficient.

We have performed test simulations using the new method, and confirmed

that it is indeed very efficient. The working model for the tests is the F6 vari-

ant of Hu-Sawicki f (R) gravity. The chameleon screening is very efficient in F6,

and it is therefore important that the non-linear scalar field equations are solved

accurately. In Fig. 6.1, we have confirmed that the new and old methods agree

at the sub-percent level when comparing the non-linear matter power spectrum,

Pδδ(k). The good agreement continues to hold at higher redshift, as well as for

the velocity divergence power spectra, Pθθ(k). Next, in Fig. 6.2, we presented

results from our ‘High res’ simulations, which are comparable in resolution to

the Millennium simulation. The total overhead in the F6 simulation is ∼ 190%

compared to the equivalent ΛCDM run; this represents a boost in performance of

> 20× compared to an F6 simulation of similar resolution using the old method.

The improved performance of the new simulation algorithm compared to the

old one serves to highlight the importance of the way in which one discretises

partial differential equations for the efficiency of numerically solving them. This

is particularly true for highly non-linear equations, such as those encountered in

many modified gravity theories. Our work highlights the following:

(1) There is not a single way of discretisation, and this usually depends on the

specific equations to be solved. In general, the discretisation should be chosen to

preserve the original degree of non-linearity of the equation as much as possible,

and avoid further non-linearising the equation.
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(2) Where possible, exact solutions to the non-linear discrete equation should

be used instead of the approximate solution in Eq. (6.3.8). The latter, despite

being commonly used in relaxation solutions to non-linear differential equation,

is a second option only for cases where Lh (ui,j,k
)
= 0 has no analytical solution

in general.

The same observations and conclusions apply to other classes of partial differ-

ential equations, such as those involving higher order powers of the derivatives

of the scalar field (e.g.,
(
∇2ϕ

)2, ∇i∇j ϕ∇i∇j ϕ,
(
∇2ϕ

)3, ∇i∇j ϕ∇j∇k ϕ∇k∇i ϕ),

which are commonly encountered in Vainshtein-type theories. In fact, in the most

popular examples of such models – the DGP, cubic Galileon and quartic Galileon

models – we also found that the discretisation could be done in a way such that

Lh (ui,j,k
)
= 0 is a quadratic or cubic equation that can be solved analytically. This

fact has been used in Li et al. (2013a,b); Barreira et al. (2013, 2015) to make simu-

lations of these models possible, more efficient and free from numerical instabili-

ties.

Unfortunately, the new method does not apply to all non-linear partial differ-

ential equations, because it relies on ui,j,k being analytically solvable in the dis-

crete equation. In the HS f (R) model with n = 1, ui,j,k satisfies a cubic equation,

which does have analytical solutions. This neat property does not hold for other

models. However, this method will still be very useful for the following reasons:

• At the moment, no specific functional forms of f (R) – or more generally,

no specific chameleon models – are known to be fundamental. Different

models often share similar qualitative behaviours though the predictions

can be quantitatively different. For what it is worth, the HS model serves

as a great test case to gain insights into the question ‘How much deviation

from GR (in the manner prescribed by the large class of chameleon models)

is allowed by cosmological data?’. Indeed, all current observational con-

straints on modified gravity are to be considered as attempts to answer this

question. In this context, the exact functional form of f (R) is not critical, be-

cause whatever form we adopt, it is unlikely to be the true theory. Actually,

the HS model is capable of reproducing the behaviours of many classes of
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models, and is therefore a representative example.

• There are other models that this method can be applied to. One example

is the HS f (R) model with n = 2. In this case Eq. (6.3.11) becomes a quar-

tic equation, which also has analytical solutions. A further example is the

logarithmic f (R) model studied in the literature (e.g., ref. Brax et al., 2008):

f (R) ∼ −2Λ− η log (R/R∗) ,

where Λ is the cosmological constant, and η and R∗ are some model param-

eters. In this case, fR∼ 1/R, and we could define u =− f̃R so that Eq. (6.3.11)

becomes a quadratic equation. Moreover, looking beyond f (R) gravity,

there are also other chameleon models with different coupling strengths

from the value of 1/3 for f (R) models, and can be simulated using this

method (Brax et al., 2013). The method can also be applied to the sym-

metron model (Hinterbichler & Khoury, 2010), in which the equation:

Lh (ϕi,j,k
)
= 0,

is a cubic equation (Davis et al., 2012) for the symmetron field ϕ, and certain

variants of the dilaton model (Brax et al., 2010; Brax et al., 2012a), though

our initial tests showed that the improvement of the efficiency is far smaller

than in the f (R) case (Appendix A.2).

Efforts towards generalising the new method to the models mentioned above,

and to running large high resolution simulations including baryonic physics, are

currently ongoing and will be the subject of future works.





Chapter 7

Conclusions and future work

7.1 A summary of this thesis

The concordance model of cosmology, ΛCDM, has undoubtedly withstood the

tests of time. In many ways, it is remarkable that this relatively simple model is

able to successfully fit and predict a vast range of phenomena in the Universe,

such as the temperature fluctuations observed in the CMB, and the large-scale

distribution of galaxies. The continuous development of sophisticated numerical

and semi-analytic techniques have facilitated tests of this model on non-linear

scales where, recently, hydrodynamical simulations within a ΛCDM context have

managed to successfully reproduce a large set of observed galaxy properties at

low redshift (e.g. Vogelsberger et al., 2014; Schaye et al., 2015).

Despite these successes however, testing the predictions of alternatives to

ΛCDM is of vital importance. In the case of CDM, which provides a consistent

picture for structure formation on small and large scales, the main source of con-

cern is that despite the many years of targeted direct and indirect detection exper-

iments, the CDM particle has not yet been discovered (see e.g. Arcadi et al., 2017,

for a recent review). This, coupled with the non-detection of supersymmetry at

the LHC, is gradually narrowing down the parameter space within which tradi-

tional CDM candidates are thought to exist. With regards to Λ, studies extending

beyond the standard model can be motivated by the fact that the canonical for-

mulation of General Relativity plus a cosmological constant may not be a good

description for the nature of gravity on scales beyond the Solar System. Large-

scale tests of gravity are particularly timely in anticipation of future surveys like
191
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the LSST (Ivezic et al., 2008), DESI (Levi et al., 2013) and EUCLID (Laureijs et al.,

2011).

Over the course of this thesis we have examined the nature of structure for-

mation in two possible alternative scenarios: in the first half, we assume that the

expansion of the Universe is governed by Λ, but the dark matter is composed of

sterile neutrinos rather than CDM. In the second half, the dark matter is assumed

to be CDM, but the theory of gravity is modified through the addition of an extra

term that depends on the Ricci scalar, R, to the Einstein-Hilbert action ( f (R) grav-

ity). We summarise the main results of this thesis in the following subsections.

7.1.1 Structural properties of sterile neutrino dark matter haloes

In Chapter 2, we introduced the Copernicus Complexio (COCO; Hellwing et al.,

2016a; Bose et al., 2016a) simulations, a pair of dark matter-only simulations in

which one volume follows the evolution of structure when the dark matter is

CDM, while the other assumes dark matter in the form of a 3.3 keV thermal

relic WDM particle. Coincidentally, the linear power spectrum of the thermal

3.3 keV particle is very similar to that of the coldest 7 keV sterile neutrino, a par-

ticle whose decay may have been detected in the form of an X-ray line at 3.5 keV

(Bulbul et al., 2014b; Boyarsky et al., 2014). COCO is amongst the highest resolu-

tion N-body simulations of cosmological volumes performed to date, providing

unprecedented statistical information about the formation of dark matter haloes

and galaxies in these two cosmologies. Both the CDM simulation and its WDM

counterpart are run with the same initial phases, allowing comparisons between

the two cosmologies on both a statistical and object-by-object basis.

In Chapter 2, we investigated the effects of the characteristic free streaming of

WDM particles on the internal structural properties of dark matter haloes. Free

streaming of WDM leads to a delay in the average collapse time of haloes below

a characteristic mass scale (∼ 2× 109h−1M�) compared to CDM, and results in a

suppression of the mass function of haloes below the mass scale of dwarf galax-

ies. We found that while sterile neutrinos reduce the central density of haloes

relative to CDM, the density profile preserves the universal NFW form down to
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the smallest scales resolved in the simulation. We established the evolution of the

mass function and the concentration-mass relation as a function of redshift and

quantified the spins and shapes of CDM and WDM haloes over seven decades in

halo mass. We also provided simple relations describing the dependence of these

properties on halo mass and redshift.

In Chapter 3, we shifted our focus from haloes to the substructures of these

objects. Interestingly, we found that the radial distribution of WDM subhaloes is

almost identical to that in CDM, which is an important result, for example, when

comparing the properties of satellite galaxies around the Milky Way. Owing to

their lower concentrations at the time of infall, WDM subhaloes with Vmax ≤
50kms−1 are more prone to tidal stripping after they are accreted into their host

halo.

7.1.2 Galaxy formation with sterile neutrinos

Ultimately, in order to place constraints on the nature of the dark matter, it is

necessary to confront the predictions of these models with the data. For this pur-

pose, in Chapter 3 we made use of the Durham semi-analytic model of galaxy

formation, GALFORM (Cole et al., 2000; Lacey et al., 2016), to translate the dark

matter halo catalogues in COCO into galaxy populations. We found that while

many present-day observables show negligible difference between the two mod-

els, potentially strong constraints can be made using ultra-faint satellites and the

high redshift galaxy population.

A more detailed investigation of both these regimes is performed in Chapter 4,

where we apply the Hou et al. (2016) model of GALFORM to range of 7 keV sterile

neutrino models with leptogenesis parameters L6 = (8,12,700). While reionisa-

tion occurs slightly later in these models than in CDM, the epoch of reionisation

in all cases is consistent with the bounds from Planck. This can be ascribed to

the fact that the bulk of the ionising photon budget is produced by galaxies more

massive (M? ∼ 109M�) than those affected by the free streaming cutoff in these

models. The evolution of the far-UV luminosity functions between 10 > z > 7

indicates that the high redshift galaxy population builds up more rapidly in the
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sterile neutrino models than in CDM, which is also reflected in the stellar mass

growth rate of bright galaxies. Finally, we also quantified the present-day abun-

dance of Milky Way satellite galaxies and found that the population of ultra-faint

dwarf galaxies that may be detected in surveys like DES could potentially rule

out the entire family of sterile neutrino particles relevant to the 3.5 keV line.

7.1.3 Elevating numerical simulations of f (R) gravity

In the second half of this thesis, we considered the scenario where the dark mat-

ter is CDM, but where the underlying theory of gravity is modified. Specifically,

we focussed on the case of the Hu-Sawicki formulation of f (R) gravity (Hu &

Sawicki, 2007), which is one of the most widely-studied examples of modified

gravity theories. In Chapter 5, we validated the widely-employed quasi-static

approximation in f (R) gravity, in which it is assumed that the time derivatives of

the scalar field are negligible compared to its spatial derivative. We achieved this

by rederiving the scalar field equations of motions without making this approx-

imation, and by then performing a series of N-body simulations with increasing

resolution with and without the quasi-static approximation. By comparing the

non-linear matter power spectra, velocity divergence power spectra and the PDF

of the density field, we found that the effects of the scalar field time derivatives

are small enough that they can be safely neglected for most practical applications

in cosmology. The three models of f (R) gravity we simulated – namely, the F4,

F5 & F6 models – span a wide range in the strength of the chameleon screening

mechanism, but in all cases the quasi-static approximation is a good one.

In Chapter 6, we introduced a new method for solving the equations of mo-

tion in f (R) gravity simulations. The new method relies on a variable redefinition

that makes the equations of motion less non-linear, accelerating the rate of con-

vergence of the solution. Having tested our method for a set of high resolution

simulations, we found that the new method boosts the performance of the ECOS-

MOG code (Li et al., 2012a) by more than a factor of 20. Importantly, this speed-up

is achieved without sacrificing the accuracy of the solution. The method pre-

sented in Chapter 6 could, in principle, be applied to other classes of modified
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gravity theories, and will make it possible to run large volume, high resolution

modified gravity setups that would have previously been very expensive to run.

7.2 Looking to the future

In this thesis, we have studied a limited number of applications of simulations us-

ing sterile neutrinos and modified gravity. Before concluding, it is worth pointing

out some of the interesting ways in which the investigation in this thesis can be

extended, in an effort to place further constraints on these models. Some of the

ideas discussed in § 7.2.1 & 7.2.2 have already been published, but they can be

used as starting points for more detailed analysis.

7.2.1 Constraining WDM with strong gravitational lensing

As we have seen in Chapters 3 & 4, the largest observable differences between

CDM and sterile neutrino models occur at the scale of ultra-faint dwarfs and

galaxies at high redshift. However, only limited data are currently available in

these regimes. In fact, the starkest difference between CDM and WDM is in the

abundance of the dark matter (sub)haloes themselves (Figs. 2.5 & 3.2). Tech-

niques that are able to directly probe the dark matter mass function will there-

fore provide the cleanest tests for constraining the nature of dark matter. One

such method, pioneered by Koopmans (2005) and Vegetti & Koopmans (2009)

uses strong gravitational lensing to detect low mass substructures. Briefly, this

method uses the fact that the presence of substructures in the central regions of

haloes can distort the Einstein ring surrounding a strong lens system. If the (pro-

jected) position of the subhalo is in the vicinity of the Einstein ring, it can perturb

its surface brightness distribution. Using this method, the authors in Vegetti et al.

(2012) reported the detection of a subhalo of mass 1.9 ± 0.1 × 108M� at a sig-

nificance level of 12σ. Upcoming telescopes such as the SKA and the LSST will

substantially increase the sample of strong lens systems, and it is expected that

the detection sensitivity will improve to a level that could allow the detection of

subhaloes with mass as low as 106M�.
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In Li et al. (2016), we performed Monte Carlo simulations of mock strong lens-

ing observations. For the lensing systems themselves, we randomly sampled

haloes in the mass range
[
1013,1014] h−1M� using the mass function from the

EAGLE simulations. The abundance and radial distributions of CDM and WDM

subhaloes was obtained from the COCO simulations. Using the Monte Carlo sim-

ulations, we estimated that approximately 100 strong lens systems with a de-

tection limit of Mlow ∼ 107M� would be able to clearly distinguish (i.e., > 2σ)

between CDM and a 7 keV sterile neutrino. In a follow-up project, Li et al. (2017)

found that projected haloes along the line-of-sight dominate the lensing signal,

and these intervening objects actually enhance the differences between CDM and

WDM. After taking these projection effects into account, the authors find that

merely 20 strong lens systems could be enough to distinguish between WDM

and CDM at 3σ significance. These results highlight the tremendous potential for

strong lensing as a tool for constraining dark matter.

7.2.2 Constraints on WDM using observations in the Local Group

Some of the best quality data that are available to us comes from the Local Group,

and the situation will improve even further thanks to missions like DES and Gaia

(Gaia Collaboration et al., 2016). The star formation histories of dwarf galaxies

in the Local Group could be used to probe the nature of dark matter. As we

have seen in Fig. 2.4, the collapse time of WDM haloes is delayed below a char-

acteristic mass scale (∼ 109 h−1M� for a 3.3 keV thermal relic). This means that

the formation of the first generation of stars in dwarf galaxies is also delayed in

WDM compared to CDM, typically by ∼ 1 Gyr or so (Calura et al., 2014; Maio &

Viel, 2015; Governato et al., 2015).

As part of the APOSTLE suite of hydrodynamical simulations (Fattahi et al.,

2016; Sawala et al., 2016b), in Lovell et al. (2016a), we simulated a set of Local

Group analogues in 7 keV sterile neutrino dark matter models with lepton asym-

metry L6 = 10,120. For the galaxy formation model, we used the same prescrip-

tions as used by the EAGLE project (Schaye et al., 2015; Crain et al., 2015).

To compare the stellar age distribution of satellites in our Local Group resim-
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Figure 7.1: The relative abundances by age of stars in satellites in the stellar mass
range 106 < M?/M� < 107. For each M31 and MW system we add together all
of the satellites in the stellar mass bin such that there is one symbol per system:
black squares show the results for CDM, while the blue circles and red triangles,
respectively, correspond to 7 keV sterile neutrino models with L6 = 10,120. The
x-axis shows the proportion of stars that are younger than 6 Gyr, the z-axis shows
the proportion that are older than 10 Gyr, and the y-axis the proportion that are
within this age range. The approximate measured values of these quantities for
the Local Group dwarf spheroidals as a whole, as presented by Weisz et al. (2011),
are shown as the green cross.
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ulations, we used the following procedure: first, we selected star particles con-

tained within satellites in the mass bin: log(M?/M�) = [6,7]. Next, we split the

stellar ages of the population into three bins sorted by lookback time, tlb: tlb < 6

Gyr, 6 Gyr ≤ tlb < 10 Gyr and tlb > 10 Gyr. Fig. 7.1 plots the proportion of stellar

mass in each of these bins obtained from our simulations, along with the value

measured from Local Group dwarf spheroidals compiled by Weisz et al. (2011).

While there is considerable overlap between the three models, some differ-

ences can be identified. At least 26% of the stars in all CDM systems are more

than 10 Gyr old, whereas four L6 = 10 systems and seven L6 = 120 systems do

not meet this threshold. The largest proportion of tlb > 10 Gyr stars in L6 = 120 is

41%, younger than seven of the CDM systems. The L6 = 120 symbols are instead

clustered towards more intermediate age systems, while L6 = 10 systems show

a large spread in ages. The value measured for the Local Group is located com-

fortably within the CDM and L6 = 10 distributions but just outside the L6 = 120

distribution. It is therefore possible that the L6 = 120 7 keV sterile neutrino pro-

duces satellites that are too young compared to the Local Group, though much

better resolution is required to confirm this conclusion. Nevertheless, this high-

lights the potential for age and metallicity distributions of stellar populations in

dwarf galaxies as powerful probes of the process of galaxy formation in different

models of dark matter.

7.2.3 Confronting modified gravity with data

As we have explained in Chapters 5 & 6, the inherent non-linearity of modified

gravity equations makes these models quite challenging to simulate. For this rea-

son, most studies involving modified gravity have focussed on the differences

between these models and the predictions of ΛCDM at the level of dark mat-

ter properties only. Barring a few exceptions (e.g. Fontanot et al., 2013; Arnold

et al., 2016; He et al., 2016), the conversion of dark matter halo catalogues into an

equivalent galaxy population in modified gravity simulations has been limited.

This step is necessary in order to make a faithful comparison between the predic-

tions of these models and the data that will be used to constrain them. One way
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to build such ‘mock’ catalogues is via the halo occupation distribution (HOD)

method (e.g. Berlind & Weinberg, 2002; Kravtsov et al., 2004), in which halo cata-

logues are populated with galaxies by assuming simple functional forms for the

average occupation of central and satellite galaxies within haloes. The param-

eters of the HOD can be calibrated by requiring a match between the number

density of galaxies and the projected clustering of galaxies in the mock catalogue

and the survey dataset. The mock catalogue can then be made more realistic by

taking into account sky completeness, survey masks, redshift selection etc. (see

Fig. 7.2).

Once these catalogues have been constructed, the same analysis can be ap-

plied to both the mock and the actual survey catalogues to see if any signatures

of modified gravity are imprinted on the galaxy distribution. For example, in

modified gravity, the presence of a fifth force in unscreened regions boosts the ve-

locities of tracers (subhaloes/galaxies) relative to their counterparts in standard

gravity. These differences would be manifest in redshift space and, in particu-

lar, in the velocity power spectrum. Since the two-point galaxy clustering does

not encode all cosmological information, particularly in modified gravity models

(e.g. Hellwing et al., 2013), it is important to study complementary probes such

as higher-order moments, topological and morphological characterisations of the

galaxy field.

A shortcoming of the HOD treatment is that, by construction, galaxies are as-

signed to haloes solely based on the host halo mass. As a result, there is no phys-

ical information (regarding, say, the local environment the galaxy is due to reside

in) encoded in these models. In modified gravity, this environmental informa-

tion is particularly important as the halo environment may screen the enhanced

strength of gravity (or not, as the case may be). Eventually, therefore, the HOD

treatment needs to be replaced with a more sophisticated approach like a SAM

or hydrodynamical simulations. However, this is easier said than done: con-

structing a modified gravity SAM is not as straightforward as running an existing

SAM on the output of a modified gravity simulation. In many SAMs, a subset of

the galaxy formation equations use parameterised versions of the concentration-
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Figure 7.2: Steps involved in building realistic mock catalogues. The top panel
represents the actual survey mask for SDSS DR12 (obtained from Reid et al. 2016);
the middle and lower panels are created from ΛCDM and f (R) gravity simu-
lations respectively. In both cases, the catalogues are created using the HOD
method, and filtered with the DR11 selection function, sky completeness, redshift
selection etc.
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mass relation, spin distribution etc. of haloes that have been obtained from stan-

dard ΛCDM simulations. These relations will be different in modified gravity

(e.g. Shi et al., 2015), and will likely take on a more complex form when one takes

into account the environmental dependence of the strength of gravity. Building

SAMs or subgrid prescriptions tailored to modified gravity is therefore a chal-

lenging task, but one that could prove to be very rewarding. We hope that the

speed-up method presented in Chapter 6 will, for the first time, make it feasible

to run large volume hydrodynamical simulations of such models with the high

resolution that is necessary.

7.3 Concluding remarks

It is an incredibly exciting time to be cosmologist. The explosion of data, both on

the scales of the faintest galaxies in the local Universe, as well as on the largest,

cosmological scales means that we currently have more information in our hands

about our Universe than at any time previously. Accurate and detailed theoretical

predictions of the standard and non-standard cosmological models are therefore

necessary to best interpret what these new datasets have to reveal about the Uni-

verse: the nature of the dark matter and dark energy, the assembly of the cosmic

web, and the physics of how galaxies form within it. The high precision data that

will be delivered by DES, Gaia, LSST, SKA, EUCLID etc. will be exactly what

is needed to stress-test the ΛCDM model. In this thesis, we have put forward

the case for two popular alternatives to the standard model, in the form of sterile

neutrinos as a candidate for the dark matter, and f (R) gravity as an extension of

General Relativity. We hope that the content presented in this thesis highlights

the prospects for constraining these models further, with a view to one day re-

vealing the true nature of dark matter and dark energy.





Appendix A

Faster simulations in modified gravity:
comparison with the truncated approach
and application to the symmetron model

A.1 Performance of the truncation method in chameleon

models

In Barreira et al. (2015), the authors proposed a method to speed up N-body sim-

ulations of modified gravity models with Vainshtein screening. The speed up in

this method is achieved by truncating the Gauss-Seidel iterations of the scalar

field above a certain refinement level, and then computing the solution on those

fine levels by interpolating from coarser levels. This approximate method agrees

very well with the results of the full N-body calculation (see Barreira et al., 2015,

for details) due to the fact that in Vainshtein screening models, there is a corre-

lation between higher density regions (or, equivalently, higher refined regions in

the simulation box) and screening efficiency. Even when the error induced on the

fifth force on the refinements is large, it does not propagate to the total gravita-

tional force because the amplitude of the fifth force is small/screened.

In chameleon models, however, the correlation between high density regions

and screening efficiency becomes less marked because of the dependence on the

environmental density (in Vainshtein models, the screening efficiency depends

on the local density only). For example, in f (R) models, a low mass halo in a

dark matter void constitutes an example of a highly-refined region (the centre of
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the halo can be very concentrated) that may not be screened (either by itself or by

the low density environment it lives in). It is therefore interesting to determine

whether or not the same truncation method, which works well for Vainshtein

models, works equally well in chameleon-type theories.

Fig. A.1 shows the relative difference of two truncated f (R) simulations to a

full (ie., not truncated) simulation. The simulation box used for this test is the

same as the ‘Medium res’ setup in the main text, but with fR0 = −10−5 (the so-

called F5 model). The result is shown at three different redshifts and the two

labelled truncation schemes are as follows. The case hc ≤ 0.24 Mpc/h indicates

that the scalar field was only explicitly solved on the coarse level, with this solu-

tion being interpolated to all finer levels. In the case of hc≤ 0.06 Mpc/h, the scalar

field was explicitly solved on the coarse, first refinement and second refinement

levels, with the solution at the second level being interpolated to all other finer

levels. The values 0.24 Mpc/h and 0.06 Mpc/h indicate the cell size of the first

truncated level in both these simulations, which ran, respectively, ≈ 10 and ≈ 2

times faster than the full run. For both these truncation criteria, the figure shows

that the error can be kept < 1% for k . 2 h/Mpc, but for higher modes, it grows

to unacceptably large values. For example, at k ≈ 5 h/Mpc, the error is of ≈ 6%.

The result shown in Fig. A.1 for f (R) should be contrasted with the corre-

sponding picture in the DGP model (which employs Vainshtein screening), in

which for the same truncation criteria, the error is always kept below 1% for

k < 5 h/Mpc (see e.g. Fig. 5 of Barreira et al., 2015). Furthermore, the method

described in Chapter 6 results in comparable boosts in performance compared

to previous f (R) simulations, but without any loss in accuracy. From this we

can conclude that the truncation scheme that works well in Vainshtein screening

models is not suitable for chameleon theories.
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Figure A.1: Relative difference in the matter power spectra at z = 0, 0.5 & 1
between a full F5 simulation, and two truncated runs where the Gauss-Seidel
iterations of the scalar field have been truncated on finer refinement levels (see the
accompanying text). The dashed and solid lines, respectively, correspond to less
and more aggressive truncation schemes; hc is the cell size of the first truncated
level in each simulation. The shaded grey band represents the 1% error region
around zero.



A.2. Performance of the new method for the symmetron model 206

A.2 Performance of the new method for the symmetron

model

As a test of the performance of our new method for other classes of screening

mechanisms, we implemented our method for the case of the symmetron model.

The code used in this case, Isis (Llinares et al., 2014), is a modified version of

RAMSES developed independently of ECOSMOG. Details of the symmetron model

and its implementation in Isis are described in Llinares et al. (2014). Briefly, the

equation of motion for the scalar field is given by:

∇2φ ∝ (Aρ− 1)φ + φ3, (1.2.1)

where the quantity A is a function of the parameters of the symmetron model.

While the equation is formally equivalent to the f (R) in the main text (Eq. 6.2.2),

the screening mechanism operates differently. In the f (R) model, the scalar field

screens itself by becoming very massive. On the other hand, in the symmetron

model, the screening occurs when a particular symmetry is restored (i.e., when

the factor in front of the linear term of the source of Eq. (1.2.1) becomes positive).

Consequently, the model behaves in a different manner to f (R). For instance,

negative solutions for the symmetron field, φ, are allowed and, thus, the con-

straints implemented in the f (R) case (§ 6.3.2) are not required. We refer the

reader to Llinares & Pogosian (2014) for a summary of the complex phenomenol-

ogy associated with this property of the symmetron field.

The non-linear modified gravity solver in Isis is very similar to that of the f (R)

model in ECOSMOG. The code uses an implicit multigrid solver with full approx-

imation storage, which means that the code relies on a Newton-Raphson algo-

rithm to evolve the solution in every step of the Gauss-Seidel iterations. As the

discretised equation is cubic, the method proposed in Chapter 6 can be applied in

a straightforward manner. As a check of the accuracy of the new method in solv-

ing the symmetron field equations, we have repeated satisfactorily the static test

presented in the original Isis paper (Fig. 2 in ref. Llinares et al., 2014). However,
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we find that there is no major difference in the performance of the standard Isis

implementation compared to using the new method, either in terms of the run

time, or the convergence rate of the iterative solver.

In order to gauge the difference in computing time between the old and new

methods for the symmetron model, we have run a set of five different realisa-

tions of a box of size 150Mpc/h on a side, containing 2563 particles. For each

realisation, there are three sets of simulations: ΛCDM and the symmetron model

using the old and new methods. Overall, we do not find any improvement in the

performance of Isis using the new method. For both the old and new methods,

the overhead compared the ΛCDM simulation is of the order of ∼ 170% and, in

fact, the run time using the new method is actually ∼ 1% slower than using the

default implementation - this is explained by the fact that ∼ 1% more iterations

were required for the whole set of five realisations using the new method. The

convergence criterion on the residual was set to 10−6 for both symmetron runs;

we find that, unlike in the f (R) model, making the convergence criterion even

stricter does not impact the run time of the symmetron simulations by a great

amount.

The reason why the performance of the code appears to be insensitive to the

details of the iteration scheme is seemingly related to the type of screening mech-

anism used by the symmetron model. The symmetron mechanism is based on

a density threshold above which the solution very quickly approaches zero and

thus decouples the scalar field from matter. This makes the solutions more sta-

ble and, therefore, not strongly dependent on the details of the solver employed.

Since the default solver in Isis does not involve a non-linear change of variables

to force a stable, positive solution (as in the f (R) case), the performance is already

similar to what ECOSMOG can do for f (R) using the new method.
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Colı́n P., Avila-Reese V., González-Samaniego A., Velázquez H., 2015, ApJ, 803, 28

Colless M., et al., 2001, MNRAS, 328, 1039

Colombi S., Jaffe A., Novikov D., Pichon C., 2009, MNRAS, 393, 511

Conlon J. P., Day F. V., 2014, JCAP, 11, 33

http://arxiv.org/abs/1701.07932
http://dx.doi.org/10.1103/PhysRevD.71.063513
http://adsabs.harvard.edu/abs/2005PhRvD..71f3513C
http://dx.doi.org/10.1088/1475-7516/2015/07/047
http://adsabs.harvard.edu/abs/2015JCAP...07..047C
http://dx.doi.org/10.1103/PhysRevD.92.044009
http://adsabs.harvard.edu/abs/2015PhRvD..92d4009C
http://dx.doi.org/10.1088/1475-7516/2016/12/024
http://adsabs.harvard.edu/abs/2016JCAP...12..024C
http://arxiv.org/abs/1105.0370
http://dx.doi.org/10.1093/mnras/stu1829
http://adsabs.harvard.edu/abs/2014MNRAS.445.1820C
http://dx.doi.org/10.1103/PhysRevD.94.064052
http://adsabs.harvard.edu/abs/2016PhRvD..94f4052C
http://dx.doi.org/10.1016/j.physletb.2012.05.030
http://adsabs.harvard.edu/abs/2012PhLB..713...99C
http://dx.doi.org/10.1046/j.1365-8711.2002.05161.x
http://adsabs.harvard.edu/abs/2002MNRAS.331..133C
http://dx.doi.org/10.1088/1475-7516/2015/12/005
http://adsabs.harvard.edu/abs/2015JCAP...12..005C
http://adsabs.harvard.edu/abs/2015JCAP...12..005C
http://dx.doi.org/10.1103/PhysRevD.80.024037
http://adsabs.harvard.edu/abs/2009PhRvD..80b4037C
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://adsabs.harvard.edu/abs/2012PhR...513....1C
http://adsabs.harvard.edu/abs/1996MNRAS.281..716C
http://adsabs.harvard.edu/abs/1994MNRAS.271..781C
http://dx.doi.org/10.1046/j.1365-8711.2000.03879.x
http://adsabs.harvard.edu/abs/2000MNRAS.319..168C
http://dx.doi.org/10.1046/j.1365-8711.2001.04591.x
http://adsabs.harvard.edu/abs/2001MNRAS.326..255C
http://dx.doi.org/10.1111/j.1365-2966.2005.09318.x
http://adsabs.harvard.edu/abs/2005MNRAS.362..505C
http://dx.doi.org/10.1086/317057
http://adsabs.harvard.edu/abs/2000ApJ...542..622C
http://dx.doi.org/10.1086/524030
http://adsabs.harvard.edu/abs/2008ApJ...673..203C
http://dx.doi.org/10.1088/0004-637X/803/1/28
http://adsabs.harvard.edu/abs/2015ApJ...803...28C
http://dx.doi.org/10.1046/j.1365-8711.2001.04902.x
http://adsabs.harvard.edu/abs/2001MNRAS.328.1039C
http://dx.doi.org/10.1111/j.1365-2966.2008.14176.x
http://adsabs.harvard.edu/abs/2009MNRAS.393..511C
http://dx.doi.org/10.1088/1475-7516/2014/11/033
http://adsabs.harvard.edu/abs/2014JCAP...11..033C


BIBLIOGRAPHY 214

Copeland E. J., Sami M., Tsujikawa S., 2006, International Journal of Modern
Physics D, 15, 1753

Courant R., Friedrichs K., Lewy H., 1928, Mathematische Annalen, 100, 32

Crain R. A., et al., 2009, MNRAS, 399, 1773

Crain R. A., et al., 2015, MNRAS, 450, 1937

Croton D. J., et al., 2006, MNRAS, 365, 11

DESI Collaboration et al., 2016a, preprint, (arXiv:1611.00036)

DESI Collaboration et al., 2016b, preprint, (arXiv:1611.00037)

Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ, 292, 371

Davis A.-C., Li B., Mota D. F., Winther H. A., 2012, ApJ, 748, 61

Dayal P., Mesinger A., Pacucci F., 2015, ApJ, 806, 67

Dayal P., Choudhury T. R., Bromm V., Pacucci F., 2017, ApJ, 836, 16
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B., Primack J. R., 2004, ApJ, 609, 35

Lacey C., Cole S., 1993, MNRAS, 262, 627

Lacey C. G., et al., 2016, MNRAS, 462, 3854

Lagos C. D. P., Lacey C. G., Baugh C. M., Bower R. G., Benson A. J., 2011, MNRAS,
416, 1566

Lagos C. d. P., Lacey C. G., Baugh C. M., 2013, MNRAS, 436, 1787

Laine M., Shaposhnikov M., 2008, JCAP, 6, 31

Larson R. B., 1974, MNRAS, 169, 229

Laureijs R., et al., 2011, preprint, (arXiv:1110.3193)

Lee J., Zhao G.-B., Li B., Koyama K., 2013, ApJ, 763, 28

Levi M., et al., 2013, preprint, (arXiv:1308.0847)

http://dx.doi.org/10.1146/annurev-nucl-102115-044553
http://dx.doi.org/10.1146/annurev-nucl-102115-044553
http://adsabs.harvard.edu/abs/2016ARNPS..66...95J
http://dx.doi.org/10.1086/186927
http://adsabs.harvard.edu/abs/1993ApJ...412L...9J
http://dx.doi.org/10.1086/172935
http://adsabs.harvard.edu/abs/1993ApJ...412..455K
http://dx.doi.org/10.1093/mnras/264.1.201
http://adsabs.harvard.edu/abs/1993MNRAS.264..201K
http://dx.doi.org/10.1093/mnras/stu719
http://adsabs.harvard.edu/abs/2014MNRAS.442.2487K
http://dx.doi.org/10.1093/mnras/stw192
http://adsabs.harvard.edu/abs/2016MNRAS.457.4051K
http://arxiv.org/abs/1011.5909
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://adsabs.harvard.edu/abs/2004PhRvD..69d4026K
http://dx.doi.org/10.1086/307643
http://adsabs.harvard.edu/abs/1999ApJ...522...82K
http://dx.doi.org/10.1088/0004-637X/740/2/102
http://adsabs.harvard.edu/abs/2011ApJ...740..102K
http://dx.doi.org/10.1111/j.1365-2966.2008.13102.x
http://adsabs.harvard.edu/abs/2008MNRAS.386.1029K
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://adsabs.harvard.edu/abs/2011ApJS..192...18K
http://dx.doi.org/10.1111/j.1365-2966.2005.09523.x
http://adsabs.harvard.edu/abs/2005MNRAS.363.1136K
http://dx.doi.org/10.1086/589911
http://adsabs.harvard.edu/abs/2008ApJ...686..279K
http://dx.doi.org/10.1088/0004-637X/805/2/130
http://adsabs.harvard.edu/abs/2015ApJ...805..130K
http://dx.doi.org/10.1088/0034-4885/79/4/046902
http://adsabs.harvard.edu/abs/2016RPPh...79d6902K
http://dx.doi.org/10.1086/420959
http://adsabs.harvard.edu/abs/2004ApJ...609...35K
http://adsabs.harvard.edu/abs/1993MNRAS.262..627L
http://dx.doi.org/10.1093/mnras/stw1888
http://adsabs.harvard.edu/abs/2016MNRAS.462.3854L
http://dx.doi.org/10.1111/j.1365-2966.2011.19160.x
http://adsabs.harvard.edu/abs/2011MNRAS.416.1566L
http://dx.doi.org/10.1093/mnras/stt1696
http://adsabs.harvard.edu/abs/2013MNRAS.436.1787L
http://dx.doi.org/10.1088/1475-7516/2008/06/031
http://adsabs.harvard.edu/abs/2008JCAP...06..031L
http://adsabs.harvard.edu/abs/1974MNRAS.169..229L
http://arxiv.org/abs/1110.3193
http://dx.doi.org/10.1088/0004-637X/763/1/28
http://adsabs.harvard.edu/abs/2013ApJ...763...28L
http://arxiv.org/abs/1308.0847


BIBLIOGRAPHY 218

Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473

Li B., Barrow J. D., 2007, Phys. Rev. D, 75, 084010

Li B., Barrow J. D., 2011a, Phys. Rev. D, 83, 024007

Li B., Barrow J. D., 2011b, MNRAS, 413, 262

Li B., Efstathiou G., 2012, MNRAS, 421, 1431

Li Y., Hu W., 2011, Phys. Rev. D, 84, 084033

Li B., Zhao H., 2009, Phys. Rev. D, 80, 044027

Li B., Zhao H., 2010, Phys. Rev. D, 81, 104047

Li B., Zhao G.-B., Teyssier R., Koyama K., 2012a, JCAP, 1, 051

Li B., Zhao G.-B., Koyama K., 2012b, MNRAS, 421, 3481

Li B., Zhao G.-B., Koyama K., 2013a, JCAP, 5, 023

Li B., Barreira A., Baugh C. M., Hellwing W. A., Koyama K., Pascoli S., Zhao G.-B.,
2013b, JCAP, 11, 012

Li B., Hellwing W. A., Koyama K., Zhao G.-B., Jennings E., Baugh C. M., 2013c,
MNRAS, 428, 743

Li R., Frenk C. S., Cole S., Gao L., Bose S., Hellwing W. A., 2016, MNRAS, 460, 363

Li R., Frenk C. S., Cole S., Wang Q., Gao L., 2017, MNRAS, 468, 1426

Liu X., et al., 2016, Physical Review Letters, 117, 051101

Llinares C., Mota D. F., 2014a, Phys. Rev. D, 89, 084023

Llinares C., Mota D. F., 2014b, Phys. Rev. D, 89, 084023

Llinares C., Pogosian L., 2014, Phys. Rev. D, 90, 124041

Llinares C., Knebe A., Zhao H., 2008, MNRAS, 391, 1778

Llinares C., Mota D. F., Winther H. A., 2014, A&A, 562, A78

Lombriser L., 2014, Annalen der Physik, 526, 259

Lombriser L., Koyama K., Zhao G.-B., Li B., 2012, Phys. Rev. D, 85, 124054

Lovell M. R., et al., 2012, MNRAS, 420, 2318

Lovell M. R., Frenk C. S., Eke V. R., Jenkins A., Gao L., Theuns T., 2014, MNRAS,
439, 300

Lovell M. R., et al., 2016a, preprint, (arXiv:1611.00010)

http://dx.doi.org/10.1086/309179
http://adsabs.harvard.edu/abs/2000ApJ...538..473L
http://dx.doi.org/10.1103/PhysRevD.75.084010
http://adsabs.harvard.edu/abs/2007PhRvD..75h4010L
http://dx.doi.org/10.1103/PhysRevD.83.024007
http://adsabs.harvard.edu/abs/2011PhRvD..83b4007L
http://dx.doi.org/10.1111/j.1365-2966.2010.18130.x
http://adsabs.harvard.edu/abs/2011MNRAS.413..262L
http://dx.doi.org/10.1111/j.1365-2966.2011.20404.x
http://adsabs.harvard.edu/abs/2012MNRAS.421.1431L
http://dx.doi.org/10.1103/PhysRevD.84.084033
http://adsabs.harvard.edu/abs/2011PhRvD..84h4033L
http://dx.doi.org/10.1103/PhysRevD.80.044027
http://adsabs.harvard.edu/abs/2009PhRvD..80d4027L
http://dx.doi.org/10.1103/PhysRevD.81.104047
http://adsabs.harvard.edu/abs/2010PhRvD..81j4047L
http://dx.doi.org/10.1088/1475-7516/2012/01/051
http://adsabs.harvard.edu/abs/2012JCAP...01..051L
http://dx.doi.org/10.1111/j.1365-2966.2012.20573.x
http://adsabs.harvard.edu/abs/2012MNRAS.421.3481L
http://dx.doi.org/10.1088/1475-7516/2013/05/023
http://adsabs.harvard.edu/abs/2013JCAP...05..023L
http://dx.doi.org/10.1088/1475-7516/2013/11/012
http://adsabs.harvard.edu/abs/2013JCAP...11..012L
http://dx.doi.org/10.1093/mnras/sts072
http://adsabs.harvard.edu/abs/2013MNRAS.428..743L
http://dx.doi.org/10.1093/mnras/stw939
http://adsabs.harvard.edu/abs/2016MNRAS.460..363L
http://dx.doi.org/10.1093/mnras/stx554
http://adsabs.harvard.edu/abs/2017MNRAS.468.1426L
http://dx.doi.org/10.1103/PhysRevLett.117.051101
http://adsabs.harvard.edu/abs/2016PhRvL.117e1101L
http://dx.doi.org/10.1103/PhysRevD.89.084023
http://adsabs.harvard.edu/abs/2014PhRvD..89h4023L
http://dx.doi.org/10.1103/PhysRevD.89.084023
http://adsabs.harvard.edu/abs/2014PhRvD..89h4023L
http://dx.doi.org/10.1103/PhysRevD.90.124041
http://adsabs.harvard.edu/abs/2014PhRvD..90l4041L
http://dx.doi.org/10.1111/j.1365-2966.2008.13961.x
http://adsabs.harvard.edu/abs/2008MNRAS.391.1778L
http://dx.doi.org/10.1051/0004-6361/201322412
http://adsabs.harvard.edu/abs/2014A%26A...562A..78L
http://dx.doi.org/10.1002/andp.201400058
http://adsabs.harvard.edu/abs/2014AnP...526..259L
http://dx.doi.org/10.1103/PhysRevD.85.124054
http://adsabs.harvard.edu/abs/2012PhRvD..85l4054L
http://dx.doi.org/10.1111/j.1365-2966.2011.20200.x
http://adsabs.harvard.edu/abs/2012MNRAS.420.2318L
http://dx.doi.org/10.1093/mnras/stt2431
http://adsabs.harvard.edu/abs/2014MNRAS.439..300L
http://arxiv.org/abs/1611.00010


BIBLIOGRAPHY 219

Lovell M. R., et al., 2016b, MNRAS, 461, 60

Ludlow A. D., Navarro J. F., Springel V., Jenkins A., Frenk C. S., Helmi A., 2009,
ApJ, 692, 931

Ludlow A. D., et al., 2013, MNRAS, 432, 1103

Ludlow A. D., Bose S., Angulo R. E., Wang L., Hellwing W. A., Navarro J. F., Cole
S., Frenk C. S., 2016, MNRAS, 460, 1214
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