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Photophysical Studies of Beta Phase Formation in  

Poly(9,9-di-n-alkylfluorenes) 
Daniel William Bright 

Abstract 

The photophysical changes that take place in Poly(9,9-di-n-alkylfluorenes) upon formation of the 

beta phase in methylcyclohexane solution are observed by optical spectroscopy. The equilibrium 

absorption spectra as a function of temperature show that conformational changes occur for all five 

polymers studied, from the hexyl (PF6) to decyl (PF10) side chains. The spectroscopic indicators of 

beta phase formation are not observed in PF6, and the trend of beta phase formation efficacy shows 

an optimal side chain length of 8 carbons. The beta phase formation in PF8, PF9 and PF10 is 

modelled using a previously reported aggregation model, with limited success. 

 A mechanism for the beta phase formation is proposed, where the interactions between the alkyl 

side chains provide the chemical energy to overcome the activation energy barrier to planarise the 

polymer backbone, leading to the extended conjugation length that characterises the beta phase. 

Excitation spectra show that the beta phase can occur reversibly in dilute solution, most likely by 

chain folding leading to side chain interactions. The presence of side chain interactions is confirmed 

by evidence of a PF7-PF9 alternating structure formed in a mixed solution. 

The same trend of beta phase formation is observed in thin films of these polymers after thermal 

cycling and warm toluene vapour exposure, showing that side chain interactions are also required 

for beta phase formation in the solid state. Spectra of PF8 films with controlled keto content show 

that the energy transfer to the keto sites is mediated by migration, indicating that the beta phase is 

formed in domains rather than isolated chains, a result which is consistent with the side chain 

interaction model and other published results. The fraction of beta phase formed is shown to 

decrease linearly with a greater content of dibenzothiophene (DBT) co-monomer units, up to a cut-

off limit of 20%. A statistical model of the distribution of DBT units in the chain is used to find a 

conjugation length of 9 monomer units, in contrast to a previous estimate but in agreement with the 

persistence length of PF8 in toluene. 

These results characterise the beta phase formation mechanism and its effects on the photophysical 

properties of Poly(9,9-di-n-alkylfluorenes), which is under widespread investigation for more use in 

efficient blue and white organic LED applications. 
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Glossary 
DBT: dibenzothiophene (see chapter 7.2 p139). 

Exciton: an excited state formed by a bound electron-hole pair before recombination to release the 

excited state energy. See chapter 2.3 p9. 

Fluorescence Lifetime: the time taken for the intensity of emission from a sample to decay to (1/e) 

or 36.8% of its initial value after excitation has ceased. 

HOMO: the Highest Occupied Molecular Orbital. 

Keto: fluorenone (figure 3-2), an oxygen defect formed on the bridging atom of the fluorene unit. 

LUMO: the Lowest Unoccupied Molecular Orbital. 

MCH: methylcyclohexane, an aliphatic organic solvent. 

PF8: Poly(9,9-dioctylfluorene), a fluorescent blue semiconducting polymer. See figure 3-1 p28. 

S unit: dibenzothiophene-S,S-dioxide (figure 7-1 p140). 

Saturated blue: a blue colour with narrow spectral width that can be used as part of a red-green-

blue display to show the entire range of visible colours. 

TCSPC: Time-Correlated Single Photon Counting, a method for determining fluorescence lifetimes. 
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1 Introduction 

Modern lifestyles and technologies are dependent upon electric lighting, and increasingly dependent 

upon emissive displays, such as televisions, computer monitors, and mobile telephones. The 

increasing popularity of mobile devices in particular has made efficiency of displays a particularly 

important goal, and the goal of efficiency now also applies to lighting due to concerns about the 

impact of energy consumption on the environment.  

Advances in lighting efficiency from its origins of the filament light bulb have come in the form of the 

invention of the sodium lamp and fluorescent tube lighting. However, these light sources suffer from 

a lack of spectral bandwidth, leaving colours oddly altered by this illumination. The filament bulb still 

maintains popularity for its ability to render colours in a similar fashion to sunlight, the obvious 

standard against which lighting quality is compared. Research now targets an efficient lighting 

source that provides a good quality light, measurable by scales such as the colour rendering index 

(CRI), in order to produce a spectrum close to sunlight. 

A recent and promising research area for both efficient displays and efficient white lighting is that of 

organic light-emitting diodes (OLEDs). The field became prominent after the discovery of efficient 

organic electroluminescence from small molecules by Tang and van Slyke in 1987.1 They used a two-

layer structure of tris-(8-hydroxyquinolinato)aluminium (Alq3) as the emission layer and 1,10-bis(di-

4-tolylaminophenyl) cyclohexane (TAPC) as a charge transport layer. Electrons were injected though 

a 10:1 magnesium-silver alloy electrode and holes were injected through a transparent layer of 

conductive indium-tin oxide (ITO), leading to green emission at operating voltages above 2.5V, with 

up to 1% quantum efficiency (the ratio of emitted photons to injected electrons). This was a great 

improvement over the previous emission from anthracene where driving voltages of up to 10000V 

were required for bright emission.2 
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The use of disordered organic polymers followed in 1990 from Cambridge, by Burroughes et al.3 

They used a single layer of a conjugated polymer formed in situ from a spin-coated solution of 

chemical precursor, between an aluminium cathode and a glass substrate coated with indium oxide, 

a transparent conductor. However, in this polymer device the quantum efficiency was just 0.05% 

and it required 14V to emit visible light. 

Since the initial demonstrations of the technology, research in this field has expanded dramatically, 

with many discoveries made about the underlying physics of both the small molecules4-5 and 

polymers.5-6 Polymers are potentially superior to small molecules based on their suitability for use 

solution-based manufacturing methods such as ink-jet printing as opposed to thermal evaporation 

of small molecules which is less easily implemented in manufacturing.7 Both these approaches are 

still being pursued, as small molecules currently hold an advantage in terms of device efficiency over 

the more easily manufactured polymer devices.8-9  

Development of a deeper understanding of the device physics proceeded swiftly. The importance of 

charge recombination became apparent; early devices with a single organic layer often displayed 

higher charge mobility for electrons than for holes, resulting in a high “dark current” of electrons 

which did not produce light emission. A critical factor for efficient devices is balancing the transport 

of positive and negative charges.10 The use of multiple layers was soon adopted, which allows the 

energy levels of intermediate conductive layers to be suitably selected so as not to impede the 

motion of the charges. This allows control of the motion of the charge carriers to an interface in the 

emissive layer, where high charge densities are built up and the probability of charge recombination 

is greatly enhanced.11 

Even when charge carriers meet, the emission of light is still not certain. Bound excitons are created 

when holes move into the Coulomb capture radius of excited state electrons, which can pair with 

parallel and anti-parallel spins, and these excitons may migrate through the material before finally 
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recombining to release the energy. Ultra pure materials are therefore needed to prevent the 

excitons migrating to impurities and releasing heat rather than light. 

Once durable emissive materials had been developed, and the understanding of device physics had 

proceeded sufficiently far, development of commercial displays began. Manufacturing processes 

have progressed to the point that excellent results can be obtained, and small commercial screens 

are already in use for mobile devices such as mobile phones, digital cameras and mp4 players. A 

sample 11-inch Sony television using Organic Light Emitting Diodes (OLED) was also recently sold, 

but the production run was limited and served mostly to promote the potential of the technology.12 

In order to be commercially successful, the requirements for OLED displays are stringent. Not only 

must they function well as a display, but they must also offer additional advantages to displace 

current technologies, such as thin-film transistor (TFT) displays. It is hoped that OLED displays will 

achieve this by incorporating superior power efficiency with a very high picture quality through 

better contrast ratios, which are a result of direct emission that allows black pixels to be switched off 

completely. The remaining technical issues for organic displays are centred around blue light 

emission and large panels. Blue emitters provide two challenges: the energetic photons emitted 

degrade the emissive layer itself, and it has been difficult to generate the “saturated” deep blue 

colour which has the spectrally narrow emission in the blue region that is required to allow red-

green-blue displays to render the visible range of colours. There are also difficulties with large area 

displays, but these are an engineering and quality control issue related to the new manufacturing 

technologies.  

In the course of the development of OLED devices, the electroluminescent materials themselves 

have proven a complex and critical factor. Conjugated carbon-based chemical systems containing 

alternating single and double bonds can be synthesised with an extraordinary range of structures. 

Much work has looked at polymers incorporating phenyl rings into the polymer backbone, which 

tend to emit in the visible spectrum. The simplest, poly(para-phenylene) (PPP) is simply a group of 
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phenyl rings bonded by carbon-carbon bonds between rings, and is a blue emitter.13 Poly(phenylene 

vinylene)s (PPV) alternate phenyl rings with carbon-carbon single and double bonds between rings, 

often with solubilising side chains and functional groups bonded to the main chain. These materials 

are emissive in the yellow-red part of the visible spectrum,14 and show strong variations in emissive 

properties which depend upon the nanoscale arrangement of the polymer.15 Another common type 

is poly(fluorene) (PF), which is based upon PPP but alternate pairs of phenyl rings are bonded by a 

carbon bridge, which can be substituted with side chains for improved solubility.16 This is related to 

another type of polymer where all the phenyl rings are held planar by multiple carbon bridges, 

ladder-type poly(para-phenylene) (LPPP), which is also emissive in the blue region.17  

 

The polymers PF and LPPP show an interesting effect of the polymer microstructure on the material 

photophysics; whilst the PF polymer backbone is mostly planar, it is able to twist around the polymer 

chain axis, whereas LPPP is fixed fully planar.18 The absorption and emission of PF are broad, while 
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Figure 1-1: Structures of some emissive conjugated polymers: a) PPV, b) PPP, c) PF8 (a variant of PF with octyl side 
chains) and d) a variant of LPPP, many other types have been produced with different sets of substituted side chains. 
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these spectra of LPPP are narrow and sharp, with better resolution of the vibrational replicas in the 

spectra. 

This work aims to contribute further to the understanding of device physics. It focuses on a blue 

emitting polymer which undergoes a phase transformation in certain circumstances which produces 

a more saturated blue light under electroluminescence, within the requirements for saturated blue 

emission in displays, and when incorporated into devices is more efficient than the normal 

disordered phase. Poly(9,9-di-n-octylfluorene) (PFO or PF8) is a well-studied polymer19 with good 

stability in terms of colour emission and lifetime16, 20 which upon slowly cooling is known to change 

to a more planar configuration termed the beta phase, in both solutions and thin films.21 There are 

conflicting theories on how the phase change occurs, whether by an initial planarization step before 

aggregation22 or by firstly aggregating and then becoming planarised.23 By carrying out temperature 

controlled optical spectroscopy on a series of polymers related to PF8 but with different lengths of 

linear side chains, it will be shown that the formation of beta phase is dependent upon the 

interactions of the side chains, and that either aggregation or chain folding can lead to its formation. 

Chapter two covers theoretical background to the physics of organic light emission from conjugated 

polymers. Chapter three describes the details of the experimental methods used in this work, from 

absorption spectrophotometry and photoluminescence, to time resolved spectra and fluorescence 

decay measurements, as well as details of sample preparation. Chapter four includes an overview of 

literature detailing the main investigations into the formation of the beta phase in poly(9,9-di-n-

octylfluorene) (PF8). It gives the results of the experiments on the temperature dependence of the 

formation of beta phase in polyfluorene solutions with linear alkyl side chains of length n=6-10, 

showing that the side chains are fundamental to the formation of the beta phase. There is a trend in 

formation efficacy with n=8 being optimal, and the process is shown to be more complex than 

simple aggregation. Chapter 5 describes the results of attempting to induce beta phase in thin films 

of this polyfluorene series. The effectiveness of inducing the beta phase from thermal cycling and 
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toluene vapour exposure is investigated, and the vibrational modes within the films are 

characterised to show a similar trend in the efficacy of beta phase formation to that found in 

solution. Chapter 6 presents steady-state and time-resolved spectroscopy of PF8 with controlled 

concentrations of the keto oxygen defect.  Investigations of the energy transfer to the keto defect 

from the alpha and beta phases finds that the energy transfer to the keto in films is migration 

controlled, and in films containing beta phase the transfer always proceeds via the beta phase as an 

intermediate step. Chapter 7 details work carried out on various copolymers of PF8 with a series of 

concentrations of different co-monomers to explore the limit at which the beta phase can form, 

showing an upper limit in the region of 20% of co-monomers. The conclusions of this thesis are given 

in chapter 8. 
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2 Theory 

2.1 Bonding in Conjugated Polymers 

2.1.1 Atomic Orbitals 

The orbital model of electrons bound in a nucleus uses a complex wavefunction to describe 

the electron properties. The modulus of this wavefunction over the volume of the atom 

describes the probability that the electron will be found at any point in space. 

A different wavefunction describes each of the electron states, characterised by four 

quantum numbers n, l, ml and ms. The number n corresponds to the energy level, whilst l 

(lower case L) represents the angular momentum, with integer values between n-1 and 0. 

The number ml is the angular momentum z- axis projection, which can take integers 

between -l and +l, whilst ms, the spin z-axis projection, can be +½ or -½ only for electrons. 

The Pauli Exclusion Principle states that only one electron can occupy each quantum state 

within the same atom or molecule, so the electrons within a many-electron atom occupy the 

lowest possible energy configuration by pairing up with anti-parallel spins within the lowest 

energy orbitals. In spectroscopic notation, orbitals with quantum number l=0 are called s 

orbitals and those with l=1 are called p orbitals. There are three different p orbitals 

corresponding to ml=-1, 0 and +1, which are degenerate (at the same energy) and called px, 

py and pz referring to the arbitrary Cartesian axes. The s and p orbitals are shown in figure 2-

1. 
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Figure 2-1:  illustration of the s and p atomic orbitals for a single-electron atom. 

The wavefunctions for each quantum state are spherical harmonic standing waves, which 

have more complex shapes and more nodal points for higher quantum numbers n and l. In 

the carbon atom, there are six electrons which fill the n=1, l=0 orbital (“1s” in spectroscopic 

notation), the n=2, l=0 orbital (2s) and partially fill the n=2 l=1 orbitals (2p). The n=2 

electrons are distributed furthest from the atom and so are involved in bonding between 

carbon atoms. Each p orbital is lobe-shaped with opposite sign magnitudes at opposite sides 

of the nucleus. This has implications for bonding between carbon atoms described in section 

2.1.2. 

2.1.2 Symmetry and Bonding 

Symmetry is used to analyse the overlap of atomic orbitals within molecules, an approach 

known as Linear Combinations of Atomic Orbitals. The symmetry determines the shape of 

the bound molecule and the shapes of the molecular orbitals. 

Symmetry is characterized by symmetry operations, such as reflection, rotation and 

inversion, which move the atoms (or bonding orbitals) in the molecule in space to equivalent 

positions. If the molecule is symmetrical the net result is that the molecule appears 

unchanged after the operation is carried out.  

The polymers used in this work, polyfluorenes, include a chain of benzene rings within the 

polymer backbone. This polymer is modelled as a planar poly(para-phenylene) (PPP) 

structure that is characterized by a single axis of symmetry and a single plane of symmetry, 

placing them in the point group C2h. In the C2h group the possible symmetry operations are 
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the identity operation (E), rotation 180° around the axis along the molecule (C2), inversion 

(i), and reflection across the horizontal plane (σh). These elements are illustrated in figure 2-

2. Note that the opposite sign in the pz orbitals prevents the molecule from having more 

planes of symmetry. 

 

The symmetry of a molecule can be represented in a simplified form of a square matrix 

showing the effect of symmetry operations on a basis within the molecule.  Matrix algebra 

can be used to reduce this matrix to its simplest possible form which is symmetrical about 

the diagonal, the irreducible representation. The sum of the diagonal elements of the 

irreducible representation is called the character of the matrix, which contains all the 

necessary information for calculating the molecular symmetry. The collection of these 

irreducible representations (the characters of each of the matrices) for any symmetry group 

is called its character table.  

The C2h point group has four one-dimensional irreducible representations (Mulliken symbols 

Ag, Au, Bg and Bu) in its character table (table 2-1) that are symmetric (denoted by A) and 

anti-symmetric (B) with respect to rotation around the axis of symmetry C2, and for each of 

these representations two are symmetric (g) and two are anti-symmetric (u) with respect to 

inversion at the centre of symmetry.  

 

 

Figure 2-2: Symmetry elements of poly(para-phenylene) used as a model for poly(fluorene). 
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Table 2-1: The character table of the C2h point group. In columns 2-5, a value of 1 denotes symmetry with 
respect to the operation in the column header, whilst -1 shows the operation is antisymmetric. Column 6 
shows the irreducible representations for which the vectors of rotations (R) and translations (T) provide a 
basis. Column 7 shows the representations for which combinations of x, y and z provide a basis. 

C2h E C2 i σh   

Ag 1 1 1 1 Rz x2, y2, z2, xy 
Bg 1 -1 1 -1 Rx, Ry yz, zx 
Au 1 1 -1 -1 Tz  
Bu 1 -1 -1 1 Tx, Ty  

 

A reducible representation can be generated using the pz orbitals as a basis. A reducible 

representation Γ can be calculated by listing the number of orbitals that remain un-shifted 

for each symmetry operation (E, i, C2, σh for C2h), and multiplying this number by the known 

change in character for each symmetry operation (E:+1, i:+1, C2:-1, σh:-1 ). The elements of 

the irreducible representation Γp are then calculated by: 

       (2-1) 

Where g is the total number of symmetry operations in the point group [for C2h (1×E) + (1×i) 

+ (1×C2) + (1×σh) = 4)].The term χ(R) refers to the character of the symmetry operation in the 

reducible representation (the elements of the reducible representation Γ) and χp(R) is the 

corresponding element in the irreducible representation. 

A projection operator is used to derive symmetry-adapted linear combinations of the basis 

vectors (for molecular bonding the molecular orbitals are used). The combinations are then 

required to have the same symmetry as the orbitals of the basis vectors. The derived linear 

combinations show the approximate shapes of the resulting molecular orbitals. 

 

The process is illustrated by the example of the π orbitals of trans-butadiene, shown in 

figure 2-3. This molecule is in the same point group C2h as PPP which is used to model 

polyfluorene. 
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The molecule is σ-bonded using the s, px and py orbitals of the carbon atoms. The remaining 

pz orbitals labelled π1 to π4 are used as the bases for generating the reducible representation 

in table 2-2. 

Table 2-2: calculating the symmetry of the reducible representation. 

C2h E C2 i σh 

unshifted π 4 0 0 4 

Γ 4 0 0 -4 

 

Using equation 2-1 for each Mulliken symbol in the C2h point group: 

ag: (1/4)×[(1×4)+(1×0)+(1×0)+(1×-4)]   = 0/4 = 0 

au: (1/4)×[(1×4)+(-1×0)+(1×0)+(-1×-4)]= 8/4 = 2 

bg: (1/4)×[(1×4)+(1×0)+(-1×0)+(-1×-4)]= 8/4 = 2 

bu: (1/4)×[(1×4)+(-1×0)+(-1×0)+(1×-4)]= 0/4 = 0 

This gives Γp = 2au+2bg as the symmetry of the reducible representation. The Symmetry-

Adapted Linear Combinations (SALC) can be deduced using the orbitals π1 and π3 which are 

symmetrically distinct from each other. Applying au and bg as projection operators to these 

orbitals gives: 

au : π1 + π2 and π3 + π4 

bg : π1 - π2 and π3 - π4 

Figure 2-3: The pz orbitals of trans-butadiene with arbitrary atom labels. Hydrogen atoms are present (two at 
C3 and C4 and one at C1 and C2) but excluded from the diagram. This molecule adopts the C2h point group. 
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These linear combinations show the shapes of the π orbitals. There are two bonding orbitals 

with electron density between the carbon atoms, and two anti-bonding orbitals with nodes 

between the atoms. The lowest energy orbital has electron density delocalised across the 

whole molecule, encompassing several alternating single and double bonds. 

2.2 Molecular Orbitals in Conjugated Polymers 

The combined orbitals of the electrons in a small molecule are determined by the Coulomb 

interactions of the electrons with the nuclei of the whole molecule. Electrons in the core n=1 

orbital adjacent to the nucleus are strongly bound and screened from the other nuclei, but 

the higher energy are delocalised and occupy orbital regions that can cover most of the 

volume of the molecule, as illustrated previously. For a molecule such as anthracene, each 

molecule acts as a chromophore; interacting with photons to absorb and emit light. 

In a polymer, a long chain of carbon atoms can form with alternating single and double 

bonds between neighbouring carbon atoms, known as conjugation, for example in 

poly(acetylene) which is the simplest example. The π bonds can join together over many 

double bonds to form a delocalized region over many repeat units of the chain, the length of 

which (in monomer units) is called the conjugation length, which in poly(9,9-dihexylfluorene-

2,7-diyl) has been measured at 5 structural repeat units,1 and these make up the 

chromophores of the polymer system. These regions are separated by imperfections, twists 

and bends in the polymer chain. The weakly bound electrons are able to move between the 

delocalized regions on the same chain and adjacent chains by Dexter transfer, or the energy 

of the excited state may be transferred by Förster transfer (see section 2.8).  

The electrons in the delocalized π orbitals of conjugated polymers that interact with light 

occupy the Highest Occupied Molecular Orbital (HOMO). The second energy level of 

importance to conductivity and the emission of light is the Lowest Unoccupied Molecular 

Orbital (LUMO), the π* orbital. Conjugated polymers that have an energy level spacing in the 
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optical region typically include aromatic rings in the monomer unit.2-4 These energy levels 

had previously been thought of as an approximation to the valence and conduction bands 

seen in inorganic semiconductors. However, there are many significant differences between 

these and organic semiconductors and the physics of semiconducting crystals does not 

strictly apply to the disordered polymer system. Conventional solid state band theory works 

on the assumption of uncorrelated charges that are free to move freely through the ordered 

environment of a crystalline material, whereas in polymeric systems the charges can exist in 

electron-hole pairs that have significant binding energy (on the order of 0.4eV 5) and are 

confined to molecular orbitals. The presence of charges also distorts the local nanoscale 

environment to a much greater extent than in a bulk crystal (see section 2.9). 

The input of energy (excitation) can promote an electron from the HOMO into the LUMO. 

This can occur the absorption of a photon with sufficient energy to excite an electron to a 

higher energy orbital (see section 2.5), or via direct injection of electrical charge into the 

HOMO and LUMO from electrical contacts. Doping the polymer with charges causes it to 

become electrically semiconducting when some of the π electrons are removed, allowing 

charge motion by Dexter transfer (see 2.8.2). 

Excitation creates a quasi-particle, a hole; a positively charged vacancy in the HOMO, 

created by the departure of the negatively charged electron, which other nearby electrons in 

the HOMO can move into. When another electron nearby in the HOMO moves into the 

location of this hole, it effectively moves the hole itself through the material to the point 

where the electron originated. Thus the hole can move as a quasi-particle through the 

HOMO of the bulk material, often remaining correlated to the excited electron in the LUMO. 

Holes have similar properties to electrons; they have spin ½, and a charge of e, but they are 

positively charged. 
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2.3 Singlets and Fluorescent Emission 

When an electron and a hole meet at the same point in space, their electrostatic charges 

create a mutual attraction and they bind to form a neutral quasi-particle: an exciton.6 This is 

a localized bound state with a binding energy of the order of 0.4eV.5 From this bound state 

recombination can take place, whereby the excited electron loses its energy and fills the 

empty hole in the HOMO. However, this process is more complex than such a simple picture 

would indicate, because of the spins of the electrons.  

As described earlier, each electron orbital exists at a specific energy and has a specific 

angular momentum and spin, and two electrons can coexist in the same orbital as long as 

their spins are aligned anti-parallel. Therefore in order for an excited state electron to be 

able to decay, or relax, into a hole, the excited electron and the lone electron in the available 

ground state orbital must have anti-parallel spins for the transition to take place.  

 

Figure 2-4: Simplified energy-level diagram of singlet and triplet exciton states. Arrows represent the electron 

spin orientation. S0 is the ground state of the exciton. 

 

The scenario in which these electron spins are anti-parallel is called a singlet exciton, 

because there is only one possible quantum state corresponding to it. This state has a total 

spin of zero, shown in equation 2-2, where arrows indicate the electron spin directions. The 

singlet can quickly relax in a radiative transition, where the energy of the excited electron is 

converted into a photon or to heat as the hole is filled.  
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       (2-2) 

This is permitted by quantum mechanics because the initial state, the singlet exciton, has a 

total spin of zero, and the final state, a photon and the anti-parallel paired electrons, also 

has a total spin of zero and spin is conserved in the interaction. Thus the radiative decay 

probability is high and the lifetime of the singlet is extremely short; of the order of 

picoseconds to nanoseconds, dependent upon the polymer.  

The exciton ground state is represented as S0 in figure 2-3, where the S describes the singlet 

character and the 0 indicates the energy level above the ground state. It is important to note 

that the HOMO and LUMO do not simply correspond to S0 and S1; the marked energy levels 

S1 and T1 are the energies of the bound excitons with singlet and triplet character. The terms 

HOMO and LUMO refer to the free orbitals, and the states are the arrangement of the 

electrons within the orbitals. When the excited electron is bound in an exciton, it exists at an 

energy level below the unbound orbital, with the difference equal to the binding energy. 

2.3.1 Exchange Interaction 

The electron and hole in the exciton are bound by the Coulomb charge. But as fermions in 

close proximity, their wavefunctions overlap leading to a second interaction energy term, 

the exchange interaction. The Pauli Exclusion Principle is a result of the requirement for 

fermions to have an anti-symmetric wavefunction, which includes terms for the orbital and 

particle spin. In order for this to be satisfied, the exchange interaction must be a positive 

energy for singlet excitons (symmetric spatial wavefunction) and negative for triplets (anti-

symmetric spatial wavefunction), implying triplets are a lower energy state than singlets 

because the two electrons interact less. The result is a relatively lower energy level for 

triplet excitons, which is shown in figure 2-3. 
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2.4 Triplets and Phosphorescent Emission 

When the spin of the excited electron and the HOMO electron are parallel, the exciton is 

called a triplet, because there are three different quantum mechanical states that 

correspond to a total spin of 1 (equations 2-3 to 2-5).  

       (2-3) 

         (2-4) 

        (2-5) 

Radiative transitions from excited triplet state to the singlet ground state are spin forbidden, 

as the initial state has a total spin of one and so spin is not conserved. In order for the 

radiative transition to take place, there must be an interaction to change the angular 

momentum of the excited electron and flip its spin to the anti-parallel alignment. This can be 

achieved by angular momentum exchange with atomic nuclei. However, in a pure polymer 

system the heaviest atom present is often carbon, and so from equation 2-6 the exchange 

interaction is small and the probability of angular momentum exchange is low. This results in 

the triplet exciton having a relatively long lifetime, from nanoseconds to seconds depending 

on the polymer. The radiative transition from the initial triplet state, phosphorescence, is 

therefore less likely than fluorescence (in an un-doped system), since within its lifetime it is 

more likely that the energy will be lost as heat.  

Triplet excitons may be allowed to decay radiatively with high efficiency in an environment 

where there is strong spin-orbit interaction. The spin-orbit interaction is of the form: 7-9  

      (2-6) 
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Where αfs is the fine structure constant, Zμ is the effective charge on nucleus μ, L and S are 

the Orbital and Spin moments of the electron. The coupling occurs between electron i and 

the nuclear field of nucleus μ. Other terms from electron-electron interactions could be 

included in Hso for completeness but are neglected as being far smaller in magnitude.  

The presence of the effective nuclear charge Zμ shows that this effect is stronger in the 

presence of large nuclei. This interaction has been widely exploited by using molecular 

dopants which contain a heavy atom such as iridium or platinum.10 These molecules 

efficiently produce phosphorescence from triplet excitons, which are of great importance to 

light emitting applications since a simple statistical view of exciton formation shows that 

there are four possible states to be formed by exciton formation, three of which are triplets. 

This gives a ratio of singlets to triplets of 1:3, assuming that they have an equal probability of 

formation, an assumption that has been questioned.11 

2.5 Absorption and Photoluminescence 

2.5.1 Absorption 

The transition of an electron from HOMO to LUMO may be excited by the absorption of a 

photon with energy equal to or greater than the energy gap between the two orbitals. The 

electron is excited to a higher energy state, where the energy gap corresponds to the 

photon energy.   

The optical absorption of an incident light intensity I0 by a thickness l of a material with a 

molar absorption coefficient ε at concentration c can be simply stated by the Beer-Lambert 

Law, showing exponential intensity drop: 

        (2-7) 

The optical density (OD) of a material, also known as the absorbance, is calculated by: 
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        (2-8) 

This is a standard unit used in the measurement of the absorption spectrum of a sample. 

Comparing equations 2-6 and 2-7 shows that the absorption is linear with path length and 

concentration. 

2.5.2 Molecular Vibrations and Rotations 

Covalent molecules can absorb photons in the infrared region, at energies well below the 

main optical absorption, giving a spectrum that shows the direct excitation of molecular 

vibrations and rotations. Molecular rotations are very low energy states, of tens of milli-

electronvolts, which are not prevalent in polymers due to their large size preventing most 

rotations. Molecular vibrations are of the order of hundreds of milli-electronvolts, and 

involve the stretching-relaxing of the molecular bonds, twisting, and even larger scale 

motions such a ring “breathing” in benzene rings. The different classes of molecular 

vibrations, and vibrations involving different component atoms, exhibit characteristic energy 

spectra in the infrared region, allowing certain functional groups or dominant vibrational 

modes to be identified. 

Thus a molecule may absorb a photon of higher energy than the energy gap to the S1 state. 

The electron is excited to the S1 state, and the excess energy corresponds to a number of 

activated vibration modes. By Kasha’s rule, the excited electron rapidly drops to the lowest 

vibronic (no activated vibrations) of the first excited state (S1) by internal conversion, where 

the excess energy is dissipated as heat to the surrounding medium.12-13 For the higher-lying 

energy levels (S2 or T2 and above) with large spatial overlap and small energy separation, this 

happens swiftly, but upon reaching the larger energy separation between the S1 (or T1) and 

S0 this process is no longer fast.14 This leaves the electron with a high probability of 

relaxation from the S1 level by photon emission.  
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2.5.3 Photoluminescence 

The schematic Jablonski diagram, in figure 2-4, shows all the types of transitions that take 

place in an organic system with discrete energy levels and vibronics. Thick lines denote the 

principal energy levels, starting at the ground state (S0), and thin lines show multiples of a 

single dominant molecular vibration. Absorption is an electronic transition from a low lying 

state to higher energy states promoted by interaction with a photon. Absorption occurs 

from the lowest lying vibrational state, because the vibronic energy level occupation is 

determined by the Boltzmann factor. For a typical vibronic energy level of over 50meV, 

almost all electrons at room temperature will be in the lowest vibronic of the S0 level, 

although some electrons may occupy very low energy ring-torsion modes. The electron may 

then relax to the ground state resulting in a photon or in heat, or undergo spin flip 

(intersystem crossing or ISC) and enter the lower-lying triplet level. 

 

Figure 2-5: The Jablonski diagram showing the possible energetic transitions between energy levels (thick black 

lines). Thin black lines show the first three vibrational modes of each energy level. Curving lines represent 

internal conversion (to thermal energy) and ISC refers to Inter-System Crossing. 
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The vibrational energy levels are seen in the emission spectra as replicas of the main 

emission peak measured at lower energy, shown in figure 2-5. These are known as vibronic 

replicas. Since the fluorescence (produced by recombination of an exciton) initiates from the 

lowest vibronic of the S1 level and can terminate in any vibronic of the ground state, the 

fluorescence in organic molecules often shows two or more vibronic replicas, and appears to 

be a mirror image of the absorption spectrum, but offset by a small amount of energy, the 

Stokes shift. A large Stokes shift indicates a significant amount of structural re-organization 

occurs once the molecule enters the excited state, in order to lower the total energy of the 

system. The emission then occurs from the lower-lying energy level of the new molecular 

arrangement. 

 

Figure 2-6: Ideal molecular optical spectra showing mirror-image absorption and emission, with a large Stokes 

shift. 

The optical transitions are further affected by the spatial overlap of the different excited 

state wavefunctions of each of the vibronics with the ground state. Where there is a large 

overlap, the probability of the transition is high, and where the overlap is low, little 

absorption is seen. This is illustrated in figure 2-6, which shows an absorption transition from 

(n=0, v=0) to (n=1, v’=2) where there is strong spatial overlap of the wavefunctions of the 

two states. The offset parabolas indicate a change in the spatial configuration of the 

molecule upon reaching the excited state. This shows why only a few vibrational replicas are 

seen in spectra, as the higher molecular vibrations states have a smaller overlap. 
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Figure 2-7: Vibronic wavefunctions illustrated on the potential energy levels of a simple diatomic molecule. 

Adapted from Lakowicz15 

 

The extent of wavefunction overlap further explains the absorption and emission spectra in 

figure 2-5. Once an electron is excited into the n=1 parabola, very fast internal conversion 

allows the energy of the v’=2 vibronic to be lost as heat, with the result that the emission 

always begins from the n=1, v’=0 level. The vibronic peaks in the emission spectrum of a 

molecular system are often therefore a mirror image of the absorption spectrum, as the 

peaks in the emission spectrum corresponding to each of the vibronics will be replicated by 

the emission spectrum: v’=0 to v=2 compared to v=0 to v’=2 for absorption, as the amount 

of overlap of the wavefunctions will be the same due to the symmetrical nature of the 

parabolic energy surface in figure 2-6 for small changes in r. In disordered polymers the 

absorption spectrum rarely shows the mirror image vibronic peaks, since the conjugated 

regions have a distribution of lengths, each with different vibronic levels, and the net effect 
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of this is to average out many energy levels to form a broad, smooth absorption band. 

Structured fluorescence is still observed, as energy transfer ensures that the emission always 

originates from the lowest-energy subset of conjugated regions. 

2.5.4 Symmetry Selection Rule 

The significance of the symmetry groups in the spectroscopy of conjugated polymers 

becomes apparent through selection rules, which permit and forbid transitions based on the 

symmetry of the states involved.  

Direct products, in terms of symmetry, refer to the multiplication of the characters of each 

of the symmetry operations corresponding to each representation. Using simple 

multiplication rules allows the resulting symmetry of the product to be quickly known just by 

using the Mulliken symbols of the representations. 

The probability of an optical transition occurring is proportional to the integral: 

                                                                        (2-9) 

where μ is the transition dipole moment between the initial state ψi and the final state ψf of 

the transition. The direct product ψi
*μψf must contain the completely symmetric 

representation, in which all the characters are +1, in order for the integral to be non-zero. 

The transition dipole moment has the same symmetry type as translations within the 

symmetry group, which are of symmetry Au for translations in z and Bu for translations in x 

and y. The symmetry of an electron state is given by the direct product of the symmetry of 

all the electrons in their orbitals. If any of the products have a completely symmetric 

representation (Ag in this point group) then the transition between the initial and final states 

is permitted. For the polyfluorenes in this work the transitions are only permitted between 

energy levels with opposing symmetry; from Ag (the symmetry of the ground state) to Bu 

(the first excited state S1). 
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2.5.5 Huang-Rhys Parameter 

The offset of the two energy-separation parabolas determines the amount of overlap 

between the wavefunctions of the different vibrational modes, and hence the relative 

intensity of each transition which is observed in the absorption and emission spectra. The 

relation between the intensity of successive replicas of the same vibrational mode is given 

by the Huang-Rhys parameter S: 

        (2-10) 

Where  

        (2-11) 

For a coupled oscillator of total mass m, vibrational frequency ω, and offset in parameter 

space ΔQ between ground and excited states. Experimentally, S can be determined by the 

first vibronic peak intensity ratio I1/I0. A smaller offset in the parabolas leads to smaller 

intensity vibrational replicas. This gives a measure of the number of energy quanta needed 

to distort the excited state (the Stokes shift). 

 

2.6 Fluorescence Lifetime 

The fluorescence lifetime is a characteristic defining the time in which the fluorescence 

intensity of an initially excited ensemble of states will decay to 1/e of its initial value. For a 

simple system the intensity of the emission is described by an exponential decay after 

excitation has ceased: 

         (2-12) 
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For a system of several different emitting species the decay may be the sum of two or more 

exponential terms with different time constants τi. The lifetime of a decaying species is 

determined by the rate of decay to radiative (kr) and non-radiative (knr) processes: 

        (2-13) 

An increase in either of the decay rates will reduce the time taken for the intensity to drop 

by the same fraction. A high non-radiative decay rate will reduce the number of decays that 

result in photon emission. This is related to the quantum efficiency φ of a material: 

     (2-14) 

2.7 Chain conformation and redshifted emission 

The size of the delocalized regions on a conjugated polymer is limited by kinks and defects in 

the chain. If there are many imperfections, the average size of the delocalized region is 

reduced. Correspondingly, the energies of the molecular orbitals, as well as their energy 

gaps, are increased. This occurs because the more an electron is confined in a smaller space, 

the higher its energy, and the greater the spacing between energy levels, a scenario 

analogous to the quantum-mechanical ‘particle in a box.’ Therefore when the delocalized 

regions increase in size, the energy of the emitted photons is reduced, making the emitted 

light occur at a lower, redshifted frequency. This has been modelled and observed in 

experiment.16-17 An increase in average conjugation length may occur if the polymer changes 

to a more ordered phase, most typically observed by going from solution to solid state. 
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2.8 Energy Transfer 

2.8.1 Förster Transfer 

Förster energy transfer is a radiation-less energy transfer mechanism that does not involve 

the physical movement of electrons. In a system involving two constituent parts, where a 

donor molecule or chromophore has an emission spectrum that overlaps at least partially 

with the absorption spectrum of an acceptor, the energy may be transferred from the donor 

to the acceptor via dipole interactions if the two are sufficiently close in space. This 

mechanism primarily applies to singlet transfer. The transfer rate constant is: 

                                                                            (2-15) 

Where τD is the radiative lifetime of the donor. The transfer efficiency E depends upon the 

distance r between the chromophores: 

        (2-16) 

The Förster radius R0 is defined as the distance at which the efficiency is 50%, which depends 

upon the overlap integral between the donor and acceptor chromophores: 

     (2-17) 

Where κ is an orientation factor (κ2 = 2/3 for random dipole orientations), e is the electron 

charge, n is the refractive index of the medium, NA is the Avogadro number, and τe is the 

average dwell time of the donor in the excited state in the absence of the acceptor. The 

term fD is the fluorescence of the donor (normalized to a total area of 1), and εA is the molar 

absorption coefficient of the acceptor.10 Typical Förster radius values are in the range 1 to 

5nm. 
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2.8.2 Dexter Transfer 

Dexter energy transfer is an electron exchange mechanism that acts over shorter ranges 

than Förster transfer (<1nm) because it requires an overlap in the spatial wavefunctions of 

the electrons in adjacent molecules. Spin is conserved in the exchange, allowing singlet-

singlet or triplet-triplet transfer. The transfer rate constant kET is given by: 

        (2-18) 

Where P and L are constants and J is the overlap integral from equation 2-17. Dexter 

transfer allows excitons to migrate through the material.18-21 

2.8.3 Photon Self-Absorption 

The emission and absorption spectra of a conjugated polymer often overlap significantly, 

allowing the polymer to re-absorb the photons emitted within the higher energy tail of its 

spectrum. It may also permit energy transfer from a donor to an acceptor where there is 

spectral overlap. This process is independent of distance between the emitting and 

absorbing chromophores, but the rate of energy transfer resulting from this process is lower 

than for either Dexter of Förster transfer when the chromophore separation is small enough 

for them to become effective. In the cases of dilute solutions and thin films, the effect of 

self-absorption is often insignificant. In thicker films, it may lead to a distortion of the high 

energy tail of the emission spectrum. 

 

 

2.9 Excitons in Polymer Systems 

An exciton in a real polymer system may often have significantly different properties 

depending upon its local molecular environment. The properties are largely determined by 
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the electron-hole separation. In a Frenkel exciton, the separation is small (<0.5nm), and both 

the electron and hole are localized on the same conjugated region of the same chain. This 

gives the highest-energy emission from the polymer, often seen in photoluminescence 

studies of polymer solutions where correlated electron-hole pairs are generated.  

Charge-transfer excitons often occur in polymers where there is a permanent dipole 

moment on part of a monomer unit, and the local electric field causes a separation of the 

charges in the exciton, leading to a broad redshifted emission peak relative to the Frenkel 

exciton. These separated charges are still correlated. The binding energy of the excited state 

electron level is slightly below that for a Frenkel exciton, and the energy of the hole is 

slightly above that of the ground state, which arises from the induced conformational 

changes in the polymer created by the presence of the charge.  

In solid polymer films or aggregates, the exciton can form where the electron and hole are 

weakly bound across two adjacent polymer chains, leading to large separation of the 

electron-hole pair of ~4-10nm, called a Wannier-Mott exciton or excimer, which also gives a 

more red-shifted emission relative to the Frenkel exciton. Such excitons are commonly 

encountered in electroluminescent devices where the transport of charge through the bulk 

film makes exciton formation from well separated charges far more likely. Thus, emission 

from electroluminescent devices is often very different to the dilute solution case and is 

strongly affected by film morphology.22-25 

 

2.10 Polarons and Geminate Pairs 

Chemical dopants, charge injection and dissociation of excitons within the polymer system 

can all produce free charges, without a nearby correlated opposite charge. These charges, 
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and the local distortions of the molecular environment they produce, are known as 

polarons.  

An uncorrelated charge in a semiconducting crystal leads to a change in the local electric 

field and a slight misalignment of the positions of the nearby atomic centres. In a polymer 

system the positions of the constituent atoms are not stabilised by a rigid crystalline lattice, 

and the presence of a charge on the polymer chain can lead to significant distortion of the 

local polymer backbone, altering the molecular orbitals and their energies. 

There is also an intermediate state between the exciton and the polaron, where the 

separation is large enough that the wavefunctions of the electron and hole no longer 

overlap, and there is no longer an exchange interaction. This state is called a geminate pair. 

All these states may contribute to the optical spectra of a sample. 

2.11 Summary 
This work makes use of the fluorescent polymers of the type poly(9,9-di-n-alkylfluorene), a 

conjugated polymer with a π-π* transition corresponding to the blue part of the visible 

spectrum and a useful polymer for organic light-emitting diodes. Through phase changes 

that alter the planarity of the polymer backbone, this polymer exhibits changes in its 

photophysical spectra that allow the phase changes to be easily tracked, and morphological 

changes to be inferred. The focus of this work is to contribute further to understanding the 

effects of the morphology of the polymers on their emission properties, which also impacts 

upon device efficiency. A phase change in poly(9,9-di-n-octylfluorene) is known to occur and 

to significantly improve both device efficiency and colour purity.26  

This work builds on the physics of conjugated polymers, absorption and emission 

spectroscopy, but also on the modifications of the photophysical behaviour of these 

polymers that result from a change in phase in both solution and in thin films. These changes 

will be observed by optical spectroscopy, tracking the absorption and photoluminescence as 
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a function of the polymer phase. An understanding of energy transfer is critical in the 

interpretation of the photoluminescence data. 
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3 Materials and Experimental Methods 

3.1  Materials 

3.1.1 Linear side-chain Polyfluorenes 

Poly(9,9-di-n-alkylfluorene)s, with the general structure shown in figure 3-1a, with linear alkyl chains 

of n= 6, 7, 8, 9, and 10 carbon lengths were synthesised at high molecular weight (molecular weights 

given in table 3-1) using Yamamoto coupling by the Scherf group at Wuppertal in Germany1 and the 

Durham university chemistry department. The weight-average (Mw) values for each polymer were 

calculated by: 

         (3-1) 

Where wN is the weight fraction of molecules with mass MN in the sample. 

The octyl variant (PFO or PF8) has been intensively studied as a promising efficient emitter for 

organic light-emitting diode applications,2-5 and is known to undergo a distinct reversible phase 

transition in both films and certain solvents to a phase known as the beta phase. The monomer units 

are normally twisted with respect to each other by an angle of approximately 135° in the amorphous 

phase, but after the phase transition the monomer units become more planarised and are rotated to 

angles approaching 180° with respect to each other (figure 3-1b).6-11 This is in part inferred from the 

strong similarity between the beta phase emission spectrum and that of fully planarised ladder-type 

PPP. The variants studied have similar molecular structure and molecular weights, differing only in 

the length of the solubilising linear side chains. The different polymers are referred to as PF6, PF7, 

PF8, PF9 and PF10.12-13 
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Table 3-1: The number-average (Mn) and weighted-average (Mw) molecular weights of the poly(9,9-di-n-alkylfluorene)s 
used in this work. 

Polymer Mn Mw 

PF6 84 200 

PF7 63 144 

PF8 73 258 

PF9 109 221 

PF10 86 236 

 

 

Figure 3-1: a) the general structure of poly(9,9-di-n-alkylfluorene)s, with substituted components at the Cx positions, and 

b) the idealised alternating planar backbone structure assumed for the β phase of PF8 (side chains are not in the same 

plane). 

3.1.2 Polyfluorene Copolymers with Fluorenone Monomers 

The main degradation pathway that occurs in the polyfluorenes is the gradual oxidation of fluorene 

units over time to form fluorenone, also known as the keto defect.1, 14-18 To investigate the effect of 

this on the photophysics of the beta phase of PF8, several random copolymers were synthesised at 

Durham University Chemistry department using palladium-catalysed Suzuki polycondensation, with 

fluorenone concentrations of 0.05%, 0.1%, 0.5%, 1.0%, 1.5% and 2%. The general chemical structure 

of the copolymer is shown in figure 3-2, and the molecular weights are given in table 3-2. 

a 
b 

* *n

 

CxCx
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Figure 3-2: The chemical structure of the random copolymer PF8-keto. 

 

Table 3-2: The number-average (Mn) and weighted-average (Mw) molecular weights of the PF8-keto copolymers used in 
this work. 

PF8-keto y% Mn (kDa) Mw (kDa) 

2.0 52 221 

1.0 48 165 

0.5 31 166 

0.2 28 152 

0.1 45 148 

0.05 42 163 

PF8 73 258 

 

3.1.3 Polyfluorene Copolymers with Sulphur-Containing Units 

Figure 3-3b shows a new copolymer synthesised at Durham University Chemistry department, again 

using palladium-catalysed Suzuki polycondensation. The polyfluorene monomers are randomly 

copolymerised with concentrations of 2%, 5%, 8%, 12%, and 15% SO2 containing monomer units 

dibenzothiophene-S,S-dioxide (S unit). The inclusion of the highly polar S units is anticipated to 

promote the formation of charge transfer complexes.19-21 

* *x

 

y

 

O
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Figure 3-3: Structures of the random copolymers PF8-DBT (a) and PF8-S (b) 

Further copolymers were synthesised using the same synthesis route with dibenzothiophene (DBT) 

(figure 3-3a) with 8%, 12%, 15% and 20% DBT content. Polyfluorene-DBT copolymer is known to 

improve colour purity of electroluminescent devices.22 The molecular weights are given in table 3-3. 

 

Table 3-3: The number-average (Mn) and weighted-average (Mw) molecular weights of the PF8-DBT and PF8-S-unit 
copolymers used in this work. 

Polymer S-unit 

% 

DBT 

% 

Mn 

kDa 

Mw 

kDa 

PF8  0 0 73 258 

PF8-S 2% 2 0 57 220 

PF8-S 5% 5 0 50 177 

PF8-S 8% 8 0 54 210 

PF-S 12% 12 0 35 131 

PF-S 15% 15 0 39 124 

PF8-DBT 8% 0 8 47 157 

PF8-DBT 12% 0 12 40 140 

PF8-DBT 15% 0 15 55 181 

PF8-DBT 20% 0 20 53 158 
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3.2 Experimental Methods 

3.2.1 Solution mixing 

All solutions for spin-coating thin films or spectroscopic study of the Poly(9,9-di-n-alkylfluorene)s 

were dissolved in pure solvent, either spectroscopic grade toluene or methylcyclohexane (MCH). 

Pure polymer solids were added to a new glass vial and weighed to an accuracy of 0.1 mg, and the 

required concentration was made up by weight of solvent using the known density to calculate the 

added volume. Solutions for spin-coating films were usually made to a concentration of 3-5 mg mL-1 

w/v, and solutions for spectroscopic study were made to concentrations between 1 µg mL-1 (for 

absorption spectra) and 10 ng mL-1 (for dilute excitation and fluorescence spectra) by dilution of a 

more concentrated solution. Initial polymer weights added to the vials was a minimum of 0.5 mg, 

giving an uncertainty of up to 20% in the final concentrations. Other sources of uncertainty from the 

volume of added solvent in the initial and secondary dilutions were below 0.1 % from the use of a 

calibrated pipette. 

Mixing was aided by magnetic stirring and heating, with the temperature regulated by a 

temperature controlled hotplate. In most cases the solution was heated in a beaker of water held at 

or just below boiling point. To check that no degradation of the polymers would be induced by 

heating the thermal decomposition temperature of the polymers PF6 to PF10 was measured in the 

Durham University chemistry department by thermal gravimetric analysis and found to be over 

340°C. The temperature of boiling water is also above the known temperature threshold for the 

beta-phase transition of 75°C,7 ensuring that the polymer was dissolved in a random and non-

aggregated initial solution state. 

The importance of heating the solutions to ensure that they were fully dissolved is demonstrated by 

showing the absorption spectra for solutions of 15 µg mL-1 stored in a cold laboratory, where the 

temperature during winter cycles from -2°C at night to +20°C during the day. Figure 3-4 shows the 

absorption spectra for solutions stored in the laboratory for a period of 3 weeks. The solutions were 
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all found to have formed the beta phase (see chapter 4.3 for details of the beta phase spectra) 

showing that the polymer had aggregated from solution. 

 

Figure 3-4: Absorption spectra of 15 ug mL-1 solutions of PF7, PF8 and PF9 stored for 3 weeks of thermal cycling from 
20°C to -2°C. PF8 solution after heating to fully dissolve is included for comparison. An arrow marks the beta phase 
absorption peak. 

3.2.2 Absorption Spectra 

Absorption spectra were measured on thin films and freshly prepared solutions of Poly(9,9-di-n-

alkylfluorene)s to monitor phase changes to films after thermal cycling and vapour exposure, and 

solution phase changes with temperature. The solution samples were measured at room 

temperature in a quartz cuvette with 1 cm path length, or at low temperatures in a long cryostat 

cuvette with 1 cm path length mounted in a Janis Research VNF-100 liquid nitrogen variable 

temperature cryostat with quartz windows, and the temperature was set and maintained using a 

LakeShore Model 332 temperature controller. Films were measured in the same manner, but the 

sapphire disc substrates were mounted on a copper mount in the cryostat and indium wire was used 

to create good thermal contact with the edges of the disc. 

This cryostat was mounted in a Perkin-Elmer Lambda-19 spectrophotometer or a Shimadzu UV-3600 

spectrophotometer, which were used to measure the absorption spectra. The cryostat is shown 

mounted in the Shimadzu UV-3600 in figure 3-5. A quartz cuvette of pure solvent, or a blank 
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substrate, was put in the second beam path to provide the differential spectrum, but a large offset is 

still seen due to the presence of the cryostat, where it was used. A spectrum of the empty cryostat 

was subtracted from the raw spectra to account for this. 

 

Figure 3-5: Picture of the liquid nitrogen cryostat mounted in the Shimadzu UV3600 spectrophotometer with a black 
cloth over the top of the glass sample cuvette to prevent stray light entering. 

The spectrophotometer uses two lamps, one for visible and infrared wavelengths, and another for 

ultraviolet wavelengths (less than 400 nm). There are also two diffraction gratings for wavelength 

control, one for visible and ultraviolet wavelengths, and one for deep red and near infrared (>800 

nm). The emission from the lamp is reflected by the diffraction grating onto an adjustable slit to 

select the wavelength and spectral width for the measurement. The beam at this selected 

transmission window is then split and sent down two equal paths through the sample chamber, 

where the sample and reference are placed. The transmitted light is then measured alternately by a 
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photomultiplier tube  or photodiode, depending on the wavelength. The optical density is calculated 

from the difference in absorbed light between the sample and reference beam over the set spectral 

range, using equation 2-7. 

A baseline scan is taken initially in order to correct for the variation in the lamp emission intensity 

over the wavelength range. The lamp change-over point can be manually adjusted over a range of 

wavelengths, in order to shift the change outside of the measurement area where possible.  

Spectra collected from the same polymers using the two different instruments were found to be the 

same, giving a high degree of confidence in both the accuracy of each of the instruments, and the 

validity of the measured data. 

The instrument software for both spectrophotomters automatically calculates the optical density of 

the sample as a function of wavelength over the range, and displays it directly. A screenshot of the 

UV-Probe software that runs the Shimadzu UV3600 spectrophotometer is shown in figure 3-6. 
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Figure 3-6: Screenshot of UV-Probe software for collecting absorption spectra on the Shimadzu UV3600 

spectrophotometer, showing an example absorption spectrum of a beta phase PF8 thin film. 

 

3.2.3 Excitation Spectra and Photoluminescence Spectra 

Photoluminescence spectra are measured by optically exciting the sample at a fixed wavelength in 

the main absorption band, whilst scanning a range of wavelengths and observing the luminescence. 

Excitation spectra are measured by observing the luminescence from a sample at fixed wavelength 

in the sample emission spectrum, whilst scanning the excitation beam across a range of frequencies. 

The resulting spectra usually strongly resemble the absorption spectra of the sample, since a 

stronger absorption will lead to greater emission from the sample over its whole spectrum. 

However, excitation-energy dependent migration processes or the presence of more than one 
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emitting species may cause the excitation spectrum of a sample to differ significantly from its 

absorption. 

The samples were measured in either a Jobin Yvon HORIBA Fluromax-3 or Fluorolog-3 

spectrofluorimeter, with single- (for the fluoromax) or double-monochromated (for the fluorolog) 

excitation and emission beams for spectral control of the excitation beam and the sample emission. 

The sample chambers were also large enough to accommodate the liquid nitrogen cryostat used in 

the absorption spectra, which was available for cooling solutions when required. Film samples were 

cooled in a dedicated helium-loop cryostat mounted above the Fluorolog.  

Both fluorimeters use the monochromated outputs from a xenon arc lamp to excite the sample. The 

incident slit width can be adjusted to trade resolution for signal strength, and the emission from the 

sample passes a second monochromating chamber and slit, which can be likewise adjusted. The 

emission from the sample is collected perpendicular to the excitation beam, allowing extremely low 

emission intensities to be measured. In excitation mode, the absorption spectrum can be 

approximated for a far higher range of optical densities than can be measured through direct 

absorption measurements, as only the sample emission is counted rather than very small differences 

in intensity between two light beams. 
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Figure 3-7: (Left) Schematic of the Flourolog-3 spectrofluorimeter for the collection of photoluminescence and excitation 

spectra. Light grey lines indicate approximate light paths from source to detector. (Right) Photograph of the inside of the 

excitation double-monochromator unit, with source lamp excitation arriving from the left of the image. 

 

The control software used was the Instrument Control Centre which is supplied with both 

instruments. A screenshot is given in figure 3-5 showing the main configuration window for setting 

up a simple emission spectrum, adjusting the excitation and emission slit widths as well as the major 

scan parameters. 

Spectra were collected from samples using real-time processing to output the processed spectrum 

rather than the raw counts. Displayed spectra are counts divided by the intensity of the excitation 

lamp at the same wavelength measured by a reference detector to correct for variations in lamp 

intensity across the measurement range. 
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Figure 3-8: Screenshot of the Instrument control software used for both the Fluorolog and Fluoromax spectrometers, 

showing the configuration options windows. 

 

3.2.4 Thin Films from Spin Coating 

Film samples for beta phase formation studies in Poly(9,9-di-n-alkylfluorene)s were spin-coated from 

solutions of approximately 3 mg/mL in toluene. A clean quartz or sapphire 12mm disc, with 1mm 

thickness, was used as the substrate in all cases. A large drop was added to the centre of the disk by 

pipette to the surface before spinning at 500 rpm for 10 seconds, followed by 2000 rpm for 60 

seconds. This resulted in thin films with an optical density (OD) of about 0.3 (from 3 mg/mL) at the 

absorption peak. However, significant variability in the film thickness was found from changes in 

constituent polymers, the temperature of the solution, and small variations in concentration.23  

Extensive experience showed the critical importance of the preparation method for producing PF8 

films of pure alpha-phase from solution. Alpha phase films were required for this work because it is a 



44 
 

relatively simple process to induce the beta phase in an alpha phase thin film (See chapter 5.4), but 

far more difficult to carry out the reverse process. Heating the film on a hotplate in air past the 

transition point (~80°C) will induce the change, but a vacuum oven is required to avoid producing 

significant quantities of fluorenone that will greatly disrupt the emission from the film (see chapter 

6). Care must also be taken to avoid forming other phases during heating of films – thermal 

annealing for example will produce a different, crystalline phase with altered spectroscopic 

properties, as will quenching the film from high temperature.24 Thus this method was avoided in 

order to prevent unwanted confounding variables to the results from complex processing histories. 

The chemical preparation laboratory and fume cupboard used in this work were usually at a 

temperature of between 5 and 15°C. In order to produce films of PF8 in the alpha phase, a solution 

with a concentration of less than 5 mg mL-1 is required (a concentration below 1 mg mL-1 will yield 

films that are too thin for accurate absorption spectra). Secondly, the solution must be protected 

from sharp drops in temperature during all steps of the spinning process. Heating the solution to 

over 80°C before spinning is necessary to break up any small aggregates that may have formed 

during storage, but this alone is insufficient to produce a pure alpha-phase film, as drawing this 

solution into a glass pipette at 10°C with a 1 mm tip causes small beta-phase precipitates to be 

formed in the solution before deposition. A similar process occurs if the substrate is cold, and so all 

components that will be in contact with the solution must be heated on a hotplate before spinning if 

the environment is cold. The concentration of beta phase chromophores formed by these small 

precipitates is of the order of 0.1 % (estimated from the absorption spectrum), but this is sufficient 

to exhibit a beta phase peak in the emission spectrum near 438 nm that is of similar magnitude to 

the alpha phase emission, shown in figure 3-9. Spinning onto a cold substrate often leads to spectra 

where the first vibronic replica is of higher intensity in the emission spectrum than the 0-0 transition, 

indicating that the polymer microstructure is no longer fully amorphous. 
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Figure 3-9: Emission spectra from a film spun from cold solution (black) and hot solution (red) at 5 mg/mL 

For simple emission and absorption spectroscopy an OD of approximately 0.5 or less is preferable in 

order to reduce the influence of self-absorption on the emission spectrum, especially for 

polyfluorenes where there is significant spectral overlap which is further increased by the formation 

of the beta phase.  

3.2.5 Toluene Vapour Exposure of Thin Film Samples 

The method of toluene vapour exposure, first discussed by Grell et al.25 was used to induce beta 

phase formation in thin films of PF6 to PF10, although little detail is provided in the paper for 

accurate replication of their method. Initial attempts to induce this phase involved enclosing the 

sample with a reservoir of toluene under an upturned glass enclosure, but this method yielded no 

significant changes even after several days. In order to produce a high density of toluene vapour, the 

method shown in figure 3-10 was adopted. A hotplate is set to 120°C indicated temperature, which 

corresponds to a lower temperature of 65°C for the toluene in a beaker upon it. This hotplate heats 

a pool of toluene at the bottom of a large beaker, providing a strong vapour flow out of the beaker 

which is shielded from the lateral airflow introduced by the fume cupboard. A clamp stand is used to 

suspend the film sample in a metal sample holder, face down and 5 cm above the solvent surface. 
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Figure 3-10: Arrangement for toluene vapour treatment of thin films to induce beta phase formation. The hotplate is set 

to 120°C giving a solvent temperature of 65°C. This is set inside a fume cupboard. 

The high temperature of the solvent creates a very high vapour density, which is sufficient to 

saturate the film to the maximum supported beta phase content within 10 minutes (see data in 

chapter 5.4). This is dramatically less time than others have used (from 3-4 hours to even 3 days), 

but more controllable than the method of dipping the film in toluene used by Lu et al.26 In this way a 

large number of samples could be prepared within the course of this work, in order to ensure that 

scientifically repeatable data had been obtained. 

3.2.6 Single Photon Counting 

Further to the use of steady-state emission spectra, samples were also studied with Time-Correlated 

Single Photon Counting. The sample is excited by a pulsed laser comprising a Verdi V8 green diode 

laser which pumps a picosecond Mira 9000 Ti:Sapphire mode-locked tuneable oscillator cavity. This 

cavity is tuned to 780 nm and produces a stream of pulses with a mean power of 0.7-1.2 W, 

dependent upon the precise cavity conditions. These pulses are passed through a beta-barium 

borate crystal aligned on a micrometer support to provide frequency doubling to 390 nm. The mixed 

780 nm/390 nm beam is then split at a layered dielectric mirror that reflects the longer wavelength 

component onto a photodiode to trigger the streak camera start time. The 390nm component is 

directed through alignment irises and onto the sample. The sample emission is collected through a 
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filter to remove the laser scatter, and focused into a broad bandpass monochromator. The resulting 

frequency-separated light is directed into the single photon counting detector. 

 

Figure 3-11: experimental arrangement for collection of TCSPC decays. Coloured lines indicate light paths through the 

system outside of the instruments. 

The detector is a water-cooled high resolution Hamamatsu E3809U-50 MCP photomultiplier tube for 

single photon detection attached to the double-monochromator assembly. The computer attached 

to the detector has a Becker & Hickl SPC-630 Time-Correlated Single-Photon Counting (TCSPC) card, 

which has a maximum of 4096 channels, with adjustable time window resolution with a minimum of 

814 fs. This allows photoluminescence decays to be measured both on ultra-short timescales as well 

as on longer time domains up to 10 ns not accessible to the streak camera. The laser pulses 

measured by the system (incorporating the detector response characteristics) have a full width half 

maximum of 21-23 ps. With deconvolution of the decays, components with lifetimes of several 
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picoseconds can be fitted, although the accuracy and validity of fitting such short lifetime 

components is at best uncertain. 

The TCSPC module builds up a profile of the decay by repeated measurements of the same 

experiment. The incident laser beam that excites the sample passes through a beam-splitter that 

passes a small part of the laser pulse to a Becker & Hickl PHD-400N fast photodiode that provides 

the trigger pulse to the TCSPC card. This trigger pulse stops the charging of a capacitor within the 

card, which is started when a photon, emitted from the sample through the monochromators to the 

detector triggers a second pulse. This reverse mode of operation ensures that only real events are 

counted. The charge stored on the capacitor is read out and binned in the appropriate time channel. 

The probability of the photon from the sample arriving within a certain time bin is determined by the 

sample lifetime, and after a large number of repeats, of the order of 106 for an average sample, the 

profile of the integrated counts across the time bins represents the decay profile of the sample in 

the time domain. The laser repetition rate is 76 MHz, and with a low gain preamplifier on the MCP 

this allows most decay profiles to be collected within a few minutes. 

3.2.7 Deconvolution of Fluorescence Decays 

The fluorescence decay profiles collected from the streak camera and TCSPC provide little 

information about the dynamics of the sample decay. To extract quantitative information from the 

profile, the fluorescence decay must be fitted with a model of the decay, and from the model 

parameters the lifetimes of the various decay components can be derived. 

The sample decay profile analysis is further complicated by the need to take account of the 

excitation profile. A crude analysis technique would be to take account of the full width at half 

maximum of the scattered laser pulse passing into the system, which would set a lower limit for the 

accuracy with which the decay can be fitted. Unfortunately, since the samples measured in this work 

are solid films whose lifetimes are recorded as a function of temperature, the samples must be 

measured within a cryostat, and there are strong scatter signals generated by the quartz windows. 



49 
 

These reflections of the original laser pulse provide additional excitation to the sample at later times 

than the initial pulse. The separation between the various windows and other nearby optics is of the 

order of a few centimetres, leading to time offsets between the main pulse and the scattered pulses 

of the order of 100 s of picoseconds. This leads to distortions of the smooth decay of the light from 

the sample as more energy is fed into the system, and these distortions occur at the timescales of 

the decay which are the most critical for accurate fitting for the fluorescence lifetime of 

polyfluorenes, which are in the region of 200 ps. This issue rules out the possibility of using direct 

exponential fitting of the decay for providing an accurate value of the lifetime components. 

To take account of the complex laser excitation profile arriving at the sample, the laser scatter was 

recorded in every case for every sample along with its emission profile. This allowed the decay to be 

more accurately fitted with global parameter analysis using Globals WE fitting software. Multiple 

decays from different samples of alpha and beta phase films were recorded, yielding similar results 

each time to an accuracy of 10% including sample-to-sample variation. It was found that in some 

circumstances the scatter profile was not very similar to the excitation profile arriving at the sample. 

Before proceeding with the measurement, the film samples were tilted in the horizontal axis by a 

small angle to greatly reduce the scattered laser pulse intensity reaching the sample, since this 

caused the specular reflections to reflect off the cryostat windows at an angle sufficient to avoid the 

returning beam from hitting the film surface.  Further experimentation suggests that the sample 

angle to the incident beam must not be too steep, as this causes the scattered pulses reaching the 

detector to be reduced more than the true scattered pulses reaching the sample, and the 

deconvolution gives poor results. An angle of approximately 10° gave the most acceptable results. 

Globals software is used to fit the data. This builds a decay profile of the sample using the laser 

scatter profile and a multiple-exponential decay model where each component represents one of 

the sample species. The resulting modelled profile was then minimised to the recorded data using 
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the PORT3 algorithm in the program, and the resulting lifetimes were taken to be the exponential 

lifetime decay parameters. An example of a fit is shown in figure 3-12.  

 

Figure 3-12: Example deconvolution fit to a fluorescence decay profile with the laser scatter profile and the 3-

exponential fit using the components listed in the graph. 

It is immediately obvious that there is a discrepancy between the laser profile recorded and the true 

excitation of the sample, since there are deviations in the residuals that show where the recorded 

scatter intensity is not sufficiently large to force the modelled data to fully track the measured 

decay. This example data is average in terms of the quality of the fit amongst the measured samples. 

For shorter lifetimes the fit often deviates slightly more from the measurement, and for longer 

lifetimes, especially for samples measured at the keto emission wavelength, the fits are extremely 

precise.  

The samples were fitted with single exponentials initially, and more components were added if 

necessary to improve the fit up to the maximum of four permitted by the software. Where too many 

components are being used, the fit will often fail, with the error returned that there is a singular 

point, or two components will collapse to the same lifetime. It will also be observed in these 

situations that there is no significant reduction in the chi-square value when this extra fitting 

parameter is added. 
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4 Beta Phase Formation in Linear Alkyl Chain Polyfluorene Solutions 

4.1 Introduction 

An early-developed and widely used polymer for stable blue-light emission is poly(9,9-di-n-

octylfluorene) (PF8). The carbon numbering for the fluorene molecular unit is shown in Figure 4-1: 

the monomers are bonded on the 7 and 2 positions to form the polymer, and the side chains are 

both bonded at position 9. The length between adjacent 7-position carbon atoms (the periodicity of 

the polymer chain) is 8.38 Å. PF8 has long been known to exhibit spectral changes as a result of a 

change in the conformation of its polymer chains. However, there is still uncertainty as to the precise 

nature of the physics behind this change. This chapter will cover some of the relevant physics, and 

then review the important literature that shows the progress leading to this work. The experimental 

results will then be presented that show clearly the critical role of the side chains in the formation of 

the beta phase in PF8 solutions in MCH, and from the detailed analysis of this data a mechanism for 

the formation of the beta phase will be presented.  

 

Figure 4-1: a) the carbon numbering on the fluorene unit, and b) diagram showing the repeat unit length. 

 

8.38 Å 

a b 
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4.1.1 Van der Waals Interactions 

The polymer poly(9,9-di-n-octylfluorene) and its close analogues are uncharged, non-polar 

hydrocarbons, and so there are no intermolecular interactions resulting from permanent dipole 

attractions or hydrogen bonds. Electrons within molecular materials are confined to specific orbitals, 

which may be defined as time-averaged probability density distributions of the electron’s location in 

space. At any point in time there may be an imbalance in the distribution of the electrons within the 

molecule, leaving temporary small net dipoles at one or more positions on the molecule. Where two 

molecules come into close proximity, an uneven distribution in the electrons on one molecule 

induces a corresponding opposite uneven electron distribution in the other, with the result that a 

temporary dipole-dipole attraction occurs between them. The magnitude of the attraction between 

the molecules scales with the number of electrons and the surface area in contact. 

The van der Waals interactions are short range interactions, so are only likely to be active between 

nearest neighbor molecules. The attractive force is often modeled by the Lennard-Jones potential 

energy (V):1 

        (4-1) 

Where ε is the depth of the potential well, σ is the distance at which the inter-particle potential is 

zero, and r is the distance between the particles. 

4.1.2 Solubility and solvent quality 

The major factors affecting the solubility of these polymers in organic solvents are temperature, the 

presence of phenyl rings in the solvent, the presence of hydrogen bonding, and polarity of either 

polymer or solvent.  
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In the absence of specific interactions, the polymer solubility can be predicted on the basis of 

cohesive energy densities of the polymer and solvent, described by the Hildebrand solubility 

parameter, δ. 2-4  

         (4-2) 

Where ΔEi
V is the energy of vaporization of species i and Vi is the molar volume of species I, ΔHi

V is 

the enthalpy of vaporization of species i under standard conditions (293.15 K, 101.325 kPa), R is the 

ideal gas constant and T is the temperature.  The enthalpy change upon mixing is:3, 5  

         (4-3) 

where φi is the volume fraction of each component in the mixture. Dissolution is determined by the 

Gibbs free energy change upon mixing: 

        (4-4) 

where ΔSm is the entropy change upon mixing.3, 5 Spontaneous mixing occurs when this energy is 

negative, and when this is not the case two or more phases will result from the mixing process.3 For 

high molecular weight polymers, the increase in entropy is relatively small, leaving the enthalpy 

change as the main determining factor of the free energy.3 

Another theory for quantifying solubility is the Hansen solubility parameter. This considers the total 

solubility to be a combination of several factors corresponding to hydrogen bonding, δh, dipole 

interactions, δp, and dispersive interactions, δd.6 For systems where there is no hydrogen bonding or 

strong dipoles, such as the solvents and polymers used in this chapter, the Hansen dispersive 

parameter is similar to the Hildebrand solubility parameter.6 
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The units of the solubility parameter are conventionally used in non-SI units of cal1/2 cm-3/2, which 

simply converts to the SI units of MPa1/2 by multiplying by a factor of 2.05. The values of δ used for 

the solvents in this work are 8.9 cal1/2 cm-3/2 for toluene,4 and 7.5 cal1/2 cm-3/2 for methylcyclohexane. 

Values of δ near 9.3 cal1/2 cm-3/2 are optimal for PF8.7 

4.1.3 The Flory-Higgins Equation for Polymer Solutions 

The Helmholtz free energy of mixing for a simple polymer solution is defined by the Flory-Higgins 

Equation: 5 

     (4-5) 

Where φ is the volume fraction of the polymer and N is the number of polymer units in the chain. 

The Flory interaction parameter is defined empirically 5 

          (4-6) 

Where A represents the contribution from entropy change and B represents contributions from 

enthalpy change. This demonstrates the dependence of the solubility on the polymer chain length, 

the concentration, and the temperature. 

4.2 Literature Review 

The beta phase of poly(9,9-di-n-octylfluorene) (PF8) was first reported by Grell et al. in 1997, who 

noted the formation of a solid gel in concentrated solutions and a change in the optical spectra of 

the polymer upon thermal treatment and the use of poor solvents to make solutions and films. 8-9 

They applied computer modeling to a single di-n-ocltylfluorene molecule as well as coupled Gel 

Permeation Chromatography/Light Scattering measurements of the polymer to determine a Kuhn 

length (see 5.2.2) of 17.1±2.1 nm, much larger than the monomer unit at 0.83 nm. They concluded 

that the polymer is not a completely rigid ‘hairy rod’ but a ‘wormlike chain.’ 10 Spectrophotometry 

revealed the appearance of a small absorption peak at 436 nm, redshifted with respect to the broad 
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main absorption band centred at 385nm. This band appeared and increased to a maximum over a 

timescale of about 48hrs in poor solvent, whilst the solution (10 mg mL-1) formed an infinitely 

viscous gel. The phase was attributed to simple aggregation effects driven by poor solubility, leading 

to sites with a lower energy gap for optical transitions.10 Photoluminescence of the aggregated films 

showed a redshifted and well-resolved emission spectrum with peaks at 438 nm, 467 nm, 500 nm 

and 536 nm, which are the main band of the beta phase  (at 438 nm) and its vibrational replicas. This 

was observed independent of independent of the excitation wavelength, implying that efficient 

energy transfer takes place between the disordered bulk and the lower energy aggregated chains. 

This was later confirmed by more detailed measurements of the photoluminescence spectra as a 

function of beta phase content by Khan et al.11 and by time-resolved microwave conductivity of the 

beta phase by Prins et al.,12 that showed charge trapping takes place. 

Grell et al. then went on to study the structure of the polymer upon forming this new phase.13 They 

produced beta phase in samples by thermal cycling of samples to low temperatures and by exposure 

to saturated toluene vapour over 3 days, and concluded that mechanical stress, from a mismatch in 

the thermal expansion coefficients of polymer and substrate or from solvent swelling of the film, led 

to elongation of the polymer chain and hence extended planarization of the chain, from which the 

redshifted emission occurs. They measured the intrachain correlation length in the alpha phase to be 

15 nm (18 monomer units) and for beta phase to be 22 nm (26 monomer units), indicating that the 

effective conjugation length changes from being conformationally limited to intrinsically limited. 

They proposed that this extended planarization conformation approaches a ‘planarised zig-zag’ 

producing extended conjugation over many monomer units, because the optical spectra of the 

planarised chains closely resemble those of the fully planarised ladder-type poly(para-phenylene). 

They concluded that the intra-chain ordering produced by the stress governs the optical properties, 

and that the beta phase formation in films is entirely an intrachain process.13 
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Cadby et al. then studied the beta phase using electroabsorption spectroscopy in 2000, confirming 

the ‘extended conjugation’ nature of the phase, with redshifted absorption and higher 

polarisability.14 They also studied the Photo-Induced Absorption (PIA) spectrum and found that the 

amorphous α phase is dominated by triplet excitons, but the beta phase PIA spectrum showed 

features from both triplets and polarons. Ariu et al. went on to study the Photo-Luminescent 

Quantum Yield (PLQY) of poly(9,9-di-n-octylfluorene) in the alpha phase, and beta phase.15  The 

PLQY in films measured in each of the ‘as-spun’, crystalline and quenched nematic glass phases to be 

around 85% at 10 K, and it decreased at higher temperature to around 50-75%. The beta phase film 

PLQY at room temperature is intrinsically less efficient at 55%, which decreased to 40% at 10 K due 

to the greater population of polarons at lower temperatures. The lower energy beta phase sites act 

as traps for the polarons and quench the singlet emission, reducing the PLQY of the beta phase. 

However, their results may have been influenced by the presence of fluorenone (or keto defect). 

However, it is interesting to note that for real electroluminescent (EL) device performance, the 

efficiency of devices which contain some beta phase as opposed to purely α phase is actually much 

higher, since the lower energy beta phase sites act as traps for electrons and increases the 

recombination probability of charges.16 The hole mobility is also increased, leading to a better 

balance of charges, since the large imbalance between electron and hole mobilities in α phase 

polyfluorene is reduced. Lu et al. reported an increase in EL device efficiency from 1.26 cd A-1 to 3.85 

cd A-1 (at 3.8 V and a useful brightness of 176 cd m-2), which gave an External Quantum Efficiency 

(EQE) increase from 1.08% to 3.33%. At publication in 2007 this was the highest efficiency yet 

achieved for pure blue emission, with CIE coordinates of (0.168, 0.115) at 4 V. 

Winokur et al. carried out extensive studies on the phase transition in thin films from beta phase to 

α phase, termed the Order-Disorder Transition (ODT).17 Absorption, emission and X-ray scattering 

spectra as a function of temperature show that the formation of beta phase during thermal cycling 

from 293K to 77K then back to 293K actually occurs upon slowly warming past 260K, and that 
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cooling below 250K is unnecessary. Upon starting the transition, the appearance of the characteristic 

beta phase spectroscopic peaks follows an Avrami type expression; exponentially approaching the 

maximum value after several hours.17 They fitted the emission spectrum at low temperature to find 

a Huang-Rhys parameter of 0.75.  They conclude that the beta phase is an intra-chain relaxation 

process which can be followed by aggregation. 

Khan et al. made detailed studies of the energy transfer to the beta phase.11 They cast films from 

different solvents to control the relative amounts of beta phase chains present. They used Franck-

Condon analysis with distinct contributions from the two phases to model the luminescence at 8K. 

The Huang-Rhys parameter for the beta phase is shown to be 0.6, or approximately half the value 

obtained for the glassy phase, in agreement with a more delocalized exciton in the beta phase. Time-

resolved photoluminescence measurements on a film with (they estimate) ~25% of beta phase show 

a fast transfer of excitons from the glassy to the beta phase, indicating that the two phases are well 

intermixed. Assuming the transfer dynamics to be governed by dipole-dipole coupling, they obtained 

a Förster radius of 8.26±0.6 nm, significantly larger than that typically found in the glassy phase. 

These results are consistent with the large spectral overlap between the emission of the glassy 

phase and the absorption of the beta phase. This explains why the latter dominates the emission, 

even from films containing only a small fraction of beta phase chains. 

Rothe et al. used time-resolved emission spectra and photo-induced absorption to show that the 

beta phase is not simply an extended intra-chain conjugation, but that inter-chain effects are also 

important.18 This is demonstrated by significant differences between the PIA spectra of PF8 and 

MeLPPP, which both have planar intra-molecular configurations. The beta phase also acts as an 

energetic trap for both singlet and triplet excitons initially created on amorphous chain segments, 

with the triplets being trapped more effectively due to their longer lifetime. Triplet migration is 

shown to be via thermally activated hopping, possibly competing with Förster mechanisms for 

energy transfer. In beta-phase containing films, the segregation time, between dispersive and 
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thermally activated migration, is strongly dependent on the separation between beta-phase 

domains and indicates that beta-phase content grows in via further nucleation of sites as opposed to 

growth of larger domains. 

Becker and Lupton attempted Single-Molecule Spectroscopy (SMS) on PF8 polymers dispersed at a 

concentration of 10-6 in a Zeonex matrix.19 The spectra show beta phase emission claimed to be from 

single molecules, and they claim the effects are entirely from intra-molecular interactions. However, 

they cite as their evidence against aggregation the monotonic scaling behaviour with molecular 

weight and surface density in ‘very similar’ polymeric systems. However, PF2/6, most commonly 

cited as a similar comparison, has completely different aggregation properties. It has been shown 

that the aggregation and beta phase formation of linear alkyl-substituted polyfluorenes varies very 

strongly over tiny changes in chain length and aggregation does not occur with branched chains.20-21 

Chunwaschirasiri et al. then approached the modeling aspect of the polymer conformations in the 

different phases.22 They carried out Frenkel-type tight-binding band structure calculations of the 

single chain absorption and photoluminescence spectra, including a full Franck-Condon vibronic 

progression, which matched the measured spectra very well, although there were notable 

discrepancies with the α phase 110K spectra. They classified distinct classes of conformation (Cα Cbeta 

and Cγ) corresponding to different torsional angles between adjacent fluorene units. The Cbeta isomer 

is characterized by a mean angle of ~165° between monomer units, whilst the Cα is twisted by an 

angle of ~135°. Their model assumed that the side chains fold over and interact with the phenyl 

backbone when the beta phase forms. They neglect the effect of the solvent on the polymer and 

side chains. 

Following the work of Chunwaschirasiri et al., Arif et al. studied the morphology differences between 

alpha and beta phase PF8 by Raman spectroscopy.23 They found that the major vibrational modes of 

the alpha phase and beta phase are very similar, with small-scale shifts in the 1300 cm-1 vibration 

position correlating with the presence of the beta phase. Significantly, they found that the beta 
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phase was characterized by low-energy vibrational modes in the region  below 500 cm-1  that match 

to modelled vibrations of the side chains in a specific extended conformation (all-anti-gauche). These 

measurements were replicated in Raman studies of beta phase PF8 by Khan et al.24 and Arif et al.23. 

Dias et al. studied the behaviour of PF8 in dilute solution in methylcyclohexane (MCH), including a 

model of the thermodynamics of the phase formation.25 The fraction of beta phase formed in 

solution was found to be independent of the concentration in the range studied (3-23 µg mL-1). The 

absorption spectra as a function of temperature show that α and beta phases coexist in equilibrium. 

Further excitation spectra in dilute solution show the beta phase formation is reversible over 24 hrs. 

The relative fraction of beta phase present as a function of temperature is modelled using a 2-step 

process; firstly the planarization of individual chains, then the aggregation of these chains. From the 

temperature dependence of the 437-438 nm peak intensity, the transition temperature Tbeta = 261 K, 

enthalpy ΔHbeta = -18.0kcal mol-1, and entropy ΔSbeta=-68.4 cal K-1 mol-1 were obtained. 

Kitts et al. studied the effects of solvent quality on the formation of beta phase PF8 in solutions, 

which strongly influences the fraction of the phase that forms.26 This work followed on from some 

initial studies in work by Grell et al. mentioned earlier.13 Detailed spectroscopy and Differential 

Scanning Calorimetry of the phase formation highlighted a trend in the transition temperatures and 

enthalpies. There is a large hysteresis in the formation and dissolution of beta phase upon cooling 

and warming the sample. This was attributed to the aggregation of collapsed chains stabilizing the 

phase at higher temperatures. Other studies have shown that the presence of beta phase can affect 

properties of the material such as refractive index.27  

Caruso and Anni studied the real-time effect of solvent swelling in thin films leading to beta phase 

formation using confocal microscopy, showing that the majority of the beta phase formation occurs 

within the first five minutes.28 The beta phase formation is dependent upon the solvent; those which 

interact with the phenyl rings on the polymer backbone cause the phase change, but those which 
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interact with the side chains do not. They also noted that the beta phase occurs in initial seed 

clusters followed by growth of these clusters.  

Anni et al. have further studied the beta phase in thin films by confocal microscopy, showing that the 

beta phase within the films showed local variations in the emission spectra, which highlighted a non-

uniform beta phase distribution, with some domains of high beta phase concentration and others 

without.29 The regions of variation in the fluorescence spectra correlated with microscopic 

irregularities in the morphology. 

The Förster radius of the transfer of energy between the alpha phase and the beta phase in PF8 has 

been measured to be 5.4 nm by Shaw et al.30 They use a line-dipole approximation to model the 

dipole-dipole interactions for the energy transfer. They use the assumption that the beta phase 

chromophores are uniformly dispersed, which does not fully match up to their data and conflicts 

with the findings of the confocal microscopy studies by Anni et al. 

Recent work by Knaapila et al. used Small Angle Neutron Scattering (SANS), Small Angle X-ray 

Scattering (SAXS), Wide Angle X-ray Scattering (WAXS), Absorption spectroscopy and PL to study a 

closely-related family of linear alkyl-substituted polyfluorenes with chain lengths of 6, 7, 8, 9 and 10 

carbons (Termed PF6-PF10).20  The data revealed that at concentrations of ~10 mg mL-1in MCH the 

polymer chains in PF6-PF9 form sheet-like aggregates with a thickness of ~2 polymer chains. There is 

also an odd-even effect in which the PF6 and PF8 sheets are broader and thinner than their PF7 and 

PF9 counterparts. PF10 remains as solvated chains. Emission from beta phase was observed for PF7, 

PF8 and PF9 only, and PF8 exhibited the highest degree of such emission, implying an optimal linear 

side-chain length for this phase formation. Follow-up work on these polymers at the same 

concentration in toluene showed thick (6 nm) sheet-like aggregates for PF6 and PF7, whilst PF8-PF10 

showed fully solvated chains.31 No evidence for beta phase formation in toluene was found.  
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This work aims to further analyse the formation efficiency of beta phase in solutions and films of the 

polymers PF6-PF10 to obtain more detail about the formation mechanism. By following the optical 

absorption, emission and excitation spectra, this chapter will show for the first time the 

characteristics of beta phase formation in PF7-PF10 in MCH solution.32 This provides more conclusive 

evidence that the β phase is not an intra-molecular process, but dependent upon the interactions 

between side chains of adjacent chain segments in order to form.32 From the data collected, a 

mechanism is proposed for the physical interactions that lead to the formation of the beta phase in 

MCH solution. In Chapter 5, beta phase is shown to occur in PF10 thin films,33 a result not predicted 

by the model of Winokur et al.22 

 

4.3 Results 

4.3.1 Absorption Spectra in MCH solution 

MCH is a poor solvent for polyfluorenes, because it is a saturated hydrocarbon whilst the polymer 

backbone consists of benzene rings with delocalised electrons. The solubility of polyflourenes in 

MCH arises primarily from the intermolecular interactions between the alkyl side chains and the 

solvent molecules via van der Waals interactions. Precipitation can occur  upon reducing the 

temperature, even at quite low concentrations.34 However, the data collected using very dilute 

samples is unaffected by this since smaller aggregates are formed which are not sufficiently large to 

drop out of solution, and an isobestic point could be clearly seen in the absorption spectra of PF8 

taken as a function of temperature in dilute solution.34  

Dilute solution absorption spectra were collected at equilibrium as a function of temperature for the 

purposes of establishing the isobestic points for the different polymers. Representative data for PF9 

at a concentration of 0.6 μg/mL is given in figure 4-2. The curves are not scaled. An increase in 

optical density above 397nm is matched by a drop in the optical density below this wavelength, 

indicating a transfer of oscillator strength to a new phase in part of the material.9-10  
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Figure 4-2: Equilibrium absorption spectra at different temperatures for PF9 at a concentration of 0.6 µg mL-1 in MCH. 

The arrow marks the isobestic point. 

 

The spectra at wavelengths below 350 nm are clearly being obscured by the rising scattering as the 

solution is cooled and the beta phase particles form small aggregates. The data collected from more 

concentrated solutions is far less affected by this and shows much less noise. The arrow marks the 

isobestic point at 397 nm. The isobestic points identified for all the polymers are given in table 4-1.  

The absorption spectra at higher concentrations (~10 µg mL-1) are given in figure 4-3. The curves at 

lower temperatures were normalised at the isobestic point identified previously in PF8,34 to correct 

for precipitation effects in the more concentrated solutions used to provide less noisy data. 
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Figure 4-3: Temperature dependent absorption spectra in MCH solution for the polyfluorenes a) PF6 (6 µg mL-1), b) PF7 

(6 µg mL-1), c) PF8 (23 µg mL-1), d) PF9 (7 µg mL-1) and e) PF10 (10 µg mL-1). f) the final-state spectra of PF6-PF10 at low 

temperature (marked in legend). 
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Table 4-1: Isobestic points derived from the dilute solution spectra, and details of the beta-phase feature from the 

concentrated solution spectra. ashoulder location bpeak location. 

n Isobestic point (nm) Beta Phase Feature 

6 402 none 

7 400 435 nma 

8 399 439 nmb 

9 397 435 nm
b 

10 395 429 nmb 

 

In PF6 at room temperature, the main band shows a peak at 387 nm and a shoulder at 408 nm. This 

408nm shoulder dominates over the peak at lower temperatures, but no peak corresponding to the 

presence of beta phase is observed at ~437 nm. In PF7 the main band is redshifted significantly by 

the appearance of a new peak at 414 nm, and a small shoulder around 435 nm indicates the 

formation of beta phase in this polymer at very low temperatures. Note that this new absorption 

band starts to be observed only below 200K and no further growth is detected down to the freezing 

point of the solvent (160K). There is also unusual behaviour in that the main band shift is much 

larger than for the other polymers in the series, a result that may be related to its aggregate 

thickness measured in MCH solution by x-ray and neutron scattering, which was smaller than for the 

other polymers in this series.20 The PF8 main band is redshifted by a new peak appearing at 408nm, 

and a strong absorption band at 437nm which appears below 280K and grows stronger with 

decreasing temperature. PF9 shows very similar behaviour to PF8; a new main band absorption 

appears at 405 nm, along with strong absorption at 435 nm, similar to that seen in the PF8 but of 

lower height relative to the main absorption band. PF10 shows similar behaviour again to that seen 

in the PF8 but of lower height relative to the main absorption band, but also the beta phase peak is 

located at significantly shorter wavelength.  

Figure 4-3 clearly shows that the length of the linear alkyl side chain has a strong influence on the 

formation of beta phase, and that formation is most favourable for (but not restricted to) a chain 
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length of 8 carbon atoms. The decrease in solvent action at lower temperatures, with concomitant 

increase in polymer-polymer interaction, is not sufficient to explain this favourability. In fact, PF6 is 

affected the most by solvent action because it is the least soluble of the polymers, yet no beta phase 

is observed. 

PF6 shows spontaneous aggregation at room temperature. After heating to 100°C, the spectrum is 

the same as that of the PF10, but over the course of 6 hours at 295K the absorption spectrum shifts 

to become structured (figure 4-4a), indicating the presence of an aggregate. PF6 has the shortest 

side chains of the group, and is therefore expected to have the least interactions with the solvent. 

From equation 4-5 the solvent quality is expected to drop at lower temperatures, with the result 

that the free energy of mixing will drop or even become positive, and so the solution will separate 

into separate phases of liquid solvent and solid aggregates. At this point it is more energetically 

favourable for the polymer to interact with other polymer chains or fold upon itself than it is for the 

polymer to interact with the solvent molecules. 

The presence of an aggregate is supported by the data in figure 4-4b, where the OD at the location 

of the shoulder rises smoothly to the new equilibrium. The structured absorption in figure 4-4a is not 

seen in solutions of poly(9,9-di(ethylhexyl)fluorene) (PF2/6) in MCH,35 which has branched side 

chains.  

 
Figure 4-4: a) The absorption spectrum of (6 µg mL-1) PF6/MCH, taken at intervals after boiling the solution then 

returning to 295K. b) The absorption at 408 nm of a 2 µg mL-1  solution of PF6/MCH as a function of time. 
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This structure in the main absorption band, which becomes more pronounced upon cooling, is very 

similar to the structure in the absorption spectra of the other polyfluorenes (Figures 4-3a-e) at low 

temperature, indicating that they too are forming aggregates. These data are consistent with 

previously mentioned x-ray scattering studies by Knaapila et al.20 which found sheet-like aggregates 

formed by PF6, PF7, PF8 and PF9 but only trace levels for PF10. 

4.3.2 Emission and Excitation Spectra in Dilute MCH 

Fluorescence spectra are far more sensitive than absorption spectra, and can be used to investigate 

the reversibility of beta phase formation in very dilute solutions (~10 ng mL-1) in order to avoid as far 

as possible the effects of aggregation and precipitation. Figure 4-5 shows excitation spectra with 

emission collected at 460 nm. For each sample, an excitation spectrum was initially collected at 295 

K, then it was cooled sufficiently to induce beta phase formation, and a second spectrum was taken. 

Then the sample was returned to 295 K and spectra were recorded as a function of time. The sharp 

peak observed at 404 nm is due to Raman scattering from the solvent. The spectra for all the 

solutions and especially PF6 show that the main absorption band drops to below its original 

amplitude, and in the case of PF6 the signal almost disappeared after 24 hrs. PF10 shows no such 

drop as testing was stopped after only two hours after returning to room temperature, since the 

sample had already completed the phase change back to the original spectrum. For PF6 to PF9, the 

signal intensity was not restored upon boiling of the solutions, which would have indicated that the 

drop in signal was due to precipitate falling to the bottom of the cuvette. The reason for this loss is 

not clear, but it is likely to be either photodegradation, because the samples were tested repeatedly 

and so were continuously subject to intense UV and blue light, or adsorption onto the cuvette walls, 

which is likely to occur after such an extended duration. However, the forms of the spectra are in 

excellent agreement with those in the absorption spectra in figure 4-3.  
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Figure 4-5: Excitation spectra of a) PF6, b) PF7 c) PF8  d) PF9 and e) PF10 dilute solutions in MCH during a cooling – 

warming cycle. All solutions were of concentration ~10 ng mL-1. Spectra were recorded as follows: at 295K; after cooling 

to sufficiently low temperature to induce the beta phase, and as a function of time after returning to 295K. 

 

There also appears to some form of odd-even effect occurring in the rates of the signal degradation; 

the even-chained PF6 and PF8 signal amplitudes decay almost entirely within 48 hours of 

measurement, whereas the odd-chained PF7 and PF9 retain over 50% of their intensity over the 

same period.  
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The PF6 does not display any beta phase peak even at 190K, which is concurrent with the absorption 

spectrum in figure 4-3a. The initial emission spectrum at 295K (Figure 4-5a) appears blue-shifted 

with respect to the equilibrium absorption, as the sample was only left at 295K for ~1.5 hours before 

taking the first excitation spectrum and cooling, whereas 6 hours are required to reach equilibrium 

(Figure 4-3). The data after cooling are then fully consistent. The PF7 spectrum at 200K shows the 

same shoulder that is seen in its absorption (Figure 4-3b), as well as the redshifting of the main 

band. The beta phase shoulder disappears almost entirely within an hour of returning to 295K, but 

the redshifted shoulder returns to the original profile over a much longer timescale; it has still not 

fully recovered after 48 hrs. The PF8 (figure 4-5c) shows a very large peak at 438 nm, which is still 

present after 24 hrs, but dropping with respect to the main band peak height. Since there is lower 

noise in this data compared to the results from Dias et al,25 a remnant of the peak (not shown in the 

figure for clarity) can now be seen after 40 hrs, in contrast to their findings. In the PF9 at 220K, there 

is again a good reproduction of the absorption spectrum profile (figure 4-5d), with a strong 

absorption band at 430 nm attributed to the beta phase, and a main band redshift. Both of these 

changes return back to the original profile at 295K within 48 hrs, and both changes occur over similar 

timescales. The PF10 shows a small beta phase like peak which is of the same form as the absorption 

trace in figure 4-3e, and it remains for less than 40 minutes after returning to room temperature. 

The emission spectra (Figure 4-6) were recorded in tandem with the excitation spectra, and show 

the same degradation in signal over extended measurement times that is seen in those tests for PF9 

and PF6. The PF6 emission spectra show an interesting redshift of the whole spectrum at 190K, with 

the short wavelength peak moving from 413 nm to 424 nm. Upon returning to 295K, this peak shifts 

back slightly to 420 nm after an hour and to 418 nm after ~24hrs. In the spectra of PF7 to PF10, 

there is a sharply defined peak of emission at 437-438 nm, and the broad 413 nm emission peak that 

dominates at 295K is suppressed. This change is fully reversible within one day. In the case of PF10, 

there is almost no trace of the beta phase emission peak remaining after only 25 minutes. 
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Figure 4-6: Emission spectra of a) PF6, b) PF7 c) PF8 d) PF9 and e) PF10 dilute solutions in MCH. Spectra were recorded as 

follows: at 295K; after cooling to sufficiently low temperature to induce beta phase formation; as a function of time 

after warming back to 295K. The sharp spike at 428nm is the Raman peak of the MCH. 
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4.4 Analysis and Discussion 

4.4.1 The Issue of Deriving the Beta Phase Content 

Before deriving the fraction of the beta phase present within each of the polymers, an issue now 

arises. It was widely accepted by workers in this field, prior to the publication of the data in chapter 

4, that the peak at 408 nm is entirely composed of a vibronic replica of the beta phase. The offset 

from the 0-0 transition is in the region of the value indicated by the emission spectra and Raman 

spectra (238 meV in absorption vs. 169 meV for the emission spectra but these are within the 

uncertainty). In some of the recent literature,32, 34 the fraction of the beta phase that is present in 

film samples has been derived using the approximate method of simply dividing the OD of the beta 

phase peak near 434 nm (0.30 for the data in figure 4-7a) by the sum of the OD at the peak of the 

main absorption band and the OD of the beta phase peak (0.30+1.0), which yields the large fraction 

of 23.1% beta phase content. Others subtract the alpha phase spectrum from the beta phase 

spectrum and calculate the area fraction of the result, a method which often requires a scaling factor 

for the alpha phase spectrum whose validity is uncertain.10, 36-37 Following on from the data 

presented in figure 4.3a-d, the shortcomings of these methods become clear. The peak at 408nm in 

the main absorption band that accompanies the beta phase formation is often larger than the main 

band absorption at 385 nm, so for the OD intensity comparison method, to which peak should the 

comparison be made? Furthermore, the fractions derived by the area subtraction method are all 

overestimated by including the aggregation peak at 408 nm which is not due to the absorption by 

beta phase chains.  

The chromophores in conjugated polymers exist in a range of different conjugation lengths, typically 

assumed to be a Gaussian density of states. Each of these contributes to the optical density at a 

different energy, along with its vibronic replicas. For a system of, for example, a pure polymer with 

only one phase, there is only one absorption band due to the S0 → S1 transition. Then the absorption 

spectrum is the frequency distribution of the different conjugation lengths and the associated 
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vibronic replicas, convolved with a function representing the broadening due to finite lifetime and 

interactions with neighbouring polymer chains. The optical density of a sample at a given 

wavelength is proportional to a number of chromophores in the sample that can absorb the 

incoming photons of that particular energy, but that is not necessarily representative of the total 

number of chromophores of a particular phase being present. This is a shortcoming of the intensity 

comparison method, which neglects the large difference in peak broadness between the alpha and 

beta phases. The distribution of conjugation lengths makes it necessary to sum over the range of 

wavelengths that a given phase will absorb. 

 

Figure 4-7: a) the normalised absorption and emission spectra of a PF8 beta phase film sample and a fit to the 

absorption spectrum on an energy scale using multiple Gaussian curves (b). See text for details. 

 

For an example case of a PF8 film with equal peak intensities at 408 nm and 440 nm, the absorption 

band for the alpha phase with its range of vibronic replicas has a far broader width than that for the 

beta phase, so it is evident that there is far more than 50% alpha phase present in the sample. 

Therefore there is little physical basis for the application of the intensity comparison method, 

although it retains popularity for its simplicity. Therefore a new method of calculation is used to 

calculate the proportion of beta phase chromophores in the samples measured here, which uses the 

area of an asymmetric Gaussian peak used to fit the peak at ca. 434 nm as part of a multiple-

Gaussian fit to the area-normalised spectrum on an energy x-axis. In order to be sure that the fit to 
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the beta phase peak area is accurate, care must be taken to ensure the multiple-Gaussian fit to the 

main band is sufficiently accurate. A direct single-peak fit to the beta phase section is overly 

simplistic and will always over-estimate the beta phase content, since the tail of the broad main 

band states overlap with the higher energy beta phase states (Figure 4-7b). Secondly, the 

smoothness and broadness of the band gives no clear evidence for any of the parameter values, so 

the Gaussian peaks used to fit the absorption peaks in the main band must be constrained as fully as 

possible with known parameters and physical constraints. This need becomes clearer when the 

Raman spectra of PF8 are considered. Ariu et al. demonstrated that the Raman spectra of PF8 are 

largely similar for all cases of morphology, be that amorphous, crystalline, quenched or beta phase.38 

The Raman spectrum of the beta phase show only small differences to that of the alpha phase, with 

similar peak locations but higher intensity and sharper resonances; the same vibrational modes are 

applicable to both phases. Taking this into account, the width of the alpha phase band (to 320 nm) 

could incorporate 20 Gaussian peaks at integer multiples and sums of the main three vibrational 

modes; 1300 cm-1 for a stretch vibration of the C-C bond between fluorene units, 1600 cm-1 for a ring 

breathing stretch, 23, 36 and a pair of much lower intensity modes at 735 cm-1 and 865 cm-1 for an in-

plane phenyl ring deformation and a C-C stretch of the bridging carbon,39 which were considered as 

a single mode for the purposes of this fit (since they produce a single low-intensity replica in the low-

temperature emission, see chapter 5.3). These 20 peaks consist of the 0-0 mode, eight replicas of 

the 735 cm-1 mode, five and four replicas of the 1300 cm-1 and 1600 cm-1 modes, along with sum 

modes of these primary two peaks. This necessitates more than 50 free parameters if no constraints 

are applied, resulting in a rather unconvincingly arbitrary fit. In order to make the fit more 

meaningful, these were constrained as far as possible. As mentioned, the peak centres were fixed at 

specific multiples of the permitted vibrational modes, leaving only a variation in the 0-0 ground state 

transition energy. In principle the 0-0 energy should not be a free parameter, and indeed when it 

was allowed as a variable, the resulting fits to the absorption spectra of 30 different PF8 film 

samples resulted in consistent convergence on a mean 0-0 position of 3.079±0.007 eV showing that 
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it did not vary significantly. Secondly, the peak widths were fixed at the same value of broadening 

parameter w for all the Gaussian peaks within the main band, since the vibrational modes are all 

occurring within the same energy parabola in coordinate space. Simple multiple-Gaussian peak fits 

to the well resolved emission spectra of alpha phase solutions and films show a consistent FWHM of 

120-130 meV for the 0-0 transition and its vibronic replicas. Since these values are obtained from the 

emission, which is a self-selecting subset of the most extended states within the film, it is expected 

that in the absorption a greater degree of broadening will be encountered as the whole distribution 

of states will contribute. The parameter w was permitted to vary, but the region of the fit from 2.79 

eV to 3.30 eV was weighted by a factor of 10 to force the fit to track the main band edge and the 

asymmetry of the beta phase as accurately as possible. The parameter w produces an excellent fit to 

the slope at 3 eV (whilst also still giving an excellent fit to the entire band) at a value of the order of 

80meV, giving a FWHM of around 190 meV, which is significantly larger than the values derived from 

the emission spectra, as expected. The region of the fit from 2.79 eV to 3.30 eV was weighted 

because the sum of the un-weighted squared differences between the model and data within the 

minimisation favours excessive broadening of the Gaussian bands at the expense of this slope fit 

quality, in order to better fit the region of the absorption the spectrum above 3.2 eV that is of less 

importance here. With these parameter constraints only the 20 Gaussian amplitudes remain 

variable, along with the peak centre, amplitude and two asymmetry parameters of the beta phase 

peak. Thirdly, the amplitudes were also fully constrained with Huang-Rhys parameters. For each 

series of vibrational modes (v=1, v=2 v=3 etc. for a given energy interval) the amplitudes for each 

subsequent replica were fixed to a multiple of the amplitude of the previous replica. This leaves only 

11 parameters free: the four parameters describing the asymmetric peak, the 0-0 position and 

amplitude, the width parameter, and the four Huang-Rhys factors. The Huang-Rhys factor of the 

dominant (1300 cm-1) mode of the fit is 0.66, which is in the region of the Huang-Rhys factor derived 

for PF8.17 
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The asymmetric Gaussian function used to fit the beta phase peak is given in equation 4-7. It uses 

two parameters B and u to determine the curve shape; B approximately determines the peak width 

and u determines the asymmetry. Variation of these parameters does not affect the normalization of 

the area of the peak, so the peak area is determined entirely by a prefactor. However, the precise 

values of the width and asymmetry depend on both these parameters and must be determined 

manually from the peak trace. The peak widths of the beta phase are in the region of 80 meV, which 

again is larger than the 30meV that is the FWHM of multiple-Gaussian peak fits to the well resolved 

emission spectra of beta phase solutions and films. The peak centre is at 2.824 eV (for films), and the 

peak intensity is at 2.857 eV. From the beta phase fluorescence spectrum, the vibrational replica 

intensity is of the order of 0.3, but the approximate overlap with the 0-0 of the aggregated alpha 

phase means it cannot be resolved, so no vibronic replicas of the beta phase peak are included. This 

makes the method here subject to a systematic underestimate of the beta phase content. 

   (4-7) 

Whilst it is possible to progress further to a more accurate physical model of the spectrum,40-41 it is 

difficult to derive more detailed information from the broad shape of the main band with any 

confidence. The aim is to give a sufficiently accurate fit to the absorption spectrum so that the 

electronic 0-0 Gaussian band overlap with the beta phase absorption distribution can be accurately 

and reliably modelled, allowing the true beta phase content of a given sample to be reliably 

determined. For the representative sample, this fitting process gives a beta phase fraction of 6.2%, 

far lower than the fraction derived from the simple method of OD magnitudes described earlier. The 

parameters for the fit in figure 4-7b are tabulated in table 4-2. 
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Table 4-2: Free parameters for the fit to figure4-7b, using the multiple-peak fit described in the text. Vibronic energy 
intervals were fixed from the fluorescence data. The FWHM of the Gaussian peak corresponds to width parameter w × 
2.355. 

β Peak Alpha 0-0 Alpha phase vibronics 

(fixed) 

Huang-Rhys Parameter 

B = 0.0838 meV w = 82.4meV v1 = 85 meV <0.001 

Area = 3.145×10-4 Area = 2.606×10-3 v2 = 156 meV 0.654 

0-0 = 2.818 eV 0-0 = 3.078 eV v3 = 199 meV 0.314 

U (asymmetry) = 3.40  v2+v3 0.169 

 

The area method used is subject to uncertainty, primarily from the broadness of the absorption 

spectrum and the inability to reliably resolve the beta phase vibronic replica. Other uncertainty is 

introduced by the slightly arbitrary cut-off of the area of the absorption band that is considered at 

320 nm, which is used to avoid including absorptions due to a broad, higher-lying energy level at 295 

nm, which has a substantially weaker transition probability. This cut-off may introduce a small 

systematic error into the calculation, but the magnitude of this uncertainty was estimated to be in 

the region of 5% of the result, by looking at the change in the result if the area of the absorption 

band was included down to 300 nm, where the absorption spectrum is already rising again due to 

overlap with the higher energy S0-S2 absorption band. It also requires the assumption that the 

oscillator strength of the transitions is equal in the alpha and beta phases, an assumption which is 

corroborated by a similar PLQY of the alpha and beta phases.15 

4.4.2 Difference Spectra 

In much previous work,16, 38, 42-43 the absorption spectrum of the beta phase itself has been obtained 

by deriving the change in the absorption spectrum by subtracting the alpha phase spectrum from 

that of a sample containing some beta phase. This has either been carried out as-is,25 or by 

subtracting an arbitrarily scaled alpha-phase spectrum from that of the beta phase.44  



77 
 

The difference spectra for the polymer group in MCH solution using the spectra from figure 4-3(a-e) 

are presented in figure 4-7 below. The un-scaled absorption spectra for each polymer at 290K are 

subtracted from the respective low-temperature spectra where the maximum phase change has 

taken place. 

 

Figure 4-8: The difference spectra for PF6 to PF10 (see legend) obtained by subtracting the room temperature 
absorption spectrum from the lowest temperature spectrum for each polymer. 

 

Given that the spectral changes associated with the beta phase are absent in PF6, it is clear that the 

peak in the difference spectrum around 410 nm is not the result of beta phase formation.  In 

previous studies of PF8 it has been assigned as the first vibronic level of the beta phase, as a result of 

its appearance with the beta-phase peak at around 435 nm.10, 25, 36-37 This data shows that, whilst the 

band originates from aggregation in PF6 to PF10 in solution, it is not a result of the formation of the 

beta phase. This is supported by the x-ray analysis by Knaapila et al. referred to earlier, which 

showed the beta-like aggregate sheets were present in PF6 through PF9 (along with trace levels in 

PF10). It is likely that there is some morphological adjustment occurring, with an increase in 

molecular scale ordering due to chain folding or aggregation, but the backbone planarization 

associated with the beta phase does not occur. Therefore any estimation of the beta phase content 

using such area subtraction methods has produced a significant overestimate. 
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4.4.3 Analysis of Absorption Spectra with Temperature in Solution  

In figure 4-3, the beta phase absorption band does not form in all cases, which clearly shows that the 

length of the linear alkyl side chain is a critical factor in beta-phase formation in solution. A 

commonly held theory of beta phase formation currently postulates the formation of a planarised 

intra-molecular state prior to the formation of the aggregated chains,22, 25 but it is not clear that this 

would explain the absence of beta phase formation in PF6.  

If the backbone planarization happens within the individual polymer chains prior to aggregation, 

then cooling the family of closely related polyfluorenes might be expected to give the same 

planarization due to a drop in solvent quality, irrespective of whether or not the chains are then 

suited to the formation of an aggregate after this first step. The increase in backbone planarity is the 

accepted origin of the change in spectrum22 so the presence of intra-chain planarised polymer would 

give beta-phase absorption and emission peaks in all cases of side-chain length.  

From figure 4-3, it is also clear that the beta phase does not arise purely from the onset of 

aggregation. The poorly soluble hexyl polymer is shown to aggregate readily, and was found by 

Knaapila et al. to form the same sheet-like aggregates as PF8 20, yet the red-shifted spectroscopic 

indicators of the beta phase are not produced in this case. The formation of beta phase is thus 

shown to be a complex process that does not simply result from an initial intra-chain planarization.  

From the perspective of thermodynamics, it is expected that energy is required in order for the 

fluorene unit to be planarised against the steric repulsion that arises from the adjacent hydrogen 

atoms at the 2 and 7 positions on the molecule, which produce its normal twisted state. The initial 

state of the free polyfluorene chain is associated with the alkyl solvent by Van der Waals interactions 

with the alkyl side chains. In the beta phase, the alkyl side chains of adjacent polymers are 

interacting with each other and the solvent is excluded, and the fluorene units are planarised. Thus 

there is an activation energy required to disrupt the normal molecular configuration and enforce the 

planarization, which is supplied by the release of energy from the Van der Waals interactions 
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between the alkyl side chains of the polymer when it forms the aggregate. The amount of energy 

supplied by this weak van der Waals interaction scales with the length of the alkyl chains, in much 

the same way as the boiling point of linear hydrocarbons is well known to rise with chain length.  

Longer alkyl side chains potentially provide more energy to overcome the activation energy and 

planarise the molecule, and so it is expected that beta phase spectral characteristics will not be 

observed in the cases where the polymer side chains do not provide sufficient energy to overcome 

the steric repulsion. This potentially explains why there is no beta-phase formation in the hexyl 

polymer, and suggests that the energy supplied by the heptyl polymer is only just sufficient to begin 

to planarise the polymer backbone, since only a small shoulder is seen as evidence of the beta-phase 

formation.  

Yet for the nonyl and decyl polymers the fraction of beta phase formed is lower. As the alkyl chain 

increases in length, it becomes less likely that the side chains will be in an extended linear state, as 

they are highly flexible and interact with the disordered environment of the solvent and other 

polymer molecules. This leads to a reduction in the extent of aggregation and the fraction of beta 

phase formation, since despite the continued presence of the aggregate seen in figure 4-2, the side 

chains are less likely to lie next to each other in a fully interacting state, and so they are less likely to 

provide the necessary energy, and therefore a lower fraction of the fluorene units will be planarised 

compared to the case of the octyl polymer.  

4.4.4 Thermodynamics 

The absorption spectra as a function of temperature can be further analysed in order to investigate 

the thermodynamics of the beta phase. Following the work of Dias et al.25 the aggregation of the 

beta phase polymer was assumed to be a multi-stage process, where a single alpha-phase domain 

forms a single beta-phase domain, followed by the addition of successive beta-phase domains to the 

aggregate. This initial stage is an important basis for the proposed model. In their paper, it is 

proposed that the initial stage is an intra-chain planarization, possibly brought about by the 
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interactions with the side chains with the polymer backbone. Here, it is proposed that the initial step 

is the collapse of isolated dissolved chains into folded chains, which is supported by the side-chain 

dependent formation of the beta phase in very dilute solution in figure 4-4. Chain folding would 

allow the inter-digitating side chains to drive the planarization whilst appearing to be an intra-chain 

effect. The nature of this step is discussed further in section 4.4.5. Further assumptions include: the 

alpha and beta domains are of the same length, and extend over the same number of monomer 

units giving a 1:1 ratio of exchange.25 

           (4-8) 

The rate constants k1 and k-1 are assigned to the forward and reverse reactions, and βi represents a 

beta phase domain of i chromophores. Though they proposed an intramolecular planarization step 

to be responsible for the first stage, on the basis of the results here it is more likely that the initial 

stage is that of chains folding upon themselves, with the result that the interacting side chains create 

the planarization. The aggregation then proceeds iteratively: 

       (4-9) 

The rate constants kagg and kdiss apply to the aggregation and dissociation processes.25 The optical 

density at the beta phase peak of the absorption spectrum indicates the concentration of the beta 

domains, whether as single folded chains or aggregates. The aggregates contribute to the absorption 

with the number of beta domains they contain: β3 will contribute 3×β1 and so forth. The rate 

equations for the formation of these aggregates are then given by: .25    

    (4-10) 

  (4-11) 
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   (4-12) 

     (4-13) 

Where N is the maximum number of domains assumed to be in each aggregate. Then, under 

equilibrium conditions (t→∞) the solutions of the equations of the aggregation steps are of the form 

 and , where .25  For an 

infinitely large N: 

    (4-14) 

Mass conservation expressed as  (the initial concentration) leads to:25   

    (4-15) 

Using y to symbolise the fraction of the initial α domains converted into βp aggregates, 

   giving: 25   

    (4-16) 

Dias et al. then simplify the equation using the order of magnitudes of the parameters to show that

, with the final result: 

     (4-17) 

In  the method of Dias et al. the value of y at any given temperature was taken to be the ratio of the 

optical density at the wavelength of the peak of the beta phase absorption to the absorbance at the 
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same wavelength at the lowest temperature where the beta phase absorption has reached its 

maximum value: .  

The transition temperature of the phase change can be shown clearly by simply plotting the value of 

y as a function of temperature for each of the polymers. The results using the OD from the isobestic-

point normalised data are compared directly to the value of calculated using the 

beta phase fractions from the area fitting method, shown in Figure 4-9 which contains data collected 

from two separate experiments on each polymer. Note that the method for deriving y following the 

method of Dias et al.25 using the OD differs subtly from the method used to determine the beta 

phase fraction by OD (discussed in section 4.4.1, where the OD at the beta phase peak is divided by 

the sum of the beta phase and main band OD) since here the OD of the main band is ignored; the 

spectra are scaled by the isobestic point and then the value of y is simply the peak beta phase scaled 

OD at a given temperature divided by that of the lowest temperature.  

Studies of different concentrations of PF8 using this analysis method of the temperature-dependent 

absorption spectra have shown that the results are independent of concentration over the range 2 – 

23 μg mL-1,32, 46 which can be understood by clarifying the precise meaning of aggregation in use 

here. In conventional use, in the context of emissive molecules and polymers, aggregation means 

that the molecules not only physically coalesce but also that the electron wavefunctions of the two 

particles overlap to form an interacting state, for example with pyrene.47 This produces a redshift in 

the emission, but also reduces the number of chromophores within the system, leading to a 

concentration dependence of the emission. Here, the two chromophores physically coalesce 

through side chain interactions, but the delocalised wavefunctions on the two sections of polymer 

backbone do not interact. The two separate conjugated regions become planarised and extended 

through the energy provided by the side chain interactions, resulting in two extended conjugation 

lengths rather than one. 
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Figure 4-9: values of K1 from equation 4-17 derived by scaled OD (a) and area fit method (b) showing the transition 
temperatures for PF8 (black) PF9 (red) and PF10 (green). Each series consists of two separate datasets from different 
experiments showing the variability of the data. 

 

The plots show a possible trend in the transition temperature of beta phase formation towards 

lower temperatures for longer side-chains, which is simply a result of the greater solubility of the 

longer side chains, requiring a lower temperature to be reached before the solvent quality drops 

sufficiently for aggregation or chain folding to be induced. It can be seen that there are small 

differences between the plots arising from the different methods used. The OD method tends to 

generate a slower tailing-off at lower temperatures towards the maximum value, whereas the area 

fit method yields a steeper gradient and a sharper arrival at the maximum value. This arises from a 

weakness with the OD scaling method; since the spectra are collected as a function of temperature, 

rather than just as a function of self-dopant concentration, there is an inherent red-shift of the 

absorption bands at the temperature drops, and this effective shift in the true isobestic point causes 

the scaling to artificially raise the beta phase content at lower temperatures. However, there is a 

greater uncertainty in the absolute values of beta phase content generated by the area fit method, 

resulting in a greater spread of values in this data. 

A van’t Hoff plot is used to determine the thermodynamic quantities of the entropy change ΔSbeta 

and enthalpy change ΔHbeta of the beta phase transition in PF8 and PF9. The natural logarithm of the 
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constant K1 (equation 4-17) plotted with the inverse temperature yields a straight line fit 

corresponding to equation 4-18:25 

    (4-18) 

The plots for the data derived from the respective absorption spectra as a function of temperature 

at equilibrium are shown in figure 4-10 for PF8, PF9 and PF10 where y is derived by using the OD (a) 

and fitted beta phase peak area (b). A similar plot for PF7 is not feasible since there is too much 

overlap with the redshifted structure in the absorption band to accurately determine the OD present 

due to the absorption on the beta phase chromophores. Furthermore, it is not clear if there is any 

beta phase present within the sample at all but the final few data points, which would not produce 

sufficient data points for a reasonable linear fit. 

The quantities derived using equation 4-18 are given in table 4-2, using the value of the OD at the 

beta phase peak in the spectra normalised by the isobestic point, and the fitted area of the beta 

phase peaks in the normalised spectra.  

 

Figure 4-10: Van’t Hoff plots for PF8 (black), PF9 (red) and PF10 (green) of data derived from figures 4-3 (c-e) using the 

OD peak magnitudes from the spectra scaled by the isobestic point (a) and the fitted area of the beta phase peak (b). 

Linear fits are included with matched colours. 

 

3.4 3.6 3.8 4.0 4.2 4.4 4.6

-6

-4

-2

0

2

4

6

 

 

L
n

 (
y
 /
 (

1
-y

))
 (

B
y
 O

D
)

1000 / T

a)

3.4 3.6 3.8 4.0 4.2 4.4 4.6

-6

-4

-2

0

2

4

6

b)

 

 

L
n

 (
y
 /
 (

1
-y

))
 (

B
y
 A

re
a

)

1000 / T



85 
 

Table 4-3: Fit parameters from a linear best fit to the van't Hoff plots in figure 4-10. 

 

Data By OD 

Gradient ΔHbeta kJ mol-1 Intercept ΔSbeta J K
-1 mol-1 

PF8 7.9 (0.5) -65.5(3.9) -30.1 (1.9) -250 (16) 

PF9 7.2 (0.5) -59.5 (3.9) -28.0 (1.9) -233 (16) 

PF10 6.3 (0.5) -52.4 (4.0) -25.5 (1.8) -212 (15) 

 
Data By Fitted Area 

Gradient ΔHbeta kJ mol-1 Intercept ΔSbeta J K
-1 mol-1 

PF8 6.9 (0.5) -57.4 (4.4) -25.9 (2.0) -215 (17) 

PF9 10.8 (0.8) -89.6 (6.3) -41.8 (3.0) -347 (25) 

PF10 6.3 (0.5) -52.5 (3.8) -25.9 (2.0) -215 (16) 

 

The data in the region of x < 3.9 are subject to extremely large errors, since a ratio is being taken at 

higher temperature where the OD or peak area is very small, and the fraction uncertainty carried 

through the calculation of the reaction rate constant in equation 4-17 yields a large error bar.  

It should be noted that the derived values from figure 4-9a and b in table 4-2 are subject to 

considerable uncertainty, especially since it can be seen that none of the polymers gives a smooth 

line in the van’t Hoff plot. This may be related to the poor applicability of the assumption within the 

model that the alpha and beta phase chromophores are of the same size, as the alpha phase 

chromophore has been determined to be 5 repeat units,48 and the beta phase chromophore may be 

as high as 30±15 repeat units.44 There is also some ambiguity concerning the nature and the 

magnitudes of the figures in the table. Conventionally, the value is quoted per mole of monomer 

unit, but in this case the absorption spectrum is a probe of the number of absorbing chromophores, 

so the figures are not strictly comparable to other rigorously defined thermodynamic values. This 

may explain why the values of the enthalpy seem rather high for van der Waals interactions 

between short chains; the planarization requires many side-chain interactions along the length of 

the chromophore, and so the figure will be the sum of the energies of all these interactions (higher 
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than expected by a factor of 10 or more). The entropy values are subject to considerable uncertainty 

since the y intercept value will be affected by any systematic errors in the fitting that lead to either a 

small change in the gradient or an offset in the values. 

There is considerable agreement between the values derived from the two different fitting methods 

for the PF8 and PF10, a result which can be understood from the similar FWHM of the beta phase 

peak as a function of temperature. The area will scale with the height of the beta phase peak for 

constant FWHM, so the relative proportion derived from the beta phase OD method will follow the 

trend in the peak area; an assumption that had not previously been shown to be valid. However, in 

the case of the PF9, the FWHM becomes significantly narrower at lower temperature, leading to 

disagreement between the two methods.  

To lend more credibility to the values obtained, this data can be further compared to other data 

sources. Kitts et al. also measured the enthalpy of the phase change of the beta phase transition via 

Differential Scanning Calorimetry (DSC) which found an enthalpy of -21.04 kJ mol-1 of monomer, but 

assumes a chromophore length of 6 fluorene units.26 A similar assumption with the average value of 

-61.5 kJ mol-1 derived here implies an interaction energy of -10.3 kJ mol-1 of monomer. These values 

equate to between 106 and 218 meV per PF8 unit, or 53 to 109 meV per side chain. In other work, 

Miyahara et al. carried out DSC on molecular systems - alkyldimethylamine oxide hydrochlorides 

with linear alkyl chain lengths with n=10, 12, 14, 16 and 18 and found a simple linear relationship 

between the chain length and the enthalpy of side chain melting of the crystalline phase.49 

Extrapolating their tabulated data back to n=8 yields a value of 19 kJ mol-1, which equates to 99 meV 

per side chain. Interestingly, this is similar to the interaction energy of two linear octane molecules 

through van der Waals interactions, as has been modelled by Nelson and Hermans.50 The minimum 

of the potential well depth was calculated to be -13.8 kJ mol-1, which corresponds to 144 meV per 

interacting n-octane chain pair. This functions as a realistic upper limit for the energy values found 

by Kitts et al. in DSC experiments, and in this work. This is an upper limit as there are constraints on 
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the position and intermolecular separation of the alkyl side chains in the polymers, making it less 

likely that the side chains will be completely aligned and at the optimal intermolecular distance. 

In summary, the values of enthalpy produced by this model seem physically realistic, but there is a 

high level of uncertainty, as well as an anomalously high value for PF9, and there are significant 

differences between the two fitting methods. This shows that the aggregation model of Dias et al. 

may not be a complete picture of the beta phase formation. 

4.4.5 Optical Spectra of Dilute Solutions 

In the case of more dilute solutions, it is far less likely that the polymer chains will come together to 

form aggregates. Yet the spectra in figure 4-5 and 4-6 show evidence of reversible beta phase 

formation in exceedingly dilute solution (10 ng mL-1). This is unlikely to be the result of many chains 

interacting, but due to the very high molecular weight (Mw = 200 kDa, or over 700 monomers) the 

beta phase occurs as a result of individual chains collapsing and folding upon themselves, allowing 

the side chains to interact. The high number of monomer units per chain means that only a small 

angle of folding is required between adjacent units over a length of tens of monomers in order to 

bring the end of the chain folding back over the initial chain segments. An unrealistically high folding 

angle between adjacent monomer units is not required to provide the proposed side chain 

interactions. 

The excitation spectra show that the peak indicating beta phase is very similar in both relative 

magnitude (to the main absorption band) and shape to the absorption spectra from figure 4-3. This 

indicates that the same process is happening for each polymer in both the dilute solution and the 

more concentrated solution, and therefore the results are still dependent upon the side chain. The 

process is shown to be reversible upon returning to room temperature as would be expected from 

the model of interacting side chains.  

Further to the conclusions of the earlier data, an experiment was carried out in the same manner as 

section 4.3.2 on a mixed solution of PF7 and PF9 in dilute solution with the same total concentration 
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of polymer. There were no differences in the spectral features between the mixture and the 

separate polymers; the mixed-polymer spectra can be formed by adding an approximately 50-50 

linear combination of the spectra of the separate polymers. However, there is interesting evidence 

for the formation of a more stable PF7-PF9 interlinked aggregate that has different thermodynamic 

properties to the pure polymers. The equivalent spectra are given in figure 4-11. The differences are 

not immediately apparent, but the timescale is very different – after 48 hours the spectra of the 

individual polymers had entirely disappeared, but in the case of the mixed polymers the beta phase 

characteristics are still clearly observable after 8 days, and that the spectra have not degraded in the 

same manner as observed for the individual polymers (note that regular spectra were stopped after 

65 hours and interrupted for several hours). This suggests a different type of aggregate may have 

been formed; a 7-9-7-9 type with alternating PF7 and PF9 polymers interacting together. This also 

shows that the polymer chains are still aggregating to some extent even at this extremely dilute 

concentration. 

 

Figure 4-11: Excitation spectra (a) and emission spectra (b) for a highly dilute (10 ng mL-1) solution of PF7 and PF9 

mixture in MCH. Spectra are taken before the thermal cycle (black), 5.5 hours after returning to room temperature (red), 

48 hours after (green) and 8 days after (blue). 
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Figure 4-12: Time resolved decay of the area of the beta phase region of the excitation spectra for PF8 (blue) PF9 (green) 
and PF7 & PF9 50:50 mixture (red) along with exponential fits to the data (matched lines). 

 

To give a direct comparison, the beta phase peak area is plotted as a function of time in figure 4-12 

for those solutions which presented a sufficiently well-resolved beta phase peak to be fitted with 

reasonable accuracy; PF8, PF9 and the 50:50 mixed PF7 and PF9 solutions. This clearly shows the 

different behaviour of the mixed solution. The PF8 and PF9 peak areas drop almost down to the 

noise level after approximately 1500 minutes, with time constants of 347 minutes and 266 minutes 

respectively, and the PF10 reverts to the fully dissolved state almost immediately, which 

corresponds well to the trend of increasing polymer solubility with longer side chains. This again 

shows that the solvent acts to reduce the extent of aggregation for the longer side chain polymers, 

as discussed in section 4.4.3 within the context of the proposed formation mechanism.  The mixed 

solution appears to show bi-exponential behaviour, with a fast drop with time constant 350 minutes, 

followed by a near-constant level with a time constant fit value of approximately 40 days, although it 

can only be said with certainty that the decay constant is longer than the measurement time. 
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4.5 Conclusions 

Temperature dependent absorption spectra show that in PF7, PF9 and PF10 the beta phase is 

formed as it is in the well known case of PF8, with a trend that indicates that 8 is the optimal side 

chain length. Similar experiments with PF6 show no such phase is present, leading to the hypothesis 

that the side chains are critical in the formation of the beta phase in linear alkyl side chain 

polyfluorenes. Beta phase formation in dilute solution also occurs as a result of chain folding, and is 

reversible within 2 days at room temperature.  

The conformational changes that occur within the beta phase are two-fold. The initial aggregation of 

the polymer in solution stiffens the polymer backbone, leading to the observation of structure within 

the main absorption band. Then the energy provided from the Van der Waals interactions of the side 

chains permits the planarization of chromophores where there are a sufficiently large number of 

interactions. This second stage is required to fully form the beta phase, which is why PF6 does not 

show the red-shifted absorption peak near 437 nm since the shorter side chains cannot provide 

sufficient energy. 

The absorption peaks attributed to the presence of the beta phase were further analysed to derive 

thermodynamic constants pertinent to the process. The entropy change and the enthalpy change for 

beta phase formation in PF8, PF9 and PF10 are shown to be significant and negative in all cases, and 

there is a trend of lower magnitudes for shorter chain lengths. 

Further evidence for the side chains interacting between polymers comes from a mixture of PF7 and 

PF9 chains, where spectra suggest that a new 7-9-7-9 aggregate may be formed, with greater 

stability than any of the individual polymers.  
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5 Beta Phase Formation in Films of Linear Alkyl Side Chain 

Polyfluorenes 

5.1 Introduction 

Whilst the initial work in chapter 4 using polyfluorene solutions is critical in understanding the 

nature of the beta phase formation in these polyfluorenes, the practical applications of these 

polymers use thin solid films of the polymer incorporated into a device such as a Light Emitting 

Diode (LED). Therefore this chapter will examine the formation of the beta phase in solid films of the 

polymer group PF6 to PF10.  

Clearly the physics of the beta phase formation will not be identical to the solution case; the polymer 

chains in the solid phase are closely spaced, they are effectively in a permanently aggregated state 

and there is no longer a solvent to drive apart aggregated side chains. Following a review of film 

morphology and exciton migration in polymer films, the results in this chapter will show the trend 

formation of the beta phase in films of these polymers, as induced by thermal cycling and toluene 

vapour exposure, and provide characterisation of the beta phase in the polymers as a function of 

side chain length. The results show that the currently accepted picture, that local solvent-induced or 

thermal-expansion-induced strain on polymer chains is the cause of planarization and beta phase 

formation in thin films, does not tell the whole story and that the planarization is still dependent 

upon side chain interactions to form the beta phase. 
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5.2 Physical Morphology and Migration in Conjugated Polymer Films 

5.2.1 Ideal Chains  

A polymer chain is modelled at the simplest level as n+1 individual atoms, which are joined by n 

bonds described by vectors ri with bond length length I which join the adjacent atoms. It is called an 

ideal chain if atoms separated by many bonds do not interact. The end-to-end vector is the sum of 

the bond vectors: 

     (5-1) 

For a polymer with unrestricted rotations of all bonds and no steric hindrance to restrict the 

positions of the atoms, the ensemble average end-to-end distance is <R>=0 for isotropic chains. The 

ensemble average refers to all possible states of a system, which can be thought of as the average of 

many chains, or the average of all possible states of one chain. The ensemble average square end-to-

end distance <R>2 of these chains is the sum of the products of the bond vectors ri and rj along the 

chains:1 

     (5-2) 

For a freely jointed polymer with no correlation between the bond vectors, the average <Cosθij> = 0 

for i≠j and <Cosθij> = 1 for i=j, and this simplifies to:1 

          (5-3) 

In a real chain nearby bond vectors are correlated by physical bond angle restrictions and the 

average <Cosθij> ≠ 0 for i≠j, but it is assumed for ideal chains that distant bond vectors are not 

correlated and that this value tends to zero at the limit of infinitely separated bonds; there should be 

no relation between a bond vector at one end of a long polymer chain and another at the far end as 

the atoms are not interacting and are separated by many bonds that can bend and rotate.  
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In a real chain, the sum of the bond angles between a given bond vector ri and all other bond vectors 

rj in the ensemble of chains converges to a finite number C’i since there is a correlation with the 

nearby bonds and no correlation for more distant bonds:1 

       (5-4) 

This substitutes into equation 5-2 to give:1 

      (5-5) 

Where Flory’s characteristic ratio  is the average value of C’i across the chain. 

For real chains, there is a limiting value in the sum in equation 5-4, at a value defined as Cn = C∞ 

which typically has values in the range 7 to 9 for flexible polymers such as polyethylene. This results 

in the approximation of the mean square end-to-end separation for long chains:1 

     (5-6) 

5.2.2 The Kuhn Length 

An important concept in the study of the physical properties of polymers is the Kuhn Length, b. This 

compares a real polymer chain of length N, mean squared end-to-end vector <R>2 and maximum 

possible end-to-end vector Rmax to an equivalent ideal chain with equivalent bond length b, which is 

capable of moving freely at the joints between the monomers without the restrictions of bond 

angles and steric hindrance.1  

          (5-7) 

A persistence segment sp is the number of bond lengths in the polymer chain over which the local 

correlations between bond vectors decay.1 

       (5-8) 
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Where θ is the bond angle between adjacent bonds. This persistence segment magnitude influences 

the size of the delocalised regions in conjugated polymers. Polyfluorenes are generally considered to 

be wormlike chains, where the chains are stiff and bonds are allowed to rotate freely for small 

angles of θ only, leading to the simplification shown in equation 5-8. In this case, the persistence 

length lp is: 

          (5-9) 

For a wormlike chain, this distance is twice the Kuhn length;  

            (5-10) 

5.2.3 The Rouse Model 

In the Rouse model, a polymer chain of N monomers is represented by N beads attached by springs 

with root-mean square length b, for a chain in solution.2-3 Each bead is constrained by a frictional 

force with coefficient ζ and the total friction acting on the chain is Nζ. 

The Rouse diffusion coefficient for the motion of the polymer chain is defined by an activation-type 

process acting against the local friction forces: 1, 3  

     (5-11) 

Using this coefficient, the Rouse time τR is defined as the time taken for a polymer chain to move a 

distance of the order of its own size R:1 

       (5-12) 
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5.2.4  Reptation in Polymer Melts 

To model the behaviour of polymers in the solid state, the tube model of reptation is used, which is 

shown schematically in figure 5-1. It was first proposed by de Gennes for entanglement in unlinked 

polymers,4 and further developed by Doi and Edwards.5-6 This model considers the movement of a 

single polymer chain through a constricting tube formed by the polymer chains that surround it. The 

chains are entangled by being coiled around each other, forcing any one chain to adopt a 

configuration within the available space between them. The polymer chain is twisted and in motion 

inside this region as a result of thermal vibrations, such that there is a greater length of polymer 

chain within the tube than the shortest distance between the constriction points, called the 

primitive path, shown in light gray. The excess lengths of chain around the primitive path are termed 

entanglement strands. 

 

Figure 5-1: The tube model of a polymer chain (black line) confined within a region (narrow lines) of average diameter a 

formed by the surrounding medium. The primitive path is shown in light gray. 

The average tube diameter, a, enforces a limit to the transverse fluctuations of the polymer chain 

around the primitive path.  The number of monomers in an entanglement strand Ne is defined as the 

number of Kuhn monomers in a strand of length a. Melts of long polymer chains (above the glass 

transition temperature) adopt nearly ideal chain conformations,1 and the diameter relation is: 

          (5-13) 

And the number of entangled sections along the chain is N / Ne strands, each of size a. 
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The Rouse model is applied directly to this scenario, in the form of the curvilinear diffusion 

coefficient Dc of the same form as the solution case:1 

          (5-14) 

In this case the diffusion coefficient describes the motion of the chain along the primitive path of the 

constraining tube. This is an indication of the mobility of the polymer chains with respect to each 

other.  

5.2.5 Swelling of Films by Solvent Vapour 

When solvent is added to a film of polymer, the initial film volume V0 is increased in a simple manner 

to become the total volume V of polymer plus solvent. The linear deformation λ for the 

unconstrained system is:1 

          (5-15) 

This will not strictly apply to a system of a thin film on a substrate as the underside of the film will 

experience frictional forces from the substrate surface. The net result will be a distribution of shear 

stress across the film profile. The microscopic stress on polymer chains within the thin film exerted 

by film deformation upon either solvent swelling or thermal expansion is hypothesised to be the 

source of the formation of the beta phase.7 This swelling reduces the friction coefficient between 

polymer chains, reducing the friction coefficient ζ in equation 5-14. This allows the polymers to move 

more freely, effectively reducing the glass transition temperature. However, this extra motional 

freedom is moderated by the creation of tension along the polymer chains caused by the film 

expansion acting on intertwined chains at points of overlap. 

This theoretical description is important for the understanding of the comparison between the two 

methods used to induce the beta phase in section 5.3, where both thermal cycling and solvent 

vapour exposure are trialled on the group of polymers PF6 to PF10. 
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5.2.6 Exciton Migration in Polymer Films 

Exciton migration in polymer films occurs at a far higher rate than in solution. This is simply the 

result of the proximity of the chromophores within the solid phase, which provides more possible 

energy transfer pathways for migration to proceed to. Förster and Dexter transfer require the 

chromophores to be within a distance of approximately 5 nm and 1 nm respectively, which is an 

easily achievable separation for neighbouring polymer chains, even taking account of the side chain 

length of 1 nm for octyl side chains. This allows excitons to migrate effectively through the film and 

become localised on lower energy chromophores before emission takes place. In pure films these 

lower energy chromophores are the longest conjugation lengths within the distribution of energy 

states, and in mixed component films the lowest energy chromophores may be an oxygen defect,8 or 

a dopant. 

The distribution of conjugation lengths in the polymer film are also dispersed in 3-dimensional 

space. Therefore an exciton may not migrate directly to a lower energy state if its path between the 

two sites is physically blocked by higher energy states. Upon initial excitation, an exciton may be 

generated with a large excess of energy (by absorption of a photon on the high energy side of the 

absorption band) and may have sufficient energy to cross such obstructions, but within a few 

migration steps the exciton reaches the lower parts of the density of states and it becomes trapped 

once all the surrounding sites are at a higher energy. It may then cross small potential barriers of 

height below several kT by thermal activation, allowing thermal migration to continue. This model 

has been proposed because the exciton mobility is higher and time dependent for the first 

picosecond, but then settles to a constant level; the thermally activated regime. The time 

independent mobility is dependent upon the temperature.9 

The transfer of excitons to the lower energy beta phase in thin films is fast and efficient, 10-13 but 

dependent upon the film morphology. The morphology has a strong effect on the quantum 

efficiency of film of PF8,14 with variations from 40 % to 80 % depending upon the morphology and 
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the temperature of the measurement. They found that a film containing beta phase chains exhibited 

the lowest efficiency, which they attributed to polaron quenching and exciton trapping in the lower 

energy beta phase chromophores, although the presence of the keto defect in their samples is likely 

to have affected their results (see chapter 6). In contrast, in PLED devices under the 

electroluminescence scheme, the low energy trapping sites increase the exciton formation yield by 

increasing the charge recombination probability, leading to an increase in efficiency of beta-phase 

containing PLED devices by a factor of three over alpha phase PF8 devices.13 

 

5.3 Results 

The conjugated polymer thin films used in this work are composed of long chains of approximately 

500 monomer units. The molecular arrangement in the film as spun from warm solution at 

concentrations below 5 mg·mL-1 is amorphous, giving rise to a broad single absorption band for the 

S0→S1 transition centred on 380-385 nm.15  

Formation of the beta phase in films of PF8 can occur via four methods. Firstly, if the film is spun or 

drop cast from a solution in a poor solvent,10, 16-18 then beta phase aggregates can be deposited from 

the solution. However, at higher concentrations (near 10 mg·mL-1) it was found in this work that the 

film thickness becomes very inhomogeneous as large aggregates are deposited. Secondly, additives 

such as 1,8-diodooctane19 into the source solution when spinning have been shown to induce 

controlled beta phase content.20 

 For a film already spun, two further methods have been established for inducing the formation of 

the beta phase; cooling the film to below the transition temperature and slowly re-warming it back 

to room temperature,7, 21-22 and exposing the film to vapour of certain solvents.7 Both these methods 

will be trialled for the polymer group PF6 to PF10. 
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5.3.1 Thermally Cycled Thin Films 

  

 

 
 
Figure 5-2: The initial (dashed line) and final (solid line) emission spectra of a) PF6, b) PF7 c) PF8 d) PF9 and e) PF10 films 

spin-cast from 10 mg mL-1 in toluene. The samples were then cooled, and reheated to room temperature at a rate of 0.6 

K min-1. The inset of part e) shows the excitation spectrum shift to confirm the phase change. 
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Thin films of these polyfluorenes with OD in the region of 0.3 were cooled to 11 K, then slowly 

warmed to 290 K at a rate of 0.6 K/min. The strain imposed upon the film by thermal expansion 

upon warming is believed to be the sole contributor to the change in phase.7 This is backed up by the 

finding that if the re-warming is too fast, the polymer chains do not expand under strain with the 

film but slip past each other, and the phase change does not occur. 

The resulting emission spectra are shown in Figure 5-2. In the solid state PF6 does not form any beta 

phase, in concordance with the solution sample results; the emission is characteristic of the 

amorphous phase, and the energy does not change after the thermal cycle. There is however a 

reduction in the vibronic replica intensity, suggesting a reduction in the Huang-Rhys parameter and 

therefore an increase in the ordering of the microstructure. In PF7, an intense, sharp beta phase 

emission peak is produced at 436 nm after the thermal cycle, and the final spectrum is very similar 

to the low temperature emission spectrum of PF7 in solution. The beta phase content is sufficient to 

quench the majority of the alpha phase emission at 425 nm, which remains only as a small shoulder 

at that wavelength. The spectrum of the PF8 thermally cycled film shows emission entirely 

dominated by the beta phase, which peaks at 441 nm. In the PF9, the final spectrum is a 

characteristic beta phase emission spectrum. The PF10 shows a relatively complete change of the 

emission spectrum, although the FWHM of the emission peak is not as narrow as is the case for PF7 

to PF9, perhaps indicating a lower extent of ordering in this film. The phase change is confirmed by 

an excitation spectrum (inset) showing the build-in of the shoulder feature in a similar manner to 

that of PF7 in the solution phase. 

The side-chain dependence of the beta-phase formation is a clear indication that the stress 

produced by the film expansion is not the full description of the phase formation process. There is 

still a need for side chain interactions to stabilise the beta phase once the stress-induced 

modification of the film morphology has occurred. 
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5.3.2 PF8 Thin Films Exposed to Toluene Vapour 

Thin films of PF8 were spun with optical density in the range 0.2-0.35. A toluene vapour exposure 

method was then used to attempt to induce beta phase in many samples of these polymer films to 

establish the consistency of the method. 

The films were exposed to toluene vapour by suspending them in a mount held by a clamp stand, 

suspended approximately 5 cm above the surface of a shallow reservoir of toluene in a large beaker, 

itself sitting on a hotplate set to 120 °C. The solvent itself is not in intimate contact with the hotplate 

surface, and the solvent evaporation provides a powerful cooling effect; the solvent temperature 

was measured by a thermal probe to be 65±3°C, once equilibrium had been reached. The sides of 

the beaker ensure that a high density of toluene vapour flows over the film surface before the 

vapour disperses into the strong airflow of the fume cupboard. Beta phase formation from this 

method was successfully induced in PF8 after only a few seconds. Previous attempts with unheated 

toluene, such as placing the film under an upturned beaker with a toluene reservoir, failed to 

produce any spectral changes indicative of beta phase formation even after many hours. Others 

state that exposure times of around 10 hours23 to 12 hours are needed.24 

The absorption and emission spectra of a representative sample of the films that were tested are 

given in figure 5-3a, along with a fit to a spectrum with multiple Gaussian curves (figure 5-3b). The 

absorption clearly shows a strong peak at 434 nm, and the emission shows the sharp, well resolved 

emission spectrum characteristic of the beta phase.  
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Figure 5-3: The normalised absorption and emission spectra of a sample exposed to toluene vapour for 1 minute (a) and 

a fit to a representative absorption spectrum on an energy scale using multiple Gaussian curves (b). See text for details. 

 

The fractions of beta phase induced in a series of film samples of PF8 exposed to toluene vapour for 

different time intervals are given in figure 5-4a, using the area method described in chapter 4 to 

calculate the fraction of beta phase present. From the figure, the fraction of beta phase that can be 

formed in a pure PF8 film using this method saturates at about 9 %, and it does so within a minutes’ 

exposure to warm toluene vapour. There is not a smooth trend in the data of increasing beta 

fraction at increasing exposure time, although where a smaller fraction of beta phase is formed this 

only occurs for very short exposure times (3 s to 15 s). This is in agreement with other work on 

solvent-swelling in PF8 films which discovered the transition to saturated beta-phase films occurred 

within five minutes at room temperature.25 Chen et al. also found that the majority of the phase 

formation was completed within the first minute of vapour treatment.15 Figure 5-4b shows the 

normalised emission spectra from various beta phase films, with an inset demonstrating that the 

variability in the relative magnitude of the first vibronic replica arises only from a variation in film 

optical density causing self-absorption of the main emission peak intensity, and is not correlated 

with the toluene exposure time. 

 However, there is also evidence of considerable variation in the data, which are mainly attributed to 

the simplicity of the method used, which did not effectively control the density of the toluene 
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vapour moving past the film surface, except that the hotplate was maintained at the same 

temperature to within 3K for all the samples. No attempt has been made to fit the trend since the 

variability of the data means that significant or more meaningful information could not be derived. 

From further examination of the data it appears that different samples may saturate at slightly 

different fractions of beta phase. The samples at 600 s and 1420 s exposure time are significantly 

below the level of the sample at 1200 s. This difference may be due to sample-to-sample differences 

in the as-spun film morphology. 

 

Figure 5-4: a) Beta phase fraction derived by peak fittting of the area of the main absorption bands. Inset: expanded 

scale of the first minute of exposure time. b) The emission spectra from the different samples. Inset: the correlation of 

the normalised film OD to the second vibronic PL intensity, showing that the spectral differences arise from self-

absorption. 

 

The differences between individual samples are therefore believed to be the result of some cases 

where the local film morphology can allow the movement of a larger number of chains in order to 

allow side chain interdigitation, or can accommodate the absorption of more solvent. However, it 

has been established that the samples are saturated within five minutes’ exposure and that the 

sample variability is not sufficient to prevent the formation of the beta phase. 
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5.3.3 Thin Films of PF6-PF10 Exposed to Toluene Vapour 

The polymers of the group PF6-PF10 were exposed to toluene vapour by the same method for 20 

minutes to ensure the maximum phase shift had been induced. The corresponding absorption 

spectra are displayed as a series in figure 5-5. It is clear that the trend exhibited in chapter 4 for 

these polymers in solution is not fully replicated here, with far lower fractions of beta phase being 

formed. The as-spun alpha-phase film spectra are similar, as would be expected for the amorphous 

phase. The spectra of the films after vapour treatment all show significant changes, with a red-shift 

of the main absorption band, as was observed in the solutions, and there are varying degrees of 

shoulders apparent in the region of 430 nm. Although PF8 is still shown to be the optimal chain 

length of the group by exclusively exhibiting a second peak at 435 nm, there is not a clear absence of 

the phase in PF6. The PF6 film appears as if there may be traces of beta phase present. It is unclear if 

there is beta phase present in PF7, and the PF10 shows clear evidence of a strong shoulder at 430 

nm, even more so than the PF9. This odd-even side chain length effect has previously been observed 

for this group of polymers by Knaapila et al.26 and is known to affect the melting point of alkanes; 

even-numbered alkyl chains can achieve a higher packing density in the solid phase.27 

 

Figure 5-5: Room temperature absorption spectra before (black lines) and after 20 minutes’ toluene vapour exposure 

(red lines) for PF6 to PF10 (marked 6-10). 
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The photoluminescence spectra for the corresponding films are given in figure 5-6. The main 

emission peaks of the as-spun films (black) are very similar, with minor differences in the 

wavelengths only. The emission spectra from the films after vapour treatment are far more 

informative. Firstly, the peak emission wavelengths show a trend from PF6 to PF8 of increasing 

redshift then decreasing redshift from PF8 to PF10, indicating that there is still an optimum chain 

length for maximum polymer backbone planarity. Second, the presence of the beta phase is 

confirmed in PF7 but not PF6; the beta phase entails a redshift of the energy levels of the system 

including the vibronics, which is shown in PF7 but not PF6. The change in the emission in PF6 is 

entirely due to self-absorption of the 0-0 emission by the film as a result of the absorption spectrum 

red-shift seen in figure 5-5. The vibronic replicas remain at the same wavelength as for the untreated 

film. 

 

Figure 5-6: Room temperature photoluminescence spectra before (black lines) and after 20 minutes’ toluene vapour 

exposure (red lines) for PF6 to PF10 (marked 6-10). 
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beta phase by area in the PF8 sample is 5.5 % for thermal cycling and in the region of 8 % for toluene 

exposure. However, it must be noted that there is considerable variability between samples, and it is 

possible that further thermal cycles may increase the beta phase fraction, although others have 

shown further cycles do not add significantly to the beta phase content.28 It is, however, expected 

from the theory in chapter 5.2 that the solvent vapour method would be more effective. Thermal 

cycling provides the stress forces to rearrange the polymer chains, whilst the solvent vapour method 

both provides the stress forces from the film swelling and also reduces the local friction coefficient, 

increasing the chain mobility and allowing greater rearrangement of the polymer chains. 

 

Figure 5-7: The 0-0 (black) and 0-1 (red) peak centres for the 290K emission spectra in figure 5-6 for as-spun samples 

(circles) and toluene vapour treated samples (squares) as a function of n-alkyl side chain length. 

 

Figure 5-7 shows more clearly the energy stabilisation resulting from the beta phase by showing the 

shift of the emission peaks where the beta phase is formed in the toluene vapour treated films. PF6 

shows no stabilisation of the 0-1 peak, confirming that the shift of the 0-0 peak is due to self-

absorption. The other polymers all show a similar extent of stabilisation in both the 0-0 and 0-1 

transitions; the peak shifts are are 49 meV, 108 meV, 66 meV and 63 meV for n=7, 8, 9 and 10 (data 

for the 0-1 transitions). 
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5.3.4 Low Temperature Emission Spectra 

Further information may be gained from the films’ emission spectra by observing the 

photoluminescence at very low temperatures, where the broadening due to low-energy ring torsion 

modes is greatly reduced and the vibronic replicas of the main emission wavelength can be resolved. 

The photoluminescence spectra of the films are shown in figure 5-6. These films have been saturated 

with toluene vapour and thermally cycled to ensure the maximum phase possible is present in each 

film and to prevent further beta phase formation influencing the results during the cooling. The 

spectra were taken during excitation to the alpha phase bulk at 380 nm. 

The figure shows further evidence that the beta phase is formed in films of PF7 to PF10 but not in 

PF6. The main emission peak at 11K from PF6 is located at 430 nm rather than the range 438-442 nm 

for the other samples, and this emission band in PF6 is not spectrally narrowed to the extent seen in 

the others. The first vibronic replica is also a broad featureless peak centred at 458 nm, in contrast 

to the other polymers which all show a band composed of two or more sharper sub-peaks, although 

the structure in the emission of PF10 is not immediately apparent on first inspection. However, due 

to the similar molecular structure of the polymer PF6 to the other polymers it is likely that the same 

modes are present. But since the beta phase is not formed, the width of the density of states 

contributing to the emission is not reduced, and so the vibronic structure is not resolved. 

In figures 5-8b and 5-8d there are still significant contributions to the spectrum from the α-phase 

components of the film for PF7 and PF9, which are absent from PF8 and PF10, again reinforcing the 

odd-even side chain length phenomenon.  
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Figure 5-8: Emission spectra at 295K (dotted line) 150K (dashed line) and 11K (solid line) for PF6 (a) PF7 (b) PF8 (c) PF9 (d) 

and PF10 (e) 

 

To accurately determine the emission spectrum from the beta phase components, site-selective 

spectroscopy was used.29 By exciting the films at 432 nm, the incident radiation is absorbed by the 

beta phase (planarised) chain segments, which being at lower energy do not permit transfer of the 
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excitons back to the alpha phase. The spectra so produced should have far less contribution from the 

alpha phase components, although a very small fraction of the alpha phase chains in the low-energy 

tail of the absorption band may still be visible. However, these spectra can only be recorded from 

438 nm upwards due to the scattered excitation beam obscuring the signal below this wavelength. 

The spectra are presented in figure 5-9. 

The 11 K spectra excited on the beta phase chains show better resolution of the two features that 

form the first vibronic band that is seen at 295K in figure 5-8. Gaussian curves were used to fit each 

of these bands to derive the precise energy levels of the vibronics. All the bands were fitted well by 

two dominant Gaussians and a smaller band (that is only clearly resolved in PF8 and PF9). For PF7 a 

small remnant of alpha phase emission is seen, because it exhibits greater red-shift of the main band 

absorption (most clearly seen in figure 4-3f). The derived parameters are given in table 5-1. 
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Figure 5-9: Site-selective photoluminescence spectra of PF7 (a) PF8 (b) PF9(c) and PF10 (d) at 11K using excitation at 432 

nm (black squares). Fits to the data over the range 2.57 – 2.83 eV (red) are produced by summation of several Gaussian 

peaks (green). Extra peaks in 7a (blue) indicate remnants of the alpha phase emission and a vibronic mode. 

 

Uncertainty in the wavelength of the peaks is 0.5 nm (from the fitting parameter uncertainties) 

which corresponds to an uncertainty in the energy of approximately 3 meV. Carrying this uncertainty 

through unit conversion yields an uncertainty in the wavenumber of approximately 25 cm-1, 

indicating that the vibronic levels are approximately the same in each of the polymers to within 

experimental uncertainty for PF8, PF9 and PF10. The Gaussian fit to the PF8 0-0 band emission is 

rather poor due to self-absorption cutting out the high energy tail. The PF7 C-C stretching mode is 

only just significantly below the energy of the other polymers’ C-C modes, perhaps suggesting a 

lesser extent of planarization in this case. This is corroborated by the energy level of the main band 

emission, which is the highest of the four which form the beta phase.  
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The PF6 data is included in the table with a single Gaussian fit to the 11K spectrum from figure 5-6a 

which fits very well to the spectrum shape. The vibrational contributions from the modes within this 

band cannot be resolved, indicating that the density of states in the polymer has not been narrowed 

by the presence of the more ordered beta phase, even at 11K. Attempts to fit the peak with two or 

more Gaussians resulted in a small improvement to the fit of the data but there was no convergence 

to a consistent fit from multiple starting points. 

Table 5-1: Fit parameters of the Gaussian curves in figure 5-9a-d to the 11K emission spectra. Data for PF6 is taken from 

a fit to the 11K data shown in figure 5-8a. (n.r. = not resolved) 

  
Main Band Vibronic Gap 1 Vibronic Gap 2 Vibronic Gap 3 

n nm eV FWHM nm eV cm
-1

 FWHM nm eV cm
-1

 FWHM nm eV cm
-1

 FWHM 

6 429.6 2.886 0.055 n.r. n.r. n.r. n.r. 456.7 0.171 1379 0.100 n.r. n.r. n.r. n.r. 

7 439.5 2.821 0.053 455.9 0.101 818 0.060 463.2 0.144 1165 0.033 471.3 0.190 1536 0.048 

8 444.5 2.790 0.017 459.8 0.093 747 0.028 471.8 0.162 1304 0.030 479.1 0.202 1626 0.018 

9 440.5 2.815 0.027 456.1 0.096 774 0.057 467.9 0.165 1331 0.044 475.1 0.205 1653 0.025 

10 438.5 2.828 0.031 450.7 0.077 620 0.060 465.6 0.165 1329 0.062 472.7 0.205 1652 0.021 

 

The vibronic sublevels fall into three regions; 700-750 cm-1 (low intensity), corresponding to a stretch 

of the bridging carbon on the fluorene unit, 1250-1350 cm-1, corresponding to a stretching vibration 

of the C-C bond between fluorene units, and 1600-1650 cm-1 which is in the region of the values for 

a symmetric benzene ring stretching mode (1595-1605 cm-1).30-31 The weaker mode around 730 cm-1 

is subject to considerable position uncertainty in the fits, especially in the PF7 and PF10 where there 

is no definitive feature in the emission to constrain it effectively, and the uncertainty is estimated to 

be of the order of 20 meV or 160 cm-1. 

In PF7 the symmetric benzene ring stretching mode is the dominant vibration, with greater 

contribution to the photoluminescence spectrum. There is also a secondary contribution from 

emission from alpha phase regions, seen as a secondary peak in the main band emission at 2.781 eV 

and its vibronic contribution at 2.583 eV (1597 cm-1). For PF8 the same applies, but the C-C stretch 
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has a greater relative intensity. In PF9 and PF10 the C-C stretch mode becomes the dominant 

contributor to the spectra. Looking at the vibronic energy levels, although the differences are mostly 

lower than the experimental uncertainty, there is a suggestion of a trend toward higher energy for 

longer side chain polymers. Taken with the trend of changing from aromatic ring-stretch to C-C 

stretch, this indicates an increase in stiffness of the beta phase conjugation lengths from PF7 to 

PF10. 

5.3.5 Vibrational Modes in PF8 Emission 

Further information can be drawn from an examination of the emission spectrum from PF8 at 11K 

(excitation at 380 nm), shown on a semi-logarithmic scale in figure 5-10. Many small features are 

observable at low energy, and their origins can be understood in terms of summation of three 

primary vibrational modes discussed previously. This process accounts for all of the features seen. 

Similar analysis for the other polymers is not possible due to greater broadening that prevents 

meaningful fitting of the higher-order modes. 

 

Figure 5-10: Beta phase emission from the PF8 toluene vapour exposed sample in figure 5-9b, on an energy x axis with 
logarithmic y axis, showing the large number of vibrational modes that can be resolved in the emission. Their origins are 
marked with arrows denoting overtones of three primary vibrational modes described earlier. 
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The low-energy mode at 90 meV is clearly comprised of several poorly resolvable smaller peaks, as it 

is broader than the other peaks and shows evidence of structure, in agreement with Raman spectra 

which show several vibrational modes around this energy.31 Given the resolution of the spectrum it 

will be treated as a single mode, which is weakly coupled to the excited state, shown by the low 

amplitude of the vibronic replica in the emission and the presence of very few replicas in the lower 

energy range. Co-operative vibrations with the other modes are weak, indicated by mere 

suggestions of hidden features at the energies of v1+v2 and v1+v3.  

The dominant vibrations at 160 meV and 200 meV are strongly coupled to the excited state, giving 

rise to clear features at twice and thrice the fundamental modes, as well as all the low-order linear 

combinations of these modes. The clearest sum mode in the spectra is v2+v3, which also exhibits a 

clear peak feature at the second replica of the sum. This shows that the v2+v3 mode is the most 

strongly coupled to the excited state, which supports the use of this mode in the fitting of the 

absorption spectra in chapter 4.3. The peak intensities show a good Huang-Rhys progression, 

indicated by the vibronic replicas of the 0-0 transitions of the v2 and v3 modes, which lie on a 

straight line through their peak intensities up to the second replica, after which the overlap with 

other summed modes shifts the intensity too high. Huang-Rhys values for the modes are 0.124 and 

0.157 for v2 and v3.  

5.4 Conclusions 

Absorption spectra of thin films of the polyfluorene series show the effect of thermal cycling and 

toluene vapour exposure of amorphous films both induce the beta phase to form in PF7 to PF10. 

There is a similar trend in the capability of the polyfluorene group to form the beta phase, with the 

octyl side chains being the optimal length and a decrease in beta phase formation for longer or 

shorter side chains. In the case of the PF6 side chains there is once again insufficient energy to 

planarise the backbone despite the shorter side chains being easier to pack together within the 

densely packed solid state. The model that assumes solvent-absorption strain causes the 
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planarization is incomplete since the side chain dependence once again appears as a controlling 

factor. During toluene vapour exposure, the toluene molecules plasticise the film, reducing the local 

scale friction coefficient and allowing molecular reorganisation that permits side chain 

interdigitation. Fitting of the vibrational modes in the low-temperature site-selective emission 

spectra shows a trend in the coupling to the main vibrational modes; the dominant vibration 

changes from phenyl breathing (1600 cm-1) to C-C stretch (1300 cm-1) going from n=7 to n=10.  Only 

one mode is resolved in PF6, again supporting the observation that no beta phase is formed in this 

case. The emission from PF8 is sufficiently well resolved that higher order vibrational modes can be 

observed on a semi-logarithmic plot. 
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6 The Interaction between the Beta Phase and Keto Defects in Thin 

Films of PF8 

6.1 Introduction 
Having investigated the formation of beta phase in films of the polymers PF6 to PF10, the next 

chapter will investigate the interplay between the beta phase in PF8 and the keto defect. A review of 

the nature of the keto defect is given, and then results will be presented to show the effects of the 

keto defect on the emission spectrum at different concentrations of keto incorporated into the PF8 

as a random co-monomer. The effect of inducing the beta phase in these polymer films is then 

examined through steady-state spectra and time-resolved spectra. 

The spectral shifts for PF8 keto films that occur with changes in keto concentration and as a function 

of temperature will demonstrate that the energy transfer to the keto defect occurs by exciton 

migration, and that at low temperature this migration can be reduced to recover the emission of the 

PF8. Time resolved studies show the energy transfer taking place to the beta phase chains and to the 

keto sites, and for samples containing beta phase the excitons proceed to the keto sites via the beta 

phase regions by migration, which is consistent with beta phase domains rather than isolated chains, 

as would be expected for a side-chain driven beta phase formation mechanism. 

6.1.1 The keto Defect 

The keto defect is a point on the polymer chain where a fluorene unit has become oxidised, and the 

two alkyl chains bonded to the fluorene unit at the 9 position are replaced by an oxygen atom with a 

double bond to the carbon at the 9 position, forming fluorenone.1 This keto unit is polar as a result 

of the highly electronegative oxygen atom, and as such it alters the nature of the associated 

conjugated region, and the emission spectrum is significantly changed.2-6  The keto defect emits in a 

broad energy band with a peak near 530nm, so a small fraction of keto defects act as low-energy 

traps and can quench the polyfluorene fluorescence and change the emission from deep blue to 
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green-yellow. This is a major degradation pathway in the operation of PF8-based PLEDs,3-4 as well as 

Poly(phenylene vinylene) based polymers.7  

The beta phase of PF8 also acts as a low-energy trap, and so it may be expected that there will be a 

competition between the beta phase and the keto defect for the excitons that are created within the 

bulk alpha-phase material.  

6.2 Results 

6.2.1 Beta Phase Formation in PF8-Keto Copolymers 

The first experiments are concerned with the examination of the formation of the beta phase in PF8-

keto copolymer films. Toluene vapour exposure (see section 5.4) was used to induce different 

fractions of beta phase in the copolymer series containing 0.05%, 0.1%, 0.2%, 0.5%, 1% and 2% keto 

concentration. It was found that for all concentrations of the keto defect up to 2% (the highest 

concentration incorporated) the toluene vapour method successfully induced beta phase to a similar 

magnitude as it produced in the pure PF8 homopolymer (see chapter 7 for further investigations into 

the effect of the copolymer content on the maximum beta phase fraction). 

A plot of beta phase fraction with toluene vapour exposure time is given in figure 6-1 for the 0.1% 

polymer. The figure shows similar results to the data in figure 5-4a in chapter 5, with a rapid increase 

in beta phase fraction after only seconds of exposure. The saturation level (of about 5%) is reached 

after only 5 minutes, in agreement with recent experiments by Caruso and Anni.8 There is 

considerable variability in the data, which is attributed to variations in the vapour density flowing 

past the film surface during solvent exposure, and sample to sample differences in microscopic 

morphology in the as-spun films. This method therefore gives only an approximate level of control 

over the level of beta phase formed within the sample. However, there is a noticeably slower rate of 

toluene vapour uptake; there appears to be qualitatively more of a build-in time in this case, (the 
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data in figure 5-4a shows almost a step function) perhaps indicating that the keto monomers are 

reducing the propensity of the film to absorb the toluene molecules. 

 

Figure 6-1: The fraction of beta phase induced in PF8-keto (0.1%) by different toluene vapour exposure times. Beta 

phase fractions are calculated by the fraction of the beta phase peak using multiple Gaussian curves to the absorption 

spectrum. 

 

 

6.2.2 Optical Spectra of Alpha and Beta Phase Films 

The first step is to consider the spectra of the film before and after beta phase formation, before 

examining changes as a function of keto defect content. The optical spectra for a PF8 0.1% keto film 

are given in figures 6-2a and b. Figure 6.2a shows the absorption and emission of the same film 

before and after exposure to toluene vapour for 20 minutes, whilst 6.2b directly compares the 

emission spectra before and after. 
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Figure 6-2: (a) absorption (black), emission excited at 380 nm (red) and 434 nm (green) of a PF8 0.1% film before (dashed 

line) and after toluene vapour exposure (solid line). The spectra are offset for clarity. (b) The emission spectra of the 

same film before and after toluene vapour exposure, normalised to the first vibronic replica. 

 It is clear that the absorption spectrum is unaffected by the presence of only 0.1 % keto monomers 

(figure 6-2a, black dashed line), as it is the same as seen for the PF8 film absorption spectra in 

chapter 5. The keto state in the copolymer absorbs at around 450 nm and is only observed at higher 

concentrations of around 25%.1, 9-10 The exposure to toluene vapour causes the normal shift in the 

absorption spectrum that accompanies formation of the beta phase. In the emission spectra, 

however, stark changes are immediately apparent from the normal PF8 emission seen in the 

previous chapters. The emission is now dominated by a broad emission band around 530 nm, 

changing the colour of the sample emission from blue to green-white. As is the case for the beta 

phase, the energy transfer is apparently efficient given the scale of the spectral change produced by 

only one part in 1000 of keto monomers. However, it can also be seen that the intensity of the 

polyfluorene emission is greater for the sample containing the beta phase, possibly indicating a level 

of competition between the two energy traps for the excitons. 

The data also show that in the beta phase sample, the majority of the energy transfer is occurring 

from the beta phase to the keto sites rather than directly from the alpha phase to the keto sites. This 

is supported by the spectrum produced by selective excitation of the beta phase chromophores 
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where the relative fraction of keto emission is the same as for excitation on the alpha phase (see 

later figure 6-6). 

It is interesting to observe that the emission from the keto sites where beta phase is present (figure 

6-2b) is significantly different from the emission measured from samples containing no beta phase. 

The smooth, broad band has now developed structure, indicating a more ordered system. Similar 

ordering of the keto emission has been observed for a system of copolymers with up to 25% keto 

with 9,9’-difarnesyl-fluorene in thin films at low temperature,10 where the beta phase is prevented 

from forming in the polyfluorene due to side chain branching.11 This structured emission is expected 

since the induction of the beta phase leads to a more planar arrangement of the polymer 

backbones,12 with a far narrower density of states, and the on-chain keto defects will also be 

similarly affected. The structured emission is clearer for a sample of PF8 keto 0.5%, shown in figure 

6-3 on an energy axis, allowing spectral deconvolution.  

 

Figure 6-3: A three-Gaussian peak fit to keto emission of 0.5% keto with 5% beta phase at 290K 

 

The keto emission is fitted with three Gaussian curves on the energy axis with the same FWHM of 

149 meV, indicating a broad density of states, as expected for a charge-transfer emissive state.20 The 

peak centres are at 1290 cm-1 and 2500 cm-1 and indicate that the two vibronic replicas are the ν=1 

and ν=2 levels of the same dominant vibration mode with an energy of approximately 1290 cm-1. 
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Interestingly, this does not correspond to the infrared absorption of the C=O bond of the fluorenone 

molecule (which would be expected in the region of 1700 cm-1) but it is near to the 1300 cm-1 C-C 

inter-monomer stretch vibronic seen in PF8 and PF10.13 

6.2.3 Emission Spectra with Changes in keto Content 

The steady state photoluminescence spectra for the alpha-phase samples with varying keto 

concentrations are shown in figure 6-4, with the spectra normalised to the intensity of the keto 

emission peak around 540 nm. It can clearly be seen that the emission from the PF8 is reduced by 

the increasing keto concentration; for 0.05% keto content the keto emission intensity is only one 

third of that of the PF8, but at 2% keto content the PF8 emission is almost entirely quenched, at only 

10% of the intensity of the keto emission. These spectra are similar to the spectra published by 

Hintschich et al. investigating alpha phase films of PF8 with keto,3 and other data from Zojer et al. 

using poly(9,9’-difarnesyl-fluorene) with keto.4 It can also be seen that the keto peak becomes red-

shifted as the keto concentration increases. This is due to a drop in the PF8 (0-2) and (0-3) vibronic 

transitions that overlap with the keto emission at around 500 nm. 

  

Figure 6-4: a) Steady state emission spectra excited at 380 nm of PF8 samples in the alpha phase with keto (fractions 

labelled) normalised to the peak of the keto emission band at around 540 nm. Inset: the ratio of the PF8 emission peak 

intensity to that of the keto (black) and the same ratio for the first vibronic (red) on a log-log scale with the keto 

fractions, and the best fits. b) the corresponding samples in the beta phase. 
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The inset shows the ratio of the PF8 emission peak intensity to that of the keto on a log-log scale 

with the keto fraction, with a power-law best fit to the data labelled with the gradient, using a fit 

weighting of y-2. The data exhibits simple power-law dependence with a slope of almost precisely -1 

to the keto concentration on the log-log scale for the main emission peak and the first vibronic peak 

intensity at 448 nm, although the uncertainty is of the order of 0.3. Significantly, the plots for the 

emission peak ratios for the beta phase samples give the same slope.  

There are no significant differences in the fits to the (0-0) transitions or the (0-1) transitions, except 

for the smaller coefficient due to the lower intensity of the emission at the first vibronic replica. The 

alpha phase samples and the beta phase samples are quite similar; the main beta phase emission 

peak is larger than that of the alpha phase peak, resulting in a larger a coefficient, but the 

uncertainty on these coefficients is too large to draw further conclusions. 

To further analyse the behaviour of the emission as a function of concentration, the keto-keto 

separation must be known. The distribution of the keto monomers is random within the polymer 

chains and therefore the distribution within the 3 dimensional film volume is also random, and so 

the mean separation can be approximated simply after making several assumptions. Firstly, the film 

will be modelled as a matrix of cubic volumes with side length rk (the length of the keto unit) each of 

which may contain a monomer of F8 or keto (the keto units and the F8 units are assumed to be the 

same size). Since the concentrations of keto used in this work are low, keto-keto dipole interactions 

are neglected. All the cubes making up the bulk film are assumed to be occupied, although the 

constraining nature of the polymer chains in the real film will create vacant sites, but this effect is 

assumed to be insignificant for this simple level of model.  
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Figure 6-5: a simplified model to approximate the average separation between keto units for a given concentration. keto 
units (red cubes) are assumed to be distributed, on average, at the centres of cubes of polyfluorene units of side length 
a, and separated by an average distance a. 

 

For a film of 0.1% concentration, there is one keto unit per 1000 total monomer units. The cube 

formed by this assembly of 1000 units is shown in figure 6-5, where a=10·rk. If each keto unit is on 

average in the centre of such a cube, then the separation between keto units is the same as the side 

length, a, of this cube. For any given percentage concentration nk, the side length is rk multiplied by 

the the cube root of the number of units making up the cube in which one keto unit resides, giving 

the relation to the average distance between sites: 

          (6-1) 

For concentrations of 0.05 % to 2 % this gives average separation between keto sites of between 

10.5 nm and 3.1 nm respectively for rk =0.83 nm, the width of the fluorene monomer along the 

backbone direction. For a real film where there are some vacant cube sites the average separation 

will be slightly underestimated. The keto unit separation at the lower concentrations (0.05% and 

0.1%) is significantly greater than the range of values for the Förster radius for energy transfer from 

the alpha phase to the beta phase of polyfluorene, which has been estimated at 3 nm by 

simulation,14 and measured to be 5.4 nm15 and 8.2 nm.16 The difficulty in estimating the precise beta 

phase content, and the inability to create a pure beta-phase film, have made it difficult to measure 

this accurately and these figures are all subject to considerable uncertainty. 
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This relation equates the -1 gradient of the graph fit with respect to keto concentration (figure 6-4 

insets) to a -3 dependence of the beta-keto emission ratio on the mean separation between 

chromophores. This is entirely different to the -6 slope (on double-logarithmic axes) against 

chromophore separation that would be expected for a system where Förster transfer is the 

dominant process (including the line-dipole approximation)15, 17 and so the data is more suggestive of 

3-dimensional migration through the film. 

If the quenching of the fluorescence from the polyfluorene is due to migration of the excitons to the 

keto sites, then there should be a clear change in the steady-state photoluminescence upon cooling 

to low temperature, since thermally assisted migration will be greatly reduced.  

 

 

6.2.4 Temperature Dependent Emission Spectra 

By measuring the emission spectra as a function of temperature, the nature of the energy transfer 

from the alpha phase to the beta phase and the keto defect may be better understood. Films of PF8 

with different concentrations of keto were exposed to toluene vapour to saturate them with beta 

phase (all samples containing in the region of 6%) and their photoluminescence spectra were 

recorded at several temperatures down to 11K, the minimum available. Similar overall effects were 

observed in each case; a representative example is given in figure 6-6 for a film with 0.5% keto which 

best highlights these changes. 
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Figure 6-6: Steady-state emission spectra of 0.5% keto sample with saturated beta phase excited at 380 nm (a) and 434 

nm (b), collected at 290K (dotted line) 100K (dash line) and 11K (solid line). 

 

The data in figure 6-6 show the raw emission spectra as a function of temperature, with excitation 

on the alpha phase (a) and beta phase (b). The sample has 7% beta phase content by area of the 

absorption spectrum, induced by toluene vapour exposure. The raw spectra show that the intensity 

of the emission peak around 441 nm (v=0) increases as the temperature drops, with the result that 

the emission intensity at 11K is 3.5 times larger than at 290K. Note that emission spectra as a 

function of temperature for alpha phase samples containing keto are not possible, as a significant 

fraction of beta phase is induced upon cooling the sample, and the spectra at the different 

temperatures would not be comparable. 

Correspondingly, the spectra over the range 500 to 600 nm show a clear and large drop in the 

emission from the keto. The keto emission is not prevented entirely, so not all of the emission at 540 

nm is dependent upon migration. The spectra are identical whether excited at the alpha phase 

absorption peak (380 nm, figure 6-4a) or the beta phase absorption peak (434 nm, figure 6-4b), 

except that the intensity when excited on the beta phase is lower due to the lower optical density of 

this absorption peak. Therefore the following scheme is proposed for the transfer of excitons 

through the system in a film of PF8 containing beta phase and keto (Figure 6-7). 
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Figure 6-7: Scheme of exciton transfer processes in a film of PF8 containing both beta phase and keto. Energy level 
differences make the rate constants k2 and k3 extremely small with relation to k1 and k4. Note that migration is also 
included in k1 and k4. 

 

The near-identical emission spectra from the PF8 keto 0.5% sample containing 7% beta phase in 

figure 2 show that k1 >> k4. This is unsurprising given the exceptional energy transfer efficiency from 

the alpha phase to the beta phase in PF8. If the counter example is considered where k1 < k4, then 

the emission spectrum for excitation on the alpha phase would show a relatively lower emission 

peak from the beta phase and a larger emission peak from the keto, since a smaller fraction of 

excitons would reach the beta phase regions to produce emission at 440 nm, and the excitons 

transferring to the keto in the alpha phase would not lose a fraction of their number to beta phase 

emission. 

The energy transfer from the beta phase to the keto is clearly illustrated in figure 6-8, where 434 nm 

laser light is shown exciting a sample of PF8-keto 0.5% which has been vapour treated to induce beta 

phase formation, showing the yellow keto emission resulting from energy transfer from the beta 

phase to the keto. A blue tint is seen from the scattered excitation laser. 
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Figure 6-8: Laser excitation at 434nm of a PF8-keto 0.5% sample with 7% beta phase demonstrating energy transfer to 

the yellow-green keto sites. Note that the blue laser scatter is also visible. 

 

The temperature dependent spectra observed for a sample containing 0.1% keto with saturated 

beta phase (figure 6-9) shows that the keto emission is reduced to below the measurement noise 

level at 11K, indicating that the emission from the keto states is limited by migration; the low 

concentration of keto defects necessitates migration in order for a significant rate of energy transfer 

to take place. By 0.5% keto concentration, there is enough keto present to make direct energy 

transfer contribute to the emission. In the 0.1% keto film there is also significant recovery of 

emission from the alpha phase seen as a resolved peak at 426 nm. This shows for a film containing 

0.1% keto that there are a significant fraction of beta phase chromophores that are reached by 

migration through the alpha phase bulk at 7% beta phase concentration, and similarly that there are 

also a significant fraction keto sites reached only by migration though the alpha phase. When the 

temperature is reduced, thermally assisted exciton migration to either the beta phase or keto is 

reduced, and more emission occurs instead from alpha phase chromophores. 
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Figure 6-9: Emission spectra of PF8-keto 0.1% with 5% beta phase at 290K (solid line) and 11K (dashed line) using 380 nm 

excitation, showing the elimination of the keto emission and the recovery of both the beta phase emission and some 

alpha phase emission at 427 nm at low temperature. 

 

6.2.5 Time Resolved Photoluminescence 

The movement of excitons through the film to the keto sites via migration has been shown in the 

previous section, but this can be confirmed by observing the fluorescence decay from the films at 

different keto concentrations and as a function of temperature. Films of PF8 keto with 0%, 0.5% and 

2% keto concentration were spun in the alpha phase state, with comparison samples saturated with 

beta phase using toluene vapour for 20 minutes. The Time-Correlated Single Photon Counting 

(TCSPC) method was used to measure the fluorescence intensity at several wavelengths across the 

emission spectrum with a bandpass window of approximately 5 nm. The exponential fluorescence 

lifetime components were deconvolved using GLOBALS software to model the decays. 

For simple initial comparisons, the average lifetime was calculated. 

                                                                                     (6-2) 
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                (6-3) 

The results as a function of keto concentration are shown in figure 6-10. 

 

Figure 6-10: Average lifetimes fitted to TCSPC measurements as a function of keto concentration for alpha phase films 

excited at 390nm and measured at 425nm at 290K (black squares) and beta phase films excited at 434nm and measured 

at 442nm at 290K (red circles) and 77K (green triangles). 

The overall trend shows strong quenching of the PF8 lifetime by the presence of the keto defect – a 

concentration of just 0.1% keto leads to an average lifetime drop of approximately 50%, which 

correlates with the significant changes in the emission spectra in figure 1 for even the 0.05% keto 

polymer. It is also clear that the direct energy transfer seen in the steady state spectra from the beta 

phase to the keto sites is confirmed again here. For the case of beta phase films excited at 434 nm, 

the data collected at 290K is compared with samples measured at 77K. There is a significant 

reduction in the lifetime quenching provided by the keto defect. At room temperature the average 

lifetime drops from 262 ps (no keto) to 9 ps (2% keto), whilst at 77K the drop is less severe; from 198 

ps to 19 ps, again confirming the importance of migration in the energy transfer to the keto sites.  

Given that the keto monomer is incorporated randomly within the polymer chains and the keto 

emission shows evidence of increased ordering, and that all the samples formed a similar fraction of 

beta phase upon toluene vapour exposure (beta phase can be formed with up to 20% co-monomer 
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content, see chapter 7), we can assume that the beta phase domains will contain the same 

concentration of keto sites as the alpha phase. Therefore, differences in the quenching of the PF8 

emission by the keto are controlled by the differences in migration hopping rates to the keto sites 

within the alpha and beta phases of PF8. It may be expected that the narrower density of states 

within the beta phase (30 meV by a Gaussian fit to the beta phase emission spectrum) compared to 

the alpha phase (130 meV) would restrict the mobility of the excitons by reducing the number of 

downward energy sites available to hop to. The ratio of the 290K average lifetimes τβ/τα at 0.05%, 

0.1% and 0.5% keto concentrations gives a consistent fraction of 1.5, indicating that the mobility of 

the alpha phase excitons is 50% higher than those in the beta phase. 

The individual lifetime components for a 0.1% keto sample with 7% beta phase are given as a 

function of temperature, excited at both 390 nm (table 6-1) and 434nm (table 6-2). The emission 

dynamics of the keto state are presented for a collection window at 565 nm, which is considerably to 

the right of the peak in the keto emission. This is the case because there is still significant overlap 

with the PF8 emission at the peak near 530-540 nm. Measurements at these wavelengths show a 

build-in of the beta phase fluorescence components lifetime at lower temperatures, which masks 

any build-in components in the keto states. Even at 565 nm, there is still a clear emergence of minor 

lifetime components at lower temperatures from the red tail of the beta phase emission of the order 

of 250-350 ps. 
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Table 6-1: Lifetime components from deconvolution of the emission from PF8-keto 0.1% with excitation at 390nm. 
Amplitudes are in parentheses, and lifetimes are in bold. 

Component 

ps 

 

425nm 

290K 

440nm 

 

565nm 

 

425nm 

150K 

440nm 

 

565nm 

 

425nm 

77K 

440nm 

 

565nm 

(a1) t1 (53) 9 (-5.4) 6 (-0.9) 7 (43) 9 (-11) 3 (-1.2) 6 (40) 9 (5.3) 20 (-1.8) 5 

(a2) t2 (7.3) 35 (6.5) 67 (0.1) 41 (13) 31 (7.1) 54 (0.3) 71 (13) 32 (4.9) 62 (0.5) 87 

(a3) t3 (1.5) 152 (4.5) 

130 

(0.1) 

361 

(1.1) 

176 

(5.0) 

129 

(0.2) 

297 

(1.2) 

172 

(3.8) 

153 

(0.2) 

480 

(a4) t4   (0.5) 

4245 

  (0.5) 

3950 

  (0.5) 

3630 

Chi2 1.56 1.19 0.98 1.50 1.23 1.03 1.33 1.17 1.06 

 

Table 6-2: Lifetime components from deconvolution of the emission from PF8-keto 0.1% with excitation at 434nm. 

Component 

ps 

290K 

442nm 

 

565nm 

150K 

442nm 

 

565nm 

77K 

442nm 

 

565nm 

(a1) t1 (6.4) 57 (-0.2) 3 (3.4) 56 (-0.3) 6 (4.5) 38 -- 

(a2) t2 (5.4) 

116 

-- (6.3) 

127 

(0.2) 66 (5.3) 

155 

(0.5) 82 

(a3) t3  -- (0.03) 

274 

(0.1) 

252 

 (0.4) 

232 

(a4) t4  (0.5) 

4530 

 (0.5) 

4240 

 (0.5) 

3680 

Chi2 1.23 1.50 1.19 1.04 1.46 1.04 

 

The strong scatter from the cryostat windows impairs the quality of the fits somewhat, especially 

where all the lifetime components are short, resulting in reduced chi-squared values of up to 1.56. 

The uncertainty is estimated at 5ps for the fast lifetime components and approximately 10% for the 

other components, based on sample-to-sample variations which are larger than the fitting 

uncertainty, which is of the order of 2 ps for the mid-range (200 ps) components. It should also be 

noted that the build-in lifetime components are only just within the resolution of the deconvolution, 

both in terms of the lifetime magnitude and its relative contribution to the fluorescence. However, 

they are consistently found by the deconvolution software from several different sets of initial 
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parameters, and the build-ins are a reasonable match to the fastest lifetime component from the 

fluorescence at the alpha phase peak. This build-in component ceases to make a sufficiently large 

contribution to the emission to be resolved at 77K, in agreement with the reduction of the keto 

emission seen in the spectrum at low temperature in figure 6-9. This indicates exciton migration 

from the alpha phase emission to the beta phase and from the beta phase to the keto being 

impeded through a reduction in thermally assisted hopping, since the fast decay and build-ins are of 

the expected time scale. This is further confirmed when viewed in conjunction with the evidence 

from the steady-state spectra.  

It is difficult to definitively assign origins to all the lifetime components seen in the data. Fast lifetime 

components in the region of 50 ps are attributed to the quenched emission from the beta phase PF8 

chains within sufficient proximity to transfer energy by migration. Components at 130 ps are seen in 

nominally pure PF8 reference films in the beta phase when excited at 390 nm, which contribute 

significantly to the steady state fluorescence (up to 30%), and are tenuously attributed to slight 

quenching of the emission due to undetectably low concentrations of keto. It may be expected that 

a distribution of lifetime fits using the Maximum Entropy Method might yield a distribution of 

lifetimes corresponding to chromophores in a range of different nanoscale environments.18 The 

components at 250-300 ps are confidently assigned to the beta phase fluorescence lifetime as this is 

the sole component for the fluorescence of pure PF8 saturated beta phase reference films excited at 

434 nm. 

Studies of 0.5% and 2% keto films show similar patterns, but the higher quenching leads to fast 

mono-exponential decays of the 425 nm and 440 nm emission at room temperature, whilst the keto 

lifetimes are dominated by single components of the order of 4000 ps. Upon cooling, there is again a 

slight recovery of longer lifetime components in the region of 150-250 ps for 0.5% keto films, but at 

2% keto concentration the majority of beta phase chromophores are within direct energy transfer 

range of a keto site and few changes occur. 
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The existence of lifetime components indicating migration in beta phase samples excited directly at 

434 nm is an indication of domains of beta phase present in the film. The beta phase singlet level is 

90 meV below that of the alpha phase, which localises the excitons to beta phase chromophores 

once they have transferred across, since thermally assisted hopping is limited to upwards steps of 

KBT (25 meV). Therefore, excitons excited directly on the beta phase cannot migrate except to other 

beta phase chromophores or the even lower energy keto chromophore, which must be in close 

proximity in order to allow exciton to transfer. This requires that the beta phase chains be located 

within domains or the migration-mediated energy transfer would not be observed. This is in 

agreement with confocal microscopy measurements by Caruso et al.8 and Anni et al.19 which showed 

beta phase emission from specific domains within the film. The structure of the beta phase 

aggregates in MCH solution have been studied by X-ray scattering,20 indicating that sheet-like 

domains are built up during the aggregation process. These results, in conjunction with the data in 

chapter 4 which show that the beta phase is mediated by side-chain interactions, all correspond to 

beta phase domains rather than isolated chains. 

The finding that the energy transfer from the alpha phase to the beta phase is highly efficient in all 

the concentrations studied suggests there is an upper limit on the possible size of the beta phase 

domains (through which migration to the keto then takes place). The majority of the alpha phase 

bulk material can be no further from a beta phase domain than the sum of the exciton diffusion 

length plus the Förster radius, so the beta phase must be occurring as many small domains (tens of 

nanometres) rather than several very large domains. 
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6.3 Conclusions 
 

Photoluminescence spectra of pure PF8 films and films of PF8-keto copolymers with varied keto 

concentrations show that: the polyfluorene emission intensity is higher when the beta phase is 

formed, and excitons created in the alpha phase regions transfer rapidly to the beta phase and are 

then localised on the beta phase chromophores. Energy transfer from beta phase to the keto defect 

at concentrations of less than 2% (which is sufficient to quench the PF8 emission almost entirely) 

primarily occurs via migration. This is supported by a -1 slope of the emission ratio with keto 

concentration on a double-logarithmic scale, the reduction of keto emission in steady-state 

photoluminescence at 77K, and freezing out of lifetime quenching in TCSPC measurements at 77K. 

Energy transfer takes place directly from beta phase to keto when excited at 434 nm. This process is 

still migration dependent and is reduced at low temperature, and is the result of keto sites dispersed 

within the beta phase domains. This is further supported by the clearly vibrationally resolved keto 

emission indicative of keto defects within well ordered regions. Migration from the beta phase 

chromophores to keto sites within the alpha phase bulk is not energetically possible, and for evenly 

dispersed beta phase chains there would be no migration observed as either fast energy transfer 

would occur directly to the keto or no transfer would take place. This indicates that the beta phase 

occurs in aggregated regions rather that dispersed chains, as expected for the process driven by 

side-chain interactions.13, 21  
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7 The Beta Phase Formation Limit in Poly(9,9-dioctylfluorene) 

Copolymers 

7.1 Introduction 

It has been shown in chapter 6 that the beta phase can be formed in PF8-Keto copolymers in thin 

film with 2% co-monomer content. Increasingly PF8 is being used as a unit for copolymerising with a 

variety of other monomer units to enhance the charge-transport properties for more efficient 

devices, or to adjust the emission colour.1  It is also used for more fundamental studies such as the 

study of charge-transfer states.2 It is currently used as a solubilising blue light-emitting monomer 

unit as part of a single-polymer white-light emitting diode.3-4 It is therefore of interest to understand 

the limits at which the beta phase can occur, since the presence of the beta phase has been used as 

an advantage to produce more efficient LEDs.4-6 This chapter will investigate the formation of the 

beta phase via the solvent vapour method in two different series of copolymers to show the limit at 

which the beta phase can be formed, finding the result that there is a linear decrease in the beta 

phase fraction as the number of F8 side chains are reduced. A statistical model of the 

dibenzothiophene (DBT) units in the polymer chains is used with the measured beta phase cut-off 

limit of 20% DBT content to estimate a beta phase conjugation length of 9±1 monomer units. 

Further investigations of a charge-transfer type copolymer appear to show a lower limit of 12%, but 

the precise limit is masked by the build-in of new spectral features. 
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7.2 Previous Studies of Related PF8 Copolymers 

The incorporation of dibenzothiophene-S,S-dioxide (here referred to as S unit) as a co-monomer in 

oligo-/polyfluorene backbones (figure 7-1) is a system currently under investigation for creating 

systems which show high luminescence efficiency and increased electron-accepting properties.7-8 

The copolymer system of PF8 with S unit has also shown promise as a system for producing white 

light.2 The emission spectrum from short alternating oligomers is dependent upon solvent polarity, 

and in a polar solvent an intramolecular charge-transfer state is stabilised by solvent interactions. In 

this case, the emission consists of a broad featureless band centred on 460 nm.9 Studies on the 

random copolymers of this system found that a similar charge-transfer state is formed in thin films 

of this polymer, with the same broad emission band observed for 30% S-unit content.10 It was 

concluded that the dipole-dipole interactions with neighbouring molecules led to molecular 

rearrangement that stabilised the charge-transfer state. Further work found that the S-unit 

incorporated into the chain produced improved electroluminescent device efficiency relative to PF8 

alone due to modification of the charge transport properties, and near-white light was produced.11 

 

Figure 7-1:Molecular structure of the two copolymers of PF8 with a) dibenzothiophene (DBT) and b) dibenzothiophene-
S,S-dioxide (S unit) used in this work. 

 

In another study of PF8 copolymers, it has been suggested from x-ray studies that in the case of 

solutions in poor solvents that for the copolymer of PF8 with poly(9,9-bis(2-ethylhexyl)fluorene) 
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(PF2/6) the beta phase is inhibited once the co-monomer content reaches 10%.12 Work by Knaapila 

et al. observed that 5% and 10% PF2/6 copolymers formed a viscous gel in the same manner as pure 

PF8 upon aggregation after a cooling-heating cycle, whilst a 50% copolymer remained as a 

transparent liquid, indicating that the beta phase transition did not occur. However, this is not a 

result that was highlighted in that study, and there are often strong differences in the behaviour 

between polymers in solution and the solid state. This work demonstrates the result that there is a 

limit within this range in the solid state for the PF8-DBT system, and the PF8-S copolymer system 

which is the subject of current study for the physics of charge-transfer dynamics.2 This limit is 

important in situations where there is a wish to prevent beta phase formation, or if there is a wish to 

use the presence of the beta phase in conjunction with a co-monomer to enhance charge mobility. 

7.3 Results 

The first series of copolymers incorporate 0%, 8%, 12%, 15%, and 20% of dibenzothiophene (DBT) as 

a simple co-monomer unit, which is analogous to the fluorene unit but with a sulphur atom at the 9 

position and no side chains present (the un-substituted fluorene unit is not sufficiently soluble to 

create high molecular weight copolymers for study). This series of polymers is useful since the DBT 

unit does not induce any modifications of the normal energy levels of the PF8 system, which may 

hide the changes to the optical spectra by the beta phase chain conformation, especially at higher 

concentrations of co-monomer where only small spectral changes are expected from low fractions 

of beta phase.  

Random copolymers of poly(9,9-dioctylfluorene) (PF8) with 0%, 2%, 5%, 8%, 12% and 15% with the 

co-monomer dibenzothiophene-S,S-dioxide were also synthesised by the chemistry department at 

Durham University. Copolymer film samples were spun from warm solution producing clear 

colourless amorphous films with a peak optical density of approximately 0.3. The films were then 

exposed to toluene vapour for 15 minutes to attempt to induce the beta phase. 
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7.3.1 PF8-DBT copolymers 

 

The area-normalised absorption spectra of the PF8-DBT copolymers after toluene vapour treatment 

are shown in figure 7-2a. The as-spun films all give the same absorption spectrum, which 

approximately overlays the trace of the 20% DBT copolymer. Upon vapour treatment, the resulting 

films give absorption spectra that show a clear trend of smoothly decreasing beta phase content 

which can be formed in these films as the fraction of DBT is increased.  

These spectra were further analysed by multiple-peak fitting, as described in chapter 4.4.1. The beta 

phase fractions derived from the peak fitting are plotted in Figure 7-2b. There is a clear linear 

reduction in the fraction of beta phase formed by vapour treatment, with the 20% showing that 

almost no beta phase is formed. This is supported by the emission spectra in figure 7-2c, where the 

emission spectra are characteristic of the beta phase of PF8 for all the films up to 15%, and in the 

20% sample there is evidence of trace amounts of beta phase from a small peak in the emission at 

440 nm. 
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Figure 7-2: a) Absorption of the PF8-DBT copolymer films (content of DBT unit marked) for toluene vapour exposed 
films. The traces of the as-spun films (not shown) follow the spectrum of the 20% film. b) Beta phase by area of the 
fitted beta phase peak as a function of DBT co-momomer with a linear fit. c) Area normalized emission spectra of the 
same samples shown in a). 

 

7.3.2 Modelling of the Beta Phase Cut-Off Limit and Conjugation Length 

 

The conjugation length of the beta phase is not known. It has been estimated approximately as 

30±12 monomer units by Tsoi et al.13 using samples of different lengths of oligomers. However, the 

samples measured were not mono-disperse, and the uncertainty in the method is significant. By 

modelling the cut-off DBT fraction, this conjugation length can be approximated by making the 

assumption that the beta phase requires a continuous segment of F8 units across an entire 

conjugated region. 
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For a molecular weight Mw of 100 kDa, the average monomer will reside in a chain length of 

approximately 250 units. A copolymer chain of n=170 monomers in length is modelled using 

Bernoulli statistics; each monomer in the chain is either F8 or DBT, with the probability p of it being a 

DBT monomer given by the concentration of the random co-monomer in the sample. The Binomial 

distribution is then employed to calculate the probability that the chain contains a certain number X 

of DBT units according to equation 7-1.  

     (7-1) 

The value of n used in this model is limited by the use of the factorial functions in calculating the 

number of combinations of each value of X, which exceeds the range of double-precision numbers 

(>10308) at n > 170. The distribution p(x) peaks at a value determined by the DBT unit concentration, 

p, shown for example in figure 7-3a for n = 170, p = 0.10. For each value x of monomers in the 

modelled chain, the DBT units therein will be separated on average by a distance <s>, plotted in 7-

3b. For each value of X > 2, the “expectation” value of the separation between monomer units can 

be calculated simply as <s> = 170 / X monomers. The parameter s takes values separated by large 

intervals at low X, and since the domain is discrete this leads to the rather quantised plot  for larger 

values of <s> in figure 7-3b. The total of the probabilities for the cases where <s> is greater than A 

(where A is the conjugation length) can then be summed. 
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Figure 7-3: a) Binomial distribution p(x) for n=170, p=0.10 using equation 7-2, showing the probability p(x>26) as a filled 
area, and b) the same distribution plotted against the expectation value s (the number of F8 monomers separating the 
DBT units). The shaded area in b) is the fraction of chains in a 10% DBT content sample of chains of length 170 units that 
have 26 or more F8 units in a continuous sequence (0.39%).  

 

By iterating this calculation of p(s>A) for an array of values of A and p, an area plot of the 

dependence of the fraction of chains greater than an arbitrary conjugation length can be built up. 

This is shown in figure 7-4, where the experimentally measured cut-off concentration is marked. The 

minimum beta phase fraction that can be experimentally resolved in the absorption spectrum is 

estimated at 0.5%, which indicates an estimated conjugation length of 9±1 monomer units. This is 

significantly shorter than the estimated value of 30±12 mentioned earlier, but is close to the 

persistence length of fully dissolved PF8 “worm-like” chains in toluene solution of around 9 nm.14-15 

This may indicate that the significant polydispersity of the samples used by Tsio et al. affected their 

measurement, or equally that there are inaccurate assumptions in the model. Inaccuracy in the 

model is likely to occur from: assuming a single DBT monomer will inhibit beta phase formation, not 

taking into account a distribution of values of s resulting from each number of DBT units in the chain, 

or from the consideration of only one chain length.  
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Figure 7-4: Area plot of p(s>A) for a range of values of A and p, showing that the experimentally determined cut-off 
value of p=0.2 corresponds to a value of A= 9±1 monomer units for a beta phase content detection limit in the 
absorption spectrum of 0.5%. 

 

 

7.3.3 PF8-S Copolymers 

 

The normalised absorption spectra of the S-unit copolymers in as-spun films and vapour treated 

films are shown in Figure 7-5 (the traces are offset for clarity). Two trends are found in the series of 

films; the absorption band of the as-spun films becomes broader and slightly red-shifted with 

increasing S unit content, and the characteristic absorption band of the beta phase at 435 nm ceases 

to be induced by vapour treatment at an S unit concentration between 8% and 12%. It can be seen 

that there is still a change in the absorption spectrum at these higher concentrations, but it is more 

similar to the main band structure observed previously in poly(9,9-di-n-hexylfluorene) (PF6) when it 

aggregates and becomes more ordered.11, 16 There is sufficient broadening in the absorption band 

that it is uncertain at which S unit concentration the beta phase is formed. Given the result found for 

the DBT copolymers, it is likely that there is a small fraction of beta phase formed in the 12% S unit 
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copolymer but that the characteristic spectral shifts are hidden by the CT state. This also prevents 

the fitting of these spectra in the manner used for the PF8-DBT copolymers. 

 

Figure 7-5: Absorption of the PF8-S copolymer films (co-monomer content marked) for amorphous (dashed line) and 

toluene vapour exposed films (solid line). The 2% film is excluded for clarity but follows the trend shown. Traces are 

offset. 

In chapter 4 and previous work,16-17 x-ray and optical experiments showed that similarly structured 

aggregates are formed in concentrated solutions of polyfluorenes with two linear alkyl side chains of 

6, 7, 8 and 9 carbons. In the case of PF6 the aggregates are present but PF6 does not form the beta 

phase: the characteristic spectral changes are not observed. It was proposed that the side chain 

interactions provided the necessary energy to overcome the steric hindrance of the fluorene units, 

and that insufficient side chain length was the cause of this failure to planarise the backbone once 

the same structured aggregates have been formed. A similar cause is at work here for PF8-DBT and 

PF8-S, and that there are insufficient side chain interactions within each chromophore due to fewer 

side chains being present as the DBT or S content increases. As a result, the polymer backbone does 

not become fully planarised. 

The earlier work (mentioned previously) by Knaapila et al. on solutions of PF8-F2/6 copolymers in a 

poor solvent predicted that there is an upper limit of ca. 10% F2/6 co-monomer content that enables 
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beta phase formation to occur.12 They found that gelation, characteristic of beta phase formation in 

moderate concentrations of solution, occurred in copolymers of PF8-PF2/6 at 5% and 10% PF2/6 but 

not for 50%. They presented an in-depth theoretical description taking into account free energy 

changes, phase transition temperatures and polymer-solvent de-mixing. The finding of a similar limit 

in PF8-S copolymers may have been unexpected, as the theoretical description of Knaapila et al. was 

limited to the case of solutions only, and the polar S-unit may also be expected to interfere with the 

side chain interactions of the F8 monomer needed to planarise the polyfluorene backbone and form 

the beta phase. 

It is possible that the solvent vapour treatment method used here to induce the beta phase may be 

responsible for the similar results. The presence of a high concentration of solvent molecules in the 

film during the swelling process makes it possible that similar energetic considerations are applicable 

during the beta phase formation, although greater physical constraint will restrict the chain 

rearrangement in the film. 

The photoluminescence spectra of the same films are presented in figure 7-6a (amorphous films) 

and b (vapour treated films). The emission in the amorphous films is far more easily influenced by 

the presence of the polar S-unit as the spectral change is continuous for the amorphous films. 

Indeed, in films with 30% S-unit content, a charge-transfer state is the dominant species at room 

temperature.10  

The charge transfer state is produced from the separation of the exciton charges by the polarity of 

the S-units, and the charge-transfer exciton energy level is significantly lower than the Frenkel 

exciton level. Large variations in local molecular environment and a lack of fixed electron-hole 

separation produced by the polar monomer units also leads to a broad density of states, producing a 

broad featureless emission band that quenches the polyfluorene emission at 30% S-unit 

concentration.10 The absorption bands of the F8 and S units overlap, making Förster transfer 
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between them unlikely, and the electron is directly excited into either an exciton state or a charge 

transfer state depending upon the local environment.9-10 

 

Figure 7-6: Photoluminescence spectra of the 0%, 2%, 8% and 15% copolymer films excited at 380nm, showing the 

smooth change in the emission for amorphous films (a) and beta phase films (b). The 5% and 12% films are excluded for 

clarity but follow the trends shown. 

 

The spectra of 2%, 5%, and 8% toluene treated copolymer films show a smooth shift to an emission 

peak at 448 nm that is the peak emission wavelength of the 15% copolymer, which is also the peak 

wavelength of the broad charge transfer emission band that appears at 30% S-unit concentration.10 

The presence of the beta phase, which is itself a low-energy trap, inhibits the charge transfer 

emission even at 8% S-unit content, and the emission is spectrally narrowed and retains sharp well-

resolved vibronic replicas characteristic of the beta phase emission. The gradual loss of spectral 

narrowing with increasing S-unit concentrations is attributed to the lower beta phase content for 

these films.  

For the vapour treated films, the emission spectrum shifts with increasing S-unit content are far less 

significant, but when comparing the effect of inducing the beta phase for a fixed S-unit 

concentration from figure 7-6a to b, in every case there is a significant sharpening of the vibronic 
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replicas, indicating an increase in the ordering of the polymer chains in every case where vapour 

treatment is applied to these films.  

In conjunction with the work presented in the earlier chapters, it is proposed that at F8 unit 

concentrations of less than about 85% there are not enough side chain interactions per 

chromophore to overcome the steric hindrance of the adjacent fluorene units and planarise the 

polymer backbone. The increasing fraction of co-monomers reduces the number of sections of 

continuous F8 units greater than or equal to the conjugation length of the beta phase, eventually 

preventing its formation. 

Photoluminescence from the vapour treated films at all S-unit concentrations with excitation at 434 

nm (not shown) are identical to the results in figure 7-6b, showing that when the samples are 

excited at 380 nm on the main absorption band of the amorphous polymer, there is a similar fraction 

of electrons excited into either an exciton state or a charge transfer state.  

7.4 Conclusions 

It has been demonstrated for PF8-DBT and PF8-S copolymer systems, which are used in current 

investigations into white LEDs and charge-transfer states, the formation of the beta phase can be 

achieved for copolymers with up to 20% of DBT or 12% S units in the chain. The fraction of beta 

phase formed also decreases linearly with increasing co-monomer content. This is in agreement with 

theoretical and experimental results for MCH solutions of PF8 copolymers incorporating F2/6 co-

monomers studied by Knaapila et al.11 This may due to F8 unit incorporation ratios of less than 

approximately 80% providing insufficient side chain interactions per chromophore to overcome the 

steric hindrance of the adjacent fluorene units, which is a requirement for planarising the polymer 

backbone. These new results may point to the universality of this limit, indicative of a trade-off 

between the specific side chain interactions which favour the beta phase and thermal disruption of 

this highly ordered phase. These results contribute to the understanding of the factors which control 

morphological states in polyfluorenes and provide guidelines for the design of new PF8 copolymers 
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with tailored structural hierarchy and emissive properties. A statistical model of the DBT units in the 

polymer chains is used with the measured beta phase cut-off limit of 20% DBT content to estimate a 

beta phase conjugation length of 9±1 monomer units, which is significantly shorter than an earlier 

estimate value of 30±12 monomers, but the same as the persistence length of PF8 in toluene at 9nm 

or 9-10 monomer units. 
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8 Conclusions 
 

Chapter 4 presents the results of temperature dependent absorption spectra of PF6 to PF10 in MCH 

at around 5 μg mL-1 along with the emission and excitation spectra of very dilute solutions in the 

range of 10 μg mL-1 over time after returning to room temperature from low temperature. These 

results show the trend in beta phase formation as a function of side chain length, with no beta phase 

in PF6, slight evidence for beta phase formation in PF7, optimal beta phase content in PF8 and a 

decreasing fraction being formed in PF9 and PF10. The results make clear that the beta phase 

formation process is distinct from simple aggregation driven by changes in solubility across the 

group, as the heavily aggregating PF6 does not form the beta phase, whilst also showing that the 

410nm peak that has been associated with the beta phase is the result of aggregation, but not of 

beta phase formation. It is proposed that the mechanism of beta phase formation is therefore driven 

by side chain interactions, where van der Waals interactions between the alkyl chains provide the 

energy to planarise the polymer backbone, and that the shorter alkyl chains of PF6 do not provide 

sufficient energy to complete the process despite strong aggregation. Alkyl chains longer than PF8 

are less able to form the beta phase in MCH solution because the increasing solubility reduces the 

extent of aggregation and the longer, more disordered side chains are less likely to form the ordered 

interacting domains of polymer chains that lead to the formation of the beta phase. The spectra of 

the dilute solutions show that chain folding in poor solvents can also provide the necessary 

interactions to form the beta phase. Analysis of the absorption spectra shows a trend of lower 

transition temperatures with increasing side chain lengths for PF8 to PF10, indicating the effect of 

increasing solubility. The aggregation model of Dias et al. is applied to PF8, PF9 and F10 but the data 

does not produce convincing results, although the derived enthalpy change is within the range of 

realistic values for PF8. 
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Chapter 5 shows optical spectra of thin films of PF6 to PF10 after thermal cycling and toluene vapour 

exposure. The thin films show a similar trend in beta phase formation tendency as the solutions in 

MCH of chapter 4. This indicates that the beta phase is still dependent upon a similar mechanism for 

beta phase formation in the solid state, where side chain interdigitation is required to drive the 

polymer backbone planarization. This adds to the currently held concept that the phase change is 

driven only by local strain, induced by either the differences in thermal expansion coefficients of the 

polymer and substrate acting during thermal cycling, or by the film swelling during solvent exposure. 

This data shows that the strain effects may instead induce changes in the ordering of the polymer 

chains in the film, but that side chain interactions are still necessary for beta phase formation. The 

PF8 is again shown to be the optimal side chain length, and in the solid state it is proposed that the 

reduction in beta phase formation tendency is limited in the longer side chain polymers by the more 

difficult requirements of polymer chain rearrangement for longer side chains within the confines of a 

solid film. Finally, site-selective PL spectra of the films at 11 K are deconvolved to characterise the 

beta phase formed in PF7 to PF10, showing that in all cases similar dominant vibrational modes are 

produced, and also that the PF6 does not show the narrow linewidth or resolved vibronic bands that 

occur in the other polymers. 

Chapter 6 uses steady state spectra and TCSPC to investigate the effect of the keto defect on the 

emission of beta phase in PF8. A series of films with known concentrations of keto monomer 

incorporated into random copolymers, with impurity-level concentrations in the range 0.05% to 2% 

show in the emission spectra a clear variation in the emission peak quenching ratio as a function of 

keto content. This fits accurately to a -1 power law on a double-logarithmic plot for both the alpha 

phase and beta phase films with respect to keto content, equating to a -3 power law with separation 

between the keto defects. This is clearly in contrast to the -6 power law expected for Förster transfer 

or the exponential variation expected for Dexter transfer, so it is proposed that the energy transfer 

process is migration limited. This is confirmed by temperature dependent emission spectra that 

show a sharp reduction in keto emission at lower temperatures, confirming the migration-limited 
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transfer step. Global fitting of the TCSPC emission decays was used to derive up to 4 lifetime 

components for a series of alpha and beta phase samples with the same keto content as the steady 

state measurements. The results show low amplitude short lifetime components that show Forster 

transfer taking place from alpha phase to beta phase chromophores, as well as some transfer from 

beta phase chromophores to keto defects. The more dominant effect is a quenching of the 

fluorescence lifetime that increases with keto content, which is reduced at low temperature again 

confirming its migration-mediated origin. A scheme for the exciton migration within a PF8 alpha-

beta keto system is proposed, where energy transfer from the alpha phase to the beta phase 

dominates over energy transfer from the alpha phase to keto. Energy transfer to the beta phase is 

followed by migration from the beta phase to keto. The presence of a migration controlled step 

confirms the presence of beta phase domains rather than isolated chains, a result which is again 

consistent with a side-chain driven process for beta phase formation. 

Chapter 7 provides absorption and emission spectra of two series of PF8-based copolymers to 

examine the limit of co-monomer content at which beta phase can be formed. Thin films of PF8-DBT 

copolymers with 0%, 8%, 12%, 15% and 20% show a clear trend of decreasing beta phase being 

formed after being saturated with toluene vapour, with only traces of beta phase being formed at 

20% co-monomer. Spectral deconvolution to derive the beta phase content yields a clear linear 

decrease of beta phase content with increasing DBT monomer, a result which is consistent with the 

side-chain driven model of beta phase formation. Reducing the octyl side chain density along the 

polymer chain reduces the number of conjugated chain segments which have sufficient side chain 

interactions to drive the polymer backbone planarization. The distribution of DBT units within the 

polymer chain was modelled to find the conjugation length of the beta phase chromophore, giving a 

value of 9±1 monomers, which is significantly shorter than a published value of 30±12 monomers 

but the same as the persistence length of alpha phase PF8 in toluene of 9-10 monomer units. Optical 

spectra were then measured for thin films of PF8 copolymers with 5%, 8%, 12% and 15% S-unit 

content, which is a co-monomer of current research interest to investigate charge-transfer states. 
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These films show a similar reduction in beta phase formation with increasing co-monomer, but the 

gradual encroachment of the charge-transfer state makes it difficult to either deconvolve the 

absorption spectra or to be certain of the point at which the beta phase is no longer being formed.  

These results together show a consistent picture of beta phase formation driven by the interactions 

between the alkyl side chains, in both solution and solid state. This adds to the fundamental 

understanding of how this phase change occurs, and demonstrates that the beta phase can be 

induced in a wide range of copolymer systems being researched for more efficient PLED devices, 

both in the areas of blue emitters for display pixels and for white-light emitting devices.  


