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Insights from simulations on the consequences
of uncertainties in estimating the masses

of observed galaxies

David James Rowney Campbell

Abstract

We make use of cutting-edge simulations of galaxy formation in a Λ cold

dark matter (ΛCDM) Universe to investigate the impact of the uncertainties

inherent to certain observational techniques for estimating the masses of

galaxies on the conclusions that are drawn from studies using such methods.

By performing virtual ‘observations’ of simulated galaxies, we estimate their

stellar and dynamical masses in the same way as in particular observational

studies. The satellite galaxies of the Milky Way are highly attractive candid-

ates for dynamical studies, due to their proximity; and in general, satellite

galaxies dominate the clustering of galaxies on small scales. The total dy-

namical masses and internal mass distributions of individual galaxies, along

with the clustering of galaxies as a function of intrinsic properties such as

stellar mass, each reflect the structure and evolution history of the underly-

ing invisible dark matter that forms the structural spine of the Universe and

incubates the formation and evolution of galaxies over cosmic time.

The observed stellar kinematics of dispersion-supported galaxies are

often used to measure dynamical masses. Recently, several analytical rela-

tionships between the stellar line-of-sight velocity dispersion, the projected

(2D) or deprojected (3D) half-light radius, and the total mass enclosed within

the half-light radius, relying on the spherical Jeans equation, have been pro-

posed. Here, we make use of the apostle cosmological hydrodynamical

simulations of the Local Group to test the validity and accuracy of such

mass estimators for both dispersion and rotation-supported galaxies, for

field and satellite galaxies, and for galaxies of varying masses, shapes, and

velocity dispersion anisotropies. We find that the mass estimators of Walker

et al. and Wolf et al. are able to recover the masses of dispersion-dominated

systems with little systematic bias, but with a 1σ scatter of 25 and 23 percent,

respectively. The error on the estimated mass is dominated by the impact of



the 3D shape of the stellar mass distribution, which is difficult to constrain

observationally. This intrinsic scatter becomes the dominant source of uncer-

tainty in the masses estimated for galaxies like the dwarf spheroidal (dSph)

satellites of the Milky Way, where the observational errors in their sizes and

velocity dispersions are small. Such scatter may also affect the inner density

profile slopes of dSphs as derived from multiple stellar populations, relaxing

the significance with which Navarro-Frenk-White profiles may be excluded,

depending on the degree to which the relevant properties of the different stel-

lar populations are correlated. Additionally, we derive a new optimal mass

estimator that removes the residual biases and achieves a statistically signi-

ficant reduction in the scatter to 20 percent overall for dispersion-dominated

galaxies, allowing more precise and accurate mass estimates.

We present predictions for the two-point correlation function of galaxy

clustering as a function of stellar mass, computed using two new versions

of the galform semi-analytic galaxy formation model. One model uses a

universal stellar initial mass function (IMF), while the other assumes differ-

ent IMFs for quiescent star formation and bursts. Particular consideration

is given to how the assumptions required to estimate the stellar masses of

observed galaxies (such as the choice of IMF, stellar population synthesis

model, and dust extinction) influence the perceived dependence of galaxy

clustering on stellar mass. Broad-band spectral energy distribution fitting

is carried out to estimate stellar masses for the model galaxies in the same

manner as in observational studies. We show clear differences between

the clustering signals computed using the true and estimated model stellar

masses. As such, we highlight the importance of applying our methodology

to compare theoretical models to observations. We introduce an alternative

scheme for the calculation of the merger time-scales for satellite galaxies

in galform, which takes into account the dark matter subhalo information

from the underlying dark matter only simulation. This reduces the amp-

litude of small-scale clustering. The new merger scheme offers improved

or similar agreement with observational clustering measurements, over the

redshift range 0 < z < 0.7. We find reasonable agreement with clustering

measurements from GAMA, but find larger discrepancies for some stellar

mass ranges and separation scales with respect to measurements from SDSS

and VIPERS, depending on the galform model used.
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In the beginning there was nothing, which exploded.

— Terry Pratchett





Chapter 1

Introduction

1.1 Towards a standard cosmological model

Since prehistoric times, human imagination has been captivated by the

mysteries of the heavens, evoking countless explanations for the nature

of the cosmos and our place within it. Our modern understanding of the

Universe is rooted in the assumption of the cosmological principle: that on

large scales the Universe is homogeneous and isotropic (such that observers

located at different points in space will see more or less the same thing, in a

statistical sense, at sufficiently large distances, in all directions).

Observational measurements of the rotation velocity profiles of stars

and gas within disc galaxies, along with dynamical studies of hot gas and

constituent galaxies within galaxy clusters, and measurements of the stellar

velocity dispersions of spheroidal and elliptical galaxies, provide strong evid-

ence that there is not enough luminous material within such systems to fully

account for their gravitational dynamics. That is, significant contributions

to the gravitational field are inferred to originate from matter that cannot be

seen directly through electromagnetic radiation. This apparently invisible

material is known as dark matter, and has been a topic of increasing interest

in cosmology since the 1930s (Zwicky, 1933; Babcock, 1939; Kahn & Woltjer,
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1959; Rubin & Ford, 1970; Ostriker & Peebles, 1973; Ostriker et al., 1974;

Einasto et al., 1974; White & Rees, 1978). Dynamical studies suggest that

galaxies (and clusters of galaxies) are embedded in overdense haloes of dark

matter, which have approximately spherically symmetric mass distributions

that increase in density towards the halo centre.

It is usually assumed that the cosmological dark matter is a fundamental

particle that interacts only gravitationally with other particles (and possibly

also via the weak interaction1). As such, the dark matter can be treated

as a collisionless fluid; except in the (extremely hot) very early Universe,

when even the dark matter particles will have been presumably in thermal

equilibrium with other particles, ceasing at the time of decoupling of the

dark matter.2 For a collisionless fluid, density perturbations can be erased by

random thermal motions; this effect, known as free streaming (or collisionless
damping), competes with the self-gravity of the perturbations (where the

self-gravity acts to increase perturbation amplitudes).

The mass of the hypothetical dark matter particle has important implica-

tions for the details of the formation of structure in the Universe, since the

dark matter has presumably always dominated the matter density, and thus

dominated the gravitational forces responsible for the evolution of structure

(after very early times, when radiation, not matter, dominated the energy

density of the Universe). A relatively less massive dark matter particle would

have remained relativistic until later times as the infant Universe expanded

and cooled, allowing such particles to travel (free stream) larger distances

before slowing to low velocity, and to erase (smooth out) density variations

on relatively large scales. Therefore, relatively ‘light’ dark matter particle

candidates are said to have a relatively long free streaming length, and are

referred to as hot dark matter (with rest mass energy mc2 ∼ eV, where c is

the speed of light; e.g. massive neutrinos). On the other hand, if the dark

matter particle is relatively cold, i.e. it has a relatively high mass (mc2 ∼GeV;

e.g. the lightest supersymmetric particle; Ellis et al. 1984), then such particles

would have become non-relativistic much earlier in the expansion history of

the Universe, thus allowing density fluctuations on smaller scales to survive

1The acronym WIMP (weakly interacting massive particle) is often used to refer to dark
matter particle candidates of this kind.

2A notable exception is if the dark matter is composed of axions (Preskill et al., 1983). In
this case, the dark matter was never in thermal equilibrium with other particles.
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beyond very early times and to grow under gravity. Indeed, free streaming is

suppressed sufficiently by the particle mass in the case of cold dark matter

such that the influence of this effect on cosmic structure formation can be

neglected. If the dark matter particles were somehow created with zero

kinetic energy, then they would qualify as cold dark matter, even for low

particle masses (this is the case for axions; Preskill et al. 1983).

Whether the dark matter is hot (HDM) or cold (CDM) has a direct impact

on the size (mass) of structures that can form directly through the gravita-

tional clustering of dark matter particles, assuming an initial density field

with small perturbations around the cosmic mean. Free streaming in the

case of HDM prevents the direct assembly of haloes smaller than those of

large galaxy clusters, because density perturbations on smaller scales are

erased at early times. However, dark haloes as small as an Earth mass are

able to form directly in CDM. This distinction between CDM and HDM leads

to very different pictures of how structure formation takes place in each

scenario. For HDM, very massive haloes form first, which must then frag-

ment to produce the haloes of lower masses required to host small clusters

and individual galaxies. For CDM, structure formation proceeds through

hierarchical clustering, where the smallest haloes form earliest, and merge

sequentially to form progressively larger structures.

Comparing the large-scale structure predicted by CDM and HDM cosmo-

logical simulations with observational maps of the distribution of galaxies

clearly indicates that the observed clustering is inconsistent with the predic-

tions assuming HDM, but closely resembles the predictions for a Universe

whose matter density is dominated by CDM (White et al., 1983; Davis et al.,

1985). Thus, CDM has emerged as the standard theoretical description to

account for the invisible mass that we infer to pervade the Universe, where

cosmic structure formation is understood to have been governed by the hier-

archical clustering of cold dark matter particles into progressively larger

haloes and filaments (the cosmic web), following the gravitational instability

of an initial, almost smooth, density field with small perturbations. Baryonic

gas is drawn into the gravitational potential wells of dark matter haloes,

eventually condensing at sufficient densities in the halo centres to ignite star

formation, and the birth of galaxies.

Recently there has been increasing interest in flavours of dark matter
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that differ from the behaviour of CDM on the smallest scales of cosmological

interest. If the dark matter is warm (WDM; mc2 ∼ keV; e.g. sterile neutrinos;
Shaposhnikov 2008), then the hierarchical structure formation scenario

of CDM is preserved, but dark matter haloes smaller than those of dwarf

galaxies do not form; and so the dark matter distribution is smooth on scales

smaller than this, in contrast to the CDM case, where yet smaller dark matter

haloes are expected to form in abundance. Another possibility is that the

dark matter is significantly self-interacting (SIDM; e.g. Spergel & Steinhardt

2000), which could smooth out density peaks via scattering interactions.

The core motivation for the existence of cosmological dark matter is based

on the need for a dominant, non-baryonic, dark mass component to recon-

cile the observed dynamics and structure of electromagnetically luminous

material with the gravitational forces inferred on galactic and cosmic scales.

However, if the dark matter is indeed a fundamental particle, as expected,

it may be possible to detect its presence through techniques that are inde-

pendent of gravitational arguments. Direct detections could be achieved

on Earth from weak interactions with WIMPs, or conversion of axions into

microwave photons within a magnetic resonant cavity (e.g. Asztalos et al.

2010). Alternatively, radiation from the decay or annihilation of distant dark

matter particles may be detectable, particularly from high density regions,

such as halo centres. However, currently there is no compelling evidence

for the (non-gravitational) detection of dark matter, and its true identity

remains a mystery. It is worth noting that the dark matter could be a mixture

of several different non-baryonic particle species (e.g. neutrinos certainly do
exist, and it seems that they are not quite massless, so they could contribute

a small HDM component).

In the late 1990s, the High-z Supernova Search Team (Riess et al., 1998),

and the Supernovae Cosmology Project (Perlmutter et al., 1999), announced

discoveries that observations of the brightnesses of distant Type Ia super-

novae (SNIa), out to a redshift of z ∼ 1, indicate that not only is the Universe

expanding, but the rate of expansion is currently accelerating. This suggests

that the density of the Universe is currently dominated by a mass (energy)

component with negative pressure. This mysterious density component is

referred to as dark energy.

The simplest theoretical description of dark energy is Einstein’s famous



Chapter 1. Introduction 29

cosmological constant, Λ (with units of inverse length squared); originally

proposed as a means of reconciling a static Universe with general relativity.

A positive value of Λ opposes gravity, acting to accelerate the rate of cosmic

expansion. Considering a sufficiently large, positive, cosmological constant

allows us to account for the current acceleration observed in the expansion

of space, but admits another cosmological unknown: there is no theoretical

consensus on the physical identity of the dark energy, and it may be that

a perfect cosmological constant turns out to be an inadequate description

of this phenomenon. Given its negative pressure, work is done on the

cosmological constant fluid as space expands, allowing the energy density to

remain fixed. In physical terms, the cosmological constant is often thought

of as relating to the constant vacuum (zero-point) energy density of empty

space. However, the vacuum energy density predicted on particle physics

grounds is many orders of magnitude higher than the energy density due to

Λ expected from cosmological arguments (this is known as the cosmological
constant problem; e.g. Coles & Lucchin 2002).

Discovered by Penzias & Wilson (1965) and Dicke et al. (1965), the cosmic
microwave background (CMB) is a relic of the early Universe, and provides

a powerful observational window into the physical state of the Universe

at the time that the constituent photons of the CMB were emitted. CMB

photons are detected from all directions on the sky, and exhibit a black body

spectrum with a temperature of approximately 3K that is almost perfectly

uniform in all directions (once the motion of the Earth, and emission from

other sources are corrected for).

Shortly before the CMB was produced, there was thermal equilibrium

between photons and baryons throughout the Universe; there were enough

photons present with sufficient energy to immediately ionise any hydrogen

atoms that formed from free protons and electrons in the primordial plasma.

As the Universe expanded, cosmological redshifting reduced the number of

high energy photons severely enough to allow hydrogen atoms to survive.

This epoch is known (rather misleadingly) as recombination. Following

recombination, the Universe became transparent to radiation, as the photon

energies were low enough to prevent interaction with the newly formed

hydrogen atoms. It is photons from this decoupling of radiation from baryonic

matter that we observe today as the CMB. Thus the observed CMB photons
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reveal the surface of last scattering of electromagnetic radiation.

Since the CMB was produced following a state of thermal equilibrium

with baryonic matter, angular variations (anisotropies) in the observed tem-

perature of the CMB reflect variations in the matter density at the time

of CMB decoupling. Such anisotropies are indeed detected, at a level of

around 10−5 relative to the mean temperature averaged over the whole sky.

The angular power spectrum of CMB temperature anisotropies provides

extensive insight into the state of the matter density field at the time of CMB

decoupling: the temperature fluctuation amplitudes are proportional to the

matter density perturbation amplitudes at decoupling (this proportionality

is preserved at later times as long as the density perturbations, ∆ρ, are still

linear, i.e. |∆ρ|/ρ� 1). Before decoupling, the pressure in the photon-baryon

fluid due to interactions between electrons and photons competed with the

gravitational forces, driving waves referred to as baryon acoustic oscillations
(BAOs). The characteristic BAO length-scale is an important standard ruler,

not only when applied to the CMB radiation, but also in the clustering of

galaxies (which formed from the matter distribution that underwent the

oscillations prior to CMB decoupling). See Mo et al. (2010) for a detailed

discussion of the physical origins of different features observed in the CMB

radiation field.

Theoretical predictions for the CMB angular power spectrum can be gen-

erated using sophisticated programs such as cmbfast (Seljak & Zaldarriaga,

1996) and camb (Lewis & Challinor, 2011), for a given set of cosmological

parameters. In this way, modelling of the temperature anisotropies of the

CMB can provide powerful constraints on cosmological models. Analysis of

the CMB power spectrum indicates that the Universe is at least very close

to spatially flat, if not perfectly flat. It is perhaps surprising that the spatial

geometry should happen to (almost) possess the fortuitously simple special

case of Euclidean flatness. The apparent happenstance of spatial flatness is

known as the flatness problem of the Hot Big Bang model. Additionally, it is

not immediately clear how the CMB temperature manages to be so close to

being perfectly isotropic, since only small regions of the sky could ever have

been in contact and reached thermal equilibrium before CMB decoupling

(the so-called horizon problem). These apparent issues with the standard cos-

mological model are resolved if the Universe underwent a period of inflation
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following the Big Bang (Guth, 1981; Albrecht & Steinhardt, 1982; Guth & Pi,

1982; Hawking, 1982; Linde, 1982a,b; Starobinsky, 1982; Linde, 1983; Linde

et al., 1994; Lidsey et al., 1997; Lyth & Riotto, 1999; Guth, 2000). Inflation

also resolves theoretical issues with the apparently sparse abundances of

hypothetical relic particles, such as magnetic monopoles.

Perhaps the most compelling aspect of inflationary theory is that it

provides a mechanism to generate the perturbations in the density field

that are revealed in the CMB; perturbations which were the seeds of the

formation of cosmic structure through gravitational instability. The quantum

mechanical uncertainty principle (in particular the energy-time uncertainty)

allows for the creation and annihilation of particles in otherwise empty space

on extremely short time-scales. Inflation caught hold of these quantum fluc-

tuations, and amplified them to scales far beyond the reach of the quantum

mechanical realm; imprinting small irregularities throughout the cosmic

density field, which remained at the end of the inflationary period.

We now have a theoretical model in which quantum fluctuations follow-

ing the Big Bang give rise to all observed structures in the present Universe.

Within this framework, the canonical model that has risen to prominence

over the past few decades is Λ cold dark matter (ΛCDM). In ΛCDM, the spa-

tial geometry is perfectly flat, the energy density of the Universe is currently

dominated by dark energy in the form of a perfect cosmological constant,

and the matter density is dominated by non-baryonic cold dark matter. Six

parameters are required to specify the ΛCDM model:3 H0, Ωm,0, Ωb,0, ns,

σ8, and τ (see Table 1.1 for their definitions); although the parameters

may be constrained and quoted in alternative forms, e.g. Ωm,0h
2. Other

important quantities can be derived from this set of six parameters, e.g.

ΩΛ,0 = 1 −Ωm,0 and Ωdm,0 = Ωm,0 −Ωb,0. The current best constraints on

the ΛCDM parameters come from the Planck mission, combining CMB tem-

perature anisotropy data with CMB polarisation and gravitational lensing

data, along with independent constraints from SNIa luminosities, measure-

ments of the characteristic BAO length-scale as imprinted on the observed

clustering of galaxies, and the value of H0. Table 1.1 lists the values of the

3Note that τ is much less fundamental than the other five ΛCDM model parameters.
However, since a theoretical prediction of τ would require detailed and precise knowledge
of the physics of galaxy formation, τ is generally treated as a free parameter.
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Table 1.1 – Various important cosmological parameters, derived assuming a spa-
tially flat ΛCDM cosmology. h is defined by H0 = 100hkms−1 Mpc−1, where H0
is the Hubble parameter at the present time. Ωb,0, Ωdm,0, Ωm,0, and ΩΛ,0 are the
current density parameters for baryons, dark matter, all non-relativistic matter,
and the cosmological constant, respectively. ns is the spectral index of primordial
fluctuations, and σ8 normalises the linear power spectrum at redshift zero. τ is
the optical depth to reionisation, and zre is the redshift of reionisation. t0 is the
age of the Universe, expressed in billions of years (Gyr). The first column gives
the parameter values from WMAP7 (taken from the final column of table 1 of
Komatsu et al. 2011), and the second column gives the values from Planck2015
(taken from the final column of table 4 of Planck Collaboration 2016). In each case,
CMB data is combined with additional constraints when determining the values of
the cosmological parameters.

Parameter WMAP7 Planck2015

h 0.702± 0.014 0.6774± 0.0046
Ωb,0h

2 0.02255± 0.00054 0.02230± 0.00014
Ωdm,0h

2 0.1126± 0.0036 0.1188± 0.0010
Ωm,0h

2 0.1352± 0.0036 0.14170± 0.00097
ΩΛ,0 0.725± 0.016 0.6911± 0.0062
ns 0.968± 0.012 0.9667± 0.0040
σ8 0.816± 0.024 0.8159± 0.0086
τ 0.088± 0.014 0.066± 0.012
zre 10.6± 1.2 8.8+1.2

−1.1
t0 [Gyr] 13.76± 0.11 13.799± 0.021

ΛCDM parameters derived using the full Planck data (Planck2015), and the

slightly older WMAP seven-year data (WMAP7). The preferred values of

the cosmological parameters from Planck2015 and WMAP7 are very similar.

The Planck analysis finds excellent agreement between the predictions of

ΛCDM and many relevant observational constraints (Planck Collaboration,

2016). The simulations used in Chapters 2 and 3 assume aΛCDM cosmology

with parameters consistent with WMAP7.

For reviews of the standard cosmological model see, for example, Liddle

(2003), Coles & Lucchin (2002), Mo et al. (2010), and Frenk & White (2012).
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1.2 Simulating galaxy formation

1.2.1 The matter power spectrum

Inflationary models predict that the Universe was seeded with initial density

fluctuations that follow Gaussian statistics. The temperature anisotropies

observed in the CMB are also found to be consistent with Gaussian statistics.

If the primordial density perturbations in the cosmic matter distribution

are indeed a homogeneous and isotropic Gaussian random field, then all

the relevant statistical information can be described using only the power
spectrum, P (k), for wavenumber k.

Let the density at position x be ρ(x). We can write

ρ(x) = ρ [1 + δ(x)] , (1.1)

where ρ is the mean density at the time of interest, and δ(x) is the overdens-
ity. Thus defined, δ(x) contains all information on the density fluctuations,

throughout all space. It is convenient to work with the Fourier transform of

the overdensity field, rather than with δ(x) itself. Expanding the perturbation

amplitude at any point as a sum of plane waves,

δ(x) =
∑
k

δ̂(k)exp(ik · x) , (1.2)

where k is the wavevector, with magnitude k = |k|. The (complex) amplitudes

of the Fourier modes are then given by

δ̂(k) =
1
L3

∫
V
δ(x)exp(−ik · x)dx , (1.3)

where V is a finite cubic volume of space, with side length L, sufficiently

large that the region may be approximated as periodic in all directions, and

much larger than the scale of any manifest density structure (e.g. Coles &

Lucchin 2002). The requirement of periodicity sets a discretisation condition

for the allowed wavevectors:

k =
2π
L

(ix, iy , iz) , (1.4)
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for integers ix, iy , and iz (since k = 2π/λ for wavelength λ).

The power spectrum of the density perturbations is defined as

P (k) = L3〈|δ̂(k)|2〉 . (1.5)

Note that P (k) depends only on the magnitude of k, otherwise our assumption

of isotropy would be violated (cosmological principle). P (k) is proportional

to the variance of the Fourier mode amplitudes for wavenumber k, and has

dimensions of volume. For a Gaussian random field that is homogeneous

and isotropic, P (k) provides a complete statistical description of the density

perturbations.

If δ̂(k) is a Gaussian random field, then its real, δ̂R(k), and imaginary,

δ̂I(k), parts are each individually Gaussian distributed around zero (with

equal dispersion), and thus δ(x) and ρ(x) must also be Gaussian random

fields (see Coles & Lucchin 2002 for more details). In order for δ(x) to be

real, we require δ̂(k) = δ̂∗(−k).4 In the linear regime (|δ(x)| � 1), each Fourier

mode grows independently, i.e. δ̂(k) evolves separately with time for each k.

However, once the density perturbations become non-linear, the assumption

of Gaussianity no longer holds, and the different Fourier modes can no longer

be considered to evolve independently of each other. Since δ̂(k) is complex,

we can parameterise it as having an amplitude, |δ̂(k)|, and a phase angle,

θ̂(k), in the complex plane, such that

δ̂(k) = δ̂R(k) + iδ̂I(k) = |δ̂(k)|exp(iθ̂(k)) , (1.6)

where δ̂R(k), δ̂I(k), |δ̂(k)| = [δ̂2
R(k) + δ̂2

I (k)]1/2, and θ̂(k) = arctan2[δ̂I(k), δ̂R(k)]

are all real quantities. Since δ̂R(k) and δ̂I(k) are each Gaussian distributed,

with the same dispersion, there is equal probability for any θ̂ in the range

[0,2π). Using the amplitude and phase of δ̂(k), equation (1.2) becomes

δ(x) =
∑
k

|δ̂(k)|exp(i[k · x+ θ̂(k)]) . (1.7)

Inflationary models typically predict that the initial power spectrum, Pi(k)

4Thus δ̂R(k) = δ̂R(−k), and δ̂I(k) = −δ̂I(−k). The fact that this condition forces δ(x) to be
real follows from equation (1.2) and the identity exp(iα) = cos(α) + i sin(α).
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(at some arbitrarily early time), has a simple power law form, such that

Pi(k) ∝ kns , (1.8)

where ns is the spectral index of primordial fluctuations (see Table 1.1). For

‘late’ times, i.e. after recombination, the linear theory power spectrum is

P (k,z) =D2(k,z)T 2(k)Pi(k) , (1.9)

where D(k,z) is the linear growth factor, and T (k) is the linear transfer function
(e.g. Coles & Lucchin 2002). T (k) accounts for the detailed changes in the

shape of the power spectrum between inflation and recombination (and the

subsequent decoupling of the CMB). D(k,z) encodes the evolution of the

amplitude and shape of the power spectrum at later times, according to

linear theory. The dependence of D(k,z) on k is significant only on very small

scales, such that on larger scales (lower k) the shape of P (k,z) is essentially

fixed at recombination (and thus only the power spectrum amplitude evolves

with time on large scales), but the shape of P (k,z) does indeed evolve with

time on very small scales (i.e. for very high k). The (large-scale) linear growth

factor can be computed given that the Hubble parameter is H(z) = H0E(z),

such that

D(z) ∝H(z)
∫ ∞
z

(1 + z′)
E3(z′)

dz′ , (1.10)

where the normalisation is arbitrary (e.g. Mo et al. 2010).5

The variance, σ2(R), of the density fluctuations within spheres of radius

R can be found by integrating the power spectrum:

σ2(R) =
1

2π2

∫ ∞
0
P (k)Ŵ 2

R (k)k2 dk , (1.11)

where the function

ŴR(k) =
3

(kR)3 [sin(kR)− kRcos(kR)] , (1.12)

is the Fourier transform of a spherical ‘top hat’ window function of radius

5Note that equation (1.10) is valid for the special dark energy cases ofΛCDM (i.e.w = −1),
w = −1/3, or matter domination (w = 0), but is not fully general; where for pressure, p, and
density, ρ, the dark energy equation of state is p = wρc2.
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R (e.g. Coles & Lucchin 2002). By convention, the normalisation of P (k) is

usually specified in terms of

σ8 = σ (8h−1 Mpc) . (1.13)

Thus, σ8 is the root-mean-square density fluctuation amplitude within

spheres of radius 8h−1 Mpc (see Table 1.1). For the purposes of power spec-

trum normalisation, σ8 is evaluated at redshift zero, where the linear power

spectrum is extrapolated from recombination according to linear theory (via

equation 1.9).

It is worth noting that the power spectrum is the Fourier transform of the

two-point autocorrelation function, ξ(r), such that

P (k) = 4π
∫ ∞

0
ξ(r)

sin(kr)
kr

r2 dr , (1.14)

and in the reverse case

ξ(r) =
1

2π2

∫ ∞
0
P (k)

sin(kr)
kr

k2 dk , (1.15)

(e.g. Coles & Lucchin 2002). ξ(r) gives the excess probability of finding two

particles with separation r, with respect to the expectation for a uniformly

random distribution. The statistical properties of a homogeneous and iso-

tropic Gaussian random field are therefore fully specified if either its P (k) or

ξ(r) are known, and either of these functions can be computed as the Fourier

transform of the other.

Given an appropriate set of cosmological parameters, e.g. the relevant

ΛCDM parameters listed in Table 1.1 (h, Ωb,0, Ωm,0, ns, σ8), the suitably

normalised linear power spectrum at late times (or the transfer function) can

be computed using software such as camb (Lewis & Challinor, 2011). The

predicted P (k) can then be used to construct initial conditions for cosmolo-

gical simulations, such that density perturbations in the simulated matter

distribution at high redshift are statistically consistent with those of the

real Universe, as inferred through observations of the CMB. In this way,

the initial conditions can be constructed while the density perturbations

are comfortably within the linear regime, long before structure formation

becomes non-linear.
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1.2.2 Dark matter simulations

Initial conditions for cosmological simulations can be constructed by using

the Zel’dovich approximation (Zel’dovich, 1970; Efstathiou et al., 1985), given

the desired linear power spectrum of matter density perturbations, P (k). For

a cubic volume of fixed comoving side, L, we start by specifying the unper-
turbed positions of the N sampling particles that will trace the evolution of

the cosmic matter distribution in six-dimensional position-velocity space

(phase space), having mean density equal to that implied by the cosmological

parameters, with periodic boundary conditions. In the simplest case, the

particles all have the same mass, but this is not required. The unperturbed

positions could form a regularly spaced Cartesian grid, or an irregular glass
(random positions evolved with repulsive ‘gravity’ to reach a stable configur-

ation; White 1996). The effective resolution is determined by the number of

particles, or equivalently, the particle mass(es). The peculiar velocities of the

unperturbed particles are set to zero.

Given the unperturbed particle positions, the gravitational potential field

is perturbed by slightly displacing the particles, such that Gaussian fluctu-

ations are introduced to the density field, consistent with the specified P (k).

In the Zel’dovich approximation, the particle displacements increase with

time in proportion to the linear growth factor, D(z), such that the particles

move along fixed straight-line trajectories, where the directions are set by the

initial displacements. The overdensity field, δ(x), grows in amplitude in the

same way as the particle displacements (and so P (k,z) ∝D2(z) in the linear

regime, as in equation 1.9). The initial particle velocities are derived from the

gradient of the gravitational potential field (acceleration) at the time of the

initial displacement (or derived from the displacements themselves, since

velocity is proportional to displacement in the Zel’dovich approximation).

The finite box size, L, sets a limit on the longest wavelength (smallest k)

modes that can be represented (k ∼ 2π/L), and on small scales the particle

mass (particle spacing, d) implies a spatial Nyquist frequency of k ∼ 2π/d,

below which any fluctuation power cannot be resolved. The redshift chosen

for the initial displacements (i.e. for the initial conditions) should be low

enough to ensure that the displacements are much larger than any numerical

noise, but high enough that the density perturbations are still linear, and
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there are no shell crossings (typically we use z = 127, so the cosmological

scale factor is 128 times smaller than at the present time). The Zel’dovich

approximation corresponds to first-order Lagrangian perturbation theory. In-

cluding second order terms (e.g. Jenkins 2010) increases the accuracy of the

initial conditions (and allows a lower initial redshift).

Once the initial conditions have been constructed, i.e. the masses, po-

sitions, and velocities of all particles have been specified, at some initial

redshift, the evolution of the particle positions and velocities over time can

be followed by repeatedly computing the gravitational forces and integrating

over suitable time steps. In the case where all particles have the same mass,

and only gravitational forces are considered, so the particles are collisionless,
this is a homogeneously sampled dark matter only (DMO) cosmological simu-

lation. DMO simulations are of course a class ofN -body simulation, following

the evolution of a system of N particles that are subject to physical (i.e. grav-

itational) forces. The baryons are still accounted for in DMO simulations

(and the mean density is still correct), in that the baryons contribute to the

masses of the collisionless ‘dark matter’ particles, but they are assumed to

be negligibly interacting, except through gravitational forces.

To compute the gravitational forces acting on all particles throughout

the simulation volume at any given time, the most accurate approach is to

use direct summation, such that the force on some particle, j, due to another

particle, i, is

Fij = −
Gmimj
|rij |3

rij , (1.16)

where G is the universal gravitational constant, rij is the separation vector

from particle i to particle j, and mn is the mass of particle n (n.b. Fji =

−Fij). It is legitimate to use Newtonian gravity in cosmological simulations,

since general relativity predicts the same linear structure growth as in the

Newtonian approximation, and the relative velocities induced in the non-

linear regime are much less than the speed of light (Chisari & Zaldarriaga,

2011; Frenk & White, 2012). In practice, direct summation via equation (1.16)

becomes prohibitively slow for large particle numbers. More sophisticated

techniques are required, in order to achieve significant speed improvements,

at the cost of small (and tunable) force errors. For example, the forces can be

computed using Fourier methods on a periodic grid that fills the simulation
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volume (Hockney & Eastwood, 1988), or a geometric tree can be implemented,

so that the forces due to distant particles can be approximated as the force

due to the centre of mass of a tree cell that contains many particles (Barnes

& Hut, 1986). The popular simulation code gadget- combines these two

approaches, implementing a tree on small scales, and a Fourier grid to

compute large-scale force contributions (Springel, 2005).

In the case of Fourier techniques, the equation that is solved in order to

evaluate the gravitational forces is not actually equation (1.16), but rather

the Poisson equation,

∇2Φ = 4πGρ , (1.17)

where Φ is the gravitational potential, and ρ is the density. Given a regular

mesh that fills the periodic volume, a density value is assigned to each grid

cell by convolving the particle mass density field with a suitable weighting

kernel function. The Fourier transform of the density grid is then the product

of the Fourier transform of the kernel function (which is known) and the

Fourier transform of the true density field (ρ̂). The Fourier transform of

equation (1.17) is then −k2Φ̂ = 4πGρ̂, where Φ̂ is the Fourier transform of

Φ . Similarly, since the force per unit mass (gravitational acceleration) is

g = −∇Φ , we have the Fourier transform ĝ = −iΦ̂k. Thus ρ̂ can be used to

compute ĝ (via Φ̂), and inverse Fourier transforming, to compute g itself.

Once g is computed in this way for all points on the grid, the gravitational

forces acting on the individual particles are evaluated using interpolation.

It should be noted that for simulation volumes with periodic boundary

conditions, the interparticle forces are distorted for particle separations

comparable to the periodic scale.

Since two-body scattering interactions between representative dark mat-

ter ‘particles’ (whose masses may be many orders of magnitude greater than

that of the Sun) should not be considered to be physically meaningful, it is ne-

cessary to soften the gravitational force on small scales. Force softening also

mitigates the need for the very small timesteps that such close interactions

would require in order to maintain accurate time integration. In gadget, this

is achieved by using a softening kernel function that gradually suppresses the

gravitational force on scales less than 2.8ε, where ε is the Plummer-equivalent
softening length. The gravitational force remains Newtonian on scales larger

than 2.8ε, in this case. The choice of gravitational softening length can have
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important implications for structure growth, the dynamical realism of the

simulation, and the convergence of simulation predictions with increasing

mass resolution (e.g. Power et al. 2003).

Extensive insight into the formation and evolution of structure in a

ΛCDM Universe can be gained through performing DMO simulations, since

the gravitational clustering of dark matter dominates the growth of haloes

and the larger-scale cosmic web. Simulations of large cosmologically rep-

resentative volumes resolved at fixed particle mass, such as the Millennium

Simulation (Springel et al., 2005), facilitate the study of large-scale structure

and the statistical properties of the population of dark matter haloes, and

can be used as the basis of semi-analytic models of galaxy formation (to be

discussed in §1.2.3). It is also possible to select individual haloes, or larger

regions of interest, from such homogeneously resolved DMO simulations

and to resimulate the target object(s) at very high resolution (using particles

of relatively low mass), while reproducing the original density field on larger

scales at relatively low resolution (with higher mass particles). This zoom
technique can be used to study the detailed substructure of haloes identified

in the original (parent) simulation, revealing at high resolution the struc-

ture and kinematics of subhaloes embedded in the main halo, starting from

cosmological initial conditions consistent with the Gaussian random field

realisation and P (k) of the parent simulation, as in the Aquarius simulation

project of Springel et al. (2008).

A generic prediction of (Λ)CDM DMO simulations with cosmological

initial conditions is that dark matter haloes have density profiles that are

closely approximated by the NFW profile, as discovered by Navarro, Frenk &

White (1996b, 1997):

ρ(r) =
ρs

(r/rs)(1 + r/rs)2 , (1.18)

where ρ(r) is the spherically averaged density at radius r, and the parameters

ρs and rs are characteristic density and radius values, respectively. By con-

vention, the mass of a halo is usually expressed in terms of the virial mass,
M200, which is the mass enclosed within one virial radius, r200, of the halo

centre. The virial radius is defined as that of the sphere that encloses a mean

density equal to 200 times the critical density of the Universe (ρcrit). The

concentration of a halo is defined as r200/rs.
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The NFW profile tends towards an inner density slope of ρ ∝ r−1 (known

as a steep central density cusp), and a slope of ρ ∝ r−3 for large r. There

has been a great deal of discussion as to whether or not observed galaxies

really do have cusps in their inner dark matter density profiles, as predicted

(prima facie) by DMO simulations set in a ΛCDM Universe, or whether the

inner dark matter distributions of their host haloes actually tend to cores of

constant density (e.g. Simon et al. 2003; Swaters et al. 2003; Simon et al. 2005;

Koch et al. 2007; Valenzuela et al. 2007; de Blok et al. 2008; Oh et al. 2008,

2011; Walker & Peñarrubia 2011; Adams et al. 2012; Strigari et al. 2014).

This cusp-core problem is often heralded as a symptom of some inherent

failure of the ΛCDM model. However, confusion due to degeneracies in

observational work may lead to identification of a dark matter core where

there is in fact a cusp (e.g. Evans et al. 2009; Adams et al. 2012; Strigari

et al. 2014), while hydrodynamical effects and energetic feedback may be

able to produce central cores in haloes that would otherwise have cuspy

inner density profiles, in a way that is entirely consistent with ΛCDM (e.g.

Navarro et al. 1996a; Binney et al. 2001; Mashchenko et al. 2008; Governato

et al. 2010; Pontzen & Governato 2012). Several additional well publicised

small-scale ‘problems’ with ΛCDM seem to disappear once the important

baryonic physics is taken into account (e.g. Moore et al. 1999; Klypin et al.

1999; Boylan-Kolchin et al. 2011; Brooks et al. 2013; Sawala et al. 2016; Zhu

et al. 2016). The dark matter distributions of the satellite galaxies of the

Milky Way have played a particularly prominent role in this debate.

1.2.3 Semi-analytic models

Given the particle data (masses, positions, velocities, etc.) output at various

snapshots in time from a DMO simulation of cosmic structure formation in a

ΛCDM Universe, we would like some way of relating this detailed prediction

of the properties of the underlying dark matter structure of the Universe

with the properties of the luminous galaxies that are expected to form in the

halo centres, illuminating the dark matter density peaks. That is, we want

to know how exactly the dark matter haloes are populated with galaxies.

Only with a theoretical model that can make comprehensive predictions

of observable galactic properties, based on the ab initio simulation of the
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formation of structure within a ΛCDM Universe, can we begin to make

fully robust comparisons to key observational constraints on the interwoven

properties of the galactic population, and in doing so, draw meaningful

conclusions on the validity of the ΛCDM paradigm and the precise details of

the physical processes that govern the formation and evolution of galaxies.

A simple approach to relating simulated dark matter haloes to observable

galaxies is to assume that the stellar mass of a galaxy is somehow precisely

determined by the mass of its host halo. The halo mass function (number

density of haloes as a function of mass) predicted by a DMO simulation

can be compared to the stellar mass function (number density of galaxies

as a function of stellar mass) as inferred from an observational survey. If

the stellar mass is assumed to be an exact, monotonic, function of halo

mass, then via abundance matching we can assign a stellar mass to each

halo in the simulation volume, or a halo mass to any observed galaxy, thus

defining the stellar mass to halo mass relation. In practice, more accurate

results may be obtained by considering the maximum mass ever achieved

by a halo, rather than its final mass (at z = 0), taking careful account of the

evolution of satellite galaxies, and compensating for biases due to the scatter

in observationally inferred stellar masses at fixed halo mass (e.g. Behroozi

et al. 2010; Guo et al. 2010; Moster et al. 2010, 2013).

Another approach to populating haloes with galaxies is the halo occupation
distribution (HOD) technique, which is based on specifying the probabil-

ity distribution describing the numbers of different types of galaxies that

reside in haloes of different masses (e.g. Neyman & Scott 1952; Peacock

& Smith 2000; Berlind & Weinberg 2002; Cooray & Sheth 2002; Kravtsov

et al. 2004; Zehavi et al. 2011). The HOD method is similar to abundance

matching, when applied to a DMO simulation, but introduces some level of

stochasticity. While abundance matching and HOD modelling can provide

theoretical predictions for key statistics, such as the clustering (correlation

function) of galaxies as a function of stellar mass in ΛCDM, they cannot

follow the complex evolution history of individual galaxies in a realistic

and self-consistent way, starting from the infall of primordial gas into the

gravitational potential well of a protohalo. For a rigorous, self-consistent,

method of predicting the properties of the galaxies that reside in the haloes

produced in DMO cosmological simulations, we can turn to semi-analytic
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galaxy formation models.
Building on the work of White & Rees (1978) and White & Frenk (1991),

semi-analytic models use simple analytical prescriptions and approximations

to implement the key, interlinked, physical processes that are involved in

the formation and evolution of galaxies, including: gas heating and cooling,

the formation of gas discs, star formation, chemical enrichment of gas and

energy feedback from stellar evolution and supernovae, black hole formation

and energy feedback from active galactic nuclei (AGN), galaxy mergers, and

bursts of star formation due to instabilities in gas discs (e.g. Benson et al.

2000a; Cole et al. 2000; Hatton et al. 2003; Baugh et al. 2005; Bower et al.

2006; Croton et al. 2006; Monaco et al. 2007; Somerville et al. 2008).

The equations used to model the complex physical processes of galaxy

formation in semi-analytic models are motivated by theoretical considera-

tions, either from first principles or numerical simulations. In some cases,

the equations may be fully specified given independent empirical constraints

on the relevant parameters (e.g. Lagos et al. 2011). The remaining free para-

meters can be constrained by comparing the model predictions of statistics

such as the galactic stellar mass function, or luminosity function in various

wavelength bands, to corresponding observational measurements. Through

calibrating the relevant parameters so that the model predictions are brought

into agreement with the observational constraints, either ‘by hand’ or using

sophisticated statistical methods (e.g. Henriques et al. 2013), the dependence

of the model predictions on the various different parameters (and hence the

relevant underlying physics) can be better understood, and predictions can

be made for different statistics of the galactic population that were not used

in the calibration process. In this way, comparing the model predictions to

new observational results acts as a test of the predictive power of the model,

and of the validity of its treatment of galaxy formation and evolution (and of

the underlying cosmological framework). Where disagreements are found,

this may indicate that parameter adjustments are required that the original

calibration statistics were not sensitive to, or that there is some fundamental

issue with the model, or that modelling of additional physical processes may

be required to explain the observations. A properly calibrated semi-analytic

model can be used to study the evolution history of the galactic population,

potentially providing new insights into the physical processes of galaxy
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formation and evolution. A large number of galaxy properties can be tracked

over time within such models, including e.g. the stellar mass contributions

from the galactic disc and bulge components, and the integrated luminosities

(magnitudes) in different wavelength bands.

Typically, semi-analytic models exploit pre-existing DMO simulations of

sufficiently high resolution and large enough volume to provide a cosmo-

logically representative sample of well-resolved dark matter haloes, from

which merger trees can be constructed, mapping the evolution of the halo

population over time, through hierarchical clustering.6 When a halo forms,

it is assumed that gas that is drawn into the gravitational potential well

is heated by shocks to form a spherically symmetric reservoir of hot halo

gas. Over time this gas can cool, and condense in the halo centre, leading to

star formation. By following the evolution of individual galaxies, and the

merging of galaxies (when their host haloes merge), semi-analytic models

can generate detailed, self-consistent, predictions for the properties of the

galactic population over cosmic time.

1.2.4 Hydrodynamical simulations

Semi-analytic models are powerful tools for investigating the physical pro-

cesses involved in the formation and evolution of galaxies, and for making

theoretical predictions for comparison to observational results. One im-

portant advantage of semi-analytic models is their computational efficiency:

given an underlying DMO simulation, the parameters of the semi-analytic

model can be adjusted with relative ease, and new analytical recipes can

be quickly tested, since the model calculations can be repeated many times

without incurring prohibitive computational cost (without requiring the use

of smaller DMO simulation volumes, or lower resolution, for calibration

purposes). On the other hand, semi-analytic models describe a substantially

simplified version of the true physical situation. The assumptions involved

in the models must be violated in practice, at least at some level, and such

models neglect the possibility that the behaviour of the dark matter may

6An alternative to basing semi-analytic models on the outputs of DMO simulations is to
create Monte Carlo (i.e. random) realisations of halo merger histories (based on theoretical
expectations for the distribution of halo progenitor masses), which can then be processed by
semi-analytic models (e.g. Lacey & Cole 1993; Cole et al. 2000; Baugh 2006).
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be influenced by baryonic physics. Similarly, while semi-analytic models

can predict many integrated properties for very large numbers of galaxies,

and perhaps e.g. the sizes of galaxy discs and the mass contributions from

different structural components, they cannot resolve the detailed internal

structure and kinematics of the galaxies.

As an alternative to the semi-analytical approach, we can simulate the

important baryonic physics directly, alongside the gravitating collisionless

dark matter particles, in cosmological hydrodynamical simulations. Taking

ΛCDM initial conditions designed for DMON -body simulations as described

in §1.2.2, we can split each of the original collisionless ‘dark matter’ particles

by mass, according to the cosmic baryon fraction (Ωb/Ωm ≈ 0.16), to spawn

two new particles: a collisionless dark matter particle (as before), and a gas

particle (or some other fluid representation of the gas). The gravitational

forces are computed in the same way as in a DMO simulation, but, in addition,

we follow the hydrodynamical evolution of the thermodynamic properties

of the baryonic gas over cosmic time.

The relevant equations for the time evolution of the gas are those of ideal
hydrodynamics.7 In fluid dynamics, we can adopt either the Lagrangian or

Eulerian formalism. In the Lagrangian case, the frame of reference follows

the fluid flow, and the fluid properties and equations are expressed for a

given fluid element. In the Eulerian case, the observer is instead fixed in

space, and the fluid equations relate to the fluid properties at some partic-

ular location. While these two formalisms are physically equivalent, their

practical implementations are very different, in the context of numerical

simulations. Lagrangian simulations follow the properties of particles (dis-

cretising mass), while Eulerian simulations track the fluid quantities within

static grid cells (discretising space). Adopting the Lagrangian frame, the

relevant fluid equations are: the continuity equation (conservation of mass),

dρ
dt

+ ρ∇ ·u = 0 , (1.19)

the Euler equation (momentum equation),

du
dt

= −
∇p
ρ
−∇Φ , (1.20)

7Or even magnetohydrodynamics (e.g. Pakmor et al. 2011; Hopkins & Raives 2016).
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the energy equation (conservation of energy),

dE
dt

= −
p

ρ
∇ ·u− L

ρ
, (1.21)

and the Poisson equation (local density and gravitational field),

∇2Φ = 4πGρ , (1.22)

where the equation of state is

p = (γ − 1)ρE , (1.23)

where ρ is the density, u is the velocity vector, p is the pressure, E is the

internal energy per unit mass, L is the net cooling rate per unit volume, γ

is the adiabatic index (ratio of specific heats8), of the fluid element of interest,
while Φ is the gravitational potential at the location of the fluid element, and

t is time (e.g. Mo et al. 2010). Note that in a cosmological context there

are likely to be significant contributions to the gravitational potential from

density components other than the baryonic gas, and in this case the density

that enters into equation (1.22) should be the total density at the position of

the fluid element, including e.g. the local dark matter density.

The details of the hydrodynamics implementation can vary significantly

between different cosmological simulation codes, primarily as a result of the

differences between the Lagrangian and Eulerian approaches (e.g. Frenk et al.

1999; Fryxell et al. 2000; Kravtsov et al. 2002; Teyssier 2002; O’Shea et al.

2004; Wadsley et al. 2004; Springel 2005; Stone et al. 2008; Springel 2010;

Hopkins 2015). The fluid equations can be solved for discrete gas particles of

fixed mass,9 where the local gas properties are obtained by smoothing over

some number of neighbouring particles (Lagrangian smoothed particle hydro-
dynamics; SPH; Lucy 1977; Gingold & Monaghan 1977; Monaghan 1992), or

for static Cartesian grid cells that discretise space (e.g. Stone & Norman 1992)

and may be progressively refined in order to increase the spatial resolution

8That is, γ = Cp/CV , where Cp is the heat capacity at constant pressure, and CV is the
heat capacity at constant volume. For a monotonic gas γ = 5/3. In general, for an ideal gas,
γ = (q + 5)/(q + 3), where q is the number of internal degrees of freedom. For reversible
processes that conserve entropy p ∝ ργ , while p ∝ ρ for an isothermal processes.

9Ignoring possible chemical enrichment of the gas by neighbouring stars.
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in regions of particular interest (Eulerian adaptive mesh refinement; AMR;

Berger & Colella 1989). In SPH, the spatial resolution is naturally highest in

high density regions, coinciding with structures of primary interest such as

galaxies (since there are more particles there), and the gas particles clearly

follow the fluid flow (minimising advection errors); while in AMR the spatial

resolution can be varied according to some prescribed scheme. Potential

disadvantages of AMR methods include advection errors, a lack of Galilean

invariance, issues with angular momentum conservation, and excessive fluid

mixing, while in SPH, there is usually no mixing of physical properties at

all between gas particles, by construction. SPH codes usually create artificial
viscosity in order to suppress unphysical interactions between gas particles

and to generate entropy during shocks, and so SPH methods tend to have

difficultly in resolving shocks and fluid instabilities (since discontinuities

get smoothed out), while grid-based Eulerian techniques tend to be better

suited to solving these problems. One alternative approach is to solve the

hydrodynamical equations using an unstructured mesh, with mesh cells

that follow the fluid flow in a Lagrangian fashion, so that fluid motions and

shocks are captured at high accuracy (e.g. Springel 2010). It is even possible

to construct a finite-volume scheme without using a mesh (Hopkins, 2015).

Many important physical processes are too complicated, or operate on

too small a scale, to be simulated directly, within large cosmologically rep-

resentative volumes. In this regime, hydrodynamical simulations imple-

ment so-called subgrid physics models to approximate the relevant processes

that cannot be resolved (e.g. Vogelsberger et al. 2013; Crain et al. 2015).

This can include, for example, prescriptions for star formation (producing

massive star particles that represent stellar populations), metal enrichment,10

black hole formation, and energy feedback into the gas from stars and AGN.

The subgrid physics models resemble the expressions used in semi-analytic

models, although in the hydrodynamical case we can of course invoke the

properties of individual baryonic particles (or gas cells) within the subgrid

equations. The subgrid physics equations often have free parameters that

require calibration of the simulation predictions against particular obser-

vational constraints, in a similar way to semi-analytic models. The semi-

analytical and hydrodynamical approaches can be seen as complementary,

10In astronomy, all chemical elements apart from hydrogen and helium are metals!
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since semi-analytic models allow rapid testing of new modelling choices,

and can make predictions for the properties of galaxies within cosmological

volumes of sizes much larger than currently computationally feasible with

full hydrodynamics (at fixed resolution); while hydrodynamical simulations

offer a highly accurate treatment of the gas dynamics, can resolve the de-

tailed structure and kinematics of galaxies and their environment at high

resolution, and dispense with many of the assumptions and approxima-

tions involved in semi-analytic modelling. Variations in subgrid modelling

choices tend to vastly outweigh the influence of differences due to the choice

of hydrodynamics scheme, when the predictions of different cosmological

hydrodynamical simulation codes are compared, for exactly the same initial

conditions (Scannapieco et al., 2012).

Cutting-edge simulation codes featuring sophisticated treatments of the

hydrodynamical evolution of the gas and comprehensive subgrid physics

models have now been used to produce simulations of the formation of

realistic galaxies within a ΛCDM Universe, starting from Gaussian initial

conditions; both in homogeneously resolved volumes to create large samples

of galaxies (e.g. Vogelsberger et al. 2014; Schaye et al. 2015), and also in very

high resolution zoom simulations of individual systems, such as the Milky

Way and the wider Local Group (e.g. Sawala et al. 2016; Grand et al. 2017).

1.3 Estimating the masses of galaxies

1.3.1 Dynamical masses

Of the fundamental forces of nature, only gravity is able to operate on large

cosmological scales. The observed motions of planets, stars, and galaxies can

be understood through considering the gravitational forces to which they

are subjected, using the extremely simple force law of Newtonian gravity

(i.e. equation 1.16), or general relativity, in the most demanding cases. The

mathematical foundation of the standard cosmological framework is rooted

in the solutions of the Einstein field equations of general relativity, for a ho-

mogeneous and isotropic Universe. It was through studying the gravitational

dynamics of astrophysical systems that the mysterious cosmological dark

matter came to be first exposed, paving the way for our modern theoretical
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view of galaxy formation, driven by the cooling and ignition of baryonic gas

captured in the gravitational potential wells of dark matter haloes.

Since dark matter dominates over the baryonic contribution to the cos-

mic energy density, the history of the highly non-linear growth of cosmic

structure, from the decoupling of the CMB until the present time, can be

accurately understood and explored, to first order, by following the hier-

archical gravitational clustering of collisionless dark matter particles, while

considering no other forces but gravity. Of course, a more sophisticated

theoretical approach is required in order to model and elucidate the finer

details of the hydrodynamical evolution of the baryonic gas, and the forma-

tion and evolution of stars and galaxies, including the possible influences of

baryons on the dark matter density and velocity fields. Nonetheless, dark

matter haloes can be generally regarded as the primary structure of galaxies,

exerting their gravitational dominance over all other material. This view

is particularly appropriate for dwarf galaxies, which appear to have very

high dark matter to baryonic mass ratios, so the baryonic contribution to the

gravitational field is fairly insignificant.

A vast wealth of information is encoded in the total dynamical masses

of galaxies, and in the structure of their mass distributions. There is a great

deal of interest in the halo masses and abundances of the dwarf satellite

galaxies of the Milky Way, and whether or not these can be accounted for

within a ΛCDM context (e.g. Boylan-Kolchin et al. 2011; Sawala et al. 2016).

Answering the question of whether galactic dark matter haloes have constant

density cores or NFW-like cusps in their inner density profiles also reduces to

determining (an integral of) the distribution of dynamical mass (e.g. Walker

& Peñarrubia 2011; Adams et al. 2012).

Various methods exist for inferring the total dynamical masses of ob-

served galaxies, or their spherically averaged density profiles, or even their

full decomposed (3D) density and velocity fields. Schwarzschild modelling
(Schwarzschild, 1979, 1993) can be used to construct a large (ideally, ex-

haustive) library of random realisations of orbital models for individual stars

within stellar systems, in equilibrium, for a given set of allowed gravitational

potentials (e.g. Richstone 1980; Richstone & Tremaine 1988; Rix et al. 1997;

van der Marel et al. 1998; Cretton & van den Bosch 1999; Gebhardt et al.

2003; Cappellari et al. 2006; Magorrian 2006). A particular (weighted) set of
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orbits can then be used to compute a numerical representation of the stellar

distribution function, f (x,v), for that model, which is the probability density

distribution for finding any single star with a given position, x, and velocity,

v, in six-dimensional phase space. This is a powerful and flexible technique,

since the distribution function can be used to predict the projected density

and velocity fields, allowing the model to interface with very high resolution

observational data, in projection (typically 2D maps of the projected stellar

density and velocity dispersion). Some fitting procedure can be carried out

to identify the (set of) orbital model(s) that best explains the available ob-

servational data. The preferred model can then provide information on the

most likely gravitational potential, and hence the mass distribution of the

system. The Schwarzschild method is a highly sophisticated approach, and

in general permits essentially arbitrary geometry (e.g. spherically symmetric,

axisymmetric, or triaxial), does not restrict the possible configuration of

the orbits, can include mass splitting between different density components

(so e.g. density variations in the dark matter, gas, and black holes can be

included in the set of gravitational potentials within the library), and can

generate predictions for any inclination angle. However, the quality of the

observational data available for galaxies does not always warrant such a

thorough (and computationally involved) theoretical treatment. Simpler

methods that rely on additional assumptions are usually preferred in place

of full Schwarzschild modelling of the superposition of stellar orbits. As a

complementary approach to Schwarzschild modelling, it is possible to con-

struct a ‘made to measure’ N -body simulation that reproduces the available

observational data (Syer & Tremaine, 1996; de Lorenzi et al., 2007).

At a simpler level, the measured rotation curve, Vrot(R), of an observed

disc galaxy can be used to infer the mass distribution of the dark matter

halo in which the galaxy is embedded. Here, R is the galactocentric radius

in the plane of the disc, and Vrot(R) has been corrected for the inclination

of the galaxy with respect to the observer. If we assume that the measured

rotation curve is that of stars on perfect circular orbits in the gravitational

potential of the system, Vrot(R) can be assumed equal to the circular velocity
curve, Vcirc(R), where for a spherical system

V 2
circ(r) = r

dΦ(r)
dr

=
GM(< r)

r
, (1.24)
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where Φ(r) is the gravitational potential at 3D radius r, and M(< r) is the

total dynamical mass enclosed within a sphere of radius r. Splitting M(< r)

into the contributions from different structural components, we can write

V 2
circ(r) = V 2

halo(r) +V 2
disc(r) +V 2

bulge(r) + . . . , (1.25)

where V 2
halo(r) = GMhalo(< r)/r is the contribution due to the dark matter

halo. Defined analogously, V 2
disc(r) and V 2

bulge(r) are the contributions due

to the mass in the stellar disc and bulge (if relevant), respectively. Any

number of additional terms could be included, e.g. to account for a gas disc,

or a central supermassive black hole. Given the measured rotation curve,

Vrot(R) ≈ Vcirc(R), which could be derived from the observed kinematics of a

gas disc, rather than the stellar disc, equation (1.25) provides a method to

constrain the mass profile of the dark matter halo, Mhalo(< r), if mass models

for the important baryonic components can be specified. If the mass-to-light

ratio of the stars, Υ , is poorly constrained, this can lead to an annoying

degeneracy between the halo and stellar mass profiles (e.g. Dutton et al.

2005). The extreme cases of Υ = 0 (massless stars) and the maximum Υ

allowed by the dynamical constrains (maximal disc model) can provide upper

and lower limits on the possible mass contribution from the dark matter,

respectively. The value of Υ (which need not be constant throughout the

galaxy) can be treated as a free parameter in the mass modelling procedure.

However, in order to break the disc-halo degeneracy it is highly desirable to

have some independent constraint on Υ (i.e. a constraint on the stellar mass;

e.g. Adams et al. 2012). Techniques for estimating stellar masses will be

discussed in §1.3.2. If Υ is not well constrained, the range of acceptable

values for Υ in the mass modelling may span a broad range of inner density

profile slopes for the dark matter halo. Issues with Υ are clearly avoided if the

dark matter can be assumed to dominate the gravitational potential to such

an extent that equation (1.25) can be assumed to reduce to V 2
circ(r) = V 2

halo(r).

Low surface brightness galaxies and dwarf galaxies are heavily dark matter

dominated, and so they are particularly attractive for mass modelling studies.

Besides the disc-halo degeneracy, there are various other important issues

that may need to be accounted for when trying to recover the dark matter

mass profile via this technique, such as flaws in the measured rotation curve,
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the presence of a central stellar bar or the shape of the halo being triaxial

rather than spherical (these two effects each complicate the relationship

between Vrot(R) and Vcirc(r)), other complex non-rotational motions in the

velocity fields, or the lack of observational data at large scales needed to

constrain the overall shape of the halo density profile (e.g. Dutton et al. 2005;

Mo et al. 2010; Adams et al. 2012).

Mass modelling using rotation curves can be effective for inferring the

dark matter distributions of the haloes of disc galaxies. Yet if significantly

more detailed kinematic information is available than just the mean rotation

velocity as a function of radius then this method may be throwing away

highly useful data that might otherwise offer significant additional constrain-

ing power. Also, this approach is clearly not appropriate for dispersion-

supported galaxies, which are characterised by their lack of significant rota-

tion. In order to connect with higher moments of the velocity distributions,

we can use Jeans modelling of the observed stellar kinematics (Jeans, 1922).

The collisionless Boltzmann equation expresses the convective constancy of

the distribution function, f (x,v, t), over time, t, for a collisionless dynamical

system that has a fixed number, N , of identical tracer particles (stars) of mass

m, with a smooth gravitational potential given by Φ(x, t):

df
dt

=
∂f

∂t
+

3∑
i=1

vi
∂f

∂xi
−

3∑
i=1

∂Φ
∂xi

∂f

∂vi
= 0 , (1.26)

where xi and vi are the i-th components of x and v, respectively, and the

summations are over all three spatial dimensions. See the canonical book by

Binney & Tremaine (2008) for the derivation of the collisionless Boltzmann

equation and of the related equations presented below. We can write equa-

tion (1.26) in a more compact form using vector notation, so that

df
dt

=
∂f

∂t
+ v ·∇f −∇Φ · ∂f

∂v
= 0 . (1.27)

The quantity df /dt is the Lagrangian (or convective) derivative of f , in the

sense that it refers to the (zero) change in the local probability density

according to a star as it moves through phase space. This does not imply

that f is constant with time everywhere in phase space, but it appears to be
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constant according to individual stars.11

By definition, the distribution function is normalised such that, integrat-

ing over all phase space, ∫
f (x,v, t)dxdv = 1 . (1.28)

Note that some authors instead choose to set this integral equal to N , and

in that case f would be the phase-space number density, rather than the

probability density (e.g. Mo et al. 2010).

Using equation (1.26), it is possible to derive the Jeans equation(s):

∂〈vj〉
∂t

+
3∑
i=1

〈vi〉
∂〈vj〉
∂xi

= −1
n

3∑
i=1

∂
(
nσ2

ij

)
∂xi

− ∂Φ
∂xj

, (1.29)

where the angular brackets indicate the expectation value of the relevant

quantity, obtained through appropriate integration of f (x,v, t). For example,

the spatial mass density, ρ(x, t), and number density, n(x, t), are given by

ρ(x, t)
m

= n(x, t) =N
∫
f (x,v, t)dv , (1.30)

and thus the mean velocity in the i-th direction is

〈vi〉(x, t) =
N

n(x, t)

∫
vif (x,v, t)dv . (1.31)

Similarly, the velocity tensor is defined as

〈vivj〉(x, t) =
N

n(x, t)

∫
vivjf (x,v, t)dv . (1.32)

The velocity tensor can be split into the contributions from coherent stream-

11Jeans theorem states that: “Any steady-state solution of the collisionless Boltzmann
equation depends on the phase-space coordinates only through integrals of motion in
the given potential, and any function of the integrals yields a steady-state solution of the
collisionless Boltzmann equation.” (quoted from Binney & Tremaine 2008). Thus for a
steady state (∂f /∂t = 0) we can write f = f (I1, I2, . . . , Ik) where each of the k In are integrals
of motion (i.e. functions of x and v alone, and not t, that do not change along an orbit).
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ing motion and random motion, such that

〈vivj〉 = 〈vi〉〈vj〉+ σ2
ij , (1.33)

where σ2
ij is the symmetric velocity dispersion tensor, and gives the contri-

bution from random local motion. The eigenvectors of σij(x, t) define the

velocity ellipsoid at position x. In terms of the distribution function,

σ2
ij(x, t) =

N
n(x, t)

∫
(vi − 〈vi〉)(vj − 〈vj〉)f (x,v, t)dv . (1.34)

The quantity nσ2
ij is a stress tensor, and appears in equation (1.29), where it

behaves like an anisotropic pressure term (cf. equation 1.20).

Given the potential, Φ(x, t), and the number12 density, n(x, t), the (three)

Jeans equation(s), as given in equation (1.29), contains nine unknowns: three

from the streaming motions in each direction, 〈vi〉, and six for the independent
components of σij . To actually make use of equation (1.29), some additional

assumptions are required, in order to reduce the number of unknowns. For

example, the geometry of the dynamical system of interest could be assumed

to be spherically symmetric, axisymmetric (e.g. Hunter 1977; Binney et al.

1990; Cappellari 2008), or triaxial (e.g. Mo et al. 2010). It is important to note

that for a dynamical model to be physically meaningful, the distribution

function must satisfy f ≥ 0 everywhere in phase space, but this is by no

means guaranteed for the distribution function that corresponds to some

model that just so happens to solve the Jeans equations!

In the case of a steady-state spherically symmetric system, the set of Jeans

equations can be simplified to arrive at the much more manageable spherical
Jeans equation, in spherical polar coordinates (r,θ,φ):

1
ρ

d
(
ρ〈v2

r 〉
)

dr
+ 2β

〈v2
r 〉
r

= −dΦ
dr

, (1.35)

12In equation (1.29), n only appears in the first term on the right hand side. If n is replaced
by ρ here (or e.g. the luminosity density) then this does not modify the result, since ρ is
just some global constant times n, and the constant (m) cancels out (recall that the tracer
particles are assumed to be identical). The same will be true for equations (1.35) and (1.37),
where we choose to write ρ for the tracer density.
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where β(r) is the anisotropy parameter, defined as

β = 1−
〈v2
θ〉
〈v2
r 〉
, (1.36)

and 〈v2
θ〉 = 〈v2

φ〉, by symmetry. We usually refer to the root-mean-square

velocity in the rest frame of the system as the velocity dispersion and write

e.g. σ2
r = 〈v2

r 〉, where σr is the velocity dispersion in the radial direction, and

so on for σθ and σφ.13 Equation (1.35) can be written in a slightly different,

but equivalent, form:

V 2
circ(r) =

GM(< r)
r

= −σ2
r (r)

[
dlogρ(r)

dlogr
+

dlogσ2
r (r)

dlogr
+ 2β(r)

]
. (1.37)

Given ρ(r) from deprojecting the observed (i.e. projected) stellar density

profile (assuming spherical symmetry), the total mass profile, M(< r), can be

recovered if both the profile of the velocity dispersion in the radial direction,

σr(r), and the profile of the velocity dispersion anisotropy, β(r), are known.

Since σr(r) and β(r) are intimately related, it is extremely difficult to robustly

constrain M(< r) using projected data alone, since M(< r) is degenerate with

β(r) in this case. Some assumptions about β(r) usually have to be made when

carrying out mass modelling of observed galaxies via the spherical Jeans

equation, and this may compromise the reliability of such work.

Starting with the spherical Jeans equation, and making some additional

assumptions about the stellar mass distribution and velocity dispersion,

Walker et al. (2009, 2010) and Wolf et al. (2010) have each derived a simple

estimator for the dynamical mass enclosed within a sphere of radius λRe,

where Re is the radius that encloses half the stellar luminosity, in projection

(i.e. the projected half-light radius or effective radius), and λ is a constant:

M(< λRe) =
µ〈σlos〉2Re

G
, (1.38)

where 〈σlos〉 is the line-of-sight stellar velocity dispersion averaged over the

13Since σθ = σφ, we could define σ2
t = σ2

θ + σ2
φ = 2σ2

θ and rewrite the definition of β from

equation (1.36) as β = 1−σ2
θ /σ

2
r = 1−σ2

t /(2σ
2
r ), but this is only a matter of notation. Similarly,

the total velocity dispersion, σ3D, satisfies σ2
3D = σ2

r +σ2
θ +σ2

φ = σ2
r +σ2

t = σ2
x +σ2

y +σ2
z , where

σx, σy , and σz are the velocity dispersions in the three Cartesian directions.
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whole galaxy (weighted by luminosity), and µ is a second dimensionless

constant. For the estimator of Walker et al. (2009), λ = 1 and µ = 2.5,

while Wolf et al. (2010) have λ = 4/3 and µ = 4. The different values of λ

and µ result from the different assumptions applied when deriving these

two estimators, where the assumptions of Wolf et al. (2010) are somewhat

less restrictive than those of Walker et al. (2009). The application of these

estimators is extremely simple, such that total mass within a sphere of

radius close to the projected half-light radius can be inferred using only two

numbers: the projected half-light radius, and the integrated line-of-sight

stellar velocity dispersion. Furthermore, these two estimators are designed to

be minimally sensitive to the stellar velocity dispersion anisotropy, β, since

M(< λRe), given the appropriate value of λ, is expected to be minimally

dependent on the precise amplitude and form of β(r), and so these simple

estimators in principle offer a highly attractive opportunity to escape the

dreaded anisotropy degeneracy between β(r) and M(< r). However, since

the estimators have been analytically derived under ideal conditions with

various simplifying assumptions, it is vital that we develop an understanding

of their accuracy when applied to realistic galaxies in a cosmological context.

We seek to address this issue in Chapter 2, making use of the latest generation

of cosmological hydrodynamical simulations of Local Group analogues.

1.3.2 Stellar masses

The stellar masses of galaxies are determined by the detailed history of the

accretion and cooling of gas, metal enrichment, energy feedback, galaxy

mergers, and other violent events, and are closely linked to the masses of

their dark matter haloes. Any realistic model of galaxy formation should be

able to make reasonable predictions for the stellar masses of galaxies, since

the stellar mass is such a fundamental intrinsic galactic property. However,

stellar masses are certainly not observable quantities, and ignorance of the

stellar mass of a galaxy can seriously hamper attempts to infer the mass

distribution of its host dark matter halo (as highlighted in §1.3.1 above).

If we can infer the stellar masses of observed galaxies in an accurate and

robust way, then there is hope for placing reliable constraints on the galaxy

formation physics models implemented in cosmological simulations.
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The spectral energy distribution (SED) of a galaxy, fλ, is the energy density

in photons as a function of wavelength, defined such that fλdλ is the total

energy flux in photons with wavelengths in the interval λ to λ+ dλ. Galactic

SEDs thus contain all relevant observational data on the emitted light. In

order to estimate the stellar mass of a galaxy, we need to be able to correctly

interpret the shape and amplitude of its SED, since this is the integral of

the starlight over the whole galaxy, determined by the precise state (and

thus, spectrum) of each constituent star at the time of emission (and then

potentially modified by absorption or scattering of the light by intervening

material). While the SED can be measured in full detail using spectroscopy,

observations often provide broad-band magnitudes, i.e. integrated magnitudes

resulting from applying some particular filter to the SED. Broad-band photo-

metry thus provides low resolution information on the amplitude of the SED

in different wavelength ranges (where the precise filter shape as a function

of wavelength, i.e. the wavelength response, is generally non-trivial). Con-

versely, narrow-band photometry uses much smaller wavelength ranges, and

so provides higher resolution data on the SED, and can be designed to target

particular spectral features or emission lines of interest. A colour index is

defined as the difference between the magnitudes in two given photometric

bands, e.g. if the (apparent or absolute) magnitudes in the B and V bands

are mB and mV respectively, then the so-called (B−V ) colour is mB −mV .

Stellar population synthesis (SPS) models predict the SEDs of simple stel-
lar populations (SSPs), i.e. coeval populations of stars with a given initial

metallicity, Z (mass fraction in metals), as a function of age (e.g. Bruzual

& Charlot 2003; Maraston 2005; Conroy et al. 2009). If the star formation
history (SFH; star formation rate as a function of time) of a galaxy is known,

along with its chemical enrichment history (metallicity of the star-forming

gas as function of time), then these can be combined with an SPS model

to compute the current SED of the galaxy, as the weighted sum of many

SSP SEDs of appropriate age and initial metallicity. As part of this, it is

necessary to specify the stellar initial mass function (IMF), which gives the

probability distribution for creating stars of a given mass in any episode of

star formation (e.g. Salpeter 1955; Kennicutt 1983; Kroupa 2001; Chabrier

2003). Uncertainty in the shape of the IMF introduces a significant source

of error into the predicted galactic SEDs computed using this method. Dust
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(small particles composed of heavy elements) within the interstellar medium

of the galaxy is likely to attenuate the starlight, and so this effect should be

accounted for when modelling galactic SEDs (e.g. Calzetti et al. 2000).

In the case where we have measured the SED of an observed galaxy,

whether through spectroscopy or photometry with broad or narrow bands,

the task of estimating the corresponding stellar mass reduces to reverse

engineering the process described above. Given a large library of SSP spectra,

varying in age and initial metallicity over the full plausible ranges, some

fitting procedure can be used to identify the set of weighted SSP spectra that

best reproduces the measured galactic SED. This is equivalent to constraining

the star formation and chemical enrichment histories of the galaxy. The

stellar mass follows directly from the outcome of the fitting procedure,

since the SSP masses are included in the SPS model. SED fitting is further

complicated by the need to account for dust attenuation, and by degeneracies

between age and metallicity. In general the resulting uncertainties in the

estimated stellar masses can be substantial (e.g. Conroy et al. 2009; Mitchell

et al. 2013). Certain spectral features and emission lines have particularly

strong constraining power. For example, Kauffmann et al. (2003) show

that the amplitude of the 4000 Å break is sensitive to the mean age of the

stellar population, and that the strength of the H-δ absorption line indicates

whether there has been a recent burst of star formation (within the last Gyr

or so). Also, Bell & de Jong (2001) show that the stellar mass-to-light ratio,

Υ , is closely correlated with the optical broad-band colours, but is fairly

insensitive to the SFH (see also Bell et al. 2003; Taylor et al. 2011).

Given the significant uncertainties involved in estimating the stellar

masses of observed galaxies via SED fitting, it is clear that caution must

be exercised when comparing observationally inferred stellar masses to

the predicted stellar masses of galaxies drawn from theoretical models of

galaxy formation, where the stellar masses are instead accurately computed

from the known star formation histories. As a way of understanding the

impact of the uncertainties involved in SED fitting, it is possible to apply this

observational technique to simulated galaxies, and to compare the estimated

masses from SED fitting to the true, intrinsic, stellar masses predicted by

the galaxy formation model (e.g. Mitchell et al. 2013). In Chapter 3 we

follow this approach to investigate the impact of the errors introduced by
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SED fitting on the perceived clustering of galaxies as a function of stellar

mass, making use of two recently developed semi-analytic galaxy formation

models, set in a large volume, high resolution, dark matter only simulation.

1.4 Research overview

The primary aim of the work presented in this thesis is to assess the accuracy

of particular techniques that are actively used to observationally infer the

dynamical and stellar masses of galaxies, in the context of the use of such

techniques to draw conclusions of the nature of dark matter, the physics of

galaxy formation, and the validity of the standard ΛCDM cosmogony.

In Chapter 2 we test the dynamical mass estimators of Walker et al.

(2009) and Wolf et al. (2010), by applying these to galaxies drawn from

the high resolution apostle cosmological hydrodynamical simulations of

Local Group analogues (Fattahi et al., 2016; Sawala et al., 2016). These

simulations are able to resolve the internal structure and kinematics of dwarf

satellite galaxies orbiting within the dark matter haloes of the Milky Way and

Andromeda analogues, while at the same time self-consistently reproducing

the environment of the Local Group on larger scales. We investigate how

the accuracy of the estimators depends on certain galaxy properties that

are closely connected to the assumptions under which the estimators are

derived, and that are of central importance to dynamical studies in general.

Based on the levels of estimator error unveiled in our analysis, we reassess

the significance with which such estimators can be used to place constraints

on the inner dark matter density profile slopes of the satellite galaxies of the

Milky Way. We also determine the set of estimator parameters that yields

an unbiased result for the estimated mass, with minimum scatter, for our

sample of dispersion-dominated simulated galaxies.

In Chapter 3 we use two versions of the galform semi-analytic galaxy

formation model (Gonzalez-Perez et al., 2014; Lacey et al., 2016) to invest-

igate the impact of the errors involved in stellar mass estimation on the

perceived clustering of galaxies as a function of stellar mass. These models

exploit a dark matter only simulation of a large cosmologically representative

volume, at sufficiently high resolution to accurately trace the evolution his-

tory of dark matter haloes on even the scale of dwarf galaxies. These models
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are thus ideally suited to studies of the clustering of galaxies. The correl-

ation function of galaxy clustering is a fundamental statistic that encodes

not only the structure of the underlying dark matter, but also the evolution

history of the baryonic material from which the galaxies were forged, in the

centres of their host dark matter haloes. Building on the work of Mitchell

et al. (2013), we estimate the masses of the simulated galaxies using SED

fitting procedures designed to emulate those used in particular observational

studies of the clustering of galaxies as a function of stellar mass. We then

compare the model clustering predictions to the results from the observa-

tional studies, using both the true and estimated model stellar masses. We

argue that only through such techniques can the clustering of galaxies as a

function of stellar mass predicted by galaxy formation models be faithfully

compared to observationally derived clustering signals. Following this new

methodology will allow the clustering of galaxies as a function of stellar

mass to be used as a powerful constraint on the predictions of future galaxy

formation models. We also introduce a new scheme for modelling the mer-

gers of satellite galaxies with the central galaxy of their parent halo. This

new scheme computes merger time-scales for the satellites in a way that is

more faithful to the underlying dark matter simulation, and hence more

physically realistic, than the default prescription used in galform. This new

treatment of satellite mergers modifies the galaxy clustering on small scales,

where the contribution due to satellite galaxies is particularly important.

A summary of our main findings and concluding remarks are given in

Chapter 4. Important statistical definitions are given in Appendix A. The

accuracy of alternative versions of the mass estimator of Wolf et al. (2010)

is investigated in Appendix B. Details of the parameter differences between

the galform models used are described in Appendix C.



Chapter 2

Simple Estimators of Galactic
Dynamical Masses

2.1 Introduction

Obtaining reliable dynamical information lies at the heart of many funda-

mental questions in cosmology and galactic structure. However, in nature

we typically only have partial information about the kinematics of observed

systems. Dynamical studies are therefore intrinsically underconstrained,

and often require the use of various simplifying assumptions. In this study,

we are interested in stellar dynamical systems to which the spherical Jeans

equation may be applied, such as globular clusters, satellite galaxies, and

massive spheroidal galaxies. The use of Jeans analysis to infer the mass

distribution of a system whose gravitational potential is traced by stars is

complicated by an important degeneracy between the velocity dispersion

anisotropy of the stars, and the total mass profile of the system. The aniso-

tropy is notoriously difficult to constrain with current data, and therefore

studies based on the application of the spherical Jeans equation have led to

many ambiguous results. For example, a topic of great interest is whether

local satellite galaxies have central cusps or cores in their central dark matter

61
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distributions. Studies based on Jeans analysis are often inconclusive, largely

due to the anisotropy degeneracy.

An important advance in this subject has been the application of simple

estimators to infer the dynamical mass within a sphere of radius equal to

the projected (2D) stellar half-light radius, Re (Walker et al., 2009, 2010), or

the deprojected (3D) stellar half-light radius, rhalf (Wolf et al., 2010).1 These

estimators make use of only two measured quantities: the stellar line-of-sight

velocity dispersion averaged over the whole galaxy, 〈σlos〉, and the projected

half-light radius. Each estimator can be written in the form

M(< λRe) =
µ〈σlos〉2Re

G
, (2.1)

where M(< r) is the total mass enclosed within a sphere of radius r. λ and

µ are dimensionless parameters, and G is the gravitational constant. These

estimators are derived from the spherical Jeans equation, which is valid

for spherically symmetric, dispersion-supported, collisionless, stationary

systems, in dynamical equilibrium, in the absence of streaming motions.

Additional assumptions are applied in the derivation of each estimator,

with the assumptions used by Walker et al. (2009) being somewhat more

restrictive than those of Wolf et al. (2010). The main finding of these studies

is that the total mass within a sphere of radius close to the 2D or 3D stellar

half-light radius is minimally sensitive to the assumed form of the stellar

velocity dispersion anisotropy and the shape of the total mass profile (Wolf

et al. 2010 discuss in detail how this relatively tight constraint arises).

Walker & Peñarrubia (2011) have applied these estimators to apparently

distinct stellar subpopulations in the Fornax and Sculptor dwarf spheroidals

(dSphs), and have argued for the presence of a central core in the dark matter

density profile of these galaxies, with higher confidence for Sculptor than

for Fornax. (However, this result has been disputed for Sculptor by Strigari

et al. 2014.) A further example of the applicability of these mass estimators

is the ‘too big to fail problem’ of the standard Λ cold dark matter (ΛCDM)

cosmological model (Boylan-Kolchin et al., 2011), which was predicated on

the basis of comparing the circular velocity curves (Vcirc(r) =
√
GM(< r)/r) of

1 Re is the radius of the circle that encloses half of the total stellar luminosity in projection
(effective radius), and rhalf is the radius of the sphere that encloses the same luminosity
fraction in 3D.
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dark matter subhaloes drawn from the Aquarius (Springel et al., 2008) and

Via Lactea II simulations (Diemand et al., 2008) with the dynamical mass

within the 3D half-light radius of the brightest satellites of the Milky Way

(MW) according to Wolf et al. (2010).

While the assumptions that underpin the spherical Jeans equation may

seem relatively benign, they are not exactly satisfied by all dSphs. For

example, it is clear that many galaxies, such as Fornax, are not spherically

symmetric. It also seems unlikely that satellites orbiting in the potential well

of a host halo are in dynamical equilibrium.

The simple mass estimators have been tested on ideal spherically sym-

metric systems (Walker & Peñarrubia, 2011), simulations of ideal dSphs in

a static MW potential (Kowalczyk et al., 2013), stellar distributions placed

in subhaloes from dark matter only simulations (Laporte et al., 2013a), and

cosmological zoom simulations of isolated elliptical galaxies (Lyskova et al.,

2015). More recently, the first generation of simulations with enough res-

olution to model the satellite galaxies of the MW reliably, in a realistic

cosmological setting, have become available (Grand et al., 2016; Sawala et al.,

2016; Wetzel et al., 2016). Such simulations can be used to test the accuracy

of equation (2.1) in estimating the dynamical masses of model galaxies with

realistic properties. In this chapter, we make use of the apostle simulations

of the Local Group (Fattahi et al., 2016; Sawala et al., 2016) to study the

accuracy of the estimators proposed by Walker et al. (2009) and Wolf et al.

(2010).

In §2.2 we describe the mass estimators and the assumptions on which

they are based in greater detail. The simulations used in this work are

discussed in §2.3. In §2.4 we present general properties of a sample of

well-resolved dispersion-dominated galaxies drawn from the simulations,

to which we apply the mass estimators in §2.5. The implications of the

systematic errors on the estimated masses are discussed in §2.6. In §2.7

we find the set of estimator parameters that optimises the accuracy of the

recovered mass for dispersion-dominated galaxies. Concluding remarks are

given in §2.8. In Appendix B we investigate the accuracy of the estimator

of Wolf et al. (2010) when written in terms of the 3D half-light radius. All

simulation results presented in this chapter are at redshift zero. The assumed

ΛCDM cosmological parameters are given in §2.3.1.
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2.2 Mass estimators

The spherical Jeans equation relates the circular velocity curve of a spheric-

ally symmetric system to the radial distribution and velocity dispersion of a

population of tracers that orbit in the gravitational potential (see §2.1 for a

list of the assumptions on which this equation is based, and see §1.3.1 for an

outline of its derivation):

GM(< r)
r

= −σ2
r (r)

[
dlogρ(r)

dlogr
+

dlogσ2
r (r)

dlogr
+ 2β(r)

]
, (2.2)

where M(< r) is the total mass enclosed within a radius r of the centre, ρ(r) is

the density profile of the tracer population,2 σr(r) is the profile of its velocity

dispersion, in the radial direction, and β(r) is the tracer velocity dispersion

anisotropy, which encodes the balance between the tangential and radial

components of the velocity dispersion. At a given radius,

β(r) = 1−
σ2
t (r)

2σ2
r (r)

, (2.3)

where σt(r) is the tangential component of the velocity dispersion, such that

the total (3D) dispersion is given by

σ3D(r) =
√
σ2
r (r) + σ2

t (r) . (2.4)

Thus defined, σt(r) includes the contributions to the total velocity dispersion

from two mutually orthogonal tangential directions, which are equivalent

under the assumption of spherical symmetry.

When applied to a dSph galaxy, for example, equation (2.2) relates the

total mass profile to the spatial distribution and kinematics of stars orbiting

in the total gravitational potential (which is dominated by the dark matter).

For an observed galaxy, we can measure the projected stellar density, Σ(R),

and velocity dispersion along the line of sight,3 σlos(R). A deprojection is

required to map these observable profiles onto the 3D profiles that appear on

2ρ(r) is the number density profile of the tracer population, or indeed, the mass (or
luminosity) density profile, assuming that all tracers have the same mass (or luminosity).

3In this chapter, a lower case r is used to denote a 3D radius, and an upper case R is used
to denote a 2D, projected, radius.
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the right-hand-side of equation (2.2). The projected and 3D stellar density

profiles, Σ(R) and ρ(r), under the assumption of spherical symmetry, are

related by an Abel transform, such that

ρ(r) = − 1
π

∫ ∞
r

dΣ(R)
dR

dR
√
R2 − r2

. (2.5)

Given only line-of-sight kinematic data for the stars, there exists an incon-

venient degeneracy between β(r) and σr(r), such that

Σ(R)σ2
los(R) = 2

∫ ∞
R
ρ(r)σ2

r (r)
[
1− R

2

r2 β(r)
]

rdr
√
r2 −R2

, (2.6)

(Binney & Mamon, 1982). In this way, our ignorance of β(r) influences both

the deprojection of σlos(R) onto σr(r) in equation (2.6), and the subsequent

inference of the enclosed mass profile from equation (2.2). In order to make

progress, some assumption about the stellar velocity dispersion anisotropy is

required, ranging from assuming isotropy (β = 0), to exploring a wide range

of plausible forms for β(r) in the fitting procedure (e.g. Wolf et al. 2010).

Through Jeans analysis of eight of the brightest dSphs of the MW, assum-

ing constant β, Walker et al. (2009, 2010) find that the total mass within

a sphere of radius equal to the projected stellar half-light radius (effective

radius), Re, is relatively well constrained (compared to smaller and larger

radii), and seemingly robust against the choice of β, and of the assumed

shape of the total density profile (see also Strigari et al. 2007, 2008; Peñar-

rubia et al. 2008a,b; Wolf et al. 2010; Amorisco & Evans 2011). Assuming

that the stars follow a Plummer density profile, with a constant and isotropic

velocity dispersion, Walker et al. (2009) propose a simple estimator for the

total mass enclosed within a sphere of radius Re, which arises immediately

from equation (2.2) given these additional assumptions,

M(< Re) =
5〈σlos〉2Re

2G
, (2.7)

where 〈σlos〉 is the (assumed to be constant) line-of-sight stellar velocity

dispersion averaged over the whole galaxy. That is, a constraint on the

dynamical mass (or equivalently, a point on the circular velocity curve) can

be obtained using only the stellar half-light radius and a single value for
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the stellar velocity dispersion, which does not require spatially resolved

kinematic data.

Wolf et al. (2010), on the other hand, argue that the 3D radius within

which the sensitivity of the enclosed mass to β is minimised is in fact r3,

the radius at which the logarithmic slope of the stellar density profile,

dlogρ(r)/dlogr, equals −3. Assuming that r3 is approximately the stellar 3D

half-light radius, rhalf, these authors propose the estimator

M(< rhalf) =
3〈σlos〉2rhalf

G
, (2.8)

where they stress that 〈σlos〉must be the luminosity-weighted mean disper-

sion. This estimator is based on the assumption that σlos(R) remains relatively

flat from the centre of the system out to beyond Re, and that β(r) does not

have an extremum within the stellar distribution. To express equation (2.8)

entirely in terms of observable quantities, Wolf et al. (2010) make the further

simplifying assumption that rhalf = 4Re/3, in which case

M
(
<

4
3
Re

)
=

4〈σlos〉2Re

G
. (2.9)

This estimator is of the same form as equation (2.7), but with λ = 4/3 and

µ = 4, compared to λ = 1 and µ = 2.5, in the notation of equation (2.1). It is

worth noting that if both equations (2.7) and (2.9) apply, then the enclosed

dynamical mass increases by a factor of 1.6 from Re to 4Re/3. We test the

accuracy of equations (2.7) and (2.9) using simulated galaxies in §2.5, and

return to equation (2.8) in Appendix B.

2.3 Simulations

We now describe the simulations used in this chapter, followed by the defin-

itions employed for subhaloes and galaxies, and the resolution limit we

impose to ensure converged galaxy properties.
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2.3.1 apostle simulations

The apostle simulations use the ‘zoom’ technique to resimulate 12 systems

consistent with observational constraints on the properties of the Local

Group, as described in more detail by Fattahi et al. (2016) and Sawala et al.

(2016). The regions were selected from a dark matter only simulation of

a cosmologically representative volume of comoving side 100Mpc, using

ΛCDM parameters consistent with WMAP7 (Komatsu et al., 2011). The

density parameters at redshift zero are Ωm,0 = 0.272 (matter), Ωb,0 = 0.0455

(baryons), and ΩΛ,0 = 1−Ωm,0 = 0.728 (cosmological constant). The present

day Hubble parameter is H0 = 100hkms−1 Mpc−1, with h = 0.704. The linear

power spectrum is normalised using σ8 = 0.81 at redshift zero. The spectral

index of primordial fluctuations is ns = 0.967. The pairs of MW and M31

analogues were selected on the basis of their separations, relative radial and

tangential velocities, and halo masses, along with the recession velocities of

outer Local Group members (see Fattahi et al. 2016 for details).

The 12 regions in the apostle suite were simulated using the code from

the eagle project (Crain et al., 2015; Schaye et al., 2015), at a series of

resolution levels, which we label as LR, MR, and HR, in order of increasing

resolution (low, medium, high). Table 2.1 lists the dark matter and (initial)

gas particle masses in the zoom region at each resolution level, along with the

gravitational force softening. All regions have been simulated at LR and MR,

and two regions have also been run at HR. The eagle code is a version of the

smoothed particle hydrodynamics (SPH) code gadget (Springel, 2005) that

includes ‘subgrid’ models for radiative gas cooling and heating (Wiersma

et al., 2009a), reionisation, star formation (Schaye, 2004; Schaye & Dalla

Vecchia, 2008), stellar mass loss and metal enrichment (Wiersma et al.,

2009b), stellar feedback (Dalla Vecchia & Schaye, 2012), black hole formation

and mergers (Rosas-Guevara et al., 2015), and feedback from active galactic

nuclei (Booth & Schaye, 2009). See Crain et al. (2015) and Schaye et al. (2015)

for full details of the subgrid models. The hydrodynamics implementation

used is anarchy (Dalla Vecchia in preparation), which uses the conservative

pressure-entropy SPH formulation derived by Hopkins (2013). See Schaller

et al. (2015) for a description of anarchy and the impact of the changes

with respect to the original gadget SPH scheme on galaxy properties in the
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Table 2.1 – Parameters for each resolution level in the apostle simulations. mDM
and mgas are the high resolution (zoom) dark matter and initial gas particle masses
respectively. ε(z = 0) is the Plummer-equivalent gravitational force softening at
redshift zero. The gravitational force is Newtonian on scales larger than 2.8ε. There
is a small amount of variation in the particle masses used in different simulations at
a given resolution level; average values are quoted here (see Fattahi et al. 2016 for
the individual values).

Resolution mDM [M�] mgas [M�] ε(z = 0) [pc]

LR 7.1× 106 1.4× 106 710
MR 5.8× 105 1.2× 105 307
HR 3.7× 104 7.4× 103 134

eagle simulations. The apostle simulations use the ‘reference’ eagle model

parameters as described by Schaye et al. (2015).

2.3.2 Halo finding and galaxy definition

To identify haloes in the simulations, we first make use of the friends-of-

friends (FOF) algorithm, considering only dark matter particles, with a

linking length of 0.2 times the mean interparticle separation (Davis et al.,

1985). Baryonic particles are assigned to the same FOF group as their nearest

dark matter particle. Each FOF group is then processed using subfind, which

identifies overdense gravitationally self-bound ‘subhaloes’ (Springel et al.,

2001; Dolag et al., 2009). The position of a subhalo is taken to be that of the

particle with the minimum value of the gravitational potential. The ‘main

subhalo’ of a FOF group is that whose such particle has the lowest potential

in the group.4 All other subhaloes are embedded in the main subhalo (a

given particle can belong to at most one subhalo). As described by Schaye

et al. (2015), we combine any two subhaloes whose separation is less than

the stellar half-mass radius of either subhalo, for separations of at most

3 physical kpc. This final adjustment is designed to absorb a very small

4Note that we still refer to this main halo from subfind as a subhalo, even though it
constitutes the main component of the FOF group. For our purposes, the distinction between
the main subhalo and other subhaloes in a FOF group is not important. It is typical in the
literature to label the galaxy found in the main subhalo as the ‘central’ galaxy of the FOF
group, while other subhaloes host ‘satellite’ galaxies. However, this nomenclature can be
confusing in some cases, e.g. in the apostle simulations the MW and M31 analogues can
reside in the same FOF group.
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number of very low mass subhaloes that are dominated by a single baryonic

particle of unusually high mass (as a result of exceptional stellar mass loss

to a gas particle, or black hole growth).

We define a galaxy to be the set of subhalo star particles within a spher-

ical aperture of radius rgal equal to 15 percent of the virial radius, r200, as

measured from the subhalo centre.5 For subhaloes where the actual value of

r200 is not meaningful, e.g. for the subhalo of a satellite galaxy embedded

in a much larger halo, we adopt the value of r200 obtained using a relation

between r200 and the maximum value of the subhalo circular velocity curve,

Vmax, calibrated using main subhaloes in the eagle Ref-L025N0752 simula-

tion.6 In practice, we make use of the directly measured value of r200 when

computing rgal for all main subhaloes, and for any other subhalo for which

r200 is less than the distance to the furthest subhalo particle. All galaxy

properties presented in this chapter are computed using the set of subhalo

star particles within rgal, with the galaxy centre set to that of its host subhalo.

We adopt the rest frame of the centre of mass of the set of star particles

defined in this way.

In each simulation volume, we shall refer to the MW and M31 analogues

as the ‘primary’ galaxies. Galaxies within 300kpc of the centre of either

primary galaxy are labelled as ‘satellites’, and those at larger distances are

labelled as ‘field’ galaxies. This classification is independent of the particular

FOF group in which a galaxy resides.

2.3.3 Selecting a well-resolved galaxy sample

We assume that the luminosity of a star particle (which represents a simple

stellar population) is proportional to its mass. In this case, Re is the projected

radius that encloses half the stellar mass, as well as half the total stellar

luminosity. Fig. 2.1 shows Re versus stellar mass, Mstar, for all galaxies in

the apostle simulations that are composed of at least ten star particles, split

by resolution level. The Re values are averaged from projecting over 1536

5r200 is the radius of the sphere that encloses a mean density equal to 200 times the
critical density of the Universe.

6Ref-L025N0752 has the highest resolution available in the eagle simulation suite, which
is similar to that of the MR apostle simulations. The cosmological parameters assumed in
eagle are slightly different to those used in the apostle simulations, however this is not
important for our purposes.
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Figure 2.1 – Mean projected stellar half-mass radius, 〈Re〉, versus stellar mass, Mstar,
for all galaxies that have at least ten star particles in the apostle simulations at each
resolution level (12 LR, 12 MR, and 2 HR simulations; different colours). The 〈Re〉
values are averaged over 1536 evenly distributed projections. For each resolution,
the median is shown as a solid line, and the 16th−84th percentiles are indicated by a
shaded region of the same colour. Points are shown instead for bins with fewer than
ten galaxies. The vertical dashed lines show the minimumMstar of the set of galaxies
composed of at least 1000 star particles at each resolution. The horizontal arrows
indicate 2.8 times the gravitational softening at each resolution (see Table 2.1).
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evenly distributed lines of sight for each galaxy, making use of the HEALPix

spherical tessellation (Górski et al., 2005).7 This set of sight-lines will be

exploited throughout this chapter.

In the following, we consider all galaxies in the highest resolution realisa-

tion of each of the 12 apostle regions (10 MR and 2 HR simulations) that are

resolved with at least 1000 star particles. This conservative threshold has

been chosen so that the stellar mass-size relation is converged at each resolu-

tion level (see also Schaye et al. 2015). The vertical lines in Fig. 2.1 show the

minimum Mstar of the set of galaxies with at least 1000 star particles at each

resolution. Note that the masses of star particles vary according to the level

of enrichment of the gas from which they formed, and the extent of their own

mass loss since their birth. There is also a small amount of variation in the

initial gas particle mass (and dark matter particle mass) between different

simulations at each resolution (see Table 2.1).

2.4 General galaxy properties

In this section, we select a sample of simulated galaxies whose stellar kin-

ematics are dominated by dispersion. We then investigate the basic proper-

ties of the galaxies in order to assess how realistic they are. We present radial

profiles of the projected stellar density and line-of-sight velocity dispersion

for galaxies that are resolved at the highest resolution level, along with pro-

files of their stellar velocity dispersion anisotropy. These profiles are central

to the mapping between observables and the total 3D mass profile (see equa-

tions 2.2, 2.5, and 2.6), and thus represent the basic dynamical quantities

that enter into the Jeans analysis. We then place the simulated galaxies in

the context of the Local Group by comparing their stellar masses, projected

half-mass radii, and velocity dispersions with observational data. Finally,

we investigate the degree to which the simulated galaxies are spherically

symmetric and in dynamical equilibrium.

7This corresponds to 3072 HEALPix pixels.
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2.4.1 Balance between dispersion and rotational support

A key assumption underpinning the spherical Jeans equation is that the

system under consideration is supported against gravitational collapse by

dispersion, rather than rotational or other streaming motion. This clearly is

not the case for galaxies with prominent stellar discs. To identify systems

with significant rotational support, we make use of the quantity κrot as

introduced by Sales et al. (2012), which they define as ‘the fraction of kinetic

energy invested in ordered rotation’. κrot is computed as:

κrot =
1

Kstar

∑
i

mi
2

(
jz,i
Rxy,i

)2

, (2.10)

where Kstar is the total stellar kinetic energy. For each star particle, i, of mass

mi , jz,i is the component of its specific angular momentum in the direction

of the total stellar angular momentum vector, Lstar, and Rxy,i is its distance

from the axis (z) defined by Lstar.

Strictly speaking, κrot is not directly sensitive to ordered rotation, because

the sign of the rotation about the z axis is lost in the squared term in equa-

tion (2.10). Yet systems that exhibit strong rotation have high values of κrot,

which makes κrot a useful measure to discriminate between systems that are

dispersion-dominated and those dominated by rotating discs. A pure disc

galaxy with stars on perfect circular orbits would have κrot = 1, while instead

κrot = 1/3 for a dispersion-supported system with isotropic orbits (since Kstar

includes all three orthogonal velocity components, but the summation in

equation 2.10 considers only one such component). Thus, κrot decreases from

unity as random motion becomes more important, with a lower limit in the

region of κrot ∼ 1/3. However, dispersion-supported systems with radially

biased orbits can have κrot < 1/3, since less of the kinetic energy is invested

in tangential motion than in the isotropic case. Similarly, tangentially biased

orbits imply κrot > 1/3.

Fig. 2.2 shows κrot versus Mstar for all galaxies in our sample (as defined

in §2.3.3). It can be seen that the simulations predict a broad range of stellar

morphologies, according to this kinematic measure. For Mstar & 109 M�,

rotation-dominated galaxies (κrot > 0.5) are slightly more prevalent than

those that are dominated by dispersion (κrot < 0.5). However, at progress-
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Figure 2.2 – Kinematic measure, κrot, used to discriminate amongst galaxies with
different levels of stellar rotational support (see equation 2.10), shown versus stellar
mass, Mstar, for all galaxies in our simulated sample. The galaxies are classified
according to whether they are one of the MW or M31 analogues (primary), within
300kpc of either of these (satellite), or located at larger distances (field). The symbol
shapes indicate the resolution level at which each galaxy has been simulated (MR
or HR). Our dispersion-dominated galaxy sample consists of all galaxies that have
κrot < 0.5. The panel on the right shows the distributions, f (κrot), of κrot for all field
and satellite galaxies. Each distribution is normalised to have unit area. The shaded
regions show the standard deviation assuming Poisson noise on each bin count.

ively lower stellar masses, the galaxies are progressively more likely to be

dispersion-dominated. For Mstar . 108 M�, only a small fraction of galaxies

have significant levels of rotational support. The distributions of κrot for

satellites and field galaxies are not significantly different. The MR and HR

simulations predict similar distributions of κrot at a given Mstar, over the

common mass range explored.

In this chapter, our main focus is on galaxies with dispersion-dominated

stellar kinematics, i.e. those with κrot < 0.5. The galaxy sample defined in

this way includes 70 percent of our full sample.

2.4.2 Stellar density and kinematic profiles

Projected stellar density profiles, Σ(R), for dispersion-dominated field and

satellite galaxies in the HR simulations are shown in Fig. 2.3, split into bins of

stellar mass. The profiles are obtained by projecting over a large number of

lines of sight (as described in §2.3.3), and are stacked for clarity, showing field

and satellite galaxies separately. There is no significant difference between
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the profiles for field and satellite galaxies in any mass bin. There is a small

variation in the shape of the profiles with increasing stellar mass, such that

the stellar density is more centrally concentrated in the highest mass bin

than in the other bins (see dashed line, which repeats the median profile

from the lowest mass bin). Projected stellar number density profile data for

bright dSphs of the MW are shown alongside the simulation predictions.

The measured profiles have been rescaled assuming the best fitting of either

a Plummer or Gaussian density profile model (with Mstar and Re as free

parameters). We find that the data points for Leo I are best described by

a Gaussian profile, while the other galaxies shown each prefer a Plummer

profile. The simulation predictions closely trace the observational data, in

which the degree of scatter varies for each dSph. Thus, we can see that the

simulated galaxies have realistic stellar density distributions.

Line-of-sight velocity dispersion profiles, σlos(R), are shown in Fig. 2.4

for the same set of simulated galaxies.8 These profiles show each galaxy

individually, using the median result from all lines of sight. The profiles

tend to be quite flat with radius. The typical dispersions and radial extents

of the galaxies scale closely with Mstar, and there are two particularly large

satellites with dispersions in excess of ∼ 50kms−1 (note that there are two

HR simulations, and hence four primary galaxies, which between them host

the satellites shown). Recall that an assumption used in the derivation of

each of the mass estimators discussed in §2.2 is that σlos(R) is relatively flat

(or even constant). To see the typical profile shapes more clearly, and to

identify if there are systematic differences in σlos(R) for field and satellite

galaxies, we show scaled versions of these profiles in Fig. 2.5, averaging over

all lines of sight in our standard set. While the scatter in the profiles for both

types of galaxy is large, such that there is no significant difference between

the two populations, the median profiles are somewhat flatter for field than

for satellite galaxies, in the two smaller mass intervals. The satellites in these

panels tend to have relatively high velocity dispersions in their centres, and

relatively low dispersions in their outer parts, compared with field galaxies.

The median profiles intersect near the projected half-mass radius. The data

8When computing velocity dispersions, we weight by the particle mass. For example,
the squared velocity dispersion in the x direction is given by σ2

x = (
∑
imiv

2
x,i)/(

∑
imi), where

each particle, i, has mass mi , and velocity vx,i in the x direction.
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Figure 2.3 – Projected stellar density profiles, Σ(R), for dispersion-dominated (κrot <
0.5) field and satellite galaxies in the HR simulations. The solid lines are the median
projected profiles obtained from 1536 evenly distributed projections for all galaxies
of a given type (different colours; legend in right panel), around which the shaded
regions of the same colour indicate the 16th−84th percentile spread. Each individual
profile is scaled, prior to stacking, by the projected stellar half-mass radius, Re, for
that line of sight, and the stellar mass, Mstar. The shaded regions are not shown
below the gravitational softening (see Table 2.1; in units of the median Re in each
panel), and the median profiles are dotted below 2.8 times the softening. The
panels show different stellar mass ranges, and are labelled with the number of
simulated galaxies they contain. As a visual aid, the median profile for all galaxies
in the lowest mass bin is repeated as a dashed black line in the higher mass bins.
The symbols with error bars show data for dSph satellites of the MW, where the
data for each dSph are plotted in the relevant panel for its stellar mass following
McConnachie (2012). The data shown are for Carina (Muñoz et al., 2006), Draco
(Odenkirchen et al., 2001), Fornax (Coleman et al., 2005), Leo I (Smolčić et al., 2007),
Sculptor (Battaglia et al., 2008), and Sextans (Irwin & Hatzidimitriou, 1995). The
measurements are scaled in the same way as the simulation predictions, assuming
either a Gaussian (Leo I) or Plummer (all others) density profile fit.
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Figure 2.4 – Line-of-sight stellar velocity dispersion profiles, σlos(R), for dispersion-
dominated (κrot < 0.5) field and satellite galaxies in the HR simulations, where each
panel shows a different stellar mass range. The line shown for each galaxy is the
median profile obtained from projecting over 1536 evenly distributed lines of sight,
considering star particles at projected radii between 2.8 times the gravitational
softening (see Table 2.1) and twice the mean projected stellar half-mass radius of the
galaxy. The bin edges are evenly spaced in the logarithm of R, and the points shown
are the linear means of the bin edges. The number of bins used for each galaxy is a
function of its star particle count. Note that the axis limits differ between panels.
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Figure 2.5 – Line-of-sight stellar velocity dispersion profiles, σlos(R), for dispersion-
dominated (κrot < 0.5) field and satellite galaxies in the HR simulations, where each
panel shows a different stellar mass range (labelled with the number of galaxies). The
solid lines are the median profiles obtained from 1536 evenly distributed projections
for all galaxies of a given type (different colours; legend in right panel), around
which the shaded regions of the same colour indicate the 16th−84th percentile spread.
Each individual profile is scaled, prior to stacking, by the projected stellar half-
mass radius, Re, and the mean stellar velocity dispersion of the whole galaxy, 〈σlos〉,
for that line of sight. The shaded regions are not shown below the gravitational
softening (see Table 2.1; in units of the median Re in each panel), and the median
profiles are dotted below 2.8 times the softening. The symbols with error bars show
data for dSph satellites of the MW, where the data for each dSph are plotted in
the relevant panel for its stellar mass following McConnachie (2012). The profiles
shown are for Carina, Fornax, Leo I, Sculptor, and Sextans, as computed by Strigari
et al. (2010). The measurements are scaled in the same way as the simulation
predictions, using the half-light radii from McConnachie (2012).
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Figure 2.6 – Spherically averaged stellar velocity dispersion anisotropy profiles,
β(r), for dispersion-dominated (κrot < 0.5) field and satellite galaxies in the HR
simulations. β(r) is negative for tangentially biased dispersions, zero for isotropy,
and positive for radially biased dispersions (see equation 2.3). The panels show
different stellar mass ranges, as labelled. The profiles include all star particles
between a radius of 2.8 times the softening (see Table 2.1) and twice the 3D stellar
half-mass radius, rhalf. The bin edges are evenly spaced percentiles of the radial
distribution of the star particles, and the points show the median galactocentric
radius of the star particles in each bin. The number of bins used for a given galaxy
depends on how many star particles it has.

points in Fig. 2.5 show profiles for bright dSphs of the MW (Strigari et al.,

2010). The simulated galaxies reproduce the flatness in σlos(R) observed for

the real MW dSphs.

Fig. 2.6 shows spherically averaged profiles of the velocity dispersion

anisotropy, β(r), defined in equation (2.3), again examining the highest

resolution dispersion-dominated field and satellite galaxies, split by stellar

mass. The galaxies predominantly have radially biased dispersions (β > 0),

and only a small number of galaxies, which are in the most massive subset,

have β . −0.2 at any radius. The profiles are similar in form for field galaxies

and the satellites, and there are no obvious distinctions between the two

populations, except that in the lowest mass bin the field galaxies tend to be

slightly more radially biased than the satellites, at both small and large radii.

The anisotropy introduces a key degeneracy in Jeans analysis (see §2.2), and

the mass estimators of interest here assume either that β(r) is monotonic, or

indeed that β has a negligible impact on the recovered mass, and so can be

assumed to equal zero.
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2.4.3 Galaxy sizes and integrated dispersions

The dynamical mass estimators described in §2.2 make use of only two meas-

urements: the projected stellar half-light radius, and the line-of-sight stellar

velocity dispersion. In Fig. 2.7 we plot these two quantities against stellar

mass for all galaxies in our sample. The simulations predict a relatively tight

relationship between 〈σlos〉 and Mstar, while the relationship between Re and

Mstar exhibits a somewhat higher level of scatter. There is clear convergence

between the results from the two resolution levels, which for the stellar

mass-size relation reflects our chosen threshold of 1000 star particles (see

§2.3.3). There is no obvious difference between the velocity dispersions or

sizes of field and satellite galaxies at a given stellar mass.

Observational data for galaxies within 3Mpc of the Sun as compiled

by McConnachie (2012) are shown alongside the simulation predictions in

Fig. 2.7. Given our conservative limit on the number of star particles required

for a galaxy to be included in our sample, we consider simulated galaxies

down to stellar masses close to that of Sculptor, although the simulations do

contain galaxies as faint as Draco. The simulation predictions are consistent

with the observational constraints, over the large range in stellar mass shown.

It is apparent in Fig. 2.7 that the simulations predict somewhat less scatter

in size at fixed stellar mass than seen in the observational data. The majority

of observed galaxies, including the Magellanic Clouds and Fornax, lie on

the predicted relation but a substantial fraction are smaller, for their stellar

mass, than the smallest galaxies in the simulations. As shown in Fig. 2.1, at

each resolution level, the stellar mass-size relation flattens out at low masses,

and the minimum size scales in the same way as the gravitational softening

(the horizontal arrows show the scale above which the force is Newtonian,

at each resolution). It thus appears that the resolution in the simulations is

not quite high enough to account for the sizes of all the observed galaxies

that have stellar masses close to those of the smallest resolved galaxies in

the simulations. However, for our purpose, which is to test the validity of

dynamical mass estimators using the simulated galaxies, it does not matter if

resolution effects have had a marginal impact on the galaxy sizes, provided

that the galaxies have self-consistent internal dynamics.
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Figure 2.7 – Line-of-sight stellar velocity dispersion, 〈σlos〉 (upper), and projected
stellar half-mass radius, Re (lower), versus stellar mass, Mstar, for all galaxies in
our simulated sample. The 〈σlos〉 and Re values have been computed for a single,
randomly chosen, line of sight through the simulations. The galaxies are classified
according to whether they are one of the MW or M31 analogues (primary), within
300kpc of either of these (satellite), or at larger distances (field), as indicated in the
lower right legend (different colours). The symbol shapes indicate the resolution
level at which the galaxies have been simulated (MR or HR). Dispersion-dominated
galaxies (κrot < 0.5) are plotted as filled symbols, while rotation-dominated galaxies
(κrot > 0.5) are plotted as unfilled symbols of the same colour and shape. continued. . .
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Figure 2.7 – continued. . . Data compiled by McConnachie (2012) for galaxies in
this stellar mass range within 3Mpc of the Sun (excluding the MW and M31) are
shown alongside the simulation predictions (upper left legend). The observed
galaxies are categorised as satellites if they are associated with the MW or M31,
otherwise they are classed as field galaxies. The error bars indicate the published
uncertainties on the radii and velocity dispersions (where available). We supplement
the McConnachie (2012) data with half-light radii for the SMC and LMC from
Subramanian & Subramaniam (2012) and Weinberg & Nikolaev (2001, disc model
with no bar) respectively, integrating the published exponential density profile fits
in each case. The labelled points are the 11 ‘classical’ satellites of the MW, along
with M32 (which has an exceptionally large dispersion and small size for its mass),
and Andromeda XVI (dispersion value is upper limit; downward arrow). We assume
that the luminosity of a star particle is proportional to its mass, and therefore Re is
both the half-mass and half-light radius for the simulated galaxies.

2.4.4 Equilibrium and spherical symmetry

The spherical Jeans equation applies to spherically symmetric systems that

are in equilibrium. It is reasonable to expect that simple mass estimators

based on this equation will fail for galaxies that deviate significantly from

either of these assumptions.

In order to quantify the dynamical state of a galaxy in our sample, we

consider the ratio of the total kinetic and gravitational potential energies of

its star particles, defining

γ =
2Kstar

Ustar
, (2.11)

where Kstar is the total stellar kinetic energy, and Ustar is the sum of the

gravitational potential energy of each star particle due to the full mass

distribution of the subhalo to which the star particles of the galaxy belong.

In computing Ustar, we shift the zero-point of the potential to coincide with

the galactic centre. Equation (2.11) is similar in appearance to the virial

ratio for an isolated system (such that γ would equal 1 if the stars were an

isolated self-gravitating system in equilibrium, with the potential taken to

be zero at an infinite distance from the system). However, γ refers only to

the stellar component, not to the whole dynamical system, and we measure

the potential energy with respect to the bottom of the potential well. There

is no natural γ value for equilibrium systems, and in the case of equilibrium

the value of γ still depends on the form of the gravitational potential. The
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upper panel of Fig. 2.8 shows γ versus Mstar for all galaxies in our sample.

We consider a galaxy to be out of equilibrium if it has a γ value substantially

higher or lower than the median value for its stellar mass (black line). We

define γ̃ to be the ratio of γ to the median line shown for each galaxy. Note

that the trend in γ observed as a function of Mstar in Fig. 2.8 does not imply

a trend towards or away from equilibrium.

In order to quantify how close to spherically symmetric a galaxy is, we

compute its stellar sphericity, s, as follows. We first compute the reduced

inertia tensor, I, of the star particles, which projects the mass distribution

onto a unit sphere, so that the shape determination does not depend on the

radial distribution of the particles (e.g. Bett 2012). This symmetric tensor

has components Iij , where i, jε{1,2,3}, such that

Iij =
1

Mstar

∑
n

mn
rn,irn,j

r2
n

, (2.12)

where each star particle, n, has mass mn and is located at a distance rn
from the galactic centre. rn,i and rn,j are the coordinates of the star particle

with respect to the galactic centre, in the i and j directions, respectively.

Taking the eigenvectors of I to be the principal axes of an ellipsoid, with

axis lengths a ≥ b ≥ c given by the square roots of the eigenvalues of I, the

sphericity is s = c/a (a sphere has s = 1). The lower panel of Fig. 2.8 shows

s versus stellar mass for all galaxies in our sample. Naturally, the rotation-

dominated galaxies (unfilled symbols) tend be more flattened (and thus have

lower s) than those that are dispersion-dominated (filled symbols). However,

there are some galaxies which are dispersion-dominated according to our

kinematic measure (κrot) that have lower sphericity than the vast majority

of rotation-dominated galaxies. Note that s does not distinguish between

disc-like flattening and elongation, as this measure takes into account only

two of the axes. The relationship between s and κrot has a large amount

of scatter, although the scatter decreases (and s decreases) with increasing

κrot. Looking at Fig. 2.8, it appears that satellites are preferentially closer to

spherical than field galaxies (see distributions in right panel, which consider

only the dispersion-dominated galaxies). This effect is consistent with the

expectation for satellite systems that have been tidally stripped (Barber et al.,

2015). The sphericity also increases, on average, as stellar mass decreases for
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Figure 2.8 – Stellar energy ratio, γ (upper; see equation 2.11), and stellar sphericity,
s (lower; derived from the reduced inertia tensor as defined in equation 2.12), versus
stellar mass, Mstar, for all galaxies in our simulated sample. The colours show
whether a galaxy is one of the MW or M31 analogues (primary), within 300kpc of
either of these (satellite), or at larger distances (field). The symbol shapes indicate
the resolution level (MR or HR). Dispersion-dominated galaxies (κrot < 0.5) are
plotted as filled symbols, while the symbols are unfilled for rotation-dominated
galaxies (κrot > 0.5). The black line in the upper panel shows the running median,
〈γ〉, of the γ values, considering at most 100 neighbouring galaxies in Mstar for
each galaxy. We define γ̃ as the ratio of γ to this median line for each galaxy, and
assume that galaxies with γ̃ ≈ 1 are in equilibrium. The panels on the right show
the distributions of the rescaled energy ratio, f (γ̃) (not the distribution of γ itself),
and the sphericity, f (s), on the same vertical scales as the main panels, for only the
dispersion-dominated field and satellite galaxies. Each distribution is normalised to
have unit area. The shaded regions show the standard deviation assuming Poisson
noise on each bin count.
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the data shown in Fig. 2.8.

Given the broad range of 3D shapes and the spread in energy ratios seen

for the simulated galaxies in Fig. 2.8, there clearly exist galaxies within our

(dispersion-dominated, or indeed, full) sample for which the assumptions of

spherical symmetry and equilibrium are strongly violated. In the following,

it will be particularly interesting to see how the simple mass estimators

perform when applied to such galaxies.

2.5 Accuracy of mass estimators

Having demonstrated that the galaxies in our simulations have realistic

projected stellar density and velocity dispersion distributions, with a range

of 3D shapes, velocity dispersion anisotropies, levels of dispersion support,

and departures from dynamical equilibrium, we now apply the simple mass

estimators proposed by Walker et al. (2009) and Wolf et al. (2010) in order

to assess their accuracy as a function of various galaxy properties.

For convenience, let us denote the ratio of the estimated mass to the true

dynamical mass within some sphere as α. Specifically, for the estimator of

Walker et al. (2009), from equation (2.7), we write

αWalker =
5〈σlos〉2Re

2GM(< Re)
, (2.13)

and, for the estimator of Wolf et al. (2010), from equation (2.9),

αWolf =
4〈σlos〉2Re

GM(< 4Re/3)
. (2.14)

We emphasise that in both equations (2.13) and (2.14), the denominator is the

total mass within a sphere of radius proportional to the value of Re obtained

for a given line of sight. For each galaxy in our sample, we measure Re, 〈σlos〉,
M(< Re), and M(< 4Re/3) for 1536 evenly distributed lines of sight. The

masses are obtained from all subhalo particles within the relevant radius,

including the contributions from dark matter, gas, stars, and black holes,

where such species are present.
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Figure 2.9 – Distributions, f (α), of the estimated to true mass ratio, α, for all
galaxies, obtained by projecting over 1536 evenly distributed lines of sight. The
galaxies are split into a dispersion-dominated sample (upper panel), and a rotation-
dominated sample (lower panel), according to the value of κrot (see equation 2.10).
Different colours show the distributions obtained using the Walker et al. (2009,
αWalker) and Wolf et al. (2010, αWolf) estimators, as labelled. The dashed lines
indicate the median α values for each estimator and the dotted lines the 10th and
90th percentiles. The standard deviation, σ , of each distribution is given in the
same colour as the lines. The shaded regions around the vertical lines and the
quoted errors on σ are the 16th − 84th percentile confidence limits, derived from
104 bootstrap samples of the galaxies for each distribution. Each projection of
each galaxy contributes to the relevant distribution with equal weight, and each
distribution is normalised to have unit area. The panels are labelled with the number
of galaxies they include. We highlight that the f (α) axis limits used in Figs. 2.10,
2.11, 2.12, and 2.19 vary with respect to those used here, in order to optimise the
clarity of each individual figure.
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2.5.1 Dispersion support

The mass estimators assume that the dynamical system is supported by

dispersion. We begin by applying the estimators to all galaxies in our sample,

including those with prominent stellar discs (for which we would not expect

an observer to use such an estimator). Fig. 2.9 shows the distributions of

α values obtained by applying both estimators to all projections of every

galaxy, split according to whether the stellar motions within the galaxy are

dominated by dispersion or rotation (see §2.4.1).

For both kinematic regimes, each estimator has a bias in the median

of no more than 5 percent (dashed lines), accompanied by a large scatter

(see dotted lines and standard deviation values). It is interesting that there

is no dramatic change in the accuracy of the estimators, in the median,

when switching from the dispersion-dominated to the rotation-dominated

galaxies. For each sample, the two different estimators have a similar level of

scatter, which is larger for the rotation-dominated galaxies. In general, the

distributions are very similar in shape for the two estimators; however, the

Wolf et al. (2010) estimator has a smaller median offset, 10th to 90th percentile

spread, and standard deviation than the Walker et al. (2009) estimator, for

both galaxy samples (although the difference in the scatter is much less

significant for the rotation-dominated galaxies). The α distributions for

the dispersion-dominated galaxies are approximately symmetric around

the median, but the shape of the distributions is more complicated in the

rotation-dominated case, where the peaks are above α = 1, and there are

extended tails to low α.

Overall, there is a 1σ scatter for dispersion-dominated galaxies of 25

percent when using the estimator of Walker et al. (2009), and 23 percent

for the estimator of Wolf et al. (2010). In the following, we shall investigate

the dependence of the α distributions for dispersion-dominated galaxies on

key quantities that characterise the properties of each galaxy and are most

relevant to the assumptions on which the mass estimators are based.

2.5.2 Stellar velocity dispersion anisotropy

The anisotropy, β, of the stellar velocity dispersion is an important parameter

in the Jeans analysis. An important feature of the mass estimators of interest
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Figure 2.10 – Distribution, f (α), of the estimated to true mass ratio, α, for
dispersion-dominated galaxies (κrot < 0.5), as a function of various galaxy properties.
In each row, the dispersion-dominated sample is split into three bins (columns),
according to: (a) the mean stellar velocity dispersion anisotropy, 〈β〉; (b) the stellar
equilibrium measure, γ̃ ; (c) the stellar sphericity, s; (d) the projected stellar circu-
larity, sp; and (e) the stellar mass, Mstar. Each panel is labelled with the interval it
considers and the number of galaxies it contains (percentage of lines of sight in the
case of circularity, where a single galaxy may contribute to more than one panel).
The details of the computation of the distributions and the meaning of each line are
as described in the caption of Fig. 2.9.
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here is that they are designed to be minimally sensitive to β. In Fig. 2.10(a),

we show the α distributions for dispersion-dominated galaxies, split into bins

of 〈β〉, which is the stellar velocity dispersion anisotropy averaged over the

whole galaxy (see equation 2.3). The stellar orbits are predominantly radially

biased (〈β〉 > 0); there are only 46 out of 250 galaxies with 〈β〉 < 0 (see Fig. 2.6

for the radial variation of β in the HR simulations). For each estimator, the

scatter in α increases with 〈β〉, where the difference is greatest between the

intermediate and most radially biased systems, for the 〈β〉 intervals shown.

2.5.3 Equilibrium

In order to assess how the accuracy of the mass estimators depends on

whether the galaxy of interest is in equilibrium, as assumed in the derivation

of each estimator, we make use of γ̃ as defined in §2.4.4. This quantity

encodes the balance between the total stellar kinetic energy and the potential

energy measured with respect to the bottom of the gravitational potential

well, where galaxies with γ̃ ≈ 1 are assumed to be in equilibrium (the cal-

culation of γ̃ assumes that, on average, the galaxies in our full sample are

in equilibrium; see Fig. 2.8). The α distributions for dispersion-dominated

galaxies divided into bins of γ̃ are shown in Fig. 2.10(b), where galaxies

in the intermediate bin are taken to be close to equilibrium. The scatter

in α actually increases with γ̃ , such that the lowest γ̃ interval exhibits the

smallest scatter for each estimator.

2.5.4 Shape

As shown in Fig. 2.8, the simulated galaxies span a broad range of 3D shapes.

Fig. 2.10(c) shows the α distributions for dispersion-dominated galaxies

divided into bins of stellar sphericity, s. The scatter in α diminishes sharply

as the stellar mass distribution tends towards spherical symmetry (s = 1).

This behaviour is consistent with the expectation for the applicability of

the spherical Jeans equation. Clearly, the estimators perform relatively well

for galaxies that are close to spherical. However, robustly identifying such

systems from projected data alone is non-trivial.

We now investigate the impact of carrying out the galaxy shape determina-

tion in projection. Adapting the procedure described in §2.4.4 for computing
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sphericity, we compute the reduced inertia tensor in 2D using the projected

coordinates of each star particle on the sky; the resulting ellipse axis lengths,

ap ≥ bp, are then used to define the stellar circularity as sp = bp/ap (a circle

has sp = 1). Fig. 2.10(d) shows the α distributions in bins of circularity, where

we see a much weaker trend in the scatter as a function of shape than when

the full 3D information of Fig. 2.10(c) is used. As such, the scatter in α

for galaxies that appear to be very close to circular on the sky (sp > 0.9) is

significantly larger than for galaxies that are actually close to spherical in

3D (s > 0.75).

2.5.5 Stellar mass

The simple mass estimators could be expected to work equally well for stellar

systems on any mass scale, provided that they satisfy the spherical Jeans

equation and that more detailed assumptions relating to the stellar density

distribution and the stellar velocity dispersion are reasonable (see §2.2).

However, many galaxy properties scale with stellar mass, which for our

simulated galaxies, albeit weakly and with a large scatter, include the level

of rotational support and the 3D shape (see Figs. 2.2 and 2.8). In Fig. 2.10(e)

we show the α distributions for dispersion-dominated galaxies in bins of

stellar mass. There is no monotonic global trend in the scatter in α as a

function of stellar mass; however, for both estimators the scatter peaks in

the intermediate mass interval.

2.5.6 Structural relationship with dark matter halo

As discussed above, Figs. 2.9 and 2.10 explore the dependence of the mass

estimator errors on key structural and kinematical properties of the galaxy

itself, i.e. properties of the set of subhalo star particles enclosed within

a sphere of radius rgal around the subhalo centre (including the balance

between the stellar kinetic energy and the gravitational potential energy

of the stars due to the mass distribution of the whole subhalo). Extending

this, we now examine the dependence of the mass estimator accuracy on

quantities that characterise the structural relationship between the galaxy

and the dark matter component of its host subhalo.

Fig. 2.11(a) shows the α distributions for dispersion-dominated galaxies,
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Figure 2.11 – Distribution, f (α), of the estimated to true mass ratio, α, for
dispersion-dominated galaxies (κrot < 0.5), as a function of various galaxy and
host subhalo dark matter properties. In each row, the dispersion-dominated galaxy
sample is split into three bins (columns), according to: (a) the angle between the
minor axis of the galaxy and that of the dark matter mass distribution within its host
subhalo, ψ; (b) the ratio of the stellar 3D half-mass radius, rhalf, to the subhalo dark
matter scale radius, rDM; (c) the subhalo dark matter sphericity, sDM; and (d) the
ratio s/sDM, where s is the stellar sphericity. Each panel is labelled with the interval
it considers and the number of galaxies it contains. The details of the computation
of the distributions and the meaning of each line are as described in the caption of
Fig. 2.9.
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divided into bins according to the angle, ψ, between the minor axis of the

galaxy and that of the dark matter component of its subhalo. For each mass

component, the minor axis is taken to be given by the eigenvector of the

reduced inertia tensor that has the smallest eigenvalue, and thus corresponds

to the shortest axis length (i.e. c in s = c/a; see §2.4.4). Note that the signs of

the eigenvectors are ignored, such that the angle ψ can take values from zero

to π/2. The scatter in α is highest for the galaxies that are close to perfect

alignment with their dark matter halo (ψ = 0), and the scatter decreases with

increasing ψ.

In order to investigate the dependence of the estimator accuracy on how

deeply the galaxy is embedded within its host subhalo, we compute a scale

radius, rDM, for the subhalo dark matter mass distribution and compare

this to the stellar 3D half-mass radius, rhalf. Given the radius at which the

circular velocity curve peaks, considering the enclosed mass in subhalo dark

matter particles only, rDM is computed as the corresponding scale radius

for an exact NFW profile (Navarro et al., 1996b).9 Fig. 2.11(b) shows the α

distributions for dispersion-dominated galaxies in bins of rhalf/rDM, which

quantifies the ‘concentration’ of the galaxy with respect to the dark matter

distribution. The scatter in α peaks in the intermediate bin shown, reducing

somewhat in the most concentrated bin (lowest rhalf/rDM), followed by the

least concentrated systems, but the differences are small.

Finally, it is interesting to examine the dependence of the estimator error

on the 3D shape of the host dark matter halo, since the mass estimators

assume that the dynamical system is spherically symmetric as a whole, and

the scatter in α is found to be strongly dependent on the 3D shape of the

stellar distribution (see Fig. 2.10c). We compute the sphericity of the subhalo

dark matter distribution, sDM, in the same way as described in §2.4.4 for the

stellar sphericity, s. Fig. 2.11(c) shows the α distributions for dispersion-

dominated galaxies in bins of sDM. The scatter in α decreases with increasing

sDM; however the strength of this dependence is smaller than that for the

stellar sphericity, comparing to Fig. 2.10(c). This indicates that the shape of

the stellar mass distribution has the largest impact on the estimator error,

9Given the enclosed dark matter mass profile, MDM(< r), if the radius at which the dark
matter only circular velocity curve,

√
GMDM(< r)/r, peaks is rmax(DM), then the scale radius

for an exact NFW halo with the same value of rmax(DM) is rDM ' rmax(DM)/2.163.
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Figure 2.12 – Distributions, f (α), of the estimated to true mass ratio, α, for field
(upper panel) and satellite (within 300kpc of MW or M31; lower panel) galaxies in
the dispersion-dominated sample (κrot < 0.5). The details of the computation of the
distributions and the meaning of each line are as described in the caption of Fig. 2.9.

with a weaker influence from the shape of the mass distribution of the dark

matter. We note that although s does exhibit a weak increase on average as

a function of sDM, there is a very large scatter in s at a given sDM, i.e. the

stellar and dark matter 3D shapes are only loosely connected. The dark

matter distribution is usually closer than the galaxy to being spherically

symmetric (only 24 out of 250 galaxies have s > sDM). Fig. 2.11(d) shows

the α distributions for dispersion-dominated galaxies in bins of s/sDM. The

decrease in the scatter in α is more significant as a function of this ratio than

as a function of sDM (cf. Fig. 2.11c), but less pronounced than as a function

of s alone (cf. Fig. 2.10c). Therefore, the difference between the 3D shapes of

the galaxy and its host dark matter halo (quantified here by s/sDM) plays a

role in the accuracy of simple mass estimators.
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2.5.7 Field versus satellite galaxies

Fig. 2.12 shows the α distributions separately for dispersion-dominated

field and satellite galaxies (satellites are within 300kpc of a MW or M31

analogue). Although there are fewer satellites, and hence poorer statistics,

the scatter in α is smaller for the satellite galaxies than for the field galaxies,

for both estimators. This may be closely related to the fact that, on average,

the satellite galaxies are closer to spherical symmetry than those in the

field (see Fig. 2.8). There are hints that the satellites also tend to be more

strongly supported by dispersion (see Fig. 2.2) and tend to have stellar

velocity dispersions that are closer to isotropic (see Fig. 2.6 for HR), compared

with field galaxies. We also find that the satellite galaxies tend to be more

extended relative to the dark matter distribution of their subhalo (higher

rhalf/rDM) than the field galaxies.

2.5.8 Angular dependence

The analysis presented so far has considered the estimator error distribu-

tions resulting from summing over all galaxies (or lines of sight) satisfying

certain criteria based on integrated stellar and dark matter properties (or

per-projection observable properties). We now investigate how the estim-

ator accuracy varies with viewing angle relative to the orientation of the

galaxy. Given Cartesian coordinates (x,y,z), we adopt the standard conven-

tion for the spherical polar coordinates (r,θ,φ), such that x = r sin(θ)cos(φ),

y = r sin(θ)sin(φ), and z = r cos(θ). For each galaxy, we rotate the simula-

tion coordinate system to align with the eigenvectors of the stellar reduced

inertia tensor (see §2.4.4). The z axis (θ = 0) is aligned with the shortest

principal axis (minor axis), the x axis (θ = π/2,φ = 0) with the longest prin-

cipal axis (major axis), and the remaining principal axis with the y direction

(θ = π/2,φ = π/2).

The upper panels of Fig. 2.13 show the variation in the α values for each

estimator, relative to the mean α value from averaging over all lines of sight

for a given galaxy, as a function of θ and φ, defined using the stellar reduced

inertia tensor. The angular variations of the projected half-mass radius,

Re, and the line-of-sight integrated stellar velocity dispersion, 〈σlos〉, are

also shown, again relative to the corresponding galactic means. The lower
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Figure 2.13 – Angular variation of the estimated to true mass ratio for the Walker
et al. (2009, αWalker) and Wolf et al. (2010, αWolf) estimators, the projected stellar
half-mass radius, Re, and the line-of-sight stellar velocity dispersion, 〈σlos〉, for
dispersion-dominated galaxies (κrot < 0.5), computed by projecting over 1536 evenly
distributed lines of sight. The curves are shown as functions of the spherical polar
angles, θ and φ, where the coordinate system is aligned with the eigenbasis of the
reduced inertia tensor of either the galactic star particles (upper panels) or the dark
matter particles of the host subhalo (lower panels). The z axis (θ = 0) is aligned
with the shortest principal axis, and the x axis (θ = π/2,φ = 0) is aligned with the
longest principal axis. The spherical polar angular ranges are defined as 0 ≤ θ ≤ π
and 0 ≤ φ < 2π. Since projections in opposite directions are equivalent in this work,
the 1536 unique lines of sight are identified by their angular coordinates in the
half-sphere defined by 0 ≤ θ < π and 0 ≤ φ < π within this figure. For each galaxy,
the values of αWalker, αWolf, Re, and 〈σlos〉 for each projection have been divided by
the corresponding mean value over all projections of that galaxy, before computing
the curves shown. The solid lines show the median values, and the shaded regions
of the same colour indicate the 16th − 84th percentile spread (the θ and φ axes use
the same fixed bin width, in units of π). Each panel makes use of the full set of 1536
lines of sight, so at fixed θ (left) or φ (right), the median and percentile range values
shown result from the data for all lines of sight (with that particular θ or φ) for all
galaxies.
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panels in Fig. 2.13 repeat the same analysis, but using instead the θ and φ

coordinates with respect to the eigenbasis of the reduced inertia tensor of

the dark matter particles within the subhalo. Thus, for a given galaxy, the

(θ,φ) coordinates contributing to the upper and lower panels of Fig. 2.13

differ unless the stellar and dark matter reduced inertia tensor eigenvectors

are exactly aligned, with the same eigenvalue ordering (since this sets the

ordering of the principal axis lengths, and hence the definitions of θ and φ).

Looking at the upper panels of Fig. 2.13, it is clear that α is strongly

sensitive to θ, i.e. the angle with respect to the stellar minor axis (z), and has

a weaker dependence on φ, i.e. the angle with respect to the major axis (x; in

the x − y plane). The results for the two different estimators are very similar,

although the estimator of Wolf et al. (2010) exhibits a slightly smaller scatter

at all angles. As a function of θ (upper left panel), the mass estimates are

maximally biased low (in the median for all galaxies), relative to the galactic

mean values, for lines of sight coincident with the stellar minor axis (θ ∼ 0

and θ ∼ π). The median estimates then smoothly increase towards the x − y
plane, peaking for θ/π ∼ 0.5. The scatter in α, relative to the galactic mean,

is relatively large for lines of sight along the minor axis or within the x − y
plane, but is minimised for θ/π ∼ 0.3 and θ/π ∼ 0.7, being approximately

symmetrical around θ/π = 0.5. The scatter in both Re and 〈σlos〉 exhibits

the same behaviour as a function of θ as the scatter in α, with extremes at

approximately the same values of θ. The velocity dispersion varies with θ in

the same way as α does, peaking for θ/π ∼ 0.5, with minima coinciding with

the minor axis. However, the dependence of Re on θ is reversed, compared

to that of α and 〈σlos〉, such that the Re curve is approximately the reflection

of the 〈σlos〉 curve around the galactic mean. The coupled variation of Re

and 〈σlos〉 suppresses the variation in the product Re〈σlos〉2, and hence the

variation in the estimated mass (see equations 2.13 and 2.14). The α, Re, and

〈σlos〉 curves intersect (with values ∼ 1) for θ close to where the scatter in

each quantity is minimised (θ/π ∼ 0.3 and θ/π ∼ 0.7).

The results as a function of φ in galactic coordinates (upper right panel in

Fig. 2.13) are similar to those just described for the θ dependence, but with

smaller median offsets from unity and larger scatters, exhibiting extremes

such that α and 〈σlos〉 are maximised forφ ∼ 0 andφ ∼ π (i.e. for lines of sight

in the x − z plane), and minimised for φ/π ∼ 0.5 (i.e. the y − z plane); while
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the φ values of the turning points are shifted by an angle of π/2 relative to

this for Re. Note that since projections in opposite directions are equivalent

for our purposes, the angular coordinates of the 1536 unique lines of sight

are evaluated within the half-sphere defined by 0 ≤ θ < π and 0 ≤ φ < π in

Fig. 2.13.

Using instead the coordinate system based on the subhalo dark matter,

as shown in the lower panels of Fig. 2.13, results in dependencies of α, Re,

and 〈σlos〉 on the spherical polar angles that are qualitatively very similar

to the data shown in the upper panels, where the coordinates based on

the galactic star particles are used. However, the strengths of the trends

seen in galactic coordinates are diluted when switching to the halo-based

coordinates, such that the median variations are reduced for each quantity

shown (i.e. the solid lines are slightly closer to unity). The scatter around the

median also increases for each quantity at all angles when switching to the

halo coordinates, except for φ/π . 0.2 and φ/π & 0.8, where for each curve

shown, the 16th − 84th percentile width actually decreases. The differences

between the upper and lower panels in Fig. 2.13 indicate that the accuracy

of the mass estimators, for a given line of sight, is more sensitive to the

shape and relative alignment of the galaxy, rather than the corresponding

properties of the dark matter (sub)halo in which the galaxy is embedded.

Fig. 2.14 shows the mean α value for the Walker et al. (2009) estimator,

as a function of cos(θ) and φ, for all dispersion-dominated galaxies, using

the coordinate system based on the reduced inertia tensor of the stars within

each galaxy, as in the upper panels of Fig. 2.13 (but note that Fig. 2.13

considers the α values relative to the galactic mean, for each galaxy, while

in Fig. 2.14 the actual individual α values are used directly to compute the

mean for each pixel). Since the lines of sight are drawn from an evenly

spaced spherical tessellation, they must evenly sample the cos(θ) versus φ

plane, and so the pixels in Fig. 2.14 each consider approximately the same

number of data points (galaxy projections). The results for the Wolf et al.

(2010) estimator are very similar to those shown in Fig. 2.14. As can be seen

in Fig. 2.14, the most accurate mean mass estimates form an hourglass shape

in the cos(θ)−φ plane (white). The masses are most heavily underestimated

for cos(θ) ∼ ±1 (blue; corresponding to lines of sight along the stellar minor
axis), and most heavily overestimated for cos(θ) ∼ 0 with φ/π ∼ 0 or φ/π ∼ 1
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Figure 2.14 – Estimated to true mass ratio, αWalker(θ,φ), resulting from applying the
estimator of Walker et al. (2009) to all galaxies in our dispersion-dominated sample
(κrot < 0.5), by projecting over 1536 evenly distributed lines of sight for each galaxy.
θ and φ are the spherical polar angles in the galactic coordinate system defined
by the eigenbasis of the stellar reduced inertia tensor, where the z axis (θ = 0) is
aligned with the shortest stellar principal axis, and the x axis (θ = π/2,φ = 0) is
aligned with the longest principal axis. The angular ranges are defined as 0 ≤ θ ≤ π
and 0 ≤ φ < 2π; however, since projections in opposite directions are equivalent in
the context of our analysis, we consider the coordinates of the set of 1536 unique
lines of sight within the half-sphere defined by 0 ≤ θ < π and 0 ≤ φ < π in the
grid shown here (extending the grid to φ = 2π would result in repetition of the
data). Since the lines of sight result from an evenly distributed spherical tessellation,
plotting φ versus cos(θ) = z/r ensures that the number of projections per grid pixel
is approximately constant. The αWalker(θ,φ) value shown in each pixel is the mean
over all projections of each galaxy within the relevant angular range. The colour
scale is centred on a mass ratio of unity (i.e. white for accurate mean estimates,
blue for mean underestimates, and red for mean overestimates). The results for the
Wolf et al. (2010) estimator are very similar to those shown here. The distributions
of the mass ratios, α, for both estimators are shown in the upper panel of Fig. 2.9
(summing over all projections), and the α variations relative to the galactic mean
are shown in the upper panels of Fig. 2.13 (integrating over θ and φ separately).
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Figure 2.15 – The same as Fig. 2.14, but showing instead the standard deviation of
the αWalker(θ,φ) values in each pixel, rather than the mean value. The details of the
analysis are otherwise exactly as described in Fig. 2.14.

(red; corresponding to lines of sight along the stellar major axis). Lines of

sight coincident with the stellar principal axis of intermediate length, where

cos(θ) = 0 and φ/π = 0.5 (or φ/π = 1.5; not shown), correspond to the centre

of the grid shown in Fig. 2.14, where the mean mass estimates are relatively

close to perfect accuracy.

Fig. 2.15 is the same as Fig. 2.14, except that it shows the standard

deviation of the α values, as a function of cos(θ) and φ; otherwise the

calculations involved are identical for the two figures. It can be seen in

Fig. 2.15 that the scatter in α is highest for lines of sight along the stellar

major axis, and lowest for the two regions with cos(θ) ∼ ±0.6 (i.e. θ/π ∼ 0.3

and θ/π ∼ 0.7) and 0.2 . φ/π . 0.8 (in keeping with the upper panels of

Fig. 2.13). The scatter for lines of sight coincident with the stellar minor

axis and the intermediate stellar principal axis is fairly similar, in stark

contrast to the major axis. Comparing Figs. 2.14 and 2.15, we see that the

locations of the largest scatter in α are also the locations of the highest mean

α values. For the three stellar principal axes, the dynamical masses are

either overestimated with a large scatter (major axis), underestimated with a

modest scatter (minor axis), or in fact close to accurate with a modest scatter
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(intermediate axis).

2.5.9 Summary and discussion

To summarise the preceding results, Fig. 2.16 shows α for each estimator

as a function of various galaxy properties, in bins of approximately equal

numbers of galaxies (or sight-lines). The first panel shows the dependence

on κrot for the full galaxy sample, and the subsequent panels consider only

the dispersion-dominated galaxies (κrot < 0.5). The distinction between the

two estimators is small, although where they deviate, the Wolf et al. (2010)

estimator has the smallest bias and scatter in almost all cases.

Considering the scatter, the estimators are most precise for dispersion

supported galaxies that are close to spherical, have at most mildly radially

biased stellar velocity dispersions (〈β〉 . 0.2), and have relatively low stellar

kinetic energy for their gravitational potential energy. The strongest de-

pendence of the scatter is on the 3D shape of the stellar mass distribution,

of which almost all useful information is lost in projection. Considering

only the dispersion-dominated galaxies, as shown in Fig. 2.16, the scatter

also reduces for galaxies that are misaligned with respect to their host dark

matter halo, and for galaxies that are highly extended, in units of their halo

scale radius. It is interesting to note that the (dispersion-dominated) satellite

galaxies exhibit a lower α scatter overall compared to their counterparts in

the field (see Fig. 2.12). Satellite galaxies also tend to be closer to spherical

and tend to be more extended relative to their host dark matter halo, com-

pared to the field galaxies (the highest rhalf/rDM bin in Fig. 2.16 contains 21

satellite galaxies and only four field galaxies). We note that the main phys-

ical galaxy properties of interest are related at some level: galaxies that are

close to spherical tend to have velocity dispersions that are close to isotropic

and have relatively little rotational support. The scatter in α is much more

sensitive to the shape of the galaxy than to that of the mass distribution

of the dark matter within its host subhalo, such that there remain strong

trends in the scatter in α as a function of the ratio of stellar and dark matter

sphericities, s/sDM.

Any trends in the median α values shown in Fig. 2.16 are weak. However,

considering the dependence on the projected stellar circularity, sp, the bias
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Figure 2.16 – Ratio, α, of the estimated to true mass obtained using the estimators
of Walker et al. (2009, αWalker) and Wolf et al. (2010, αWolf), by projecting over
1536 evenly distributed lines of sight, as a function of various galaxy and subhalo
dark matter properties. The properties shown are: the stellar kinematic measure
used to discriminate between galaxies with different levels of rotational support
(κrot), the mean stellar velocity dispersion anisotropy (〈β〉), the stellar equilibrium
measure (γ̃), the stellar sphericity (s), the projected stellar circularity (sp), the stellar
mass (Mstar), the angle between the stellar and subhalo dark matter minor axes (ψ),
the ratio of the stellar and dark matter scale radii (rhalf/rDM), and the ratio of the
stellar and dark matter sphericities (s/sDM). The first panel shows α versus κrot
for all galaxies; all other panels consider only those galaxies whose stellar motions
are dominated by dispersion (κrot < 0.5). For each estimator (colours), the solid
lines show the median mass ratios and the shaded regions the 16th − 84th percentile
spread. The bin edges are evenly spaced percentiles of the quantity on the horizontal
axis, and the bin centres (points) are the median values in each bin.
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towards overestimation of the mass for galaxies that are very elongated on

the sky gradually decreases with increasing circularity (we note that this

trend is exaggerated if we instead consider the full galaxy sample, including

the rotation-dominated galaxies). The median α also exhibits an increase

with increasing γ̃ (i.e. for increasing stellar kinetic energy relative to the

stellar gravitational potential energy, at fixed stellar mass).

As shown in Fig. 2.13 (upper panels), the value of α is strongly sensitive

to the viewing angle, θ, relative to the stellar minor axis, z, such that the

estimated masses are lowest for lines of sight close to the minor axis, and

highest for lines of sight in the x − y plane. The dependence of α on the

other spherical polar viewing angle, φ, relative to the stellar major axis, x

(in the x − y plane), is much weaker than the dependence on θ, but shows

similar behaviour. As shown in Figs. 2.14 and 2.15, the dynamical masses

are overestimated with a large scatter for lines of sight coincident with the

major axis, underestimated with a modest scatter for the minor axis, and

close to accurate with a modest scatter for the intermediate principal axis.

We note that Wolf et al. (2010) suggest an error of around 0.05dex (12

percent; cf. Fig. 2.16) for their estimator (in addition to the uncertainty due

to the errors on the measured size and velocity dispersion), in the special case

where the unknown β(r) has an extremum within the stellar distribution,

or σlos(R) has not been measured over the full extent of the galaxy (i.e. the

dispersion much beyond R ∼ Re is not included when 〈σlos〉 is computed).

Otherwise, Wolf et al. (2010) advocate considering only the measurement

errors on the velocity dispersion and half-light radius when evaluating the

uncertainties in masses obtained using their estimator.

Kowalczyk et al. (2013) apply a modified version of the estimator of Wolf

et al. (2010) to idealised simulations of dSphs in a static MW potential, and

find that the error decreases as the shape of the stellar mass distribution

tends towards spherical symmetry, as also found here. However, they also

find that for the simulated dSphs there is no clear dependence of the error

on the level of stellar rotation or velocity dispersion anisotropy, while we do

detect such dependencies here (see Fig. 2.16).

Laporte et al. (2013a) investigate the accuracy of the Walker et al. (2009)

estimator for idealised stellar distributions placed in dark matter subhaloes

from the Aquarius simulations, finding fluctuations of between 10 and 20
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percent with respect to the true mass. An interesting result of this study,

which naturally takes into account the triaxiality of dark matter haloes

formed in cosmological simulations, is that it finds that the enclosed dy-

namical mass is more strongly overestimated for stellar populations that are

more deeply embedded (more highly concentrated) within their dark matter

halo, concurring with the spherically symmetric tests of Walker & Peñarrubia

(2011). However, we do not detect significant evidence of such a trend in

the apostle simulations (see the rhalf/rDM panel of Fig. 2.16). Additionally,

Laporte et al. (2013a) demonstrate variations of the estimated mass, Re, and

〈σlos〉, as a function of viewing angle, that are in good qualitative agreement

with the results presented in §2.5.8.

Lyskova et al. (2015) apply the Wolf et al. (2010) estimator to cosmological

zoom simulations of 40 isolated elliptical galaxies, finding a 1σ scatter of

around 8 percent for Vc(4Re/3) (note that the fractional error on Vc(r) is half

that on M(< r), assuming zero error on the radius), with a bias of 3 percent

above the true circular velocity (cf. Fig. 2.16).

Our results complement these earlier studies, but we have used a large

sample of realistic galaxies with a broad range of stellar masses, formed in a

self-consistent ΛCDM cosmological context, in the environment of the Local

Group, using sophisticated treatments of the baryonic physics important for

galaxy formation.

2.6 Effects of uncertainties

We now explore the impact of the systematic uncertainties associated with

the simple mass estimators on key results in the literature that are based on

applying the estimators to observational data. Despite the high resolution of

the apostle simulations, our sample of galaxies does not include systems with

stellar masses smaller than that of Sculptor (due to our chosen resolution

threshold; see §2.3.3 and Fig. 2.7). However, the estimator error has no clear

dependence on stellar mass (see Fig. 2.10e). Therefore, we assume that the

uncertainties explored in §2.5 remain relevant for galaxies that are fainter

than those in our sample.
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2.6.1 Dynamical masses of MW dSphs

Wolf et al. (2010) find that simply propagating the observational errors on

the half-light radius and the line-of-sight velocity dispersion through their

estimator equation yields a similar uncertainty for the estimated dynamical

mass to that obtained from their full Jeans analysis (which, like the estimator,

assumes spherical symmetry). The authors argue that this is consistent with

their claim that the uncertainty on the recovered mass is dominated by

observational errors, rather than underlying systematic effects. However,

as we have demonstrated, the estimator’s precision is sensitive to various

properties of the target galaxy.

To illustrate the significance of the systematic error on the estimated

mass, Table 2.2 lists the mass within the 3D half-light radius for dSphs

of the MW, which we compute using equation (2.9), given the projected

half-light radius and line-of-sight velocity dispersion values tabulated by

Wolf et al. (2010).10 For each galaxy, we list the 1σ fractional error, σM ,

on the estimated mass, obtained by propagating the observational errors

through equation (2.9), as advocated by Wolf et al. (2010). The final column

gives the fractional error on the mass if, in addition, we add in quadrature

a representative 1σ systematic error of 20 percent in the estimated to true

mass ratio. This fiducial value for the scatter is appropriate on average for

the dispersion-dominated satellite galaxies in the simulations (see Fig. 2.12),

or all dispersion-dominated galaxies that appear near-circular on the sky

(see Fig. 2.10d). For many of the bright satellites, the observational errors

on the measured quantities are sufficiently small that the increase in the

overall mass error due to including the representative systematic uncertainty

is similar in size to the original mass error. However, in many other cases the

original error is so large that the contribution from the systematic uncertainty

is relatively insignificant.

2.6.2 Density profiles of Sculptor and Fornax

Walker & Peñarrubia (2011) employ a Markov Chain Monte Carlo (MCMC)

technique to infer projected half-light radii and velocity dispersions for

10Note that Wolf et al. (2010) tabulate the mass within the 3D half-light radius from their
full Jeans analysis, rather than from their estimator.
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Table 2.2 – Dynamical mass, MWolf, within the 3D half-light radius (rhalf ≈ 4Re/3) of
dSph satellites of the MW, according to the estimator of Wolf et al. (2010), as given
in equation (2.9). The estimates have been computed using the projected half-light
radii, Re (as reproduced here), and line-of-sight velocity dispersions tabulated by
Wolf et al. (2010). σM is the 1σ fractional error on MWolf, obtained by propagating
the observational uncertainties on the size and dispersion measurements through
equation (2.9), approximating the errors as symmetric. To illustrate the impact of
the systematic errors explored in this chapter, the final column gives the fractional
error, σ̃M = (σ2

M + σ2
sys)

1/2, on the estimated mass if a representative systematic error
of σsys = 0.2 is assumed for the estimated to true mass ratio (ignoring any bias; see
Fig. 2.12). The galaxies are listed in order of decreasing MWolf.

Galaxy Re [pc] log10(MWolf [M�]) σM σ̃M

Fornax 714+40
−40 7.88 0.07 0.21

Ursa Minor 445+44
−44 7.74 0.14 0.25

Sextans 768+47
−47 7.56 0.10 0.23

Canes Venatici I 564+36
−36 7.48 0.15 0.25

Leo I 295+49
−49 7.35 0.19 0.27

Sculptor 282+41
−41 7.33 0.15 0.25

Draco 220+11
−11 7.32 0.11 0.23

Bootes I 242+22
−20 7.26 0.50 0.54

Ursa Major I 318+50
−39 7.23 0.30 0.36

Carina 254+28
−28 6.99 0.13 0.24

Leo II 177+13
−13 6.86 0.17 0.26

Leo T 115+17
−17 6.81 0.44 0.48

Ursa Major II 140+25
−25 6.77 0.45 0.50

Hercules 229+19
−19 6.74 0.36 0.41

Coma Berenices 77+10
−10 6.18 0.37 0.42

Canes Venatici II 74+14
−10 6.16 0.46 0.51

Leo IV 116+26
−34 6.07 1.06 1.08

Segue 1 29+8
−5 5.70 0.56 0.59

Willman 1 25+5
−6 5.57 0.50 0.54
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chemo-dynamically distinct stellar subpopulations in the Sculptor and For-

nax dSphs. In each galaxy there is a centrally concentrated, kinematically

cold, metal-rich stellar component (population 1), and a more extended,

metal-poor component, with higher velocity dispersion (population 2). The

procedure used by Walker & Peñarrubia (2011) treats each galaxy as a super-

position of two spherically symmetric stellar populations (each described

by a Plummer profile), with Gaussian velocity and metallicity distribu-

tions. Assuming that the two populations independently trace the gravita-

tional potential, the resulting size and dispersion values define a mass slope,

Γ = ∆ logM(< r)/∆ logr, using equation (2.1), where the actual values of λ

and µ are not relevant for computing the slope:

Γ =
log[M(< r2)/M(< r1)]

log[r2/r1]
≈ 1 +

log[σ2
2 /σ

2
1 ]

log[r2/r1]
. (2.15)

Here r1 and r2 are 3D radii equal to (or some multiple of) the projected half-

light radii, Re, of populations 1 and 2, and σ1 and σ2 are the mean velocity

dispersions, 〈σlos〉, of each population, respectively. Building a posterior

probability distribution function, P (Γ ), using the set of r1, r2, σ1, and σ2

values at each point in the MCMC chains, Walker & Peñarrubia (2011) find

median slopes of Γ = 2.61+0.43
−0.37 for Fornax and Γ = 2.95+0.51

−0.39 for Sculptor,

where the ranges indicate the 16th − 84th percentile confidence intervals.

A measurement of Γ using the masses enclosed at two non-zero radii

places an upper limit on the inner logarithmic slope, γDM, of the dark matter

density profile, such that γDM < 3 − Γ . Given that γDM = 1 for an NFW

density profile (Navarro, Frenk & White, 1996b, 1997), while e.g. γDM = 0

for a constant density core, Walker & Peñarrubia (2011) exclude NFW (or

steeper) profiles with confidence of (at least) 95.9 and 99.8 percent for Fornax

and Sculptor respectively. These significance values, s(γDM), are

s(γDM) =

∫∞
3−γDM

P (Γ )dΓ∫∞
−∞ P (Γ )dΓ

. (2.16)

If the estimates of the enclosed dynamical masses for the two stellar

populations each happen to be biased by exactly the same (arbitrary) factor,

with respect to the corresponding true masses, then clearly such a bias
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cancels out in the calculation of Γ , i.e. the recovered mass profile slope is

insensitive to any coherent bias in the estimates of the enclosed masses at

the two radii (see equation 2.15). Therefore, only differences in the enclosed

mass estimation biases for the two populations are relevant in the context of

the methodology of Walker & Peñarrubia (2011).

Laporte et al. (2013a) generate stellar distribution functions in dark

matter subhaloes drawn from the Aquarius simulations, in order to assess

the sensitivity of the accuracy of the dual population method of Walker &

Peñarrubia (2011) to the triaxiality of the gravitational potential (i.e. the lack

of spherical symmetry in the dark matter distribution). The lack of symmetry

tends to introduce an anticorrelation between Re and 〈σlos〉 that suppresses

the error on the recovered mass (see also Fig. 2.13 and §B.2). Laporte et al.

(2013a) argue that the level of spherical symmetry is not important to the

estimator accuracy, in the content of the analysis of Walker & Peñarrubia

(2011), despite the fact that they obtain fluctuations of between 10 and 20

percent for the estimated masses (cf. Fig. 2.16). These authors find, as in the

spherically symmetric tests of Walker & Peñarrubia (2011), that Γ tends to be

systematically underestimated, and thus the exclusion confidences for NFW

profiles in Sculptor and Fornax are deemed to be conservative (i.e. the results

for Γ can be considered as reliable lower limits, corresponding to reliable

upper limits on the density slope, since γDM < 3 − Γ ). This is because the

enclosed mass tends to be more strongly overestimated for tracer populations

that are more deeply embedded. However, as noted in §2.5.9, we do not find

any significant evidence of such a trend in the bias in the estimated to true

mass ratio (α) as a function of the concentration of the stellar distribution

(rhalf/rDM) for the dispersion-dominated galaxies within our simulations (see

Fig. 2.16).

An important aspect of the tests of Laporte et al. (2013a), which use

idealised independent stellar distributions placed in realistic dark matter

haloes, is that the shapes (equidensity surfaces) of the stellar populations

exactly trace the gravitational potential, and so the shapes of any two stellar

populations generated in this way are inherently closely correlated, by con-

struction (Laporte et al., 2013b). This close coupling assumed between the

two populations may produce artificially small errors on the recovered mass

slope, as it does not take into account the possibility that the stellar mass
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may be distributed in a way that does not exactly follow the contours in the

potential, and that the two populations may have quite different 3D shapes

and relative alignments.

Kowalczyk et al. (2013) carry out a similar study to that of Laporte

et al. (2013a), but making use of idealised simulations of dSph galaxies

orbiting in a static MW potential. The galaxies are initialised as perfect

stellar discs, embedded in spherical dark matter subhaloes, with the two

dSph stellar populations assumed to originate from the inner and outer

disc. These authors make use of the velocity dispersion measured within Re

when computing Γ , in contrast to the method of Walker & Peñarrubia (2011),

which uses the dispersion averaged over the whole galaxy.11 They find that Γ

can be biased both low and high with respect to the true slope, depending on

the line of sight, and that the results are most accurate for galaxies that are

close to spherical. If Γ was overestimated for Sculptor or Fornax by Walker

& Peñarrubia (2011) then the confidence with which they exclude an inner

NFW slope would be artificially high. However, as pointed out by Laporte

et al. (2013a), since Kowalczyk et al. (2013) use the dispersion measured

within Re for each population, this may yield significantly different results

to the method used by Walker & Peñarrubia (2011). Indeed, Laporte et al.

(2013a) demonstrate that if they measure the dispersion within Re then

their analysis using the Aquarius simulations can also overestimate Γ . Note

that in this case Γ is more accurate (i.e. less biased), albeit typically with a

larger scatter. However, since the objective of applying the methodology

of Walker & Peñarrubia (2011) is to place conservative upper limits on the

inner density profile slopes, in the context of ruling out NFW profiles, more

accurate values of Γ are deemed to be undesirable, since in this case the

slope is much more likely to be overestimated, hence leading to unreliable

(i.e. non-conservative) NFW profile exclusion confidence values.

If it can be assumed that the biases in the estimated masses for the two

stellar populations are each determined entirely by the ‘choice’ of sight-line

orientation relative to the whole dynamical system (galaxy) for a single ob-

server, and no other factors are relevant (including e.g. the 3D shapes and

11Kowalczyk et al. (2013) refer to the estimator they use as that of Wolf et al. (2010). In
fact, Wolf et al. (2010) advocate averaging the dispersion over all stars belonging to the
galaxy.
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relative orientations of the distinct stellar populations), then the mass bias

will of course be identical for the two stellar populations,12 and the line of

sight choice will not affect the recovered Γ value. However, it seems some-

what unlikely that this assumption would hold in general for real galaxies,

since the two metallicity populations are likely to have formed by different

processes and at different times (Benítez-Llambay et al., 2016). The two

populations might have different levels of dispersion support, velocity dis-

persion anisotropy, 3D shapes, alignments relative to their host halo and to

each other, and may be in different dynamical states relative to equilibrium;

each factor potentially introducing scatter into the two mass estimates. Dif-

ferences in these important properties between the two populations could

result in the introduction of additional uncorrelated biases into the two re-

covered mass values, and hence lead to propagation of unanticipated errors

into the measurement of Γ .

Clearly, the validity of assuming that the two populations yield mass

estimates with identical (and hence irrelevant) random biases depends in-

versely on the extent to which it is valid to assume that the populations are

independent. Nonetheless, if we are to exclude NFW profiles within dSphs

with multiple stellar populations, then surely the conservative approach is to

assume that the two populations are indeed independent, with uncorrelated

random mass errors. In fact, the apostle galaxies studied here exhibit a range

of alignment angles and 3D shapes relative to their host haloes (see Fig. 2.16).

Therefore it seems entirely plausible that the dual stellar populations found

in certain dSphs could have different orientations and shapes with respect to

each other (and their host halo), depending on their physical origins.

In the special (and perhaps unlikely) limiting case where the two stellar

populations are in perfect morphological alignment with each other, Fig. 2.14

corresponds to the prediction from our simulations for the mean value of

the estimated to true mass ratio for the Walker et al. (2009) estimator, as a

function of viewing angle relative to the (here assumed perfectly aligned)

principal axes of the stellar populations. Even though this mean bias would

cancel out when computing Γ , there is also a substantial scatter around

12Ignoring from now on the claimed dependence on the stellar population concentra-
tion within the halo (rhalf/rDM), since this acts to make the NFW exclusion limits more
conservative.
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the mean expectation, for any randomly chosen line of sight, as shown in

Fig. 2.15. Thus even for perfect alignment of the populations with each

other (and a single fixed line of sight), the fractional errors on the estim-

ated masses for the two populations may be significantly different, thus

perturbing the inferred value of Γ , as a result of e.g. differences in the 3D

shapes, levels of dispersion support, or velocity dispersion anisotropies of

the two populations. Considering the distribution of the standard deviation

values, computed directly from the pixels shown in Fig. 2.15, the median

value of the standard deviation (evenly weighted over the spherical surface)

is σ [αWalker(θ,φ)] = 0.140+0.051
−0.028, where the quoted range corresponds to the

16th and 84th percentiles. Thus under the assumption of exact alignment of

the populations, this value of σ [αWalker(θ,φ)] could be taken as the scatter in

the estimated masses for the individual populations, for a single randomly

chosen line of sight. Yet clearly the expected scatter increases as the popula-

tions move away from the state of perfect alignment assumed in this special

case, and the mean biases for different sight-line orientations relative to the

individual populations become relevant (see Fig. 2.14).

To represent the various uncertainties involved in estimating the enclosed

masses for the two stellar populations, we assume in the following that, for

each population, the estimated mass has an associated 1σ fractional error

of σsys = 0.2. If the important properties of the two stellar populations are

assumed to be independent, then the choice of σsys = 0.2 seems reasonable

in general given our analysis of the uncertainties involved in estimating the

dynamical masses of realistic simulated galaxies in §2.5. This representative

scatter of 20 percent is relatively high compared to the standard deviations

of the α values for most line of sight orientations relative to the stellar

principal axes for the galaxies in our sample, although much larger scatters

are observed for many viewing angles. Within the context of obtaining

conservative exclusion confidences for NFW-like inner density profile slopes,

our choice of σsys might in fact be considered somewhat low; in which case

the results presented below constitute an underestimate of the impact of the

mass estimator errors on the reliability of the results of Walker & Peñarrubia

(2011). However, we are ignorant of any underlying correlations between the

properties of the dual populations in Sculptor or Fornax that may conspire

to bias the estimated enclosed masses in a similar way for the two radii, thus
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Figure 2.17 – Distributions, P (Γ ), of the logarithmic mass profile slope, Γ , derived
using chemo-dynamically distinct stellar subpopulations in Sculptor and Fornax
(see equation 2.15). The upper panel shows the distributions from sampling the
posterior probability distribution functions for the half-light radii and velocity
dispersions from Walker & Peñarrubia (2011). The lower panel shows the results
of repeating this procedure, but introducing a 1σ scatter of σsys = 0.2 in the mass
estimates for both populations. The median Γ value and 16th − 84th percentile
confidence interval are given in each panel for each distribution, in the same colours
as the lines. Each distribution is normalised such that

∫∞
−∞ P (Γ )dΓ = 1. The vertical

dashed line shows the central (maximum) mass slope for an NFW profile.

reducing the error on the inferred mass slope.

In order to assess the impact of the systematic errors inherent in simple

mass estimators of the form assumed in equation (2.15) on the results of

Walker & Peñarrubia (2011), we begin by creating a simple model of their

analysis procedure. Approximating the published posterior probability dis-

tribution functions for log10(r2), r1/r2, log10(σ2
1 ), and log10(σ2

2 ) as Gaussian

(using the tabulated medians and 16th − 84th percentile ranges), we generate

106 values for Γ by independently drawing random values consistent with

the four distributions, and applying equation (2.15). This approach ignores

the correlations between the free parameters of the system, which are ac-
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counted for in the MCMC chains. However, the resulting P (Γ ) distributions

for the two dSphs, shown in the upper panel of Fig. 2.17, are very similar to

those obtained by Walker & Peñarrubia (2011, cf. their fig. 10). Indeed, our

median values for the slopes of Γ = 2.54+0.44
−0.37 for Fornax and Γ = 2.96+0.49

−0.39 for

Sculptor are in excellent agreement with their results.

The lower panel of Fig. 2.17 shows the result of including a representative

1σ fractional systematic error of σsys = 0.2 in the mass estimates for both

populations. In detail, we repeat the process described above, but for each

set of radii and dispersions, we multiply M(< r1) and M(< r2) (or equival-

ently, the squared dispersions) by random values, E1 and E2, respectively,

drawn separately from a Gaussian distribution centred at one with stand-

ard deviation σsys, and then proceed to apply equation (2.15) as before.13

Including the systematic scatter spreads out the P (Γ ) distributions, with a

negligible impact on the median values, giving Γ = 2.54+0.77
−0.70 for Fornax and

Γ = 2.95+0.71
−0.61 for Sculptor. In terms of the significance as defined in equa-

tion (2.16), the P (Γ ) distributions including the systematic error disfavour

NFW slopes with confidence of only 77.7 and 94.5 percent for Fornax and

Sculptor respectively. Clearly, the systematic errors associated with mass

estimators of the form given in equation (2.1) have the potential to reduce

the confidence with which it can be claimed that the results of Walker &

Peñarrubia (2011) rule out the presence of dark matter cusps as steep as that

of the NFW profile in Fornax and Sculptor, depending on the extent to which

the individual stellar populations are independent from each other.

A deeper understanding of the uncertainties associated with the meth-

odology of Walker & Peñarrubia (2011) will come from high resolution

simulations where the chemo-dynamically distinct stellar populations in

dSphs are treated in a realistic way, ideally as the result of cosmological

initial conditions, such as in the apostle simulation suite. Dwarf galaxies

with multiple stellar populations may reside in our simulations, facilitating

direct tests of methods that use estimators of enclosed dynamical masses to

infer density slopes. Such analysis is beyond the scope of the present work;

we leave the identification and classification of such galaxies, and analysis

of their physical origins, to future studies using apostle and similar high

resolution cosmological hydrodynamical simulations.

13We impose a lower limit of 0.01 for each of E1 and E2.
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2.7 An optimal estimator

The mass estimators discussed in the preceding sections have a common

form, as parameterised in equation (2.1), where λ is the 3D radius within

which the mass is estimated, in units of Re, and µ is the estimator prefactor.

Extending this general idea, it may be that the radius within which the

velocity dispersion is measured influences the accuracy of the recovered

mass. Including an additional dimensionless parameter, ν, we can write a

more flexible generalisation,

M(< λRe) =
µ〈σlos(< νRe)〉2Re

G
, (2.17)

where 〈σlos(< R)〉 is the line-of-sight stellar velocity dispersion measured

within a projected radius, R, of the galactic centre. Up to now, we have

averaged the velocity dispersion over the whole galaxy (ν→∞), in keeping

with the estimators proposed by Walker et al. (2009) and Wolf et al. (2010).

Setting aside the theoretical motivation for certain choices of the para-

meters in equation (2.17) which, at least for the estimators of Walker et al.

(2009) and Wolf et al. (2010), are based on the assumptions that underpin

the spherical Jeans equation combined with additional simplifications, we

now ask: empirically, for the population of dispersion-dominated galaxies

in our simulations, exactly which set of estimator parameters (λ,µ,ν) yields

an unbiased estimate of the true dynamical mass within some radius, with

minimum scatter?

Considering our dispersion-dominated galaxy sample, the upper panel of

Fig. 2.18 shows the standard deviation of the estimated to true mass ratio, α,

for the unbiased estimator obtained by setting µ such that the mean α is one

for a given λ and ν. This grid has been computed by projecting over 1536

evenly distributed lines of sight, with a grid spacing of 0.01 in λ and ν. The

scatter in the estimates varies strongly with λ, and depends more weakly on

ν. However, the impact of ν on the scatter becomes more significant near the

location of minimum scatter in this plane (diamond marker). The middle

panel in Fig. 2.18 shows the scatter as a function of λ for the case where ν

is chosen to minimise the scatter for each value of λ (solid line), and also

where the velocity dispersion averaged over the whole galaxy is used instead
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Table 2.3 – Parameters (λ, µ, ν) that yield an estimated to true mass ratio, α, of one
on average, with minimum scatter, calibrated using all galaxies in our dispersion-
dominated sample (see equation 2.17). The three sets of parameters shown result
from different constraints on ν, which sets the projected radius within which the
line-of-sight stellar velocity dispersion is measured. The final row gives the scatter
for each parameter set (standard deviation of α). The quoted uncertainties are the
16th − 84th percentile confidence limits, from 104 bootstrap samples of the galaxies,
for each constraint on ν.

Parameter 0.1 < ν < 4.0 ν = 1 ν→∞
(optimum set)

λ 1.77+0.08
−0.06 1.76+0.09

−0.05 1.91+0.09
−0.03

µ 5.99+0.37
−0.33 5.94+0.42

−0.28 6.95+0.48
−0.18

ν 1.04+0.10
−0.17 1 ∞

Scatter 0.204+0.005
−0.006 0.204+0.005

−0.006 0.220+0.005
−0.006

(dashed line). In the case where ν is allowed to vary, the scatter is minimised

for ν ≈ 1, while including the whole galaxy in the dispersion measurement

leads to a preference for higher λ.

The sets of parameters that minimise the scatter for these two treatments

of ν are given in Table 2.3, along with the associated scatter in the α distribu-

tions. We shall refer to the parameters found in the case where ν is allowed

to vary as the ‘optimum’ set. The parameters in the case where the dispersion

is measured within exactly Re is also given in Table 2.3 (ν = 1) and yield

an equivalent level of scatter as in the optimum case. The uncertainties on

the parameters and the scatter values given in Table 2.3 are derived from

bootstrap resampling of the galaxies, where for each constraint on ν, we

draw 104 samples of the same number of galaxies as in the true sample, and

compute the 16th and 84th percentiles of the distributions of the parameters

and scatter in α resulting from applying the minimisation procedure to

each sample. Fig. 2.19 shows the full α distribution in the optimum case.

The reduction in the minimum scatter due to switching from ν→∞ to the

optimum parameter set is 7.0 percent.

The mean α values and associated scatter obtained from applying the

estimators of Walker et al. (2009) and Wolf et al. (2010) to the same galaxy

sample as used in the calibration are shown in the lower panels of Fig. 2.18.

Both of these estimators have a slightly smaller scatter than in the unbiased
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Figure 2.18 – Calibration of mass estimator parameters (λ, µ, ν) using all dispersion-
dominated galaxies in our simulated sample (see equation 2.17). The upper panel
shows the standard deviation of the estimated to true mass ratio α as a function of
λ and ν, where the proportionality constant µ is chosen such that the estimator is
unbiased (mean α equals one) for each combination of λ and ν. The scatter shown is
linearly interpolated between ν = 4 and the case where the dispersion is averaged
over the whole galaxy (ν → ∞). The lines show contours of constant standard
deviation, as labelled. The diamond symbol indicates the location of minimum
scatter (see Table 2.3). The middle panel shows the scatter as a function of λ, for
the choice of ν which minimises the scatter at each value of λ (solid line), and
using instead the velocity dispersion averaged over the whole galaxy (dashed line).
The points show the corresponding results from applying the estimators of Walker
et al. (2009), Wolf et al. (2010), and Amorisco & Evans (2011), which each use the
dispersion averaged over the whole galaxy. Note that the α distribution for a given
estimator can have a lower scatter than the dashed line, provided that it is biased in
the mean. The lower panel shows the mean α for each of these three estimators.
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Figure 2.19 – Distribution, f (α), of the estimated to true mass ratio, α, for the
unbiased estimator with minimum scatter of the form given in equation (2.17). The
optimum parameters are given in Table 2.3 (as in the horizontal axis label). The dis-
tribution considers all dispersion-dominated galaxies (κrot < 0.5), using projections
from 1536 evenly distributed lines of sight. The dashed line shows the median, and
the dotted lines show the 10th and 90th percentiles. The standard deviation, σ , is
also shown. The shaded regions around the vertical lines and the quoted errors on σ
are the 16th −84th percentile confidence limits, derived from applying the estimator
to 104 bootstrap samples of the galaxies. Note that the similar σ errors given in
Table 2.3 for this estimator are instead derived from the distribution of optimum σ
values obtained from repeatedly calibrating equation (2.17) on bootstrap samples
of the same galaxies. Each projection of each galaxy contributes to the distribution
with equal weight, and the distribution is normalised to have unit area.
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case that uses the dispersion averaged over the whole galaxy (as these two

estimators do), for their λ. Using the optimum parameter set leads to reduc-

tions in the scatter of 18.2 and 9.9 percent relative to the Walker et al. (2009)

and Wolf et al. (2010) versions, respectively, while correcting for the bias

exhibited by each estimator, as shown in Fig. 2.18.

We note that Amorisco & Evans (2011) obtain an empirical estimator with

similar parameters to our optimum result, from phase-space modelling of the

dSphs of the MW (they find λ = 1.7 and µ = 5.8±1.0; cf. Table 2.3). The choice

of 1.7Re for the enclosing radius minimises the dependence in their analysis

of the recovered mass on the assumed halo density profile and its associated

scale-length, assuming that the dSphs have isotropic velocity dispersions

in their centres, with relatively flat σlos(R) profiles. The mean α and scatter

resulting from applying this estimator to our dispersion-dominated sample

are shown in Fig. 2.18 alongside the Walker et al. (2009) and Wolf et al.

(2010) results, where the error bars indicate the spread due to the quoted

uncertainty on µ.14

2.8 Conclusions

In this chapter we have presented the key intrinsic and observable properties

of galaxies drawn from the apostle simulations of the Local Group that are

relevant to Jeans analysis in general, and in particular to the use of simple

mass estimators of the form given in equation (2.1), as advocated by Walker

et al. (2009) and Wolf et al. (2010). The simulated galaxies have realistic

stellar density distributions and line-of-sight stellar velocity dispersions,

combined with a range of 3D shapes, levels of dispersion support, and stellar

velocity dispersion anisotropy.

Applying the mass estimators proposed by Walker et al. (2009) and Wolf

et al. (2010) to many projections of each galaxy in our sample, we have found

that the estimators each have a small bias in the estimated to true mass ratio,

14Amorisco & Evans (2011) state that their analysis makes use of the velocity dispersion
at the galactic centre, however it is not clear to what level the dispersions used can be
considered to be ‘central’. The dataset used is that compiled by Walker et al. (2009, 2010),
who note that the dispersions are global averages. Therefore we use the velocity dispersion
averaged over the whole galaxy when applying the estimator of Amorisco & Evans (2011),
in order to be consistent with the data used in their analysis.
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α, combined with a relatively large scatter. This scatter is 23 or 25 percent

at the 1σ level overall for dispersion-dominated galaxies, respectively (see

Fig. 2.9).

The dependence of α on various galaxy properties is summarised in

Fig. 2.16. The scatter in α depends strongly on the shape of the galaxy, such

that the α distributions are sharply peaked for stellar mass distributions

that are close to spherical symmetry. However, the dependence of the scatter

on the observable 2D shape on the sky is much weaker, i.e. it is difficult to

identify ideal spherically symmetric systems in projection. The scatter also

increases for progressively larger radial bias in the stellar velocity dispersion

anisotropy, and progressively higher levels of rotational support, and for

galaxies that exhibit closer alignment with their host dark matter haloes. We

also find that the scatter is lowest for galaxies that have relatively low stellar

kinetic energy for their gravitational potential energy, and for galaxies that

are highly extended, in units of their halo scale radius. The mass estimator

accuracy is more sensitive to the 3D shape (and alignment with respect to

the observer) of the galaxy than to that of the host dark matter halo. The

dispersion-dominated satellites of the MW and M31 analogues found in the

simulations yield a smaller scatter in α (typically 20–22 percent) than the

dispersion-dominated field galaxies (typically 24–26 percent), as shown in

Fig. 2.12.

Considering the dependence of α on the orientation of the line of sight

with respect to the galaxy, we find that the dynamical masses are overes-

timated with a relatively large scatter for lines of sight coincident with the

stellar morphological major axis, underestimated with a modest scatter along

the minor axis, and close to accurate with a modest scatter for the observa-

tions along the stellar principal axis of intermediate length (see Figs. 2.14

and 2.15).

Adopting a representative value of 20 percent for the 1σ systematic scat-

ter in α for satellite galaxies, we have shown that the systematic uncertainties

inherent in the simple estimators significantly increase the errors on the

estimated dynamical masses of dSph satellites of the MW from Wolf et al.

(2010) in cases where the observational errors on the half-light radii and

velocity dispersions are relatively small. Including the same representative

scatter within a simple model of the analysis of Walker & Peñarrubia (2011)
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demonstrates that systematic uncertainties can also greatly reduce the sig-

nificance with which the mass profile slopes derived for two independent

stellar populations in Sculptor and Fornax are inconsistent with an NFW

dark matter density profile. This result depends on the level to which the

errors on the estimated masses for the two populations can be assumed to be

independent.

Finally, we have investigated the scatter in the estimated to true mass

ratio for the set of unbiased estimators of the form given in equation (2.17),

considering all the dispersion-dominated galaxies in our simulated sample.

We find that using the optimum set of parameters given in Table 2.3 results in

a reduction in the scatter of between 10 and 20 percent with respect to similar

estimators in the literature (Walker et al., 2009; Wolf et al., 2010; Amorisco

& Evans, 2011), combined with the removal of bias in the mean. The scatter

is optimised when the line-of-sight velocity dispersion is measured within a

radius close to the projected stellar half-mass radius, Re (rather than over

the whole galaxy as is typical):

M(< 1.77Re) =
5.99〈σlos(< 1.04Re)〉2Re

G
. (2.18)

This equation gives our optimum result in the case where the radius within

which the velocity dispersion is measured is treated as a free parameter. If

instead we fix the dispersion measurement to consider stars within exactly

Re, the resulting scatter is the same as that obtained using the formally

optimal parameter set (see Table 2.3).





Chapter 3

Galaxy Clustering as a Function of
Stellar Mass

3.1 Introduction

Galaxy formation involves the interplay between a variety of physical pro-

cesses, such as the suppression of star formation in massive haloes due to the

shutting down of gas cooling by active galactic nuclei, and the heating of the

interstellar medium by supernovae. These processes vary in importance with

redshift and the mass of the dark matter halo that hosts the galaxy. Semi-

analytic models use simplified expressions and approximations to describe

these complex physical processes, allowing predictions to be generated for

how dark matter haloes are populated with galaxies (Benson et al., 2000a;

Cole et al., 2000; Hatton et al., 2003; Bower et al., 2006; Croton et al., 2006;

Monaco et al., 2007; Somerville et al., 2008).

The model processes are constrained through comparison to observed

statistics of the galaxy population, such as the luminosity function (e.g.

Gonzalez-Perez et al. 2014). We can also constrain the galaxy formation

physics by measuring galaxy clustering as a function of intrinsic properties,

such as stellar mass. Appealing to the clustering as a function of galaxy prop-

119
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erties provides a constraint on how dark matter haloes are populated with

galaxies (Kauffmann et al., 1999; Benson et al., 2000b). Galaxy formation

models have been used to make predictions for comparison to observational

measurements of the clustering as a function of different properties, such

as luminosity, star formation rate, and stellar mass (e.g. Norberg et al. 2001;

Kim et al. 2009; Meneux et al. 2009; Guo et al. 2011; Li et al. 2012; Guo et al.

2013; Henriques et al. 2013; Marulli et al. 2013; Bielby et al. 2014). Some

models explicitly consider galaxy clustering when setting their parameters,

e.g. Guo et al. (2011). For models that have been constructed without using

galaxy clustering as a constraint, comparison to clustering measurements is

a test of their predictive power. The models considered in this chapter have

not been calibrated to reproduce any clustering measurements, or stellar

mass function data.

Despite the perceived complexity of semi-analytic models, Contreras

et al. (2013) show that the clustering predictions made by different groups

are robust, at least for samples defined by stellar mass. They considered

the Durham galform (Bower et al., 2006; Font et al., 2008) and Munich

lgalaxies (Bertone et al., 2007; de Lucia & Blaizot, 2007; Guo et al., 2011)

model families. These two sets of models differ in their implementation

of various physical processes of galaxy formation. Contreras et al. find

differences in the clustering predictions on small scales, which they trace

to the handling of galaxy mergers. We explore the impact of the choice of

galaxy merger scheme further in this chapter.

The stellar masses of real galaxies have to be derived from observable

properties such as broad-band photometry, which requires the assumption

of a star formation history (SFH), stellar initial mass function (IMF), stellar

population synthesis (SPS) model, and dust extinction model (e.g. Pforr et al.

2012; Mitchell et al. 2013). The choice of the particular set of assumptions

used has an impact on the recovered masses, and so there are important

systematic uncertainties inherent in the derived stellar masses of observed

galaxies. These uncertainties may influence comparisons of galaxy clustering

as a function of stellar mass, between theoretical models and observational

measurements. Thus if the clustering as a function of stellar mass is to be

used to constrain theoretical models, we must take care to treat appropriately

the difficulties in estimating the stellar masses of observed galaxies.
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Contreras et al. (2013) compared theoretical predictions by examining

galaxy samples of fixed abundance. We extend this study, motivated by

the work of Mitchell et al. (2013, see also Marchesini et al. 2009 and Pforr

et al. 2012), and demonstrate a new methodology that we find is essential

for comparing model predictions to observational clustering data. Our

technique consists of carrying out broad-band spectral energy distribution

(SED) fitting to compute stellar mass estimates for model galaxies, in the

manner that is typically applied to observed galaxies. Such a treatment is

particularly important for understanding the influence of dust extinction,

and the impact of Eddington bias in higher mass bins where the stellar mass

function is steep.

We present the clustering predictions of two new galform variants: the

models of Gonzalez-Perez et al. (2014) and Lacey et al. (2016) hereafter

Gon14 and Lac14.1 These models have been calibrated to reproduce ob-

servations in the WMAP7 cosmology (Komatsu et al., 2011). The models

make use of the MS-W7 N -body simulation (Guo et al., 2013), which is a

new version of the Millennium Simulation (Springel et al., 2005) updated to

use the WMAP7 cosmological parameters. These models take advantage of

extensions to the galaxy formation physics implemented in galform, mak-

ing use of an empirical law to determine star formation rates (Lagos et al.,

2011). For discussions of the implications for galaxy formation models of

the WMAP7 cosmology, see Guo et al. (2013) and Gon14.

We compare the model predictions to derived results from the Sloan

Digital Sky Survey (SDSS; York et al. 2000; Abazajian et al. 2009), the Galaxy

and Mass Assembly Survey (GAMA; Driver et al. 2011), and the VIMOS

Public Extragalactic Redshift Survey (VIPERS; Guzzo et al. 2014). Together,

these surveys have measured the clustering of galaxies as a function of

stellar mass up to redshift z ∼ 1 (Li et al. 2006; Farrow et al. 2015; Marulli

et al. 2013; respectively). In particular, we compare to these observational

results at redshifts 0.1, 0.2, and 0.6 respectively. The specific star formation

rate falls dramatically over this interval (e.g. Weinmann et al. 2011), so the

interplay between the different galaxy formation processes could change over

1The model of Lacey et al. (2016) was known as Lac14 at the time the research presented
in this chapter was completed, and published as Campbell et al. (2015). The ‘Lac14’ model
used here is identical to that described by Lacey et al. (2016).
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the cosmic times considered. Through comparing to these measurements,

we assess both the importance of carrying out SED fitting to the model

photometry, and the level of agreement between the measurements and the

model predictions.

The layout of this chapter is as follows. Details of the galaxy formation

models and observational data are given in §3.2 and §3.3. Our methodology

is described in §3.4. Our results are presented and discussed in §3.5. Con-

cluding remarks are given in §3.6. All magnitudes are on the AB system

(Oke, 1974). The assumed ΛCDM cosmological parameters are listed in

§3.2.2. Comoving length units are used throughout this chapter.

3.2 Theoretical modelling

This section describes the semi-analytic galaxy formation models used in

our study of galaxy clustering as a function of stellar mass. We first give an

overview of galform (§3.2.1), followed by a description of the N -body dark

matter only simulation used (§3.2.2), then contrast the two galform models

compared (§3.2.3), and describe a new scheme for the treatment of satellite

galaxy orbits and merger time-scales (§3.2.4).

3.2.1 Overview of galform

Galaxy formation within dark matter haloes, as followed in recent galform

variants, can be broken down into several key processes: (i) formation and

hierarchical growth of dark matter haloes, (ii) shock-heating of baryonic

material falling into haloes, followed by radiative cooling and disc formation,

(iii) quiescent star formation in discs (and bursts due to instabilities), (iv)

suppression of gas cooling (and hence of star formation) through feedback

from supernovae, active galactic nuclei (AGN), and photoionisation of the

intergalactic medium, (v) chemical enrichment of the stars and gas, and

(vi) mergers of satellite galaxies with the central galaxy of their halo, due to

dynamical friction, which can cause bursts of star formation. For an overview

of the development of the galform model, see Benson & Bower (2010). For

details of the galaxy formation physics, see Baugh (2006) and Benson (2010).

In order to connect the predictions of galaxy formation models to the
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properties of observed galaxies, a stellar population synthesis (SPS) model

must be assumed, along with a model to describe dust attenuation. SPS

models, such as those of Bruzual & Charlot (2003), Maraston (2005), and

Conroy et al. (2009), compute the spectral energy distribution (SED) of a

coeval stellar population with a given initial metallicity, as a function of

age. Convolving this stellar SED with the star formation history of a galaxy

(i.e. its star formation rate as a function of time; SFH), taking into account

its chemical enrichment history (the metallicity of stars forming at a given

time), yields the SED of the galaxy itself (Cole et al., 2000). SPS models

require a stellar initial mass function (IMF) to be specified, which gives the

distribution of masses of stars formed in a given episode of star formation.

Attenuation of starlight by dust in galform is modelled in a physically

motivated way, in which the stars and dust are mixed together, based on

radiative transfer and the geometry of a disc and bulge (Silva et al., 1998;

Ferrara et al., 1999; Cole et al., 2000; Lacey et al., 2011; Gonzalez-Perez et al.,

2013). For a given photometric band, the galactic SED is weighted by the

wavelength response of the filter and integrated to yield the flux.

3.2.2 The MS-W7 simulation

The cosmological parameters from WMAP7 (Komatsu et al., 2011) have

been used in an N -body simulation similar to the Millennium Simulation of

Springel et al. (2005). This MS-W7 simulation (Guo et al., 2013) has present

day density parameters of Ωm,0 = 0.272, Ωb,0 = 0.0455, and ΩΛ,0 = 0.728,

for matter, baryons, and dark energy, respectively. The present day Hubble

parameter isH0 = 100hkms−1 Mpc−1, where h = 0.704. The spectral index of

primordial fluctuations is ns = 0.967, and the linear perturbation amplitude

is σ8 = 0.810. The simulation follows 21603 particles from redshift 127, in a

volume of comoving side Lbox = 500h−1 Mpc.

3.2.3 The Gon14 and Lac14 models

The Gon14 and Lac14 galform models are based on the halo merger trees of

the MS-W7 simulation. They are separate developments of the Lagos et al.

(2012) model, which used an empirical star formation rate law introduced

by Lagos et al. (2011). The Lagos et al. (2012) model in turn is based on that
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of Bower et al. (2006), which introduced AGN feedback into galform. The

new models will be made publicly available in the Millennium Database.2

The IMF, ζ(M?), is defined such that the number of newly formed stars

(per solar mass, e.g.) with stellar mass, M? , between log10(M?/M�) and

log10(M?/M�) + dlog10(M?/M�) is given by ζ(M?)dlog10(M?/M�). A power

law is often used to model (parts of) ζ(M?), such that

ζ(M?)dlog10

(
M?

M�

)
= ζ0

(
M?

M�

)−x
dlog10

(
M?

M�

)
, (3.1)

for some normalisation, ζ0, and slope, x. The Gon14 model uses a Kennicutt

(1983) IMF, which is a broken power law. This has a slope of x = 0.4 for

M? < 1M�, and x = 1.5 for M? > 1M�. In the Lac14 model, distinct IMFs

are employed in quiescent star formation and bursts. In the former case, a

Kennicutt IMF is used as in Gon14. However, for bursts, the IMF is taken

to be a single power law with x = 1. Such non-universality of the IMF is

argued to be necessary to match the observed number counts and redshift

distribution of sub-millimetre galaxies (Baugh et al., 2005).

The SPS model used in the Gon14 model is a private release of the Bruzual

& Charlot series from 1999, which is intermediate between Bruzual & Charlot

(1993) and Bruzual & Charlot (2003). The Lac14 model uses the Maraston

(2005) SPS model. The Maraston model attributes much more luminosity

to stars in the thermally pulsating asymptotic giant branch (TP-AGB) phase

than is done in the Bruzual & Charlot model. Such stars emit strongly in

the near infra-red (NIR; e.g. MacArthur et al. 2010). The influence of TP-

AGB stars in the Maraston model has been the source of some debate in

the literature (e.g. Marigo & Girardi 2007; Kriek et al. 2010; MacArthur

et al. 2010; Zibetti et al. 2013). Gon14 study the influence of using various

alternative SPS models, including that of Maraston. They find that the choice

of SPS model does not affect the evolution of the rest-frame optical and

ultra-violet (UV) luminosity functions, but models incorporating strong TP-

AGB emission yield significantly different evolution of the rest-frame NIR

luminosity function (see also Tonini et al. 2009 and Henriques et al. 2011).

This choice gives an improved match to the bright end of the rest-frame

K-band luminosity function at high redshifts in the Lac14 model.

2http://virgodb.cosma.dur.ac.uk:8080/Millennium

http://virgodb.cosma.dur.ac.uk:8080/Millennium
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Additional parameter differences between the Gon14 and Lac14 models

are described in Appendix C.

3.2.4 Subhalo dynamical friction for satellites

In the standard models considered here, time-scales for the merging of

satellites with the central galaxy in their host halo due to dynamical friction

are computed in the models as described by Cole et al. (2000). This method

assumes that when a new halo forms, each satellite galaxy enters the halo on

a random orbit. The merger time-scale is then computed using an analytical

formula that assumes the halo to be isothermal. While the Gon14 model

makes use of the equations presented by Lacey & Cole (1993), a modified

expression is used in the Lac14 model. This expression has been empirically

fitted to numerical simulations to account for the tidal stripping of subhaloes

(Jiang et al., 2008, 2010), but otherwise the treatment is the same; i.e. an

analytic time-scale is computed as soon as a galaxy enters a larger halo. The

satellite is considered to have merged with its central galaxy once the merger

time-scale has elapsed, provided that this transpires before the halo merges

to form a larger system, in which case a new merger time-scale is computed.

Note that this scheme does not take into account that the satellite may still

reside in a resolvable dark matter subhalo at the time the merger takes place.

We have implemented an alternative treatment of mergers, which makes

use of the subhalo information from the simulation. The motivation for

using this new scheme is that it is more faithful to the underlying N -body

simulation, minimising the reliance on analytically determined orbits. In-

stead of assuming random initial orbits for satellites, they track the positions

of their associated subhaloes. For cases where the subhalo containing a

satellite can no longer be resolved following mass stripping, the position

and velocity of the subhalo when it was last identified are used to compute

a merger time-scale. This time-scale is then used in the same way as in the

default scheme described above. The merger time-scale calculation assumes

an NFW (Navarro, Frenk & White, 1996b, 1997) halo mass distribution to

compute the orbital parameters of the satellite, combined with the analytical

time-scale result of Lacey & Cole (1993). If a halo formation event occurs

at a time after the subhalo is lost, a new merger time-scale for the satellite
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is calculated in the same way, using instead the position and velocity of the

particle that was the most bound particle of the subhalo when it was last

identified in the simulation.

In this new galform merger scheme, a satellite galaxy is not allowed to

merge while it remains associated with a resolved subhalo. This treatment

is similar to the scheme employed in the lgalaxies model. The choice of

merger scheme has an impact on the small-scale clustering, and contrib-

uted to the differences between the predictions of lgalaxies and galform

reported by Contreras et al. (2013). The differences between the clustering

predictions using the two types of merger scheme can be explained in terms

of the concentration of the radial distribution of satellites, and also changes

in the number of satellites. Requiring satellites to track their resolved subha-

loes, rather than computing an analytical merger time-scale as soon as a

galaxy becomes a satellite, results in a more radially extended distribution

of satellites (as demonstrated by Contreras et al.).

No model parameters have been recalibrated when using the new merger

scheme. This would be likely to involve changing the strength of AGN

feedback, and the time-scale for gas return from supernovae. We leave such

calibration for future work. When comparing the model predictions using

the new merger scheme to observational estimates of galaxy clustering as a

function of stellar mass (in §3.5.2.3), we require that the model stellar mass

functions reproduce those inferred from observations, through abundance

matching (see §3.4.1.2). It is possible that making use of the subhalo mass

at the time it was last identified results in shorter merger time-scales than

would be computed if any subsequent mass stripping of the subhalo could

be taken into account.

3.3 SED fitting and observational data

In theoretical models such as galform, the galactic stellar masses are pre-

dicted from the star formation histories. However, for observed galaxies, the

stellar masses are not known directly but must be derived from observables.

SED fitting is a popular technique for computing stellar masses. This section

first describes the SED fitting procedure and then gives details of the observa-

tional data considered in this chapter. We consider different surveys in order
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Table 3.1 – Observed galaxy samples. The galaxy numbers refer to galaxies contrib-
uting to the correlation function, wp(σ ), in Figs. 3.7, 3.8, and 3.9. r and i are the
SDSS r-band and CFHTLS i-band apparent magnitudes, respectively. M0.1r is the
SDSS r-band absolute magnitude (at z = 0.1). The median redshifts for GAMA and
VIPERS are given in order of increasing stellar mass interval (see Figs. 3.8 and 3.9).
The galform comparison redshifts are restricted to the set of output snapshots
of the MS-W7 simulation. πmax is the wp(σ ) integration limit (see equation 3.8).
The lower part of the table lists the Schechter (1976) function parameters, α, M̃? ,
and Φ̃ (see equation 3.2), for the stellar mass functions of the samples. The SDSS
mass function fit is as measured by Wang et al. (2006). The GAMA stellar mass
function has been measured by Baldry et al. (2012) for z < 0.06 (see §3.4.1.2), and
is represented by the sum of two Schechter functions (left, right), with a common
characteristic mass. The VIPERS fit is for 0.5 < z < 0.6 (Davidzon et al., 2013).

Sample property SDSS GAMA VIPERS

Source Li et al. (2006) Farrow et al. (2015) Marulli et al. (2013)
Galaxies used 157884 50770 17100

Apparent magnitude limits 14.5 < r < 17.77 r < 19.8 i < 22.5
Absolute magnitude limits −23 <M0.1r − 5log10(h) < −16

Redshift range 0.01 < z < 0.3 0.14 < z < 0.24 0.5 < z < 0.7
Median redshift ∼ 0.1 0.19, 0.20 0.62, 0.62, 0.62

galform redshift for comparison 0.089 0.17 0.62
πmax [h−1 Mpc] 40 47 30

α −1.073± 0.003 −0.35± 0.18,−1.47± 0.05 −0.95+0.03
−0.02

log10(M̃? [h−2 M�]) 10 + log10(4.11± 0.02) (10.66± 0.05) + log10(0.72) 10.87+0.02
−0.02 + log10(0.72)

Φ̃ [10−3h3 Mpc−3 dex−1] (20.4± 0.1)/ ln(10) (3.96± 0.34,0.79± 0.23)/0.73 1.42+0.06
−0.07/0.7

3

to probe a range of lookback times (see Table 3.1). A detailed discussion of

SED fitting can be found in Mitchell et al. (2013).

3.3.1 SED fitting

Broad-band SED fitting is essentially the reverse of the process described in

§3.2.1 for computing galaxy SEDs and broad-band photometry in galform.

A grid of template SEDs is generated, given an assumed SPS model, IMF, SFH

(including assumptions about chemical enrichment), and dust extinction.

The observed SED (i.e. broad-band photometry) is then used to identify the

maximum-likelihood template SED (e.g. Mitchell et al. 2013). The stellar

mass associated with the best-fitting SED is then assigned to the observed

galaxy. The SFH is usually taken to be of a simple exponentially declining

form, in contrast to the complicated form predicted in theoretical galaxy

formation models (see e.g. Baugh 2006). Mitchell et al. show that on average,

the detailed form of the SFH is not important (see also Simha et al. 2014). In

SED fitting, dust attenuation is usually dealt with by assuming the so-called
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Calzetti law (Calzetti et al., 2000), which is equivalent to assuming that the

dust forms a uniform sheet between the galaxy and the observer. galform

assumes a physically motivated distribution of dust in model galaxies (see

§3.2.1), and applies dust extinction in massive galaxies that is very different

from the Calzetti law, resulting in systematic errors of up to an order of

magnitude in M? (Mitchell et al., 2013). Conroy et al. (2009) report that the

uncertainties in stellar masses derived from broad-band SED fitting are in

the region of 0.3 dex at redshift zero, considering the uncertainties in the

details of different stages of stellar evolution, while at z = 2 the uncertainty

for bright red galaxies rises to ∼ 0.6 dex.

3.3.2 Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS) uses photometry in the u, g, r, i, and z

filter bands to identify candidates for spectroscopic follow-up (York et al.,

2000). Li et al. (2006) estimated the clustering of galaxies as a function

of stellar mass using the New York University value-added galaxy cata-

logue (Blanton et al., 2005), which is based on the second SDSS data release

(Abazajian et al., 2004). This catalogue has photometry covering 3514 square

degrees, and spectroscopy covering 2627 square degrees (about 85 percent

complete), for redshifts z . 0.3. Li et al. define their sample of galaxies

with the magnitude and redshift limits given in Table 3.1, yielding a total of

196238 galaxies. Subsets of this sample, defined in stellar mass, are used to

study galaxy clustering.

Li et al. use the approach of Kauffmann et al. (2003) to estimate stellar

masses. The amplitude of the 4000 Å break, D4000, (Balogh et al., 1999)

and the strength of the Balmer H-δ absorption line (Worthey & Ottaviani,

1997) are measured from a spectrum obtained with a 3arcsec diameter

fibre. These measurements encode information about the age of the galaxy’s

stellar population (D4000), and can be used as indicators of whether recent

star formation has been predominantly quiescent, or due to bursts (H-δ).

The stellar mass-to-light ratio in the z-band is estimated for each galaxy,

by fitting D4000 and H-δ to a Monte Carlo library of stellar populations,

based on the Bruzual & Charlot (2003) SPS model. A Kroupa (2001) IMF

is assumed in building the library, i.e. x = −0.3 for M? < 0.08M�, x = 0.3
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for 0.08M� < M? < 0.5M�, and x = 1.3 for M? > 0.5M� (see equation 3.1).

Exponentially declining SFHs are used, with additional random bursts. The

dust extinction applied in the best-fitting model is assumed for each galaxy,

making use of a power law attenuation curve, corresponding to a foreground

dust screen (Charlot & Fall, 2000). The stellar mass is then found by using

the derived mass-to-light ratio in the z-band, combined with full z-band

photometry (i.e. not limited by the fibre diameter). In this way, the mass-

to-light ratio and dust attenuation derived within 1.5arcsec of the galactic

centre are extrapolated over the full galaxy. The masses estimated following

Kauffmann et al. using spectral features have been shown to have a scatter of

about 0.1 dex with respect to those obtained using SED fitting to broad-band

photometry (Blanton & Roweis, 2007; Li & White, 2009).

The clustering results presented by Li et al. use six bins spaced logarith-

mically in stellar mass,3 covering 108.69 <M? [h−2 M�] < 1011.69. All but the

highest mass bin correspond to samples that are volume limited in stellar

mass, where each volume limited stellar mass bin covers a different redshift

interval. However, the highest mass bin is flux limited, and thus incomplete

in stellar mass. A correction is made by Li et al. to the correlation function

computed for this bin, by weighting the contribution from each galaxy pair

by the maximum volume over which they could be detected in the survey

volume. They find that applying the same approach to flux limited samples

for the lower stellar masses produces good agreement with the clustering

results for the volume limited samples. Thus we assume that the results do

not suffer from incompleteness in stellar mass due to magnitude limiting.

Li et al. find increasing clustering amplitude as a function of stellar mass,

with a sharp increase above the characteristic stellar mass (∼ 1010.6h−2 M�),

which is similar to the clustering trend they find when selecting galaxies by

their r-band luminosity.

3.3.3 Galaxy and Mass Assembly Survey

The Galaxy and Mass Assembly Survey (GAMA) is a multi-wavelength survey

(far UV to far IR), with complete spectroscopy to r = 19.8 (Driver et al.

2011; Liske et al. 2015; see Table 3.1). There are two clustering studies in

3 The stellar mass bin edges of Li et al. (2006) have been converted from units of M� to
h−2 M�, using their h = 0.7 (Kauffmann et al., 2003).
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GAMA focusing on stellar mass (Palamara et al. in preparation; Farrow et al.

2015). For the present analysis, we compare to the clustering of galaxies in

differential stellar mass bins as computed by Farrow et al. using the GAMA-

II data. This is selected from the seventh SDSS data release (Abazajian

et al., 2009), with sky coverage of 180 square degrees, out to z . 0.5, and

spectroscopic completeness of > 98 percent.

To estimate stellar masses, Farrow et al. use an empirical relation based

on the observed g − i colour and absolute magnitude in the i-band, as fitted

by Taylor et al. (2011) to galaxies from the second GAMA data release, with

r < 19.4 (Liske et al., 2015).4 To derive this relation, Taylor et al. implement

broad-band SED fitting using the Bruzual & Charlot (2003) SPS model, with

a Chabrier (2003) IMF,5 and exponentially declining SFHs. Extinction by

dust is modelled using the Calzetti et al. (2000) law. The photometric bands

used in the fitting are the GAMA u, g, r, i, and z. Taylor et al. use likelihood-

weighting of all template SEDs, which can suppress discreteness effects

due to the lack of interpolation between the small number of metallicities

typically available in SPS models, improving on the common practice of

taking the mode of the likelihood distribution (e.g. Mitchell et al. 2013).

Farrow et al. use samples selected in redshift and stellar mass to compute

the correlation function. We compare to their intermediate redshift range

(see Table 3.1), considering the stellar mass range 109.5 < M? [h−2 M�] <

1011.5. They find that clustering amplitude increases with stellar mass.

A decrease in clustering strength with redshift is noted for masses below

1010.5h−2 M�, with no significant redshift evolution above this.6

4 This release is based on GAMA-I (Baldry et al., 2010).
5 The Chabrier (2003) IMF has x = 1.3 for M? > 1M�, and adopts a smooth transition

below 1M� to a slope similar to the Kroupa (2001) IMF (see equation 3.1).
6The analysis presented here was completed (and published as Campbell et al. 2015)

before the final publication of the paper by Farrow et al. (2015). There are some minor
differences between the GAMA data used here, and the data published by Farrow et al.
(2015). In particular, we note that the stellar mass bins used here are different to those of
Farrow et al. (2015), as is the line-of-sight integration limit for the projected correlation
function. These small changes are insignificant from the point of view of our analysis. To
avoid potential confusion with the final GAMA clustering data as published by Farrow et al.
(2015), we label their projected correlation function measurements as Farrow et al. (in prep.)
within Fig. 3.8, in keeping with Campbell et al. (2015).
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3.3.4 VIMOS Public Extragalactic Redshift Survey

The VIMOS Public Extragalactic Redshift Survey (VIPERS) consists of spec-

troscopic observations of galaxies selected using Canada-France-Hawaii

Telescope Legacy Survey (CFHTLS) photometry (Guzzo et al., 2014). Marulli

et al. (2013) present galaxy clustering as a function of stellar mass in the

first VIPERS data release (Garilli et al., 2014). This dataset has sky coverage

of about 11 square degrees, with spectroscopic completeness of roughly 40

percent. The redshift range sampled is 0.5 < z < 1.2, and the magnitude limit

is as given in Table 3.1. A selection in colour is used to exclude galaxies

with z < 0.5, which is not completely efficient at selecting galaxies towards

the lower limit of the surveyed redshift range, i.e. the selection does not

correspond exactly to a step function at z = 0.5 (Garilli et al., 2014). However,

in practice this has little impact on the number of galaxies recovered across

the full redshift range, and is not important for our comparisons, according

to tests with the model galaxies (see §3.4).

Marulli et al. use broad-band SED fitting to estimate the stellar masses

of their sample of VIPERS galaxies, as described by Davidzon et al. (2013).

The SPS model of Bruzual & Charlot (2003) is used, with a Chabrier (2003)

IMF; i.e. the same choices as made by Taylor et al. (2011) for GAMA (see

§3.3.3 above). Both the Calzetti et al. (2000) and Prevot-Bouchet (Prevot

et al., 1984; Bouchet et al., 1985) dust attenuation laws are used,7 with the

best-fitting option being chosen for each galaxy. Both exponentially declining

and constant SFHs are used in the fitting. The photometric bands used are:

the CFHTLS u, g, r, i, and z; the Wide-Field Infra-Red Camera (WIRCAM;

Puget et al. 2004) K ; the Galaxy Evolution Explorer (GALEX; Gil de Paz et al.

2007) far-UV and near-UV; the UKIRT Infra-Red Telescope Deep Sky Survey

(UKIDSS; Lawrence et al. 2007) Y , J , H , and K ; and the Spitzer Wide-Area

Infra-Red Extragalactic Survey (SWIRE; Lonsdale et al. 2003) 3.6 and 4.5µm.

Samples selected in redshift and stellar mass are used by Marulli et al.

to compute the correlation function. The clustering strength increases with

stellar mass in each redshift range. We compare the model clustering predic-

tions to the lower redshift interval considered by Marulli et al. (see Table 3.1),

for stellar masses M? > 109.5h−2 M�.

7 The Prevot-Bouchet law results from modelling the dust attenuation of the Small
Magellanic Cloud, while the Calzetti law was calibrated using a sample of starburst galaxies.
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3.4 Analysis

Our analysis consists of two distinct components: (i) computation of the

real-space clustering as a function of stellar mass in the Gon14 and Lac14

galform models at redshifts of 0.089, 0.32, and 0.62, and (ii) comparison of

the projected model clustering as a function of stellar mass to observational

data at redshifts of 0.089, 0.17, and 0.62 (i.e. the MS-W7 snapshots closest to

the median redshifts of the observed galaxy samples; see Table 3.1). In (i), the

lower and upper redshifts are the same as those in (ii), for comparing to SDSS

and VIPERS data respectively; however the intermediate redshift (0.32) is

chosen to be roughly evenly spaced in lookback time between these redshifts,

covering 1.2 to 5.9 Gyr, rather than using the redshift of the comparison

to GAMA (0.17). In (ii), we carry out SED fitting to obtain stellar mass

estimates for the model galaxies, to allow a more robust comparison to the

observations. The predictions obtained using the new subhalo dynamical

friction merger scheme are considered in both parts of our analysis.

For each model galaxy, galform outputs the true stellar mass, real-space

coordinates, peculiar velocity, and photometry including dust attenuation

(see §3.2.1). Redshift-space coordinates are computed by taking the line of

sight as the third Cartesian axis and taking into account the peculiar motions

along this axis (this is the distant observer approximation for projected

clustering). We convert the stellar masses predicted by galform from units

of h−1 M� to h−2 M� using h = 0.704 (see §3.2.2), to be consistent with the

mass units of the observational data.

Apparent magnitude limits were imposed to match those of each survey,

at certain stages in our analysis that will be indicated in §3.4.1.2 and §3.4.2.2.

These made use of SDSS r-band filter wavelength response data to match

GAMA, and CFHTLS i-band filter response data to match VIPERS (see

Table 3.1). In matching SDSS, we did not impose (apparent or absolute;

cf. Table 3.1) magnitude limits, as the clustering results of Li et al. (2006)

correspond to galaxy samples that are volume limited (see §3.3.2).

VIPERS uses a selection in colour to exclude galaxies with z < 0.5, as

noted in §3.3.4, which leads to incomplete sampling of galaxies close to

z = 0.5. Guzzo et al. (2014) note that the erroneous exclusion of galaxies

ceases for z & 0.6. We have verified that this selection is indeed unimportant
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for the models by z = 0.62.

This section describes our adjustments to the model galaxy stellar masses

(§3.4.1), and the computation of the correlation functions used to describe

their clustering (§3.4.2).

3.4.1 Stellar masses

When computing clustering predictions to compare to observations, we

considered three sets of model stellar masses: (i) the true stellar masses as

predicted by galform, (ii) estimates of the masses from SED fitting to the

model photometry, and (iii) masses resulting from abundance matching to

the stellar mass functions reported for the observed galaxies (as an adjust-

ment following the SED fitting). In particular, we present the clustering

results of the models with the standard merger scheme using (i), (ii), and

(iii), and the results of the new subhalo dynamical friction merger scheme

using (iii). The determination of (ii) and (iii) will now be described.

3.4.1.1 SED fitting

Mitchell et al. (2013) implemented SED fitting (see §3.3.1) to estimate stellar

masses for model galaxies, using broad-band photometry. These stellar

mass estimates, when compared to the true values calculated in the model,

can be used to investigate the influences of the various assumptions that

are required in SED fitting (e.g. differences in the choice of IMF, the SFH,

recycling of stellar mass back into the interstellar medium, the metallicities

available in the SPS models, and dust attenuation), on the derived properties

of the galactic population.

Following Mitchell et al., we carried out SED fitting for both galform

models, at each redshift, in order to obtain estimates of the stellar masses

of the model galaxies. As noted in §3.3, the GAMA and VIPERS stellar

masses are themselves derived through broad-band SED fitting (the GAMA

stellar masses use an empirical formula based on this; Taylor et al. 2011),

so our intention here is to carry out equivalent fitting procedures for the

model galaxies. The SDSS stellar masses were derived by fitting to particular

spectral features, rather than to broad-band photometry (see §3.3.2); we

nonetheless carried out broad-band SED fitting for this comparison.
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In all cases the Bruzual & Charlot (2003) SPS model was assumed, with a

Chabrier (2003) IMF, exponentially declining SFHs, and the Calzetti et al.

(2000) dust extinction law. The metallicities used to compute the template

SEDs were matched to those used in the GAMA and VIPERS SED fitting by

Taylor et al. (2011) and Davidzon et al. (2013) respectively, at the relevant

redshifts. Taylor et al. use the full native metallicity grid of the Bruzual

& Charlot SPS model, i.e. Z ∈ {0.0001,0.0004,0.004,0.008,0.02,0.05}, while

Davidzon et al. use Z ∈ {0.004,0.02}. To compare to SDSS, the full set

of metallicity values was employed in the fitting, as in the comparison to

GAMA. Each template SED had a non-evolving metallicity, and we did not

interpolate between the available SPS model metallicities, in keeping with

the typical observational SED fitting procedures. All the photometric bands

listed in §3.3.3 and §3.3.4 were used in the SED fitting to match GAMA

and VIPERS respectively, with the exception of the UKIDSS K-band, which

was only included by Davidzon et al. in the absence of WIRCAM K-band

magnitudes for VIPERS. The standard SDSS u, g, r, i, and z filter set was

used in the fitting to match SDSS. Taylor et al. compute likelihood-weighted

stellar masses (see §3.3.3). We conformed to this for the fitting to match

GAMA, but used the more standard approach of selecting the SED at the

mode of the likelihood distribution for the fitting to match SDSS and VIPERS.

3.4.1.2 Schechter function matching

The stellar mass function of galaxies, Φ(M?), is defined such that the number

of galaxies per unit volume with stellar mass in the range log10(M?/M�)

to log10(M?/M�) + dlog10(M?/M�) is Φ(M?)dlog10(M?/M�). The stellar

mass function is conventionally modelled using a Schechter (1976) function,

defined such that

Φ(M?)dlog10

(
M?

M�

)
= ln(10) Φ̃

(
M?

M̃?

)α+1

exp
(
−M?

M̃?

)
dlog10

(
M?

M�

)
, (3.2)

where M̃? is a characteristic mass, α is a power law slope, and Φ̃ sets the

normalisation of the mass function.8

Differences between the numbers of model and observed galaxies in a

8The factor of ln(10) in equation (3.2) arises since we could instead have defined the
stellar mass function as φ(M?) such that φ(M?)dM? = Φ(M?)dlog10(M?/M�). In that case,
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given mass interval may give rise to discrepancies in the clustering results

for samples selected by stellar mass, even if the underlying clustering signal

is identical. Such mass function differences are dependent on the details

of the model physics, combined with the procedure for estimating stellar

masses through SED fitting. In order to eliminate any differences between

the model and observationally inferred stellar mass functions, the Schechter

functions representing the stellar mass functions of the galaxies in each

observational sample (see Table 3.1) were imposed on the model galaxies

at the corresponding redshifts. This process is equivalent to rescaling the

estimated stellar mass of each galform galaxy, in order to make the model

mass functions match the observational results. The procedure used was to

match the shape and normalisation of the target Schechter function, while

maintaining the ordering of the model galaxies in estimated stellar mass

from SED fitting, as follows. Given the lowest stellar mass of interest (for

the clustering samples, see §3.3), and the Schechter function fitted to the

measurement for the observed galaxies, we generated the expected number

of galaxies in the simulation volume by randomly sampling stellar masses

consistent with this mass function. The generated masses were assigned in

order to the galform galaxies, such that the highest generated mass was

ascribed to the galform galaxy with the highest mass estimate from SED

fitting, and so on. It is important to note that the galaxy formation mod-

els considered here have not been calibrated to reproduce observationally

inferred stellar mass function data. They have however, been calibrated to

match the local K-band luminosity function.

Measuring Φ(M?) requires one to know the number of galaxies within

some stellar mass range of interest, in some known volume. Difficulties in

achieving this arise from the fact that galaxy surveys are defined by apparent

magnitude limits; that is, a sample of survey galaxies defined by stellar

mass limits will inherently also be restricted to some range in apparent

magnitude. It is, however, still possible to identify samples of galaxies that

Φ(M?) = ln(10)M?φ(M?). Therefore,

φ(M?)dM? = Φ̃
(
M?

M̃?

)α
exp

(
−M?

M̃?

)
dM?

M̃?
, (3.3)

and thus we can see that Φ̃ normalises the Schechter function, without any other scaling
prefactor, when written in terms of φ(M?).
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are complete, i.e. volume limited, in stellar mass (e.g. the clustering samples

of Li et al. 2006). The level of incompleteness in stellar mass, i.e. the fraction

of missing galaxies, in a sample defined by stellar mass, depends on the

apparent magnitude limits of the survey and the redshift range of interest.

In the typical case, where we are concerned with a faint apparent mag-

nitude limit, it is useful to be able to estimate a lower mass threshold above

which the measured mass function can be considered to be ‘reliable’ (i.e. the

same as what would have been measured with no magnitude limit, for a

volume limited sample). Pozzetti et al. (2010) describe the method used by

Davidzon et al. (2013) to estimate such a threshold mass for VIPERS. At our

comparison redshift (see Table 3.1), this VIPERS threshold value is approx-

imately 109.6h−2 M�, which corresponds to the mass below which the faint

limit causes more than about 20 percent of galaxies to be missed, in a given

mass interval. The VIPERS Schechter function specified in Table 3.1 has

been fitted by Davidzon et al. only for masses above the reliability threshold

defined in this way. Clearly the i-band faint limit has an important influence

on the completeness of the stellar mass function at this redshift, for the

lowest masses of interest (note that the minimum mass we consider for the

clustering calculations using these galaxies is 109.5h−2 M�). In light of this,

we imposed the i-band faint limit on the model galaxies before matching the

VIPERS mass function at this redshift, in order to reproduce the ‘underestim-

ated’ mass function measurement at lower masses, i.e. the incomplete mass

function of the galaxies actually used in the clustering analysis of Marulli

et al. (2013).

The double Schechter function representing the GAMA stellar mass

function has been fitted for z < 0.06 (Baldry et al., 2012), whereas the clus-

tering results of Farrow et al. (2015) considered here use galaxies with

0.14 < z < 0.24 (see Table 3.1). Baldry et al. use the SED fitting proced-

ure of Taylor et al. (2011) to estimate stellar masses, supplemented by the

corresponding empirical relation of Taylor et al. for a small number of

galaxies with missing photometry (see §3.3.3). Baldry et al. compare their

stellar mass function to that obtained by Pozzetti et al. (2010) using the

Cosmic Evolution Survey (zCOSMOS; Lilly et al. 2007) for 0.1 < z < 0.35,

using similar SED fitting for the stellar mass estimation, and find good

agreement between the two measurements. Furthermore, we have verified
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that the stellar mass function does not evolve significantly when using the

sample of galaxies considered by Farrow et al. (0.14 < z < 0.24), with re-

spect to the Baldry et al. measurement. The Baldry et al. mass function

fit can be regarded as complete for the masses of interest here, thanks to

being constrained at low redshift (the fitting considered the mass function

as measured for M? > 107.7h−2 M�, while the clustering data we compare

to are for M? > 109.5h−2 M�). Thus, we matched the mass functions of the

galform models to the double Schechter fit, while keeping all the model

galaxies, and only afterwards imposed the r-band faint limit on the models

(see Table 3.1). In this way, the complete model stellar mass functions were

made to reproduce the complete observationally inferred mass function, be-

fore introducing the relative incompleteness due to the particular selection

relevant for comparison to the clustering data of Farrow et al.

The SDSS mass function Schechter fit was derived directly from the

second SDSS data release (Abazajian et al., 2004; Wang et al., 2006), using

r-band apparent magnitude and redshift limits the same as for the clustering

data of Li et al. (2006), but without the additional absolute magnitude limits

imposed for the clustering samples (see Table 3.1). We assumed the Wang

et al. fit to be approximately complete in stellar mass, and thus imposed

it upon the model galaxies without applying any magnitude limiting, as

required for comparison to the volume limited clustering samples of Li

et al. (see §3.3.2). It should be noted, however, that the measured mass

function is likely to be significantly suppressed by the SDSS faint r-band

limit for M? . 108.2h−2 M� (Baldry et al., 2008; Li & White, 2009). This

incompleteness has minor implications for our comparison to the Wang

et al. mass function data and Schechter fit (for M? > 108.69h−2 M�) in §3.5.2,

but is not important for our comparison to the volume limited clustering

data; except where the mass function is imposed, in which case any errors

introduced by the assumption of completeness in the Schechter fit should

only have an impact on the lowest masses considered.

In §3.5.2.2 and §3.5.2.3 we make use of the mass function matching to

compare the results of the two galform merger schemes to the observational

clustering data (as outlined at the beginning of §3.4.1). In this way, we force

the models using either scheme to reproduce the same mass function, and

thus the differences in the clustering results using the two schemes, when
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compared in this way, are not due to any differences in the predicted stellar

mass function that are introduced by changing to the new merger scheme.

3.4.2 Clustering

We now define the correlation function, ξ(r), and the projected correlation

function, wp(σ ), and give details of their computation.

3.4.2.1 Correlation function

For a cosmologically representative volume, V , the probability, dP , of finding

a galaxy in some volume element, dV1, at a comoving distance of r12 from

another galaxy in another volume element, dV2, defines the spatial two-point

autocorrelation function, ξ(r), such that

dP = n2
V [1 + ξ(r12)]dV1 dV2 , (3.4)

where nV is the mean number density of galaxies within V (Peebles, 1980).

Thus, following Rivolo (1986),

1 + ξ(r) =
1

n2
VV

N (r)
Vs(r)

, (3.5)

where N (r) is the number of pairs with separation r, computed by summing

over the number of pairs involving each galaxy in the volume individually

(so this is twice the number of independent pairs), considering a spherical

shell of radius r and volume Vs(r). A simple appreciation of the uncertainty

in ξ(r) can be gained from considering Poisson statistics (Iovino & Shaver,

1988; Martinez et al., 1993). The error on ξ(r) is then ∆ξ(r) such that

∆ξ(r) =
(

2

n2
VV

1 + ξ(r)
Vs(r)

)1/2

. (3.6)

It is common to fit a power law to ξ(r), parameterised by a correlation

length, r0, and slope, γ , (Peebles, 1980), i.e.

ξ(r) =
(
r
r0

)−γ
. (3.7)
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Here r0 characterises the clustering ‘strength’, where ξ(r0) = 1. This paramet-

erisation is not suitable for describing the precise clustering measurements

that are possible today over a wide range of scales, but we can make use of it

to describe the galaxy clustering over small ranges of pair separations.

ξ(r) was computed for the models at redshifts z ∈ {0.089,0.32,0.62} (using

the true stellar masses, with no magnitude limits), with and without the new

merger scheme, in three equally spaced bins in stellar mass. Pair separations

in the range 0.1 < r [h−1 Mpc] < 30 (the choice of the large-scale limit will

be discussed in §3.4.2.3) were divided into 30 bins of equal logarithmic

width. ξ(r) was computed using the pair counts binned in r, following

equation (3.5), where V = L3
box (see §3.2.2).

The power law given in equation (3.7) was fitted to each ξ(r), using

the ∆ξ(r) from equation (3.6) to weight the fit. We preferred to fit over a

relatively small range in r, where ξ(r) is close to being an exact power law,

in the neighbourhood of ξ(r) = 1, such that r0 relates closely to the ‘true’

correlation length. In this way, bins within 3 < r [h−1 Mpc] < 10 were used to

fit the power law for each ξ(r). This range in r samples the two-halo term in

the correlation function, i.e. the separations considered relate to galaxies in

different haloes. As such, the fitted power laws are insensitive to clustering

on small scales (one-halo term), and thus we consider them using only the

standard merger scheme.

Our results for ξ(r) using the two galform models, comparing the two

merger schemes, are presented in §3.5.1.

3.4.2.2 Projected correlation function

The distance to a galaxy moving with the cosmic expansion can be inferred

through measuring its recession velocity (i.e. redshift) and using Hubble’s

law. If the galaxy has some peculiar velocity relative to the Hubble flow, this

will perturb the determined distance. As such, it is necessary to distinguish

between real-space and redshift-space coordinates, i.e. true spatial positions,

and those determined through measuring redshifts, respectively (Kaiser,

1987).

For observed galaxies, the redshift-space correlation function may be

computed. This encodes information about the peculiar motions of galaxies

on different separation scales. Through considering the components of the
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pair separation orthogonal and parallel to the line of sight (σ and π respect-

ively), we can define the two-dimensional correlation function ξ(σ,π),9 by

analogy with equation (3.5). We may integrate ξ(σ,π) along the line of sight,

defining the projected correlation function, wp(σ ), (Davis & Peebles, 1983):

wp(σ ) =
∫ πmax

−πmax

ξ(σ,π)dπ . (3.8)

This statistic is traditionally used to describe the real-space clustering of

galaxies drawn from observational surveys, as redshift-space distortions do

not influence wp(σ ). This is true provided that πmax is sufficiently large, such

that the integral includes all correlated galaxy pairs, encompassing their

redshift-distorted coordinates (Davis & Peebles, 1983; Norberg et al., 2009).

Norberg et al. show using simulations that wp(σ ) is sensitive to the choice of

πmax, with differences between the projected clustering recovered on large

scales for πmax [h−1 Mpc] ∈ {30,64}. They note that using πmax = 64h−1 Mpc

(cf. Table 3.1) results in a difference of ten percent between real and redshift

space for σ ∼ 10h−1 Mpc, rising to 50 percent by σ ∼ 30h−1 Mpc.

Assuming equation (3.7) for ξ(r), and infinite πmax, the corresponding

power law for wp(σ ) is given by (Davis & Peebles, 1983)

wp(σ ) = σ1−γr
γ
0
Γ (1/2)Γ ([γ − 1]/2)

Γ (γ/2)
, (3.9)

where Γ is the Gamma function. Equation (3.9) is used in this work for

illustrative purposes only.

wp(σ ) was computed in real and redshift space for the two galform mod-

els at each redshift z ∈ {0.089,0.17,0.62}, for each of the four variants identi-

fied in §3.4.1, i.e. the default models with their true and estimated masses,

and the models with masses resulting from matching the observational mass

functions (using both the new and default merger schemes). At each redshift

the appropriate magnitude limits were imposed (see the beginning of §3.4).

The stellar mass binning was matched to that of each survey. Separations

9 Throughout this chapter, we reserve ξ(r) to denote the spherically averaged two-point
correlation function computed using real-space pair separations, r. We use (σ , π) to refer to
the pair separation components in either real or redshift space, and state whether wp(σ ) has
been computed from real or redshift-space coordinates (i.e. real or redshift-space values of
the line-of-sight separation, π).
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orthogonal to the line of sight were computed with the same binning as the r

values for ξ(r) (see §3.4.2.1). Line-of-sight separations were measured in bins

of fixed width, ∆π, using the distant observer approximation (as noted at the

beginning of §3.4). ξ(σ,π) was evaluated for each bin of the σ versus π grid,

using equation (3.5), where the volume (Vs) considered was instead that of a

cylindrical shell of inner and outer radii set by the σ bin edges and length

∆π. Discretising equation (3.8), wp(σ ) =
∑
πi
ξ(σ,πi)∆π was computed for

bin centres πi , such that |πi | < πmax (30h−1 Mpc; see §3.4.2.3 below).

The results of our comparison of the model clustering predictions to the

observationally inferred wp(σ ) data are presented in §3.5.2.

3.4.2.3 The limit on separation scales

The finite size of the simulation volume sets an upper limit on the separ-

ation scales where the galaxy clustering can be considered to be reliable,

with respect to that which would be computed using an arbitrarily large

cosmological volume.

To establish the pair separations where the box size becomes important,

we computed the projected correlation function along three mutually ortho-

gonal lines of sight. This was carried out for each redshift and stellar mass

range of interest in this chapter, in both real and redshift space.

We found the scatter in wp(σ ) for σ < 30h−1 Mpc, around the mean for

the three projections, to be about 0.01 dex. For σ & 30h−1 Mpc, the scatter

rose sharply with increasing σ , reaching roughly 0.1 dex by σ ∼ 50h−1 Mpc.

These results for the wp(σ ) variation across mutually orthogonal lines of

sight are largely insensitive to the choice of line-of-sight integration limit,

over the range 30 < πmax [h−1 Mpc] < 50.

Based on this test, we used an upper limit of 30h−1 Mpc for σ when

computing wp(σ ), and for r when computing ξ(r). πmax = 30h−1 Mpc was

used when comparing to each survey. We have checked that using the

particular πmax values given in Table 3.1 for each survey instead (which are

larger for the SDSS and GAMA measurements) does not have a significant

impact on our comparisons. Our upper limit to pair separations is the

same as that noted by Orsi et al. (2008) as the largest separation where the

galactic and dark matter ξ(r) are related by a scale-independent bias within

the original Millennium Simulation volume. Gonzalez-Perez et al. (2011)
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also found this scale to be the upper limit for describing the redshift-space

correlation function boost with the Kaiser (1987) formalism, due to the finite

size of the simulation volume.

3.5 Results and discussion

Our results are now presented for the real-space ξ(r) computed using the

galform models as a function of true stellar mass and redshift (§3.5.1), and

the comparisons to the wp(σ ) observational clustering estimates (§3.5.2).

3.5.1 Predicted real-space clustering

We first consider the predictions of the default models (§3.5.1.1), and then

examine the influence of the choice of satellite merger scheme on the small-

scale clustering of galaxies (§3.5.1.2).

3.5.1.1 Standard models

The galactic stellar mass function, Φ(M?), is shown as a function of redshift

in Fig. 3.1, as predicted using the Gon14 and Lac14 galform models. Fig. 3.2

shows the real-space ξ(r) computed as a function of stellar mass and redshift.

Fig. 3.3 shows the power law parameters, r0 and γ , fitted to each ξ(r) bin.

As shown in Fig. 3.1, the evolution of the shape of Φ(M?) as a function

of redshift is fairly similar between the models. The number density above

the knee of the mass function decreases with increasing redshift in each

model. There are more high-mass galaxies in the Gon14 model than in the

Lac14 model (this is similar to the differences between the predicted K-band

luminosity functions). This regime roughly corresponds to the highest mass

bin for the correlation functions shown in Fig. 3.2 (as indicated in Fig. 3.1).

For clarity, we divide the predicted correlation functions by a reference

power law (see Fig. 3.2 caption). The model clustering predictions shown in

Fig. 3.2 are close to a power law over only a limited range of scales. There is a

clear transition between the one-halo term on small scales and the two-halo

term on large scales (at r ∼ 2h−1 Mpc). The two-halo term has the same

shape as the large-scale dark matter ξ(r) from linear theory, where the galaxy

clustering bias with respect to the dark matter increases with both redshift
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Figure 3.1 – Galactic stellar mass function, Φ(M?), predicted by the Gon14 and
Lac14 galform models, as a function of redshift. The vertical lines indicate the
stellar mass samples used to measure ξ(r) in Fig. 3.2. The lower Φ(M?) axis limit
corresponds to 50 model galaxies per bin in the MS-W7 simulation volume.
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Figure 3.2 – Correlation function of galaxies, ξ(r), as a function of redshift, z
(columns), and stellar mass, M? (rows), as predicted using the Gon14 and Lac14
galform models. For clarity, each ξ(r) has been divided by a reference power law,
ξref(r), with parameters r0 = 5h−1 Mpc and γ = 2 (horizontal line; see equation 3.7).
The dotted lines are power law fits to each galform ξ(r), for 3 < r [h−1 Mpc] < 10,
with the parameters shown in Fig. 3.3. The black curves show ξ(r) for the dark
matter at each redshift, computed as the Fourier transform of the MS-W7 linear
theory power spectrum (see equation 1.15).
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function of stellar mass, M? , and redshift, z, (see equation 3.7). The vertical lines
indicate the divisions between the mass bins used to measure ξ(r). The M? values
are the medians for each mass bin, model, and redshift. Each panel uses the same
linestyles and colours; the legend is split between panels.
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and stellar mass. The clustering in the two models is indistinguishable on

large scales (i.e. for pair counts between haloes), but there are differences

between the model predictions on smaller scales (r . 1h−1 Mpc).

There is a general trend of clustering amplitude increasing with stellar

mass, on all separation scales, at each redshift. Slight increases in the amp-

litude of the clustering on large scales are seen with decreasing redshift, for

a fixed mass bin. The power law fits shown in Fig. 3.2 ignore clustering

on small and very large scales. The fit parameters, as shown in Fig. 3.3,

indicate increasing clustering strength, r0, with both increasing stellar mass

and decreasing redshift, where the differences between redshifts become

less significant for higher stellar masses. The slope, γ , is fairly constant, but

exhibits a weak increase with increasing stellar mass. The redshift evolu-

tion of the clustering on small scales in Fig. 3.2 (which is sensitive to pair

separations within haloes) is particularly dramatic for low stellar masses.

3.5.1.2 New satellite merger scheme

In the new merger scheme, satellite galaxies track the positions of their

associated subhaloes, only making use of an analytically computed merger

time-scale once the subhalo can no longer be resolved in the simulation,

as described in §3.2.4. Fig. 3.4 shows the stellar mass functions of the

Gon14 and Lac14 models at redshift z = 0.089, with and without the new

merger scheme, decomposed into the contributions from central and satellite

galaxies. The same trends are seen at higher redshifts. Changes in the

total Φ(M?) due to the new merger scheme are significant for the highest

masses (top panel of Fig. 3.4), where for both models the amplitude of the

high-mass end increases when switching to the new scheme. Note that the

model parameters have not been recalibrated on adopting the new merger

scheme. The rise in the galaxy abundance in the Lac14 model at these masses

is greater than for the Gon14 model, such that with the new scheme, the two

model mass functions become very similar for high masses. The increases in

the numbers of the most massive galaxies are due to more mergers taking

place in the new scheme, which thus transfer more mass to central galaxies,

as can be seen in the middle panel of Fig. 3.4. There is a smaller rise at high

masses in the satellite mass function for both models, which again is more

significant for the Lac14 model (lower panel). The source of the growth of



146 D. J. R. Campbell

−5

−4

−3

−2

−1

All Galaxies

−5

−4

−3

−2

−1

lo
g

1
0
(Φ

(M
⋆
)
[h

3
M

p
c
−3

d
ex

−1
])

Central Galaxies

8.5 9.0 9.5 10.0 10.5 11.0 11.5

log10(M⋆ [h−2 M⊙])

−5

−4

−3

−2

−1

Satellite Galaxies

Gon14

Gon14-sdf

Lac14

Lac14-sdf

Figure 3.4 – Galactic stellar mass function, Φ(M?), at redshift z = 0.089, for all
(top), central (middle), and satellite (bottom) galaxies in the Gon14 and Lac14
galform models, and for these models with the alternative subhalo dynamical
friction merger scheme (labelled Gon14-sdf and Lac14-sdf). The vertical lines
indicate the stellar mass samples used to compute ξ(r) in Fig. 3.5. The lower Φ(M?)
axis limit corresponds to 50 model galaxies per bin in the MS-W7 simulation volume.
Note that the model parameters have not been recalibrated on adopting the new
satellite merger scheme.
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Figure 3.5 – Ratio of the real-space correlation function using the new subhalo
dynamical friction merger scheme, ξsdf(r), to that obtained with the default satellite
merger prescription, ξ(r), computed using the Gon14 and Lac14 galform models,
as a function of stellar mass, M? , and redshift, z, (as labelled). The linestyles show
different redshifts, and the colours indicate different models, as labelled. The legend
is split across the panels.

higher mass galaxies here is the earlier assimilation of lower mass satellite

galaxies. Mergers on to a central galaxy cease when it becomes a satellite of

a more massive galaxy.

The changes in ξ(r) for the two galform models when using the new

merger scheme are displayed in Fig. 3.5, at redshifts of 0.089, 0.32, and

0.62. The lines show the results with the subhalo dynamical friction merger

scheme, divided by the predictions using the original merger scheme, for

each model, stellar mass interval, and redshift. The clustering differences

with respect to the standard merger scheme are larger for the lower redshifts.

Generally there is little change in the clustering on large scales. There are

significant decreases in the small-scale clustering amplitude (r . 1h−1 Mpc)

for all but the highest mass, highest redshift, data. The intermediate mass

bin shows the largest decreases in ξ(r) on small scales, although these are

similar to the reductions in amplitude for the lower mass bin. There is

significantly less change in the highest mass bin, relative to that in the other

mass bins, at a given redshift. Changes in both the radial distribution and

number of satellites contribute to the changes in the small-scale clustering

when using the new scheme (see lower panel of Fig. 3.4, and §3.2.4).

3.5.2 Comparisons to observational data

We now present the results of our comparisons to observational measure-

ments of the clustering of galaxy samples selected by stellar mass. First

we consider the changes induced in the model predictions through stellar
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mass estimation using SED fitting (§3.5.2.1), then discuss rescaling of the

estimated model mass functions to reproduce observational mass function

measurements (§3.5.2.2), and present the changes in the clustering pre-

dictions resulting from using the new subhalo dynamical friction merger

scheme in galform (§3.5.2.3). In §3.5.2.4 we comment on the need for

SED fitting in order to make a fair comparison to observational clustering

measurements, even when carrying out mass function abundance matching.

Finally, we discuss some uncertainties relevant to these comparisons between

theoretical predictions and the observational clustering results (§3.5.2.5).

3.5.2.1 True and estimated stellar masses

Mitchell et al. (2013) show that for some ranges in stellar mass, the process

of SED fitting to the broad-band photometry of model galaxies, as pre-

dicted by galform, introduces a roughly constant offset in estimated stellar

mass with respect to true model masses, combined with associated scatter

(see §3.4.1.1). However, for galform galaxies with strong dust attenuation,

SED fitting tends to significantly underestimate the stellar mass, leading

to important systematic differences between the distributions of true and

estimated masses, which cannot be described by a constant mean offset and

scatter. This phenomenon is relevant for model galaxies with true stellar

mass & 1010h−2 M�.

It is important to note that the IMF assumed in a galaxy formation model

influences the mass-to-light ratios of the galaxies. The predicted luminosity

functions are directly sensitive to the IMF, and are used to calibrate the

models, which in turn affects the stellar masses. Within the machinery of SED

fitting, the choice of IMF corresponds to a roughly constant multiplicative

offset in the resulting stellar masses. The Chabrier (2003) IMF used in our

SED fitting matches the GAMA and VIPERS stellar masses, but not the

Kroupa (2001) IMF of the SDSS data (see §3.3 and §3.4.1.1). Therefore we

multiplied the mass estimates by 1.1 following the SED fitting to match

SDSS. This factor is that found by Davidzon et al. (2013) as the mean offset

between the stellar masses derived using Chabrier and Kroupa IMFs in their

SED fitting (see also Baldry et al. 2008).

The stellar mass functions of the Gon14 and Lac14 models are shown

in Fig. 3.6, at redshifts of 0.089, 0.17, and 0.62, alongside the relevant
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Figure 3.6 – Galactic stellar mass function, Φ(M?), as predicted using the Gon14
and Lac14 galform models, at redshifts (a) 0.089, (b) 0.17, and (c) 0.62. Solid
and dotted lines show the true and estimated Φ(M?) respectively for the default
models. Dashed lines show the estimated Φ(M?) for the models using the new
merger scheme (Gon14-sdf and Lac14-sdf). The formats of the model lines are the
same in each plot, and are labelled in (a) and (c). The points with error bars are the
measurements of (a) Wang et al. (2006) using SDSS, (b) Baldry et al. (2012) using
GAMA, and (c) Davidzon et al. (2013) using VIPERS; shown alongside Schechter
(1976) function fits (black lines; see Table 3.1). continued. . .
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Figure 3.6 – continued. . . In (b) and (c), the apparent magnitude limits of Farrow
et al. (2015) and Marulli et al. (2013) have been imposed on the model galaxies,
respectively (see Table 3.1 and §3.4). The solid vertical grey lines in (a), (b), and (c)
indicate the samples used to measure wp(σ ) in Figs. 3.7, 3.8, and 3.9 respectively.
The lower Φ(M?) axis limit corresponds to 50 model galaxies per bin in the MS-
W7 simulation volume. At z = 0.17, we compare to the z < 0.06 Baldry et al.
measurement under the assumption that there is little evolution in Φ(M?) since
z = 0.17 (see §3.4.1.2). The Baldry et al. Φ(M?) measurement is complete over the
mass range shown in (b), and should not be compared to the magnitude limited
model Φ(M?) at the lowest masses. The estimated Φ(M?) for the default models is
repeated in (b) without magnitude limiting (with the same formatting), to show
the impact of the faint limit at this redshift. To aid comparison, a corresponding
threshold mass, Mthresh, is indicated for each default model in (b) by a dotted or
dashed vertical black line (see §3.5.2.1), as labelled in (b).

observationally inferred mass function data from SDSS, GAMA, and VIPERS,

respectively. The true and estimated mass functions are shown for each

model using solid and dotted lines, respectively (the dashed lines show

the estimated mass functions using the new merger scheme, which will be

discussed in §3.5.2.3). For the comparison to SDSS (Fig. 3.6a), no magnitude

limits have been imposed on the model galaxies, because the clustering

measurements of Li et al. (2006) are for samples that are complete in stellar

mass (see §3.3.2). When comparing to GAMA and VIPERS (Fig. 3.6b,c),

we imposed the apparent magnitude limits relevant for comparison to the

clustering data of Farrow et al. (2015) and Marulli et al. (2013) respectively

(see Table 3.1 and §3.4).

The Baldry et al. (2012) GAMA stellar mass function fit can be regarded

as complete in stellar mass over the range of masses shown in Fig. 3.6b,

as it was constrained for z < 0.06 (see §3.4.1.2). Therefore we also show

the estimated model stellar mass functions without applying the GAMA

magnitude limit in Fig. 3.6b, as these are appropriate to compare to the

Baldry et al. data over the full range of masses shown (these lines are shown

with the same formatting as the magnitude limited versions). Thus the

differences due to the magnitude limit can be seen where the dotted lines

of a given colour do not overlap (the lower, magnitude limited, dotted lines

are close to the solid true model stellar mass lines at the lowest masses,

following a reduction in amplitude of roughly 0.4 dex due to the magnitude

limit). In this way, it can be seen that the faint r-band limit of GAMA
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influences the completeness of the estimated model stellar mass functions

for M? . 1010h−2 M� at z = 0.17. The vertical (dotted or dashed) black lines

in Fig. 3.6b indicate a threshold stellar mass, Mthresh, for each model, above

which the GAMA magnitude limit causes one percent of the galaxies in the

complete model sample to be missed in the simulation volume, computed

using the estimated stellar masses.

The true model stellar mass functions can change significantly when

carrying out SED fitting. An effect that can be seen at each redshift is that the

knee of the estimated mass function is smoothed out and suppressed with

respect to the true mass function, for both models. The changes at the knee

become larger with increasing redshift, and can be traced to the influence

of dust attenuation (see Mitchell et al. 2013). Additionally, scatter in the

estimated masses at a given true mass will cause Φ(M?) to rise for masses

above this, particularly near the high-mass end, due to the rapid changes in

number density as a function of stellar mass. This Eddington bias conspires

with the systematic effects of dust attenuation to dictate the shape of the

estimated mass function.

The projected correlation functions computed using the model galaxies,

for samples selected by stellar mass, are shown in Figs. 3.7, 3.8, and 3.9,

alongside the relevant observational measurements, for the comparisons to

SDSS, GAMA, and VIPERS, respectively. In each case, column (a) shows

the model clustering predictions when using the true stellar masses, and

column (b) shows the results when using the estimated masses from SED

fitting. These masses correspond to the true and estimated mass functions

shown in Fig. 3.6, where the relevant wp(σ ) mass bin edges are indicated

by vertical lines. The results shown in columns (c) and (d) of Figs. 3.7, 3.8,

and 3.9 will be discussed in §3.5.2.2 and §3.5.2.3, respectively.

Switching from true to estimated masses can change the model clustering

predictions significantly, comparing columns (a) and (b) in Figs. 3.7, 3.8,

and 3.9. More massive haloes are more strongly clustered in hierarchical

cosmologies (e.g. Cole & Kaiser 1989), and the stellar mass of a galaxy is

closely related to its host halo mass (e.g. Guo et al. 2010). Therefore the

changes in the clustering predictions when carrying out SED fitting can

be understood in terms of model galaxies in dark matter haloes of certain

masses being transferred across the stellar mass bin boundaries. The Gon14
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Figure 3.7 – Projected correlation function of galaxies, wp(σ ), as a function of stellar
mass, M? (as labelled in each row), at redshift z = 0.089, computed using the Gon14
and Lac14 galform models, in real (first column only) and redshift space. The SDSS
measurements of Li et al. (2006) are shown (black lines with errorbars). Each wp(σ )
has been divided by a reference power law, wref(σ ), with parameters r0 = 5h−1 Mpc
and γ = 2 (horizontal line; see equation 3.9). Half the standard number of σ bins are
shown for the highest mass interval, due to the small number of galaxies. Columns
(a) and (b) show the default models with the true and estimated masses, respectively.
The remaining columns show the results of matching the SDSS stellar mass function
(as an adjustment following the SED fitting), for (c) the default models, and (d) the
models using the new subhalo dynamical friction (SDF) merger scheme.
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and Lac14 models predict relatively similar clustering in most cases when

using true stellar masses, but the SED fitting tends to significantly increase

the differences between the results for the two models. The changes in

the clustering predictions of the Lac14 model when switching to estimated

masses are often larger than for the Gon14 model. It is likely that this is

due to a combination of different factors, such as the different SPS models

assumed and levels of dust extinction calculated in the two models. The SED

fitting tends to decrease the clustering amplitude in the Lac14 model, but

tends to increase that predicted in the Gon14 model. In general, switching

to estimated masses has a larger impact on the clustering on small scales

(σ . 1h−1 Mpc), such that the shape of wp(σ ) is modified.

Comparing to SDSS, the agreement with the clustering measurements of

Li et al. (2006) is improved or similar when switching from true to estimated

stellar masses, for both galform models (see Fig. 3.7a,b). For both models in

most mass bins, the clustering amplitudes using true or estimated masses

are higher over the range of separations shown than inferred from SDSS.

However, there is somewhat better agreement for the highest masses, in

particular, when using estimated masses in the second highest (for Lac14)

and highest (for Gon14 and Lac14) mass bins.

In Fig. 3.8a, the clustering predictions using true stellar masses are sim-

ilar for the two models, except that the Lac14 model predicts relatively low

clustering amplitude in the lower mass bin. There is reasonable agreement

with the large-scale GAMA clustering measurements of Farrow et al. (2015),

especially in the higher mass bin. Both models predict stronger clustering

on the smallest scales than is inferred observationally; this difference is most

significant for the Gon14 model in the lower mass bin. The Lac14 model

clustering predictions yield improved agreement with the GAMA measure-

ments when switching to estimated masses. However, the corresponding

increases in the clustering amplitudes of the Gon14 model lead to poorer

agreement with the GAMA data than found with the true stellar masses (see

Fig. 3.8a,b).

Using true stellar masses, the model predictions agree with the VIPERS

clustering measurements of Marulli et al. (2013) on intermediate scales

(σ ∼ 1h−1 Mpc) in the two lower mass bins in Fig. 3.9a, where they tend to

overpredict the clustering amplitude on smaller and larger scales. In the
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Figure 3.8 – Projected correlation function of galaxies, wp(σ ), for different stellar
mass, M? , bins (as labelled in each row) at redshift z = 0.17, computed using
the Gon14 and Lac14 galform models, in real (first column only) and redshift
space. The GAMA measurements of Farrow et al. (2015) are shown, whose apparent
magnitude limit has been imposed on the model galaxies (black lines with errorbars;
labelled in prep. since the final data published by Farrow et al. 2015 use slightly
different mass intervals etc. to those used here; see §3.3.3). For clarity, each wp(σ )
has been divided by a reference power law, wref(σ ), with parameters r0 = 5h−1 Mpc
and γ = 2 (horizontal line; see equation 3.9). Columns (a) and (b) show the default
models with the true and estimated masses, respectively. The remaining columns
show the results of matching the GAMA stellar mass function (as an adjustment
following the SED fitting), for (c) the default models, and (d) the models using the
new subhalo dynamical friction (SDF) merger scheme.
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highest mass bin, both models agree reasonably well with the observational

measurements on small and large scales, but predict lower clustering amp-

litude than observed on intermediate scales. Switching to the estimated

masses (see Fig. 3.9b), improves the large-scale agreement with the VIPERS

data for the Lac14 model, in the two lower mass bins. Otherwise, the level of

agreement between the model predictions and observational measurements

on large scales is similar or reduced when switching to the estimated masses.

On small scales, switching to estimated masses worsens the agreement with

the VIPERS clustering data for each model and mass bin, except for the

Lac14 model in the intermediate bin, where the level of agreement is slightly

increased. These changes result in the models with estimated masses yield-

ing clustering predictions that encompass the VIPERS data on small scales,

with the clustering amplitude being lower for the Lac14 model, and higher

for the Gon14 model.

It is clear from the results shown in columns (a) and (b) of Figs. 3.7, 3.8,

and 3.9 that carrying out SED fitting to the broad-band photometry of model

galaxies to recover estimates of their stellar masses can have a significant

impact on the model clustering predictions for samples selected by stellar

mass. Thus it is important to implement this procedure to obtain a reliable

comparison between the clustering of galaxies as a function of stellar mass,

as measured for observed galaxies and predicted by theoretical models.

3.5.2.2 Abundance matching of stellar mass functions

Figs. 3.7c, 3.8c, and 3.9c show the projected correlation functions result-

ing from carrying out abundance matching of the estimated model stellar

mass functions to Schechter (1976) function fits to the mass function data

measured using each survey (SDSS, GAMA, and VIPERS respectively). The

mass function fits are shown alongside the model predictions in Fig. 3.6 (see

§3.4.1.2 for details of the matching procedure). The differences between the

model clustering predictions shown in columns (b) and (c) of Figs. 3.7, 3.8,

and 3.9 are thus entirely due to the model mass estimates from SED fitting

being rescaled to reproduce the observationally inferred mass function fits.

Looking at the comparison to the SDSS results of Li et al. (2006) in

Fig. 3.7b,c, the mass function matching leads to a suppression of the model

clustering amplitude for both models (in most mass bins). This leads to
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Figure 3.9 – Projected correlation function of galaxies, wp(σ ), as a function of
cumulative stellar mass, M? (as labelled in each row), at redshift z = 0.62, computed
using the Gon14 and Lac14 galform models, in real (first column only) and redshift
space. The VIPERS measurements of Marulli et al. (2013) are shown (black lines with
errorbars), whose apparent magnitude limit has been imposed on the model galaxies.
For clarity, each wp(σ ) has been divided by a reference power law, wref(σ ), with
parameters r0 = 5h−1 Mpc and γ = 2 (horizontal line; see equation 3.9). Columns (a)
and (b) show the default models with the true and estimated masses, respectively.
The remaining columns show the results of matching the VIPERS stellar mass
function (as an adjustment following the SED fitting), for (c) the default models,
and (d) the models using the new subhalo dynamical friction (SDF) merger scheme.
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improved, or unchanged, agreement with the observational results; except

for the Lac14 model in both the second highest mass bin (where poorer

agreement is found due to a rise in clustering amplitude), and in the highest

mass bin (where the model wp(σ ) becomes lower in amplitude than meas-

ured from SDSS). However, the changes in the clustering predictions due

to imposing the SDSS mass function are typically relatively minor, and in

general there remains excessive clustering on both small and large scales

with respect the SDSS measurements in Fig. 3.7c.

Comparing to the measurements of Farrow et al. (2015) using GAMA data

(see Fig. 3.8b,c), imposing the observationally inferred mass function causes

the clustering amplitude to be suppressed for both models in the lower mass

bin (where the most significant impact is on the Gon14 model). This leads

to improved agreement with the GAMA clustering results for the Gon14

model, and similar agreement for the Lac14 model, in this mass bin. In the

higher mass bin, imposing the mass function has very little influence on the

Lac14 model clustering prediction, but slightly boosts the amplitude of the

small-scale clustering in the Gon14 model, exacerbating the discrepancy

with the GAMA measurement on small scales.

It can be seen in Fig. 3.9b,c that the mass function matching leads to

improved agreement with the VIPERS data in the lower mass interval for the

Lac14 model, and worsened agreement for the Gon14 model, as the cluster-

ing amplitude rises in both models. The matching does not have a significant

impact on the clustering predictions of either model in the intermediate

mass interval. Both models exhibit suppression in the clustering amplitude

due to the mass function matching for the highest masses, improving the

agreement with the VIPERS data for the Gon14 model, and reducing the level

of agreement for the Lac14 model. Thus there persist notable differences

between the model predictions and the VIPERS measurements following

the abundance matching, in Fig. 3.9c. The Gon14 model predicts excessive

clustering with respect to the VIPERS results on both small and large scales

in the two lower mass bins. The Lac14 model predicts lower clustering

amplitudes than measured from VIPERS, for small scales in the intermediate

mass interval, and on all scales for the highest masses.

The changes in the model clustering predictions due to matching obser-

vationally inferred stellar mass function fits reflect the underlying modi-
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fications to the distribution of halo masses in a given stellar mass interval.

Decreases in the clustering amplitude are seen where there is a significant

net influx of galaxies in haloes of relatively low mass, thus diluting the clus-

tering signal (and vice versa). The changes due to the stellar mass function

matching are typically smaller than the changes that occur when switching

from true model stellar masses to estimated masses recovered from SED

fitting to the model photometry.

3.5.2.3 New satellite merger scheme

Thus far, we have compared the model clustering predictions to observational

results using the default treatment of satellite galaxies in galform. In the

default scheme, satellite galaxies are assumed to enter the main halo on

random orbits (independently of the orbit of their associated subhalo), and

merge with the central galaxy upon the elapse of an analytically determined

dynamical friction merger time-scale. We now consider the results obtained

when using a new merger scheme, in which satellite galaxies track their

associated subhaloes until these are no longer resolved, and only then is an

analytic merger time-scale computed (see §3.2.4).

Using the standard merger scheme (looking in particular at Figs. 3.7c,

3.8c, and 3.9c), the Gon14 model tends to predict stronger small-scale clus-

tering than seen in the observational data. The Lac14 model predicts higher

small-scale clustering than measured from SDSS in Fig. 3.7c, but is in agree-

ment with (or predicts lower clustering amplitude than) the small-scale

results from GAMA and VIPERS (Figs. 3.8c and 3.9c respectively). It is

noteworthy that both models tend to predict higher clustering amplitudes

on small scales than measured from SDSS.

Stronger small-scale clustering in the models, with respect to observa-

tional results, may be interpreted as an excess of satellite galaxies in the

models, or too concentrated a radial distribution of satellites (Contreras

et al., 2013). In order to reconcile the model predictions with observations,

it is possible that a more detailed study of the disruption and mergers of

satellite galaxies is needed (Henriques et al., 2008; Kim et al., 2009). Another

possibility is to make use of the substructure information available in dark

matter simulations, i.e. to employ our new satellite merger scheme, which

has an impact on small-scale clustering (see §3.2.4 and §3.5.1.2).
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The estimated stellar mass functions of the Gon14 and Lac14 models

when using the new ‘subhalo dynamical friction’ merger scheme are shown

as dashed lines in Fig. 3.6 (where they are labelled Gon14-sdf and Lac14-

sdf). Comparing these lines to the estimated mass functions using the

standard merger scheme (dotted lines), it can be seen that the most significant

differences are at the highest masses. At each redshift, both models have

more high-mass galaxies when using the new scheme, where the differences

between the predictions for the two schemes for a given model emerge

roughly at the knee of the mass function. For the true masses, the mass

functions for both models using the new scheme are very similar to each

other at the highest masses, for each survey comparison redshift (to the level

shown in Fig. 3.4 at the SDSS comparison redshift); and yet the estimated

mass functions shown in Fig. 3.6 are distinct at high masses for the Gon14

and Lac14 models using the new scheme.

Figs. 3.7d, 3.8d, and 3.9d show the projected clustering predictions of

the galform models using the new merger scheme. These results use stellar

masses estimated through SED fitting, followed by matching to the observa-

tional stellar mass function fits shown in Fig. 3.6 (as described in §3.4.1.2).

In this way, the results shown in columns (c) and (d) of Figs. 3.7, 3.8, and 3.9

have been required to reproduce the same observationally inferred mass

function fits, making use of the ordering of galaxies in stellar mass obtained

through SED fitting, but differing in whether they use (c) the default merger

scheme, or (d) the new scheme.

The results shown in Fig. 3.5 show that the changes in the model clus-

tering predictions due to the new merger scheme, for samples selected by

true stellar mass, are larger for lower stellar masses and lower redshifts.

This trend is also seen for the abundance matched estimated masses when

comparing columns (c) and (d) in Figs. 3.7, 3.8, and 3.9.

Reductions in the clustering amplitude lead to improved small-scale

agreement with the SDSS data for both models in Fig. 3.7c,d. In the SDSS

comparison, the Lac14 clustering also becomes stronger in the highest mass

bin, resulting in improved agreement with the observational data on large

scales. However, in several mass bins in Fig. 3.7d the small-scale clustering

amplitude is still high with respect to the SDSS measurements, particularly

for the Gon14 model. Additionally, the model clustering predictions on the
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largest scales are often excessive with respect to the SDSS results in Fig. 3.7d,

particularly so for the two lowest mass bins.

Both models experience suppressed small-scale clustering in Fig. 3.8c,d,

which is more significant in the lower mass bin, leading to good agreement

with the small-scale GAMA measurements for the Gon14 model in the lower

mass bin, and for the Lac14 model in the higher mass bin. However, the

Lac14 model clustering amplitude in Fig. 3.8d is now low on small scales

with respect to the GAMA result in the lower mass bin. The suppression of

the Gon14 clustering in the higher mass bin, due to the new merger scheme,

is small compared to the excessive clustering on small scales with respect to

the GAMA measurement in Fig. 3.8c.

In Fig. 3.9c,d, suppression of the small-scale clustering tends to push the

wp(σ ) predicted by the Gon14 model closer to the VIPERS data, and further

below this for the Lac14 model; except in the highest mass bin, where the

Lac14 model clustering amplitude rises. However, the impact of the new

merger scheme on the clustering predictions shown in Fig. 3.9d is relatively

small, and the overall level of agreement with the VIPERS measurements is

almost unchanged from the results shown in Fig. 3.9c.

3.5.2.4 The need for SED fitting

We have used abundance matching of model stellar mass functions to obser-

vational measurements as a basis for comparing the clustering predictions of

the different galform models to each other, and to observational estimates.

The abundance matching has been carried out as a final adjustment to the

estimated model galaxy masses. These results are shown in columns (c) and

(d) of Figs. 3.7, 3.8, and 3.9, and have been discussed in §3.5.2.2 and §3.5.2.3

above. It is interesting to ask how these results, which have undergone

mass function matching following SED fitting, compare to those obtained

by simply matching the observationally inferred mass functions using the

true model stellar masses. This test examines how important the SED fitting

is when making clustering predictions to compare to observations, and in

particular how significantly the ordering of galaxies in stellar mass changes

when carrying out SED fitting (in terms of the impact on the clustering).

In a small number of cases, the changes due to the SED fitting are insig-

nificant when using imposed mass functions. For example, the results for
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the lowest mass GAMA galaxies (as shown in Fig. 3.8c,d) are unperturbed

by SED fitting for both the Gon14 and Lac14 models, with or without the

new merger scheme. Yet for the higher mass GAMA galaxies, not carry-

ing out SED fitting results in clustering predictions using the new merger

scheme that on small scales are midway in log10(wp(σ )) between those shown

in Fig. 3.8d, for both galform models. Similar trends are obtained in the

highest VIPERS mass interval, for example, where for either merger scheme,

both models yield small-scale clustering amplitudes midway between the

model lines shown in Fig. 3.9c,d.

In general, we find that without SED fitting, the models with matched

mass functions produce clustering predictions that are different to those of

their counterparts based on estimated masses, particularly for σ . 1h−1 Mpc.

3.5.2.5 Sources of uncertainty

We now discuss sources of uncertainty that are relevant to the comparisons

to observational data carried out in this work.

1. A potential complication when comparing to observational galaxy

clustering measurements is the inability of spectrographs to resolve

galaxies in close proximity on the sky (due to fibre collisions). This

systematically lowers the clustering amplitude, particularly on small

scales (e.g. Zehavi et al. 2002; Pollo et al. 2005; de la Torre et al. 2013).

For SDSS, spectroscopic fibres on a given plate must be separated

by at least 55arcsec, which means that at the median redshift of Li

et al. (2006), two galaxies cannot be observed simultaneously within

σ . 0.1h−1 Mpc, although this can influence wp(σ ) out to larger scales.

Li et al. carry out a correction to account for this, based on comparing

the projected correlation function to that derived using the parent

photometric catalogue. It is possible that, despite this correction, there

remains some systematic bias in the observational results on the small

scales shown in Fig. 3.7.

GAMA employs a sophisticated ‘greedy’ tiling strategy, yielding nearly

spatially uniform spectroscopic completeness (Robotham et al., 2010;

Driver et al., 2011). Thus the small-scale clustering measurements of
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Farrow et al. (2015) shown in Fig. 3.8 should be reasonably reliable (i.e.

robust against fibre collisions).

A correction is made by Marulli et al. (2013) to account for spec-

troscopic fibre collisions in VIPERS, motivated by the Munich semi-

analytic galaxy formation model of de Lucia & Blaizot (2007). Mock

catalogues are constructed from this model, with and without mod-

elling of the spectrograph selection. The relative difference between

the correlation functions computed for the two sets of mock galaxies is

used to impose a correction on the observed result. This model depend-

ent correction may produce results that are systematically different

on small scales to what would be measured for a truly spectroscopic-

ally complete sample. de la Torre et al. (2013) note that for VIPERS

the fraction of missing galaxy pairs becomes significant below 0.03

degrees, which at the median redshift of the data to which we compare

corresponds to σ . 0.8h−1 Mpc (cf. Fig. 3.9).

2. The differences on large scales between wp(σ ) computed in real and

redshift space for a given model in Figs. 3.7, 3.8, and 3.9 indicate that

πmax = 30h−1 Mpc is not sufficiently large for the projected correlation

function computed in redshift space to converge to the real space

result, but this integration limit is appropriate for comparison to the

observational data (see §3.4.2.3). Note that we integrate the real and

redshift-space pair separations out to the same πmax when computing

wp(σ ) (see §3.4.2.2). For clarity, the real-space clustering is shown only

in column (a) of Figs. 3.7, 3.8, and 3.9. The offsets between the real

and redshift-space clustering are similar for the columns where the

real-space lines are not shown.

3. Differences exist between the broad-band SED fitting procedure im-

plemented here, and the method of Kauffmann et al. (2003) used to

estimate stellar masses in the SDSS data (see §3.3.2 and §3.4.1.1). How-

ever, our methodology yields stellar masses that are more appropriate

to use than the true model stellar masses when comparing to these

observational results.

4. Our SED fitting procedure uses the Calzetti et al. (2000) dust model,
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whereas Davidzon et al. (2013) also permit the Prevot-Bouchet model

for VIPERS (see §3.3.4). However, Davidzon et al. demonstrate that

using just the Calzetti et al. model has only a marginal impact on the

recovered stellar mass function.

5. As we make use of simulation snapshots in this chapter (i.e. model

outputs at fixed redshifts), rather than constructing lightcones that

cover specific redshift intervals (e.g. Merson et al. 2013), the inter-

pretation of a sample of galaxies selected in apparent magnitude is

slightly different to that for an observational survey. For example, if

the model redshift is chosen to be close to the median redshift of an

observational sample (as we do here), intrinsically fainter galaxies can

exist in the survey sample than in the model, when the model and

observations use the same faint apparent magnitude limit, due to the

width of the observational redshift bin. This effect becomes import-

ant, for our purposes, for stellar masses at which the mass function

becomes highly incomplete, due to the combination of redshift and

apparent magnitude limits (see §3.4.1.2). In particular, this mass scale

will tend to occur at higher stellar masses in a model snapshot, than

in a survey sample with a lower minimum redshift than the snapshot

redshift. While the use of lightcones could facilitate a more accurate

treatment of the selections in apparent magnitude, the stellar mass

ranges over which we compare the model clustering predictions to

observational measurements are reasonably close to being complete in

stellar mass. That is, we do not consider observational measurements

where the survey selections result in a severely incomplete stellar mass

function, and so the use of snapshots should not have a significant

influence on the reliability of our comparisons. Lightcones must be

used, for example, to compare theoretical model predictions to the

higher redshift GAMA clustering data of Farrow et al. (2015), which

we do not consider here for this reason.
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3.6 Conclusions

The stellar masses of real galaxies have to be somehow derived from ob-

servables, typically using broad-band SED fitting. We have presented a

new methodology for comparing the clustering predictions of galaxy form-

ation models to observational data, for samples selected by stellar mass.

The approach is to use estimated masses for the model galaxies, recovered

using SED fitting to the model broad-band photometry. This allows us to

incorporate the various systematic errors and biases involved in the fitting

procedure, which can lead to significant differences with respect to the true

stellar masses. These differences cannot be properly accounted for by as-

suming a mean rescaling, or even a rescaling plus a scatter, between the true

and estimated masses, particularly for massive galaxies with strong dust

attenuation (Mitchell et al., 2013).

If stellar masses from galaxy formation models and observations can be

compared in such a consistent way, the clustering of galaxies as a function of

stellar mass can be used to constrain the physical processes implemented in

the models, alongside traditional statistics such as the luminosity function.

Our methodology demonstrates how to do such a comparison.

We have compared the clustering predictions of the Gon14 and Lac14

galform models to observational measurements from different surveys at

redshifts of 0.1, 0.2, and 0.6. The clustering of the model galaxies as a

function of stellar mass can change significantly when moving to the estim-

ated masses. This can be understood in terms of the transfer of galaxies

between stellar mass bins when estimated masses are used, which changes

the distribution of halo masses in a given bin.

Considering the estimated model masses (and in particular following

abundance matching to the observed stellar mass functions), we have often

found that the models predict higher small-scale clustering amplitude than

is inferred observationally (for projected separations σ . 1h−1 Mpc). This

tends to be the case for both galform models at the lowest redshift in our

comparison (SDSS; see Fig. 3.7c), and for the Gon14 model at higher redshifts

(comparisons to GAMA and VIPERS; see Figs. 3.8c and 3.9c). In the higher

redshift comparisons, the Lac14 model tends to predict similar or lower

small-scale clustering amplitude than is measured using the survey data
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(again see Figs. 3.8c and 3.9c).

The small-scale clustering is sensitive to the treatment of galaxy mergers.

We have introduced a new scheme for the merging of satellites with their

central galaxy, in which satellite galaxies track their associated subhalo in

the dark matter simulation until this is no longer resolved. In the standard

galform approach, galaxies are assigned analytic merger time-scales as soon

as they become satellites. The latter implementation yields higher small-

scale clustering, as noted by Contreras et al. (2013), with respect to the

Munich lgalaxies semi-analytic models. The Munich models use a merger

scheme that is similar to the new scheme that we have implemented in

galform (see §3.2.4 for a full description of the new scheme). Using this

new scheme, together with estimated stellar masses abundance matched to

observationally inferred stellar mass functions, generally offers improved

agreement with the observational data on small scales (particularly in the

SDSS and GAMA comparisons; see Figs. 3.7c,d and 3.8c,d), or a similar

overall level of agreement where the spread in the models encompasses the

observational results (see the VIPERS comparison in Fig. 3.9c,d).

Despite reductions due to the new merger scheme, the small-scale clus-

tering often remains higher than inferred from SDSS data, particularly for

the Gon14 model (see Fig. 3.7d). In the same comparison, the predicted

clustering on the largest scales is in agreement with the SDSS measurements

for only the highest masses considered. The models using the new merger

scheme overall agree reasonably well with the GAMA clustering data (see

Fig. 3.8d). However, in each mass bin, only one of the two models is in good

agreement with the small-scale clustering. Comparing the same models to

the VIPERS measurements in Fig. 3.9d, the model that is closest to the ob-

servational constraints varies with stellar mass, and there can be significant

differences between the modelled and observationally inferred clustering,

on both small and large scales.

Kim et al. (2009) have shown that the galaxy clustering as a function of

luminosity predicted by galform is stronger on small scales than is meas-

ured from observations at low redshift, and thus argue for the inclusion

in the models of mergers between satellite galaxies and their tidal disrup-

tion. Such adjustments may also improve the agreement with observational

measurements of the clustering as a function of stellar mass. We have not
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included these extensions here, but their potential implementation in future

models, along with the new merger scheme introduced here, will produce

galaxy formation model predictions that take better account of the true

dynamics of galaxies in dark matter haloes, and are as faithful as possible to

the underlying dark matter distribution, allowing more robust constraints

on the galaxy formation physics.

In summary, we have found that the model clustering predictions agree

reasonably well with measurements from GAMA (z = 0.2). However, we have

identified some relatively large discrepancies with respect to data from SDSS

(z = 0.1) and VIPERS (z = 0.6), considering in particular the results shown

in column (d) of Figs. 3.7, 3.8, and 3.9. The differences between the model

predictions and the observations vary as a function of stellar mass, redshift,

and projected separation, for each galform model. The models considered

in this chapter have not been calibrated to reproduce any observational

clustering data (or stellar mass functions). Our new methodology will enable

future models to be calibrated to the clustering of galaxies as a function of

stellar mass, thus providing more accurate and reliable constraints on how

galaxies populate dark matter haloes.



Chapter 4

Conclusions

In the standard ΛCDM model of cosmology, the energy density of the Uni-

verse is currently dominated by dark energy in the form of a cosmological

constant (Λ), which acts to accelerate the rate of the expansion of space. The

remaining energy density is dominated by cold dark matter particles (CDM),

leaving only a few percent of the total cosmic energy density for ‘ordinary’

baryonic matter. Following a period of rapid inflation after the Big Bang,

the curvature (geometry) of space is assumed to be perfectly flat (Euclidean).

Inflation not only ensures spatial flatness, but also provides a mechanism to

generate the initial perturbations in the cosmic matter density field needed

to initiate the formation of cosmic structure through gravitational instability,

via the vast amplification of quantum mechanical fluctuations.

Theoretical predictions derived assuming the ΛCDM model have been

highly successful in reproducing the observed properties of the Universe on

large scales. By measuring the amplitudes of minute anisotropic temperature

fluctuations in the cosmic microwave background (CMB), we are able to infer

the statistical properties of Gaussian perturbations in the cosmic matter

density field at very high redshift, long before structure formation became

non-linear. Simulations with initial conditions consistent with the CMB

measurements can be used to study the evolution of cosmic structure from

small density perturbations at early times into the intricate cosmic web of

167
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the present Universe, joining together dark matter haloes covering a vast

dynamic range in mass. Simulations including baryons are able to also follow

the formation and evolution of luminous galaxies within the gravitational

potential wells of the dark matter haloes.

In Chapter 2 of this thesis, we have used the apostle cosmological hydro-

dynamical simulations to investigate the structural and stellar dynamical

properties of galaxies found in systems like the Local Group. In particular,

we have focused on how the accuracy of simple dynamical mass estimators

of the form M(< λRe) ∝ 〈σlos〉2Re depends on various important galaxy prop-

erties (where Re is the projected stellar half-light radius, 〈σlos〉 is the stellar

line-of-sight velocity dispersion, and M(< λRe) is the total mass enclosed

within a sphere of radius λRe, for some constant λ). The dynamical masses

and density profiles of the satellite galaxies of the Milky Way have played a

particularly prominent role in various debates on the validity of the ΛCDM

model on small scales, and so it is crucial that we have a clear understanding

of the uncertainties involved in estimating these quantities. We have found

that for the dispersion-dominated simulated galaxies, the simple mass estim-

ators are almost unbiased, but with an overall 1σ scatter of between 23 and

25 percent for the analytically derived estimators in the literature, which

rely on the spherical Jeans equation, combined with additional simplifying

assumptions (Walker et al., 2009; Wolf et al., 2010). The estimator error

is particularly sensitive to the 3D shape of the stellar mass distribution,

such that galaxies that are closer to being spherically symmetric yield more

accurate mass estimates; yet the 3D shape of a galaxy is difficult to constrain

observationally. The uncertainties that we identify in the estimated masses

are large enough to be significant for those Milky Way dwarf spheroidal

(dSph) satellite galaxies that have relatively small observational errors on

their stellar velocity dispersions and half-light radii. Using a simple model

to emulate the method of Walker & Peñarrubia (2011) for measuring the

density profile slopes of the Fornax and Sculptor dSphs, using simple mass

estimators applied to chemo-dynamically distinct stellar subpopulations,

we have shown that taking the uncertainties on the enclosed masses into

account can relax the significance with which such methods can exclude

NFW (Navarro, Frenk & White, 1996b, 1997) inner density profile slopes,

depending on the degree to which the relevant properties of the different
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stellar populations are correlated. We have also derived a new unbiased

optimal mass estimator, where the stellar velocity dispersion is measured

within a radius close to the projected half-light radius, in contrast to the

typical definition where the dispersion is integrated over the whole galaxy.

This new estimator reduces the overall scatter for our dispersion-dominated

galaxies to 20 percent, facilitating more accurate and precise mass estim-

ates. In the future, if chemo-dynamically distinct stellar populations can

be identified within galaxies in the apostle simulations, applying simple

mass estimators to the separate populations would provide a direct test of

the accuracy of the methodology of Walker & Peñarrubia (2011).

In Chapter 3, we have investigated the galaxy clustering predictions

of two recently developed complementary versions of the galform semi-

analytic galaxy formation model, as a function of stellar mass and redshift.

The stellar mass is a fundamental galaxy property, that reflects the intricate

evolution history of the host dark matter halo and the baryonic gas, including

the history of gas cooling, star formation, and energetic feedback from

supernovae and active galactic nuclei. Measurements of the clustering of

galaxies as a function of stellar mass thus provide an important constraint on

how galaxies populate dark matter haloes. We have carried out broad-band

spectral energy distribution (SED) fitting to estimate the stellar masses of

the simulated galaxies, tailoring the estimation procedure to closely match

the methods used in certain observational studies, to which we then compare

the predicted galaxy clustering signals (projected correlation functions). The

errors involved in SED fitting have a significant impact on the recovered

stellar mass estimates. As a result the galaxy clustering as a function of stellar

mass predicted by the models is different when using the true model stellar

masses versus the masses estimated via SED fitting. Thus we argue that

such an approach, where the model stellar masses are estimated using SED

fitting, is vital when comparing model clustering predictions as a function

of stellar mass to observationally inferred correlation functions. When

such an approach is implemented, observational clustering measurements

as a function of stellar mass can be used as a powerful constraint on the

predictions of theoretical galaxy formation models, in addition to traditional

statistics such as the luminosity function of galaxies. We have also introduced

a new merger scheme for the merging of satellite galaxies with the central
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galaxy of their halo in galform, which implements a more realistic treatment

of the satellite orbits than in the default merger scheme, making greater use

of the underlying dark matter only N -body simulation. The new merger

scheme influences the galaxy clustering, particularly on small scales (one-

halo term), where the clustering is suppressed, such that similar or better

agreement is typically found with the observational data. The inclusion of

the new merger scheme in future galaxy formation models will allow more

realistic predictions of galaxy properties to be generated, including for the

clustering as a function of intrinsic properties, such as stellar mass.

The main theme in this thesis has been the accuracy of techniques used to

infer the masses of galaxies, via detailed Jeans modelling or simple estimat-

ors to recover dynamical masses, or by fitting population synthesis models to

spectra of galactic starlight to infer stellar masses. Significant uncertainties

lurk in the practical application of such methods, where the error in the re-

covered mass is likely to be sensitive to various galaxy properties, convolved

with the assumptions and modelling choices required to estimate the masses.

The errors on the estimated masses may have serious consequences, such as

perturbing the apparent halo masses of dispersion-supported galaxies, or

implying dark matter cores in dSph galaxies with dual stellar populations

where there may in fact be dark matter cusps, or modifying the perceived

clustering of galaxies as a function of stellar mass. It is clearly important

that the amplitudes and variations of the mass errors be well understood,

particularly when the mass estimation techniques are used to produce results

from which conclusions are drawn on the accuracy of certain theoretical

models or even the validity of the ΛCDM paradigm.



Appendix A

Statistics

This appendix describes certain statistical functions and techniques that are

used elsewhere in this thesis. For further details, see for example the books

by Riley et al. (2006) and Hughes & Hase (2010).

A.1 Probability distributions

The Gaussian (or normal) distribution has the probability density function

P (x) =
1

σ
√

2π
exp

[
−

(x −µ)2

2σ2

]
, (A.1)

where µ is the mean and σ is the standard deviation (σ2 is the variance).

The random variable, x, can take any real value, between −∞ and ∞. The

normalisation of P (x) satisfies
∫∞
−∞ P (x)dx = 1. The cumulative probability

for a Gaussian distribution,
∫ x
−∞ P (x′)dx′, is given by the error function.

If some quantity is assumed to follow a Gaussian distribution, the ‘1σ

error’ is often quoted, which is just the standard deviation (σ ) of the distri-

bution. Given µ and σ for some quantity that is Gaussian distributed, we can

expect that 68 percent (∼ 2/3) of randomly drawn values will fall in the range

µ±σ (since µ−σ and µ+σ are approximately the 16th and 84th percentiles of
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the Gaussian distribution, respectively). Similarly, the range µ± 2σ contains

95 percent of values, and the range µ± 3σ contains 99.7 percent of values.

It is important not to confuse the standard deviation of the parent probab-

ility distribution, σ , with the standard error on the mean, which is the standard
deviation of the distribution of sample means, for many samples. For samples

containing N measurements, the standard error on the mean is α = σ/
√
N ,

where σ is still the standard deviation of the underlying probability distribu-

tion as above, which can be estimated as the standard deviation of a sample

of data drawn from the distribution (this result happens to be true for any

distribution, not just the Gaussian distribution).

The Gaussian distribution is symmetric around the mean (and the mean is

also the median). However, for asymmetric distributions, we often examine

the 16th and 84th percentiles, by way of analogy with the standard deviation

of a Gaussian distribution. The standard deviation can always be computed,

of course, but its usefulness is likely to diminish for highly asymmetric

distributions that are very different in shape to the Gaussian distribution.

According to the central limit theorem, the sum of many arbitrary probab-

ility distributions, for independent random variables, with different means

and variances, tends towards a Gaussian distribution (and so the distribu-

tion of sample means tends towards a Gaussian). Therefore the Gaussian

distribution is uniquely important, since many physical quantities can be

assumed to follow Gaussian statistics, even if the precise underlying details

of the relevant physical processes are not fully specified or understood.

The Poisson distribution relates to the statistics of counting discrete inde-

pendent random events. In this case, the probability density function for

counting x events in a given time interval, t, is

P (x) =
e−λt(λt)x

x!
, (A.2)

where λ is the mean event rate. The expectation (mean) value for the number

of events within the time interval is x̄ = λt. The standard deviation for

the Poisson distribution is given by σ =
√
x̄. For an experiment that counts

N events, it is thus standard practice to quote the uncertainty (1σ error)

on the count as
√
N (known as the Poisson error). Although the Poisson

distribution is asymmetric, as x̄ increases the distribution actually grows
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closer to a symmetric shape around the mean. In fact, for high x̄, the Poisson

distribution can be closely approximated by a Gaussian distribution with

the same mean (µ = x̄) and standard deviation (σ =
√
x̄).

In this thesis, all quoted uncertainties and plotted errorbars are 1σ errors

(or 16th and 84th percentiles), unless stated otherwise.

A.2 Model fitting

Given some set of measurements containing N data points (xi , yi), the para-

meters of some appropriate model function ỹ(x) can be constrained by min-

imising the χ2 statistic, defined such that

χ2 =
N∑
i=1

(
yi − ỹ(xi)

αi

)2

, (A.3)

where αi is the uncertainty on the yi value for a given xi . In the case where αi
is the same for all i, the χ2 minimisation problem reduces to an unweighted
least-squares fit (minimisation of squared residuals). If the yi values are

individually Gaussian distributed, with Gaussian width (σi proportional to)

αi , then the set of model parameters that minimises the χ2 is the maximum
likelihood solution (and the typical appropriateness of assuming Gaussianity

follows from the central limit theorem).

For a model with n free parameters (ψ1,ψ2, . . . ,ψn), the χ2 minimisation

takes place in n-dimensional parameter space. In order to quantify the un-

certainty on the determined optimum value of a certain parameter, ψj , we

can explore the sensitivity of the value of χ2 to the value of ψj in the region

of parameter space around the optimum χ2 value (χ2
min). By varying ψj in

this region, while continuously re-optimising all of the other n−1 parameters,

the values of ψj at which χ2 = χ2
min + 1 can be found; these values of ψj

correspond to ±1σ variations in ψj , while all n − 1 other parameters are

always optimised to minimise χ2, given the chosen value of ψj . Following

the same procedure, different values of ∆χ2 = χ2 −χ2
min correspond to dif-

ferent confidence intervals for ψj . For example, ∆χ2 values of 1, 4, and 9

correspond to ±1σ , ±2σ , and ±3σ variations in ψj , respectively. In order

to compute e.g. the 1σ uncertainty for each of the n individual parameters
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(ψ1,ψ2, . . . ,ψn), the process just described needs to be repeated for each of

the ψj in turn (i.e. for each choice of j), where in each case all of the other

n− 1 parameters must be re-optimised with each change in the value of ψj .

Quoting only the set of optimum parameters along with their associated e.g.

1σ uncertainties can hide important correlations between the different para-

meters in n-dimensional space (i.e. the precise shape of the n-dimensional

error surface could be important, introducing strong correlations between

different model parameters). In order to investigate possible correlations

between any two parameters, ψj and ψk, the value of χ2 can be computed

over the 2D ψj −ψk plane, where at each point all of the remaining n − 2

parameters are re-optimised to minimise χ2 given the chosen values of ψj
and ψk. Contours of constant χ2 in the ψj −ψk plane then indicate how the

two parameters vary with respect to each other within the fitting process.

Markov Chain Monte Carlo (MCMC) methods provide an efficient way

to explore large high-dimensional parameter spaces in order to constrain

model parameters, using Bayesian statistics (e.g. Lewis & Bridle 2002; Walker

& Peñarrubia 2011). The posterior probability distributions of the model

parameters can be computed from the MCMC chains, i.e. histories of the

repeated exploration of the parameter space by the MCMC algorithm. Op-

timum parameter values and confidence intervals can then be derived from

the posterior distributions.

A.3 Bootstrap sampling

In many situations, the properties of the unknown underlying probability

distribution of the measured data of interest are not obvious or well defined.

Additionally, while the error on the mean (standard deviation of the distri-

bution of sample means) can be estimated as σ/
√
N for a sample of size N

with standard deviation σ , the uncertainties in other statistics derived from

the data are unlikely to have such an analytical form.

Bootstrap sampling is a powerful technique for estimating the confidence

intervals of interest for any statistic computed for any dataset, regardless

of the complexity of the statistic of interest or the underlying probability

distribution of the measured data. Given a sample of measured data of

size N , a large number of synthetic data samples are generated by drawing
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random entries (numbers, vectors, particles, or whatever) from the true,

measured, data. The synthetic samples each have size N , like the true

sample, and are randomly chosen with replacement, so any given datum from

the true sample can in theory appear any number of times (from zero to N )

in a given synthetic sample. The statistic of interest is then computed for

each randomly generated synthetic sample. The resulting distribution of the

values of the statistic is treated as an estimate of the sampling distribution for

that statistic. Properties of the sampling distribution can then be computed,

e.g. the standard deviation, or certain percentiles. For example, given the

standard deviation, σX , measured from the sampling distribution obtained

via bootstrap sampling and repeatedly computing the statistic X, the value

of X can be stated as X = X0 ± σX , where X0 is the optimum value of X, as

obtained from analysis of the original data sample.





Appendix B

Wolf et al. Estimator in 3D

In Chapter 2 we made use of the estimator of Wolf et al. (2010) expressed in

terms of observable quantities: i.e. the projected stellar half-light (half-mass)

radius, Re, and line-of-sight velocity dispersion, 〈σlos〉 (equation 2.9). How-

ever, a more fundamental version of the estimator is given in equation (2.8),

from which Wolf et al. (2010) derive equation (2.9) by simply assuming

that the 3D half-light radius, rhalf, is equal to 4Re/3, which is a reasonable

approximation for a range of spherically symmetric density profiles. Yet

the appropriateness of this assumption could vary significantly for some

galaxies, depending on the shapes of their stellar density profiles. We now

investigate the change in the accuracy of the estimator of Wolf et al. (2010),

with respect to the standard case given in equation (2.9), when: (i) a value

for rhalf is inferred from the projected stellar density distribution, instead

of assuming rhalf = 4Re/3, and (ii) typically unobservable 3D information on

the galaxy size and velocity dispersion is used in the mass estimation.

B.1 Deprojection of the stellar mass profile

In order to assess whether the assumption rhalf = 4Re/3 is optimal for the

dispersion-dominated galaxies in our simulated sample, which have a broad
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range of 3D shapes, we carry out an Abel inversion of the projected mass

distribution for all 1536 projections of each galaxy. We make use of splines to

model the cumulative projected stellar mass profile, Mstar(< R). This choice

allows the model profile to be quite general in form, in the sense that the in-

ference of rhalf should not suffer from any overly restrictive parameterisation

that may bias the results. In detail, we find the quartic1 spline that interpol-

ates exactly through points of even spacing, ∆R, on the Mstar(< R) profile,

starting from the galactic centre. The profile is reflected about the centre

before fitting, so that the model is well behaved in the innermost regions.

Additionally, we extend Mstar(< R) for several ∆R beyond the furthest star

particle (where it equals the total stellar mass, Mstar). Starting with an initial

spacing of ∆R = Re/2, we recursively multiply ∆R by 0.95 and refit the spline

until the following condition is satisfied:

1

σ2
fit

∑
i

[Mmodel(< Ri)−Mstar(< Ri)]
2 < nstar , (B.1)

where the summation is over all star particles in the galaxy, with projected

radii Ri . Mmodel(< R) is the stellar mass enclosed within R according to

the spline fit, and nstar is the number of star particles. The choice of the

parameter σfit = 0.01Mstar represents a compromise between the smoothness

and accuracy of the fit.

Given a model for Mstar(< R), and assuming spherical symmetry, the

3D stellar density profile, ρ(r), follows from the Abel integral given in

equation (2.5), where

dΣ(R)
dR

=
1

2πR

[
d2Mstar(< R)

dR2 − 1
R

dMstar(< R)
dR

]
. (B.2)

The equations can then be solved numerically for rhalf.

In Fig. B.1, we show the distribution of the ratio of the estimated 3D

half-mass radius from our deprojection procedure, rdeproj, to the true ra-

dius, rhalf, for all galaxies in our dispersion-dominated sample, alongside

the corresponding distribution from assuming that rhalf is simply 4Re/3. The

distributions are remarkably similar, and show that overall there is no im-

provement in the approximation of the 3D size when switching from using

1So that the second derivative is both continuous and smooth.
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Figure B.1 – Distributions, f (rapprox/rhalf), of the ratio of approximations, rapprox,
for the 3D half-mass radius, rhalf, to the true value of the radius for galaxies in our
dispersion-dominated sample (κrot < 0.5). The rapprox values are computed for 1536
evenly distributed lines of sight, assuming either that rhalf = 4Re/3, or using rdeproj
from our Abel deprojection procedure (different colours). Each projection of each
galaxy contributes to the distributions with equal weight, and each distribution is
normalised to have unit area. The vertical dashed lines show the median ratios,
and the dotted lines show the 10th and 90th percentiles. The standard deviation,
σ , of each distribution is given in the same colour as the lines. The shaded regions
around the vertical lines and the σ errors are the 16th −84th percentile confidence
limits, derived from 104 bootstrap samples of the galaxies for each distribution.
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Figure B.2 – Distributions, f (α), of the estimated to true mass ratio, α, for all
dispersion-dominated galaxies (κrot < 0.5), obtained from projecting over 1536
evenly distributed lines of sight, using different versions of the estimator proposed
by Wolf et al. (2010). The definition of α is different in each panel, and is given expli-
citly in each horizontal axis label. The definitions are: (a) the ratio of the estimated
mass using equation (2.9) to the mass enclosed within the assumed 3D half-mass
radius (4Re/3) – this is the standard definition of αWolf as given in equation (2.14),
(b) the estimated to true mass ratio from equation (2.8) using the deprojected 3D
half-mass radius, rdeproj, from our Abel integration procedure in place of rhalf, (c)
the same as (b) but using the true 3D half-mass radius, rhalf, (d) the ratio of the
estimated mass from equation (2.9) to the mass within rhalf (i.e. this is the ratio of
the estimated to true mass within different spheres, unless rhalf = 4Re/3), and (e) the
estimated to true mass ratio if we replace 〈σlos〉 in equation (2.8) with the mean one-
dimensional stellar velocity dispersion, σ1D = σ3D/

√
3 (so no projected information

is used in this panel). Each projection (if applicable) of each galaxy contributes to
the distributions with equal weight, and each distribution is normalised to have
unit area. The vertical dashed lines show the median α values, and the dotted lines
show the 10th and 90th percentiles. The standard deviation, σ , of each distribution
is given in each panel. The shaded regions around the vertical lines and the σ errors
are the 16th − 84th percentile confidence limits, derived from 104 bootstrap samples
of the galaxies for each distribution.
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the factor of four thirds to using our deprojection procedure (the scatter

actually increases slightly for rdeproj).

In Fig. B.2(a) we show the distribution of the estimated to true mass ratio,

α, for all dispersion-dominated galaxies in our simulated sample, obtained

using the standard projected version of the Wolf et al. (2010) estimator from

equation (2.9) (as in the upper panel of Fig. 2.9). Fig. B.2(b) shows the

distribution if instead we use the 3D version of the estimator as given in

equation (2.8), making the replacement rhalf→ rdeproj. There is no significant

difference between the distributions shown in panels (a) and (b), and so we

conclude that assuming rhalf = 4Re/3 is already optimal, despite the scatter

shown in Fig. B.1.

B.2 Using true 3D galaxy properties

It is interesting to ask how the accuracy of the estimator of Wolf et al.

(2010) changes if intrinsic 3D, i.e. typically observationally inaccessible,

information is available on the galaxy sizes and kinematics. Fig. B.2(c) shows

the distribution of the estimated to true mass ratio when using the true 3D

half-mass radius in equation (2.8), so the only projected quantity used to

compute the distribution shown is 〈σlos〉. The removal of the noise due to

the variation of the projected size reduces the scatter in the distributions,

comparing to panels (a) and (b).

In Fig. B.2(d) we show the distribution of the ratio of the estimated mass

from equation (2.9), i.e. the version of estimator that uses Re, to the true

mass within rhalf. Thus, here α is not the ratio of the estimated mass to the

true mass within the same sphere, as everywhere else in Chapter 2 and this

appendix. The scatter in this distribution is lower than in panel (c), where

the only difference in the definition of α is the replacement 3rhalf → 4Re

from (c) to (d). That is, equation (2.9) is a better estimator of the mass

within the true 3D half-mass radius than equation (2.8). This result may

seem counterintuitive at first, as the former makes use of only projected

information to estimate the mass, while the true 3D half-mass radius is used

in the latter case. This effect can be understood in terms of the coupled

variation of Re and 〈σlos〉 over lines of sight which view the galaxy from

many orientations, such that the variation in the projected size counteracts
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that in the (squared) dispersion, so that the product 4〈σlos〉2Re has a smaller

scatter than 3〈σlos〉2rhalf for the vast majority of galaxies (see Fig. 2.13 and

also Laporte et al. 2013a). The result that equation (2.9) is a better estimator

of M(< rhalf) than equation (2.8) is only attractive if for some reason one

wanted to know M(< rhalf) without any associated estimate of rhalf itself!

When full 3D information is available on the stellar velocities, so that we can

replace 〈σlos〉 in equation (2.8) with the mean one-dimensional dispersion,

σ1D = σ3D/
√

3, the scatter in the estimated masses reduces significantly, as

shown in Fig. B.2(e). Note that no projected information is used in this panel,

so each galaxy contributes a single value to the distribution.
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GALFORM Model Parameters

As outlined in §3.2.3, the Gon14 and Lac14 galform models are each based

on the model of Lagos et al. (2012). This appendix gives details of the

parameter differences between the Gon14 and Lac14 models; beyond the

choice of IMF, SPS model, and default satellite merger scheme (these are

described in §3.2.3 and §3.2.4). Table C.1 gives the values of the relevant

parameters in each model. We refer the reader to Cole et al. (2000), Bower

et al. (2006), and Lagos et al. (2012) for further details of the model physics.

The total star formation rate of a galaxy, ψ, is the sum of the contributions

from quiescent star formation in the disc, ψdisc, and from bursts, ψburst. The

quiescent component is computed as

ψdisc = νSFfmolMcold,disc , (C.1)

where Mcold,disc is the mass of cold gas in the disc, a fraction, fmol, of which

is molecular. νSF is the inverse of the star formation time-scale for molecular

gas (see Table C.1).

The rate, Ṁreheat, at which cold gas is reheated by supernova feedback is

Ṁreheat = ψ
(
Vcirc

Vhot

)−αhot

, (C.2)
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Table C.1 – Parameters that differ between the Gon14 and Lac14 models. A descrip-
tion of each parameter is given in the main text.

Parameter Gon14 Lac14

νSF [Gyr−1] 0.5 0.74
Vhot [kms−1] 425 320

αreheat 1.2603 0.64
αcool 0.6 0.8
εSMBH 0.0398 0.01
forbit 1 0
fburst 0.1 0.05
fgasburst 0.1 0
fdyn 10 20

τmin [Gyr] 0.05 0.1
εdisc 0.8 0.9

where Vcirc is the circular velocity of the galaxy, at the half-mass radius. Vhot

is a parameter with velocity units (see Table C.1), and αhot = 3.2 for both

models. Gas heated by supernova feedback is assumed to be ejected beyond

the virial radius, and then reincorporated into the hot halo gas reservoir at a

rate proportional to αreheat (see Table C.1).

The onset of AGN feedback in galform requires the cooling time, tcool,

and free-fall time, tff, of the gas to satisfy

tcool > tff/αcool , (C.3)

that is, the halo is assumed to be in a state of quasi-hydrostatic cooling. This

criterion is controlled by the dimensionless parameter αcool (see Table C.1).

Additionally, the cooling rate of the gas must be less than a fraction, εSMBH,

of the Eddington luminosity (see Table C.1). If both conditions are satisfied,

AGN feedback is assumed to suppress the cooling of the halo gas.

The orbital energy of merging galaxies is assumed to be proportional to

forbit, and is used to compute the size of the spheroid formed in the merger.

fburst is the minimum galaxy mass (stars plus cold gas) ratio in a minor

merger required to trigger bursts of star formation (major mergers occur for

mass ratios above 0.3). Bursts are suppressed in minor mergers if the gas

fraction in the disc of the main galaxy is less than fgasburst. The star formation

time-scale for a burst is given either by fdyn times the bulge dynamical time,
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or by the parameter τmin, whichever is larger (see Table C.1).

Disc instabilities, causing bursts of star formation, are triggered when

Vcirc√
GMdisc/rdisc

< εdisc , (C.4)

where Mdisc and rdisc are the mass of the disc, and its half-mass radius,

respectively, and εdisc is a dimensionless parameter (see Table C.1).
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