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An Empirical Analysis of Baryon Acoustic

Oscillations in Galaxy and Quasar Clustering

Behzad Ansarinejad

Abstract: We present our analysis of the baryon acoustic oscillation (BAO) signal in the

correlation functions of LOWZ and CMASS galaxy samples from Data Release 12 of the

SDSS BOSS survey. We draw a comparison between our results and the findings of Cuesta

et al. (2016) who analysed the BAO feature in the same datasets. Upon using subsets of

the data to obtain an empirical estimate of the uncertainties on the correlation functions,

we find our results to be in general agreement with the uncertainties presented by Cuesta

et al. (2016), obtained from simulated mocks. We detect the BAO peak at ≈ 4σ and ≈ 7σ

in the correlation function of the LOWZ and CMASS samples respectively. We demonstrate

that when fitting the correlation functions with our fiducial ΛCDM model, the A(s) nuisance

fitting parameters play a significant role in providing a good fit. Based on a F -ratio test, we

find that in our primary fitting range, the simple ΛCDM model without the nuisance fitting

terms is rejected in favour of the full model as indicated by the small p-values of p = 0.018

and p = 0.00084, for the CMASS and LOWZ samples respectively. We demonstrate that the

significance of the detection of the BAO peak is the quantity most sensitive to the choice of

the fitting range. Based on isotropic fitting to the correlation functions, we obtain a distance

of DV (z = 0.32)rd,fid/rd = 1226 ± 32 Mpc and DV (z = 0.57)rd,fid/rd = 1988 ± 24 Mpc,

a 2.6 per cent and 1.2 percent measurement respectively, assuming a fiducial sound horizon

rd,fid = 147.10 Mpc. We extend our BAO analysis to higher redshifts by performing fitting

to the mean of the correlation functions obtained by Chehade et al. (2016) for the 2QDESp,

SDSS DR5 UNIFORM, 2QZ and 2SLAQ quasar samples. This gives a distance constraint

of DV (z = 1.49)rd,fid/rd = 3583 ± 249 Mpc (assuming rd,fid = 147.70 Mpc), a 6.9 per cent

measurement to z = 1.49, the mean redshift of the combined QSO sample.
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Chapter 1

Introduction

The determination of the expansion history of the universe is currently one of the primary

goals of observational cosmology. The late-time transition of the expansion rate of the uni-

verse from a deceleration to a phase of acceleration (e.g. based on observational evidence from

supernovae; Riess et al. 1998; Perlmutter et al. 1999) in particular, remains one of the most

puzzling problems in modern physics. Investigating this problem and exploring the nature of

Dark Energy (a hypothetical cause of the accelerated expansion rate of the universe (Peebles

& Ratra, 2003), within the framework of ΛCDM, the current standard cosmological model),

have driven efforts to obtain robust and high precision measurements of the cosmological

expansion rate. To this end, a great interest was sparked in exploiting large galaxy redshift

surveys in order to constrain the distance-redshift relation across a wide range of redshifts,

making use of the Baryon Acoustic Oscillation (BAO) feature in the clustering of galaxies

(Shanks 1985; Blake & Glazebrook 2003; Linder 2003; Seo & Eisenstein 2003; Matsubara

2004; Glazebrook & Blake 2005; Dolney et al. 2006; Sánchez et al. 2008).

The early universe consisted of a hot, dense plasma in which photons and baryons were tightly

coupled due to Thomson scattering. Primordial density fluctuations lead to formation of over-

dense regions which gravitationally attracted matter while the increase in the matter density

led to an increase in the outward photon radiation pressure. These contracting forces of grav-

ity and radiation pressure in turn led to the formation of oscillations which could be thought

of as relativistic sound waves consisting of photons and baryons, propagating away from the

overdense region (Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Doroshkevich et al. 1978).

This propagation continued until the universe had cooled down due to expansion, reaching

a temperature low enough to form neutral atoms at an epoch referred to as recombination.

At this point photons decoupled from baryons, leaving behind a spherical shell of baryonic
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Chapter 1. Introduction 2

matter at a scale related to the characteristic comoving radius known as the acoustic scale

(also referred to as the sound horizon at the drag epoch) rd ≈ 150 Mpc (a more detailed

description of the physics giving rise to the BAO feature can be found in Eisenstein & Hu

1998). The oscillations that lead to BAO can be seen as anisotropies in the Cosmic Mi-

crowave Background (CMB) radiation (Hu & White, 1996), and the characteristic comoving

scale of the BAO feature imprinted in the distribution of galaxies can be used as a "standard

ruler" in order to constrain the distance-redshift relation. As the BAO feature is imprinted

on such large scales, BAO experiments are quite insensitive to systematics due to non-linear

and astrophysical processes that occur on smaller scales (for a comparison between BAO and

various other methods of measuring the distance-redshift relation see the review by Weinberg

et al. 2013).

Although the BAO feature has been detected in the distribution of galaxy clusters (Veropalumbo

et al., 2014), and high redshift BAO measurements have been obtained using the Lyman-α

forest in quasar spectra (e.g. Slosar et al. 2013 and Delubac et al. 2015), galaxies have by

far been the most commonly used tracers of the BAO feature. Notable studies among early

efforts in constraining cosmological distances using the BAO feature in various galaxy redshift

surveys include the analysis of the final 2dF Galaxy Redshift Survey (2dFGRS; Colless et al.

2003) by Cole et al. (2005), as well as various Luminous Red Galaxy (LRG) samples in early

Sloan Digital Sky Survey (SDSS; York et al. 2000) data releases by Eisenstein et al. (2005),

Hütsi (2006), Padmanabhan et al. (2007), Gaztañaga et al. (2009) and Kazin et al. (2010).

Constraints on the distance-redshift relations were obtained with increasing precision in later

studies such as Percival et al. (2010) in which a 2.7 per cent distance measurement at redshift

z = 0.275 was obtained by combining samples from SDSS and 2dFGRS surveys. This was

followed by a 7.2, 4.5 and 5.0 per cent measurements to z = 0.44, 0.6 and 0.73 obtained by

Blake et al. (2011) based on the WiggleZ survey (Drinkwater et al., 2010), and a 4.5 per

cent measurement at z = 0.1 by Beutler et al. (2011) using the 6dF Galaxy Redshift Survey

(6dFGRS; Jones et al. 2009).

The precision of the distance scale measurements have been further improved in more recent

studies as a technique known as reconstruction began to be implemented. Due to non-linear

structure growth, in practice the BAO peak appears smoother in the data than predictions

from linear theory alone (see e.g. Jeong & Komatsu 2006; Guzik et al. 2007; Eisenstein et al.

2007b; Crocce & Scoccimarro 2008; Angulo et al. 2008; Matsubara 2008; Padmanabhan &

White 2009). Additionally large-scale redshift-space distortions due to the peculiar velocities
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of galaxies (Kaiser Effect; Kaiser 1987) also distort the clustering pattern in redshift-space.

The effect of these phenomena can however be reversed using reconstruction techniques such

as those introduced by Eisenstein et al. (2007a) which sharpen the BAO peak and could

improve the precision of the measurement of the BAO scale by a factor of 2 or higher, with

larger improvements expected at lower redshifts where the effect of non-linearities are worse

and the dark energy density is highest. In more recent works, reconstruction has been used

by Xu et al. (2012) to obtain a 2 per cent distance measurement to z = 0.35 using the

SDSS DR7 LRG catalogue, followed by a 1.7 per cent measurement at z = 0.57 by Anderson

et al. (2012) in the first analysis of the Data Release 9 (DR9) of the Baryon Oscillation

Spectroscopic Survey (BOSS; Dawson et al. 2013) from the Sloan Digital Sky Survey III

(SDSS III; Eisenstein et al. 2011). In their analysis of the BOSS DR11 sample, Anderson

et al. (2014) obtained a 2 and 1 per cent measurement to z = 0.32 and z = 0.57, with the

latter being the most precise distance constraint ever obtained at the time. Cuesta et al.

(2016) further improved the precision of the measurement at z = 0.32 to 1.7 per cent in their

analysis of an extended version of the same samples from the final BOSS data release (DR12).

Improvements and extension of the BAO analysis to higher redshifts will be made possible

in the future making use of quasars with the Extended BOSS survey (eBOSS; Dawson et al.

2016), as well as HET-DEX (Hill et al., 2008), making use of Lyman-α emitting galaxies.

Furthermore, substantial improvement in the precision of cosmological distance measurements

across a wide range of redshifts bins are expected from the upcoming generation of ground

and space-based surveys including DESI (Levi et al., 2013), EUCLID (Laureijs et al., 2011),

LSST (LSST Dark Energy Science Collaboration, 2012) and WFIRST (Spergel et al., 2015).



Chapter 2

BOSS DR12 BAO Analysis

2.1 Introduction

A measurement of the BAO signature in the monopole two point correlation function of

the "Constant Stellar Mass" (CMASS) and the low-redshift (LOWZ) galaxy samples from

the Data Release 12 (DR12; Alam et al. 2015) of the SDSS BOSS survey was presented by

Cuesta et al. (2016). The CMASS and LOWZ samples are extensions to previous SDSS LRG

samples. Ross et al. (2015) also performed a measurement of the BAO feature at a lower

redshift using the magnitude limited SDSS DR7 MAIN galaxy sample (Abazajian et al.,

2009).

In this chapter we present the results of our independent measurement of the BAO feature in

the DR12 CMASS and LOWZ samples, followed by a comparison of the results with the find-

ings of the two previous studies. Specifically, the goal of this study is to attempt to replicate

the results of Cuesta et al. (2016) as an independent verification of the applied methodology,

placing particular focus on the uncertainties on the correlation functions. Cuesta et al. (2016)

obtained an estimate of the uncertainties based on the covariance matrix of 1000 BOSS DR12

simulated QPM mocks (White et al., 2014). In this study, we divide the data into subsam-

ples upon which measurements of the correlation function are performed, giving an empirical

estimate of the uncertainty on the mean correlation function. We also investigate the pos-

sibility of obtaining an empirical estimation of the covariance matrix from the data for the

CMASS sample, comparing the results of fitting the correlation function using this empirical

covariance matrix to those obtained using the DR12 covariance matrix. Furthermore, we

investigate certain aspects of the fitting procedure commonly implemented in BAO analysis

studies, including potential effects of the choice of the fitting range on the results, as well as

4
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the extent of the role played by the nuisance fitting parameters. As obtaining a measurement

of the position of the BAO peak to a high degree of precision is beyond the immediate scope

of this work, we do not attempt to perform reconstruction and hence we draw comparison

with the pre-reconstruction results from the other studies throughout.

The layout of this chapter is as follows: Section 2.2 contains a brief description of the samples

along with the basic properties of the selected subsamples. In section 2.3 we present a

description of the relevant methodology involved in measuring the correlation function, error

analysis and the fitting procedure. This is followed by a presentation and discussion of our

results and a comparison of our findings with those of Cuesta et al. (2016) and Ross et al.

(2015), in Section 2.4.

2.2 Datasets

In this study we use a set of 777,202 galaxies in the redshift range 0.43 < z < 0.7 from the

BOSS DR12 CMASS sample, with an effective redshift of 0.57, and 361,762 galaxies in the

redshift range 0.15 < z < 0.43 from the DR12 LOWZ sample, with an effective redshift of 0.32.

The CMASS and LOWZ samples have been limited to magnitudes of 17.5 < icmod < 19.9 and

16 < rcmod < 19.6 respectively. Full details of the target selection criteria can be found in

Reid et al. (2016) and the treatment of systematics and the relevant corrections is discussed in

Ross et al. (2016). In accordance with Cuesta et al. (2016), the samples, mocks and random

datasets were obtained from the DR12 database1. The DR7 MAIN sample (used by Ross

et al. 2015) is limited to 14.5 < rpetr < 17.6, covering a lower redshift range of z < 0.2. The

redshift distributions n(z), of the galaxies in the DR12 CMASS and LOWZ samples, along

with that of the DR7 MAIN sample are displayed in Fig. 2.1.

In order to obtain an empirical estimate of the uncertainties on the correlation functions,

the CMASS sample is subsetted into five fields (subsamples) of equal size covering an overall

area of 8487.77 deg2, about 90.5 per cent of the total effective sample area (9376.09 deg2).

The LOWZ sample is similarly divided into five equally sized fields covering 7294.87 deg2,

roughly 87.5 per cent of the total sample area (8337.47 deg2). Within the initial scope of

this work, dividing the samples into five fields was deemed sufficient in order to produce an

estimate of the uncertainties to a reasonable degree of accuracy. However, as demonstrated in

later sections, the precision of the empirical estimate of uncertainties can be further improved

1https://data.sdss.org/sas/dr12/boss/lss/

https://data.sdss.org/sas/dr12/boss/lss/


2.3. Methodology 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

z

0

1e4

2e4

3e4

4e4

5e4
n

(z
)

DR7 MAIN

DR12 LOWZ

DR12 CMASS

Figure 2.1: Histogram showing the number of galaxies as a function of redshift in the BOSS
DR12 LOWZ (red) and CMASS (green) samples analysed in this study, as well as in Cuesta
et al. (2016). The blue bars display the redshift distribution of the SDSS DR7 MAIN sample
analysed by Ross et al. (2016). Bins are ∆z = 0.01 in width.

by using a larger number of subsamples. The positions of all selected fields are illustrated

in Fig. 2.2, with Table 2.1 providing a description of the basic properties of the selected

fields. Once the correlation function for each field is obtained, a mean correlation function is

calculated and is taken to represent the correlation function of the sample, using the standard

error on the mean as an estimate of the uncertainty.

In this study we assume the same fiducial cosmology as Cuesta et al. (2016) with Ωm = 0.29,

Ωbh
2 = 0.02247, ΩΛ = 0.71, Ωk = 0, Ων = 0, h = 0.7, w = −1, ns = 0.97 and σ8 = 0.8. The

fiducial distances to z = 0.32 and 0.57 (the effective redshifts of our samples), based on our

assumed cosmology are presented in Table 2.2.

2.3 Methodology

2.3.1 Measuring the Correlation Function

The monopole two-point correlation function (in redshift-space), ξ(s), is calculated for each

individual field using the CUTE2 algorithm described by Alonso (2012).

2http://members.ift.uam-csic.es/dmonge/CUTE.html

http://members.ift.uam-csic.es/dmonge/CUTE.html


2.3. Methodology 7
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Figure 2.2: The coverage of the 5 selected fields in the Northern and Southern Galactic caps
of the CMASS and LOWZ samples. The sample areas not selected are shown in yellow. (The
basic properties of these fields can be found in Table 2.1).

Table 2.1: The basic properties of the 5 chosen fields (shown in Fig. 2.2) in the CMASS and
LOWZ samples.

CMASS
Field Ra° Dec° Area (deg2) Number of galaxies
1 >185 >27 1703 142,636
2 <185 >27 1686 141,706
3 >185 <27 1699 141,847
4 119-185 <27 1698 137,891
5 350-45.5 >-11 1701 144,820

LOWZ
Field Ra° Dec° Area (deg2) Number of galaxies
1 >185 >27 1447 61,319
2 <185 >27 1453 63,109
3 >185 <27 1474 61,605
4 <185 <27 1463 63,431
5 357-45.5 >-11 1459 68,057
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Table 2.2: A summary of the fiducial distances and values of the Hubble parameter used
in this work and by Cuesta et al. (2016), computed at the effective redshifts of the LOWZ
(z = 0.32) and CMASS (z = 0.57) samples, based on our assumed flat ΛCDM cosmological
model.

rd DA(z = 0.32) H(z = 0.32) DV (z = 0.32) DA(z = 0.57) H(z = 0.57) DV (z = 0.57)
(Mpc) (Mpc) (km s−1 Mpc−1) (Mpc) (Mpc) (km s−1 Mpc−1) (Mpc)
147.10 962.43 82.142 1235.28 1351.13 94.753 2009.55

To perform the estimation of the correlation function we make use of the Landy-Szalay

estimator (Landy & Szalay, 1993),

ξ(s) = DD(s)− 2DR(s) +RR(s)
RR(s) , (2.3.1)

whereDD(s),DR(s) andRR(s) are data-data, data-random and random-random pair-counts

respectively.

In our analysis we make use of the BOSS DR12 FKP-weighted (Feldman et al., 1994) randoms,

and in accordance with Reid et al. (2016), apply a weighting of wtotwFKP to the galaxies.

A full description of the constituents of wtot is presented in Reid et al. (2016); in short, this

weight consists of three terms which account for effects of angular systematics, fibre collisions

and redshift failures. In order to facilitate direct comparison with the findings of Cuesta

et al. (2016), we sum our pair counts into 25 bins of width 8 h−1Mpc in our calculation of

the correlation functions, covering the range of s 6 200h−1Mpc in redshift space.

2.3.2 Error Analysis

Following the procedure proposed by Norberg et al. (2009), the bootstrap resampling method

is used to provide an estimate of the errors on the mean correlation functions of our CMASS

and LOWZ samples. In total we generate N = 100 resamplings and obtain the mean cor-

relation function ξ̄(s) of these resamplings. As demonstrated by Norberg et al. (2009), an

oversampling factor of 3 appears to be optimal in improving the bootstrap recipe. Hence

we calculate the mean correlation function of each resampling, ξn, based on the correlation

functions of Nr = 3×Nsub randomly selected subvolumes (with replacement), from the origi-

nal 5 subvolumes defined in Section 2.2 for the CMASS and LOWZ samples. The covariance

matrix is then calculated using,

Cboot(ξi, ξj) = 3
N − 1

N∑
n=1

(ξn(si)− ξ̄(si))(ξn(sj)− ξ̄(sj)), (2.3.2)
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where subscripts i and j correspond to the ith and jth bins in redshift-space and the factor

of 3 is added to account for our use of an oversampling factor of 3. The errors on the mean

correlation functions of the CMASS and LOWZ samples are then given by the square root

of the diagonal elements of their respective covariance matrices. (Note that as specified in

Section 2.3.3, we do not make use of the covariance matrices calculated here when perform-

ing fitting to the correlation functions (equation 2.3.10), and instead use the BOSS DR12

covariance matrices obtained from QPM mocks in sections focused on investigating different

aspects of the fitting procedure. This is with the exception of Section 2.4.9 in which we com-

pare our bootstrap covariance matrix obtained from the data for the CMASS sample with

the DR12 covariance matrix and compare the fitting results using the two matrices.)

A second set of errors are determined for the mean correlation functions of our samples,

simply based on obtaining the standard errors on the mean. This is done using,

σmean = σNsub−1√
Nsub

=

√√√√ ∑(ξi − ξ̄)2

N2
sub −Nsub

, (2.3.3)

where σNsub−1 is the standard deviation normalized to Nsub − 1 (as σmean is obtained from

the same dataset reducing the number of degrees of freedom by one); Nsub is the number of

subvolumes in each sample (i.e. 5); ξi is the correlation function of the ith subvolume, and ξ̄

is the mean correlation function of the sample.

A comparison of the estimated errors from these two different methods and the errors found

by Cuesta et al. (2016) based on the covariance matrix of the DR12 QPM mocks is presented

in Section 2.4.2.

2.3.3 Fitting the Correlation Function

To fit the correlation functions we follow a procedure based on the methods described in Xu

et al. (2012) and Anderson et al. (2012). We present a brief description of these techniques

in this section.

We use a fitting model of the form

ξfit(s) = B2ξm(αs) +A(s), (2.3.4)

where ξm is defined in equation 2.3.8, B2 is a constant term allowing for any unknown

large-scale bias and A(s) is given by

A(s) = a1
s2 + a2

s
+ a3, (2.3.5)
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where a1,2,3 are nuisance parameters. The A(s) term is included in order to marginalise

over broad-band effects due to redshift-space distortions and scale-dependent bias as well as

any errors made in our assumption of the fiducial cosmology. The form of the A(s) term

was chosen by Xu et al. (2012) due to its simplicity and was further justified in that work

by comparing it to various alternatives and demonstrating that it performs optimally in

providing a good fit. We can obtain distance constraints by finding the optimum value of

the scale dilation parameter α. This parameter provides a measure of any isotropic shifts in

the position of the BAO peak in the data compared to the fiducial model, due to non-linear

structure growth. An α > 1 shifts the model towards larger scales while an α < 1 shifts the

model towards smaller scales. This term is defined as

α = DV (z)
rd

rd,fid
DV,fid(z)

, (2.3.6)

where z is the redshift, rd is the sound horizon at the drag epoch and fid denotes the fiducial

values (given in Table 2.2). The approximate volume-averaged distance to redshift z is

DV (z) ≡
[
cz(1 + z)2DA(z)2

H(z)

]1/3

, (2.3.7)

where DA(z) is the angular diameter distance and H(z) is the Hubble parameter at redshift

z. This "distance" is proportional to the volume-averaged dilation factors (Ballinger et al.,

1996) in the redshift and angular directions at a redshift z.

The model correlation function in equation (2.3.4), ξm, is given by

ξm(s) =
∫
k2dk

2π2 Pm(k)j0(ks)e−k2a2
, (2.3.8)

where the Gaussian term is added to damp the oscillatory transform kernel j0(ks) = sin(ks)/ks

at high-k. Here we set a = 2h−1Mpc, which is small enough as to not cause significant damp-

ing effects at our scales of interest.

The template power spectrum is given by

Pm(k) = [Plin(k)− PnoBAO(k)]e−k2
∑2

nl
/2 + PnoBAO(k), (2.3.9)

where Plin is the linear power spectrum at z = 0 (generated using CAMB3; Lewis et al. 2000)

and PnoBAO is the power spectrum with the BAO feature removed as described in Eisenstein

& Hu (1998). The ∑2
nl /2 term damps the BAO features in Plin, accounting for the effects of

3http://cosmologist.info/camb/

http://cosmologist.info/camb/
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non-linear structure evolution. Here we set ∑
nl = 8h−1Mpc.

The best fit values of the B2, a1, a2 and a3 fitting parameters in equation 2.3.4 are determined

using the scipy.optimize.curve_fit module in Python which makes use of the Levenberg-

Marquardt algorithm. To obtain the optimum value of α we compute the χ2 goodness-of-fit

indicator for fits obtained from shifting the model in the range 0.8 < α < 1.2 with intervals

of ∆α = 0.0001, taking the value of α which corresponds to the minimum χ2, (χ2
min).

The χ2 function is given by

χ2(α) = [ξobs − ξfit(α)]TC−1[ξobs − ξfit(α)], (2.3.10)

where ξobs is the observed correlation function, ξfit(α) is the best fit model at each α and C

is the BOSS DR12 covariance matrix obtained from 1000 simulated QPM mocks.

In this study we investigate potential effects on the measured value of α and its uncertainty

based on fitting the data across various ranges, using the complete ξfit model with and

without the A(s) nuisance parameters. Furthermore, by comparing the ∆χ2 vs. α curves from

fitting the ξfit and ξnoBAO models (the latter is obtained by setting the term Pm = PnoBAO

in the model correlation function ξm), we obtain a measure of the significance at which the

BAO signature is detected in the data. Here ∆χ2 = χ2(α)− χ2
min.

To obtain an estimate of the uncertainty in α, we assume a Gaussian form for the probability

distribution of α,

p(αi) = e−χ2(αi)/2∑
j e

−χ2(αj)/2∆α
, (2.3.11)

where the denominator is a normalization factor ensuring the distribution integrates to

unity. In effect p(αi) is the probability that the acoustic scale α = αi, based on the χ2

distribution obtained from comparing the model ξfit (equation (2.3.4) with αi), to our

observed correlation function ξobs. We then calculate the standard deviation of our

probability distribution which serves as an estimate of the uncertainty in α:

σα =
√
〈α2〉 − 〈α〉2; (2.3.12)

here 〈α〉 represents the mean of the p(αi) distribution given by:

〈α〉 =
∑
i

αip(αi)∆α, (2.3.13)

and



2.4. Results and Discussion 12

〈α2〉 =
∑
i

α2
i p(αi)∆α. (2.3.14)

The estimated uncertainty obtained from this method is equivalent to the value given by the

∆χ2 curve at the 1σ level (see Fig. 2.8).

2.4 Results and Discussion

The correlation functions of the individual fields for the LOWZ and CMASS samples along

with the corresponding mean correlation functions are displayed in Fig. A.1 in Appendix A.

In the following sections we compare our measurement of the mean correlation functions with

the measurements of Cuesta et al. (2016) and Ross et al. (2015), perform fitting to the mean

correlation functions and analyse various aspects of the fitting procedure. Furthermore, we

obtain measurements of DV (z) based on our measured position of the BAO peak and briefly

investigate the possibility of obtaining an estimate of the covariance matrix from the data.

2.4.1 Comparison with Cuesta et al. (2016)

Fig. 2.3 shows a comparison between our mean correlation functions and the correlation

functions obtained by Cuesta et al. (2016) for the DR12 LOWZ and CMASS samples. We

find that our measured correlation functions are in excellent agreement with those presented

in Cuesta et al. (2016) and we observe no significant changes when we replace the BOSS

DR12 randoms with randoms generated by CUTE. Furthermore, we observe no significant

variations when we do not apply any weights to the data or randoms. This outcome is

however expected due to the high completeness of 98.8 per cent and 97.2 per cent for the

CMASS and LOWZ samples respectively (see Fig. 8 of Reid et al., 2016).

2.4.2 Error Analysis Results

This section contains a comparison between our two measures of uncertainties (standard

error and bootstrap resampling) on the mean correlation functions of the LOWZ and CMASS

samples. Here we also include the bootstrap uncertainties obtained in Section 2.4.9 for the

CMASS sample, based on dividing the data into 30 subsamples. We distinguish between the

two bootstrap uncertainties using the labels ’CMASS 5’ and ’CMASS 30’. More importantly

comparisons are drawn between our measured empirical errors and errors obtained from

simulations presented in Cuesta et al. (2016) for the correlation functions of the LOWZ and
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Figure 2.3: A comparison of our mean monopole correlation functions (blue curves) for
(a) DR12 LOWZ and (b) CMASS samples, and the pre-reconstruction correlation functions
presented in Fig. 1 of Cuesta et al. (2016) (red curves) for these samples. Error bars represent
the standard error on the mean. ξm, the ΛCDM model based on our fiducial cosmology
(equation 2.3.8; solid grey curve) is added for comparison.
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CMASS samples. In order to account for the fact that our selected fields do not cover the

entire sample area, when comparing our results with those from Cuesta et al. (2016) we scale

our measured errors by the square root of the ratio of the total coverage area of our fields to

the total sample area.

As shown in Figs. 2.4a and 2.5a we find a good agreement between the standard error and

bootstrap estimates of error for both samples. Furthermore, at our main scale of interest

(in the vicinity of the 108 h−1Mpc bin where the BAO peak lies), the results also appear

to be in reasonable agreement with the errors presented by Cuesta et al. (2016) for the 5

fields CMASS sample, while the 30 fields bootstrap uncertainties appear to be in excellent

agreement with those from Cuesta et al. (2016), at scales larger than 90 h−1Mpc. To provide

a quantitative demonstration of the level agreement between the errors from Cuesta et al.

(2016) and the simple case of standard errors obtained from 5 fields, we make use of the

fractional error in the error, given by 1/
√

2N − 2 (Squires, 2001). Here N is the number of

measurements (in our case 5), giving a fractional error in the error of ≈ 35 per cent. Fig. 2.4b

shows the ratio of our measured standard error to the errors presented by Cuesta et al. (2016)

for the CMASS sample with the error bars being the error on our measured standard error.

We can see that at the 108 h−1Mpc bin this ratio is 0.8 which is consistent with unity within

the error bars, and the general agreement between the errors is an indication that the QPM

mocks reproduce an accurate representation of the data. As shown in Fig. 2.5b however, in

the case of the LOWZ sample the ratio between the two errors varies to a greater extent

with the scale, with the discrepancy between the two errors being larger around the BAO

scale. This indicates that the errors presented by Cuesta et al. (2016) do not appear to be

underestimated in this region. (Note that due to time constraints and the presence of large

gaps in the LOWZ data, we did not attempt to divide the sample into 30 fields in a similar

manner to the CMASS sample. However, obtaining errors from a larger number of fields is

likely to account for some of the observed discrepancy between our errors and the findings of

Cuesta et al. (2016), for the LOWZ sample.)

2.4.3 Comparison with Ross et al. (2015)

Fig. 2.6a displays a comparison between our mean correlation functions for the LOWZ and

CMASS samples, with the correlation function presented by Ross et al. (2015) for the DR7

MAIN sample. The difference in amplitude is caused by the difference in the galaxy clustering

bias in each sample, with LRGs being more biased. Upon normalizing the data to the ΛCDM
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Figure 2.4: A comparison of the uncertainties on our measured mean correlation function
of the CMASS sample, at our primary fitting range 28 6 s 6 180h−1Mpc. The standard
error on the mean (light blue line) and bootstrap (dark blue line) estimates of error for the
5 fields appear to be in good agreement. The bootstrap error from the 30 fields (green line)
and the uncertainties on the measured correlation functions of Cuesta et al. (2016) (Fig.1)
(red line) are also plotted, showing excellent agreement between the two at scales larger than
90 h−1Mpc. Here all our measured errors are scaled by the square root of the ratio of the area
covered by our selected fields, to the total sample area (e.g. in the case of 5 fields CMASS by√

0.905). Subplot (b) shows the ratio of our standard error to the errors presented by Cuesta
et al. (2016) for the CMASS sample. Here the error bars represent the error in the error (see
the discussion in Section 2.4.2).
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Figure 2.5: This plot is the equivalent of Fig. 2.4, showing a comparison of the uncertainties
on the correlation function of the LOWZ sample.
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model at 50 h−1Mpc (Fig. 2.6b), we find a reasonable agreement between the correlation

functions and the model.

2.4.4 Data Fitting Results

The best-fit values of α obtained from fitting the data with various models, across the range

28 6 s 6 180h−1Mpc are summarised in Table 2.34. The pre-reconstruction best fit values of

α from Cuesta et al. (2016) are included in this table for comparison. Here, ‘α’ refers to values

obtained from fitting to the mean correlation functions of the LOWZ and CMASS samples,

with errors given by the procedure described in Section 2.3.3. The ‘5-fields ᾱ’ values in this

table are obtained by fitting to the correlation functions of each field individually resulting

in 5 measurements of α (these are presented in Table 2.4), and calculating the mean and

standard error of these measurements. (Note that in line with the discussion in Section 2.4.2,

as the ‘5-fields ᾱ’ values are based on 5 measurements and hence contain a large error in

the error (35 per cent), here one should round the error to 1 significant figure and round the

mean to the appropriate number of decimal places accordingly). When fitting to correlation

functions of individual fields we scale the BOSS DR12 covariance matrix by a factor of 5.

As shown in Table 2.3, we find that our measured ‘5-fields ᾱ’ values are in good agreement

with our values of α. This demonstrates the robustness of the implemented fitting procedure

in producing an accurate measurement of the position of the BAO peak. Furthermore, when

comparing the results corresponding to fits with the complete model, we find that for the

LOWZ sample, our measured value of α is consistent with the measurement presented by

Cuesta et al. (2016) within the uncertainties, while we find an ≈ 1.5σ tension between the two

measurements for the CMASS sample; (note that for both samples the size of our measured

errors are also comparable to those found by Cuesta et al. 2016). The reason behind the

mild tension between our measurement of α and that of Cuesta et al. (2016) for the CMASS

sample remains unknown.

We find the values of α measured for the individual fields in Table 2.4 to be in general

agreement with the measurements of α from Cuesta et al. 2016. In cases where there appears

to be tension between the measurements, (for instance the result of fitting the correlation

function of field 4 in the CMASS sample with the complete model appears to be in an ≈ 1.7σ

4Note that we place the main focus of our analysis on the results corresponding to this fitting range in
order to match the fitting range chosen in Cuesta et al. (2016), allowing for direct comparison of the results.
As discussed in Section 2.3.3, when fitting the correlation functions we use the BOSS DR12 covariance matrix
used in the analysis of Cuesta et al. (2016).
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Figure 2.6: (a) Our measured mean correlation functions for the DR12 LOWZ (blue line) and
CMASS (red line) samples, in comparison with the pre-reconstruction correlation function
presented in Fig. 4 of Ross et al. (2015) (green line) for the DR7 Main sample. The fiducial
ΛCDM model (equation 2.3.8; solid grey line) is added for comparison. (b) The MAIN,
LOWZ and CMASS correlation functions normalised by factors of 3.46, 0.63 and 0.93 in
order to match the ΛCDM model at 50 h−1Mpc.
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Table 2.3: Results of fitting the correlation functions of the LOWZ and CMASS samples
using the complete ξfit model described in Eq. 2.3.4 and the same model without the A(s)
nuisance fitting parameters. In line with Cuesta et al. (2016) the fitting is performed in
the range 28 6 s 6 180h−1Mpc. Here the ‘α’ values are obtained from fitting to the mean
correlation function ξ̄(s) of each sample, presenting the corresponding χ2

min over the number
of degrees of freedom and ‘Significance’ refers to the significance of the detection of the BAO
peak, using the complete fitting model (see Section 2.4.6). The ‘5-fields ᾱ’ values are based
on taking the mean and standard error of the individual αs, measured from fits to correlation
functions of the 5 fields in the LOWZ and CMASS samples (see Table 2.4). We have used
the BOSS DR12 covariance matrices in our fits scaling them by a factor of 5 when fitting to
the 5 fields individually. For comparison, the best-fit values of α from Cuesta et al. (2016)
(Table 10), for the pre-reconstruction LOWZ and CMASS sample are also included.

This Work Model α χ2
min/dof Significance 5-fields ᾱ

CMASS B2ξm +A(s) 0.9892± 0.0118 14.9/15 7.2σ 0.9879± 0.0172
B2ξm 0.9991± 0.0116 28.5/18 0.9979± 0.0101

LOWZ B2ξm +A(s) 0.9927± 0.0260 15.5/15 4.0σ 0.9950± 0.0421
B2ξm 1.0311± 0.0629 45.5/18 0.9940± 0.0195

Cuesta et al. (2016) Model α χ2
min/dof

CMASS B2ξm +A(s) 1.0153± 0.0134 12/15
LOWZ B2ξm +A(s) 1.0085± 0.0300 13/15

tension with the measurement from Cuesta et al. 2016), the dependency appears to be due

to the shape of the BAO peak which in this case is extremely skewed to one side as seen in

Fig. A.1 and as a result appears to be relatively flat. However, as the ‘5-fields ᾱ’ values are

in agreement with the measurements of α from the mean correlation functions, these effects

seem to cancel out when we take the average over the 5 fields, even given our relatively small

number of subsamples.

The performance of the two models in fitting the correlation functions (given by the χ2
min/dof

goodness of fit indicator) also appear to vary largely depending on the shape of the correlation

function. However, with the exception of certain fields (for instance field 1 of the LOWZ

sample), the complete model appears to perform better overall in providing good fits. It is

important to note however, that the performance of a model in providing a good fit is not

necessarily indicative that the correlation function has provided a representative and accurate

measurement of α, and one should also consider the shape and prominence of the BAO peak

in the correlation function itself5. This is exemplified by field 4 in the CMASS sample where

the χ2
min/dof value indicates that the complete model has provided a reasonably good fit to

the data but due to the shape of the correlation function, an accurate determination of the

position of the peak has not been possible. Finally we find that the significance of detection

5In Section 2.4.6 we discuss how the shape of the ∆χ2 curve could also provide a measure of the degree to
which we could be confident in our measurement of α.
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Table 2.4: Results of fitting the correlation functions of the 5 individual fields in the LOWZ
and CMASS samples using two different models, over the range 28 6 s 6 180h−1Mpc. Here
we have used the BOSS DR12 covariance matrices, scaled by a factor of 5 and ‘Significance’
refers to the significance of the detection of the BAO peak, using the complete fitting model
(see Section 2.4.6). The mean α and its standard error obtained based on the values of α in
this table are presented under the ‘5-fields ᾱ ’ column in Table 2.3.

This Work Field Model α χ2
min/dof Significance

1 B2ξm +A(s) 0.9930± 0.0204 14.5/15 4.2 σ
B2ξm 0.9966± 0.0219 21.7/18

2 B2ξm +A(s) 1.0356± 0.0266 16.2/15 3.3 σ
B2ξm 1.0255± 0.0297 21.1/18

CMASS 3 B2ξm +A(s) 1.0077± 0.0413 12.6/15 2.9 σ
B2ξm 1.0154± 0.0287 12.2/18

4 B2ξm +A(s) 0.9343± 0.0461 13.5/15 2.0 σ
B2ξm 0.9734± 0.0393 29.7/18

5 B2ξm +A(s) 0.9691± 0.0244 10.8/15 3.3 σ
B2ξm 0.9784± 0.0256 12.2/18

1 B2ξm +A(s) 0.9492± 0.0639 34.6/15 1.3 σ
B2ξm 0.9613± 0.0775 35.3/18

2 B2ξm +A(s) 0.9051± 0.1132 23.7/15 1.6 σ
B2ξm 0.9413± 0.0425 33.8/18

LOWZ 3 B2ξm +A(s) 0.9884± 0.0736 17.0/15 1.8 σ
B2ξm 1.0186± 0.0360 16.3/18

4 B2ξm +A(s) 0.9794± 0.0345 22.3/15 2.3 σ
B2ξm 0.9991± 0.0370 26.0/18

5 B2ξm +A(s) 1.1529± 0.0907 18.2/15 1.7 σ
B2ξm 1.0496± 0.0105 43.5/18
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of the peak in the individual fields to be generally lower then the significance of the detection

of the peaks in the mean correlation functions of the two samples (as shown in Table 2.3).

This is a further indication of the lack of prominent and well defined peaks in the correlation

functions of the individual fields and as shown once again by field 4 in the CMASS sample,

a low significance of detection of the peak could also hint towards the potential unreliability

of the measured α.

2.4.5 Model Comparison

Fig. 2.7 shows the results of fitting the mean correlation functions of the CMASS and LOWZ

samples with the ξfit model, fitted with and without the A(s) nuisance parameters, and the

ξnoBAO model fitted with both B and A(s) fitting terms. The important role played by the

A(s) nuisance fitting terms in producing a good fit is highlighted in these plots. This is

also demonstrated numerically in Table 2.3, with the fits without the A(s) having increased

χ2
min/dof values indicating the lower quality of fits. The χ2

min/dof statistic gives an indication

of the strength of evidence provided by the data against a null hypothesis, which in our case

is that the data is consistent with the model in question (i.e. the probability of obtaining

the experimental outcome, under the assumption that the model is correct). We assess the

χ2
min/dof statistic based on the corresponding p-value, which is defined as the probability

of obtaining a χ2 value at least as extreme as the value obtained, for the given number of

degrees of freedom under the assumption that the model is consistent with the data. In the

discussion that follows we refer to this quantity as the significance at which the model is

rejected by the data.

We note that the visual impression given in Fig 2.7 is that the ΛCDM model without nuisance

parameters is rejected at a higher significance than by the 28.5/18 (p = 0.055) indicated in

Table 2.3, for the CMASS sample. Indeed, when only the diagonal terms of the covariance

matrix are used, the significance of rejection rises to 64.9/18 (p = 3.23 × 10−7) (see Ta-

ble 2.5), thus in this case the inclusion of the full covariance matrix causes a large reduction

in χ2
min/dof

6. It is not immediately clear why this is the case.

We therefore take a more detailed look at how significant the nuisance parameters are in

achieving a good fit for the ΛCDM model. Given our two nested fit models, we can make use

6As in some cases fitting with the full covariance matrix and the diagonal elements only could result in
different best fit models, in order to ensure the fairness of the comparison in Table 2.5, in all cases when
calculating the χ2

min/dof values we use the best fit models obtained using the full covariance matrix.
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Figure 2.7: The results of fitting the mean correlation function of (a) CMASS and (b) LOWZ
samples with various fitting models in the range 28 6 s 6 180h−1Mpc. The light blue curve
is the ξfit model (equation 2.3.4) with the B fitting parameter only, while the red curve shows
the same model fitted with both B and A(s) fitting terms. The green curve is the ξnoBAO
model fitted with the B and A(s) fitting terms. The error bars shown are the square root of
the diagonal elements of the BOSS DR12 covariance matrices.
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Table 2.5: The significance of rejection of various models, based on χ2
min/dof and corre-

sponding p-values obtained from fitting the mean correlation function of the CMASS sample
in the range 28 6 s 6 180h−1Mpc, using the full covariance matrix and the diagonal elements
of the matrix only.

Full Matrix Diagonal Elements
Model χ2

min/dof p-value χ2
min/dof p-value

B2ξm +A(s) 14.9/15 4.59× 10−1 2.9/15 9.99× 10−1

B2ξm 28.5/18 5.48× 10−2 64.9/18 3.23× 10−7

B2ξnoBAOm +A(s) 55.5/15 1.47× 10−6 21.0/15 1.37× 10−1

B2ξnoBAOm 63.4/18 5.71× 10−7 61.2/18 1.31× 10−6

of the F -ratio in order to determine whether the use of the more complex model results in a

statistically significant improvement in fit quality. The F -ratio is given by

F =
(χ2
simple − χ2

complex)/(dofsimple − dofcomplex)
χ2
complex/dofcomplex

. (2.4.1)

Here χ2
simple and χ2

complex refer to the χ2
min values obtained from fitting the ξfit model without

the A(s) nuisance fitting terms, and by the complete ξfit model respectively, and dof are the

degrees of freedom associated with each model. Once the F value is obtained we can test the

validity of our null hypothesis that the complex model does not provide a significantly better

fit than the simple model. Similar to the χ2 analysis above, we asses the validity of the null

hypothesis based on the p-value associated with the resulting F value.

Based on the χ2
min/dof values presented in Table 2.3, for the fitting range 28 6 s 6

180h−1Mpc, we obtain F values of 4.56 (p = 0.018) and 9.68 (p = 0.00084) for the CMASS

and LOWZ samples respectively. In other words our simple model is rejected in favour of

the full ξfit model by the data, (given that assuming the null hypothesis is correct, i.e. that

there is no significant difference between the two models, the probability of obtaining an F

statistic at least as extreme as the values here by chance are ≈ 1.8 and 0.1 per cent for the

CMASS and LOWZ samples respectively). This means that the inclusion of the nuisance

parameters results in a significant improvement to the fit. This is specially true in the case

of the LOWZ sample, where as seen in Fig. 2.7b, the BAO peak in the correlation function

appears to have an extension in the ≈ 80− 100h−1Mpc range, explaining the strong need for

the nuisance parameters at the level of significance indicated by the F test.
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Figure 2.8: Significance of the detection of the BAO feature based on fitting the ξ̄ for the
LOWZ (red) and CMASS (blue) samples in the range 28 6 s 6 180h−1Mpc. The solid lines
correspond to fits to the data based on the ξfit model which contains BAO, while the dashed
lines correspond to fits based on the ξnoBAO model with no BAO feature. In all cases the
complete models including the A(s) fitting terms are used. Here ∆χ2 = χ2(α)−χ2

min, where
χ2
min is the minimum χ2 value using the model containing BAO. Comparing the dashed and

solid lines provides a measure of our level of confidence that the BAO feature exists in the
data. Here the BAO peak is detected at ≈ 4σ for the LOWZ sample and ≈ 7σ for the CMASS
sample.

2.4.6 Significance of BAO Peak Detection

The ∆χ2 curves based on fitting the mean correlation functions of the CMASS and LOWZ

samples, with the ξfit and ξnoBAO models are presented in Fig. 2.8. Here the complete fitting

models including the A(s) fitting terms are used and ∆χ2 = χ2(α) − χ2
min, where χ2

min is

the minimum χ2 value using the model containing BAO. A comparison of the two models

shows that we detect the BAO peak in the data at an ≈ 4σ level for the LOWZ sample and

at greater than 7σ for the CMASS sample.

A second test of BAO significance is also captured in Fig. 2.8. For the CMASS sample, it

can be seen from the plateau height of the ∆χ2 curve that local maximum lies at a value of

≈ 72 above the minimum, meaning that we can be confident in our measured best-fit value

of α at ≈ 8.5σ. For the LOWZ sample, the maximum lies at ≈ 20, indicating that our best

fit value of α is preferred at ≈ 4.5σ by the data. These values indicate that we have obtained

well-constrained measurements of α in both cases.
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2.4.7 The Choice of Fitting Range

In order to investigate the effects of the choice of fitting range on our measured value of α and

the significance of the detection of the BAO peak, we perform our fitting across 7 different

ranges using the ξfit model with and without the A(s) nuisance fitting terms. We summarise

the results in Table 2.6. It can be seen that the value of α and the magnitude of its error are

largely insensitive to the choice of the fitting range for the CMASS sample. Slight variations

in the value of α are observed as the fitting range is varied in the case of the LOWZ sample,

however, these values remain consistent within the uncertainties. It can be seen that the

quality of the fits produced by the ξfit model without the A(s) nuisance fitting terms are

consistently lower than the fits produced by the complete model across various ranges as

shown by the χ2
min/dof values. The quantity that appears to be most sensitive to the choice

of the fitting range is the significance of the detection of the BAO peak in the data. At the

two extremes, the significance of the detection of the peak varies from 7.2σ to 5.3σ for the

CMASS sample and from 4.3σ to 3.0σ for the LOWZ sample, depending on the choice of

the fitting range. This level of variation highlights the importance of providing appropriate

justification for the choice of fitting range in studies performing analysis of the BAO feature.

2.4.8 Cosmological Distance Constraints

Using our measured values of α and 5-fields ᾱ presented in Table 2.3 (for the complete ξfit

model), and our fiducial distances presented in Table 2.2, we calculate the volume-averaged

distance to redshift z, DV (z) for the LOWZ and CMASS samples. A comparison of our

results and the findings of Cuesta et al. (2016) is given in Table 2.7. As expected given

our measurements of α, we find our results to be in agreement with those from Cuesta et al.

(2016) for the LOWZ sample, while we find an ≈ 1.4σ tension between the two results, for the

CMASS sample. Furthermore, it can be seen that the magnitude of the errors are comparable

between the two studies in the case of DV (z) which is based on the errors on α (giving a

2.6 and 1.2 percent distance measurement for the LOWZ and CMASS samples respectively),

while the ‘5-fields DV (z)’ errors are larger due to the larger errors on the 5-fields ᾱ values.

2.4.9 Covariance Matrix Comparison

In this section we draw comparisons between our bootstrap estimated covariance matrix

obtained from the data for the CMASS sample, and the DR12 covariance matrix obtained
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Table 2.6: Results of fitting the correlation functions of the LOWZ and CMASS samples
using two different models and over various fitting ranges. In performing these fits the BOSS
DR12 covariance matrices were used, and as before, ‘Significance’ refers to the significance
of the detection of the BAO peak using the complete fitting model.

This Work Range (h−1Mpc) Model α χ2
min/dof Significance

28 6 s 6 180 B2ξm +A(s) 0.9892± 0.0118 14.9/15 7.2 σ
B2ξm 0.9991± 0.0116 28.5/18

36 6 s 6 172 B2ξm +A(s) 0.9868± 0.0114 11.9/13 6.5 σ
B2ξm 0.9917± 0.0114 19.0/16

44 6 s 6 164 B2ξm +A(s) 0.9849± 0.0115 11.0/11 6.2 σ
B2ξm 0.9930± 0.0116 20.6/14

CMASS 52 6 s 6 156 B2ξm +A(s) 0.9859± 0.0122 6.6/9 6.5 σ
B2ξm 0.9930± 0.0116 23.2/12

60 6 s 6 148 B2ξm +A(s) 0.9869± 0.0120 6.3/7 7.0 σ
B2ξm 0.9892± 0.0114 24.7/10

68 6 s 6 140 B2ξm +A(s) 0.9854± 0.0115 6.2/5 7.2 σ
B2ξm 0.9860± 0.0112 28.3/8

76 6 s 6 132 B2ξm +A(s) 0.9887± 0.0126 5.6/3 5.3 σ
B2ξm 0.9860± 0.0105 29.9/6

28 6 s 6 180 B2ξm +A(s) 0.9927± 0.0260 15.5/15 4.0 σ
B2ξm 1.0311± 0.0629 45.5/18

36 6 s 6 172 B2ξm +A(s) 0.9880± 0.0253 13.9/13 4.3 σ
B2ξm 1.0284± 0.0179 49.0/16

44 6 s 6 164 B2ξm +A(s) 0.9844± 0.0242 11.7/11 3.3 σ
B2ξm 1.0210± 0.0179 48.5/14

LOWZ 52 6 s 6 156 B2ξm +A(s) 0.9774± 0.0243 7.5/9 3.0 σ
B2ξm 1.0043± 0.0189 39.0/12

60 6 s 6 148 B2ξm +A(s) 0.9787± 0.0248 6.9/7 3.2 σ
B2ξm 1.0051± 0.0194 43.2/10

68 6 s 6 140 B2ξm +A(s) 0.9787± 0.0248 6.7/5 3.2 σ
B2ξm 1.0002± 0.0189 42.3/8

76 6 s 6 132 B2ξm +A(s) 0.9706± 0.0222 5.6/3 3.3 σ
B2ξm 1.0031± 0.0185 31.3/6
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Table 2.7: Distance constrains obtained from the analysis of the BAO feature in the correla-
tion function of CMASS and LOWZ samples in this work and by Cuesta et al. (2016) (Table
11). Here DV (z) is calculated based on the value of α obtained from fitting to the mean
correlation function of the samples, while the ‘5-fields DV (z)’ values are calculated based on
ᾱ, which is obtained by taking the mean of the values of α attained from individually fitting
to the 5 fields in the LOWZ and CMASS samples. In both cases the αs correspond to fitting
to the range 28 6 s 6 180h−1Mpc using the complete ξfit model described in Eq. 2.3.4. We
assume a fiducial sound horizon value of rd,fid = 147.10 Mpc. The distance constrains are
quoted at the effective redshifts of z = 0.57 and z = 0.32 for the CMASS and LOWZ samples
respectively.

Study, Sample DV (z)rd,fid/rd 5-fields DV (z)rd,fid/rd
(Mpc) (Mpc)

This work, CMASS 1988± 24 1989± 40
Cuesta et al. (2016), CMASS Pre-Recon 2040± 28 —–
This work, LOWZ 1226± 32 1235± 49
Cuesta et al. (2016), LOWZ Pre-Recon 1246± 37 —–

from 1000 QPM mocks. As demonstrated by Hartlap et al. (2007) the resulting covariance

matrix will be singular if p > n − 1, where p is the number of bins (i.e. 20 in our primary

fitting range of the correlation function), and n is the number of independent observations

(i.e. the number of subsamples). This was also observed by Pan & Szapudi (2005) who

proposed the use of singular value decomposition (SVD) to calculate a pseudo-inverse of the

covariance matrix which could then be used to obtain χ2 (see also Gaztañaga & Scoccimarro

2005). Hartlap et al. (2007) also note that even when the resulting covariance matrix C is

not singular, simple matrix inversion results in a biased estimation of the inverse which we

denote by C−1
B . The bias is linked to ratio of p and n, and if unaccounted for could have a

significant effect on the fitting results and their estimated uncertainties, as the two numbers

become comparable. As shown by Hartlap et al. (2007) for p < n−2 the bias can be corrected

for to obtain the unbiased inverse C−1 by:

C−1 = n− p− 2
n− 1 C−1

B ; (2.4.2)

however, they advise against the use of SVD to invert the estimated covariance matrix beyond

p = n− 1, as the bias of the pseudo-inverse is no longer controllable by the above correction.

Furthermore, as pointed out by Norberg et al. (2009) even when using the bootstrap recipe

where n is the number of resamplings and can be chosen to be much larger than p, the data

must initially be divided into a large enough number of subsamples in order to satisfy the

criteria discussed in Hartlap et al. (2007) (i.e. p < n− 2).
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Figure 2.9: The ratio of the CMASS covariance matrix estimated using the bootstrap method
based on n = 500 resamplings of our 30 subsamples, to the DR12 CMASS covariance matrix
obtained from 1000 simulated QPM mocks. The matrix corresponds to the 20 bins in our
primary fitting range 28 6 s 6 180h−1Mpc.

Considering the above requirements it is not possible to fit the correlation function using the

inverse of the covariance matrix estimated from our original set up where the data is divided

into 5 subsamples. As a result we divide the CMASS sample into 30 subsamples and estimate

a covariance matrix using the bootstrap recipe described in Section 2.3.2, based on the new

dataset. The position of the 30 selected fields are shown in Fig. A.2 in Appendix A. Each

field contains about 23,500 galaxies and has an area of ' 275 deg2, with the selected fields

covering 88 per cent of the total sample area. The corresponding correlation functions for

the 30 subsamples are shown in Fig. A.3. We find the mean correlation function to be in a

good agreement with the mean correlation function from our 5 fields as well as the CMASS

correlation function from Cuesta et al. (2016), once integral constraint is accounted for.

Fig. 2.9 shows the ratio of our bootstrap covariance matrix based on the 30 subsamples and

500 bootstrap resamplings, to the DR12 covariance matrix. The first 5 off-diagonals of the

two matrices appear to be consistent to within 50 per cent while the diagonal elements are

recovered within 30 per cent in our estimation of the covariance matrix.

It is important to note that the bootstrap estimate of the covariance matrix contains an

intrinsic uncertainty that along with numerical round-off errors propagate in the calculation
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Table 2.8: Results of fitting the correlation function of CMASS samples using the complete
ξfit model in the range 28 6 s 6 180h−1Mpc with our bootstrap covariance matrix in
comparison with the DR12 covariance matrix. Here n is the number of resamplings used in
the bootstrap recipe and rcond determines the cutoff point for small singular values (see the
discussion in the text).

Covariance Matrix rcond α χ2
min/dof

DR12 0.9892± 0.0118 14.9/15
Bootstrap (n = 100) 0.001 0.9819± 0.0111 13.0/15
Bootstrap (n = 500) 0.0015 0.9878± 0.0098 14.1/15

of the eigenvalues and eigenvectors. It is therefore reasonable to only consider the principal

components corresponding to large eigenvalues which represent the most stable linear com-

binations of the data; however there is no unique and objective method to determine the

number of principal components that need to be considered (see the discussions in Section

4.2 of Porciani & Giavalisco 2002 as well as Section 3.3 of Porciani & Norberg 2006 for further

details). When inverting our covariance matrix we implement a method similar to Pan &

Szapudi (2005) and Gaztañaga & Scoccimarro 2005 where SVD is used to create a pseudo

inverse of the matrix, setting singular values corresponding to small eigenvalues to zero. To

that end, we use the scipy.linalg.pinv function7 in Python, which allows the user to define

a cut-off for small singular values by considering singular values smaller than a constant

(‘rcond’) multiplied by the largest singular value as zero8. We determine the value of this

constant using trial and error until the size of the χ2
min/dof reaches the correct scale and the

fit value (α and its uncertainty) are in agreement with the results form fitting with the DR12

covariance matrix. We summarize the results of our fits with the bootstrap covariance matrix

in Table 2.8, comparing the results to the values obtained from the DR12 covariance shown

previously in Table 2.3. We show the results of fitting with two bootstrap covariance matrices

calculated based on n = 100 and n = 500 resamplings, in each case applying the correction

factor given by equation 2.4.2 to correct for the bias in the inverse covariance matrix.

It can be seen from Table 2.8 that once the correction for small singular values is applied

our bootstrap covariance matrix produces fit results that are in good agreement with the

results of fitting with the DR12 covariance matrix, with the corresponding χ2
min values being

at the right scale. The bootstrap covariance matrix calculated based on n = 500 resamplings

performs slightly better than the one based on n = 100 resamplings, however we do not

observe any major further improvements by increasing the number of resamplings. At a basic

7http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.linalg.pinv.html
8In this comparison the modulus of the values are considered.

http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.linalg.pinv.html
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level, the results demonstrate that it is possible to empirically estimate the covariance matrix

from the data using the bootstrap method, producing fit results comparable to those given

by the covariance matrix from mocks. However, given that our method of selecting the cutoff

point for small singular values relies on our previous knowledge of the fit results and there

is currently no objective and universally applicable recipe for determining the appropriate

number of principal components to include (for instance the techniques implemented by Pan

& Szapudi 2005, Gaztañaga & Scoccimarro 2005 and Porciani & Norberg 2006 results in the

inclusion of either too few or two many principal components when applied to our covariance

matrix), the applicability of our method remains limited and further investigation is required

to determine if variations of this technique could have more general applications.



Chapter 3

QSO BAO Analysis

3.1 Introduction

In this chapter we extend our BAO analysis to higher redshifts by performing isotropic fitting

to the combined monopole correlation function as measured by Chehade et al. (2016), based

on quasar samples from the 2dF QSO Redshift Survey (2QZ; Smith et al. 2005), SDSS Data

Release 5 (SDSS DR5; Adelman-McCarthy et al. 2007), 2dF-SDSS LRG and QSO survey

(2SLAQ; Richards et al. 2005) and the 2dF Quasar Dark Energy Survey pilot (2QDESp;

Chehade et al. 2016).

Although a number of previous efforts have been made in measuring the BAO feature in the

Lyman-α forest of various BOSS quasar samples (Busca et al. 2013; Kirkby et al. 2013; Slosar

et al. 2013; Delubac et al. 2015), as well as using the quasar-Lyman α forest cross-correlation

(Font-Ribera et al., 2014); to our knowledge, this work is among the very first attempts to

obtain a direct high redshift distance constraint, using large-scale quasar clustering as the

tracer of the BAO signal.

3.2 Datasets

Here we provide a brief summary of the relevant properties of the quasar samples used in our

BAO analysis. A more detailed description of these samples can be found in the referenced

papers.

The 2QZ sample (Croom et al., 2004) covers a total area of 721.6 deg2, containing 22,655

QSOs (≈ 31 quasars deg−2) up to z ≈ 3 in the magnitude range 18.25 < bj < 20.85.

31
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The SDSS DR5 "UNIFORM" sample was constructed by Ross et al. (2009) by taking a

subsample of the DR5 quasar catalogue (Schneider et al., 2007). This sample covers an

area of ≈ 4000 deg2, containing 30,239 QSOs (≈ 8 quasars deg−2), in the redshift range

0.3 6 z 6 2.2 with a magnitude limit of iSDSS 6 19.1.

The 2SLAQ sample (Croom et al., 2009) covers an area of ≈ 192 deg2 containing ≈ 9, 000

QSOs (≈ 47 quasars deg−2) in the redshift range z . 3 and magnitude range 20.5 < gSDSS <

21.85.

The 2QDESp sample (Chehade et al., 2016) covers an area of ≈ 150 deg2 in the southern sky,

containing ≈ 10, 000 QSOs (≈ 67 quasars deg−2) with magnitudes g 6 22.5. The quasars in

the sample have a mean redshift of z = 1.55 and with 80 per cent of the objects in the sample

lying in the range 0.8 < z < 2.5.

In order to ensure a good agreement between the redshift distributions of the four samples

Chehade et al. (2016) restricted their analysis to objects in the redshift range 0.3 < z < 2.9.

This leads to a total number of quasars Nq, of 22211, 32560, 6374 and 9705 for the 2QZ,

SDSS, 2SLAQ and 2QDESp samples respectively. The mean of the correlation functions of

these samples is taken to represent the correlation function of the combined quasar sample

(henceforth referred to as the combined QSO sample), containing 70,940 quasars with a

mean redshift of z̄ = 1.49 and an effective volume of ≈ 0.6h−3Gpc3. For comparison the

original SDSS LRG survey analysed by Eisenstein et al. (2005) covered an effective volume of

≈ 0.55h−3Gpc3, while the BOSS DR12 LOWZ and CMASS samples analysed by Cuesta et al.

(2016) cover effective volumes of ≈ 0.67h−3Gpc3 and ≈ 1.58h−3Gpc3 respectively (in all cases

P0 the amplitude of the power spectrum at the BAO scale is assumed to be 10, 000h−3Mpc3).

In line with Chehade et al. (2016), in this study we assume a flat ΛCDM cosmology with

parameters given by the Planck+ lensing results from Table 2 of Planck Collaboration et al.

(2014). In this cosmology, Ωm = 0.307, Ωbh
2 = 0.02217, ΩΛ = 0.693, Ωk = 0, Ων = 0, h =

0.679, w = −1, ns = 0.9635 and σ8 = 0.823. Based on this cosmology, the fiducial distances

to z = 1.49 (the mean redshift of the combined QSO sample) are DA,fid(1.49) = 1789.50

Mpc and DV,fid(1.49) = 3826.40 Mpc, H(1.49) = 158.31 km s−1Mpc−1 and rd,fid = 147.70

Mpc.
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3.3 Methodology

In this section we present a summary of the methodology applied by Chehade et al. (2016) in

their measurements of the correlation function, as well as in our analysis of the BAO feature

in the combined QSO sample.

The Landy-Szalay estimator (described in Section 2.3.1), was used by Chehade et al. (2016)

in order to measure the correlation functions of the four samples, using random catalogues

20 times larger than the data in each sample. To account for effects of photometric and

spectroscopic incompleteness, appropriate normalization has been applied to these randoms

on a field to field basis.

We combine the four measured correlation functions by taking the mean and use the standard

error on the mean as an estimate of the error. We then perform fitting to the resultant mean

correlation function following the procedure described in Section 2.3.3.

As obtaining an accurate estimation of the covariance matrix for the combined QSO sample

requires the generation of a large set of realistic mocks, a large task which lies beyond the

scope of this work, when performing the fittings, we simply make use of the calculated

standard error on the mean. Furthermore, due to time constraints we did not attempt to

perform independent measurements of the correlation functions of the quasar samples, and

are therefore limited to the choice of binning selected by Chehade et al. (2016). The fitting

could however, benefit from a reduction in bin size in the measured correlation functions,

providing more data points in the fitting range and allowing for a more accurate and precise

determination of the position of the BAO peak. Due to these two constraints, we present

our current measurement of the BAO scale in the combined QSO sample only as an initial

estimate, with room for further improvement in future works.

3.4 Results and Discussion

In this section we present the results of our BAO analysis in the correlation function of the

combined QSO sample.

3.4.1 Fitting the Combined QSO Sample

The results of fitting to the correlation function of the combined QSO sample with the

complete ξfit model (equation 2.3.4), the ξfit model without the A(s) nuisance fitting terms,
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Figure 3.1: The results of fitting the mean of the 2QZ, SDSS, 2SLAQ and 2QDESp quasar
samples correlation functions. The error bars are the standard error on the mean. The fitting
is performed using various models for bins in the range 25 6 s 6 201h−1Mpc. The light blue
curve is the ξfit model (equation 2.3.4) with the B fitting parameter only, while the red curve
shows the complete ξfit model. The grey curve is the ξnoBAO model fitted with the B and
A(s) fitting terms.

and a complete ξnoBAO model in the range 25 6 s 6 201h−1Mpc, are presented in Fig. 3.1.

As shown in this figure and in line with the discussion in the previous section, in the current

choice of binning, the position of the fitted BAO peak is largely determined based on the

position of the single bin located at ≈ 100h−1Mpc. The fitting can therefore benefit from

having more bins in the region containing the BAO peak, allowing for a more accurate

determination of the peak position. The values of α corresponding to the two variations

of the ξfit model and the value of DV (z) corresponding to the full model, are presented in

Table 3.1. Similar to fits performed in the previous chapter, upon performing an F -ratio

test it can be seen that the complete model provides a better fit in comparison to the simple

model (F = 5.27, p = 0.05238), althought in this case the complex model is preffered at a

lower level of significane in comparison to fits discussed in the previous chapter.

3.4.2 Significance of BAO Peak Detection

The ∆χ2 curves, from fitting the correlation function of the combined QSO sample, with

the ξfit and ξnoBAO models is presented in Fig. 3.2. A comparison of the two curves shows

that the BAO peak is detected at ≈ 2.4σ in the data, and the plateau height of the curve
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Figure 3.2: The significance of the detection of the BAO peak based on fitting to the cor-
relation function of the combined QSO sample in the range 25 6 s 6 201h−1Mpc. The red
curve correspond to a fits to the data based on the ξfit model which contains BAO, while
the blue curve correspond to the fits based on the ξnoBAO model with the BAO feature re-
moved. In both cases the complete models including the A(s) fitting terms are used. Here
∆χ2 = χ2(α)−χ2

min, where χ2
min is the minimum χ2 value using the model containing BAO.

Comparing the two curves indicates that the BAO peak is detected at an ≈ 2.4σ level in the
data.

corresponding to the ξfit model indicates that we can be confident in our measured value of

α at an ≈ 2.3σ level.

3.4.3 BAO Distance Constraints on DV (z)

We present our measured values of DV for the combined QSO sample (Table 3.1), as well

as for the BOSS DR12 CMASS and LOWZ samples (presented in Table 2.7 of Chapter 2),

in Fig. 3.3. The pre-reconstruction measurements of DV by Cuesta et al. (2016) based on

the DR12 CMASS and LOWZ samples, as well as those from Beutler et al. (2011) for the

6dFGS sample, Ross et al. (2015) for the SDSS DR7 Main sample and Kazin et al. (2014)

for the WiggleZ galaxy sample are also included for comparison. (Note that in the case of

the WiggleZ distance measurements, we are plotting the post-reconstruction results due to

much poorer constraints on the pre-reconstruction values). The flat ΛCDM prediction based

on the Planck 2015 cosmology (TT, TE, EE+lowP+lensing+ext parameters from Table 4 of

Planck Collaboration et al. 2015) is added for comparison. The grey region represents the
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Table 3.1: Results of fitting the correlation functions of the combined quasar sample using the
complete ξfit model described in Eq. 2.3.4 and the same model without the A(s) nuisance
fitting parameters, in the range 25 6 s 6 201h−1Mpc. The distance constraint on DV

calculated based on the measured value of α for the complete model is also included. Based
on our fiducial cosmology, we assume a fiducial sound horizon value of rd,fid = 147.70 Mpc.
Here the value of DV is quoted at the redshift of z = 1.49, corresponding to the mean redshift
of the combined QSO sample.

Model α χ2
min/dof DV (z)rd,fid/rd (Mpc)

B2ξm +A(s) 0.9363± 0.0652 6.7/5 3583± 249
B2ξm 1.0641± 0.0671 27.9/8 —

1σ variation on the Planck prediction of DV (z). As these variations are dominated by the

uncertainties in Ωmh
2 (see e.g. Anderson et al. 2014), this region is determined via sampling

Ωmh
2 under the assumption that it follows a Gaussian distribution given by the Planck 2015

measurement and its 68 per cent confidence limit.

For the LOWZ sample, we find our measurement of DV to be only in a mild tension with the

Planck 2015 prediction, while there appears to be an ≈ 2σ tension between our measurement

and the prediction for the CMASS sample. Although the measured DV for the combined

QSO sample also appears lower than the Planck prediction, the two results are in agreement

within uncertainties.

The data in Fig. 3.3a can also be used to evaluate the plausibility of alternative cosmological

models against observations. Here we generate a Einstein-de Sitter model by setting Ωm = 1

and using a value ofH0 = 67.7 km s−1Mpc−1. We obtain the best fit to the data by performing

χ2 minimisation, treating (rd,fid/rd) as a free scaling parameter, with rd,fid = 147.50 Mpc

being the Planck 2015 value and rd corresponding to the Einstein-de Sitter value (which in

effect is our fitting parameter). We vary (rd,fid/rd) in the range 1.0 to 1.5 in intervals of

0.001, taking the value corresponding to χ2
min as the best fit. Here, χ2 is given by

χ2(rd,fid/rd) =
N∑
i=1

(Dobs
V (i)−Dfit

V (i))2

σ2
Dobs

V

(i) , (3.4.1)

where i denotes the ith data point, N is the number of data points, Dobs
V is the value of the

observed DV (z)(rd,fid/rd), with σDobs
V

being the uncertainty on this value and Dfit
V is the

corresponding model value at that redshift. Using the same approach as in Section 2.4.5, we

assess the quality of the fits provided by the ΛCDM and Einstein-de Sitter models to the

data based on their corresponding χ2
min/dof values.

As there are two sets of measurements for the LOWZ and CMASS samples we compare

the model to three subsets of the data with (i) our measurements, (ii) Cuesta et al. (2016)
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Table 3.2: Results of fitting the ΛCDM and Einstein-de Sitter models to the DV (z)(rd,fid/rd)
values plotted in Fig. 3.3a. As there are two sets of measurements for LOWZ and CMASS, we
fit to three subsets of the data with (i) our measurements, (ii) Cuesta et al. (2016) measure-
ments, and (iii) our CMASS and Cuesta et al. (2016)’s LOWZ measurements. Here rd,fid/rd
is our fitting (scaling) parameter, and the p-values indicate the significance of rejection of
each model by the data.

ΛCDM Einstein-de Sitter
Subset rd,fid/rd χ2

min/dof p-value χ2
min/dof p-value

(i) 1.220 11.3/7 0.13 49.7/7 1.65× 10−8

(ii) 1.239 3.8/7 0.80 51.9/7 6.10× 10−9

(iii) 1.225 10.1/7 0.18 45.4/7 1.14× 10−7

measurements, and (iii) our CMASS and Cuesta et al. (2016)’s LOWZ data points. The

yellow curve shown in Fig. 3.3a corresponds to the best fit Einstein-de Sitter model, using

the Cuesta et al. (2016) measurements. The results of fitting the ΛCDM and Einstein-de

Sitter models to the data are presented in Table 3.2. We find that the ΛCDM model provides

a good fit to the data, while for the three different subsets, the Einstein-de Sitter model is

rejected by the observations to a high level of significance as indicated by the very small

p-values. We note however that if we use the pre-reconstruction WiggleZ values with larger

errors and do not include the 6dFGS data point in the fit, we obtain an Einstein-de Sitter

best fit model with the rd,fid/rd = 1.232 and χ2
min/dof = 14.0/6 (p=0.03).
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Figure 3.3: A comparison of our measured values ofDV for the LOWZ, CMASS and combined
QSO samples (red data points) with the predictions based on a flat ΛCDM model with the
Planck 2015 parameters (black line). The grey region represents the 1σ variation on the
Planck prediction of DV (z). The measurements of DV from Cuesta et al. (2016) for the
CMASS and LOWZ samples (green data points), Beutler et al. (2011) for the 6dFGS sample
(light blue data point), Ross et al. (2015) for the SDSS DR7 Main sample (pink data point)
and Kazin et al. (2014) for the WiggleZ galaxy sample (dark blue data points), are also
included for comparison. The yellow curve in subplot (a) is the best-fit Einstein-de Sitter
model (i.e. scaled by rd,fid/rd = 1.239), fitted to a subset of the data with the LOWZ and
CMASS measurements from Cuesta et al. (2016).
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Conclusions

In this study we have obtained an independent empirical measurement and estimation of

errors on the correlation function of the BOSS DR12 LOWZ and CMASS samples. This

was done by dividing each sample into 5 subsamples, measuring the correlation functions

for these fields individually and taking the mean to represent the correlation function of the

entire sample. We found an excellent agreement between our mean correlation functions and

the correlation functions measured by Cuesta et al. (2016) for both samples, detecting the

BAO peak at ≈ 4σ and ≈ 7σ for the LOWZ and CMASS samples respectively.

Based on our 5 subsamples, we obtained two estimates of uncertainties on the mean corre-

lation function, using bootstrap resampling and the standard error on the mean and found

good agreement between the two sets of errors. We also found our empirical estimates of

uncertainties to be in general agreement with the uncertainties presented by Cuesta et al.

(2016) which were calculated using covariance matrices from 1000 simulated DR12 QPM

mocks. With the exception of the LOWZ sample where our uncertainties were lower than

those from Cuesta et al. (2016) in the vicinity of the BAO peak, overall our findings serve as

a verification that these simulated mocks are accurate representations of the data.

Based on performing isotropic fitting to the mean correlation functions we have obtained

measurements of the position of the BAO peak. We found our results to be in agreement with

those from Cuesta et al. (2016), finding only a small tension between the two measurements

in the case of the CMASS sample. Furthermore, we have provided an empirical verification

of the robustness of the fitting technique, by performing fits to the correlation functions of

our 5 subsamples and taking the mean of the results as a second measurement of the BAO

peak position, obtaining consistent results with the two approaches.

39
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We have also demonstrated that the A(s) nuisance fitting parameters play a significant role in

producing a good fit, when fitting the correlation functions with a fiducial ΛCDM model. At

our primary fitting range, based on the p-values corresponding to an F -ratio test (p = 0.018

and p = 0.00084 for the CMASS and LOWZ samples respectively), we have shown that the

simple ΛCDM model without the A(s) nuisance parameters is a significantly worse fit to the

data compared to the full model, specially in the case of the LOWZ sample where the shape

of the BAO peak is skewed to one side.

By testing the effect of the choice of fitting range on our measurements we have demonstrated

that the measured position of the BAO peak and its uncertainty are largely insensitive to the

choice of fitting range, while the significance of detection of the peak could vary considerably

(by up to 1.9σ for the CMASS sample and 1.3σ for the LOWZ sample), depending on this

choice.

We have investigated the possibility of obtaining an estimate of the covariance matrix from the

data using the bootstrap method. We found our fitting results obtained using the bootstrap

covariance matrix to be in good agreement with those obtained using the DR12 covariance

matrix which is based on simulated QPM mocks. However, due to certain limitations in

our methodology further investigation is required to determine the wider applicability of this

technique for general use.

Based on our measurements of the position of the BAO peak in the LOWZ and CMASS

samples, we have measured the volume-averaged distance to z = 0.32 and z = 0.57 to be

DV (0.32)rd,fid/rd = 1226 ± 32 Mpc and DV (0.57)rd,fid/rd = 1988 ± 24 Mpc, a 2.6 per cent

and 1.2 percent measurement respectively, assuming rd,fid = 147.10 Mpc. We found our

LOWZ measurement to be in agreement with the findings of Cuesta et al. (2016) within the

uncertainties. However, we found a lower value for our measurement for the CMASS sample

in comparison to the result from Cuesta et al. (2016) (an ≈ 1.4σ tension), as well as the

prediction from Planck Collaboration et al. (2015) (an ≈ 2σ tension).

In Chapter 3 we extend our analysis to higher redshifts by performing fitting to the mean of

the correlation functions obtained by Chehade et al. (2016), for the 2QZ, SDSS DR5, 2SLAQ

and 2QDESp quasar samples. Here the BAO feature was detected at ≈ 2.4σ in the data.

Fitting the correlation function resulted in a distance constraint of DV (z = 1.49)rd,fid/rd =

3583±249 Mpc (assuming rd,fid = 147.70 Mpc), a 6.9 per cent measurement to z = 1.49, the

mean redshift of the combined QSO sample. This value is in agreement with the prediction

from Planck Collaboration et al. (2015). As a covariance matrix based on simulated mocks is
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yet to be constructed for the combined QSO sample, and the current binning of the correlation

function is not ideal for the purpose of obtaining an accurate measurement of the BAO peak

position, we present this distance measurement as an initial estimate which could be improved

upon in future works.

Additionally, we made use of our measurements of DV (z) along with those from Cuesta et al.

(2016) for the CMASS and LOWZ samples, Beutler et al. (2011) for the 6dFGS sample, Ross

et al. (2015) for the SDSS DR7 Main sample and Kazin et al. (2014) for the WiggleZ galaxy

sample, to test the plausibility of an Einstein-de Sitter model with Ωm = 1 and H0 = 67.7

km s−1Mpc−1. We found that while a flat ΛCDM model based on Planck 2015 parameters is

in good agreement with the data, a normalised Einstein-de Sitter model is ruled out by the

observations at a high level of significance (χ2
min/dof = 49.7/7, p-value= 1.65× 10−8).
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A.1 Correlation Functions of Individual Fields
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Figure A.1: The monopole correlation functions for the individual fields (coloured lines) and
the corresponding mean correlation function (black line), of CMASS and LOWZ samples.
The error bars on the mean correlation functions are the standard error on the mean. These
correlation functions correspond to fields with the higher coverage and are the primary focus
of our analysis in this study.
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A.2 CMASS 30 Fields

(a) CMASS Northern Galactic Cap (b) CMASS Southern Galactic Cap

Figure A.2: The coverage of the chosen 30 fields in the Northern and Southern Galactic
caps of the CMASS sample. The selected fields are highlighted by various colours while the
unselected areas are shown in grey. These subsamples are used in Section 2.4.9 in order to
obtain a bootstrap estimation of the covariance matrix from the data.
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Figure A.3: Correlation functions of the 30 fields in the CMASS sample (grey dashed lines)
and the mean correlation function (blue line). The error bars on the mean correlation function
are the standard error on the mean.
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