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Abstract

The first theme of this thesis is preparing for the exploitation of a new pho-

tometric galaxy survey, Pan-STARRS1 (PS1). The second is measuring projected

galaxy clustering in the Galaxy and Mass Assembly (GAMA) survey, and using

these measurements to constrain models of galaxy formation.

The PS1 survey is obtaining imaging in 5 bands (gP1, rP1, iP1, zP1 and yP1 ) for

the 3π steradian survey, the largest optical survey ever conducted. The finished

survey will have spatially varying depth, due to the survey strategy. We present a

method to correct galaxy number counts and clustering for this based on a simplified

signal-to-noise ratio. A star/galaxy separation method calibrated using synthetic

images is also presented. By using our techniques on a 69 deg.2 region of science

verification data, we show PS1 measurements of the two point angular correlation

appear reliable down to rP1 < 22.5. This work lays the foundations for exploiting

3π data for large scale structure.

The GAMA survey is a multi-wavelength, spectroscopic survey of galaxies, cov-

ering 180 deg.2. We measure the projected correlation function and its redshift

evolution as a function of luminosity, mass and colour. We find redder, more mas-

sive and more luminous galaxies are more clustered in three redshift slices over the

range 0.0 < z < 0.5. We find that these trends are reproduced in the galaxy for-

mation model of Bower et al. (2006). We also find redder galaxies have steeper

correlation functions; a trend which is also reproduced by the model. However, we

find that red galaxies in the model are too clustered, particularly on small scales.

Our measurements are new constraints on theories of galaxy formation.
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Chapter 1

Introduction

This thesis is focused around two galaxy surveys. The first, Pan-STARRS1, is a

survey of galaxies across almost the whole sky. Data from Pan-STARRS1 consists

only of measurements of galaxy brightnesses, shapes and positions on the sky. The

Pan-STARRS1 sections of this thesis will focus on preparing for the finished survey.

In contrast, the work we carry out with the second survey in this thesis, the Galaxy

and Mass Assembly Survey, will be focused on exploiting the survey for galaxy

formation studies. The GAMA survey measures galaxy redshifts, allowing one to

map out the positions of galaxies in 3D. Before all this however, we will cover some

important preliminary information.

We shall begin by introducing the standard model of cosmology and models of

galaxy formation, along with the observational evidence for these models. Among

the most important pieces of evidence is the large scale structure of the Universe:

the pattern of how galaxies are distributed across the Universe. This chapter will

stress the importance of these observations, giving the motivation for the rest of the

research presented in this thesis.

1.1 The expansion of the Universe

Arguably one of the most impressive discoveries of 20th century physics was that

the Universe is expanding. The observational evidence for such a conclusion is tra-

ditionally allocated to Edwin Hubble Hubble (1929), though as stressed in Peacock

1
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(2013) some cosmologists believe Vesto Slipher (Slipher, 1917) played an even bigger

role in this discovery. Regardless, it was found that the redshift, z, of the emission

and absorption lines in a galaxy’s spectra were correlated with the galaxy’s distance.

Galaxies further away from Earth were found to be receding faster,

v = H(t)d, (1.1.1)

where v is the recession velocity, d is the proper distance to a galaxy and H(t) is

known as Hubble’s parameter. If we invoke the assumptions of statistical homogene-

ity and statistical isotropy, that the Universe looks the same wherever you are and

no matter what direction you look, this observation leads to the conclusion that the

Universe itself is expanding. The traditional way of describing such an expansion

is to define the vector between two points, r, at time t to be some factor, a(t),

multiplying a fixed reference separation x thus

d = a(t)x. (1.1.2)

The fixed reference separation is called the comoving distance and is defined to be

d at the present epoch, such that a = 1 today. For convenience we will not write

the time dependence of a(t) explicitly from now on i.e. a = a(t). It can be easily

shown that Hubble’s parameter is related to a via

H(t) =
ȧ

a
. (1.1.3)

By considering the definition of redshift and by considering light being stretched by

a factor a, one can also conclude

a =
1

1 + z
. (1.1.4)

Before the discovery of the Universe’s expansion a theoretical framework to describe

such a universe was already in place. The Friedmann equation describes the time

evolution of a and can be derived from considering a uniform expanding medium

with classical mechanics (see e.g. Liddle, 2003) or with General Relativity (GR) (see

e.g. Foster & Nightingale, 1995). In a Universe of uniform density ρ the Friedmann

equation is
(

ȧ

a

)2

=
8πG

3
ρ+

k

c2a2
. (1.1.5)
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Where k is a constant related to the total energy of the Universe in the classical

derivation, and the overall curvature of space in the GR derivation. Note that ρ

varies with the expansion factor a; the time variation of ρ is described by an equation

called the “fluid equation” which can be derived from classical thermodynamics or

GR (see e.g. Liddle, 2003)

ρ̇+ 3
ȧ

a

(

ρ+
p

c2

)

= 0 (1.1.6)

where p is the pressure of the fluid. A closely related equation to the fluid equation

is the acceleration equation (see e.g. Liddle, 2003), given by

ä

a
= −4πG

3

(

ρ+
3p

c2

)

. (1.1.7)

As explained in many textbooks (here we follow Coles & Lucchin, 2002) we can

define an equation of state for fluids in our Universe as

p = wρc2. (1.1.8)

Substituting Equation 1.1.8 into 1.1.6 we gain the a evolution of ρ

ρa3(1+w) = const (1.1.9)

∴ ρ =
ρ0

a3(1+w)
. (1.1.10)

Where ρ0 refers to the value of ρ at the present epoch where a = 1. For non-

relativistic materials ρ << ρc2 and w = 0 and so ρ = ρ0/a
3. This can physically

be seen as the density simply diluting with increasing volume as a increases. For

relativistic species and radiation w = 1/3 and ρ = ρ0/a
4. Physically this can be

seen as volume dilution with an added decrease in density caused by the energy loss

as the wavelength of the particles are stretched by the Universe’s expansion. For

the special case of w = −1 the density ρ remains constant, such a fluid is labelled

the “cosmological constant”.

In the currently favoured model of cosmology the Universe’s total density is made

up of contributions from several different fluids. The most easily observed of these is

normal matter, which in a cosmological context is treated as effectively pressureless

as it is non-relativistic. Adding to the normal matter component is another com-

ponent which does not interact with light, known as “dark matter”. Dark matter
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was first proposed by Zwicky (1933) to explain the high velocities of galaxies in the

Coma cluster. Later, work studying the rotation of nearby galaxies demonstrated a

need for a large unseen component of matter in order to explain the non-Keplerian

rotation curve of galaxies (Rubin & Ford, 1970). In order to distinguish normal

matter from dark matter, normal matter is often labelled “baryonic matter” even

though this is not the correct use of the word in the particle physics sense (i.e.

because this definition includes leptons).

The density of the dark matter, ρDM, and baryonic matter, ρb, components evolve

in the same way with the expansion factor, and together they are sometimes labelled

as the matter density, ρm. Radiation density, ρr, and relativistic neutrinoes, ρν also

contribute to the total density. In practice the relativistic neutrino contribution ρν

is counted as a part of ρr. Note that at some point during the expansion of the

Universe, the neutrinos become non-relativistic, we will discuss what effects this has

in Section 1.8. A further contribution is from a component known as “dark energy”

labelled ρDE, which is a component with an equation of state parameter very close

to or equal to −1. The true value of w for dark energy, whether or not it is a

cosmological constant, is an unsolved question of cosmology.

The values of these density parameters are elegantly expressed as fractions of the

critical density ρc. The critical density is the value of the density such that k = 0

in Equation 1.1.5. These fractions are

Ωx =
8πG

3H2(t)
ρx (1.1.11)

where x denotes the different density contributions, m, r, ν, DE for matter, radia-

tion, neutrinos and dark energy respectively. One can also express the value of k in

an analogous way as

Ωk = − kc2

a2H2
. (1.1.12)

1.2 Distances

A vital piece of information, connecting this theory to observations, is understanding

how to measure distance. We briefly review the key distance measures in cosmology,

here we use Coles & Lucchin (2002) as a reference but many other pedagogical
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introductions exist (e.g. Hogg, 1999; Liddle, 2003). The geometry of space and time

in the Universe can be described by the Robertson-Walker metric

ds2 = (−(cdt)2 + a2(t)
(

(dR)2 + Sk(R)(dθ2 + sin2 θdφ2)
)

(1.2.13)

where θ, φ and R are comoving x expressed in polar coordinates. The function

Sk(R) varies between a universe with open geometry k > 0, closed geometry k < 0

or flat geometry k = 0. It is defined as

Sk(R) =























sinh
√

|k|R√
|k|

if k < 0

R if k = 0

sin
√
kR√
k

if k > 0

(1.2.14)

To use this with observational data we must connect the comoving distance r to an

object’s measured redshift z. Consider a beam of light travelling radially along dR,

the distance it traverses, in time t, in an expanding Universe will be

r =

∫ t

0

c

a(t)
dt. (1.2.15)

Using Equations 1.1.5, 1.1.3 and 1.1.4 to change variables one can show that

r =

∫ z

o

cdz

H0E(z)
(1.2.16)

where H0 is Hubble’s Constant, which is Hubble’s parameter at the present epoch

and E(z) gives the redshift evolution of H0 such that H(t) = H0E(z). Integrating

this from the start of the Universe (i.e. z = ∞) to a redshift, z, gives the maximum

distance light could have travelled in the Universe by z, known as the light horizon of

the Universe. The function E(z) can be derived from Equations 1.1.5, 1.1.9, 1.1.11

and 1.1.12 to be

E(z) =
[

Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩDE,0(1 + z)3(1+w) + Ωk,0(1 + z)2
]0.5

(1.2.17)

where the w here is from the equation of state for dark energy, and is constant, and

the Ωx,0 values refer to the Ωx values at a = 1. We can see that the relationship

between redshift and distance encloses a large amount of information about the

contents (i.e. the values of Ωx,0) and the curvature of the Universe. Before we
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begin our discussion on how these parameters are observationally constrained we

will present two other important distances in cosmology. The first is known as the

angular diameter distance, dA, defined such that an object of length l is observed to

subtend an angle θA thus

θA =
l

dA
. (1.2.18)

This distance can be shown to be

dA =
Sk(r)

1 + z
. (1.2.19)

Additionally, one can define the luminosity distance, dL, which is defined such that

the flux, F , received from an isotropically emitting source of luminosity L is

F =
L

4πd2L
. (1.2.20)

The flux received from a source is decreased by the expansion of the Universe, both

as the photons arrive less frequently and their energies are lower as their wavelengths

have been stretched (see e.g. Coles & Lucchin, 2002). This leads to a decrease in flux

by a factor of a2. The relation between luminosity distance and angular diameter

distance is therefore

dL = dA(1 + z)2 (1.2.21)

(see e.g. Coles & Lucchin, 2002). With these distance measures explained, we are

almost ready to introduce the large scale structure of the Universe and how it can

act as a probe for cosmology and galaxy formation. Before this, however, we will

briefly review some of the other sources of observations important for cosmology.

1.3 Measuring Hubble’s Constant Directly

Determining Hubble’s constant directly via equation 1.1.3 requires the measurement

of a galaxy’s distance. The most important method of doing this in the local Universe

is to utilize the relationship between the period and luminosity of Cepheid variable

stars discovered by Henrietta Leavitt. Brighter Cepheid variable stars have longer

periods, due to a well understood physical process involving pulsations of the star’s

atmosphere (e.g. Zeilik & Gregory, 1998). By measuring the period of a Cepheid
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variable and using this to estimate its intrinsic luminosity, the Cepheid variable’s

luminosity distance can be measured. In the local Universe, this luminosity distance

is almost equal to the distance used in equation 1.1.3. This method can therefore

provide a simple way of measuring H0.

The difficulty in measuring stars in other galaxies restricts using Cepheid dis-

tances to the local Universe. As explained in Freedman et al. (2001), using these

local measurements alone cannot give an accurate measure of Hubble’s constant as

the recession velocity of local galaxies due to the Universe’s expansion is small, so

the peculiar motions of galaxies, deviations from the Hubble flow caused by den-

sity inhomogeneities, can influence measurements. One of the most accurate and

commonly used measurements of H0 is from a Hubble Space Telescope (HST) Key

Project (Freedman et al., 2001, and references therein). They used the Cepheid

variable distances to calibrate other distance measures, such as type 1a supernovae,

the Tully-Fisher relation and the fundamental plane of elliptical galaxies (Freed-

man et al., 2001, and references therein). This approach of calibrating more distant

probes of the distance-redshift relation with Cepheid variables, which themselves are

calibrated using parallax measurements, forms what is known as a “distance ladder”.

In this distance ladder overlaps between the different calibrators allow them to be

mutually calibrated to probe higher redshift parts of the distance-redshift relation.

This distance ladder allows higher redshift galaxies to be used to measure Hubble’s

constant.

The dominant source of error in measuring Hubble’s constant comes from finding

the intrinsic luminosity of Cepheid variables (Freedman et al., 2001). The Leavitt

relation only gives the predicted relative brightnesses of different Cepheids, one still

requires measurements of Cepheid variables’ intrinsic luminosities, which requires

measurements of their distance. The distance to galactic Cepheid variables has

been measured using parallax, but the low numbers of observed galactic Cepheid

variables means Cepheid variables from the nearby galaxies like the Large Magnellic

Cloud (LMC) or NGC4258 are also used when measuring the Leavitt relation (Riess

et al., 2011; Freedman et al., 2012). The galaxy NGC4258 is particularly useful as a

source of Cepheids as its distance has been measured using maser emitting regions
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around its central black hole (see e.g. Riess et al., 2011). The most accurate direct

measurement of H0 is from Freedman et al. (2012) who measured H0 = 74.3 ± 2.3

km s−1Mpc−1.

1.4 Type 1a Supernovae

The approach of using “standard candles” like Cepheid variables to measure lumi-

nosity distance has also been used with higher redshift data to constrain cosmological

parameters. Another choice of standard candle is type 1a supernovae; they are lu-

minous enough to be seen at high redshift and have an intrinsic luminosity that can

be accurately inferred from measurements of how their observed flux changes with

time (e.g. Riess et al., 1998).

It was by observing type 1a supernovae magnitudes that Riess et al. (1998)

and Perlmutter et al. (1999) discovered that the expansion of the Universe was

accelerating, as supernovae magnitudes were too faint for their redshifts in other

models. By adopting the prior that the Universe is flat1 and that any dark energy is

in the form of a cosmological constant, w = −1, Riess et al. (1998) and Perlmutter

et al. (1999) both found that dark energy must dominate the Universe’s density, with

the (Perlmutter et al., 1999) best fit cosmology being Ωm = 0.28+0.09
−0.08, ΩΛ = 0.72+0.08

−0.09.

Type 1a supernovae data are often combined with other cosmological probes in

order to break degeneracies between measurements of different cosmological param-

eters. In order to do this large samples of type 1a supernovae have been produced

and their luminosity distance and redshift measured, such as the Union 2.1 sample

of 580 (Suzuki et al., 2012).

1.5 The Cosmic Microwave Background

The observation that the Universe is expanding leads to the idea that at some point

it must have been much smaller, denser and hotter. At one point the Universe

would have been fully ionised and photons would have been trapped by scattering

1We shall see in Section 1.5 this has very strong observational evidence.
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off electrons. At a later time when the Universe was cool enough for the electrons to

be incorporated in neutral atoms, an epoch known as recombination, these photons

would have been free to propagate producing a background of photons which would

be red-shifted into microwaves by the present day (see e.g. Coles & Lucchin, 2002;

Liddle, 2003). The observation of a “cosmic microwave background” (CMB) by

Penzias & Wilson (1965) was a key piece of evidence that the Universe was once

much denser and hotter, in support of the so called “big bang theory”.

The measured temperature of the CMB, T = 2.7255 ± 0.0006K (Fixsen, 2009)

gives a measurement of the value of the radiation density parameter Ωr, but far more

cosmological information can be extracted from the CMB from its “anisotropies”,

the measurement of temperature variations across the sky. The COBE satellite was

the first satellite to detect these anisotropies, which represent a deviation only of

the order of 10−5 (Fixsen et al., 1996, and references therein). These anisotropies

are thought to be first generated from quantum processes translated to a larger

scale by a process known as inflation (Guth, 1981). These initial anisotropies were

then processed though the plasma of the early Universe before being emitted as the

CMB. A statistical way of describing these anisotropies is with their power spectra,

P (k), which are the squared amplitudes of modes with wavenumber k in a Fourier

decomposition of the temperature field.

A detailed review of the physics of the early-Universe which influenced the CMB

is well beyond the scope of this thesis, and unnecessary for understanding the re-

search presented here. We will, however, highlight some of the important processes

in order to explain how one can use CMB observations to constrain cosmological

parameters. In the plasma before recombination the anisotropies can be Fourier

decomposed into oscillating standing waves, with gravity acting to compress the

plasma and photon pressure acting as a restoring force (see e.g. Coles & Lucchin,

2002; Hu & Dodelson, 2002; Liddle, 2003). In configuration space these oscillations

would look like spherical sound waves in the plasma emanating from multiple over-

densities (e.g Eisenstein et al., 2007). The longest wavelength oscillation possible

in this plasma before recombination is equal to the integral of the sound speed of

the plasma over the age of the Universe at recombination (see e.g. Hu & Dodelson,
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Figure 1.1: The temperature power spectrum, as measured by the Planck satellite.

Grey points represent data, blue represent binned averages of the data and the red

line is Planck’s best-fitting ΛCDM model. This figure is reproduced from Planck

Collaboration et al. (2013).

2002). Higher frequency oscillations also occurred, in Fourier space standing waves

at their most compressed or most rarefied state at recombination produce peaks in

the power spectra of the CMB (see e.g. Hu & Dodelson, 2002). In configuration

space this can be seen as the sound waves constructively or destructively interfering

with the perturbations in the dark matter (e.g Eisenstein et al., 2007). The latest

measurement of the CMB, from the Planck consortium, is reproduced in Fig. 1.1.

The precise positions of the peaks can be used to constrain cosmology. Consider

the position of the first peak (largest wavelength), its angular scale at recombination

depends upon the time of recombination and the sound speed before recombination.

The sound speed mainly depends on the relative numbers of photons and baryons,
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set by Ωbh
2, whilst the time of recombination is set by the expansion rate of the

Universe (e.g Percival et al., 2002; Eisenstein et al., 2007). The Universe’s expansion

rate changes between the matter dominated and radiation dominated eras, and this

results in the matter density, Ωmh
2, being the most important cosmological param-

eter when setting the recombination time (e.g Percival et al., 2002; Eisenstein et al.,

2007). However, the strongest influence on the observed position is spatial curva-

ture, which allows it to be used to constrain curvature (e.g. Hu & Dodelson, 2002).

The observed position of the first peak sets a strong constraint on the Universe being

flat, i.e. Ωk = 0, or close to flat (e.g. de Bernardis et al., 2000). Of course, with

CMB data alone a degeneracy exists between smaller amounts of curvature and the

combination of Ωbh
2 and Ωmh

2 (e.g. Percival et al., 2002). Helpfully, this degeneracy

can be broken by large scale structure measurements we will introduce later in this

chapter.

Observations of the first peak alone also give very degenerate estimates of the

other cosmological parameters, but, helpfully, peaks at smaller scales also contain

valuable cosmological information. To give one example the density of baryons in the

early Universe affects how compressed the oscillations become by adding additional

gravitational mass, analogous to adding more mass to a spring. This effect, known

as baryon loading, enhances the power of waves in their compression phase. This

leads to odd numbered peaks in the power spectrum appearing higher than they

otherwise would (see e.g. Hu & Dodelson, 2002). In addition, the gravitational

lensing of the CMB and its polarisation can also help constrain cosmology (e.g.

Planck Collaboration et al., 2013).

The latest CMB data, from the Planck satellite, is able to accurately constrain

all of the parameters we have mentioned so far of the standard ΛCDM model with

a cosmological constant (w = −1) (Planck Collaboration et al., 2013). In addition,

the Planck satellite measured the initial power spectrum of the CMB anisotropies,

showing the initial anisotropies are a power law, P (k) ∝ kn, with a slight scale

dependence with n = 0.959 ± 0.007. In addition to this, the measured shape and

amplitude of the power spectrum allows the calculation of σ8, the variance of mass

with an 8Mpch−1 sphere (see e.g. Coles & Lucchin, 2002). This is a useful parameter
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as it quantifies how clumpy the distribution of matter is. It is calculated from the

spherically averaged power spectrum via

σ2
8 =

1

2π2

∫ R

0

P (k)

(

3(sin(kR)− kR cos(kR))

(kR)3

)2

k2dk. (1.5.22)

Here the trigonometric terms are the Fourier transform of the spherical top-hat

function (see e.g. Coles & Lucchin, 2002) and R = 8Mpch−1. The value of σ8 is

also often used to define the normalisation of the power spectra. In Chapter 4 we

will further discuss how the value of σ8 could affect galaxy clustering predictions.

For extensions to the standard cosmological model, for example dark energy

with an equation of state with w 6= −1, CMB data alone offers less of a constraint.

CMB data is therefore often combined with other cosmological data sets, such as the

supernovae, measurements of Hubble’s constant and measurements from large scale

structure. Combining Planck data with direct measurements of Hubble’s constant

or supernovae data suggests w < −1.0 at a significance of greater than 2σ. However

one interpretation of this is that the latter two measurements suffer from systematic

errors (Planck Collaboration et al., 2013).

Large scale structure has the opportunity to add vital new information to these

studies. We shall see it also offers, when combined with CMB data, the best mea-

surements of w. A key gain of using large scale structure data is that it overcomes a

major limitation of the CMB, which is that it only offers a single distance projection,

i.e. all of the CMB signal is from a shell of plasma at roughly the same luminosity

distance. Measurements of large-scale structure can overcome this by offering mea-

surements from different redshifts with different distance projections. We will now

move on to introduce the fundamentals of what large scale structure is and how it

arises. This will include an introduction to the theories of galaxy formation and

the observations that constrain these theories. Near the end of the chapter we will

return to how large scale structure can constrain cosmology.

1.6 Large Scale Structure

The large scale structure of the Universe is how galaxies are distributed across the

Universe, i.e. whether they are scattered uniformly throughout space or whether
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their positions have some structure. An important milestone in the search for such

structures was the production of the Lick galaxy catalogue (Shane & Wirtanen,

1967), which counted the number of galaxies in 10′ by 10′ cells over two thirds

of the sky (Peebles, 1980). This catalogue demonstrated that the galaxies were

distributed in filaments, high density regions like “clusters” and low density regions

called “voids” (Coles & Lucchin, 2002). More recently, surveys such as the 2dF

Galaxy Redshift Survey (2dFGRS) (Colless et al., 2001) and the Sloan Digital Sky

Survey (SDSS) (York et al., 2000) have made detailed maps of the positions of

galaxies in three dimensions, by measuring the radial distance to galaxies using

their redshift. We show in Fig. 1.2 the positions of galaxies in the 2dFRGS survey,

clearly showing the clusters, voids and filaments formed by the pattern of galaxies.

1.7 Correlation Functions

An often used statistic to measure how galaxies are clustered is the two-point corre-

lation function. As explained in Peebles (1980) the two point correlation function,

ξ, is related to the probability δP of finding a galaxy in each of two volumes δV1

and δV2 at a separation of r12 thus

δP = n2δV1δV2[1 + ξ(r12)] (1.7.23)

where n is the mean number density of galaxies. For ξ = 0 the probability of finding

two galaxies simply becomes the product of the mean number of galaxies in each

volume, meaning the galaxies are uncorrelated. For ξ > 0 the probability of finding

two galaxies is enhanced over random and so the galaxies are clustered, for ξ < 0

the galaxies are anti-correlated. A value of ξ = −1 means finding galaxies in both

volumes is impossible.

We can also give an alternative definition of the 2-point correlation function by

first defining the over-density, δ, as a fluctuation in density ρ(x) over the mean

density 〈ρ〉 thus
δ =

ρ(x)− 〈ρ〉
〈ρ〉 . (1.7.24)
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One can then define ξ in terms of over-density as

ξ(r) = 〈δ(x)δ(x+ r)〉 (1.7.25)

(e.g. Coles & Lucchin, 2002). We can relate the correlation function to the power

spectrum by first decomposing the over-density field δ(x) into its Fourier components

δk thus

δ(x) = Σkδk exp(ik · x). (1.7.26)

Using Equations 1.7.25 and 1.7.26 one yields the Wiener-Khintchine theorem (see

e.g. Coles & Lucchin, 2002), that the correlation function is the Fourier transform

of the power spectrum,

ξ(r) =
1

(2π)3

∫

P (k) exp(−ik · r)dk. (1.7.27)

The correlation function is often measured by counting pairs of galaxies, ngg, with

separation, r, and comparing them to the number of pairs of points distributed

randomly over the region in question, nrr. The most intuitive estimate of ξ(r) is

then

ξ(r) = 1 +
ngg

nrr

. (1.7.28)

Whilst this is the most intuitively simple estimator, usually other combinations of

random-random, random-galaxy and galaxy-galaxy pairs are used which give lower

variance estimates of ξ(r). The most popular of these are the Hamilton (1993) and

Landy & Szalay (1993) estimators, which will be used in later chapters of this thesis.

1.8 The growth of perturbations in linear theory

To understand how these filaments, clusters and voids of galaxies formed one needs to

track the small, almost scale-free perturbations in the CMB to later times. Gravity,

pressure, the expansion of the Universe and the velocities of gas particles all play a

role. A detailed mathematical study of this is beyond the scope of this thesis, and

not required to understand the research presented here. We will, however, highlight

a few results. A much more thorough introduction is available in Peebles (1980).
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Figure 1.2: The positions of galaxies in 2dFRGS. Large scale structure is apparent.

The figure is from http://www2.aao.gov.au/2dFGRS/, accessed 04/05/13.

By combining the continuity equation, the Euler equation and the Poisson equa-

tion one can derive an equation for the evolution of δ, for perturbations within the

horizon (see Section 1.1), in a non-relativistic fluid as

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
=

∇2δp

a2ρ̄
+ 4πρ̄δ (1.8.29)

where δp is the perturbation to the pressure, p. Here the second term on the LHS

represents how the expansion of the Universe slows the growth of perturbations,

whilst the first and second terms on the RHS show how pressure and gravity affect

the growth of the perturbation. To describe the expansion of dark matter one can

remove the pressure term as p = 0 for a non-relativistic fluid. By solving this

equation one finds that for a flat, matter dominated Universe (where Ωm ≅ Ω)

perturbations grow like δ ∝ a. This solution is applicable from the Universe at

the time matter and radiation densities were equal, aeq, until close to today where

dark energy is beginning to dominate over matter (i.e. ΩΛ > Ωm). Before aeq the

Universe was in the radiation dominated era, to see how perturbations grow in this

era one must change variables in Eq. 1.8.29 to y ≡ a/aeq = ρm/ρr and use Eq. 1.1.5
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and Eq. 1.1.7. The result of doing this is the Meszaros equation, the solution of

which is

δ ∝ 1 +
3

2
y. (1.8.30)

From this we see that for a < aeq the growth of perturbations is frozen. This is

because the expansion of the Universe is too fast for over-densities to collapse. As

a increases, Equation 1.8.30 tends towards the solution for perturbation growth in

the matter dominated regime. We have now seen the two most important regimes

of perturbation growth within the horizon. For a full picture we need to understand

how perturbations grow outside of the horizon also. We cannot use Eq. 1.8.29 as

this is only for perturbations within the horizon. One simple way of determining

the growth of super-horizon perturbations is by comparing two model universes: one

flat universe and one universe with a small curvature δK, both with the same ρ(a).

The Friedmann equation for the slightly curved universe is

H2
1 =

8πG

3
ρ(a) +

δK

a2
(1.8.31)

At some expansion factors a and a + δa for the flat and slightly curved universes

respectively, the age of these universes would be equal. We find this time by equating

the age of both universes, and changing variables to the expansion factor
∫ a

0

da′

a′H(a′)
=

∫ a+δa

0

da′

a′H1(a′)
(1.8.32)

rewriting H1(a
′) using Equation 1.1.5 and using a Taylor expansion yields
∫ a

0

da′

a′H(a′)
=

∫ a+δa

0

da′

a′H(a′)

(

1 +
δK

2H2(a)a2

)

(1.8.33)

≅

∫ a

0

da′

a′H(a′)
+

δa

aH(a)
+

∫ a

0

δK

2H2(a)a2
(1.8.34)

To yield the second line we drop terms higher than first order perturbative terms.

Finally if we use Equation 1.1.9 we can show that δρ/ρ = δa/a and

δρ

ρ
∝ a

3

2
(1+w)

∫ a

0

da′

a′(1− 3
2
(1 + w))

(1.8.35)

∴

δρ

ρ
∝ a(1+3w). (1.8.36)

So, for a universe dominated by radiation, with w = 1/3, super-horizon perturba-

tions grow as δ ∝ a2. In contrast, for a matter dominated universe with w = 0,
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super-horizon perturbations have the same growth rate to perturbations smaller

than the horizon, i.e. δ = a. This has an interesting effect, known as the Meszaros

effect, in that perturbations smaller than the horizon at aeq are retarded with respect

to super horizon perturbations which can continue to grow in the radiation domi-

nated regime. Information such as this can be encapsulated in the transfer function,

T (k), which is defined as the actual growth of perturbations divided by the growth

expected due only to self-gravity and without the Meszaros effect. In general the

transfer function is used to evolve perturbations from inflation to some epoch in the

matter dominated era. The transfer function depends on the wavenumber of the

perturbation, k, and is expressed mathematically as

T (k) =
δk(z = 0)

δk(z)D(z)
(1.8.37)

where D(z) is the growth due to self gravity and without the Meszaros effect (e.g.

Peacock, 1999). We have shown for a super-horizon perturbation in the radiation

dominated era, D(z) ∝ a2, whilst perturbations inside the horizon do not grow. This

means perturbations with a wavelength less than the horizon size at matter-radiation

equality, lH,eq, miss out on a factor of

(

aeq
aenter

)2

(1.8.38)

growth. As the horizon grows like a in the radiation dominated era, and because

the horizon size at aenter has to be the wavelength of the perturbation, 2π/k,

aenter =
2π

klH,eq

aeq (1.8.39)

∴

(

aeq
aenter

)2

∝ k−2 (1.8.40)

This results in a transfer function that is close to unity for perturbations with wave

numbers that mean they are outside the horizon before matter radiation equality,

but is k−2 for perturbations which enter the horizon during the radiation dominated

era. This results in a curved shape of the z = 0 power spectrum, where the turnover

is related to the size of the horizon at matter-radiation equality.

Accurate determinations of the transfer function require complex calculations,

which depend on other physics not described here. One interesting effect is free
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streaming, where particles can escape potential wells due to their thermal velocities.

This adds a high k cut off to the transfer function. This can occur for relativis-

tic neutrinos, adding a characteristic damping to the power spectrum on scales

smaller than the horizon size when cosmological neutrinos became non-relativistic

(Hu et al., 1998). Another important effect is the previously mentioned baryonic

acoustic oscillations. By comparing the power spectrum measured from the CMB

and the power spectrum of matter, as traced by galaxies, one can constrain T (k)

and as such cosmology. Before we explore this in detail, we will first discuss how to

follow the evolution of perturbations when δ grows larger and the problem becomes

non-linear.

1.9 Beyond linear theory

A first step in understanding the evolution of perturbations in the non-linear regime

is to consider over-densities with simple geometry. One such approach is the spher-

ical top hat collapse model (e.g. Coles & Lucchin, 2002). In this analytical approxi-

mation one describes the collapse of a spherical top-hat over-density as a closed (i.e.

positively curved) universe using the Friedmann equation. The over-density begins

by expanding with the Hubble flow, before collapsing. One useful result from this

model is it gives an expression for the times that a perturbation begins to collapse,

reaches maximal compression and becomes virialised. One can relate these times to

over-densities one would predict with linear theory; an often used value is δc = 1.68

which is the linear theory predicted over-density for the time when a spherical top

hat perturbation reaches maximal compression in an Ω = Ωm = 1 universe (e.g.

Coles & Lucchin, 2002). This linear theory value of δc = 1.68 turns out to be much

smaller than the spherical top hat model prediction of δc = 180. The linear theory

value is often used as a cut-off to decide when a linear theory over-density can be

considered “collapsed”, i.e. decoupled from the expansion of the Universe. Press &

Schechter (1974) used these linear theory cut-off over-densities to make predictions

for the number of collapsed objects as a function of mass. Press & Schechter (1974)

model the over-density as a Gaussian field, and integrate the Gaussian to find the
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fraction of objects with an over-density past some cut-off value, such as δc = 1.68. By

smoothing this Gaussian field with kernels of different sizes before integrating, one

can predict the number of collapsed structures as a function of mass by considering

the mass enclosed within the smoothing kernel. One problem with this approach is

that over-densities which may be considered collapsed on one smoothing scale, may

also be counted as collapsed on another smoothing scale leading to over-densities

being counted multiple times. This was fixed with the revised method of Bond et al.

(1991), which calculates the fraction of objects crossing the cut-off over-density for

the first time.

Other approaches to predicting large scale structure beyond linear theory also

exist. Arguably the most widely used is the N-body simulation approach. For a

review of the history and results of N-body simulations see Frenk & White (2012).

In this approach one simulates a set of particles, distributed in such a way to conform

to the linear theory predictions for the density field at some high redshift (where

linear theory is accurate). The motions of these particles are then followed through

time, experiencing forces based on the gravitational pull of the other particles. For

a collisionless fluid like dark matter, the results of these simulations should be very

accurate, at least down to the resolution of the simulation. Perhaps the most famous

cosmological simulation is the Millennium Simulation (Springel et al., 2005), which

followed 21603 particles from z = 127 to z = 0. An image of the Millennium

Simulation is shown in Fig. 1.3, one can see the collapsed structures known as dark

matter haloes as well as filaments and voids. Comparing Fig. 1.3 and 1.2 one can

already see similarities, pointing to the idea that galaxies trace out the structure of

the dark matter. In the next section we build on this idea as we introduce the key

concepts of galaxy formation.

Before moving on we will cover one more important concept, this is the idea of

“bias”. This is the general term used to describe the idea that galaxies or dark matter

haloes are not faithful tracers of the underlying mass distribution. For example, the

clustering of a subset of dark matter haloes will differ from the clustering of all dark

matter. The relationship between the correlation function of the dark matter, ξDM,
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Figure 1.3: The distribution of dark matter in the Millennium Simulation, with

panels showing different scales. dark matter haloes and filaments can be clearly

seen. Figure from Springel et al. (2005).
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and that of a subset of haloes, ξH, can be approximated by the simple relation

ξH = b2ξDM (1.9.41)

where b is the bias. More massive, rarer dark matter haloes have a larger bias and

so stronger clustering. Work such as Cole & Kaiser (1989) give expressions to relate

the mass of dark matter haloes to their bias.

1.10 Galaxy Formation

Observations of dark matter around galaxies (e.g Rubin & Ford, 1970) lead to the

idea that all galaxies are surrounded by haloes of dark matter, with the dark matter

by far out-weighing the baryonic matter. White & Rees (1978) used this idea to

suggest that galaxies formed by gas falling into dark matter haloes, before cooling

and forming stars. Stars could form so long as the cooling time of the gas in the

dark matter halo was shorter than the age of the Universe. For less massive dark

matter haloes White & Rees (1978) used “feedback” from star formation to heat

the gas and so decrease star formation rates. This “feedback” from star formation

consists of supernovae explosions and winds from young stars. Using a form of Press

& Schechter (1974) and simple prescriptions for stellar feedback and the merging

of dark matter haloes, White & Rees (1978) predicted the abundance of galaxies

as a function of luminosity, known as the “luminosity function”. Another observa-

tion explained by the White & Rees (1978) was the existence “satellite galaxies”,

galaxies which orbit larger companions. In White & Rees (1978) these were ex-

plained as galaxies contained in smaller dark matter haloes, accreted by a larger

halo but not yet merged with the central galaxy. Later work such as White & Frenk

(1991), Kauffmann et al. (1993) and Cole et al. (1994) built on this, establishing

the “semi-analytic” approach to galaxy formation, where complex processes such as

star formation and feedback are approximated with simple analytic prescriptions.

Perhaps the most widely used semi-analytic model is the galform model first

presented in Cole et al. (2000). This first version included prescriptions for star

formation based on the available cool gas content, the cooling rate of gas in galaxies,

the timescales for an accreted halo to merge with the host galaxy and supernovae
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feedback as a function of star formation rate. An initial mass function (IMF), the

number of stars formed as a function of their mass, needs also to be assumed. Often,

observed IMFs of regions in the very local Universe are used (e.g Kauffmann et al.,

1993; Cole et al., 2000). Models like galform always involve several free parameters

which reflect our lack of understanding and ability to model complex processes such

as star formation. The approach generally adopted is to fit these parameters to

some observational data set (e.g. the luminosity function) before testing the model

using these fitted parameters on other independent data sets (see e.g. Cole et al.,

2000).

Later additions to the galformmodel have brought new insight into the process

of galaxy formation. The Baugh et al. (2005) model suggested a modified version of

the IMF for galaxies undergoing a burst of star formation, which produced a better

fit to the submillimetre luminosity function of galaxies. The Bower et al. (2006)

model of galaxy formation invoked feedback from active galactic nuclei (AGN) to

stop gas cooling into the most massive haloes, which was found to be necessary to

fit the bright end of the luminosity function.

Other approaches to modelling galaxy formation have also been successful. Hy-

drodynamic simulations attempt to model the baryonic gas more directly, tracing

the forces and temperatures affecting the baryons using either particles or by split-

ting the problem up into a mesh. These simulations range from smaller volume

simulations tracing parts of a galaxy (e.g Creasey et al., 2013) or larger volume sim-

ulations tracing the evolution of dark matter and gas (e.g. Vogelsberger et al., 2013).

These simulations can provide insights that can be incorporated into semi-analytic

models (e.g. Creasey et al., 2013).

Semi-analytic models can be combined with N-body simulations to predict the

large scale distribution of galaxies, and therefore their clustering. The next sec-

tion will return to our main topic of large scale structure and review the current

predictions and observations of galaxy clustering.
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1.11 Galaxy Clustering

It has been known for several decades that galaxies are clustered, with an approx-

imately power law correlation function (e.g. Peebles, 1980). One strength of the

galaxy formation models introduced in the previous section is their ability to un-

derstand the physics behind this clustering. One observation that these models

can explain is that brighter and more massive galaxies are more strongly clustered

(e.g. Norberg et al., 2001, 2002; Li et al., 2006; Zehavi et al., 2011; Christodoulou

et al., 2012). This observation is explained by galaxy formation models by predicting

that galaxies of different properties preferentially reside in haloes of different mass.

Brighter, more massive galaxies are predicted to reside in more massive dark matter

haloes which are more strongly clustered (see Sec. 1.9). Observations also show

that red galaxies, galaxies with elliptical morphologies and galaxies with spectra

suggesting little star formation cluster more strongly than their bluer, star forming

counterparts (e.g Norberg et al., 2002; Madgwick et al., 2003; Li et al., 2006; Zehavi

et al., 2011; Christodoulou et al., 2012). Galaxy formation models can also explain

these observations. In the models, red galaxies, with little star formation, which

typically have elliptical morphologies are also more strongly clustered. This is due

to processes such as AGN feedback arresting star formation in the largest haloes

(e.g. Bower et al., 2006).

On smaller scales the clustering signal is primarily thought to arise from multiple

galaxies and satellite galaxies in the same dark matter halo, whilst on larger scales

the clustering signal is thought to be dominated by pairs of galaxies in different

haloes (Benson et al., 2001, e.g). This has lead to the halo occupation distribution

(HOD) approach to understanding galaxy clustering, where one assumes the dark

matter halo mass is the only important factor in setting a galaxy’s properties and

characterises a population of galaxies based on the number of them expected within a

halo of a given mass (e.g. Berlind & Weinberg, 2002; Peacock & Smith, 2000; Benson

et al., 2001; Zheng et al., 2005; Zehavi et al., 2011). From this the small scale, “one-

halo” clustering term of galaxies within the same halo is calculated based on a

model of the distribution of dark matter sub-haloes within a larger halo. The larger

scale, “two-halo” clustering term is calculated from the prediction of the clustering
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of dark matter haloes as a function of their mass. The HOD has contributions

from central and satellite galaxies. The central term is usually modelled as an error

function defining a minimum mass for a central galaxy to appear, plateauing at

unity as haloes can only have a maximum of one central galaxy (e.g. Zheng et al.,

2005). The satellite term is modelled as a power law, with increasing numbers

of satellites in more massive haloes (e.g. Zheng et al., 2005). Approaches like the

HOD can be quite powerful in understanding clustering. For example Zehavi et al.

(2011) fit HODs to SDSS data and use them to explain the reason why faint, red

galaxies are strongly clustered: because these galaxies are mostly satellite galaxies

in large haloes. A larger number of satellites in red galaxy samples also explains

why observations of red galaxy correlation functions show them to be steeper than

blue galaxy correlation functions (e.g Li et al., 2006; Christodoulou et al., 2012).

Note that Ross et al. (2011b) finds the large-scale bias of red galaxies continues to

decrease with luminosity down to Mr < −17. This would suggest that the majority

of faint, red galaxies are central galaxies in less massive haloes, with only a minority

of them being satellite galaxies in massive haloes.

Whilst the general predictions of galaxy formation models have been qualita-

tively confirmed by observations, detailed comparisons show disagreement and as

such point towards new physics in galaxy formation. For example, Kim et al. (2009)

compared the galform models of Bower et al. (2006) and Font et al. (2008) to

the competing semi-analytic model of De Lucia & Blaizot (2007). Kim et al. (2009)

found the De Lucia & Blaizot (2007) model could fit some galaxy samples’ clus-

tering perfectly but could not match the trends of clustering with luminosity; the

galform models conversely could not match the detailed shape of the correla-

tion function but could match the trends with luminosity. Kim et al. (2009) found

the galform models had too much small scale clustering, a problem which they

successfully remedied by introducing new physical processes that remove satellite

galaxies from the model, and so lower the amplitude of the “one-halo” term. An-

other example comes from Gonzalez-Perez et al. (2011) who found the Bower et al.

(2006) model could reproduce the clustering of objects with red (R−K) colours but

under-predicted clustering of the objects with red (i−K) colours. In Chapter 4 we
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will use the GAMA survey to further test the clustering predictions of semi-analytic

models.

1.12 Cosmology from Large Scale Structure

Now galaxy clustering and large scale structure have been introduced, we can return

to the issue of using them to constrain cosmology. The power spectrum of galaxy

clustering is thought to be an evolved version of that observed in the CMB. To

demonstrate this we show figure 1 of Tegmark & Zaldarriaga (2002) in Fig. 1.4. To

produce this figure, Tegmark & Zaldarriaga (2002) transformed all of the power spec-

trum measurements to z = 0 using a ΛCDM transfer function. As a demonstration

of the utility this has in testing cosmological models, Tegmark & Zaldarriaga (2002)

showed that using a transfer function with a high baryonic fraction, Ωbh
2 = 0.07,

resulted in the CMB measurements and galaxy measurements disagreeing. More

recent measurements of the galaxy and CMB power spectra have greatly decreased

the size of the errors on the measurements shown in Fig. 1.4. The galaxy power

spectrum can be modelled, and from it cosmological parameters derived. This ap-

proach, however, has different challenges to that of using the CMB power spectrum.

Galaxy formation physics, non-linear structure formation and the effect of galaxy

peculiar velocities on redshifts all modify the shape of the galaxy power spectrum

and thus need to be modelled (e.g. Parkinson et al., 2012).

One feature in the galaxy power spectrum, which is arguably less influenced by

the effects described above, is the measurement of the “baryonic acoustic oscillation”

(BAO) scale. The BAO are the imprint of the CMB acoustic oscillations in the

matter power spectrum, they arise from the same process as the CMB oscillations

but represent fluctuations in galaxies and matter rather than the CMB photons.

First detected by Cole et al. (2005) and Eisenstein et al. (2005), they are a strong

piece of evidence that the large scale structure of galaxies really was formed by

gravitational effects on perturbations in the early Universe. Like the first peak in

the CMB, their comoving size is set by the sound speed before recombination and

only changes slightly with different cosmological models. The position of the BAO
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Figure 1.4: Multiple measurements of the power spectra, transformed to redshift

zero using a Lamba CDM transfer function. Figure from Tegmark & Zaldarriaga

(2002).
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peak can therefore act as a standard ruler with which to measure the size of the

Universe at different epochs, by measuring its location in the correlation function of

galaxy samples at different redshifts. These measurements of the size of the Universe

can be used to constrain cosmological models.

The BAO can be seen in both the galaxy power spectrum and the galaxy corre-

lation function. To demonstrate this, and the connection between P (k) and ξ(r), we

computed both functions for the same cosmological model. For this we used software

called ‘Code for Anisotropies in the Microwave Background’ (Lewis & Bridle, 2002)

to generate a theoretical power spectrum at z = 0 using cosmological parameters

from Planck Collaboration et al. (2013) (we modified parameter files supplied by

Adrian Jenkins). We then solved Eq. 1.7.27 by numerical integration to compute

the predicted correlation function. The result of this is given in Fig. 1.5, we see

that the baryonic acoustic oscillations in the power spectrum (at scales of k ∼ 0.1h

Mpc−1) appear in the correlation function as a single peak.

Combining other cosmological probes with the galaxy power spectrum and BAO

data can help break degeneracies that exist when considering them in isolation. As

an example, measurements of the BAO scale help break the degeneracy between

w 6= −1 and small amounts of curvature in the CMB data (e.g Parkinson et al.,

2012). So far the combined measurements of all cosmological probes are consistent

with a ΛCDM model (e.g Percival et al., 2010; Anderson et al., 2012; Parkinson

et al., 2012; Planck Collaboration et al., 2013).

1.13 Integrated Sachs Wolfe Effect

One remaining effect predicted by the existence of dark energy, but not yet detected

with high statistical significance, is the “Integrated Sachs-Wolfe” (ISW) effect. This

is predicted to occur when CMB photons fall into a gravitational well that has a

decaying potential; such wells are expected to exist if the expansion of the Universe

is accelerating. As the CMB photon falls into the well it gains energy, but does not

lose all of that energy when it climbs out of the evolved, now shallower potential

(see Fig. 1.6). It therefore emerges with more energy than when it fell into the well.
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Figure 1.5: Top: A model power spectrum, from camb (Lewis & Bridle (2002)).

Bottom: The correlation function computed by Fourier transforming the power

spectrum. The baryonic acoustic peak can clearly be seen.
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Figure 1.6: Initially a photon falls into a potential well, caused by an overdense

region of the Universe. Dark energy causes the expansion of the Universe to acceler-

ate, making the potential well shallower, the photon therefore escapes the potential

well with more energy than when it entered.

Large area galaxy surveys can be cross-correlated with the CMB to detect this

effect, as overdensities in matter should cause hotter regions in the CMB. Goto et al.

(2012) measured this, by cross-correlating a subregion of the WISE galaxy survey

with WMAP CMB data, and detected a cross-correlation signal with a significance

of 3.3σ. Curiously their measured amplitude is 2σ above the level expected for

ΛCDM (Goto et al., 2012). However, more recently Kovács et al. (2013) measured

the ISW using the same method but the full-sky WISE data, they detected a cross

correlation signal at a level consistent with standard ΛCMD, but with little sta-

tistical significance (only 1σ). They found the difference between the results was

entirely consistent with sample variance, highlighting the need for large area surveys

when measuring the ISW. As well as WISE, several other galaxy surveys have also

been used to measure the ISW, for example Giannantonio et al. (2012) combines

data from three different surveys to yield a 4.4σ detection of a CMB and galaxy

cross-correlation signal.

The Pan-STARRS1 3π survey has the chance to detect the ISW at a higher
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significance than previously measured, due to its large area and relatively deep

photometry. In Cabré et al. (2007) the significance of an ISW detection through the

cross-correlation method is shown to scale with the square root of the area of the

survey. In SDSS DR8 data Giannantonio et al. (2012) detected a cross-correlation

signal with a significance of 2.2σ using 25% of the sky. The 3π survey will have

similar or greater depth than SDSS (see Chapter 2), so to forecast the significance of

future ISW detections with Pan-STARRS1, one could scale up the SDSS significance

for the larger 3π area. After masking the galactic plane, the 3π should cover around

50% of the sky, which would result in a 3.1σ detection based on the SDSS DR8

result. As mentioned however, these calculations may not be accurate, as sample

variance may mean that SDSS DR8 has a particularly enhanced ISW amplitude.

As well as ISW, Pan-STARRS1 should also yield new measurements of the galaxy

power spectra and BAO. The next few chapters will introduce Pan-STARRS1, and

the work carried out to prepare Pan-STARRS1 for measuring large scale structure.



Chapter 2

Testing Pan-STARRS1 with

Synthetic Images

In this chapter we introduce the Pan-STARRS1 (PS1) telescope, its camera, its

planned surveys and a region of verification data we used in this thesis. PS1 has the

potential to yield new information on galaxy formation and large scale structure. In

order to do this however it is important that the magnitudes it measures from objects

are accurate and free from systematic errors. It is also important to check that the

telescope software is processing the raw data in an optimal way. We will therefore

produce synthetic images and use them to test the PS1 telescope and software. The

tests with synthetic images in this chapter represent the author’s contribution to a

larger paper testing PS1, Metcalfe et al. (2013), which we will refer to as Paper I

in this thesis. Sections of the introduction to PS1 given in this chapter are from

Farrow et al. (2014).

2.1 The Pan-STARRS1 Telescope

PS1 is a 1.8m telescope on Haleakala, Maui (Hodapp et al., 2004). Its unique selling

point is its high etendue, the product of its collecting area and field of view, which

allows it to survey large areas of sky quickly (Kaiser et al., 2002). It was designed

as a prototype of PS4, an array of four identical telescopes scanning the whole sky

in relatively short intervals for potentially threatening Near Earth Objects (NEOs)

31
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(Kaiser et al., 2002). The multi-epoch nature of PS1 observations is not only good

for the detection of moving and transient objects but also provides the redundancy

necessary for highly accurate zero point calibration (Schlafly et al., 2012; Magnier

et al., 2013), which is important for large scale structure analysis. Zero points should

be accurate to 10 mmag from the calibration described in Schlafly et al. (2012) and

Tonry et al. (2012)

To fully utilise its large etendue PS1 has a huge camera (GPC1), with 1.4 Gpixels.

This camera is described in Tonry et al. (2008), but we will briefly introduce it here.

CCD cells, 600 by 600 pixels in size, are arranged into 8 by 8 groupings called

Orthogonal Transfer Arrays (OTAs). The whole camera is made from a mosaic of

60 OTAs, in an 8 by 8 grid with no OTAs in the four corners. PS1 pixels are 10µm

or 0.256′′ in size, such that each CCD cell is 2.6’ on a side. Between individual CCD

cells there is a 6 to 8 arcsecond gap, and between each OTA a 36 arcsecond gap or a

70 arcsecond gap depending on direction. This leads to masked regions in individual

PS1 exposures. Overall the camera field of view is around 8.5 square degrees in size.

The finished PS1 survey will have two major co-added data products. The 3π

survey with 31,500 square degrees of imaging and ten deeper 8.5 square degree

(i.e. the telescope footprint) fields known as the “Medium Deeps”. Each will have

coverage in all 5 of the PS1 bands: gP1, rP1, iP1, zP1 and yP1 . The 3π survey will be

deeper and have a larger area than its predecessors, and is unique amongst existing

optical surveys in having, yP1, a near infrared band. For more details on the 3π

survey please refer to Chambers et al. (in preparation) and to Section 2.2.

As well as the main goal of detecting NEOs, it has always been envisaged that

PS1 will meet a wide variety of science goals, including comets, extra-solar planets,

supernovae, AGNs and large scale structure. PS1 does not have a spectrograph

but photometric redshifts will be available from a dedicated pipeline (Saglia et al.,

2012). As of March 2013, PS1 has been successful in detecting many new solar

system objects2, as well as supernovae (e.g. Valenti et al., 2010), variable AGN (e.g.

Ward et al., 2011) and satellite galaxies around Andromeda (Martin et al., 2013).

2http://www.minorplanetcenter.org/iau/mpc.html
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It has also been successfully used as a source of optical data for other surveys to

measure the clustering of Extremely Red Galaxies (Kim et al. in preparation). In

this chapter we test the PS1 system and software, with specific attention to whether

it is ready to measure large scale structure.

2.2 The 3π Survey Strategy

The focus of this thesis is exploiting the 3π survey for large scale structure. Each

region of sky in the 3π survey will be visited by the telescope twice a year in each

band; during each visit two exposures will be taken. Individual exposures will last

43, 40, 45, 30 and 30 seconds in gP1, rP1, iP1, zP1 and yP1 respectively. The whole

survey should last three years, so that when finished there will be 12 exposures of

each sky position. These exposures will be stacked to produce the final image of the

sky.

2.2.1 The PS1 Small Area Survey 2

The Small Area Survey 2 (SAS2) is a subset of the 3π survey roughly covering the

region of 327.5 < α(deg.) < 338.5 and −5.5 < δ(deg.) < 5.5. It is designed to be

representative of the finished 3π survey. A large number of individual exposures

were taken, co-added and mosaiced to form around 69 square degrees of imaging. It

has a median rP1-band point spread function (PSF) FWHM of 0.94′′, which has an

rms scatter of less than 0.05′′across the field. PS1 has a raw pixel scale of 0.256′′. A

careful study of the depth of this data set can be found in Paper I, which reports 50%

of stars are recovered at magnitudes in the gP1, rP1, iP1, zP1and yP1-bands of 23.4,

23.4, 23.2, 22.4 and 21.3 respectively. All magnitudes in this thesis are measured in

the AB system.

2.3 Detrended Exposures, Warps and Stacks

PS1 data reduction, from the initial processing of images through to stacking and

source detection is carried out by the PS1 Image Processing Pipeline (IPP) (Magnier,
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2006). In this section we will introduce the different steps of image processing that

occur between taking the exposure and the final stacked images. The first step

is detrending, where standard astronomical image processing such as flat fielding,

background and dark image subtraction is carried out by the IPP (Magnier, 2006).

An additional important correction that occurs at the stage is the correction for

“row-by-row bias”4. Each row of pixels on the CCD has a “bias” added to the

charge produced from photons falling onto the CCD row. This bias is simply a DC

offset that ensures the signal is always positive when it is fed into further electronics

to generate a digital signal. This bias is usually removed in two ways. Firstly a

bias frame can be used, which is a read-out from the CCD when it has not been

exposed to light. The second method estimates the bias from special regions of the

CCD that do not get exposed to light when an image is taken. Unfortunately, in

PS1, this offset changes from pixel row to pixel row and can vary with time, even

changing as a row is read. This is a result of unintended problems with the CCD

electronics. As a result neither of the two usual methods are entirely successful in

removing the bias. In order to correct for this, a polynomial is fit to the read-out

of each row of pixels, and subtracted. Unfortunately an unintended consequence of

this subtraction is to over-subtract flux from around bright objects; this correction

is therefore only applied to the worst affected CCDs. We will called the resultant

images from these initial image processing steps “detrended exposures”. For each

image PS1 also produces “variance maps” which record the variance of the noise in

each image pixel. This variance includes contributions from sources of astronomical

noise including sky background, read noise and Poisson noise, and how they scale

with the weighting of exposures in a stack.

The next step of processing is known as “warping”. Here detrended exposures are

translated from the CCD coordinates to the stack pixel coordinate system, and the

pixel scale is changed from 0.256′′ to 0.25′′. Warping introduces correlations between

the image pixels on scales of less than around 1′′. It also affects the variance of the

image pixels (see Section 2.12). We will refer to these warped images as “warps”.

4http://www.ifa.hawaii.edu/users/chambers/Astr735.html
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The image, I, the variance map of that image, V , and the warp, I ′, and warped

variance, V ′, are related by a warping kernel, k, thus

I ′(x, y) =
∑

u,v

k(u, v)I(x− u, y − v) (2.3.1)

V ′(x, y) =
∑

u,v

k(u, v)2V (x− u, y − v), (2.3.2)

where x and y are image pixel indices and u and v are kernel pixel indices. Here the

kernel has been normalised so it sums to unity. This warping process converts some

variance into covariance, such that V ′(x, y) no longer represents all of the noise on a

pixel. To measure a warped pixel’s total noise one needs to use a covariance matrix

which accounts for the correlations between the pixels in the image. Storing the full

covariance matrix would require a prohibitive amount of space so a much smaller

matrix, known as the “covariance pseudo-matrix” is stored per image.

The covariance pseudo-matrix, C̃(i, j), describes the covariance of a single pixel

with each of the pixels in its neighbourhood, with relative pixel coordinate (i, j).

For initially uncorrelated data this matrix is simply a function of the warping kernel,

C̃(i, j) =
∑

u,v

k(u− i, v − j)k(u, v)K. (2.3.3)

Where K = (
∑

u,v k
2(u, v))−1, such that C̃(0, 0) = 1 and K =

∑

i,j C̃(i, j). The

latter property follows from the normalisation of kernel, k. When making measure-

ments which combine many pixels the effect of covariance on the overall variance of

the measurement can be approximated by simply boosting individual variances by

the factor K and otherwise ignoring covariance. This approximation is asymptoti-

cally exact for apertures much larger than the kernel size. The value of K changes

from place to place on the sky but has an approximately Gaussian distribution with

a mean of 1.379 with an rms of 0.006 for SAS2 rP1-band. We show that the warping

process has little or no effect on the depth of images in Section 2.8, but we will

revisit the covariance pseudo-matrix in a later chapter.

The final step is stacking the warps. A description of the IPP stacking procedure

is given in the PS1 document PSDC-430-012 available from the IPP engineering
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documents webpage5, but we will highlight key features here. The warps are all

scaled to a common zeropoint, based on the photometry of objects in each warp,

before being stacked together. Pixels from individual warps are sigma clipped to

remove outliers, before their mean value is computed for the stack. When computing

the mean, warp pixels are weighted by their inverse variance.

2.4 Coverage Maps and Image Masks

The resultant stacks will potentially have different numbers of input warps contribut-

ing to each pixel. This is down to the observing strategy, which means exposures

in a stack are not always coincident on each other. Additionally around 25% of

individual exposures are masked, which is mainly due to the gaps between CCD

cells and OTAs (Section 2.1), as well as defective CCD cells and other regions.

We will refer to the number of input exposures to a pixel as the “coverage”

throughout this thesis. To illustrate this Fig. 2.1 gives the “coverage map”, i.e.

an image recording the number of exposures stacked for each pixel, in a 26′ by

26′ region. A typical SAS2 stacked image has an average coverage of around 8.9

exposures per pixel, with a standard deviation of around 3 exposures per pixel. In

the stacks this gives rise to a spatially varying noise level. This noise is tracked

in the stack’s variance map. Naturally the spatially varying image noise leads to

different depths at different positions on the sky. We will develop ways to address

this issue when measuring clustering in Chapter 3.

In addition to coverage maps and variance maps the PS1 IPP (Magnier, 2006)

also produces image masks. These image masks track pixel quality and highlight

pixels which have been flagged as suspicious (e.g. likely to be cosmic rays or image

artifacts) by the pipeline. Images, image masks, coverage maps and variance maps

are all supplied in approximately 26′ by 26′ units called “skycells”. These skycells

do not represent unique areas on the sky but overlap, and in these overlap regions

pixels from different skycells are not necessarily the same, since decisions on which

exposures to reject from a stack are made on a skycell by skycell basis.

5http://svn.pan-starrs.ifa.hawaii.edu/trac/ipp/wiki/IPP Engineering
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Figure 2.1: The coverage, i.e. the number of input exposures, of a typical 26 by 26

arcminute SAS2 stack skycell. Black areas correspond to 11 input exposures for that

pixel, white corresponds to no input exposures (a blank pixel). The grid pattern

arises from the gaps between cells in individual exposures. The elliptical regions

correspond to the masking of some spurious reflected light (called ghosts).
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2.4.1 IPP Source Detection and Magnitude Measurement

Source detection on the images is carried out by the IPP code psphot (Magnier,

2006); we will give a basic overview of this code here. First an image is convolved

with a filter, chosen to maximise the signal-to-noise ratio (SNR), before being divided

by the variance map to produce an image giving the SNR for each pixel. The code

then uses the covariance pseudo-matrix to decide where significant peaks are in the

SNR image.

Due to the atmosphere and telescope optics galaxy light profiles appear convolved

by the point spread function (PSF) of the instrument and atmosphere. Another task

of psphot is to fit a model of the PSF to the image. In the PS1 IPP stars are fitted

with a PSF model, called the PS v1 model, of the form

I =
I0

1 + kz + z3.33/2
, (2.4.4)

where z =
x2

2σ2
x

+
y2

2σy2
+ xyσxy, (2.4.5)

where I0 is the central intensity, x and y are the x-axis and y-axis distances from the

centre, k is a free parameter and σx, σy, σxy are free parameters that represent the

x-axis width, the y-axis width and a cross term respectively. Typically PS1 PSFs,

and indeed real PSFs in general, have more extended wings than Gaussian PSFs of

the same full width half max (FWHM). To show this we numerically integrate Eq.

2.4.4, using a PSF model fit to a typical SAS2 OTA with k = −0.12 and σx = 1.64.

We force the model to be circular by artificially setting σx = σy and σxy = 0. The

result of this integration, compared to a Gaussian with the same FWHM is shown

in Fig. 2.2; the more extended wings and less peaked central surface brightness can

be seen.

Skycells are split 3 by 3 during the PSF fitting, and the best-fitting model pa-

rameters are found for bright, unsaturated stars in each of the 9 cells. The final

PSF model interpolates between these parameters such that the PSF model varies

smoothly across a skycell.

psphot is also responsible for measuring magnitudes. In this thesis we use Kron

magnitudes (Kron, 1980) as measured by psphot. Kron magnitudes measure flux

in an aperture with a radius called the “Kron radius”, which is some multiple (2.5
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Figure 2.2: The curve of growth of a PS1 PSF model profile, compared to that of

a Gaussian with the same FWHM of 0.85′′ and the same integrated flux. The top

panel gives the enclosed fraction of flux, the bottom panel gives the intensity as a

function of radius. We see PS1 PSFs have more extended wings.
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for PS1) of the first moment radius of the flux (Kron, 1980). Kron magnitudes are

designed to contain the majority of flux for a given source profile regardless of size,

but a small, profile dependent correction term is required to account for flux outside

the Kron radius. For galaxies with the same light profile this fraction is theoretically

the same, regardless of the apparent size of the galaxy.

In this thesis we also use point spread function (PSF) magnitudes as measured

by psphot, which are magnitudes based on extrapolating the magnitude from a

small aperture, chosen to maximise SNR, using the IPP PSF model. We shall label

these magnitudes with the suffix “PSF” to contrast with the Kron magnitudes which

we label simply using the name of the filter, i.e. gP1, rP1, iP1, zP1 and yP1 .

Finally, in this thesis we also refer to ‘input’ or ‘total’ magnitudes when talking

about synthetic objects. These are simply the magnitude corresponding to the sum

of all of the flux of the synthetic object.

The code psphot also produces flags for each object which indicate how reliable

it is. We use these flags and all objects with fitfail, satstar, badpsf, defect,

saturated, cr limit, moments failure, sky failure, skyvar failure or

size skipped set are removed. Further discussion of these flags can be found in

Paper I.

The last feature of psphot we will mention is its synthetic star generation.

psphot adds synthetic stars, using its own PSF model, to images. It can return the

detected fraction of these stars as a function of magnitude along with the difference

between their input and recovered magnitudes. We also require synthetic galaxies,

in order to test the measurements of galaxy magnitudes and how well PS1 recovers

galaxies. Unfortunately psphot does not produce galaxies; so we have produced our

own synthetic sources. In addition, our synthetic sources can be added to images

and then these images can be warped and stacked. psphot does not put synthetic

images through the warping and stacking procedure.

2.4.2 Galaxy profiles

Before describing our method of generating synthetic images, we first review the

basic properties of galaxy light profiles. Galaxies have light profiles well fitted by
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the famous Sérsic functions (Sérsic, 1963). For a review see Graham & Driver (2005).

In flux this can be expressed as

F (R) = Feff exp

(

−bn

[

R

Reff

]
1

n

− 1

)

, (2.4.6)

where R is the distance to the centre, Feff is the flux at Reff and bn is a scaling

constant that depends on the index, n, defined such that Reff is the half light radius.

A value of n = 1 and bn = 1.678 gives an exponential profile, typical of the discs of

spiral galaxies while a value of n = 4 and bn = 7.669 gives the de Vaucouleurs profile

typical of elliptical galaxies (see Graham & Driver, 2005; de Vaucouleurs, 1948).

2.5 Generating Synthetic Objects

To generate a synthetic star one needs to simply choose a magnitude and a position

and then evaluate the PSF model. Generating a galaxy is harder as several param-

eters must be chosen, namely: the position, the bulge to disc ratio, the Sérsic index,

the size, the ellipticity and the orientation on the sky. The last of these is chosen at

random. As the clustering of the synthetic sources is not important here a position

is also randomly assigned.

When choosing the Sérsic index we approximate the Universe as being made

up entirely of de Vaucouleurs profiles for elliptical type galaxies and bulges, or

exponential profiles for discs. This follows the classic bi-modality in Sérsic index be-

tween elliptical galaxies and discs. In reality galaxies follow a distribution of Sérsic

indices, with elliptical galaxies displaying a positive correlation between luminos-

ity and Sérsic index (see e.g. Ferrarese et al., 2006). We also treat bulges in disc

galaxies in the same way as elliptical galaxies, which is a common approximation

adopted in the literature (Bertin & Arnouts, 1996; Shen et al., 2003). A major

goal of these tests is to see how well PS1 recovers faint galaxies, and how accurate

magnitude measurements from them are. As these faint galaxies will tend to have

small angular sizes, and because the synthetic galaxies are convolved with a PSF,

our approximations should have little effect on our results.

For the axis ratios of discs we choose a random inclination angle, i, distributed

uniformly in cos(i) and assuming circular flat discs with a thickness which is some
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fraction, t, of the radius we calculate the apparent axis ratio, esky, using simple

geometry as

esky = cos(i) + t sin(i). (2.5.7)

We take t = 0.1 for our disc height to scale-length ratio. The resulting distribution is

flat and a reasonable fit to the observations in Padilla & Strauss (2008). For bulges

we select a major to minor axis ratio, e, between 0.3 and 1.0, corresponding to the

classical elliptical types of E0 to E7 (see e.g. Mo et al., 2010). Within this range we

select e from a truncated Gaussian distribution of mean µ = 0.75 and variance of

σ2 = 0.1, which we chose to give a reasonable fit to the data in figure 4 of Padilla

& Strauss (2008).

For physical galaxy sizes we use the empirically measured relation and its scat-

ter given in equations 14, 15 and 16 of Shen et al. (2003). We adopt parameters

measured in Shen et al. (2003) for galaxies separated into late and early types by

Sérsic index (figure 6 of that paper). It was reported in Dutton et al. (2011) that

using the Shen et al. (2003) measurements would result in discs too small by a factor

of around 1.4, due to not factoring in the effects of inclination which decreases the

size by the square root of the apparent axis ratio. We therefore increase the size of

our disc galaxies by this factor. We also correct the empirical bulge size relation for

this effect, adopting a correction of 1.2, calculated from the typical bulge ellipticity

µ. For bulges and elliptical galaxies we choose not to extrapolate the relation from

Shen et al. (2003) to fainter magnitude bins than measured in that paper. Instead,

we keep the sizes of bulges and elliptical galaxies fixed fainter than Mr = −19; this

is motivated by observations that dwarf elliptical galaxies have a nearly constant

size regardless of magnitude (see e.g. Shen et al., 2003; Mo et al., 2010).

We now have a relation between physical size and absolute magnitude, therefore

we need a redshift and an absolute magnitude to predict angular sizes. One could

generate these using observed luminosity functions and redshift distributions, but

here we use data from the mock catalogues produced for Merson et al. (2013) us-

ing a recent version of the galform galaxy formation model presented in Lagos

et al. (2011). Using these catalogues gives us the potential to extend this work to

generate synthetic images with realistic galaxy clustering. For the purposes of this



2.5. Generating Synthetic Objects 43

work, however, we use random angular positions. The model adopts a concordance

cosmology of Ωm = 0.25,ΩΛ = 0.75,Ωb = 0.045, h = 0.73; we use this cosmology

for the whole of this work. The galform model gives magnitudes and redshift

distributions in good agreement with observations at low redshift (e.g. Bower et al.,

2006). We split the total flux of the model galaxy into a bulge component and a disc

component by randomly sampling bulge to total ratios from table 3 of Simard et al.

(2011), which gives an observational estimate of bulge to total ratios for around a

million SDSS galaxies.

Once we have the galaxy morphological properties we evaluate Equation 2.4.6 on

a pixel grid of a linear scale three times smaller than PS1 warped pixel scale of 0.25′′

before binning up. This is to minimise the effect of gradients in the profile across

pixels. Pixels on the finer grid whose centres are closer than 0.1′′ to the profile centre

are further subdivided 3 by 3 to take into account the steeper profile near the centre.

If any of these subdivided fine pixels are on the centre of a de Vaucouleurs profile, an

analytic integral is used to approximate the flux required, as de Vaucouleurs profiles

asymptote to infinity at zero radius. Stars, conversely, are evaluated directly on to

the native pixel scale as this is the scale at which the model is measured. Galaxy

profiles are convolved with the PSF using the C-library fftw (Frigo & Johnson,

2005). The grid dimensions are chosen to ensure that the finished, convolved galaxy

image contains more than 99.8% of the flux. Stars are evaluated on a grid of 36′′ by

36′′ which contains more than 99.9% of the flux for PS1 SAS2 PSFs.

In Fig. 2.3 we show an example of a synthetic warp, next to the real warp from

which we took the PSF model, the background noise and the mask. The colour

scale of Fig. 2.3 is the same for both panels. We see our fake images look realistic,

although we do not model the image artifacts visible in the real image. The most

notable of these image artifacts are the horizontal lines caused by the row-by-row

bias issues.
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Figure 2.3: A comparison of a real 5 arcminute by 3 arcminute region of the SAS2

rP1-band warp 454105 (above), to the same region in a simulated version of the warp

(below).
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2.6 Synthetic Image Server

Whilst our use of the synthetic images is for the testing and development of PS1

data generally, other users of PS1 data may find synthetic images useful if they want

detailed tests of a particular region of PS1. For example, if they wished to know the

chance of detecting an object with a particular morphology in a certain PS1 image.

We have therefore produced the “PS1 Fake Image Server”. This is essentially a

web interface to the synthetic image code we have developed. The user is given a

webpage, as displayed in Fig. 2.4(a), into which the user inputs the zeropoint and

stack id of a particular PS1 stack they wish to insert images into. The user must also

upload a source file, which is an ASCII file containing the pixel positions, magnitudes

and morphological properties of the objects they wish to simulate. On submission

of the form, a PHP script downloads the source file to the fake image server’s hard

drive and uploads the other supplied information to a MySQL database. The list of

currently uploaded requests, the “queue page” is available to the user from another

webpage which queries that MySQL database, see Fig. 2.4(b).

On the server a Python script is run which regularly checks the MySQL database

for new requests. On receiving a new request it downloads the required PS1 images

from the PS1 Postage Stamp Server and then produces the required fake images.

These are placed into a folder on the server, and the Python script updates the

MySQL server to mark the request as complete. The queue page then includes a

link to the folder where the user can download their requested images, see Fig. 2.4.

2.7 Testing Detrended Exposures with Synthetic

Data

With the synthetic images introduced, we will now describe the tests we carried out

with them on PS1. The first test we conducted with synthetic images was the most

simple. We produced synthetic detrended exposures, which are as close to raw PS1

data as we study. To produce these detrended exposures we used four real SAS2

detrended exposures as a template, namely from the cells XY21, XY22, XY31,
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Figure 2.4: Screenshots from the synthetic image server. Panel (a) shows the page

where the user submits requests, panel (b) shows the queue page where the user can

download the finished images.
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XY32 from the 40 second rP1-band exposure o5745g0448o. We copied the pixel

rms as measured from the real detrended exposures, used the real image zeropoint,

used the psphot measured PSF models and adopted the same image masks. We

chose the magnitudes and numbers of stars and galaxies to place on the OTA from

power-law fits to the number counts of stars and galaxies for the whole of SAS2

(see Chapter 3). If the noise in an image is dominated by sky noise or source noise,

the pixel rms is simply the square root of the image and variance maps are simply

the images without any background subtraction. To approximate the level of the

sky background, we assume that the measured rms is mainly caused by Poisson

fluctuations in the sky background. We therefore estimate the sky background by

squaring the measured rms value. This value is then added to the image to form

the variance map.

In order to improve statistics whilst maintaining a realistic number-density of

objects we produced multiple synthetic realisations of the same detrended exposure,

with different objects for each realisation. The resultant images and variance images

were fed into psphot along with the mask images from the real detrended exposures.

Fig. 2.5 gives the difference between the magnitude of the input object and the

measured Kron magnitude as a function of input magnitude. The red points and

error bars mark medians, along with upper and lower quartiles. The median values

and interquartile range, i.e. the difference between the upper and lower quartiles,

are given in Table 2.1. As expected the Kron magnitude is slightly fainter than

the input magnitude for stars and galaxies, with the offset being larger for galaxies.

The magnitude offset for galaxies of 0.1 to 0.2 magnitudes is slightly larger than

theoretical expectations. For example one would expect an offset of 0.1 magnitudes

for de Vaucouleurs profiles and 0.04 magnitudes for exponential disks (e.g Graham

& Driver, 2005). We note in Paper I that the offset between psphot Kron magni-

tudes and SDSS estimates of total real galaxy magnitudes, found from fitting Sérsic

models, are also larger than the theoretical expectations. The simple theoretical

expectations assume that the first moment radius can be measured perfectly for a

galaxy which consists of a single Sérsic profile. Our simulated galaxies come from

composites of two Sérsic profiles, have noise and have been convolved with the PSF.
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Figure 2.5: The input magnitude versus the recovered magnitude for galaxies (above)

and stars (below), for synthetic objects placed on synthetic detrended exposures.

The red stars mark the median values, the error bars mark the upper and lower

quartiles.
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Table 2.1: The median and interquartile range of the difference between total input

synthetic magnitude and the recovered Kron magnitude, for synthetic objects on

synthetic detrended exposures. At faint magnitudes the bright offset in the median

recovered value is simply a selection effect, objects scattered fainter are not detected

by the software.

Magnitude Star Median ∆Quartile Galaxy Median ∆Quartile

17.2 0.08 0.01 0.18 0.14

17.8 0.08 0.02 0.16 0.17

18.2 0.09 0.02 0.19 0.12

18.8 0.09 0.03 0.21 0.17

19.2 0.10 0.05 0.22 0.18

19.8 0.10 0.07 0.23 0.19

20.2 0.10 0.10 0.22 0.19

20.8 0.10 0.16 0.17 0.24

21.2 0.10 0.23 0.16 0.31

21.8 0.08 0.36 0.08 0.41
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All of these extra observational effects are likely to contribute to the slightly higher

than expected offset. At faint magnitudes the bright offset in the median recov-

ered value is simply a selection effect, objects scattered fainter are not detected

by the software. We see no evidence of any systematic trends with magnitude in

Fig. 2.5 and overall psphot seems to recover the magnitudes successfully from these

synthetic detrended exposures.

We can use these measurements when comparing total magnitudes from synthetic

galaxies to observed quantities and when comparing to literature measurements. In

this thesis we adopt an average correction ofmagTotal = magKron−0.2 to convert from

Kron magnitude to total magnitudes for galaxies; we will state explicitly wherever

we apply this correction throughout this thesis.

Fig. 2.6 gives the fraction of synthetic objects recovered from the detrended

exposures for synthetic stars (stars) and galaxies (circles) as a function of magnitude.

We shall refer to this detected fraction as “detection efficiency” in this thesis. The

error bars represent the scatter between the multiple realisations of the detrended

exposures. The dashed line represents the fraction of detected synthetic stars placed

on the real detrended exposures by the IPP’s own synthetic star software. We see

excellent agreement in terms of detection efficiency between our synthetic detrended

exposures and the real detrended exposures. Fig. 2.6 also demonstrates galaxies are

harder to detect, with the detection fraction turning over around 0.5 magnitudes

brighter for the galaxies than for the stars.

A commonly used statistic in astronomy is the 5σ limiting magnitude, the mag-

nitude corresponding to an SNR of 5.0. Using the pixel rms, we calculated the total

stellar magnitude which gave an SNR of 5 within an aperture with a diameter equal

to that of the measured FWHM of the PSF. We plot this 5σ limiting magnitude

as a vertical line in Fig. 2.6. We see this magnitude corresponds to a fraction of

50%-60% for synthetic stars. This value can be useful as the 5σ limiting magnitude

can be quickly estimated for PS1 images; Paper I shows one can make reasonably

accurate estimates of σ for a PS1 image from tabulated measurements of the sky

brightness, read noise, dark current and exposure time.
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Figure 2.6: The fraction of stars (stars) and galaxies (filled circles) recovered from 4

synthetic detrended exposures as a function of input magnitude. The dashed lines

give the recovered fraction of stars on the real images, as calculated from IPP’s own

synthetic objects. The dotted line gives the 5σ magnitude.
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Table 2.2: The median and interquartile range of the difference between total input

synthetic magnitude and the recovered Kron magnitude, for synthetic objects on

synthetic detrended exposures that have been warped.

Magnitude Star Median ∆Quartile Galaxy Median ∆Quartile

17.2 0.08 0.01 0.19 0.19

17.8 0.09 0.01 0.14 0.17

18.2 0.09 0.02 0.18 0.10

18.8 0.09 0.03 0.25 0.23

19.2 0.10 0.05 0.21 0.19

19.8 0.11 0.07 0.23 0.22

20.2 0.11 0.10 0.22 0.21

20.8 0.12 0.15 0.18 0.23

21.2 0.10 0.23 0.16 0.31

21.8 0.07 0.37 0.07 0.42

2.8 Testing Warped Images with Synthetic Data

The detrended exposures we produced for the previous section were fed into the

IPP routine pswarp, which warped the detrended exposures to produce synthetic

versions of the warp with warp id 454105. We produced each warp from a unique

set of synthetic OTA images. Note that the warp covers a smaller area of sky than

the detrended exposures so the synthetic warps have fewer synthetic objects than

the combined detrended exposures. The IPP routine pswarp produced variance

images and masks for the resultant synthetic warp. We ran psphot on the warp

with these masks and variance maps, to test for systematic errors arising in the

warping process.

Fig. 2.7 gives the difference between the input and recovered magnitudes for our

synthetic warps. We see psphot on the warps also successfully recovers the input

magnitude. The medians and interquartile ranges are given in Table 2.2. From

comparing Table 2.1 to Table 2.2 we see no evidence of the warping significantly

modifying the scatter or offset from total of the recovered magnitudes. The only
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Figure 2.7: The input magnitude versus the recovered magnitude for galaxies (above)

and stars (below), for synthetic objects placed on a synthetic warp. The red stars

mark the median values, the error bars mark the upper and lower quartiles.



2.8. Testing Warped Images with Synthetic Data 54

21.0 21.5 22.0 22.5 23.0 23.5
Input Magnitude

0.0

0.2

0.4

0.6

0.8

1.0
R
ec
o
v
er
ed

F
ra
ct
io
n

XY21
XY22
XY31
XY32
Warp

Figure 2.8: The fraction of synthetic stars detected as a function of their input

magnitude, for the 4 detrended exposures and the warped created from them. Curves

have been corrected for fraction of the images masked.

difference larger than 0.02 magnitudes is for the brightest galaxies in a magnitude

range where we have few objects and the scatter is large. The few objects on the

detrended exposures that are not within the field of view of the warp could explain

this difference.

We also wished to test if warping has any affect on image depth. Fig. 2.8 com-

pares the depth of the warp with those of the four detrended exposures. The warp

depth is greater than the shallowest OTA. Given that different detrended exposures

contribute varying amounts of area to the warp, Fig. 2.8 shows no evidence that

warping is modifying depth. Again this is the expected result, since the covariance

pseudo-matrix should track any changes to the noise introduced by warping.

Overall these results indicate the warping process does not introduce systematic

errors in the magnitudes or probability of detection of PS1 objects.
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2.9 Testing Stacks with Synthetic Data

The stacking process is perhaps where systematic errors are most likely to arise,

as it is a more complex procedure than warping. Warping is an image transform

which, if carried out correctly, should conserve flux. Stacking, on the other hand,

involves averaging multiple images, with different backgrounds and PSFs, and ap-

plying statistical outlier rejection (such as median clipping). The resultant stack

should have a higher signal-to-noise ratio than the individual images and will have

a complex variable noise pattern, owing to the variable coverage. In order to test

the stacking process we change our approach slightly and add synthetic objects to

real warps. This saves us from producing the large number of detrended exposures

which combine to make one stack, it also has the added benefit of using real image

backgrounds complete with any sources of noise or systematics unmodeled by our

synthetic images.

We do not model the effect of the warping procedure on a synthetic object’s flux,

beyond ensuring we use the appropriate pixel scale and zeropoint for the warps.

Since we already convolved the synthetic objects by the PSF, this extra convolution

by the much smaller warping kernel is unlikely to affect our results. When generating

synthetic objects we still draw their morphological characteristics from our realistic

distributions, but we simply add a set number of synthetic objects which is much less

than the observed number density. This is because real objects are already present

on the image, and to duplicate their number would result in excessive crowding and

so excessive overlaps between objects.

Fourteen real warps with our added synthetic images were stacked using the IPP

routine ppStack, which is the same set of software that is used to produce the

real stacks. The routine produces images, masks, coverage maps and variance maps

complete with spatially varying background noise from our warps. The end product

is a version of the rP1-band, 540 second exposure SAS2 stack with id 1034502,

complete with synthetic objects.

Fig. 2.9 shows the difference between the input magnitude of the synthetic ob-

jects and their measured magnitude from the stack. As before the medians and

interquartile ranges are given, in Table 2.3. We see again that psphot does a good
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Figure 2.9: The input magnitude verus the recovered Kron magnitude for galaxies

(above) and stars (below), for synthetic objects placed on real warps and then

stacked. The red stars mark the median values, the error bars mark the upper

and lower quartiles.
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Table 2.3: The median and interquartile range of the difference between total input

synthetic magnitude and the recovered Kron magnitude on a stack. Measured from

synthetic objects placed on real warps and then stacked.

Magnitude Star Median ∆Quartile Galaxy Median ∆Quartile

17.2 0.09 0.01 0.08 0.08

17.8 0.09 0.01 0.17 0.08

18.2 0.09 0.02 0.12 0.09

18.8 0.10 0.03 0.12 0.10

19.2 0.10 0.03 0.13 0.10

19.8 0.10 0.04 0.15 0.09

20.2 0.11 0.06 0.16 0.11

20.8 0.12 0.07 0.17 0.14

21.2 0.13 0.12 0.18 0.18

21.8 0.13 0.18 0.17 0.25

22.2 0.11 0.31 0.17 0.35

22.8 0.13 0.37 0.21 0.40
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job at recovering the correct magnitudes: the magnitudes offsets on the stacks are

in accord with those on the warps and detrended exposures. We can also see the

stacking procedure decreases the scatter on the recovered magnitudes, particularly

for faint stars and for galaxies. This suggests that the stacking and the spatially

varying number of input warps does not introduce systematics into the magnitude

measurements.

The top panel of Fig. 2.10 shows the area between the detection efficiency curves

for synthetic stars on the deepest and shallowest warps, in the grey region, and the

stellar detection efficiency curve from the resultant stack, in red. If a certain SNR

corresponds to a certain detection fraction, and the stacking procedure lowers the

noise by the square root of the number of input warps,
√
N , then the image should

get deeper by −2.5 log10(
√
N) magnitudes. The mean number of input warps for any

pixel on this stack is N = 8.8, as measured from the coverage maps. We therefore

expect a 1.18 magnitude increase in depth; this value is indicated by the arrow on

Fig. 2.10. We can see the stacking procedure successfully increases the depth by

the expected amount.

The bottom panel of Fig. 2.10 gives the difference in warp and stack depth for

galaxies. We can see that the improvement in galaxy depth is arguably greater

than expected from the simple
√
N scaling argument, and is greater than the depth

increase of synthetic stars. This could be due to fainter galaxies having smaller

angular sizes and as such being easier to detect. Note that Fig. 2.10 still shows that

in these stacks galaxies are harder to detect than stars.

So far we have found no evidence that the warping and stacking processes intro-

ducing errors into the source magnitudes. We have also shown that the depth scales

as expected with stacking. The depth of the typical SAS2 stack presented here is

consistent with the Paper I rP1-band ‘turnover magnitude’, which is the magnitude

at which number counts begin to decrease. It appears from Fig. 2.10 that the Paper I

turnover magnitude of rP1 = 22.8 corresponds to a detected fraction of around 80%.

The benefit of the turnover magnitude is that it is easily measured across multiple

bands, Paper I found its value to be 23.0, 22.8, 22.5, 21.7, 20.8 in the gP1, rP1, iP1,

zP1 and yP1-bands respectively. Paper I suggests that the turnover magnitudes for
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Figure 2.10: The fraction of synthetic stars (above) and galaxies (below) detected as

a function of their input magnitude, for a stack with added synthetic objects (red).

The grey region gives the region between the detected fractions for the deepest and

shallowest of the warps input into the stack. The arrow gives the expected scaling

of depth between the warps and the stacked warps.
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Figure 2.11: The predicted n(z) of PS1 3π data, created by applying the estimates of

finished 3π depth to our mock catalogue. The legend gives the different combinations

of bands in which a detection is required. The gP1 and yP1-bands are the shallowest,

and seem to cause the greatest decrease in depth.

the full 3π data will be 0.4 mags brighter due to the poorer seeing when compared

to SAS2. We can use these brightened limits to predict the redshift distribution of

3π galaxies, by applying them to our mock catalogue.

In Fig. 2.11 we show the predicted n(z) from applying the predicted 3π mag-

nitude limits to the mock catalogue, applying the cut on each galaxy in different

combinations of bands. The gP1 and yP1-bands are the shallowest, and seem to

cause the greatest decrease in depth. Clearly to yield the deepest data set one

would not require a detection in these bands. However, for photometric redshifts

these bands may be needed. Now we have studied the depth of PS1 data, we will

analyse magnitude dispersions and the background power spectra more closely.
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2.10 Image Background Power Spectra

An interesting statistic that one can measure from an image is the power spectrum

of the image background pixels. This power spectrum contains information about

any features in the noise of the image. To measure power spectra we compute the

Fourier transform of the image using the routine fourier from the Starlink Kernel

Applications Package (KAPPA)6. The amplitude of the resultant 2D Fourier trans-

form is squared in order to compute the 2D power spectrum. From the 2D power

spectrum the circularly averaged power spectrum, P (k), is measured in circular an-

nuli using the KAPPA routine elprof. We measure the power specta of a PS1

SAS2 detrended exposure, an SDSS DR7 tile from around the same region of sky

and a synthetic image designed to replicate the real detrended exposure. To test if

galaxy clustering affects the results, we use the angular positions of the synthetic

objects taken from the Merson et al. (2013) lightcone, so that the galaxy clustering

predicted by the Lagos et al. (2011) model is included in the synthetic image. SDSS

tiles have a constant offset from zero, called a “soft bias”, which was subtracted

from the image to avoid adding a large k = 0 term to the power spectrum.

SDSS tiles are smaller than PS1 images, additionally we trimmed down the

images to square sizes. The final image sizes used were 1000 by 1000 pixels for

SDSS, and 4000 by 4000 pixels for PS1. This sets the size of bins, ∆k = 2π/L,

to be ∆k ∼ 0.006 arcseconds−1 and ∆k ∼ 0.02 arcseconds−1 for PS1 and SDSS

respectively. This information is important for Section 2.11.

The measurement of the power spectrum of the pixel background is complicated

in two ways. Firstly, astronomical images contain sources, the light from which can

have a huge effect on the measured power spectrum. The second complication is

that masking, and the finite size of the image, results in measurements of the power

spectrum that are convolved with a window function of the mask, W 2
mask, i.e.

P (k) =

∫

Pt(k
′)W 2

mask(k− k′)d2k′ (2.10.8)

where P (k) is the measured power spectrum and W 2
mask the window function. This

6http://www.starlink.ac.uk/docs/sun95.htx/sun95.html, accessed 23/09/13
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window function is the square of the Fourier transform of the image mask. We will

deal with the issue of astronomical sources in the image first.

To remove the effect of sources on the background power spectrum measure-

ments, we detect all objects on the images using the source detection software sex-

tractor (Bertin & Arnouts, 1996) (we use this instead of psphot simply because

the software we use to construct a mask requires input from a sextractor cat-

alogue). We use this catalogue to produce masks which cover sources, the size of

masks is set to be some multiple, S, of the source size as measured by sextractor.

We will discuss the choice of S later in this section. We additionally mask, by hand,

regions of the image that are affected by diffraction spikes and use the IPP masks

to remove suspect pixels. Masked pixels are all assigned the value zero.

Dealing with the effects of the masking is more difficult. The masks of differently

sized sources, cell gaps, diffraction spikes and suspect pixels are complicated and as

such will modify the power spectrum in a scale dependent way. As a first step to

dealing with masking we can use of Parseval’s theorem,
∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
|F (k)|2dk (2.10.9)

where f(x) and F (k) are a function and its Fourier transform. If a certain fraction of

f(x) is masked, then the integral on the left hand side of Eq. 2.10.9 will be decreased

by the masked fraction. In order for Eq. 2.10.9 to still be true, |F (k)|2 must also

decrease by the masking fraction. As P (k) = 〈|F (K)|2〉, the power spectra will also

be decreased by the masked fraction. To compensate for this we therefore divide

the image power spectra by the fraction of unmasked pixels in the image. This is

similar to the fsky approximation commonly used in CMB analysis, where fsky is the

fraction of sky imaged. Compensating for the shape of the window function is far

more complicated. However, as we shall show in Section 2.11, the window function

is similar for the different images and masks we utilise here, so it is fair to compare

these measurements. To determine the optimum value of S, we produced masked

images with different values of S, and measured their power spectra. An example

2D power spectrum from the real PS1 detrended exposure, with S = 600%, is given

in Fig. 2.12. An obvious vertical line, corresponding to pertubations perpendicular

to the rows of pixels, can be seen in Fig. 2.12. This vertical line is at the correct
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Figure 2.12: The 2D power spectrum of a PS1 SAS2 detrended exposure. The

vertical feature relates to noise perpendicular to the rows of pixels, so we believe it

is related to the row-by-row bias issues. The peaks at around 30 degrees from the

vertical are thought to be caused by radio interference in the electronics.
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200% Source Size

400% Source Size

600% Source Size

800% Source Size

1000% Source Size

1200% Source Size

Figure 2.13: The power spectra for a real PS1 detrended exposure, a synthetic PS1

image and an SDSS tile. Different lines in each panel refer to different sizes of mask

to remove sources from the images. The legend indicates which line refers to a

certain mask size, expressed as a percentage of the measured source size.

orientation to be related to the row-by-row bias mentioned in Section 2.3. An

additional feature of the 2D power spectrum are small peaks around 30 degrees

from the vertical. These peaks are caused by a regular diagonal noise feature, the

only candidate for this type of pattern is radio frequency interference in the detector

electronics. The circularly averaged power spectra as a function of S are shown in

Fig. 2.13. Whilst changing S may change the shape of the window function, the

overlap between different power spectra at small scales suggests this is not a large

effect. Increasing the mask size decreases the larger scale power for all of the power

spectra. This suggests light leaking from masks can add power on larger scales to
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the power spectrum. We choose to adopt a mask size of S = 600%, as the shape of

the power spectra changes very little for larger values of S. All of the power spectra

show increased power at scales larger than k ∼ 1, which corresponds to sizes of

around 2π arcseconds. This power continues increasing to larger scales regardless

of the mask size, suggesting this cannot be attributed to light leaking from masks.

As this upturn exists in the synthetic images, some of this excess power may be due

to faint, undetected objects which are present in the image background. However,

the large scale power is much greater in the SDSS image and the PS1 image than in

the synthetic image. This suggests the existence of further, larger contributions to

large scale power that are not modelled in the simulated image. Additionally, the

PS1 power spectrum appears to have more larger scale power than the SDSS power

spectrum. We will test this is not just an effect of the different masks in Section

2.11.

In addition to the large scale power, we can also observe peaks in the power

spectrum of real PS1 data in Fig. 2.13. These peaks occur at log10k ∼ 0.58 and

log10k ∼ 0.87, corresponding to wavelengths of 1.7 arcseconds and 0.85 arcseconds.

The cause of these peaks is bright spots in the vertical line seen in Fig. 2.12. As

this vertical line corresponds to noise perturbations between different rows of pixels,

the row-by-row biases (Section 2.3) are a likely cause. The radio frequency interfer-

ence peaks in Fig. 2.12 are too small to be visible in the circularly averaged power

spectrum.

2.11 Estimating the Window Function

To estimate the effects of the window function on our measurements, we begin

by producing an unmasked image with a power spectrum comparable to that of

our data. We only have measurements of true power spectrum convolved with the

window function, so we cannot use these. As a simple test we therefore generate a

random image of noise with a ramp across it, i.e. an offset in the pixel value that

increases linearly across the x-axis. Adding this ramp is designed to emulate the

large wavelength elements of the noise we see in the real image power spectra. We
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Figure 2.14: The measured power spectrum of a synthetic image with a ramp offset

added, i.e. a offset from zero proportional to the x-axis position in the image. The

lines show the recovered power spectrum after different masks have been applied to

the image, as indicated in the legend.

generate this image with a pixel rms equal to the synthetic PS1 image, which was

measured from empty regions of the real image. Fig. 2.14 shows the power spectrum

of this test image, with and without our masks applied. We also show the same for a

synthetic SDSS image with no sources and a ramp. For the SDSS image we increased

the pixel variance and ramp amplitude by the area difference, and ensured the ramp

had the same slope in arcseconds as for the PS1 image. We see that the effect of the

window function is to spread power from larger scales to smaller scales, which is to

be expected from the convolution in Eq. 2.10.8. We do however see that the SDSS

and PS1 window functions have a similar effect on the power spectrum, suggesting

that PS1 does genuinely have more larger scale power than the SDSS image, i.e. it

is not just a result of differences in the window function. Fig. 2.14 also shows the

difference in the window function between masks with two different sizes, we see
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Figure 2.15: The power spectra of background pixels, for a PS1 SAS2 detrended

exposure, a warp and an SDSS tile. We see the turnover in the warped image

spectra caused by the convolution kernel smoothing out noise on small scales. The

amplitude of the spectra here have been shifted such that they overlap with the

warp spectra, for easier comparison.

that there are some differences, but these differences are far less then the difference

in the power spectra for different mask sizes seen in Fig. 2.13. This supports our

previous conclusion that the difference seen in the power spectra for different mask

sizes is due to removing different amounts of light from sources.

2.12 The Effect of Warping on Image Backgrounds

To see the effect of the warping process on noise, we study the pixel power spectra

of the image background of a PS1 detrended image and a warp partially made from

that detrended exposure. Note that multiple detrended exposures produce one warp

so the warping process is not the only source of difference in the two images.

We show the circularly averaged power spectra for a PS1 OTA and the warp
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resulting from it in Fig. 2.15. As a comparison we show the power spectrum we

measured from our SDSS DR7 tile. The SDSS tile has a different background pixel

rms to that of the PS1 images, we have therefore arbitrarily normalised the power

spectra to overlap for easier comparison. This removes information about noise in

absolute terms in Fig. 2.15, but still allows us to see the relative contribution to the

background noise from different wavenumbers.

Small scale noise is clearly removed from the warp with a turnover visible in its

power spectrum at around 1′′. This suggests the warping process will decrease the

pixel rms but should not affect measurements from larger apertures which are more

sensitive to larger scale noise. Note that, even in this case, to estimate noise within

apertures from the variance map one still needs to use the covariance pseudo matrix.

On larger scales, the warping process leaves the power spectrum unaffected. The

OTA and the warp both have more excess power on large scales than the SDSS

data; this excess appears at the scale, k ≅ 0.2 arcseconds−1. Note that this k may

be an overestimate, as the window function acts to spread power from larger scales

to smaller scales of the power spectrum.

2.13 Magnitude Dispersions

So far we have studied the many different noise contributions to PS1 images. We will

now try and understand how these noise contributions affect a more practical issue:

the measurement of magnitudes. To investigate this we study the rms of the total

flux recovered from differently sized apertures placed onto the image backgrounds.

Neglecting source noise, these measurements of rms should be representative of the

scatter in recovered magnitude measurements. Using sextractor we put down

apertures on the backgrounds on the masked SDSS, PS1 detrended exposure and

synthetic PS1 images. Apertures are placed on a grid to avoid overlaps, and aper-

tures are only placed on unmasked regions. To avoid complications we do not fit

a background to the image in sextractor. For each aperture size, 150, 350 and

950 apertures where placed on the SDSS, real PS1 and synthetic PS1 images respec-

tively. The different number of apertures arises due to the difference in size between
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the SDSS tile and the PS1 images, as well as the difference in the fraction of the

images masked. The rms of the sum of the pixels enclosed by the different apertures

is measured. For white noise this should scale like

rms =
√
πR2σ2 (2.13.10)

where R is the radius of the aperture and σ2 the pixel variance. We therefore expect

a linear relation between aperture radius and the rms scatter of measurements of

the background between different apertures. Fig. 2.16 shows the results of our

measurements. The SDSS image and the synthetic PS1 image follow the expected

linear relation. The real PS1 data breaks from the linear relation for larger apertures.

An explanation for this could be the large scale noise in the power spectra, which

would act to enhance the noise measurements for larger apertures. To study if this

is the case we will now use our measurements of the background pixel power spectra

to estimate the rms between apertures.

The integral of the power spectrum of an image gives it variance. Imagine

convolving an image with a circular aperture, e.g.

fc(r) =







1
πR2 if r < R

0 otherwise
(2.13.11)

with r =
√

x2 + y2, and then measuring the rms of the resultant image. This rms

would be the rms of the sums of pixels within different the apertures placed on the

unconvolved image. We can use this to estimate what this rms would be from the

power spectrum, by recalling that a convolution in real space is a product in Fourier

space. Also recall from the physics of optics that the square of the Fourier transform

of a circular aperture, called the Airy Pattern, is given by

FAiry(k) =

(

2πJ1(kR)

k

)2

(2.13.12)

where J1 is the first Bessel Function. We can then predict the rms, σaper, in apertures

of radius, R, from the measured power spectrum via

σ2
aper = 2π

∫ ∞

0

P (k)FAiry(k)kdk. (2.13.13)

In practice we only integrate up to the Nyquist frequency of the FFT estmate of

P (k). For the apertures we show here, this is beyond the point where the Airy
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Figure 2.16: The rms scatter between different apertures placed onto image back-

grounds, as a function of aperture diameter. The dashed lines give the prediction

from integrating the measured power spectra.

function falls to a small amplitude and, as such, including the larger values of k

would make a negligible contribution to the integral. We see that the estimates

from integrating the power spectra agree with the SDSS data and synthetic data

but not with the real PS1 image. This is likely to be related to the effect of the

window function. Power in the power spectrum is shifted to smaller scales by the

convolution with the window function, so the predicted magnitude dispersions would

be artificially increased for smaller apertures. It does however seem convincing from

Fig. 2.16 that the larger scale power in the power spectra does lead to the observed

enhancement in scatter for larger apertures. When estimating magnitude errors,

e.g. for photometric redshift estimates, one therefore needs to be careful to account

for this. We leave this to later work, when tests like this can be extended to the full

3π survey.
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2.14 Summary

This chapter has introduced PS1 and our technique of producing synthetic images,

in addition to testing various parts and features of PS1 images and the IPP. Our

synthetic images use a combination of galaxy formation models and empirical rela-

tions to generate realistic galaxy magnitudes, shapes and sizes. The IPP PSF model

is utilised, along with de Vaucouleurs and exponential profiles to produce synthetic

images of stars and galaxies. Synthetic image backgrounds are also produced using

real masks and measured background noise.

We have utilized these synthetic images to demonstrate that IPP can success-

fully recover the magnitudes of galaxies for detrended exposures, warps and stacks.

Also using our synthetic images, we have confirmed that the image depth scales as

expected from stacking the images.

By studying the background pixel power spectra of SDSS and PS1 images, we

find that both contain non-Gaussian features. Both have excess power on larger

scales, though the PS1 image we studied has significantly more than SDSS. PS1

also has spikes in its pixel power spectrum, which we believe are caused by the

row-by-row biases affecting the read-out from the CCDs. The excess larger scale

noise may be increasing the rms scatter in the background, as measured in larger

apertures, beyond what one would expect from scaling up the rms measured in

smaller apertures. This effect would need to be taken into account if one wanted to

accurately model magnitude dispersions, which is useful for measuring photometric

redshifts.



Chapter 3

Galaxy Clustering with PS1

The finished 3π survey will have spatially varying depth, due to the nature of the

camera and the survey strategy. This chapter presents a method to correct galaxy

number counts and galaxy clustering for this potential systematic based on a simpli-

fied SNR measurement. A star and galaxy separation method calibrated using our

realistic synthetic images is also presented, along with an approach to mask bright

stars. Overall, this chapter will build on the work of Chapter 2 and of Paper I to

prepare for measuring galaxy clustering in PS1 3π. To begin, we will introduce the

comparison data we use to test our measurements of clustering and calibrate our

SNR based, spatially varying depth correction method.

3.1 Comparison Data

3.1.1 SDSS magnitudes and flags

The SAS2 field overlaps with SDSS DR8 and is partially covered by the SDSS Stripe

82 co-added data (Annis et al., 2011). The size of the Stripe 82 overlap region is

around 16 square degrees (see figure 1 of Paper I). We compare PS1 to both of these.

Stripe 82 comparisons are particularly useful as Stripe 82 is deeper than PS1.

SDSS measures magnitudes in an asinh magnitude system (Lupton et al., 1999).

We adjust this to the standard Pogson system using the formula available on the

72
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Figure 3.1: The difference between r-band SDSS Stripe 82 Petrosian magnitudes and

rP1-band PS1 Kron magnitudes, for all objects in an overlap region. Points with

error bars show the median values along with upper and lower quartiles. The two

magnitudes are fairly well matched, with a small median offset that varies slightly

with magnitude.

SDSS website1. This adjustment is very small, at its maximum value, at r = 23.0,

it is only 0.04 magnitudes in size. The SDSS bands are slightly different to those of

PS1, transformations are given in Tonry et al. (2012). These transformations in our

comparison band, rP1, are very small, less than 0.01 magnitudes for a wide range of

colours in figure 6 of Tonry et al. (2012), and hence are neglected.

SDSS DR8 and SDSS Stripe 82 do not provide Kron magnitudes. Whilst the

SDSS magnitudes measured using model fits, so called “modelMags”, give an esti-

mate of the total magnitude of a galaxy, we want to select a magnitude estimator

1http://www.sdss3.org/dr8; accessed 27/07/2012
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most similar to our Kron magnitudes (see Paper I for PS1 Kron and SDSS mod-

elMag comparisons). Petrosian magnitudes (Petrosian, 1976), a modified form of

which are provided by SDSS (see Blanton et al., 2001; Yasuda et al., 2001) measure

flux within an aperture of a size determined by the ratio of a surface brightness in

an annulus around a source to the average surface brightness of the region interior

to that annulus. In theory the fraction of flux enclosed by a Kron magnitude and a

Petrosian magnitude could differ. A comparison of PS1 measured Kron magnitudes

and SDSS DR8 Petrosian magnitudes (Fig. 3.1) shows that these two magnitude

measures are fairly well matched in the rP1-band and r-band for objects in SDSS.

To define SDSS galaxies we use the Strauss et al. (2002) star-galaxy separator,

rpsf − rmodel > 0.3, (3.1.1)

where rpsf is the SDSS PSF magnitude and rmodel is the SDSS model magnitude. We

use SDSS flags to remove false positives in SDSS DR8. Following the spectroscopic

target selection of Strauss et al. (2002) we reject SDSS objects with saturated

or bright flags, and require the binned1 flag to be set for the r-band (i.e. a 5σ

detection). To remove low surface brightness false positives, following Strauss et al.

(2002), we apply to the DR8 data a Petrosian half light surface brightness cut of

µ50 = mpetro + 2.5log10(πR
2
50,petro) < 24.0, (3.1.2)

where mpetro is the Petrosian magnitude and R50,petro is the radius enclosing 50%

of the Petrosian flux. Strauss et al. (2002) adopted a similar cut to remove low

surface brightness false positives; though they used a slightly more complicated cut

than this, which was dependent on sky values and fibre magnitudes. We adopt our

simplified, less conservative cut (that of Strauss et al. (2002) could be as bright as

µ50 < 23.0) as we find it is sufficient to remove SDSS false (unmatched to PS1)

detections from the magnitude ranges we consider. Applying this surface brightness

cut limits SDSS DR8 depth faintward of r = 20.0, so we do not compare to SDSS

DR8 faintward of this value. With more work it is likely to be possible to measure

SDSS DR8 clustering over SAS2 for galaxies fainter than this, but we choose instead

to use PS1 Medium Deep data for faint clustering comparisons as it is much deeper

than both 3π SAS2 and SDSS DR8.



3.1. Comparison Data 75

�0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
g	r

18

19

20

21

22

23

24

25

r

0

10

20

30

40

50

60

70

80

90

100

N
p
er

1
0


3
m
a
g

Figure 3.2: A colour magnitude diagram of Stripe 82 galaxies, using Stripe 82

apparent model magnitudes. The red dashed line marks our separator between red

and blue galaxies.

We do not apply any surface brightness cut to Stripe 82 data as our main use of

Stripe 82 is to estimate PS1 depth and these cuts could limit Stripe 82 depth. How

Stripe 82 false detections affect this work will be discussed in Section 3.4. Stripe 82

does not have a publicly available mask for the co-added data, so we created our

own by visual inspection of the area. This masks defines areas with no Stripe 82

imaging and removes a satellite trail in Stripe 82.

A further use for Stripe 82 is to test how strongly detection efficiency depends on

apparent colour. A galaxy’s colour is correlated with its morphology, red galaxies

tend to be ellipticals and blue galaxies tend to be spirals. Galaxies with different

morphologies have different surface brightness distributions and as such may have

a different chance of being detected. Since galaxy clustering is a function of colour

and morphology, with red ellipticals being more clustered (see e.g. Chapter 4), this
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effect could modify our clustering result as depth corrections are based soley on

apparent magnitude. Fig. 3.2 shows a colour magnitude diagram using Stripe 82

model magnitudes for objects classed as galaxies by Stripe 82’s own morphological

star and galaxy separator, type = 3. We separate galaxies on the red sequence

from those in the blue cloud using the cut indicated on Fig. 3.2, (g − r) = 1.4.

We will use this sample of red and blue galaxies when testing the dependence of

detection efficiency on apparent colour and hence morphology.

3.1.2 PS1 Medium Deep Data

When comparing our faint galaxy clustering to other measurements we both compare

to literature data and to results from the much deeper and more spatially homo-

geneous PS1 Medium Deep survey. Foucaud et al. (in preparation) have produced

their own stacks of Medium Deep field 7 (MD07) using PS1 exposures and reduced

them using SExtractor (Bertin & Arnouts, 1996). The MD07 stack consists of

more than 100 exposures, each of which are longer than 3π exposures. The longer

exposure time makes it more likely that the noise in the exposures is dominated

by the sky, making them less subject to noise features from the CCD electronics.

The limiting magnitude of the MD07 stack is around rP1 = 25. Unfortunately,

MD07 does not overlap with SAS2, but instead is roughly centered on α = 213 deg.

and δ = 53.0 deg. Foucaud et al. (in preparation) measure the Kron magnitudes

of galaxies, using SExtractor MAG AUTO, and star/galaxy separate using a

combined morphological and SED fitting approach. They also adopt a mask to re-

move bright stars and poorer quality data. After masking, MD07 has an area of 7

square degrees, much smaller than the SAS2 field. For more details on these stacks

see Jian et al. (2013) and Foucaud et al. (in preparation).

Now the comparison data has been introduced, we will move on to explain how

we create angular masks.
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3.2 Angular Masks and False Positives

3.2.1 Creating the mask

To create a set of random points suitable for measuring clustering and to remove

regions of low data quality we define a new set of angular masks. These masks differ

from IPP image masks in that a single, unique mask covers the whole region of

interest. In IPP two overlapping skycells will have two different masks, one for each

skycell. As well as masks we produce variance maps and coverage maps binned-up to

the same resolution as our mask pixels. We take variance maps at the native pixel

scale and compute their mean on a grid of 120002, 3.3′′ × 3.3′′ equal area pixels,

which covers the whole SAS2 area. The binned up pixels are a grid with separations

defined in arcseconds, not IPP pixels. Within this grid, it is possible for individual

IPP pixels not to align with the boundaries of the binned-up pixels. In such cases,

rather than resampling, we simply take a “nearest-neighbour” approach and assign

the IPP pixel to the nearest binned-up pixel. Our binned up pixel grid has the same

rotation as the IPP pixels. For our coverage maps we take the lowest value of any

IPP pixel contributing to our binned-up pixel, rather than the mean. This is in

order to be conservative in our estimates of low coverage areas. Our binned-up pixel

size was chosen to preserve the fine structure in the variance whilst still yielding a

mask of manageable size. Experimenting with different mask and map pixels sizes

and different mask and map tessellations is left for later work.

Only taking into account the variance recorded in the variance maps would result

in underestimating the noise, as we would be ignoring the covariance. We therefore

multiply the variance values from IPP variance maps by the sum of the elements

of their associated covariance pseudo-matrix (see Section 2.2.1). This is almost the

same as multiplying all of the variance map values by a constant, as the rms of this

scaling factor, given in Section 2.2.1, is only around 0.5% across the SAS2 field. We

carry this scaling out to allow easier comparison to the work of Chapter 2, which

works with uncorrelated noise measurements. We also apply this scaling now as it

could become more important if the warping kernel were to change.

Where data from two skycells overlap we take data from the skycell whose centre
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is closest to the overlapping data. We do this for both the pixels and the object

detections to ensure the catalogues, masks and maps are consistent.

As well as defining the basic geometry of the survey, we also use angular masks

to avoid two other types of potential problem: deblending and image artifacts.

3.2.2 Masks for bright stars

In common with a large amount of image reduction software (see e.g Bertin &

Arnouts, 1996), psphot can mistakenly split bright objects and diffraction spikes

into multiple detections. To avoid this we mask out regions around bright stars. To

define a bright star sample we use photometry from the UCAC4 catalogue (Zacharias

et al., 2013) rather than PS1, since PS1 saturates at around rP1 < 15.0. We use

R-band photometry from the UCAC astrograph up to a bright limit of R = 10.0,

where the astrograph becomes saturated. To mask even brighter objects we use

V -band data from Hipparcos, FK6 and Tycho-2. These data are already included

in the UCAC4 catalogue. Zacharias et al. (2013) states that the UCAC4 catalogue

is a complete catalogue of stars down to R < 16.

We identify the required mask sizes as follows. We find likely candidates for

false positives by identifying objects in the rP1-band that are not in the iP1-band

catalogue, with a 0.5′′ matching radius. To eliminate objects that are not detected

in both bands due to image depth, we remove objects with rP1 > 20.0. We assume

these candidate false positives trace the spatial distribution of all false positives

caused by bright stars. Selecting the central, deeper region of SAS2 we count “false

positive” and UCAC4 pairs as a function of angular separation, FU(θ), as well as

pairs of “false-positive” and random points uniformly distributed across the area,

FR(θ). We calculate the ratio of these pairs

NFU(θ)

NFR(θ)
=

FU(θ)

FR(θ)

nR

nD

(3.2.3)

where nD is the number of UCAC4 objects and nR is the number of random points.

This technique is very similar to that used to compute a cross-correlation function.

This technique can be used to map out the scale out to which one finds false pos-

itives around stars of different magnitudes. In Fig. 3.3(top) we plot the results for
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various UCAC4 R magnitude and V magnitude ranges. Note that the brightest bin

contains only one V = 2.33 magnitude star. From Fig. 3.3(top) we can see brighter

objects cause false positives out to a larger spatial extent than fainter ones. We

also see a relative deficit of false positives at smaller separations. This is due to

masked, saturated regions closer into the bright object. Note that false positives

are preferentially found near brighter objects all the way down to the magnitude

limit of R = 15.0. The ratio FU(θ)
FR(θ)

is an indicator of how much more likely one is to

detect a false positive at a given separation from an object of a given magnitude,

over a finding a false positive at that same distance from a random position. Whilst

Fig. 3.3(top) shows one is ten times more likely to find false positives at a separation

of 3′′ from objects with 14 < R < 15, it does not imply that all of these objects

cause false positives, and in real terms the number of bright false positives is very

small. To decide on the size of mask to put on bright objects as a function of R and

V magnitude, we use the last crossing of the log 10(NFU(θ)/NFR(θ)) = 1.0 line as a

reference separation and increase this distance by 50%. The curve describing mask

size is smooth across the V -band to R-band boundary, see Fig. 3.3(bottom). We fit

these sizes with a simple power law, truncated such that mask size cannot be less

than one mask pixel (i.e. 3.3′′),

rmask =







7.26(13.0−m)1.65 if rmask ≥ 3.3

3.3 otherwise
(3.2.4)

where rmask is the mask radius in arcseconds, and m is the stellar magnitude. We

use this to mask down to R < 15 and V < 10.

3.2.3 Masks for regions of low quality data

The second potential issue we combat with masks is that certain regions of PS1

images have instrumental signatures (i.e. image artifacts) caused by scattered light

and electronic noise. This is particularly noticeable in regions of low coverage where

we do not have sufficient numbers of exposures to remove these image defects sta-

tistically, i.e. by median filtering or outlier rejection in the stacking procedure. We

therefore simply mask regions with a coverage of three exposures or fewer. In the fin-
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Figure 3.3: (Top) The correlation of false positive detections with bright stars in the

UCAC4 catalogue. The lines show the ratio of the number of false to UCAC4 pairs

to the number of false to random pairs as a function of R and V magnitudes from

the UCAC4 catalogue. Using two different bands is necessary as the astrograph

measuring R magnitudes saturates for very bright stars. We see a clear correlation

between false positives and UCAC4 sources. The level at which there are 10 times

as many UCAC4 to false pairs as random to false pairs is marked with a horizontal

dashed line. (Bottom) The largest separation corresponding to this level for each

bin, multiplied by 1.5. A fit to these points (blue curve) sets the size of the bright

source mask as a function of R and V magnitude.
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Figure 3.4: A histogram of the lowest coverage values, i.e. fewest exposures per

stack pixel, in each of our binned up coverage map pixels for the central area of

SAS2.

ished survey the area with coverage this low should be very small. To estimate this

value we took the central area, 331.0 < α(deg.) < 336.0 and −3.0 < δ(deg.) < 3.0,

of our binned up version of the coverage map and produced Fig. 3.4. The central

area of SAS2 should be representative of the finished 3π data and, as such, we can

estimate from Fig. 3.4 that only about 4% of the full survey area should be lost by

this cut.

All of the masked regions are expanded by a one binned-up mask pixel border

in order to exclude from the catalogue objects with unreliable measurements caused

by being on the edge of the mask. This is similar to using cuts in the IPP value

psf qf perfect, which quantifies the fraction of masked or suspicious pixels in a

source (for more details on these cuts see Paper I).
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3.2.4 The effects of masking

The source detections before and after applying the final mask are shown in Fig. 3.5;

the regions of fewer objects on the outskirts of the masked field are not caused by

depth variations but simply the larger number of masked pixels caused by a lower

coverage in these areas. The grid like patterns are also caused by our masking of low

coverage regions; the grid pattern in coverage is caused by gaps between individual

chips on the detector. One can see from Fig. 3.5 how our angular mask removes

peaks of false positives caused by bright objects. Finally we have to mask, by hand,

a square region in SAS2 where the data reduction process failed, an issue that will

hopefully be rectified for the final survey.

A quantitative measure of how our mask removes false detections was made by

cross matching the Stripe 82 and PS1 catalogues after applying our SDSS Stripe 82

mask (see Section 3.1.1) to PS1 data and the PS1 mask to Stripe 82 data. Fig. 3.6

shows the fraction of PS1 objects with no match to Stripe 82, for an ∼ 8 square

degrees overlap region and a matching radius of 1′′, before and after applying the

masking and flags to PS1.

Fig. 3.6 shows a decrease in the fraction of false positives once flags have been

applied and masking conducted. In particular brighter false positives associated with

bright stars are almost entirely removed. Some unmatched objects do remain, but at

magnitudes brighter than ∼ 21 these are mostly real objects missed by Stripe 82 or

objects with proper motions. Fainter than this false positives can be caused by the

previously mentioned instrumental signatures. Note that Paper I achieves similarly

low numbers of false positives by applying the psf qf perfect flag; however the

use of this flag, which depends on the number of masked or suspect pixels near

a source, can change the angular selection function. The approach using masks

presented here deals with these false positives in a way that keeps track of this,

which is more appropriate for clustering studies.

Now the mask has been introduced, we will introduce another vital requirement

to measure galaxy clustering: star/galaxy separation.
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Figure 3.5: (Top) A plot of all detections in SAS2, binned into 0.3 square arcminute

pixels. (Bottom) The same plot after masking and applying the flags specified in

Section 2.2. We can see the circular star masks, the areas near the edge masked

due to our cut on low coverage and the square area masked by hand where the data

reduction failed. Over-densities caused by stars are removed; the remaining darker

regions are caused by variable image depth or genuine over-densities in the object

distribution.
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Figure 3.6: The fraction of unmatched objects as a function of magnitude, error bars

show Poisson noise. The improvement gained from applying the flags and applying

the masking is clear.
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3.3 Star/Galaxy Separation

3.3.1 A morphological separator

The PS1 SAS2 rP1-band skycell 1315.028 was taken as an example and 286 synthetic

galaxies and 300 synthetic stars down to a limit of rP1 ≤ 23.5 were inserted into it,

created as described in Section 2.5. This skycell was chosen as it has a PSF FWHM

typical of SAS2. The PS1 photometry code psphot was run on this skycell and

this process was repeated 40 times yielding data from 11,440 synthetic galaxies and

12,000 synthetic stars. Motivated by the often used star/galaxy separator of a PSF

magnitude minus an aperture-like magnitude (e.g. Strauss et al., 2002), we show in

Fig. 3.7 a histogram of the psphot measured Kron minus PSF magnitude for the

synthetic sources, the real sources in this skycell and for sources over the whole of

SAS2. The number of synthetic galaxies and stars are scaled to the observed number

of objects in each magnitude bin. We can see from Fig. 3.7 that the synthetic stars

and galaxies follow the distribution of the real sources. This indicates we are justified

in using the synthetic objects to define cuts in Kron minus PSF magnitude, with the

synthetic stars following a peaked, stellar locus and the synthetic galaxies following

a broader, more negative locus.

We use our synthetic objects to define cuts in Kron minus PSF magnitude

(∆kron−psf hereafter) that define samples of stars or galaxies. We also adopt a

smallest allowed value of ∆kron−psf for galaxy samples; this removes objects with

extremely negative ∆kron−psf which are likely to be false positives. We place this

extreme ∆kron−psf cut at a value where only 0.5% of synthetic galaxies are to the left

of this cut. Fig. 3.8 shows cuts in ∆kron−psf that define galaxy samples of a given

completeness. These cuts were measured from the histograms in Fig 3.7. The cut

defines a minimum ∆kron−psf for stars or a maximum value for galaxies. The dashed

lines are fits to the cuts using a second order polynomial of the form

rP1,raw − rPSF,raw =
2
∑

i=0

ai(rP1,raw − 21)i. (3.3.5)

Table 3.1 gives the values of the coefficients of this equation for different samples.

We use the 98% cut to define galaxies throughout this work. For this cut we use
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Figure 3.7: Kron minus PSF rP1-band magnitudes for all synthetic objects (black),

synthetic stars (green dashed) and synthetic galaxies (red dashed) placed into the

SAS2 skycell 1315.028, which has a PSF FWHM typical of SAS2 data. Also plotted

are the real sources from that skycell (blue) and all sources in SAS2 (grey shaded

area); the latter is normalised to the area of skycell.1315.028. The vertical dashed

line shows the position of the star and galaxy separation cut for the 98% separator,

the dotted vertical line shows the position of the extreme Kron minus PSF magnitude

cut.
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Figure 3.8: Galaxy (filled points) and extreme Kron minus PSF cuts (open circles) in

the rP1,raw−rP1,PSF,raw versus rP1,raw plane, with colours indicating their completeness

as found by the simulations shown in Fig. 6. The points are fitted with second order

polynomials (Eq. 3.3.5) (dashed lines).
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Table 3.1: Coefficients for the star, galaxy and false positives separator. Percentages

represent the percentage of objects would be included in the sample. The upper or

lower limit column defines the direction of the cut, e.g. an upper limit indicates

only taking values below the given rP1,raw − rP1,PSF,raw line.

Sample a2 a1 a0 Upper or Lower Limit

98% Galaxies 0.018 0.120 −0.192 Upper

95% Galaxies 0.014 0.129 −0.261 Upper

90% Galaxies 0.007 0.129 −0.319 Upper

Extreme ∆kron−psf − 0.417 −1.759 Lower

our synthetic objects, along with fits to the observed SAS2 bright star and galaxy

number counts (shown in Fig. 3.16), to predict completeness and stellar contami-

nation rates. Note that our contamination is one minus what some authors define

as ‘purity’. In Fig. 3.9 the predicted galaxy completeness line follows the 98% line

(solid, black), by construction, down to a faint magnitude limit. Near the end of

this magnitude range the completeness does drop very slightly and this suggests our

fits with Eq. 3.3.5 cannot be used beyond a faint magnitude limit of rP1,kron = 23.0.

The dotted line in Fig. 3.9 shows the completeness of the sample before applying

the extreme ∆kron−psf . This cut, again by construction, has very little effect on the

completeness of real galaxies.

Fig. 3.9 also gives the probability of misclassifying a star as a galaxy (solid red)

and the predicted stellar contamination as a fraction of the galaxy sample (dashed

red). The latter were calculated from our power law fits to the observed SAS2 bright

star and galaxy number counts (Fig. 3.16). We see stellar contamination stays below

10% for all magnitude ranges.

In order to further test our star/galaxy separator, we match our rP1-band data

to the iP1-band and gP1-band and plot the colour-colour and colour-magnitude dia-

grams for stars and galaxies classified via our 98% cut in the rP1-band. The diagrams

in Fig. 3.10 follow those for SDSS objects seen in Finlator et al. (2000). In Finlator

et al. (2000) the shape of the distribution of stars in these plots is explained as

being driven by different spectral types, with M dwarfs causing the upturn in the
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Figure 3.9: The probability of correctly classifying a source as a galaxy using the

98% cut (black) and the probability of misclassifying a star as a galaxy (red solid),

as predicted using our synthetic objects in Fig. 3.7. Also plotted is the predicted

amount of stellar contamination as a fraction of the 98% galaxy sample (red dashed),

found from scaling the probability of misclassifying a star with power law fits to the

bright end of the observed star and galaxy number counts. The dashed line marks

98%, whilst the dotted line shows our completeness before applying the extreme

Kron minus PSF cut. The points with error bars are estimates based on our com-

parison to the spectroscopic classifications of VVDS sources, as explained in Section

3.3.2
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colour-colour diagram and F and G disc stars along with fainter, bluer halo stars

causing the locus at gP1 − rP1 ∼ 0.4. We see no evidence of these features in ob-

jects classified as galaxies, which gives further support to the effectiveness of our

star/galaxy separator.

3.3.2 Comparison to VVDS Spectroscopic Star and Galaxy

Classification

As a final test of our star/galaxy separator, we compare to the spectral classifications

from the F22 field VIMOS VLT Deep Survey (VVDS) (Le Fèvre et al., 2005), which

we downloaded from the CeSAM website3. The VVDS survey is an IAB selected

sample of objects. Objects targeted for redshifts are purely selected on apparent

IAB magnitude to be 17.5 < IAB < 22.5, though the full photometric catalogue is

deeper than PS1 (McCracken et al., 2003; Le Fèvre et al., 2005). F22 and SAS2

overlap by 4 square degrees. We match the two catalogues using a 1′′ matching

radius. From the matched catalogue we select objects which have been targeted

for spectroscopy based on the value of the column zflags, taking zflags=99 to

mean the object was not targeted. Following Ilbert et al. (2005) we also use zflags

to select objects with secure redshifts, by requiring the last digit of zflags to be

greater than or equal to 2. Objects with these zflags are expected to have the

correct redshift 80-99% of the time, depending on their value of zflags (Le Fèvre

et al., 2005).

In Fig. 3.11 we show the fraction of objects in PS1 matched to VVDS as a

function of PS1 raw Kron magnitude. We do not correct for the VVDS mask, which

explains why the curve does not reach unity. An IAB-band selected sample may have

a different morphological mix than an r-band selected sample in the same magnitude

range. From Fig. 3.11 we see the fraction of objects targeted for spectroscopy drops

brighter than around rP1,raw = 18.0 and fainter than rP1,raw = 22.0: this is the

region where the effects of the VVDS IAB-band selection may become important

and as such results from these magnitude ranges may be unreliable. Also note from

3http://www.lam.fr/cesam/?lang=en
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Figure 3.10: Colour-colour and colour-magnitude diagrams, using Kron magnitudes,

of SAS2 objects falling on the star side and galaxy side of our chosen star/galaxy

separator (section 3.3.1). The greyscale bar gives the number of objects in each

colour-magnitude bin. We see the characteristic stellar features highlighted in Fin-

lator et al (2000), such as the upturn in the colour-colour diagram. In support of

our classification we see no evidence of these features in the galaxy sample.
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Figure 3.11: The fraction of Pan-STARRS objects in VVDS as a function of PS1

magnitude: for all VVDS sources (black), VVDS sources targeted for spectroscopy

(green-dashed) and VVDS sources with good redshift flags as described in the text

(red dashed).
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Fig. 3.11 that the fraction of objects with secure redshifts decreases with magnitude,

as one might expect.

A well reported issue in VVDS is its bias against extended sources. Whilst

the targeting criteria is purely based on apparent magnitude the program which

allocates VIMOS slits to targets, the Slit Positioning Optimization Code (SPOC)

(Bottini et al., 2005), is biased against extended sources as they take up more space

on the x-axis of the spectrograph and so decrease the efficiency with which spectra

are taken (Bottini et al., 2005). When computing luminosity functions Ilbert et al.

(2005) corrected for this incompleteness by weighting galaxies in a way proportional

to their x-axis size on VIMOS. For our tests we choose to weight galaxies depending

on their ∆kron−psf . In magnitude and ∆kron−psf bins we measure the completeness

as the ratio of objects with good zflags to all objects matched between PS1 and

VVDS in the overlap region. The weight of each object is then the inverse of the

completeness of its magnitude and ∆kron−psf bin.

When comparing to VVDS there are three different cases to consider. The first

case is where the object is classed as a galaxy in VVDS and PS1, we label weights

for these objects as Wgg. The second case is for an object classed as a galaxy in PS1

but has a VVDS stellar spectral classification, we label weights for these objects as

Wgs. The final case is an object classed as a star in PS1 but with a galaxy spectra

in VVDS, these objects are assigned weights labeled Wsg. The completeness, Cm,

and contamination, Cn, are estimated using the following weighted sums

Cm =
ΣWgg

ΣWgg + ΣWsg

, Cn =
ΣWgs

ΣWgg

. (3.3.6)

We plot these estimates, along with jack-knife errors from 9 re-samplings of the

data, in Fig. 3.9. Estimates of stellar contamination are slightly higher than the

estimates based on synthetic images, but this is only a small discrepancy given the

size of the errors. Estimates of completeness agree until around rP1 = 20 when

it looks like our synthetic source estimates are too optimistic. The spectroscopic

estimates suggest a completeness of around 91%, as opposed to the predicted 98%.

There are several possible reasons for this difference. A major cause of disagree-

ment could be misclassifications in the VVDS sample. To calculate the fraction of
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Table 3.2: The second column gives the probability of a redshift measurement being

correct for different zflags values, taken from Le Fèvre et al. (2005). The third

and forth columns give the fraction of the full sample and discrepant sample that

have certain zflags values. The final column gives an estimate of the total fraction

of PS1 objects with incorrect VVDS estimates of redshift.

zflags Pcorrect FFull FDisagree FFull(1− Pcorrect)

2 0.80 0.25 0.42 0.05

3 0.91 0.22 0.23 0.02

objects in our sample which could be misclassified by VVDS we use zflags. The

value of zflags has been related to the probability of having been assigned the

correct redshift, Pcorrect, by Le Fèvre et al. (2005). We assume this is also the prob-

ability of being correctly classified as a star or galaxy. This is the best approach

available but is unfortunately not ideal, as the probability of correctly classifying

an object as a star or galaxy is not the same as the probability of assigning it the

correct redshift. Indeed, it may be easier to obtain a redshift from a galaxy rather

than a star, so one should be careful to view the following analysis as giving an

upper limit on the misclassification-corrected estimate of completeness.

Table 3.2 gives the different fractions of the full sample, FFull, and sample with

discrepant star/galaxy classification, FDisagree, that have certain values of zflags.

Table 3.2 also gives our estimate of the fraction of objects in the full sample with

incorrect VVDS classification, FFull(1 − Pcorrect). Given that 9% of the full sample

have discrepant classifications, 0.09FDisagree is the number of objects in the discrepant

sample with a certain zflags value as a fraction of the total matched sample. Taking

the minimum of 0.09FDisagree or FFull(1−Pcorrect) for each zflags value in Table 3.2

and summing suggests that 6% of our disagreement could be down to misclassified

VVDS objects. This would lead to a VVDS misclassification-corrected estimate

of completeness of 97%, consistent within random errors with our estimate from

synthetic sources.

Another potential explanation is that the synthetic galaxies may be slightly too
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extended in their ∆kron−psf values. Simplification of modelling galaxies with de Vau-

couleurs and exponential profiles, adopting a mean extinction value for the galaxies,

using redshifts and magnitudes from galform and only generating synthetic images

on one skycell could all contribute to this effect.

From Fig. 3.9 it appears that our classification is around 91%-98% accurate down

to faint magnitudes depending on how you estimate classification completeness.

Brighter than rP1,raw = 22.0 stellar contamination is below 6%, increasing to around

10% at magnitudes fainter than this. The action of stellar contamination, on smaller

scales where the stars are uniformly distributed, is to dilute the clustering by (1−f)2,

where f is the fraction of stars in the galaxy sample (e.g. Hudon & Lilly, 1996; Roche

& Eales, 1999). We will revisit the effect of stellar contamination in Section 3.5.3.

Classification contamination and completeness can influence galaxy clustering

measurements and as such work alternative approaches to star/galaxy separation

are being explored by other groups. Classifications based on SED fits along with

star/galaxy separators calibrated on other data sets and other morphological mea-

surements will be available to help meet the future PS1 science goals.

3.4 Dealing with Variable Depth

The finished PS1 3π survey will have spatially variable image depth for several

reasons. These include spatially varying stack coverage due to masking and greater

or fewer visits to any piece of sky (see Fig. 2.1), varying PSFs, varying photometric

conditions and varying sky brightness. To measure reliable clustering it is vital

to measure the angular incompleteness, otherwise fluctuations in galaxy density

caused by changes in depth would contaminate the clustering measurements. Once

this angular incompleteness is modelled we can deal with it by introducing the same

depth variations into the random distribution of points we use to measure clustering,

which we shall refer to from now on as our “random catalogue”.

One approach to generate such a random catalogue would be to generate syn-

thetic galaxies, place them randomly on PS1 images, run the source detection soft-

ware and add them to the random catalogue if they are detected. If this process
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were carried out as part of the IPP, then it could be a good approach. However, at-

tempting this outside of IPP, using, for example, the synthetic image server (Section

2.6) would be prohibitively slow as IPP software would have to be run many times

on each image. Additionally, results could be sensitive to how realistic the synthetic

galaxies are. We therefore adopt a faster, more empirically rooted approach.

We assume that the probability of detecting an object is only dependent on the

signal-to-noise ratio. In order to make a simplified estimate of the signal to noise

ratio we assume all sources have a Gaussian light distribution. For the stacked

data most galaxies near the magnitude limit have small angular sizes so this is

a reasonable approximation (we further test this later in this section). Using a

PS1 PSF rather than a Gaussian would simply scale our FWHM measurements to

different values, an effect that would be removed by the empirical calibration we

present later in this section. We define the “fiducial” SNR as

SNR =
F

√

πd2FWHMσ
2
, (3.4.7)

where dFWHM is the FWHM of the PSF in units of pixels, F is the apparent flux

of the source (without extinction correction) and σ2 is the variance according to

our variance map. Whilst dFWHM is measured for all PS1 detections, for this work

we use the typical FWHM of SAS2 of 0.94′′. As SAS2 has fairly uniform seeing

this simplifies our work whilst not significantly affecting our results. The downside

of this is that we are unable to test that our method holds for the wide range

of seeing conditions experienced over the whole 3π survey. We use our binned-

up variance maps to extract σ2 which results in the loss of some spatial accuracy.

This is unavoidable due to the otherwise prohibitively slow process of retrieving the

individual variance maps at the native pixel scale.

To calibrate the relationship between our fiducial SNR measurements and source

recovery fraction we again make use of the overlap region with Stripe 82. We use

the Stripe 82 Petrosian magnitude to calculate the fiducial SNR for all Stripe 82

objects and then match to PS1 SAS2 and see what fraction are recovered. We

plot these fractions in Fig. 3.12 in different magnitude bins. The fact that over

different magnitude bins the fiducial SNR values have the same detected fraction
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Figure 3.12: The fraction of Stripe 82 objects detected as a function of fiducial

SNR (Eq. 3.4.7). Overlap between magnitude bins implies the fiducial SNR can

be used as an estimator of the probability of source detection. The red line shows

this quantity as measured from the synthetic galaxies added into real PS1 images

and processed by the standard IPP. The dashed line shows the best-fitting relation

of Eq. 3.4.8, the dotted line marks SNR = 5.0. Error bars are from 100 bootstrap

re-samplings.
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shows that this measurement can be used to assess the probability of detection. We

parameterize this curve with the fitting formula

PDet(SNR) = a erf(b log10(SNR) + c), (3.4.8)

where a, b and c are constants with best-fitting values a = 0.962, b = 2.446 and

c = −1.361. The fact that a is not unity implies there is always some fraction

of Stripe 82 objects undetected by PS1. We believe this fraction is caused by false

positives in SDSS Stripe 82 and visually inspecting a subset of these objects suggests

they are mainly caused by spurious detections in the wings of extended objects. So

long as the number of false positives in Stripe 82 remains a constant fraction of the

real objects this effect should not bias our results. This seems to be the case, as the

curve is flat for large values of fiducial SNR. As a sanity check we also add a curve to

Fig. 3.12 showing the detection efficiency (as defined in Chapter 2) estimated from

our synthetic galaxies, using the input synthetic object magnitude, corrected to Kron

magnitude using a correction of 0.2 magnitudes (explained in Section 2.2.1). Our

estimate of detection efficiency from synthetic objects shows a reasonable agreement

with the real data on the plot, though the synthetic galaxies seem to suggest the

Stripe 82 comparisons slightly underestimate the depth at fiducial SNR values of

around 6 to 9. The differences could be due to multiple causes. For example, it

could be Stripe 82 false positives or slightly above average seeing in the skycell used

in Section 3.3.1. As these differences are only of the order of a few percent we choose

to defer further careful studies to the analysis of the full 3π dataset, where a larger

amount of deeper comparison data will be available.

We can see in Fig. 3.12 that a 5σ SNR implies a 20-30% detected fraction; this

is slightly higher than the detected fraction in Fig. 2.6 for synthetic galaxies on

synthetic detrended exposures. This is unsuprising however as fainter galaxies near

the stack detection limits tend to appear smaller than galaxies near the detrended

exposure detection limits, and so are easier to detect. None the less this highlights

the fact that where the curve of Fig. 3.12 is steep small changes in the SNR can

lead to large changes in detection fraction. To avoid any problems caused by this

we can impose lower limits on the fiducial SNR by excluding spatial regions where
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Figure 3.13: The rP1,raw magnitude corresponding to 50% galaxy completeness as

predicted by our fiducial SNR method. SAS2 is shallower near the edges where there

are fewer exposures, while the pattern of deeper areas across the central region is

more representative of of what we expect from the whole 3π survey.

the SNR is less than some value from our clustering samples. By default we impose

SNR < 3.0, but we experiment with it in Section 3.5.2 in order to test if our results

are sensitive to its value.

Using our binned up variance maps and Eq. 3.4.8 we can produce a map of the

magnitude at 50% galaxy recovery, shown in Fig. 3.13. Note we can produce these

maps even in SAS2 regions without Stripe 82 overlap, as we only need Stripe 82

to calibrate Eq. 3.4.8. One can clearly see the shallower regions near the edges of

the SAS2 field, along with patterns of deeper regions in the central area caused by

the overlapping pattern of input exposures. Fig. 3.13 demonstrates our technique

produces maps of depth to very high resolution, contrast this with the much lower
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resolution depth maps produced using synthetic stars presented in figure 15 of Paper

I. Reassuringly, we see common features, including the shallower edge region and

the deeper diagonal feature.

We use the curve fitted to Fig. 3.12 to correct our random catalogue by making

the chance of placing a random point of a certain magnitude in any region equal

to the detected fraction expected for that region, given the random point’s fidu-

cial SNR. Magnitudes are assigned to the random points from the observed galaxy

counts, uncorrected for extinction. As a first pass we estimate these number counts

by fitting the bright end of the galaxy counts with a power law (in Section 3.5.1

we show we can use our method to yield depth corrected number counts, which we

use to assign magnitudes to the random points). After assigning magnitudes and

deciding if a random is detected, we extinction-correct the random catalogue. This

technique results in a random catalogue with the same spatial depth variation as

the data.

We plot the depth-corrected density of galaxies in Fig. 3.14. To produce this

figure we binned the galaxies and detection efficiency randoms onto the same grid

and then divided the galaxy grid by the random grid, normalising by the ratio of the

relative numbers of galaxies and randoms. To eliminate noise from regions with very

few randoms, generally near the edge of the field, we white-out pixels with fewer

than 5 randoms. Comparing Fig. 3.5(bottom) to Fig. 3.14 we see the over-densities

caused by varying image depth are removed. There are fewer objects in Fig. 3.14

than Fig. 3.5(bottom) as star/galaxy separation has removed the stars.

One key assumption of our depth correction method is that all galaxies in our

sample have the same detection efficiency properties for the same fiducial SNR,

i.e. that secondary parameters such as morphology or colour are unimportant in

determining how likely objects are to be detected (consider Eq. 3.4.7). We argue

that at faint magnitudes galaxies predominantly have small angular sizes and, as

such, look similar to one another after being convolved with the PSF. To further test

this we plot, in Fig. 3.15, the detection efficiency curves of our Stripe 82 red and blue

samples of galaxies. In Fig. 3.15 we see, for the same reasons as in Fig. 3.12, that the

curve does not reach unity. We also see that at brighter magnitudes blue galaxies
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Figure 3.14: The number density of galaxies, binned by right ascension and dec-

lination and corrected for variable depth. We claim over-densities in this plot are

genuine, except those caused by Poisson noise in pixels nearer the edges of the field

which have small numbers of galaxies.
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Figure 3.15: The detected fraction of Stripe 82 galaxies, separated into red and blue

by Stripe 82 colours. We see little evidence that red and blue galaxies have different

detection efficiency properties, despite the fact that their morphology is expected to

be different.
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have a slightly lower detection efficiency. As this effect is at magnitudes far brighter

than our detection limit we attribute this to false positives in Stripe 82 falling on

the blue side of our colour cut. The agreement between the red and blue detection

efficiency curve at faint magnitudes in Fig. 3.15 suggests that an undetected low

surface brightness population of galaxies must either be split equally between our

two colour bins or represent a very small fraction of our sample. This supports our

assumption that at the limiting magnitude of 3π data detection efficiency depends

on a single parameter, SNR. However in small regions of the 3π survey where the

limiting magnitude may be much brighter, and galaxies near this magnitude have

larger angular sizes, the situation may be more complicated.

3.5 Results and Tests for Systematics

3.5.1 Number Counts

We plot, in Fig. 3.16, the rP1-band differential number magnitude counts of galaxies

before and after our correction. A Kron to total correction of 0.2 magnitudes is ap-

plied to the galaxy counts, as explained in Section 2.2.1. To generate the detection

efficiency corrected number counts in Fig. 3.16 we use our extinction corrected ran-

dom catalogue, from before and after the detection efficiency corrections, to predict

the fraction of galaxies detected as a function of extinction corrected magnitude. We

then correct the observed number counts by these fractions. We see after the counts

have been corrected the turnover no longer occurs, and the counts continue to grow

to very faint magnitudes until we stop using our depth correction at rP1 = 23.7,

where the correction is very large (a factor of 70 at this magnitude). We see that

our number counts show reasonable agreement with the published data of Huang

et al. (2001), Yasuda et al. (2001), McCracken et al. (2003) and Kashikawa et al.

(2004). At the faintest magnitude, where our correction is important, our number

counts are slightly above the literature measurements. This could be partially due

to the 10% false positives at these magnitudes (see Fig. 3.6 and also Paper I). It

could also be partially explained by sample variance, as the literature measurements

also disagree to a similar extent at these magnitudes.
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Figure 3.16: Number counts in the rP1-band before (blue) and after (red) the depth

correction for galaxies, along with the number counts of objects classed as stars by

our adopted separator (green). We do not correct the stars, or the galaxies fainter

than rP1 = 23.7 for completeness. The dashed lines are power law fits to the number

counts. Example r-band literature galaxy counts have been included, as indicated

in the legend. PS1 Kron magnitudes have been corrected to total using our adopted

correction of 0.2 magnitudes.
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In Fig. 3.17 we show our measured, uncorrected, number counts for different

bands. Each band was matched to the rP1-band, where the star/galaxy classifi-

cation was made. The galaxies show a power law trend in good agreement with

previous measurements. The stars show a shallower power law trend. The turnover

in the samples is caused by the incompleteness and this turnover happens at brighter

magnitudes as we move toward redder bands. In redder bands the ratio of stars to

galaxies increases, until the yP1-band where we see more stars than galaxies at all

magnitudes. As these are the same objects as seen in Fig. 3.16 the main purpose of

this plot is to check if our rP1-band star/galaxy classification gives sensible results

for different bands. We leave detailed science analyses using the number counts to

later work.

3.5.2 Angular Clustering

In this section we present measurements of angular clustering. To measure this

clustering we make use of the GPU code of Bard et al. (2012). We use the Hamilton

(1993) estimator, though our results are unchanged if we use the Landy & Szalay

(1993) estimator. Error bars for all clustering measurements are from 9 jack-knife

re-samplings of the data. We use eight times as many random points as data points

throughout. On each clustering plot we draw the same dashed-black reference line,

for easier comparisons between plots.

When measuring clustering an effect known as the integral constraint can artifi-

cially weaken clustering on scales comparable to the area of the survey (e.g. Roche &

Eales, 1999). For SAS2 data, over the scales we measure clustering, this has no effect

on our results, except in one case we will discuss later. For the MD07 measurements

however the smaller area results in the integral constraint being important on the

scales we consider. We therefore estimate the true clustering of the MD07 data on

large scales by fitting a power law between scales of 0.002 to 0.165 degrees and then

use this fit to estimate the size of the integral constraint, IC, using the standard

formula as seen in e.g. Roche & Eales (1999) of

IC =
ΣRR(θ)wmodel(θ)

ΣRR(θ)
(3.5.9)
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Figure 3.17: The differential number magnitude counts for stars (green stars) and

galaxies (open triangles) for different PS1 bands matched to the rP1-band, in which

the star and galaxy separation cut was applied (section 3.3.1). These counts have

been uncorrected for image depth. Matching to rP1-band data has some contribution

to the turnover in each band. However, only the depth of the iP1-band is greatly

affected, as this band is the only one deeper than the rP1-band.
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where RR(θ) are the pair counts of the randoms on SAS2 as a function of angular

separation and wmodel(θ) is our power law correlation function. The value IC is

added to the clustering measurements. As an example, for our threshold sample

rP1 < 23.0 the integral constraint is 80% of the signal at the largest separations

plotted, dropping to 14% by θ ≅ 0.1 deg.

We begin by studying the regime where the spatially varying depth correction

has no effect. Fig. 3.18 shows the clustering of PS1 data compared the clustering of

DR8 data over the same region, which we measured from our galaxy sample (Sec-

tion 3.1.1). We see the well-reported effect of clustering being stronger in brighter

apparent magnitude bins. This result is caused by two effects. The first is that

fainter magnitude bins are projected over larger radial distance ranges so incoherent

clustering signals are summed together decreasing the clustering strength. The sec-

ond cause is that intrinsically fainter galaxies are less clustered, usually interpreted

as evidence they lie in less massive dark matter haloes (see Chapter 1). This lat-

ter effect is much smaller than the former as apparent magnitude ranges relate to

similar absolute magnitude ranges. We see good agreement between the SDSS and

PS1 measurements for these ranges, an agreement much closer than the jack-knife

error bars as the two data samples are from the same area of sky. We do see some

differences, but photometric errors scatter galaxies in and out of the different mag-

nitude bins and so the two samples can contain a significant fraction of galaxies that

are not in common. Overall, Fig. 3.18 acts as a detailed test to determine if PS1

is capable of measuring the clustering of galaxies down to rP1 = 20.0. Fainter than

this it becomes more difficult to measure reliable clustering with SDSS DR8 and, as

such, we compare to measurements in the literature.

In Fig. 3.19 we compare our angular clustering measurements from PS1 SAS2 to

recent angular clustering measurements from Wang et al. (2013) from 8000 square

degrees of SDSS DR7 data. In Wang et al. (2013) careful studies are carried out

which suggest SDSS DR7 can measure clustering down to r = 21.0, Fig. 3.19 demon-

strates PS1 data shows reasonable agreement with the SDSS data. Naturally, differ-

ences arise due to sample variance in the relatively small SAS2 field, but Fig. 3.19

is a promising indicator that PS1 clustering measurements are capable of match-
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Figure 3.18: Angular clustering of galaxies in PS1 (connected, open circles) and

in the same region of SDSS DR8 (star-shaped symbols), both measured for this

paper using the sample selection described in the text. This shows good agreement

between PS1 and SDSS DR8. The dashed line is a reference line included in all of

our clustering plots. Different measurements have been offset horizontally for clarity,

the brightest galaxies are at the true x-axis position for all of the measurements.
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Figure 3.19: Angular clustering of galaxies over the full SAS2 area in PS1 (connected,

open circles) and measurements from a much larger area of SDSS DR7 (filled stars)

from Wang et al. 2013. The dashed line is the same reference power law as in

Fig. 3.18. Different measurements have been offset horizontally for clarity, with the

brightest PS1 and SDSS samples showing the positions of the true angular bins.
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Figure 3.20: Angular clustering of faint galaxies before (dashed lines with points)

and after (solid lines with points) applying our spatially varying depth correction.

The dashed line is the same reference power law as Fig. 3.18. Different measurements

have been offset horizontally for clarity. The uncorrected clustering of the brightest

galaxy sample is at the true x-axis position for all of the measurements.

ing SDSS depth. Fainter than rP1 = 21.0 the spatially varying depth will start to

become important.

To see the effects of our depth correction we plot, in Fig. 3.20, the 2-point angular

correlation function of galaxies before and after correcting the random catalogue for

spatially varying depth. At rP1 = 22.0 and rP1 = 23.0, the edges of the brightest and

faintest bins in Fig. 3.20, the average completeness is only 80% and 50% respectively.

We see that without corrections clustering in the faintest two bins is enhanced by

under-densities and over-densities caused by the spatially varying incompleteness.

After correction the clustering strength is decreased, with the effect being more



3.5. Results and Tests 111

marked for the faintest bin where one would expect the depth to be most spatially

inhomogeneous. The largest correction occurs at large scales. Magnitude ranges

brighter than rP1 < 22.0 seem to need very little correction. The SAS2 region is

likely to be more uniform than the full 3π data so the magnitudes at which the

spatial depth variation correction becomes important may be slightly brighter for

the full 3π survey.

As an alternate way of understanding our correction, we measure the angular

correlation function of our spatial depth-corrected random catalogue, relative to

an uncorrected, spatially uniform random catalogue. This gives us an estimate

of the signal we remove from the faint magnitude bins. We see in Fig. 3.21 the

clustering of the bright randoms is consistent with no clustering signal. Bright

randoms have larger errors as there are fewer of them. For the faintest bin, where

we see the strongest correction, the randoms are clustered. This type of clustering

signal indicates the effect of variable depth on our measurements. We can infer that

without correction clustering is enhanced on all scales at this depth. This effect will

be particularly noticeable on larger scales where the intrinsic galaxy clustering is

weak; this was seen in Fig. 3.20.

Qualitatively the correction appears to be doing a good job. To carry out a

quantitative test we find the variance value which corresponds to some fiducial SNR

at the faint edge of a magnitude bin, and mask spatial regions in the randoms and

data that have a variance value higher than this. This limits our depth correction by

removing data and randoms with fiducial SNR lower than some limit. The corrected

clustering measurements for the range 22.0 < rP1 < 22.5 in Fig. 3.22 are robust to

changes in the choice of the SNR limit, with more conservative cuts in SNR being

in agreement with the more lenient cuts. To further emphasise this, we plot the

clustering of 22.0 < rP1 < 22.5 galaxies with and without spatial depth corrections,

in regions with SNR > 12.0 where the depth is fairly uniform. We see from these

curves that using the full SAS2 region combined with a correction gives results in

agreement with using a smaller region of uniform depth.

We plot in Fig. 3.23 the same tests for the faintest magnitude bin, 22.5 < rP1 <

23.0. The conservative SNR cuts in the faintest magnitude bin restrict the area of the
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Figure 3.21: The angular correlation function of a random catalogue that has de-

tection efficiency corrections applied to it, in effect measuring the clustering of the

detection-weighted randoms relative to a uniform set of randoms. This gives an

estimate of the clustering signal introduced into the data by the spatially varying

depth. The clustering here is much weaker than the clustering of the galaxies, indeed

for most magnitude bins there is no significant clustering. The faintest magnitude

range shows a clear clustering signal, introduced by our modulation of the randoms

to correct for spatially varying incompleteness. The dashed line is a reference power

law added to all of our clustering plots, the dotted line marks no clustering.
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Figure 3.22: Angular clustering for 22.0 < rP1 < 22.5 galaxies in sub-areas satisfying

different fiducial SNR cuts, as indicated in the key. We see that more conservative

estimates of the clustering are in agreement with measures which use less deep data

with a larger correction applied. For the brighter magnitude bin we also plot the

clustering uncorrected for spatially varying depth from a region where the depth is

fairly uniform. The points for the different curves have been artificially displaced

along the x-axis for clearer viewing, the top curve in the legend shows the true x-axis

position for all curves. The dashed grey line is a reference power law added to all

of our clustering plots.
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Figure 3.23: As in Fig. 3.22 but for 22.5 < rP1 < 23.0. The solid grey line is the

power law we use to roughly estimate the effects of the integral constraint, which is

necessary as the sub-areas in the faintest magnitude bin can be very small.
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survey, and as such the integral constraint becomes important. We therefore correct

clustering measurements in this plot for the integral constraint, using the power law

fit plotted in grey. We do not show cuts more conservative than SNR > 9.0 as

there are very little data beyond that cut in this magnitude range. Unfortunately

the results of this test are less convincing, the different SNR cuts agree within error

but there does appear to be a systematic trend for more conservative SNR cuts

to measure a slightly weaker clustering signal on larger scales. This could suggest

our correction is too small, though it could also be caused by other problems at

very faint magnitudes such as false positives or stellar contamination. Remember

that in this faintest magnitude bin our correction is extremely large and the data is

very incomplete. Completeness is only around 50% at rP1 = 23.0 (Paper I), so it is

perhaps not surprising that the method is less successful in this regime.

In Fig. 3.24 we compare our measurements of clustering to those of Hudon & Lilly

(1996), field “e” of Roche & Eales (1999) and Foucaud et al. (in preparation) for the

magnitude range 19.0 < rP1 < 23.0. Note that the Roche & Eales (1999) sample is

for 18.5 < R < 23.0 measured in the Vega system, but despite these small differences

it is still a useful comparison. The amplitudes of Hudon & Lilly (1996) and Roche

& Eales (1999) have been corrected for stellar contamination using their estimate

of the contamination fraction of f = 0.29 and f = 0.11 respectively. As introduced

in Section 3.3.2 this correction involves boosting the amplitude by (1− f)−2 and is

the same correction Hudon & Lilly (1996) and Roche & Eales (1999) apply to their

own results. We estimate our contamination fraction, from the dashed red line in

Fig. 3.9, to be f = 0.07 for this sample and we correct our amplitude accordingly.

Foucaud et al. (in preparation) estimate their stellar contamination to be f = 0.06,

so we also correct their clustering measurements.

In Fig. 3.24 we see our depth correction brings us closer to the other measure-

ments of clustering. On smaller scales we show reasonable agreement with the

literature measurements of Hudon & Lilly (1996) and Roche & Eales (1999). Across

all scales we show a good agreement with the MD07 clustering measurements of

Foucaud et al (in preparation). The scatter in the literature measurements is large

due to the small sample sizes. As such, current available comparison data in the
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Figure 3.24: A comparison of our measurements (in red) to Hudon & Lilly (1996),

Roche & Eales (1999) and the PS1 MD07 measurements of Foucaud et al (in prepa-

ration), before (dashed) and after (solid) our depth correction. The depth correction

brings our results into closer agreement with the other measurements, which are from

deeper and more uniform surveys than the PS1 SAS2 data. No attempt has been

made to correct for the differences between the Hudon & Lilly (1996) or Roche &

Eales (1999) R-band filters and our rP1-band filter. Corrections for stellar contam-

ination have been applied to all of the measurements. The dashed grey line is a

reference power law added to all of our clustering plots.
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r-band is limited by sample variance, restricting our ability to assess any remaining

systematic errors. Our correction is very large for this sample, almost an order of

magnitude on large scales; in practice, it is unlikely data with such a large correction

will be used for science.

In Fig. 3.25 we show the angular correlation function measurements, using all

the depth corrections described, down to rP1 = 22.5 in 0.5 mag steps where we

expect the clustering to still be reliable from Fig. 3.22. The angular clustering

results from the whole of SDSS DR7 measured for Christodoulou et al. (2012), and

measurements of the clustering of fainter galaxies from PS1 MD07 from Foucaud et

al. (in preparation) are also shown. Again, our clustering measurements and those

of Foucaud et al. (in preparation) have been corrected for stellar contamination.

The bright measurements are consistent within errors with the measurements

made for Christodoulou et al. (2012). The fainter bins have power law shapes and

lower amplitudes than the brighter bins, and agree with the MD07 measurements.

Fig. 3.25 is a positive indication that PS1, combined with these depth corrections,

can measure clustering to fainter magnitudes than existing wide field optical surveys.

3.5.3 Clustering of Stars and False Positives

As it is expected that some contamination of our galaxy sample will occur due to

stars and false positives, we estimate their effect on clustering by measuring their

correlation functions. We begin by looking at stars; Fig. 3.26 gives the clustering

of objects classified as stars by our separator. We do not correct these objects for

extinction in this plot, as it is unclear that this would be appropriate. We have

so far assumed that stars are much less clustered than the galaxies, and so simply

affect the amplitude of the galaxy clustering. The brighter stellar bins do indeed

show a weaker signal than the galaxy samples, which is much less scale dependent

than the galaxy clustering except on the largest scales.

Whilst we expect the clustering of stars to be weaker than that of the galaxies,

we do not necessarily expect the stars to be unclustered. Stars appear in star

clusters and gradients in stellar density exist due to the structure of the Milky Way.

Measurements of the angular correlation function of stars have shown it to be flat
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Figure 3.25: The lines and open points with error bars show the angular clustering

of PS1 galaxies in the SAS2 region, for different magnitude ranges as indicated by

the legend. Clustering measurements from Christodoulou et al. (2012). for similar

magnitude ranges from the full area of SDSS DR7 are plotted as triangles. The stars

with error bars are measurements of clustering from the MD07 fields for Foucaud

et al. (in preparation). Error bars on our measurements are estimated with 9 jack-

knife re-samplings. Our results and the Foucaud et al. (in preparation) have been

corrected for stellar contamination. The Christodoulou et al. (2012) are assumed

not to suffer from stellar contamination. The dashed line is a reference power law

added to all of our clustering plots.
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Figure 3.26: The angular correlation of objects classed as stars by our adopted star

and galaxy separator, split by magnitude, as indicated by the key. The dashed line

is a reference power law added to all of our clustering plots, the dotted line marks

no clustering.
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and non-zero on larger scales (e.g. Ross et al., 2011a; Myers et al., 2006). In Fig 3.27

we compare the clustering of galaxies in the range 22 < rP1 < 22.5 to that of stars.

We detect clustering in the stars which is weaker than the galaxies on small scales but

stronger than the galaxies on larger scales. As such, one could argue that the small

scale clustering of stars is caused by contamination of the stellar sample by galaxies,

whilst the large scale clustering of stars cannot be attributed to the galaxies. The

clustering of stars in Fig 3.27 is fairly insensitive to detection efficiency corrections.

In contrast, we find that extinction correcting the sample of stars enhances their

clustering. This latter observation is concordant with the picture of stars having

spatial density variations caused by the structure of the Milky Way. This is because

one would expect dust to be correlated with the Milky Way’s structure, and as

such extinction correcting the stars would act to enhance spatial structure in the

stellar sample. The enhancement of clustering signal after extinction correction is

the opposite of what one would expect for galaxies. The flat angular correlation

function we measure on larger scales for stars is in accord with the shape reported

in the literature for brighter stellar samples (e.g. Ross et al., 2011a; Myers et al.,

2006).

In Fig 3.28 we compare the clustering of a fainter sample of galaxies to that of

stars. The clustering of stars in Fig 3.28 has a similar amplitude to that of the

brighter stars in Fig. 3.27; the galaxy clustering is weaker however, such that the

stars and galaxies have a similar amplitude of clustering on all scales. Again we do

not believe the clustering in the star sample can be caused by galaxy contamination

alone. This is because the clustering of galaxies in the stellar sample should be di-

luted by the stars in the sample and the resultant correlation function should have

a lower amplitude than the galaxy sample. As in Fig 3.27, extinction correcting

the stellar sample boosts its clustering, though the effect is smaller than for the

brighter magnitude bin. Detection efficiency corrections also boost the clustering

of the stellar sample in Fig 3.28. The likely cause of this is that the corrections

are calibrated on galaxies which are harder to detect at these magnitudes, because

they are extended. The combined effect of applying extinction corrections and de-

tection efficiency corrections greatly boosts the clustering. This can be understood
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Figure 3.27: Measurements of the angular correlation function for the magnitude

range indicated. Dashed lines show the clustering of objects classed as stars, for

measurements with either extinction corrections (EXT), detection efficiency correc-

tions (DE) or both (DE+EXT) applied as indicated in the legend. The solid line

shows the clustering of galaxies, with detection efficiency corrections and extinction

corrections applied. The straight, grey dashed line is the reference power law added

to all of our clustering plots.
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since their effect on the clustering will be compounded by the fact that extinction

corrections bring objects with fainter observed magnitudes into the sample. These

objects at fainter magnitudes have a larger detection efficiency correction and, since

the detection efficiency corrections are based on galaxies, may artificially boost the

stellar clustering further.

Clearly the clustering of stars and the effect of stellar contamination on galaxy

clustering measurements will have to be further studied. For the full 3π survey

measurements of the distribution of stars in the Milky Way could be used to attempt

to model these effects. Cross correlating galaxy samples with stellar samples is also

an important test we will carry out with the full 3π data, which will allow us to

further study the effects of misclassification and stellar contamination. For this work,

the clustering of stars and contamination of the galaxy sample could be boosting

the estimates of the galaxy correlation function on large scales. This will be a larger

effect for the fainter galaxy samples where the large scale clustering of stars has a

higher amplitude than that of the galaxies and the stellar contamination fractions

are larger. An expression relating the true angular correlation function of galaxies,

wgg, to the measured correlation function, wmeasured, given the angular correlation

function of stars, wss, can be found in Myers et al. (2006),

wmeasured(θ) = (1− f)2wgg + f 2wss − ǫ(θ) (3.5.10)

where ǫ(θ) is a very small cross term which is expected to be too small to influence

our results. Eq. 3.5.10 was derived by Myers et al. (2006) for the Landy & Szalay

(1993) estimator, but the Landy & Szalay (1993) gives very similar (much smaller

than the error bars) results to the Hamilton (1993) estimator for our samples, so

we can still use Eq. 3.5.10 to estimate the effect of stellar contamination. On

small scales, where wss ≪ wgg, Eq. 3.5.10 reduces to the (1− f)2 amplitude scaling

we have used thus far. On larger scales and for fainter galaxy samples the star

clustering can be stronger than the galaxy clustering. Using the measured clustering

of the extinction and detection efficiency corrected star samples, which will be the

clustering signal of stars mistakenly in the galaxy sample, we can estimate the effect

of stars on the galaxy clustering. We do this by correcting the measured galaxy
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Figure 3.28: Measurements of the angular correlation function for the magnitude

range indicated. Dashed lines show the clustering of objects classed as stars, for

measurements with either extinction corrections (EXT), detection efficiency correc-

tions (DE) or both (DE+EXT) applied as indicated in the legend. The solid line

shows the clustering of galaxies, with detection efficiency corrections and extinction

corrections applied. The dotted line gives the power law used to correct the clus-

tering for the integral constraint. Extinction corrections and detection efficiency

corrections combined greatly enhance the clustering, as the extinction correction

results in a fainter apparent magnitude sample which receives greater detection ef-

ficiency corrections. These detection efficiency corrections enhance the clustering of

stars as they are designed for galaxies, which are harder to detect.
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clustering using Eq. 3.5.10 and comparing the result to using the simple (1 − f)2

correction we adopted. The faintest bin, 22.5 < rP1 < 23.0, has a contamination

fraction of f = 0.1 (from Fig. 3.9) which leads to an enhancement of the galaxy

clustering signal by clustered, stellar contaminants of 30% and 18% at 0.7 and 0.3

degrees respectively. For the brighter magnitude bin of 22.0 < rP1 < 22.5, with

f = 0.08, this drops to 6% and 3% for 0.7 and 0.3 degrees respectively. All of these

differences are smaller than the error bars, and as such adopting the (1 − f)2 for

these data, instead of a more thorough modelling of stellar contamination, does not

effect our conclusions. For the full 3π survey where clustering on larger spatial scales

will be measured this issue will have to be revisited.

Fig. 3.29 gives the clustering of objects with extreme ∆kron−psf , removed by our

cut in Fig. 3.7, split into three magnitude bins. These objects are thought to be

false positives. We see that, unfortunately, these objects have a strong clustering

signal. This signal is well described by a power law that is steeper than the galaxy

correlation functions. This is presumably because false positives tend to appear

in clumps around image artifacts (see Paper I). Fortunately, for magnitude bins

brighter than rP1 = 21.0, false positives make up less than 1% of the data (Fig. 3.6)

and are likely to have a negligable effect on clustering. For the fainter bins shown

here, rP1 > 21.0, clustering could be affected by the false positives which can be

as prevalent as 8− 10% of the sources. Remember that Fig. 3.29 is measured from

objects removed by our cut; false positives that evade this cut and so contaminate

the galaxy sample could have different clustering. As we do not know if the false

positives which evade our extreme ∆kron−psf have the same clustering as the objects

in Fig. 3.29, Eq. 3.5.10 cannot be used to estimate their effect on clustering.

Improvements in the modelling of image artifacts will help ameliorate the prob-

lem of clustered false positives. Additionally, requiring detections in multiple bands

can also be effective in eliminating false positives.



3.5. Results and Tests 125

Figure 3.29: The angular correlation of objects cut by the extreme Kron minus PSF

magnitude threshold given in Table 3.1, split by magnitude (see key). These objects

are mostly false positives. Bins where one or more of the jack-knife regions have

undefined clustering measurements, due to zero data-random or random-random

pairs at that separation, have been omitted. The dashed line is a reference power

law added to all of our clustering plots.
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3.6 Discussion and Conclusions

We have presented methods of star and galaxy separation, angular masking and

completeness corrections for PS1. Our star and galaxy separation approach uses fake

images to identify cuts in ∆kron−psf that yield galaxy samples. Tests show our chosen

separator is 91%-98% complete with less than around 10% stellar contamination

down to a magnitude of rP1 < 23.0. However, SAS2 has uniform properties, so

before applying this to the full 3π data we need to test and calibrate the star/galaxy

separator for different seeing and background noise. It is likely that the galaxy

distribution in ∆kron−psf will depend on seeing. Changing the PSF of an image has

a different effect on the surface brightness of stars and galaxies and this will drive

a change in a galaxy’s measured PSF magnitude. Ultimately a more sophisticated

star and galaxy separator with better completeness and less contamination will need

to be developed. Using the colours of galaxies (e.g Saglia et al., 2012) and other

morphological measurements, such as galaxy size, are promising avenues to achieve

this with PS1 data.

We present a method of generating angular masks for PS1 3π data, using a

statistical approach to define the size of masked regions around bright stars. The

relation between mask size and magnitude may vary across the much larger 3π field

and as such the relation may need to be re-calibrated on the full data. We also

present our binned-up variance maps, which we have used to develop a method of

correcting PS1 measurements for spatially varying depth. A question left to address

is what binning scale to choose for masks and maps of the whole survey. One has

to balance accuracy with the computational costs of using large amounts of data.

Ultimately the mask size will also depend on the science goals; BAO measurements

for example will be less sensitive to small scale systematics than galaxy formation

studies using small scale clustering.

Some further questions related to our depth corrections will have to be addressed

in future work. Firstly, we need to test how well our SNR technique applies across

a larger field with more variable PSFs and depths. One way to calibrate and test

our method for the full survey would be to utilise the 10 PS1 Medium Deep fields,

which are scattered across the sky. Using surveys in addition to Stripe 82, such as
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the Medium Deep surveys, can also help remove the effects of false positives from

our measurements of the probability of detection versus fiducial SNR. Additionally,

our assumption that all galaxies have the same detection efficiency properties will

have to be further explored, perhaps by studying clustering as a function of colour.

Our comparisons of detection efficiency for red and blue Stripe 82 galaxies are a

positive indication that this is a valid assumption. We can also gain more insight

into our depth correction method by utilising our synthetic images to simulate more

greatly varying PSFs and backgrounds.

One important test of our method is to exclude regions which fail to meet some

SNR requirement and testing if clustering measurements from them agree with data

with a less conservative cut. This test was demonstrated in Fig. 3.22 for SAS2 data

but will have to be applied to the full 3π data. The application of this test to the

full 3π data may be more fruitful as the much larger area will decrease the random

errors on the measurement and make any systematics more apparent. Ultimately

this SNR cut can be used as a free parameter in our method, which can be varied

to ensure science results are not sensitive to its value.

By applying our methods to the SAS2 science verification data we show that

measurements of clustering show reasonable agreement with literature data down

to a magnitude of rP1 < 23.0, though tests using regions with different fiducial SNR

limits suggest perhaps a limit of rP1 < 22.5 is more reliable. These limits may

change as the PS1 survey matures. At bright magnitudes we show agreement with

the published angular correlation function estimates of Christodoulou et al. (2012)

and Wang et al. (2013), fainter than this our measurements show the decrease in

amplitude expected. Our measurements agree with the measurements of Hudon &

Lilly (1996), Roche & Eales (1999) and with Foucaud et al. (in preparation) for

the threshold sample rP1 < 23.0. Our magnitude bin samples also agree within

error with Foucaud et al. (in preparation) down to a limit of rP1 < 22.5. We

also demonstrate our method yields sensible measurements of the number counts of

galaxies, with rP1-band counts showing agreement with published data.

One difficulty with the literature comparisons is the relative deficit of faint r-

band clustering measurements, especially from fields large enough to test the scales
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where our correction is strongest. Future work will be able to further test our depth

correction technique in several ways. Firstly, the extension of this work to different

bands will allow a larger number of literature comparisons to be made. Additionally,

combining the data across multiple bands will allow us to test the depth correction

technique with more complex selection criteria, such as colour. Finally, using the

full 3π data will greatly decrease the random errors in the SAS2 measurements,

making systematics more apparent.

Clustered false positives are a potential limitation to measuring clustering, but

these only affect the fainter magnitude bins and this problem should be improved

by future efforts in understanding the instrumental signature of the PS1 camera.

Additionally, matching between bands, which will be necessary for photometric red-

shifts, will go a long way in removing these false positives as image defects are very

unlikely to be located in the same place in multiple bands.

Further issues not fully resolved in this work, but which will still have to be con-

sidered when utilising the full survey, also include how extinction corrections and

stellar contamination affect the measured clustering signal. We have seen, for ex-

ample, that stars have a larger clustering signal than galaxies on large scales. Issues

such as these are common to many large galaxy surveys and there are approaches

in the literature to deal with them (e.g. Myers et al., 2006; Ross et al., 2012; Wang

et al., 2013).

We intend to apply these methods to the full survey, which is due to be completed

by around January 2014, with data reduction complete by mid 2014 (Magnier et al.

in preparation). If the techniques developed here are successfully applied, the PS1

3π survey will be able to push forward our understanding of cosmology and galaxy

formation. One particularly exciting application will be to measure the Integrated

Sachs-Wolfe effect by cross correlating PS1 galaxies with CMB data. The large area

of 3π will be ideal for minimizing sample variance and false positives will be less of

an issue as they are not likely to be correlated with the CMB.



Chapter 4

Projected Galaxy Clustering in

GAMA

4.1 Introduction

We will now move on to measuring galaxy correlation functions with GAMA, which

benefits from spectrocopic redshifts and a more mature calibration status. As intro-

duced in Chapter 1, the two-point autocorrelation function of galaxies and its depen-

dence on galaxy properties is well established, at low redshifts, by large area spectro-

scopic surveys such as SDSS (York et al., 2000) and 2dFRGS (Colless et al., 2001).

The amplitude of the autocorrelation function of galaxies is seen to be strongly de-

pendent on luminosity, stellar mass and colour. At low redshifts, brighter, redder

and more massive galaxies have been observed to be more strongly clustered (e.g.

Norberg et al., 2001, 2002; Li et al., 2006; Zehavi et al., 2011; Christodoulou et al.,

2012).

In the higher redshift Universe, small (< 1deg.2) but deep spectroscopic surveys

have also measured the clustering of galaxies. The DEEP2 survey has been used

to demonstrate that the colour dependence of galaxy clustering is already in place

at z ∼ 1, whilst within a red or blue sample of galaxies, clustering is insensitive to

luminosity over the range 20.2 < MB < 21.8 (Coil et al., 2008). Compared with

lower redshift SDSS data, the DEEP2 measurements of the clustering of brighter

and more massive galaxies has a larger amplitude than expected from scaling the low

129
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redshift measurements using linear theory (Coil et al., 2008; Li et al., 2012). This

can be interpreted as evidence of significant bias evolution for these galaxies (Coil

et al., 2008; Li et al., 2012). Another example of a small area, deep spectroscopic

survey is the VIMOS-VLT Deep Survey (VVDS), which found a sharp increase in the

amplitude of galaxy clustering around the characteristic magnitude of the sample’s

luminosity function, M∗ (Pollo et al., 2006). VVDS also found, in agreement with

DEEP2, that the clustering of massive galaxies, with stellar mass > 1010.5h2M⊙,

at z ∼ 1 can only be reconciled with lower redshift measurements if their bias

evolves significantly (Meneux et al., 2008). More recent results from another small

area, deep survey, zCOSMOS, show that this is true for galaxies more massive

than > 1010h2M⊙ (Meneux et al., 2009). More recently, the VIPERS survey has

found more luminous and more massive galaxies are more clustered at redshifts of

0.5 < z < 1.1 than their fainter, less massive counterparts (de la Torre et al., 2013;

Marulli et al., 2013).

The GAMA spectroscopic survey offers a new window onto the clustering of

galaxies and its evolution with redshift. It is much larger than the smaller, deep

surveys (180 deg2) but has spectra of much fainter galaxies than large area surveys

like SDSS. As such it complements both types of survey, by enabling clustering

measurements at an intermediate epoch. In this chapter we study the projected

two-point correlation function of galaxies as a function of their luminosity, stellar

mass and colour, in three different redshift bins, in order to fully appreciate any

redshift evolution. We compare our results to the semi-analytic galaxy formation

model of Bower et al. (2006). This chapter is organised as follows. Section 4.2

introduces the GAMA data and the galaxy formation model we use, along with

details of how we calculate luminosity, mass and rest-frame colour. Section 4.3

presents our method of generating a random catalogue and measuring clustering. In

Section 4.4 we present our results, before discussing them and concluding in Section

4.5.
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4.2 Data and theory

4.2.1 The Galaxy and Mass Assembly survey

The GAMA survey is a spectroscopic and multi-wavelength survey of galaxies carried

out on the Anglo-Australian telescope (Driver et al., 2011). In this work we utilise

GAMA-II NGP data, which consists of a highly complete (> 98%) spectral catalogue

of galaxies selected from the SDSS DR7 (Abazajian et al., 2009) to have rpetro < 19.8.

Details of the GAMA-I target selection are given in Baldry et al. (2010). Briefly,

objects were targeted for spectroscopy based on the difference between their model

and PSF magnitudes in SDSS DR7 data (i.e. similar to our separator in Chapter

3) and, where UKIDSS photometry is available, the object’s optical and infrared

colours. The data are split over three 12 × 5 deg2 fields centered at 9h (G09), 12h

(G12) and 14.5h (G15) R.A. and approximately δ = 0 degrees declination.

GAMA combines data from a large number of ground and space based telescopes

and so has a very wide wavelength range, from X-ray to radio. In this work we use

optical photometry from SDSS DR7 imaging data. To define luminosity samples

we use SDSS Petrosian magnitudes (Petrosian, 1976), as the GAMA selection used

Petrosian magnitudes. To define colours, and when estimating stellar mass, we use

SDSS model magnitudes as these are often more suitable for colour terms (see the

SDSS DR7 photometry webpage). We take all of the magnitude measurements from

the GAMA Data Management Unit (DMU) TilingCatv40.

Redshifts for GAMA objects were measured as described in Driver et al. (2011),

but we will briefly review the method here. For each object a redshift is automati-

cally assigned using the software runz, before the spectra and runz fit are inspected

manually. The astronomer assigns a subjective quality flag to the redshift assigned

by the software. A large fraction of the galaxies were inspected multiple times, in

order to assess the accuracy of each astronomer to produce a less subjective qual-

ity assessment for each galaxy: the normalised quality flag, nQ. We use a cut of

nQ ≥ 3 for this work, which corresponds to a probability of >95% that the redshift

is correct (Driver et al., 2011). We use redshifts corrected to the CMB restframe

from the DMU DistancesFramesv10.
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In addition to the redshift quality cut, nQ ≤ 3, we also only consider galaxies in

regions with completeness greater than 75% using the GAMA angular completeness

mask (Driver et al., 2011). We additionally only select objects with vis class=

0, vis class= 1 or vis class= 255, which removes objects which upon visual

inspection do not show any evidence of galaxy light or appear to be part of another

galaxy (Baldry et al., 2010).

4.2.2 k-corrections and evolution corrections

The measured apparent magnitudes, m, need to be transformed to absolute mag-

nitudes, M . As we look at galaxies at different redshifts using the same telescope

filter, we look at different parts of each galaxy’s rest-frame spectral energy distribu-

tion (SED). To correct for this, what is known as a k-correction is used, k(z). The

k-correction is reference redshift and filter specific. The luminosity of galaxies also

evolves with time, and so in order to have a comparative sample of galaxies across

different redshifts a correction for this is also often adopted. To compute absolute

magnitudes we use the expression

M = m− k(z) +Q(z − zref)− 5 log10(DL(z))− 25 (4.2.1)

where Q is the luminosity evolution parameter, DL the luminosity distance in Mpc

h−1 (see Chapter 1) and zref is a reference redshift, for which we adopt zref = 0.0.

Loveday et al. (2012) have fit evolving luminosity functions (i.e. with Q non-zero)

to the GAMA-I data, which is a shallower version of the GAMA-II data with a limit

of rpetro < 19.4 in G09 and G15. However, using the values of Loveday et al. (2012)

might not be appropriate for these data, we therefore find the best-fitting value for

Q in Section 4.3.3.

At this stage we will also introduce a parameterisation of evolution common

to luminosity function studies. The P parameter (e.g. Loveday et al., 2012, and

references therein) parameterises the density evolution of a population of galaxies

via

φ∗(z) = φ∗(z = 0)100.4Pz (4.2.2)
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where φ∗(z) is the number density of galaxies at redshift z. We will revisit this

parameter in Section 4.3.3.

The k-corrections we use are derived from the GAMA DMU kcorr z00v03,

which was produced using the method set out in Loveday et al. (2012). The Loveday

et al. (2012) k-corrections are found by using the code kcorrect v4 2 (Blanton &

Roweis, 2007) to fit each galaxy’s u, g, r, i, and z-band SDSS model magnitudes with

SED templates1. For many applications the maximum redshift at which an object

fulfils the selection criteria of the survey, zmax, is needed. For this the k-correction

as a function of redshift is needed for each galaxy. To enable fast computation,

Loveday et al. (2012) fit a 4th order polynomial to the k-correction of each galaxy

as a function of redshift. The rms difference between the kcorrect estimates of k-

correction and the polynomial fits to them is less than 0.01 magnitudes for all bands

(Loveday et al., 2012). We further speed up the k-correction process by producing

average polynomials for galaxies in seven, (g − r) rest frame colour bins, hereafter

labelled (g − r)0. To decide which colour bin to assign a galaxy to, we still utilize

the individual k-correction polynomials.

4.2.3 Mock catalogues

We compare our observations to a semi-analytic galaxy formation model called gal-

form; specifically, we use the Bower et al. (2006) version. This model simulates

galaxy formation by populating dark matter haloes in the Millennium Simulation

(Springel et al., 2005). Recall from Chapter 1 that the Millennium Simulation uses

an N -body code, with 21603 particles, to trace the evolution of dark matter from

high redshifts to the present epoch. The positions and velocities of particles in the

simulation are output at 64 different epochs logarithmically spaced in expansion

factor. These outputs are called snapshots. Dark matter haloes are identified in the

snapshots; these haloes and how they merge is tracked snapshot-to-snapshot. One

limitation of the Millennium Simulation is that its value of σ8 (see Section 1.5), of

1Following SDSS conventions, we will label model magnitudes using the letter associated with

the bandpass in which the magnitude was measured.
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σ8 = 0.9 is too large compared to the current best estimate of σ8 = 0.83 ± 0.01

(Planck Collaboration et al., 2013). This could lead to too many large dark mat-

ter structures in the simulation. The haloes are occupied by mock galaxies, using

physically motivated prescriptions for star formation, gas cooling and supernova

feedback dependent upon each halo’s mass and merger history. More information

on semi-analytic models is given in Chapter 1, as well as in the papers which set

out the galform model (Cole et al., 2000; Baugh et al., 2005; Bower et al., 2006;

Lagos et al., 2011, 2012).

The output from the Bower et al. (2006) model was converted into a mock cat-

alogue using the lightcone code of Merson et al. (2013). This code converts the

output from galaxy formation models into a mock catalogue by including a mock

galaxy in the catalogue at the position and epoch when it enters into an observer’s

lightcone, i.e. when the light from the galaxy reaches the observer. Between snap-

shots, the positions of the mock galaxies are interpolated; particular care is taken

when interpolating satellite galaxies to ensure the true small scale clustering of the

model is represented in the lightcone mock. Other galaxy properties are not in-

terpolated, as the interpolated values would not be representative of the stochastic

nature of star formation in the model (Merson et al., 2013). For the analysis of

mock catalogues, a median k-correction is applied to each simulated galaxy in order

to estimate its “observed” magnitude. This median k-correction was taken as the

median k-correction for SDSS galaxies. Currently, 9 mocks have been produced us-

ing the model of Bower et al. (2006), more mocks using different galform models

are still under production. These mocks have already been successfully utilised in

other GAMA projects. For example, Robotham et al. (2011) have used these mocks

to test algorithms that identify groups of galaxies.

The luminosity function of the mocks has been adjusted by abundance matching

to the GAMA-I luminosity function split by redshift. This removes differences in the

definitions of magnitudes (e.g. total versus Petrosian). This also ensures a sample

of mock galaxies with the correct number density and radial selection function as

compared to the data. The mock galaxy catalogue is cut to rpetro < 19.8.

To define luminosity samples from the mock catalogue we use the apparent mag-
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Figure 4.1: A restframe colour-magnitude diagram for the real GAMA galaxies (left)

and for the mock galaxies (right). The red dashed line shows our cuts to define red

and blue samples of galaxies.

nitudes defined above, converted to absolute magnitudes using Eq. 4.2.1. It is an

interesting question as the whether the Q that best describes the mocks is the same

as that of the data, we consider this in Section 4.3.3. Stellar mass and colour are

both output by galform and we use their values directly.

4.3 Methodology

4.3.1 Sample selection

We want to study the evolution of galaxy clustering with luminosity, mass, colour

and redshift. One approach to do this is to use volume limited samples, which are

characterised by a uniform detection probability across the survey volume. This is

difficult to do for mass and colour, as there is not a direct relation between them and

the Petrosian magnitude of a galaxy. Additionally, volume limited samples reduce

the amount of data available for the analyses. We therefore do not use volume

limited samples; instead we ensure the survey’s radial selection function is properly

dealt with by the random catalogue (see Section 4.3.2). We separate all of our mass,

luminosity and colour samples into three redshift bins: low-z, 0.02 < z < 0.14,

intermediate-z, 0.14 < z < 0.24 and high-z, 0.24 < z < 0.5. These bins were
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selected to have a roughly equal number of galaxies in each. The volumes of the

low, medium and high redshift slices are 1.2×106 (Mpc/h)3, 5.7×106 (Mpc/h)3 and

4.3 × 107 (Mpc/h)3 respectively. Luminosity samples are produced using Eq. 4.2.1

with the measured SDSS r-band DR7 Petrosian magnitude used to calculate the

absolute magnitude in the r-band, Mr. In addition to luminosity samples, galaxies

are divided into a red population and a blue population. The colour of a galaxy

is often used as a rough proxy for the age of its stellar population, with galaxies

undergoing star formation generally being expected to be bluer. It is therefore

interesting to study how clustering differs as a function of colour. We use the colour

cut of

(g − r) = −0.02(Mr − 5log10h) + 0.25 (4.3.3)

where (g− r) is measured in the rest frame. A colour-magnitude plot, with this cut

indicated in red, is shown in Fig. 4.1(left). With this cut 51% of galaxies are red

and 49% are blue. In Fig. 4.1(right) we can see that the Bower et al. (2006) model

reproduces the bimodality of galaxy colours, but arguably has a too well-defined

blue cloud. The Bower et al. (2006) galaxies also have a clearer separation between

the blue cloud and red sequence than the data. These findings are in accord with the

Bower et al. (2006) comparisons of their model to data. To ensure we are looking

at comparable samples of real galaxies and mock galaxies, we choose a colour cut

on the mocks which results in the same red and blue fractions as in the real data,

namely (g − r) = −0.02Mr + 0.2.

As well as luminosity and colour, we also want to use GAMA-II to measure

clustering as a function of stellar mass. We use the relation between colour and

stellar mass found for GAMA-I data by Taylor et al. (2011), namely

log10M∗/(M⊙h
−2) = 1.15− 0.7(g − i)− 0.4(Mi − 5log10h) (4.3.4)

where Mi is the rest frame i-band absolute model magnitude and (g − r) is, as

before, measured in the rest frame. This relation was found by Taylor et al. (2011)

from individual estimates of the stellar mass of GAMA-I galaxies. These individual

estimates were produced from fitting stellar population synthesis models to the

optical GAMA data; details are in Taylor et al. (2011). These mass estimates
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should have a 1σ accuracy of around 0.1dex (Taylor et al., 2011).

Properties of our different samples are given in Table 4.1, 4.2 and 4.3. We see the

median absolute magnitude of the low redshift red sample is a magnitude brighter

than the blue sample; this difference decreases to 0.3 magnitudes in the high redshift

sample. We also see that the more massive galaxies have brighter median magnitudes

at all redshifts. Additionally, median redshifts in each sample tend to be slighter

higher for brighter and more massive samples, while the more massive galaxies tend

to be redder. The low and medium redshift ranges display a jump between typically

blue (g − r) colours to typically red (g − r) colours between the lowest stellar mass

and medium stellar mass samples. This information needs to be considered when

trying to understand the clustering of different galaxy samples.

Comparing the number densities of the mock galaxy samples to those of the real

data can tell us how successfully adjusting the magnitudes by abundance matching

has been. It is also useful in indicating whether our results are sensitive to the mass

estimates we adopt. Differences in the number density of mock and real galaxies

in the same stellar mass range could be due to systematic differences in estimating

mass, e.g. using the Taylor et al. (2011) relation versus using the galform mass.

Additionally, the number density of dark matter haloes can be related to the am-

plitude of their clustering (see Section 1.9 and references therein). If one expects

that galaxy samples occupy dark matter haloes of a certain mass, then the number

density of a sample of galaxies should relate to the amplitude of their clustering.

Note that the quoted number density will be an underestimate of the true number

density of samples which are incomplete. However, since the mock catalogue should

have the same radial selection function of the data, the quoted real and mock galaxy

number densities can be compared. In general the samples of mock galaxies have

very similar number densities to those of the real galaxies, with the mock galaxy

number density typically being a good match to that of the data, with a scatter of

around 20%. This indicates one might expect the clustering of the mock galaxies to

be a reasonable match to the amplitude of the real galaxy clustering.

In addition to the samples we have described, we also produce a sample with

which to compare results to Zehavi et al. (2011). In order to make the comparison
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Table 4.1: Different galaxy samples in the low redshift region (0.02 < z < 0.14), with their average number density, size and median

properties.

Sample n (Mpc/h)3 Ngals zmed. (Mr − 5log10h)med. (log10M∗/(M⊙h
−2))med. (g − r)0,med

−20.0 < Mr − 5log10h < −19.0 2× 10−2 12030 0.11 -19.47 9.69 0.60

−21.0 < Mr − 5log10h < −20.0 6× 10−3 7262 0.12 -20.41 10.21 0.71

−22.0 < Mr − 5log10h < −21.0 2× 10−3 2048 0.12 -21.28 10.63 0.74

8.5 < log10(M∗/(M⊙h
−2)) < 9.5 1× 10−2 18432 0.10 -18.50 9.07 0.44

9.5 < log10(M∗/(M⊙h
−2)) < 10.5 1× 10−2 17271 0.11 -19.86 9.93 0.70

10.5 < log10(M∗/(M⊙h
−2)) < 11.5 2× 10−3 2193 0.12 -21.25 10.65 0.76

Red 1× 10−2 15585 0.11 -19.73 9.99 0.73

Blue 2× 10−2 26276 0.10 -18.66 9.10 0.44
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Table 4.2: Different galaxy samples in the medium redshift region (0.14 < z < 0.24), with their average number density, size and

their median properties.

Sample n (Mpc/h)3 Ngals zmed. (Mr − 5log10h)med. (log10M∗/(M⊙h
−2))med. (g − r)0,med

−20.0 < Mr − 5log10h < −19.0 4× 10−3 23982 0.18 -19.64 9.71 0.57

−21.0 < Mr − 5log10h < −20.0 4× 10−3 25168 0.20 -20.41 10.20 0.70

−22.0 < Mr − 5log10h < −21.0 1× 10−3 7684 0.20 -21.30 10.64 0.74

8.5 < log10(M∗/(M⊙h
−2)) < 9.5 1× 10−3 8459 0.17 -19.32 9.32 0.39

9.5 < log10(M∗/(M⊙h
−2)) < 10.5 7× 10−3 42198 0.19 -20.11 10.04 0.67

10.5 < log10(M∗/(M⊙h
−2)) < 11.5 2× 10−3 8572 0.20 -21.28 10.66 0.76

Red 5× 10−3 30493 0.19 -20.33 10.27 0.75

Blue 5× 10−3 28854 0.19 -19.89 9.72 0.50
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Table 4.3: Different galaxy samples in the high redshift region (0.24 < z < 0.5), with their average number density, their size and

their median properties.

Sample n (Mpc/h)3 Ngals zmed. (Mr − 5log10h)med. (log10M∗/(M⊙h
−2))med. (g − r)0,med

−20.0 < Mr − 5log10h < −19.0 1× 10−5 624 0.25 -19.93 9.60 0.37

−21.0 < Mr − 5log10h < −20.0 7× 10−4 31700 0.28 -20.65 10.30 0.65

−22.0 < Mr − 5log10h < −21.0 9× 10−4 38261 0.33 -21.42 10.71 0.72

8.5 < log10(M∗/(M⊙h
−2)) < 9.5 1× 10−5 566 0.26 -20.06 9.41 0.28

9.5 < log10(M∗/(M⊙h
−2)) < 10.5 8× 10−4 32304 0.28 -20.68 10.28 0.57

10.5 < log10(M∗/(M⊙h
−2)) < 11.5 1× 10−3 44560 0.33 -21.49 10.76 0.75

Red 1× 10−3 44430 0.31 -21.27 10.72 0.77

Blue 8× 10−4 33535 0.30 -20.97 10.33 0.55
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samples as similar as possible, we use magnitudes corrected to zref = 0.1 and use

the redshift cuts stipulated in Zehavi et al. (2011). Unfortunately, these redshifts

cuts greatly restrict the volume of our survey. As such, only the Zehavi et al. (2011)

magnitude bin sample of −22.0 < M0.1
r −5log10h < −21.0 has a large enough volume

in GAMA-II for comparison.

4.3.2 Random catalogues

Recall from Chapter 3 that to measure clustering one needs a random set of points

with the same radial and angular selection function as the data. We generate cata-

logues of random positions using the method set out in Cole (2011), which generates

random catalogues from the real data in a way which is insensitive to large scale

structure. For each galaxy in the catalogue the maximum volume of space over

which it could be observed, Vmax, is calculated by finding zmin and zmax, the redshift

where a galaxy meets the bright and faint magnitude limits of GAMA-II. In order

to account for density evolution, P , we artificially increase the volume as a function

of redshift thus

Vmax =

∫ zmax

zmin

100.4Pz dV

dz
dz. (4.3.5)

It will become clear how this accounts for P later in this section. In addition to

this, a density weighted maximum volume, Vmax,dc, is calculated as

Vmax,dc =

∫ zmax

zmin

∆(z)
dV

dz
dz (4.3.6)

where ∆(z) is the over-density as a function of redshift and dV/dz is the comoving

volume element per redshift element. Given these volumes, every real galaxy in the

catalogue is cloned n times, where n is given by

n = nclones
Vmax

Vmax,dc

(4.3.7)

with nclones being the total number of randoms you wish to produce divided by the

number of galaxies in your sample. When cloning the galaxy, all of the intrinsic

galaxy properties are also cloned, so that the random points have a stellar mass,

an absolute magnitude and a colour. The cloned galaxies are randomly distributed
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within the real galaxy’s Vmax, with the GAMA angular mask used to ensure the

angular selection function of the cloned galaxies matches that of the real galaxies.

This method requires the estimation of ∆(z), which is done using an iterative

method. Initially it is assumed ∆(z) = 1 everywhere such that each galaxy is cloned

the same number of times. From this random catalogue, ∆(z) is estimated from the

redshift distribution of the randoms, nr(z), and the data, ng(z), using

∆(z) = nclones
ng(z)

nr(z)
. (4.3.8)

A new random catalogue is then produced with this new estimate of ∆(z), and the

whole process repeated until ∆(z) converges. The redshift distributions and over-

densities are measured in ∆z = 0.012 bins; when solving Eq. 4.3.6 we use linear

interpolation between these bins to allow much smaller bins, ∆z = 10−5, to be used

for the numerical integration.

We show in Fig. 4.2(Top) the redshift distribution of the data and the randoms

for different iterations of this process. We see that using the density-corrected

maximum volume (green dashed line) only introduces subtle differences into the

nr(z) of the randoms, as compared to simply using Vmax (red dashed line). The

nr(z) of the randoms seems like a good fit to the ng(z) of the total sample; later we

will check the random nr(z) is appropriate for galaxies split into magnitude, colour

and mass samples. In Fig. 4.2(Bottom) we plot the over-density estimate, Eq. 4.3.8,

for successive iterations of our random catalogue generating method. As expected,

the iterations act to slightly increase the over-density estimates, as the Cole (2011)

method acts to remove their effect from the random catalogue. We can see from

Fig. 4.2 that the random catalogue generating process has converged.

This method of generating randoms ameliorates the effects of large scale struc-

ture on the generation of a random catalogue, as over represented galaxies from over

dense regions are cloned fewer times whilst under represented galaxies are cloned

more times. Cole (2011) demonstrates how this scheme can produce a random cat-

alogue unbiased by large scale structure. A strength of this approach to generating

randoms is that the random catalogue comes with all of the properties of the galaxy

catalogue. One can then apply the same selection to the random catalogues and the
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Figure 4.2: (Top) The redshift distribution of GAMA-II galaxies (solid) and our

randoms (dashed) for multiple iterations of the Cole (2011) random catalogue gen-

erating approach, as explained in Section 4.3.2. The redshift distribution of the

randoms is a good match to the data. (Bottom) Our estimates of the galaxy over-

density as a function of redshift, from the ratio of the galaxy and random redshift

distributions. The solid, black line in the lower panel shows how the mean density

increases with respect to z = 0, given a value of the density evolution parameter of

P = 1.6, (i.e. it is φ∗(z)/φ∗(z = 0)).
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galaxy catalogues so that the random catalogue has the correct angular and radial

distribution.

4.3.3 Finding P and Q

With our random catalogues we can attempt to find the best values of the evolution

parameters P and Q. Recall that the density evolution, P , affects the n(z) of the

randoms by modifying the size of the volume over which they are distributed, whilst

the luminosity evolution, Q, modifies the random n(z) by changing the Vmax values

of the galaxies (Section 4.3.2). To do this we create random catalogues for different

values of Q and P on a grid with a spacing of 0.2 in Q and P . For each random

catalogue we check to see if the inferred ∆(z) (see Fig. 4.2(Bottom)) is consistent

with unity, within some estimate of the expected variance, σ2
∆. As galaxies are

clustered, one needs to be careful when estimating this expected variance. Adapting

the expression in Cole (2011) to our redshift bins gives

σ2
∆(z) =

1 + 4πJ3ρ(z)

n̄r(z)
(4.3.9)

where J3 =
∫

ξ(r)r2dr (Peebles, 1980), n̄r(z) = nr(z)/nclones and ρ(z) is the galaxy

number density at z, predicted by dividing the n̄r(z) with the volume in that redshift

bin. The value 4πJ3ρ(z) gives the typical number of galaxies in an over-density

(Peebles, 1980); it is used here to account for how large scale structure can boost

σ2
∆ above Poisson noise (Cole, 2011). We estimate J3 using a Zehavi et al. (2011)

power law fit to their clustering measurements. We took their threshold sample

M0.1
r < −21, as a rough estimate of how GAMA galaxies should cluster. Zehavi et al.

(2011) measure clustering out to around 12 Mpc h−1, and it would be inappropriate

to extrapolate their power law out to scales larger than this; we therefore use an

upper limit of 12 Mpc h−1 when integrating the power law correlation function to

find J3. We find that 4πJ3 = 3900 (Mpc/h)3. We will show that our conclusions

are insensitive to reasonable deviations from this value, caused, for example, by our

choice of upper limit or by the clustering measurement we chose as a rough estimate

of the GAMA galaxy clustering. From these estimates of variance, we find the χ2
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of the deviation of ∆(z) from unity, i.e.

χ2 =
∑

zi

(∆(zi)− 1)2

σ2
∆(zi)

. (4.3.10)

This in effect gives the χ2 of the deviation of the data from the randoms, taking into

account the expected variations due to large scale structure. Note that the χ2 we

estimate here ignores covariance between the redshift bins in the data, so is likely

an underestimate. In Fig. 4.3 we plot the reduced χ2 for randoms generated for the

GAMA-II galaxies. We can see that the estimates of Q and P are very degenerate,

with a diagonal feature within which the randoms are a statistically equally good

fit. Our definition of a good fit is a little loose here, as our reduced χ2 values do

not account for covariance in the data and we only have a rough estimate of J3.

Nonetheless it is clear that a diagonal region of Q and P values is favoured for these

data. This degeneracy was also seen by Cole (2011), when testing a conceptually

similar method to the one presented here. We could simply adopt a fiducial value

for P or Q and use Fig. 4.3 to pick an appropriate value for the other parameter.

This would yield a random nr(z) which would be a good fit to the data. However,

the value of Q we adopt affects our estimates of magnitude, so finding the best value

of Q is important. In the absence of a method to break the P and Q degeneracy,

we adopt the (Loveday et al., 2012) values of Q = 0.7 and P = 1.8. These values

were found by fitting the GAMA-I data set, as such they may not be the correct

values for the deeper GAMA-II data. However, we also see these values fall in the

low reduced χ2 region, as indicated by the star in Fig. 4.3. We also need to generate

a random catalogue for the mock catalogue. The luminosity function of the mock

catalogues has been adjusted to match that of the data as a function of redshift, so

we might expect the redshift distribution to be the very similar. However, it is less

clear whether the same values of P and Q will be appropriate, as the luminosity

of the mock galaxies may vary differently with redshift. We therefore repeated our

method of constraining P and Q on the mock catalogues. We plot the results in

Fig. 4.4. We once again see a strong degeneracy between P and Q. The value we

adopted for the data does not seem to be the best fit to the mock catalogue; we

must therefore choose better values. We choose to keep the same value of Q, such
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Figure 4.3: The reduced χ2 of the random catalogue nr(z), given the data. The star

indicates the Loveday et al. (2012) value of P and Q for GAMA-I data. The χ2 we

estimated here ignores covariance between the redshift bins in the data, so is likely

an underestimate. Nonetheless, we can still see a clear degeneracy between Q and

P .
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Figure 4.4: The reduced χ2 of the random catalogue nr(z), given the mock. The star

indicates the Loveday et al. (2012) value of P and Q for GAMA-I data. The triangle

indicates the Q and P adopted to produce randoms for the mock catalogue. The χ2

we estimated here ignores covariance in the data, so is likely an underestimate.
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Figure 4.5: The redshift distribution of the data (solid lines) compared to the redshift

distribution of the randoms (dashed lines), for different samples as indicated in the

legend. Vertical dotted lines mark the positions of our redshift cuts. The randoms

provide an excellent fit to the data.

that the magnitudes between mock and real galaxies are consistent, and use a lower

value of P = 0.6.

In Fig. 4.5 and Fig. 4.6 we show the redshift distribution of randoms and data, for

the real catalogue and mock catalogue respectively. We see for the luminosity, mass

and colour samples we study, the random redshift distribution is an excellent fit to

the data. Interestingly, the red and blue galaxies have a similar n(z) in both the

mocks and the data. This suggests using the same luminosity evolution parameter

for them has not biased our results. It also means the integrals of their luminosity

functions up to the detection limit must be similar across the redshift range we

study.
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Figure 4.6: The redshift distribution of the mock catalogue (solid lines) compared

to the redshift distribution of the randoms (dashed lines), for different samples as

indicated in the legend. Vertical dotted lines mark the positions of our redshift cuts.

The randoms provide an excellent fit to the mock data.
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For the Zehavi et al. (2011) comparison sample we choose a luminosity evolution

that is as close as possible to the luminosity evolution adopted for that paper.

We find that Q = 1.6 gives a good approximation to the complicated polynomial

luminosity evolution Zehavi et al. (2011) adopted. For this luminosity evolution we

adopt zref = 0.1. For the redshift range we study the difference between our Q = 1.6

luminosity evolution and the Zehavi et al. (2011) polynomial luminosity evolution

is less than 0.05 magnitudes. We use a value of P = 0.0 with this value of Q, as this

is required to still be in the best fitting region in Fig. 4.3.

4.3.4 Projected clustering

We measure the 2-point correlation function of galaxies in 2D using pairs of galaxies

and randoms with the Landy & Szalay (1993) estimator. Following the standard

approach adopted in the literature (e.g. Coil et al., 2008) we measure pair separations

parallel, π, and transverse, rP , to the line of sight for each pair. These are computed

by first converting the angular position and redshift of each object to a vector, r.

We then define a line of sight direction to a pair as l = 0.5(r1 + r2), where r1 and r2

are the positions of the two pair members. The parallel to the line of sight distance,

π, is the projection of the separation, s = r2 − r1, onto the line of sight

π =
s · l
|l| . (4.3.11)

The separation transverse to the line of sight is then

rp =
√

|s|2 − π2. (4.3.12)

Pairs are binned onto a grid of π and rp. In order to maximise SNR we use a mixed

linear and logarithmic binning scheme. At small separations, where it is expected

that there is a large amount of clustering signal, the binning is linear with a bin

size of 0.5 Mpc h−1. At a scale of 2.5 Mpc h−1, in π and rp, logarithmic binning is

adopted, with a bin size of 1.2 dex, so that the bin size grows for larger separations,

where there is a weaker clustering signal. We use nsets times more randoms than

data. Tests of our choice of binning and nsets are shown in Section 4.3.5.

Fig. 4.7 gives an example of 2D correlation functions of galaxies, ξ(rp, π), as

measured from our red and blue galaxy samples. It is well known that this measured



4.3. Methodology 151

Figure 4.7: The 2-point correlation function of red (top row) and blue (bottom row)

galaxies, for the redshift slices indicated. The elongation of the correlation function

on small scales, caused by redshift space distortions, can be seen more clearly in the

red sample, as one might expect since these galaxies tend to be in clusters.
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correlation function is distorted by the peculiar velocities of galaxies. On larger

scales the infall of galaxies squash the observed correlation function in the line of

sight direction (Kaiser, 1987). On small scales the virial motions of galaxies within

clusters can elongate the correlation function along the line of sight (Jackson, 1972).

This elongation can be seen in the red galaxy samples of Fig. 4.7. These distortions

have been studied in the GAMA data by Christodoulou & et al. (2013) and Blake

et al. (2013); in this work we focus instead on the projected correlation function,

wp(rp). The projected correlation function is a standard approach to dealing with

redshift space distortions, which involves integrating ξ(rp, π) along the π direction

to minimize their effects, thus

wp(rp) = 2

∫ πmax

0

ξ(rp, π)dπ. (4.3.13)

In practice this integral is carried out numerically using our ξ(rp, π) grid. The choice

of πmax warrants careful consideration. Ideally, one would use the largest possible

value of πmax as it includes the most amount of the 2D clustering signal, and because

theoretically the effects of redshift space distortions are only removed if you integrate

out to infinity. Unfortunately, in real surveys noise affects the measurements, and

measurements for large values of πmax can be particularly noisy. We decide on a

value of πmax in Section 4.3.5.

The results of Eq. 4.3.13, with πmax = ∞, can be calculated analytically for a

circularly symmetric power law correlation function, ξ(rp) = (rp/r0)
γ, where r0 and

γ are constants. The result is

wp(rp) = rp

(

r0
rp

)γ
Γ(1/2)Γ((γ − 1)/2)

Γ(γ/2)
(4.3.14)

where Γ is the Gamma function. We will fit Eq. 4.3.14 to some of our samples in

Section 4.5 in order to measure r0.

To compute error bars on our clustering measurements, 27 jack-knife samples

(e.g. Norberg et al., 2009), 9 per region, are formed by rejecting roughly equal area

regions of data. When plotting clustering, we often include a reference power law

line or divide through by this reference power law, wref , to allow easier comparison

between plots. We use the Zehavi et al. (2011) power law fit to their −21.0 <

M0.1
r − 5log10h < −20.0 sample, r0 = 5.33 Mpc h−1 and γ = 1.81, for this purpose.
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Figure 4.8: The projected two point correlation function of our low redshift, −20 <

Mr − 5log10h < −19 galaxy sample, for different values of πmax, as indicated in

the legend. Adjacent measurements have been offset by 0.01 dex along the x-axis,

with the highest πmax in its original position. The measurements are divided by the

reference power law defined in Section 4.3.4.

4.3.5 Integration tests

In this section we determine suitable values for nsets and πmax, as well as testing if

our results are sensitive to the binning we adopted for the 2D correlation function.

We tested different values of nsets, using the Zehavi et al. (2011) comparison

sample as it is the smallest we consider, so most convenient for computing correlation

functions with large values of nsets. We found that the clustering results for nsets = 30

and nsets = 16 were almost identical, with differences being far smaller than the size

of the error bars. The nsets = 8 measurements had a larger error for the smallest

separation of rp = 0.25 Mpc h−1. We therefore adopt a value of nsets = 16.

In addition we tested different values of πmax using our−20 < Mr−5log10h < −19

low redshift sample, the results are shown in Fig. 4.8. This small volume sample

is likely to suffer from the largest amount of sample variance, as it has few pairs it
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Figure 4.9: The projected two point correlation function of our low redshift, −20 <

Mr − 5log10h < −19 galaxy sample, for different approaches to binning the 2D

correlation function, as indicated in the legend. Adjacent measurements have been

offset by 0.01 dex along the x-axis, with the linear binning line in its original position.

The measurements are divided by the reference power law defined in Section 4.3.4.

is also likely to be noisy. Clustering measurements in this section are divided by

the reference power law defined in Section 4.3.4, in order to allow easier comparison

of the results. We see as we increase πmax the correlation function rises on larger

scales. However, this is an effect much smaller than the error bars. We adopt a

limit of πmax = 47 Mpc h−1, as using larger values has little effect on the results.

We also tested different approaches to binning the 2D correlation function. We

tried entirely linear, entirely logarithmic binning and binning which swaps from

linear to logarithmic at 2.5 Mpc h−1. As previously, we used our low redshift,

−20 < Mr − 5log10h < −19 sample for these tests. In Fig. 4.9 we see no evidence

of any systematic differences between the different binning methods. We therefore

adopt the mixed binning scheme, as it appears to be slightly less noisy than pure
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linear binning

Carrying out these tests on small and noisy samples can be troublesome, as the

random errors could mask any small systematics. Work to test our integration on

larger samples, which will take longer, is ongoing.

4.4 Results

4.4.1 Comparison to literature results

In this section we compare our measurements to those of Zehavi et al. (2011),

which come from the SDSS. This comparison acts as a test that our methods for

k-correcting galaxies, producing randoms and measuring clustering give reasonable

results. We can also use the large area of the SDSS to gauge if the GAMA-II volume

is unusual, i.e. particularly under-dense or over-dense. Ultimately, the large area

of SDSS can be used to constrain the absolute bias (Section 1.9) of the GAMA-II

volume, but we will leave this for future work.

In order to facilitate these comparisons we k-correct and evolution correct our

magnitudes to zref = 0.1, which is the reference redshift used by Zehavi et al. (2011).

We wish to compare to the volume limited, luminosity binned samples using the

same redshift cuts as Zehavi et al. (2011). Unfortunately it is only really sensible

to compare to the magnitude bin sample of −22.0 < M0.1
r − 5log10h < −21.0, as

the redshift cuts for the fainter magnitude bins result in small volumes in GAMA-II

(around 1.2× 106 (Mpc/h)−3), whilst the brighter bin of −23.0 < M0.1
r − 5log10h <

−22.0 only contains 304 galaxies. Our comparison is plotted in Fig. 4.10. We see

the measurements agree on small scales, but appear to be slightly above the Zehavi

et al. (2011) data for scales larger than around 3 Mpc h−1. The difference is small

considering the error bars and so the deviation could simply be the result of sample

variance. To test this hypothesis we will now test how well our jack-knife errors

represent the true sample variance.
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Figure 4.10: The −22.0 < M0.1
r − 5log10h < −21.0 clustering measurement from

Zehavi et al.(2011) (black), along with our measurement of clustering for the same

magnitude and redshift cuts. The dashed line is the reference power law defined in

Section 4.3.4.
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Figure 4.11: The −22.0 < M0.1
r − 5log10h < −21.0 clustering measurement from

Zehavi et al.(2011) (black), along with our measurement of clustering for the same

magnitude and redshift cuts. The different coloured lines indicate measurements

from excluding different GAMA regions, as indicated in the legend. The dashed line

is the reference power law defined in Section 4.3.4.
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4.4.2 Tests of jack-knife error estimates

We use a standard approach to calculate errors in this chapter: the jack-knife

method. To test these error estimates we study how the correlation function is

modified by removing individual GAMA-II regions (i.e. G09, G12 or G15). This is

the jack knife method, but carried out by excluding entire GAMA-II regions rather

than smaller sub regions. Error bars for these measurements were calculated by

further splitting the unexcluded regions into 18 jack-knife samples. In Fig. 4.11 we

show the results of this test. On smaller scales the different measurements agree, but

on larger scales the G09 measurements and the G12 measurements appear slightly

discrepant given the errors. This could suggest the jack-knife errors from the 27 sub-

regions are slight underestimates of the true error. We can also see from Fig. 4.11

how correlated the bins are, with the whole correlation function changing amplitude

when excluding different GAMA regions. From these observations, it seems likely

that our measurements are consistent with those of Zehavi et al. (2011), with the

differences in Fig. 4.10 being the result of sample variance.

As well as the mock catalogue we are using in this chapter, several other GAMA-

mock catalogues were produced. These lightcones are produced by orientating the

virtual observer towards different directions of the simulation box. By comparing

these mock catalogues, we have another means with which to estimate sample vari-

ance. Fig. 4.12 gives the clustering of galaxies in our low-redshift, red colour sample,

for the real data and three different mock catalogues. We will defer comparisons

between the data and mock catalogues to the next section, and simply focus on the

difference between the different mock catalogues. We can see the scatter between

the mock realisations is larger than expected given the jack-knife error bars, with

the mock we use for this work having stronger clustering at < 3Mpc h−1 than the

other two. This is further evidence that our jack-knife errors are underestimates of

the true error.

One way of gaining accurate error estimates could be to utilise many more mock

catalogues. As new mock catalogues with different cosmologies and galaxy formation

models are under production, we will defer this to later work, and continue using

jack-knife errors derived from the 27 regions. It is important to note, however, that
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Figure 4.12: The projected clustering of real red galaxies (red solid line) and mock

red galaxies for multiple different mock catalogues, as indicated by the legend, for our

low redshift slice. We see considerable scatter between the different mock catalogues.

The dashed line is the reference power law defined in Section 4.3.4.
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the work in this section suggests the standard approach of using jack-knife error

bars underestimates the true sample variance.

4.4.3 Colour dependent clustering

Fig. 4.13 shows the clustering of our red and blue galaxy samples (with solid lines).

In all of the redshift intervals we probe, red galaxies are more clustered than blue

galaxies. We also note that the red galaxy correlation functions are steeper on

small scales, with the lowest redshift, red galaxy correlation function showing an

inflection before a steepening of slope at around 2 Mpc h−1. This can be interpreted

as red galaxies predominantly being in larger haloes with more satellite galaxies (see

Chapter 1).

The mock galaxies show the same segregation of clustering strength with colour

in Fig. 4.13 (dotted lines). The red mock galaxies also have steeper correlation

functions than the blue mock galaxies. The mock galaxies do well at matching

the clustering of the real blue galaxy samples, and the red galaxy samples in the

high redshift region. For the two lower redshift slices the mock red galaxies have a

higher amplitude correlation function than that of the real data. This effect seems

larger on smaller scales. Note that even though the low redshift slice suffers from

considerable sample variance, Fig. 4.12 shows that two different mock catalogues

also have stronger small scale clustering than the data. This combined with the fact

that in the much larger volume of the intermediate redshift slice the mock galaxies

are also too clustered on small scales, suggests that this difference is not due to

sample variance. The disagreement on smaller scales could imply the mock red

galaxy sample contains too many satellites, and so has too large a one halo term

(see Chapter 1). To quantify the differences between the clustering of our red and

blue galaxy sample, we consider the relative bias. In Section 1.9 we introduced the

concept of bias, here we calculate the relative bias between the red galaxy projected

correlation function wp,red(rp) and the blue galaxy projected correlation function

wp,blue(rp) thus

brel(rp) =

√

wp,red(rp)

wp,blue(rp)
. (4.4.15)
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Figure 4.13: The projected correlation function of red galaxies (red solid lines and

circles) and blue galaxies (blue solid lines and circles) in different redshift slices. Also

shown is the clustering of mock galaxies from the Bower et al. (2006) model (stars

and dotted lines with darker shades of blue and red). The Bower et al. (2006) model

does a good job reproducing the clustering of blue galaxies but is less successful in

reproducing the clustering of red galaxies, particularly on smaller scales. The dashed

line is the reference power law defined in Section 4.3.4.
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Figure 4.14: The relative bias of the red and blue galaxy samples, for different

redshift slices as indicated in the legend.
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We show this quantity for our different redshift slices in Fig. 4.14. We can see that

relative bias increases for the low and intermediate redshift slices at around 2 Mpc

h−1. This could mark the transition to the one-halo term, where one might expect

stronger clustering for red galaxies which are more likely to be satellites. We can

see that the relative bias is around 1.6 on scales larger than 2 Mpc h−1. Table 1 of

Coil et al. (2008) gives estimates for the relative bias of red and blue galaxies, based

on their own study using DEEP2 and based on other galaxy surveys. Our value of

this relative bias seems to be in agreement with the Zehavi et al. (2002) low redshift

(z ≈ 0.1) SDSS value given in this table of ≈ 1.6, but is slightly higher than the

Coil et al. (2008) value of 1.23 ± 0.09 at z ≈ 1. This could suggest that the bias

is evolving, though one has to be careful when interpreting this as different authors

measure bias over different scales. The Coil et al. (2008) value was measured for

scales of 1 - 15 Mpc h−1, which is comparable to our work, whilst the Zehavi et al.

(2002) value, as given in Coil et al. (2008), is simply derived from power law fits to

the samples. In our different samples the errors are too large to draw any strong

conclusions about bias evolution between the different redshift slices, though it does

look like there is tentative evidence that small scale (< 2 Mpc h−1) bias decreases

with redshift.

The relative bias, and its evolution of redshift can act as a test of galaxy forma-

tion physics, by comparisons to mock catalogues. In Fig. 4.15 we show the relative

bias of red and blue galaxies in the mock. As one might expect from Fig. 4.13, the

relative bias in the mocks is higher than that of the data on small scales but in

reasonable agreement on larger scales. Redshift evolution on scales less than 2 Mpc

h−1 is more clear in the mock catalogue than in the data, with the small scale bias

showing a decrease with redshift in each sample.

4.4.4 Luminosity dependent clustering

In Fig. 4.16 we show the clustering of galaxies as a function of luminosity and

redshift, divided by our reference power law. Dividing by a reference power law in

this way means our measurements show the square of the galaxy bias, relative to the

fiducial power law. For all of the redshift intervals we notice segregation between the
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Figure 4.15: The relative bias of the red and blue mock galaxy samples, for different

redshift slices as indicated in the legend.
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faint and bright samples, with brighter galaxies being more clustered. This trend is

reproduced in the measurements from the mock catalogue. As has been previously

reported for other redshift ranges, this supports the theory that brighter galaxies lie

in more massive dark matter haloes.

The real galaxy samples have amplitudes which slightly decrease with redshift.

The only exception is the brightest sample, which has a fairly constant amplitude

between the intermediate and high redshift bins. The trends of clustering between

different redshift ranges is less clear for the mock galaxies. For the intermediate

magnitude sample, the mock galaxies have decreasing clustering with redshift, as

in the data. In contrast, for the faintest sample, the clustering actually increases

between the low and intermediate redshift bins. Note, however, that the small

volume of the low redshift slice is quite sensitive to sample variance (see Fig. 4.12).

At the brightest magnitudes the mocks, like the data, have correlation functions

with a fairly constant amplitude between the high and intermediate redshift slices.

The detailed shape of the clustering of the mock galaxies and real galaxies dis-

agrees. In the intermediate redshift range there is a trend for the mock galaxies to

be slightly more clustered than the real sample; the amplitude offset is small and

comparable to the size of the errors however. In the highest redshift slice the shapes

of the mock and real galaxy correlation functions are remarkably similar, though

the brightest mock galaxies are more clustered on smaller scales. However, to fully

quantify the extent of these disagreements would require a better understanding of

sample variance. We will address this in future work once the new mock catalogues

are produced.

The low redshift, real galaxy sample shows the same increase of clustering

strength for scales larger than 3 Mpc h−1 seen in the Zehavi et al. (2011) com-

parison sample. This is likely caused by the same large scale structure that caused

the upturn in the Zehavi et al. (2011) comparison sample, as the redshift ranges are

very similar.
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Figure 4.16: The projected two-point correlation function of real (top) and mock

(bottom) galaxies as a function of redshift (different columns) and luminosity (dif-

ferent colours, as indicated in the legend). The measurements are divided by the

reference power law defined in Section 4.3.4.
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Figure 4.17: The projected two-point correlation function of real (top) and mock

(bottom) galaxies as a function of redshift (different columns) and stellar mass

(different colours, as indicated in the legend). The measurements are divided by the

reference power law defined in Section 4.3.4.

4.4.5 Stellar mass dependent clustering

In Fig. 4.17 we show the clustering of galaxies as a function of mass. We see

that more massive galaxies are more clustered than less massive ones, in all of

the redshift intervals. As was the case for clustering as a function of luminosity,

this trend is successfully reproduced by the mock catalogues, except in the low

redshift region where the clustering of the mock galaxies is very similar for the two

least massive samples. As we have already seen, the low redshift slice suffers from

considerable sample variance, it is quite possible that this is the explanation for

the unusual clustering of the mock here. Indeed, the redshift distribution of the

least massive mock galaxies, shown in Fig. 4.6, does show a large over-density at

around z = 0.05. We will study the mass evolution of clustering more quantitatively

in the intermediate and high redshift slices, where sample variance is less of an
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issue. On scales between 3.2 Mpc h−1 and 10 Mpc h−1 the square of the bias,

relative to the fiducial power law, is different by a factor of around 0.2 dex between

the intermediate mass and high mass samples. The correlation function of the

mock galaxies are also separated by around 0.2 dex for these two samples. At

higher redshift the intermediate and high mass samples are separated by 0.3 dex,

in both the data and the mock catalogue. This suggests the relative bias of the

high mass, 10.5 < log10(M∗/(M⊙h
−2)) < 11.5 sample to the intermediate mass,

9.5 < log10(M∗/(M⊙h
−2)) < 10.5 sample increases with redshift. The agreement

between the mock catalogue and the data suggests that the Bower et al. (2006)

model is assigning galaxies to dark matter haloes with the correct relative bias.

The amplitude of the mock galaxy correlation function is too high in the inter-

mediate redshift sample; in contrast, the clustering of galaxies at high redshift is

very closely matched by the mocks, except at scales less than 1 Mpc h−1 where the

most massive sample has excess clustering. The most massive mock galaxies also

show excessive small scale clustering in the other redshift slices. One explanation

for the most massive mock galaxies being too clustered on these small scales is that

the simulation has too many galaxy clusters and groups. This could be a result of

the value of σ8 used in the Millennium Simulation, which is larger than the true

value (see Section 4.2.3). We will discuss this further in Section 4.5.

The clustering of the mocks and the data both show evolutionary trends with

redshift. The clustering amplitude of the 9.5 < log10(M∗/(M⊙h
−2)) < 10.5 sample

decreases with redshift between the low redshift slice and the high redshift slice. The

mock galaxies of this mass also show a decreasing clustering amplitude between the

intermediate and high redshift slices. There is a lack of clustering evolution between

the low redshift slice and the intermediate redshift slice for the mock catalogue,

though this could easily be due to sample variance in the low redshift slice. In

both the mocks and the data the more massive 10.5 < log10(M∗/(M⊙h
−2)) < 11.5

galaxy sample shows less evolution with redshift. The evolution of clustering with

redshift can be used to probe how the galaxy bias evolves with time, which can be a

useful constraint on the physics of galaxy formation. We will compare our clustering

amplitudes to literature results in the next section.
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4.5 Discussion and Conclusions

We have studied the projected two point correlation function of galaxies in GAMA-

II. To do this we used the Cole (2011) approach to generate random catalogues;

this method resulted in a set of random points with all of the properties of the real

galaxies. This allowed sample selection cuts to be applied to both the data and the

random catalogue, allowing the measurement of galaxy clustering as a function of

diverse galaxy properties.

We have confirmed that more luminous, more massive and redder galaxies are

more strongly clustered, in three redshift slices between z = 0 and z = 0.5. This is

in agreement with previous measurements that show these trends exist at different

redshift ranges to our data (e.g. Zehavi et al., 2011; Christodoulou et al., 2012;

Li et al., 2012; de la Torre et al., 2013; Marulli et al., 2013). We also find that

red galaxies have steeper correlation functions in all of our redshift slices, again in

agreement with clustering measured at higher (e.g. Coil et al., 2008) and lower (e.g.

Zehavi et al., 2011) redshifts. We do note from Table 4.1, 4.2 and 4.3 however,

that the more massive galaxies tend to be red and more luminous. In order to

decide which of these galaxy properties is most important for driving these clustering

trends, future work could study the clustering of samples of galaxies with cuts in

multiple parameters, e.g. red, massive galaxies versus red, low mass galaxies.

We detect redshift evolution of the clustering in some of the samples of real

galaxies. To summarise these results, and compare our findings to those at high

redshifts we plot our values of r0 for the two mass samples for which we have clus-

tering measurements in each of our redshift slices. We find these values of r0 from

fitting Eq. 4.3.14 to the full rp range of our data. We compare our findings to the

high redshift measurements from VIPERS in Marulli et al. (2013), who fit a power

law over the scales 0.2 < rp Mpch−1 < 20.0. The range over which this work and

Marulli et al. (2013) fit power laws includes the one-halo and two-halo terms of the

clustering, so our results should be comparable. We show our measurements of r0

(stars) and the Marulli et al. (2013) measurements (circles) as a function of each

sample’s median redshift in Fig. 4.5. We see that our estimates of r0 at z ≈ 0.3 agree

with the measurements of Marulli et al. (2013) at 0.6 < z < 1.0, suggesting little
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Figure 4.18: Measurements of the correlation length, r0, for galaxy samples of dif-

ferent mass as indicated in the legend. The stars show our measurements, while

the circles show measurements from the VIPERS survey from Marulli et al. (2013).

Values are plotted at the median redshift of each sample.
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evolution occurred between the two redshift ranges of our survey. One has to be

careful with this interpretation however, as different methods of estimating stellar

mass and sample variance could lead to systematic offsets. We do see evidence of

redshift evolution in the 9.5 < log10(M∗/(M⊙h
−2)) < 10.5 sample across our redshift

slices. In contrast we see no evidence of redshift evolution in galaxies more massive

than 1010.5 M⊙ h−2. Meneux et al. (2008) also found that galaxies more massive

than this limit showed less clustering evolution between z ≈ 1 to z ≈ 0.15 than

their less massive counterparts. They demonstrated this implies that these more

massive galaxies have faster bias evolution.

The trend with luminosity, mass and colour observed in the real galaxies is

reproduced in the mock galaxies, except in the low redshift slice which suffers

from considerable sample variance. The mock galaxies are particularly success-

ful in reproducing the relative bias of 9.5 < log10(M∗/(M⊙h
−2)) < 10.5 to 10.5 <

log10(M∗/(M⊙h
−2)) < 11.5 galaxies. This is a positive indication that the Bower

et al. (2006) galaxy formation model is assigning galaxies to the correct dark matter

haloes.

Disagreements do exist between the mocks and the data, however, and these dis-

agreements could indicate that key pieces of galaxy formation physics are neglected

or incorrectly realised in the model. We find that the mock galaxies tend to be

more clustered on scales smaller than 1 − 3 Mpc h−1 than the data. In the red

galaxy sample this could be associated with an excess of satellite galaxies. Previ-

ous publications have also found this result, and their suggestions for new galaxy

formation physics involve processes which remove satellite galaxies (see Chapter 1

and references therein). For the most massive and most luminous mock galaxies,

this excess on small scales could be down to the value of σ8 used in the Millennium

Simulation. Whilst typically clustering on small scales is more related to galaxy

formation physics than cosmology, the overly large value of σ8 used for the mocks

could result in more massive dark matter haloes, which in turn, would result in dark

matter correlation functions which are steeper on small (non-linear) scales.

Interestingly, how well the clustering of the mock galaxies agrees with that of the

data varies with redshift. The agreement between mocks and data is better for the
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high redshift region, 0.24 < z < 0.5, than for the intermediate redshift region, where

the amplitude of the clustering of the mocks tends to be too high (see Fig. 4.13 to

Fig. 4.17). This demonstrates that our results, as a function of redshift, can act as a

new test for galaxy formation models. Indeed, mock catalogues with different values

of σ8 and different implementations of galaxy physics (e.g. Lagos et al., 2012) are

currently under production, comparing their clustering to these results could yield

new information on galaxy formation and cosmology.

When testing galaxy formation and galaxy models against our results there are

two main limitations. Firstly, our jack-knife resampling likely underestimates the

true variance for some of the samples. In order to overcome this we will derive

new error estimates based on measurements from mock catalogues, or from larger

jack-knife regions. Secondly, our low redshift slice has a small volume and so is

prone to sample variance. However, for trends of clustering with colour, mass and

luminosity, SDSS already provides highly accurate clustering statistics in the low

redshift Universe.



Chapter 5

Conclusions

This thesis has presented results from two, very different, galaxy surveys. We first

presented the tests and preparations which were carried out to exploit PS1 for galaxy

clustering and cosmology. After this, we used the GAMA-II survey to make mea-

surements of galaxy clustering that can be used as new constraints when developing

galaxy formation models. In this chapter we shall review our key findings before

suggesting future developments to this research.

5.1 Pan-STARRS1

The software of PS1 has been tested to ensure that the magnitude measurements it

makes can be used for science. We found that the PS1 IPP software can measure

Kron magnitudes for stars and galaxies, with little evidence of a magnitude depen-

dent bias. Furthermore, we show, using synthetic images, that the stacking and

warping processes preserve the magnitudes of sources. We also demonstrate with

our synthetic images that the stacking procedure increases depth by the expected

amount.

The image backgrounds of PS1 were also studied by measuring the pixel power

spectrum. The pixel power spectrum of PS1 images has features within it related

to the time varying bias of different pixel rows on the CCD detector. We also

found that the PS1 image background power spectra has more large scale power

relative to SDSS at scales of k ≅ 1 arcseconds−1 , which corresponds to wavelengths

173
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greater than 6 arcseconds. We have shown using synthetic images that unresolved

sources alone cannot account for this excess power. It is possible that the source of

this noise is related to the electronics of the CCD camera, perhaps, for example, a

result of the time varying bias of the rows of pixels. To test this, power spectra of

images that have undergone different stages of the IPP processing, from raw data to

detrended exposures, could be produced by the IPP team and their power spectra

analysed. Testing if there is any dependence of the shape of the power spectrum on

the detrending methods used by IPP, such as the order of the polynomial fit used

in the row-by-row bias correction (Section 2.3), will also illuminate this issue.

We additionally found that the rms scatter of the sum of the background in

apertures on empty regions of PS1 images increases with aperture size more than it

would for white noise. For a 4 arcsecond aperture, Fig. 2.16 implies a 0.13 magnitude

increase in magnitude scatter. We attribute this to the large scale upturn in the

power spectrum. The large scale noise will have to be accounted for if one wants

to predict the magnitude error on measurements from apertures. This quantity

is important as it is used when fitting SED templates to photometry, which is an

important step in determining photometric redshifts.

We also presented preparations for measuring galaxy clustering in PS1. Using a

region of science verification data we developed a star/galaxy separator that is 91%-

98% complete. We also developed a method of accounting for the variable depth

of the PS1 survey. Using these techniques, we demonstrated our ability to measure

angular clustering with PS1, by comparing to literature measurements from deeper

and more homogeneous surveys. We found that the presence of false detections

is a concern for galaxy clustering studies, as false detections in PS1 can have a

strong clustering signal. One method which could be developed to remove these

false positives is using the final 3π stacked data to detect and mask image artifacts

in the individual warps, before restacking these newly cleaned warps. Additionally,

false detections make up only a small fraction of the sample in SAS2 data. We

demonstrated that reliable clustering in SAS2 can be measured to a limit of rP1 =

22.5.

PS1 should finish observations in January 2014, and the data should be reduced
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by mid 2014 (Magnier et al. in preparation). In order to fully utilise this data

set, our depth correction method and a method of star/galaxy separation needs to

be rolled out across the full survey. This presents a large number of challenges.

Firstly, the PSF FWHM of SAS2 is very uniform, the finished 3π data will have

far greater variations in PSF FWHM. Both star/galaxy separation and detection

efficiency depend on the PSF FWHM. The synthetic images we developed for this

thesis can be utilised towards understanding how to adapt our methods for more

variable seeing. For example, synthetic images with a range of different PSFs could

be generated in order to determine the scaling between PSF parameters, like width

and ellipticity, to detection efficiency and star/galaxy separation cuts. The synthetic

images can also be used to test how well our methods work on data with more

variable image backgrounds.

A further challenge is related to how to scale our techniques from the 68 deg.2

area of SAS2 to the 31,000 deg.2 of the full 3π. Note that, in practice, the galactic

disk may limit the area of sky of interest to extra-galactic astronomers. Computer

memory is unlikely to be a major issue, as our binned-up variance maps are around

600MB in size, so a binned up, 3π variance map to the same resolution would be a

manageable 275GB in size. The challenges arise with computing and utilising these

masks. The PS1 IPP is currently producing binned up variance maps in order to

apply our methods to the whole survey.

Potential applications of the finished PS1 3π data set include searching for the

Integrated Sachs Wolfe (ISW) effect. This effect, as explained in Chapter 1, is an

increase in the temperature of CMB photons, caused by them travelling through a

gravitational potential well that is decaying due to the accelerated expansion of the

Universe. It can act as an important probe of the dynamics of dark energy. Another

application is generating catalogues of galaxy clusters. In both cases the large area

of PS1 could give it an edge over its competitors. The detection of the ISW effect

in PS1 could arise from cross correlating the distribution of galaxies with the CMB.

Our method could correct for spatial depth variations in the galaxy field, allowing

for the use of 3π data to a fainter magnitude limit than what would be required for

homogeneous depth. The fast computation of the depth as a function of position
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will also be a useful input into cluster finding software, allowing it to differentiate

between genuine over-densities of galaxies and changes in depth.

5.2 GAMA-II

We have utilised the GAMA-II survey to measure the projected two point correlation

function across the redshift range 0.0 < z < 0.5. We find in intermediate, 0.14 <

z < 0.24 and high, 0.24 < z < 0.5, redshift slices both real GAMA galaxies and

mock galaxies from the Bower et al. (2006) semi-analytic model show increasing

clustering with mass and luminosity. We additionally find red galaxies have steeper,

higher amplitude correlation functions than blue galaxies in both the mocks and the

data, and in all of the redshift slices.

The clustering of real and mock galaxies shows some intriguing differences. The

red mock galaxies have a larger correlation function amplitude than the data, a

difference that is more marked for scales less than 1 − 3 Mpc h−1. This excess of

small scale clustering supports the idea that the Bower et al. (2006) model produces

too many satellite galaxies. An idea that has been raised by other authors, who

suggest mechanisms for removing satellite galaxies from dark matter haloes (see

references in Chapter 1). In addition, the most massive and most luminous mock

galaxies tend to also have too much small scale clustering; this could be an effect of

the σ8 value adopted in the Millennium Simulation, which is larger than the current

best estimates (e.g. Planck Collaboration et al., 2013). Interestingly, the difference

between the clustering of real galaxies and mock galaxies changes between different

redshift bins.

We also detect redshift evolution in the clustering amplitude of our real galaxies.

Notably our intermediate luminosity, −21.0 < Mr − 5log10h < −20.0, and our

intermediate mass, 9.5 < log10(M∗/(M⊙h
−2)) < 10.5, samples show a clustering

amplitude that decreases between z = 0.0 and z = 0.5. Comparing our values of r0

to those measured at z ≈ 1 by Marulli et al. (2013) indicates little evolution of r0

between z = 0.5 and z ≈ 1.

The clustering measured in the GAMA-II survey can act as a powerful new test
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of galaxy formation models. Comparing these results to a simulation with a different

value of σ8 and different galform models is an obvious first step. Additionally,

better estimates of the sample variance of clustering measurements need to be devel-

oped. One approach to do this is to compare results from multiple mock catalogues.

Also, future work could estimate the bias of our galaxy clustering measurements,

relative to models of dark matter. A redshift dependent bias could then be derived

which could be compared to predictions from models. Finally, HOD fitting tech-

niques could be applied to the clustering measurements to find what the data imply

about the occupation statistics of dark matter haloes.

As the galaxies in the random catalogues we developed have all of the proper-

ties of the genuine galaxies, clustering in GAMA can be studied as a function of

more exotic galaxy properties. For example, the multi-wavelength nature of GAMA

could allow the measurement of the dependence of galaxy clustering on 21cm radio

luminosity. This emission is an indicator of molecular gas, the main ingredient for

star formation. The dependence of clustering on star formation rate (SFR) can

also be probed. GAMA has spectra of galaxies which could allow the estimation of

SFR from Hα emission. In addition, SFR could also be estimated in GAMA via

the ultra-violet or infra-red emission of galaxies, or SED fits to optical photometry.

Estimating SFR in multiple ways allows added redundancy in the measurements.

As models such as galform make predictions for clustering as a function of SFR

and molecular gas content, the GAMA data has the potential to test the galaxy

formation physics in these models.

5.3 Future Prospects

There are many upcoming imaging surveys which will also help constrain galaxy

formation and cosmology. Our research in understanding the systematics affecting

large surveys, such as stellar contamination and the effects of incompleteness, will

be valuable to these. We will now highlight a few other interesting future surveys.

The Large Synoptic Survey Telescope (LSST; Ivezic et al., 2008) would be a prime

candidate for the application of the spatially varying depth correction method. Like
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PS1, the LSST will be made up of a large number of stacked exposures and as such

is likely to suffer from the same spatial depth variations. After 10 years the LSST

is expected to reach a depth of r = 27.5 (Ivezic et al., 2008), far deeper than PS1.

LSST will be able to measure BAOs at higher redshifts, to further constrain the

equation of state of dark energy. It is also expected to be an excellent tool for weak

gravitational lensing studies, where the distortion of galaxy light by mass is used

to probe dark matter. The angular clustering of LSST galaxies could also be used

to make comparisons against the predictions of models, like galform, at higher

redshifts.

The Dark Energy Survey (DES; The Dark Energy Survey Collaboration, 2005)

have already begun gathering data. DES will measure multi-band photometry over

5 years for 5000 deg.2 down to a 10σ limit of r = 24.1 (The Dark Energy Survey

Collaboration, 2005). DES will also be able to measure BAO in photometric red-

shift slices, as well as measuring weak gravitational lensing and the ISW effect (The

Dark Energy Survey Collaboration, 2005). A possible systematic in DES angular

clustering measurements is understanding the galaxy bias, which could affect mea-

surements of the BAO peak (e.g. The Dark Energy Survey Collaboration, 2005).

The measurements made for this thesis could be used to improve galaxy formation

models, and so increase our understanding of galaxy bias. As before, the angular

clustering of DES galaxies as a function and colour, stellar mass and photometric

redshift could also act as new constraints on galaxy formation models.

The VST-ATLAS survey is also being carried out. VST-ATLAS is a survey of

4500 deg.2 of southern sky to SDSS depths1. Follow-up spectroscopy of LRGs and

quasars in VST-ATLAS is expected to yield new measurements of the galaxy correla-

tion function and BAOs at unprobed redshifts. Another major spectroscopic survey

aiming to measure BAOs is the Dark Energy Spectroscopic Instrument (DESI; Levi

et al., 2013). This will measure the BAO peak in 35 redshift bins, allowing a highly

accurate measurement of the expansion history of the Universe. PS1 data overlaps

with the DESI footprint and so could provide additional photometry.

1http://astro.dur.ac.uk/Cosmology/vstatlas/, accessed 17/12/13
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Perhaps the most exciting upcoming project is Euclid, which involves launching

a satellite to carry out 15,000 deg.2 of deep imaging (in their visible band down to

24.5 mag.) with a small PSF FWHM (less than 0.2 arcseconds in the visible band;

Laureijs et al., 2011). Combined with this it will carry out a spectroscopic survey

of 50 million galaxies down to z ∼ 2. It will combine BAO measurements from the

spectroscopic data, to weak lensing measurements from the visible data (Laureijs

et al., 2011). Their aim is to measure w to a 1σ error of 0.01, to put a very strong

constraint on the nature of dark energy (Laureijs et al., 2011). As with DESI, PS1

could provide further visible photometry for this survey.

Overall, the work in this thesis contributes to our understanding of galaxy for-

mation and galaxy surveys. The latter of which are becoming ever more ambitious

in their attempts to understand the nature of dark energy and dark matter.
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