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Abstract

This thesis proposes a means of implementing quantum information processing using

photonic qubits as information carriers. Electromagnetically-induced transparency (EIT)

is used to store information encoded in photons into Rydberg excitations in a cloud of

cold atoms, where strong dipole-dipole interactions induce interactions between qubits.

After a storage time, information is mapped back into photons collectively emitted from

the cloud again via EIT.

A new experimental apparatus is built to implement non-linear Rydberg quantum

optics. A high repetition rate is achieved owing to a 2D-MOT atom source, and high

optical resolution for trapping and probing microscopic atomic ensembles is achieved by

the use of aspheric lenses inside the vacuum chamber. A new, high resolution computer

control scheme is implemented.

This thesis demonstrates that, during the holding time, multiple collective Rydberg

excitations at a controlled separation interact with each other to imprint a non-uniform

phase gradient resulting in anti-correlation of photon emission. Interactions are observed

at up to 15 times the wavelength of the photonic qubits. These long range interactions

offer a promising approach to scaling all-optical quantum computing.

Applying resonant microwave fields during the storage time is demonstrated to offer

a competitive method of performing sensitive microwave electrometry. A sensitivity of

12± 7µVcm−1√Hz−1 is found at a frequency of 7.7GHz. The high sensitivity is shown

to arise from remnant, Rydberg excitations providing an additional source of atom loss

from the atomic ensemble, leading to a suppression of photon storage and retrieval

efficiency. An additional stage of microwave driving to sanitise the atomic ensemble for

recycling is shown to successfully suppress the atom-loss mechanism.

ii



Abstract

The use of successive microwave pulses is shown to provide a feasible approach to

interfacing microwave and optical quantum information processing systems. Information

encoded as the presence or absence of a microwave field is translated into information

encoded as early or late retrieval of single photons, demonstrating proof of principle for

an approach to implementing a proposal for an all-optical controlled-z gate.

Externally driven microwave fields are used to provide rapid, low-loss modulation of

the signal retrieved from an atomic ensemble, demonstrating the proof of principle of

implementing a probabilistic single photon source that can intensity modulate with low-

loss at frequencies of at least 27MHz, with evidence that modulation may be achievable

at rates in excess of 500MHz.
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1. Introduction

This thesis describes work to realise a system that exhibits controllable non-linearity

at the level of single optical photons. The motivation for producing such a system is

outlined in the following section.

1.1. Aims and motivation

The invention of the laser in 1958 [1] provided a new tool well suited to the preparation,

manipulation, and study, of the quantum state of particles. One area of particular

interest is that of QIP1. Classically, information is stored as bits which have a well

defined state: in the context of digital computing, this state may take either the value

0 or 1. Information stored in a quantum system is encoded in a qubit, or quantum bit,

which exists in a superposition of 0 and 1. For certain classes of problems, information

stored in a quantum system may be processed more efficiently than for information

stored classically [2, 3].

A variety of quantum systems have been proposed as physical systems to implement

quantum storage of information, such as ions [4], Rydberg atoms [5, 6], superconducting

Josephson junctions [7, 8], electrons [9] and photons [10].

The work described in this thesis focuses on the latter: optical QIP using photons as

information carriers. The ease of transmission and robustness against interaction with

the environment make photons particularly attractive as information carriers, and they

are already widely used as a communications medium between classical computers [11].

1Quantum information processing
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1. Introduction

To process information physically stored in the state of multiple qubits requires an

interaction between those physical systems. The absence of strong interactions which

renders photons such excellent information carriers substantially hinders their suitability

as a medium for information processors. The experiments discussed in this thesis take

two approaches to the problem of inducing interactions between optical qubits to achieve

information processing:

• Constructing a system in which strong effective interactions between photons can

be induced to permit processing in an all-optical scheme [12],

• Bypassing the problem by demonstrating a means by which information can be

coherently transferred between different quantum systems with complementary

strengths and weaknesses in a hybrid QIP scheme.

1.1.1. Effective photon-photon interactions

An interaction between photons is logically equivalent to a system which exhibits one

form of behaviour in the presence of one photon, and a different behaviour in the presence

of two. Such non-linearity is rare at low optical powers, and early evidence for non-linear

behaviour was only found after the development of lasers provided high intensity fields

[13]. Classical non-linear optics focuses on the study of these high intensity systems.

Extensive work has been dedicated to the search for systems that exhibit non-linearity

at progressively lower optical intensities, leading to the logical conclusion of non-linearity

arising at the level of single photons [14, 15].

Non-linearity at the level of single photons principally requires a high probability of

interaction between the single photon and some medium, commonly atoms or ions. A

common method of achieving this strong coupling has been to place the atom and photon

within a high quality cavity; an area of research that has been dubbed CQED2. In the

microwave domain, these schemes have demonstrated non-linear behaviour at the level of

single quanta [16, 17]. Optical cavities have also been used to demonstrate non-linearity

2Cavity quantum electrodynamics
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1. Introduction

at the single photon level [18, 19]. CQED has been used to demonstrate a number of

all-optical device-like behaviours, such as switches [20, 21] and a deterministic quantum

gate [22].

Rydberg non-linear optics

CQED offers an effective toolset to achieve the high coupling necessary between the

single-photon light field and atom,3 but requires that photons exist in the same cavity

mode in order to interact with the same quantum emitter. An alternative scheme to

mediate effective photon-photon interactions is to use a system that exhibits its own

strong, long-ranged interactions, and that may also reversibly interact with the single

photon field. In this way, the effect of one single photon may be transferred to a second

photon that propagates nearby, but not in an identical mode. In this thesis, collective

Rydberg excitations in an atomic ensemble are used as the underlying physical system.

Highly excited Rydberg atoms exhibit strong dipolar interactions [5, 25] that may be

observed at distances of many microns [26].

In Rydberg non-linear optics [27–29], EIT4 [30–32] is used as a coherent method to

reversibly map Rydberg interactions to a photonic field [33]. A second optical field is

introduced that couples the medium to a third level: for Rydberg non-linear optics, this

third level is a highly excited Rydberg state. In the simplest case of EIT, where both fields

are resonant with atomic transitions, the coupling field renders the medium transparent

to the first optical field (the ‘probe’ field). The creation of a single Rydberg excitation

causes strong dipolar interactions which shift nearby atoms out of resonance, destroying

the transparency and creating a blockaded volume in which exactly one excitation may

exist [34–39].

By exerting dynamic control over the intensity of the control field, the propagation of

the probe field may be controlled, and in the extreme case of switching off the control

3Or other media: non-linearity in a high-Q resonator has also been shown with other quantum systems,

such as semiconductor quantum dots [23, 24].
4Electromagnetically-induced transparency
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1. Introduction

field, the probe field group velocity may be reduced to zero to reversibly store the field

quanta as atomic spin-waves [40, 41]. Due to the dipole blockade effect arising from

the use of Rydberg states, the system has been shown to act as an effective filter to

emit non-classical states of light even when the input pulse is a classical, coherent state

[42, 43]. Variations on the approach have been used to implement a deterministic single

photon source [44], all-optical transistors [45–47], atom-photon entanglement [48], single

photon subtraction [49, 50], optical phase shifters [51, 52] and microwave-switched light

[53, 54].

Contactless effective photon-photon interactions

All-optical QIP has been attempted with strictly local non-linearities, such as the giant

Kerr effect in EIT [55], but it has been shown that these cannot offer sufficiently strong

interactions [56, 57]. The use of Rydberg states offers a potential route to overcome this

limitation to allow for deterministic all-optical quantum gates [58, 59]. The long range

nature of interactions between Rydberg excitations allows in principal for non-linearity

to occur non-locally - that is, between photons propagating in separate, non-overlapping

modes. A wide variety of techniques have been proposed to implement such gates [58–

62].

This thesis expands on the work of H. Busche et al in demonstrating effective inter-

actions between photons propagating in separate, non-overlapping, spatial modes [63].

In analogy to experiments that observe interaction behaviour as a function of separa-

tion between individual Rydberg excitations within a single mode by means of temporal

resolution [37, 38, 64], we implement spatial resolution by the creation of two separate,

side-by-side, channels in which photons may be stored as collective Rydberg excitations.

Interactions are observed by anticorrelation in photon emission from light storage in the

two channels, separated by a distance O(10λ), arising from disturbance of the spin-wave

phase due to a nearby excitation [44, 53, 65, 66]. Similar work has demonstrated the

ability to reliably generate a π/2 phase shift in independent modes [67].

3
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1.1.2. Information transfer in a hybrid QIP scheme

QIP schemes have typically relied on minimising transfer between disparate physical

systems as far as possible, due to the potential for decoherence, which is one of the moti-

vations for achieving all-optical processing [10]. However, as noted no individual system

presents as a perfect candidate. Hybrid QIP offers the potential to harness multiple

schemes with complementary strengths [68–70]. One of the most basic tasks presented

in QIP is the ability to coherent transfer quantum states between nodes of a processor

[19, 71, 72].

In particular, while superconducting qubits have been demonstrated to exhibit remark-

ably high fidelity [73–78], efficient quantum state transport remains a hard problem due

to extremely short coherence times [79, 80]. In order to minimise decoherence due to

blackbody radiation, such qubits are typically confined to extremely bulky helium dilu-

tion refrigerators in order to achieve mK temperature environments. Recent work has

begun to improve on this limitation, allowing multiple qubits (still in mK environments)

to reliably communicate via a noisy channel only cooled to 4K, which can be achieved

more easily [81, 82]. However, such a communication scheme falls far short of the con-

venience of optical photons in fibres, if translation between the quantum systems can be

reliably achieved.

Atomic [83, 84] and ionic [85, 86] qubit systems have also demonstrated considerable

success as systems suitable to QIP, but likewise suffer from the ability to transfer infor-

mation of the quantum state between physically discrete systems [87]. Optical photons

offer ideal characteristics for translating this information, given a means of transferring

information to the optical system.

Due to the long lifetime of Rydberg states [25], collective Rydberg excitations can be

considered similarly to individual atom systems. Microwave fields are used to couple

between nearby energy levels of these ‘superatoms’ [53]. Shifting population between

states induces additional dipolar interactions that act as a stronger filter for retrieved

Fock states [54].
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Microwave driven single photon shaping

This thesis uses the extreme sensitivity of Rydberg excitations to microwave fields [25,

88–90] to demonstrate the ability to transfer information encoded as microwave photons

to single optical photons. Microwave to optical interface techniques are an expanding

area of study to take advantage of the strengths of optical photons as a communications

medium [91–96].

Earlier work by D. Maxwell [53, 54] studying the behaviour of collective Rydberg

excitations exposed to microwave fields resonant with Rydberg-Rydberg transitions is

revisited. This previous work found behaviour that was not consistent with contem-

porary theory [97]. The collective excitations underwent coherent Rabi oscillations in

retrieval probability, as expected, but demonstrated an unexpected suppression in re-

trieval probability at certain rotation angles, with the degree of suppression shown to be

dependent on the number of collective Rydberg excitations simultaneously present.

This work is reproduced as a potential means of performing sensitive microwave elec-

trometry, and yields sensitivity competitive with published results [89]. It is then ex-

tended by considering previously neglected atomic population, and the suppression is

shown to be a function of accelerated atom loss from the atomic ensemble rather than

directly as a result of interactions between collective excitations. By applying multiple

microwave pulses to more fully sanitise the experimental medium, the expected Rabi os-

cillation profile emerges. The use of multiple microwave pulses are then used to produce

delayed photon retrieval. This serves as proof-of-principle for converting information

encoded in microwave photons into early or late emission of single optical photons.

By extending the methods used to reproduce and study D. Maxwell’s work, rapid am-

plitude modulation of single photons is demonstrated. Applying a microwave field during

the retrieval window, simultaneously with the coupling laser beam, results in Rabi oscil-

lations to a dark Rydberg state from which no retrieval occurs. By temporarily shelving

excitations in this dark state, the resulting retrieved photons can have their temporal

mode shaped. In comparison to electro-optical techniques which require a herald pho-

ton [98], the time dependence of photon retrieval presents a reliable trigger. Modulation
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techniques exhibit low loss in comparison to conventional EOM5 based techniques, while

offering theoretically comparable bandwidth. Future upgrades to improve the control

bandwidth in principle permit the creation of arbitrary photon profiles, such as those

demonstrated in CQED systems [99, 100].

1.2. Thesis structure

This thesis contains the following chapters:

• Chapter 2 reviews the important properties of dipole interactions between atoms,

and the important phenomenon of dipole blockade.

• Chapter 3 discusses the interactions between atoms and multiple electromagnetic

field. The concept of EIT and photon storage are introduced and summarised.

• Chapter 4 introduces the new experimental apparatus, and presents some some

characterising data to demonstrate its performance.

• Chapter 5 introduces and demonstrates effective contactless interactions between

non-overlapping single photons in spatially distinct channels.

• Chapter 6 discusses the use of collective Rydberg excitations as a tool for perform-

ing sensitive microwave electrometry. It demonstrates that the high sensitivity

arises from Rydberg-mediated atom loss, and re-interprets previous work in that

light.

• Chapter 7 demonstrates the use of a second Rydberg state, as an interface to control

the optical output of the system via an applied microwave field. Two approaches are

pursued: converting information encoded by the presence or absence of a microwave

photon into early or late emission of an optical photon; and high speed, low-loss

intensity modulation of an optical photon.

5Electro-optical modulator
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1.3. Rydberg quantum optics in Durham

Scientific experiments of this level of complexity do not take place in a vacuum.6 The

work presented here has benefited from the contributions of the present and past mem-

bers of the Rydberg Quantum Optics team at Durham University over the past decade.

The experimental apparatus discussed in this thesis is the third generation built to

study quantum optics in a cold atomic medium with Rydberg character. The first

generation was built by K. Weatherill and J. Pritchard, and used to demonstrate the

potential of Rydberg physics for generating strong optical non-linearities at the level of

few photons [27, 101, 102].

The second generation was built by J. Pritchard, D. Maxwell and D. Paredes-Barato

to study the storage of photons as collective Rydberg excitations. This generation rep-

resented a step change by confining the atomic ensemble to a microscopic volume with

dimensions of the same order as the dipole blockade radius. A key result of the second

generation was to demonstrate the potential to apply a microwave field to the collective

excitation to drive a transition to a nearby Rydberg state. The application of the mi-

crowave field resulted in a precisely controlled adjustment of the interaction potential

between nearby collective excitations which could be detected by the statistics of the

subsequently emitted photons [53, 54, 103]. The approach was subsequently proposed

as a method by which to implement an all-optical quantum controlled-phase logic gate

[61, 104].

The third generation experimental apparatus, discussed in chapter 4, was proposed

in order to overcome certain limitations of the second generation apparatus while main-

taining its strengths. It was designed by K. Weatherill and H. Busche, and subsequently

built jointly by H. Busche and the author. The third generation remains in operation,

as of the date of publishing, operated by T. Ilieva and N. Spong. The work of H. Busche

gives an overview of the early results produced by this latest generation [105], resulting

in papers published jointly with the author [63, 106]. The most notable result is the

6Metaphorically speaking
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demonstration of optical non-linearity for a photon within an atomic ensemble arising

from the presence in a nearby, but separate and non-contiguous atomic ensemble, of a

second photon [63]. This work was carried out by H. Busche, and subsequently extended

by the author (discussed in chapter 5).

In addition to the extension of H. Busche’s work, the author’s work in this thesis fo-

cuses on reproducing a set of results observed by D. Maxwell that were not well explained

at the time. It is intended to combine the non-contact interactions demonstrated with H.

Busche with the microwave-controlled variable interactions to implement the all-optical

logic gate proposed by D. Paredes-Barato.

1.4. Publications arising from this work

• H. Busche, S. W. Ball and P. Huillery, A high repetition rate experimental setup for

quantum non-linear optics with cold Rydberg atoms, Eur. Phys. J. Special Topics

225, 2839-2861 (2016). [106]

• H. Busche, P. Huillery, S. W. Ball, T. Ilieva, M. P. A. Jones and C. S. Adams,

Contactless non-linear optics mediated by long-range Rydberg interactions, Nat.

Phys. 13 655-658 (2017). [63]
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2. Rydberg atoms

In order to realise the goal of inducing effective photon-photon interactions, this project

performs a coherent, reversible, mapping of quantum information encoded by the pres-

ence or absence of photons into atomic excitations (covered in chapter 3) in order to

take advantage of strong and controllable atom-atom interactions.

This chapter will cover the pertinent physics of Rydberg atoms, and the various effects

arising from that physics that will offer these strong, controlled, interactions.

2.1. Rydberg states

A Rydberg state is a state of a atom with a high principal quantum number, n. These

states can exist in a wide variety of physical systems; but in the work presented in this

thesis, all experiments are performed using cold rubidium (87Rb) atoms.

Many Rydberg properties may be well understood by the use of the simple, classical,

Bohr model of the hydrogen atom, in which a point-like electron orbits a point-like

proton. The electron experiences a simple, Coulombic potential, dependent on the radius

of its orbit, which depends on the principal quantum number, n. The binding energy is

given by

W = −RyH
n2 , (2.1)

where Ry is the element-specific Rydberg constant. As n increases, the electron orbits

at a greater distance, and experiences a weaker potential. Consequently, the required

ionisation energy becomes very low, and the electron is extremely susceptible to the

effects of external electric fields [25]. For atoms other than hydrogen, where the proton

number Z > 1 and the nucleus is shielded by closed electron shells, this model breaks

9



2. Rydberg atoms

Property Scaling

Orbital radius n2

Binding energy n−2

Dipole moment n2

Radiative lifetime n3

Energy separation n−3

Polarisability n7

Table 2.1.: Scaling laws for properties of Rydberg states.

down at low n values, due to screening of the nuclear charge. For atoms with a similar

electronic structure to hydrogen (alkali metals such as rubidium), the difference from

hydrogen is given by the quantum defect, δnlj , such that

W = − RyRb
(n− δnlj)2 . (2.2)

The quantum defect is greatest for the states with the lowest orbital angular momentum

l. These states have highly elliptical electron orbits, resulting in a greater deviation from

a purely Colombic potential due to penetrating the screening electron shell [25]. For

rubidium, these quantum defects have been measured and are available in the literature

[107–109].

This very simple model with its n2 radius scaling allows the scaling of several other

key properties to be derived [25]. These are shown in table 2.1.

The n2 scaling of the dipole moment allows the interaction strength between Rydberg

atoms to be tuned over a large dynamic range through careful choice of the atomic state

used [5]. The narrow energy spacing of adjacent states n−3 makes this tuning highly

experimentally convenient, where the gain bandwidth of a diode laser may allow a single

instrument to select from a large choice of states, without requiring many different

excitation sources.

10
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Figure 2.1.: Dipole-dipole interactions between a pair of atoms. a: induced dipole

moments p1,2 separated by distance r. b: Energetically local states in atomic and

pair state bases. The latter show near-resonant states coupled by the dipole-dipole

interactions, with an energy separation ∆.

2.2. Dipole-dipole interactions

Consider a pair of atoms, 1 and 2, separated by distance r, each initially in the same

state |R〉 = |n, l, j〉, as shown in figure 2.1 (a). The presence of the second atom results

in a polarisation of the charge distribution of the first atom and vice versa. The electric

dipole-dipole interaction energy between the two atoms can be written as [110]

V (r) = 1
4πε0

(
p1 · p2
r3 − 3(p1 · r)(p2 · r)

r5

)
, (2.3)

where p1,2 are the induced dipole moments of these atoms. The energy shift due to the

dipole dipole interaction can be illustrated by considering the pair state basis (see figure

2.1b). At infinite distance r =∞, such that the interaction energy is zero, the pair state

is given by |RR〉. At finite distance, this initial state is coupled to the state |R′R′′〉 by
the interaction V (r) with an energy separation given by

∆ = W|R′〉 +W|R′′〉 − 2W|R〉, (2.4)

which is equal to the difference in energies of the pair states at infinite distance.

11



2. Rydberg atoms

The eigenvalues of the Hamiltonian describing this interaction are

λ± = ∆±
√

∆2 + 4V (r)2

2 . (2.5)

From this, it can be seen that the spatial dependence of the dipole-dipole interaction

will behave differently depending on whether the ∆ or V (r) terms dominate.

The short range limit such that ∆� V (r) is called the resonant dipole-dipole regime,

as the magnitude of the interaction is of the same order as the energy defect ∆ [111].

The shift in energy is given by

∆W = ±V (r) = ±C3(n)
r3 ∝ n4

r3 . (2.6)

The n scaling is given by V (r) ∝ p2 ∝ (n2)2 [5]

The long range limit where ∆� V (r) is called the vdW1 regime. The shift in energy

is given by

∆W = −V (r)2

∆ = C6(n)
r6 ∝ n11

r6 . (2.7)

In addition to the n scaling of V (r), an additional term is contributed by ∆ ∝ n−3 [5].

The two regimes cross over at the vdW radius V (rvdW) = ∆, such that rvdW =
6√|C6/∆| ∝ n7/3.

External field control

Thus far, this treatment has considered only the interaction between two atoms in iden-

tical states |R〉, in which case the interaction behaviour may only be tuned by adjusting

the inter-atomic spacing. An experimentally easier alternative is to apply an external

field to induce additional energy shifts in order to bring the experimental system into

one regime or the other.

DC electric fields have been used to Stark shift pair states into resonance [112–114], as

have off-resonant microwave frequency AC fields [115]. In these methods, the states |R〉,
|R′〉 and |R′′〉 experience differential DC- or AC- Stark shifts such that ∆ is minimised

and the initial state |RR〉 is degenerate with |R′R′′〉, leading to resonant dipole-dipole

1van-der-Waals
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2. Rydberg atoms

interactions. These ∆ = 0 resonances are called Förster resonances [114, 116]. Microwave

dressing of Rydberg states allows arbitrary states to be tuned into resonance [117, 118].

An alternative technique is to couple resonantly to a nearby opposite parity Rydberg

state |R′〉 via microwave field, to produce the initial atom pair |R′R〉, which is exactly

resonant with the state |RR′〉. In this case, resonant dipole-dipole interactions dominate

[53, 118, 119]. This technique will be used extensively for the work presented in this

thesis.

2.3. Dipole blockade

Dipole-dipole interactions play a significant role in the process of creating multiple Ryd-

berg excitations in the atomic ensembles considered in this thesis. In the work presented

in this thesis, Rydberg excitations are created by illuminating an atomic ensemble with

laser light resonant with the transition from ground state |g〉 to Rydberg state |R〉. The
lasers provide frequency-stabilised, narrow linewidth light (described in detail in sections

4.1.2 and 4.4.1).

Consider a pair of atoms in the ground state separated by distance r. The pair state

is given by |gg〉. It is assumed that the inter-atomic separation r is never small enough

such that interactions between ground state atoms contribute a meaningful correction,

such that the energy of the state |gg〉 is not distance dependent. Likewise, it is assumed

that the interaction strength between a Rydberg excitation and a ground state atom is

negligible at all achievable separations. The atom pair is illuminated by a laser source

with a linewidth γ that is resonant with the transition from |g〉 to |R〉. This is shown in

figure 2.2.

In the presence of this laser, only a single Rydberg excitation can be created, 1/
√

2(|gR〉±
|Rg〉), regardless of inter-atomic separation. For large separations, the double Rydberg

state |RR〉 can also be excited. At smaller separations, the interactions between Ryd-

berg excitations shift the energy of |RR〉, such that the laser is no longer resonant. At

some critical distance rB, the shift in energy of the |RR〉 state exceeds the linewidth of

the laser, ~γ.2 This effective detuning strongly suppresses the probability of excitation

13
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Figure 2.2.: Dipole blockade. A pair of atoms in the ground state, |gg〉, have no interactions

at any achievable inter-atomic separation. Exciting one atom to 1/
√

2(|gR〉±|Rg〉)
is always possible. For inter-atomic separations less than rB, the energy shift of

|RR〉 is greater than the excitation linewidth. Within this radius, the interaction-

induced detuning prevents further Rydberg excitations.

to the |RR〉 state. This effect is commonly referred to as dipole blockade [34, 39, 120].

The blockade radius, rB can be found by equating the form of the interaction with the

linewidth of the excitation source. Assuming that the interaction is of the vdW form, as

is typical during Rydberg excitation in the work presented in this thesis, this gives [121]

rB =
(
C6
~Γ

) 1
6
. (2.8)

Consequently, in the vdW regime, the blockade radius scales ∝ n11/6, which has been

observed experimentally [26]. For a given ensemble of atoms, for sufficiently large n such

that rB is much greater than the average inter-atomic separation, then each Rydberg

excitation will blockade many atoms. Within this group, the excitation is shared by all

atoms [34], which produces several collective effects. Principally, the blockaded atom

ensemble can produce directional emission of a single photon [122, 123], an effect which

will be exploited to perform the photon storage protocol described in detail in section

3.2.3. Blockade behaviour has been observed to act as a filter that can produce sub-

2The effective linewidth is set by one of three scales. In the simplest case, the effective linewidth is

the excitation source linewidth, γ. If the transition is power broadened, the effective linewidth will

be dominated by the Rabi frequency Ω. If the source is rapidly pulsed, the linewidth will be Fourier

broadened to 1/tpulse.
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2. Rydberg atoms

Poissonian counting statistics [124–126].

Within a blockade radius of an excitation, the energy shift prevents further excitation.

This behaviour was first observed as a saturation of the number of excitations that could

be simultaneously created in a cold atomic gas, due to each excitation blockading many

additional atoms [35, 36]. Close to saturation, this behaviour can lead to emergent

ordering [97] and the development of crystalline behaviour [127, 128].
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3. Atom-light interactions

This chapter will discuss the interaction between a light field and an ensemble of atoms.

In section 3.1, a simple two-level system will be introduced, and studied using a semi-

classical treatment, in which a quantised atom interacts with a classical EM1 field. Sec-

tion 3.2 introduces a third level and a second field, using the same approach as the

two-level system. Electromagnetically induced transparency, coherent population trap-

ping, and photon storage, phenomena arising from the presence of a third level are

discussed. Section 3.3 briefly discusses the addition of a fourth level and a third field.

A monochromatic light field E applied to a dielectric medium produces a polarisation

P = ε0χE, (3.1)

where ε0 is the vacuum permittivity and χ is the susceptibility of the medium. The

polarisation of the medium, P , is the average dipole moment 〈d〉 per unit volume of the

dielectric medium

P = 〈d〉 /V. (3.2)

Passing through the medium leads to some change in the transmitted intensity and

phase of the electric field. Provided that χ is small and the electric field intensity obeys

the requirement I0 � Isat, these can be characterised by the Beer-Lambert law

T = I

I0
= e−k Im(χ)l, (3.3)

where I is the intensity after transmission through a length l of the medium, k is the

wave-vector of the field, and Im(χ) is the imaginary component of the susceptibility χ.

1Electromagnetic
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3. Atom-light interactions

Transmission is often described by the logarithmic quantity OD2: OD = −k Im(χ)l.

Here we see that absorption in the medium is linked to the imaginary part of the

susceptibility. The real component is responsible for a phase shift of the form ∆φ =

kRe(χ)l/2. This is related to the refractive index of the medium, nri, by nri =
√

1 + Re(χ).

3.1. The two-level atom

We consider an atom with two states, |1〉 and |2〉, separated by a resonant frequency ω21

and in the presence of a classical probing laser field with a frequency of ωp. The probe

field is detuned by ∆p = ωp − ω21. It has a Rabi frequency Ωp. Spontaneous emission

gives a decay rate from |2〉 of Γ2. The linewidth of the probe field, γp, contributes

additional decoherence: γ2 = Γ2/2 + γp [129]. This atom is shown in figure 3.1.

|2〉

|1〉

∆p

Ωp

Γ2

Figure 3.1.: The two level atom. A probing laser field is used to excite from |1〉 to |2〉. It

is detuned from resonance by ∆p and has a Rabi frequency of Ωp. Population in

state |2〉 decays at a rate Γ2.

3.1.1. Time evolution of the atomic state

The evolution of the atom in the presence of the probing light field can be obtained by

using the time dependent Schrödinger equation

i~
∂

∂t
|ψ〉 = Htot |ψ〉 , (3.4)

2Optical depth
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where Htot is the Hamiltonian for the combined atom-light system. This is given by

Htot = Hatom +Hint, (3.5)

where Hatom is the Hamiltonian for the atom in the absence of any light field and Hint

is the Hamiltonian describing the interaction between the atom and the probing laser

field.

We make the assumption that only the interaction between the light field and the

electric dipole moment of the atom is considered, neglecting higher order terms as minor

contributions [130]. Additionally, we make the approximation that the electric field has

no spatial variation as the wavelength of the light field is much greater than the extent

of the atom (electric dipole assumption) [131].

Consequently, the interaction Hamiltonian is given by

Hint = −d · E, (3.6)

where d is the electric dipole moment and E = E0 cos(ωpt) is the classical probing laser

field. The electric dipole moment describes the splitting between positive and negative

electric charges within the atomic system, and characterises the coupling between atomic

levels. In the considered two-level atomic system, it can be found by

d = d21 (|2〉〈1|+ |1〉〈2|) . (3.7)

Recasting the electric field in terms of exponentials, the interaction Hamiltonian is

therefore

Hint = d21E0
2 (|2〉〈1|+ |1〉〈2|)

(
eiωpt + e−iωpt

)
. (3.8)

By introducing the angular Rabi frequency Ωp = d12E0/~ and making the rotating wave

approximation [132], we can rewrite this as

Hint = ~
2

 0 Ωpe
iωpt

Ωpe
−iωpt 0

 . (3.9)
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3.1.2. The density matrix formalism

The wavefunction of the atom can be expressed as

|ψ〉 =
∑
a

ca |a〉 (3.10)

where the coefficient ca is the complex probability amplitude of the atom being in state

|a〉. We can represent the density operator for the state of the atom as ρ̂ = |ψ〉〈ψ|. For

a two-level atom, this can be expressed as a density matrix

ρ =

 c1c∗1 c1c∗2

c2c∗1 c2c∗2

 =

 ρ11 ρ12

ρ21 ρ22

 , (3.11)

where the diagonal terms ρaa give the probability of finding the atom in state |a〉 and
the off-diagonal terms ρab give the coherences between states |a〉 and |b〉 [130]. In this

formalism, we can express the atomic Hamiltonian by

Hatom =

 ~ω1 0

0 ~ω2

 =

 0 0

0 ~ω12

 . (3.12)

Substituting equations 3.9 and 3.12 into equation 3.5, the total Hamiltonian can be

written in matrix form as

Htot = ~
2

 0 Ωpe
iωpt

Ωpe
−iωpt 2ω12

 . (3.13)

Where the time evolution is described by a Hamiltonian, the time evolution of the

density matrix can be determined from Liouville’s Equation [130].

dρ
dt = i

~
[
ρ,Htot

]
. (3.14)

Using the density matrix formalism permits the inclusion of decoherent processes that

cannot be described by a Hamiltonian, such as spontaneous emission. This is accounted

for by the inclusion of a phenomenological decay term L̂. The resulting equation is called

the Lindblad, or master, equation [133].

dρ
dt = i

~
[
ρ,Htot

]
+ L̂. (3.15)
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For a two-level system, this decay term is

L̂ = 1
2

 2Γ2ρ22 −Γ2ρ̃12

−Γ2ρ̃21 −2Γ2ρ22

 , (3.16)

where ρ̃12 = ρ12e−iωpt, ρ̃21 = ρ21eiωpt and ρ̃ab = ρ̃∗ba.

3.1.3. Optical Bloch equations

By substituting equations 3.14 and 3.16 into the master equation (3.15), the time evolu-

tion of the density matrix can be obtained as a series of coupled, first order differential

equations, known as the optical Bloch equations [134]:

ρ̇11 = iΩp

2 (ρ̃12 − ρ̃21) + Γ2ρ22, (3.17a)

˙̃ρ12 = iΩp

2 (ρ11 − ρ22) + ρ̃12

(
−i∆p −

Γ2
2

)
, (3.17b)

ρ̇22 = iΩp

2 (ρ̃21 − ρ̃12)− Γ2ρ22, (3.17c)

˙̃ρ21 = iΩp

2 (ρ22 − ρ11) + ρ̃21

(
i∆p −

Γ2
2

)
. (3.17d)

In the steady state where dρ
dt = 0, and assuming conservation of population where

ρ11 + ρ22 = 1, these four equations can be further reduced:

ρ̃21 = iΩp/2
γ2 − i∆p

(ρ22 − ρ11). (3.18)

3.1.4. Macroscopic optical response

For an atomic ensemble with a constant number density N , the susceptibility of the

medium can be calculated from the off-diagonal coherences of the density matrix [102,

129]:

χ = −2Nd2
21

ε0~Ωp
ρ̃21 (3.19)

In the limit that the Rabi frequency is low (Ωp � Γ2), the population exists almost

entirely in the lower state, |1〉 (ρ11 ≈ 1). Using this approximation, equations 3.18 and

3.19 yield
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χ = iNd2
21

ε0~
1

γ2 − i∆p
= Re(χ) + i Im(χ). (3.20)

The component Re(χ) has a dispersive lineshape, while Im(χ) has a Lorentzian line-

shape. These components are shown in figure 3.2. The optical properties of the system

are characterised by a refractive index, nri =
√

1 + χ. Where |χ| << 1, this is well

described by the approximation nri ≈ 1 + χ/2.

−10 −5 0 5 10
∆P/Γ21

−0.5

0.0

0.5

1.0

χ
/χ

0

Re(χ)
Im(χ)

Figure 3.2.: Susceptibility of a two-level atom. Real (blue) and imaginary (red) compo-

nents of the steady state susceptibility of the two level system as a function of

detuning of the probing field for Ωp = 0.1γ21. The susceptibility is normalised to

the susceptibility on resonance, χ0 = 2Nd2
21/ε0~γ21.

3.1.5. Rabi oscillations

Abandoning the approximation that ρ11 = 1, the evolution of the state populations in

the presence of a strong driving field can be considered. In the special case of negligible

spontaneous emission from the excited state, the probability that the atom is in the

ground state is

P (|1〉) = cos2
(Θ

2

)
, (3.21)
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where the rotation angle Θ = Ωpt. By setting Θ = π, population can be transferred

from |1〉 to |2〉. This is commonly referred to as a π-pulse. Similarly, a 2π-pulse will

bring the population from |1〉 back to |1〉, via |2〉, with an additional π phase shift.

In the more general case where spontaneous emission occurs from the excited state,

the Lindblad equation (3.15) can be solved numerically to evaluate the probability of the

atom being in a given state. Figure 3.3 plots the excited state population fraction over

time in the case of an on-resonant probe (∆p = 0) for a range of decay rates. Where the

decay rate is small, there are high-contrast oscillations between the ground and excited

state. As the ratio between the driving and decay frequency decreases, these oscillations

become damped and reach a steady state more rapidly.

0 1 2 3 4 5 6
Ωpt/π

0.0

0.5

1.0

ρ
22

Γ2 = 0.0 Ωp
Γ2 = 0.2 Ωp
Γ2 = 0.7 Ωp
Γ2 = 2.0 Ωp

Figure 3.3.: Rabi oscillations in a two level atom. The excited state population fraction

is plotted as a function of time for different decay rates.

3.2. The three-level atom

A third level, |3〉 is added, separated from |2〉 by resonant frequency ω32. A coupling

laser field is added, ωc, detuned by ∆c = ωc − ω32 and with a linewidth of γc. It has a

Rabi frequency Ωc. Spontaneous emission from |3〉 is given by Γ3. Of the three possible

configurations of a three level system, a ladder scheme is used in this work [129], which

is illustrated in figure 3.4. Throughout this work, we distinguish between the probe laser
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ωp coupling the ground and intermediate states (|1〉 to |2〉), which is used for detection;

and the coupling laser ωc coupling the intermediate and most excited states (|2〉 to |3〉),
which is not detected directly.

|3〉

|1〉

∆c

Ωp

Γ3

Ωc

|2〉

Figure 3.4.: The three level atom. A second laser field with Rabi frequency Ωc and detuning

∆c is added to couple |2〉 to |3〉 in a ladder scheme.

3.2.1. Electromagnetically induced transparency

The three level system can be understood using the same process as that followed for the

two level system in section 3.1.1. Using the dipole and rotating wave approximations,

the Hamiltonian of the system is given by

Htot = Hatom +Hint = ~
2


0 Ωp 0

Ωp −2∆p Ωc

0 Ωc −2(∆p + ∆c)

 . (3.22)

The off-diagonal coupling provided by Ωp and Ωc means that the states |1〉, |2〉, |3〉
are no longer eigenstates of the atomic system. In the two-photon resonance condition

∆p + ∆c = 0, diagonalising the matrix to find the new eigenstates yields

∣∣∣a+
〉

= sin(θ) sin(φ) |1〉+ cos(θ) |2〉+ cos(θ) sin(φ) |3〉 , (3.23a)

∣∣∣a0
〉

= cos(θ) |1〉 − sin(θ) |3〉 , (3.23b)∣∣a−〉 = sin(θ) cos(φ) |1〉 − sin(θ) |2〉+ cos(θ) cos(φ) |3〉 , (3.23c)

23



3. Atom-light interactions

with the mixing angles given by

tan(θ) = Ωp

Ωc
, (3.24a)

tan(2φ) =

√
Ω2
p + Ω2

c

∆p
. (3.24b)

The energies of the |a±〉 states are shifted relative to
∣∣a0〉 by [32, 117]:

~ω± = ~
2
(
∆p ±

√
∆2
p + Ω2

pΩ2
c

)
. (3.25)

States |a±〉 radiate to populate
∣∣a0〉 on a timescale of 1/Γ2. Because

∣∣a0〉 has no

contribution from |2〉, it does not interact with the probe laser Ωp. In the context of a

lambda EIT scheme, where |3〉 is a ground state,
∣∣a0〉 is non-radiative and is therefore

called a dark state. A ladder scheme is used in the work presented here, where |3〉 has a
long, but finite, lifetime, and so

∣∣a0〉 is nearly dark, but not perfectly so . This results in

the atomic population becoming progressively trapped in the non radiative state
∣∣a0〉.

This phenomenon is called coherent population trapping [134, 135].

The effect of decoherence can be understood once again by the use of the Lindblad

equation (3.15). For a three-level system, the phenomenological decay matrix is given

by

L̂ = 1
2


2Γ2ρ22 −Γ2ρ̃12 −Γ3ρ̃13

−Γ2ρ̃21 2(Γ3ρ33 − Γ2ρ22 −(Γ2 + Γ3)ρ̃23

−Γ3ρ̃31 −(Γ2 + Γ3)ρ̃32 −2Γ3ρ33

 . (3.26)

By substituting the three-level total Hamiltonian Htot from equation 3.22 and the

decay term from equation 3.26 into the Lindblad equation (3.15), the three-level optical

Bloch equations can be derived. For brevity, only the coherence terms are included here

[32]

˙̃ρ21 = iΩp

2 (ρ22 − ρ11)− iΩc

2 ρ̃31 + (i∆p −
Γ2
2 )ρ̃21, (3.27a)

˙̃ρ31 = iΩp

2 ρ̃32 −
iΩc

2 ρ̃21 + (i(∆p + ∆c)−
Γ3
2 )ρ̃31, (3.27b)

˙̃ρ32 = iΩc

2 (ρ33 − ρ22)− iΩp

2 ρ̃31 + (i∆c −
Γ2 + Γ3

2 )ρ̃32. (3.27c)
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Figure 3.5.: Susceptibility of a three-level atom. The real (blue) and imaginary (red) com-

ponents of the steady state susceptibility of the system as a function of detuning

of the probing field for Ωc = Γ2 and Γ3 = Γ2/100. ∆c is set to 0, such that the

two photon resonance occurs at ∆p = 0.

In the weak probe limit, where Ωp ≈ 0 and ρ22 = ρ33 ≈ 0, the coherence ρ̃21 in the

steady state is given by [129]

ρ̃21 = −
 iΩp/2
γ2 − i∆p + Ω2

c/4
γ3−i(∆p+∆c)

 , (3.28)

where γ3 = Γ3/2 + γp + γc.

The susceptibility can be calculated by substituting equation 3.28 into equation 3.19,

giving

χ = iNd2
21

ε0~

 1
γ2 − i∆p + Ω2

c/4
γ3−i(∆p+∆c)

 . (3.29)

The real and imaginary components of which are plotted in figure 3.5. In the limiting

case Ωc = 0, equation 3.29 is equivalent to the two-level case, equation 3.20, shown in

figure 3.2.

The presence of the coupling field acts to create a narrow window at the two-photon

resonance in which the probe field experiences dramatically lower absorption, hence
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∣∣a+〉

|1〉

Ωp

Ωc

|a−〉

|2〉

Figure 3.6.: The dressed states of a three-level atom under EIT conditions. The states

|a±〉 are split by the Rabi frequency of the coupling laser Ωc. At the two-photon

resonance, the probability of the population being transferred to |a+〉 destructively
interferes that of being transferred to |a−〉, leading to transparency. At greater

detuning of the probe from the two-photon resonance, the probabilities do not

maximally overlap and the degree of interference is reduced, leading to absorption.

At Ωc = 0, |a±〉 are degenerate, and consequently, the transition probabilities do

not interfere, equivalent to the two-level system in figure 3.1.

EIT3 [31]. This windows appears due to Fano interference between excitation pathways

[32]: the probability of the transition to
∣∣a+〉 destructively interferes with that of the

transition to |a−〉. The depth of the transmission window is set by the quality of the

interference, and is reduced under conditions of greater decoherence.

The dressed state picture can be a more intuitive method of interpreting this interfer-

ence, shown in figure 3.6.

The width of the transparency window, in the limit in which γ3 = 0, is given by [32]

∆EIT = |Ωc|2
γ2

. (3.30)

To a first approximation, the transparency window can be described by a Gaussian

with a width given by [135]

∆trans = ∆EIT
1√
OD

, (3.31)

3Electromagnetically-induced transparency
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where the optical depth is that of the medium in the absence of the coupling field

(Ωc = 0).

From equation 3.3, the optical depth is a function of the density-length product. In a

medium in which this product kN l� 1, the transparency window is narrowed such that

only probe frequencies very close to the two-photon resonance are transmitted [136].

3.2.2. Slow light

Figure 3.5 shows that in close proximity to the two-photon resonance, the real part of

the susceptibility has a large positive gradient, approximately linear with respect to the

detuning of the probe field. This is associated with the reduction in the group velocity

of a pulse of probe light travelling through the medium [32, 137]

vgr = dωp
dkp

∣∣∣∣
∆c=∆p=0

= c

nri + ωp
dnri
dωp

= c

1 + Re(χ)/2 + ωp
2

d Re(χ)
dωp

. (3.32)

On the two-photon resonance, this is equivalent to vgr = c/ngr, where ngr is the group

index of the medium, given by [32]

ngr = 6π
k2

N cΓ2
Ω2
c + γ3γ2

. (3.33)

As with the width of the transparency window of the EIT, both group index and group

velocity are a function of Ωc. The decoherence terms set an upper limit on the value of

the group index. This places a lower limit on achievable group velocities, although in

optimised systems this limit can be as low as O(10ms−1) [55, 138, 139].

Within the medium, a photon pulse is spatially compressed by the ratio vgr/c, while

the electric field strength remains the same [140]. In the absence of loss, the photon flux

through the medium is constant, the total number of probe photons inside the medium

is reduced by the same fraction, due to the spatial compression. The remaining photons

are temporarily stored in the combined system of atoms and coupling field [32].

A useful way to visualise the motion of a pulse of light within a medium is to con-

sider the motion of a quasi-particle (called a polariton [40]). These quasi-particles are

superpositions of both atomic and EM excitations. Under EIT conditions, where popu-
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lation becomes coherently trapped in the
∣∣a0〉 state, these polaritons do not include any

component of the |2〉 state, and are thus referred to as dark-state polaritons.

From [40], the dark state polariton field is given by

Ψ(z, t) = cos(θ)Ep(z, t)− sin(θ)
√
Nρ̂31(z, t)eiz∆k, (3.34)

where Ep(z, t) is the electric field propagating through the medium in the z direction,

ρ̂31 is the coherence operator between |3〉 and |1〉, N is the number of atoms within

the volume of the EM field and the effective wave vector ∆k = kc − kp. The atomic

component of the polariton, ρ̂31, is referred to as a spin wave. The mixing angle θ is

given by

cos(θ) = Ωc√
Ω2
c + g2N

, (3.35a)

sin(θ) = g
√
N

Ω2
c + g2N

(3.35b)

where g is the field coupling constant [40, 141]. This gives a polariton group velocity of

vgr = c× cos2(θ). (3.36)

3.2.3. Photon storage

The treatment thus far has assumed that all fields are unchanging. Now we consider

the dynamic case in which the Rabi frequency of the coupling laser varies with time:

Ωc = Ωc (t). Consider the case in which Ωc is adiabatically switched from a high value

to zero at time t0, and switched back to a high value at time t1, where t1 − t0 � Γ−1
3 ,

shown in figure 3.7.

Ωc (t)� g2N t� t0,

Ωc (t) = 0 t0 � t� t1,

Ωc (t)� g2N t� t1.

From equation 3.35, the mixing angle between the atomic and photonic components

of the polariton is dependent on Ωc. When Ωc � g2N , cos(θ) ≈ 1 and sin(θ) ≈ 0, such

that the polariton has an entirely photonic character (equation 3.34). When Ωc = 0, the

situation is reversed and the polariton has an entirely atomic character. In addition:
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t0 t1

Time

Ω
c

Figure 3.7.: Dynamic behaviour of Ωc for photon storage.

• From equation 3.36, the group velocity within the medium will reduce towards

zero.

• From section 3.2.1, the dark state
∣∣a0〉 will shift from being dominated by an atomic

population in |1〉 to |3〉.

When Ωc, (t) is switched back to a high value, provided that |3〉 has not spontaneously
decayed, the polariton is restored to a photonic nature, and will be emitted from the

medium. This phenomenon is referred to as photon storage (and retrieval) [41, 142].

The state of the spin wave in which a single photon has been stored can be written as

[122]

|W〉 = 1√
N

N∑
j=1

eiφj |3j〉 , (3.37)

where |3j〉 is the state |11, 12, 13 . . . 3j . . . 1N 〉, in which atom j is in state |3〉 while all

others are in |1〉, and the phase factors φj = ∆k·rj . Arising from this definition, the term

‘collective excitations’ will be used interchangably with ‘polaritons’ in the remainder of

this thesis.

The phase factors in equation 3.37 preserve the coherence of the stored photon: as

long as they remain in relative phase, the photon will be collectively emitted back into
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the same mode from whence it originated [41, 143]. Emission into any other mode does

not occur due to destructive interference between the emission of each atom. If the

phase shifts evolve non-uniformly, the destructive interference is reduced, decreasing the

directionality of emission. In the limit in which the relative phases decay entirely, the

photon will be emitted in a completely random direction, equivalent to spontaneous

decay of a single atom.

The phase factors must not only remain relatively consistent, but also consistent in

relation to the atom’s position: emitting with the correct phase but from the wrong

position will similarly reduce the degree of destructive interference into all other modes.

Consequently, motion of the atoms arising from a finite temperature (‘motional dephas-

ing’) is a limiting factor in photon retrieval.

Motional dephasing arises from movement of the atoms in the time between storing

and retrieving the photon. From [141], it is shown that the retrieval efficiency decays

exponentially in the time domain in which motion is the dominant source of dephasing:

ηret = exp
(
− t

2

τ2

)
, (3.38)

where ηret is the efficiency of retrieval and τ is the 1/e lifetime of the spin wave,

τ = 1
(kc − kp)v

. (3.39)

Here v is the atomic velocity - as expected, the greater the movement of the atoms in the

medium, the more rapidly the spin wave decays due to motion. In addition, there is a

contribution from the difference in wave vector between the probe and coupling beams.

Consequently, long storage lifetimes necessitate the use of ultra-cold atoms, and are

assisted by the use of extremely similar probe and excitation wavelengths. Lambda

EIT schemes between the two ground hyperfine states of rubidium has demonstrated

combined storage and retrieval efficiencies in excess of 95% [144], and long storage times

(O(10 s)) [145]. Storage has also been achieved, for substantially shorter periods (1 ns),

in thermal vapours [146].

Due to the use of a ladder-type EIT scheme coupling to a highly energetic Rydberg

state (with consequent mismatch between the probe and coupling wave-vectors), the
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motional dephasing lifetime in this experiment is O(1µs) [44, 53].

The efficiency with which a pulse of light can be stored relies on simultaneously satis-

fying competing criteria. The finite width of the EIT window ∆EIT limits the bandwidth

of the light pulse that is transmitted. Frequency components outside this window are

absorbed (scattered) by the medium. The window can be widened by increasing the

initial value of Ωc in order to avoid limiting the bandwidth of the probe pulse. However,

in order to store the entire probe pulse, it must be spatially compressed into the extent

of the medium. This either requires a very short pulse time - which increases the Fourier

bandwidth of the pulse - or requires a high compression ratio, and thus a low group

velocity (associated with a low value of Ωc).

In order to satisfy both of these requirements simultaneously, the optical depth of

the medium (specifically, the medium contained within the dipolar blockade radius rB)

must satisfy OD� 1 [147, 148], with higher optical depths contributing both to a greater

storage efficiency, and a greater probability of collectively emitting a successfully stored

photon back into its original mode.

Note that here we distinguish between the efficiency with which a single photon can

be stored and, separately, the probability with which it is retrieved. In the remainder

of this thesis, these two values are conflated into a single storage/retrieval efficiency (or

probability).

3.2.4. Interaction-induced dephasing of Rydberg polaritons

In the work presented here, |3〉 is typically chosen to be a Rydberg state. As discussed

in chapter 2, Rydberg atoms exhibit strong and long-ranged dipole-dipole interactions.

If two (or more) Rydberg excitations are present, dipolar interactions can contribute

additional phase shifts and consequently additional dephasing, reducing the probability

of successfully retrieving a stored photon [44, 53, 63].

Considering the case of two collective excitations spatially separated from one another

such that no individual atom simultaneously contributes to both spin waves, the two-

polariton state can initially be written as the product of their individual states |W〉 =
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|Wµ〉 ⊗ |Wν〉. The time evolution of the combined state can be written as [149]

|W(t)〉 = 1√
Nµ

1√
Nν

Nµ∑
j=1

Nν∑
k=1

[
eiφµ,jeiφν,k (|sµ,j〉 ⊗ |sν,k〉) eVjkt

]
, (3.40)

where Vj,k is the form of the interaction between each possible Rydberg excitation pair

j, k. While this is discussed in depth in chapter 2, Vjk is a function of the distance

between the two excitations, rjk. If the extent of each polariton is small compared to

the separation between the two, the phase factors will evolve close to uniformly, leading

to minimal disruption of the overall phase pattern of each polariton. If the extent of each

polariton is similar to the separation, then the phase factors will evolve non-uniformly,

leading to a reduced probability of the stored photon being successfully emitted back

into the original mode.

3.3. The four-level atom

A fourth level, |4〉, can be added to the model, separated by frequency ω43 and with

spontaneous decay rate Γ4. A third EM field couples these states with frequency ωµ,

detuning ∆µ = ωµ − ω43 and linewidth γµ. This is shown in figure 3.8 (a).

Once again using the rotating wave and dipole approximations, solving the optical

Bloch equations for ρ̃21 and substituting into equation 3.19, the steady state suscepti-

bility may be found

χ = iNd2
21

ε0~

i∆p − γ2 + Ω2
c/4

i(∆p + ∆c)− γ3 + Ω2
µ/4

i(∆p+∆c+∆µ)−γ4


−1

. (3.41)

The real and imaginary components are plotted in figure 3.8 (b). As with the addition

of the second laser field, adding a third laser field splits the energy levels again. An

absorption peak appears on resonance, with two transparency windows.

Collective Rydberg excitation dynamics

In the static case, applying the third field Ωµ simultaneously with the probe and coupling

fields, the effect is to further dress the eigenstates as shown in figure 3.8 (b). Here we
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Figure 3.8.: The four level atom. a: One possible configuration of a four-level scheme. |4〉
is typically energetically very close above or below |3〉, coupled by an EM field

with frequency ωµ, detuning ∆µ and Rabi frequency Ωµ. In this thesis, this is

always a microwave, rather than optical, transition. b: Real (blue) and imaginary

(red) components of the steady state susceptibility of the four level atom as a

function of detuning of the probing field for Ωc = 2Γ2, Ωµ = Γ2 and Γ4 = Γ2/100.

∆c = ∆µ = 0, such that the three photon resonance occurs at ∆p = 0.

consider the consequences of a time dependent field Ωµ (t), switched high during the

window in which a photon has been stored as a collective (Rydberg) excitation, and

resonant with the transition ω34.

Ωc (t)� g2N Ωµ (t) = 0 t� t0,

Ωc (t) = 0 Ωµ (t) = p t0 < t < t1,

Ωc (t)� g2N Ωµ (t) = 0 t� t1.

A collective Rydberg excitation, given in equation 3.37, exists as a single excitation in

|3〉, shared among all N atoms within the volume defined by the dipole blockade radius

rB (see section 2.3) [34]. Applying field resonant with ω34 drives Rabi oscillations in that

single, shared, excitation between |3〉 and |4〉. The choice of state |4〉 is extremely flexible

due to the density of states in the Rydberg manifold. In the work presented in this thesis,
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3. Atom-light interactions

nearby states are used, such that the energy spacing scales as ∆ ∝ n−3 [25], and the

transition ω34 is always in the microwave region of the spectrum (300MHz − 300GHz

[150]).

Due to selection rules, states |3〉 and |4〉 must be of opposite parity. For convenience,

the collective states will be labelled according to the quantum numbers they typically

take in the experiments presented in this thesis. The collective states may then be stated

as

|S〉 = 1√
N

N∑
k=1

eiφk |sk〉 , (3.42a)

|P 〉 = 1√
N

N∑
k=1

eiφk |pk〉 , (3.42b)

where N is the number of atoms within the dipole blockade radius and |sk〉 , |pk〉 are the
states |11, 12, 13 . . . sk . . . 1N 〉 , |11, 12, 13 . . . pk . . . 1N 〉 respectively. 1 indicates an atom

in the ground state, sk and pk indicate atom k excited to the Rydberg state nS1/2 and

n′Pj respectively. φk is the phase factor.

This scenario is often characterised as the super-atom picture, in which the collective

excitation behaves similarly to a single atom [151], such as the two-level system described

in section 3.1. This is complemented by the long lifetime of highly excited Rydberg states

in comparison to the time scale over which the collective excitation remains in phase

(O(1µs), see section 3.2.3). Therefore, we may consider both |S〉 and |P 〉 to be effectively
as stable as the true ground state.

Provided that the microwave field driving Rydberg-Rydberg transitions has a long

wavelength relative to the extent of the collective excitation, all collective excitations

stored in the atomic medium experience the same phase of the microwave field. This

acts to preserve the phase structure of the collective excitations.

While a resonant microwave field is applied, the collective excitation will evolve ac-

cording to equation 3.21. For Θ = Ωµt not a multiple of 2π, at the end of the microwave

driving, the collective excitation has a non-zero probability of being in |P 〉. As |P 〉 is of
opposite parity to |S〉, it is forbidden by selection rules from the photon retrieval process

discussed in section 3.2.3. Consequently, any population present in |P 〉 will remain there
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3. Atom-light interactions

until the excitation decays.
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The hardware requirements for the work presented here are shaped by the nature of the

physical phenomena under study: quantum non-linear optics. Quantum optics implies

the use, and study, of light fields at or close to the level of single photons; while non-

linearity implies interactions between these fields. The system of choice in this work

is ultra-cold atoms. From these three statements, the conceptual requirements may be

established:

• An environment in which to cool atoms to extremely low temperatures - a UHV1

chamber;

• A laser system to cool, trap, and excite atoms;

• A detection system of sufficiently high sensitivity and SNR2 to detect single pho-

tons;

• A control system to automate experiments;

• The capability to perform and repeat individual experimental shots sufficiently

rapidly in order to build up statistically meaningful data sets, where each shot will

only yield O(1) photon, in a reasonable period of time.

All five of these requirements were met in the previous generation apparatus, described

in the work of D. Maxwell [103] and D. Paredes-Barato [104]. However, the fifth point

proved to be a limiting bottleneck. Consequently, a new generation apparatus was

1Ultra-high vacuum
2Signal-to-noise ratio
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designed by, and jointly built with, H. Busche [105, 106] to improve on the repetition

rate. The opportunity was taken to integrate a number of other improvements to the

experiment: both to allow additional physics to be studied; and to improve the efficiency

of the human-experiment interface that would make the experiment easier to operate,

maintain, and further develop.

This chapter is in part based on the following publication:

• H. Busche, S. W. Ball and P. Huillery, A high repetition rate experimental setup for

quantum non-linear optics with cold Rydberg atoms, Eur. Phys. J. Special Topics

225, 2839-2861 (2016). [106]

4.1. Cooling and trapping atoms

A primary motivation for building a new experimental apparatus to replace the previous

generation was to improve the rate at which data could be collected. In the previous

generation, the principal bottleneck was the time required to load a MOT3 [103]. Conse-

quently, the new generation implements a high density, switchable atomic beam source

to permit faster MOT loading, offering an order-of-magnitude improvement in repetition

rate. This section discusses the new vacuum chamber, including the 2D-MOT4 atom

beam source, and comments on the resulting improvement in laser cooling rate.

4.1.1. The new UHV system

The UHV system contains a pair of vacuum chambers, shown in figure 4.1. Atoms are

pre-cooled into a high density, switchable, atomic beam in a 2D-MOT [152] inside a

glass cell (‘2D-MOT chamber’). In the science chamber, a MOT is rapidly loaded from

the atomic beam in preparation for experiments. The two regions are separated by a

differential pumping tube. The science chamber operates at a background pressure of

3Magneto-optical trap
4Two-dimensional magneto-optical trap
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4. Experimental apparatus

below 10−10 mbar,5 while the 2D-MOT chamber is assumed to have a higher background

pressure to produce the atomic beam.

2D-MOT chamber

The upper half of the new apparatus is a 2D-MOT based on the designs of [153, 154].

The chamber is a UHV rectangular class cell with internal dimensions 25mm× 25mm×
150mm. Two 250mg natural abundance Rubidium dispensers6 are located below the

glass cell, to emit hot atoms upwards. These dispensers are wired independently through

electrical feed-throughs, with one kept in reserve to limit (or preferably eliminate) the

necessity to refuel the 2D-MOT during the lifetime of the experiment.

The glass cell, differential pumping tube, electrical feedthroughs and an all-metal valve

are mounted on a stainless steel cube. A small ion pump is also mounted, but is not in

operation, due to suspected contamination during assembly. The 2D-MOT chamber can

be isolated from the science chamber via a gate valve, permitting independent vacuum

breaks if necessary, such as for refueling.

Optics for the cooling light are mounted on an aluminium cage around the glass

cell. 2D-MOTs conventionally use highly elliptical beams to produce an elongated cooling

region; but in order to produce a more compact optical setup, a different geometry is

used here, based on [153]. Light is delivered via two PM7 optical fibres (one for each

axis) to produce a circular beam with a 1/e2 beam diameter of 18mm. The beam is

split with PBSes8 and HWPs9 to produce four individual cooling regions within the glass

cell. Light is retro-reflected with rectangular prisms, saving the cost and complexity of

additional QWPs10 to set the reflected helicity [155].

Additional light is directed vertically along the axis of the atomic beam. This ‘pushing’

beam is tuned to retard atoms travelling the wrong way along the atomic beam, in order

5The pressure is measured by the ion pump, which has a response floor of 10−10 mbar.
6Alvatec Alvasource type F×6mm
7Single-mode, polarisation-maintaining
8Polarising beam splitters
9Half-wave plates

10Quarter-wave plates
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Figure 4.1.: New experimental apparatus. Experiments take place in the lower (science)

chamber. A fast experimental repetition rate is facilitated by a 2D-MOT atom

source mounted above. MOT coils are mounted internally, as are near-diffraction-

limited aspheric lenses, electrodes for field control, and three microwave antennae

for driving Rydberg-Rydberg transitions. All data read-out is conducted optically,

so no ion detection is implemented. Courtesy of H. Busche.
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to increase the total atomic flux from which the primary MOT can be loaded.

For compactness and simplicity, an elongated quadrupole magnetic field is produced

using permanent rare-earth magnets [156] with a radial field gradient of ≈ 16Gcm−1.

Rectangular Helmholtz coils are mounted outside the optics to shift the field zero to

best alignment with the differential pumping tube aperture and to compensate for stray

magnetic fields.

Science chamber

The science chamber is a non-magnetic stainless steel spherical octagon,11 mounted with

the major axis in the horizontal plane. Its two CF100 ports are used to provide electrical

connections, access to an ion pump for vacuum maintenance, and the single horizontal

MOT beam path. Seven of the eight CF40 ports are used for optical access, with a

seventh mounting the 2D-MOT chamber vertically above.

The central feature of the science chamber is a pair of high NA12 aspheric lenses,13

permitting near-diffraction-limited optical resolution of the cold atomic ensembles pro-

duced. The lenses have an effective focal length feff = 10mm, a working distance of

fwd = 7.0mm and a NA of 0.5. The lenses are aligned to focus and re-collimate an

incident beam of light at a wavelength of 780nm. Due to the short working distance,

the lenses are cut to an angular profile, providing greater optical access for MOT beams,

shown in figure 4.2 (a). The aspheric surfaces of the lenses are AR14 coated for the

wavelength range 450− 1070nm. The planar surfaces are coated in a layer of ITO15 for

electric field control. The ITO coating is not index matched, resulting in a loss of ≈ 20%

light per surface at 780nm. The lenses are mounted in a titanium cradle pictured in

figure 4.2 (b). Titanium was chosen for its superior thermal expansion and magnetic

properties over non-magnetic stainless steel, as well as reduced out-gassing [157].

11Kimball Physics MCF600-SphOct-F2C8
12Numeric aperture
13LightPath Technologies 355561
14Anti-reflection
15Indium-tin-oxide
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Figure 4.2.: In-vacuum aspheric lenses. a: Cut profile of aspheric lenses. Courtesy of H.

Busche [106]. b: Lenses and field compensation electrodes mounted in titanium

lens cradle.

All probing of atomic ensembles occurs via the axis defined by the internal lens pair. A

pair of magnetic coils are mounted outside the science chamber to provide a quantisation

magnetic field along this axis. In the remainder of the thesis, it will be referred to as

the probe, or quantisation, axis.

Due to the high sensitivity of Rydberg states to electric fields [5, 25, 102], eight elec-

trodes are included, in two split rings around the lenses, for electric field control. Each

electrode can be independently addressed via external electrical connections. Electric

field control is complicated due to the choice of titanium as a construction material,

which was discovered after initial machining work was completed, but before assembly

[158, 159]. Like aluminium, the surface of titanium rapidly oxidises to form a protective

dielectric layer (TiO2). This layer leads to reduced out-gassing rates, but is also non-

conductive. Due to the presence of titanium surfaces in close proximity to the atomic

beam pathway, MOT location, and location of Rydberg excitation, there exists the pos-

sibility for small spots of adsorbed 87Rb metal to form and develop patch charges. To

avoid this issue, all titanium surfaces are coated with a conductive 50nm layer of plat-

inum.16 For the same reason, the inner (planar) surfaces of the aspheric lenses are coated
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in conductive, transparent, ITO, which is electrically contacted to the platinum layer.

Three microwave antennae are positioned inside the chamber, close to the lenses.

Each has an independent SMK17 feedthrough rated for DC− 40GHz. The antennae are

discussed further in section 4.5.

To conserve bench space, a pair of 55-turn magnetic coils are mounted internally

to provide an anti-Helmholtz field for the MOT. The coils are individually addressed

by four external electrical connections, to permit reconfiguring the magnetic field to

Helmholtz if desired. The coils are passively cooled via conduction to the flange on which

all internals are mounted. This cooling channel offers minimal thermal conductance

and so coil current must be limited to prevent excessive heating (and corresponding

out-gassing from the Kapton wire coating). The coils generate an axial gradient of

5.297 ± 0.009Gcm−1 A−1. Due to thermal limits, the MOT is formed at a gradient of

35.5Gcm−1, and briefly raised to 48Gcm−1 during a compressed MOT phase [160]. Due

to the low currents involved, the MOT coil gradient is controlled directly via the analogue

current control input of a DC power supply.18 The power supply slew rate sets the rate

at which coils can switch to 2ms 10-90 rise time. Current safety limits are approximated

by setting the power supply’s over-voltage protection to 10% higher than the steady

state voltage at 9.0A.

At the rear of the science chamber is a 100L s−1 combined ion-getter pump.19 The

ion pump current is used as a measurement of vacuum quality, and remains below the

minimum sensitivity at < 10−10 mbar. A backup atomic dispenser is also located to the

rear of the main chamber, to permit emergency MOT diagnostics in the event that the

2D-MOT atom source becomes non-operational.

16Pt coatings applied by A. Hindmarch from the Centre for Materials Physics in Durham
17SubMiniture version K
18Electro-Automatick EA-PS 3016-20-B
19Saes-Getter NexTORR D100-5
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4.1.2. Laser cooling

Diode lasers are used to provide stable, narrow linewidth light to the experiment for

cooling, trapping, imaging, and excitation of atoms. 87Rb is the species used in this

experiment, as in many others, due to its simple atomic structure, and the availability

of reliable, high power diode lasers. The level structure of 87Rb is given in figure 4.3.
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Figure 4.3.: Level scheme of 87Rb D2 line. Laser cooling in both the primary MOT and

2D-MOT takes place on the F = 2 → F ′ = 3 transition. Due to detuning, this

transition is weakly open, requiring repumping on the F = 1→ F ′ = 2 transition.

Probe light for Rydberg excitation uses the F = 2, mF = 2 → F ′ = 3, mF ′ = 3

transition. Data from [161].

780 nm: the red laser system

The laser system provides coherent, narrow-linewidth light for cooling, trapping, and

excitation of Rubidium atoms. A schematic of the excitation and cooling lasers is shown

in figure 4.4.
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Figure 4.4.: Overview of the 780nm laser system. Diode lasers and a TA provide cooling

and repump light. AOMs provide frequency and intensity control. Light is delivered

via PM fibre.

Excitation light is provided by a diode laser.20 Cooling light is also derived from

this laser. Due to the large interaction volume of the 2D-MOT, a TA21 22 seeded by the

excitation laser is used to provide approximately 1300mW of light at 780nm for laser

cooling. The excitation and cooling master laser is frequency stabilised 140MHz red

detuned from the 5S1/2 F = 2→ 5P3/2 F
′ = 3 transition of 87Rb by modulation transfer

20Toptica DL Pro
21Tapered amplifier
22Toptica BoosTA
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spectroscopy [162]. AOMs23 24 are used to provide frequency and intensity control. For

the MOT cooler and the two probe beams, the laser is tightly focused and retro reflected

through the AOM in a double pass configuration. This provides both fast switching

(t10:90 ≈ 20 ns) for the probe beams, and the ability to change the frequency without

(substantially) changing the beam pointing and coupling into the PM fibres. The cooling

and pushing beams for the 2D-MOT go through their respective AOMs once, without

focusing, to maximise diffraction efficiency and where fast switching is not required.

Repumping light is provided by a diode laser,25 which produces more than 80mW of

light. This laser is frequency stabilised to the F = 1→ F′ = 1×2 crossover resonance by

frequency modulation spectroscopy [163]. AOMs are used to provide intensity control.

All laser light is delivered to the experiment via PM fibres. Cooling and repumping

light for the MOT are delivered by two separate fibres, and then combined into a single

1 → 3 single mode, non-polarisation-maintaining beamsplitter to form a conventional

3-beam MOT.

Total power at 780nm delivered to the experiment amounts to

• 75mW× 2 cooling light and 12mW repumping light for the 2D-MOT,

• 8mW× 3 and 0.5mW repumping light for the MOT,

• Up to 500µW× 2 excitation light for probing the atomic ensembles.26

MOT performance

Figure 4.5 shows the sequence used to prepare the atomic ensemble. The 2D-MOT and

MOT are switched on for up to 200ms (with 100ms being the typical time). At the end

of the loading, the 2D-MOT light is switched off, which reduces the atomic beam flux to

23Acousto-optical modulators
24Gooch and Housego 1080-122
25Toptica DL100
26The power budget is designed to provide sufficient probing light for manual alignment work, for

example using a power meter or regular photodiode. Experimental probing at the single photon level

makes use of neutral density filters to reduce the probing power by as much as −120 dB.
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Figure 4.5.: Preparation of the atomic ensemble. The MOT is loaded for 1 − 200ms. A

compression stage increases atomic density, followed by a molasses stage to lower

temperature. Atoms not trapped in the optical trap are expelled by a kick stage.

Optionally, an evaporation stage is included to reduce the dimensions of the atomic

ensemble. After evaporation, if any, the repump laser is briefly restored to pump

the atomic population into the upper ground state in preparation for probing.

a negligible level. The optical trap is switched on throughout the atomic preparation,

creating an effective dark spot at the centre of the MOT due to AC Stark shifts, where

atoms are no longer subject to light-indued collisions [164]. Atomic density is increased

by compressing the MOT [160], by ramping up the field gradient and ramping down the

repumping power, and cooling power and detuning. The magnetic field gradient is then

ramped to zero. A dark optical molasses stage is used to further cool the atomic cloud

[165, 166].

After the molasses stage, any atoms not loaded into the optical trap are of no further

interest, and serve only to decrease the certainty of the dimensions of the atomic ensemble

in which experiments take place. Due to the high repetition rate desired, gravity and

ballistic expansion do not remove the atoms fast enough. Therefore, to speed their

removal from the region of interest, a ‘kick’ stage is included, in which cooler power

is ramped up and cooler detuning is ramped from red to blue. Atoms in the optical
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Figure 4.6.: MOT fluorescence as a function of loading time. The MOT saturates after

≈ 200ms.

trap are not affected due to the AC Stark shift induced by the high trapping intensity.

Finally, an evaporation stage is included, for some experiments,27 to further cool and

reduce the dimensions of the trapped atomic ensemble [167].

Figure 4.6 shows a loading curve for the MOT, observed via fluorescence. The MOT

saturates after ≈ 200ms, with an atom number of ≈ 108. Due to the large number of

reflective surfaces inside the chamber, it is probable that fluorescence-based measure-

ments over-estimate atom number slightly. Absorption imaging suggests a saturated

atom number of (2.5 ± 0.2) × 107 [105]. The loading rate is of greater relevance to the

overall performance of the new experimental apparatus, as only a tiny fraction of the

MOT can be loaded into the microscopic optical trap. MOT saturation in 200ms already

provides an order of magnitude improvement in repetition rate in comparison to the

previous generation.

27Experiments presented in chapter 5 use the evaporation stage, and it is further discussed in section

5.2.1. All other experiments omit the evaporation stage in the interests of a higher repetition rate.

47



4. Experimental apparatus

4.1.3. Atomic state preparation

Optical cooling exploits the closed atomic transition from 5S1/2 F = 2 ↔ 5P3/2 F
′ = 3.

Due to the detuning of of the cooling laser, there is a small probability of an atom being

excited into the 5P3/2 F
′ = 2 state and thence decaying to the 5S1/2 F = 1 ground state.

To fully close the cycle, the repumping laser recirculates atoms in this lower ground

state. During the molasses stage, the repumping laser is switched off, resulting in the

atomic cloud being optically pumped into the lower ground state 5S1/2 F = 1.

After the kick stage and optional evaporation stage, the repumping laser is briefly

switched on to pump atoms back into the upper ground state 5S1/2 F = 2. The magnetic

sub-levels, mF ∈ (−2, 2) are equally populated as no quantisation field is applied.

Conventionally, an optical pumping stage would subsequently take place to preferen-

tially transfer atomic population into the stretched state 5S1/2 F = 2,mF = 2 [165]. Op-

tical pumping applies circularly polarised light along the axis of a homogenous magnetic

field. However, no optical axis is suitable for this stage in the experimental apparatus

presented here. Along the horizontal MOT beam axis, the dimensions of the vacuum

chamber render the creation of a homogenous magnetic field difficult; while along the

lens axis, the extremely tight focusing of the in-vacuum aspheric lenses prevent the

application of an optical pumping beam to the entire ensemble.

4.1.4. Optically trapping an atomic ensemble

After cooling in the MOT, atoms are loaded into a pair of tightly focused optical traps

[168]. Each trap is formed by focusing a red-detuned, far off-resonant laser beam (λtrap =

910 nm) through the high NA aspheric lenses inside the vacuum chamber to a waist

of 4.5 ± 0.3µm. As the aspheric lens pair is aligned to re-collimate a 780 nm beam,

the trapping beam must be slightly convergent to overlap its focal spot with that of

a collimated 780 nm beam at the centre of the lenses. The optical trapping beams

are delivered by a single PM optical fibre to provide a high purity TEM00 mode, and

the convergence is set by adjusting the position of the collimating lens on a micrometer

translation stage. This is shown in figure 4.7. Before replacement of the optical trapping
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Figure 4.7.: Overview of optical trapping system. Light is provided by a laser diode and

TA and switched by a single pass AOM. A Gaussian mode is provided through the

use of a PM fibre, and the z-position of the focal waist is controlled by translating

the lens that collimates light from the fibre to weakly converge.

laser source (see appendix A), all available power was used to produce the trap28 with

approximately 63 ± 2mW before the chamber. Accounting for the ITO coating on the

in-chamber lens surface, the estimated trap depth is 400µK [105].

Optical trap optics

Due to the use of tightly focused beams to produce and probe microscopic atomic ensem-

bles, alignment of the trapping and probing beams is a critical and delicate operation.

In order to simplify the alignment of multiple separate trap and probe pairs, an optical

configuration was chosen that would, in principle, allow this alignment to be performed

once for all pairs simultaneously. This is shown in figure 4.8.

The optical trapping beam emerges from a single fibre, and is later split between

two regions. Before this splitting, it is overlapped in free space with both probe beams

(which are resolved via polarisation), in order to closely co-locate the trap and probe

focal spots in the xy plane at the centre of the lenses.

The trap and probes are then split on a PBS, spatially resolving the two probes and

dividing trap power as desired (typically equally). The two beam paths form arms of

28At maximum, approximately 280mW was available from the fibre tip. A large fraction of this power

is lost, due to the optical configuration used to produce multiple optical traps.
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Figure 4.8.: Optical layout to generate two ensembles. Independent probe beams are

initially distinguishable by polarisation and overlapped with each other and optical

trapping light for ease of alignment. Spatial separation is achieved by inducing an

angle between the beams on the surface of the aspheric lens. The separation

can be controlled by adjustment of the angle and position of the mirror labelled

‘positioning mirror’. After separating the two probe beams on the second PBS,

their polarisation is set independently to allow probing of the same transition, and

recombined on a 50:50 nPBS. A flipper mirror allows the probes to be redirected

to an external reference aspheric lens and camera for diagnostics.

a configuration similar to a Mach-Zehnder interferometer, and it will be referred to as

such, although it should be emphasised that interference is explicitly not the goal. The

two beam paths are reflected and re-combined on a nPBS29. This choice discards 50% of

trap power, but allows both probe beams to be adjusted to be equivalently polarised, in

order to drive identical atomic transitions.

During re-combination, the two beam-pairs are deliberately not perfectly overlapped.

A small angle between the two pairs is created.

The two pairs of beams are then directed onto the first aspheric lens inside the vacuum

chamber. The angle between the two pairs results in a spatial separation between the

focal spots. The extent of the separation may be varied in a controlled fashion by

29Non-polarising beam splitter
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adjusting the angle of the reflecting mirror in one arm of the ‘interferometer’ to modify

the angle between the beam pairs. Aberrations are minimised by maximising the overlap

of the beam pairs on the surface of the aspheric lens. The adjustable reflecting mirror

is mounted on a linear micrometer stage to facilitate this step.

Optical trap performance

As each shot will typically only result in O(1) photon, it is clearly necessary to perform

many shots per MOT load, in order to achieve a meaningful repetition rate, with the

previous generation typically using 3000 shots per MOT load [103]. The atomic ensemble

is held in an optical trap to maintain it long enough for multiple shots. Due to the high

intensities required to produce an optical trap, the atoms in the trap experience a strong,

position dependent, AC Stark shift in their energy levels. In order to minimise problems

arising from these shifts, the optical trap is rapidly modulated, switching off for a short

period to perform individual experimental shots, and then back on to re-confine the

atomic ensemble. With each shot and modulation, the atomic ensemble experiences a

degree of heating and atom loss, placing an upper limit on the number of modulations.

This performance is characterised by evaluating the OD of the atomic ensemble as a

function of shot number, averaged over many MOT loads. Typically, shots are considered

in ‘slices’ of 2500, up to the upper limit of shots used on any given day. An example is

shown in figure 4.9.

Optical trap geometry

The dipole potential of a EM field is given by [168]

U = −1
2 〈Re(d) · E〉 , (4.1)

where the angled brackets represent the time average of the rapidly oscillating electric

field and dipole moment.

Each optical trap is formed from a single, red-detuned, focused Gaussian laser beam.
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Figure 4.9.: Evolution of atomic ensemble during recycling. After forming a MOT and

loading the optical trap, the atomic ensemble is probed 3.5 × 104 times. Probe

transmission is observed as a function of probe detuning to derive a value for OD.

Slices of 2500 shots are evaluated together. a: frequency scans for slices identified

in (b). b: Optical depth evolution.

Consequently, the potential is of the form [169]

U(r, z) = Uo
w2

0
w2(z)e

− 2r2
w2(z) , (4.2)

where w(z) is the 1/e2 radius of the beam

w(z) = w0

√
1 +

(
z

zR

)2
, (4.3)

w0 is the minimum (i.e., focal) waist radius and zR is the Rayleigh range

zR = πw2
0

λtrap
. (4.4)

Provided that the energy of the ensemble is substantially less than the potential depth,

it may be modelled as a harmonic potential [168]. The size of a thermal cloud at

temperature T in a harmonic potential is given by

σrad =

√
kBTw2

0
4U0

, (4.5a)
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σax =

√
kBTz2

R

2U0
, (4.5b)

where σx is the standard deviation of a Gaussian density distribution along the axis x.

Using a single beam per optical trap results in a simple trapping scheme, but results

in a lengthened, cigar or oblate ellipsoid shaped cloud with weak axial confinement, and

a length several blockade radii long. The length can be compressed by narrowing the

waist, but too extreme a reduction results in too small an atomic ensemble since both

are dependent on w0.

As stated above, the waist is chosen to be w0 = (4.5± 0.3)µm. The resulting atomic

ensemble has a waist of σrad ≈ 2µm. Due to the optical access within the chamber,

σax cannot be directly measured, as sufficient magnification cannot be achieved perpen-

dicular to its axis. The traps can fluorescence imaged along their axis through a ×39

magnification telescope onto an EMCCD30 camera,31 as shown in figure 4.10.

The small depth of field resulting from high magnification limits the ability to accu-

rately image the cloud, as a substantial fraction of the photons that reach the camera are

emitted from atoms well outside the focal plane. Consequently, the fluorescence images

are unfocused and of limited use in measuring the size of the atomic ensembles or their

temperature.

4.2. Detection system

Unlike conventional Rydberg experiments [153, 170] which typically detect the presence

of Rydberg excitations via ions on a microchannel plate or channeltron, this experiment

is inherently optical. As an experiment investigating quantum optics [28, 29], both

inputs to, and outputs from, the experiment are photons, and all signal detection is

performed optically [27, 171, 172], which is a coherent process [33]

To detect extremely weak light fields, photodetectors with extremely high sensitiv-

30Electron-multiplied charge-coupled device
31Andor Ixon
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Figure 4.10.: Fluorescence imaging multiple optical traps. a: ensemble fluoresence is

imaged via a ×39 magnification telescope onto an EMCCD. b, c: Due to imag-

ing along the trap axis and after a sufficient integration time, the images are

dominated by photons emitted well away from the telescope focus.

ity and low noise are required. This experiment makes use of SPADs32, in commercial

SPCMs33.34, 35

The SPCM signals the detection of a photon by sending a nominally TTL36 compatible

voltage pulse to the data acquisition system (see section 4.3.4). Each SPCM has a nom-

inal time resolution of 28ps; although in practice this is limited by the edge-detection

scheme implemented in data acquisition. After detecting a photon, the SPCM becomes

unresponsive for approximately 25ns. This dead time results in a non-linear response

that under-counts strong input signals, and saturates completely at count rates above

1/tdead ≈ 40 × 106 cps. A correction factor can be applied to estimate the true count

rate. The photon count rate during the probing window is usually sufficient that the

linearity factor must be considered (a count rate of 4×106 cps results in linearity factors

32Single photon sensitive avalanche photo diodes
33Single photon counting modules
34Two separate models are used (Perkin-Elmer SPCM-AQRH-14-FC and Excelitas SPCM-780-14-FC)
35While these two terms are often used interchangably, the former, SPAD, strictly only refers to the

diode, while the latter, SPCM, covers the entire module, electronics included.
36Transistor-transistor logic
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between 1.08− 1.13 for the four SPCMs); while during the detection window, the count

rate is at least two orders of magnitude lower and the linearity factor is essentially unity.

The choice of optical detection via SPCMs has the advantage that the data acquisition

system does not merely record intensity as a function of time, but can record the arrival

time of each individual photon. This wealth of data is crucial to the investigation of the

statistics of the photons emitted by the quantum phenomena under investigation. The

data acquisition system is integrated into the experimental control system discussed in

section 4.3

4.2.1. Detector configuration

The dead time prevents a single SPCM from being able to count accurately photons that

are closely bunched in time. In order to partially overcome this limitation, SPCMs are

used in pairs in a HBT37 configuration [173].
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Figure 4.11.: HBT detector configuration. The incident signal is split on a 50:50 nPBS and

observed by two SPCMs. SPCMs convert the photonic signal to an electronic signal

that can then be processed by the data acquisition system.

The use of multiple detectors allows the observation of multiple photons arriving

within time windows shorter than the detector dead time. The number of detectors sets

an upper limit on the largest photon number event that may be accurately detected. As

the beamsplitter is probabilistic, only a fraction of multi-photon events will be accurately

observed as such; but the true rate of such events can be reconstructed provided the

behaviour of the beamsplitter is known and consistent.

37Hanbury-Brown Twiss
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Figure 4.12.: Optical layout to resolve and detect two signals. The probe beams are

spatially resolved by imaging the sites with ×39 magnification. A translatable

edge mirror at the focus of the imaging system separates the two probes. Band-

pass filters extinguish trapping and coupling light. Each probe is detected by

a pair of fibre-coupled SPCMs. Flipper mirrors allow the probe light to be redi-

rected to a CMOS camera for measuring the spatial separation or to an EMCCD

for fluorescence imaging of the optical traps.

Due to the use of two optical channels in this experiment, a total of four SPCMs are

used, configured as two HBT observer pairs. The optical configuration to achieve this is

shown below.

Spatially resolving multiple optical channels

Due to the angle induced between the two pairs of beams (figure 4.8), the two probe

beams may be spatially resolved after the chamber by imaging the focal plane of the

in-chamber aspheric lenses. A ×39 magnification telescope is used to separate the focal

points further, with an edge mirror located at the focus, to separate the probe beams into

completely separate optical paths. The two probes are then independently coupled into
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SM38 FBSes39 and delivered to the HBT detector pairs. The fibres delivering signal light to

the detectors are aligned to maximise detection of the probe beam transmitted through

the chamber. This choice will later serve as a discriminant for retrieval of photons that

maintained the original stored phase pattern.

Flipper mirrors are used to redirect probe light to a pair of cameras for diagnostic

purposes: a CMOS40 camera41 for imaging the distance between the two optical traps,

and a previously mentioned EMCCD camera for fluorescence imaging of the optically

trapped atomic ensembles (section 4.1.4).

4.2.2. Detection noise

Detection at the level of single photons requires considerable attention in order to reduce

the level of background level sufficiently to achieve a meaningful SNR.

There are two principal sources of noise in measurements presented in this thesis:

• DC42: electronic noise arising from imperfections in the SPCM electronics. The

electronics produce a certain rate of false photon counts even in the perfect absence

of photons to detect.

• Optical noise. Real photons that do not comprise part of the signal that we wish to

detect. Sources include laboratory lighting and the various lasers in use for atomic

cooling, trapping, and excitation.

The detectors were chosen on the basis of several specifications: low-DC, high detection

efficiency, and short dead time. The specified performance data of each of the four SPCMs

used are given in table 4.1, including the specified QE43. Aside from the choice made at

the time of purchase, very little can be done to affect the detector DC in practice.

38Single-mode, non-polarisation-maintaining
39Fibre beam splitters
40Complementary metal-oxide-semiconductor
41Thorlabs DCC1545M
42Dark count
43Quantum efficiency
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SPCM Serial Number QE (%) DC (Hz) Calibrated

1 17553 ≈ 58 52 2010-02

2 17653 ≈ 52 67 2016-01

3 30400 67 33 2016-05

4 30401 66 37 2016-05

Table 4.1.: SPCM specifications. SPCMs 1 and 2 specify a measured QE at a wavelength of

550nm, and their QE at 780 nm is inferred from the manufacturer’s wavelength-QE

graphs. DC is the rate at which events are detected due to electronic noise, rather

than optical noise

Multiple steps are taken to minimise optical noise: the four SPCMs and associated HBT

optics are located within a light-tight black-out box. The box has only two apertures,

from which protrude fibre collimator optics. Electrical cables connect to a pass-through

panel, rather than directly through a hole in the box wall, and the walls and lid use

tongue-in-groove construction to minimise incoming light paths.

After separation on the edge mirror (figure 4.12), the two probe beams pass through

laser line filters44 to extinguish the co-propagating optical trap light. Each path has

a pair of filters to provide approximately 122 dB attenuation at 910nm and 13dB at

480 nm. Each probe beam is then coupled into a SM FBS at the blackout box boundary.45

The fibres are also entirely enclosed within the blackout box, to prevent laboratory

lighting weakly coupling into the fibre cladding.

The use of SM fibres helps extinguish optical trapping light. Due to the convergence

required to set the focal position of the traps (section 4.1.4), only a tiny fraction of

the co-propagating light is within the acceptance mode of the fibre. Early tests with

multi-mode fibres resulted in substantially higher noise levels.

In addition to the black-out box built on the optical table; the entire optical table

44Semrock MaxLine 780
45Early experiments presented in this thesis (chapter 5) used free-space beamsplitter cubes in between

separate fibres. These were contained in slightly more primitive blackout boxes.
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SPCM SN DC OT (+Hz) CL (+Hz) Blinds (+Hz)

(Hz) Low High Low High Closed Open

1 17553 53.66 1.34 645.8 0.12 8.80 0.00 114.31

2 17653 129.7 1.67 971.0 0.04 4.51 0.02 42.68

3 30400 34.35 0.75 309.0 0.05 3.84 0.05 132.61

4 30401 39.60 0.76 324.0 0.03 3.54 0.04 39.88

Table 4.2.: Optical noise sources and contributions. OT: Optical trap. CL: Coupling

laser. Blinds: with room lighting switched on. Data of interest is (typically) mea-

sured with the optical trap and coupling laser low, room lighting on and safety

blinds closed. Coupling laser high data taken with PCL = 12mW.

is enclosed within a shuttered canopy. This canopy originates in the necessity for laser

safety, but serves nearly as well at preventing laboratory light entering the table as

it does preventing laser light exiting the table. The shuttering is not light-tight, but

nevertheless provides substantial additional attenuation to optical noise.

Finally, during periods in which no experiments of interest are being recorded, the

SPCMs are gated off to prevent recording incident photons. Gating is a minor factor

in noise reduction, since photon counts in times of non-interest alternatively may be

abandoned in post-processing; but makes a substantial contribution to minimising data

storage requirements, and reducing post-processing computing overhead.

The contributions of various noise sources were measured in a series of extended exper-

iments. For these experiments, all laboratory equipment not crucial to that experiment

was switched off. The experiments were each conducted for 10 hours overnight, when

the greatest fraction of electronic equipment in the building would be switched off to

minimise disturbance of the electrical supply. The resulting data are shown in table 4.2.

4.3. Computer control and data acquisition

A control system is the combined software and hardware necessary to translate a de-

scription of an experiment into the timings and settings for the various instruments to
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implement.

The previous generation of this experiment, and similar past projects, made use of a

pair of National Instruments I/O46 expansion cards controlled by a labyrinthine LabView

codebase originally written more than a decade previously and since continually modified

[102, 103, 174, 175]. The system offered a nominal fine timing resolution of 10µs.47

Where greater resolution is required - such as for the ≈ 1µs excitation pulses, the

computer was used to trigger arbitrary waveform generators or pulse generators, which

could provide the desired precision. As the software ran on top of a Windows PC without

interrupt-based programming, this nominal resolution was rarely achieved, as the other

background processes could effectively hijack the central processor for many thousands

of clock cycles at a time, causing significant jitter.

Due to the increasing difficulty in maintaining and developing the underlying software

to implement requirements vastly exceeding its original parameters, the decision was

made to move to a new system.

4.3.1. DExTer

Until recently, every single experimental project at Durham developed and operated

their own unique control software (and hardware interface). All implemented a large

number of extremely similar functions, in addition to experiment specific additions.

Each required unique development, maintenance, and operations knowledge.

In 2011, T. Wiles wrote a modular experimental control system for another project in

Durham [176]: DExTer48. It was designed with the intention of being a general control

system, able to be ported to use with other ongoing experimental projects. It is now

currently in use, or in the process of adoption, by every cold atom experiment in Durham

[177–180].

46Input/output
47A PCI-DIO-32HS 32 channel digital I/O card and PCI-6713 8 channel analogue output card, using a

synchronised 20MHz clock frequency. The origins of the system used up until the end of the work of

D. Paredes-Barato [104] are discussed by K. Weatherill [175].
48Durham Experimental Terminal
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DExTer has three primary advantages over the previous control scheme.

• Due to a more effective development process, the software is significantly more

extensible and easily adapted to other experiments than it was previous written

for.

• Arising from this modularity and flexibility, multiple projects use it, allowing

pooled expertise and workload in maintenance and development.

• It uses a more advanced hardware interface, allowing better decoupling from the

jitter inherent to the PC on which the software runs. Consequently, it allows for a

substantially greater timing resolution.

Additional information for future users and maintainers of DExTer is given in appendix

B.

Hardware

DExTer’s hardware interface is a National Instruments FPGA49 expansion card.50 For I/O,

it provides 96 digital multipurpose I/O channels, and eight each of 16-bit analogue input

and output channels. It has a base clock speed of 40MHz, which for certain operations

is overclocked to 200MHz. The FPGA acts as a real-time processor, reducing jitter to a

maximum of one clock cycle. The FPGA card has a limited amount of RAM51 located on

the card, and offers DMA52 via the PCIe interface to the host computer RAM.

Separately, a USB53-GPIB54 adaptor55 is used to control several instruments via the

DExTer interface. Since this control does not reference the FPGA base clock, it is referred

49Field programmable gate array
51Random-access memory
52Direct memory access
52The work presented here uses NI PCIe-7842R; although other installations of DExTer use other models.

Modification to a non-NI FPGA would involve a considerable amount of work, due to the tight

integration between National Instrument’s software and hardware.
53Universal serial bus
54General purpose interface bus
55Agilent 82357A
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to as ‘asynchronous’.

Software

The software side of DExTer has two primary components, and a host of associated tools.

A small software kernel is uploaded to the FPGA as firmware. The FPGA core imple-

ments this code in hardware by re-programming the interconnects between gates. The

kernel reads each pre-computed time step of the experimental sequence from main com-

puter RAM to local RAM and then executes it in real time. In the fork of DExTer used in

the work presented here, a data acquisition system is also implemented into the FPGA

kernel, recording the time at which each photon detected by the SPCMs is detected and

writing it to main computer RAM.

The main terminal provides a UI56 for a human user to enter an experimental sequence.

The UI is presented as a series of time steps. Each time step sets the experimental state

(such as a specific digital channel being on or off) for a set period of time.

Once instructed to execute, the human description is translated into the appropriate

instructions for the FPGA kernel to implement. In addition to providing instructions

to the FPGA kernel, the main terminal controls asynchronous outputs. These allow

arbitrary code to be executed on the host computer, allowing more complicated commu-

nication via any relevant protocol with other instruments. The timing of these outputs

cannot be guaranteed to better than O(100µs) accuracy, however, and therefore are all

implemented before the FPGA begins synchronous execution. Finally, the main terminal

is responsible for reading output from the data acquisition system from main computer

RAM and writing it to disk.

A variety of tools are included to simplify various aspects of implementing and using

DExTer. These include

• Delay management: since different instruments may have different response delays

to a signal input, the user may configure DExTer to automatically factor them into

56User interface
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sequence processing. This saves the user from having to individually factor in

various response times into every new sequence manually.

• Calibration management: Devices controlled by the analogue output channels may

not have a linear response to control voltage, or may need the control voltage to be

assigned in a very narrow range. Calibration allows the user to specify the actual

desired instrument output (for example, xMHz detuning or yGcm−1), rather than

calculating the appropriate analogue voltage.

• Channel inversions: Individual digital channels may have their output inverted.

• Manual control: Rather than writing a complete sequence for testing an individual

component, all channels may be set to a specific, non-time-limited state.

• Photon counting: A limited capacity to display in real time the number of photons

counted by the four SPCM channels during an experimental sequence.

4.3.2. Sub-microsecond timing

DExTer was originally designed to offer a timing resolution of ≈ 800 ns. This was not a

fundamental limitation, but a reflection of the requirements of the experiment for which it

was written [176]. The experiments presented in this thesis require a considerably greater

timing resolution in order to execute accurately the fast controls needed for photon

storage and retrieval without resorting to triggering and synchronising multiple arbitrary

function generators [28, 29]. Consequently, the code base was forked and extensively

modified to implement a limited capacity for ‘fast’ digital control with nominal timing

resolution and jitter of 5ns.57

To achieve this timing resolution, the FPGA hub operates at a ×5 multiplier of its base

40MHz clock, giving a clock speed of 200MHz. An individual time step of the main

experimental sequence is flagged as a sub-µs sequence, which is defined separately to the

57Much of the original work implementing sub-µs pulsing was carried out by David Szwer. Testing,

validation, and extension was carried out by the author.
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main sequence, although in a similar style. As with the main experimental sequence,

a sub-µs event is a sequence of time steps, each of which has a defined length and

experimental output state

In order to achieve the 200MHz clock rate, the entire sub-µs sequence must be pre-

loaded into local FPGA RAM, rather than time-step by time-step as with the main se-

quence. This imposes several limitations on the sub-µs sequence.

• Only 16 digital (and no analogue) channels can operate at this speed.

• Each step must be a multiple of the 5ns clock cycle.

• The total sub-µs sequence may not exceed 327µs in length (216×5 ns clock cycles).

• The sub-µs sequence may not contain more than 32 time steps.

• Only one unique sub-µs sequence may occur per experimental run, although it may

be repeated multiple times within the run.

• The sub-µs sequence may not be repeated more than 65,535 times (216 shots).

• The FPGA has a digital channel rise time of t10:90 ≈ 7 ns.

4.3.3. Repetitions and parameter variation

DExTer implements automated repetitions and scanning of experimental parameters. Pa-

rameters are varied in a one-dimensional scan: if multiple parameters a, b, c are to be

scanned, they are all scanned simultaneously so that values a1, b1, c1 are followed by a2,

b2, c2. Variable parameters include the lengths of time steps, and the values of analogue

and asynchronous channels.

Where parameters are varied over the course of a scan, they take a single value for a

single experimental run (a MOT load followed by a set number of shots), and the value

then changes for a following run.

Repetitions occur in four varieties.

• Sub-µs repeats. These are covered in section 4.3.2.
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• Multirun steps. These allow one or more numeric parameters to be changed in

subsequent experimental runs.

• Quick repetitions. These immediately repeat the experimental sequence without

changing any parameters, avoiding the need to re-process the entire experimental

sequence. Two quick repetitions finish slightly faster than two full scans.

• Full scans. These repeat the entire multirun scan.

The order in which parameters are varied may be changed, including to a random

order.

4.3.4. Data acquisition

Four digital channels, connected to the four SPCM outputs are monitored for digital

inputs in the same time domain as the sub-µs sequence occurs (200MHz). Rising edge

detection is implemented in the FPGA. A fifth digital channel (one of the sub-µs output

channels, DIO 15) is also monitored as a ‘reference’ input. In addition, the four digital

channels used to set the SPCM gates are monitored as inputs.

In each clock cycle in which a data event occurs, the FPGA writes a line of data to

the main computer RAM. A data event is defined as one or more of:

• The rising edge of a voltage pulse arriving from an SPCM, signalling the detection

of a photon,

• The rising edge of a signal on the ‘reference’ channel. This could arise either from

another instrument sending a voltage pulse, or the FPGA itself setting the channel

to high,

• The rising or falling edge of a signal on the gate channels, signifying that one or

more SPCMs are being switched on or off.

The line of data written is a 64-bit word. The final 16 bits describe the state of all

four SPCMs and the reference channel, while the first 48 bits contain the number of the
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clock cycle in which the data event happened. The format is described with examples

in appendix B.

The clock counter resets to zero with each new experimental run, typically every time

the MOT is reloaded. 48 bits of information for a 5ns clock cycle permit, in principle,

about 16 days of operation before the value overflows, while individual experimental

runs typically do not exceed 500ms. The dark count observation experiments discussed

in section 4.2 ran for up to 10 hours.

As soon as an experimental run begins, the main DExTer terminal begins monitoring

the computer RAM for data being written by the FPGA data acquisition system. Data is

read from main computer RAM and spooled out to a single mechanical hard drive. Since

the bit-rate of data events can significantly exceed the write performance of a mechanical

disk, main computer RAM serves as a high speed, functionally-infinite capacity data

buffer.

4.4. Non-linear Rydberg quantum optics

Atoms are excited to a highly excited Rydberg state by a two-photon EIT process [33].

The first excitation stage uses the same transition as the cooling stage (5S1/2 → 5P3/2.

The intermediate excited level is coupled to a Rydberg state nS1/2 via a high power

blue laser (referred to as the coupling laser), at a wavelength of ≈ 480 nm. Due to the

density of states in the Rydberg manifold, a wide range of nS states are accessible. The

majority of the work presented in this thesis uses the states 80S1/2 (λ = 479.5nm) and

60S1/2 (λ = 479.6 nm). The state 30S1/2 (λ = 482.6 nm)is used for calibration work.

The energy levels used are shown in figure 4.13, with binding energies to scale.

4.4.1. 480 nm: the blue laser system

Coupling light to excite to Rydberg states is provided by a frequency doubled amplified

diode laser,58 shown in figure 4.14. A master diode provides light at half the desired

58Toptica TA-SHG-110 Pro
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Figure 4.13.: Energy levels of Rubidium. The Rydberg levels used in the experiments

presented in this thesis are all extremely close to the ionisation threshold. nD

levels are not shown: they are not used due to their anisotropic interactions.

Energy levels calculated with Alkali Rydberg calculator [181].

frequency, where semiconductor lasers function very well. The light is amplified by a

TA and then frequency doubled by a nonlinear SHG59 crystal in a bow-tie cavity. The

laser can be tuned to resonance with any transition 5P3/2, 5P1/2 → nS1/2, nD3/2 for

states between n = 27 and the ionisation threshold (945nm < λmaster < 967 nm). The

efficiency of the frequency doubling is strongly wavelength dependent, with up to 350mW

typically available at λ = 483nm, and 270mW at λ = 480nm.

The coupling laser is frequency stabilised by electromagnetically induced transparency

spectroscopy [182] to the chosen Rydberg state relative to the excitation laser. This

technique provides a degree of common mode noise rejection. The detuning of the probe

59Second harmonic generation
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Figure 4.14.: Overview of the 480nm laser system. Coupling light is derived from an

amplified, frequency doubled, diode laser. Light is frequency stabilised on reso-

nance to the desired 5P3/2 → nS1/2 state by EIT spectroscopy using stabilised

780 nm light from the cooling laser. A polarisation switching EOM controlled

by a arbitrary function generator controls the laser intensity. GT: Glan-Taylor

polariser.

light sent to the EIT lock can be set independently to the probe light sent to the chamber,

allowing a detuning of up to ±25MHz relative to ∆p = 0, which allows compensation

for differential electric fields between the vacuum chamber and the 87Rb cell used to

generate a frequency stabilisation signal.

As the laser is stabilised on resonance, using an AOM for intensity control would

result in off-resonant light. Therefore, intensity modulation is achieved by the use of a

polarisation switching EOM60 between crossed Glan-Taylor polarisers. The polarisation

switching achieves only relatively poor intensity extinction (≈ 20dB), but modifies the

transmitted laser mode as well. In combination with the use of a PM fibre, a steady

state extinction of > 47dB can be achieved.

The EOM is controlled via an analogue voltage input to a fast high voltage video

amplifier. This control voltage is provided by a 25MHz arbitrary function generator,61

triggered by DExTer, as DExTer cannot provide analogue control at the necessary speed

60Leysop EM-200K-480
61Tektronix AFG3022B
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Aspheric lenses
780nm to detectors

Dichroic mirror

Trap
Probe
Coupling
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light

Figure 4.15.: Optical layout to couple to Rydberg levels. The blue light counter-

propagates with the probe beam. An f = +400mm achromatic lens focuses the

beam in front of the aspheric lens, such that the beam is approximately collimated

with a waist ≈ 25µm over the excitation region. This waist is large compared to

both the spacing of the traps, and the extent of the atomic ensembles, such that

Ωc is not spatially dependent.

(section 4.3). The control voltage profile is optimised primarily to maximise transient

extinction during the storage time, secondly to optimise steady state extinction during

MOT loading, and thirdly to maximise coupling light transmission during EIT and photon

retrieval. Typically, when optimal extinction parameters are found, transmission is

around 90% of the maximum found if the switch is optimised only for transmission.

A fast photodiode monitors the intensity of the coupling laser during the experimental

sequence.

The switching speed of the coupling laser is limited by the performance of the video

amplifier and the capacitance of the modulator. Typical performance is a fall time

t90:10 = 130ns and a rise time t10:90 = 185ns.

4.4.2. Optical alignment of the coupling laser

The coupling laser beam counter propagates through the lens axis of the vacuum chamber

with respect to the probe (and trap) beams, as shown in figure 4.12. The coupling beam

is not focused onto the atomic ensembles as the probe and trapping beams are. Instead,

an external lens is used to focus the coupling light in front of the in-vacuum aspheric lens,
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Figure 4.16.: Calibration of Ωc using 30S1/2. Autler-Townes splitting of absorption as a

function of probe detuning for several coupling beam powers. Solid lines are fits

to equation 3.3, using the three-level susceptibility given in equation 3.29, to yield

a value of Ωc. Values stated in the legend are in units of ×2πMHz.

such that over the region of the atomic ensembles the coupling beam is approximately

collimated with an estimated beam diameter of 25µm. A collimated, rather than focused,

coupling beam results in a lower coupling Rabi frequency than might be achieved at a

focus, but Ωc is (approximately) constant over the length of the ensemble, and covers

both optical traps simultaneously. The layout is shown in figure 4.15

For experiments using both optical traps, the coupling Rabi frequency at each site is

observed (and equalised) via AT62 splitting of the probe laser absorption [117]. Where

a large splitting is required, the state 30S1/2 is used, offering a sufficiently large dipole

matrix element in proportion to available laser power. Figure 4.16 shows splitting of the

absorption line at a single site for various coupling laser powers. The Rabi frequency is

extracted by fitting the absorption profile to equation 3.3, using the three-level suscep-

tibility from equation 3.29.

62Autler-Townes
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Figure 4.17.: Pulse sequence for photon storage and retrieval. A short probe pulse

is transmitted. The coupling laser switches off shortly before the end of the

probe pulse, and after a storage time tst, switches back on. The optical trap is

modulated off during the storage and retrieval process.

4.4.3. Photon storage

The storage of photons in the atomic medium was discussed in section 3.2.3 [40, 41, 44,

53]. In summary, by applying both probe and coupling laser pulses, and then ramping the

coupling Rabi frequency to zero, photons may be stored as collective Rydberg excitations.

When the coupling field is restored (or when the Rydberg excitation decays), the photon

is released (or ‘retrieved’, which will be the common notation in this thesis). If the phase

pattern originally imprinted on the atoms by the input EM fields is not disturbed, the

photons will be retrieved back into the same mode as the laser pulse they originated

from. The original mode is coupled to the SPCMs via a single mode fibre. Photons

retrieved into the original mode are detected, while emittance into any other mode (as a

result of a disturbance in the phase pattern) are not detected, and are regarded as lost.

Figure 4.17 shows the pulse sequence used to achieve a single shot of photon storage

and retrieval. A short (typically 350 ns) probe pulse is transmitted. The coupling laser

is timed to reach zero intensity approximately 40 ns before the end of the probe pulse.

After the desired storage time, the coupling laser intensity is restored. The optical trap

modulation is adjusted to bracket the probe, storage, and retrieval window as closely as
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Figure 4.18.: Photon storage and retrieval. Signal intensity for photon storage using the

state 80S1/2. The grey histogram shows the laser pulse in the absence of an

atomic medium. The red histogram shows the signal in the presence of an atomic

medium. The blue trace shows an approximation of the coupling Rabi frequency

profile.

possible.

In this thesis, the storage time is defined as the the time between the digital switch

off and switch on command triggers sent to the coupling laser, minus the switch off time

of the coupling laser switch t90:10 = 130 ns. For experiments without any microwave

driving, typical storage times are 170 ns. Experiments including microwave application

during storage typically have tst = 500ns.

Figure 4.18 shows a histogram of photon arrival counts averaged over 2.5× 107 shots

of photon storage and retrieval using the state |S〉 = 80S1/2 and a storage time of

tst = 170 ns (red). This is the shortest practical storage time that still allows the

retrieval light be be temporally resolved from the tail of the incident probe light. The

trace in grey shows the same results of the same experimental sequence if no atomic

medium is present.

A pulse of light is sent into the atomic ensemble from the probe laser in the time

window 50 − 400 ns, with a mean photon number per pulse of nin = 2.3 ± 0.2. The
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trace in red shows the time dependent transmission of the atomic ensemble arising from

both the response time of the individual atoms, and the time-dependent coupling Rabi

frequency Ωc. It has three notable transient elements:

1. The intensity spike at 75 ns primarily arises from the non-instantaneous response

time of the 87Rb atoms. Transmission is initially nearly full, sharply reducing as

the ensemble is polarised by the EM field. There is an additional small contribution

from overshoot in the AOM that switches the probe laser.

2. The rise in transmission between 100 − 250 ns is a similar effect, in which the 3-

level transparency develops slowly due to the limited coupling Rabi frequency Ωc

(typically 9MHz). The transparency subsequently falls between 250 − 370ns as

the coupling Rabi frequency is reduced.

3. The intensity spike at 410 ns is a sub-radiant flash. The probe laser switches

off faster than the lifetime of the atomic fluorescence. Consequently, when the

excitation source abruptly terminates, the interference that produces high optical

extinction likewise abruptly terminates.

The retrieval histogram shown inset in figure 4.18 is plotted separately in figure 4.19,

renormalised to its peak intensity. It exhibits a strong resemblance to a Gaussian dis-

tribution, to which it is fit in figure 4.19. The FWHM63 of the fit, (123± 1)ns is similar

to the rise-time of the coupling Rabi frequency Ωc (t10:90 = 185 ns). A superficial ex-

planation can be given by considering the physical parameters limiting the rising and

falling edges of the retrieval window. The rising edge (500− 700 ns) is dominated by the

increasing coupling Rabi frequency, which has an approximately sigmoidal distribution,

fitting well to the wing of the Gaussian. The falling edge is limited by the maximum

number of photons stored in the ensemble: no more photons can be emitted than are

stored -and usually fewer, due to decoherence of the collective phase.

The efficiency of the photon retrieval is defined as the ratio between the mean retrieved

photon number nret and the input mean photon number nin. Using the state 80S1/2 and

63Full-width at half-maximum
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Figure 4.19.: Photon retrieval. The retrieval data shown inset in figure 4.18, renormalised

to peak intensity (red), and fit to a Gaussian distribution (broken blue line) with

a FWHM of (123± 1) ns.

the shortest possible storage time of 170 ns, retrieval efficiency is typically around 2%,

averaged across 2.5×104 shots per ensemble. The exact efficiency depends upon multiple

parameters, principally the ensemble OD and the storage time tst.

The retrieval efficiency of an individual shot varies as a function of shot number, as

shown in figure 4.20. The variation in efficiency is similar to that observed in the OD of

the optical trap (figure 4.9): retrieval rate initially rises rapidly to a plateau, and then

falls off over time. Depending on the performance of the optical trap and the incident

photon number nin, photon storage remains sufficiently efficient over a greater or smaller

number of shots.

4.4.4. Storage blockade

Due to the use of strongly interacting Rydberg states for photon storage, attempting to

store a large number of photons as collective excitations can demonstrate the strongly

interacting nature of Rydberg excitations.

The effects of dipole blockade can be shown by increasing the number of photons in

the probe pulse. Provided that the probe pulse remains in the weak probe regime, the
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Figure 4.20.: Evolution of photon storage/retrieval efficiency with shot number. As

with optical trap performance, performance initially increases sharply, probably

due to optical pumping. Efficiency plateaus and falls off gradually as the atomic

cloud heats and depletes.

number of collective excitations should be proportional to the incident photon number,

and the number of retrieved photons should be proportional to the number stored. Figure

4.21 shows the effect of changing Rydberg state upon this relationship. For the relatively

non-interacting state 30S1/2, the rate of retrieval is proportional across the range tested

(nret ∝ nin).

More energetic and strongly interacting states demonstrate a saturation effect, where

the retrieval rate flattens out to become independent of input photon number at high

values. The saturation demonstrates the use of dipole blockade as a means of producing

a non-linear optical response.

4.5. Rydberg-Rydberg transitions

The UHV chamber discussed in section 4.1.1 includes three internal antennae (A, B, and

C) for applying microwave fields to the atomic ensemble, intended for driving transitions

between Rydberg states. The three antennae are orientated in the three cardinal axes,

75



4. Experimental apparatus

0 10 20 30 40
nin

0.00

0.25

0.50

n
re

t

80S1/2 48S1/2 30S1/2

Figure 4.21.: Saturation of photon storage/retrieval due to dipole interactions. Pho-

ton retrieval rate nret as a function of incoming photon number nin for three

Rydberg states.

to permit various field vectors to be produced.

Each antennae is a semi-rigid cable with the shielding stripped to expose the solid

conductor to a length of 16mm, intended to produce a quarter-wave stub antennae at

a frequency of 18.5GHz. The shielding is grounded to the metal chamber at the three

independent SMK microwave feedthroughs (see appendix D). Each feedthrough is rated

for frequencies DC− 40GHz, although the performance of the antennae away from the

design frequency is unknown.

An ideal quarter-wave antennae emits a linearly polarised field in the plane of the

emitter [183, 184]. Antennae A and C are orientated such that, if assumed to be ideal,

they emit a field linearly polarised perpendicular to the quantisation axis. Under the

same assumption, B emits a field linearly polarised parallel to the quantisation axis.

Due to the minimal area of the grounded shielding, and the large number of reflective

surfaces nearby within the chamber, the ideality of the antennae is unknown.

Due to the extremely large dipole matrix elements of Rydberg-Rydberg transitions,

very weak microwave fields are sufficient to achieve acceptable Rabi frequencies. There-

fore, simplicity is prioritised. No attempt is made to match impedance between the
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antennae and the signal generator. A coaxial isolator is used to minimise harmful signal

back-reflections from the presumed impedance mismatch,

4.5.1. Microwave excitation

Microwaves are generated by a commercial analogue signal generator,64 locally referenced

to a temperature stabilised quartz oscillator. The generator is nominally capable of a

dynamic range of −20 − +20 dBm and a frequency range of 2 − 67GHz, although the

peak output power in practice falls off with frequency. Maximum power in the range

2− 20GHz does not fall below 10dBm.

The microwave generator is asynchronously controlled via GPIB from DExTer’s host

computer. Output frequency and power each require up to 30ms to stabilise, and are

therefore configured prior to an experimental run. Due to this slow switching speed,

the set frequency and output power set points are only changed in between complete

experimental sequences via DExTer’s multirun parameter scanning. Rapid microwave

switching during the sub-µs sequence is provided by a fast internal pulse modulator

installed in the signal generator, controlled by an external signal supplied by DExTer.

The modulator is capable of generating pulses as short as 10ns (although in certain

circumstances, pulses must be a minimum of 50 ns long) with a specified extinction

ratio 80dB and 10 − 90 rise time of 8 ns. Pulses longer than 100ns are power-levelled

by internal feedback to better than ±0.5dB. However, the modulator can only switch

between zero and maximum power. Consequently, in a ‘fast’ time domain (see section

4.3.2), the microwave state can only switch between high and low. Frequency modulation

and partial-depth amplitude modulation cannot be applied on time scales shorter than

1ms per step, and are therefore not used in any experiments presented in this thesis.

The dynamic range of the generator can be extended with the use of a computer-

controlled digital step broadband microwave attenuator65 offering an additional config-

urable attenuation of 0− 60 dB in 1dB increments. Fixed broadband 20 dB attenuators

64Anritsu MG3696A
65AtlantecRF ADA-8000-26000-60/1
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are also used in some experiments where additional dynamic range is not required.

Coaxial isolators are used in-line between the signal generator and antenna to minimise

reflection of signals from the antenna back into the generator due to the presumed

mismatch in impedance arising from the simplistic antennae design.

Due to the delicacy of high frequency coaxial connectors (see appendix D), care must

be taken when making and breaking connections between two elements. 50 cm extension

cables are attached to each of the three microwave feedthroughs mounted on the vac-

uum chamber, which permits easier access to select which antenna is used and also serve

as sacrificial cables in case of mishap. In the event that damage is caused while mak-

ing a connection, the extension cable can be more easily replaced than the microwave

feedthrough itself, which would require breaking vacuum and dismantling the chamber.

Timing of the microwave pulse is optimised with the use of a microwave sensitive

Schottky diode.66 The diode has a rise time of t10:90 = (260 ± 20) ns, a rise time delay

of t ≈ 5ns, and a fall time of t90:10 ≈ 270µs at a frequency of 2.5GHz. Consequently,

the beginning of a microwave pulse can be positioned to an accuracy of 50− 100 ns, but

the signal generator must be trusted to accurately produce the desired length without

verification where short pulses are used.

4.5.2. Microwave antennae performance

The simplest approach to measuring the Rabi frequency of an applied microwave field

Ωµ is to use the same AT splitting technique used in section 4.4.2 to measure the coupling

Rabi frequency Ωc. In this approach, the probe, coupling, and microwave fields are all

applied simultaneously to probe the eigenstates of the dressed system. Figure 3.8 (b)

plots an example of the susceptibility expected to arise in such a system. The presence

of the microwave field acts to split the transparency window into two, such that there

are three absorption peaks.

Figure 4.22 (a) shows two EIT traces. Two photon EIT is shown in blue circles, with

a fit (solid line) to equation 3.3, using the three-level susceptibility given in equation

66AtlantecRF BZD-10018
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Figure 4.22.: Three-photon AT spectroscopy. a: Probe transmission for Ωc = (9 ± 1) ×
2πMHz and (blue circles) Ωµ = 0MHz, (red triangles) Ωµ = (12.4±0.4)×2πMHz.

The slight asymmetry in splitting indicates that ∆c, ∆µ 6= 0. b: Comparison of

antennae performance.

3.29. Three-photon EIT is shown in red triangles, with a fit to equation 3.3, using the

four-level susceptibility given in equation 3.41. The splitting in both traces is slightly

asymmetric, indicating that the detunings of both the coupling and microwave fields are

not exactly zero. The fit yields a value for Ωµ, as a function of applied microwave field

strength, which is then used in figure 4.22 (b). Due to the large number of parameters

in such a fit, it works most accurately at higher Rabi frequencies. This is analogous to

the use of a low lying Rydberg state to optimise and align two-photon EIT at a high

coupling Rabi frequency (section 4.4.2).

Figure 4.22 (b) shows the results of fitting the three-photon trace for successive applied

microwave field strengths for each of the three antennae. A and C exhibit a far stronger

Rabi frequency per driving field strength than B. The difference in efficiency between

A and C, with C being the most efficient, may arise from many factors - a difference in

inductance, a difference in exact antennae dimensions, or position relative to the atoms,

or cavity effects arising from reflections inside the chamber.

Except where otherwise stated, all microwave fields used for experiments presented in
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this thesis are applied via antenna C.
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5. Contactless non-linear quantum optics

Strong dipolar interactions between Rydberg excitations has become well established

as a means of creating effective photon-photon interactions by modifying the optical

response of an atomic medium [27, 28, 42–46, 48, 53, 54, 66, 67, 185, 186] by coherent

mapping between light fields and atomic excitations [143]. All of these experiments rely

on the long-range nature of these interactions [5, 25].

To date, virtually all of these experiments have observed non-linearity by the behaviour

of photons within a single spatial mode.1 However, this aspect has been typically been

driven by experimental considerations, and is not fundamental. The long range character

of dipolar excitations between Rydberg excitations is mediated by virtual microwave

photons, and occur with the near field of such photons. As established in chapter 6,

microwave coupling between nearby states used in this thesis are of the order of O(1 cm).

These scales are vastly greater than the scale of the mode used for tight addressing of

single (or single digit) dipole blockade radii, (O(1µm) in the work presented in this

thesis).

In this chapter, effective photon-photon interactions are demonstrated at ranges d ≥
10µm, between photons propagating in non-overlapping spatial modes. The interac-

tion is mediated through free space between two independent, non-overlapping atomic

ensembles.

This chapter is based on the following publications:

• H. Busche, S. W. Ball and P. Huillery, A high repetition rate experimental setup for

quantum non-linear optics with cold Rydberg atoms, Eur. Phys. J. Special Topics

1[67] is a notable exception, published shortly after completion of the work presented in this thesis.
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225, 2839-2861 (2016). [106]

• H. Busche, P. Huillery, S. W. Ball, T. Ilieva, M. P. A. Jones and C. S. Adams,

Contactless non-linear optics mediated by long-range Rydberg interactions, Nat.

Phys. 13 655-658 (2017). [63]

Data presented in this chapter was taken jointly with H. Busche and P. Huillery. The

phase shift model introduce in section 5.4 was developed by T. Ilieva and P. Huillery.

5.1. Concept

Past work has relied on tight spatial confinement of atomic ensembles to produce quan-

tum states of light through dipolar blockade [27, 53, 54, 103, 104, 106]. Effective photon-

photon interactions were visible through the non-linearity thus produced.

In this work, a new approach is adopted, shown conceptually in figure 5.1. In order

to provide additional degrees of freedom, a second, tightly confined atomic ensemble, is

created. Collective Rydberg excitations are created simultaneously in both ensembles,

allowing interactions to occur over the controlled separation between the two media [5,

25, 28, 53, 54].

In this thesis, the configuration is limited to two separate ensembles and interactions

via a single Rydberg state |S〉. However, the experiment aims to serve as proof of

principle for scaling to more complicated systems. In the work presented below, two

channels are created by the near-overlap of two pairs of laser beams (one probe beam, and

one trap beam, for each channel) on an nPBS. While this technique does not efficiently

scale to multiple channels,2 alternative techniques could, such as using a SLM3 or DeMA4

to configure an arbitrary optical trap array [187–190].

2Pairs of channels are combined with 50:50 nPBSes, leading to an optical trap power budget scaling

with the number of channels κ as P ∝ 2κ
2
.

3Spatial light modulator
4Deformable mirror array
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Channel A Channel B

Figure 5.1.: Implementation of spatially separate, strongly interacting channels.

Light is focused from two separate modes onto two independent atomic ensembles

separated by a distance d. Strong dipolar interactions between Rydberg excita-

tions lead to interactions between the channels, and is detected by analysing the

distribution of photons emitted from the two ensembles. Courtesy of H. Busche.

Multiple channel geometry

Introducing a new degree of freedom, d, provides two regimes in which to study inter-

actions between channels, which are presented in figure 5.2. In the case that d < rB,

(figure 5.2 (a)), then the second ensemble is largely (or entirely) blockaded by the pres-

ence of an excitation in the first ensemble. This is functionally equivalent to storage

blockade in a single channel . This regime offers potential for optical gate and transistor

experiments, such as [45, 46, 61].

The alternative is illustrated in figure 5.2 (b), with d > rB. This is a fundamen-

tally different scenario, permitting simultaneous creation of - and interactions between

- collective excitations in both channels.

Sections 3.2.3 and 3.3 established that the phase factors in the wavefunction of the

collective excitation are critical to achieving highly collective emission back into the same

spatial mode during photon retrieval. Within a single channel, induced phase shifts

result in a suppression of the probability of retrieval [53, 54, 103]. The introduction of
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d < rB

d > rB

a

b

vdW

rB

rB

rB

Figure 5.2.: Multiple channel geometry. Dipole blockade effects give rise to a characteristic

length scale rB . The choice of the inter-channel separation d in relation to rB

provides a fundamental change in the nature of expected interactions. a: Only one

excitation may exist at any given time. b: Excitations may simultaneously exist

in both channels.

a second collective excitation at a controlled distance d, at which dipole blockade does

not prevent excitation but that the interaction strength is non-trivial, acts to induce an

additional phase shift, which may likewise be expected to suppress the probability of

photon retrieval.

5.2. Experimental implementation

In order to study interactions between photons in spatially separate modes, a second

spatial mode (or ‘channel’) is created by duplicating the first. The optical configuration

necessary to achieve this is discussed in section 4.1.4.

A second microscopic ensemble is confined in a second optical trap with a controlled

inter-media separation. The second ensemble is illuminated independently (although

photons for both channels originate from the same laser, and thus have the same relative
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phase). Photons emitted from the second spatial channel are spatially resolved after the

vacuum chamber, and detected in a second HBT interferometer, observed by a second

pair of SPCMs. This configuration is shown schematically in figures 4.8 and 4.12.

At the smallest separation between the two ensembles, the distance d ≥ 10µm is only

slightly greater than the radial extent of each atomic cloud σax ≈ 2µm. It is therefore

necessary to ensure that the atomic clouds are prepared in such a way as to minimise

the degree of cross-talk.

5.2.1. Cross-talk

Cross-talk is the degree to which elements of each channel that should not interact do

so. There are two principle elements which may exhibit cross-talk:

• Detection of photons originating from channel x by the SPCMs of channel y (de-

tection cross-talk),

• Absorption of the probe of channel x in the atomic ensemble of channel y (absorp-

tion cross-talk).

Detection cross-talk

Detection cross-talk is, in principle, easy to observe. In turn, the fibre which provides

each channel’s probe beam is blocked, while the other is pulsed, and the number of

photons detected on each of the four SPCMs is observed. An extinction ratio is then

given in decibels as

Extinctionx = 10 log10

(
Iy − Ib
Ix − Ib

)
, (5.1)

where Ix is the rate recorded by the SPCMs of channel x and Ib is the background rate.

In practice, detection cross-talk occurs below a level at which it can be measured.

The single-mode fibre coupling to the SPCMs provides sufficient filtering that the extinc-

tion ratio achieved between the two channels vastly exceeds other sources of cross-talk.

Typical values are Ex,y � 70dB.
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Figure 5.3.: Absorption crosstalk between channels A and B. Blue circles show the

absorption of the probe beam for channel x when an atomic cloud is present in

both channels x and y. Red triangles show the absorption of the probe beam for

channel x when an atomic cloud is only present in channel y (absorption-cross-

talk). ODs are printed in the figure from fitting to a 6 × 2πMHz wide Lorentzian

(solid lines). A small degree of absorption cross-talk is visible at d = 10µm, which

is almost entirely suppressed at d ≥ 11µm.

Absorption cross-talk

Absorption cross talk is measured per channel by observing the effect on the transmission

of the probe beam of one channel by removing the atomic cloud of that channel. This

is accomplished by the use of a 780 nm laser line filter5 to reflect the optical trapping

beam for that channel while transmitting the probe beam. The atomic cloud for the

other channel remains in place.

5Semrock MaxLine 780
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Initial measurements exhibited a high degree of absorptive cross talk. To minimise

the cross talk, an evaporation stage is added to the experimental sequence. Evaporation

is conducted by holding the optical trap at a fixed power level for 400ms before data

is taken during sub-µs shots. The goal of this stage is to reduce the spatial extent of

the atomic cloud to minimise absorption cross-talk, with any associated reduction in

temperature a strictly secondary benefit. The evaporation stage was added for all data

shown in figures 5.3, 5.6, and 5.7.

Figure 5.3 shows measurements of cross-talk for two atomic cloud separations, d =

10µm and d = 11µm, after 400ms of evaporation. Each plot shows the transmission

of the probe beam for that channel where the atomic cloud for that channel is present

(blue circles) or absent (red triangles); while the atomic cloud for the other channel is

present at all times. Each trace is fitted to a Lorentzian distribution with a linewidth of

6MHz to calculate an associated optical depth, which are printed in the figure.

Both channels exhibit a considerable increase in optical depth at the greater sepa-

ration, when the atomic cloud is present. This reflects the adoption of the use of an

additional degree of freedom to tune the performance of the optical trap after data

was taken at a distance of d = 10µm, and is not directly a consequence of the spatial

separation.

Both channels exhibit a measurable reduction in cross-talk optical depth by increas-

ing the separation from d = 10µm to d = 11µm, although in all four cases, the cross

talk is extremely low at the smallest separation, and diminishes substantially at greater

separations. As photon storage/retrieval efficiency is strongly dependent upon the op-

tical depth of the atomic cloud, this provides confirmation that the two channels are

satisfactorily spatially independent.

5.2.2. Dual channel photon storage

The protocol for attempting photon storage and retrieval in multiple channels is the

same as for a single channel (section 4.4.3). To simplify timing issues, the two channels

are illuminated by probe light originating from the same laser, switched by the same
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Figure 5.4.: Experimental sequence for observing interactions between spatially sep-

arated channels. For the data shown in figures 5.6 and 5.7, tst = 170ns. For

the data shown in figure 5.8, the storage time (and trap-off time) were extended

as necessary.

AOM,6 split into two modes at the PBS in the ‘interferometer’ (section 4.1.4). Each cloud

is illuminated by a weak coherent pulse of resonant 780 nm light with a mean photon

number of nin = 2.2± 0.2 and a duration of 350 ns.

In order to maintain an equal coupling Rabi frequency across the various n and d values

used, Ωc is measured and adjusted for each shot by Autler Townes splitting. Insufficient

power is available to achieve Autler Townes splitting at n = 80, and so adjustment is

conducted at n = 30. The coupling laser beam is aligned before each experimental

execution to ensure that Ωc is equal at both channels. Coupling beam power is adjusted

to keep Ωc consistent across varying n values.

6The laser system, shown in section 4.4, can control two probe beams independently, although for the

experiment shown in this section, independence is unnecessary and only adds degree of freedom which

must be compensated for.
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Figure 5.5.: Simultaneous photon storage in two channels at d = 10µm, n = 80. No

interactions are visible in these intensity plots, as the probability of simultaneous

storage is extremely low. Summed photon counts from channels A (red) and B

(purple) from simultaneous storage. A reference pulse in which neither channel

contained an atomic ensemble is shown in grey. Inset: Zoom on retrieval window.

The background level in the absence of retrieved photons is visible at levels below

0.002.

As this experiment does not rely on the use of microwave driving, very narrow storage

windows can be used to maximise the probability of retrieval. For the data shown in

figures 5.6 and 5.7, a storage window of tst = 170ns was used, with the duty cycle of

the optical trap adjusted to minimise the duration for which the atoms are not trapped.

The pulse sequence used is shown in figure 5.4. An example of simultaneous storage is

shown in figure 5.5.
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5.3. Spatial photon correlations

Due to the low probability of storing and subsequently retrieving a photon in either cloud

(≈ 2%), the probability of simultaneous storage and retrieval is negligible in comparison.

Consequently, interaction effects cannot be resolved from studying the count rate of

each channel, as in figure 5.5. Interaction effects instead require analysis of correlations

between photon arrivals at the detectors.

In the absence of interactions between the channels, there should be no correlation

in photon arrivals, such that the probability of detecting a photon from both channels

simultaneously should be given by the product of the probability of detection for each

individual channel:

PNI(A ∩B) = P(A)× P(B), (5.2)

where P(x) is the probability of detecting a photon in channel x.

In this case, interactions are expected to suppress the probability of retrieving photons

simultaneously from both channels as a result of interactional dephasing, such that

PI(A ∩B) < P(A)× P(B). (5.3)

In order to quantify the degree to which spatial correlations are suppressed (if at all),

a variant of the second order correlation function g(2) is used. At its most general, this

is defined as

g
(2)
AB(τ) = 〈NA(tA)NB(tB)〉

〈NA(tA)〉 〈NB(tB)〉 , (5.4)

where NA(tA) and NB(tB) are the numbers of photons detected at times tA tB respec-

tively, with τ = tA − tB.
In the work presented here, subsequent shots are effectively uncorrelated,7 and the

entire retrieval window (shown in figures 5.4 and 5.5) is treated as a single time bin.

Consequently, the time dependence τ can be neglected:

g
(2)
AB = 〈NANB〉

〈NA〉 〈NB〉
. (5.5)

90



5. Contactless non-linear quantum optics

This yields a metric which has spatial, rather than temporal, dependence, with NANB

the number of photons detected from channels A and B respectively.

The values of g(2)
AB are analogous to te single channel function g(2)

A in that a value of

1 indicates no correlations. g
(2)
AB < 1 denotes that photon arrivals are anti-correlated

as implied by equation 5.3. Unlike the single channel function g
(2)
A , g(2)

AB provides no

information about whether or not the light is classical in nature.

5.4. Phase shift model

The phase shift model referred to in this chapter was developed by T. Ilieva and P.

Huillery based on [65]. The full model lies outside of the scope of this thesis, and a

complete description may be found in [63, 105]. However, a brief summary is included

here for reference. This summary is based on the work of H. Busche [105].

The model implements the interaction-induced dephasing discussed in section 3.2.4,

taking into account the parameters and geometry of the experiment, as best they are

known. This includes the spatial distribution of the atom cloud; and the spatial mode

and Poissonian number distribution of the incoming photons. The spatial mode extends

the work of [65], which modelled the signal as a plane wave, due to the much larger

beam used in those experiments [44].

5.4.1. Modelling a single channel

The model approaches the problem of calculating g(2)
A by measuring the overlap of the

initial collective ground state of the ensemble |G〉A with the final collective ground state

|G′(tst)〉A after a single shot.

7Figure 4.20 suggests otherwise, so for the purposes of this analysis, a subsection of shots are selected for

analysis such that the photon storage performance is nearly independent of shot number. Additional

experimental repetitions were conducted to provide sufficient data within this performance envelope.
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Storing and retrieving photons

The collective state of NA atoms is given by

|G〉A = |g1〉A ⊗ · · · ⊗ |gN 〉A . (5.6)

Collective excitations are realised with the creation operator

S†A = 1√∑
j εA(r2

j

∑
j

εA(rj)eiφA(rj) |sj〉A 〈gj |A , (5.7)

where |sj〉 denotes an atom in a Rydberg, rj denotes the position of atom j, and φA(rj)

the combined phase imprinted by probe and control fields. Storage of µ photons produces

the multiply excited collective state [122, 123, 191, 192]∣∣∣R(µ)
A

〉
= 1√

µ!

(
S†A
)µ
|G〉A , (5.8)

which approximately preserves normalisation of the collective state provided that µ �
NA. Dipole blockade is handled implicitly by choosing a low mean incoming photon

number, for simplicity and compatibility with experimental parameters.

Interactions between two atoms j and k that contribute to
∣∣∣R(µ)

A

〉
, and that are de-

scribed by VJK(rj , rk) have a time evolution given by

UA(tst) =
∑
j,k>j

e−iVjktst/~ |sj〉A 〈sj |A ⊗ |sk〉A 〈sk|A . (5.9)

It is assumed that all Rydberg atoms are in the same state nS such that all interactions

are of the vdW form

Vjk = V (rj, rk) = C6

|rj − rk|6
. (5.10)

The time evolution of the collective state is then given by∣∣∣R(µ)
A (tst)

〉
= UA(tst)

∣∣∣R(µ)
A

〉
, (5.11)

in which each pair of atoms contributing to the collective state have evolved some addi-

tional phase, leading to a reduction in the probability of photon retrieval.

Photon retrieval is the reverse of the photon storage process, applying the annihilation

operator µ times ∣∣G′(tst)〉A = (SA)µ
∣∣∣R(µ)

A (tst)
〉
. (5.12)
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The phase relation between individual atoms in |G〉A has been modified by the interac-

tions between µ collective excitations, such that |G′(tst)〉A 6= |G〉A

Calculating photon statistics

Since the input field is a coherent state, and not a Fock state, the probabilistic photon

number is handled by a superposition of collective states of various photon numbers [134].

As the experiment is limited to the detection of no more than two photons simultaneously

(due to the use of a two-detector HBT configuration), the photon number is truncated

at µ = 2:

|R〉A =
∑
µ≤2

cµ
∣∣∣R(µ)

〉
A
. (5.13)

This truncation is justified by the low mean photon number used in the experiment

and the low storage/retrieval efficiency: a typical experiment sets nin ≈ 2 and observes

nret ≈ 0.02.

The overlap of the initial and time evolved collective state containing exactly µ photons

is given by

D
(µ)
A = A 〈G|G′(tst)〉A

A 〈G| (SA)µ(S†A)µ |G〉A
, (5.14)

which determines the probability of retrieving µ photons in their original mode. In the

case that Vjk = 0, D(µ)
A = 1. Since events in which only one photon is stored cannot

exhibit interaction-induced dephasing, and µ > 2 states are ignored, only the case D(2)
A

is of interest, with the probability of retrieving exactly µ = 2 photons given by
∣∣∣D(2)

A

∣∣∣2.
The correlation function can then be calculated as

g
(2)
A =

2
∣∣∣D(2)

A

∣∣∣2 |c2|2(
|c1|2 + 2

∣∣∣D(2)
A

∣∣∣2 |c2|2
)2 (5.15)

5.4.2. Extending the model to two channels

The two-channel case extends the single-channel case by modelling two atomic ensembles

illuminated by two similar incoming photon pulses, µ and ν, which act upon the collective

ground state |G〉AB = |G〉A ⊗ |G〉B with annihilation operators SA, SB, to create the
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time evolved state

∣∣G′(tst)〉AB = (SA)µ(SB)ν
∣∣∣R(µ,ν)(tst)

〉
AB

. (5.16)

The time evolved overlap is similarly calculated for values of µ, ν within the desired

photon distribution

D
(µ,ν)
AB = AB 〈G|G′(tst)〉AB

AB 〈G| (SA)µ(SB)ν(S†A)µ(S†B)ν |G〉AB
. (5.17)

Again, due to the low incoming mean photon number and storage/retrieval efficiency,

the distribution is truncated, to give

|R〉AB =
∑
µ,ν≤1

cµ,ν
∣∣∣R(µ,ν)

〉
AB

(5.18)

Spatial correlations can then be calculated based on the probability
∣∣∣D(1,1)

AB

∣∣∣2 to simul-

taneously retrieve exactly one photon from each channel in their original modes, giving

g
(2)
AB =

∣∣∣D(1,1)
AB

∣∣∣2 |c1,1|2(
|c0,1|2 +

∣∣∣D(1,1)
AB

∣∣∣2 |c1,1|2
)(
|c1,0|2 +

∣∣∣D(1,1)
AB

∣∣∣2 |c1,1|2
) . (5.19)

5.4.3. Simulation

The model is executed in a Monte-Carlo simulation. Each shot of the simulation performs

the following steps:

• Generate two ensembles of NA,NB atoms, based on a Gaussian density pro-

file from experimentally determined parameters. This gives the set of atoms

[rA,1 · · · rNA , rB,1 · · · rNB ].

• Simulate photon storage and retrieval to calculate D(2)
A , D

(2)
B , D

(1,1)
AB given the atom

position set, defined interaction potential Vjk, specific mean photon numbers µ and

ν.

• Calculate single- and double-channel correlations g(2)
A , g

(2)
B , g

(2)
AB for the simulation

shot.

• Repeat a sufficient number of times to calculate averaged values of g(2)
A , g

(2)
B , g

(2)
AB.

94



5. Contactless non-linear quantum optics

5.5. Observation of spatial photon correlations

Collective Rydberg excitations are expected to accumulate phase gradients as a result of

interactions with other nearby excitations, leading to a suppression of the rate at which

photons can be retrieved where multiple collective excitations have been created.

In the work presented here, collective Rydberg excitations are created in two atomic

clouds, with a spacing from centre to centre of between 10 − 16µm. As a result of

interactions with nearby excitations, each excitation is expected to accumulate a phase

gradient scaling as Vjktst. All excitations are in the same state |S〉, such that dipolar

interactions are of the vdW form, such that Vjk = C6/r6
jk ∝ n11.

In this section, spatial photon correlations will be demonstrated as a consequence of

the three controllable parameters: n, rjk, and tst.

5.5.1. Scaling with principal quantum number

To measure the effect of changing n on spatial photon correlations, the principal quantum

number is changed while keeping the distance d ≈ 10µm and tst ≈ 170 ns fixed. For each

change in n, the power of the coupling laser beam is adjusted to keep Ωc ≈ 7 × 2πMHz

approximately constant.

The results are shown in figure 5.6. For values of the principal quantum number

n > 65, spatial correlations are observed with increasing strength, up a final value of

g
(2)
AB = 0.40± 0.03 at n = 80. The inset figure shows the single channel correlations g(2)

A

as a function of n, demonstrating that each channel exhibits quantum behaviour across

the entire parameter range shown. Uncertainties are calculated by splitting the data into

subsets that are evaluated separately, and then quoting the mean and standard deviation.

The figure shows good agreement between the experimental results and the outcome of

the phase shift model, which suggests that the observed spatial anti-correlation is a

consequence of vdW interactions.

At n = 50, both atomic ensembles are displaying clear suppression of multiple photon

retrieval (g(2)
A (n = 50) = 0.6± 0.1, g(2)

B (n = 50) = 0.7± 0.1), while there is no evidence

of interaction between the two channels (g(2)
AB(n = 50) = 1.0 ± 0.1). The single-channel
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Figure 5.6.: Cross-site correlations as a function of principal quantum number n.

Storage time and cloud separation are kept constant. The dashed line gives the ex-

pected results based on the phase shift model. Due to the rapid scaling ÛAB ∝ n11,

g
(2)
AB , 1 is only observed for n > 65. Inset: Single site g(2)

A(B) values for each principal

quantum number. As expected, these values sharply decline with increasing n, due

to larger dipole blockade radii.

suppression is consistently stronger than the two-channel suppression across the range of

n tested. This behaviour indicates that two length scales are important to understand the

process arising from the geometry of the two ensembles. The single-channel suppression

arises from dipole blockade, with rB setting the minimum distance between collective

excitations [34, 39]. The two-channel suppression arises from the channel separation

d = 10µm, which represents the minimum possible spacing between collective excitations

from which correlations are considered for g(2)
AB. The shorter spacing permitted by rB

allows stronger interactions, leading to more rapid dephasing and a stronger suppression.

The atomic cloud in each channel has dimensions of approximately σrad ≈ 1.5µm,

σax > 40µm (section 4.1.4). The dipole blockade radii for the limiting states used here

are rB (50S1/2) ≈ 4µm and rB (80S1/2) ≈ 9µm. As rB � σrad for all states used here, if

multiple excitations are created, they will occur in a linear chain, up to total saturation

of the atomic cloud. However, with a mean incident photon number of nin = 2.2± 0.2,
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total saturation is relatively unlikely even with the highest Rydberg states used (80S1/2).

At n = 80, the dipole blockade radius rB ≈ 9µm < d such that a small fraction of

one channel’s volume may be blockaded by a collective excitation in the other. However,

there is evidence to support that blockade is less important than phase shifts induced by

interactions, as suppression of g(2)
AB is already evident for n > 65 and rB (65S1/2 ≈ 6µm,

which is suggestive, but not conclusive. The question of whether interactions or blockade

dominate is re-visited where the dependence of g(2)
AB on the storage time tst is examined

(section 5.5.3) [63].

5.5.2. Scaling with channel spacing

The strength of the interaction Vjk is also dependent on the channel spacing, d, with the

vdW strength scaling as C6/r6
jk [5, 25]. This degree of freedom represents a fundamental

improvement in the apparatus discussed in this thesis over its previous generation, and

other similar projects, as experiments using photons propagating in the same spatial

mode cannot vary the spacing in as controlled a manner.

To measure the effect of changing d on spatial photon correlations, storage is conducted

at a fixed, high principal quantum number, n = 80, to maximise the dynamic range of the

spatial correlations. The storage time remains fixed at tst = 170ns to maximise retrieval

probability in the absence of interactions. The inter-channel separation is adjusted over

the range d = 10− 16µm. At each separation, the coupling laser beam is realigned and

power adjusted to equalise Ωc ≈ 9×2πMHz for both channels. The minimum separation

was chosen based both on the blockade radius at this value of n (rB (80S1/2) ≈ 9µm),

and the absorption cross-talk which increased substantially below d = 10µm (section

5.2.1).

The results are shown in figure 5.7. Suppression of spatial correlations are observed for

d < 13µm, with the greatest suppression at the smallest distance as expected due to the

1/rjk scaling of the interaction strength. Figure 5.7 also includes the output of the phase

shift model (dashed line), showing good agreement with experimental results. The figure

inset shows single-channel g(2)
A(B), which are approximately constant and independent of
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Figure 5.7.: Cross-site correlations as a function of site separation d. Storage time and

principal quantum number are kept constant. The dashed line gives the expected

results based on the phase shift model. Rapid scaling of ÛAB ∝ 1/r6
jk results in

interactions only being observed at d < 13µm. Inset: Single site g(2)
A(B) values

for each distance. As expected, these are approximately constant, as they are

independent of d.

d, as expected. There is some minor fluctuations, most likely arising from variation in

day-to-day performance of the experimental apparatus.

Figure 5.7 clearly shows that the spatial correlations g(2)
AB can be adjusted indepen-

dently of the single-channel correlations g(2)
A(B. This independence represents a genuinely

new degree of freedom to engineer the desired form of effective photon-photon interac-

tions [193].

The degree to which the self- and cross-Kerr non-linearities can be adjusted indepen-

dently is limited in this implementation by creating both collective Rydberg excitations

in the same Rydberg state |S〉 = 80S1/2. Single-channel interactions therefore scale at

the same rate as interactions between the two channels. The single- and inter-channel

interactions could be further decoupled by performing the initial photon storage in sepa-

rate, weakly interacting Rydberg states, such that inter-channel interactions are initially

negligible, and then switched on by the addition of a new field. Interactions could be
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switched either via resonant microwave driving to a state of opposite polarity |P 〉, as
in the previous two chapters [53, 54], or via a Stark-tuned Förster resonance [47, 194].

The former technique, resonant microwave driving, is central to an earlier proposal to

construct an optical-CZ logic gate [61]. Such techniques are not currently possible on

the apparatus discussed here.8

The suppression in g
(2)
AB is visible at a distance substantially greater than either the

probe photon wavelength or the diffraction limited spot size that localises the collective

excitation. g(2)
AB < 1 for d < 13µm ≈ 17λp. These length scales are sufficient to consider

a possible interface with other systems, such as fibre based photonic systems [195–197]

or multichannel waveguides [198, 199]

5.5.3. Scaling with storage time

As noted in section 5.5.1, the evidence of figures 5.6 and 5.7 agree with the phase shift

model and suggests that interactional dephasing is responsible. However, it does not

represent conclusive evidence that accumulated phase, rather than dipolar blockade, is

responsible. This question can be conclusively answered by observing the effect, if any,

of storage time tst upon the spatial correlations between the two channels. If dipole

blockade is solely responsible, then no time dependence should be visible: correlations

should be evident regardless of storage time. If there is a clear time dependence, then

dipole blockade cannot be responsible, and a progressive effect - accumulated phase shift

- must be involved.

To measure the effect of changing tst upon spatial correlations, the value of the princi-

8The coupling laser (and microwave excitation discussed in section 4.5 and chapters 6 and 7) currently

addresses both channels simultaneously. Placing a single channel in a separate Rydberg state requires

either simultaneously coupling both channels to separate nS, n′S Rydberg states (using a second and

individually addressed coupling laser); or time-division multiplexing, using the individual addressing

capability of the probe lasers to selectively excite one channel to n′P or n′S 9 via nS, and then the

second channel to nS.
9Via a two-photon microwave transition. While this is possible with available equipment (see appendix

C), it is not a practical approach with a single microwave signal generator.
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pal quantum number n and channel separation d were held constant. Two sets of n and

d were tested. The storage time was varied by adjusting the delay before the control

beam power was restored for photon retrieval. The period for which the optical trap

was switched off was lengthened, to a longer duration than that used for the microwave

experiments in chapters 6 and 7. Due to the dependence of storage/retrieval efficiency

upon storage time (figure 7.4), and the accelerated trap loss arising from longer time-

of-flight of the atomic ensemble, these changes required both substantially more shots

in total (up to 8× greater), and fewer shots per MOT load (up to 2.5× fewer) to remain

within a time-independent performance envelope (section 5.3). In order to generate

sufficiently rich data sets within a period of time over which the entire experimental

apparatus remains reliably stable, the evaporation stage discussed in section 5.2.1 was

omitted. Cross-talk was evaluated in terms of the ratio of storage achieved in channels

x and y arising from a probe beam present only in channel x, which in all cases was

indistinguishable from background noise.

The results are shown in figure 5.8. The dataset at n = 70, d = 11.5µm (blue circles)

exhibits a clear change, from g
(2)
AB(280ns) = 1.1±0.2 to g(2)

AB(790 ns) = 0.5±0.1. Dashed

lines show the results of the phase shift model. The model shows a clear agreement

with experimental results and a time-dependent trend is clear, with greater suppression

apparent at longer storage time. Uncertainties are greater in the data presented in this

figure owing to the strong dependence of photon storage/retrieval efficiency upon storage

time and consequently, reduced SNR in the data relative to figures 5.6 and 5.7.

The dataset at n = 80, d = 11µm (red triangles) shows a weaker time dependence, as

it reaches a shallow floor extremely rapidly, in agreement with the model. A trend is still

present: g(2)
AB(170ns) = 0.35± 0.07 > g

(2)
AB(720ns) = 0.16± 0.07. Due to limitations on

the minimum storage time that can be probed,10 it is not practical to observe the time

dependence of interactions closer to the dipole blockade radius (rB (80S1/2) ≈ 9µm).

This represents strong evidence that interaction-induced phase shifts are an important

10The switching speed and transient behaviour of the polarisation-switching EOM used to control Ωc
places a practical limitation at tst ≥ 160ns, see section 4.4.1.
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Figure 5.8.: Cross-site correlations as a function of storage time tst. For each data

series, principal quantum number and distance are held constant at (blue circles)

n = 70, d = 11.5µm; (red triangles) n = 80, d = 11.0µm. The dashed lines give the

results of the phase shift model. The phase shift is expected to scale linearly with

storage time, ÛAB ∝ tst, leading to a fairly low gradient in g(2)
AB . The evaporative

stage discussed in section 5.2.1 was not included for these measurements.

contribution to behaviour beyond the dipole blockade radius, and that the effects shown

in this chapter arise from those phase shifts, and not purely from blockade.
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Rydberg-Rydberg transitions

This chapter will examine the use of photon storage and retrieval techniques in a cold

atomic ensemble as a means to perform sensitive measurements of weak microwave fields.

The extremely high sensitivity of Rydberg states to microwave fields [25] in combination

with the fast repetition rates achieved [105, 106] present an intriguing system for such

electrometry.

Axiomatically, the study of physics (or any other quantitative field) necessitates ob-

serving a phenomenon and quantifying - measuring - the result. The ability to, and

degree to which we may, gain and improve upon our understanding of the world around

us relies on making better measurements of phenomena.

The quality of a measurement is typically characterised by its accuracy and its preci-

sion. Accuracy describes the degree of certainty in a measurement relative to an absolute

standard, while the precision describes how tightly clustered are a series of measurements

[200]. Ideal measurements should have both high accuracy and high precision.

Since complex systems can rarely be perfectly separated out into unique phenomena,

a measurement will typically contain both signal - the phenomenon in which we are

interested; and noise - other phenomena in which we are not presently interested. This

is characterised by the SNR1. Noise can contribute to reductions in both the accuracy,

and the precision, with which the interesting phenomenon is measured. A key aspect of

designing better measurements, and measurement systems, is reducing and filtering out

1Signal-to-noise ratio
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the noise from a measurement.

The simplest technique to suppress noise in most measurements is to measure over a

longer period of time, allowing randomly distributed noise to average away relative to

the non-random signal. The rate at which SNR improves as a function of observation

time is used to classify different classes of noise [201]. Time is a finite resource, and

measurement systems must be designed to achieve the best measurement - the greatest

SNR - within the available measurement time.

This is described by the sensitivity of a measurement system: the weakest signal level

that offers a specific SNR in a specific observation time. The NEP2 is usually defined as

the signal level that results in an Signal-to-noise ratio of 1 in a 1Hz output bandwidth,

equivalent to 0.5 s observation time.

The question of sensitivity was already implicitly addressed in the discussion of the

single-photon sensitive optical detection system implemented in this experiment (sec-

tion 4.2), and a numerical value may be calculated based on the above definition at

25 aW
√

Hz−1 at a wavelength of 780 nm. Research on the human eye under ideal con-

ditions gives a peak sensitivity at a wavelength of around 510 nm of 1 − 10 fW
√

Hz−1

[202].

Measurement of weak microwave fields

Measurements of weak microwave fields is attractive for many fields [203], such as radio

astronomy [204], advanced communications3 [81, 82] and both civilian and military radar

technology [205–207].

Traceable techniques for measuring and calibrating microwave fields and devices have

changed little in over a entury, still being based on the resistively loaded antennae used

by Hertz in the 19th century [208–210]. Measurement techniques for other standards

have advanced considerably through the use of quantum objects (such as atoms) which

2Noise-equivalent power
3The currently evolving ‘5G’ telecommunications standard is expected to rely on frequencies > 6GHz

once finalised.
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exhibit superb stability and reproducibility [211–214].

There have been multiple demonstrations of exquisitely sensitive microwave measure-

ments based on quantum systems in recent years, using cavity QED4 [215–217], waveg-

uides [218] and thermal Rydberg atoms [89].

Here, we demonstrate the use of photons stored as collective Rydberg excitations in

ultra-cold atoms to translate the presence of a weak microwave field into an optical

response, that can be measured with comparable results to published values [89, 90,

219].

Microwave driven photon storage

In previous work, D. Maxwell investigated the effect of driving transitions between Ry-

dberg states of opposite parity in collective Rydberg excitations [103]. Since the second

Rydberg state was not resonant with the photon retrieval process, Rabi oscillations were

observed in the rate at which photons were retrieved as a function of rotation angle. In

comparison to Rabi oscillations between the ground and first excited state of an atom,

such as in figure 3.3, the oscillations between two Rydberg states exhibited a strong

suppression of storage/retrieval efficiency at non-integer-π rotation angles [53], with a

dependence on the mean number of collective excitations simultaneously created. Suc-

cessive 2π rotations were shown to exhibit a reduction in the second order correlation

function g(2) [53, 54].

The suppression of efficiency at non-integer-π rotation angles results in a steep gradi-

ent in photon retrieval as a function of applied microwave fields (shown in figure 6.1).

The steep gradient indicates an extremely strong sensitivity to weak driving fields that

is greater than the typical form of Rabi oscillations. Consequently, photon storage us-

ing ultra-cold Rydberg atoms has been proposed and implemented as a technique for

microwave electrometry. Provisional results suggest that, even factoring in the time re-

quired to prepare and cool atoms for photon storage and absent prolonged optimisation,

sensitivities comparable to published results are practical [89].

4Quantum electrodynamics
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Figure 6.1.: Controlled interactions between Rydberg polaritons. Retrieved signal nor-

malised to the case of zero microwaves plotted as a function of microwave rotation

angle. Figure and caption courtesy of D. Maxwell [53].

6.1. Photon storage spectroscopy

In order to probe Rydberg-Rydberg transitions, the resonant frequencies must first be

identified. A given transition frequency can be predicted by calculating the difference

in energy levels via quantum defects [107–109]. Calculations are simplified by the use of

a tool recently written in Durham by N. Šibalić: ARC5 [181]. Spectroscopic techniques

can then be used to perform a local search on the experimental apparatus to find the

correct value, accounting for any inaccuracy in published values, instrument calibration,

and uncorrected stray fields.

Here, we use photon storage spectroscopy to identify the resonant frequency. In this

technique, a short microwave pulse is applied during a longer storage window, tst =

550 ns, to drive a fraction of the population from |S〉 into |P 〉. When the coupling laser

is switched back on to retrieve photons from the ensemble, a reduction in the intensity of

the retrieval pulse is to be expected. This sequence is shown in figure 6.3. In successive

shots, the microwave frequency ωµ is scanned across a range around the predicted value

ωpred.

5Alkali Rydberg calculator
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Figure 6.2.: 87Rb Rydberg manifold around 80S1/2. Microwaves resonant with transition

to 79P1/2 (shown in black). Other nearby states are shown with transition detun-

ings (in grey). S and D states are shown with the two-photon detuning. Levels

calculated with ARC [181].

The states 80S1/2 and 79P1/2 are chosen for use for |S〉 and |P 〉 respectively. The

transition has a predicted frequency of ωpred = 7.665 ×2πGHz. The local state manifold

is shown in figure 6.2. Due to the density of states, a large number are conceivably

accessible via off-resonant one- or two-photon transitions simultaneously with the desired

transition. The relevant one- and two-photon detunings are shown in the figure.

This and the following chapter (7) make use of a single optical trap and atomic en-

semble, unlike chapter 5. The second channel is physically blocked and the detector pair

observing the blocked channel are disabled.

Figure 6.4 shows two photon storage spectroscopy traces taken with different mi-

crowave power and pulse widths. The two traces were taken approximately two weeks

apart. The difference in centre frequency (∆red − ∆blue = (1.6 ± 0.1) × 2πMHz) is
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Figure 6.3.: Pulse sequence for photon storage spectroscopy. A similar sequence to

figure 4.17. The storage time is extended to tst = 550ns, and a microwave pulse is

applied during the storage window.
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Figure 6.4.: Photon storage spectroscopy of the the 80S1/2 → 79P1/2 transition. Mi-

crowave detuning given by ∆µ = ωµ − ωpred. ωpred = 7.665 × 2πGHz. Solid lines

are fits to equation 6.1. Blue circles: tµ = 250 ns. Red triangles: tµ = 450 ns,

Ωred = 0.1 Ωblue.
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believed to be due to drift in weak stray electric or magnetic fields.

The carrier wave of the microwave pulse generator is well approximated by a square

wave (see section 4.5). Consequently, the line-width of the microwave excitation can be

assumed to be a sinc function, as the Fourier broadening far exceeds the specified CW6

line-width γµ of the microwave signal generator. The solid lines in figure 6.4 are fits to

the function

p(ωµ) = 1− a0 sinc2(a1 × (ωµ − ω34)), (6.1)

where a0, a1, ω34 are fitting parameters and a1 ≤ tµ gives the effective width of the

microwave pulse. This bound on the fitting parameter is motivated by a lack of certainty

in how precisely the microwave pulse is sandwiched inside the storage window, rather

than overlapping with the storage, or retrieval, pulses. Available hardware tools limit

the precision to approximately ±100 ns (section 4.5).

The data in figure 6.4 shown in red triangles was taken with a weak microwave pulse

and a set duration of tµ = 450ns. The fit gives a effective pulse width of a1 = 298±3ns.

The data shown in blue circles was taken with a greater Rabi frequency (20dB higher,

or 100× increase in power and 10× increase in Rabi frequency) and a shorter set pulse

duration of tµ = 250ns. In combination, the data shown in blue was taken with a

rotation angle 5.6× greater than the data shown in red.

Short, high intensity, microwave pulses are well suited to making initial searches for

a predicted transition. These produce broad, deep spectroscopic features that retain

visibility and contrast in wide, low resolution frequency scans. The central resonant

frequency ω34 can then be better resolved with a longer pulse and a lower modulation

depth to minimise Fourier and power broadening of the transition line.

6.2. Microwave sensitivity

In the work of Sedlacek [89], the Rabi frequency of an applied microwave field was mea-

sured by observing the change in transmission of an EIT feature in a thermal cell. Rabi

6Continuous-wave
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frequency calibration is performed at high microwave power by Autler-Townes splitting

of the transmission feature, decreasing on-resonant transmission. Very weak microwave

fields were observed by an increase in on-resonant transmission due to broadening the

resonance to interact with additional velocity classes of atoms.

In a cold atomic system, the Doppler broadening is too small to observe microwave

enhanced transmission in the same way, and the Autler-Townes splitting technique used

to calibrate both the coupling Rabi frequency Ωc and the performance of the three

antennae (section 4.5.2) is not suited to detecting extremely weak fields.

In order to measure a sensitivity, a technique similar to the spectroscopic approach

discussed in 6.1 is used to measure a reduction in photon storage/retrieval efficiency

as a function of microwave power where Θ � π. By comparing this reduction to a

prior calibration, a Rabi frequency Ωµ may be calculated. Using the known dipole

matrix element and Clebsch-Gordan coefficient of the transition probed, an electric field

strength is calculated, and based on the time taken to conduct the measurement, a

sensitivity calculated.

The steep gradient in signal level for Θ � π shown in figure 6.1 is promising for

this approach, as it suggests that a reduction in retrieved signal may be resolved at

a relatively weak microwave field due to the suppression of efficiency relative to the

cos2(Θ/2) expectation from section 3.1.5.

6.2.1. Rabi oscillations

Rabi oscillations between states |S〉 and |P 〉 can be observed by using the sequence

introduced in section 6.1 (figure 6.3). Photons are first stored in state |S〉. A microwave

pulse is applied within the storage window, and then any photons remaining in state |S〉
are read out, while excitations in the |P 〉 state do not interact with the retrieval process,

resulting in a signal proportional to the population remaining in |S〉
The mixing angle Θ = Ωµt can be modified by varying either the duration of the

microwave pulse, or by varying the Rabi frequency (via the intensity). Varying the

microwave intensity offers substantially greater resolution, as the microwave generator
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offers better than 1µVrms across the range 22.36 mVrms−2236 mVrms (approx 2.2 million

points). However, for technical reasons, an experiment varying the power cannot include

a step in which the power is explicitly set to zero. This requires a zero-Ωµ data point

to be explicitly recorded separately, which may result in subtly different experimental

conditions. Varying the excitation time is limited to a resolution of 5 ns by the clock

cycle of the control system (see section 4.3), with a practical maximum excitation time

of ≈ 500 ns (up to 100 points). Here, the rotation angle is varied by adjusting the Rabi

frequency, with a fixed pulse duration.

Figure 6.5 shows Rabi oscillations between the same states used in figure 6.4 (80S1/2

and 79P1/2), figure 6.2 for three different incoming photon numbers nin where the rota-

tion is varied by changing the microwave intensity with a fixed pulse duration tµ = 450ns.

The data are fitted to a function of the form

Signal = a0 + a1e
−Θ/a2

∣∣∣∣cos
(Θ

2 + φ

)∣∣∣∣2M , (6.2)

with five free fitting parameters: a0 is the minimum retrieval rate or noise floor, a1

is the amplitude of the oscillations, a2 is the decay rate of the oscillations, φ is the

phase shift of the oscillations, andM is a power law function. In the case of ideal Rabi

oscillations, M = 1, while the suppressed efficiency shown in figure 6.1 and [53, 103]

results inM > 1. In the work of Maxwell, the parameterM is interpreted as the mean

number of photons stored as collective Rydberg excitations.

Figure 6.5 shows several features consistent between the three traces. All three exhibit

a phase shift of φ = −0.18π, and the expected first Rabi oscillation at Θ ≈ π is strongly

suppressed relative to peaks at greater multiples of π. These results are consistent

with the previous work by Maxwell [53, 103], which this experiment was intended to

reproduce.

The three plots in figure 6.5 are all normalised to the retrieval rate of the highest

incoming photon number in the absence of a microwave field. As expected from figure

4.21, in the absence of a microwave field a lower incoming photon number results in a

lower retrieved photon number. However, a lower incident photon number also produces

greater visibility in the Rabi oscillations. It is probable that this is due to reducing the
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Figure 6.5.: Rabi oscillations in photon retrieval as a function of rotation angle. The

rotation angle was changed by varying the intensity of a fixed duration microwave

pulse. The three plots are for three different incident mean photon numbers. All

three plots are normalised to the zero-microwave retrieval rate of plot (a). The

solid lines are fits to equation 6.2. Incident mean photon numbers and fitting

parameterM are given in the plots.

probability of creating multiple collective excitations. As established in section 4.4.4,

multiple collective excitations may be stored in the state |S〉 without blockading or

rapidly dephasing each other due to the relatively short range van-der-Waals interactions.

Introducing microwave coupling to the |P 〉 state induces much longer ranged resonant

dipole interactions causing previously weakly or non-interacting collective excitations to

rapidly dephase, and be lost. This is also consistent with the work of Maxwell, which

demonstrated that photon correlations were much more strongly suppressed in the 2nd

Rabi oscillation peak (g2(0) = 0.3) compared to the case of no storage (g2(0) = 0.6)

[103].
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The reduction in incoming photon number nin is also visible in the value of the fit-

ting parameter M, which is consistent with the work of Maxwell [53]. For the highest

incoming photon number, M = 3.4 ± 0.2. This shows substantial suppression in stor-

age/retrieval efficiency at microwave fields producing a superposition state, compared

to the case of conventional Rabi oscillations (M = 1). For the lowest incoming photon

number,M = 1.7± 0.1, corresponding to a relatively minor suppression of efficiency at

superposition states.

While this data does not entirely reproduce earlier results (in particular, the tanh(Θ)

envelope shown in figure 6.1 [53, 97, 103]), it does accurately reproduce the observed

efficiency suppression at non-integer-π rotation angles, which is key to the approach of

using microwave driven photon storage to perform sensitive microwave electrometry.

6.2.2. Photon storage electrometry

The approach taken here is to measure the strength of an applied microwave field by

inferring a rotation angle Θ from an observed reduction in retrieved signal. From figures

6.1 and 6.5, the relationship is more complicated than the simple cos2(Θ/2) function

predicted in section 3.1.5. Therefore, the behaviour at small rotation angles must be

more carefully studied. Data presented in figure 6.5 provides insufficient resolution at

such angles.

The same technique used for the data in figures6.4 and 6.5 is used (shown in figure

6.3). The rotation angle is varied by adjusting the power of a fixed-duration (tµ = 450ns)

microwave pulse. Fixed attenuators are used to position the signal generator’s power

dynamic range (nominally 40dB, in practice ≈ 34dB) such that at maximum power,

a rotation angle Θ ≥ 2π is achieved. A small, logarithmically distributed step size

is used to provide maximum resolution at the smallest rotation angles that the signal

generator can probe, given the previous requirement. Separately, a reference value at

Ωµ = 0,Θ = 0 is observed.

This calibration data is shown in figure 6.6 for the Rydberg-Rydberg transition 80S1/2 →
79P1/2 (ωµ = 7.691 ×2πGHz). This is the same transition used in figure 6.5. The range
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Figure 6.6.: Reduction in photon retrieval under weak microwave conditions. Θ is

varied by scanning the microwave power with a step size of 0.25 dB across the

signal generator’s nominal 40 dB dynamic range. The solid line is a fit to equation

6.3 in the range 0 < Θ ≤ π. The microwave signal generator’s maximum output

power occurs at Θ ≈ 4π. Inset: Plotted on a linear scale for comparison to figure

6.5.

0 < Θ ≤ π is fitted to an exponential of the form

nret(Θ) ∝ exp(−Θ/ζ). (6.3)

Data points for Θ ≥ 4π break the expected Rabi oscillation pattern, as the microwave

generator reached its maximum effective power output at this frequency.

Based on the calibration data presented in figure 6.6, it is possible to calculate the

noise-equivalent rotation angle, Θne, which may be resolved from a zero rotation angle,

Θ = 0. Note that, while the noise equivalent power (NEP) was introduced in the intro-

duction, from here we will consider the noise equivalent voltage, since the Rabi frequency

is proportional to the amplitude, rather than intensity, of the driving EM field.

From the introduction, the noise equivalent signal level is the signal level such that

SNR= 1 in a 1Hz output bandwidth (0.5 s). The noise equivalent rotation angle, there-

fore, is given by:

I(Θne) = I(Θ = 0)− σ, (6.4)
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where σ is the deviation of data points around the fit. From figure 6.6, Θne = 1.3×10−2 π.

The noise equivalent voltage may be calculated by converting the minimum rotation

angle into a minimum Rabi frequency via the microwave pulse duration tµ = 300ns and

factoring in the dipole matrix element of the transition, d:7, 8

Ene = ~Θne
tµd

. (6.5)

This gives a value of Ene = 6± 3µVcm−1, but has not taken account of the observation

time required. Each data point in figure 6.6 is the result of 10 independent atomic

ensembles, with each ensemble recycled 2 × 104 times, for 2 × 105 shots per point. A

single cycle of the experiment requires 128.0ms to prepare the atomic ensemble, and

91.0ms to perform 2 × 104 shots; such that each data point is the result of 2.19 s total

experimental time.

The following section will examine the characteristics of the noise evident in photon

storage retrieval intensity, and how this value can be most appropriately scaled to the

requisite 1Hz bandwidth.

6.2.3. Scaling by observation time

The experimental sequence was tuned to optimise photon retrieval rates in terms of the

number of shots per MOT load. Consequently, the total operating time per microwave

power step was 2.19 s as previously noted, rather than the ideal 0.5 s. In order to scale the

extrapolated field measurements to those expected after the appropriate integration time,

the stability of the storage and retrieval cycle must be established. A perfectly stable

system with Poissonian noise characteristics will produce a SNR that scales as 1/
√
t,

and over short time scales, many physical systems reproduce this behaviour extremely

well [200]. Typically, over longer time scales, other factors dominate the variance of

measurements, such as instrument and temperature drift.

7The radial matrix element of the transition 80S1/2 → 79P1/2 is 6271 ea0, with a spherical coupling of√
2/9, calculated with ARC [181].

8Assuming that the microwave field is linearly polarised, with no circular polarisations arising from

reflections; and that stray electric and magnetic fields do not contribute significant state mixing.
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The precise meaning of ‘short’ or ‘long’ time scales is unique to each experiment

or instrument under consideration. Therefore, the behaviour of photon storage in the

apparatus described here must be characterised to establish whether or not the simple

scaling law can be applied.

The behaviour of measurement variance over time is typically examined by observing

the evolution of the variance of the measure (σ) with the averaging time over which

it is calculated (τ). Consequently, this family of measurements are often described as

‘sigma-tau’ graphs [201]. Most commonly, these techniques are used for observing the

frequency and phase stability of frequency standards.

There are numerous methods of calculating the variance of a measurement, in order

to identify various forms and sources of noise [201]. The majority of these techniques

fall far outside the scope of this thesis. We consider here the overlapping Allan variance

[220], which is commonly used as the first step in evaluating noise characteristics.

The Allan variance can best be understood by analogy to the classic variance of N

samples:

σ2 = 1
N − 1

N∑
i=1

(yi − y)2, (6.6)

where y is the mean over all values (1/N)
∑
yi. This variance is typically not used in

frequency analysis, as it does not converge for certain common noise types where the

mean y evolves over time [201] (for example, due to temperature drift of the oscillator).

The family of Allan variances take account of these drifts by comparing individual

data points to a local mean calculated over the averaging time τ . The overlapping Allan

variance, σ2
oA, calculates the variance over overlapping times τ , such that for N data

points and an averaging window over M points, there are 1 + N −M means against

which to compare. This technique scales poorly to very large datasets, but experimental

stability limits ensure that scaling is not an issue for the work concerned here. The

overlapping Allan variance is given by:

σ2
oA(τ) = 1

2M2(N − 2M + 1)

N−2M+1∑
j=1

j+M−1∑
i=j

(yi+M − yi)
2

, (6.7)

where N measurements taken equally spaced in time by τ0 are evaluated over averaging
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Figure 6.7.: Overlapping Allan deviation of photon retrieval rate over 750 s. No mi-

crowaves were applied during this experimental sequence, and so this does not take

account of any noise or drift in the microwave signal generator. a: Overlapping

Allan deviation. For an averaging time of up to τ = 25 s, the noise falls as
√

1/τ

(broken grey line). b: Source data. Each data point is the sum of all counts from

2.5 × 104 shots following a single MOT load normalised to the average over the

whole data set.

time τ = Mτ0. The behaviour of the variance with averaging time provides information

about what noise sources are dominant over that time scale.

As with the classical variance and deviation, the overlapping Allan deviation is given

by σoA =
√
σ2
oA.

Figure 6.7 plots the overlapping Allan variance as a function of averaging time for an

extended photon storage and retrieval dataset. Here, a single MOT load and subsequent

25,000 shots yields a single measurement of photon retrieval rate. In the range τ ≤
25 s, the stability of the retrieval rate scales as 1/

√
t , implying that Poissonian noise

(analogous to white frequency modulation in frequency measurements) is dominant.

116



6. Microwave electrometry via Rydberg-Rydberg transitions

Noise-equivalent voltage

Based on the analysis in figure 6.7, it is reasonable to calculate the noise equivalent

voltage level in a 1Hz bandwidth by scaling the observation with 1/
√
t.

As stated at the end of section 6.2.2, the data presented in figure 6.6 required an

observation time of 2.19 s per data point, to give a minimum resolvable field amplitude

of Ene = 6± 3µVcm−1.

As a result, we may state a final sensitivity (noise equivalent voltage) of the photon

storage system of 12± 7µVcm−1√Hz−1. This is comparable to the value published by

J. Sedlacek et al [89] of ≈ 30µVcm−1√Hz−1.

A key factor in consideration of these systems as sensitive microwave detectors is the

resonance condition used. Using a resonant atomic transition allows the detection of

extremely weak fields, but places an explicit limit on the detection bandwidth, as shown

in figure 6.4. The requirement for a short microwave pulse forces a certain level of Fourier

broadening, but that is of order 100 kHz−1MHz, while modern high performance radar

may use O(GHz) bandwidths to maximise resolution [221].

A function of the use of resonant atomic transitions is the large dipole matrix el-

ements associated with Rydberg-Rydberg transitions, and their associated frequency

dependence. In the work presented here, the transition 80S1/2 → 79P1/2 is used, with

a wavelength of ωµ = 7.691 × 2πGHz and a radial matrix element of 6271 ea0. The

value published by J. Sedlacek et al [89] used the 53D5/2 → 54P3/2 transition at a fre-

quency of ωµ = 14.2330 × 2πGHz and a radial matrix element of 3611 ea0. Transitions

at lower frequencies exhibit stronger matrix elements (as a result of the scaling discussed

in chapter 2). Consequently, results based on Rydberg atom systems are not directly

comparable if measured on different atomic transitions.

6.2.4. Photon number dependence

The suppression of storage/retrieval efficiency at non-integer-π rotations that renders

photon storage suitable for sensitive electrometry is a photon number dependent effect

(section 6.2.1 and [103]). This renders the system simultaneously sensitive to an applied
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Figure 6.8.: Dependence of microwave sensitivity upon incident photon number nin.

Exponential decay constant of nret for Θ ≤ π as a function of nin, where a cleaning

microwave pulse is excluded, from equation 6.3. Blue circles: data from figure 6.5.

Red triangle: data from figure 6.6.

microwave field, and to fluctuations in the number of photons in the input pulse which

is stored.

Figure 6.8 shows this by plotting the exponential decay time parameter ζ from equation

6.2 as a function of incoming photon number, nin, fit to the data already presented in

figures 6.5 and 6.6. A small value of ζ corresponds to an extremely rapid exponential

fall-off, and a corresponding increase in microwave sensitivity for a given experimental

duty cycle.

At low incoming photon numbers, the reduction in retrieved signal intensity ceases to

be well described by an exponential, leading to a high uncertainty in fitting the parameter

ζ. At high photon numbers, the reduction appears to be moderately insensitive to

nin. However, attempting photon storage with a high input photon number reduces the

number of times that a single atomic cloud can be recycled, reducing the repetition rate

and sensitivity of the experiment.

The photon number dependence of the storage efficiency suppression will be examined

further in the following section.
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6.3. Rydberg pollution of the atomic ensemble

Thus far, in both this work and others [53, 54, 103, 104], only the population fraction

remaining in state |S〉 has been addressed, due to the state selective photon retrieval

process. This fraction is observed to vary as a function of rotation angle Θ, as expected.

The fraction of the population left in |P 〉 at the end of the microwave driving stage has

been implicitly assumed to vanish immediately at the end of each shot, or at least play

a negligible role in respect to later shots. The consequences of this assumption will be

evaluated in this section.

The phase factors of the collective excitation in |P 〉 will motionally dephase over a

period of µs. However, this motional dephasing only affects the mode into which the

stored photon will eventually be emitted. The Rydberg excitation itself remains present

until, by some mechanism, it decays and emits a photon. Possible mechanisms include

spontaneous decay to another state; stimulated transition of the dephased collective

excitation back to |S〉 and then photon emission in a subsequent shot; or atomic motion

leading to movement of the excitation sufficiently far from the optically trapped region

such that interactions play no future role.

In section 2.1, the radiative lifetime of a Rydberg excitation in a low l state was

established to scale as n3. In the absence of black body radiation, the radiative lifetime

of the 79P1/2 state is 1.38ms.9 During this time, approximately a further 300 shots

will take place. Accelerating only under gravity, an atom will have fallen about 9.4µm,

insufficient distance to have completely escaped either the influence of the coupling laser

beam (section 4.4.2), or to have a negligible interaction strength with atoms at the centre

of the optical trap (section 5.5.2).

Consequently, there are multiple phenomena by which remnant Rydberg excitations

may be influencing subsequent shots. The two most probable pathways by which such

influence might act are

• The presence of a nearby Rydberg excitation in n′PJ during the EIT process of

9Calculated with ARC [181]
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photon storage should lead to resonant dipole-dipole interactions with the state

nS1/2. As demonstrated in chapter 5, the probability of successful photon storage

and retrieval is substantially reduced in the presence of vdW interactions with

another nS1/2 excitation. The presence of n′PJ excitations would leader to even

stronger and longer ranged resonant dipole-dipole interactions.

• The optical trap was not designed to trap Rydberg atoms. Due to the difficulty

of trapping Rydberg atoms [222], it is highly likely that neither atoms in nS nor

n′PJ are confined by the optical trap. Remnant Rydberg atoms are therefore likely

to escape the optical trapping region at a rate substantially greater than ground

state atoms, affecting all future shots until a new atomic ensemble is created.

6.3.1. Cleaning the medium

The second possibility - expedited atom loss from the trap - is easier to test experi-

mentally. A new experimental sequence is used (figure 6.9), adding a second microwave

driving stage after retrieval of any population remaining in |S〉. The duration for which

the optical trap is switched off is extended. There is therefore a window (after retrieval)

during which both the microwave and coupling Rabi frequencies are high. Provided

that the window is sufficiently long that both Ωµt,Ωct > π, any remnant population

left in |P 〉 by the first microwave driving pulse will be rotated back into resonance with

the retrieval process. The Rydberg excitation may then be de-excited, and emitted as

a photon. This window will be referred to as the ‘cleaning’ window or pulse. For the

purposes of this section, photons are explicitly not counted during or after the cleaning

window.

There are two caveats for data presented in the remainder of this chapter:

• The Rydberg states 60S1/2 and 59P1/2 are used exclusively, with an transition

frequency of ωµ = 19.005 × 2πGHz (shown in figure 6.10).

• Where the microwave rotation angle is changed, it is changed by varying the pulse

duration, rather than amplitude. This allows the rotation angle of the cleaning

pulse, where used, to retain a fixed and unchanging rotation angle Θclean = 3.7π.
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Figure 6.9.: Photon storage spectroscopy with a cleaning microwave pulse. A second

microwave pulse is applied, after the retrieval window, and before the optical trap

is switched on, to eject any remaining |P 〉. The driving microwave pulse has

tµ ≤ 450ns sandwiched within tst = 500ns.

Figure 6.11 compares Rabi oscillations generated without a cleaning pulse (a) to data

generated with the cleaning pulse (b). Both experiments were conducted with the same

mean incident photon number, nin = 2.4± 0.2.

Comparing figures 6.11 (a) and 6.11 (b) shows a similar change in the ‘peakiness’ of

the Rabi oscillations (as denoted by fitting parameter M) to that seen in figure 6.5.

However, in figure 6.5, this change is attributed to the incident photon number. Here,

the photon number is identical, and the difference in procedure is solely due to the

presence or absence of the cleaning pulse.

Figures 6.11 (c) and 6.11 (d) show the transmitted intensity of the probe signal through

the cloud (observed during the ‘transmission window’ shown in figure 6.9). These figures

also show a clear change in behaviour. Figure 6.11 (c) shows clear structure in the

transmission, with greatly increased transmission at rotation angles associated with a

remnant |P 〉 population. The structure is almost entirely absent in figure 6.11 (d), where

the |P 〉 population are removed prior to subsequent shots.
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Figure 6.10.: 87Rb Rydberg manifold around 60S1/2. Applied microwave field is resonant

with transition to 59P1/2 (shown in black). Other nearby states are shown with

transition detunings (in grey). S and D states are shown with the two-photon

detuning. Levels calculated with ARC [181].

The correlation between increased transmission at rotation angles associated with a

remnant |P 〉 population presents a convincing argument against the influence of reso-

nant dipole-dipole interactions. If dipolar interactions were dominating, a reduction in

transmission would be expected, such as the reduction in transmission shown in EIT

non-linearities [105, 106, 171, 172]

Transmission increasing relative to the case of no microwaves is more suggestive of

a mechanism leading to atom loss. A reduction in atom number in the trap will lead

both to increased probe transmission, due to a lower optical depth, and a reduction

in combined storage/retrieval efficiency (section 3.2.3). Atom loss as an explanation

is also consistent with previous observations of a photon number dependence. From

figure 4.21, retrieval rate (absent microwave driving) is proportional to photon number,

provided that nin is well below the saturation level. All data presented in this chapter,

for both 60S1/2 and 80S1/2, uses an incoming photon number well below saturation.
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Figure 6.11.: Photon retrieval and ensemble transparency as a function of rotation

angle. Left: The presence of remnant |P 〉 excitations substantially increases the

transmission of the atomic ensemble. Right: The addition of a second microwave

pulse largely removes this effect by cleaning out the fossilised excitations. Upper

(a, b): Rabi oscillations in photon retrieval as a function of rotation angle. Solid

lines are fits to equation 6.2. Lower (c, d): Averaged transparency of the ensemble

normalised (separately by column) to the zero-microwave case.

Therefore, the Rydberg population is also proportional to nin, and so any form of atom

loss proportional to Rydberg population should likewise be proportional.

6.3.2. Behaviour of Rydberg atoms in optical traps

The optical trap is modulated off to remove Stark shifts for photon storage and retrieval,

and back on again to maintain the atomic ensemble for as long as possible to achieve a

high repetition rate. The presence of the coupling laser during photon retrieval, and the

short lifetime of the first excited state (26.2 ns [223]), ensure that there is a vanishingly
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60S1/2 → λ (nm)

5P3/2 480

5P1/2 474

6P3/2 1012

6P1/2 1008

7P3/2 1723

7P1/2 1713

59P1/2 → λ (nm)

5S1/2 297

6S1/2 738

7S1/2 1358

8S1/2 2160

5D3/2 1250

6D3/2 2002

Table 6.1.: Optical transitions of 60S1/2 and 59P1/2 states of 87Rb. The optical trap used

in this work was not designed to trap Rydberg atoms, and due to the near-resonance

requirement, no single red-detuned laser offers a method of trapping both nS1/2 and

nPJ Rydberg atoms.

small probability of any atom in the ensemble not being in the ground state at the time

at which the optical trap is switched on.

The optical trap is a focused Gaussian beam at a wavelength of λ ≈ 910 nm, far

red-detuned from the 87Rb D2 line. The choice of 910nm originated in the previous

generation of experimental apparatus [103], and was not chosen with the intention of

trapping Rydberg atoms. This section will cover some complexities of trapping Rydberg

atoms, and evaluate the effect of the optical trap as implemented.

Optical trapping of Rydberg-state atoms is complicated by several factors [224]. Firstly,

Rydberg-Rydberg transitions are not optical: optically trapping Rydberg atoms must

rely on the extremely weak coupling of highly excited states to weakly excited or ground

states. Secondly, the valence electron is extremely weakly bound to the parent nucleus,

leading to an additional, repulsive, pondermotive term in the potential experienced by

the atoms [225, 226].

This ponderomotive term may be understood by considering the motion of an unbound

electron in the presence of a rapidly varying electric field E = E0x̂ cos(ωlt). The electron

will vibrate as its charge is driven by the field, raising its energy by the time averaged
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kinetic energy [222, 227]

〈KE〉t = ωl
2π

e2E2
0

2meω2
l

∫ 2π/ωl

0
sin2(ωlt)dt, (6.8)

resulting in a ponderomotive potential energy of

Up = e2E2
0

4meω2
l

, (6.9)

where −e,me are respectively the charge and mass of the electron and ωl is the angular

frequency of the trapping laser. The force on the electron is given by Fp = −∆Up, which

acts to repel the electron from regions of high field intensity.

This contribution to the total force experienced by the Rydberg atom results in a

generally repulsive effect from regions of high amplitude, except where the trapping laser

frequency ωl is extremely close to resonance [228–230]. Table 6.1 gives the transition

wavelengths from the two Rydberg states used in figure 6.11. The optical trapping

wavelength used in this experiment, 910 nm, is far detuned from all values in the table,

such that the ponderomotive potential dominates over the Lorentz contribution from the

induced dipoles. Polarisabilities have only been calculated for n > 55, in which range

all states nS1/2 and nPJ are essentially unaffected by the Lorentz contribution of the

optical trap.

The lifetime of Rydberg atoms in the optical trap may be further reduced by pho-

toionisation effects [231, 232]. The valence electron is weakly bound such that scattering

a photon from the optical trap laser is sufficient to ionise the Rydberg-state atom.

6.3.3. Rydberg mediated atom loss

In section 4.1.4, the behaviour of the optical trap containing O(103) atoms over O(104)

shots was discussed. The rate of atom loss from the trap can therefore be inferred to

be a time averaged value of � 0.1 atoms per modulation in the absence of any coupling

light or microwave fields.

Figure 6.12 shows how the transmission of the atomic ensemble evolves with the

number of times the cloud is recycled for five different microwave rotation angles (shown

in plots 6.12 (a) and (b)), including the case of no microwave rotation to provide a
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Figure 6.12.: Evolution of the transmission of the atomic ensemble as a function of

shot number. The atomic ensemble becomes more transmissive much faster in

the case where Ωµt is not a multiple of 2π. Upper : Reproduction of figures 6.11

(c) and (d) for reference. Lower : Evolution of transmission of atomic ensemble

as a function of shot number for points marker in upper figures. Y -axis is the ab-

solute transmitted photon number. The π and 5π traces (red and grey triangles)

saturate to the incoming photon number nin = 2.6± 0.2.
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Figure 6.13.: Evolution of the fitting parameter M as a function of shot number.

Blue circles: single microwave pulse. Red triangles: double microwave pulse.

Grey line: M = 1. Inset: Value of M averaged across all shots (as shown in

figures 6.11a,b). Earlier shots contribute a substantially greater fraction of the

total number of detected photons (see figure 4.20).

reference. Figures 6.12 (a) and (b)) are reproduced from figures 6.11 (c) and (d) for

reference. Each data point represents the normalised mean of all sub-µs shots at that

rotation angle. Figures 6.12 (c) and (d) plot the evolution with shot number of five

of those rotation angles. The figures are each normalised such that the mean of the

zero-rotation angle data is one.

Considering first the case of no microwave rotation (shown as blue circles in plots

6.12 (c) and (d)), the ensemble becomes progressively more transmissive as a function of

shot number. This replicates the behaviour seen in figure 4.9. The evolution is similar

regardless of the presence or absence of a microwave cleaning pulse, as is to be expected

as there should be no Rydberg population for the cleaning pulse to address.

The effect of any microwave rotation, under any circumstances, is to accelerate the

rate at which the ensemble becomes more transmissive. Circumstances which create

(and do not remove) a large |P 〉 population - i.e. an odd-integer-π rotation - show a

dramatically greater rate of increase. The addition of a cleaning pulse, such that |P 〉
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population can return to the ground state before the trapping potential is restored,

almost entirely removes the increase in transparency relative to the no-microwave case.

In figure 6.12 (c), the traces for Θ = π, 5π (represented by red and grey triangles

respectively) saturate to the incoming photon number nin = 2.6 ± 0.2, indicating that

after ≈ 2 × 104 shots, the ensemble has been almost entirely depleted. By comparison,

the final shots (3×104) show only ≈ 66% transmission. After the addition of the cleaning

pulse, the ensemble remains no more than 75% transmissive even after 3×104 shots with

a rotation angle of Θ = 5π.

Figure 6.13 plots how the fitting parameter M varies as a function of shot number.

Inset are the mean values associated with the fits shown in figures 6.11 (a) and (b), which

sum across all shots. Uncertainties are calculated from the χ2 covariance matrix. The

plot shows that, in the absence of a microwave cleaning pulse, the parameter increases

approximately exponentially with shot number. When the second microwave pulse is

present, the parameter remains nearly constant with respect to shot number.

The consistent shot number dependency - and the ability to largely remove it by

addressing and ejecting the abandoned |P 〉 population - suggests that the phenomenon

being observed is also shot number dependent, and consequently does not arise from

inducing resonant dipole-dipole interactions.

Consequently, we reach the conclusion that the suppression of photon storage/retrieval

efficiency at non-integer-π rotation angles is a manifestation of Rydberg-enhanced loss

from the atomic ensemble, and that while it is correlated with the mean number of

collective excitations created, it is not necessarily a direct measure.

6.4. Summary

Photon storage as collective Rydberg excitations in a cold atomic ensemble has proven

to be a practical technique for performing sensitive microwave electrometry. Using he

photon storage spectroscopy techniques discussed in this chapter, a sensitivity of (12±
7)µVcm−1√Hz−1 was measured at a frequency of f = 7.691GHz, corresponding to

a weakest-field observation of (6 ± 3)µVcm−1. These values compare favourably to
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published sensitivity values using spectroscopy in a thermal cell of ≈ 30µVcm−1√Hz−1

at a frequency of 14.2330GHz and a weakest-field observation of 8± 2µVcm−1 [89]. It

should be further noted that due to simultaneous on-going experiments (chapter 5, [63,

105]), there was insufficient time to fully optimise the system, and consequently both

the value and uncertainty show potential for improvement.

Several further comments must be made regarding the technique used in this chap-

ter, and that used by J. Sedlacek et al in the referenced published sensitivities. Since

both techniques rely on narrow linewidth, resonant, Rydberg-Rydberg transitions to

produce the extreme sensitivities, neither can be directly used as a completely general

microwave sensor for measuring an arbitrary field. Producing a broadband detector

that would be directly applicable to, for example, deep-space communication networks

or low-observability radar applications would require considerable further development.

Further, the use of resonant transitions results in a frequency-dependent sensitivity. In

the technique presented in this chapter, the effect of a microwave field is observed by

the Rabi frequency of the transition it drives, and consequently greater sensitivity may

be achieved by studying transitions where an equivalently weak field results in a greater

Rabi frequency: as a general rule of thumb, this equates to transitions with a lower

transition frequency.

The desired use-case for a microwave electrometer based on atomic techniques will

set the characteristics required of such a device. The thermal cell EIT approach of J.

Sedlacek et al [89] has greater potential to produce a portable device that could be used

in mobile applications, as it does not require a large vacuum chamber, or associated

pumping equipment. However, in applications where the very highest sensitivities are

mandated, it is probable that the superior sensitivity of the system discussed here would

justify the larger and more expensive equipment requirements.

The high sensitivity of the system to microwaves arises partly from the use of already

highly sensitive Rydberg states, but also from the ‘peakiness’ of the Rabi oscillations

observed by D. Maxwell et al [53, 103]. This form was not predicted by contemporary

theory [97], and at the time was thought to arise from Rydberg interactions within
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the medium. Reproduction and reanalysis of D. Maxwell’s work has identified that the

effect in fact arose from a tangentially related effect: pollution of the atomic medium by

remnant Rydberg atoms, and their subsequent loss from the trap, leading to suppression

of storage efficiency. When steps were taken to sanitise these remnants, the expected

cos2(Θ) form of Rabi oscillations was observed.

The observation of enhanced atom loss provides a new context in which to understand

the electrometry results: the sensitivity observed is in fact a function of three parameters:

the applied microwave field; the intensity stability of the probing laser; and the rate

at which remnant Rydberg atoms are created, abandoned, and subsequently lost from

the ensemble. This does not invalidate the previously stated results, but reinforces

the requirement that electrometry rely on robust calibration of the system prior to

measurement.
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7. A coherent microwave interface for

shaping single photons

An effective interface between the optical and microwave region of the EM spectrum have

become a topic of considerable interest in recent years [91–96]. A common theme arises

in the desire for hybrid systems, which use multiple disparate elements of the spectrum

to take advantage of each system’s most attractive properties. Optical photons, partic-

ularly in the near-infra-red, offer robust communications over long distance [233, 234],

while microwave photons are easily manipulated using high performance superconduct-

ing circuits [15, 73, 74, 81, 82, 235].

Previous proposals to implement these interfaces have included numerous approaches,

including magnetic coupling to ultra-cold atoms [91], or spins [236–240], or optomechan-

ical coupling [241–243]. More recent techniques have included electro-optical techniques

[92, 93].

In this chapter, two approaches to controlling the optical output of photon stor-

age/retrieval by an applied microwave field will be discussed. In section 7.1 and 7.2,

the techniques demonstrated in chapter 6 will be applied and extended to produce a

state-dependent time delay in photon retrieval. Based on the presence (or, in principle,

absence) of a microwave pulse, the photon stored as a collective Rydberg excitation is

emitted either early or late. This allows a clear pathway to conversion from information

encoded in a microwave qubit to information encoded in an optical photon qubit, and

provides a step towards the gate proposal outlined in [61].

In section 7.3, a microwave field will be applied during the photon retrieval pulse to

simultaneously drive Rabi oscillations to a dark shelving state. Since photons can only
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be retrieved from collective Rydberg excitations in the Rydberg state in which they were

initially stored, this has the effect of overlaying a sinusoidal intensity modulation on the

shape of the retrieved pulse. This modulation technique offers a key benefits over other

fast modulators (such as fibre EOMs): low loss. Unwanted emission is delayed by storage

in a second Rydberg level, rather than being discarded into a beam dump.

7.1. Concept: delayed photon retrieval

Chapters 3, 4 and 5 all dealt with photon storage in a three level system, in which a

photon was stored as a collective Rydberg excitation |S〉 in the uppermost level nS1/2.

Chapter 6 followed and extended the work of D. Maxwell [53, 54, 103] by using mi-

crowaves to drive population to a second Rydberg state, of opposite parity, n′Pj , with

the collective state given by |P 〉.
Photon retrieval uses resonant EIT to map the collective Rydberg excitation back to

the atomic ground state and collectively emit the stored photon. As expected, and as

demonstrated in chapter 6, population in |P 〉 is both non-resonant and dipole-forbidden

from the retrieval process. Consequently, there is no, or very weak, retrieval intensity

during the retrieval window if the population has been driven to |P 〉 and left there.

Initial work applied a microwave pulse wholly within the storage window (sections

6.1 and 6.2), while in section 6.3 a second microwave pulse was added, simultaneously

with high coupling field (figure 6.9). The presence of both EM fields allows remnant

|P 〉 excitations to resonantly couple back to a short lived state and be emitted. Data

analysis in section 6.3 explicitly excluded any photons emitted from the ensemble after

the beginning of this ‘cleaning’ pulse. Sanitation of the ensemble required only that the

collective Rydberg excitations be removed; with no value attached to the emission of the

stored photon into the original mode as opposed to any other mode.

However, chapter 6 demonstrated the ability to rotate the ensemble through multiple

2π rotations with minimal loss, demonstrating that, as predicted in section 3.3 and [97],

microwave driving should not substantially interfere with the collective phase. Conse-

quently, it is expected that the sanitation pulse should result in collective emission from
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Figure 7.1.: Photon retrieval via the cleaning pulse. Histogram of all photon arrival times

arising from a range of microwave rotation angles (red). The window in which

photon arrivals are included includes the microwave cleaning pulse discussed in

section 6.3. A reference signal retrieved without any microwave driving is shown

in grey. Inset: Zoom on the retrieval window. The first red peak corresponds to

retrieval from |S〉; the second corresponds to retrieval from |P 〉; while the grey

trace remains low during the second red peak. The grey and red traces are shown

to the same vertical scale. The blue and yellow traces are guides to the coupling

and microwave driving Ωc, Ωµ respectively.

|P 〉 when both the microwave and coupling fields are present.

In cases where multiple collective excitations are created, it is to be expected that

resonant dipole-dipole interactions will result in strong dephasing at rotation angles

resulting in both |S〉 and |P 〉 presence (at half-integer-π values). However, as noted in

section 5.3, such interactions are generally only observed in the statistics of the emitted

photons, and make a minimal difference to the total emitted intensity. In previous

work, D. Maxwell demonstrated that interactions arising from microwave transitions

were visible [54]. Typical experiments use an input pulse with a photon number of up

to 5, resulting in a low probability of the simultaneous creation of multiple excitations.

Figure 7.1 presents data from the same experiments as shown in figure 6.11 (b).
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Instead of presenting the retrieval intensity as a function of applied microwave rotation

angle, it shows a histogram of photon arrival times summed over all rotation angles,

including the time during which the microwave sanitation pulse is applied (shown in

yellow). A reference data trace is shown, normalised to the same scale, where the same

mean incoming photon number nin were stored as collective excitations for the same

time tst, but no microwave driving was applied (grey).

Figure 7.1 clearly shows that, due to the addition of the cleaning pulse (section 6.3.1),

the remnant |P 〉 population is successfully retrieved during the time period in which

the cleaning pulse is applied. As the maximum peak intensity of the delayed retrieval

pulse is comparable to the initial retrieval pulse, it may be concluded that the collective

excitation remains sufficiently in phase to produce a similarly highly directional collective

emission.

It is to be emphasised that, whereas the initial pulse is retrieved under conditions of

two-photon EIT, by switching the coupling laser Ωc from low to high; the delayed pulse is

retrieved by three-photon EIT, by switching Ωµ from low to high while Ωc remains high.

Colloquially, the first pulse (around t = 900ns) may be described as ‘retrieval from |S〉’,
and the second pulse (t = 1400ns) as ‘retrieval from |P 〉’. They will also be referred to

as ‘early’ or ‘late’ respectively.

All three retrieval pulses shown in figure 7.1 exhibit an approximately Gaussian en-

velope. However, while the early and reference pulses have a near-identical slew rate,

the late retrieval pulse has a substantially faster slew rate. These differences can be

explained by considering the limiting Rabi frequencies in the retrieval pathways.

In both the reference and early retrieval pulse, retrieval is limited by Ωc. A sigmoidal

curve is plotted in figure 7.1 as a guide to the time evolution of the coupling laser Ωc,

which has a rise time of t10:90 = 185 ns. The reference pulse peak intensity occurs at

approximately 50% of peak Ωc, such that the rising edge of the retrieval pulse can be

considered to be limited by the (low) value of Ωc.

The late retrieval pulse occurs once Ωc has stabilised at maximum value. The rising

edge of the late retrieval may therefore have a faster slew rate, as it is not constrained by a

low rate of Ωc. The rise time of Ωµ (t10:90 ≈ 8ns), which could pose a constraint, is better
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than an order of magnitude faster than Ωc (t10:90 ≈ 185 ns). The peak Rabi frequencies

of the coupling laser and microwave source used for this data set are comparable (Ωc =

(6± 2) × 2πMHz, Ωµ = (8± 1) × 2πMHz).

The late retrieval pulse has a smaller area, corresponding to a smaller total photon

number retrieved. This loss may arise from a large number of possible causes, although

the most probable is motional dephasing. Just as a loss of storage/retrieval efficiency

was observed going from tst = 170 ns in chapter 5 to tst = 500 ns in chapter 6, a loss is

expected due the tst = 950ns prior to late retrieval.

7.2. Early and late photon retrieval

Figure 7.1 conclusively demonstrates that population may be ‘shelved’ in |P 〉, and later

retrieved, with no more than a modest degree of dephasing. It also demonstrates that

retrieval from the population shelved in |P 〉 may be temporally resolved from retrieval

from |S〉 with high precision, through the correct choice of detection windows. This

offers a clear path to the implementation of microwave-to-optical interfacing, where the

presence or absence of a microwave pulse can be directly converted into an early or late

optical photon; or alternatively, the presence or absence of an optical photon in either

time window.

Figure 7.2 demonstrates the protocol for implementing time-resolved detection, and

the choice of detection windows. With respect to the time axis of figure 7.1, the windows

800− 1200ns and 1300− 1500ns were used for early and late retrieval respectively. The

two windows are deliberately of different lengths, due to the difference in slew rate and

width of the two retrieval pulses.

Due to the microwave signal generator control scheme (section 4.5), all data making use

of a cleaning pulse were taken with microwave intensity fixed, and rotation angle adjusted

by changing pulse duration. This choice severely restricts the available resolution of the

microwave rotation angle, but ensures that the cleaning pulse is consistent between

every shot. Adjusting the intensity instead of the pulse length would either result in

an impractically long cleaning pulse; or in shots with weak microwave driving having a
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window |P 〉
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Figure 7.2.: Pulse sequence for state-dependent delayed photon retrieval. A second

detection window is added, revealing a second retrieval pulse. This is associated

with retrieval from |P 〉 via three-photon EIT.

cleaning pulse with Θclean � π.

All data shown in this section uses the states 60S1/2 and 59P1/2, shown in figure 6.10.

The microwave transition has a calculated frequency of ωµ = 19.005 × 2πGHz.

7.2.1. Efficiency

Figure 7.3 (a) presents data from the same experimental sequence as figure 6.11 (b), using

two separate observation windows to observe Rabi oscillations in the photon retrieval

from |S〉 (blue) and |P 〉 (red) respectively. Figures 7.3 (b), (c), and (d) show photon

arrival time histograms for three fixed microwave pulse durations. In these experiments,

the probe pulse had a photon number of nin = 2.6± 0.2.

Figure 7.3 (a) shows Rabi oscillations in photon retrieval from both the |S〉 = 60S1/2

(blue circles) and |P 〉 = 59P1/2 states (red triangles). The data points are generated

by counting the number of photon detections in each of the windows shown in figure

7.2. Retrieval from each state is distinguished by a time delay in retrieval of |P 〉 of
approximately 450 ns (see figure 7.1). Retrieval from |P 〉 is less efficient, with a peak
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Figure 7.3.: Rabi oscillations in photon retrieval from both |S〉 and |P 〉. a: Early

retrieval from 60S1/2 (blue circles) and time-delayed retrieval from 59P1/2 (red

triangles). Right: Photon arrival histograms for three microwave pulse durations.

Associated rotation angles are shown in part (a). Red data shows photon arrivals.

The blue trace shows Ωc. The yellow band shows the position of the microwave

cleaning pulse. Time and signal scales are shared. b: Θ = 0. c: Θ = 3.5π. d:

Θ = 5π.

retrieval probably approximately 35% lower than the probability of retrieval from |S〉.
Since collective excitations can demonstrably be rotated between |S〉 and |P 〉 multiple

times with minimal loss, this reduction is probably not due directly to the microwave

driving, but due to alternative factors.

The most probable source of loss is dephasing of the collective excitation due to the

time delay before retrieval. Photons stored as collective excitations in |S〉 are retrieved

after tst = 500 ns, while in |P 〉, tst = 950 ns. Increasing tst from the ≈ 170 ns used

in chapter 5 to the tst = 500 ns used through chapter 6 resulted in a reduction of

storage/retrieval efficiency from ≈ 2% to ≈ 0.5%. A further increase in storage time

may be expected to have a concomitant loss of efficiency.

Due to circumstances arising (see appendix A), it was not possible to gather data re-

garding the time-dependent efficiency of retrieval from the |P 〉 = 59P1/2 state. However,
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Figure 7.4.: Storage lifetime of photons in |S〉 = 80S1/2. Storage was conducted with

nin = 2.5 ± 0.3 Solid line is a fit to equation 7.1 with a half life of τ =

163± 8 ns. Inset: Storage efficiency over the durations of interest for microwaves.

nret(950 ns, 80S1/2) = (0.36± 0.05)× nret(500 ns, 80S1/2).

this data does exist for the state |S〉 = 80S1/2, which can be used as a general guideline,

and is shown in figure 7.4 with a fit to the exponential function

nret(tst) = a0 + a1 exp(−tst/τ), (7.1)

where a0 is the noise floor, a1 is a constant to normalise retrieval to the value at the

minimum possible storage time (approximately 125 ns), and τ is the half life of the

storage process. A fit to the data in figure 7.4 gives a decay rate of τ = 163±8 ns. From

the exponential fit, the retrieval rate from |S〉 = 80S1/2 after tst = 950ns is expected to

be 0.36± 0.05 of the retrieval rate after tst = 500ns.

This is a substantially greater predicted loss of efficiency than is seen in figure 7.3.

However, it should be emphasised that the data in figure 7.4 is not directly comparable,

as it is the measured lifetime of storage in the state 80S1/2, while the data presented in

figure 7.3 is for photons stored as collective excitations in the states 60S1/2 and 59P1/2.

Since the demonstrated half-lives of both figures (i.e., all three Rydberg states) are

substantially lower than the O(1µs) predicted in section 3.2.3, it is probable that in
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addition to motional dephasing (which is independent of n), there is a contribution to

dephasing of the collective excitation arising from interactions. As predicted in chapter

2 and shown in chapter 5, interactions do exhibit an n dependence. In the event that

there is such a contribution, then the lifetime of a collective excitation using the states

60S1/2 or 59P1/2 would be different - and most likely longer - than the lifetime of an

excitation using the state 80S1/2, as in figure 7.4.

A second possible source of loss is interaction-induced dephasing between multiple

collective Rydberg excitations stored simultaneously. Previous work by D. Maxwell [53,

54] demonstrated that microwave driven Rabi oscillations acted to suppress the value

of g(2) observed after multiple rotations, relative to the case of no microwaves. This

reduction implies that individual experimental shots in which two or more collective

excitations were created were substantially less likely to successfully collectively emit

photons that were subsequently detected.

The data sets presented here do not offer sufficient depth to calculate a value of g(2)

at specific microwave-driven rotation angles. A value of g(2)(60S1/2) = 0.43 ± 0.05 was

measured in a separate experimental run using comparable experimental parameters

(notably a similar input photon number, nin = 2.3 ± 0.2), but in the absence of mi-

crowave driving. In combination with a typical storage/retrieval efficiency of ≈ 0.5%,

multi-photon events are an extreme rarity even before any interaction induced suppres-

sion. Consequently, interaction-induced loss is considered a negligible contributor to the

reduction in signal intensity between the early and late retrieval pulses.

7.2.2. Extinction

The coherent state-dependent behaviour offers clear opportunities for direct control over

optical behaviour. Here, the microwave field applied during storage provides a tool

for controlling the end-state of the collective excitations, and therefore, the temporal

profile of the retrieved photons. With some adjustment, this provides a credible path

towards a microwave-controlled optical switch. This provides a first stage towards hybrid

quantum computing, allowing high-fidelity semiconductor and superconducting qubits
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Figure 7.5.: Extinction between early and late photon retrieval from the data shown

in figure 7.3 (a) using equation 7.2. The solid line is derived from the fits shown

in the same figure. The resolution is limited by the choice of adjusting Θ as a

function of tµ.

at microwave frequencies [244] to couple to low-decoherence optical photons for commu-

nication between processing nodes [81, 82].

The quality of a switch is typically given by its switching speed and extinction ratio,

such as is discussed for the optical switch used to change the intensity of the coupling

laser (see section 4.4.1). The extinction ratio determines how accurately the state of the

system can be distinguished from the opposite state. The switching speed determines

how rapidly the system can shift from one state to the other.

The extinction ratio can be calculated by observing the ratio between the two traces

shown in figure 7.3. This is shown in figure 7.5, expressed in decibels:

Extinction = 10× log10( |nret(E)/nret(L)| ), (7.2)

where E and L respectively refer to early retrieval (from |S〉) and late retrieval (from

|P 〉).
Due to the low resolution offered by adjusting the length of the microwave pulse,

and the strong Θ sensitivity arising from a dependence on cos2(Θ)/ sin2(Θ), a maximal
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practical extinction is hard to identify. The greatest ratio shown in figure 7.5 of 34dB

greatly exceeds the fit-predicted maximum. For comparison, the AOM used as a switch

for the optical trap offers an extinction ratio of 27.61 ± 0.05dB, and the EOM for the

coupling laser of ≈ 20dB.1

7.3. Concept: modulating single photons

Atomic single photon sources have typically made use of either a cavity [245–251] or

thermal atoms [252, 253], in order to increase generation rate. Cavity systems have

also been used to manipulate the behaviour of single photons such as single photon

subtraction [49, 50], implement optical transistors [45, 46, 51] and produce phase shifts

[52]. Single atoms in cavities have also been used to control the shape of the photons

emitted, such as in the work of B. Nisbet-Jones [99, 100, 254].

In addition to its uses for implementing all-optical QIP, photon storage as collective

Rydberg polaritons serves as a probabilistic single photon source [44, 53]. This section

will demonstrate that, by judicial application of microwave fields, this approach allows

the resultant single photons to be intensity modulated at high speed and with low loss.

Section 7.2 demonstrated that the temporal profile of the retrieved light can be ad-

justed by driving Rabi transitions to a nearby Rydberg state that is non-resonant with

the storage retrieval process. Two effects are visible in the data in figure 7.3: the de-

layed retrieval of population transferred to the dark Rydberg state |P 〉, and more rapid

retrieval in the form of a narrow photon pulse on transfer back to |S〉. The narrowed

retrieval window due to |P 〉 arises due to a higher average coupling Rabi frequency Ωc.

Figure 7.3 (d) also shows a weak Rabi oscillation in the envelope of the late retrieval

pulse.

Further, while there is a demonstrated loss of efficiency associated with delayed re-

trieval from |P 〉, this loss arises largely from the time delay, rather than arising from the

1The stated extinction of > 47dB in section 4.4.1 arises from the combination of EOM and PM fibre.

Absent the fibre, an extinction ratio of ≈ 20 dB is achieved.
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Figure 7.6.: Pulse sequences for fast intensity modulation of photon retrieval. Pho-

tons are stored for as short a period as possible (as in chapter 5), and microwaves

are applied after the storage window, during retrieval.

use of a state of opposite parity and the concomitant inclusion of resonant dipole-dipole

interactions. The second retrieval peak also occurs simultaneously with the driving

microwave pulse that restores population from |P 〉 to |S〉, demonstrating weak Rabi

oscillations in the envelope of the retrieved pulse where Ωµ > Ωc (figure 7.2 (d)).

Based on these conclusions, microwave driven photon storage could be used as a

technique to realise more complicated output shaping of single photons. At the simplest

level, the single photons retrieved from the atomic ensemble could be rapidly modulated

in intensity by simultaneously driving Rabi oscillations between |S〉 and |P 〉 during

retrieval. More complex schemes may be envisaged where Ωµ is varied as a function of

time. Such variation would be analogous to the approach taken by B. Nisbet-Jones to

produce intensity profiles based on the great pyramids of Giza or London’s Tower Bridge

[99, 254].

A notable feature of the modulation approach suggested here is that it offers the po-

tential for no, or low, loss, of the signal being modulated. Traditional means of achieving

intensity modulation are AOMs or EOMs (or for slow modulation at rates O(1 kHz) or

142



7. A coherent microwave interface for shaping single photons

lower, physical shutters); such as are used in the laser systems for this experiments

(chapter 4). With these technique, unwanted emission is directed into a beam dump to

be discarded as heat or diffuse reflections. The microwave-modulation approach avoids

unwanted emission by rendering the medium non-emissive instead: when the collective

population is in the |P 〉 state, photon retrieval does not occur. The energy is instead

stored, or shelved, in a dark state.

All data shown in sections 7.4 to 7.4.3 uses the states 80S1/2 and 79P1/2, frequency

ωµ = 7.691 × 2πGHz, shown in figure 6.2. Data shown in section 7.4.4 uses the states

60S1/2 and 59P1/2, frequency ωµ = 19.005 × 2πGHz, shown in figure 6.10.

Modelling photon modulation

Modelling the entire collective system is a complicated endeavour due the various addi-

tional effects arising from the addition of |P 〉, compared to the description in section 5.4,

such as excitation hopping [255]. A simple, analytical approach is taken here. Rather

than simulating the entire atomic ensemble, a single 87Rb atom is modelled by the four

level optical Bloch equations in the presence of time-dependent EM fields. This is justi-

fied by the behaviour of a collective Rydberg excitation as approaching that of a single

superatom (sections 3.3 and 6.2.1).

The level system is shown in figure 7.7 (a), and is initialised with the atomic population

in |Rs〉, signifying that a single photon has been stored in a Rydberg state (corresponding

to the collective state |S〉 used throughout chapter 6 and the first half of this chapter).

ρ =



ρgg ρge ρgRs ρgRp

ρeg ρee ρeRs ρeRp

ρRsg ρRse ρRsRs ρRsRp

ρRpg ρRpe ρRpRs ρRpRp


, ρ(t = 0) =



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


. (7.3)

The system evolves under driving of two time dependent EM fields with Rabi frequen-

143



7. A coherent microwave interface for shaping single photons

|Rp〉

|e〉

|g〉

|Rs〉

Ωc(t)

Ωµ(t)

t

D(t)

ρ
R
s
R
s
ρ
R
p
R
p

D(t)× Γe

Ωc(t)

Ωµ(t)

Figure 7.7.: Photon modulation model. The system is modelled as a single four-level atom,

initially in state |Rs〉. Two time dependent resonant EM fields are applied, Ωc(t)

and Ωµ(t), while the signal is observed as spontaneous emission from |e〉 to |g〉.

cies Ωc(t) and Ωµ(t) and detunings ∆c and ∆µ, yielding a Hamiltonian of

H(t) = 1
2



0 0 0 0

0 0 Ωc(t) 0

0 Ωc(t) −2∆c Ωµ(t)

0 0 Ωµ(t) −2∆µ


. (7.4)

The system evolves according to equation 3.15, with the phenomenological decay term

L̂ given by

L̂ = 1
2



2Γeρee −Γeρge 0 0

−Γeρeg −2Γeρee −ΓeρeRs −ΓeρeRp
0 −ΓeρRse 0 0

0 −ΓeρRpe 0 0


. (7.5)

Photon retrieval - i.e. collective emission - is considered to be proportional to the

spontaneous emission from the first excited state |e〉 to the ground state |g〉, characterised
by the lifetime of that state, 1/Γe. For 87Rb, the lifetime is 26.2ns [256]. Due to the

lifetime effects of photon storage predicted in section 3.2.3 and exhibited in section 7.2.1,

an additional factor is included to simulate time dependent dephasing:

Signal = Γe ρee(t)D(t), (7.6)
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where

D(t) = e−t/dr . (7.7)

Physically, dr corresponds to the lifetime τ observed in figure 7.4. A diagram of the

model is shown in figure 7.7.

The time dependent fields Ωc and Ωµ are implemented as sigmoid functions with

switch-on time t0 2 and rise time t10:90:

Ω(t, t0, t10:90) = Ωmax
1 + e−4.4(t−t0)/t10:90

. (7.8)

The loss factor D(t) and the two field Rabi frequencies are shown in figure 7.7 (b).

The model has only two free parameters: the decay rate dr, and the delay between

the two EM fields switching (tµ,0 − tc,0). The maximum Rabi frequencies and rise times

are set to the known experimental parameters (tc,10:90 = 185ns and tµ,10:90 = 8ns,

Ωc,max = (6± 2) × 2πMHz, Ωµ,max as appropriate).

Unmodulated retrieval

The model is first considered in the case where no microwaves are applied, shown in

figure 7.8. Data is shown in a solid blue line, and the model in a broken red line.

Here, the parameters Ωc and dr are varied to match the fit, although in the absence

of Rabi oscillations, the two parameters are not independent, and consequently can

each take a wide range. If the loss factor dr is removed (i.e. assumed to represent an

insignificant effect across the relatively narrow duration of unmodulated retrieval), then

the model yields a value of Ωc = (4.5 ± 0.2) × 2πMHz, consistent with the value of

(6± 2) × 2πMHz predicted from measuring coupling beam power. The numeric results

fit well with observed data.

Modulated photon retrieval

The effect of applying microwave modulation can then be predicted, as shown in figure

7.9. In addition to the parameters identified by the fit in figure 7.8, a microwave field

2For the purpose of this model, the switch-on time is defined as Ω(t0) = Ωmax/2.
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Figure 7.8.: Comparison of single emitter model to unmodulated photon retrieval.

Retrieval from 80S1/2 (solid blue line). Model (broken red line). Coupling laser

switch-on time and Rabi frequency as free parameters. With dr = 0, the fit yields

Ωc = (4.5± 0.2) × 2πMHz.

is added with a Rabi frequency of Ωµ = 8 × 2πMHz, switching on before the retrieval

pulse begins. The results are shown in figure 7.9, with the fitted curve from figure 7.8

overlaid for comparison. The result is to overlay a cos2(Θ(t)) intensity modulation on

the retrieval envelope. In this figure, the loss parameter dr = 0: the area under both

curves is equal, resulting in an additional broadening of the envelope.

7.4. Observing photon modulation

In order to observe modulated photon retrieval, the experimental sequence was mod-

ified to that shown in figure 7.6. A microwave pulse was applied from shortly before

the beginning of the photon retrieval signal. The timing of the microwave pulse was

synchronised as close as possible to the beginning of photon retrieval. As discussed in

section 4.5, the rise time of the microwave sensitive diode limited the precision with

which this goal could be achieved. The microwave pulse was held at a fixed intensity for
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Figure 7.9.: Modelled modulated photon retrieval. A microwave field (yellow) is added

to the parameters from figure 7.8 (broken red line). The curve from that figure is

overlaid for comparison (black).

a period substantially greater than the length of the retrieval window (typically, ending

at the same time as the optical trap power was restored).

Figure 7.10 shows four photon retrieval traces from the state 80S1/2, three of which

are intensity modulated by different microwave powers: yellow (6 mVrms), red (19 mVrms)

and blue (38 mVrms).3 Since the modulation arises from Rabi oscillations between |S〉
and |P 〉, the modulation occurs at the microwave Rabi frequency (fmod = Ωµ/2π). The

Rabi frequency can be predicted from the applied field strength and a reference trace

such as those shown in chapter 6. Based on the data in figure 6.5, the three microwave

powers stated should yield Rabi frequencies of 2.6, 8.0 and 16 × 2πMHz respectively.

The fourth trace (grey) is a reference trace similar to that shown in figure 7.8. The blue

and red traces clearly show intensity modulation to better than 95% depth, with an

increase in pulse width as predicted by figure 7.9. The increase in width is a promising

hint towards achieving low-loss modulation (discussed in section 7.4.3). None of the data

3Nominal values: Signal generator set points were 200, 600 and 1200 mVrms respectively, followed by

≈ 30dB of external attenuation.
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Figure 7.10.: Intensity modulation of photon retrieval. All signals normalised to the peak

intensity of retrieval for Ωµ = 0.

traces exhibit the extreme tail predicted in figure 7.9, although un-constraining the loss

term dr to factor in motional dephasing may explain the difference.

7.4.1. Applying the single-emitter model to data

Figure 7.11 shows the four retrieval traces from figure 7.10 with best fits to the single

emitter model described in section 7.3. Compared to the fit shown in figure 7.9, the loss

factor dr is unconstrained, in order to better describe the effect of motional dephasing

upon the long tail predicted in figure 7.9. The model is initialised with the coupling laser

parameters developed from figure 7.9 (tc,0, Ωc,max), and the microwave Rabi frequency

predicted from the power used in the experiment. The parameters tµ,0, Ωµ,max and dr
are varied to achieve the best fit.4

The model demonstrates excellent fit where the microwave modulation is zero or low,

with individual large residual values in figures 7.11 (a.2) and (b.2) arising only from noise

4Prediction of Ωµ from microwave power is not exact: attenuation in the microwave signal path may

change when elements such as coaxial isolators are removed and replaced due to differences in torque

applied to the SMK connectors.
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Figure 7.11.: Comparison of single emitter model to intensity modulation. Each data

set (solid blue line) is independently normalised to its maximum intensity. Each

data set is then fit to the model described in section 7.3. Subplots (b), (c) and (d)

use the coupling laser parameters established in subplot (a), which is a duplicate

of figure 7.8.
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in the data.5 The model becomes increasingly inaccurate at higher modulation frequen-

cies with clear structure in large residual values, although the values of Ωµ arising from

the fit are all in excellent agreement with predicted values. Principally, the experimental

data does not exhibit nearly as long a tail as the model predicts, even after factoring in

the loss rate dr (which was set to zero in figure 7.9). One possible explanation is that

induced resonant dipole-dipole interactions play a greater than expected role.

In the experiments presented here, a probe pulse with a photon number of nin =

5.0± 0.1, approximately twice the number used in the experiments presented in chapter

5 (nin = 2.4± 0.2) where a g(2) value was measured for this Rydberg state, albeit for a

shorter storage time (g(2)
A (80S1/2, tst = 170ns) = 0.20 ± 0.04). The microwave rotation

experiments presented in section 6.3 similarly used an input number of nin = 2.5± 0.2.

Considering the evidence of dipole blockade shown in figure 4.21, the ensemble begins

to show signs of saturation by an input photon number of 5, indicating that the signal

photon number will not scale in proportion to the input photon number.

Consequently, the underlying assumptions of the single-emitter model may be invalid

for the data presented here. If induced resonant dipole-dipole interactions are to blame,

it is to be expected that they would manifest as a suppressive effect increasing with the

number of Rabi rotations. Resonant dipole-dipole interactions are maximised at non-

integer-π rotation angles where the collective excitation state is a superposition of both

|S〉 and |P 〉.

7.4.2. Phenomenological description

This section provides an alternative, phenomenological description of single photon mod-

ulation; in contrast to the physical description of the single emitter model detailed in

section 7.3. Section 6.3 established that, contrary to previous findings [53], Rabi oscilla-

tions between |S〉 and |P 〉 do take the expected cos2(Θ) form [97]. Analysis of the pulse

shape of the retrieved light in section 4.4.3 indicated a Gaussian envelope. A simple

5The figure only shows the first 1.75× 104 shots per MOT load of the total data set: this subject will

be discussed in further detail in section 7.4.3.
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Figure 7.12.: Comparison of phenomenological description to intensity modulation.

All data sets independently normalised to their maximum value and fitted to

equation 7.9. The Gaussian envelope shows a progressively poorer quality of fit

to the rising edge for larger values of Ωµ (derived from the fit). a: 0 mVrms. b:

6 mVrms c: 19 mVrms. d: 38 mVrms.
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mathematical description is therefore proposed, that the modulation can be described

by a Gaussian envelope around a cos2 oscillation, given by the function

I(t) = a0 + e
(t−a1)2

a2
2 [a3 + a4f(t, a5)] , (7.9)

where

f(t, a5) =1 t ≤ a5,

= cos2
(Ωµ(t− a5)

2

)
t ≥ a5.

and a0 − a5 and Ωµ are fitting parameters. a1 corresponds to the time of peak retrieval

intensity, a2 to the width of the retrieval pulse, and a5 to the time at which the microwave

pulse is switched on and Rabi oscillations between |S〉 and |P 〉 begin. a0 and a3 fit

the background noise and extinction ratio respectively, and a4 is the amplitude of the

oscillations. It is assumed that, due to simultaneous retrieval and microwave driving,

the Rydberg-mediated atom loss discussed in section 6.3 contributes only minimally to

the system as indicated by figures 6.12 and 6.13. Therefore, theM term is excluded for

simplicity.

Figure 7.12 shows the four data sets previously shown in figures 7.10 and 7.11 fitted to

equation 7.9. Figure 7.12 (a.1) provides a reference example of photon retrieval without

any microwave driving, and demonstrates an excellent fit to the proposed Gaussian

envelope. Figure 7.12 (a.2) a slight, but small, structure in residuals, particularly on

the rising edge. Figures 7.12 (b), (c), and (d) predict that the microwave pulse began

at a5 = 910 ± 6ns. The rising edge of the retrieval pulse fits increasingly poorly to

the assumed Gaussian envelope as the modulation frequency increases, indicating that

while a Gaussian envelope is a reasonable approximation at no, or low, Ωµ, it becomes

an increasingly poor description where the width of the retrieval pulse is significantly

expanded. This can most likely be explained by acknowledging that while a Gaussian

function is symmetrical around its centre, this is not necessarily a good description of

photon retrieval, where the rate of retrieval (the coupling Rabi frequency) increases over

time. As the retrieval pulse width expands, photons that remain as collective excitations
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Figure 7.13.: Duty cycles. A modulator with a duty cycle of x exhibits a loss of 1 − x. A

low-loss modulator should have an efficiency 0.5 < er < 1.0

longer are retrieved at a faster rate, resulting in an asymmetry not well described by the

proposed Gaussian envelope.

7.4.3. Modulation efficiency

Section 7.3 raised the issue of low-loss modulation. Loss is best considered in the context

of the duty cycle of the modulation (figure 7.13). The modulator with a duty cycle of x

emits for that fraction of time every cycle. In a lossy modulator such as an AOM, EOM,

or shutter, unwanted emission during the 1− x fraction of the cycle is discarded into a

beam dump, and consequently, the modulator exhibits a loss of 1 − x, or an efficiency

er = x.

In this approach, modulation is achieved by not emitting during the period in which

emission is unwanted. Energy is instead stored as a collective Rydberg excitation in a

dark Rydberg state. In the proof-of-principle form shown in this chapter, modulation

is accomplished by Rabi oscillations at a fixed Rabi frequency, corresponding to a duty

cycle of 0.5. A lossy modulator with the same duty cycle should show an efficiency of

0.5: time averaged modulated intensity equal to 50% of the unmodulated intensity. A

loss-less modulation technique will show an efficiency of 1.0. A low-loss technique should

show an efficiency 0.5 < er < 1.0.

Figure 7.14 shows the loss of efficiency per shot as a function of shot number. It

demonstrates that the photon retrieval pulse can be intensity modulated with virtually
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no loss for a small number of shots, with modulation at Ωµ = 8.9 × 2πMHz showing

relative efficiency of er = 0.86 averaged over the first 2500 shots. However, relative

efficiency appears to fall as a function of shot number: behaviour that is reminiscent

of the results presented in figure 6.13, indicating that the assumption made that this

technique would not show an enhanced atom-loss relative to no modulation was incorrect.

The reason for this is unknown.
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Figure 7.14.: Shot dependency of modulation efficiency. Early in the sub-µs sequence,

modulated retrieval is > 50% as efficient as unmodulated retrieval, and ap-

proaches 90% in some cases. It falls off faster than conventional retrieval, with

more rapid modulation losing efficiency at a greater rate.

Since the data sets shown in figures 7.12 to 7.14 were taken over a sufficient time

period that the performance of the optical trap may have varied, an attempt is made to

compensate for this drift in figure 7.15, by considering the degree of photon retrieval as

a function of optical trap performance, rather than shot number (which demonstrably

is not a linear relationship, figure 4.9).

Figure 7.15 (a) shows the OD of the atomic ensemble as a function of shot number.

The optical depth is calculated within a 15ns window near the end of the probe pulse
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Figure 7.15.: OD dependency of modulation efficiency. a: Variation of OD with shot

number. b: OD calculated by evaluating ensemble transmission during a 15ns

window at the end of the probe pulse (grey window). c: Retrieval intensity as a

function of OD, normalised to the peak retrieval rate of the no-microwave case.

Modulated retrieval exhibits very consistent performance when variation in the

optical trap is factored out.

(shown in figure 7.15 (b)). A narrow late window is chosen to minimise the influence of

the coupling laser on the calculation. The number of photons transmitted through the

cloud is compared to the number transmitted in a reference pulse, measured without an

atomic ensemble. The reference photon pulse (shown by a broken line in figure 7.15 (b))

was measured, once, approximately halfway through the laboratory time dedicated to

this experiment. This technique relies on a general observation that the stability of the

excitation laser is substantially greater than that of the optical trapping laser.

This technique is least accurate at high OD values, due to the tiny fraction of probe

photons detected with which to compare. The technique shown in figure 4.9, where

a Lorentzian curve is fitted across a frequency scan, is more reliable, due to higher

transmission off resonance. Since the data shown in figure 7.15 was only measured at

resonance, the less accurate method must suffice. However, a substantial systematic
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error is present at higher values of OD.

However, even accounting for the systematic limitations, considering the retrieval sig-

nal as a function of OD (figure 7.15 (c)) provides a useful means of visualising storage

efficiency independently from trap variation over the course of the day. Other contribu-

tions to variation, such as power and frequency stability of the coupling laser, cannot be

factored out, and may still play a role.

Figure 7.15 (c) shows that all but the fastest modulation frequency exhibit near-

identical performance as a function of optical depth. Non-modulated photon storage is

similarly efficient at high OD, but becomes much more efficient for a range of OD, before

the atomic ensemble depletes sufficiently for storage to fail completely. The fastest

modulation is substantially less efficient in all cases.

The observation of non-modulated photon storage/retrieval efficiency falling below

modulated efficiency for OD ≥ 3 casts a degree of doubt on this method. The variation

could arise either from the systemic uncertainties in calculating OD (which are greatest

at larger OD), or from variation in either power or frequency stability of the coupling

laser.

7.4.4. Fast modulation

Figures 7.12 to 7.15 demonstrate photon modulation at frequencies up to fmod = 25MHz,

with lower modulation frequencies exhibiting low loss. This modulation is observed as a

variation in the intensity of the photon retrieval signal between individual clock cycles

of the FPGA-based detection system described in section 4.2. Since each clock cycle has

a finite length (5 ns), it imposes a finite resolution, beyond which intensity modulation

cannot be observed. The Nyquist-Shannon sampling theory states that [257]

If a function f(t) contains no frequencies higher than W cps, it is completely

determined by giving its ordinates at a series of points spaced 1/2W seconds

apart

For the detection system used here (section 4.2), this would yield a maximum detectable

modulation frequency of fmod = 100MHz. Higher modulation frequencies can plausibly
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be generated due to the high microwave sensitivity of Rydberg excitation, but cannot

be observed using the approach taken in sections 7.3 and 7.4. A detection system with

an improved resolution would be required.6

To observe high modulation frequencies than the noted 100MHz limit, a different

technique must be used. Rather than simultaneously applying a microwave field and

observing signal intensity: in which a different microwave rotation angle is observed

in each FPGA clock cycle (figure 7.6); the approach used in chapter 6 can be used

instead (figure 6.3). In chapter 6, a microwave pulse was applied prior to detection, such

that many clock cycles within a single shot all observed the same microwave rotation

angle. In effect, each experimental shot is added to a single microwave rotation bin.

This allows arbitrarily high Rabi frequencies to be observed, but requires dramatically

greater experimental time.

The highest microwave Rabi frequency demonstrated using the apparatus described in

this thesis was Ωµ = 495± 5 × 2πMHz, on the transition 60S1/2 ↔ 59P1/2 (figure 6.10).

The data is shown in figure 7.16, with the signal normalised against photon storage

conducted without any microwave driving. The rotation angle was varied as a function

of microwave power, and the values estimated by fitting to the Rabi frequency. The

rotation angles are accurate to ±2π. A rotation angle of 198π and a microwave pulse

duration of 400 ns corresponds to a Rabi frequency of 495± 5 × 2πMHz. However, this

degree of driving results in substantial loss, with a peak retrieval rate (198π) at just 16%

of the retrieval level absent microwave driving.

The microwave Rabi frequency is limited here by the microwave signal generator’s

maximum power output at the resonant frequency (19.005GHz). Use of the transition

80S1/2 ↔ 79P1/2 at 7.691GHz offers both higher maximum microwave power and a

greater transition strength. In principle, Ωµ could exceed 1.5×2πGHz on this transition,

although resultant loss in retrieved signal strength would likely be prohibitive.

6The limiting factor in this experiment is the choice of FPGA, which cannot offer much lower than a

5 ns clock cycle. The SPCMs offer a resolution of up to 27ps.
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Figure 7.16.: Rapid microwave driving. A high power microwave field resonant with

60S1/2 ↔ 59P1/2 is applied during the storage window only (as in the sequence

shown in figure 6.3). Retrieval is weak, but still present. Signal level normalised

to retrieval level in absence of microwaves. Solid line is a fit to equation 6.2.
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In summary, this thesis reports on the construction of a new experimental apparatus to

study non-linear quantum optics in cold atoms excited to Rydberg states. It includes

description and discussion of experiments demonstrating effective long-range interactions

between photons stored as collective excitations in separate, non-overlapping spatial

modes. It demonstrates that with the application of controlled microwave fields, the

collective Rydberg excitations can be efficiently driven with minimal loss through many-

π rotations before retrieval, and that such a technique can be used for efficient optical

resolution of separate states.

8.1. Overview of this thesis

The new experimental apparatus is described in chapter 4, as well as in [105, 106].

The apparatus offers a high repetition rate of the order of O(100 kHz), owing to the

use of a 2D-MOT cold atom source and the ability to effectively recycle the atomic en-

semble O(104) times without substantial atom loss. In-vacuum aspheric lenses offer

near-diffraction limited performance and are used to optically trap and probe side by

side microscopic cold atomic ensembles, spaced at a distance at which dipole-dipole in-

teractions are non-negligible. Eight electrodes and three microwave antennae are located

in vacuum to allow the application of electric fields in the frequency range DC−40GHz.

A new integrated experimental control and data acquisition system is implemented.

The control system is based on control software and hardware now widely used in

Durham, allowing a sharing of expertise and maintenance overhead to maximise the

uptime of multiple complex experiments compared to previous generations. The data
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acquisition system provides substantially greater insight into the performance of the

experiment, recording the arrival time of every single photon detected rather than a

drop-in start-stop based coincidence detector. This increased capability comes at the

cost of reducing the time resolution from O(100ps) to 5ns. Due to the limit on total data

set size available, even with the high repetition rate, this limitation is not anticipated to

prove problematic.

Preliminary data demonstrating non-linearity are shown in the end of chapter 4, in-

cluding intensity dependent transmission under EIT conditions and the saturation of

photon storage at various Rydberg states. Photon storage and retrieval exhibits a sub-

stantial reduction in g(2) between the initial laser pulse and the retrieved photon pulse,

indicating that highly non-classical states of light are produced by the protocol, given

the geometric constraints of the atomic ensemble(s) used, The fast repetition rate of the

experiment permit large data sets of photon statistics to be assembled over short time

scales even with the low (≈ 0.1−1%) efficiency of photon storage and retrieval achieved.

Non-contact photon-photon interactions

Chapter 5 presents data demonstrating interactions between two photons stored in two

independent and non-overlapping atomic ensembles as collective Rydberg excitations

[63]. It is shown that photon emission from the two ensembles becomes anti-correlated

as a function of increasing vdW interactions. Data showing these anti correlations as a

function of interaction strength (principal quantum number) and separation were pre-

sented in the work of H. Busche [105], and included here as background to data showing

that anti-correlations also increase as a function of interaction time.

The data are compared to a model in which vdW interactions imprint a spatially non-

uniform phase shift on nearby collective excitations, resulting in a decreased likelihood

of collective emission back into the original mode and a consonant decrease in detection

probability. The model is an extension of earlier work by F. Bariani et al [65]. The

model exhibits a good fit for all three varied parameters (interaction strength, ensemble

separation, interaction time).
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Microwave electrometry

Chapter 6 presents data demonstrating that cold atoms offer a competitive platform,

under certain conditions, for sensitive electrometry of weak microwave fields. Two meth-

ods of electrometry are demonstrated, based on microwave-driven photon storage spec-

troscopy. Photon storage spectroscopy yields a sensitivity that is provisionally competi-

tive with published values in thermal atoms [89], despite the disadvantage of the necessity

of cooling atoms beforehand. However, this high sensitivity to microwave fields is shown

to arise from a previously unobserved artifact of recycling the atomic ensemble many

thousands of times, and as a result, is also highly sensitive to other parameters such as

the intensity of the probing field.

Where part of the collective Rydberg population is driven to, and left in, a state that is

non-resonant with the photon retrieval process, it is shown that atom loss from the opti-

cal trap is dramatically enhanced, leading to the suppression of photon storage/retrieval

efficiency at non-integer-π rotation angles seen in previous work [53, 103]. It is this pro-

gressive reduction in retrieval efficiency that results in strong microwave sensitivities, but

that is itself dependent on parameters such as probe intensity and atomic ensemble recy-

cle number. By including a second microwave driving stage, the fossilised non-resonant

population may be re-addressed and disposed of, in order to properly sanitise the atomic

ensemble for further recycling.

As a result of the addition of the ‘cleaning’ microwave pulse, it is demonstrated that

collective Rydberg excitations may be efficiently driven through many-π rotations and

still be recovered with minimal loss.

Single photon shaping

Chapter 7 takes advantage of the demonstrated ability to perform high fidelity Rabi

rotations to implement two schemes of microwave control of single optical photons. The

second microwave pulse brings the non-resonant Rydberg state into resonance with the

retrieval process, producing a second coherent, collective emission, delayed by O(100ns)
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relative to the first retrieval pulse. This delay would allows the implementation of TDM1

via the application of a microwave pulse, such as might be produced by a superconducting

circuit [81, 82].

It is also demonstrated that by driving population between the resonant and non-

resonant Rydberg states simultaneously with the photon retrieval process, the intensity

of the retrieved photon may be rapidly modulated. Since the photon (stored as a col-

lective excitation) is shelved in a non-resonant state, rather than diverted into a signal

dump, this intensity modulation technique exhibits substantially lower loss than hard-

ware solutions such as AOMs, EOMs, or shutters. Intensity modulation at up to 25MHz

is demonstrated, and data suggests that rates exceeding 500MHz are possible; although

they cannot be observed by the same technique due to the time resolution of the data

acquisition system.

8.2. Outlook

Multiple equipment upgrades are underway to allow a greater range of experiments to

be conducted.

Principally, a new optical trapping system will be installed. By introducing an ad-

ditional trapping beam (specifically, a pair of focused beams crossing at a small angle

[167, 168] perpendicularly to the two micro traps discussed in section 4.1.4, the atomic

ensembles can in principle be completely confined to a volume smaller than the blockade

radius at typical Rydberg states. This additional confinement will both improve the

optical depth of the traps and provide much greater certainty in the interaction distance

between collective excitations in multiple sites, reducing the ‘smearing out’ effect seen

in chapter 5 as a result of minimal axial confinement.

A second control laser has been installed to permit simultaneous excitation to differ-

ent Rydberg states (see appendix A), as sequential excitation via two-photon microwave

transfer proved impractical (see appendix C). The second laser will allow the two chan-

1Time-division multiplexing
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Figure 8.1.: Spatial photon emission. Predicted effect of contactless, Rydberg mediated in-

teractions upon photon retrieval modes. Preliminary modelling based on spherical

Gaussian atomic distributions (σrad = σax = 1.5µm, d = 10µm, 80S1/2) predict

a deflection of the emitted modes, rather than an isotropic depletion of intensity,

increasing with storage time. Courtesy of H. Busche

nels to be separately addressed by coupling light.

Further experiments are planned to advance the state of the art demonstrated in [63]

and chapter 5. The experiments presented in this thesis only considered whether the

stored photon was successfully emitted into the original mode whence it originated. The

next logical step is to map out the emission pattern outside the original mode that arises

from the controlled interaction with a second excitation. It is intended to piezo-actuators

to translate the tip of the single-mode fibre that delivered retrieved photons to the SPCM

as a dithered multi-pixel imaging array. Figure 8.1 shows a preliminary calculation of

the expected mode distribution of emitted photons as a function of storage time. It

predicts that rather than an isotropic reduction in forward emitted intensity in favour

of a random direction, the collective mode remains relatively directional but that the

direction is deflected outwards.

The increased confinement provided by the upgraded optical trapping configuration

should also permit an experimental implementation of D. Paredes-Barato’s proposed

photonic phase-gate [61]. The full two-qubit gate proposal requires that the current

two-channel trapping configuration be extended to four-channel, but a proof of principle

may be conducted with just two sites. In this proposal, the state of the incident qubits

determines the physical position at which the photons are stored as a collective Rydberg

excitation. The distance between sites is chosen such that, when photons are stored as

collective excitations in the same state, the vdW interactions are negligible; but that if a
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Figure 8.2.: Photonic phase-gate proposal. Adapted from [61]. Two photonic qubits (con-

trol C and target T ) are stored as collective excitations at different positions de-

pending on their state. Possible positions are separated by d10 � rDD
B > d11 >

rvdWB . A microwave field is applied to drive excitations through a 2π rotation

from nS1/2 to n′Pj and back. If both the control and target qubits are in their |1〉
locations, resonant dipole-dipole interactions prevent the rotation, and no phase

shift results. If one or both qubits are not in their |1〉 locations, the dipolar inter-

actions are too weak to prevent the rotation and a π phase shift results. Adapted

from [61] courtesy of D. Paredes-Barato

microwave field drives a transition to an opposite-polarity state, the resulting resonant

dipole-dipole interaction strength is strong enough to result in rapid dephasing. The

proposal is illustrated in figure 8.2.

A possible direction to take in the longer term is to consider using different atomic

species. Rubidium is a convenient atom to use for several reasons: it is well understood

and easy to laser cool, alongside the practical benefit of being currently in use for the

experiments presented here: a great deal of appropriate equipment is already available

for use. One notable disadvantage, however, is the short dephasing lifetime of collec-

tive excitations arising from the mismatch in probe and coupling wavenumbers kc and

kp. All five alkali species (lithium, sodium, potassium, rubidium, caesium) exhibit a
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similar ratio of ≈ 1.7. Considering other this parameter, the most promising candidate

species would be ytterbium, which offers an excitation pathway with a probe to coupling

wavenumber ratio of 1.005. Several studies [258–260] suggest that the use of an alkaline-

earth-like species such as ytterbium would offer the ability to work with denser ensembles

before Rydberg-ground-state collisions become a problem as other groups working with

rubidium have discovered [261].
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‘Is that what we’re calling it now?’

- Daredevil

The vacuum chamber was sealed, pumped down, and baked out, in June 2014. The

first signal from the MOT was detected in July 2014.

Data presented in the beginning of chapter 5 was taken jointly with Hannes Busche

[105] and Paul Huillery [63] in April and May of 2016. Data presented at the end of

chapter 5 was taken in December 2016. Data presented in chapters 6 and 7 was taken

in June and July of 2016.

At the end of August 2016, the primary 780 nm cooling laser diode (see section 4.1.2)

failed, most likely due to age. Replacing this diode and rebuilding the cooling laser

system took approximately 3 weeks, with the first absorption signal in the optical trap

recovered at the end of September 2016. While the 780 nm laser system was under repair,

atoms could not be cooled or loaded into the trap, and so the alignment of the experiment

could not be maintained to compensate against the effects of thermal fluctuations and

vibration.

At the beginning of October 2016, one month after the first diode failure, the diode

in the master laser of the 910nm optical dipole trap laser system also failed, probably

as a result of voltage fluctuations associated with a series of power cuts.

An attempt was made to replace this master laser with a then-unused Toptica DL
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Pro, although satisfactory coupling into the homebuilt tapered amplifier could not be

achieved, resulting in insufficient power to produce two optical dipole traps. After two

weeks, this attempt was abandoned in favour of using the recently installed M2 Sol-

sTiS2000 titanium sapphire laser. This laser was bought with the intention of providing

a second coupling laser at 480 nm to allow for simultaneous storage in two separate |S〉
states (see appendix C). However, the extreme versatility of this class of laser, along

with increasing urgency to restore functionality to the experiment, required its use as

an optical trap, also at 910nm.

Absorption in both optical traps was recovered in late October 2016, although it took

until mid November to identify and solve a noise issue that overwhelmed on-resonant

effects. This was eventually traced to one of the laser line filters protecting the SPCMs.

The first photon storage signal since late July 2016 was recovered in the beginning of

the third week of November 2016. The author’s laboratory time ended at the end of

December 2016.

Unfortunately, due to the prolonged period of downtime in which one or both of

the optical trap absorption and photon storage signals were unavailable, the benefit of

the previous two years of gradual improvement in experimental efficiency was largely

lost, with less than one month in which to collect final data to be included in this thesis.

Consequently, storage efficiency and signal-to-noise ratio suffered considerably compared

to data taken in June and July 2016. The combination of the lack of time, and sufficient

SNR resulted in at least one planned experiment being postponed indefinitely.

It is hoped that, with immediate time pressure reduced, the apparatus can be restored

to the peak efficiency achieved and the previously shelved experiments, as well as many

new possibilities opened by various on-going upgrades, can be carried out in the very

near future.
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B. DExTer

DExTer is an extensive application with numerous features not entirely obvious to the

inexperienced user. Several features will be enumerated in this appendix

B.1. Time step resolution

DExTer’s main logical unit is the time step. Internally, a time step is processed as a series

of 64-bit words written to main computer RAM, containing:

• 1 word: header information. Step duration, type (normal or sub-µs), channels

changed

• 2 words: digital channel status.

• 2 words: analogue status

Instructions are communicated to the FPGA kernel via a pair of FIFO1 queues in host

computer RAM. One FIFO contains all analogue data (‘analogues’); the other contains

everything else (header, digital, sub-µs) (‘all bar analogues’).

Each sub-µs time step is stored as a single 64-bit word, for 32 words in total, stored

as the first elements in the all bar analogues FIFO. Thereafter, time steps are grouped

in order.

When a user begins an experimental sequence via the main terminal UI, the following

elements are read into local FPGA memory from the appropriate FIFOs:

1. (All bar analogues) All sub-µs data (32 words),

1First-in, first-out
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2. (All bar analogues) Header information for the first time step (1 word),

3. (All bar analogues) Digital information for first time step (2 words),

4. (Analogues) Analogue information for first step (2 words).

On subsequent time steps, step 1 is omitted and steps 2− 4 are repeated.

Once data has been read, the kernel repeatedly determines what action to take:

1. If the next time step is flagged as the ending time step, then stop and signal to

the main terminal that the sequence is finished,

2. Else if the next time step is a sub-µs sequence, then execute the sub-µs sequence

already stored locally,

3. Else if the analogue channels change and the step length is greater than x, then

execute both digital and analogue data,

4. Else execute digital data.

Reading words from RAM and executing them requires a finite amount of time. If

this time is not compensated for, then each step is extended by the time it takes to

read and execute the following step, leading to timing inaccuracy. Compensation is

added by measuring the inaccuracy externally (for example, comparing the requested

timing to the actual timing on an oscilloscope) and adding a processing step to the

timing sequence that shortens each step by the appropriate duration. Currently, this

processing is carried out in the FPGA kernel, although it could, in principle, be shifted

over to the main terminal processing chain.2 Typically, the timing delay is 32 × 25 ns

clock cycles for digital-only changes, and 56× 25 ns clock cycles for analogue changes.

Additionally, a minimum threshold time is applied to the analogue change to ensure

that the channel has time to settle at that value. Currently, this is arbitrarily set at

2These values are integrated into the kernel software, and adjusting them requires re-compiling to

bitcode. Re-compilation can affect the true value they should take, in addition to taking significant

time.
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2.5µs (100× 25ns clock cycles). Requested analogue changes in steps shorter than this

are ignored. This is a legacy limit that appears to be redundant with the above noted

analogue threshold, although due to the relative unimportance of ramping analogue

channels in the experiments discussed here, no effort was made to modify it.

B.1.1. Sub-microsecond sequence

The overhead involved in reading each time step is unacceptable in the sub-µs sequence.

To avoid the delay, the entire sub-µs sequence (32 words) is read into local FPGA RAM

prior to the beginning of synchronous execution. The necessity to fit inside local RAM

leads to the various restrictions listed in section 4.3.2. As 32 steps was deemed to

be considerably greater than necessary for the experiments discussed in this thesis, no

further attempt has been made to adjust resource allocation to lighten any of these

restrictions.

B.1.2. Ramping

Analogue channels may be ramped linearly from one value to another within a time step.

In the UI this is presented as a boolean flag within the time step. If checked, the channel

value will ramp to the given value over the course of the time step.

Internally, ramping is realised by dividing the step into 103 individual steps, and

rasterising the ramp as a series of small fixed-value steps. For ramps shorter than

2.5ms, fewer steps are used (with a minimum step length of 2.55µs). Smoother or faster

ramps require the use of an external signal generator.

B.2. Multirun parameter scanning

A sequence can be repeated indefinitely (for example, to provide continuous feedback

while tuning an instrument), or a fixed number of times. Over a fixed number of times,

one or more parameters can be configured to vary automatically. The length of individual

time steps, or the value of analogue or asynchronous channels, or both, may be varied

in this manner. Figure B.1 shows a diagram of these repetitions.
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For each experimental repetition in which a parameter is changed, DExTer re-processes

the entire sequence to be written to main computer RAM. This additional processing time

can represent a non-trivial increase to the total time required for an entire experimental

execution.

Experimental repetitions are controlled by five parameters set by the user. These are:

• Sub-µs repeats. These are covered in section 4.3.2.

• Multirun steps. These allow one or more numeric parameters to be changed in

subsequent experimental repeats.

• Quick repetitions. These immediately repeat the experimental sequence without

changing any parameters, avoiding the need to re-process the entire experimental

sequence.

• Full scans. These repeat the entire multirun scan, requiring the sequence to be

re-processed

• Repetition order.

The total number of repeats of the experimental sequence is given by Nmultirun ×
Nquick × Nfull. Consider an experimental sequence in which a parameter is scanned

over 4 values, a, b, c, d. 2 quick repetitions and 3 full scans are set. The default

repetition order varies the multirun parameter from first to last in order, giving:

aa bb cc dd aa bb cc dd aa bb cc dd

The reverse repetition order varies from last to first, producing:

dd cc bb aa dd cc bb aa dd cc bb aa

The alternating repetition order alternates first-to-last, last-to-first:

aa bb cc dd dd cc bb aa aa bb cc dd

Finally, the random repetition ordering will give an entirely random order. Quick

repetitions will still be grouped together, but full repetitions may now be interleaved

together. For example:
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Figure B.1.: DExTer’s experimental repetitions. This figure shows the pattern followed

if the Repetition Order is the default one. The first Multirun Step value is

repeated Quick Repetitions number of times, followed by the second Multirun

Step value. After the entire Multirun Step range has been carried out, it is

repeated in its entirety Full Scans number of times.
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cc aa bb bb cc dd aa dd aa bb dd cc

In all cases, the order is stored in a logfile produced and saved at the end of an

experimental execution.

B.3. Photon counting

Each data event (discussed in section 4.3.4) is written to a third FIFO as a 64-bit word.

The format of the word is as follows: TTTT TTTT TTTT· · · TTTT 0Aa0 0Bb0 0Cc0 0DdR

where:

• T is a bit of time information (48 bits in total),

• 0 is (always) null,

• A is the output status of SPCM A (i.e. photon (1) or no photon (0)),

• a is the gate status of SPCM A (i.e. on (1) or off (0)),

• R is the status of the reference channel.

The component of the main terminal that communicates with the FPGA via main

computer RAM also monitors the FIFO into which data is written while the sequence is

in progress. 64 bit words are read from the data FIFO and reformatted as strings of 16-

digits of hexadecimal (base 16). The reformatted strings are passed to another process,

via a queue, which write them to disk. The main terminal does not permit the sequence

to be terminated (other than via intrusive interference such as an operating system kill

command) until the data FIFO and the queue into which strings are passed have been

emptied.

A single digit of hexadecimal encodes 4 bits, rendering the 64-bit word more compre-

hensible to a human. Consider the example data string 000136C781FE4607. The first 12

digits are the clock cycle number in which the event occurred. 000136C781FE≈ 5.2×109

clock cycles, for a time of ≈ 26.070 s. However, the clock cycle counts are only stored as

hexadecimal for convenience, rather than comprehensibility.

The final four digit SPCM status is more easily interpreted: 4607 gives:
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• SPCM 1 has a value of 4, corresponding to gate on, nothing detected,

• SPCM 2 has a value of 6, corresponding to gate on, and a photon detected,

• SPCM 3 has a value of 0, corresponding to being gated off,

• SPCM 4 is the only channel that can have an odd value. If the value is odd, then

the reference channel has been switched on. Therefore, the value 7 indicates that

the reference channel is on, the gate is on, and the SPCM detected a photon.

A value of 2 is in principle possible, corresponding to gate off but photon detected - this

indicates that the SPCM is incorrectly connected.

Every time that the sequence repeats - at the beginning of a new quick repetition, full

scan, or multirun step - the clock counter is reset to zero.

B.4. Memory performance

A memory leak has been identified, associated with the photon counting module of

DExTer. It originates in incorrect garbage collection within LabView associated with the

queue opened to pass hexadecimal strings to the the software component for writing

data to non-volatile storage. No solution has been found as of time of writing.

As a consequence of the memory leak, re-processing the experimental sequence gradu-

ally slows down, leading to an eventual crash when the 32-bit LabView process exceeds

its addressable memory. The rate of degradation can be slowed by minimising the use

of full scans and multirun scans in favour of quick repetitions, where possible. Full

performance can be recovered by restarting the host computer.
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All microwave excitation experiments shown in chapters 6 and 7 concern a transition

between states of opposite parity by the absorption of a single microwave photon. Ex-

periments can be considered in which two identical microwave photons are absorbed

to transfer between Rydberg states of identical parity, which are not accessible via the

absorption of a single photon [130].

Such experiments differ qualitatively from the discussion of EIT in chapter 3. In the

former discussion, transitions from the ground to the Rydberg state were achieved by the

use of two distinct photons, each resonant with an atomic transition to an intermediate

level |2〉.

∆

|1〉

|3〉

|1〉

|3〉

|2〉|2〉

ωp

ωc ωb

ωa

|ν〉

Figure C.1.: Two photon absorption. Left: EIT using non-identical photons ωp and ωc via a

real atomic state. Right: Two photon absorption using identical photons ωa = ωb

via a virtual state.

Since only one microwave source was available for use in this experiment,1 a different

approach must be considered, as it is unlikely that an atomic state exists at exactly half

of the energy difference between the beginning and end states. The process can instead
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be described as using a ‘virtual’ state |ν〉, that is exactly halfway between the beginning

and final states. The first photon causes a transition from |1〉 → |ν〉, while the second

photon causes the transition |ν〉 → |3〉 (see figure C.1).

C.1. Two-photon absorption

Following the approach outlined by W. Ketterle in [262], we present a general theoretical

outline to two-photon absorption. The medium is illuminated by an electric field of the

form

E = Eaea cos(ωat) + Ebeb cos(ωbt), (C.1)

where ωa and ωb are not necessarily equal.

The Hamiltonian is of the form H = −E · d. Combined with equation C.1, this gives

H = −1
2
(
eiωat + e−iωat

)
Eaea · d−

1
2
(
eiωbt + e−iωbt

)
Ebeb · d. (C.2)

We define

Hν1,a = −Ea 〈ν| ea · d |1〉 , Hν1,b = −Eb 〈ν| eb · d |1〉 , (C.3)

The matrix element 〈ν|H |1〉 is:

Hν1 = Hν1,a
2 e−iωat + Hν1,b

2 e−iωbt, (C.4)

where the counter-rotating terms have been dropped for simplicity.

The solution for the probability amplitude of existing in |ν〉 is given by [262]

aν = 1
2~

Hν1,a
(
e−i(ωa−ων1) − 1

)
ωa − ων1

+
Hν1,b

(
e−i(ωb−ων1) − 1

)
ωb − ων1

 . (C.5)

The solution for the probability amplitude of existing in the final state |3〉 is found from

i~ȧ3 =
∑
k

H3kake
iω3kt. (C.6)

1A second microwave source (Agilent E8257D PSG, see appendix D) became available near the end of

the work presented here, but was not experimentally integrated in time for use.
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The contribution to the sum due to state ν is

a3 = 1
i~

∫ t

0
〈3|H |ν〉 e(iω3νt′)dt′. (C.7)

Using

H3ν,a = −Ea 〈3| ea · d |ν〉 , H3ν,b = −Eb 〈3| eb · d |ν〉 , (C.8)

〈3|H |ν〉 = H3ν,a
2 e−iωat + H3ν,b

2 e−iωbt. (C.9)

Substituting equation C.9 into equation C.7, we get

a3 = 1
4~2

∑
ν

[
H3ν,aHν1,a
ωa − ων1

ei(ω31−2ωa)t − 1
ω31 − 2ωa

+ H3ν,bHν1,b
ωb − ων1

ei(ω31−2ωb)t − 1
ω31 − 2ωb

+

H3ν,bHν1,a
ωa − ων1

ei(ω31−ωa−ωb)t − 1
ω31 − ωa − ωb

+ H3ν,aHν1,b
ωb − ων1

ei(ω31−ωa−ωb)t − 1
ω31 − ωa − ωb

]
. (C.10)

The first two terms involve absorbing two photons from the same source, while the final

two terms involved absorbing one photon from each source. When the two sources a and

b are of different frequencies (ωa 6= ωb), the first two terms are far from resonance and

may often be neglected (such as in the case of the ladder EIT scheme used to store photons

in this thesis). In the proposed two-photon microwave transition, the two sources are

identical (originating from the same microwave signal generator), and all four terms

contribute.

C.2. Energy levels in the Rydberg manifold

Figure C.2 illustrates part of the local Rydberg manifold around the principal Rydberg

state used for photon storage in this thesis (80S1/2). Only lower energy levels are shown,

but higher energy levels are qualitatively symmetric.

Two two-photon transition pathways are depicted, to n − 1 and n − 2 S states re-

spectively. In the case of an n− 1 transition to 79S1/2, the intermediate virtual level is

extremely close to both 79PJ states (detuned by 82.7MHz and 278MHz respectively). In

the case of an n− 2 transition to 78S1/2, the intermediate virtual level is far detuned by

(7.5± 0.2)GHz from all four intermediate P states (79P1/2, 79P3/2, 78P1/2 and 78P3/2).
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Figure C.2.: Symmetrical two photon microwave transitions from 80S1/2. Transitions

are shown only to lower n states, but the approach is broadly symmetrical.
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C.3. Two-photon spectroscopy

The pathway to (n− 1)S is not far detuned from the intermediate state 79P3/2, and is

consequently not a promising candidate. An initial search was made for the (n − 2)S

transition, with a predicted frequency of ωpred = 15.072 × 2πGHz. The results are

shown in figure C.3. A 450 ns microwave pulse was used, yielding a narrower but deeper

feature. In order to provide maximum possible microwave intensity, all attenuators

and the coaxial isolator were removed from the microwave pathway, and the microwave

generator was set to a high power output in order to generate a visible signal. Whereas

the data shown in figure 7.12 (d) used a microwave power of 38 mVrms;2 here a power of

1600 mVrms was set.3

−10 −5 0 5 10
∆µ/2π (MHz)

0.4
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m

.)

Figure C.3.: Two-photon spectroscopy of the transition 80S1/2 → 78S1/2. Coarse and

fine resolution microwave frequency scans are shown in blue circles and red trian-

gles respectively. The two photon absorption feature is found at ∆µ = ωµ−ωpred <

1 × 2πMHz. Solid lines are a fit to equation 6.1 with a microwave pulse duration

of a1 = tµ = 450ns.

2Up to 1200 mVrms signal generator set point plus ≈ 30dB of additional attenuation.
3The exact maximum power at 15GHz is unknown and may be lower than 1600 mVrms. The known

maximum powers were later found to be 1650 mVrms at 7.7GHz and 1180 mVrms at 19.0GHz.

179



C. Two photon microwave transitions

The feature was identified substantially closer to the predicted value (∆ < 1×2πMHz)

than was the case for the nS1/2 → nP1/2 transitions considered in chapters 6 and 7 (see

for example figure 6.4). The inaccuacy found previously was theorised to arise from

stray electric fields that were not sufficiently compensated. Since the transition here is

between two similar states (with the same angular momentum quantum number), it is

likely that they experience extremely similar energy shifts as a result of any stray electric

field, leading to an extremely small differential shift.

However, due to the large detuning from the intermediate states (79P1/2, 79P3/2,

78P1/2 and 78P3/2), the Rabi frequency that can be achieved is sharply limited. Achiev-

ing higher Rabi frequencies would either require a microwave amplifier; or a second

microwave signal generator. The use of a second generator at a second frequency would

permit the detuning to be tailored to achieve the desired two-photon Rabi frequency.

Even so, the time requirements make it probable that TDM creation of collective

Rydberg excitations in different nS1/2 states is prohibitive. A preferable technique would

be the use of a second coupling laser resonant with a second Rydberg state. A titanium-

sapphire laser was recently installed for this purpose, but due to the failure of the optical

trap laser diode (see appendix A), was not available for this purpose.
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quantum opticians

The optical techniques described throughout this thesis are all relatively well understood

in the quantum optics community. Although the experiment itself is unique, and some

methods - such as optical read-out of Rydberg states - are unusual, every individual

element of the experiment is comprehensible to a student of similar experience - for

instance, working on another cold atomic experiment.

The exception to this principle, in the author’s opinion, is the use of, and techniques

required, for employing microwaves. This tends to require knowledge of electronic en-

gineering, and frequency effects in areas not usually relevant to optical experiments.

Consequently, this appendix has been written to cover some of the more ‘exotic’ - or

obscure - facts and techniques involved.

D.1. Skin depth

Current density flowing through a uniform conductor can naively assumed to be spread

uniformly throughout. In the case of a direct current - i.e., time invariant - in a cylindrical

conductor, this is correct. However, this pattern is complicated either in more complex

geometries, and crucially, in the case of alternating - i.e., time variant - currents. Here,

we consider the simple geometry of a cylindrical conductor - a wire, or cable - carrying

a high or very high frequency current.

A current flowing through a conductor under the influence of a driving electric field

induces a magnetic field around the conductor. An alternating current results in an
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alternating induced magnetic field. This induced magnetic field in turns induces sec-

ondary alternating currents. From Lenz’s law, we know that these induced currents in

turn induce a secondary magnetic flux, opposite in polarity to the original magnetic field

producing the secondary currents. consequently, the total magnetic flux is reduced. The

magnitude of this reduction depends on the nature of the conductor - its conductivity

(affecting the induced currents) and its permeability (affecting the secondary indcued

magnetic flux).

Consider the interface between a conductor and a non-conductor. The conductor has

a conductivity of σ and a permeability of µ, and carries a sinusoidal current with angular

frequency ω. Further assume that the current density vector is parallel to the surface

and travelling in the z direction, such that J = Jzuz depending only on y, the distance

from the interface. Following the proof in chapter 20 of [263], we can derive the form of

the skin effect.

Starting from the differential form of Maxwell’s equations, and assuming that the

medium is a good conductor, we neglect the displacement of current density:

∇×E = −jωB, (D.1)

∇×H = J . (D.2)

Since E = J/σ and H = B/µ, these become:

∇× J = −jωσB, (D.3)

∇×B = µJ . (D.4)

We started with the assumption that the current density vector only had a z component,

dependent on y. From symmetry and the Biot-Savart law, theB vector therefore only has

an x component. We can therefore move from the curl operator to (ordinary) derivatives

in y, as follows:

dJz
dy

= −jωσBx, (D.5)

−dBx
dy

= µJz. (D.6)
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We can eliminate Bz from these equations to obtain

d2Jz
dy2 = jωσµJz, (D.7)

which can be solved by the solution Jz(y) = J1eKy + J2e−Kr, where K is given by

K =
√
jωσµ = (1 + j)

√
ωσµ

2 = (1 + j)k (D.8)

Finally, we apply boundary conditions to find these constants. Assume that at y = 0 (at

the interface between conductive and non conductive medium), the current density is

Jz(0). As y →∞, the current density will increase indefinitely unless J1 = 0. Therefore,

we get

Jz(y) = Jz(0)e−kye−jky. (D.9)

The current density vector decreases exponentially with increasing distance from the

interface (i.e. depth into the conductor). We can define the distance at which the

amplitude of the vector has decreased to 1/e of the surface value as

δ = 1/k =
√

2
ωσµ

, (D.10)

which is known as the skin depth.

To illustrate the effects of frequency, table D.1 presents the skin depths of several

materials at frequencies between 1Hz and 65GHz (the highest frequency of the mi-

crowave synthesiser used in this thesis). Gold (σ = 44 × 106 Sm−1, µ = µ0), copper

(σ = 59× 106 Sm−1, µ = µ0), iron (σ = 107 Sm−1, µ = 1000µ0), seawater (σ = 4Sm−1,

µ = µ0), and wet soil (σ = 0.01Sm−1, µ = µ0).

At microwave frequencies (officially f = 0.3 − 300GHz [150], but for the purposes of

this thesis, approximately f = 5 − 40GHz), excellent conductors such as copper, gold,

silver and aluminium have skin depths of around 1 − 0.1µm. This results in a very

small effective conductor cross section, and consequently high resistive losses. The prin-

ciple effect is that microwave-capable components require specialised and highly precise

manufacturing techniques, with consequent high costs. In the laboratory, the most im-

portant consequence to be aware of is the specialised and delicate coaxial connectors

used to connect microwave components with a minimum of loss.
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Material f= 1Hz f= 50Hz f= 1 kHz f= 1MHz f= 1GHz f= 65GHz

Gold 75.7mm 10.71mm 2.40mm 75.7µm 2.40µm 0.30µm

Copper 65.8mm 9.31mm 2.08mm 65.8µm 2.08µm 0.26µm

Iron 1.59mm 0.23mm 50.3µm 1.59µm 50.3 nm 6.24nm

Seawater 252m 35.6m 7.96m 252mm 7.96mm 0.99mm

Wet soil 5 km 712m 159m 5.04m 159mm 19.7mm

Table D.1.: Skin depths δ for a range of materials and frequencies. 63% of the current

is conducted within δ of the conductor surface, and 95% within 3δ. Materials such

as wet soil, that have an exceptionally low conductivity have a drastically reduced

skin depth effect, while materials with high permeability, such as iron, experience

a much stronger effect.

D.2. Microwave connectors

At lower frequencies, a variety of coaxial connectors are used in typical laboratory and

industrial settings. The BNC1 socket is common on all equipment for frequencies below

1GHz, with the 3.5mm SMA2 is common for analogue radio frequencies (50MHz −
4GHz). N-type is used for radio frequencies at higher power than SMA.

A number of similar connectors have been developed based on the 3.5mm SMA stan-

dard, for different frequency ranges. We use several of these SMA-style connectors in

the laboratory, and care must be taken to identify which one is which. Attempting to

connect two superficially similar but different connectors will damage them, leading to

dramatically higher losses in that connection.

• Precision 3.5mm SMA (DC−26.5GHz): this is nominally the same as a typical

3.5mm SMA connector. However, it is manufactured to significantly higher toler-

ances. These are mostly indistinguishable from typical 3.5mm SMA connectors.

• 2.92mm SMK (DC−40GHz): the male pin is shorter and narrower than 3.5mm

1Bayonet Neill-Concelmann
2SubMiniture version A
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SMA connectors. A 2.92mm male connector should not be used with female

3.5mm connectors. 2.92mm female connectors MUST not be used with any

other type of SMA-style connector. This is the commonest RF connector used in

the experiment described in this thesis.

• 1.85mm SMV (DC−67.5GHz): the male pin is again shorter and narrower. Again,

the male connector should not be used with any other type of connector. The

female MUST not be used with any other type.

D.3. Microwave equipment

In this thesis, two microwave synthesisers were used:

• Anristu MG6936A source capable of producing signals between 2GHz and 65GHz,

nominally at powers between 10µW (−20 dBm) and 100mW (+20dBm). 1.85mm

SMV

• Agilent E8257D PSG capable of 250 kHz − 20GHz nominally between 0.1 fW

(−130 dBm) and 25mW (+14dBm). Precision 3.5mm SMA

Nominal power ranges are given. Practical maximum power falls off dramatically

towards both ends of the frequency scale. Exact maximum power for a given frequency

can either be measured using an RF power meter, or determined experimentally using

the techniques shown in chapter 6.

Virtually all microwave equipment and electronics used in this experiment has a di-

rect or close equivalent used in the optical laser systems. Considerations taken into

account in the design and implementation of these systems translates over very well to

the implementation of microwave excitation.

Key components that might not otherwise be considered in the context of electronics

are listed below:

• Isolator/circulator: this is identical in purpose and working to the optical isolator:

it acts to prevent signals from being reflected back into the source by means of

Faraday rotation of polarisation.
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• Directional coupler: this is analogous to an optical beam sampler. A directional

coupler is a 4-port device which is intended to split off a fraction of the signal

traversing the device in one direction only (hence the name). In addition to an

input and output port for the primary signal, there is a coupled port (into which

a fraction of the signal travelling from the input to the output is coupled); and

an isolated port. This is typically terminated with an absorptive load. Signal

travelling from the output to the input is coupled into this fourth, isolated port,

and only extremely weakly into the third. These devices are typically connected

to a signal or network analyser for measurement and monitoring.

Care must be taken to identify the frequency compatibility of different components.

Just as in optics, some components may be broadband, while others may be much nar-

rower. In this experiment, broad-band components (typically DC-40GHz) were preferred

where possible, to encompass the entire frequency range in user. However, performance,

cost, and availability constraints resulted in a range of narrow-band components in

places.

Even within a specified frequency range, performance should be verified whenever

possible. Microwave attenuators, just as with optical ‘neutral’ density filters, must be

assumed to have at least a weak frequency dependence.

D.4. Microwave bands

Outside of academic physics, the radio and microwave frequency spectrum tend to be

referred to by arbitrary names of bandwidths, rather than by frequency or by wave-

length. This means that identifying appropriate equipment can be complicated where

it is labelled only by band, and not more specifically. The following tables will give the

conversions between frequency and several common groups of band names.

Further complications arise as different organisations use the same designators, but to

refer to different frequency ranges. Where an instrument or piece of equipment is defined

by a band designation, it is important to identify to what standard or institutional

definition the designation refers.
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Band Frequency (GHz)

VHF 0.03 - 0.3

UHF 0.3 - 1

L 1 - 2

S 2 - 4

C 4 - 8

X 8 - 12

Ku 12 - 18

K 18 - 27

Ka 27 - 40

V 40 - 75

W 75 - 110

mm 110 - 300

Table D.2.: IEEE radar frequency bands as amended [264]. In some cases, the mm band (mil-

limetric, meaning millimetre wavelengths) is used to refer to the entire range from

30 − 300GHz. Note that the K and V bands respectively give rise to the naming

of the SMK and SMV3 connectors that are used for those wavelength ranges.

D.5. Sources of microwave noise

Optical experiments are typically able to operate in very low nose environments. Exter-

nal sources of light - such as the sun, laboratory lighting and status LEDs on instruments

- may be blocked easily by simple barriers (such as blinds and insulating tape), or filtered

(spatially by apertures and fibres, or spectrally by interference or bandpass filters). Ther-

mal noise may be minimised by cooling, and electrical noise by means of more elaborate

galvanic isolation schemes.

Microwave and radio frequency noise is harder to block, since optical barriers - such

as doors, walls and floors - are generally transparent to these frequencies. There are also

many more sources of such noise - such as laboratory and consumer electronics; wire-

less networking; mobile phone signals; amateur radio; thermal background; etc. In the
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Band Frequency (GHz) EIA Designation (US) RCSC Designation (UK)

R 1.7 - 2.6 WR430 /RG104 WG8

D 2.2-3.3 WR340 WG9A

S 2.6 - 3.95 WR284 /RG48 WG10

E 3.3 - 4.9 WR229 WG11A

G 3.95 - 5.85 WR187 /RG49 WG12

F 4.9 - 7.05 WR159 WG13

C 5.85 - 8.2 WR137 /RG50 WG14

H 7.05 - 10.1 WR112 /RG51 WG15

X 8.2 - 12.4 WR90 /RG52 WG16

Ku 12.4 - 18.0 WR62 /RG91 WG18

K 15.0 - 26.5 WR42 /RG53 WG20

Ka 26.5 - 40.0 WR28 /RG96 WG22

Q 33.0 - 50.0 WR22 /RG97 WG23

U 40.0 - 60.0 WR19 WG24

V 50.0 - 75.0 WR15 /RG98 WG25

W 75.0 - 110.0 WR15 /RG99 WG26

Table D.3.: Waveguide frequency bands as defined by the Electronic Industries Alliance (EIA),

and equivalent Radio Components Standardisation Committee (RCSC) in the US

and UK respectively

United Kingdom, the Office of Communications (Ofcom) is the governmental regulator

responsible for licensing use of the radio spectrum, in co-operation with the Ministry of

Defence (which licenses bands for military use) and international co-ordination organi-

sations.

Ofcom maintain an information sheet detailing the current state of spectrum licensing

in the United Kingdom at [205]. This covers the entire radio frequency spectrum from

9 kHz to 105GHz.

Of primary interest to us is the range approximately 3GHz - 40GHz. This is limited at
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Latest system Alternative system

Band Frequency (GHz) Band Frequency (GHz)

D 1.0 - 2.0 L 0.39 - 1.55

E 2.0 - 3.0 S 1.55 - 3.9

F 3.0 - 4.0 C 3.9 - 6.2

G 4.0 - 6.0 X 6.2 - 10.9

H 6.0 - 8.0 K 10.9 - 36.0

I 8.0 - 10.0 Ku 10.9 - 20.0

J 10.0 - 20.0 Ka 20.0 - 36.0

K 20.0 - 40.0 Q 36.0 - 46.0

L 40.0 - 60.0 V 46.0 - 56.0

M 60.0 - 100.0 W 56.0 - 100.0

Table D.4.: NATO radio frequency band designations (subset) [265]. Deprecated for civilian

use since 1992, but included for completeness and potential identification of legacy

high frequency equipment

the high frequency end (n=46 for nS1/2 ↔nP3/2) by the frequency range of our chamber

antennae feedthroughs; and at the low end by Rydberg states to which we can stably

lock a coupling laser (n≈ 100). Within that range, the greatest source of noise is IEEE

802.11n/ac [266] (‘WiFi’). In Europe, the 5GHz WiFi band is specified by European

Standard EN 300 328 V1.8.1 (from January 2015) [267].

5 GHz WiFi

The 5GHz WiFi band specifies a number of channels (of widths of 20, 80, or 160MHz)

between (in Europe) 5.15 − 5.725GHz. Devices compatible with the IEEE 802.11n/ac

standards may attempt to broadcast beyond this range, due to slightly different bands

in use in Japan and the United States. The specification is given in [266].

Initial measurements of the 5GHz spectrum within the laboratory were made with a

Oneplus A001 (‘Oneplus One’) smartphone, indicating noise levels of −70 - −50dBm
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centred at 5.15, 5.575 and 5.725GHz. More detailed measurements will be made with a

signal analyser if any attempt is made to perform microwave transitions below 6GHz.

For nS1/2 ↔nP3/2, this covers n=85 to n=90 inclusive. However, barring attempts

to implement TCP/IP via cold atoms, this part of the spectrum would seem to be

irredeemably tainted by widespread public use.
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E. About this thesis

This thesis was typeset in LATEX using theMikTeX 2.91 distribution and edited with the

TeXnicCentre editor.2 The thesis is laid out using the scrbook class of komascript.3

Figures were generated using Inkscape 0.9.2.04 and Python 2.75 relying principally

on NumPy v1.10.4-16 and SciPy v0.17.1-17 for analysis and matplotlib v1.5.1-58

for graph plotting.

Property Value

Compile date 2017/11/20

Compile time 19:09

LATEX ver. 3.1415926-2.3-1.40.12 (MiKTeX 2.9)

BibTeX ver. BibTeX 0.99d (MiKTeX 2.9)

Word count ≈ 53, 000

Table E.1.: Compilation properties

1https://miktex.org/
2http://www.texniccenter.org/
3https://www.ctan.org/pkg/koma-script
4https://inkscape.org/en/
5https://www.python.org/download/releases/2.7/
6http://www.numpy.org/
7http://www.scipy.org/
8http://www.matplotlib.org/
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