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Abstract

In this thesis the task of computing higher order corrections to QCD scattering

processes for the LHC is considered, specifically Next-to Leading Order (NLO) and

Next-toNext-to Leading Order (NNLO) perturbative QCD corrections. The infrared

(IR) divergent behaviour of the cross section is isolated using the antenna subtrac-

tion formalism. This method has previously been used at NNLO in the calculation

of jet production in the context of e+e− annihilation and for the leading colour con-

tribution to dijet production via pure gluon scattering. The research presented in

this thesis extends the formalism to include scattering processes involving quarks

with initial-state partons. General formulae, including sub-leading colour contribu-

tions, are presented for the isolation and cancellation of IR and singularities when

calculating the production of colourless final-states at the LHC at NLO and NNLO

accuracy. The leading colour NNLO correction to the sub-process qq̄ → gg is cal-

culated and numerical results are presented to demonstrate the convergence of the

physical cross section and the subtraction terms in the various unresolved limits.

The calculations are organised with the aid of convenient quantities, referred to as

integrated antenna strings. Using these quantities, the full calculation displays a

clear and predictive structure, in particular at the double virtual level where the

structures presented are new.
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Preface

In December 1947 George Dixon Rochester and Clifford Charles Butler reported

evidence for the observation of two previously unseen unstable particles in cloud

chamber experiments at Manchester University [8]. The key feature of these new

strange particles was that their decay rates into the then known particles (pions,

muons and neutrinos) were observed to be several orders of magnitude slower than

the rates for typical hadronic reactions. Upon further investigation the strange

particles appeared to be produced in pairs at particle colliders at a rate which was

large with respect to their decay rate. These unexpected “V” particles1, later termed

the Kaons, and their properties led Gell-Mann and Nishijima to postulate an entirely

new quantum number of hadronic matter, strangeness [9] [10]. The utility of this

new quantum number was that it would be conserved in the strong interaction but

not in the weak interaction. As such, strange particles can be produced with a

large cross section by strong interactions so long as they are produced in multiples

which conserve strangeness; yet as a single strange particle is unable to decay via

the strange conserving strong interaction they are forced to decay much more slowly

through the weak interaction.

Following the discovery of the Kaons, many more short lived resonances were

found, some possessing strangeness and others not. In an attempt to understand

the crowded spectrum of hadronic particles Gell-Mann [11], in parallel with Ne’eman

[12], proposed a classification scheme based upon representations of the Lie algebra

of the group SU(3). This model successfully predicted the mass and quantum num-

1So called due to the distinctive V-shaped track left in the cloud chamber by the K0 → π+π−

and K+ → µ+νµ decays, see Fig.1

1
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Figure 1: Rochester and Butler’s photographic plates presented as evidence for new

unstable particles. Left : Below the central bar on the right is the distinctive V

shaped track explained as a decay of a neutral unstable particle into a pair of lighter

charged particles, now understood as the decay K0 → π+π−. Right : Entering from

the top right edge is the unstable charged particle which then decays to a lighter

charged particle and a neutral particle leaving a kink in the track, now understood

to be a K+ → µ+νµ decay.

bers of the Ω− hyperon which was found at the Brookhaven National Laboratory

two years later [13]. The global SU(3) flavour symmetry model subsequently found

physical justification in the quark model of Gell-Mann and Zweig [14] [15], in which

the old quantum numbers of isospin and strangeness became flavour quantum num-

bers of the constituent “up”, “down” and “strange” quarks. Given that the strong

interaction is assumed to be flavour blind and all three quarks are roughly mass

degenerate, an approximate global SU(3) flavour symmetry holds with each quark

in the fundamental representation of the group’s algebra. The shift in emphasis

from properties of hadrons to the properties of partons was an elegant solution to

the problem of classifying hadron multiplets but the baryon spectrum was yet to

reveal its most revolutionary secret.

The quark model was an insightful way to generate the patterns of observed

quantum numbers in hadronic matter but one property of baryons posed a problem.

As fermions the baryons obey the quantum mechanical spin-statistics theorem stat-

ing that odd integer spin quantum states have antisymmetric total wave functions,

given as the product of their flavour, spin and space states, under the exchange of

September 24, 2012
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any two constituent particles. Looking in particular at the spin 3
2

decuplet a few

states cannot satisfy this antisymmetric wavefunction requirement within the ba-

sic quark model, for example the ∆++ and Ω− baryons. Within the quark model

these baryons have quark content (uuu) and (sss) respectively with all quark spins

aligned to generate a total 3
2

spin. When considering ground state s-wave spa-

tial wavefunctions we are forced to conclude that the total wavefunction for these

baryons is symmetric under the exchange of any two quarks, in contradiction to the

spin-statistics theorem.

When confronted by a contradiction with observation, theory rarely emerges

unscathed. In the case of the baryon quantum numbers the theory had two directions

in which it could bend: At a fundamental level the spin-statistics theorem may not

apply to quarks, which at that point were not generally considered elements of

physical reality any more than a useful picture for calculation. Alternatively the

theoretical framework could be extended to accommodate the observed results just

as Gell-mann had proposed strangeness to accommodate Rochester and Butler’s

“V” particles almost twenty years earlier. Following the latter line of enquiry a new

quantum number, colour, was proposed first as a global charge [16], and a year later

as the charge associated with a local gauge symmetry described by the Lie algebra

of the group SU(3) as an additional degree of freedom inherent to the quarks [17].

The assumption that physical states are formed from colour singlet combinations of

coloured quarks severely restricts the possible hadronic spectrum of physical states.

The colour singlet assumption implies that hadronic matter falls into one of two

overall colour structures dictated by the possible ways to build a colour singlet from

coloured quarks and anti-quarks, in the fundamental and conjugate fundamental

representations respectively,

εijkq
iqjqk , qiq̄

i

which classify the hadrons into fermionic baryons and bosonic mesons. It is clear that

the baryon spectrum when considered as a colour singlet is totally anti-symmetric

in its colour indices by virtue of being proportional to the three dimensional Levi-

Civita symbol and so the colour degree of freedom has the additional effect of anti-

symmetrizing the baryonic total wavefunctions.

September 24, 2012
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The colour degree of freedom may have been motivated as an ad hoc extension

to the theory of hadron spectroscopy but its implications were far reaching and

far beyond the remit of explaining baryon quantum numbers. Unlike the approx-

imate flavour SU(3) symmetry resulting from the introduction of strangeness, the

colour degree of freedom implies an exact local gauge symmetry whose dynamics

are calculable through a gauge quantum field theory, Quantum Chromo Dymanics

(QCD).

The examination of this theory in the years since its foundation has provided a

wealth of understanding about the physical world we observe, not only justifying

the assumptions which led to its postulation but revealing fascinating and unex-

pected structures reflected in the behaviour of matter over a vast range of energy

scales. The frontier of discovery is currently being rolled back by the Large Hadron

Collider (LHC) at CERN. A deep understanding of QCD lies at the heart of this

research programme: from providing an accurate description of the hadronic initial-

state, the dominant partonic hard scattering cross-section and its evolution to the

observed hadronic final-state, through to the possibility of producing new coloured

“V” particles, today in the form of squarks, gluinos, colour sextet diquarks, fourth

generation quarks etc. It is clear that our understanding of the physical world at the

teraelectronvolt (TeV) scale, as probed by the LHC, is irreducibly correlated with

the depth of our understanding of QCD.

“. . . Alice started to her feet, for it flashed across her mind that she

had never before seen a rabbit with either a waistcoat-pocket, or a watch

to take out of it, and burning with curiosity, she ran across the field after

it, and fortunately was just in time to see it pop down a large rabbit-

hole under the hedge. In another moment down went Alice after it, never

once considering how in the world she was to get out again.”

(Alice’s Adventures in Wonderland, Chapter 1, Lewis Caroll)
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Chapter 1

QCD in the Collider Environment

In this chapter the underlying theory relevant to this thesis is presented. QCD is

introduced at the level of the Lagrangian density from which a perturbative de-

scription of strong dynamics can be derived. The parton model is introduced in the

context of hadronic collisions relevant for LHC era calculations and is refined by

considering the effect of QCD corrections within the model. The self-consistency

of perturbative QCD calculations is considered which in turn motivates the renor-

malization procedure and collinear factorization, necessary to perform higher order

calculations. By invoking renormalization and collinear factorization we are nat-

urally driven to consider the dependence of our calculations on unphysical scales

introduced at intermediate stages of the calculation, and the consequences of this

dependence for the self-consistency of the perturbative description. With the theory

properly defined such that reliable calculations can be performed, some considera-

tion is given to which calculations are actually desirable for LHC era phenomenology

and the need for higher order calculations will be motivated. The technical diffi-

culties of higher order calculations are presented and those solutions suitable to

higher order calculations are discussed, with particular emphasis on the antenna

subtraction method for isolating infrared singularities.

5
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1.1 QCD and the Näıve Parton Model

1.1.1 Fundamentals of QCD

Within the framework of quantum field theory (QFT) individual theories may be

specified by their Lagrangian density [18], (from this point referred to simply as the

Lagrangian), defined as the integrand of the space-time integral defining the action

functional,

S[{φκ}] = i

∫
d4x L({φκ(x)}; {∂φκ(x)}), (1.1)

where {φκ} denotes the set of fields present in the Lagrangian. In the case of QCD

the relevant fields are the spinor quark and anti-quark fields, ψ(x) = ψα,i(x), ψ̄(x) =

ψ̄α̇,i(x), the vector gluon fields, Aµ(x) = Aaµ(x) and the anti-commuting scalar ghost

fields, η(x) = ηa(x), η̄(x) = η̄a(x); where the indices α, µ denote the space-time

spinor and Lorentz indices and the labels i, a denote the internal symmetry colour

indices for the fundamental and adjoint representations of the symmetry group’s Lie

algebra respectively.

Two a priori assumptions about the QFT describing the strong force dramat-

ically constrain the form of the QCD Lagrangian: the theory derived from the

Lagrangian should be renormalizable and have a classical action which is invariant

under local gauge transformations belonging to the Lie algebra of the symmetry

group SU(3). The first requirement is discussed more comprehensively in section

1.2. For the purposes of defining the Lagrangian this requirement amounts to en-

suring all operators in the Lagrangian have a mass dimension at most equal to the

number of space-time dimensions, taken to be four in standard QCD; this statement

is equivalent to requiring all coupling and mass parameters in the local Lagrangian

have non-negative mass dimension. The second consideration concerns the gauge

invariance of the classical action which amounts to a space-time dependent redefini-

tion of the quark fields, ψ(x), under linear transformations, U(x), belonging to the

Lie algebra of the symmetry group SU(3).

The classical action is characterised by the classical Lagrangian which may be
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written as [19],

Lclassical = −1

2
Tr
[(
t ·Fµν

)2]
+
∑
f

ψ̄f (i /D −mfI)ψf , (1.2)

where f denotes the flavours of quarks in the matter sector of the theory and mf

their masses, which for the purposes of this thesis are set to zero for the active quark

flavours. The field strength tensor and covariant derivative are defined respectively

as,

Fµν =
(
∂µAν − ∂νAµ − gAµ ∧Aν

)
, (1.3)

/D = γµ ·
(
∂µI + igt ·Aµ

)
, (1.4)

where g is the QCD coupling constant which determines the overall strength of

interactions, γµ represents a matrix in spin-space belonging to a Clifford algebra

with its spinor indices suppressed and t = taij are the generators of the fundamental

representation of the Lie algebra for the group SU(3). Written in terms of compo-

nents
[
Aµ ∧ Aν

]
a

= fabcA
b
µA

c
ν and fabc are the structure constants for the group

SU(3) defined by, [ta, tb] = ifabct
c. Under a local gauge transformation the quark

fields and, by definition, the covariant derivative transform in the same way, whereas

the anti-quark fields transform in the opposite fashion appropriate to the conjugate

fundamental representation,

ψ(x) → U(x)ψ(x), (1.5)

ψ̄(x) → ψ̄(x)U−1(x), (1.6)

Dµψ(x) → U(x)Dµψ(x). (1.7)

This implies the transformation of the gluon field,

t ·Aµ(x) → U(x)

(
t ·Aµ(x) +

i

g
U−1(x)∂µU(x)

)
U−1(x) (1.8)

The gluon field strength can be defined in terms of the covariant derivatives, whose

transformation properties are displayed in (1.7), via the relation [Dµ,Dν ] = igt ·Fµν
and so the gluon field strength’s transformation properties are given by,

t ·Fµν → U(x)t ·FµνU−1(x). (1.9)
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The transformation properties listed in equations (1.5)-(1.7) and (1.9) are sufficient

to demonstrate the local gauge invariance of the classical Lagrangian as formulated

in (1.2), satisfying the second requirement on the QCD Lagrangian.

The classical QCD Lagrangian is fixed uniquely by the requirements of renormal-

izability and local gauge invariance1, however to properly quantize the theory the

classical notion of gauge invariance is superseded by the principle of gauge indepen-

dence. In order to achieve this, the gauge invariance of the full QCD Lagrangian is

broken by the addition of a term which fixes the gauge, Lg.f. The gauge-fixing term

is not uniquely prescribed a priori; each class of gauges can generally be fixed using

a 1-parameter family of gauge-fixing terms, characterised by the gauge parameter

λ, per class of gauge-fixing terms characterised by a functional of the gauge field

G[Aµ(x)]. The gauge-fixing term breaks classical gauge invariance using a term

specified by a choice of λ, however gauge independence requires that calculated

observables are independent of the choice of λ made when fixing the gauge.

The general form for the gauge-fixing term in a non-Abelian gauge theory’s La-

grangian is written in terms of the gauge-fixing functional and the gauge parameter,

Lg.f = −1

λ
Tr
[
G[Aµ(x)]2

]
. (1.10)

A commonly used class of gauge-fixing terms defines the class of covariant gauges,

for which G[Aµ(x)] = ∂µt ·Aµ. For this class of gauges the gauge-fixing term in the

Lagrangian is given by,

Lg.f = −1

λ
Tr
[
(∂µt ·Aµ)2

]
(1.11)

with the gauge parameter λ defining individual gauges, e.g., λ = 1 defines the

Feynman gauge and λ = 0 the Landau gauge. In non-Abelian gauge theories such

as QCD the gauge-fixing terms are not sufficient to properly define the gauge field

in the class of covariant gauges. The gauge field’s self-interaction through three and

1The intriguing exception to this statement is the so-called “θ-term”, Lθ = θg2

16π2 Tr
[
t ·F ∧

t ·F
]
. The effects of this term are not visible in perturbative calculations but for non-zero θ

non-perturbative effects may induce CP violating contributions to observables; such effects are not

observed and it remains an open problem for the Standard Model to explain their absence.
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four gluon vertices requires that the unphysical longitudinal degree of freedom is

removed through the inclusion of ghost fields to the Lagrangian. The complex scalar

ghost fields are Grassmann valued fields which are introduced to the Lagrangian via

the term,

Lghost = ∂µη̄ ·Dµ ·η (1.12)

which couple to the gauge field through the covariant derivative. This term can be

rewritten in the form,

Lghost = ∂µη̄ · ∂µη + gAµ ·
(
∂µη̄ ∧ η

)
(1.13)

where the non-Abelian nature of the coupling is evident in the presence of the

exterior product,
[
∂µη̄ ∧ η

]
a

= fabc∂
µη̄bηc. In the case of an Abelian theory such

as QED fabc = 0 and the ghost fields do not couple to the gauge field, admitting

only kinetic terms; this allows the ghost fields to be integrated out of the functional

integral without affecting the dynamics of the theory.

An alternative to the covariant gauges is the class of axial gauges where in

addition to the gauge parameter an arbitrary space-time vector, nµ, is used to define

the gauge-fixing functional such that,

Lg.f = −1

λ
Tr
[
(nµt ·Aµ)2

]
. (1.14)

Once a theory is gauge fixed, whether in covariant or non-covariant axial gauges,

the observable predictions of the theory are independent of the gauge choice so no

gauge choice is in principle preferred. However practical concerns when performing

a calculation can inform a convenient gauge choice. The practical advantage of axial

gauges is the absence of the need for ghost fields, with the trade-off that the gluon

propagator may be more complicated than in some covariant gauges. A commonly

used axial gauge is the light-cone gauge where the reference vector is restricted to

the light-cone, nµn
µ = 0, in addition to specifying the gauge parameter λ = 0.

With the full QCD Lagrangian properly defined it is possible to read off the

Feynman diagrams from the Lagrangian and derive the associated Feynman rules.
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1.1.2 Colour ordering and colour sums

The physical matrix elements are functions of several variables, primarily the exter-

nal momenta {pi}, the colours of the external states {ci} and their helicities {λi}.

Accordingly the matrix element may be considered as a vector in a Hilbert space

spanned by colour and helicity eigenvectors. The basis in colour and helicity space

for n-parton scattering is given by a set of basis vectors [20],

|c,λ〉 = |c1, . . . , cn〉 ⊗ |λ1, . . . , λn〉 (1.15)

such that the matrix element is the projection of a vector in the Hilbert space into

this basis of colour and helicity states,

M{ci},{λi}
n ({pi}) = 〈c,λ|M〉. (1.16)

When summed over all helicity and colour states the square of the matrix element

is given by,

|Mn|2({pi}) =
∑

{ci},{λi}

〈M|c,λ〉〈c,λ|M〉

= 〈M|M〉. (1.17)

It is often illuminating to consider the decomposition of the matrix element into

its various colour structures. In such a decomposition the individual terms are

factorized into a product of a function containing all the colour information for

a given colour structure and a function which describes all kinematic behaviour

belonging to that structure, known as the partial amplitude. Labelling the various

colour structures for a given scattering process Λj, the matrix element may be

decomposed into those colour structures accordingly,

M{ci},{λi}
n ({pi}) =

∑
j

FΛj
({ci}) M{λi}

n ({pi},Λj) (1.18)

where FΛj
denotes the function containing all colour dependence of the matrix el-

ement within the colour structure Λj and M{λi}
n ({pi},Λj) is the partial amplitude

belonging to that colour structure. The details of the decomposition depend on the

partonic content of the scattering amplitude: the number of external states, the
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types of particles, the loop order of the matrix element, etc [21–23]. Squaring (1.18)

and summing over colours and helicities yields,

|Mn|2({pi}) =
∑
j,k

∑
{ci}

F †Λj
({ci})FΛk

({ci})
∑
{λi}

M{λi}†
n ({pi},Λj)M{λi}

n ({pi},Λk).

(1.19)

In the special case where Λj = Λk in the sum over colour structures, the squared

partial amplitude is defined to be,

M{λi}
n ({pi},Λj) = M{λi}†

n ({pi},Λj)M{λi}
n ({pi},Λj), (1.20)

which may be kept in the helicity basis or summed over helicity to give the helicity-

summed squared partial amplitude,

Mn({pi},Λj) =
∑
{λi}

M{λi}
n ({pi},Λj). (1.21)

The traditional method for calculating matrix elements in perturbation theory is via

the evaluation of Feynman diagrams. In order to decompose the matrix element,

calculated as the sum of Feynman diagrams, into colour-ordered partial amplitudes

the Feynman diagrams themselves must be similarly factorized into a colour depen-

dent function and a colour-stripped Feynman amplitude containing all kinematic

dependence. Each propagator and vertex defined by the Feynman rules [19] is asso-

ciated with a colour factor, e.g., the quark-gluon vertex carries the colour factor taij,

which is a matrix in the fundamental representation of the Lie algebra of SU(3). As

the colour information for each element of a Feynman diagram is simply an overall

factor the colour dependence of an entire Feynman diagram trivially factors out,

being the product of the colour factors for each propagator and vertex.

D({pi}, {ci}) = C({ci}) D({pi}). (1.22)

Here C contains the explicit dependence of the Feynman amplitude on the colours of

the external particles but also an implicit dependence on the colours of the internal

virtual particles whose colour degrees of freedom must be summed over. In order to

perform the sum over internal colours a number of identities are utilized, the first

of which allows the structure functions of SU(3)’s Lie algebra (and thus the three-
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Figure 1.1: The Feynman diagrams contributing to two-quark two-gluon scattering

at tree level.

and four-gluon vertices) to be rewritten in terms of generators in the fundamental

representation,

fabc = −2iTr([ta, tb]tc). (1.23)

The second identity allows generators with identical adjoint colour indices to be

summed over and written in terms of Kronecker delta functions carrying only fun-

damental indices, named the Fierz rearrangement,

taijt
a
kl =

1

2

[
δilδkj −

1

N
δijδkl

]
. (1.24)

Using these identities all structure constants may be eliminated from C in favour

of generators in the fundamental representation and all internal colour degrees of

freedom, by definition the colour factors with repeated adjoint indices at the am-

plitude level, may be summed over. The effect of summing over the internal colour

degrees of freedom is to decompose the Feynman amplitude into the basis of colour-

ordered partial amplitudes previously introduced in (1.18). This can be understood

by noticing that the only colour dependence retained by the Feynman amplitude is

that of the colour of the external states which is used to define the colour basis of

the Hilbert space.

To demonstrate how Feynman amplitudes are decomposed into their various colour

structures consider the tree level contribution to two-quark two-gluon scattering

process. The Feynman diagrams for this process are displayed in figure 1.1 and the

colour structure of their corresponding amplitudes in (1.25),

D1 = (tatb)ij D1,
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1.1. QCD and the Näıve Parton Model 13

D2 = (tbta)ij D2,

D3 = itcijf
cab D3, (1.25)

where i, j denote the colour indices of the quarks labelled 1 and 2 respectively and

a, b the external gluons 3 and 4 respectively. The Feynman amplitude with the

three gluon vertex contains internal colour degrees of freedom which are summed

over using the identities (1.23) and (1.24), thus decomposing the Feynman amplitude

into the colour structures of the other amplitudes whose colour factors depend only

on external colour degrees of freedom,

D3 =

[
(tatb)ij − (tbta)ij

]
D3 (1.26)

The amplitude can therefore be decomposed into its colour structures according to

(1.18),

M0
4 = (tatb)ij M0

4(1q, 3g, 4g, 2q̄) + (tbta)ij M0
4(1q, 4g, 3g, 2q̄), (1.27)

where the three Feynman amplitudes are decomposed into the two colour structures

to form the colour-ordered partial amplitudes,

M0
4(1q, 3g, 4g, 2q̄) = D1 +D3,

M0
4(1q, 4g, 3g, 2q̄) = D2 −D3 (1.28)

As stated in (1.19), the remaining colour belonging to the external particles is

summed over when forming the square of the colour function C. The Fierz identity

can once again be used to express the sums over adjoint colour indices in terms of

Kronecker delta functions. In the example of two-quark two-gluon scattering con-

sidered above, the square of the colour functions belonging to each colour structure

summed over colours yields,

|M0
4|2 = N(N2 − 1)

[ ∑
{i,j}∈{3,4}

M0
4 (1q, ig, jg, 2q̄)−

1

N2
M̃0

4 , (1q, 3g, 4g, 2q̄)

]
,

(1.29)

where the subleading colour contribution M̃0
4 = |M̃0

4|2 and the subleading colour

amplitude is the sum of partial amplitudes,

M̃0
4(1q, 3g, 4g, 2q̄) = M0

4(1q, 3g, 4g, 2q̄) +M0
4(1q, 4g, 3g, 2q̄). (1.30)
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The subleading colour amplitude behaves as if one or two of the gluons were charged

under a U(1) rather than SU(3) symmetry, sometimes referred to as an Abelian

gluon. The Abelian nature of the amplitude can be seen explicitly by noticing that

according to (1.28) the non-Abelian three-gluon vertex cancels in the sum of the

partial amplitudes defining the subleading colour amplitude.

The matrix elements considered in this section have been assumed to contain

exclusively final-state partons. Introducing initial-state partons, two in the case of

hadron-hadron collisions, merely involves changing the normalization of the state-

vectors in the colour-helicity space in order to account for the averaging over initial-

state colours [20],

|{i}〉 → 1
√
n1n2

|{i}〉, (1.31)

where n1,2 denote the number of colour states which can be accommodated by initial

state particles 1 and 2, and thus averaged over; nq = nq̄ = N , ng = N2 − 1.

1.1.3 Hadron-hadron collisions

The previous sections have defined the fundamentals of QCD as a QFT displaying

local gauge symmetry, with quarks and gluons as coloured fundamental degrees of

freedom. Matrix elements and scattering probabilities may be calculated within

the framework of perturbation theory as embodied by the Feynman rules but these

rules provide information about the parton-level scattering only. In a hadron collider

such as the LHC the degrees of freedom are the colourless hadrons, the dynamics

of which cannot be derived within QCD from first principles. In order to calculate

in the hadron collider environment a model of hadrons is introduced which näıvely

assumes the hadron is a collection of partons, the interactions of which dominate

the dynamics of the hadron.

A key assumption of this model is that the partons carry a definite fraction

of the hadron’s total momentum and thus belong to a momentum distribution.

This assumption can be heuristically motivated by considering the hadron-hadron

collision in the centre of mass frame [24]. A more realistic model of the hadron

includes soft interactions within and between the hadrons both before and after the
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collision, non-perturbative effects and a rapidly evolving state-vector describing the

creation and annihilation of virtual quarks and gluons. The issue of non-perturbative

effects will be suspended until section 1.2 and the reliability of a perturbative picture

based upon weakly interacting quarks and gluons is assumed. In the centre of

mass frame the incoming hadrons are highly relativistic leading to a Lorentz factor

γ ≈ 7450. The boosted kinematics cause two well known effects of special relativity

to become evident in the centre of mass frame: the protons are Lorentz-contracted

along the beam axis and interactions occurring in the proton’s frame appear time-

dilated. The effect of these phenomena is that the time it takes for a probe, in

this case a parton from the other hadron, to traverse the contracted hadron is far

shorter than the time-scale of the dilated virtual interactions. As far as the probe

is concerned the hadron’s partons appear frozen such that on the time-scale of the

collision the hadron appears to exist in a single state with each parton possessing

a definite fraction of the proton’s total momentum. This intuitive physical picture

justifies the assumption that the collision is dominated by parton-level scattering

rather than hadron scattering as on the time-scales of the collision the individual

partons are not interacting with the rest of the hadron. The effect of soft interactions,

characterised by the scale ΛQCD at which hadronic interactions dominate over QCD,

are numerically subleading to the partonic interactions which occur at the hard

scattering scale,
√
s; they occur over time-scales significantly longer than the hard

scattering process and so do not interfere with the parton-level calculation.

The assumptions of the näıve parton model allow the cross section to be written

in a factorized form [25],

dσ(P1, P2) =
∑
i,j

∫
dξ1

ξ1

dξ2

ξ2

fi(ξ1)fj(ξ2) dσ̂ij(ξ1P1, ξ2P2) +O
(
Λ2

QCD/s
)
(1.32)

where P1,2 are the momenta of the incoming hadrons, ξ1,2 the fractions of those

momenta carried by the partons i, j initiating the hard scattering process, the cross

section for which is given by dσ̂ij, and fi is the parton distribution function (PDF)

which provides information on the average momentum fraction of the hadron carried

by partons of type i. The interpretation of this formula in the näıve parton model is
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clear: the cross section for a given final-state to be produced in a hadronic collision is

given by the cross section for the underlying parton-level sub-process, summed over

all sub-processes, with each sub-process carrying a weight dictated by the hadron’s

PDF corresponding to the probability of a given parton initiating the channel in

question. For final-state coloured particles additional hadronization effects produce

corrections to this formula which are nevertheless suppressed for sufficiently large

hadron-hadron centre of mass energies.

By neglecting soft corrections of O
(
Λ2

QCD/s
)

a formula for the cross section

is obtained which fully factorizes into a partonic cross section and the hadronic

PDFs. Given a suitably small coupling constant the partonic cross section can be

reliably calculated within perturbation theory using the methods set out in sections

1.1.1-1.1.2. The PDFs are inherently non-perturbative quantities pertaining to the

properties of hadrons which are nevertheless universal and can be fitted to data from

many processes and even from multiple experiments. The properties of PDFs and

their determination with respect to data is covered in more detail in sections 1.4

and 1.6.

1.2 Renormalization of QCD

The subject of renormalization is as rich and fascinating as QFT itself; the subject is

integral to both practical calculations and the physical interpretation of results in a

vast spectrum of field theories in particle physics and even further afield. This thesis

will attempt only to highlight some of the key features necessary for the research

presented; more comprehensive treatments of the subject may be found in [26] [27].

Notwithstanding the technical intricacy of the subject, for the purposes of this thesis

the issue of renormalization essentially amounts to a proper definition of the theory

under consideration.

The fields, coupling constant and gauge-fixing parameter entering the Lagrangian

defined in section 1.1.1 simply parameterize the theory and are not fixed measur-

able quantities. In an interacting QFT quantum corrections to physical observables

contain self interactions of the fields; in the perturbative picture these self interac-
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tions are displayed as closed loops in Feynman diagrams. The quantum corrections

to the classical theory generate dynamical contributions to the parameters of the

Lagrangian. In the case of a renormalizable theory such as QCD, these quantum

contributions only cause shifts to the existing parameterization of the theory rather

than generating new terms in the Lagrangian, as would be the case for a non-

renormalizable theory2.

The reparameterization of the bare Lagrangian due to quantum corrections is

mathematically described by rescaling the fields, coupling constant and gauge-fixing

parameter by overall multiplicative factors:

ψ0(x) = Z
1/2
2 ψ(x),

A0,µ(x) = Z
1/2
3 Aµ(x),

η0(x) = Z1/2
η η(x),

g0 = Zg g,

λ0 = Z3 λ, (1.33)

where the bare quantities on the left hand side are those previously used to define the

Lagrangian in section 1.1.1 and those on the right hand side are the renormalized

parameters of the theory. The quantum corrections are perturbatively described

by loop integrals over momenta with arbitrarily high magnitudes, yielding diver-

gent contributions to the multiplicative renormalization factors. By absorbing all

divergent behaviour into the renormalization of the bare parameters of the theory,

the Green’s functions, from which physical observables are derived, depend only on

2A simple example of this point is seen by considering a Lorentz invariant massless scalar

“φ3” theory in d dimensions. The one-loop self-energy graph has degree of divergence of d − 4.

Differentiating with respect to the external momentum yields a degree of divergence one unit

smaller with each differentiation, and so if d = 8 five derivatives are taken to render the graph

finite. Integrating this quantity with respect to the momentum five times yields five constants

of integration, of which two are zero by Lorentz invariance leaving only terms with the structure

c1 + c3p
2 + c5(p2)2. The divergences proportional to the c3 and c1 terms can be absorbed by

renormalizing the kinetic and interaction terms in the Lagrangian respectively. The c5 term would

require a term in the Lagrangian quartic in the field’s derivative, not present in the original

Lagrangian thus demonstrating the theory’s non-renormalizability in d = 8.
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renormalized quantities and are rendered finite to all orders in perturbation theory.

The absolute normalization of the parameters in a renormalizable theory are not

predicted within the theory. An intuitive understanding of why this might be is

given by Wilson’s interpretation of a renormalizable theory as a low energy effective

theory to a more complete high energy theory [28]. In this picture the theory

contains an additional parameter, Λ, the momentum scale at which the high energy

theory is naturally defined. The high energy theory will in general be characterised

by a non-renormalizable Lagrangian which explicitly depends on Λ. It is one of the

more profound discoveries in QFT that in a general non-renormalizable Lagrangian,

only those terms which are renormalizable are significant at relatively low energies,

with the non-renormalizable terms suppressed by powers of Λ [18].

In this picture, the absolute normalization of the theory’s parameters would

require knowledge of the unknown high energy theory to which the renormalizable

theory is an approximation in the low energy limit. This interpretation implies that

the absolute normalization of the theory’s parameters cannot be calculated within

a renormalizable theory and must be inferred from experiment defined at a given

momentum scale. The purely renormalizable theory is obtained by sending the high

momentum scale Λ → ∞. This limit appears to be unjustifiable as it effectively

removes one of the theory’s degrees of freedom, Λ; however it has already been

noted that in such a limit the theory can only be well defined upon normalizing the

theory’s parameters to experiment at an arbitrary momentum scale, µ, denoted the

renormalization scale. Ignorance of the high energy physics characterised by Λ is

traded for the arbitrary nature of the renormalization scale µ.

In a higher order calculation, integrals over unconstrained loop momenta sam-

ple arbitrarily high momentum scales even if the external momenta are held at

laboratory scales. In a general theory a subset of the possible diagrams will yield

divergent integrals and are formally ill-defined quantities. In a renormalizable the-

ory this subset of diagrams is severely restricted such that the theory is rendered

finite order-by-order in perturbation theory but there are an infinite number of ill-

defined diagrams belonging to this restricted class nonetheless. In order to perform

the renormalization of a theory and demonstrate its finiteness in perturbative cal-
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culations it is generally desirable to quantify the divergence such that it can be

directly manipulated by employing a regulator 3. The regulator of choice for QCD

is dimensional regularization whereby the theory is defined in d-dimensions rather

than the physical four [29]. Extending the dimension of the space and the notion of

integration to non-integer values is non-trivial but consistent as shown by [30] and

for practical purposes amounts to considering d to be a continuous variable. Fol-

lowing the rules of d-dimensional integration, the solution to a given loop integral is

in fact a well defined analytic function in d dimensions with poles at d = 4 display-

ing the divergence known to exist for a class of diagrams. By allowing d = 4 − 2ε

and expanding whichever function is being calculated as a Laurent series in ε the

divergences of the loop integration are revealed as poles in the small parameter ε.

In practical perturbative calculations, the renormalization of the theory’s pa-

rameters is performed by trivially rewriting the multiplicative factors,

Zi = 1 + (Zi − 1) (1.34)

such that the original form of the Lagrangian is split into two contributions: the basic

Lagrangian written purely in terms of renormalized quantities and the counterterm

Lagrangian written in terms of renormalized parameters and a set of counterterms

defined in terms of the multiplicative Z-factors,

L = Lbasic + Lc.t. (1.35)

In QCD this partitioning of the Lagrangian yields the counterterm Lagrangian4,

Lc.t = −1

4
δ3(∂µAν − ∂νAµ)2 + δ2ψ̄(i/∂)ψ

+ gδgψ̄(t · /A)ψ − gδ43 (∂µAν) · (Aµ ∧Aν)

+
1

4
g2δ�3 (Aµ ∧Aν)

2 + δη∂µη̄ · ∂µη + gδ4η Aµ · (∂µη̄ ∧ η) (1.36)

3The fact that regularization is desirable rather than necessary is demonstrated by the BPHZ,

or zero-momentum, scheme of renormalization. [26]
4There is no counterterm for the gauge-fixing term in this definition of the counterterm La-

grangian. Such a term is zero due to the renormalization factor for the gauge parameter being

as described in (1.33). Justification for renormalizing the gauge parameter in this way is evident

when considering the finiteness of the renormalized BRST transformation of the η̄ field.
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where δ4i and δ�i denote the counterterms for the three- and four-point vertices for

the relevant fields respectively and the traces over colour indices have been performed

for clarity. The counterterms for the field renormalizations are trivial and given by,

δ2 = Z2 − 1,

δ3 = Z3 − 1,

δη = Zη − 1, (1.37)

whereas the counterterms for each interaction vertex involve multiple fields and have

the more complicated forms,

δg = ZgZ2Z
1/2
3 − 1,

δ43 = ZgZ
3/2
3 − 1,

δ�3 = Z2
gZ

2
3 − 1,

δ4η = ZgZ2Z
1/2
3 − 1. (1.38)

With the Lagrangian in this form, renormalizing the theory’s parameters is equiva-

lent to shifting the values of the counterterms away from zero.

The absolute normalization of the theory’s parameters are fixed using several

renormalization conditions, defined at the arbitrary renormalization scale µ. In this

procedure there are two particular freedoms for the normalization of the theory: the

finite value a given Green’s function is normalized to as stipulated by the renormal-

ization conditions and the momentum scale at which this normalization is defined.

The first consideration comes down to the size of the finite contribution to the

counterterm which may be arbitrarily added without affecting the cancellation of the

singularities. Adding or subtracting a finite contribution to the counterterm simply

moves a finite quantity between the basic and counterterm Lagrangians and so leaves

the functional integral unaltered. A systematic choice for the finite contribution to

the counterterms defines the renormalization scheme, e.g., the minimal subtraction

(MS) scheme is defined such that the finite pieces of the counterterms are zero,

removing only the singularities defined as poles in ε when working in dimensional

regularization.
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As previously mentioned, the arbitrary partitioning of a finite quantity between

the basic and counterterm Lagrangians leaves the functional integral invariant and

so physical predictions of the theory are independent of the renormalization scheme

chosen. This argument for scheme independence is only true at the level of the

full theory. When approximating the full theory using a perturbative expansion

the calculation of a physical quantity may display a residual scheme dependence

due to the perturbative expansion being an asymptotic series and that series being

truncated at a finite order. Although non-zero, the scheme dependence for a quantity

calculated at O(αns ), where αs = g2
s/4π, is formally non-zero at O(αn+1

s ).

One scheme which is popular when performing higher order perturbative cor-

rections is the modified minimal subtraction scheme (MS) in which finite contribu-

tions occurring systematically order-by-order in the loop expansion are moved into

the counterterm Lagrangian, thus removing them from the renormalized quantities

and simplifying the results of calculations. For practical calculations this scheme

amounts to working in the MS scheme and redefining the dimensional regularization

parameter to be ε̄,

ε̄ =
1

C̄(ε)
ε (1.39)

where C̄(ε) = e−γε(4π)ε and γ is the Euler-Mascheroni constant.

The second freedom in the normalization of the theory is the arbitrary momen-

tum scale, µ, at which the renormalization conditions apply. It is of course possible

to renormalize the theory at an equally arbitrary yet different momentum scale, µ′.

Clearly any physical observable is invariant under a shift of the arbitrary renor-

malization scale. For a dimensionless observable dependent on a single physical

momentum scale s, the observable must be a function of (s/µ2) to be dimension-

ally correct, where additional µ dependence enters via the renormalized coupling

αs due to the renormalization conditions. Such an observable’s invariance under a

continuous shift in the renormalization scale is given mathematically in the form of

a differential equation,

µ2 d

dµ2
R
(
s/µ2, αs(µ

2)
)

= 0. (1.40)

Expanding the exact differential and employing the convenient variable t = ln(s/µ2)
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yields, [
− ∂

∂t
+ β(αs(µ

2))
∂

∂αs(µ2)

]
R
(
et, αs(µ

2)
)

= 0 (1.41)

where β
(
αs(µ

2)
)

is the QCD β-function which describes the variation of the coupling

with a variation of the scale and is defined as,

β
(
αs(µ

2)
)

= µ2∂αs(µ
2)

∂µ2
. (1.42)

Variation in the coupling allows (1.41) to be satisfied for any change in µ by exactly

compensating with a change in αs. The general solution to (1.42) for a change in

scale between µ2 and s is given by,

t =

∫ αs(s)

αs(µ2)

dαs(µ
′2)

β
(
αs(µ′2)

) , (1.43)

For a suitably small value of the coupling the β-function can be expanded in αs as

a perturbative series,

1

2π
β
(
αs(µ

2)
)

= −β0

(
αs(µ

2)

2π

)2

− β1

(
αs(µ

2)

2π

)3

+O
(
αs(µ

2)4
)
. (1.44)

By retaining only the first term in this series (1.42) can be approximately solved,

resulting in the 1-loop running coupling,

αs(s) =
α0

1 + α0β̄0t
, (1.45)

where α0 = αs(µ
2) and β̄0 = β0/2π. Retaining higher terms in the perturbative

expansion of the β-function provide higher loop corrections to this solution. The

leading order coefficient is given by,

β0 =
11N − 2NF

6
(1.46)

where for QCD N = 3 and NF denotes the number of active quark flavours such

that,

β0 > 0 for NF ≤ 16, (1.47)

which is certainly the case for the Standard Model at LHC energies.

Two aspects of this solution are immediately apparent: the behaviour of αs(s)

in the limit s→∞, t→∞ and the limit s→ µ2e−1/β̄0α0 , t→ −1/β̄0α0. In the high
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momentum scale limit the coupling decreases, an effect known as asymptotic freedom.

It has been assumed at several points in this thesis that the coupling constant

for QCD is suitably small such that perturbation theory can be reliably used to

approximate the full theory; asymptotic freedom states that even if this assumption

were not true at some scale, at a sufficiently high energy scale the assumption would

hold. The utility of this result for scattering experiments such as the LHC is that

within the parton model, not only can the cross section be factorized into a partonic

cross section and hadronic PDFs but the partonic cross section can be reliably

calculated within perturbation theory for sufficiently high centre of mass energy

collisions. This goes some way to justifying the näıve parton model’s assumption

that a relativistic hadron can be considered as a weakly interacting collection of

partons.

The second feature of this solution is the behaviour of the solution as t →

−1/β̄0α0. In this limit the denominator of (1.45) tends to zero and the coupling

diverges to infinity. This result should not be interpreted as the physical coupling

diverging at such a scale but rather evidence for the breakdown of a perturbative

solution’s reliability. The solution given by (1.45) is obtained by approximating the

β-function as a perturbation series which is only valid in the small coupling limit5.

A solution to (1.41) is given by,

R
(
et, αs(µ

2)
)

= R
(
1, αs(s)

)
(1.48)

such that the scale dependence of the observable is described entirely by the scale

dependence of the running coupling. To demonstrate this consider the notation

α = αs(µ
2), α∗ = αs(s), β = β(α), β∗ = β(α∗) for clarity. Equation (1.41) written

in the new variables is simply,[
− ∂

∂t
+ β

∂

∂α

]
R(1, α∗) = 0 (1.49)

The fact that (1.48) provides a solution to this equation can be seen by first evalu-

5The analytic behaviour of the QCD coupling in the low energy limit remains an open problem;

in particular the emergence of a linear inter-quark potential is necessary for confinement, the

phenomenon whereby quarks are confined to colourless hadrons
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ating the partial derivative of (1.43) with respect to t,

1 =
∂α∗

∂t

1

β∗
(1.50)

then consider differentiating (1.43) with respect to α,

0 =
∂α∗

∂α

1

β∗
− 1

β
(1.51)

rearranging these equations yields,

β∗ =
∂α∗

∂t
&

∂α∗

∂α
=
β∗

β
(1.52)

which can be used to rewrite (1.49) in the form,[
−β∗ ∂

∂α∗
+
β · β∗

β

∂

∂α∗

]
R(1, α∗) = 0, (1.53)

such that any function which is purely a function of α∗ = αs(s) satisfies this equation,

in particular R
(
1, αs(s)

)
. This function can be expanded as a perturbative series in

αs(s),

R
(
1, αs(s)

)
= r1αs(s) + r2αs(s)

2 +O(αs(s)
3). (1.54)

Expanding (1.45) as a geometric progression allows αs(s) to be written purely in

terms of the coupling at a different scale6 α0 = αs(µ
2) and the logarithm of the two

kinematic scales, t,

αs(s) = α0

∞∑
n=0

[
−α0β̄0t

]n
, (1.55)

such that by using the running coupling, the logarithms of different scales occurring

in perturbation theory are automatically resummed. It is necessary in a fixed order

calculation to keep track of all contributions to the observable entering at the same

order in the expansion parameter. For a leading-order calculation is suffices to retain

the first coefficient in (1.54) and the first term in the expansion for the running

coupling,

R
(
1, αs(s)

)
LO

= r1α0, (1.56)

6The reference scale is commonly taken to be the mass of the Z0 boson, µ2 = MZ , due to the

decreased experimental uncertainty on αs at this scale
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where no logarithms are present as would be expected from a leading-order calcu-

lation which doesn’t require renormalization. At NLO the next term in the pertur-

bation expansion for R is required, along with the NLO correction to the running

coupling,

R
(
1, αs(s)

)
NLO

=
(
r2 − β̄0t

)
α2

0. (1.57)

At NNLO it is necessary to solve (1.42) by including the NNLO corrections to the

perturbative expansion of the β-function. By including the β1 term and solving the

β-function equation (1.42) an expression for the running coupling is obtained.

1

α
− 1

α0

+ ξ ln

(
α(1 + ξα0)

α0(1 + ξα)

)
− β̄0t = 0, (1.58)

where ξ = β1/(2πβ0). This implicit equation can be solved numerically to provide

a value for the coupling at NNLO accuracy.

In principle the observable can be considered without fixing the scale to perform

the resummation of the logarithms as has been described previously. For an arbi-

trary renormalization scale µ a dimensionless observable can be expanded in αs(µ
2),

provided the coupling is suitably small at such a scale,

R
(
et, αs(µ

2)
)

=
∞∑
k=1

rk(s/µ
2)αks(µ

2). (1.59)

Inserting the perturbative expansion for R into (1.41) yields,∑
k

(
µ2 ∂rk
∂µ2

αks(µ
2) + 2kβrkα

k−1
s (µ2)

)
= 0. (1.60)

Noting that β = −β0α
2
s(µ

2) +O
(
α3
s(µ

2)
)
, the term proportional to the jth power of

αs is given by,

αjs(µ
2)

[
µ2 ∂rj
∂µ2
− 2β0(j − 1)rj−1 − 2

β1

2π
(j − 2)rj−2 − · · ·

]
= 0. (1.61)

From this equation it is clear that the scale variation of the term rj is compensated

by a sum over lower order terms up to rj−1. Given these considerations, the scale

variation of R truncated at order j (which may be interpreted as an estimate of the

theoretical uncertainty on a calculation, or at least an estimate for one aspect of the

uncertainty), is formally of order j + 1 and in principle decreases order-by-order in

perturbation theory.
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1.3 Infrared Behaviour of QCD Amplitudes

The renormalization procedure is primarily concerned with the removal of singu-

larities present in perturbative calculations, the task for which the practice was

devised. It should be noted that systematically removing the UV singularities via

renormalization is a natural by-product of properly defining the theory with renor-

malization conditions, a concern which would have to be addressed even if no UV

singularities were present in the theory’s scattering amplitudes. From this perspec-

tive the presence of UV singularities, i.e., divergent behaviour of loop integrals in

the high momentum limit, is somewhat artificial and an artefact of the theory being

ill-defined.

For theories involving massless particles7, divergences in calculations may also

arise for a set of kinematic configurations. This set of limiting behaviour is given

by configurations involving partons whose momenta are not large with respect to

the centre of mass energy scale and are generically called infrared (IR) configura-

tions. These configurations can involve internal or external particles becoming soft

(vanishing energy) or collinear with another parton.

To demonstrate the IR behaviour of higher order corrections, the process qq̄ → X

will be considered, where X is taken to be a generic colourless final-state such as

a Drell-Yan pair or multiple vector boson production etc. This process displays all

relevant classes of IR behaviour at NLO so it is a convenient example to consider.

In addition to demonstrating the concepts of this chapter the process also forms

the basis for the NNLO calculation presented in chapter 3. The leading-order cross

section is given by,

dσLOqq̄ = N NLO
∫

dΦX M0
2 (1q, 2q̄;X), (1.62)

whereM0
2 (1q, 2q̄;X) is the single squared colour-ordered amplitude present at leading-

order containing all dependence on non-QCD couplings and dynamics. The quantity

N denotes the overall factors such as initial-state spin and colour averaging, hadron-

7This argument pertains to both exactly massless particles such as gluons or effectively massless

particles in the high energy scattering limit such as the light quarks at the LHC.
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Figure 1.2: The diagram for the process qq̄ → X at leading-order, O(α0
s), with the

dashed line representing the colourless final-state X, which may consist of more than

one colourless particle coupling directly to the quarks.

hadron flux and QCD coupling,

N =
1

2s12

1

4 ·N2

(
αs
2π

)
C̄(ε), (1.63)

with C̄(ε) = (4π)εe−εγ, s12 = (p1 + p2)2 and NLO = N denotes the leading-order

colour factor. The form of the final-state phase space integral depends on the details

of the colourless final-state and is not relevant for this discussion.

1.3.1 Virtual IR singularities

The IR singularity structure of renormalized virtual amplitudes has been systemat-

ically studied and is understood completely at the one- and two-loop level required

for calculations up to NNLO accuracy.

One-loop singularities

Following the work of Catani [31], the singular parts of a one-loop amplitude, written

as a vector in colour space, are governed by the equation,

|M(1)
n (µ2, ε, {pi})〉 = I(1)(µ2, ε, {pi}) |M(0)

n (µ2, {pi})〉+ |M(1),f
n (µ2, {pi})〉

(1.64)

where |M(1),f
n 〉 is an IR finite contribution in the limit ε→ 0 and the IR singularity

operator is defined as,

I(1)(µ2, ε, {pi}) =
eγε

2Γ(1− ε)

n∑
i=1

1

T 2
i

Vi(ε)
∑
j 6=i

Ti ·Tj
(
ρµ2

sij

)ε
, (1.65)
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where the unitarity phase is denoted ρ with the value -1 when both particles in

the pair are incoming or outgoing and +1 otherwise. The operators Ti satisfy the

following properties [20],

(Ti)
a
bc = tabc i ∈ {qfinal, q̄initial},

(Ti)
a
bc = −tabc i ∈ {qinitial, q̄final},

(Ti)
a
bc = fabc i ∈ {g}

Ti ·Tj = Tj ·Ti i 6= j,

T 2
i =

N2 − 1

2N
i ∈ {q, q̄},

T 2
i = N i ∈ {g}, (1.66)

in addition to the property of colour conservation for the amplitude,

n∑
i=1

Ti |Mn〉 = 0. (1.67)

The singular function is given by,

Vi(ε) = T 2
i

1

ε2
+ γi

1

ε
, (1.68)

where,

γi =
3

2

(N2 − 1)

2N
i ∈ {q, q̄},

γi = β0 i ∈ {g}. (1.69)

Applying this method to the process qq̄ → X involves extracting the IR poles of the

diagram shown in figure 1.3. For this process there are only two coloured particles,

the quarks, with associated operators Tq and Tq̄ such that T 2
q = T 2

q̄ = −Tq ·Tq̄ =

CF · I from colour conservation8. Applying this information to (1.65) yields an

expression for the IR singularity operator,

I(1)(µ2, ε, 1q, 2q̄) = −(N2 − 1)

2N

eγε

Γ(1− ε)

[
1

ε2
+

3

2ε

](
− µ

2

s12

)ε
I. (1.70)

8Here the symbol I refers to the identity matrix in colour space and should not be confused

with the IR singularity operator I(1).
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Figure 1.3: The NLO virtual diagram for the process qq̄ → X

The poles of the squared matrix element are therefore given by,

〈M(0)
2 |I(1)(ε)|M(0)

2 〉 = −(N2 − 1)

2N

eγε

Γ(1− ε)

[
1

ε2
+

3

2ε

](
− µ

2

s12

)ε
|M0

2(1q, 2q̄;X)|2

(1.71)

An alternative strategy is to work with colour ordered partial amplitudes as de-

scribed in section 1.1.2. In this picture the IR singularity operator is no longer a

matrix in colour space but a scalar, composed as a sum of two particle IR colour-

ordered singularity operators, summed over colour-connected pairs in the colour-

ordered amplitude. The one-loop squared matrix element is given by the projection

of the one-loop partial amplitude onto the tree-level partial amplitude,

M1
n = 〈M1

n|M0
n〉+ 〈M0

n|M1
n〉. (1.72)

For a generic one loop squared matrix element the pole structure is described by the

colour-ordered IR singularity operator in the following way,

Poles
[
M1

n(1, · · · , n)

]
= 2I(1)

n (ε; 1, · · · , n) M0
n(1, · · · , n). (1.73)

The colour-ordered singularity operator is given as a sum of two particle singularity

operators over the set of neighbouring colour-connected pairs, C,

I(1)
n (ε; 1, · · · , n) =

∑
i,j∈C

I
(1)
ij (ε, sij) (1.74)

where the two particle colour-ordered IR singularity operators are defined for each

combination of partons and the various possible colour structures [32],

I
(1)
qq̄ (ε, sqq̄) = − eγε

2Γ(1− ε)

[
1

ε2
+

3

2ε

]
<
(
− µ

2

sqq̄

)ε
,
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I(1)
qg (ε, sqg) = − eγε

2Γ(1− ε)

[
1

ε2
+

5

3ε

]
<
(
− µ

2

sqg

)ε
,

I(1)
gg (ε, sgg) = − eγε

2Γ(1− ε)

[
1

ε2
+
b0

ε

]
<
(
− µ

2

sgg

)ε
,

I
(1)
qq̄,F (ε, sqq̄) = 0,

I
(1)
qg,F (ε, sqg) =

eγε

2Γ(1− ε)
1

6ε
<
(
− µ

2

sqg

)ε
,

I
(1)
gg,F (ε, sqq̄) = − eγε

2Γ(1− ε)
b0,F

ε
<
(
− µ

2

sgg

)ε
. (1.75)

In these expressions the colour decomposition of β0 is used,

β0 = b0N + b0,FNF , (1.76)

where b0 = 11/6 and b0,F = −1/3. This description of the IR singularity structure

can be applied to the same example as previously considered. Only one colour-

ordering exists for the process qq → X at one loop so carrying out the sum over

internal colour degrees of freedom belonging to the virtual gluon allows the full

squared amplitude to be written in terms of the colour stripped squared partial

amplitude,

|M(1)
2 (1q, 2q̄;X)|2 =

(N2 − 1)

2N
NLO M1

2 (1q, 2q̄;X). (1.77)

Following equations (1.74) and (1.75) the poles of the one-loop colour ordered matrix

element are given by,

Poles
[
M1

2 (1q, 2q̄;X)

]
= 2I

(1)
qq̄ (ε, s12) M0

2 (1q, 2q̄;X) (1.78)

leading to an expression for the poles of the full squared matrix element,

Poles
[
|M(1)

2 (1q, 2q̄;X)|2
]

=
(N2 − 1)

2N
2I

(1)
qq̄ (ε, s12) NLO M0

2 (1q, 2q̄;X),

(1.79)

which can be compared with the expression found in (1.71)9.

9The expressions differ only by imaginary factors which cancel in the overall calculation so

extracting only the real component of (−µ2/sij)
ε is sufficient. [32]
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Two-loop singularities

The IR poles of a two-loop amplitude obey a factorization formula similar to the

case at one-loop given by [31],

|M(2)
n (µ2, ε, {pi})〉 = I(2)(µ2, ε, {pi}) |M(0)

n (µ2, {pi})〉+ |M(2),f
n (µ2, {pi})〉

+ I(1)(µ2, ε, {pi}) |M(1)
n (µ2, ε, {pi})〉, (1.80)

where |M(2),f
n 〉 is a finite function in the limit ε → 0. Note that the last line of

(1.82) is not the same as
[
I(1)
]2|M(0)

n 〉 due to the premultiplication of the finite

contribution in (1.64) by the IR singularity operator. As in the one-loop case the

full amplitude can be written in terms of colour-ordered partial amplitudes. The

two-loop squared matrix element contains the projection of the two-loop partial

amplitude onto the tree-level partial amplitude and the self-interference of the one-

loop partial amplitude,

M2
n = 〈M2

n|M0
n〉+ 〈M0

n|M2
n〉+ 〈M1

n|M1
n〉 (1.81)

The IR poles of an n-parton squared colour-ordered matrix element are given by [31],

Poles
[
M2

n(1, · · · , n)

]
= 2I(1)

n (ε; 1, · · · , n)

(
M1

n(1, · · · , n)− β0

ε
M0

n(1, · · · , n)

)
− 2

[
I(1)
n (ε; 1, · · · , n)

]2
M0

n(1, · · · , n)

+ 2e−γε
Γ(1− 2ε)

Γ(1− ε)

(
β0

ε
+K

)
I(1)
n (2ε; 1, · · · , n) M0

n(1, · · · , n)

+ 2H(2)(ε) M0
n(1, · · · , n). (1.82)

The constant K has the following colour decomposition,

K = k0N + k0,FNF (1.83)

with the coefficients given by,

k0 =
67

18
− π2

6
k0,F = −5

9
. (1.84)

The hard radiation functions H(2)(ε) depend on the partonic content of the matrix

element and may also be decomposed into various colour factors. Using this formula

the poles of any two-loop squared matrix element can be isolated.

September 24, 2012



1.3. Infrared Behaviour of QCD Amplitudes 32

1.3.2 IR behaviour of real radiative corrections

The IR poles of a virtual matrix element are expressed immediately as a Laurent

expansion in ε when calculating in dimensional regularization, either through use of

the formulae of the previous section or by direct analytic loop integration in d =

4− 2ε dimensions. QCD matrix elements, which are functions of Lorentz invariants

constructed from external momenta, also exhibit divergent behaviour when a number

of these invariants vanish. A general Lorentz invariant variable for massless partons

is given by,

sij = (pi + pj)
2 = 2pi · pj. (1.85)

This quantity can vanish when either pi or pj → 0, the soft limit, or when pi · pj =

EiEj
(
1 − cos(θ)

)
→ 0, the collinear limit when the spatial angle between partons

θ → 0. Such configurations are unavoidable in practical calculations because the

definition of the cross section involves integration of the final state external momenta

over all phase space configurations, which inevitably receives contributions from soft

and collinear regions of phase space.

Given that such configurations are generally unavoidable, the divergent be-

haviour depends on the form of the integrand, the IR divergent part of which is

the squared matrix element. For a general amplitude the divergent behaviour is

characterised by inverse powers of vanishing invariants such that the matrix element

numerically diverges. In the case of colour-ordered partial amplitudes, the divergent

behaviour is simplified such that the squared amplitude only contains inverse pow-

ers of invariants for colour-connected partons, those adjacent in the colour-ordering.

For example, consider the tree level five gluon squared colour-ordered amplitude

summed over helicities [33],

M0
5 (1g, 2g, 3g, 4g, 5g) ∝

5∑
i=1

∑
j>i

s4
ij

s12s23s34s45s51

. (1.86)

This expression clearly demonstrates that the divergent IR behaviour is restricted

to colour-connected partons. The full amplitude is formed from a sum of colour-

ordered amplitudes such that following the sum over permutations divergences ap-

pear in all partonic channels, not just the colour-connected ones. The fact that
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IR divergences for colour-ordered amplitudes are restricted to colour-connected par-

tons reflects the structure of IR singularities for colour-ordered virtual amplitudes

described by (1.74).

Single unresolved limits: tree-level

The single unresolved limits of colour-ordered matrix elements involve partons be-

coming soft or collinear with colour-adjacent partons. Although treated as massless,

quarks are not able to become soft due to the fact that they are fermions constitut-

ing a conserved current. In the limit that a final-state quark’s momentum becomes

soft the matrix element vanishes such that the limit does not contribute to the phase

space integral. The same is not true of gluons which as bosons do not obey a current

conservation equation and do produce a contribution in the soft limit. In this limit

the squared matrix element factorizes into a universal soft function and a reduced

matrix element with the gluon pinched out. For a tree-level squared matrix element

the factorization is given by [34],

M0
n+1(· · · , i, jg, k, · · · )

jg→0−→ Sijk M
0
n(· · · , i, k, · · · ). (1.87)

The soft function does not depend on the species of parton neighbouring the soft

gluon, i.e., the same function applies when the soft gluon is bookended by gluons or

quarks, depending only on their momenta,

Sijk =
2sik
sijsjk

. (1.88)

In the collinear limit where two partons i, j can be described by a single composite

parton K, a generic squared matrix element factorizes according to [35],

M0
n+1(· · · , i, j, · · · ) i||j−→ 1

sij
Pij→K(z) M0

n(· · · , K, · · · ), (1.89)

where z denotes the fraction of K’s momentum carried by parton i. Unlike the

case of soft divergences, the details of the splitting functions Pij→K depend on the

partons involved in the collinear limit and are collected here for completeness:

Pqg→Q =
1 + (1− z)2 − εz2

z
,
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Pqq̄→G =
z2 + (1− z)2 − ε

1− ε
,

Pgg→G = 2

(
z

1− z
+

1− z
z

+ z(1− z)

)
, (1.90)

with other splitting functions related by C-parity, Pq̄g→Q̄ = Pqg→Q.

The discussion so far has concerned final-state partons becoming unresolved with

one another. When a final state gluon becomes soft and is colour adjacent to one

or more initial state partons, the matrix element factorization proceeds as in the

final-state case; the only modification is that the Lorentz invariants must take into

account the crossing of initial-state partons. i.e., for a final state parton i and initial

state parton 1, s1i = (p1− pi)2 = −2p1 · pi. When the collinear limit involves initial-

state partons the factorization formula (1.89) holds but the Altarelli-Parisi splitting

functions are modified. For two final-state partons i, j coalescing to form a single

composite parton k, as shown in figure 1.4(a), the kinematics are given by,

pi = zpk pj = (1− z)pk (1.91)

whereas for a final state parton j becoming collinear with an initial state parton î,

where the hat denotes initial state,

pj = zpi pk = (1− z)pi (1.92)

The different definition of z in the initial-final collinear configuration alters the

definition of the splitting functions. The initial-final splitting functions are related

to the final-final splitting functions by [36]:

Pgq←Q(z) =
1

1− z
1

1− ε
Pqg→Q(1− z),

Pqg←Q(z) =
1

1− z
Pqg→Q(z),

Pqq̄←G(z) =
1− ε
1− z

Pqq̄→G(z),

Pgg←G(z) =
1

1− z
Pgg→G(z) (1.93)

Angular terms

The splitting functions defined previously are spin averaged splitting functions. The

full splitting functions carry a dependence on the spin indices of the parent parton.
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(a) (b)

Figure 1.4

A massless fermion carries helicity s = ±1 and in the case of a parent quark the full

splitting function is related to the spin averaged splitting function by,

P ss′

qg→Q(z) = δss′Pqg→Q(z), (1.94)

where s and s′ are the helicity indices of the parent quark in the splitting amplitude

and its conjugate amplitude respectively. As the helicity dependence of the splitting

function is simply the identity matrix in spin space no helicity correlations are

present in the quark-initiated splitting functions and the spin averaged splitting

functions completely describe the factorization of the appropriate matrix elements.

In the case of splitting functions with a vector particle as the parent parton the spin

is labelled by a Lorentz index µ = 1, · · · , d. The full splitting functions are tensorial

in nature and given by [37]:

P µν
qq̄→G(z, k⊥) = −gµν + 4z(1− z)

kµ⊥k
ν
⊥

k2
⊥

P µν
gg→G(z, k⊥) = −2

[
gµν
(

z

1− z
+

1− z
z

)
+ 2(1− ε)z(1− z)

kµ⊥k
ν
⊥

k2
⊥

]
, (1.95)

where kµ⊥ is the component of momentum perpendicular to the collinear splitting

axis. The momenta of the collinear partons can be parameterized in terms of k⊥

and a light-like vector n such that pK ·n = k⊥ ·n = 0,

pi = zpK + k⊥ + ξ1n,

pj = (1− z)pK − k⊥ + ξ2n. (1.96)

Requiring that the momenta remain on-shell fixes the constants to be [20],

ξ1 = −1

z

k2
⊥

2pK ·n
ξ2 = − 1

1− z
k2
⊥

2pK ·n
(1.97)
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In the collinear limit involving the splitting of a parent gluon, the factorization of

the matrix element including all spin-dependent effects is given by,

M0
n+1(· · · , i, j, · · · ) i||j−→ 1

sij
P µν
ij→Kg

(z, k⊥) M0
n,µν(· · · , Kg, · · · ),

=
1

sij
Pij→Kg(z) M0

n(· · · , Kg, · · · ) + ang. (1.98)

The angular terms contain the φ-dependence of the tensorial splitting function and

are proportional to cos(2φ). As such when integrating over the φ variable in the

final-state phase space integral any angular dependence vanishes. When dealing with

quantities at the integrand level before integration over φ, the angular dependence

must be taken into account. Given the functional dependence of the angular terms, if

two phase space points related by an azimuthal rotation ∆φ = π/2 are systematically

paired up, then the angular terms for the respective matrix elements will cancel

exactly. This strategy has been implemented when studying the single collinear

limits involving vector parent partons.

Single unresolved limits: loop-level

For NNLO calculations it is also necessary to consider the single unresolved limits

of one-loop squared matrix elements. At one loop new universal singular functions

are required which enter via modified factorization formulae. In the soft limit a

one-loop colour-ordered matrix element factorizes according to [38],

M1
n+1(· · · , i, j, k, · · · ) j→0−→ Sijk M

1
n(· · · , i, k, · · · ) + S1

ijk(ε) M
0
n(· · · , i, k, · · · ),

(1.99)

where S1
ijk(ε) is the one-loop soft radiation function [39]. An analogous formula

holds for the collinear factorization of the one-loop matrix elements,

M1
n+1(· · · , i, j, · · · ) i||j−→ 1

sij
Pij→K(z) M1

n(· · · , K, · · · )

+
1

sij
P 1
ij→K(ε, z) M0

n(· · · , K, · · · ), (1.100)

where the one-loop splitting functions are collected in [40].
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Double unresolved limits

At NNLO the cross section includes a double-real radiative correction at tree-level

which opens the final-state phase space up to an (n + 2)-parton phase space. The

subsequent final-state phase space integration includes regions of phase space in

which two partons can become simultaneously unresolved. In the double unresolved

limits, the colour-ordered matrix element also factorize, with the details of the fac-

torization pattern dictated by the colour-connections of the unresolved partons. In

general the double unresolved radiation that can occur can be classified into three

patterns, schematically depicted in figure 1.5:

• Colour-connected double unresolved partons. Both unresolved partons are

adjacent in the colour ordering and share a common pair of hard radiating

partons between which they are radiated.

• Almost colour-connected double unresolved partons. The unresolved partons

are separated by one hard parton in the colour ordering. Each unresolved

parton is radiated between a hard pair of radiators such that the hard parton

separating the unresolved partons acts as a shared radiator.

• Colour-disconnected double unresolved partons. The unresolved partons are

separated by more than one hard parton in the colour ordering. Each unre-

solved parton is radiated between a distinct pair of hard radiators.

Figure 1.5: The three distinct radiation patterns at NNLO with solid and dashed

lines representing hard and unresolved partons respectively. Colour-connected (l),

almost colour-connected (c), colour disconnected (r).

At NNLO the means available for partons to become unresolved are the same

as at NLO, soft and collinear partons; however there are new combinations of these

basic unresolved configurations which generate genuinely NNLO behaviour. Within

September 24, 2012



1.3. Infrared Behaviour of QCD Amplitudes 38

the patterns of double unresolved radiation, described previously, the character of

that unresolved radiation can be broadly classified into three classes:

• Soft: double unresolved soft radiation involves two partons becoming simulta-

neously soft and can be defined for colour-connected, almost colour-connected

and colour disconnected configurations.

• Collinear: In the colour-connected configuration the situation whereby two

partons become unresolved via collinear limits with neighbouring hard partons

is called the triple collinear limit. In almost colour-connected and colour

disconnected configurations two partons becoming collinear with distinct hard

partons is referred to as the double collinear limit.

• Soft-collinear: the configuration whereby one parton is allowed to go soft whilst

another becomes collinear can occur for all three colour configrations.

In each case the squared colour-ordered matrix elements obey factorization formulae

similar to those at NLO involving either iterations of NLO singular functions or new

NNLO singular functions, depending on the colour configuration under considera-

tion.

Double soft behaviour

In the colour-connected configuration both soft particles are radiated between a

common pair of hard radiators. When both soft partons are gluons the tree-level

colour-ordered matrix elements factorize according to [41],

M0
n+2(· · · , i, jg, kg, l, · · · )

j,k→0−→ Sijkl M
0
n(· · · , i, l, · · · ), (1.101)

where the identities of the hard partons does not affect the form of Sijkl, just as for

the case for radiation of a single soft gluon. In massless QCD it is also possible for a

quark-antiquark pair to become soft simultaneously due to a soft gluon splitting into

a quark-antiquark pair. In this case the factorization involves a universal function

distinct from that of the soft gluon factorization [32],

M0
n+2(· · · , i, jq, kq̄, l, · · · )

j,k→0−→ Sil(jq, kq̄) M
0
n(· · · , i, l, · · · ) (1.102)
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In the almost colour-connected and colour disconnected limits the factorization pat-

terns is an iteration of that at NLO, involving no new universal functions:

M0
n+2(· · · , i, jg, k, lg,m, · · · )

j,l→0−→ Sijk Sklm M0
n(· · · , i,m, · · · ),

M0
n+2(· · · , i, jg, k, · · · , l,mg, n, · · · )

j,m→0−→ Sijk Slmn M
0
n(· · · , i, k, · · · , l, n, · · · ).

(1.103)

The explicit forms of Sijkl and Sil(jq, kq̄) may be found in [ ].

Collinear behaviour

In the colour connected configuration the double unresolved limit is the triple

collinear limit. Generally a squared colour-ordered matrix element in the triple

collinear limit factorizes according to [42],

M0
n+2(· · · , i, j, k, · · · ) i||j||k−→ Pijk→I(x, y, z) M0

n(· · · , I, · · · ), (1.104)

were I denotes the composite parton and x, y, z are the fractions of parton I’s

momentum carried by the three daughter partons, i, j, k respectively. As with the

single collinear splitting functions, the form of the triple collinear splitting functions

depend on the species of parton involved in the collinear limit, making a total of

seven distinct splitting functions,

Pggg→G Pqq̄g→G Pqq̄g→G̃,

Pqgg→Q Pqg̃g̃→Q P ident
qq̄′q′→Q,

P non-ident
qq̄′q′→Q . (1.105)

The splitting functions Pqq̄g→G̃ and Pqg̃g̃→Q occur for matrix elements whose gluons

have been symmetrized over. Generally such amplitudes occur at sub-leading colour

where the square of a coherent sum of colour-ordered amplitudes may be written

as an incoherent sum of colour-ordered amplitudes containing Abelian gluons, as

demonstrated in section 1.1.2. These splitting functions are also present at leading

colour in SU(N) gauge theories with matter in the adjoint representation, such as

N = 1 supersymmetric QCD (SQCD), where the gluon and gluino are in the adjoint

representation. This allows a triple collinear limit between a fermion and two gluons
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which are not colour connected, seen in the colour ordering as (· · · , g, g̃, g, · · · ) →

(· · · , G̃, · · · ). In QCD the fermions appear adjacent in the colour ordering, never

separated by a gluon so such configurations are not possible. A full collection of

triple collinear splitting functions may be found in [32].

The double collinear limit occurs when two partons are collinear with distinct

hard partons and not with one another. This configuration is an iteration of the

NLO single collinear limit and factorizes accordingly,

M0
n+2(· · · , i, j, · · · , k, l · · · ) i||j, k||l−→ 1

sij
Pij→I(z1)

1

skl
Pkl→K(z2) M0

n(· · · , I, · · · , K, · · · )

(1.106)

Soft-collinear behaviour

At NNLO the iteration of the soft and collinear unresolved limits permits a dou-

ble unresolved limit combining the two in which one parton goes soft and another

becomes collinear simultaneously. In the colour-connected limit both unresolved

configurations occur between a common set of radiators and the squared colour-

ordered matrix element factorizes to product of a single collinear splitting function

and the soft-collinear factor [42],

M0
n+2(· · · , i, j, k, l · · · ) j→0, k||l−→ Si,jkl

1

skl
Pkl→K(z) M0

n(· · · , i,K, · · · ) (1.107)

where K is the composite parton formed from the collinear partons. The cases where

the soft parton is not colour connected to the collinear pair the squared colour-

ordered matrix element factorizes according to an iteration of the single unresolved

limits,

M0
n+2(· · · , i, j, k, · · · , l,m · · · ) j→0, l||m−→ Sijk

1

slm
Plm→L(z) M0

n(· · · , i, k, · · · , L, · · · )

(1.108)

Less singular configurations

The collection of unresolved limits in the previous sections are not exhaustive as

the matrix elements may tend to a finite value or contain divergences in a number

of unresolved limits. Such limits are however not relevant for the calculation of
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the cross section as the phase space integration also carries factors of the vanishing

invariants. In the case of the irrelevant unresolved limits the squared matrix elements

are not singular enough to overcome the vanishing integration measure and so do

not generate IR singular contributions when integrated over the appropriate phase

space region.

1.3.3 Final-state singularity cancellation

In previous sections it has been shown that virtual amplitudes possess IR singular-

ities which are expressed as a Laurent expansion in the dimensional regularization

parameter ε. In the calculation of real emission processes IR divergences are en-

countered at the integrand level of the final-state phase space integral. It is well

known due to the original work of Bloch and Nordsieck [43], with later developments

from Kinoshita [44], Lee and Nauenberg [45] (KLN), that all IR singularities and

divergences cancel in the physical cross section when summed over all physically

degenerate configurations. From this perspective, the IR divergences found in real

emission processes make perfect sense; the regions of phase space where the cross

section diverges are those associated with configurations with unresolved radiation.

By definition these configurations cannot contribute in an observable way to the

final-state of which they are the unresolved limit and should instead be considered

to contribute to the final-state with fewer particles that they tend to in the unre-

solved limit.

To genuinely compare the virtual contribution for a given final-state to the real

contribution which tends to that final-state in the unresolved limit, the phase space

associated with the unresolved particle must be integrated over analytically. In doing

so the IR divergences are properly quantified and the remaining final-state phase

space is identical to that of the virtual contribution. If the analytic integration is

performed in d = 4 − 2ε dimensions, then the divergences at the integrand level

manifest themselves as poles in ε upon integration, allowing for direct combination

with the virtual contribution.

The process of performing the phase space integration analytically in d dimen-

sions has been the subject of intense study for the last several decades and will be

September 24, 2012



1.3. Infrared Behaviour of QCD Amplitudes 42

the primary focus of this thesis. The NLO correction to an n-parton final-state

at the LHC will receive a virtual n-parton contribution and a real (n + 1)-parton

contribution which are integrated over their respective phase spaces,

dσNLOij =

∫
Φn

dσVij +

∫
Φn+1

dσRij , (1.109)

where i and j denote the partons in the initial-state. If the unresolved regions of the

(n+1)-parton phase space can be integrated over analytically then the IR divergent

integrand can be integrated to produce an IR singular function multiplying a finite

n-parton phase space integral. At NNLO the cross section receives contributions

from the double virtual two-loop n-parton final-state contribution, the real-virtual

one-loop (n+1)-parton contribution and the double real (n+2)-parton contribution,

dσNNLOij =

∫
Φn

dσV Vij +

∫
Φn+1

dσRVij +

∫
Φn+2

dσRRij . (1.110)

In the case of an NNLO calculation, integrating the real-virtual and double real

contributions analytically over the single- and double-unresolved phase space regions

respectively yields the poles in ε required to cancel the explicit singularities coming

from the loop integrals in the one- and two-loop contributions. The details how this

cancellation is achieved are explained in more depth in chapter 2.

It should be noted that the IR singularity cancellation obtained by summing over

physically degenerate final-states serves to cancel the virtual singularities against

those generated by final-state partons becoming soft or collinear with other final-

state partons. For hadronic collisions (the relevant case for the LHC) additional

singularities persist, originating in final-state partons becoming collinear with initial-

state partons. The cancellation of these singularities will be explained in section 1.4

as the natural consequence of properly defining the observable under consideration,

as was the case with the UV poles in renormalization and the final-state IR poles

discussed here.

To demonstrate the final-state IR pole cancellation the example of NLO correc-

tions to the process qq̄ → X is once again considered. The singularity structure of

the virtual contribution has already been discussed in section 1.3.1, the main result

being,

Poles
[
M

(1)
2 (1q, 2q̄;X)

]
= 2I

(1)
qq̄ (ε, s12) M0

2 (1q, 2q̄;X). (1.111)
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(a) (b)

Figure 1.6: The two diagrams contributing to the NLO real radiative correction to

the process qq̄ → X.

The virtual cross section is given by,

dσVqq̄ = N NLO
N2 − 1

2N

∫
dΦX M1

2 (1q, 2q̄;X), (1.112)

and so the singularity structure of the virtual cross section factors out of the phase

space integral yielding,

Poles
[
dσVqq̄

]
= 2I

(1)
qq̄ (ε, s12)

N2 − 1

2N
dσLOqq̄ (1.113)

The diagrams constituting the single real radiative correction to this process are

shown in figure 1.6. For a single radiated gluon there is only one colour-ordered

amplitude and the total amplitude is given by,

|M(0)
3 (1q, 3g, 2q̄;X)|2 =

(N2 − 1)

2N
NLO M0

3 (1q, 3g, 2q̄;X), (1.114)

such that the real emission cross section has the form,

dσRqq̄ = N NLO
N2 − 1

2N

∫
dΦX+1 M

0
3 (1q, 3g, 2q̄;X), (1.115)

where the phase space integral includes the final-state gluon as well as the phase

space associated with X. By integrating over the unresolved regions of the gluon’s

phase space it can be shown10 that the singularities of the real radiation upon

10The integration can either be performed directly or via a subtraction method such as antenna

subtraction which in the case considered is particularly simple and is elaborated upon in chapter

3.
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analytic integration are given by,

Poles
[∫

1

dσRqq̄

]
= N NLO

N2 − 1

2N

{
−2I

(1)
qq̄ (ε, s12)

∫
dΦX M0

2 (1q, 2q̄;X)

− 1

ε

∫
dΦ′X

dx2

x2

p(0)
qq (x2) M0

2 (1q, x22q̄;X)

− 1

ε

∫
dΦ′X

dx1

x1

p(0)
qq (x1) M0

2 (x11q, 2q̄;X)

}
. (1.116)

In the second and third lines of (1.116) the final-state phase space measure is denoted

dΦ′X which is related to the phase space measure dΦX by a rescaling of one of the

initial-state parton’s momenta, i.e., the total mass of the final-state is rescaled by

one of the variables x1,2, which are themselves integrated over. The function p
(0)
qq (x)

is as yet undefined and a discussion of the (IR singular) terms proportional to them

is deferred until section 1.4. Putting aside these singularities, the first line of (1.116)

can be written in the form,

−2I
(1)
qq̄ (ε, s12)

N2 − 1

2N
dσLOqq̄ , (1.117)

which clearly cancels against the IR poles of the virtual contribution as presented

in (1.113).

1.4 Factorization and the QCD Improved Parton

Model

The factorization formula (1.32) for the näıve parton model describes the cross

section for a hadronic collision in terms of the cross section for a partonic collision

weighted by a PDF and summed over all partonic sub-processes contributing to the

same hadronic process. This model was based upon the assumptions that the hadron

may be thought of as a collection of essentially free partons moving in the direction

of the hadron’s motion, each carrying a definite fraction of the hadron’s momentum.

Given the more detailed understanding of QCD presented in the previous sections

it is clear that such a picture is approximate and only valid for the high centre of

mass scattering limit. To make accurate predictions within the parton model for

scattering experiments it is essential to develop the model to the same degree of
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rigour as the calculation of the hard scattering subprocesses used as the model’s

input. When performing calculations for high energy colliders, such as the LHC,

this requires formulating the parton model within the framework of perturbation

theory.

From this perspective the näıve parton model is expected to constitute the

leading-order approximation to the more complete perturbative solution. Mov-

ing beyond leading-order in perturbation theory involves incorporating interactions

order-by-order in the small coupling, i.e., by considering radiative corrections to

the leading-order picture. In the näıve parton model the distinction between the

parton level process and the hadron is artificial but clear; the partons are consid-

ered free and do not interact with the rest of the hadron. Introducing perturbative

interactions complicates the distinction between the collection of partons and the

non-perturbative hadron, allowing an almost free parton to radiate other partons

thus changing the instantaneous distribution of momentum described by the PDF.

In terms of the heuristic picture considered when motivating the näıve parton model,

QCD radiation from a parton can generate significant transverse momentum either

for the radiated parton or for the radiator recoiling against its radiation. These inter-

actions which occur in perturbation theory violate the assumption that the partons

travel in the same direction as the hadron with small transverse momentum.

In order to perform perturbative calculations in a meaningful way a momen-

tum scale µF is introduced to define the distinction between soft hadronic and hard

partonic physics, named the factorization scale. Radiated partons with transverse

momentum greater than the factorization scale are considered to be part of the

hard scattering process whereas those with transverse momentum below the cutoff

are considered part of the hadron. This process is essentially the observation that

QCD radiation from the incoming partons with small transverse momentum is un-

observable and serves only to alter the instantaneous momentum distribution of the

hadron. Partitioning what belongs to the hard scattering process and the hadron

with a sharp momentum cutoff causes both quantities to depend on the artificial

scale, µF , such that the hadronic cross section remains independent of the scale.

The process of partitioning the physics into partonic and hadronic contributions,
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known as factorization, is in direct analogy to the definition of the renormalization

scheme whereby the bare Lagrangian is partitioned into the basic Lagrangian and the

counter-term Lagrangian, the details of which do not affect the functional integral.

In the spirit of this analogy the PDFs entering into (1.32) are referred to as the bare

PDFs. In renormalization the physical parameters are related to the bare parameters

by a multiplicative Z-factor, into which the UV singularities of the theory can be

absorbed by defining the theory at a renormalization scale µ. In a similar fashion

the bare PDF, denoted symbolically11 as f 0, can be related to a physical PDF, f ,

not by a multiplicative factor but by a convolution with a factorization kernel, by

convention denoted Γ−1 [46] [47].

f 0 =
[
f ⊗ Γ−1

]
,

f 0
i (z) =

∫
dx dy fj(x, µF ) Γ−1

ji (y, µF ) δ(z − xy). (1.118)

In the case of renormalization the bare parameters are independent of the renor-

malization scale but both the physical parameters and the renormalization factors

depend on the sliding scale in such a way that any dependence cancels in their

combination. In the case of factorization the bare PDF is independent of the factor-

ization scale but the physical PDF and the factorization kernel Γ−1
ji do depend on

the artificial scale in such a way that any dependence cancels in the convolution of

the two. If the factorization scale is sufficiently large then the factorization kernel

may be expanded as a perturbative series in the QCD coupling. For practical cal-

culations the perturbative expansion is truncated at a finite order and this process

of approximation causes the truncated perturbative calculation to display a residual

dependence on the factorization scale, just as was the case with the renormalization

scale in perturbative calculations.

The factorization kernel has an inverse operator, Γji which for suitably small

coupling can be expanded as a perturbative series. In symbolic notation,

Γ = I +
αs
2π

Γ1 +

(
αs
2π

)2

Γ2 +O(α3
s) (1.119)

11In this notation the bold quantities are vectors or matrices in the parton flavour space
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where the x and µF dependence enters through the coefficients Γkji and αs respec-

tively as can be seen by dropping the symbolic notation,

Γji(x, µF ) = δji δ(1− x) +
αs(µ

2
F )

2π
Γ1
ji(x)

+

(
αs(µ

2
F )

2π

)2

Γ2
ji(x) +O

(
α3
s(µF )

)
. (1.120)

As the inverse operator of Γ−1 this operator relates the physical PDF to the bare

quantity,

f =
[
f 0 ⊗ Γ

]
(1.121)

This expression for Γ can be simply inverted to define the perturbative expansion

for Γ−1 to the same order in αs,

Γ−1 = I − αs
2π

Γ1 −
(
αs
2π

)2 [
Γ2 −

[
Γ1 ⊗ Γ1

]]
+O(α3

s) (1.122)

In an abuse of notation that makes the similarities with renormalization clear, it is

possible to define what could be considered to be a mass factorization counterterm,

Γ−1 = I + δΓ (1.123)

which is in general a non-diagonal matrix in the flavour space of the partons. By

redefining the hadronic cross section in terms of the physical PDFs it takes on the

symbolic form,

dσ = f ⊗ Γ−1 · dσ ·Γ−1 ⊗ f ′, (1.124)

where f and f ′ denote the two physical PDFs. From this expression it is possible

to define the factorized cross section by absorbing the factorization kernels into its

definition,

dσ̂ = Γ−1 · dσ ·Γ−1. (1.125)

This process is in analogy to the redefinition of a general operator in the Lagrangian

under the field and coupling reparameterization induced by renormalization. Fol-

lowing the analogy with renormalization to its conclusion, it is possible to partition
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the factorized cross section into a basic cross section and a counterterm cross section

using (1.123),

dσ̂ = dσ̂basic + dσ̂c.t, (1.126)

such that

dσ̂basic = dσ, (1.127)

which is calculated using the methods and framework set out so far in this chapter

and will in general contain IR singularities associated with initial-final collinear

configurations, such as those shown explicitly in (1.116) for the example qq̄ → X at

NLO. The counterterm cross section has the symbolic form,

dσ̂c.t = δΓ · dσ · I + I · dσ · δΓ + δΓ · dσ · δΓ, (1.128)

where the form of δΓ is trivially inferred from (1.122). Just as in renormalization the

counterterms can now be adjusted order by order in perturbation theory to remove

any initial-state collinear singularities present in the basic cross section. The choice

of factorization scheme determines the size of the finite piece of the basic cross

section also absorbed into the definition of the physical PDF on top of the singular

contribution.

By expanding the factorization counterterms and the unfactorized cross section

as a perturbative series the counterterm cross section has the form,

dσc.t =
αs
2π

dσMF
NLO +

(
αs
2π

)2

dσMF
NNLO +O(α3

s). (1.129)

These terms are traditionally called mass factorization contributions are defined in

terms of the factorization kernels,

dσMF
NLO = −

[
Γ1 · dσLO · I + I · dσLO ·Γ1

]
dσMF

NNLO = −
[
Γ2 · dσLO · I + I · dσLO ·Γ2 −

[
Γ1 ⊗ Γ1

]
· dσLO · I

− I · dσLO ·
[
Γ1 ⊗ Γ1

]
− Γ1 · dσLO ·Γ1

+ Γ1 · dσNLO · I + I · dσNLO ·Γ1

]
. (1.130)
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The factorized perturbative cross sections as matrices in flavour space up to NNLO

are therefore given by,

dσ̂LO = dσLO, (1.131)

dσ̂NLO = dσNLO + dσMF
NLO,

dσ̂NNLO = dσNNLO + dσMF
NNLO. (1.132)

The details of the mass factorization counterterms, especially within the context of

antenna subtraction, will be covered in greater depth in chapter 2.

Introducing the factorization scale and including radiation from initial-state par-

tons, as required by QCD, the hadronic cross section in the QCD improved parton

model, including all scale dependence, is summarized in the following formula,

dσ̂(P1, P2) =
∑
i,j

∫
dξ1

ξ1

dξ2

ξ2

fi(ξ1, µF )fj(ξ2, µF )

× dσ̂ij(ξ1P1, ξ2P2, αs(µ
2), αs(µ

2
F ), s/µ2, s/µ2

F ). (1.133)

To demonstrate the utility of this model the example of NLO corrections to

the process qq̄ → X is considered in the context of the QCD improved parton

model. It has been demonstrated in section 1.3.3 that the IR singularities of the

virtual contribution to the cross section partially cancel against the real radiation

contribution upon analytic integration over the radiated particle’s unresolved phase

space. The remaining singular contributions were shown in (1.116). In the QCD

improved parton model at NLO an additional contribution to the cross section must

be calculated, the mass factorization contribution. Following the definitions and

results of this section the NLO mass factorization contribution for this example is

given by,

dσMF
NLO = −Γ1 · dσLO · I − I · dσLO ·Γ1. (1.134)

For the process qq̄ → X there is only one non-zero element in the leading-order

cross section’s flavour matrix, dσLOqq̄ . Consequently only one factorization kernel is

relevant to this calculation, Γ1
qq, which in the MS factorization scheme is given by12,

Γ1
qq = −N

2 − 1

2N

1

ε
p(0)
qq (x). (1.135)

12Although just an element of the flavour matrix, Γ1
qq remains boldface as it contains colour
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Dropping the symbolic notation and substituting this expression for the factorization

kernel into the formula for the NLO mass factorization cross section yields,

dσMF
qq̄,NLO(ξ1P1, ξ2P2) =

1

ε

N2 − 1

2N

{∫
dx1

x1

p(0)
qq (x1) dσLOqq̄ (x1ξ1P1, ξ2P2)

+

∫
dx2

x2

p(0)
qq (x2) dσLOqq̄ (ξ1P1, x2ξ2P2)

}
.

(1.136)

It is straightforward to see that when this expression is combined with that of the

basic cross section, given in (1.116), the remaining poles cancel13 such that the fully

renormalized and factorized cross section using physical PDFs is UV and IR finite

up to NLO for the example considered here. The collinear factorization theorem [48]

extends this analysis to all orders in perturbation theory. An all-order analysis of

factorization is an extremely complicated field of study and is far from complete,

specifically in the case of hadronic collisions as has been demonstrated by recent

developments [49].

For convenience the scale is frequently set such that µF = µ where µ is the

renormalization scale. It was shown in section 1.2 that by introducing a running

coupling constant, the UV logarithms which occur in the hard scattering cross sec-

tion at higher orders in perturbation theory are automatically resummed. The fully

factorized cross section when computed in perturbation theory will contain loga-

rithms with the argument s/µ2
F in a similar fashion. By introducing a running PDF

which can be evolved to any scale from the factorization scale at which it is defined,

the logarithms associated with a perturbative calculation can be resummed. The

differential equation governing the evolution of the physical PDF can be inferred

from (1.121) and is given in symbolic form as,

µ2 ∂f

∂µ2
=

αs
2π

[
p⊗ f

]
, (1.137)

factors. The symbol Γ1 is reserved for colour stripped factorization kernels, for more details see

appendix A.
13An issue not considered here is that for a full cancellation to occur, the QCD coupling associated

with the mass factorization terms and the basic cross section should be equal. This is not the case

in general as they are evaluated at different scales however the difference is formally of O(α2
s) and

so does not affect the NLO singularity cancellation.

September 24, 2012



1.5. Jets and their cross sections 51

where p denotes a splitting function which is in general a matrix in flavour space.

In terms of components this equation is given by,

µ2 ∂

∂µ2
fi(x, µ

2) =
αs(µ

2)

2π

∫ 1

0

dy

∫ 1

0

dz pij(z) fj(y, µ
2) δ(x− yz),

=
αs(µ

2)

2π

∫ 1

x

dy

y
pij(x/y) fj(y, µ

2), (1.138)

where the splitting function has the perturbative expansion,

pij(x) = p
(0)
ij (x) +

αs
2π

p
(1)
ij (x) +O(α2

s) (1.139)

This equation is known as the Dokshitzer-Gribov-Lipatov-Alterelli-Parisi (DGLAP)

evolution equation [35] [50] [51], the solutions of which allow a PDF defined at

a given momentum scale to be evolved to another scale within the perturbative

regime14.

Using the DGLAP equation for the scale variation of the PDFs and the fact

that the hadronic cross section is independent of the factorization scale, the scale

variation of the factorized cross section is given by,

µ2 ∂

∂µ2
dσ̂ =

αs
2π

[
p⊗ dσ̂ · I + I · dσ̂ ⊗ p

]
. (1.140)

Solving this equation yields the full logarithmic dependence of the cross section on

the scale variation within the perturbative regime.

1.5 Jets and their cross sections

QCD as a gauge field theory of quarks and gluons is well defined and, at least pertur-

batively, well understood. Much of the theoretical development since QCD’s inven-

tion has gone towards calculating a more accurate hard cross section, the main tasks

of which involve performing loop integrals and extracting IR singularities from phase

14DGLAP evolution is valid for moving between momentum scales for a fixed value of x which,

although valid for a large range is not too small. For evolution to small x at moderate momentum

scales, logs of the form ln(1/x) must be taken into account. Incorporating small x physics into

PDF evolution is the focus of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) [52] [53] and Gribov-

Levin-Ryskin (GLR) [54] evolution equations.
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space integrals. This emphasis on the perturbative hard cross section is permitted

because of the factorization of the hadronic cross section into non-perturbative PDFs

and a perturbative partonic cross section in high energy hadronic collisions. A frame-

work is necessary when probing collisions of coloured particles due to confinement;

no coloured particles exist outside of colourless bound states so any calculation must

rely on a model for calculation such as the QCD improved parton model. An ad-

ditional consequence of confinement is that no coloured particle is ever observed in

an experimental detector as any coloured particle rapidly hadronizes into colourless

bound states.

The result of this low energy colour censorship is that the basic experimental

QCD objects at a particle collider are not quarks and gluons but objects called jets,

loosely defined as a collimated density of hadrons described by a total 4-momentum.

A proper jet definition is necessary for a consistent theoretical description as well

as the correct identification of jets in the detectors at colliders. In order to define a

jet a set of appropriate variables should first be defined which simplify the task of

defining jets at hadron colliders. In a hadronic collision the partonic centre of mass

frame is in general boosted relative to the hadronic centre of mass frame along the

beam axis. To reflect this fact it is convenient to formulate the physics in terms of

variables which are invariant or transform simply under such boosts. Two variables

which are obviously invariant under longitudinal boosts are the azimuthal angle,

φ, which circulates around the beam axis and the two components of momentum

transverse to the beam axis, from which the transverse momentum variable is defined

as the modulus of the momentum in the transverse plane,

pt =
√
p2
x + p2

y. (1.141)

Due to length contraction in the direction of travel, a boost in the z direction

transforms the polar angle between frames. If a point along a track in the detector

has coordinates (r, z) where r is the radial displacement from the beam axis in the

transverse plane, then the polar angle is given by,

θ = arctan(r/z). (1.142)

In a boosted frame the displacement along the beam axis is Lorentz contracted
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Figure 1.7: A schematic depiction of the relevant variables in a collider environment.

causing the polar angle to widen,

θ′ = arctan(rγ/z), (1.143)

such that as β = |v| → 1, θ′ → π/2. An alternative coordinate when studying

relativistic kinematics is the rapidity. The rapidity is essentially a hyperbolic angle

which reflects the underlying hyperbolic geometry of relativity and so transforms

simply under Lorentz boosts. In terms of the object’s energy and momentum along

the beam axis the rapidity is defined as,

y =
1

2
ln

(
E + pz
E − pz

)
, (1.144)

Projecting the 3-momentum onto the beam axis and noting that |p| = βE, the

rapidity can be written in terms of the polar angle,

y =
1

2
ln

(
1 + β cos θ

1− β cos θ

)
. (1.145)

Using the invariant transverse coordinates and rapidity the 4-momentum of an object

can be written in the form,

p =
(
mt cosh y, pt sinφ, pt cosφ,mt sinh y

)
, (1.146)

where the transverse mass, mt =
√
p2
t +m2 is also invariant under boosts along the

beam axis. One advantage of using rapidity over the polar angle is that under a

Lorentz boost in the direction of the beam axis, values of rapidity transform simply

as an addition of a constant. The energy and momentum between two relatively
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boosted frames are related by E ′ = γ(E + βpz) and p′z = γ(pz + βE), leading to the

change in rapidity,

y′ = y + 1
2

ln

(
1+β
1−β

)
, (1.147)

such that differences in rapidity are invariant under a Lorentz boost between frames

in the z direction, i.e., ∆y′ = ∆y. At the LHC the hadrons making up a jet are

severely boosted with respect to the laboratory frame so it is often useful to use

pseudorapidity as a variable, to which rapidity tends in the relativistic limit β → 1,

η = − ln
(
tan(θ/2)

)
. (1.148)

The maximal rapidity accessible at a collider is given by ymax = ln(
√
s/m), where

m is the minimum invariant mass of the object. For an operating centre of mass

energy of 3.5, 7, 8 and 14 TeV the maximum rapidity is approximately 5.9, 8.9,

9.0 and 9.5 respectively. Similarly if the process of interest involves a high mass

resonance decaying into jets then the invariant mass of the jets (for sufficiently low

jet multiplicity) will be large, m ≈ O(1TeV). Searches for high mass resonances

with a small number of jets are therefore confined to studying jets in the central

region.

Having defined the appropriate kinematic variables for measuring jets it is neces-

sary to define what constitutes a jet in a theoretically consistent way. The definition

of a jet is not unique and is determined through use of a jet algorithm. Jet algo-

rithms broadly fall into two classes, sequential recombination and cone algorithms,

both of which have been used at hadron colliders and will be briefly discussed in

the following sections. A comprehensive survey of the field of jet algorithms can be

found at [55].

1.5.1 Sequential recombination algorithms

Sequential recombination algorithms start with a partonic final-state, calculate a

distance measure between the partons, apply a set of selection criteria and combine

partons into a composite particle based on the selection criteria. Once all composite

particles pass the selection criteria the algorithm stops and the resulting composite
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particles are identified as jets. The general algorithm for jets at hadron colliders

follows the steps:

1. Calculate the distance measure, dij between all final state partons and diB

between final state particles and the beam axis,

2. Find the minimal distance measure,

3. If the minimal measure is a dij combine particles i and j into a single composite

particle and return to step 1,

4. If the minimal distance measure is a diB record particle i as a jet and remove

from the set of particles,

5. Terminate when no particles remain.

The quantity which differentiates between the main jet algorithms is the distance

measure used to set the recombination criteria. Generally this can be written in the

form,

dij = min(p2p
t,i, p

2p
t,j)

∆R2
ij

R2
,

diB = p2p
t,i, (1.149)

where ∆R2
ij = (∆yij)

2+(∆φij)
2 and R is a parameter defining the radial extent of the

jet when idealized as a cone in y-φ coordinates. The value of the constant p defines

the specific algorithm with p = 1, 0,−1 defining the kt [56] [57], Cambridge/Aachen

[58] [59] and anti-kt [60] algorithms respectively. The minimum function simply

returns whichever of its two arguments is smallest, e.g., in the case of the kt algorithm

the squared transverse momentum of two particles is read in and it selects the one

with the smallest value.

An alternative measure would simply be the product of the two transverse mo-

menta, pt,i · pt,j similar to the measure used at LEP for the JADE algorithm [61].

One problem with this measure is that two well separated particles with small pt

(soft and back-to-back), could generate a small distance measure and be recombined.

Selecting only the minimum of the two ensures that the distance measure for two

particles in such a configuration will generally be larger than between one of those
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Figure 1.8: Two identical fragmentations can be treated differently for jet definitions

with different jet radii.

particles and a nearby hard particle with which it is recombined using the kt algo-

rithm. This distance measure eliminates the formation of phantom jets, formed from

many well separated soft particles, by the jet algorithm. The Cambridge/Aachen

algorithm has no dependence on the p2
t of the particles, clustering purely on the basis

of how collinear two particles are, so will never cluster two soft well separated par-

ticles. The anti-kt algorithm has an inverse dependence on the p2
t of the particles so

soft particles are generally discriminated against as the algorithm favours collinear

pairs. The pt dependence of the kt, Cambridge/Aachen and anti-kt algorithms cause

the jets to grow outwards from soft, pt-independent and hard particles respectively.

The other main parameter specifying a jet algorithm is the jet radius, R. There

is no unique value for the jet radius and different values have different disadvan-

tages. A small jet radius is more likely to define a particle which fragments (either

perturbatively or after hadronization from the decay of unstable hadrons), into two

particles as two jets whereas a large jet radius will consider essentially all radiation

from a particle to be part of the same jet. This effect may cause an inaccurate

reading of the jet energy due to the leaking of radiation from a small jet radius.

When it comes to resolving many hard partons however, a smaller jet radius allows

a finer resolution whereas a large jet radius would cluster many hard partons and

not resolve the physics generating the multiple hard partons. The opposite effect

to radiative leaking is radiation from the underlying event leaking into the jet. In

this case a small jet radius is useful as it is less likely to capture energy from the

underlying event than a jet with a large jet radius.
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The choice of jet radius is influenced by these two competing effects, with the

radiative leaking serving to reduce the total energy of the jet and the underlying

event acting in opposition. In order to gain the best resolution for the physics

being probed the jet radius should reflect the relative impact of these competing

contributions. i.e., for low pt the underlying event can dominate over the radiative

effects and so a small jet radius will minimise the effect of the underlying event

without losing too much to radiative leaking. Similarly at high pt the underlying

event is negligible compared to the large amount of QCD radiation so a larger jet

radius is desirable to control the effect of radiative leaking. In practice at the LHC

the two experiments ATLAS and CMS use the anti-kt algorithm with fixed values

for the jet radius: 0.4 or 0.6 for ATLAS and 0.5 or 0.7 for CMS. It should be noted

that the optimum jet radius is not necessarily at any of these points for a specific

observable and in particular for high mass resonance searches using dijet data at the

LHC the optimum jet radius can be significantly greater than one [62].

1.5.2 Infrared safety

The most important aspect for any jet algorithm is that the jets produced by the

algorithm are robust to IR radiation, that is soft and collinear radiative corrections.

The key issue is that soft or collinear radiation should not alter the final distribution

of jets produced by the jet algorithm. As has been discussed in previous sections, it

is well known that the IR singularities of virtual contributions to the cross section

cancel against the IR singularities generated by integrating the real emission con-

tribution over its unresolved phase space. If the jet algorithm is not insensitive to

such IR radiation then the virtual and unresolved IR configurations will contribute

to different jet multiplicity cross sections and the singularities associated with the

respective contributions will not cancel, invalidating perturbation theory. The finite

resolution and threshold energy of a detector mean that, irrespective of the jet al-

gorithm, the deep IR configurations will contribute to the same cross sections. The

manner in which the detector’s energy and spatial resolution ensures IR safety is

however a complicated and detector dependent issue, making it difficult to compare

theoretical predictions and experimental results. For these reasons IR safe jet al-
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Jet 1

Jet 1

Jet 2

Figure 1.9: A seeded iterative jet algorithm is sensitive to collinear splittings which

affect the definition of the hardest seed, the lines highlighted red.

gorithms are essential to understanding experimental results involving jets in the

collider environment.

Sequential recombination algorithms are generally IR safe because any soft or

collinear radiation will generate a small distance measure and be recombined with

a hard parton at the initial stages of the algorithm’s run, not affecting the final

configuration of jets. A simple counter-example are algorithms which identify the

hardest parton as a seed for a proto-jet which can then accumulate surrounding

particles to form a jet. Such an algorithm is not IR safe as a splitting of the

hardest parton into two collinear partons sharing the momentum may mean the

hardest particle is no longer either of the daughter particles of the original hardest

particle [55]. In this situation the definition of the hardest seed is very susceptible to

collinear splittings and subsequent iterations may split an otherwise single jet into

many jets, changing the set of stable final jets. Another example of an IR unsafe

algorithm is one which defines a proto-jet as a cone of fixed radius around a seed

such that all particles within that cone are summed to form a new seed until a jet

is formed that is stable to any further iterations. The issue of IR safety in this

case comes about when a soft parton is emitted between two hard partons, forming

a stable cone that incorporates the soft particle and the two hard particles into a

single jet rather than the two jets without the soft emission.
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1.5.3 Cone algorithms

The first jet algorithm [63] was a cone algorithm and they continue to be used exten-

sively today. Unlike sequential recombination algorithms which follow the pattern of

QCD radiation by clustering particles into a jet by reversing the sequential branch-

ing, cone algorithms are a top down approach to defining jets. As a consequence of

this approach cone algorithms have often been compromised by issues of IR safety,

especially the class of cone algorithms requiring hard seeds to initiate the jets for the

reasons outlined in the previous section. As these infrared unsafe algorithms and

their various fixes [64] (which are often ad hoc and not a comprehensive solution)

are no longer widely used they will not be discussed further here.

The most widely used cone algorithm today is IR safe and just as valid as any

sequential recombination algorithm, called the Seedless Infrared Safe Cone (SIS-

Cone) algorithm [65]. This algorithm avoids the problems associated with iterating

a proto-jet from a seed by not choosing any particle as a special initial seed. For

each subset of particles a total momentum axis is calculated and a cone of set radius

is defined surrounding the subset’s axis. If exactly the same particles in the subset

lie within the cone then it is defined as a stable cone. Following the definition of

the stable cones a split-merge procedure is performed which removes any overlap

between stable cones. The split-merge procedure measures the amount of pt shared

between two proto-jet cones in their overlap, denoted pt,shared; if the fraction of mo-

mentum between the overlap and the softest jet is above a critical value, typically

0.75, then the proto-jets are merged into a jet. i.e., if two proto-jets, called h and

s (where proto-jet h is harder than s) share part of each other’s cone, the overlap

fraction is defined as,

pt,shared

pt,s
= f (1.150)

If the overlap momentum falls short of the critical fraction then the shared momen-

tum is redistributed to the cone who’s centre is closer in angle. By ensuring that the

soft stable cones don’t affect the outcome of the split-merge procedure the SISCone

algorithm provides an IR safe cone algorithm.
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1.6 QCD at NNLO: motivation and application

The previous sections have provided the theoretical framework for QCD within the

collider environment necessary to define the calculations contained in this thesis.

The framework required to perform these calculations will be discussed in chapter 2

and will focus primarily on the issue of performing the IR singularity cancellation for

higher order perturbative corrections. The development of the antenna subtraction

method and its application is the main result of this thesis, but ultimately the results

of any such calculations are independent of the method used. It is important to

consider which calculations are actually worthwhile performing at NNLO accuracy

and which observables are sensitive to higher order corrections.

1.6.1 The motivation for NNLO

The motivation for NNLO accuracy comes from both general arguments and process

specific considerations. The general considerations are concerned with the theoreti-

cal framework of perturbative QCD in the collider environment, whereas the process

specific motivation for NNLO strongly depends on how important a particular chan-

nel is for phenomenological studies at the LHC.

The structural need for NNLO is well known and has to some extent already

been discussed in the previous sections. The most widely quoted method for es-

timating the theoretical uncertainty is measuring the effect of varying the various

unphysical scales present in a calculation. At a hadronic collider such as the LHC

the unphysical scales are the renormalization and factorization scales, both of which

persist in a truncated perturbative calculation. It has been argued in section 1.4

that as higher order contributions are calculated the dependence on these unphysi-

cal scales will systematically decrease. A striking example of this reduction in scale

dependence can be seen in figure 1.10 [1] which shows the differential cross section

for the production of a stable Z0 boson in association with some additional hadronic

states, as a function of rapidity at the LHC. The bands show the effect of varying

the factorization and renormalization scales by a factor of two either side of the con-

ventional value, µR = µF = µ, MZ < µ < 2MZ . This example serves to highlight
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Figure 1.10: The differential cross section for the process pp → Z0 + X where X

denotes any additional partons or hadrons [1].

many generic motivations for calculating NNLO corrections.

There are several aspects to the plot in figure 1.10 which demonstrate the motiva-

tion for higher order corrections. The most obvious result is that the scale variation

of the cross section decreases dramatically as higher order corrections are included.

In the central region the scale variation of the leading order result is as much as

30%; this falls to approximately 6% when including the NLO correction and as low

as 0.6% for the NNLO result in the same rapidity region [1]. It is also clear that the

higher order corrections decrease in size as the perturbative order increases, which

indicates that the perturbative series is converging up to NNLO. The convergence of

the series can also be seen in the overlap of the respective perturbative contributions.

The NLO result does not in fact overlap with the leading order result’s theoretical

error bands15 whereas the NNLO result sits comfortably within the (more reliable)

15This is not in itself that surprising as the leading order result does not have any renormalization

scale dependence. Also the variation of the scales over the range MZ/2 < µ < 2MZ is entirely

arbitrary. Furthermore, at NLO a new channel is opened up, q g → Z q, which is zero at leading

order. For a sizeable gluon distribution this new channel can significantly affect the cross section.
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NLO theoretical error bands.

A more subtle but important observation is the higher order corrections do not

just change the overall normalization of the cross section in a convergent manner;

the shape of the distribution is also modified [66]. Higher order corrections contain

more dynamical scales for the cross section to be a function of, both virtual and

real contributions. In the case of real corrections the final-state phase space is

significantly larger and permits more complicated final states. Both of these effects

can change the normalization and the shape of a distribution, for example allowing

higher rapidity jets to be produced. This is seen in figure 1.10 where the leading

order cross section is essentially flat in rapidity but the NLO and NNLO corrections

produce a broad peak in the central region.

One of the strongest motivations for performing NNLO calculations is to con-

strain the PDFs at NNLO. The determination of a PDF not only requires knowledge

of the PDF running to the desired order in αs, but a global fit to data must be per-

formed. The observables used to constrain the PDFs must be calculated to the

same order in perturbation theory for a meaningful determination of the PDF. The

processes used for the fit will constrain different PDFs, for example the deep in-

elastic scattering (DIS) data from HERA (or indeed vector boson + jet data from

the LHC) probe the quark distributions but provide much looser constraints on the

gluon distribution as the virtual photon probe for DIS (or the vector boson in the

V+ jet data) does not couple to the gluon at leading order [2]. In order to probe the

gluon distribution a hadron collider is the most useful environment as a significant

fraction of the hadronic initial state’s momentum is carried by gluons. The effect of

incorporating the inclusive jet data from the Tevatron runs I and II into the NLO

gluon PDF fit can be seen in figure 1.11 where the effect is particularly pronounced

at high x values.

The LHC’s kinematic reach is far greater than was available to the Tevatron, as

shown in figure 1.12, so the jet data currently being collected at the LHC has the

capacity, if coupled with a full NNLO calculation, to constrain the gluon density

and test QCD over a huge dynamical range.

In section 1.5 the various methods for constructing experimental jets from par-
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Figure 1.11: A plot of the gluon distribution showing the effect of including Tevatron

inclusive jet data [2].

tons were discussed. All the IR safe jet algorithms act on the set of final state

momenta present in the partonic matrix element and generate a number of jets

based upon their specific criteria. At leading order there is an exact correspondence

between partons and jets but at higher orders the additional real radiation can re-

combine and the jet algorithm becomes non-trivial. At NNLO, in addition to the

jet configurations allowed at NLO, three partons present in the matrix element can

recombine to form a single jet or two pairs of partons can form two jets. As the

number of additional particles in the final state increases, the jets produced by the

jet algorithms become more realistic and closer to what is observed in the detector.

In this sense higher order corrections begin to unravel the first few emissions of the

parton shower but with the full machinery of perturbation theory.

In a similar fashion to the way recombining additional final-state partons im-

proves the description of jets, radiation from initial-state partons also generates a

more realistic initial-state [66]. At leading order the total transverse momentum of

the initial state, and thus the final state, is zero. Higher perturbative orders allow

initial-state radiation which will impart transverse momentum for the initial-state

partons and if unobserved can generate a non-zero final-state transverse momentum.

Allowing the initial-state radiation to generate transverse momentum for the incom-

ing partons, as QCD dictates it must, can reduce or perhaps even remove the need
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Figure 1.12: The kinematic ranges of the Tevatron and LHC in the x-Q2 plane [3].

for any intrinsic transverse momentum of the hadron which is sometimes invoked

to be able to explain the experimental data. From the point of view of fixed higher

order calculations the intrinsic transverse momentum of the hadron is similar to the

issues of power law corrections; both effects are invoked to explain the data but both

effects can in principle be generated by well motivated higher order perturbative ef-

fects. In the case of power law corrections additional powers of 1/ ln(Q2/ΛQCD),

where Q2 is a hard scale associated with the partonic cross section, are generated

by the multi-loop corrections to the QCD coupling. It is possible for these correc-

tions to mimic any power law contribution and it remains unclear if either intrinsic

transverse momentum or power law corrections are generically required, although

not ruled out in principle [67].

1.6.2 Seeing NNLO at the LHC

For the LHC NLO accuracy is necessary and, as discussed in the previous section,

NNLO is often desirable. It is worthwhile to consider which processes are particularly

sensitive to NNLO effects and have the largest impact on the field of phenomenology.

Much attention has already been paid to the definition, calculation and properties
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of jets in this chapter. Jets are interesting objects in themselves, this coupled with

their abundance at the LHC and intimate connection with parton-level QCD makes

jet cross sections an attractive observable dominated by QCD effects.

In order to resolve higher order corrections both the theoretical and experimental

uncertainties must be brought under control. On the theoretical side the uncertain-

ties may be broadly grouped into perturbative and non-perturbative uncertainties.

The perturbative uncertainties associated with a QCD calculation were discussed in

the previous section and mainly amount to residual dependence of the cross section

on unphysical scales such as the renormalization and factorization scales. In gen-

eral calculating higher orders in the perturbation series at parton level for relatively

large pt and central rapidities will suffice to reduce the theoretical uncertainty on

the partonic cross section16.

Non-perturbative theoretical uncertainties include the uncertainties on the vari-

ous partons’ distributions within a PDF and disagreements between the competing

PDF sets. In addition to the PDF uncertainties, there are hadronization and under-

lying event effects which have to be successfully modelled to reduce the uncertainty

associated with these phenomena. The task of comparing experimental data with

the particle-level prediction requires the use of Monte-Carlo (MC) event generators

to unfold the data back to a particle-level result [68]. The details of the unfolding

procedure introduce further sources of error such that even if a high precision cal-

culation is not matched to a parton shower, it will have residual dependence on the

parton shower’s effect through the MC’s interpolation between theory and data. The

resulting uncertainty associated with an unfolding procedure is referred to as the

Monte-Carlo shape uncertainty. In order to quantify this uncertainty a particle-level

MC simulation (which is connected to a detector-level result via a transfer matrix) is

re-weighted by a smooth function and reconstructed at the detector level such that

the resulting MC generated observable agrees better with the data. The re-weighted

and reconstructed MC is then unfolded back to particle-level and compared to the

16For regions of low momentum transfer or at particle thresholds additional theoretical input in

the form of resumed calculations may be required to produce a reliable prediction for the cross

section.
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re-weighted parton-level MC. With the MC shape uncertainty defined in this way

the uncertainty is quantified at the percent level for the unfolding procedure used

by the ATLAS collaboration [4].

For jet studies the main experimental uncertainty holding back any comparison

to high precision predictions is the Jet Energy Scale (JES) correction. The total 4-

momentum of a jet as seen in the calorimeter is given by the sum of the 4-momentum

deposited in each calorimeter cell contributing to the jet definition. As discussed

in section 1.5, the energy of a jet may be increased by capturing energy from the

underlying event, in particular pile-up. In addition to these corrections the detector

may contain dead cells and other effects which cause energy loss for the jet. These

effects are corrected for by a function of transverse energy and pseudorapidity which

is derived from MC simulations of jets. For the 2010 dijet data from CMS based

on 34pb−1 of data the proportion of the total uncertainty on the cross section due

to the JES correction is 60% for a reconstructed dijet mass of MJJ = 3TeV [69].

For smaller values of the invariant dijet mass this fraction will decrease due to the

increasing importance of the underlying event but the JES correction remains the

main obstacle to precision physics for high pt central jets.

The double differential inclusive dijet cross section as a function of the invariant

dijet mass, measured by ATLAS, is shown in figure 1.13 as a ratio to the NLO

prediction from NLOJet++ using the NLO PDF set CT10 [4]. This measurement

of the dijet cross section probes invariant dijet masses of up to 4.6 TeV and for

y∗ < 2.5, where y∗ = |y1 − y2|/2 and y1,2 are the rapidities of the leading jets. The

data is described reasonably well by the NLO prediction but there are some sizeable

discrepancies, in particular with the high invariant mass data, a trend which is seen

in both the 2010 and 2011 data and for an increased jet radius of R = 0.6 which in

principle would be better suited to the high pt region.

In addition to the dijet cross section, the inclusive jet cross section is the other

main observable used in jet studies to test QCD predictions. The inclusive jet cross

section as measured by CMS [5] and ATLAS [4] with 2010 data is shown in figures

1.14 and 1.15 respectively. In both instances there is some tension between the NLO

prediction and the observed cross section, with the theoretical prediction tending to
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Figure 1.13: The ratio of the double differential dijet cross section as measured by

ATLAS to the NLO prediction from NLOJet++ using CT10 NLO PDF set. ATLAS

use the anti-kt algorithm with R = 0.4 for this measurement [4].

overshoot the data. At high values of pt the main source of theoretical error comes

from the PDFs and so such a measurement has the potential to constrain the PDFs

at large x if the JES uncertainty can be brought within comparable bounds.

A massless QCD calculation of the inclusive jet cross section requires two input

parameters: the QCD coupling and the PDFs for the incoming hadrons. As dis-

cussed in section 1.2 the value of the coupling can be extrapolated to any momentum

scale in the perturbative region by solving the β-function equation for its evolution.

An interesting exercise is to turn this process around and use the LHC jet data to

extract the QCD coupling that describes the data [70]. The result of this exercise

can then be compared with the expectation of the β-function. Any deviation from

the QCD evolution, especially at high pt, may provide indications of non-standard

coloured dynamics contributing to the running of αs at higher orders.
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Figure 1.14: The inclusive jet cross section, as measured by CMS, as a ratio to the

NLO theoretical prediction [5].

The lack of a single momentum scale at a hadron collider, due to the composite

nature of the proton, means that values for the coupling can be extracted over a

huge range of momentum scales. When the analysis was performed at the Tevatron

by the DØ collaboration [6] the coupling was extracted for the range of the leading

jet’s pt of 50 < pt < 145 GeV and the results are shown in figure 1.16(a).

The kinematic range of the LHC exceeds that of the Tevatron and a similar anal-

ysis compared to an NLO inclusive jet cross section calculation has been recently

performed using the 2010 jet data from ATLAS based on 37pb−1 of integrated lu-

minosity, [71]. In this study the range of leading jet pt being probed was increased

dramatically to 45 < pt < 600 GeV. The results of this extraction are shown in fig-

ure 1.16(b) for the various rapidity bins, which include jet rapidities up to |y| < 4.4,

significantly larger than the Tevatron’s reach of |y| < 1.6. The limitations on this

measurement come from several sources: the statistical uncertainty on high pt jets,

any systematic experimental uncertainties such as the JES, the PDF uncertain-

ties and the renormalization and factorization scale uncertainties. Calculating the

inclusive jet cross section to NNLO accuracy could eliminate much of the scale un-

certainty in the theoretical calculation whereas the continued running of the LHC

will massively increase the high pt jet data and gradually decrease the JES uncer-

tainty through improved jet calibration. The remaining source of uncertainty is
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Figure 1.15: The inclusive jet cross section, as measured by ATLAS, as a ratio to the

NLO theoretical prediction calculated using NLOJet++ and the CT10 PDF set [4].

the determination of the PDFs, in particular the gluon distribution which is poorly

constrained at large x and gives a significant contribution to the jet cross section.

As a hadron collider the LHC is dominated by QCD effects. Jet studies allow

these effects to be tested over a large range of validity, but QCD also has a significant

effect on the production of colourless particles at the LHC. Colourless particles can

be produced in abundance and provide significant Standard Model backgrounds,

as in the case of vector boson production in association with one or more jets.

Understanding these processes to a high degree of accuracy can have a large impact

on LHC phenomenology, e.g., the V+jet cross section can be used to probe the

quark PDFs and also provides a significant background to top quark production.

Colourless particle production at the LHC is also important as a background

for rare processes such as a Higgs boson decaying into two photons. It has recently

been reported [7] [72] that a significant excess is observed in the Higgs searches by

both CMS and ATLAS for a reconstructed Higgs mass in the region 125-126 GeV.

This observation has been driven to a large extent by an excess in the diphoton

channel and so understanding the Standard Model Higgs signal in this channel is
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Figure 1.16: Plots showing the extracted value of αs as a function of leading jet pt

at (a) the Tevatron [6] and (b) ATLAS.

a matter of great importance. In the coming years much experimental attention

will be paid to measuring the Higgs cross section, and its associated irreducible

backgrounds, to a high degree of accuracy and precision. This effort will be matched

on the theoretical side with understanding the data in the context of highly precise

theoretical predictions which, if understood properly could lead to hints of Beyond

the Standard Model (BSM) Higgs physics, opening up an new frontier for particle

physics.

September 24, 2012



1.6. QCD at NNLO: motivation and application 71

Figure 1.17: The H → γγ channel as measured by CMS based upon a combination

of
√
s = 7 TeV and

√
s = 8 TeV data [7].
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Chapter 2

Antenna Subtraction

The issue of IR singularities and their cancellation is a generic problem for massless

gauge theories such as QCD in the high energy limit. The factorization theorems [48]

ensure that the perturbative cross section is ultimately free from singularities and

divergences so long as it is properly defined, yet the process of actually performing

the singularity cancellation order by order in perturbation theory remains an active

field of research. With the knowledge that the IR singularities of the virtual cross

section cancel against the IR divergences of the real cross section when analytically

integrated over the unresolved phase space, the task is reduced to extracting the

implicit singularities from the real contribution’s phase space integral such that

they are in the same form as the explicit virtual singularities. The method of

dimensional regularization is standard in higher order perturbative QCD studies

and so the broad task of producing an IR finite observable is reduced to the much

more focussed exercise of writing the integral of the real emission over unresolved

regions of phase space as a Laurent expansion in the dimensional parameter, ε.

In order to perform this task three main strategies have been employed: slicing,

sector decomposition and subtraction. The various methods used to perform higher

order calculations at NLO or NNLO employ one or more of these basic techniques

which are briefly discussed in this section. At NLO all three methods have been

implemented by various formalisms, the details of which will not be reproduced

here except in the case of antenna subtraction which is the focus of this thesis.

Detailed discussions of the application of the alternative methods at NLO can be
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found elsewhere: phase space slicing [73–76], Catani-Seymour [20], Frixione-Kunszt-

Signer (FKS) [77], sector decomposition [78–81]. At NNLO the antenna subtraction

method will be extended and discussed in detail, providing the background and

tools for performing the calculations which are the focus of chapters 3, 4 and 5.

Details of alternative methods for NNLO calculations may be found in the following

references [82–89].

2.1 Basic techniques for singularity isolation

2.1.1 Phase space slicing

The slicing technique has been employed for NLO QCD calculations in addition

to extracting poles from double unresolved configurations involving mixed QCD-

QED calculations, specifically for the processes e+e− → 3j [74] and e+e− → γ + j

[76]. The method relies on a detailed understanding of the unresolved limits of the

matrix elements, which for colour-ordered squared amplitudes have been discussed

in section 1.3.2. The important fact in the context of the slicing method is that

the in unresolved limits the colour-ordered squared matrix elements factorize into

the direct product of a universal singular function, depending only on the parton

directly involved in the singular configuration, and a reduced multiplicity squared

matrix element independent of the unresolved momenta.

Schematically, given a set of momenta {p}, of which a set {U} are involved in

an unresolved configuration and the subset {V} actually vanish, i.e., {V} ⊂ {U} ⊂

{p}, the general tree-level factorization formula holds for the squared colour-ordered

partial amplitudes,

M0
n({p}) {V} unresolved−→ F({U}) M0

r ({p}\{V}), (2.1)

where r is the number of resolved particles, i.e., n minus the number of unresolved

partons. Here F is a universal singular function which in the single soft limit is the

Eikonal soft function and in the collinear limit is one of the Altarelli-Parisi splitting

functions [35]. At loop level a similar factorization formula holds and new one-loop
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universal singular functions are required [39],

M1
n({p}; ε) {V} unresolved−→ F({U}) M1

r ({p}\{V}; ε) + F (1)({U}; ε) M0
r ({p}\{V}).(2.2)

The details of the single unresolved limits of one-loop squared matrix elements are

presented in section 1.3.2.

The phase space slicing method partitions the phase space into a set of regions

defined by kinematic thresholds. By way of example, consider the process e+e− →

qq̄g with a floating but suitably small threshold, smin [74]. The soft region of phase

space for the gluon can be defined as,

sqg < smin & sq̄g < smin. (2.3)

Similarly the q||g collinear region can be defined as,

sqg < smin & sq̄g > smin, (2.4)

and the q̄||g collinear region by,

sqg > smin & sq̄g < smin. (2.5)

The scale sqq̄ is always hard and so the phase space can be considered in the sqg-sq̄g

plane as in figure 2.1. In the hard region the matrix elements are finite and well

behaved so the hard cross section can be numerically integrated over this region

of phase space. In the soft region the squared matrix element is replaced by its

factorized form in the exact soft limit,

M0
3 (1q, 3g, 2q̄) −→ S132 M

0
2 (1q, 2q̄). (2.6)

In the exact soft limit the three-particle phase space factorizes into a soft phase

space and the remaining two-particle phase space,

dΦ3(p1, p2, p3;Q2) −→ dΦ2(p1, p2;Q2) · dΦsoft(p1, p2, p3) (2.7)

where the soft phase space is defined as,

dΦsoft(p1, p2, p3) =
(4π)ε

16π2Γ(1− ε)
ds13 ds23

s12

(
s13s23

s12

)−ε
Θ(smin − s13)Θ(smin − s23).
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(2.8)

Integrating the soft universal function over the soft phase space analytically and

including the dimensionless coupling associated with the gluon emission, g2 = αsµ
2ε,

yields the contribution,

g2

∫
dΦsoft S132 =

αs
2π

(4πµ2)ε

Γ(1− ε)
1

s12

∫ smin

0

ds13

∫ smin

0

ds23

(
s13s23

s12

)−(1+ε)

=
αs
2π

1

Γ(1− ε)
1

ε2

(
4πµ2

smin

)ε (
s12

smin

)ε
(2.9)

In a similar fashion the matrix element and phase space factorize in the collinear

limit, when the gluon becomes collinear with either the quark or the anti-quark.

M0
3 (1q, 3g, 2q̄)

q||g−→ 1

s13

Pqg→Q(z) M0
2 (1q, 2q̄),

dΦ3(p1, p2, p3;Q2)
q||g−→ dΦ2(p1, p2;Q2) · dΦcol(p1, p3, z), (2.10)

with z = s13/s12 and the corresponding formulae for the q̄||g limit are obtained by

substituting 1↔ 2. The collinear phase space is defined as,

dΦcol(p1, p3, z) =
(4π)ε

16π2Γ(1− ε)
ds13dz

(
s13 z(1− z)

)−ε
Θ(smin − s13). (2.11)

Integrating the splitting function over the collinear phase space yields,

g2

∫
dΦcol

1

s13

Pqg→Q(z) =
αs
2π

(4πµ2)ε

Γ(1− ε)

∫ smin

0

ds13 s
−(1+ε)
13

×
∫ smin

s12

0

dz
[
z(1− z)

]−ε
Pqg→Q(z),

= −αs
2π

1

Γ(1− ε)
1

ε

(
4πµ2

smin

)ε
Pqg→Q

(
smin

s12

)
.(2.12)

The integrated splitting function is given by [74],

Pqg→Q(x) =
x−ε − 1

ε
− 3

4
+

(
−7

4
+
π2

6

)
ε+O(ε2), (2.13)

where terms of O(ε2) and higher are not required as the deepest pole for the rest of

the expression is 1/ε.

By partitioning and factorizing the phase space, understanding the divergent

behaviour of the matrix elements and knowing the analytic results for integrating

the universal singular functions over unresolved phase space, the ε poles of the real
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Figure 2.1: A schematic depiction of the various kinematic regions as shown in the

sqg-sq̄g plane

emission can be systematically extracted and cancelled against those present in the

virtual contribution.

The drawback to the slicing method originates in its use of the theoretical res-

olution parameter, smin. The method is approximate as the substitution of the full

matrix element for the product of the universal singular function and the reduced

matrix element, which is made in the region below smin, is strictly valid only in the

exact singular limit. The poles are correctly captured by integrating the universal

singular functions but a finite systematic theoretical error is introduced due to the

mismatch between the exact and approximate matrix elements in the singular re-

gions away from the singularity but below the threshold. The approximate matrix

element approaches the exact one in the singular limit and so setting smin to be

suitably small ensures the systematic error is kept to a minimum.

In principle it is desirable to take the floating threshold, smin, to be as small as

possible; however in practice an optimum value is chosen. The dependence of the

cross section (including real emission in the unresolved regions) on the unphysical

parameter smin, through terms of the form ln
(
smin/sqq̄

)
, ultimately cancels against

corresponding terms in the real emission cross section where the additional partons
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are resolved. In a Monte Carlo program the hard cross section is evaluated nu-

merically using MC integration and so the cancellation of the unphysical threshold

parameter is numerical. If smin is taken too small then the logarithms containing the

smin dependence, which is separately held in the various contributions to the cross

section, generally become large and introduce an error in the numerical cancellation

between terms. Balancing these concerns with the systematic error introduced by a

non-zero smin informs the ultimate choice of the unphysical parameter.

2.1.2 Sector decomposition

An alternative strategy to approximating and analytically integrating the cross sec-

tion in the singular regions is represented by the many implementations of the sector

decomposition method [78–81, 90]. For real radiative corrections it is convenient to

rescale the available Lorentz invariants to form a set of dimensionless parameters,

xij =
sij
shard

, (2.14)

where shard denotes the total mass of the final-state, e.g., in e+e− annihilation shard =

Q2. In this way a set of invariant dimensionless parameters can be formed, x1 =

x12, x2 = x13, etc. By re-parameterizing the invariants in this way the poles in ε

can be extracted through use of the identity,

x−1+aε =
1

aε
δ(x) +

∞∑
n=0

(aε)n

n!
Dn(1− x), (2.15)

where the distributions, Dn(1 − x), are defined with respect to integration against

a test function,∫ 1

0

dx f(x) Dn(1− x) =

∫ 1

0

dx

[
f(x)− f(0)

x

]
lnn(x). (2.16)

In order to extract the poles in this way the singular parameters must be untangled

from one other. An example displaying tangled, or overlapping, singularities is given

by an expression of the form,

I =

∫ 1

0

dx

∫ 1

0

dy (x+ y)−2+ε. (2.17)
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The singularities in this expression originate in the divergence of the integrand at

x → 0 and y → 0. The integrand is in a non-factorized form so the identity (2.15)

cannot be used immediately to extract the poles in ε.

The method of sector decomposition solves this issue in an algorithmic fashion

by splitting the integration into a set of Hepp sectors [91]. For the simple example

considered above the two dimensional integral is divided into two sectors: sector H1

with x > y and sector H2 with y > x such that I = H1 +H2 and,

H1 =

∫ 1

0

dx

∫ x

0

dy (x+ y)−2+ε,

H2 =

∫ 1

0

dy

∫ y

0

dx (x+ y)−2+ε. (2.18)

The innermost integration variable is then rescaled in terms of a new variable, z,

i.e., for H1, y = xz and for H2, x = yz, yielding,

H1 =

∫ 1

0

dx x−1+ε

∫ 1

0

dz (1 + z)−2+ε,

H2 =

∫ 1

0

dy y−1+ε

∫ 1

0

dz (1 + z)−2+ε. (2.19)

The integrand involving z is finite over the whole integration range and the divergent

behaviour has been factorized into the integrals over x and y which are now in a

form amenable to the application of the identity (2.15) to extract the ε poles.

In general expressions will contain factors such as (1−x) or x(1−x) which have

zeros at x = 1 or x = 0, 1. In these cases the divergences can be remapped to the

origin by a change of variables, or by splitting the integration region further and

employing a change of variables to the separate regions. The process of defining

sectors, remapping the sectors to the unit hypercube and defining new sub-sectors

until all singularities are factorized has been proven to terminate [81] and constitutes

the sector decomposition method. The method is versatile and has been applied to

extracting singularities from loop integrals as well as phase space integrals. The

result of performing an integral using sector decomposition is an expression of the

form,

I =
b∑

n=−a

cnε
n +O(εb+1), (2.20)
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where a is the depth of the leading pole and b is the order at which the series is

terminated, if the quantity being calculated is not multiplied with any other ε poles

then clearly b = 0. The coefficients cn are finite parameter integrals, as in the case

of the z integral in the example above and are generally computed numerically.

2.1.3 Subtraction

Subtraction [92] is a more indirect method for extracting the ε poles from an integral,

relying on third party quantities, but unlike phase space slicing the method is exact

and unlike sector decomposition it is fully analytic. These two facts allow a successful

application of the method to be highly accurate and also constitute what could be

considered a genuine proof of the singularity cancellation for a physical quantity.

The central idea underpinning all subtraction methods is to define a local coun-

terterm which mimics the behaviour of the physical matrix elements in all IR diver-

gent limits. The general form of the counterterm depends on the specific subtraction

formalism being used, however the counterterms of all subtraction methods must

fulfil two basic requirements: They must correctly mimic all IR divergent behaviour

of the physical cross section and they must be analytically integrable over the un-

resolved phase space. If a function can be constructed which satisfies these criteria

then a contribution to the cross section with n final-state partons can be trivially

rewritten, ∫
Φn

dσ̂ij︸ ︷︷ ︸
divergent, non-integrable

=

∫
Φn

[
dσ̂ij − dσ̂Sij

]
︸ ︷︷ ︸

finite, numerically integrable

+

∫
Φn

dσ̂Sij︸ ︷︷ ︸
divergent, analytically integrable

.(2.21)

By satisfying the necessary requirements of the counterterms the divergent and non-

integrable (numerically and analytically) physical cross section is partitioned into a

piece which is finite and numerically integrable and a piece which contains all the

divergence and is analytically integrable, allowing the poles in ε to be extracted.

As (2.21) is a trivial identity no approximation is made and no systematic the-

oretical error is introduced, unlike in phase space slicing. Similarly the analytic

integrability of the counterterms allows the pole cancellation to be carried out an-

alytically, removing any doubt over whether the poles fully cancel which persists
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when performing numerical pole cancellation. When cancelling poles numerically

it is possible that the cross section will contain terms which are analytically sin-

gular but numerically small, e.g., the term (1/ε) ln(x) where x may be some ratio

of kinematic scales close to unity. Such a term is numerically suppressed by the

smallness of the logarithm but actually singular and may be difficult to detect when

performing the singularity cancellation purely numerically.

The partonic cross section for a general 2 → n scattering process, with two

partons in the initial-state, may be expanded as a perturbation series in the small

coupling leading to the various different contributions to the cross section,

dσ̂ij = dσ̂LOij +

(
αs(µ

2)

2π

)
dσ̂NLOij +

(
αs(µ

2)

2π

)2

dσ̂NNLOij +O
(
αs(µ

2)3
)
.(2.22)

For an n-parton leading order final-state the LO, NLO and NNLO contributions

have the form,

dσ̂LOij =

∫
Φn

dσ̂Bij ,

dσ̂NLOij =

∫
Φn

[
dσ̂Vij + dσ̂MF

ij,NLO

]
+

∫
Φn+1

dσ̂Rij ,

dσ̂NNLOij =

∫
Φn

[
dσ̂V Vij + dσ̂MF,V V

ij,NNLO

]
+

∫
Φn+1

[
dσ̂RVij + dσ̂MF,RV

ij,NNLO

]
+

∫
Φn+2

dσ̂RRij ,

(2.23)

where the (N)NLO mass factorization contributions dσ̂MF
(N)NLO are as defined in sec-

tion 1.4. The only contribution to the leading order cross section is the tree-level

(n + 2)-parton Born cross section which is proportional to the squared matrix ele-

ments,

dσ̂Bij ∝ 〈M0
n+2|M0

n+2〉. (2.24)

The NLO cross section contains an (n + 2)-parton virtual contribution dσ̂Vij , an

(n+ 3)-parton real contribution dσ̂Rij , and the NLO mass factorization contribution

dσ̂MF
ij,NLO which is integrated over the n-parton phase space. The virtual and real

contributions are proportional to the sets of matrix elements,

dσ̂Vij ∝ 〈M0
n+2|M1

n+2〉+ 〈M1
n+2|M0

n+2〉,

dσ̂Rij ∝ 〈M0
n+3|M0

n+3〉. (2.25)
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The NNLO cross section contains a double virtual, two-loop, contribution dσ̂V Vij

which is proportional to the set of (n+ 2)-parton matrix elements,

dσ̂V Vij ∝ 〈M0
n+2|M2

n+2〉+ 〈M2
n+2|M0

n+2〉+ 〈M1
n+2|M1

n+2〉. (2.26)

The real-virtual contribution to the NNLO cross section involved the one-loop (n+

3)-parton matrix elements,

dσ̂RVij ∝ 〈M0
n+3|M1

n+3〉+ 〈M1
n+3|M0

n+3〉, (2.27)

and the double real contribution is proportional to the tree-level (n + 4)-parton

contributions,

dσ̂RRij ∝ 〈M0
n+4|M0

n+4〉. (2.28)

The IR poles in ε coming from loop integrals in the virtual cross sections are explicit

once the loop integration has been performed analytically in d = 4 − 2ε dimen-

sions. The real emission contributions contain implicit IR divergences at NLO and

NNLO which require a local counterterm to be constructed. At NLO only the single

real emission contribution is divergent and requires the counterterm, dσ̂Sij,NLO. At

NNLO the double real emission contribution requires the counterterm dσ̂Sij,NNLO and

the real-virtual one-loop single real emission contribution requires the counterterm

dσ̂V,Sij,NNLO, which may also contain explicit ε poles.

If a subtraction term can be successfully constructed for each divergent contri-

bution and each of those terms analytically integrated over the unresolved regions

of phase space, then the total cross section can be rewritten in a form which is free

from explicit IR poles and implicit IR divergence. At NLO the divergence-free cross

section is given by,

dσ̂NLOij =

∫
Φn+1

[
dσ̂Rij − dσ̂Sij,NLO

]
+

∫
Φn

[
dσ̂Vij − dσ̂Tij,NLO

]
. (2.29)

The first term is free from implicit IR divergence as the subtraction term correctly

mimics and subtracts the divergence in all unresolved limits without introducing

spurious divergence of its own. The second term in (2.29) contains no implicit

divergence (because all n final-state partons are resolved) and no explicit IR ε poles
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because the virtual subtraction term, given by,

dσ̂Tij,NLO = −dσ̂MF
ij,NLO −

∫
1

dσ̂Sij,NLO, (2.30)

correctly reproduces the explicit pole structure of the unfactorized virtual contri-

bution to the cross section without introducing spurious poles in ε. The integral in

(2.30) denotes the integral of the NLO subtraction term over all single unresolved

regions of phase space and is in general a sum of integrals over the specific unresolved

partons. The result is that the full NLO contribution to the cross section is finite

and indeed both brackets in (2.29) are individually finite, allowing each contribution

to be implemented in a parton-level Monte Carlo program for numerical evaluation.

At NNLO the same philosophy can be applied to rewriting the cross section

in terms of individually finite contributions which can be implemented in a Monte

Carlo program. In this case the physical cross section is written in the form,

dσ̂NNLOij =

∫
Φn+2

[
dσ̂RRij − dσ̂Sij,NNLO

]
+

∫
Φn+1

[
dσ̂RVij − dσ̂Tij,NNLO

]
+

∫
Φn

[
dσ̂V Vij − dσ̂Uij,NNLO

]
. (2.31)

As was the case at NLO, each bracketed term is IR finite. The first term contains no

explicit poles and the implicit divergence is absorbed by the subtraction term. The

NNLO double real subtraction term can be further decomposed into terms which

can be integrated over just one or both unresolved partons in a single step, denoted

dσ̂S,1ij,NNLO and dσ̂S,2ij,NNLO respectively, such that dσ̂Sij,NNLO = dσ̂S,1ij,NNLO+dσ̂S,2ij,NNLO.

The real-virtual subtraction term is given by,

dσ̂Tij,NNLO = dσ̂V,Sij,NNLO − dσ̂MF,RV
ij,NNLO −

∫
1

dσ̂S,1ij,NNLO, (2.32)

the various terms in which conspire to cancel all explicit poles and IR divergence of

the unfactorized real-virtual cross section. The double virtual cross section doesn’t

contain any implicit IR divergence and so no two-loop counterterm is required. The

explicit ε poles of the unfactorized double virtual cross section are then removed by

the double virtual subtraction term which is given by,

dσ̂Uij,NNLO = −dσ̂MF,V V
ij,NNLO −

∫
1

dσ̂V,Sij,NNLO −
∫

2

dσ̂S,2ij,NNLO. (2.33)
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The subtraction formalism as outlined in this section is a method for calculating the

cross section without approximation in an analytic fashion and in principle can be

applied to any order of the perturbation series. In using subtraction the emphasis

is shifted from the ability to integrate the physical cross section, to the ability to

integrate the artificially constructed subtraction terms, that is if such a subtraction

term can be successfully defined in the first place.

One subtraction method for which all the quantities constituting the subtraction

terms have been derived and integrated for calculations up to NNLO (including

hadronic initial states) is antenna subtraction [32]. Much work in recent years has

been focused on deriving and integrating the antenna functions, to be defined in

the following section, such that all the tools are now available to construct all the

subtraction terms required for a full NNLO calculation [32,36,93–117]. The antenna

subtraction formalism will be discussed in detail in the remainder of this chapter

with an emphasis on the process of defining the general structure of the various

subtraction terms. Understanding how to successfully construct the subtraction

terms is the crucial final stage in the antenna subtraction program, now all necessary

ingredients have been derived, and will finally allow analytically finite NNLO QCD

predictions to be made within a general framework, implemented in a Monte Carlo

program.

2.2 Antenna functions

The keystone of the antenna subtraction formalism is the definition and use of an-

tenna functions. Antenna functions are constructed from physical matrix elements

and contain many of the IR divergences associated with QCD matrix elements. The

functions are built from colour-ordered matrix elements and so follow the factoriza-

tion patterns for colour-ordered matrix elements outlined in section 1.3.2. The fac-

torization pattern requires two partons in the antenna to remain hard and resolved,

the radiators, which radiate potentially unresolved partons in a colour-ordered fash-

ion.

The antenna functions are broadly classified according the specifics of the radia-
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tor partons in the antenna, which each class being further subdivided according to

the quantum numbers of the radiated partons. All antenna functions can be clas-

sified into three groups according to the particle type of the radiators: quark-anti-

quark, quark-gluon and gluon-gluon antennae. Each class of antennae is derived

from an underlying two-parton process, the various QCD radiative corrections to

which generate the antenna functions in each class. The physical processes used to

calculate the antenna functions are as follows:

• Quark-anti-quark: Derived from the decay of a virtual photon into a massless

quark-anti-quark pair and any additional QCD radiation from the quark pair.

γ∗ → q q̄ + partons [118].

• Quark-gluon: Derived from the decay of a heavy neutralino into a gluino and

gluon in addition to any coloured radiation from the gluon-gluino antenna.

χ̃→ g̃ g + partons [106].

• Gluon-gluon: Derived from the decay of a heavy Higgs boson into a pair

of gluons and any subsequent QCD radiation from the gluon pair. H →

g g + partons [107].

At NLO the antenna functions are generated by considering QCD real radiative

corrections to the underlying processes, i.e., a single gluon emission or a gluon

splitting into a quark-anti-quark pair. At NNLO the pattern of radiation is more

complicated with a number of new double radiative patterns permitted as well as

the one-loop single radiative corrections to the underlying process. The various

antennae corresponding to the different partonic channels are summarised in tables

2.1-2.2 and pictorially depicted in figures 2.2-2.3.

The antenna functions are defined mathematically as the ratio of the squared

colour-ordered matrix element for the radiative correction to the squared matrix

element for the underlying two-parton process. In the case of the tree-level three-

parton antennae,

X0
3 (i, j, k) = Sijk/IK

M0
3 (i, j, k)

M0
2 (I,K)

, (2.34)
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Class Radiative process
Antennae

Tree 1-loop

Quark-anti-quark q q̄ −→ q g q̄ A0
3 A1

3, Ã1
3, Â1

3

Quark-gluon
q g −→ q g g D0

3 D1
3, D̂1

3

q g −→ q q′ q̄′ E0
3 E1

3 , Ẽ1
3 , Ê1

3

Gluon-gluon
g g −→ g g g F 0

3 F 1
3 , F̂ 1

3

g g −→ g q q̄ G0
3 G1

3, G̃1
3, Ĝ1

3

Table 2.1: The various three-parton tree-level and one-loop antenna functions cate-

gorised according to the partonic channels they correspond to.

where Sijk/IK is a symmetry factor taking into account final-state parton sym-

metries and degenerate antenna definitions. The one-loop three-parton antennae

are defined in such a way that in the singular limits the antenna is proportional

to the one-loop singular function. The colour-ordered matrix elements follow a

(tree×loop)+(loop×tree) factorization pattern, as displayed in section 1.3.2, and so

to ensure that the antenna function has the desired properties, the (tree×loop) piece

is systematically removed from the definition of the antenna [32],

X1
3 (i, j, k) = Sijk/IK

M1
3 (i, j, k)

M0
2 (I,K)

−X0
3 (i, j, k)

M1
2 (I,K)

M0
2 (I,K)

. (2.35)

The four-parton tree-level antenna functions are defined in a similar fashion to the

tree-level tree-parton antennae with an additional radiated parton,

X0
4 (i, j, k, l) = Sijkl/IL

M0
4 (i, j, k, l)

M0
2 (I, L)

. (2.36)

These three definitions suffice to determine all the relevant antenna functions for

calculations up to NNLO. The antenna formalism is general and, if desirable, higher

multiplicity and higher loop antenna functions can be defined if the matrix elements

are available. However for an antenna function to be useful it must also be integrable

over the unresolved phase space, a non-trivial requirement.

In addition to the particle content, antenna functions are also broadly classified

according to the kinematics of their radiator partons which can be in either the

initial- or final-state. When the radiators are both in the final-state, one in the
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Class Radiative process Antennae

Quark-anti-quark

q q̄ −→ q g g q̄ A0
4, Ã0

4

q q̄ −→ q q′ q̄′ q̄ B0
4

q q̄ −→ q q q̄ q̄ C0
4

Quark-gluon
q g −→ q g g g D0

4

q g −→ q q′ q̄′ g E0
4 , Ẽ0

4

Gluon-gluon
g g −→ g g g g F 0

4

g g −→ g q q̄ g G0
4, G̃0

4

g g −→ q q̄ q′ q̄′ H0
4

Table 2.2: The various four-parton tree-level antenna functions categorised according

to the partonic channels they correspond to.

initial-state and one final-state or both in the initial-state, the antenna is referred

to as being a final-final, initial-final or initial-initial antenna respectively. In uninte-

grated form the antenna functions in each configuration are related to one another

simply by crossing due to the fact that they are constructed from physical matrix

elements. In practice the analytic form of the antenna function is left unaltered

and the kinematic variables are crossed into the initial state. If from the set of

partons {i, j, k, l} partons i and k are crossed into the initial state then the Lorentz

invariants are transformed according to:

sij → −sij sjk → −sjk,

sik → +sik sjl → +sjl,

sil → −sil skl → −skl. (2.37)

If an antenna function contains initial-state partons then the singular limits it con-

tains will be different to the same species of antenna containing only final-state

partons. If the initial-state parton becomes collinear with a final-state parton then

the splitting function the antenna contains will be an initial-final splitting function,

related to the final-final splitting function as shown in (1.93). Due to the initial-

state partons having well defined fixed momenta, an initial state parton can never

become soft and so the lack of soft initial-state gluons also affects the permitted
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(a) A0
3, A1

3, Ã1
3, Â1

3 (b) D0
3, D1

3, D̂1
3 (c) E0

3 , E1
3 , Ê1

3

(d) F 0
3 , F 1

3 , F̂ 1
3 (e) G0

3, G1
3, G̃0

3, Ĝ1
3

Figure 2.2: The three-parton antenna functions at tree-level and one-loop. Red lines

denote hard radiators and blue lines potentially unresolved partons. The grey blobs

denote all diagrams generating a given external state.

singularities of the initial-final and initial-initial antenna functions.

It is sometimes convenient to split the antenna functions into sub-antennae which

contain fewer singular limits. This can be done by examining the denominators of the

terms in the function and partitioning the function to isolate terms only containing

certain divergences. For example the three-parton quark-anti-quark antenna is given

by,

A0
3(iq, jg, kq̄) =

1

sijk

(
sij
sjk

+
sjk
sij

+ 2
siksijk
sijsjk

)
. (2.38)

This antenna contains a quark-gluon collinear limit, an anti-quark-gluon collinear

limit and a soft gluon limit. This antenna can be split up into two sub-antennae:

A0
3(iq, jg, kq̄) = a0

3(i, j, k) + a0
3(k, j, i), (2.39)

where the sub-antenna is given by [32],

a0
3(i, j, k) =

1

sijk

(
sjk
sij

+ 2
siksijk

(sij + sjk)sij

)
. (2.40)

To obtain the expression in (2.40), the third term in (2.38) is partitioned using

partial fractioning which exploits the identity,

1

xy
=

1

x+ y

(
1

x
+

1

y

)
, (2.41)
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to separate the denominator into two terms divergent only in sij or sjk. The sub-

antenna a0
3(i, j, k) only contains collinear divergence between the partons i and j,

not j and k. The soft limit is shared between the two sub-antennae.

An additional complication when defining sub-antennae is that unlike the final-

final, initial-final and initial-initial full antennae which are related to one another by

crossing, the sub-antennae for the three configurations can be different. Introducing

initial-state partons alters the potential divergences present in the antenna and so

the antenna is partitioned into sub-antennae differently than in the final-final case;

it makes no sense to split up an antenna to isolate a soft gluon limit if that gluon is in

the initial-state. For example, consider the three-parton gluonic antenna, F 0
3 (i, j, k).

In the case of all partons in the final state this antenna can be partitioned into three

sub-antennae,

F 0
3 (i, j, k) = f 0

3 (i, j, k) + f 0
3 (j, k, i) + f 0

3 (k, i, j). (2.42)

The full antenna is divergent when any three of the gluons is soft or any of the colour

connected gluons become collinear. By contrast the sub-antenna f 0
3 (i, j, k) contains

only the soft limit when j becomes soft and only part of the collinear divergence,

the rest being shared with the other sub-antennae. If one of the partons is crossed

into the initial-state, i.e., i→ î, where the hat denotes an initial-state parton, then

it is no longer helpful to partition the antenna to isolate the soft i limit as that

limit can never be realised. Instead the antenna is partitioned into two initial-final

sub-antennae [114],

F 0
3 (̂i, j, k) = f 0

3 (̂i, j, k) + f 0
3 (̂i, k, j). (2.43)

The sub-antenna f 0
3 (̂i, j, k) now contains the full j soft limit, the full î||j collinear

limit and shares the j||k limit with the other sub-antenna. In the initial-initial case

there is no ambiguity when it comes to defining the hard partons, which are always

identified as the initial-state partons, so no partitioning of the antenna is necessary

or desirable.

The issue of identifying the hard radiators in an antenna persists at the four-

parton level. For initial-initial antennae the choice is unambiguous and the initial-

state partons are taken to be the hard radiators and no partitioning of the antenna

September 24, 2012



2.2. Antenna functions 89

(a) A0
4, Ã0

4 (b) B0
4 , C0

4 (c) D0
4

(d) E0
4 , Ẽ0

4 (e) F 0
4 (f) G0

4, G̃0
4

(g) H0
4

Figure 2.3: The four-parton tree-level antenna functions.

is necessary. As is discussed in section 2.3 the initial-final momentum mapping

forms two momenta from an original set of four, including an initial-state parton,{
î, j, k, l

}
→
{
Î , K

}
. The first hard radiator is always taken to be the initial-state

parton, the second can be any of the remaining final-state partons because all choices

of hard final-state parton map onto the same two composite momenta. Notwith-

standing the robustness of the phase-space map to the choice of hard partons, it may

be desirable to partition the antenna further to avoid ambiguities in its divergent

limits. This is particularly the case for four-parton antennae involving initial-state

gluons, and is also present for three-parton antennae and will be discussed in sections

2.5.1 and 2.6.1. In the case of final-final antennae containing gluons, in particular

the F 0
4 and D0

4 final-final antennae, the choice of hard partons is not immediately

obvious as a number of final-state gluons can become soft. As will be discussed in

more detail in the next section the final-final phase space map does not resolve this

ambiguity as it implicitly identifies two partons as the hard radiators. This means

that to capture the full divergence of the antenna many mappings must be employed

and the antenna must be partitoned to suit each mapping. The decomposition of

the final-final D0
4 is documented in [108] and the final-final F 0

4 in [114].
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(n+ 2) (n+ 3) (n+ 4)

LO dσ̂Bij

NLO dσ̂Vij dσ̂Rij

NNLO dσ̂V Vij dσ̂RVij dσ̂RRij

Table 2.3: A summary of which cross section contributions sample which sets of

momenta up to NNLO, starting from an (n+ 2)-parton Born level contribution.

2.3 Phase space factorization

Antenna subtraction, along with many other subtraction schemes and slicing, relies

on two main factorization theorems: matrix element factorization and phase space

factorization. As the partonic cross section is formed from matrix elements and

integrated over the final-state phase space, both are crucial for the isolation of IR

singularities. In unfactorized form the 2→ n-particle phase space is given by,

dΦn(k1, · · · , kn; p1, p2) =

dd−1k1

2E1(2π)d−1
· · · dd−1kn

2En(2π)d−1
(2π)dδd(k1 + · · ·+ kn − p1 − p2),

(2.44)

where the set {ki} denotes the momenta of the final-state partons and {p1, p2} the

incoming partons, the union of the two sets forming an (n + 2)-parton momentum

set. For an (n + 2)-parton Born-level process the NLO real and virtual corrections

are functions of momenta which belong to the (n+3)- and (n+2)-parton momentum

sets respectively. The NNLO double real, real-virtual and double virtual corrections

sample momenta from the (n+ 4)-, (n+ 3)- and (n+ 2)-parton momentum sets re-

spectively. The distribution of the cross section contributions among the momentum

sets is summarized in table 2.3.

The aim of antenna factorization is to re-parameterize the phase by employing a

phase space map which maps the original set of momenta down to a lower multiplic-

ity set of momenta. The original phase space is then rewritten as a direct product

of the mapped phase sub-space and an antenna phase space which is independent

of the mapped momenta and depends only on the momenta of the partons involved
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in the antenna function. NNLO calculations with two initial-state partons require

final-final, initial-final and initial-initial phase space maps for (n + 3) → (n + 2)

and (n + 4) → (n + 2) mappings, making six maps in total. The kinematics of the

final-final, initial-final and initial-initial configurations are different and so although

the antenna functions for the three configurations are obtained by crossing, their

integrals over the respective antenna phase spaces will generate genuinely distinct

functions.

Any phase space map has a few main requirements: A basic requirement is that

the composite momenta generated by the map must remain on-shell and respect any

symmetries of the original set, i.e., Lorentz symmetry. Another requirement which

is necessary for subtraction is that in unresolved limits the set of mapped momenta

tend towards the subset of resolved momenta in the original set. Finally the phase

space map must allow the original phase space to factorize appropriately. There is

a certain amount of freedom in defining the phase space map and any map is valid

as long as it satisfies the necessary requirements.

2.3.1 Final-final

In the final-final configuration the (n + 3) → (n + 2) map [93] generates the set

{pn+2} from the original set {pn+3}. Such a mapping is naturally associated with a

three-parton antenna function, X3(i, j, k), which encapsulates the matrix element’s

divergent behaviour in the singular limit. The three parton antenna is a function of

three momenta, {pi, pj, pk} and it is this subset of momenta which are mapped onto

two composite momenta, {i, j, k} → {I, J},

pI = x1pi + x2pj + x3pk,

pJ = (1− x1)pi + (1− x2)pj + (1− x3)pk. (2.45)

Momentum conservation is trivially maintained by using this form for the composite

momenta, i.e., pi+pj+pk = pI+pJ . The parameterization of the composite momenta

is given by the functions xi,

x1 =
1

2(sij + sik)

[
(1 + ρ)sijk − 2x2sjk

]
,
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x2 =
sjk

sij + sjk
,

x3 =
1

2(sjk + sik)

[
(1− ρ)sijk − 2x2sij

]
,

ρ =

[
1 +

4x2(1− x2)sijsjk
sijksik

] 1
2

. (2.46)

Using this form for the composite momenta it can be shown that in the soft and

collinear limits the composite momenta are reduced to the resolved momenta ap-

propriate for the limit [108]:

j → 0 : pI → pi pJ → pk,

i||j : pI → pi + pj pJ → pk,

j||k : pI → pi pJ → pj + pk. (2.47)

Due to the behaviour of the composite momenta in the singular limits it is intuitive

to label the composite momenta {I, J} = {(̃ij), (̃jk)}, which makes the form of the

composite momenta in the singular limits clear. Applying this map to the three

momenta involved in the antenna, the full momentum set is mapped according to,

{pn+3} −→ {pi, pj, pk}︸ ︷︷ ︸
{pantenna}

∪{pI , pJ} ∪ {{pn+3}\{pi, pj, pk}}︸ ︷︷ ︸
{pn+2}

. (2.48)

By re-parameterizing the phase space in terms of the new momenta, the entire phase

space factorizes into a three-parton antenna phase space and a mapped reduced

phase space, echoing the factorization of the matrix elements,

dΦn+1(k1, · · · , ki, kj, kk, · · · , kn+1; p1, p2) = dΦn(k1, · · · , kI , kJ , · · · , kn; p1, p2)

· dΦXijk
(ki, kj, kk; kI , kJ). (2.49)

Setting n = 2 in the above formula and noting that the two-particle phase space is

a constant it is clear that the three-parton antenna phase space is proportional to

the three-particle phase space,

dΦXijk
= P−1

2 · dΦ3, (2.50)

where the two particle phase space in d = 4− 2ε dimensions is given by [32],

P2 = 2−3+2επ−1+ε Γ(1− ε)
Γ(2− 2ε)

(p1 + p2)−ε. (2.51)
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At NNLO in the almost colour-connected and colour disconnected double unresolved

configurations the 3→ 2 map can be iterated to match the factorization pattern of

the matrix elements discussed in section 1.3.2,

{pn+4} −→ {pantenna1} ∪ {pn+3} −→ {pantenna1} ∪ {pantenna2} ∪ {pn+2}. (2.52)

In the colour-connected limit the double unresolved singular function is approxi-

mated by a four parton antenna and so a new phase space map is required which

maps four momenta down to two composite momenta in a single map. This is

achieved by defining a 4→ 2 mapping given by, {i, j, k, l} → {I, J}, such that,

pI = x1pi + x2pj + x3pk + x4pl,

pJ = (1− x1)pi + (1− x2)pj + (1− x3)pk + (1− x4)pl. (2.53)

In a similar fashion to the 3 → 2 map, the parameterization is defined by the

functions,

x1 =
1

2(sij + sik + sil)

[
(1 + ρ)sijkl − x2(sjk + 2sjl)

− x3(sjk + 2skl) + (x2 − x3)

(
sijskl − siksjl

sil

)]
,

x2 =
sjk + sjl

sij + sjk + sjl
,

x3 =
skl

sik + sjk + skl
,

x4 =
1

2(sil + sjl + skl)

[
(1− ρ)sijkl − x2(sjk + 2sij)

− x3(sjk + 2sik)− (x2 − x3)

(
sijskl − siksjl

sil

)]
. (2.54)

The parameter ρ is defined as,

ρ =

[
1 +

(x2 − x3)2

s2
ils

2
ijkl

λ(sijskl, silsjk, siksjl)

+
1

silsijkl

(
2(x2(1− x3) + x3(1− x2))(sijskl + siksjl − sjksil)

+ 4x2(1− x2)sijsjl + 4x3(1− x3)sikskl

)] 1
2

, (2.55)

where the Källen function is given by,

λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz). (2.56)
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By studying the behaviour of the xi functions in the double unresolved singular

limits, the behaviour of the composite momenta in those limits can be derived,

j, k → 0 : pI → pi pJ → pl,

i||j||k : pI → pi + pj + pk pJ → pl,

j||k||l : pI → pi pJ → pj + pk + pl,

j → 0, k||l : pI → pi pJ → pk + pl,

k → 0, i||j : pI → pi + pj pJ → pl,

i||j, k||l : pI → pi + pj pJ → pk + pl. (2.57)

Given this behaviour in the singular limits, it is appropriate to label the composite

momenta in a way that reflects their behaviour in the unresolved configurations,

i.e., {I, J} = {(̃ijk), (̃jkl)}. This map clearly identifies the hard partons as partons

i and l with the unresolved radiation being partons j and k. Using this mapping in

conjunction with the appropriate four-parton antenna function allows the subtrac-

tion of IR divergences in a smooth fashion across all configurations where j and k

become unresolved.

If the antenna function being used contains more than two potentially unresolved

partons then it must be decomposed into sub-antennae which reflect the kinematics

of the momentum map, e.g., the gluon-gluon antenna F 0
4 for which any of the gluons

may potentially be unresolved and is decomposed into permutations of the sub-

antennae F4,a and F 0
4,b [114], each of which contain implicitly hard partons which

can be matched to the hard partons in the momentum map. A similar situation

arises for non-colour-ordered antennae which contain collinear divergences between

many non-adjacent partons, such as the final-final Ã0
4. In these cases the antenna

must also be decomposed into sub-antennae, as was performed in [108], to ensure a

proper match with the phase space map.

Employing this map to re-parameterize the phase space allows the phase space to

be factorized into a four-parton antenna phase space and a mapped reduced phase

space,

dΦn+2(k1, · · · , ki, kj, kk, kl, · · · , kn+2; p1, p2) = dΦn(k1, · · · , kI , kJ , · · · , kn; p1, p2)
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· dΦXijkl
(ki, kj, kk, kl; kI , kJ). (2.58)

Again setting n = 2 shows that the four-parton antenna phase space is proportional

to the four-particle phase space,

dΦXijkl
= P−1

2 · dΦ4. (2.59)

The re-parameterization of the original momentum set for colour-connected double

unresolved configurations can be summarized by,

{pn+4} = {pi, pj, pk, pl}︸ ︷︷ ︸
pantenna

∪{pI , pJ} ∪ {{pn+4}\{pi, pj, pk, pl}}︸ ︷︷ ︸
{pn+2}

(2.60)

It is important to note that the form of the composite momenta given by (2.53)

and (2.54) reduces to that of the composite momenta defined by the 3→ 2 map in

all single unresolved limits. For example consider the pk → 0 limit:

pI → x1pi + x2pj + x4pl +O(pk),

pJ → (1− x1)pi + (1− x2)pj + (1− x4)pl +O(pk), (2.61)

where the xi functions are still those defined for the 4→ 2 map. The behaviour of

the xi functions themselves can be inferred by taking the k → 0 limit, in which:

λ(sijskl, silsjk, siksjl) → 0 +O(pk),

ρ →
[
1 +

4x2(1− x2)sijsjl
silsijl

] 1
2

+O(pk),

x1 →
1

2(sij + sil)

[
(1 + ρ)sijl − 2x2sjl

]
+O(pk),

x2 →
sjl

sij + sjl
+O(pk),

x4 →
1

2(sjl + sil)

[
(1− ρ)sijl − 2x2sij

]
+O(pk). (2.62)

Re-labelling the remaining resolved momenta {i, j, l} → {i, j, k}, the form of the

4→ 2 composite momenta tend to the form of the 3→ 2 composite momenta. The

fact that in single unresolved limits, the 4→ 2 map reproduces the same composite

momenta as the 3 → 2 map means that the single unresolved divergent limits of a

four-parton antenna can be systematically removed using the product of two three-

parton antennae associated with iterated 3→ 2 mappings. The details of how this

is achieved will be discussed in section 2.6.
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2.3.2 Initial-final

Antennae which contain one initial-state parton require a different phase space map

as it is inappropriate to use the composite momenta defined for the final-final case

as that map will in general map the initial-state parton away from the beam axis.

Instead a map is employed which simply rescales the initial-state parton’s mo-

mentum and maps the remaining final-state partons involved in the antenna to

a single composite momentum [36]. For the set of momenta {1̂, i, j} of which the

initial-final antenna X0
3 (1̂, i, j) is a function, the 3 → 2 map is employed such that

{1̂, i, j} → {ˆ̄1, I}, where,

p̄1 = xp1,

pI = pi + pj − (1− x)p1. (2.63)

This form for the momenta ensures momentum conservation, i.e., pI − p̄1 = pi +

pj − p1. The requirement that the composite momenta remain massless fixes the

rescaling factor to be,

x =
s1i + s1j + sij
s1i + s1j

. (2.64)

Using this parameterization of the composite momenta it can be shown that in the

single unresolved limits [36]:

i→ 0 : p̄1 → p1 pI → pj,

1̂||i : p̄1 → p1 − pi pI → pj,

i||j : p̄1 → p1 pI → pi + pj. (2.65)

To reflect this behaviour the composite momenta may be labelled {ˆ̄1, I} = {ˆ̄1, (̃ij)}.

The full phase space map is summarized as,

{pn+3} → {p1, pi, pj}︸ ︷︷ ︸
{pantenna}

∪{p̄1, pI} ∪ {{pn+3}\{p1, pi, pj}}︸ ︷︷ ︸
{pn+2}

. (2.66)

The effect of re-parameterizing the momenta in this way allows the phase space to

be written as a convolution of a two-particle phase space and a reduced multiplicity

mapped phase space,

dΦn+1(k1 · · · , ki, kj, · · · , kn+1; p1, p2) =
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dΦn(k1 · · · , kI , · · · , kn; p̄1, p2)dΦ2(ki, kj; p1, q)
Q2

2π

dx

x
δ(x− x̂)

(2.67)

where the initial-state parton involved in the antenna is taken to have momentum

p1. The momentum q = pi + pj − p1 forms the scale Q2 = −q2. The quantity x̂ is

given by the fraction defined in (2.64).

The relevant 4→ 2 map for the initial-final configuration generalizes the 3→ 2

map by adding an extra final-state parton, i.e., {1̂, i, j, k} → {ˆ̄1, I} = {ˆ̄1, (̃ijk)},

where the bar once again denotes an overall rescaling [36]. The composite momenta

are defined by the parameterization,

p̄1 = xp1,

pI = pi + pj + pk − (1− x)p1, (2.68)

where, as in the three-parton case, the on-shell condition fixes the rescaling function,

x =
s1i + s1j + s1k + sij + sik + sjk

s1i + s1j + s1k

. (2.69)

In the double unresolved limits the composite momenta are reduced to the appro-

priate resolved momenta,

i, j → 0 : p̄1 → p1 pI → pk,

1̂||i||j : p̄1 → p1 − pi − pj pI → pk,

i||j||k : p̄1 → p1 pI → pi + pj + pk,

i→ 0, j||k : p̄1 → p1 pI → pj + pk,

j → 0, 1̂||i : p̄1 → p1 − pi pI → pk,

1̂||i, j||k : p̄1 → p1 − pi pI → pj + pk. (2.70)

In all single unresolved limits the composite momenta map onto composite momenta

of the form generated by a 3 → 2 initial-final map as is necessary for the single

unresolved limits of the four-parton antenna to be removed by iterated three-parton

antenna functions. e.g., consider the i→ 0 limit,

x→ s1j + s1k + sjk
s1j + s1k

+O(pi), (2.71)
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which after re-labelling the momenta {1, j, k} → {1, i, j} is the form of the rescaling

factor for the 3 → 2 initial-final map. The map acting on the full momentum set

can be summarized as,

{pn+4} → {p1, pi, pj, pk}︸ ︷︷ ︸
{pantenna}

∪{p̄1, pI} ∪ {{pn+4}\{p1, pi, pj, pk}}︸ ︷︷ ︸
{pn+2}

. (2.72)

This re-parameterization of the momenta allows the phase space to be written in a

factorized form as a convolution,

dΦn+2(k1 · · · , ki, kj, kk, · · · , kn+2; p1, p2) =

dΦn(k1 · · · , kI , · · · , kn; p̄1, p2)dΦ3(ki, kj, kk; p1, q)
Q2

2π

dx

x
δ(x− x̂).

(2.73)

The initial-state parton has again been taken to have momentum p1 and now the

momentum q = pi + pj + pk − p1 such that, Q2 = −q2. The momentum fraction x̂

is simply the quantity defined in (2.69).

2.3.3 Initial-initial

When an antenna function contains two initial-state partons the appropriate phase

space map rescales both initial-state partons, which are unambiguously identified

as the hard radiators. In the case of the initial-final antennae the composite final-

state momentum was defined in a way so as to ensure momentum conservation by

including the factor (1− x)pî. In the case of an initial-initial three-parton antenna

there is no composite final-state momentum involved in the antenna to absorb the

overall momentum rescaling and so the whole final-state must be remapped to ensure

total momentum conservation [20, 36]. The rescaling of the initial state partons is

given by the factors,

p1 → p̄1 = x1p1,

p2 → p̄2 = x2p2. (2.74)

The rescaled momenta form a vector which lies in the beam axis,

q̃ = p̄1 + p̄2 (2.75)
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The total momentum of the n-parton subset of momenta (the final-state momenta

with one parton removed) is given by q = p1 + p2 − pi, where parton i belongs

to the antenna subset. The momentum q will in general not lie in the beam axis

so the final state must be transformed in order to achieve this. The rescaling of

the massless momenta is a Lorentz invariant process so the transformation of the

final-state momenta must belong to the Lorentz group also. A rotation to bring q

to the beam axis would require singling out either p1 or p2 as the direction to rotate

towards and make a symmetrical treatment of the two incoming partons difficult to

maintain. The remaining transformations which belong to the Lorentz group are

boosts, which to map q onto q̃ are required to be boosts in the transverse plane to

the beam axis, i.e., Λ(q)q = q̃. As q and q̃ are related via a proper Lorentz boost

their invariant squares are equal, q2 = q̃2, which yields the result,

x1x2 =
s12 − s1i − s2i

s12

. (2.76)

The beam axis in the centre of mass frame is defined by the vector B = p̄1 − p̄2.

As a Lorentz invariant, the projection of q onto the beam axis in the boosted and

un-boosted frames are equal, B · q = B̃ · q̃. Because the boost is transverse to the

beam axis B = B̃ so, B · q = B · q̃. Expanding the vectors B, q and q̃ into their

constituent momenta yields the relation,

(x1 − x2) =
x1s1i − x2s2i

s12

. (2.77)

Simultaneously solving equations (2.76) and (2.77) fixes the form of the rescaling

parameters to be,

x1 =

(
(s12 − s2i)(s12 − s1i − s2i)

s12(s12 − s1i)

) 1
2

,

x2 =

(
(s12 − s1i)(s12 − s1i − s2i)

s12(s12 − s2i)

) 1
2

. (2.78)

To ensure momentum conservation all the final-state momenta are boosted to a set

of mapped momenta, not only the ones involved in the antenna,

k̃i = ki −
2ki · (q + q̃)

(q + q̃)2
(q + q̃) +

2ki · q
q2

q̃. (2.79)
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In the single soft and collinear limits the mapped momenta tend towards the appro-

priate resolved momenta,

i→ 0 : p̄1 → p1 p̄2 → p2 k̃j → kj,

1̂||i : p̄1 → p1 − pi p̄2 → p2 k̃j → kj,

2̂||i : p̄1 → p1 p̄2 → p2 − pi k̃j → kj, (2.80)

which can be seen by examining the limits of the x1,2, q and q̃ parameters in the

limits, e.g., In the 1̂||i limit where pi = zp1, x1 → (1 − z), x2 → 1 and q̃ →

q, which implies the limits listed in (2.84). The fact that the mapped momenta

tend to the appropriate resolved momenta in all the unresolved limits allows for a

smooth interpolation between all single unresolved limits which matches the multiple

singular limits of the initial-initial three-parton antenna functions.

The initial-initial map can be summarized by,

{pn+3} → {p1, pi, p2}︸ ︷︷ ︸
{pantenna}

∪{p̄1, p̄2} ∪ {k̃n}︸ ︷︷ ︸
{pn+2}

, (2.81)

where {k̃n} is the set of boosted final-state momenta with parton i removed, i.e.,

{k̃n} = Λ · [{pn+3}\{p1, pi, p2}]. This parameterization of the momenta allows the

phase space to be written in factorized form as a double convolution,

dΦn+1(k1 · · · , ki, · · · , kn+1; p1, p2) = [dki]
dx1

x1

dx2

x2

δ(x1 − x̂1) δ(x2 − x̂2)

· x1x2 dΦn(k̃1, · · · , k̃n; p̄1, p̄2). (2.82)

The single particle phase space of the final-state parton involved in the antenna is

denoted [dki] and the quantities x̂i ensure the initial-state momenta are properly

rescaled to conserve momentum and are given by the form of x1,2 given in (2.78).

The extension of the initial-initial map to a 4→ 2 map is trivial and only requires

the redefinition of q to include the extra parton, i.e., for the map, {1, i, j, 2} → {1̄, 2̄},

q = p1 + p2 − pi − pj, such that in this case,

x1 =

(
(s12 − s2i − s2j)(s12 − s1i − s1j − s2i − s2j + sij)

s12(s12 − s1i − s1j)

) 1
2

,

x2 =

(
(s12 − s1i − s2j)(s12 − s1i − s1j − s2i − s2j + sij)

s12(s12 − s2i − s2j)

) 1
2

. (2.83)

September 24, 2012



2.4. Integrated antenna functions 101

The final-state is given by final-state partons, not including partons i and j, boosted

in the same way as in the 3→ 2 map but using the modified x1,2 and q parameters.

In the double unresolved limits the rescaled and boosted momenta behave in the

following ways,

i, j → 0 : p̄1 → p1 p̄2 → p2 k̃k → kk,

1̂||i||j : p̄1 → p1 − pi − pj p̄2 → p2 k̃k → kk,

2̂||i||j : p̄1 → p1 p̄2 → p2 − pi − pj k̃k → kk,

1̂||i, j → 0 : p̄1 → p1 − pi p̄2 → p2 k̃k → kk,

2̂||j, i→ 0 : p̄1 → p1 p̄2 → p2 − pj k̃k → kk,

1̂||i, 2̂||j : p̄1 → p1 − pi p̄2 → p2 − pi k̃k → kk (2.84)

As is the case for the final-final and initial-final maps, the 4 → 2 initial-initial

mapped momenta collapse onto the mapped momenta of the 3 → 2 initial-initial

map in all single unresolved limits, allowing the single unresolved limits of the four-

parton antenna to be removed through an iteration of three-parton antennae.

The result of the momentum map on the whole set of original momenta can be

summarized as,

{pn+4} → {p1, pi, pj, p2}︸ ︷︷ ︸
{pantenna}

∪{p̄1, p̄2} ∪ {k̃n}︸ ︷︷ ︸
{pn+2}

, (2.85)

where, {k̃n} = Λ · [{pn+4}\{p1, pi, pj, p2}]. This parameterization leads to the phase

space being written again as a double convolution,

dΦn+2(k1 · · · , ki, kj, · · · , kn+2; p1, p2) = [dki] [dkj]
dx1

x1

dx2

x2

δ(x1 − x̂1) δ(x2 − x̂2)

· x1x2 dΦn(k̃1, · · · , k̃n; p̄1, p̄2). (2.86)

2.4 Integrated antenna functions

Whilst it is necessary for the antenna functions to contain the appropriate singular

limits and match the phase space factorization in those limits, the whole programme

of antenna subtraction would be derailed if the antennae could not themselves be

analytically integrated over the antenna phase space. Before discussing the analytic
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integration of the antennae, the integrals defining the integrated antennae should

be introduced.

In the final-final three-parton case the phase space factorizes into the direct

product of the antenna phase space and a reduced mapped phase space. Integrating

the final-final antenna over the antenna phase space and introducing factors of,

C(ε) =
(4π)εe−γε

8π2
, (2.87)

to account for coupling constant renormalization, gives the form for the integrated

antenna [32],

X 0
3 (sijk) =

1

C(ε)

∫
dΦXijk

X0
3 (i, j, k). (2.88)

The extension of this definition to the four-parton final-final antennae is given by

integrating the four-parton antennae against the four-parton antenna phase space

introduced in (2.58) [32],

X 0
4 (sijkl) =

1

[C(ε)]2

∫
dΦXijkl

X0
4 (i, j, k, l). (2.89)

As previously mentioned, the three- and four-parton final-final antenna phase spaces

are proportional to the three- and four-particle phase spaces.

It is important to note that in the case of the four-parton final-final antennae

it is sometimes necessary to decompose the antenna into sub-antennae in order to

match onto the kinematics of the phase space map. The partial fractioning involved

in decomposing the antenna renders the analytic integration of a four-parton sub-

antenna highly non-trivial. In order to avoid such integrals the decomposition is

performed whilst ensuring that the sum of sub-antennae employed always generates

a full four-parton antenna. In this way the full antenna is decomposed appropriately

for the numerical implementation of the subtraction process, whilst only requiring

that the full four-parton antenna be integrated analytically [114].

In the case of initial-final antenna functions the antenna is related to the final-

final antenna by crossing but the phase space factorization is modified. Taking this

modification into account, the integrated initial-final antenna function is defined

as [36],

X 0
3 (s1ij;x1) =

1

C(ε)

∫
dΦ2

Q2

2π
δ(x1 − x̂1) X0

3,a(1̂, i, j), (2.90)
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where x̂1 is the parameter derived in (2.64) and a denotes the type of particle in

the initial-state, i.e., quark or gluon. Extending the definition to the four-parton

initial-final antenna gives [111],

X 0
4 (s1ijk;x1) =

1

[C(ε)]2

∫
dΦ3

Q2

2π
δ(x1 − x̂1) X0

4,a(1̂, i, j, k). (2.91)

The initial-initial antenna functions are integrated over the appropriate phase

space to give the integrated initial-initial antenna functions [36],

X 0
3 (s1i2;x1, x2) =

1

C(ε)

∫
[dki] x1x2 δ(x1 − x̂1) δ(x2 − x̂2) X0

3,ab(1̂, i, 2̂),

(2.92)

where a, b denote the types of particle in the initial-state. This definition can be

extended to the four-parton initial-initial antennae [113],

X 0
4 (s1ij2;x1, x2) =

1

[C(ε)]2

∫
[dki] [dki] x1x2 δ(x1 − x̂1) δ(x2 − x̂2) X0

4,ab(1̂, i, j, 2̂).

(2.93)

The explicit evaluation of integrated antenna functions has received much atten-

tion in the last several years and all three- and four-parton antennae relevant for

NNLO calculations are now known. The integration relies on rewriting the phase

space integral in terms of cut multi-loop diagrams which are then reduced to a

set of scalar master integrals by using Integration-By-Parts (IBP) relations [119]

amongst other multi-loop tools; the details of which can be found in the litera-

ture [111,113,120].

2.5 Antenna subtraction at NLO

The field of NLO QCD calculations has advanced significantly in the last decade

or so, including the automation of one-loop calculations [121–124] and automated

programs for evaluating the phase space integrals of the real emission contribution

[20]. The extent of this progress is that for a relatively low number of external

legs, NLO massless QCD calculations are now mainly useful as toy calculations to

demonstrate a more general method. In this section the antenna subtraction method

for NLO calculations will be presented in generality such that its application to the

specific calculations of chapters 3, 4 and 5 is clear.
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2.5.1 Construction of the real emission subtraction term

The primary goal of any subtraction procedure is to construct a subtraction term,

dσ̂ which absorbs all IR divergence of the cross section without introducing spurious

divergence of its own, i.e., the following difference is rendered finite across the entire

phase space, ∫
Φn+1

[
dσ̂Rij − dσ̂Sij,NLO

]
, (2.94)

where dσ̂Rij is the (n + 1)-parton real correction to an n-parton Born-level process.

The real emission takes the form,

dσ̂Rij = NR
NLO

C̄(ε)

C(ε)
dΦn+1(k1, · · · , kn+1; p1, p2)

× |M(k1, · · · , kn+1; p1, p2)|2 J (n+1)
n (k1, · · · , kn), (2.95)

where C̄(ε) = 8π2C(ε). The factor N will in general contain all non-QCD factors

and some overall QCD factors such as the overall power of the coupling. The jet

finding algorithm, or jet function, is given by J
(m)
n which has the interpretation of

the function which builds n jets from m partons. Following the discussion in sec-

tion 1.1.2, the squared matrix element can be decomposed into its various colour

structures and the associated colour factor factorized from the squared partial am-

plitudes. At leading-colour the colour decomposition allows the cross section to be

written in the form,

dσ̂Rij = NR
NLO Np C̄(ε)

C(ε)

∑
σ

dΦn+1(k1, · · · , kn+1; p1, p2)
1

Sn+1

× M0
n+1(σ(1, · · · , n+ 1)) J (n+1)

n (k1, · · · , kn) +O(1/N2), (2.96)

where p is the leading power of N and σ denotes permutations of final state partons

contributing to the leading-colour cross section.

The sub-leading colour contribution cannot in general be written in this form as

an incoherent sum of squared partial amplitudes; however for low multiplicity final-

states the sub-leading colour contribution, the square of a coherent sum of QCD

partial amplitudes, can often be re-written as an incoherent sum of squared partial

amplitudes where a number of gluons behave in an Abelian fashion. In these cases
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the squared U(1)⊗SU(3) partial amplitudes are well suited to antenna subtraction

as their IR divergent limits can be understood via matrix element factorization

patterns similar to those for pure QCD matrix elements.

Matrix elements containing one Abelian gluon, sometimes called a photon1, obey

the usual QCD factorization formulae in all the unresolved limits of the non-Abelian

gluons. The Abelian gluons do not couple to the non-Abelian gluons and only cou-

ple to quarks; furthermore they can only be considered colour-connected to the

quarks. In this way a subleading colour matrix element can be considered to con-

tain two colour structures: a pure QCD colour structure formed from all quarks

and non-Abelian gluons, the factorization properties of which are identical to those

of leading colour squared matrix elements, and a QED-like colour structure con-

taining quark pairs and colour dis-connected photons [108]. For example, a matrix

element with two-quarks, n-non Abelian gluons and one Abelian gluon, ĩ, is denoted

M0
n+3(q, g1, · · · , g̃i, · · · , gn, q̄) and schematically has the colour structure,

(q, 1, · · · , n, q̄; ĩ) ∼ (q, 1, · · · , n, q̄)⊗ (q, ĩ, q̄). (2.97)

The Abelian gluon can have collinear limits with the quarks and also become soft,

M0
n+3(q, g1, · · · , g̃i, · · · , gn, q̄)

i||q−→ 1

sqi
Pqg→Q(z) M0

n+2(Q, g1, · · · , gn, q̄),

M0
n+3(q, g1, · · · , g̃i, · · · , gn, q̄)

i→0−→ Sqiq̄ M
0
n+2(q, g1, · · · , gn, q̄), (2.98)

where the collinear limit with the anti-quark is given by exchanging q ↔ q̄. If the

subleading colour matrix elements can be re-written in terms of squared matrix ele-

ments involving Abelian gluons then the IR divergent limits can be subtracted using

antenna functions in an identical fashion to the process at leading colour. Even if

the subleading colour contribution cannot be written purely in terms of squared

matrix elements with Abelian gluons, as long as the IR divergent limits of the sub-

leading colour matrix elements can be written in terms of the universal singular

1The term photon is useful as the Abelian gluon behaves in the same way as a photon in the

context of QCD i.e., only coupling to quarks, albeit with a rescaled coupling strength compared

to the one in QED. The analogy does not extend beyond QCD, e.g., an Abelian gluon does not

couple to a W+ boson.
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functions then antenna subtraction can be readily applied. Notwithstanding these

complications, the subleading colour contributions will in general contain fewer and

less intricate divergent limits than their leading colour counterparts. Furthermore

any IR finite contribution to the cross section requires no subtraction and is inte-

grated numerically. The remainder of this section will focus on the leading colour

contribution for clarity but it is clear that a similar treatment can be reproduced

for subleading colour contributions given the discussion above.

A leading colour contribution to the cross section can be written in the form,

dσ̂Rij = NR
NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn+1; p1, p2)
1

Sn+1

× M0
n+1(1, · · · , n+ 1) J (n+1)

n (k1, · · · , kn+1). (2.99)

To construct the subtraction term for this contribution the single unresolved limits

of the matrix element are considered, where parton j is taken to be the unresolved

parton. To reflect the antenna factorization of the squared matrix element, a sub-

traction term is constructed. When the unresolved parton j has final-state colour

connected neighbours, i and k the subtraction term takes the form,

dσ̂S,ffNLO = NR
NLO Np C̄(ε)

C(ε)

∑
perms

∑
j

dΦn+1(k1, · · · , kn+1; p1, p2)
1

Sn+1

× X0
3 (i, j, k) M0

n(1, · · · , I,K, · · · , n+ 1) J (n)
n (k1, · · · , kI , kK , · · · , kn+1).

(2.100)

The sum over j takes into account all the possible unresolved partons in the colour-

ordered matrix element fitting the final-final configuration. The final-final phase

space map has been used to ensure the momenta involved in the antenna function

are mapped down onto two composite momenta which feed into the reduced matrix

element and the jet function. The IR divergence associated with the configuration

where j becomes unresolved is mimicked by the appropriate antenna function and,

in the singular limit, the subtraction term tends to the value of the real emission

cross section.

For hadron-hadron collisions there are two partons in the initial state which

have colour connected final-state neighbours that can become unresolved. In these

configurations an initial-final antenna is necessary and the initial-final phase space
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map is employed to generate the composite momenta for the reduced matrix element

and jets function,

dσ̂S,ifNLO = NR
NLO Np C̄(ε)

C(ε)

∑
perms

∑
j

∑
î∈{1,2}

dΦn+1(k1, · · · , kn+1; p1, p2)
1

Sn+1

× X0
3,a(̂i, j, k) M0

n (̂̄i, J, · · · , n+ 1) J (n)
n (k1, · · · , kJ , · · · , kn+1),

(2.101)

where the sum over j denotes all final-state partons which are colour connected to

an initial-state parton î, the sum over î runs over both initial-state partons and a is

the particle type of the initial state parton.

The final configuration which is allowed for hadron-hadron collision is the initial-

initial configuration where an unresolved parton is emitted between two initial-state

partons. The subtraction term used initial-initial antenna functions and the initial-

initial phase space map and is given by,

dσ̂S,iiNLO = NR
NLO Np C̄(ε)

C(ε)

∑
perms

∑
j

dΦn+1(k1, · · · , kn+1; p1, p2)
1

Sn+1

× X0
3,ab(̂i, j, k̂) M0

n (̂̄i, ˆ̄k, · · · , ˜(n+ 1)) J (n)
n (k̃1, · · · , k̃n+1), (2.102)

where a and b denote the particle type of each incoming parton.

The full subtraction term is a sum of all three contributions,

dσ̂Sij,NLO = dσ̂S,ffNLO + dσ̂S,ifNLO + dσ̂S,iiNLO, (2.103)

such that for DIS dσ̂S,iiNLO = 0 and for e+e− annihilation dσ̂S,ifNLO = dσ̂S,iiNLO = 0. At

NLO it is possible to write the subtraction terms explicitly for all configurations and

for an arbitrary number of partons.

Final-state gluon string

For a string of final-state gluons the subtraction terms is given by a sum over final-

final gluonic sub-antennae and their associated reduced matrix elements. For an

gluon string containing l gluons in a matrix element,

M0
n(· · · , i1, i2, i3, i4, · · · , ii, ij, ik, il, · · · ), (2.104)
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the subtraction term is given by,

dσ̂S,ff,g1···glNLO = NR
NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

{
f 0

3 (i1, i2, i3) M0
n(· · · , (̃i1i2), (̃i2i3), i4, · · · , ii, ij, ik, il, · · · )

J (n)
n (k1, · · · , k(i1i2), k(i2i3), · · · , kn)

+ f 0
3 (i2, i3, i4) M0

n(· · · , i1, (̃i2i3), (̃i3i4), · · · , ii, ij, ik, il, · · · )

J (n)
n (k1, · · · , k(i2i3), k(i3i4), · · · , kn)

+

...

+ f 0
3 (ii, ij, ik) M

0
n(· · · , i1, i2, i3, i4, · · · , (̃iiij), (̃ijik), il, · · · )

J (n)
n (k1, · · · , k(iiij), k(ijik), · · · , kn)

+ f 0
3 (ij, ik, il) M

0
n(· · · , i1, i2, i3, i4, · · · , ii(̃ijik), (̃ikil), · · · )

J (n)
n (k1, · · · , k(ijik), k(ikil), · · · , kn)

}
. (2.105)

The subtraction term reproduces all single unresolved limits of the gluons in the

string except at the ends where the i1||i2 and ik||il limits are not fully reproduced

and the i1 → 0, il → 0 soft limits are absent entirely. In the case of a purely gluonic

matrix element the end partons are colour connected due to the colour structure

being a trace over all gluons and so the gluon endpoints overlap and all singularities

are accounted for. In the case of matrix elements containing quark strings the

subtraction terms associated with the quark endpoints will contain the missing soft

divergence and share the missing collinear divergence.

Final-state quark string

Introducing quarks alters the available colour structures and thus the colour ordering

of the partial amplitudes. In general the colour ordering is made up from strings

of quarks with quark endpoints and gluons populating the string. The divergence

of the gluon string is subtracted using the subtraction term (2.105) so the only

additional limits to take into account are those involving the quark endpoints. For

the matrix element containing a quark endpoint,

M0
n(· · · ; q, i1, i2, · · · , ), (2.106)
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the subtraction term is given by,

dσ̂
S,ff,qgi1gi2
NLO = NR

NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

{
d0

3(q, i1, i2) M0
n(· · · ; (̃qi1), (̃i1i2), · · · )

J (n)
n (k1, · · · , k(̃qi1)

, k
(̃i1i2)

, · · · , kn)

}
, (2.107)

where a similar formula is obtained for an anti-quark endpoint by substituting q ↔

q̄. This formula correctly subtracts the collinear limits involving the quark with

neighbouring gluons as well as the i1 → 0 soft limit and remaining i1||i2 collinear

limit not properly accounted for by the gluon string subtraction term.

If only one gluon is present between a quark-antiquark pair then instead of a

gluon string of f 0
3 functions bookended by two quark d0

3 functions, an A0
3 antenna is

used as this matches onto the particle content exactly,

dσ̂S,ff,qgiq̄NLO = NR
NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

{
A0

3(q, i, q̄) M0
n(· · · ; (̃qi), (̃iq̄); · · · )

J (n)
n (k1, · · · , k(̃qi)

, k
(̃iq̄)
, · · · , kn)

}
, (2.108)

If a quark is colour adjacent to a like-flavoured anti-quark in the colour ordering

then the additional q||q̄ → g splitting has to be taken into account. This limit not

only changes the total number of partons in the final state but also changes the type

of matrix element, reducing the number of quarks by two. If the collinear quark-

antiquark pair is adjacent to a spectator gluon then the subtraction term is given

by,

dσ̂S,ff,qq̄NLO = NR
NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

{
G0

3(g, q, q̄) M0
n(· · · ; (̃gq), (̃qq̄), · · · )

J (n)
n (k1, · · · , k(̃gq)

, k
(̃qq̄)
, · · · , kn)

}
. (2.109)

In the original matrix element the number of fermions is f whereas in the reduced

matrix element it is f ′ = f − 2. If the collinear quark-anti-quark pair is adjacent to

another quark then the subtraction term is given by,

dσ̂S,ff,qq̄NLO = NR
NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

{
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E0
3(q′, q, q̄) M0

n(· · · ; (̃q′q), (̃qq̄), · · · )

J (n)
n (k1, · · · , k(̃q′q)

, k
(̃qq̄)
, · · · , kn)

}
. (2.110)

where again f ′ = f − 2. In terms of subtracting the divergence it does not matter

in practice whether the E0
3 or G0

3 antenna is used as they differ only by IR finite

terms.

A general subtraction term can be constructed by matching the matrix element’s

colour structure by gluing together the appropriate subtraction terms. For example

consider the NLO subtraction term for the colour ordered matrix element,

M0
8 (q1, gi, gj, gk, q̄2;Q3, Q̄4). (2.111)

The subtraction term is given by,

dσ̂SNLO = dσ̂
S,ff,qgigj
NLO + dσ̂S,ff,gi···gkNLO + dσ̂

S,ff,q̄gkgj
NLO + dσ̂S,ff,QQ̄NLO . (2.112)

Initial-final gluon string

When dealing with a gluon string with one gluon crossed into the initial state the

initial-final gluonic sub-antenna is used, along with the initial-final phase space map.

Consider the matrix element,

M0
n(· · · , i, j, 1̂, k, l, · · · ), (2.113)

The divergence of the rest of the gluon string (all gluons not including the initial-

state gluon or its neighbours) is subtracted by the two final-state gluon string sub-

traction terms either side of the initial-state gluon. The initial-final subtraction

term is given by,

dσ̂
S,if,gigj ĝ1gkgl
NLO = NR

NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

{
f 0

3 (1̂, j, i) M0
n(· · · , (̃ij)ˆ̄1, k, l, · · · ) J (n)

n (k1, · · · , k(̃ij)
, · · · , kn)

+ f 0
3 (1̂, k, l) M0

n(· · · , i, j, ˆ̄1, (̃kl), · · · ) J (n)
n (k1, · · · , k(̃kl)

, · · · , kn)

}
.

(2.114)

This subtraction term correctly subtracts the j → 0, k → 0 soft limits, as well

as the j||1̂, k||1̂ collinear limits. The i → 0, l → 0 are completely contained in
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the gluon string subtraction terms which are glued to this subtraction term when

constructing the full subtraction term. Similarly the i||j, k||l collinear limits are

shared between this subtraction term and the neighbouring subtraction terms.

Initial-final quark string: Quark initiated

When the end of a quark string is in the initial state, i.e., an incoming quark, the

initial-final d0
3 sub-antenna is used, along with the initial-final momentum map to

generate the subtraction term,

dσ̂
S,if,q̂gi1gi2
NLO = NR

NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

× d0
3(q̂, i1, i2) M0

n(· · · ; ˆ̄q, (̃i1i2), · · · ) J (n)
n (k1, · · · , k(̃i1i2)

, · · · , kn).

(2.115)

This subtraction term contains the full i1 → 0 soft limit, the full q||i1 collinear

limit and part of the i1||i2 collinear limit which is shared with the neighbouring

string’s subtraction term to form the full limit. The same partons are able to go

soft and collinear in the initial-final d0
3 antenna as in the final-final d0

3 antenna and

the function is obtained by crossing the quark from the final-final antenna into the

initial state.

When only one gluon populates the quark string the initial-final A0
3 antenna is

used to capture the whole string’s IR behaviour,

dσ̂S,if,q̂giq̄NLO = NR
NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

× A0
3(q̂, i, q̄) M0

n(· · · ; ˆ̄q, (̃iq̄); · · · ) J (n)
n (k1, · · · , k(̃iq̄)

, · · · , kn).

(2.116)

Initial-final quark string: Gluon initiated

The configuration where gluons are crossed into the initial state introduces a new

problem which is generic and present in both NLO and NNLO calculations. When

an initial-state gluon becomes collinear with a final-state gluon the resulting reduced

matrix element contains an initial-state gluon with rescaled momentum. However
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when an initial-state gluon becomes collinear with a final-state quark the resulting

reduced matrix element contains an initial-state quark with rescaled momentum.

One issue for consideration here is which PDF should be attached to the subtraction

term. The original matrix element is associated with a gluon PDF whereas the

reduced matrix element will be more naturally associated with a quark PDF. If the

subtraction is to be successful then it is clear that both terms have to be convoluted

with the same PDF, in this case the gluon PDF. Otherwise even if the subtraction

term tends to the matrix element in the unresolved limit, the subtraction will be

incomplete if both terms are scaled relative to one another by different PDFs.

The main problem in this configuration comes from the gluon initiated D0
3 an-

tenna. This antenna contains a soft gluon limit for the final-state gluon, a final-final

quark-gluon limit, an initial-final gluon-gluon limit and an initial-final quark-gluon

limit. The first three of these limits cause the matrix element to collapse onto a

reduced matrix element with an initial-state gluon. The last limit, the initial-final

quark-gluon limit, causes the matrix element to collapse onto a reduced matrix el-

ement containing an initial state quark. The problem arises from the D0
3 antenna

containing all of these limits but the reduced matrix element it is associated with has

to have either a quark or a gluon in the initial state with no smooth interpolation

between the two functions, unlike the smooth interpolation for the momentum in

the different limits.

One solution to this problem is to partition the full D0
3 antenna into two sub-

antennae to isolate the initial-final quark-gluon limit. This was achieved by partial

fractioning in [36], yielding,

D0
3(iq, 1̂g, jg) = d0

3(iq, 1̂g; jg) + d0
3(iq, jg, 1̂g),

d0
3(iq, 1̂g; jg) =

1

s2
1ij

(
2s2

1ijsij

(s1i + s1j)s1i

+
sijs1j + s2

1j

s1i

)
,

d0
3(iq, jg, 1̂g) =

1

s2
1ij

(
2s2

1ijsij

(s1i + s1j)s1j

+
2s2

1ijs1i

sijs1j

+
s1is1j + s2

1j

sij
+

2s1isij
s1j

+ 5s1ij + sij

)
. (2.117)

From these expressions for the sub-antennae it is clear that the antenna d0
3(q, ĝ; g)

contains all the iq||1̂g collinear limit whilst the d0
3(q, g, ĝ) sub-antenna contains the
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soft gluon limit, the initial-final gluon-gluon collinear limit and the final-final quark-

gluon collinear limit. Using these sub-antennae with the appropriate reduced matrix

elements yields the subtraction term for configuration when the quark is adjacent

to the initial-state gluon,

dσ̂
S,if,qiĝ1gj
NLO = NR

NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

d0
3(iq, 1̂g; jg) M

0
n(· · · ; ˆ̄1q, (̃ij)g, · · · ) J

(n)
n (k1, · · · , k(̃ij)

, · · · , kn).

(2.118)

This subtraction term will properly subtract the iq||1̂g collinear limit. The jg soft

and 1̂g||jq collinear limits are removed by the subtraction term for the initial-final

gluon string neighbouring this configuration. If the initial state gluon is separated

from the quark by a single final-state gluon then the other sub-antenna is employed,

dσ̂
S,if,qigj ĝ1
NLO = NR

NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

d0
3(iq, jg, 1̂g) M

0
n(· · · ; (̃ij)q,

ˆ̄1g, · · · ) J (n)
n (k1, · · · , k(̃ij)

, · · · , kn),

(2.119)

which properly subtracts the jg soft, iq||jg and jg||1̂g limits.

An alternative strategy is to use the full D0
3 antenna for the subtraction. This

will not capture all collinear limits and will possess some spurious limits however

these are both corrected for by using an initial-initial A0
3 antenna. Consider the

configuration in which the quark and the initial-state gluon are separated by a

single final-state gluon. The term,

D0
3(iq, jg, 1̂g) M

0
n(· · · ; (̃ij)q

ˆ̄1g, · · · ), (2.120)

will correctly subtract the jg soft, iq||jg collinear and jg||1̂g collinear limits. However

in the limit iq||1̂g the antenna function is divergent whereas the colour ordered matrix

element is finite because iq and 1̂g are not colour connected. To correct for this over-

subtraction a new term can be introduced,

A0
3(iq, 1̂g, 2̂) M0

n(· · · ; j̃qˆ̄1g, · · · ). (2.121)
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This term uses an initial-initial antenna function and an initial-initial momentum

map. Examining the singular limits of the antenna it is clear that the only IR

divergent limit is,

A0
3(iq, 1̂g, 2̂)

iq ||1̂g−→ 1

s1i

Pqg←Q(z). (2.122)

The A0
3 antenna usually has the gluon-anti-quark collinear limit as well but in this

case because the initial-state partons are essentially constants they can never become

soft or collinear with one another so inverse powers of s12 are not dangerous when

it comes to the phase space integral. In principle the parton entering the rightmost

argument of the A0
3 antenna should be a quark but in practice the parton identity

of parton 2 is irrelevant for the subtraction as it is not involved in the singular

limits and only affects the subtraction term through the initial-initial map. The

only configuration in which this term contributes is the iq||1̂g limit and in that limit

the mapped momenta used for the reduced matrix elements in (2.120) and (2.121)

tend to the same values such that the second parton used for the antenna is a benign

spectator. The subtraction term for the configuration under consideration is then,

dσ̂
S,if,qigj ĝ1
NLO = NR

NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

{
D0

3(iq, jg, 1̂g) M
0
n(· · · ; (̃ij)q

ˆ̄1g, · · · ) J (n)
n (k1, · · · , k(̃ij)

, · · · , kn)

− A0
3(iq, 1̂g, 2̂) M0

n(· · · ; j̃qˆ̄1g, · · · ) J (n)
n (k̃1, · · · , k̃n)

}
. (2.123)

The reduced matrix element attached to the A0
3 term at first appears to have incor-

rect arguments, as in the iq||1̂g limit it would be expected that the reduced matrix

element would inherit an initial-state quark. However this subtraction term is in

fact removing a spurious limit of the D0
3 subtraction term. The arguments of the

reduced matrix element for that subtraction term term make no sense in the iq||1̂g
limit so it is not surprising that the reduced matrix element for the A0

3 term does

not follow the usual pattern of factorization.

The configuration where the initial-state gluon is adjacent to the quark is sub-

tracted using the initial-initial A0
3 antenna, as this contains exactly the limit neces-

sary without introducing any spurious limits. The difference in this case compared

to its previous use is that now the arguments of the reduced matrix element follow
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the usual factorization pattern as they have to mimic the physical matrix element

rather than an unphysical spurious limit of an artificial subtraction term,

dσ̂
S,if,qiĝ1gj
NLO = NR

NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

A0
3(iq, 1̂g; 2̂) M0

n(· · · ; ˆ̄1q, · · · , ˆ̄2, · · · ) J (n)
n (k̃1, · · · , k̃n).

(2.124)

Both methods described here, the decomposition into sub-antennae and the com-

bination of full D0
3 and A0

3 antennae, succeed in properly subtracting the IR diver-

gence of the quark string endpoints and both are integrable with their integrated

forms listed in [36]. In principle there is no preferred choice for which method to

use at NLO and in practice both work with similar accuracy.

At NNLO when two antennae are used to remove limits using iterated mappings

the small numerical discrepancy between using the initial-final and initial-initial

maps can cause sizeable differences between the two methods and inform a choice as

to which is better suited. For example consider the subtraction term constructed to

remove the iq||1̂g and kg||2̂g divergence from the string (iq, 1̂g, jg, kg, 2̂g, · · · ). Using

the sub-antennae a subtraction term can be constructed,

d0
3(iq, 1̂g; jg) f

0
3 (2̂g, kg, (̃ji)g) M

0
n(· · · , ˆ̄1q, (̃(ji)k)g,

ˆ̄2g, · · · ), (2.125)

which in the particular limit being considered tends to the value,

1

s1i

Pqg←Q(x)
1

s2k

Pqg←Q(y) M0
n(· · · , ˆ̄1q, (̃(ji)k)g,

ˆ̄2g, · · · ). (2.126)

Generating the subtraction term using the initial-initial A0
3, as discussed above,

gives,

A0
3(iq, 1̂g, 2̂g) f

0
3 (ˆ̄2g, k̃g, j̃g) M

0
n(· · · , ˆ̄1q, (̃j̃k̃)g,

ˆ̄̄2g, · · · ), (2.127)

which in the same limit tends to the value,

1

s1i

Pqg←Q(x)
1

s2̄k̃

Pqg←Q(y) M0
n(· · · , ˆ̄1q, (̃j̃k̃)g,

ˆ̄̄2g, · · · ). (2.128)

Although the initial-final and initial-initial maps drive the momenta to the same

values in the unresolved limits, they may converge at different rates. This does not
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affect the values of the reduced matrix elements which are relatively insensitive to

very small numerical differences in the momenta via the two maps. The discrepancy

is generated by the inverse powers of mapped momenta which also become small,

i.e., the s2k and s2̄k̃ in the expressions above. Although in the unresolved limit 2̄→ 2

and k̃ → k, because s2k is also vanishing, any numerical discrepancy between {2̄, k̃}

and {2, k} is of the same order as the scale s2k, which is very small in this limit, and

can cause a significant error which is multiplied due to the reciprocal power of the

small invariant.

For these practical concerns it may be advantageous to use the initial-final d0
3

sub-antennae for iterated subtraction terms at NNLO instead of the difference of two

full antennae using different maps. At NLO the iterated antenna structure never

arises as only one parton is ever unresolved and so both methods are equivalent.

The advantage of the antenna difference method really only shows up for the case of

four-parton antennae which suffer the same problems as the initial-final D0
3 antenna.

This issue will be discussed in more detail in section 2.6.1.

If an initial-state quark is adjacent to a final-state quark and a gluon then the

crossed version of the final-final G0
3 antenna is used to construct the subtraction

term,

dσ̂
S,if,q̂1qj
NLO = NR

NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

G0
3(ig, 1̂q, jq) M

0
n(· · · ; (̃ij)g,

ˆ̄1g, · · · , ) J (n)
n (k1, · · · , k(̃ij)

, · · · , kn).

(2.129)

If the initial-state quark is adjacent to a final-state quark of the same flavour and a

final-state quark of a different flavour then the subtraction term is given by,

dσ̂
S,if,q̂1qj
NLO = NR

NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

E0
3(iQ, 1̂q, jq) M

0
n(· · · ; (̃ij)Q,

ˆ̄1g, · · · , ) J (n)
n (k1, · · · , k(̃ij)

, · · · , kn).

(2.130)
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Initial-initial gluon string

When two initial-state gluons are separated by only one final-state gluon then the

subtraction term utilises the full initial-initial gluonic antenna,

dσ̂S,ii,ĝ1giĝ2NLO = NR
NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

F 0
3 (1̂g, ig, 2̂g) M

0
n(· · · , ˆ̄1g, ˆ̄2g, · · · , ) J (n)

n (k̃1, · · · , k̃n).

(2.131)

The antenna requires no decomposition into sub-antennae as only one parton is

allowed to become unresolved. The subtraction term properly subtracts the ig soft,

1̂g||ig and 2̂g||ig collinear divergence of the matrix element. The unresolved limits

occurring between the initial-state partons and those that bookend the initial-initial

system are removed using initial-final subtraction terms as previously discussed.

Initial-initial quark string: Quark-antiquark initiated

If a quark string has both endpoints in the initial-state and more than one gluon

populating the string then the subtraction term is the sum of two initial-final quark

string subtraction terms with potentially a final-state gluon string between the two if

enough gluons populate the string. If only one gluon populates the string with both

endpoints in the initial state then the divergences are removed using the initial-initial

A0
3 antenna,

dσ̂S,ii,q̂1gi
ˆ̄q2

NLO = NR
NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

A0
3(1̂q, ig, 2̂q̄) M

0
n(· · · ; ˆ̄1q, ˆ̄2q̄; · · · , ) J (n)

n (k̃1, · · · , k̃n).

(2.132)

Initial-initial quark string: Quark-gluon initiated

If one endpoint of a quark string is in the initial-state and an initial-state gluon is

separated from the quark by one final-state gluon then the subtraction term takes

the form,

dσ̂S,ii,q̂1giĝ2NLO = NR
NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1
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D0
3(1̂q, ig, 2̂g) M

0
n(· · · ; ˆ̄1q, ˆ̄2g, · · · , ) J (n)

n (k̃1, · · · , k̃n). (2.133)

The antenna requires no decomposition into sub-antennae as the only parton which

can become unresolved is the final-state gluon and the initial-state partons do not

suffer from an identity crisis as the final-state gluon does not change the particle

type of any initial-state parton.

Initial-initial quark string: Gluon-gluon initiated

For the configuration where a final-state quark is the endpoint of a quark string

and adjacent to two initial state gluons the full initial-initial D0
3 antenna with both

gluons in the initial-state has to be decomposed into two sub-antennae. Clearly

only one of the initial-state gluons is colour connected to the quark and so only

one of the collinear limits is required for the subtraction (no soft limits are present

for initial-state gluons). In addition to the unnecessary divergence when the other

gluon becomes collinear with the quark, the two limits map onto different matrix

elements. In the iq||1̂ case the reduced matrix element has the initial state partons

with particle type {ˆ̄1, ˆ̄2} = {q, g} whereas the iq||2̂ limit, also contained in the full

D0
3 antenna, the initial-state particle have the type {g, q}. The full D0

3(iq, jg, kg)

antenna has no denominators of the form sijsik and so it can be decomposed into

sub-antennae without the use of partial fractioning. The sub-antenna is given by,

d0
3(iq, 1̂g; 2̂g) =

1

s2
12i

(
s2

12

s1i

+
4s2

2i

s1i

+
4s2

1i

s12

+
3s12s2i

s1i

+
2s3

2i

s12s1i

+
3s2is1i

s12

+ 3s12 + 9s1i

)
,

(2.134)

such that it contains all the iq||1̂g collinear divergence. The full antenna is obtained

by summing the two sub-antennae, which are related to one another by the substi-

tution 1̂↔ 2̂, D0
3(iq, 1̂g, 2̂g) = d0

3(iq, 1̂g; 2̂g)+d0
3(iq, 2̂g; 1̂g). The sub-antenna has been

integrated in [36] and the subtraction term for the configuration under consideration

is given by,

dσ̂S,ii,qiĝ1ĝ2NLO = NR
NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

d0
3(iq, 1̂g; 2̂g) M

0
n(· · · ; ˆ̄1q, ˆ̄2g, · · · , ) J (n)

n (k̃1, · · · , k̃n). (2.135)
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An alternative strategy is to use the full initial-initial A0
3 antenna which only contains

the IR divergence necessary for this limit. The second initial-state parton in the A0
3

antenna is supposed to be a quark and in this context would in actual fact be a

gluon but this does not affect the divergent limit of the antenna or its integrated

form. Using this strategy the subtraction term is given by,

dσ̂S,ii,qiĝ1ĝ2NLO = NR
NLO Np C̄(ε)

C(ε)

∑
perms

dΦn+1(k1, · · · , kn; p1, p2)
1

Sn+1

A0
3(iq, 1̂g, 2̂) M0

n(· · · ; ˆ̄1q, ˆ̄2g, · · · , ) J (n)
n (k̃1, · · · , k̃n). (2.136)

The fact that the two terms are interchangeable in the context of subtraction can

be seen by noticing that the initial-initial d0
3 sub-antenna and the quark-gluon initi-

ated A0
3 antennae have the same divergent limits and the same poles upon analytic

integration.

2.5.2 NLO mass factorization term

The NLO mass factorization contribution was discussed in detail in section 1.4 where

it was shown that in general the contribution has the form,

dσ̂MF
ij,NLO = −C̄(ε)

{∫
dx1

x1

dx2

x2

δlj δ(1− x2) Γ1
ki dσ̂Bkl

+

∫
dx1

x1

dx2

x2

δki δ(1− x1) Γ1
lj dσ̂Bkl

}
(2.137)

When considering (n+ 1)-parton real corrections to an n-jet cross section, the Born

cross section is computed from the tree-level n-parton matrix element. Writing the

Born cross section out in terms of the matrix elements being integrated over the

final-state phase space the mass factorization contribution at NLO is given by,

dσ̂MF
ij,NLO =

∑
perms

dΦn(k1, · · · , kn; p1, p2) C̄(ε)

∫
dx1

x1

dx2

x2

1

Sn

{
−δlj δ(1− x2) Γ1

ki(x1) M0
n(· · · , k̂, · · · , l̂, · · · ) J (n)

n (k1, · · · , kn)

−δki δ(1− x1) Γ1
lj(x2) M0

n(· · · , k̂, · · · , l̂, · · · ) J (n)
n (k1, · · · , kn)

}
.

(2.138)

In this formula is an implicit sum over k and l, denoting the particle types of the

initial-state partons. In practical calculations the matrix elements accompanying
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some of the terms in this implicit sum over initial-state partons are zero, e.g., a

cross section with a purely gluonic Born cross section will admit a term where

one initial-state parton is transformed into a quark but the matrix element for a

single quark in an otherwise gluonic process is zero by current conservation. The

explicit forms for the various mass factorization kernels and their associated colour

decompositions are listed in appendix A.1.

2.5.3 Integration of the real emission subtraction term

Integrating the various subtraction terms over the final-final, initial-final and initial-

initial single unresolved antenna phase spaces is trivial once the integrated antennae

are known. The unintegrated antennae are replaced by the appropriate integrated

antennae and the remaining final-state resolved momenta relabelled. By integrating

out the unresolved partons, the many reduced matrix elements undergoing different

mappings map onto a common reduced matrix element which allows the sum of

many unintegrated subtraction terms to become the factorized product of a single

reduced matrix element and a sum of integrated antenna functions.

Final-state gluon string

Integrating the formula for an (n + 1)-parton final-state gluon string subtraction

term yields the contribution,∫
1

dσ̂
S,ff,g1···gn+1

NLO = NR
NLO Np C̄(ε)

∫
dx1

x1

dx2

x2

1

Sn∑
perms

dΦn(k1, · · · , kn; p1, p2) δ(1− x1) δ(1− x2)

J (1)
n (1g, · · · , ng) M0

n(· · · , 1g, · · · , ng, · · · ) J (n)
n (k̃1, · · · , k̃n),

(2.139)

where the reciprocal power of C(ε) has been absorbed into the definition of the

integrated antenna functions, as described in section 2.4. The quantity J
(1)
n denotes

a sum of integrated antenna functions which factor onto the same matrix element.

For an (n + 1)-gluon string that upon integration maps into an n-gluon string the
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integrated antenna operator is given by,

J (1)
n (1, · · · , n) =

1

3

(
F0

3 (s12) + F0
3 (s23) + · · ·+ F0

3 (s(n−1)n)

)
.

(2.140)

The integrated final-final antennae can be written in terms of the colour ordered

insertion operators introduced in section 1.3.1 and it is trivial to show that,

Poles
[
J (1)
n (1, · · · , n)

]
= −2I(1)

n (ε; 1, · · · , n), (2.141)

such that these two quantities differ only by finite terms. The IR singularity struc-

ture of the one-loop virtual contributions in terms of the IR insertion operator is

well known, so introducing a correspondence between integrated antennae and the

insertion operator allows for a direct comparison of the integrated subtraction term

and the poles of the one-loop contribution.

Final-state quark string

A final-state quark string with quark endpoint neighbouring final-state gluons upon

integration over the unresolved gluon phase space yields,∫
1

dσ̂
S,ff,qigjgk
NLO = NR

NLO Np C̄(ε)

∫
dx1

x1

dx2

x2

1

Sn∑
perms

dΦn(k1, · · · , kn; p1, p2) δ(1− x1) δ(1− x2)

J
(1)
2 (iq, kg) M

0
n(· · · ; iq, kg, · · · ) J (n)

n (k̃1, · · · , k̃n),

(2.142)

where the two-parton integrated antenna string is given by,

J
(1)
2 (iq, kg) =

1

2
D0

3(sik). (2.143)

Combining this result with the form of the integrated antenna string for final-state

gluons, the integrated subtraction term for a final-state quark string with (n − 1)

gluons separated by two quarks is given by,

J (1)
n (1q, 2g, · · · , (n− 1)g, nq̄) =

1

2
D0

3(s12) +
1

3
F0

3 (s23) + · · ·

September 24, 2012



2.5. Antenna subtraction at NLO 122

+
1

3
F0

3 (s(n−2)(n−1)) +
1

2
D0

3(s(n−1)n). (2.144)

If in unintegrated form the quarks are only separated by a single gluon then the

subtraction term integrated over the unresolved gluon phase space is given by,∫
1

dσ̂
S,ff,qigj q̄k
NLO = NR

NLO Np C̄(ε)

∫
dx1

x1

dx2

x2

1

Sn∑
perms

dΦn(k1, · · · , kn; p1, p2) δ(1− x1) δ(1− x2)

J
(1)
2 (iq, kq̄) M

0
n(· · · ; iq, kq̄; · · · ) J (n)

n (k̃1, · · · , k̃n),

(2.145)

where the final-state quark-antiquark integrated antenna string is given by,

J
(1)
2 (iq, kq̄) = A0

3(sik). (2.146)

Integrating the remaining subtraction terms which take into account the limits when

a quark-anti-quark pair become collinear to form a composite gluon are integrated

to generate the following contributions to the cross section,∫
1

dσ̂
S,ff,giqj q̄k
NLO = NR

NLO Np C̄(ε)

∫
dx1

x1

dx2

x2

1

Sn∑
perms

dΦn(k1, · · · , kn; p1, p2) δ(1− x1) δ(1− x2)

J
(1)
2,NF

(ig, jg) M
0
n(· · · , ig, jg, · · · ) J (n)

n (k̃1, · · · , k̃n),∫
1

dσ̂
S,ff,q′iqj q̄k
NLO = NR

NLO Np C̄(ε)

∫
dx1

x1

dx2

x2

1

Sn∑
perms

dΦn(k1, · · · , kn; p1, p2) δ(1− x1) δ(1− x2)

J
(1)
2,NF

(iq, jg) M
0
n(· · · , iq′ , jg, · · · ) J (n)

n (k̃1, · · · , k̃n),

(2.147)

where these terms generally carry a factor of NF due to the sum over final-state

quark flavours being partially evaluated for the NF quark pairs becoming collinear

in the limit. The two final-state two-particle integrated antenna strings are given

by,

J
(1)
2,NF

(ig, jg) =
1

2
G0

3(sij),
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J
(1)
2,NF

(iq, jg) =
1

2
E0

3 (sij). (2.148)

For final-state strings of particles there is no mass factorization contribution so the

virtual subtraction terms are given directly by the integrated subtraction terms, i.e.,

dσ̂T,ffNLO = −
∫

1

dσ̂S,ffNLO. (2.149)

Initial-final gluon string

When a parton is crossed into the initial-state and the contribution is integrated over

the unresolved phase space the integral of the subtraction term contains initial-state

collinear singularities. As discussed in section 1.4 these singularities are removed

by the process of factorization whereby they cancel in the factorized cross section

against the mass factorization contributions to the cross section. For an initial-final

gluon string the integrated subtraction term combined with the mass factorization

contribution associated with the initial-state parton is given by,

dσ̂
T,if,ĝ1gigj
NLO = −NR

NLO Np C̄(ε)

∫
dx1

x1

dx2

x2

1

Sn∑
perms

dΦn(k1, · · · , kn; p1, p2) δ(1− x2)

J
(1)
2 (ˆ̄1g, jg) M

0
n(· · · , ˆ̄1g, jg, · · · ) J (n)

n (k̃1, · · · , k̃n), (2.150)

where the initial-final integrated antenna string is formed from the integrated initial-

final antenna and the mass factorization kernel,

J
(1)
2 (ˆ̄1g, jg) =

1

2
F0

3,g(s1̄j)−
1

2
Γ1
gg(x1). (2.151)

This two parton integrated antenna string can be combined with other integrated

antenna strings in an additive fashion to encapsulate the ε poles of a matrix element

containing an initial-state gluon neighbouring final-state gluons. The inclusion of

the mass factorization kernel removes any initial-state collinear poles present in the

integrated antenna, leaving only genuine final-state IR poles which can be cancelled

against the virtual cross section. The integrated antennae can be written in terms

of the insertion operators, e.g.,

Poles
(
F0

3,g(s1̄i)
)

= −4I(1)
gg (s1̄i) δ(1− x) +

1

2
s−ε

1̄i
Γ1
gg(x), (2.152)
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and so, noting that the deepest pole of Γ1
gg is 1/ε, the resulting pole structure of

J
(1)
2 (1̂g, jg) matches onto the pole structure of the one-loop virtual gluon cross section

as required to ensure the pole cancellation.

Initial-final quark string: Quark initiated

Integrating the subtraction term for a quark string endpoint with an initial-state

quark and combining it with the appropriate mass factorization contribution yields

the contribution to the cross section,

dσ̂
T,if,q̂1gigj
NLO = −NR

NLO Np C̄(ε)

∫
dx1

x1

dx2

x2

1

Sn∑
perms

dΦn(k1, · · · , kn; p1, p2) δ(1− x2)

J
(1)
2 (ˆ̄1q, jg) M

0
n(· · · ; ˆ̄1q, jg, · · · ) J (n)

n (k̃1, · · · , k̃n), (2.153)

where the initial-final quark-gluon integrated antenna string is given by,

J
(1)
2 (ˆ̄1q, jg) =

1

2
D0

3,q(s1̄j)− Γ1
qq(x1). (2.154)

This two-parton integrated antenna string can be added with other strings for neigh-

bouring partons to generate a contribution which matches the pole structure of the

virtual cross section.

If only one gluon populates the quark string and one of the quarks is in the initial

state then the integrated antenna string is given by,

J
(1)
2 (ˆ̄1q, iq̄) = A0

3,q(s1̄i)− Γ1
qq(x1). (2.155)

The configuration where a quark pair become collinear with one of the quarks in

the initial-state has a subtraction term which when integrated and combined with

the mass appropriate mass factorization terms generates the following integrated

antenna strings,

J
(1)
2,q→g(ig,

ˆ̄1g) = G0
3,q(s1̄i)− Γ1

gq(x1),

J
(1)
2,NF

(ˆ̄1q, ig) =
1

2
E0

3;q,q′q̄′(s1̄i). (2.156)
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The poles of the integrated antennae in the identity changing integrated antenna

string, J
(1)
2,q→g,NF

, are cancelled due to the mass factorization contribution, as ex-

pected for identity changing contributions,

Poles
[
J

(1)
2,q→g(ig

ˆ̄1g)
]

= 0 (2.157)

The remaining term corresponds to an initial-final collinear quark pair neighbouring

a non-identical flavoured quark. The integrated subtraction term generates the

integrated antenna string,

J
(1)
2,q→g(iq′

ˆ̄1g) = E0
3;q,qq′(s1̄i)− Γ1

gq(x1), (2.158)

where the poles of the antenna are once again cancelled by the mass factorization

contribution.

Poles
[
J

(1)
2,q→g(iq′

ˆ̄1g)
]

= 0 (2.159)

Initial-final quark string: Gluon initiated

For the configuration where initial-state gluons are adjacent or almost adjacent to a

quark endpoint the divergences can be removed by decomposing the full D0
3 antenna

into two sub-antennae. Both of these sub-antennae have been integrated in [36] and

are denoted, ∫
1

d0
3(iq, 1̂g; jg) = D0

3;g,qg(s1̄j),∫
1

d0
3(iq, jg, 1̂g) = D0

3;g,gq(s1̄j). (2.160)

The subtraction term which removes the initial-state collinear divergence associated

with the final-state quark becoming collinear with the initial state gluon is integrated

and combined with the appropriate mass factorization term to give,

dσ̂
T,if,qiĝ1gj
NLO = −NR

NLO Np C̄(ε)

∫
dx1

x1

dx2

x2

1

Sn∑
perms

dΦn(k1, · · · , kn; p1, p2) δ(1− x2)

J
(1)
2,g→q(

ˆ̄1q, jg) M
0
n(· · · ; ˆ̄1q, jg, · · · ) J (n)

n (k̃1, · · · , k̃n).

(2.161)
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Using the integrated sub-antenna the integrated antenna string is given by,

J
(1)
2,g→q(

ˆ̄1q, jg) = D0
3;g,qg(s1̄j)− Γ1

qg(x1). (2.162)

If the alternative strategy of using the initial-initial A0
3 subtraction term is employed

then the factor of δ(1−x2) is removed from the definition of the virtual subtraction

term to take into account the fact that an initial-initial antenna has been used. The

integrated antenna string is then given by,

J
(1)
2,g→q(

ˆ̄1q, jg) = A0
3,gq(s12)− Γ1

qg(x1)δ(1− x2). (2.163)

By examining the poles of both D0
3;g,qg and A0

3,gq it is clear that not only are they

identical, but also the poles cancel completely against the mass factorization contri-

bution such that,

Poles
[
J

(1)
2,g→q(

ˆ̄1q, jg)
]

= 0. (2.164)

This is to be expected given that this subtraction term is used purely to remove

the initial-state collinear divergence of the initial-state gluon and the final-state

quark. The subtraction term for the configuration where the initial-state gluon is

separated from the quark by a single gluon is integrated and combined with the

mass factorization contribution to give the contribution,

dσ̂
T,if,qigj ĝ1
NLO = −NR

NLO Np C̄(ε)

∫
dx1

x1

dx2

x2

1

Sn∑
perms

dΦn(k1, · · · , kn; p1, p2) δ(1− x2)

J
(1)
2 (iq, ˆ̄1) M0

n(· · · ; iq, ˆ̄1q, · · · ) J (n)
n (k̃1, · · · , k̃n). (2.165)

Using the integrated sub-antenna the integrated antenna string has the form,

J
(1)
2 (iq, ˆ̄1) = D0

3;g,gq(s1̄j)−
1

2
Γ0
gg(x1). (2.166)

If the alternative method whereby the difference of an initial-final D0
3 and an initial-

initial A0
3 is used to remove the IR divergence, the factor of δ(1 − x2) is removed

from the integration and the integrated antenna string is given by,

J
(1)
2 (iq, ˆ̄1) = D0

3;g(s1̄j)δ(1− x2)−A0
3,qg(s12)− 1

2
Γ0
gg(x1)− δ(1− x2).
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(2.167)

By examining the poles of the individual antennae it is clear that the two expressions

for the integrated antenna string share the same poles and match onto the pole

structure of the corresponding virtual contribution.

If only one gluon populates the quark string and is also in the initial-state then

the integrated antenna string is given by,

J
(1)
2,g→q(

ˆ̄1q, iq̄) = A0
3,g(s1̄i)− Γ1

qg(x1), (2.168)

such that the mass factorization contribution completely cancels the poles within

this term,

Poles
[
J

(1)
2,g→q(

ˆ̄1q, iq̄)
]

= 0 (2.169)

Initial-initial gluon string

For a gluon string with two initial state gluons separated by one final-state gluon

the integrated subtraction term combined with the appropriate mass factorization

terms gives the contribution,

dσ̂T,ii,ĝ1giĝ2NLO = −NR
NLO Np C̄(ε)

∫
dx1

x1

dx2

x2

1

Sn

∑
perms

dΦn(k1, · · · , kn; p1, p2)

J
(1)
2 (ˆ̄1g, ˆ̄2g) M

0
n(· · · , ˆ̄1g, ˆ̄2g, · · · ) J (n)

n (k̃1, · · · , k̃n). (2.170)

The initial-initial gluonic integrated antenna string is given by,

J
(1)
2 (ˆ̄1g, ˆ̄2g) = F0

3,gg(s1̄2̄)− 1

2
Γ1
gg(x1)δ(1− x2)− 1

2
Γ1
gg(x2)δ(1− x1). (2.171)

The IR divergences associated with gluons either side of the initial-initial system are

removed by initial-final and final-final strings, the integrated forms of which have

already been discussed.

Initial-initial quark string: Quark-anti-quark initiated

When both the quark and anti-quark of a quark string are in the initial-state and

more than one gluons populates the string, the subtraction term is given by a sum of
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initial-final quark strings. If only one gluon populates the string then the integrated

subtraction term combined with the mass factorization contribution gives,

dσ̂T,ii,q̂1gi
ˆ̄q2

NLO = −NR
NLO Np C̄(ε)

∫
dx1

x1

dx2

x2

1

Sn

∑
perms

dΦn(k1, · · · , kn; p1, p2)

J
(1)
2 (ˆ̄1q, ˆ̄2q̄) M

0
n(· · · ; ˆ̄1q, ˆ̄2q̄; · · · ) J (n)

n (k̃1, · · · , k̃n), (2.172)

such that,

J
(1)
2 (ˆ̄1q, ˆ̄2q̄) = A0

3,qq̄(s1̄2̄)− Γ1
qq(x1)δ(1− x2)− Γ1

qq(x2)δ(1− x1). (2.173)

Initial-initial quark string: Quark-gluon initiated

The subtraction term for the configuration involving an initial-state quark and gluon

separated by a final-state gluon is integrated and combined with the appropriate

mass factorization terms to give,

dσ̂T,ii,q̂1giĝ2NLO = −NR
NLO Np C̄(ε)

∫
dx1

x1

dx2

x2

1

Sn

∑
perms

dΦn(k1, · · · , kn; p1, p2)

J
(1)
2 (ˆ̄1q, ˆ̄2g) M

0
n(· · · ; ˆ̄1q, ˆ̄2g, · · · ) J (n)

n (k̃1, · · · , k̃n), (2.174)

where the integrated antenna string for this configuration is given by,

J
(1)
2 (ˆ̄1q, ˆ̄2g) = D0

3,qg(s1̄2̄)− Γ1
qq(x1)δ(1− x2)− 1

2
Γ1
gg(x2)δ(1− x1). (2.175)

Initial-initial quark string: Gluon-gluon initiated

When two initial-state gluons are adjacent to one another and a quark the appro-

priate subtraction term can be integrated and combined with the mass factorization

contribution to generate the term,

dσ̂T,ii,q̂iĝ1ĝ2NLO = −NR
NLO Np C̄(ε)

∫
dx1

x1

dx2

x2

1

Sn

∑
perms

dΦn(k1, · · · , kn; p1, p2)

J
(1)
2,g→q(

ˆ̄1q, ˆ̄2g) M
0
n(· · · ; ˆ̄1q, ˆ̄2g, · · · ) J (n)

n (k̃1, · · · , k̃n). (2.176)

In this case the identity changing integrated antenna string can be written using the

integrated sub-antenna,

J
(1)
2,g→q(

ˆ̄1q, ˆ̄2g) = D0
3,gg(s1̄2̄)− Γ1

qg(x1)δ(1− x2), (2.177)
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or the integrated A0
3 antenna, as discussed in the previous section,

J
(1)
2,g→q(

ˆ̄1q, ˆ̄2g) = A0
3,qg(s1̄2̄)− Γ1

qg(x1)δ(1− x2). (2.178)

The IR poles of both expressions are identical and completely cancel against the

mass factorization term, as expected,

Poles
[
J

(1)
2,g→q(

ˆ̄1q, ˆ̄2g)
]

= 0. (2.179)

The single unresolved integrated antenna strings are collected for reference in section

B.1 and will be referred to frequently in the rest of this thesis.

2.5.4 Construction of the virtual subtraction term

The virtual subtraction term is constructed from the integrated real subtraction

term and the mass factorization contribution. The combination of the two terms

into contributions proportional to the integrated antenna strings has been considered

in the last section. To form the full virtual subtraction term the various integrated

antenna strings are joined together to form a single string per distinct reduced

matrix element. For example consider an (n + 1)-parton gluonic matrix element,

that maps down into the n-parton matrix element M0
n(i, · · · , j, ˆ̄1, ˆ̄2, k, · · · ). Once

the single unresolved subtraction term for this matrix element has been integrated

and combined with the mass factorization terms the resultant virtual subtraction

term is given by,

dσ̂TNLO = −NR
NLO Np C̄(ε)

∫
dx1

x1

dx2

x2

1

Sn

∑
perms

dΦn(k1, · · · , kn; p1, p2)

J (1)
n (ig · · · , jg, ˆ̄1g, ˆ̄2g, kg, · · · ) M0

n(ig · · · , jg, ˆ̄1g, ˆ̄2g, kg, · · · ) J (n)
n (k̃1, · · · , k̃n).

(2.180)

The full integrated antenna string is formed from the various integrated antenna

strings defined in the previous section,

J (1)
n (ig · · · , jg, ˆ̄1g, ˆ̄2g, kg, · · · ) = J

(1)
j (ig · · · , jg)δ(1− x1)δ(1− x2)

+ J
(1)
2 (jg, ˆ̄1g)δ(1− x2) + J

(1)
2 (ˆ̄1g, ˆ̄2g)

+ J
(1)
2 (ˆ̄1g, kg)δ(1− x1)
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+ J
(1)
n−k(kg, · · · , ig)δ(1− x1)δ(1− x2). (2.181)

Similarly a collection of matrix elements which in their single unresolved limits

collapse onto the matrix elementM0
n(ˆ̄1q, ig, · · · , jg, ˆ̄2q̄), generate a virtual subtraction

term involving,

J (1)
n (ˆ̄1q, ig, · · · , jg, ˆ̄2q̄) = J

(1)
2 (ˆ̄1q, ig)δ(1− x2)

+ J
(1)
n−2(ig, · · · , jg)δ(1− x1)δ(1− x2)

+ J
(1)
2 (jg, ˆ̄2q̄)δ(1− x1) (2.182)

2.6 Antenna subtraction at NNLO

Extending the analysis presented so far to NNLO is non-trivial but possible within

the antenna subtraction formalism. By defining tree-level four-parton and three-

parton one-loop antennae, as discussed in section 2.2, the method can accommodate

double unresolved tree-level and single unresolved one-loop configurations, which are

the genuinely new NNLO ingredients of any calculation.

As discussed in section 2.1.3, within the framework of subtraction a NNLO cal-

culation involves the construction of three subtraction terms for the double real,

real-virtual and double virtual, denoted dσ̂SNNLO, dσ̂TNNLO, dσ̂UNNLO respectively. If

all integrated antennae are known then this method is guaranteed to be integrable

by construction but the process of assembling a successful subtraction term at each

level of the calculation is not as algorithmic as is the case at NLO. Nevertheless

a significant amount of structure does exist and is visible when using the antenna

subtraction method.

The construction of subtraction terms at the double real, real-virtual and double

virtual levels requires an intimate understanding of the explicit infrared singular-

ity structure and implicit infrared divergent behaviour of both the physical matrix

elements and the subtraction terms at different levels in the calculation. The struc-

tures of these subtraction terms are dictated by two main considerations: the colour

connection of partons and explicit IR pole cancellation. The former completely in-

forms the construction of the double real subtraction term as there are no explicit
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IR poles to consider; the latter is the sole concern of the double virtual subtraction

term which is free from implicit IR divergences. The real-virtual subtraction term

contains both explicit poles and implicit divergent behaviour and so its structure

must take into account both parton colour connection and explicit pole cancellation.

2.6.1 Gluon initiated processes

Before discussing the general form of the subtraction terms it is useful to consider

the case of gluon initiated four-parton antennae, specifically the gluon initiated D0
4.

The issue of gluon initiated quark-gluon antennae has been discussed at NLO for

three parton antennae where the problem exists because the full antenna collapses

onto two distinct antennae in the different limits contained within the single antenna.

One solution to this problem at NLO was to partition the full antenna into two sub-

antennae, such that each sub-antenna solely maps onto one of the two distinct two-

parton antennae in the various unresolved limits. This strategy proves effective at

NLO and at NNLO when considering iterated three-parton antenna configurations.

For double unresolved configurations involving initial-state gluons it is often

desirable to use a gluon initiated D0
4 antenna function. This antenna suffers from

the same ambiguity as the gluon initiated three-parton antenna, it maps onto two

distinct underlying two-parton antennae in the double unresolved limits. This can

be seen by considering the triple collinear limits of the antenna D0
4(iq, 1̂g, jg, kg). In

the i||1̂||j and k||i||1̂ limits the antenna maps onto a quark-gluon system with the

quark in the initial-state. In the 1̂||j||k and j||k||i limits the antenna maps into a

quark-gluon system with the gluon in the initial-state.

This problem is unlike the ambiguity inherent to final-final antennae involving

many gluons, whereby the antennae had to be decomposed into sub-antennae so

the hard partons identified in the phase space map match onto hard partons in

the antenna. In that case the sub-antennae all mapped onto the same type of

matrix element but the momentum map was different for each term. The sub-

antennae did not have to be integrated separately because the decomposition was

performed such that the sum of sub-antennae formed a full antenna and only the full

antenna required analytic integration. This step is important as the sub-antennae
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are generated via a complicated decomposition and contain terms which are by

themselves difficult to integrate which are not present in the full antenna. In the

case of the gluon initiated quark-gluon antennae this trick of decomposing into

sub-antennae but only having to integrate the full antenna fails because the sub-

antennae would map onto genuinely different types of matrix element, not ones

which differ only by a phase space map. Due to this inherent problem with the

different matrix elements the sub-antennae would have to be integrated analytically

themselves, which for a four-parton sub-antenna involving three gluons is a highly

non-trivial task and may require new master integrals to be computed.

An alternative to the method of generating sub-antennae is to return to the

idea of using less divergent antenna functions to isolate a particular limit which

factors onto one type of matrix element and a difference of two antenna functions

which factor onto the other type of matrix element. This method was shown to

be equivalent to the method involving sub-antennae for single unresolved limits at

NLO in both unintegrated and integrated form. At NLO it may be desirable to

choose the sub-antenna method as fewer terms are required to achieve the same

goal; whilst at NNLO for iterated antenna limits the sub-antenna method may be

more reliable for numerical reasons, as discussed previously. However for double

unresolved limits there is no iterated structure to cause numerical issues2 and the

sub-antenna approach appears to be unviable.

Consider a matrix element containing the configuration where an initial-state

gluon is adjacent to the quark, e.g., M0
6 (iq, 1̂g, jg, kg, 2̂g, lq̄). This matrix element

contains the string of partons which match onto the gluon initiated D0
4(iq, 1̂g, jg, kg)

antenna. Using this antenna to remove the divergence is inappropriate for the rea-

sons already mentioned. Instead, the i||1̂||j quark-gluon triple collinear limit present

in the matrix element is subtracted using the initial-initial antenna A0
4(iq, 1̂g, jg, 2̂).

2An exception to this statement is in the removal of single unresolved limits of the four parton

antenna which will contain iterated antennae and may generate numerical mis-matches between

the mappings. These issues are not specific to the problem discussed here and arise generally

when spurious limits are removed using an antenna function belonging to a different kinematic

configuration.
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In the matrix element parton 2̂ is a gluon whereas the rightmost slot in the A0
4

antenna is conventionally reserved for a quark. This is not a problem if the reduced

matrix element associated with this antenna still treats 2̂ as a gluon and the phase

space map is flavour blind. Furthermore the parton 2̂ is not involved with any

other colour connected double unresolved limits so acts as a benign spectator. The

antenna will have single unresolved limits involving 2̂ but these are removed via the

usual procedure and will not in principle cause problems for the subtraction.

The second possible configuration is when the initial-state gluon is separated

from the quark by a single final-state gluon, e.g., M0
6 (iq, jg, 1̂g, kg2̂g, lq̄). In this

situation the antenna D0
4(iq, jg, 1̂g, kg) seems appropriate but as well as containing

spurious divergent limits, the antenna maps onto two distinct two-parton anten-

nae in the various double unresolved limits. In this case the initial-initial antenna

A0
4(iq, jg, 1̂g, 2̂) is used to remove the iq||jg||1̂g limit, with the remaining limits being

removed by using the antenna F 0
4 (jg, 1̂g, kg, 2̂).

The third configuration is given by an initial-state gluon separated from the

quark by two final-state gluons e.g., M0
6 (iq, jg, kg, 1̂g, 2̂g, lq̄) for which the antenna

D0
4(iq, jg, kg, 1̂g) appears suitable but suffers from the same problem as before and

so is in fact inappropriate by itself. In this situation the D0
4 antenna is not com-

pletely useless as it contains some of the double unresolved limits of the matrix

element, specifically the jg, kg → 0 double soft limit, the iq||jg||kg and jg||kg||1̂g
triple collinear limits, as well as various soft-collinear limits where partons j and

k become unresolved. In all these limits the antenna factors into the quark-gluon

antenna with the gluon in the initial-state.

The limits contained in the D0
4 antenna which collapse onto a quark-gluon an-

tenna with the quark in the initial-state can be removed using the initial-initial A0
4

type antennae, as these antennae were used in the first example to subtract such

limits from the matrix elements themselves. Subtracting the antenna A0
4(iq, 1̂g, kg, 2̂)

from the D0
4(iq, jg, kg, 1̂q) antenna removes the spurious iq||1̂g||kg limit without intro-

ducing additional spurious colour-connected unresolved limits. Similarly subtracting

the antenna Ã0
4(iq, jg, 1̂g, 2̂g) from the D0

4 antenna removes the iq||jg||1̂g limit with-

out introducing new colour-connected double unresolved limits. In the second case
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the antenna used is the subleading colour Ã0
4 antenna because the gluons 1̂g and jg

are not colour-connected in the D0
4 antenna.

This strategy for dealing with the unresolved limits of an initial-state gluon

separated from a quark endpoint by up to two gluons generalizes the argument

made at NLO where an initial-state gluon separated from a quark endpoint by up

to one gluon encountered similar problems. The advantage of the method is that no

new ingredients are required for its implementation.

2.6.2 Construction of the double real subtraction term

At NNLO the double real radiative (n+4)-parton correction to the n-jet final-state,

for the process pp → n jets, must be included and integrated over the appropriate

(n + 2)-parton phase space. In order for this to be achieved, the IR divergent

behaviour of the partonic cross section must be isolated. In the antenna subtraction

formalism this is achieved by constructing a subtraction term from three- and four-

parton antenna functions and reduced multiplicity matrix elements such that a finite

contribution can be numerically evaluated and the explicit IR poles extracted for

cancellation against contributions at the real-virtual and double virtual levels.

By construction the double real subtraction term mimics the IR divergence and

factorization of the real radiation matrix elements in all relevant single and double

unresolved limits. At NNLO there are four colour configurations to consider when

constructing the subtraction term for n-jet production:

1. A single unresolved parton but an n-jet selecting observable.

2. Two colour-connected unresolved partons, i.e. two unresolved partons radiated

between a single pair of hard radiators.

3. Two almost colour-connected unresolved partons, i.e. two colour disconnected

unresolved partons sharing a common radiator.

4. Two colour disconnected unresolved partons, i.e. two colour disconnected

unresolved partons with no radiators in common.
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The four possible colour configurations for the single and double unresolved limits of

the (n+ 4)-parton matrix elements provide a natural way to divide the subtraction

term into sections, as has been emphasised in previous works [32] [108] [114]. It

should be noted that although the factorization of the matrix elements is strictly

classified according to the colour connection of unresolved partons, the associated

subtraction terms readily communicate with one another in most unresolved limits

due to the existence and cross cancellation of spurious singularities. These system-

atic cross cancellations suggest that structures exist in the subtraction term other

than those dictated by the colour connection of unresolved partons.

In the following sections an equivalent reorganisation of the double real subtrac-

tion term into five subsections is presented,

dσ̂SNNLO = dσ̂S,aNNLO + dσ̂S,b1NNLO + dσ̂S,b2NNLO + dσ̂S,cNNLO + dσ̂S,dNNLO, (2.183)

where dσ̂S,cNNLO now contains the large angle soft contribution that was considered

separately in previous works [32] [108] [114]. This manifestation of the subtraction

term is broadly organised along the lines of colour connection but is also informed by

considering how the double real subtraction terms appear in real-virtual and double

virtual subtraction terms. Such an organisation of the double real subtraction term

allows a transparent understanding of how various terms from the double real level

cascade down the calculation upon integration. Understanding this structure also

permits a systematic construction of the double real subtraction term in terms of

predictable blocks of terms.

Single unresolved subtraction term, dσ̂S,aNNLO

The removal of single unresolved limits from (n + 4)-parton contribution to the n-

jet cross section at NNLO strongly resembles the subtraction term constructed to

isolate single unresolved limits from the (n+4)-parton contribution to the (n+1)-jet

cross section at NLO. The two subtraction terms differ only in the number of jets

allowed by the jet function,

dσ̂S,aNNLO(k1, · · · , kn+2; p1, p2) = dσ̂SNLO(k1 · · · , kn+2; p1, p2)

∣∣∣∣
J
(n+1)
n+1 →J

(n+1)
n

. (2.184)
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Figure 2.4: A pictorial representation of how the different sections of dσ̂SNNLO con-

tribute to different levels of the calculation. The inner, middle and outer rings rep-

resent the double virtual, real-virtual and double real levels respectively. Sections

of dσ̂SNNLO are labelled (a) dσ̂S,aNNLO, (b1) dσ̂S,b1NNLO, (b2) dσ̂S,b2NNLO, (c) dσ̂S,cNNLO, (d)

dσ̂S,dNNLO. Filled segments denote the levels at which the various sections contribute.

The detailed discussion on constructing the NLO subtraction terms given in section

2.5 is then sufficient to construct the single unresolved subtraction term dσ̂S,aNNLO.

It should be noted that although this section of the subtraction term is constructed

to remove single unresolved divergences of the physical matrix elements for n-jet

selecting observables it also contains spurious singularities in the almost colour con-

nected and colour disconnected limits, over-subtracting the divergence in each case.

These configurations are permitted due to the fact that the reduced matrix elements

allow an additional parton to become unresolved and still form n-jets. Nonetheless

this contribution is considered to be a well defined collection of subtraction terms

because when reintroduced at the real-virtual level upon analytic integration they

form a distinct set of terms proportional to the (n + 3)-parton matrix elements

that explicitly cancel the poles of the one-loop matrix elements and so are naturally

grouped together.

Four-parton antenna subtraction term, dσ̂S,b1NNLO

At NNLO there are essential new ingredients in the form of four-parton tree level

antenna functions required to faithfully reproduce the colour connected double unre-

solved divergences of the physical matrix elements. The momentum map associated

with a four-parton antenna function is the (n+ 4)→ (n+ 2) map for the final-final,
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initial-final and initial-initial configurations, as described in sections 2.3.1-2.3.1. The

collection of these terms has the form,

dσ̂S,b1NNLO = NRR
∑
n+2

dΦn+2(k1, . . . , kn+2; p1, p2)
1

Sn+2

×
∑
j,k

X0
4 (i, j, k, l) M0

n+2({kn}, p1, p2) J (n)
n ({kn}). (2.185)

This term is generic to all three kinematic configurations, with the specific an-

tenna functions and momentum maps depending on which configuration the term

belongs to. The four-parton antenna functions display many different types of diver-

gent behaviour including single unresolved and almost colour connected singularities

all of which must be properly removed elsewhere in the subtraction term. The ana-

lytic integration of the four-parton antenna functions is carried out over the double

unresolved antenna phase space and so the terms in dσ̂S,b1NNLO are reintroduced to

the double virtual subtraction term. This is in contrast to the terms introduced to

remove the spurious singularities of the four-parton antennae which are added back

to the real-virtual subtraction term. For this reason the terms involving four-parton

antenna functions are grouped together in the double real subtraction term.

Four-parton single unresolved subtraction term, dσ̂S,b2NNLO

As mentioned in the previous section, four-parton antenna functions contain single

unresolved spurious singularities which must be removed to ensure a proper sub-

traction of the IR divergence in the physical matrix elements. For each four-parton

antenna the single unresolved limits are removed by constructing a subtraction term

along the lines of dσ̂S,aNNLO but now applying this method to the four-parton antenna

function rather than the physical matrix elements. As such the terms are built from

three-parton antennae (used to remove the single unresolved limits) multiplied by

another three-parton antenna (the remnant of the four-parton antenna after the

single unresolved limit is taken) and a reduced matrix element which in the single

unresolved limit maps on to the matrix element post-multiplying the four-parton

antenna. For a four-parton antenna function this block has the generic form

dσ̂S,b2NNLO = −NRR
∑
n+2

dΦn+2(k1, . . . , kn+2; p1, p2)
1

Sn+2
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Configuration X0
4 X̃0

4

Final-final A0
4, B

0
4 , C

0
4 , D

0
4,a, E

0
4,a, Ẽ

0
4 , F

0
4,a, G

0
4, G̃

0
4, H

0
4 Ã0

4, D
0
4,c, E

0
4,b, F

0
4,b,

Initial-final A0
4, B

0
4 , C

0
4 , G

0
4, G̃

0
4, H

0
4 Ã0

4, D
0
4, E

0
4 , F

0
4

Initial-initial A0
4, B

0
4 , C

0
4 , D

0
4,adjF

0
4,adj, G

0
4, G̃

0
4, H

0
4 Ã0

4, D
0
4,n.adj, E

0
4 , F

0
4,n.adj

Table 2.4: The classification of the four-parton antenna functions into those contain-

ing almost colour connected limits or not. The final state F 0
4 , D0

4 and E0
4 antennae

are decomposed into sub-antennae D0
4,a, D

0
4,c, E

0
4,a, E

0
4,b, F

0
4,a, F

0
4,b for numerical

implementation.

×
∑
j

X0
3 (i, j, k) X0

3 (I,K, l) M0
n+2({kn}, p1, p2) J (n)

n ({kn}),

(2.186)

where the sum is over all partons in the four-parton antenna which admit a single

unresolved singularity. As with other sections of the subtraction term this block of

terms may contain spurious almost colour connected singularities of its own which

can arise when the secondary antenna in (2.186) also contains single unresolved

limits. The block of terms associated with each four-parton antenna encapsulates

all the single unresolved singularities of the four-parton antenna using the primary

antennae of the block. As discussed in section 2.6.3 a collection of terms which

correctly mimic the single unresolved limits of the four-parton antenna functions

performs a specific role when reintroduced to the real-virtual subtraction term; as

such these terms are treated as a distinct grouping in the double real subtraction

term.

Almost colour connected subtraction term, dσ̂S,cNNLO

The contribution to the subtraction term involving double unresolved almost colour

connected unresolved partons is intimately connected to those four-parton antenna

functions containing such limits, denoted by X̃0
4 . The classification of the four-parton

antenna functions into X0
4 and X̃0

4 types is displayed in Table 2.4.

In almost colour connected limits the terms in dσ̂S,b2NNLO will tend to over-subtract

the divergences of the associated X̃0
4 . In the same limits dσ̂S,aNNLO contributes twice
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the subtraction required by the matrix elements. Both of these over-subtractions

have to be accounted for by dσS,cNNLO, which also includes the wide angle soft sub-

traction term introduced in previous calculations [108] [125].

The terms appropriate for this section can be generated in the following fashion.

A final-final double unresolved configuration is considered for clarity but the strategy

also applies to initial-final and initial-initial configurations. For each four-parton

antenna which contains almost colour connected limits, X̃0
4 , in dσS,b1NNLO a block of

terms in dσS,cNNLO is constructed; for example, the antenna X̃0
4 (j, i, k, l) with partons

i and k unresolved. The antenna is associated with a reduced matrix element,

the colour ordering of this matrix element is written down with i and k removed,

e.g., if the reduced matrix element is M0
n(. . . , a, (̃j, i, k), (̃i, k, l), b, . . .) the ordering

(. . . , a, j, l, b, . . .), is considered, where j and l are the hard radiators of the antenna.

Then consider radiating partons i and k from this underlying ordering in the ordered

limit that i is radiated first, followed by k. The second radiation always happens

between the antenna’s hard radiators whilst the first radiation is allowed to be

inserted directly between and one place either side of the antenna’s radiators in the

colour ordering, with a relative minus sign for these two contributions. Written in

terms of antennae this configuration is given by,

+
1

2
X0

3 (j, i, l) X0
3 ((̃j, i), k, (̃i, l)) M0

n(. . . , a, ˜((j, i)k), ˜(k(i, l)), b, . . .)

− 1

2
X0

3 (a, i, j) X0
3 ((̃j, i), k, l) M0

n(. . . , (̃a, i), ˜((j, i)k), (̃k, l), b, . . .)

− 1

2
X0

3 (l, i, b) X0
3 (j, k, (̃l, i)) M0

n(. . . , a, (̃j, k), ˜(k(l, i)), (̃i, b), . . .) + (i↔ k).

(2.187)

There is a relative sign between the configurations where both unresolved partons

are radiated in region I and the configurations where the first unresolved parton

is radiated in either region II or III with the second in region I. The large angle

soft terms can also be included in this structure. Two almost colour-connected

unresolved partons are removed from the underlying colour ordering and the same

radiation pattern of these partons from the underlying colour ordering as in (2.187)

is considered. It was shown in [47] that the correct large angle soft terms can also be

generated by forcing the first radiation to be between a pair of final state partons,
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j

I III

II

a

b

l

. .
.

Figure 2.5: The three regions associated with the radiation of the primary unresolved

parton. Region I: between the hard radiators of the four-parton antenna, j, l. Region

II: one place to the left in the colour ordering between partons a, j. Region III: one

place to the right in the colour ordering between partons l, b.

relying on the Lorentz boost invariance of the soft functions and thus removing the

need to analytically integrate the soft function over the initial-final or initial-initial

antenna phase space. In terms of the pattern of radiation described in (2.187) and

figure 2.5 this is understood as the first radiation being between two final state

particles in the underlying ordering and the second radiation between the hard

radiators in the antenna. In the specific case of six parton scattering amplitudes in

double unresolved limits there will only ever be two hard final state partons so the

choice of final state partons between which the first unresolved parton is radiated is

an unambiguous one.

With the first mapping fixed to be of the final-final type, the secondary antenna

(which describes the radiation of the second unresolved parton) has common argu-

ments across all terms, unlike in (2.187) where the arguments depend on the specific

mapping inherited from the primary antenna. As a consequence the secondary an-

tenna can be factored out with the reduced matrix element so the large angle soft

block has the form,

Y ·X0
3 ((̃i, j), k, (̃i, l)) M0

n(. . . , a, ˜((i, j)k), ˜(k(i, l)), b, . . .), (2.188)

where Y is a sum of large angle soft antennae. The structure of this term can be

understood with reference to figure 2.5. For each region into which an unresolved
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parton can be radiated there is a term in Y given by,

−1

2

[
Sαiβ − SAIB

]
, (2.189)

where for the example configuration considered in (2.187),

(α, β) =
{(
a, (̃ij)

)
,
(
(̃ij), (̃il)

)
,
(
(̃il), b

)}
,

(A,B) =
{(
a, (̃(ij)k)

)
,
(
(̃(ij)l), (̃k(il))

)
,
(
(̃k(il)), b

)}
. (2.190)

The labels i and I denote the momentum of the unresolved parton i before the

first mapping and after the second respectively; unless the secondary antenna is an

initial-initial antenna then i = I. The pair of soft functions for each region comes

with an overall sign depending on which region the primary antenna belongs to, i.e.,

a relative minus sign for the regions either side of the secondary antenna’s radiators.

Collecting the terms in (2.187) and the large angle soft terms produces a block for a

given four-parton antenna (containing almost colour-connected limits); the sum of

such blocks constitutes dσ̂S,cNNLO,

dσ̂S,cNNLO = NRR
∑
n+2

dΦn+2(k1, . . . , kn+2; p1, p2)
1

Sn+2

∑
i,k

{
+

1

2
X0

3 (j, i, l) X0
3 ((̃j, i), k, (̃i, l)) M0

n(. . . , a, ˜((j, i)k), ˜(k(i, l)), b, . . .)

− 1

2
X0

3 (a, i, j) X0
3 ((̃j, i), k, l) M0

n(. . . , (̃a, i), ˜((j, i)k), (̃k, l), b, . . .)

− 1

2
X0

3 (l, i, b) X0
3 (j, k, (̃l, i)) M0

n(. . . , a, (̃j, k), ˜(k(l, i)), (̃i, b), . . .)

− 1

2

[(
S(i,j),i,(i,l) − S((i,j)k)i(k(i,l))

)
−
(
Sai(i,j) − Sai((i,j)k)

)
−
(
Sbi(i,l) − Sbi((i,l)k)

)]
X0

3 ((̃i, j), k, (̃i, l)) M0
n(. . . , a, ˜((i, j)k), ˜(k(i, l)), b, . . .)

}
, (2.191)

where the sum over i, k denotes the set of almost colour-connected pairs contained

within the four-parton antennae in dσS,b1NNLO. The blocks in dσ̂S,cNNLO have a common

secondary antenna and so when integrated over the single unresolved phase space

of the primary antenna will stay together as a block of integrated antenna functions

factoring onto a common unintegrated antenna. The structure of this block of terms
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in integrated form motivates treating this collection of subtraction terms as a distinct

block in the double real contribution.

It should be noted that this block is intimately connected to the presence of

almost colour connected limits in a four-parton antenna function. If no such limits

exist for a given four-parton antenna in dσ̂S,b1NNLO then there is no contribution to

dσ̂S,cNNLO; if a four-parton antenna does contain these limits then the term contribut-

ing to dσ̂S,cNNLO is predictable from the information contained in the contribution to

dσ̂S,b1NNLO.

Colour disconnected subtraction term, dσ̂S,dNNLO

For processes involving six or more coloured particles colour disconnected double

unresolved configurations can arise where unresolved partons are separated by more

than one hard radiator in the colour ordering. The single unresolved subtraction

term dσ̂S,aNNLO admits colour disconnected unresolved limits when the unresolved

parton in the antenna is colour disconnected from any other parton in the reduced

matrix element which can in principle become unresolved. In the double unresolved

limit the antenna will tend to a universal singular function and the reduced matrix

element will factorize into another universal function and a further reduced matrix

element.

The subtraction terms in dσ̂S,aNNLO take into account all possible unresolved par-

tons and so for each colour disconnected pair of unresolved partons, i and j, where

parton i is in the antenna function and j in the reduced matrix element, there is

the corresponding subtraction term where j is in the antenna and i in the reduced

matrix element. In this double unresolved limit both of these subtraction terms tend

to the same value and dσ̂S,aNNLO exactly double-counts the divergence of the matrix

elements.

To correct for this over-subtraction a block of terms is introduced with the form,

dσ̂S,dNNLO = −NRR
∑
n+2

dΦn+2(k1, . . . , kn+2; p1, p2)
1

Sn+2

×
∑
j,m

X0
3 (i, j, k) X0

3 (l,m, n) M0
n+2({kn}, p1, p2) J (n)

n ({kn}).

(2.192)
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where the sum runs over pairs of partons separated by more than one hard parton in

the ordering. This term also serves to compensate for the situation where a parton

which is colour disconnected from the potentially unresolved parton in the antenna

in dσ̂S,aNNLO becomes unresolved. In this single unresolved limit the term in dσ̂S,aNNLO

is divergent but does not match onto any divergence in the matrix elements. Such

terms are removed by the terms in dσ̂S,dNNLO.

The disconnected nature of the terms in dσS,dNNLO allows this block of terms to

be analytically integrated over the two disconnected regions of single unresolved

antenna phase space. The fact that both unresolved partons can be integrated

out directly from the double real level suggests that this contribution should be

reintroduced to the double virtual subtraction term and so are kept together as a

grouping in the double real contribution

2.6.3 Real-virtual subtraction term

The real-virtual subtraction term must successfully remove the implicit IR divergent

behaviour and explicit poles of the one loop (n+3)-parton matrix elements. In addi-

tion to imitating the physical one-loop matrix elements the real-virtual subtraction

term inherits terms from the double real subtraction term upon analytic integra-

tion over a single unresolved parton. The a terms will generally introduce both

explicit poles and IR divergences which must cancel against other contributions to

the real-virtual subtraction term to ensure that dσRVNNLO− dσTNNLO is finite. Taking

all these considerations into account leads to a subtraction term for the real-virtual

contribution which can be divided into five contributions,

dσ̂TNNLO = dσ̂T,aNNLO + dσ̂T,b1NNLO + dσ̂T,b2NNLO + dσ̂T,b3NNLO + dσ̂T,cNNLO. (2.193)

The structure and behaviour of each of these terms will be explained in the rest of

this section, including whether the terms originate and terminate in the double real,

real-virtual and double virtual contribution.
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NNLO real-virtual mass factorization term

Recall from section 1.4 that the NNLO mass factorization contribution contains

contributions proportional to dσLO and dσNLO. When trying to understand which

terms contribute to which levels of the NNLO calculation it is instructive to con-

sider the matrix elements involved in each contribution. The terms proportional

to dσLO contain (n + 2)-parton matrix elements and so contribute to the double

virtual subtraction term as that contribution involves an n-parton final-state phase

space integral. The terms proportional to dσNLO are naturally split into two con-

tributions, dσNLO =
∫

Φn+1
dσRNLO +

∫
Φn

dσVNLO where the real contribution contains

(n+ 3)-parton matrix elements and the virtual contribution contains (n+ 2)-parton

contributions. It is then natural for the terms proportional to dσRNLO to contribute

at the real-virtual level and those proportional to dσVNLO to contribute to the double

virtual level, along with the rest of the NNLO mass factorization terms.

An added complication to this issue is the fact that dσRNLO contains IR divergence

in single unresolved regions of phase space and dσVNLO contains explicit ε poles in

addition to those carried by the mass factorization kernels. It should be noted that

dσNLO is the unfactorized NLO cross section. Therefore in the context of antenna

subtraction it can be re-written in the form,

dσNLO =

∫
Φn+1

[
dσRNLO − dσSNLO

]
+

∫
Φn

[
dσVNLO +

∫
1

dσSNLO

]
, (2.194)

where the first bracketed term is now free from implicit divergence. Both terms in the

first bracket depend on the (n+3)-parton momentum set and so terms proportional

to this quantity are taken to constitute the NNLO real-virtual mass factorization

contribution. Writing these terms in less symbolic form reveals,

dσ̂MF,RV
ij,NNLO(ξ1H1, ξ2H2) = −C̄(ε)

∫
dx1

x1

dx2

x2

{
δ(1− x2) Γ1

ki(x1)

[
dσ̂Rkj,NLO − dσ̂Skj,NLO

]
(x1ξ1H1, x2ξ2H2)

+ δ(1− x1) Γ1
lj(x2)

[
dσ̂Ril,NLO − dσ̂Sil,NLO

]
(x1ξ1H1, x2ξ2H2)

}
(2.195)

where ξi is the fraction of the incoming hadron’s momentum Hi carried by parton

i. Rearranging this formula to group terms with a common type of matrix element
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allows the mass factorization term to be divided according to,

dσ̂MF,RV
ij,NNLO = dσ̂MF,RV,a

ij,NNLO + dσ̂MF,RV,b
ij,NNLO, (2.196)

such that dσ̂MF,RV,a
ij,NNLO is proportional to the (n+ 3)-parton matrix elements,

dσ̂MF,RV,a
ij,NNLO(ξ1H1, ξ2H2) = −C̄(ε)

∫
dx1

x1

dx2

x2[
δ(1− x2) Γ1

ki(x1) dσ̂Rkj,NLO(x1ξ1H1, x2ξ2H2)

+ δ(1− x1) Γ1
lj(x2) dσ̂Ril,NLO(x1ξ1H1, x2ξ2H2)

]
, (2.197)

and dσ̂MF,RV,b
ij,NNLO is proportional to the (n + 2)-parton matrix elements but retains a

dependence on the additional parton through the unintegrated antenna functions

present in dσ̂SNLO,

dσ̂MF,RV,b
ij,NNLO(ξ1H1, ξ2H2) = C̄(ε)

∫
dx1

x1

dx2

x2[
δ(1− x2) Γ1

ki(x1) dσ̂Skj,NLO(x1ξ1H1, x2ξ2H2)

+ δ(1− x1) Γ1
lj(x2) dσ̂Sil,NLO(x1ξ1H1, x2ξ2H2)

]
(2.198)

It should be noted that the form of dσ̂MF,RV,a
NNLO is exactly the same as for dσ̂MF

NLO

with an additional parton and the replacement J
(n)
n → J

(n+1)
n . Furthermore the

terms are proportional to the (n+ 3)-parton matrix elements unlike any other mass

factorization terms.

One loop explicit pole subtraction term, dσ̂T,aNNLO

It was emphasised in section 2.6.2 that the construction of dσ̂S,aNNLO follows the same

lines as constructing dσ̂SNLO with a modified jet function and an additional parton.

This matches the interpretation of the mass factorization contribution dσ̂MF,RV,a
NNLO

and so integrating the antennae in dσ̂S,aNNLO and combining with the mass factoriza-

tion kernels in dσ̂MF,RV,a
NNLO will generate precisely the same type of integrated antenna

strings seen at NLO for one additional parton. The combination of these two con-

tributions generates the real-virtual subtraction term,

dσ̂T,aNNLO = −NRV
∑
n+1

∫
dx1

x1

dx2

x2

dΦn+1(k1, . . . , kn+1; p1, p2)
1

Sn+1
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× J
(1)
n+3(1, . . . , n+ 3) M0

n+3(k1, . . . , kn+1) J (n+1)
n ({kn+1}), (2.199)

where NRV = C̄(ε)NRR. It has been previously noted that the poles of the J
(1)
n

integrated antenna strings are simply related the poles of the colour ordered I
(1)
n in-

sertion operator. Using this fact it is clear that the term dσ̂T,aNNLO correctly subtracts

the ε poles of the real-virtual matrix elements which obey the Catani factorization

formula,

Poles
[
M1

n(1, · · · , n)
]

= 2I(1)
n (1, · · · , n) M0

n(1, · · · , n). (2.200)

With the explicit poles of the one-loop matrix elements systematically removed by

a suitable combination of the integrated dσ̂S,aNNLO and a distinct piece of the real-

virtual mass factorization contribution, the only divergence remaining in the one-

loop matrix elements is the implicit single unresolved divergence and any explicit

poles associated with the renormalization of the one-loop matrix elements.

Tree × loop subtraction term, dσ̂T,b1NNLO

One-loop matrix elements factorize in implicit IR singular limits into two terms

which can be schematically understood as,

1-loop −→ (tree× loop) + (loop× tree).

The first term is the product of a tree level singular function factoring onto a one-loop

reduced matrix element and is subtracted using the product of a tree level antenna

function and a one-loop reduced matrix element. This term by itself removes part

of the implicit IR divergence of the one loop matrix elements but introduces explicit

poles associated with the one loop (n + 2)-parton reduced matrix element. The

explicit poles of this matrix element can be removed by subtracting the appropriate

integrated antenna string and so a subtraction term free from explicit IR poles can

be constructed,

dσ̂T,b1NNLO = NRV
∑
n+1

∫
dx1

x1

dx2

x2

dΦn+1(k1, . . . , kn+1; p1, p2)
1

Sn+1

×
∑
j

X0
3 (i, j, k)

{
δ(1− x1)δ(1− x2) M1

n+2(k1, . . . , kn; p1, p2)
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+ J
(1)
n+2(1, . . . , n+ 2) M0

n+2(k1, . . . , kn)

}
J (n)
n ({kn}),

(2.201)

where the sum is over the final state unresolved partons of the physical matrix

element. This formula can be applied to final-final, initial-final and initial-initial

configurations where in each configuration the appropriate unintegrated antenna

function is used, which in turn determines the phase space map. The one-loop

matrix element is a reduced matrix element and so to ensure a proper subtraction

of the explicit poles the integrated antenna string will have mapped momenta to

match.

The term proportional to the one-loop matrix element is entirely introduced at

the real-virtual level and so, upon integration over the single unresolved antenna

phase space, will be reintroduced to the double virtual level of the calculation. The

term proportional to the integrated antenna string, J
(1)
n+2, is introduced to remove

the explicit poles of the reduced one-loop matrix element, using the fact that the

poles of the integrated antenna string match the poles of the colour-ordered insertion

operator. The integrated antenna string is constructed from a string of integrated

antennae and the appropriate mass factorization kernels to remove the initial-state

collinear explicit poles of the integrated antennae. The mass factorization kernels

used to construct the integrated antenna string come naturally from the contribution

to the cross section dσ̂MF,RV,b
NNLO . This can be seen from the definition of dσ̂MF,RV,b

NNLO

which is proportional to the NLO subtraction term and in turn proportional to the

product of a three-parton tree-level antenna and a tree-level (n+ 2)-parton reduced

matrix element.

The mass factorization contributions which partially constitute the integrated

antenna string do not get reintroduced to the double virtual level upon integration

over the antenna phase space, but the integrated antennae which make up the rest

of the string do; at first sight this causes the J
(1)
n+2 term to be broken up upon

integration. While this is true, it is also clear that the mass factorization terms used

to define the integrated antenna string are proportional to the terms belonging to

dσ̂SNLO which have the counterpart in the double virtual cross section given by the
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same mass factorization kernels now proportional to
∫

1
dσ̂SNLO. The second quantity

is simply the mass factorization terms used to define J
(1)
n+2 in dσ̂T,b1NNLO, integrated

over the antenna phase space. These terms are precisely what is needed to generate

a full J
(1)
n+2 at the double virtual level when combined with the rest of the terms

introduced to form the J
(1)
n+2 in dσ̂T,b1NNLO and are passed down to the double virtual

level upon integration. From this analysis it is clear that although the J
(1)
n+2 used

in dσ̂T,b1NNLO is broken up upon integration, it is systematically re-assembled at the

double virtual level.

loop × tree subtraction term, dσ̂T,b2NNLO

The factorization of one-loop matrix elements in IR limits also requires a term given

by a one-loop universal singular function factoring onto a tree-level matrix element.

To properly account for this contribution, a subtraction term is constructed from a

one-loop antenna function containing the one-loop singular functions and a tree-level

reduced matrix element. The one-loop antenna functions contain explicit IR ε poles

which must be removed to ensure a finite total contribution. This goal is achieved

by defining a new integrated antenna string J̄
(1)
n which contains the IR explicit poles

of the one-loop antenna; the explicit form of this function will be discussed in due

course. Assuming such a quantity exists, a block of terms can be constructed to

remove the remaining implicit IR divergence from the one-loop matrix elements,

which is also free from explicit poles,

dσ̂T,b2NNLO = NRV
∑
n+1

∫
dx1

x1

dx2

x2

dΦn+1(k1, . . . , kn+1; p1, p2)
1

Sn+1

×
∑
j

[
X1

3 (i, j, k)δ(1− x1)δ(1− x2) + J̄
(1)
3 (i, j, k) X0

3 (i, j, k)

]
× M0

n+2(k1, . . . , kn; p1, p2) J (n)
n ({kn}), (2.202)

This subtraction term is again general for all kinematic configurations given the

appropriate antenna functions and phase space maps are used. The form of J̄
(1)
3 can

be understood by considering a simple pole cancellation argument. Using the KLN

theorem, the explicit poles of a three-parton one-loop physical matrix element con-

stituting a physical cross section cancel against the explicit poles of the four-parton
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real radiative correction to the three-parton Born process, after analytic integration

over the single unresolved phase space. The three-parton one-loop antenna function

is constructed from a one-loop physical matrix element as shown in (2.35). Consider

the three-parton one-loop matrix element, used to define the one-loop antenna, as

the one-loop correction to a three-parton Born antenna matrix element. Then the

tree-level four-parton antenna is the corresponding single real emission correction to

the Born-level process. As such, when the four parton antenna function is integrated

over all single unresolved regions of phase space, its explicit ε poles should cancel

against the explicit poles contained in the three-parton one-loop matrix element

contributing to the three-parton one-loop antenna function.

The four-parton antenna functions contribute to the double real subtraction term

but are not re-introduced to the real-virtual subtraction term because they are in-

tegrated over the double unresolved antenna phase space. The quantities needed to

generate the J̄
(1)
3 term contain all the implicit single unresolved divergence of the

four-parton antennae and are integrated over the single unresolved antenna phase

space to be re-introduced at the real virtual level. This is precisely the definition

of the double real subtraction terms collected in dσ̂S,b2NNLO. Integrating this collec-

tion of terms over the single unresolved phase space associated with the primary

antenna generates a string of integrated antenna functions factoring onto a com-

mon secondary unintegrated antenna and a common reduced matrix element3. This

string of integrated antenna functions will partially cancel the explicit poles of the

one-loop antenna.

The other ingredient to the three-parton one-loop antenna is the piece involving

the product of a one-loop two-parton reduced matrix element and a three-parton

tree-level antenna function, as shown in (2.35). The poles of the ratio of the two-

parton one-loop matrix element and the two-parton tree-level matrix element are

3If the four-parton antenna factors onto different remnant three-parton antennae in different

single unresolved limits then several strings will be generated, each of which will match a necessary

one-loop three-parton antenna term in the real-virtual subtraction term. The matrix elements

will be common to all terms as the original four-parton antenna only factors onto a single matrix

element by construction.
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given by the poles of the two-parton one-loop antenna functions. The two-parton

one-loop antenna functions are presented explicitly in [32] for the final-final con-

figuration, the poles of which are related to the integrated three-parton tree-level

antennae. Although not explicitly presented in the literature, the poles of the initial-

final and initial-initial two-parton one-loop antennae can be derived from the poles

of the integrated three-parton tree-level antennae for the relevant configuration. Us-

ing these relations the finite pieces of the initial-final and initial-initial two-parton

one-loop antennae need never be calculated as the two-parton one-loop antenna can

be systematically replaced with integrated three-parton tree-level antennae for the

purposes of subtraction, the finite pieces of which are documented for all kinematic

configurations.

When considering initial-final and initial-initial configurations the pole cancel-

lation argument above must be modified for mass factorization terms. As an unin-

tegrated antenna, X1
3 , contains no explicit initial-state collinear poles, whereas the

four-parton tree-level matrix elements integrated over the single unresolved phase

space will in general contain such poles. This is clear from the form of the terms orig-

inating in
∫

1
dσ̂S,b2NNLO, some of which will be initial-final or initial-initial integrated

antennae containing initial-state collinear poles. For the pole cancellation argument

to hold in these configurations the appropriate mass factorization terms should be

included, in this case a contribution of the form dσ̂MF
NLO for any initial-state partons

contained in the Born-level three parton antenna. These terms cannot be derived

from the NNLO real-virtual mass factorization contribution and so are put in tem-

porarily in the knowledge that in principle they must cancel elsewhere. Putting in

these terms and combining them with the integrated antennae from dσ̂S,b2NNLO gener-

ates an integrated antenna string J
(1)
3 which completely cancels the ε poles of the

one-loop three-parton matrix element contained in X1
3 .

The second pole cancellation argument which was made for the final-final case

was that by a similar argument the poles of the one-loop two parton antenna are

related to the poles of the integrated tree-level three-parton antenna. In the initial-

final and initial-initial configurations this argument is again modified to include a

mass factorization contribution for any initial-state partons in the Born-level pro-
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cess. The mass factorization terms introduced when writing the one-loop two-parton

antenna in terms of an integrated tree-level three-parton antenna exactly cancel the

mass factorization terms introduced by hand to remove the initial-state collinear

poles of the integrated antennas coming from
∫

1
dσ̂S,b2NNLO. This somewhat lengthy

argument can be summarised in the following way,

Poles
[
J̄

(1)
3

]
= Poles

[
J

(1)
3 + X 1

2

]
= Poles

[∑
j

X 0
3 −

1

S
X 0

3

]
, (2.203)

where S is a symmetry factor relating the poles of X 1
2 and the final-state singularities

of X 0
3 .

The terms in
∫

1
dσ̂T,b2NNLO proportional to the one-loop antenna are introduced

in the real-virtual subtraction term and so must contribute to the double virtual

subtraction term upon integration over the single unresolved phase space. The

term proportional to J̄
(1)
3 contains integrated antennae inherited from the double

real which terminate in the real-virtual whereas the integrated two-parton one-loop

antenna, re-written as an integrated three-parton tree-level antenna, is introduced

by hand in the real-virtual and is therefore passed down to the double virtual level.

J̄
(1)
3 itself contains no initial-state collinear poles, and therefore upon integration the

double virtual subtraction term inherits the initial-state collinear poles contained in

the X 0
3 terms passed down to it.

One-loop renormalisation subtraction term, dσ̂T,b3NNLO

When introducing one-loop quantities it is important to ensure they are properly

renormalized to guarantee a complete cancellation of explicit poles. In the real-

virtual subtraction term two one-loop quantities are introduced: the one-loop re-

duced matrix elements in (2.201) and the one-loop antenna functions in (2.202). The

one-loop matrix elements are renormalised at the renormalisation scale µ2 whereas

the one-loop antenna is renormalised at the mass scale of the antenna sijk. To

account for the effect of renormalisation the substitution is made,

X1
3 (i, j, k) → X1

3 (i, j, k) +
β0

ε
C(ε) X0

3 (i, j, k)

((
sijk
µ2

)−ε
− 1

)
(2.204)

The systematic inclusion of these terms requires that for each one loop antenna

(whose pole structure is proportional to a tree-level antenna) used in the real-virtual
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subtraction term a compensating term proportional to β0 is generated such that a

block of subtraction terms is generated of the form,

dσ̂T,b3NNLO = NRV
∑
n+1

∫
dx1

x1

dx2

x2

dΦn+1(k1, . . . , kn+1; p1, p2)
1

Sn+1

×
∑
j

β0 log

(
µ2

|sijk|

)
X0

3 (i, j, k)δ(1− x1)δ(1− x2)

× M0
n+2(k1, . . . , kn; p1, p2) J (n)

n ({kn}), (2.205)

where the sum mirrors that of (2.202). The colour decomposition of β0 into b0 and

b0,NF
dictates to which orders in the colour decomposition these terms contribute.

The terms in dσ̂T,b3NNLO originate in the real-virtual subtraction term and so are rein-

troduced to the double virtual subtraction term when the unintegrated antenna in

(2.205) is integrated over the single unresolved antenna phase space.

Integrated almost colour connected subtraction term, dσ̂T,cNNLO

The final term which contributes to the real-virtual subtraction term is mostly de-

rived from the analytic integration of dσ̂S,cNNLO over the single unresolved antenna

phase space with additional predictable terms to ensure an IR finite contribution.

After integrating out the unresolved parton of the primary antennae in dσ̂S,cNNLO

the secondary antennae map onto the same function and can be factored out as

a common function for the block at the real-virtual level. Factoring on to this

antenna are the three integrated antenna functions and six integrated soft antennae

inherited from dσ̂S,cNNLO. In order to remove the explicit poles of this combination

three additional integrated antennae matching the flavours of those passed down

from dσ̂S,cNNLO are introduced. The arguments of these antennae are given by the

arguments of their twin terms after these momenta have undergone an additional

mapping dictated by the secondary antenna in dσ̂S,cNNLO. This choice of arguments

ensures that when the secondary antenna contains a divergence the arguments of the

integrated antennae map onto each other exactly, causing the difference of integrated

antennae to cancel and ensuring the block as a whole does not introduce implicit

IR divergent behaviour. The block is then free from explicit poles and divergent

behaviour, and so gives a finite contribution at the real-virtual level. For the example
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configuration already discussed in the context of dσ̂S,cNNLO shown in (2.191), the

following block is constructed,

dσ̂T,cNNLO = −NRV
∑
n+1

∫
dx1

x1

dx2

x2

dΦn+1(k1, . . . , kn+1; p1, p2)
1

Sn+1

{
1

2

∑
j

[ ( (
X 0

3 (sik)−X 0
3 (s(ij)(jk))

)
−
(
X 0

3 (sai)−X 0
3 (sa(ij))

)
−
(
X 0

3 (skb)−X 0
3 (s(kj)b)

))
−

((
S(sik, sik, 1)− S(s(ij)(jk)sik, x(ij)(jk),ik)

)
−

(
S(sai, sik, xai,ik)− S(sa(ij), sik, xa(ij),ik)

)
−

(
S(skb, sik, xkb,ik)− S(s(jk)b, sik, x(jk)b,ik)

))
δ(1− x1)δ(1− x2)

]}
× X0

3 (i, j, k) M0
n+2(k1, . . . , kn; p1, p2) J (n)

n ({kn}). (2.206)

To achieve a finite block, three integrated antennae were introduced which after

analytic integration over the secondary antenna must be reintroduced at the dou-

ble virtual level. All other terms inherited from the double real subtraction term

terminate at the real-virtual level.

2.6.4 Double virtual subtraction term structure

The double virtual contribution to the pp→ n-jet cross section involves the two-loop

(n+ 2)-parton matrix elements which have no implicit IR divergence in any regions

of the appropriate n-parton phase space. Using the subtraction terms defined in pre-

vious sections to remove all implicit IR divergence at the double real and real-virtual

levels of the calculation, all that remains is to reintroduce the integrated forms of

the appropriate terms to cancel the explicit IR poles of the two-loop contribution.

NNLO double virtual mass factorization terms

Using the symbolic notation of section 1.4, the NNLO mass factorization term is

written in the form,

dσMF
NNLO = −

[
Γ2 · dσLO · I + I · dσLO ·Γ2 −

[
Γ1 ⊗ Γ1

]
· dσLO · I

− I · dσLO ·
[
Γ1 ⊗ Γ1

]
− Γ1 · dσLO ·Γ1
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+ Γ1 · dσNLO · I + I · dσNLO ·Γ1

]
. (2.207)

It was shown in section 2.6.3 that the unfactorized NLO cross section can be written

in the form,

dσNLO =

[
dσRNLO − dσSNLO

]
︸ ︷︷ ︸

(n+3)-parton

+ dσVNLO +

∫
1

dσSNLO︸ ︷︷ ︸
(n+2)-parton

(2.208)

The terms proportional to the (n + 3)-parton contributions are used to construct

the NNLO real-virtual mass factorization terms, dσMF,RV
NNLO , as discussed in section

2.6.3. The remainder of (2.207) then depends on the (n+ 2)-parton momentum set

and is used to construct the NNLO double virtual mass factorization contributions.

The double virtual mass factorization terms can be divided into two contributions,

dσMF,V V
NNLO = dσMF,V V,a

NNLO + dσMF,V V,b
NNLO . (2.209)

The first term is proportional to the NLO virtual cross section,

dσMF,V V,a
NNLO = −Γ1 · dσVNLO · I − I · dσVNLO ·Γ1. (2.210)

These terms are kept together because they contain mass factorization terms pro-

portional to the one-loop matrix elements and will be naturally grouped with the

terms proportional to the one-loop matrix elements inherited from the real-virtual

subtraction term upon integration. The second term is proportional to the leading

order cross section or the integrated subtraction term, both of which are proportional

to the tree-level (n+ 2)-parton matrix elements,

dσMF,V V,b
NNLO = −

[
Γ2 −

[
Γ1 ⊗ Γ1

]]
· dσLO · I − I · dσLO ·

[
Γ2 −

[
Γ1 ⊗ Γ1

]]
+ Γ1 · dσLO ·Γ1

− Γ1 ·
(∫

1

dσSNLO

)
· I − I ·

(∫
1

dσSNLO

)
·Γ1. (2.211)

Following the discussion in section 2.5 the integrated NLO subtraction term is pro-

portional to a string of integrated antenna functions factoring onto a common matrix

element. During a full NLO computation the integrated antennae are combined with

the mass factorization contributions to generate integrated antenna strings, J
(1)
n+2.
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The NLO cross section contributing to the NNLO mass factorization terms is the

unfactorized cross section so the integrated subtraction term in (2.211) is just given

by the sum of integrated antennae, not a full J
(1)
n+2. The sum of integrated antennae

without the mass factorization kernels is denoted by Y such that,

Y = J
(1)
n+2 + Γ1(x1) + Γ1(x2). (2.212)

Using this definition and the notation Γ1(x1) = Γ1
1, Γ1(x2) = Γ1

2, Γ2(x1) =

Γ2
1, Γ2(x2) = Γ2

2, the following relation can be derived,

1

2
J

(1)
n+2 ⊗ J

(1)
n+2 =

1

2
Y ⊗ Y − Y ⊗ Γ1

1 − Y ⊗ Γ1
2

+
1

2
Γ1

1 ⊗ Γ1
1 +

1

2
Γ1

2 ⊗ Γ1
2 + Γ1

1Γ
1
2. (2.213)

Noticing that many of these terms are also present in the NNLO mass factorization

contribution allows (2.211) to be re-written in the form,

dσMF,V V,b
NNLO =

(
−Γ2

1 − Γ2
2 +

1

2
J

(1)
n+2 ⊗ J

(1)
n+2 −

1

2
Y ⊗ Y

+
1

2
Γ1

1 ⊗ Γ1
1 +

1

2
Γ1

2 ⊗ Γ1
2

)
dσLO (2.214)

This formula can be trivially partitioned into two terms, dσMF,V V,b
NNLO = dσMF,V V,b1

NNLO +

dσMF,V V,b2
NNLO , such that,

dσMF,V V,b1
NNLO =

1

2
J

(1)
n+2 ⊗ J

(1)
n+2 dσLO,

dσMF,V V,b2
NNLO =

(
−Γ2

1 − Γ2
2 −

1

2
Y ⊗ Y +

1

2
Γ1

1 ⊗ Γ1
1 +

1

2
Γ1

2 ⊗ Γ1
2

)
dσLO.

(2.215)

One-loop matrix element contribution

The first term to be integrated comes from dσT,b1NNLO and is the collection of terms

proportional to the one-loop matrix element. It should be noted that the mass fac-

torization term dσMF,V V,a
NNLO is proportional to the renormalized virtual cross section.

Accordingly the one-loop matrix element should be renormalized by making the

substitution,

M1
n+2 →M1

n+2 −
β0

ε
C(ε)M0

n+2. (2.216)
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This substitution generates an additional β0-dependent mass factorization term,

dσMF,V V,a
NNLO → dσMF,V V,a1

NNLO + dσMF,V V,a2
NNLO , (2.217)

where dσMF,V V,a1
NNLO has the same form as the un-renormalized dσMF,V V,a

NNLO and dσMF,V V,a2
NNLO

has the form,

dσMF,V V,a2
NNLO = −β0

ε
dσMF

NLO (2.218)

Upon integration, the sum of integrated three-parton tree-level antennae combined

with the mass factorization contribution from dσMF,V V,a1
NNLO , generates an integrated

antenna string factoring onto a one-loop (n+ 2)-parton matrix element,

dσU,a1NNLO = −N V V
∑
n

∫
dz1

z1

dz2

z2

dΦn(k1, . . . , kn; p1, p2)
1

Sn

J
(1)
n+2(1, · · · , n+ 2) M1

n+2(k1, . . . , kn; p1, p2) J (n)
n ({kn}) (2.219)

Integrated β0 contribution

Integrating the terms in dσT,b3NNLO generates a contribution to the double virtual of

the form,

dσU,bNNLO = −N V V
∑
n

∫
dz1

z1

dz2

z2

dΦn(k1, . . . , kn; p1, p2)
1

Sn∑
{i,j}

β0

ε

((
sij
µ2

)−ε
− 1

)
X 0

3 (sij) M
0
n+2(k1, . . . , kn; p1, p2) J (n)

n ({kn}).

(2.220)

Splitting the bracket in two and combining the second term with dσMF,V V,a2
NNLO yields,

dσU,b1NNLO = N V V
∑
n

∫
dz1

z1

dz2

z2

dΦn(k1, . . . , kn; p1, p2)
1

Sn

β0

ε
J

(1)
n+2(1, · · · , n+ 2) M0

n+2(k1, . . . , kn; p1, p2) J (n)
n ({kn}).

(2.221)

The other term is given by,

dσU,b2NNLO = −N V V
∑
n

∫
dz1

z1

dz2

z2

dΦn(k1, . . . , kn; p1, p2)
1

Sn
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∑
{ij}

β0

ε

(
sij
µ2

)−ε
X 0

3 (sij) M
0
n+2(k1, . . . , kn; p1, p2) J (n)

n ({kn}).

(2.222)

At this point is possible to define a piece of the double virtual subtraction term

as,

dσU,ANNLO = dσU,a1NNLO + dσU,b1NNLO,

= −N V V
∑
n

∫
dz1

z1

dz2

z2

dΦn(k1, . . . , kn; p1, p2)
1

Sn

{
J

(1)
n+2(1, · · · , n+ 2)

×
(
M1

n+2(k1, . . . , kn; p1, p2)− β0

ε
M0

n+2(k1, . . . , kn; p1, p2)

)
J (n)
n ({kn})

}
.

(2.223)

Recalling that the poles of the integrated antenna string are simply related to the

poles of Catani’s one-loop insertion operator, this contribution to the double virtual

cross section contains the pole structure given in the first line of Catani’s two-loop

factorization formula presented in (1.82).

It is important to note that dσU,ANNLO does not contain precisely the same poles

as the first line of Catani’s formula because the difference between J
(1)
n and I

(1)
n

formally of the order ε0. At NLO the poles of the one loop matrix element can

be written in terms of an integrated antenna string, the poles of which match the

poles of the insertion operator precisely as both quantities factor into a tree-level

O(ε0) matrix element. At NNLO this is no longer always true as can be seen in the

definition of dσU,ANNLO where both the one-loop matrix element and the factor of β0/ε

cause the O(ε0) and O(ε) difference between J
(1)
n and I

(1)
n to give additional singular

contributions. Given these considerations, the pole structure of J
(1)
n contains the

pole structure of I
(1)
n , but also receives additional singular contributions which are

expected to cancel against similar contributions arising elsewhere in the double

virtual subtraction term.

The mass factorization contribution, dσMF,V V,b1
NNLO is free from initial-state collinear

poles and can be systematically isolated to form a contribution to the double virtual

subtraction term by itself.

dσ̂U,BNNLO = −N V V
∑
n

∫
dz1

z1

dz2

z2

dΦn(k1, . . . , kn; p1, p2)
1

Sn
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× 1

2
J

(1)
n+2(1, · · · , n+ 2)⊗ J (1)

n+2(1, · · · , n+ 2)

× M0
n+2(k1, . . . , kn; p1, p2) J (n)

n ({kn}). (2.224)

It is easily seen that this expression contains the pole structure of the second line in

(1.82), with additional singular contributions arising from the differences between

J
(1)
n and I

(1)
n at O(ε0) and higher orders.

Integrated one-loop antenna contribution

Integrating the term proportional to the one-loop antenna function in dσT,b2NNLO gen-

erates the following term in the double virtual subtraction term,

dσU,c1NNLO = −N V V
∑
n

∫
dz1

z1

dz2

z2

dΦn(k1, . . . , kn; p1, p2)
1

Sn∑
{ij}

X 1
3 (sij) M

0
n+2(k1, . . . , kn; p1, p2) J (n)

n ({kn}). (2.225)

It is noted that upon integration the antennae which generate β0 terms in the real-

virtual subtraction have a pole piece of the form,

Poles
[
X 1

3 (sij)
]

= · · · − β0

ε

(
sij
µ2

)−ε
X 0

3 (sij). (2.226)

It can therefore be shown that by summing the contributions, dσU,c1NNLO and dσU,b2NNLO

the poles associated with renormalizing the one-loop antenna are systematically

removed by the remainder of the integrated β0 terms.

Integrated double real contribution

The double virtual subtraction term also receives contributions from terms in the

double real subtraction term upon integration, specifically the four-parton antenna

terms and the colour disconnected contribution. Integrating the four-parton antenna

terms yields the contribution to the double virtual cross section given by,

dσ̂U,d1NNLO = −N V V
∑
n

∫
dz1

z1

dz2

z2

dΦn(k1, . . . , kn; p1, p2)
1

Sn

×
∑
{i,j}

X 0
4 (sij) M

0
n+2(k1, . . . , kn; p1, p2) J (n)

n ({kn}) (2.227)
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The colour disconnected subtraction term is integrated over the unresolved phase

space of both three-parton antenna and generates the double virtual term,

dσ̂U,d2NNLO = N V V
∑
n

∫
dz1

z1

dz2

z2

dΦn(k1, . . . , kn; p1, p2)
1

Sn

×
∑

{i,j},{k,l}

X 0
3 (sij) X 0

3 (skl) M
0
n+2(k1, . . . , kn; p1, p2) J (n)

n ({kn})

(2.228)

where the sum runs over non-overlapping sets of colour-connected partons in the

(n+ 2)-parton ordering.

Integrated almost colour connected contribution

Integrating the almost colour connected subtraction term generates products of in-

tegrated antenna functions. If two antenna have arguments which are the same

colour connected partons i, j, then the product is denoted X 0
3 (sij)⊗X 0

3 (sij). If the

integrated antennae share a common parton j, the almost colour connected product

is denoted X 0
3 (sij)⊗X 0

3 (sjk). The integral of the terms in dσ̂T,cNNLO which contribute

to the double virtual subtraction term has the form,

dσ̂U,eNNLO = N V V
∑
n

∫
dz1

z1

dz2

z2

dΦn(k1, . . . , kn; p1, p2)
1

Sn

×
(
−1

2

∑
{i,j}

[
X 0

3 (sij)⊗X 0
3 (sij)

]
+

∑
{i,j},{j,k}

[
X 0

3 (sij)⊗X 0
3 (sjk)

])
× M0

n+2(k1, . . . , kn; p1, p2) J (n)
n ({kn}). (2.229)

It can be shown that,

1

2
Y ⊗ Y =

1

2

∑
{i,j}

X 0
3 (sij)⊗X 0

3 (sij) +
∑

{i,j},{j,k}

X 0
3 (sij)⊗X 0

3 (sjk)

+
∑

{i,j},{k,l}

X 0
3 (sij) X 0

3 (skl), (2.230)

and so,

dσ̂U,eNNLO + dσ̂U,d2NNLO = N V V
∑
n

∫
dz1

z1

dz2

z2

dΦn(k1, . . . , kn; p1, p2)
1

Sn

×
(

1

2
Y ⊗ Y −

∑
{i,j}

X 0
3 (sij)⊗X 0

3 (sij)

)
× M0

n+2(k1, . . . , kn; p1, p2) J (n)
n ({kn}). (2.231)
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X A D E F G

SFF 1 1 1 3/2 1/2

SIF 1 1, 1/2 1 1 1/2

SII 1 1/2 � 1/2 �

Table 2.5: The various symmetry factors needed when translating between X 1
2 and

X 0
3 terms. Initial-final and initial-initial antennae may contain different singularities

depending on the initial-state partons. The two values for the initial-final D antenna

reflect the quark and gluon initiated antennae respectively. The integrated antennae

with no final-state singularities are omitted from this table.

Remaining integrated terms

Only two terms remain to be integrated, both from the real-virtual contribution.

The first is the remaining term which is inherited from the real-virtual subtraction

term dσ̂T,b2NNLO. This term is proportional to a symmetry factor S which relates the

poles of the two-parton one-loop antenna function and the final-state poles of the

integrated three-parton antenna. The different values of S are listed in table 2.5.

The integration of this terms yields,

dσ̂U,c2NNLO = N V V
∑
n

∫
dz1

z1

dz2

z2

dΦn(k1, . . . , kn; p1, p2)
1

Sn

×
∑
{i,j}

1

S
X 0

3 (sij)⊗X 0
3 (sij) M

0
n+2(k1, . . . , kn; p1, p2) J (n)

n ({kn}).

(2.232)

The last term to integrate is the remainder from dσ̂T,b1NNLO which in un-integrated

form is proportional to J
(1)
n+2. When integrated this term generates the contribution

to the double virtual cross section,

dσ̂U,a2NNLO = −N V V
∑
n

∫
dz1

z1

dz2

z2

dΦn(k1, . . . , kn; p1, p2)
1

Sn

×
[
Y ⊗ Y

]
M0

n+2(k1, . . . , kn; p1, p2) J (n)
n ({kn}). (2.233)

Pulling together the various terms generates the subtraction term,

dσ̂U,CNNLO = dσ̂U,a2NNLO + dσ̂U,b2NNLO + dσ̂U,c1NNLO + dσ̂U,c2NNLO
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+ dσ̂U,d1NNLO + dσ̂U,d2NNLO + dσ̂U,eNNLO + dσ̂MF,V V,b2
NNLO . (2.234)

Writing this subtraction term explicitly yields the form,

dσ̂U,CNNLO = −N V V
∑
n

∫
dz1

z1

dz2

z2

dΦn(k1, . . . , kn; p1, p2)
1

Sn

{
∑
{i,j}

(
X 0

4 (sij) + X 1
3 (sij) +

β0

ε

(
sij
µ2

)−ε
X 0

3 (sij)

+

(
1− 1

S

)
X 0

3 (sij)⊗X 0
3 (sij)

)
− Γ2

1 − Γ2
2 +

1

2
Γ1

1 ⊗ Γ1
1

+
1

2
Γ1

2 ⊗ Γ1
2

}
M0

n+2(k1, . . . , kn; p1, p2) J (n)
n ({kn}), (2.235)

and it is noted that the Y ⊗ Y terms cancel in the combination. These terms are

used to define the double unresolved integrated antenna string J
(2)
n+2, such that,

dσ̂U,CNNLO = −N V V
∑
n

∫
dz1

z1

dz2

z2

dΦn(k1, . . . , kn; p1, p2)
1

Sn

∑
{i,j}

J
(2)
n+2(1, · · · , n+ 2) M0

n+2(k1, . . . , kn; p1, p2) J (n)
n ({kn}), (2.236)

Where the double unresolved integrated antenna string is given by,

J
(2)
n+2(1, · · · , n+ 2) =

∑
{i,j}

{
X 0

4 (sij) + X 1
3 (sij) +

β0

ε

(
sij
µ2

)−ε
X 0

3 (sij)

+

(
1− 1

S

)
X 0

3 (sij)⊗X 0
3 (sij)

}
− Γ2(x1)− Γ2(x2)

+
1

2

[
Γ1 ⊗ Γ1

]
(x1) +

1

2

[
Γ1 ⊗ Γ1

]
(x2), (2.237)

and the sum runs over colour connected pairs of partons in the (n + 2)-parton

ordering. The full double virtual subtraction term is given by the sum of all three

contributions,

dσ̂UNNLO = dσ̂U,ANNLO + dσ̂U,BNNLO + dσ̂U,CNNLO, (2.238)

which when written in terms of single and double unresolved integrated antenna

strings is given by,

dσ̂UNNLO = −N V V
∑
n

∫
dz1

z1

dz2

z2

dΦn(k1, . . . , kn; p1, p2)
1

Sn

{
J

(1)
n+2(1, · · · , n+ 2)
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×
(
M1

n+2(k1, . . . , kn; p1, p2)− β0

ε
M0

n+2(k1, . . . , kn; p1, p2)

)
J (n)
n ({kn})

+

(
1

2
J

(1)
n+2(1, · · · , n+ 2)⊗ J (1)

n+2(1, · · · , n+ 2) + J
(2)
n+2(1, · · · , n+ 2)

)
× M0

n+2(k1, . . . , kn; p1, p2) J (n)
n ({kn})

}
. (2.239)

The first term in this equation is defined in (2.223) and contains the pole structure

of the first line in Catani’s two-loop factorization formula (1.82) in addition to a

set of predictable additional poles. The second term in (2.239) is defined in (2.224)

and similarly contains the poles of the second line in (1.82) in addition to a set

of predictable extra singularities. The third term introduces the double unresolved

integrated antenna string, J
(2)
n+2, and contains a pole structure expected to contain

that of the remainder of (1.82), i.e., the terms proportional to I
(1)
n+2(2ε) and H(2)(ε)

and the additional poles present in the first two lines but absent from Catani’s

formula.

The form of the subtraction term in (2.239) depends on the number and type of

particles in the colour ordering of the various matrix elements across the different

levels of the calculation. Implicit in the formulation presented above is the assump-

tion that the scattering process contains colour-connected strings of partons long

enough to accommodate almost colour-connected and colour-disconnected double

unresolved configurations. This is not always the case, in particular for the calcu-

lations presented in chapters 3 and 4 where the longest colour-connected strings of

partons contain four partons.

In such a configuration, the first term in (2.239) is unchanged as it is the re-

sult of single unresolved limits in the one-loop matrix element and is simply given

by a two-parton integrated antenna string. The second term comes from the mass

factorization contribution and is similarly unchanged. The only place that the al-

most colour connected and colour disconnected limits contribute is in the double

unresolved integrated antenna string, J
(2)
n+2. In the case of the double real matrix el-

ements not containing these limits, the form of J
(2)
n+2 is modified by omitting the term

dσ̂U,eNNLO + dσ̂U,d2NNLO which contributes to dσ̂U,CNNLO. Making this adjustment means

that the form of J
(2)
n+2 is modified to reflect the lack of almost colour-connected and
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colour disconnected configurations. i.e.,

J
(2)
n+2 −→

∑
{i,j}

{
X 0

4 (sij) + X 1
3 (sij) +

β0

ε

(
sij
µ2

)−ε
X 0

3 (sij)−
1

S
X 0

3 (sij)⊗X 0
3 (sij)

}
− Γ2

1 − Γ2
2 +

1

2

[
Γ1

1 ⊗ Γ1
1

]
+

1

2

[
Γ1

2 ⊗ Γ1
2

]
+

1

2
Y ⊗ Y . (2.240)

If desired, this formula can be re-written in terms of integrated antenna strings,

J
(2)
n+2 −→

∑
{i,j}

{
X 0

4 (sij) + X 1
3 (sij) +

β0

ε

(
sij
µ2

)−ε
X 0

3 (sij)−
1

S
X 0

3 (sij)⊗X 0
3 (sij)

}
−Γ2

1 − Γ2
2 +

[
Γ1

1 ⊗ Γ1
1

]
+
[
Γ1

2 ⊗ Γ1
2

]
+ Γ1

1Γ
1
2

+
1

2
J

(1)
n+2 ⊗ J

(1)
n+2 + J

(1)
n+2 ⊗ Γ1

1 + J
(1)
n+2 ⊗ Γ1

2. (2.241)

The formulation of J
(2)
n+2 in (2.240) or (2.241) will be especially useful in chapters

3 and 4 where n = 0 and the double real matrix elements do not generate almost

colour-connected or colour disconnected configurations.
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Chapter 3

Production of colourless particles

via quark scattering

In this chapter the production of one or more colourless particles in a hadronic

collision is considered. The NLO and NNLO QCD corrections to the Born-level

quark-anti-quark scattering process are calculated using the antenna subtraction

method and all IR poles successfully cancelled using the formalism introduced in

chapter 2.

3.1 Physical matrix elements for up to four par-

tons

The following matrix elements are those relevant to the production of colourless

particles which cannot couple to gluons directly, e.g., qq̄ → Z0, qq̄ → Z0Z0, qq̄ →

W+W− etc. Generically we discuss the process qq̄ → X.

The unrenormalised cross section has a perturbative expansion in terms of the

unrenormalised coupling αbs given by,

dσbij = dσb,LOij +

(
αbs
2π

)
dσb,NLOij +

(
αbs
2π

)2

dσb,NNLOij (3.1)

The bare coupling is related to the renormalised coupling evaluated at the renor-

malisation scale, µ, through the singular multiplicative factor,

αbs = Z(ε)αs(µ) (3.2)
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q

q̄

X

(a)

q

q̄

X

(b)

q

q̄

X

(c)

q

q̄

X

(d)

q

q̄

X

(e)

q

q̄

X

(f)

q

q̄

X

(g)

q

q̄

X

(h)

g

g

X

(i)

Figure 3.1: A selection of diagrams contributing to the physical matrix elements up

to NNLO.

such that all UV divergences in the bare coupling are absorbed into the renormali-

sation factor,

Z(ε) =
1

C̄

[
1−

(
αs
2π

)
β0

ε
+

(
αs
2π

)2 (
β2

0

ε2
− β1

2ε

)
+O(α3

s)

]
(3.3)

It should be noted that the leading-order cross section is of order O((αbs)
0) and that

each factor of αbs in the unrenormalised cross section carries a factor of C̄(ε). Using

this information a perturbative expansion for the renormalised cross section is given

by,

dσij = dσLOij +

(
αs
2π

)
dσNLOij +

(
αs
2π

)2

dσNNLOij (3.4)

where the renormalised perturbative contributions are given in terms of the unrenor-

malised contributions,

dσLOij = dσb,LOij , (3.5)
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dσNLOij =
1

C̄(ε)
dσb,NLOij , (3.6)

dσNNLOij =
1

C̄(ε)2
dσb,NNLOij − 1

C̄(ε)

β0

ε
dσb,NLOij . (3.7)

Throughout both this chapter and chapter 4, the decomposition of the physi-

cal amplitudes into colour ordered matrix elements proceeds in the same way as

for pure QCD processes, except now the colour ordered matrix elements are a sum

over all Feynman diagrams for a fixed perturbative order in the various couplings

contributing to the same colour ordering defined by the coloured partons. For exam-

ple, the process qq̄ → ggZ0Z0 generates thirty Feynman diagrams with both QCD

and electroweak couplings. Only two colour structures are present and so all thirty

diagrams are distributed amongst the two colour structures, generating two colour

ordered amplitudes.

3.1.1 Two parton contribution

The two parton contribution to the cross section enters via the tree-level Born con-

tribution, the one-loop virtual correction and the two-loop double virtual correction.

The matrix elements appropriate to all three configurations are given below.

Tree-level:

The tree-level two-parton contribution is calculated from diagrams such as the one

shown in figure 3.1 (a), where it is noted that X may represent more than one

particle such that the diagram shown represents a class of Feynman diagrams.

dσ̂Bqq̄ = Nqq̄NLO dΦ{Xi}({pXi
}; p1, p2) M0

2 (1̂q, 2̂q̄),

dσ̂Bqg = 0,

dσ̂Bgg = 0, (3.8)

where the quark-gluon initiated contribution is zero due to quark current conser-

vation and the gluon-gluon contribution is zero due to the gluons not coupling to

colourless particles at tree-level. The set {pXi
} denotes the momenta of any colour-

less particles produced in the scattering process. Nij contains overall multiplicative
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factors due to spin and colour averaging of initial state partons,

Nij =
1

(2s) · 4 ·Ci ·Cj
(3.9)

where
√
s is the hadron-hadron centre of mass energy and Ci denotes the number

of colour states which can be accommodated by an initial-state particle of type i,

e.g., Cq = Cq̄ = N, Cg = N2− 1. The leading-order overall colour factor is given by

NLO = N .

One-loop:

The one-loop matrix elements have the form, 〈M0
2|M1

2〉 + 〈M1
2|M0

2〉 and so any

one-loop amplitude which is projected onto a null tree-level amplitude forms a null

matrix element. The class of diagrams contributing to the one-loop amplitudes are

represented by figure 3.1 (b).

dσ̂Vqq̄ = Nqq̄NNLO C̄(ε)

(
αs
2π

)
dΦ{Xi}({pXi

}; p1, p2) M1
2 (1̂q, 2̂q̄)

dσ̂Vqg = 0

dσ̂Vgg = 0 (3.10)

where the NLO overall colour factor is given by, NNLO = CF NLO.

Two-loop:

At two loops the matrix elements have the form 〈M0
2|M2

2〉+ 〈M2
2|M0

2〉+ 〈M1
2|M1

2〉

and the cross section can be written in the form,

dσ̂V Vqq̄ = Nqq̄NNLO C̄(ε)2

(
αs
2π

)2

dΦ{Xi}({pXi
}; p1, p2){

N M2
2 (1̂q, 2̂q̄)−

1

N
M̃2

2 (1̂q, 2̂q̄) +NF M̂2
2 (1̂q, 2̂q̄)

}
,

dσ̂V Vqg = 0

dσ̂V Vgg = NggNNLO C̄(ε)2

(
αs
2π

)2

dΦ{Xi}({pXi
}; p1, p2) M2

2 (1̂g, 2̂g) (3.11)

An example two-loop two-parton diagram is shown in figure 3.1 (c). The gluon-gluon

initiated channel is non-zero due to the self-interference of the non-zero one-loop

amplitude shown in figure 3.1 (i). This contribution is however IR finite, having
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no tree-level or one-loop matrix elements to factor onto, and so requires no explicit

pole subtraction at the double virtual level.

3.1.2 Three parton contribution

The three-parton contribution to the cross section is given by the real tree-level and

the real-virtual one-loop correction to the cross section.

Tree-level:

The tree-level three-parton matrix elements are calculated from the class of diagrams

in figure 3.1 (d) and its various crossings.

dσ̂Rqq̄ = Nqq̄NNLO
C̄(ε)

C(ε)

(
αs
2π

)
dΦ{Xi}+1({pXi

}, p3; p1, p2)

× M0
3 (1̂q, 3g, 2̂q̄) J

(1)
0 (p3)

dσ̂Rqg = NqgNNLO
C̄(ε)

C(ε)

(
αs
2π

)
dΦ{Xi}+1({pXi

}, p3; p1, p2)

× M0
3 (1̂q, 2̂g, 3q̄) J

(1)
0 (p3)

dσ̂Rgg = 0 (3.12)

Other non-zero channels are obtained from these processes via an appropriate sub-

stitution of labels. e.g., dσ̂Rq̄q = dσ̂Rqq̄(q ↔ q̄), dσ̂Rq̄g = dσ̂Rqg(q ↔ q̄) etc.

One-loop:

Diagrams of the type in figure 3.1 (e) are amongst several which generate the one-

loop three-parton matrix elements.

dσ̂RVqq̄ = Nqq̄NNLO
C̄(ε)2

C(ε)

(
αs
2π

)2

dΦ{Xi}+1({pXi
}, p3; p1, p2)

1

2

{
N M1

3 (1̂q, 3g, 2̂q̄)−
1

N
M̃1

3 (1̂q, 3g, 2̂q̄) +NF M̂1
3 (1̂q, 3g, 2̂q̄)

}
J

(1)
0 (p3),

dσ̂RVqg = NqgNNLO
C̄(ε)2

C(ε)

(
αs
2π

)2

dΦ{Xi}+1({pXi
}, p3; p1, p2)

1

2

{
N M1

3 (1̂q, 2̂g, 3q̄)−
1

N
M̃1

3 (1̂q, 2̂g, 3q̄) +NF M̂1
3 (1̂q, 2̂g, 3q̄)

}
J

(1)
0 (p3),

dσ̂RVgg = 0 (3.13)
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where M̃1
3 and M̂1

3 denote the squared matrix elements of the sub-leading colour

and closed quark-loop contributions respectively. The NF dependent contribution

is generated by diagrams of the type in figure 3.1 (g).

3.1.3 Four parton contribution

The four-parton contribution to the cross section enters via the tree-level double

real correction to the Born-level cross section.

3.1.4 Tree-level:

The four-parton tree-level matrix elements are formed from diagrams including those

of the type shown in figure 3.1 (f) and (h), along with their various crossings.

dσ̂RRqq̄ = Nqq̄NNLO
C̄(ε)2

C(ε)2

(
αs
2π

)2

dΦ{Xi}+2({pXi
}, p3, p4; p1, p2){

N

2

(∑
{3,4}

M0
4 (1̂q, 3g, 4g, 2̂q̄)

)
− 1

2N
M̃0

4 (1̂q, 3g, 4g, 2̂q̄) +NF M0
4 (1̂q, 3Q, 4Q̄, 2̂q̄)

+ M0
4 (1̂q, 3Q, 2̂Q̄, 4q̄)−

1

N
M

0

4(1̂q, 3q, 4q̄, 2̂q̄)

}
J

(2)
0 (p3, p4),

dσ̂RRqg = NqgNNLO
C̄(ε)2

C(ε)2

(
αs
2π

)2

dΦ{Xi}+2({pXi
}, p3, p4; p1, p2){

N

(
M0

4 (1̂q, 2̂g, 3g, 4q̄) +M0
4 (1̂q, 3g, 2̂g, 4q̄)

)
− 1

N
M̃0

4 (1̂q, 2̂g, 3g, 4q̄)

}
,

dσ̂RRgg = NggNNLO
C̄(ε)2

C(ε)2

(
αs
2π

)2

dΦ{Xi}+2({pXi
}, p3, p4; p1, p2) NF{ ∑

{1,2}

N M0
4 (3q, 1̂g, 2̂g, 4q̄)−

1

N
M̃0

4 (3q, 1̂g, 2̂g, 4q̄)

}
J

(2)
0 (p3, p4)

dσ̂RRqQ = NqQNNLO
C̄(ε)2

C(ε)2

(
αs
2π

)2

dΦ{Xi}+2({pXi
}, p3, p4; p1, p2)

M0
4 (1̂q, 2̂Q, 4Q, 3q) J

(2)
0 (p3, p4)

dσ̂RRqq = NqqNNLO
C̄(ε)2

C(ε)2

(
αs
2π

)2

dΦ{Xi}+2({pXi
}, p3, p4; p1, p2)

1

2

{
M0

4 (1̂q, 2̂Q, 4Q, 3q) +M0
4 (1̂q, 2̂Q, 3Q̄, 4q̄)−

1

N
M

0

4(1̂q, 3q, 2̂q̄, 4q̄)

}
J

(2)
0 (p3, p4),

(3.14)
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M̃0
4 (1̂q, 3g, 4g, 2̂q̄) denotes the sub-leading colour two quark two gluon squared matrix

element. The incoherent like-quark flavoured matrix elements are given by,

M
0

4(1̂q, 3q, 4q̄, 2̂q̄) = −2<
[
M0

4(1̂q, 3Q, 4Q̄, 2̂q̄)M0,†
4 (1̂q, 3Q, 2̂q̄, 4Q̄)

]
(3.15)

Other contributions to the cross section are obtained from those listed above:

dσRRq̄q̄ = dσRRqq

dσRRqQ̄ = dσRRqQ

dσRRqg = dσRRgq (1̂↔ 2̂) (3.16)

3.2 Infrared subtraction at NLO

Following the considerations of section 2.5, the real and virtual subtraction terms

can be generated to remove all implicit divergence and explicit poles present in the

cross section.

3.2.1 Construction of the NLO real subtraction terms

dσ̂Sqq̄,NLO = Nqq̄NNLO
C̄(ε)

C(ε)

(
αs
2π

)
dΦ{Xi}+1({pX}, p3; p1, p2)

× A0
3(1̂, 3, 2̂) M0

2 (ˆ̄1q, ˆ̄2q̄) J
(1)
0 (p3)

dσ̂Sqg,NLO = NqgNNLO
C̄(ε)

C(ε)

(
αs
2π

)
dΦ{Xi}+1({pX}, p3; p1, p2)

× A0
3(1̂, 2̂, 3) M0

2 (ˆ̄1q, ˆ̄2q̄) J
(1)
0 (p3) (3.17)

By examining the IR divergent limits of the three-parton real emission matrix

elements in (3.12), it is clear that the subtraction term correctly matches the physical

cross section in all single unresolved configurations.

3.2.2 Construction of the NLO virtual subtraction terms

Following the arguments presented in section 2.5, the virtual subtraction term is

constructed from the integrated real subtraction terms and the NLO mass factoriza-

tion contribution. The various elements for this calculation are naturally assembled
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in terms of integrated antenna strings to yield the virtual subtraction terms in the

form,

dσ̂Tqq̄,NLO = −Nqq̄NNLO C̄(ε)

(
αs
2π

)
dΦ{Xi}({pX}; p̄1, p̄2)

∫
dx1

x1

dx2

x2

× J (1)
2 (ˆ̄1q, ˆ̄2q̄) M

0
2 (ˆ̄1q, ˆ̄2q̄)

dσ̂Tqg,NLO = −NqgNNLO C̄(ε)

(
αs
2π

)
dΦ{Xi}({pX}; p̄1, p̄2)

∫
dx1

x1

dx2

x2

× J (1)
2,g→q(

ˆ̄1q, ˆ̄2q̄) M
0
2 (ˆ̄1q, ˆ̄2q̄)

(3.18)

As explained in the previous chapter, the identity changing integrated antenna

string, J
(1)
2,g→q(

ˆ̄1q, ˆ̄2q̄), is free from explicit poles. This string is the only contribution

to the quark-gluon channel and is necessarily finite as the one-loop contribution is fi-

nite, specifically the cross section is zero. The integrated antenna string J
(1)
2 (ˆ̄1q, ˆ̄2q̄)

is free from initial-state collinear poles but contains explicit poles which may be

written in terms of the colour ordered insertion operator,

Poles
[
J

(1)
2 (ˆ̄1q, ˆ̄2q̄)

]
= −2I

(1)
qq̄ (s1̄2̄)δ(1− x1)δ(1− x2). (3.19)

This pole structure matches the pole structure of the one-loop squared matrix el-

ement and the total cross section is rendered IR finite. Alternatively the poles of

the one-loop matrix element can be written in terms of integrated antenna functions

allowing for a direct cancellation of the IR explicit poles. Using either approach the

final result can be summarized as,

Poles
[
M1

2 (1̂q, 2̂q̄)−
∫

dx1

x1

dx2

x2

J
(1)
2 (ˆ̄1q, ˆ̄2q̄) M

0
2 (ˆ̄1q, ˆ̄2q̄)

]
= 0. (3.20)

3.3 Infrared subtraction at NNLO

Extending the analysis of this process to NNLO involves implementing the formalism

of section 2.6 for the processes defined in (3.14). This calculation includes subleading

colour matrix elements in the form of squared matrix elements involving Abelian

gluons and the discussion in section 2.5 applies when constructing the subtraction

terms for these processes.
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3.3.1 Construction of the double real subtraction term

Quark-antiquark initial state:

dσ̂Sqq̄ = Nqq̄NNLO
(
αs
2π

)2
C̄(ε)2

C(ε)2
dΦ{Xi}+2({pXi

}, p3, p4; p1, p2)

{
N

2

∑
{3,4}

[
d0

3(1̂, 3, 4) M0
3 (ˆ̄1q, (̃3, 4)g, 2̂q̄) J

(1)
0 (p(3,4))

+ d0
3(2̂, 4, 3) M0

3 (1̂q, (̃3, 4)g,
ˆ̄2q̄) J

(1)
0 (p(3,4))

+ A0
4(1̂, 3, 4, 2̂) M0

2 (ˆ̄1q, ˆ̄2q̄)

− d0
3(1̂, 3, 4) A0

3(ˆ̄1, (̃3, 4), 2̂) M0
2 (ˆ̄̄1q, ˆ̄2q̄)

− d0
3(2̂, 4, 3) A0

3(1̂, (̃3, 4), ˆ̄2) M0
2 (ˆ̄1q,

ˆ̄̄2q̄)

]
− 1

2N

[
A0

3(1̂, 3, 2̂) M0
3 (ˆ̄1q, 4̃g, ˆ̄2q̄) J

(1)
0 (p4)

+ A0
3(1̂, 4, 2̂) M0

3 (ˆ̄1q, 3̃g, ˆ̄2q̄) J
(1)
0 (p3)

+ Ã0
4(1̂, 3, 4, 2̂) M0

2 (ˆ̄1q, ˆ̄2q̄)

− A0
3(1̂, 3, 2̂) A0

3(ˆ̄1, 4̃, ˆ̄2) M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

− A0
3(1̂, 4, 2̂) A0

3(ˆ̄1, 3̃, ˆ̄2) M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

+ 2

(
C0

4(1̂, 3, 4, 2̂) M0
2 (ˆ̄1q, ˆ̄2q̄) + C0

4(2̂, 4, 3, 1̂) M0
2 (ˆ̄1q, ˆ̄2q̄)

) ]
+

[
E0

3(1̂, 3, 2̂) M0
3 (ˆ̄1q, ˆ̄2g, 3̃q̄) J

(1)
0 (p3)

+ E0
3(2̂, 4, 1̂) M0

3 (3̃q, ˆ̄1g, ˆ̄2q̄) J
(1)
0 (p3)

+ B0
4(1̂, 3, 2̂, 4) M0

2 (ˆ̄1q, ˆ̄2q̄)

− E0
3(1̂, 3, 2̂) A0

3(ˆ̄1, ˆ̄2, 3̃) M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

+ B0
4(2̂, 4, 1̂, 3) M0

2 (ˆ̄1q, ˆ̄2q̄)

− E0
3(2̂, 4, 1̂) A0

3(3̃, ˆ̄1, ˆ̄2) M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

]
+NF

[
1

2
E0

3(1̂, 3, 4) M0
3 (ˆ̄1q, (̃3, 4)g, 2̂q̄) J

(1)
0 (p(3,4))

+
1

2
E0

3(2̂, 4, 3) M0
3 (1̂q, (̃3, 4)g,

ˆ̄2q̄) J
(1)
0 (p(3,4))

+ B0
4(1̂, 3, 4, 2̂) M0

2 (ˆ̄1q, ˆ̄2q̄)

− 1

2
E0

3(1̂, 3, 4) A0
3(ˆ̄1, (̃3, 4), 2̂) M0

2 (ˆ̄̄1q, ˆ̄2q̄)
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− 1

2
E0

3(2̂, 4, 3) A0
3(1̂, (̃3, 4), ˆ̄2) M0

2 (ˆ̄1q,
ˆ̄̄2q̄)

]}
(3.21)

Quark-gluon initial state:

dσ̂Sqg = NqgNNLO
(
αs
2π

)2
C̄(ε)2

C(ε)2
dΦ{Xi}+2({pXi

}, p3, p4; p1, p2)

{
N

[
d0

3(4, 3, 2̂) M0
3 (1̂q, ˆ̄2g, (̃3, 4)q̄) J

(1)
0 (p(3,4))

+ D0
3(1̂, 3, 2̂) M0

3 (ˆ̄1q, ˆ̄2g, 4̃q̄) J
(1)
0 (p4)

+ d0
3(4, 2̂; 3) M0

3 (1̂q, (̃3, 4)g,
ˆ̄2q̄) J

(1)
0 (p(3,4))

+ A0
4(1̂, 2̂, 3, 4) M0

2 (ˆ̄1q, ˆ̄2q̄)

− d0
3(4, 3, 2̂) A0

3(1̂, ˆ̄2, (̃3, 4)) M0
2 (ˆ̄1q,

ˆ̄̄2q̄)

+ A0
4(1̂, 3, 2̂, 4) M0

2 (ˆ̄1q, ˆ̄2q̄)

− D0
3(1̂, 3, 2̂) A0

3(ˆ̄1, ˆ̄2, 4̃) M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

− d0
3(4, 2̂; 3) A0

3(1̂, (̃3, 4), ˆ̄2) M0
2 (ˆ̄1q,

ˆ̄̄2q̄)

]
− 1

N

[
A0

3(1̂, 3, 4) M0
3 (ˆ̄1q, 2̂g, (̃3, 4)q̄) J

(1)
0 (p(3,4))

+ A0
3(1̂, 2̂, 4) M0

3 (ˆ̄1q, 3̃g, ˆ̄2q̄) J
(1)
0 (p3)

+ Ã0
4(1̂, 2̂, 3, 4) M0

2 (ˆ̄1q, ˆ̄2q̄)

− A0
3(1̂, 3, 4) A0

3(ˆ̄1, 2̂, (̃3, 4)) M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

− A0
3(1̂, 2̂, 4) A0

3(ˆ̄1, 3̃, ˆ̄2) M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

]}
(3.22)

Gluon-gluon initial state:

dσ̂Sgg = NggNNLO
(
αs
2π

)2
C̄(ε)2

C(ε)2
dΦ{Xi}+2({pXi

}, p3, p4; p1, p2)

{
NFN

∑
{1̂,2̂}

[
d0

3(3, 1̂; 2) M0
3 (ˆ̄1q, ˆ̄2g, 4̃q̄) J

(1)
0 (p4)

+ d0
3(4, 2̂; 1̂) M0

3 (3̃q, ˆ̄1g, ˆ̄2q̄) J
(1)
0 (p3)

+ A0
4(3, 1̂, 2̂, 4) M0

2 (ˆ̄1q, ˆ̄2q̄)

− d0
3(3, 1̂; 2) A0

3(ˆ̄1, ˆ̄2, 4̃) M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

− d0
3(4, 2̂; 1̂) A0

3(3̃, ˆ̄1, ˆ̄2) M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

]
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−NF

N

[
d0

3(3, 1̂; 2) M0
3 (ˆ̄1q, ˆ̄2g, 4̃q̄) J

(1)
0 (p4)

+ d0
3(4, 2̂; 1̂) M0

3 (3̃q, ˆ̄1g, ˆ̄2q̄) J
(1)
0 (p3)

+ Ã0
4(3, 1̂, 2̂, 4) M0

2 (ˆ̄1q, ˆ̄2q̄)

− d0
3(3, 1̂; 2) A0

3(ˆ̄1, ˆ̄2, 4̃) M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

− d0
3(4, 2̂; 1̂) A0

3(3̃, ˆ̄1, ˆ̄2) M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

]
(3.23)

Quark-quark (non-identical) initial state:

dσ̂SqQ = Nqq̄NNLO
(
αs
2π

)2
C̄(ε)2

C(ε)2
dΦ{Xi}+2({pXi

}, p3, p4; p1, p2)

{
E0

3(1̂, 2̂, 4) M0
3 (ˆ̄1q, ˆ̄2g, 3̃q̄) J

(1)
0 (p3̃)

+ E0
3(2̂, 1̂, 3) M0

3 (ˆ̄2q, ˆ̄1g, 4̃q̄) J
(1)
0 (p4̃)

+ B0
4(1̂, 2̂, 4, 3) M0

2 (ˆ̄1q, ˆ̄2q̄)

− E0
3(1̂, 2̂, 4) A0

3(ˆ̄1, ˆ̄2, 3̃)M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

+ B0
4(2̂, 1̂, 3, 4) M0

2 (ˆ̄1q, ˆ̄2q̄)

− E0
3(2̂, 1̂, 3) A0

3(ˆ̄2, ˆ̄1, 4̃)M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

}
. (3.24)

Quark-quark (identical) initial state:

dσ̂Sqq = Nqq̄NNLO
(
αs
2π

)2
C̄(ε)2

C(ε)2
dΦ{Xi}+2({pXi

}, p3, p4; p1, p2)

{
1

2

{
E0

3(1̂, 2̂, 4) M0
3 (ˆ̄1q, ˆ̄2g, 3̃q̄) J

(1)
0 (p3̃)

+ E0
3(2̂, 1̂, 3) M0

3 (ˆ̄2q, ˆ̄1g, 4̃q̄) J
(1)
0 (p4̃)

+ E0
3(1̂, 2̂, 3) M0

3 (ˆ̄1q, ˆ̄2g, 4̃q̄) J
(1)
0 (p4̃)

+ E0
3(2̂, 1̂, 4) M0

3 (ˆ̄2q, ˆ̄1g, 3̃q̄) J
(1)
0 (p3̃)

+ B0
4(1̂, 2̂, 4, 3) M0

2 (ˆ̄1q, ˆ̄2q̄)

− E0
3(1̂, 2̂, 4) A0

3(ˆ̄1, ˆ̄2, 3̃)M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

+ B0
4(2̂, 1̂, 3, 4) M0

2 (ˆ̄1q, ˆ̄2q̄)

− E0
3(2̂, 1̂, 3) A0

3(ˆ̄2, ˆ̄1, 4̃)M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)
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+ B0
4(1̂, 2̂, 3, 4) M0

2 (ˆ̄1q, ˆ̄2q̄)

− E0
3(1̂, 2̂, 3) A0

3(ˆ̄1, ˆ̄2, 4̃)M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

+ B0
4(2̂, 1̂, 4, 3) M0

2 (ˆ̄1q, ˆ̄2q̄)

− E0
3(2̂, 1̂, 4) A0

3(ˆ̄2, ˆ̄1, 3̃)M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

}
− 1

2N

{ (
C0

4(1̂, 3, 4, 2̂) + C0
4(2̂, 4, 3, 1̂)

)
M0

2 (ˆ̄1q, ˆ̄2q̄)

}
. (3.25)

3.3.2 Construction of the real-virtual subtraction term

Following the discussion in section 2.6.3, the real-virtual subtraction term is gener-

ated from integrating a portion of the double real-subtraction term and including the

appropriate NNLO mass factorization terms defined in section ??. The real-virtual

subtraction terms are conveniently formulated in terms of single unresolved inte-

grated antenna strings, the explicit expressions for which can be found in appendix

B.1, or inferred from those listed in B.1 given the rules for combining integrated

antenna strings.

Quark-antiquark initial state:

dσ̂Tqq̄ = Nqq̄NNLO
(
αs
2π

)2
C̄(ε)2

C(ε)
dΦ{Xi}+1({pXi

}, p3; p̄1, p̄2)

∫
dx1

x1

dx2

x2

{
N

{
−J (1)

3 (ˆ̄1q, 3g, ˆ̄2q̄) M
0
3 (ˆ̄1q, 3̃g, ˆ̄2q̄) J

(1)
0 (p3)

+A0
3(ˆ̄1, 3, ˆ̄2)

[
M1

2 (ˆ̄̄1q,
ˆ̄̄2q̄)δ(1− x1)δ(1− x2) + J

(1)
2 (ˆ̄̄1q,

ˆ̄̄2q̄) M
0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

]
+

[
A1

3(ˆ̄1, 3, ˆ̄2)δ(1− x1)δ(1− x2) + J̄
(1)
3 (ˆ̄1q, 3g, ˆ̄2q̄) A

0
3(ˆ̄1, 3, ˆ̄2)

]
M0

2 (ˆ̄̄1q,
ˆ̄̄2q̄)

]
+b0 log

(
µ2

s1̄2̄3

)
A0

3(ˆ̄1, 3, ˆ̄2)δ(1− x1)δ(1− x2) M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

}
− 1

N

{
−J (1)

2 (ˆ̄1q, ˆ̄2q̄) M
0
3 (ˆ̄1q, 3g, ˆ̄2q̄) J

(1)
0 (p3)

+A0
3(ˆ̄1, 3, ˆ̄2)

[
M1

2 (ˆ̄̄1q,
ˆ̄̄2q̄)δ(1− x1)δ(1− x2) + J

(1)
2 (ˆ̄̄1q,

ˆ̄̄2q̄) M
0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

]
+

[
Ã1

3(ˆ̄1, 3, ˆ̄2)δ(1− x1)δ(1− x2) + ˜̄J (1)

3 (ˆ̄1q, 3g̃, ˆ̄2q̄) A
0
3(ˆ̄1, 3, ˆ̄2)

]
M0

2 (ˆ̄̄1q,
ˆ̄̄2q̄)

]}
+

{
−J (1)

2,q→g(
ˆ̄1q, ˆ̄2g) M

0
3 (ˆ̄1q, ˆ̄2g, 3q̄) J

(1)
0 (p3)
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−J (1)
2,q→g(

ˆ̄2q, ˆ̄1g) M
0
3 (3q, ˆ̄1g, ˆ̄2q̄) J

(1)
0 (p3)

+J
(1)
2,q→g(

ˆ̄1q, ˆ̄2g) A
0
3(ˆ̄1, ˆ̄2, 3) M0

2 (ˆ̄̄1q,
ˆ̄̄2q̄)

+J
(1)
2,q→g(

ˆ̄2q, ˆ̄1g) A
0
3(3, ˆ̄1, ˆ̄2) M0

2 (ˆ̄̄1q,
ˆ̄̄2q̄)

}
+NF

{
−J (1)

3,NF
(ˆ̄1q, 3g, ˆ̄2q̄) M

0
3 (ˆ̄1q, 3g, ˆ̄2q̄) J

(1)
0 (p3)

+

[
Â1

3(ˆ̄1, 3, ˆ̄2)δ(1− x1)δ(1− x2) + J̄
(1)
3,NF

(ˆ̄1q, 3g, ˆ̄2q̄) A
0
3(ˆ̄1, 3, ˆ̄2)

]
M0

2 (ˆ̄̄1q,
ˆ̄̄2q̄)

+b0,F log

(
µ2

s1̄2̄3

)
A0

3(ˆ̄1, 3, ˆ̄2)δ(1− x1)δ(1− x2) M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

}}
(3.26)

Several aspects of this formula are worth noting before similar expressions are pre-

sented for the other processes. In the colour decomposition (not including overall

colour factors), the N0 contributions all come from the double real subtraction term

and are given by identity changing integrated antenna strings. All such strings are

free from explicit poles and so no poles are subtracted at O(N0). This reflects

the lack of one-loop three parton matrix element contributing to the physical cross

section at that order.

The 1/N contribution contains integrated antenna strings with the final-state

gluon omitted. This reflects the fact that the gluon is Abelian and so the effective

colour-structure is just a quark-anti-quark pair. In the (loop×tree) term the Abelian

gluon enters only through the term,

˜̄J (1)

3 (ˆ̄1q, 3g̃, ˆ̄2q̄) = A0
3,qq̄(s1̄2̄)−A0

3,qq̄(s1̄2̄3). (3.27)

This term is distinct from J̄
(1)
3 (ˆ̄1q, 3g, ˆ̄2q̄) as the Abelian gluon is not involved in

the colour ordering, reflected in the fact that no D0
3 antenna are included in its

definition. The dependence on the Abelian gluon enters only through the mass of

the antenna subtracted at the end of (3.27).

In the NF dependent contribution there is no (tree×loop) contribution due to the

lack of a NF dependent one-loop matrix element with only a quark-anti-quark pair

as the coloured external states. Similarly there is no NF dependent quark-anti-quark

two-parton one-loop antenna and so J̄
(1)
3,NF

(ˆ̄1q, 3g, ˆ̄2q̄) = J
(1)
3,NF

(ˆ̄1q, 3g, ˆ̄2q̄).

In order to construct the integrated antenna strings the appropriate mass fac-

torization terms are combined with the integrated antenna functions. In the case
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of an identity changing configuration a slight subtlety must be taken into account.

In the formula above, the integrated antennae come from the double real subtrac-

tion term with colour factor N0 because that is the colour factor carried by the

M0
4 (1̂q, 3Q, 2̂Q̄, 4q̄) contribution to the cross section. The identity changing mass

factorization contribution has the form Γ1
gq dσRqg. According to appendix A.1,

Γ1
gq =

(
N2 − 1

N

)
Γ1
gq, (3.28)

where Γ1
gq is the colour stripped mass factorization kernel. Factoring out the factor of

NNLO common to both dσRqg and the N0 contribution to dσTqq, the mass factorization

contribution appears to have the wrong colour structure, contributing at N and 1/N

rather than N0. The solution is in the initial-state colour averaging factors Nij.

Using the relation,

Nqq̄ =

(
N2 − 1

N

)
Nqg, (3.29)

it is clear that if the mass factorization contribution is to be proportional to the

overall factor of Nqq̄ used in (3.26) then the additional factor of (N2 − 1)/N is

combined with Nqg to generate this overall factor, allowing the identity changing

mass factorization terms to contribute at O(N0) as required. Similar problems with

colour factors arise for other identity changing mass factorization terms, all are

solved in the same way as in the example above.

Quark-gluon initial state:

dσ̂Tqg = NqgNNLO
(
αs
2π

)2
C̄(ε)2

C(ε)
dΦ{Xi}+1({pXi

}, p3; p̄1, p̄2)

∫
dx1

x1

dx2

x2

{
(3.30)

N

{
−J (1)

3 (ˆ̄1q, ˆ̄2g, 3q̄) M
0
3 (ˆ̄1q, ˆ̄2g, 3q̄) J

(1)
0 (p3)

+A0
3(ˆ̄1, ˆ̄2, 3)

[
M1

2 (ˆ̄̄1q,
ˆ̄̄2q̄)δ(1− x1)δ(1− x2) + J

(1)
2 (ˆ̄̄1q,

ˆ̄̄2q̄) M
0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

]
+

[
A1

3(ˆ̄1, ˆ̄2, 3)δ(1− x1)δ(1− x2) + J̄
(1)
3 (ˆ̄1q, ˆ̄2g, 3q̄) A

0
3(ˆ̄1, ˆ̄2, 3)

]
M0

2 (ˆ̄̄1q,
ˆ̄̄2q̄)

+b0 log

(
µ2

s1̄2̄3

)
A0

3(ˆ̄1, ˆ̄2, 3)δ(1− x1)δ(1− x2) M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

−J (1)
2,g→q(

ˆ̄2q̄, 3g) M
0
3 (ˆ̄1q, 3g, ˆ̄2q̄) J

(1)
0 (p3)
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+J
(1)
2,g→q(3g,

ˆ̄2q̄) A
0
3(ˆ̄1q, 3g, ˆ̄2q̄) M

0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

}
− 1

N

{
−J (1)

2 (ˆ̄1q, 3q̄) M
0
3 (ˆ̄1q, ˆ̄2g, 3q̄) J

(1)
0 (p3)

+A0
3(ˆ̄1, ˆ̄2, 3)

[
M1

2 (ˆ̄̄1q,
ˆ̄̄2q̄)δ(1− x1)δ(1− x2) + J

(1)
2 (ˆ̄̄1q,

ˆ̄̄2q̄) M
0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

]
+

[
Ã1

3(ˆ̄1, ˆ̄2, 3)δ(1− x1)δ(1− x2) + ˜̄J (1)

3 (ˆ̄1q, ˆ̄2g, 3q̄) A
0
3(ˆ̄1, ˆ̄2, 3)

]
M0

2 (ˆ̄̄1q,
ˆ̄̄2q̄)

−J (1)
2,g→q(

ˆ̄2q̄, ˆ̄1q) M
0
3 (ˆ̄1q, 3g, ˆ̄2q̄) J

(1)
0 (p3)

+J
(1)
2,g→q(

ˆ̄2q̄, ˆ̄1q) A
0
3(1̄q, 3g, 2̄q̄) M

0
2 (¯̄1q, ¯̄2q̄)

}
+NF

{
−J (1)

3,NF
(ˆ̄1q, ˆ̄2g, 3q̄) M

0
3 (ˆ̄1q, ˆ̄2g, 3q̄) J

(1)
0 (p3)

+

[
Â1

3(ˆ̄1, ˆ̄2, 3) δ(1− x1)δ(1− x2) + J
(1)
3,NF

(ˆ̄1q, ˆ̄2g, 3q̄) A
0
3(ˆ̄1, ˆ̄2, 3)

]
M0

2 (ˆ̄̄1q,
ˆ̄̄2q̄)

+b0,F log

(
µ2

s1̄2̄3

)
δ(1− x1)δ(1− x2) A0

3(ˆ̄1, ˆ̄2, 3) M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

}}
(3.31)

In this formula J
(1)
3,NF

(ˆ̄1q, ˆ̄2g, 3q̄) = J
(1)
2,NF

(3q̄, ˆ̄2g)δ(1−x1) as there is no NF dependent

initial-initial quark-gluon two-parton string which would be denoted by J
(1)
2,NF

(ˆ̄1q, ˆ̄2g).

Gluon-gluon initial state:

dσ̂Tgg = NggNNLO
(
αs
2π

)2
C̄(ε)2

C(ε)
dΦ{Xi}+1({pXi

}, p3; p̄1, p̄2)

∫
dx1

x1

dx2

x2

{
NFN

∑
{1,2}

{
−J (1)

2,g→q(
ˆ̄1q, ˆ̄2g) M

0
3 (ˆ̄1q, ˆ̄2g, 3q̄) J

(1)
0 (p3)

−J (1)
2,g→q(

ˆ̄2q, ˆ̄1g) M
0
3 (3q, ˆ̄1g, ˆ̄2q̄) J

(1)
0 (p3)

+J
(1)
2,g→q(

ˆ̄1q, ˆ̄2g) A
0
3(ˆ̄1, ˆ̄2, 3) M0

2 (ˆ̄̄1q,
ˆ̄̄2q̄)

+J
(1)
2,g→q(

ˆ̄2q, ˆ̄1g) A
0
3(3, ˆ̄1, ˆ̄2) M0

2 (ˆ̄̄1q,
ˆ̄̄2q̄)

}
−NF

N

{
−J (1)

2,g→q(
ˆ̄1q, ˆ̄2g) M

0
3 (ˆ̄1q, ˆ̄2g, 3q̄) J

(1)
0 (p3)

−J (1)
2,g→q(

ˆ̄2q, ˆ̄1g) M
0
3 (3q, ˆ̄1g, ˆ̄2q̄) J

(1)
0 (p3)

+J
(1)
2,g→q(

ˆ̄1q, ˆ̄2g) A
0
3(ˆ̄1, ˆ̄2, 3) M0

2 (ˆ̄̄1q,
ˆ̄̄2q̄)

+J
(1)
2,g→q(

ˆ̄2q, ˆ̄1g) A
0
3(3, ˆ̄1, ˆ̄2) M0

2 (ˆ̄̄1q,
ˆ̄̄2q̄)

}}
. (3.32)

All the terms in this expression are proportional to identity changing integrated

antenna strings and so the whole subtraction term is free from explicit poles; this
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reflects the absence of one-loop gluon-gluon initiated matrix elements in the physical

cross section.

Quark-quark initial state:

The quark-quark initial state with non-identical quarks has the subtraction term

given by,

dσ̂TqQ = Nqq̄NNLO
(
αs
2π

)2
C̄(ε)2

C(ε)
dΦ{Xi}+1({pXi

}, p3; p̄1, p̄2)

∫
dx1

x1

dx2

x2

{
− J

(1)
2,q→g(

ˆ̄1q, ˆ̄2g) M
0
3 (ˆ̄1q, ˆ̄2g, 3̃q̄)

− J
(1)
2,q→g(

ˆ̄2q, ˆ̄1g) M
0
3 (ˆ̄2q, ˆ̄1g, 3̃q̄)

+ J
(1)
2,q→g(

ˆ̄1q, ˆ̄2g) A
0
3(ˆ̄1, ˆ̄2, 3) M0

2 (ˆ̄̄1q,
ˆ̄̄2q̄)

+ J
(1)
2,q→g(

ˆ̄2q, ˆ̄1g) A
0
3(ˆ̄2, ˆ̄1, 3) M0

2 (ˆ̄̄1q,
ˆ̄̄2q̄)

}
. (3.33)

These terms are again all proportional to the identity changing integrated antenna

strings and so not only terminate in the real-virtual level of the calculation but are

also free from explicit poles. This is expected given the lack of non-zero quark-quark

initiated three-parton one-loop processes.

The corresponding term for the identical quark contribution is the same as for

the non-identical quarks. This is found by inspection when integrating the respec-

tive double real subtraction terms but can also be understood with basic physical

intuition. The only divergent single unresolved limits for a quark-quark initiated

four-quark matrix element is the initial-final single collinear limit. In this limit

both the identical and non-identical quark matrix elements factor onto a two-quark

one-gluon matrix element with the gluon in the initial-state. The identical quark

matrix elements in principle have twice as many divergent collinear limits than the

non-identical matrix elements but the identical quark final-state symmetry factor

removes this degeneracy upon integration. The result is that the double real con-

tributions from non-identical and identical quark-quark initial states have the same

single unresolved limits and factor onto the same reduced matrix elements; therefore

their respective contributions to the real-virtual subtraction term are the same.

dσ̂TqQ = dσ̂Tqq (3.34)
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3.3.3 Construction of the double virtual subtraction term

The double virtual subtraction can be generated by following the discussion in sec-

tion 2.6.4. The result is quoted here in terms of integrated antenna strings, the

explicit formulae for which can be found in appendix B.

Quark-antiquark initial state:

dσ̂Uqq̄ = −Nqq̄NNLO
(
αs
2π

)2

C̄(ε)2 dΦ{Xi}({pXi
}; p̄1, p̄2)

∫
dz1

z1

dz2

z2

{
N

{
J

(1)
2 (ˆ̄1q, ˆ̄2q̄)

(
M1

2 (ˆ̄1q, ˆ̄2q̄)−
b0

ε
M0

2 (ˆ̄1q, ˆ̄2q̄)

)
+

(
1

2
J

(1)
2 (ˆ̄1q, ˆ̄2q̄)⊗ J (1)

2 (ˆ̄1q, ˆ̄2q̄) + J
(2)
2 (ˆ̄1q, ˆ̄2q̄)

)
M0

2 (ˆ̄1q, ˆ̄2q̄)

}
+

{
J

(2)
2,q→g→q(

ˆ̄1q, ˆ̄2q̄) M
0
2 (ˆ̄1q, ˆ̄2q̄)

}
− 1

N

{
J

(1)
2 (ˆ̄1q, ˆ̄2q̄) M

1
2 (ˆ̄1q, ˆ̄2q̄)

+

(
1

2
J

(1)
2 (ˆ̄1q, ˆ̄2q̄)⊗ J (1)

2 (ˆ̄1q, ˆ̄2q̄) + J̃
(2)
2 (ˆ̄1q, ˆ̄2q̄)

)
M0

2 (ˆ̄1q, ˆ̄2q̄)

}
+NF

{
−J (1)

2 (ˆ̄1q, ˆ̄2q̄)
b0,F

ε
M0

2 (ˆ̄1q, ˆ̄2q̄) + J
(2)
2,NF

(ˆ̄1q, ˆ̄2q̄) M
0
2 (ˆ̄1q, ˆ̄2q̄)

}}
(3.35)

It is noted that the structures seen in this subtraction term and the explicit forms,

listed in appendix B, display the structures discussed in section 2.6.4. Ignoring

overall colour factors, the O(N), O(1/N) and O(NF ) contributions correspond to

terms in the double virtual physical cross section and are expected to cancel the

explicit poles present in these terms. The O(N0) contribution does not correspond

to any two-loop matrix elements but as it is built from a finite identity changing

integrated antenna string this term contains no explicit poles.

Quark-gluon initial state:

dσ̂Uqg = −NqgNNLO
(
αs
2π

)2

C̄(ε)2 dΦ{Xi}({pXi
}; p̄1, p̄2)

∫
dz1

z1

dz2

z2

{
N

{
J

(1)
2,g→q(

ˆ̄1q, ˆ̄2q̄)

(
M1

2 (ˆ̄1q, ˆ̄2q̄)−
b0

ε
M0

2 (ˆ̄1q, ˆ̄2q̄)

)
+ J

(2)
2,g→q(

ˆ̄1q, ˆ̄2q̄) M
0
2 (ˆ̄1q, ˆ̄2q̄)

}
− 1

N

{
J

(1)
2,g→q(

ˆ̄1q, ˆ̄2q̄) M
1
2 (1̄q, 2̄q̄) + J̃

(2)
2,g→q(

ˆ̄1q, ˆ̄2q̄) M
0
2 (ˆ̄1q, ˆ̄2q̄)

}
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+NF

{
−J (1)

2,g→q(
ˆ̄1q, ˆ̄2q̄)

b0,F

ε
M0

2 (ˆ̄1q, ¯̄2q̄) + J
(2)
2,g→q,NF

(ˆ̄1q, ˆ̄2q̄) M
0
2 (ˆ̄1q, ¯̄2q̄)

}
(3.36)

This subtraction term highlights the fact that although the single unresolved

identity changing integrated antenna strings, J
(1)
2,a→b, are finite, these finite terms

factor onto terms containing explicit poles. These poles must therefore cancel against

poles in the double unresolved identity changing integrated antenna strings, J
(2)
2,a→b.

The fact that these strings contain explicit poles, unlike the single unresolved identity

changing strings can be intuitively understood in terms of unresolved configurations.

At NNLO a double unresolved configuration may contain an initial-final collinear

limit which changes the identity of the initial-state partons, in addition to a final-

state soft or collinear limit. The poles associated with the initial-final limit will

indeed cancel against the mass factorization contribution included in the string but

the additional unresolved parton will contribute genuine poles to the integrated

antenna string.

Gluon-gluon initial state

dσ̂Ugg = −NggNNLO
(
αs
2π

)2

C̄(ε)2 dΦ{Xi}({pXi
}; p̄1, p̄2)

∫
dz1

z1

dz2

z2

{
NFN

{
J

(2)
2,g→q,g→q(

ˆ̄1q, ˆ̄2q̄) M
0
2 (1̄q, 2̄q̄)

}
−NF

N

{
J̃

(2)
2,g→q,g→q(

ˆ̄1q, ˆ̄2q̄) M
0
2 (1̄q, 2̄q̄)

}}
(3.37)

Quark-quark (non-identical) initial state

dσ̂UqQ = −NqQNNLO
(
αs
2π

)2

C̄(ε)2 dΦ{Xi}({pXi
}; p̄1, p̄2)

∫
dz1

z1

dz2

z2

J
(2)
2,Q→q(

ˆ̄1q, ˆ̄2q̄) M
0
2 (1̄q, 2̄q̄). (3.38)

Quark-quark (identical) initial state

dσ̂Uqq = NqqNNLO
(
αs
2π

)2

C̄(ε)2 dΦ{Xi}({pXi
}; p̄1, p̄2)

∫
dz1

z1

dz2

z2{
J

(2)
2,Q→q̄(

ˆ̄1q, ˆ̄2q̄) M
0
2 (1̄q, 2̄q̄)−

1

N
J

(2)
2,q→q̄(

ˆ̄1q, ˆ̄2q̄) M
0
2 (1̄q, 2̄q̄)

}
. (3.39)
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The explicit forms of the integrated antenna strings are collected in appendix B.

When properly defined in terms of the integrated antennae inherited from the double

real and real-virtual levels of the calculation and the appropriate mass factorization

kernels defined in appendix A, the pole structure of the double virtual subtraction

term is expected to match that of the two-loop matrix elements.

September 24, 2012



Chapter 4

Production of colourless particles

via gluon scattering

In chapter 3, the colourless particles were assumed to not couple to gluons at tree-

level, only coupling to quarks. This is the case for the production of Z0 and W±

bosons via quark scattering. Quark-gluon or gluon-gluon initiated processes can

produce these colourless particles beyond leading order but only by coupling directly

to quarks. In this chapter the production of one or more colourless particles via gluon

scattering is considered, i.e., the process pp→ X, where X represents any colourless

particle or particles which couple to gluons rather than quarks. An example is the

standard model Higgs boson.

The Higgs couplings to quarks are proportional to the quark mass and so in the

massless quark limit the Higgs does not interact with the quarks within the proton

at tree-level. As the gluon is strictly massless the Higgs cannot couple directly to

gluons either but it can couple indirectly through a quark loop. When computing

the quark loop contribution, shown in figure 4.1, all flavours of quark contribute

to the loop. The Higgs will not couple strongly to the light quark loops but does

couple to the top quark loop due to its large mass.

In the limit that the top quark mass is taken to infinity the contribution from

the top quark loop can be integrated out, generating an effective Lagrangian,

Leff = C H Tr
[(
t ·Fµν

)2]
, (4.1)
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Figure 4.1: The one-loop diagram which allows the Higgs to couple to gluons via a

top quark loop.

where to leading order C = αs/(6πv) and is proportional to the strong coupling.

v = 246 GeV is the vacuum expectation value of the Higgs field. The effective

Lagrangian produces interactions between the Higgs and two, three and four gluons.

Using this effective theory, Higgs production via tree-level gluon scattering may be

calculated, along with the NLO and NNLO corrections to the Born-level process.

4.1 Physical matrix elements for up to four par-

tons

The many Feynman diagrams which contribute to each scattering process may be

decomposed into its set of colour ordered amplitudes. These amplitudes contain

all non-QCD couplings such that only the QCD coupling (including factors of the

effective Higgs-gluon-gluon coupling which contains implicit powers of αs) and the

colour factors common to all diagrams contributing to a particular colour ordered

amplitude are stripped out of the amplitudes. The diagrams shown in figure 4.2

reflect this strategy by showing the coloured partons as a genuine Feynman graph

with the colourless states being represented by a single dashed line. The presence

of the single dashed line in this context means the set of diagrams which dress the

coloured partons with colourless particles contributing to the same colour ordered

amplitude to the same fixed order in all the relevant couplings. This interpretation

of the diagrams in figure 4.2 allows X to represent multiple colourless particles

dressing multiple coloured legs and not just the single dashed line coupling to one

parton.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: A selection of diagrams representing contributions to the physical matrix

elements up to NNLO. Dashed lines represent the colourless particle (or particles)

X.

4.1.1 Two-parton contribution

Tree-level:

The Born-level process for gluon scattering begins at O(α2
s) via the effective Higgs-

gluon coupling. To the same order in αs the quark-initiated process are zero as

no direct coupling to massless quarks is permitted. An example diagram for the

tree-level two-parton process is shown in figure 4.2 (a).

dσ̂LOgg = 2NggNLO dΦ{Xi}({pXi
}; p1, p2) M0

2 (1̂g, 2̂g),

dσ̂LOqg = 0,

dσ̂LOqq̄ = 0, (4.2)

where as before Nij contains overall multiplicative factors due to spin and colour

averaging of initial state partons. The overall factor for this process contains the
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leading order colour factor and overall effective coupling,

NLO =
C2h

2
(N2 − 1), (4.3)

where h is the number of effective Higgs-gluon-gluon couplings .

One-loop:

The one-loop corrections to the Born-level processes given by

dσ̂Vgg = NggNLO C̄(ε)

(
αs
2π

)
dΦ{Xi}({pXi

}; p1, p2)

×
(
N M1

2 (1̂g, 2̂g) +NF M̂1
2 (1̂g, 2̂g)

)
,

dσ̂Vqg = 0,

dσ̂Vqq̄ = 0, (4.4)

where despite the one-loop two-quark amplitude being non-zero, the tree-level two-

quark amplitude it projects onto is zero and so provides no contribution to the cross

section. An example of a diagram contributing to the one-loop amplitude is given

in figure 4.2 (b).

Two-loops:

At two loops the quark-anti-quark initiated channel is non-zero due to the self-

interaction of the non-zero one-loop amplitude. The fact that all two-quark tree-

level or one-loop matrix elements are zero demonstrates the fact that this two-loop

contribution is finite and requires no explicit pole subtraction. The relevant two-

loop matrix elements can be obtained from the two-loop gluon form factor, which

are presented in renormalized form in [126],

dσ̂V Vgg = NggNNLO C̄(ε)2

(
αs
2π

)2

dΦ{Xi}({pXi
}; p1, p2){

N M2
2 (1̂g, 2̂g) +NF M̂2

2 (1̂g, 2̂g) +
NF

N2

̂̃
M2

2 (1̂g, 2̂g) +
N2
F

N

̂̂
M2

2 (1̂g, 2̂g)

}
,

dσ̂V Vqg = 0,

dσ̂V Vqq̄ = Nqq̄NNLO C̄(ε)2

(
αs
2π

)2

dΦ{Xi}({pXi
}; p1, p2) M2

2 (1̂q, 2̂q̄), (4.5)

where NNLO = NNLO. One of the many two-loop diagrams which contribute to the

two-loop amplitudes is shown in figure 4.2 (c).
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4.1.2 Three-parton contribution

Tree-level:

The additional final-state parton in the three-parton contribution opens up the

quark-gluon channel, as shown by the diagram in figure 4.2 (d). The various contri-

butions to the NLO cross section are given by,

dσ̂Rgg = NggNLO
C̄(ε)

C(ε)

(
αs
2π

)
dΦ{Xi}+1({pXi

}, p3; p1, p2) 2N M0
3 (1̂g, 3g, 2̂g) J

(1)
0 (p3),

dσ̂Rqg = NqgNLO
C̄(ε)

C(ε)

(
αs
2π

)
dΦ{Xi}+1({pXi

}, p3; p1, p2) M0
3 (1̂q, 2̂g, 3q̄) J

(1)
0 (p3),

dσ̂Rqq̄ = Nqq̄NLO
C̄(ε)

C(ε)

(
αs
2π

)
dΦ{Xi}+1({pXi

}, p3; p1, p2) M0
3 (1̂q, 3g, 2̂q̄) J

(1)
0 (p3).

(4.6)

Unlike for the physical processes discussed in chapter 3, the dσRqg contribution does

admit an initial-state collinear singularity in the configuration where the final-state

quark becomes collinear with the initial-state quark. In this configuration the two-

particle reduced matrix element is gluonic and non-zero.

The quark-anti-quark initiated channel is non-zero but finite due to the lack of

tree-level two-quark matrix element to factor onto in single unresolved limits. Other

non-zero channels are obtained from these processes via an appropriate substitution

of labels. e.g., dσ̂Rq̄q = dσ̂Rqq̄(q ↔ q̄).

One-loop:

dσ̂RVgg = NggNNLO
C̄(ε)2

C(ε)

(
αs
2π

)2

dΦ{Xi}+1({pXi
}, p3; p1, p2){

2N M1
3 (1̂g, 2̂g, 3g) +NF M̂1

3 (1̂g, 2̂g, 3g)

}
J

(1)
0 (p3),

dσ̂RVqg = NqgNNLO
C̄(ε)2

C(ε)

(
αs
2π

)2

dΦ{Xi}+1({pXi
}, p3; p1, p2){

M1
3 (1̂q, 2̂g, 3q̄)−

1

N2
M̃1

3 (1̂q, 2̂g, 3q̄) +
NF

N
M̂1

3 (1̂q, 2̂g, 3q̄)

}
J

(1)
0 (p3),

dσ̂RVqq̄ = Nqq̄NNLO
C̄(ε)2

C(ε)

(
αs
2π

)2

dΦ{Xi}+1({pXi
}, p3; p1, p2){

M1
3 (1̂q, 3g, 2̂q̄)−

1

N2
M̃1

3 (1̂q, 3g, 2̂q̄) +
NF

N
M̂1

3 (1̂q, 3g, 2̂q̄)

}
J

(1)
0 (p3),
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(4.7)

where M̃1
3 and M̂1

3 denote the squared matrix elements of the sub-leading colour

and closed quark-loop contributions respectively. The contributions to the quark-

antiquark initial-state contain no implicit IR divergence because when the final

state gluon becomes unresolved the matrix elements factor onto two-quark matrix

elements which vanish. An example diagram contributing to the one-loop amplitudes

is shown in figure 4.2 (e).

4.1.3 Four-parton contribution

Tree-level:

dσ̂RRgg = NggNNLO
C̄(ε)2

C(ε)2

(
αs
2π

)2

dΦ{Xi}+2({pXi
}, p3, p4; p1, p2)

{
N

2

∑
{3,4}

(
2M0

4 (1̂g, 2̂g, 3g, 4g) +M0
4 (1̂g, 3g, 2̂g, 4g)

)

+ NF

∑
{1,2}

M0
4 (3q, 1̂g, 2̂g, 4q̄)−

NF

N2
M̃0

4 (3q, 1̂g, 2̂g, 4q̄)

}
J

(2)
0 (p3, p4)

dσ̂RRqg = NqgNNLO
C̄(ε)2

C(ε)2

(
αs
2π

)2

dΦ{Xi}+2({pXi
}, p3, p4; p1, p2){ (

M0
4 (1̂q, 2̂g, 3g, 4q̄) +M0

4 (1̂q, 3g, 2̂g, 4q̄)

)
− 1

N2
M̃0

4 (1̂q, 2̂g, 3g, 4q̄)

}
J

(2)
0 (p3, p4),

dσ̂RRqq̄ = Nqq̄NNLO
C̄(ε)2

C(ε)2

(
αs
2π

)2

dΦ{Xi}+2({pXi
}, p3, p4; p1, p2){

1

2

∑
{3,4}

M0
4 (1̂q, 3g, 4g, 2̂q̄)−

1

2N2
M̃0

4 (1̂q, 3g, 4g, 2̂q̄)

+
NF

N
M0

4 (1̂q, 3Q, 4Q̄, 2̂q̄) +
1

N
M0

4 (1̂q, 3Q, 2̂Q̄, 4q̄)

− 1

N2
M

0

4(1̂q, 3q, 4q̄, 2̂q̄)

}
J

(2)
0 (p3, p4),

dσ̂RRqQ = Nqq̄NNLO
C̄(ε)2

C(ε)2

(
αs
2π

)2

dΦ{Xi}+2({pXi
}, p3, p4; p1, p2){

1

N
M0

4 (1̂q, 2̂Q, 4Q̄, 3q̄) J
(2)
0 (p3, p4)

}
,

dσ̂RRqq = Nqq̄NNLO
C̄(ε)2

C(ε)2

(
αs
2π

)2

dΦ{Xi}+2({pXi
}, p3, p4; p1, p2)
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1

2

{
1

N

(
M0

4 (1̂q, 2̂Q, 4Q̄, 3q̄) +M0
4 (1̂q, 2̂Q, 3Q̄, 4q̄)

)
− 1

N2
M

0

4(1̂q, 2̂q, 3q̄, 4q̄)

}
J

(2)
0 (p3, p4).

(4.8)

4.2 Infrared subtraction at NLO

Following the general discussion of chapter 2, the antenna subtraction method can

be applied to the NLO real corrections to the Born-level process g g → X, where X

is typically a Higgs boson.

4.2.1 Construction of the NLO real subtraction terms

dσ̂Sgg,NLO = NggNLO
C̄(ε)

C(ε)

(
αs
2π

)
dΦ{Xi}+1({pX}, p3; p1, p2)

× 2N F 0
3 (1̂, 3, 2̂) M0

2 (ˆ̄1g, ˆ̄2g) J
(1)
0 (p3)

dσ̂Sqg,NLO = NqgNLO
C̄(ε)

C(ε)

(
αs
2π

)
dΦ{Xi}+1({pX}, p3; p1, p2)

× G0
3(2̂, 1̂, 3) M0

2 (ˆ̄1g, ˆ̄2g) J
(1)
0 (p3) (4.9)

By examining the single unresolved limits of the matrix elements in (4.6) it can be

shown that the subtraction terms presented here correctly mimic the IR divergent

behaviour of the cross section in all singular limits.

4.2.2 Construction of the NLO virtual subtraction terms

Integrating the real subtraction terms over the appropriate single unresolved phase

space and combining with the mass factorization contributions yields the virtual

subtraction terms:

dσ̂Tgg,NLO = −NggNLO C̄(ε)

(
αs
2π

)
dΦ{Xi}({pX}; p̄1, p̄2)

×
∫

dx1

x1

dx2

x2

(
2N J

(1)
2 (ˆ̄1g, ˆ̄2g) +NF J

(1)
2,NF

(ˆ̄1g, ˆ̄2g)

)
M0

2 (1̄g, 2̄g),

dσ̂Tqg,NLO = −NqgNLO C̄(ε)

(
αs
2π

)
dΦ{Xi}({pX}; p̄1, p̄2)
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×
∫

dx1

x1

dx2

x2

J
(1)
2,q→g(

ˆ̄1g, ˆ̄2g) M
0
2 (ˆ̄1g, ˆ̄2g). (4.10)

The integrated antenna string J
(1)
2 (ˆ̄1g, ˆ̄2g) is free from initial-state collinear poles

and correctly subtracts the explicit pole structure of the corresponding one-loop

amplitude in (4.4). The NF proportional integrated antenna string J
(1)
2,NF

(ˆ̄1g, ˆ̄2g)

is constructed from the NF dependent piece of the mass factorization kernel, Γ1
gg,

as shown in appendix B.1. At first sight this seems problematic as the integrated

antenna strings should be free from initial-state collinear singularities in order to

cancel the genuine poles in the factorized cross section. By looking at the form of

Γ1
gg,F it is clear that although this term originates in the mass factorization con-

tribution, the singular contribution is just a single pole proportional to b0,F and

all x dependence enters through a momentum conserving δ-function. As such, this

contribution contains no initial-state collinear splitting functions and can in fact be

written in terms of I
(1)
gg,F , which removes the genuine poles from the factorized cross

section as required.

The identity changing integrated antenna string is free from explicit poles which

reflects the fact that the quark-gluon initiated virtual contribution to the cross

section is finite.

4.3 Infrared subtraction at NNLO

Following the general method discussed in chapter 2 and the specific calculations

in chapter 3, the double real, real-virtual and double virtual subtraction terms are

given as follows:

4.3.1 Construction of the double real subtraction term

With reference to the four-parton tree-level matrix elements listed in (4.8), the

double real subtraction terms can be constructed for each contribution to the cross

section.
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Gluon-gluon initial state:

dσ̂Sgg = NggNNLO
(
αs
2π

)2
C̄(ε)2

C(ε)2
dΦ{Xi}+2({pXi

}, p3, p4; p1, p2)

{
N

2

∑
{3,4}

[
2f 0

3 (2̂, 3, 4) M0
3 (1̂g, ˆ̄2g, (̃3, 4)g) J

(1)
0 (p(3,4))

+ 2f 0
3 (1̂, 4, 3) M0

3 (ˆ̄1g, 2g, (̃3, 4), ˆ̄2g) J
(1)
0 (p(3,4))

+ F 0
3 (1̂, 3, 2̂) M0

3 (ˆ̄1g, ˆ̄2g, 4̃g) J
(1)
0 (p4)

+ F 0
3 (1̂, 4, 2̂) M0

3 (ˆ̄1g, 3̃g, ˆ̄2g) J
(1)
0 (p3)

+ 2F 0
4 (1̂, 2̂, 3, 4) M0

2 (ˆ̄1g, ˆ̄2g)

− 2f 0
3 (2̂, 3, 4) F 0

3 (1̂, (̃3, 4), ˆ̄2) M0
2 (ˆ̄1g,

ˆ̄̄2g)

− 2f 0
3 (1̂, 4, 3) F 0

3 (ˆ̄1, (̃3, 4), 2̂) M0
2 (ˆ̄̄1g, ˆ̄2g)

+ F 0
4 (1̂, 3, 2̂, 4) M0

2 (1̄g, 2̄g)

− F 0
3 (1̂, 3, 2̂) F 0

3 (ˆ̄1, 4̃, ˆ̄2) M0
2 (ˆ̄̄1g,

ˆ̄̄2g)

− F 0
3 (1̂, 4, 2̂) F 0

3 (ˆ̄1, 3̃, ˆ̄2) M0
2 (ˆ̄̄1g,

ˆ̄̄2g)

]
+NF

∑
{1,2}

[
d0

3(3, 1̂, 2̂) M0
3 (ˆ̄1q, ˆ̄2g, 4̃q̄) J

(1)
0 (p4)

+ d0
3(4, 2̂, 1̂) M0

3 (3̃q, ˆ̄1g, ˆ̄2q̄) J
(1)
0 (p3)

+
1

2
G0

3(1̂, 3, 4) M0
3 (ˆ̄1g, 2̂g, (̃3, 4)g) J

(1)
0 (p(3,4))

+
1

2
G0

3(2̂, 3, 4) M0
3 (1̂g, ˆ̄2g, (̃3, 4)g) J

(1)
0 (p(3,4))

+ G0
4(1̂, 3, 4, 2̂) M0

2 (ˆ̄1g, ˆ̄2g)

− d0
3(3, 1̂, 2̂) G0

3(ˆ̄2, ˆ̄1, 4̃) M0
2 (ˆ̄̄1g,

ˆ̄̄2g)

− d0
3(4, 2̂, 1̂) G0

3(ˆ̄1, ˆ̄2, 3̃) M0
2 (ˆ̄̄1g,

ˆ̄̄2g)

− 1

2
G0

3(1̂, 3, 4) F 0
3 (ˆ̄1, 2̂, (̃3, 4)) M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

− 1

2
G0

3(2̂, 3, 4) F 0
3 (1̂, ˆ̄2, (̃3, 4)) M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

]
−NF

N2

[
d0

3(3, 1̂, 2̂) M̃0
3 (ˆ̄1q, 2̂g, 4̃q̄) J

(1)
0 (p4)

+ d0
3(4, 2̂, 1̂) M̃0

3 (3̃q, ˆ̄1g, ˆ̄2q̄) J
(1)
0 (p4)

+ G̃0
4(1̂, 3, 4, 2̂) M0

2 (ˆ̄1g, ˆ̄2g)

− d0
3(3, 1̂, 2̂) G0

3(ˆ̄2, ˆ̄1, 4̃) M0
2 (ˆ̄̄1g,

ˆ̄̄2g)
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− d0
3(4, 2̂, 1̂) G0

3(ˆ̄1, ˆ̄2, 3̃) M0
2 (ˆ̄̄1g,

ˆ̄̄2g)

]}
(4.11)

Quark-gluon initial state:

dσ̂Sqg = NqgNNLO
(
αs
2π

)2
C̄(ε)2

C(ε)2
dΦ{Xi}+2({pXi

}, p3, p4; p1, p2)

{
[

d0
3(4, 3, 2̂) M0

3 (1̂q, ˆ̄2g, (̃3, 4)q̄) J
(1)
0 (p(3,4))

+ G0
3(2̂, 1̂, 4) M0

3 (ˆ̄1g, ˆ̄2g, 3̃g) J
(1)
0 (p3)

+ D0
3(1̂, 3, 2̂) M0

3 (ˆ̄1q, ˆ̄2g, 4̃q̄) J
(1)
0 (p4)

+ d0
3(4, 2̂; 3) M0

3 (1̂q, (̃3, 4)g,
ˆ̄2q̄) J

(1)
0 (p(3,4))

+ G0
3(3, 1̂, 4) M0

3 (ˆ̄1g, 2̂g, (̃3, 4)g) J
(1)
0 (p(3,4))

+ G0
4(2̂, 1̂, 4, 3) M0

2 (ˆ̄1g, ˆ̄2g)

− d0
3(4, 3, 2̂) G0

3(ˆ̄2, 1̂, (̃3, 4)) M0
2 (ˆ̄1g,

ˆ̄̄2g)

− G0
3(2̂, 1̂, 4) F 0

3 (ˆ̄1, ˆ̄2, 3̃) M0
2 (ˆ̄̄1g,

ˆ̄̄2g)

+ G0
4(2̂, 4, 1̂, 3) M0

2 (ˆ̄1g, ˆ̄2g)

− D0
3(1̂, 3, 2̂) G0

3(ˆ̄2, 4̃, ˆ̄1) M0
2 (ˆ̄1g,

ˆ̄̄2g)

− d0
3(4, 2̂; 3) G0

3(3̃, ˆ̄2, ˆ̄1) M0
2 (ˆ̄̄1g,

ˆ̄̄2g)

− G0
3(2̂, 4, 1̂) F 0

3 (ˆ̄1, ˆ̄2, 3̃) M0
2 (ˆ̄̄1g,

ˆ̄̄2g)

]
− 1

N2

[
A0

3(1̂, 3, 4) M0
3 (ˆ̄1q, 2̂g, (̃3, 4)q̄) J

(1)
0 (p(3,4))

+ A0
3(1̂, 2̂, 4) M0

3 (ˆ̄1q, 3̃g, ˆ̄2q̄) J
(1)
0 (p3)

+ G̃0
4(2̂, 1̂, 4, 3) M0

2 (ˆ̄1g, ˆ̄2g)

− A0
3(1̂, 3, 4) G0

3(2̂, ˆ̄1, (̃3, 4)) M0
2 (ˆ̄̄1g, ˆ̄2g)

− A0
3(1̂, 2̂, 4) G0

3(3̃, ˆ̄1, ˆ̄2) M0
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

]}
(4.12)

Quark-antiquark initial state:

dσ̂Sqq̄ = Nqq̄NNLO
(
αs
2π

)2
C̄(ε)2

C(ε)2
dΦ{Xi}+2({pXi

}, p3, p4; p1, p2)

{
1

2

∑
{3,4}

[
d0

3(1̂, 3, 4) M0
3 (ˆ̄1q, (̃3, 4)g, 2̂q̄) J

(1)
0 (p(3,4))
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+ d0
3(2̂, 4, 3) M0

3 (1̂q, (̃3, 4)g,
ˆ̄2q̄) J

(1)
0 (p(3,4))

]
− 1

2N2

[
A0

3(1̂, 3, 2̂) M0
3 (ˆ̄1q, 4̃g, ˆ̄2q̄) J

(1)
0 (p4)

+ A0
3(1̂, 4, 2̂) M0

3 (ˆ̄1q, 3̃g, ˆ̄2q̄) J
(1)
0 (p3)

]
+
NF

N

[
1

2
E0

3(1̂, 3, 4) M0
3 (ˆ̄1q, (̃3, 4)g, 2̂q̄) J

(1)
0 (p(3,4))

+
1

2
E0

3(2̂, 4, 3) M0
3 (1̂q, (̃3, 4)g,

ˆ̄2q̄) J
(1)
0 (p(3,4))

]
+

1

N

[
E0

3(1̂, 3, 2̂) M0
3 (ˆ̄1q, ˆ̄2g, 4̃q̄)

+ E0
3(2̂, 4, 1̂) M0

3 (3̃q, ˆ̄1g, ˆ̄2q̄)

+ H0
4 (1̂, 4, 2̂, 3) M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

− E0
3(1̂, 3, 2̂) G0

3(ˆ̄2, ˆ̄1, 4̃) M0
2 (ˆ̄̄1g,

ˆ̄̄2g)

− E0
3(2̂, 4, 1̂) G0

3(ˆ̄1, ˆ̄2, 3̃) M0
2 (ˆ̄̄1g,

ˆ̄̄2g)

]}
(4.13)

Non-idential quark-quark initial state:

dσ̂SqQ = Nqq̄NNLO
(
αs
2π

)2
C̄(ε)2

C(ε)2
dΦ{Xi}+2({pXi

}, p3, p4; p1, p2)

{
1

N

[
E0

3(1̂, 2̂, 4) M0
3 (ˆ̄1q, ˆ̄2g, 3̃q̄) J

(1)
0 (p3)

+ E0
3(2̂, 1̂, 3) M0

3 (ˆ̄2q, ˆ̄1g, 4̃q̄) J
(1)
0 (p4)

+ H0
4 (1̂, 3, 2̂, 4) M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

− E0
3(1̂, 2̂, 4) G0

3(ˆ̄2, ˆ̄1, 3̃) M0
2 (ˆ̄̄1g,

ˆ̄̄2g)

− E0
3(2̂, 1̂, 3) G0

3(ˆ̄1, ˆ̄2, 4̃) M0
2 (ˆ̄̄1g,

ˆ̄̄2g)

]}
(4.14)

Identical quark-quark initial state

dσ̂Sqq = Nqq̄NNLO
(
αs
2π

)2
C̄(ε)2

C(ε)2
dΦ{Xi}+2({pXi

}, p3, p4; p1, p2)

{
1

2N

[
E0

3(1̂, 2̂, 4) M0
3 (ˆ̄1q, ˆ̄2g, 3̃q̄) J

(1)
0 (p3)

+ E0
3(2̂, 1̂, 3) M0

3 (ˆ̄2q, ˆ̄1g, 4̃q̄) J
(1)
0 (p4)

+ E0
3(1̂, 2̂, 3) M0

3 (ˆ̄1q, ˆ̄2g, 4̃q̄) J
(1)
0 (p4)
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+ E0
3(2̂, 1̂, 4) M0

3 (ˆ̄2q, ˆ̄1g, 3̃q̄) J
(1)
0 (p3)

+ H0
4 (1̂, 3, 2̂, 4) M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

− E0
3(1̂, 2̂, 4) G0

3(ˆ̄2, ˆ̄1, 3̃) M0
2 (ˆ̄1g, ˆ̄2g)

− E0
3(2̂, 1̂, 3) G0

3(ˆ̄1, ˆ̄2, 4̃) M0
2 (ˆ̄1g, ˆ̄2g)

+ H0
4 (1̂, 4, 2̂, 3) M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

− E0
3(2̂, 1̂, 4) G0

3(ˆ̄1, ˆ̄2, 3̃) M0
2 (ˆ̄1g, ˆ̄2g)

− E0
3(1̂, 2̂, 3) G0

3(ˆ̄2, ˆ̄1, 4̃) M0
2 (ˆ̄1g, ˆ̄2g)

]}
(4.15)

The remaining subtraction terms can be obtained from those presented in this sec-

tion via the appropriate relabelling of parton momenta, reflecting the symmetries

relating the various matrix elements.

4.3.2 Construction of the real-virtual subtraction term

Integrating the double real subtraction terms over the single unresolved phase space

then combining with the one-loop subtraction terms and appropriate mass factoriza-

tion terms generates the real-virtual subtraction term. As in chapter 3, the following

notation is adopted: δ1 = δ(1− x1), δ2 = δ(1− x2).

Gluon-gluon initial state:

dσ̂Tgg = NggNNLO
(
αs
2π

)2
C̄(ε)2

C(ε)
dΦ{Xi}+1({pXi

}, p3; p̄1, p̄2)

∫
dx1

x1

dx2

x2

{
2N

{
−J (1)

3 (ˆ̄1g, ˆ̄2g, 3g) M
0
3 (ˆ̄1g, ˆ̄2g, 3g) J

(1)
0 (p3)

+ F 0
3 (ˆ̄1, 3, ˆ̄2)

[
M1

2 (ˆ̄̄1g,
ˆ̄̄2g)δ1δ2 + 2J

(1)
2 (ˆ̄̄1g,

ˆ̄̄2g) M
0
2 (ˆ̄̄1g,

ˆ̄̄2g)

]
+

[
F 1

3 (ˆ̄1, 3, ˆ̄2)δ1δ2 + J̄
(1)
3 (ˆ̄1g, 3g, ˆ̄2g) F

0
3 (ˆ̄1, 3, ˆ̄2)

]
M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

+ b0 log

(
µ2

s1̄2̄3

)
F 0

3 (ˆ̄1, 3, ˆ̄2)δ1δ2 M
0
2 (ˆ̄̄1g,

ˆ̄̄2g)

}
+NF

{
−J (1)

3,NF
(ˆ̄1g, ˆ̄2g, 3g) M

0
3 (ˆ̄1g, ˆ̄2g, 3g) J

(1)
0 (p3)

+ F 0
3 (ˆ̄1, 3, ˆ̄2)

[
M̂1

2 (ˆ̄̄1g,
ˆ̄̄2g)δ1δ2 + 2J

(1)
2,NF

(ˆ̄̄1g,
ˆ̄̄2g) M

0
2 (ˆ̄̄1g,

ˆ̄̄2g)

]
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+

[
F̂ 1

3 (ˆ̄1, 3, ˆ̄2)δ1δ2 + J̄
(1)
3,NF

(ˆ̄1g, ˆ̄2g, 3g) F
0
3 (ˆ̄1, 3, ˆ̄2)

]
M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

+ b0,F log

(
µ2

s1̄2̄3

)
F 0

3 (ˆ̄1, 3, ˆ̄2)δ1δ2 M
0
2 (ˆ̄̄1g,

ˆ̄̄2g)

− J
(1)
2,g→q(

ˆ̄1q, ˆ̄2g) M
0
3 (ˆ̄1q, ˆ̄2g, 3q̄)

− J
(1)
2,g→q(

ˆ̄2q, ˆ̄1g) M
0
3 (3q, ˆ̄1g, ˆ̄2q̄)

+ J
(1)
2,g→q(

ˆ̄1q, ˆ̄2g) G
0
3(ˆ̄2, ˆ̄1, 3) M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

+ J
(1)
2,g→q(

ˆ̄1q, ˆ̄2g) G
0
3(ˆ̄1, 3, ˆ̄2) M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

}
+
NF

N2

{
J

(1)
2,g→q(

ˆ̄1q, ˆ̄2g) M
0
3 (ˆ̄1q, ˆ̄2g, 3q̄)

+ J
(1)
2,g→q(

ˆ̄2q, ˆ̄1g) M
0
3 (3q, ˆ̄1g, ˆ̄2q̄)

− J
(1)
2,g→q(

ˆ̄1q, ˆ̄2g) G
0
3(ˆ̄2, ˆ̄1, 3) M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

− J
(1)
2,g→q(

ˆ̄1q, ˆ̄2g) G
0
3(ˆ̄1, 3, ˆ̄2) M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

}}
(4.16)

Quark-gluon initial state:

dσ̂Tqg = NqgNNLO
(
αs
2π

)2
C̄(ε)2

C(ε)
dΦ{Xi}+1({pXi

}, p3; p̄1, p̄2)

∫
dx1

x1

dx2

x2

{
{
−J (1)

3 (ˆ̄1q, ˆ̄2g, 3q̄) M
0
3 (ˆ̄1q, ˆ̄2g, 3q̄) J

(1)
0 (p3)

+ G0
3(ˆ̄2, ˆ̄1, 3)

[
M1

2 (ˆ̄̄1g,
ˆ̄̄2g)δ1δ2 + J

(1)
2 (ˆ̄̄1g,

ˆ̄̄2g) M
0
2 (ˆ̄̄1g,

ˆ̄̄2g)

]
+

[
G1

3(ˆ̄2, ˆ̄1, 3)δ1δ2 + J̄
(1)
3 (ˆ̄1q, ˆ̄2g, 3q̄) G

0
3(ˆ̄2, ˆ̄1, 3)

]
M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

+ b0 log

(
µ2

s1̄2̄3

)
G0

3(ˆ̄2, ˆ̄1, 3)δ1δ2 M
0
2 (ˆ̄̄1g,

ˆ̄̄2g)

− J
(1)
3,q→g(

ˆ̄1g, ˆ̄2g, 3g) M
0
3 (ˆ̄1g, ˆ̄2g, 3g) J

(1)
0 (p3)

− J
(1)
2,g→q(

ˆ̄2q, 3g) M
0
3 (ˆ̄1q, 3g, ˆ̄2q̄) J

(1)
0 (p3)

+ J
(1)
2,g→q(

ˆ̄2q, 3g) G
0
3(3, ˆ̄1, ˆ̄2) M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

+ 2J
(1)
2,q→g(

ˆ̄1g, ˆ̄2g) F
0
3 (ˆ̄1, 3, ˆ̄2) M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

}
− 1

N2

{
−J (1)

2 (ˆ̄1q, 3q̄) M
0
3 (ˆ̄1q, ˆ̄2g, 3q̄) J

(1)
0 (p3)

+

[
G̃1

3(ˆ̄2, ˆ̄1, 3)δ1δ2 + J
(1)
2 (ˆ̄1q, 3q̄) G

0
3(ˆ̄2, ˆ̄1, 3)

]
M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

− J
(1)
2,g→q(

ˆ̄1q, ˆ̄2q̄) M
0
3 (ˆ̄1q, 3g, ˆ̄2q̄) J

(1)
0 (p3)
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+ J
(1)
2,g→q(

ˆ̄1q, ˆ̄2q̄) G
0
3(3, 1̄, 2̄) M0

2 (¯̄1g, ¯̄2g)

}
+
NF

N

{
G0

3(2̂, 1̂, 3)

[
M̂1

2 (ˆ̄̄1g,
ˆ̄̄2g)δ1δ2 + 2J

(1)
2,NF

(ˆ̄1g, ˆ̄2g) M0
2 (ˆ̄̄1g,

ˆ̄̄2g)

]
+

[
Ĝ1

3(2̂, 1̂, 3)δ1δ2 − 2J
(1)
2,NF

(ˆ̄1g, ˆ̄2g) G
0
3(2̂, 1̂, 3)

]
M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

+ b0,F log

(
µ2

s1̄2̄3

)
G0

3(ˆ̄2, ˆ̄1, 3)δ1δ2 M
0
2 (ˆ̄̄1g,

ˆ̄̄2g)

}}
(4.17)

Quark-antiquark initial state:

dσ̂Tqq̄ = Nqq̄NNLO
(
αs
2π

)2
C̄(ε)2

C(ε)
dΦ{Xi}+1({pXi

}, p3; p̄1, p̄2)

∫
dx1

x1

dx2

x2

{
−J (1)

3 (ˆ̄1q, 3g, ˆ̄2q̄) M
0
3 (ˆ̄1q, 3g, ˆ̄2q̄) J

(1)
0 (p3)

− 1

N2
−J (1)

2 (ˆ̄1q, ˆ̄2q̄) M
0
3 (ˆ̄1q, 3g, ˆ̄2q̄)

+
NF

N
−J (1)

3,NF
(ˆ̄1q, 3g, ˆ̄2q̄) M

0
3 (ˆ̄1q, 3g, ˆ̄2q̄) J

(1)
0 (p3)

+
1

N

{
−J (1)

2,q→g(
ˆ̄1q, ˆ̄2g) M

0
3 (ˆ̄1q, ˆ̄2g, 3q̄) J

(1)
0 (p3)

−J (1)
2,q→g(

ˆ̄2q, ˆ̄1g) M
0
3 (3q, ˆ̄1g, ˆ̄2q̄) J

(1)
0 (p3)

+J
(1)
2,q→g(

ˆ̄1q, ˆ̄2g) G
0
3(ˆ̄2, ˆ̄1, 3) M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

+J
(1)
2,q→g(

ˆ̄2q, ˆ̄1g) G
0
3(ˆ̄1, ˆ̄2, 3) M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

}}
(4.18)

Quark-quark initial state:

The non-identical flavour quark subtraction term is given by,

dσ̂TqQ = Nqq̄NNLO
(
αs
2π

)2
C̄(ε)2

C(ε)
dΦ{Xi}+1({pXi

}, p3; p̄1, p̄2)

∫
dx1

x1

dx2

x2

{
1

N

{
−J (1)

2,q→g(
ˆ̄1q, ˆ̄2g) M

0
3 (ˆ̄1q, ˆ̄2g, 3q̄) J

(1)
0 (p3)

−J (1)
2,q→g(

ˆ̄2q, ˆ̄1g) M
0
3 (ˆ̄2q, ˆ̄1g, 3q̄) J

(1)
0 (p3)

+J
(1)
2,q→g(

ˆ̄1q, ˆ̄2g) G
0
3(ˆ̄2, ˆ̄1, 3) M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

+J
(1)
2,q→g(

ˆ̄2q, ˆ̄1g) G
0
3(ˆ̄1, ˆ̄2, 3) M0

2 (ˆ̄̄1g,
ˆ̄̄2g)

}}
(4.19)

Once integrated over the single unresolved phase space and averaged over the final-

state symmetry factor, the identical flavour quark-quark subtraction term shares
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the same singularity structure as the non-identical flavour subtraction term,

dσ̂TqQ = dσ̂Tqq. (4.20)

4.3.3 Construction of the double virtual subtraction terms

Following the example of chapter 3, the double virtual subtraction terms may be

written in terms of single and double unresolved integrated antenna strings. The

explicit form of these strings in terms of integrated antennae and mass factorization

kernels is given in appendix B.2.

Gluon-gluon initial state:

dσ̂Ugg = −NggNNLO
(
αs
2π

)2

C̄(ε)2 dΦ{Xi}({pXi
}; p̄1, p̄2)

∫
dz1

z1

dz2

z2

{
N

{
2J

(1)
2 (ˆ̄1g, ˆ̄2g)

(
M1

2 (ˆ̄1g, ˆ̄2g)−
b0

ε
M0

2 (ˆ̄1g, ˆ̄2g)

)
+

(
2J

(1)
2 (ˆ̄1g, ˆ̄2g)⊗ J (1)

2 (ˆ̄1g, ˆ̄2g) + J
(2)
2 (ˆ̄1g, ˆ̄2g)

)
M0

2 (ˆ̄1g, ˆ̄2g)

}
+NF

{
J

(1)
2 (ˆ̄1g, ˆ̄2g)

(
M̂1

2 (ˆ̄1g, ˆ̄2g)−
b0

ε
M0

2 (ˆ̄1g, ˆ̄2g)

)
+

(
1

2
J

(1)
2 (ˆ̄1g, ˆ̄2g)⊗ J (1)

2 (ˆ̄1g, ˆ̄2g) + J
(2)
2,NF

(ˆ̄1g, ˆ̄2g)

)
M0

2 (ˆ̄1g, ˆ̄2g)

}
−NF

N2

{
J̃

(1)
2,NF

(ˆ̄1g, ˆ̄2g) M
0
2 (1̄g, 2̄g)

}
+
N2
F

N

{
J

(1)

2,N2
F

(ˆ̄1g, ˆ̄2g) M
0
2 (1̄g, 2̄g)

}}
(4.21)

Quark-gluon initial state:

dσ̂Uqg = −NqgNNLO
(
αs
2π

)2

C̄(ε)2 dΦ{Xi}({pXi
}; p̄1, p̄2)

∫
dz1

z1

dz2

z2

{
{

J
(1)
2,q→g(

ˆ̄1g, ˆ̄2g)

(
M1

2 (ˆ̄1g, ˆ̄2g)−
b0

ε
M0

2 (ˆ̄1g, ˆ̄2g)

)
+ J

(2)
2,q→g(

ˆ̄1g, ˆ̄2g) M
0
2 (ˆ̄1g, ˆ̄2g)

}
− 1

N2

{
J̃

(2)
2,q→g(

ˆ̄1g, ˆ̄2g) M
0
2 (ˆ̄1g, ˆ̄2g)

}
+
NF

N

{
J

(1)
2,q→g(

ˆ̄1g, ˆ̄2g)

(
M̂1

2 (ˆ̄1g, ˆ̄2g)−
b0,F

ε
M0

2 (ˆ̄1g, ˆ̄2g)

)
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+ J
(2)
2,q→g,NF

(ˆ̄1g, ˆ̄2g)M
0
2 (ˆ̄1g, ˆ̄2g)

}}
(4.22)

Quark-antiquark initial state:

dσ̂Uqq̄ = −NNLO
qq̄

(
αs
2π

)2

C̄(ε)2 dΦ{Xi}({pXi
}; p̄1, p̄2)

∫
dz1

z1

dz2

z2

× J
(2)
2,q→g,q̄→g(

ˆ̄1g, ˆ̄2g) M
0
2 (ˆ̄1g, ˆ̄2g). (4.23)

Quark-quark initial state:

The mass factorization contribution for the quark-quark initiated channels is iden-

tical to that of the quark-antiquark channel. For the non-identical quark initiated

contribution the term inherited from the double real subtraction term is also the

same in both cases. In the case of identical quarks the double real subtraction term

contains two different unintegrated H0
4 antennae, which when integrated and divided

by the appropriate symmetry factor, produces the same contribution to the cross

section as in the quark-anti-quark and non-identical quark-quark initiated channels.

dσ̂UqQ = −NNLO
qq̄

(
αs
2π

)2

C̄(ε)2 dΦ{Xi}({pXi
}; p̄1, p̄2)

∫
dz1

z1

dz2

z2

× J
(2)
2,q→g,q̄→g(

ˆ̄1g, ˆ̄2g) M
0
2 (ˆ̄1g, ˆ̄2g), (4.24)

and dσ̂UqQ = dσ̂Uqq.
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Chapter 5

Two Quark Contribution to Dijet

Production

The infrared structure of colourless particle production from hadronic collisions has

been covered in some detail in previous chapters at both leading and sub-leading

colour. The analysis of chapter 2 is applicable to more general calculations than

simply colourless final-states and in particular can be used to calculate jet production

cross sections for light jets without modification1.

The calculation of the leading colour contribution to dijet production has pre-

viously been performed using the antenna subtraction formalism for purely gluonic

channels at both the double real [125] and real-virtual [47] levels. This chapter will

extend the antenna subtraction method at NNLO to include quarks and demonstrate

the reformulation of the method using integrated antenna strings. The double real

correction to dijet production requires six parton matrix elements and any of the

four final-state partons can potentially become unresolved. The increased number

of coloured particles in the final state allows for almost colour-connected and colour

disconnected configurations to arise, unlike the situation for colourless final-states.

The NLO corrections to dijet production involving two quarks will be calculated

using the NLO antenna subtraction method before focussing on the leading colour

1As shown in [112,116], the antenna subtraction formalism can be extended to massive particles

for the purposes of heavy quark production by introducing additional massive antennae.
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5.1. Matrix elements for up to six partons 200

NNLO corrections to the channel q q̄ → g g.

5.1 Matrix elements for up to six partons

At leading colour, the l-loop two-quark m-gluon contribution to the n-jet cross

section is given by,

dσ̂ = N l
m+2dΦm(p3, . . . , pm+2; p1, p2)

1

m!

×
∑
σ∈Sm

M l
m+2(1q, σ(2)g, . . . , σ(m+ 1)g, (m+ 2)q̄)J

(m)
n (p3, ..., pm+2), (5.1)

where, in previous chapters, M l
m+2 denotes the l-loop, (m+2)-parton, colour-ordered

squared matrix element, summed over helicities.

The normalisation factor N l
m+2 includes the average over initial spins and colours

and is given by,

N l
m+2 = NLO ×

(
αsN

2π

)m+l−2
C̄(ε)m+l−2

C(ε)m−2
, (5.2)

where for the 2→ 2 Born process,

NLO =
1

2s
× 1

4N2
×
(
g2N

)2 (N2 − 1)

N
. (5.3)

The coupling g2 has been converted into αs using the factors C(ε) and C̄(ε),

g2NC(ε) =

(
αsN

2π

)
C̄(ε). (5.4)

For low multiplicity matrix elements, the sub-leading colour contributions can often

be written as an incoherent sum of squared amplitudes, potentially involving Abelian

gluons. An example of the antenna subtraction method at sub-leading colour for jet

production will be demonstrated for the NLO correction to the q q̄ → g g subprocess.

5.1.1 Four parton contribution

The four-parton contribution to the cross section includes the tree-level Born cross

section, the one-loop virtual and the two-loop double virtual corrections to the Born

contribution.
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Tree-level:

The Born cross section for the various scattering channels is given by:

dσ̂Bqq̄ = NLO dΦ2(p3, p4; p1, p2)
1

2!

∑
{i,j}∈{3,4}{(

M0
4 (1̂q, ig, jg, 2̂q̄)−

1

2N2
M̃0

4 (1̂q, ig, jg, 2̂q̄)

)
J

(2)
2 (p3, p4)

}
. (5.5)

The subleading colour contribution, included here for completeness, is formed from

the square of a coherent sum of colour-ordered matrix elements,

M̃0
4 (1̂q, ig, jg, 2̂q̄) = |M0

4(1̂q, ig, jg, 2̂q̄) +M0
4(1̂q, jg, ig, 2̂q̄)|2 (5.6)

Here the three gluon coupling involving gluons i and j drops out and this contribu-

tion is referred to as having Abelian gluons.

One-loop:

For the purposes of demonstrating the sub-leading colour antenna subtraction method,

the full colour decomposition of the one-loop cross section is presented here.

dσ̂Vqq̄ = N 1
4 dΦ2(p3, p4; p1, p2)

1

2!

∑
{i,j}∈{3,4}{

M1
4 (1̂q, ig, jg, 2̂q̄)−

1

N2
M̃1

4 (1̂q, ig, jg, 2̂q̄) +
1

N4

˜̃
M1

4 (1̂q, ig, jg, 2̂q̄)

+ NNFM̂
1
4 (1̂q, ig, jg, 2̂q̄)−

NF

N

̂̃
M1

4 (1̂q, ig, jg, 2̂q̄)

}
J

(2)
2 (pi, pj) (5.7)

where the overall factor is as defined in (5.2),

N 1
4 = NLO

(
αsN

2π

)
C̄. (5.8)

The various contributions are formed from the projection of one-loop partial ampli-

tudes onto tree-level amplitudes2. The poles of the contributions not proportional

to NF may be expressed in terms of insertion operators, or equivalently in terms of

integrated antenna strings,

Poles
[
M1

4 (1̂q, ig, jg, 2̂q̄)

]
= J

(1)
4 (1̂q, ig, jg, 2̂q̄) M

0
4 (1̂q, ig, jg, 2̂q̄)

2In general several one-loop partial amplitudes may contribute to a single term in (5.7)
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Poles
[
M̃1

4 (1̂q, ig, jg, 2̂q̄)

]
= J

(1)
3 (1̂q, jg, 2̂q̄) M̃

0
4 (1̂q, ig, jg, 2̂q̄)

− J
(1)
2 (1̂q, 2̂q̄) M

0
4 (1̂q, ig, jg, 2̂q̄)

Poles
[˜̃
M1

4 (1̂q, ig, jg, 2̂q̄)

]
= J

(1)
2 (1̂q, 2̂q̄) M̃

0
4 (1̂q, ig, jg, 2̂q̄) (5.9)

The NF dependent contributions have pole structures which can be similarly writ-

ten in terms of NF dependent integrated antenna strings, but these terms are not

considered for this demonstration of the pole cancellation.

Two-loops:

The leading colour contribution to the two-loop quark-anti-quark initiated cross

section is given by,

dσ̂V Vqq̄ = N 2
4 dΦ2(p3, p4; p1, p2)

1

2!

∑
{i,j}∈{3,4}

M2
4 (1̂q, ig, jg, 2̂q̄) J

(2)
2 (pi, pj).(5.10)

As in previous chapters, the two-loop matrix element contains the projection of the

two-loop amplitude onto the tree-level amplitude and the self-interference of the

one-loop amplitude.

5.1.2 Five parton contribution

The five parton contribution to the cross section is composed of the tree-level single

real emission contribution to the NLO cross section and the one-loop real-virtual

contribution to the NNLO cross section.

Tree-level:

For the purposes of demonstrating the sub-leading colour NLO antenna subtraction

for jet production at NLO, the full colour decomposition of the q q̄ → g g channel

is presented here.

dσ̂Rqq̄ = N 0
5 dΦ3(p3, p4, p5; p1, p2)

1

3!

∑
{i,j,k}

{ [
M0

5 (1̂q, ig, jg, kg, 2̂q̄)

− 1

N2
M̃0

5 (1̂q, ig, jg, kg, 2̂q̄) +

(
N2 + 1

N4

) ˜̃
M0

5 (1̂q, ig, jg, kg, 2̂q̄)

]
J

(3)
2 (pi, pj, pk)

}
.

(5.11)
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The sub-leading colour matrix element M̃0
5 (1̂q, ig, jg, kg, 2̂q̄) is defined in the following

way,

M̃0
5 (1̂q, ig, jg, kg, 2̂q̄) = |M0

5(1̂q, ig, jg, kg, 2̂q̄) +M0
5(1̂q, jg, ig, kg, 2̂q̄)

+ M0
5(1̂q, jg, kg, ig, 2̂q̄)|2, (5.12)

such that the gluon i behaves in an Abelian fashion. The most sub-leading con-

tribution is given by the QED-like matrix element, formed by averaging over all

colour-ordered matrix elements,˜̃
M0

5 (1̂q, ig, jg, kg, 2̂q̄) =
1

3!

∣∣∣∣ ∑
{i,j,k}

M0
5(1̂q, ig, jg, kg, 2̂q̄)

∣∣∣∣2. (5.13)

All gluons in this matrix element are Abelian behaving and are only colour connected

to the quark endpoints.

One-loop

The leading colour one-loop contribution to the real-virtual cross section is given

by,

dσ̂RVqq̄ = N 1
5 dΦ2(p3, p4, p5; p1, p2)

1

3!

∑
{i,j,k}

M1
5 (1̂q, ig, jg, kg, 2̂q̄) J

(2)
2 (pi, pj, pk).

(5.14)

5.1.3 Six parton contribution

Tree-level:

At NNLO the only six-parton contribution to dijet production is the tree-level con-

tribution to the double real cross section. At leading colour, the double real radiation

contribution from the qq̄ → gggg process is given by,

dσ̂RRqq̄ = N 0
6 dΦ4(p3, . . . , p6; p1, p2)

1

4!

∑
{i,j,k,l}

M0
6 (1̂q, ig, jg, kg, lg, 2̂q̄) J

(4)
2 (pi, . . . , pl)

(5.15)

It is convenient to rearrange the 24 amplitudes present in eq. (5.15) into three

terms, ∑
{i,j,k,l}

M0
6 (1̂q, ig, jg, kg, lg, 2̂q̄) = X0

6 (1̂q, 3g, 4g, 5g, 6g, 2̂q̄)
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+ X0
6 (1̂q, 3g, 5g, 4g, 6g, 2̂q̄)

+ X0
6 (1̂q, 3g, 4g, 6g, 5g, 2̂q̄), (5.16)

where each X0
6 contains eight colour ordered squared amplitudes given by the four

cyclic permutations of the final state gluons plus their line reversals:

X0
6 (1̂q, 3g, 4g, 5g, 6g, 2̂q̄) = M0

6 (1̂q, 3g, 4g, 5g, 6g, 2̂q̄) +M0
6 (1̂q, 6g, 5g, 4g, 3g, 2̂q̄)

+ M0
6 (1̂q, 4g, 5g, 6g, 3g, 2̂q̄) +M0

6 (1̂q, 3g, 6g, 5g, 4g, 2̂q̄)

+ M0
6 (1̂q, 5g, 6g, 3g, 4g, 2̂q̄) +M0

6 (1̂q, 4g, 3g, 6g, 5g, 2̂q̄)

+ M0
6 (1̂q, 6g, 3g, 4g, 5g, 2̂q̄) +M0

6 (1̂q, 5g, 4g, 3g, 6g, 2̂q̄).

(5.17)

It is sufficient to apply the subtraction technique to one block of orderings, the

other two are related by symmetry and contribute numerically the same result after

integration over the phase space. For the purposes of Monte Carlo integration the

entire set of orderings is implemented to restore the full symmetry of the gluon phase

space and improve computational efficiency.

5.2 Infrared subtraction at NLO

At NLO, the single real emission cross section contains implicit singularities which

may be isolated using the antenna subtraction method as discussed in detail in

section 2.5. In the following sections, the NLO subtraction terms are constructed

for processes involving two quarks and three gluons with the quarks in the initial

state. In order to perform a full pole cancellation against the virtual cross section

the additional four-quark and gluon initiated channels must be included. Given

the general discussion of section 2.5, constructing these subtraction terms is trivial.

Only the q q̄ → ggg subtraction terms are presented here by way of example.

5.2.1 Construction of the real subtraction terms

The leading colour subtraction term is given by,

dσ̂Sqq̄,NLO = N 0
5 dΦ3(p3, p4, p5; p1, p2)

1

3!

∑
{i,j,k}

{
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d0
3(1̂, i, j) M0

4 (ˆ̄1q, (̃i, j)g, kg, 2̂q̄) J
(2)
2 (p(i,j), pk)

+ f 0
3 (i, j, k) M0

4 (1̂q, (̃i, j)g, (̃j, k)g, 2̂q̄) J
(2)
2 (p(i,j), p(j,k))

+ d0
3(2̂, k, j) M0

4 (1̂q, ig, (̃j, k)g,
ˆ̄2q̄) J

(2)
2 (pi, p(j,k))

}
. (5.18)

The subtraction term for the remaining sub-leading colour contributions is con-

structed by considering the colour structure of the matrix elements in (5.11), fol-

lowing the discussion about sub-leading colour subtraction terms in 2.5.

dσ̂Sqq̄,NLO = N 0
5 dΦ3(p3, p4, p5; p1, p2)

1

3!

∑
{i,j,k}

{

− 1

N2

[
A0

3(1̂, i, 2̂) M0
4 (ˆ̄1q, j̃g, k̃g, ˆ̄2q̄) J

(2)
2 (pj, pk)

+ d0
3(1̂, j, k) M̃0

4 (ˆ̄1q, ig, (̃j, k)g, 2̂q̄) J
(2)
2 (pi, p(j,k))

+ d0
3(2̂, k, j) M̃0

4 (1̂q, ig, (̃j, k)g,
ˆ̄2q̄) J

(2)
2 (pi, p(j,k))

]
+

(
N2 + 1

N4

) [
A0

3(1̂, i, 2̂) M̃0
4 (ˆ̄1q, j̃g, k̃g, ˆ̄2q̄) J

(2)
2 (pj, pk)

+ A0
3(1̂, j, 2̂) M̃0

4 (ˆ̄1q, ĩg, k̃g, ˆ̄2q̄) J
(2)
2 (pi, pk)

+ A0
3(1̂, k, 2̂) M̃0

4 (ˆ̄1q, ĩg, j̃g, ˆ̄2q̄) J
(2)
2 (pi, pj)

]}
. (5.19)

5.2.2 Construction of the virtual subtraction term

Integrating the real subtraction term over the single unresolved phase space and

combining with the appropriate NLO mass factorization kernels allows the virtual

subtraction term to be constructed from integrated antenna strings. The leading

colour virtual subtraction term is given by,

dσ̂Tqq̄,NLO = −N 1
4 dΦ2(p3, p4; p1, p2)

1

2!

∑
{i,j}

∫
dx1

x1

dx2

x2

J
(1)
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) M

0
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) J

(2)
2 (pi, pj), (5.20)

where J
(1)
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) = J

(1)
2 (ˆ̄1q, ig) +J

(1)
2 (ig, jg) +J

(1)
2 (jg, ˆ̄2q̄), the explicit form of

which can be found in appendix B.1.

Integrating the sub-leading colour subtraction terms and combining with the

relevant mass factorization contributions yields the subleading colour virtual sub-
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traction terms,

dσ̂Tqq̄,NLO = −N 1
4 dΦ2(p3, p4; p1, p2)

1

2!

∑
{i,j}

∫
dx1

x1

dx2

x2

− 1

N2

[
J

(1)
2 (ˆ̄1q, ˆ̄2q̄) M

0
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) J

(2)
2 (pi, pj)

+ J
(1)
3 (ˆ̄1q, jg, ˆ̄2q̄) M̃

0
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) J

(2)
2 (pi, pj)

]
+

(
N2 + 1

N4

) [
J

(1)
2 (ˆ̄1q, ˆ̄2q̄) M̃

0
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) J

(2)
2 (pi, pj)

]}
. (5.21)

By grouping terms with a common colour factor and tree-level matrix element, the

whole subtraction term can be re-organised into the form,

dσ̂Tqq̄,NLO = −N 1
4 dΦ2(p3, p4; p1, p2)

1

2!

∑
{i,j}

∫
dx1

x1

dx2

x2

J
(1)
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) M

0
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) J

(2)
2 (pi, pj)

− 1

N2

[
J

(1)
2 (ˆ̄1q, ˆ̄2q̄) M

0
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) J

(2)
2 (pi, pj)

+

(
J

(1)
3 (ˆ̄1q, jg, ˆ̄2q̄)− J (1)

2 (ˆ̄1q, ˆ̄2q̄)

)
M̃0

4 (ˆ̄1q, ig, jg, ˆ̄2q̄) J
(2)
2 (pi, pj)

]
+

1

N4

[
J

(1)
2 (ˆ̄1q, ˆ̄2q̄) M̃

0
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) J

(2)
2 (pi, pj)

]}
. (5.22)

Comparing with (5.7) it is clear that this virtual subtraction term, derived from

the integrated real subtraction term and the mass factorization kernels, properly

subtracts the explicit poles of the non-NF dependent one-loop cross section. The

remaining NF dependent explicit poles are subtracted by the NF dependent virtual

subtraction term, which is constructed from the NF dependent mass factorization

kernels and integrated real subtraction term for four-quark subprocesses.

5.3 Infrared subtraction at NNLO

This section will focus on the leading colour NNLO corrections to the process,

q q̄ → g g involving two quarks. These corrections include the double real tree-

level contribution q q̄ → gggg, the real-virtual one-loop contribution q q̄ → ggg and

the double virtual two loop contribution q q̄ → g g.
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5.3.1 Construction of the double real subtraction term

The leading colour contribution to the squared matrix element is an incoherent

sum of squared colour-ordered partial amplitudes. The sum over colour orderings

can be partitioned into three blocks of orderings as described in section 5.1.3, such

that a subtraction term may be constructed for a block of orderings, rather than

the entire squared matrix element. Following the general discussion of section 2.6,

the NNLO subtraction term for di-jet production within the block of orderings

X0
6 (1̂q, 3g, 4g, 5g, 6g, 2̂q̄) is given by,

dσ̂S,X6

NNLO = N 0
6 dΦ4(p3, . . . , p6; p1, p2)

1

4!

∑
(ijkl)

{
+f 0

3 (i, j, k)M0
5 (1̂, (̃i, j), (̃j, k), l, 2̂) J

(3)
2 (p(i,j), p(j,k), pl)

+f 0
3 (j, k, l)M0

5 (1̂, i, (̃j, k), (̃k, l), 2̂) J
(3)
2 (p(i), p(j,k), p(k,l))

+d0
3(1̂, i, j)M0

5 (ˆ̄1, (̃i, j), k, l, 2̂) J
(3)
2 (p(i,j), pk, pl)

+d0
3(2̂, l, k)M0

5 (1̂, i, j, (̃k, l), ˆ̄2) J
(3)
2 (pi, pj, p(k,l))

+f 0
3 (l, k, j)M0

5 (1̂, (̃l, k), (̃k, j), i, 2̂) J
(3)
2 (p(l,k), p(k,j), pi)

+f 0
3 (k, j, i)M0

5 (1̂, l, (̃k, j), (̃j, i), 2̂) J
(3)
2 (pl, p(k,j), p(j,i))

+d0
3(1̂, l, k)M0

5 (ˆ̄1, (̃l, k), j, i, 2̂) J
(3)
2 (p(l,k), pj, pi)

+d0
3(2̂, i, j)M0

5 (1̂, l, k, (̃j, i), ˆ̄2) J
(3)
2 (pl, pk, p(j,i))

+F 0
4,a(i, j, k, l)M

0
4 (1̂, (̃i, j, k), (̃j, k, l), 2̂) J

(2̂)
2 (p(i,j,k), p(j,k,l))

+F 0
4,b(i, j, l, k)M0

4 (1̂, (̃i, j, l), (̃j, l, k), 2̂) J
(2̂)
2 (p(i,j,k), p(j,l,k))

+F 0
4,a(l, k, j, i)M

0
4 (1̂, (̃l, k, j), (̃k, j, i), 2̂) J

(2̂)
2 (p(l,k,j), p(k,j,i))

+F 0
4,b(l, k, i, j)M

0
4 (1̂, (̃l, k, i), (̃k, i, j), 2̂) J

(2̂)
2 (p(l,k,i), p(k,i,j))

+D0
4(1̂, i, j, k)M0

4 (ˆ̄1, (̃i, j, k), l, 2̂) J
(2̂)
2 (p(i,j,k), pl)

+D0
4(2̂, l, k, j)M0

4 (1̂, i, (̃l, k, j), ˆ̄2) J
(2̂)
2 (pi, p(l,k,j))

−Ã0
4(1̂, i, k, 2̂)M0

4 (ˆ̄1, j̃, l̃, ˆ̄2) J
(2̂)
2 (pj̃, pl̃)
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−f 0
3 (i, j, k) f 0

3 ((̃i, j), (̃j, k), l)M0
4 (1̂, ˜((i, j), (j, k)), ˜((j, k), l), 2̂) J

(2̂)
2 (p((i,j),(j,k)), p((j,k),l))

−f 0
3 (j, k, l) f 0

3 (i, (̃j, k), (̃k, l))M0
4 (1̂, ˜(i, (j, k)), ˜((j, k), (k, l)), 2̂) J

(2̂)
2 (p((i,j),(j,k)), p((j,k),l))

− f 0
3 (i, j, k) f 0

3 ((̃i, j), l, (̃j, k))M0
4 (1̂, ˜((i, j), l), ˜((j, k), l), 2̂) J

(2̂)
2 (p((i,j),l), p((j,k),l))

−f 0
3 (l, k, j) f 0

3 ((̃l, k), (̃k, j), i)M0
4 (1̂, ˜((l, k), (k, j)), ˜((k, j), i), 2̂) J

(2̂)
2 (p((l,k),(k,j)), p((k,j),i))

−f 0
3 (k, j, i) f 0

3 (l, (̃k, j), (̃j, i))M0
4 (1̂, ˜(l, (k, j)), ˜((k, j), (j, i)), 2̂) J

(2̂)
2 (p(k,j), p((k,j),(j,i)))

− f 0
3 (l, k, j) f 0

3 ((̃l, k), i, (̃k, j))M0
4 (1̂, ˜((l, k), i), ˜((k, j), i), 2̂) J

(2̂)
2 (p((l,k),i), p((k,j),i))

−d0
3(1̂, i, j)D0

3(ˆ̄1, (̃i, j), k)M0
4 (ˆ̄̄1, ˜((i, j), k), l, 2̂) J

(2̂)
2 (p((i,j),k), pl)

−f 0
3 (i, j, k)D0

3(1̂, (̃i, j), (̃j, k))M0
4 (ˆ̄1, ˜((i, j), (j, k)), l, 2̂) J

(2̂)
2 (p((i,j),(j,k)), pl)

−d0
3(1̂, k, j)D0

3(ˆ̄1, (̃k, j), i)M0
4 (ˆ̄̄1, ˜((k, j), i), l, 2̂) J

(2̂)
2 (p((k,j),i), pl)

−d0
3(2̂, l, k)D0

3(ˆ̄2, (̃l, k), j)M0
4 (1̂, i, ˜((l, k), j), ˆ̄̄2) J

(2̂)
2 (p((l,k),j), pi)

−f 0
3 (l, k, j)D0

3(2̂, (̃l, k), (̃k, j))M0
4 (1̂, i, ˜((l, k), (k, j)), ˆ̄2) J

(2̂)
2 (pi, p((l,k),(k,j)))

−d0
3(2̂, j, k)D0

3(ˆ̄2, (̃j, k), l)M0
4 (1̂, i, ˜((j, k), l), ˆ̄̄2) J

(2̂)
2 (pi, p((j,k),l))

+A0
3(1̂, i, 2̂)A0

3(ˆ̄1, k̃, ˆ̄2)M0
4 (ˆ̄̄1, ˜̃j, ˜̃l, ˆ̄̄2) J

(2̂)
2 (pj̃, pl̃)

+A0
3(1̂, k, 2̂)A0

3(ˆ̄1, ĩ, ˆ̄2)M0
4 (ˆ̄̄1, ˜̃j, ˜̃l, ˆ̄̄2) J

(2̂)
2 (p˜̃j

, p˜̃
l
)

+
1

2
f 0

3 (i, l, k) f 0
3 ((̃i, l), j, (̃l, k))M0

4 (1̂, ˜((i, l), j), ˜((l, k), j), 2̂) J
(2̂)
2 (p((i,l),j), p((l,k),j))

−1

2
d0

3(1̂, l, i) f 0
3 ((̃l, i), j, k)M0

4 (ˆ̄1, ˜((i, l), j), (̃j, k), 2̂) J
(2̂)
2 (p((i,l),j), p(j,k))

−1

2
d0

3(2̂, l, k) f 0
3 (i, j, (̃k, l))M0

4 (1̂, (̃i, j), ˜(j, (k, l)), ˆ̄2) J
(2̂)
2 (p(i,j), p(j,(k,l)))

−1

2

[ (
S(i,l)l(l,k) − S((i,l),j)l(j,(l,k))

)
−
(
S1l(i,l) − S1l((i,l),j)

)
−
(
S2l(l,k) − S2l(j(l,k))

) ]
×f 0

3 ((̃i, l), j, (̃l, k)) M0
4 (1̂, ˜((i, l), j), ˜(j, (l, k)), 2̂) J

(2̂)
2 (p((i,l),j), p(j,(l,k)))

+
1

2
f 0

3 (l, i, j) f 0
3 ((̃l, i), k, (̃i, j))M0

4 (1̂, ˜((l, i), k), ˜((i, j), k), 2̂) J
(2̂)
2 (p((l,i),k), p((i,j),k))
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−1

2
d0

3(1̂, i, l) f 0
3 ((̃i, l), k, j)M0

4 (ˆ̄1, ˜((i, l), k), (̃k, j), 2̂) J
(2̂)
2 (p((i,l),k), p(k,j))

−1

2
d0

3(2̂, i, j) f 0
3 (l, k, (̃i, j))M0

4 (1̂, (̃l, k), ˜(k, (i, j)), ˆ̄2) J
(2̂)
2 (p(l,k), p(k,(i,j)))

−1

2

[ (
S(l,i)i(i,j) − S((l,i),k)i(k,(i,j))

)
−
(
S1i(l,i) − S1i((l,i),k)

)
−
(
S2i(i,j) − S2i(k(i,j))

) ]
×f 0

3 ((̃l, i), k, (̃i, j)) M0
4 (1̂, ˜((l, i), k), ˜(k, (i, j)), 2̂) J

(2̂)
2 (p((l,i),k), p(k,(i,j)))

+
1

2
d0

3(1̂, k, j) d0
3(ˆ̄1, i, (̃k, j))M0

4 (ˆ̄̄1, ˜((k, j), i), l, 2̂) J
(2̂)
2 (p((k,j),i), pl)

−1

2
f 0

3 (j, k, l) d0
3(1̂, i, (̃j, k))M0

4 (ˆ̄1, ˜(i, (j, k)), (̃k, l), 2̂) J
(2̂)
2 (p(i,(j,k)), p(k,l))

−1

2
A0

3(1̂, k, 2̂) d0
3(ˆ̄1, ĩ, j̃)M0

4 (ˆ̄̄1, (̃i, j), l̃, ˆ̄2) J
(2̂)
2 (p(i,j), pl̃)

−1

2

[ (
S1k(j,k) − S1̄k(i,(j,k))

)
−
(
S(j,k)k(k,l) − S(i,(j,k))k(k,l)

)
−
(
S1k2 − S1̄k2

)︸ ︷︷ ︸
0

]
×d0

3(1̂, i, (̃j, k)) M0
4 (ˆ̄1, ˜(i, (j, k)), (̃k, l), 2̂) J

(2̂)
2 (p(i,(j,k)), p(k,l))

+
1

2
d0

3(1̂, i, j) d0
3(ˆ̄1, k, (̃i, j))M0

4 (ˆ̄̄1, ˜((i, j), k), l, 2̂) J
(2̂)
2 (p((i,j),k), pl)

−1

2
f 0

3 (j, i, l) d0
3(1̂, k, (̃j, i))M0

4 (ˆ̄1, ˜(k, (j, i)), (̃i, l), 2̂) J
(2̂)
2 (p(k,(j,i)), p(i,l))

−1

2
A0

3(1̂, i, 2̂) d0
3(ˆ̄1, k̃, j̃)M0

4 (ˆ̄̄1, (̃k, j), l̃, ˆ̄2) J
(2̂)
2 (p(k,j), pl̃)

−1

2

[ (
S1i(j,i) − S1̄i(k,(j,i))

)
−
(
S(k,(j,i))i(i,l) − S(j,i)i(i,l)

)
−
(
S1i2 − S1̄i2

)︸ ︷︷ ︸
0

]
×d0

3(1̂, k, (̃j, i)) M0
4 (ˆ̄1, ˜(k, (j, i)), (̃i, l), 2̂) J

(2̂)
2 (p(k,(j,i)), p(i,l))

+
1

2
d0

3(2̂, j, k) d0
3(ˆ̄2, l, (̃j, k))M0

4 (1̂, i, ˜((j, k), l), ˆ̄̄2) J
(2̂)
2 (pi, p((j,k),l))

−1

2
f 0

3 (i, j, k) d0
3(2̂, l, (̃j, k))M0

4 (1̂, (̃i, j), ˜(l, (j, k)), ˆ̄2) J
(2̂)
2 (p(i,j), p(l,(j,k)))

−1

2
A0

3(1̂, j, 2̂) d0
3(ˆ̄2, l̃, k̃)M0

4 (ˆ̄1, ĩ, (̃l, k), ˆ̄̄2) J
(2̂)
2 (pĩ, p(l,k))

−1

2

[ (
S2j(j,k) − S2̄j(l,(j,k))

)
−
(
S(i,j)j(j,k) − S(i,j)j((j,k),l)

)
−
(
S1j2 − S1j2̄

)︸ ︷︷ ︸
0

]
×d0

3(2̂, l, (̃j, k)) M0
4 (1̂, (̃i, j), ˜((j, k), l), ˆ̄2) J

(2̂)
2 (p(i,j), p((j,k),l))

+
1

2
d0

3(2̂, l, k) d0
3(ˆ̄2, j, (̃l, k))M0

4 (1̂, i, ˜((l, k), j), ˆ̄̄2) J
(2̂)
2 (p((l,k),j), pi)
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−1

2
f 0

3 (i, l, k) d0
3(2̂, j, (̃l, k))M0

4 (1̂, (̃i, l), ˜(j, (l, k)), ˆ̄2) J
(2̂)
2 (p(i,l), p(j,(l,k)))

−1

2
A0

3(1̂, l, 2̂) d0
3(ˆ̄2, j̃, k̃)M0

4 (ˆ̄1, ĩ, (̃j, k), ˆ̄̄2) J
(2̂)
2 (pĩ, p(j,k))

−1

2

[ (
S2l(l,k) − S2̄l(j,(l,k))

)
−
(
S(i,l)l((l,k),j) − S(i,l)l(l,k)

)
−
(
S1l2 − S1l2̄

)︸ ︷︷ ︸
0

]
×d0

3(2̂, j, (̃l, k)) M0
4 (1̂, (̃i, l), ˜((l, k), j), ˆ̄2) J

(2̂)
2 (p(i,l), p((l,k),j))

−1

2
A0

3(1̂, i, 2̂)A0
3(ˆ̄1, k̃, ˆ̄2)M0

4 (ˆ̄̄1, ˜̃j, ˜̃l, ˆ̄̄2) J
(2̂)
2 (p˜̃j

, p˜̃
l
)

+
1

2
d0

3(1̂, i, j)A0
3(ˆ̄1, k, 2̂)M0

4 (ˆ̄̄1, (̃i, j), l̃, ˆ̄2) J
(2̂)
2 (p(ĩ,j), pl̃)

+
1

2
d0

3(2̂, i, l)A0
3(1̂, k, ˆ̄2)M0

4 (ˆ̄1, j̃, (̃i, l), ˆ̄̄2) J
(2̂)
2 (pj̃, p(ĩ,l))

+
1

2

[ (
S1i2 − S1̄̃i2̄

)
−
(
S1i(j,i) − S1̄̃i(j̃,i)

)
−
(
S2i(i,l) − S2̄̃i(ĩ,l)

) ]
×A0

3(1̂, k, 2̂) M0
4 (ˆ̄1, (̃j, i), (̃i, l), ˆ̄2) J

(2̂)
2 (p(j̃,i), p(ĩ,l))

−1

2
A0

3(1̂, k, 2̂)A0
3(ˆ̄1, ĩ, ˆ̄2)M0

4 (ˆ̄̄1, ˜̃j, ˜̃l, ˆ̄̄2) J
(2̂)
2 (pj̃, pl̃)

+
1

2
d0

3(1̂, k, j)A0
3(ˆ̄1, i, 2̂)M0

4 (ˆ̄̄1, (̃k, j), l̃, ˆ̄2) J
(2̂)
2 (p(k̃,j), pl̃)

+
1

2
d0

3(2̂, k, l)A0
3(1̂, i, ˆ̄2)M0

4 (ˆ̄1, j̃, (̃k, l), ˆ̄̄2) J
(2̂)
2 (pj̃, p(k̃,l))

+
1

2

[ (
S1k2 − S1̄k̃2̄

)
−
(
S1k(j,k) − S1̄k̃(j̃,k)

)
−
(
S2k(k,l) − S2̄k̃(k̃,l)

) ]
×A0

3(1̂, i, 2̂) M0
4 (ˆ̄1, (̃j, k), (̃k, l), ˆ̄2) J

(2̂)
2 (p(j̃,k), p(k̃,l))

−d0
3(1̂, i, j) d0

3(2̂, l, k)M0
4 (ˆ̄1, (̃i, j), (̃k, l), ˆ̄2) J

(2̂)
2 (p(i,j), p(k,l))

−d0
3(1̂, l, k) d0

3(2̂, i, j)M0
4 (ˆ̄1, (̃l, k), (̃i, j), ˆ̄2) J

(2̂)
2 (p(l,k), p(i,j))

}
(5.23)

It is interesting to note the appearance of the subleading colour quark-anti-quark

antenna Ã0
4 and the accompanying A0

3 antennae. The sub-leading colour antenna is

introduced to remove spurious singular behaviour of the D0
4 antenna in the triple

collinear limit. Specifically, the D0
4 antenna contains the IR divergent limit between

colour-disconnected gluons,

D0
4(i, j, k, l)

i||j||l−→ P̃ijl→Q(x, y, z), (5.24)
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where the antenna tends to the QED-like triple collinear splitting function. This

divergent limit has no analogue in the leading colour physical matrix elements and

must be removed, a function fulfilled by the Ã0
4 antenna. The origin of this spurious

limit can be seen in the definition of the quark-gluon antennae.

The partons in a quark-gluon antenna are colour connected to colour-adjacent

neighbours, which unlike the quark-antiquark antennae, include partons at either

end of the antenna, e.g, partons i and l are colour connected in D0
4(i, j, k, l). This

is due to the antenna being derived from colour-ordered matrix elements for the

Supersymmetric QCD (SQCD) process χ̃ → g̃ g + partons where the gluino plays

the role of the quark. In SQCD the fermions are in the adjoint representation

and so are not restricted to being the endpoints of gluon strings as is the case in

non-supersymmetric QCD. The trace colour structure of the gluino-gluon matrix

elements allows colour connections to exist between colour disconnected gluons and

these configurations give rise to the unphysical divergent limits in the quark-gluon

antennae. For pure QCD matrix elements, the quarks always come in quark-anti-

quark pairs at the end of gluon strings such that no quark can separate two gluons

in a colour ordering.

Given the modifications due to the spurious limits of the quark-gluon antennae,

the double real subtraction term fits the general structure derived in section 2.6.

Due to the non-trivial factorization of the four-parton final-final antennae and the

large sum of permutations, it is not straightforward to show that this subtraction

term correctly mimics the IR divergent behaviour of the physical cross section. In

order to demonstrate its validity, the subtraction term has been tested numerically.

For each IR divergent configuration a set of momenta were generated using

RAMBO [127] such that the momenta fulfil a set of constraints defining the unresolved

configuration. In this configuration, the ratio of the full physical matrix element to

the subtraction term defined above is calculated,

R =
dσ̂RR

dσ̂S
. (5.25)

This procedure is then repeated for 10,000 different phase space points in the unre-

solved configuration defined by the constraints. The constraints are then tightened

to force the phase space points closer to the unresolved singular point and the ratio
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(a) Final-state triple collinear limit between
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that x = sij/s12, y = s1k/s12
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that x = (s12 − sij)/s12.

Figure 5.1: Plots displaying the convergence of the subtraction term to the physical

matrix element in various unresolved limits. The green data is furthest from the

singular configuration with the blue data closer to the singular region and the red

data the closest.

calculated for another 10,000 points. The procedure is repeated once more for a set

of points even closer to the singular point and the histogram of ratios for the three

sets of constraints plotted.

The selection of plots from four different unresolved configurations are shown in

figure 5.1. In each plot it is shown that as the unresolved singular limit is approached,

the distribution of ratios becomes more sharply peaked around one. This provides
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(a) Final-final gluon-gluon collinear limit for

the process gg → gggg.
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(b) Final-final gluon-gluon collinear limit for

the process qq̄ → gggg.
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(c) Initial-final gluon-gluon collinear limit for

the process gg → gggg.
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(d) Initial-final quark-gluon collinear limit for

the process qq̄ → gggg.

Figure 5.2: Distributions of R without azimuthal angular rotations for single

collinear limits of the processes gg → gggg and qq̄ → gggg.

statistical evidence for the convergence of the subtraction term to the physical cross

section in the IR divergent limits.

Testing the subtraction term in this way also gives a clear demonstration of the

issue of the presence of azimuthal correlations in the single collinear limits. The

origin and solution to this problem have been discussed in section 1.3.2, where it

was seen that the azimuthal correlations which spoil the subtraction in the single

collinear limit arise from splitting functions where a parent gluon splits into two

daughter gluons or a quark-anti-quark pair (and the various crossings of this con-

figuration to include initial-state partons). The process qq̄ → gggg contains the
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same final state as the process gg → gggg, the antenna subtraction for which has

been previously calculated [114]. Therefore by turning off the angular rotations

when computing the ratio R, both subtraction terms should display similar be-

haviour when testing the single collinear limit between two final-state partons. This

is seen in figure 5.2 (a) and (b), where it is seen that the subtraction terms for both

processes display a broad peak, characteristic of the presence of uncompensated

angular terms. An interesting comparison is between the two subtraction terms in

the initial-final collinear limit. From the discussions in 1.3.2, it is expected that

whilst the collinear limit between an initial-state gluon and a final-state gluon will

display azimuthal correlations, the collinear limit between a quark and a gluon will

not. This is clearly demonstrated by the plots in figure 5.2 (c) and (d). It is found

that the limit involving the initial-state quark is sharply peaked without the need

for angular rotations, whereas the corresponding limit in the purely gluonic process

displays a broad peak due to azimuthal correlations.

5.3.2 Construction of the real-virtual subtraction term

At leading colour, the real-virtual contribution to the qq̄ → ggg process is given by,

dσ̂RVNNLO = N 1
5

∫
dΦ3(p3, . . . , p5; p̄1, p̄2)

1

3!

dx1

x1

dx2

x2

×
∑

P (i,j,k)

M1
5 (1̂q, ig, jg, kg, 2̂q̄) J

(3)
2 (p3, . . . , p5). (5.26)

where the overall factor can be derived from (5.2),

N 1
5 = NLO

(
αsN

2π

)2
C̄2

C
. (5.27)

The subtraction term has contributions from the real-virtual subtraction term dσ̂V SNNLO,

the singly integrated double real subtraction term
∫

1
dσ̂S,1NNLO and the mass factor-

ization term dσ̂MF,RV
NNLO ,

dσ̂TNNLO = dσ̂V SNNLO −
∫

1

dσ̂S,1NNLO − dσ̂MF,1
NNLO. (5.28)

Following the discussion in section 2.6, the various contributions to the real-virtual

subtraction term can be efficiently organised in terms of integrated antenna strings,

dσ̂Tqq̄ = N 1
5

∫
dΦ3(p3, . . . , p5; p̄1, p̄2)

1

3!

dx1

x1

dx2

x2

∑
P (i,j,k)

{
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− J
(1)
5 (ˆ̄1q, ig, jg, kg, ˆ̄2q̄) M

0
5 (ˆ̄1q, ig, jg, kg, ˆ̄2q̄) J

(3)
2 (pi, pj, pk)

+ d0
3(ˆ̄1q, ig, jg)

[
M1

4 (ˆ̄̄1q, (̃ij)g, kg,
ˆ̄2q̄)δ1δ2

+ J
(1)
4 (ˆ̄̄1q, (̃ij)g, kg,

ˆ̄2q̄) M
0
4 (ˆ̄̄1q, (̃ij)g, kg,

ˆ̄2q̄)

]
J

(2)
2 (pĩj, pk)

+ f 0
3 (ig, jg, kg)

[
M1

4 (ˆ̄1q, (̃ij)g, (̃jk)g,
ˆ̄2q̄)δ1δ2

+ J
(1)
4 (ˆ̄1q, (̃ij)g, (̃jk)g,

ˆ̄2q̄) M
0
4 (ˆ̄1q, (̃ij)g, (̃jk)g,

ˆ̄2q̄)

]
J

(2)
2 (pĩj, pj̃k)

+ d0
3(ˆ̄2q̄, kg, jg)

[
M1

4 (ˆ̄1q, ig, (̃kj)g,
ˆ̄̄2q̄)δ1δ2

+ J
(1)
4 (ˆ̄1q, ig, (̃kj)g,

ˆ̄̄2q̄) M
0
4 (ˆ̄1q, ig, (̃kj)g,

ˆ̄̄2q̄)

]
J

(2)
2 (pi, pj̃k)

+

[
d1

3(ˆ̄1g, ig, jg)δ1δ2 + J̄1
3 (ˆ̄1g, ig, jg) d

0
3(ˆ̄1g, ig, jg)

]
× M0

4 (ˆ̄̄1q, (̃ij)g, kg,
ˆ̄2q̄) J

(2)
2 (pĩj, pk)

+

[
f 1

3 (ig, jg, kg)δ1δ2 + J̄
(1)
3 (ig, jg, kg) f

0
3 (ig, jg, kg)

]
× M0

4 (ˆ̄1q, (̃ij)g, (̃jk)g,
ˆ̄2q̄) J

(2)
2 (pĩj, pj̃k)

+

[
d1

3(ˆ̄2q̄, kg, jg)δ1δ2 + J̄
(1)
3 (ˆ̄1q, ig, (̃kj)g,

ˆ̄̄2q̄) d
0
3(ˆ̄2q̄, kg, jg)

]
× M0

4 (ˆ̄1q, ig, (̃kj)g,
ˆ̄̄2q̄) J

(2)
2 (pi, pj̃k)

−
[
Ã1

3(ˆ̄1, i, ˆ̄2) + ˜̄J (1)

3 (ˆ̄1q, ig, ˆ̄2q̄) A
0
3(ˆ̄1, i, ˆ̄2)

]
M0

4 (ˆ̄̄1q, j̃g, k̃g,
ˆ̄̄2q̄) J

(2)
2 (pj̃, pk̃)

+ b0 log

(
µ2

|s1ij|

)
d0

3(ˆ̄1g, ig, jg)δ1δ2 M
0
4 (ˆ̄̄1q, (̃ij)g, kg,

ˆ̄2q̄)J
(2)
2 (pĩj, pk)

+ b0 log

(
µ2

sijk

)
f 0

3 (ig, jg, kg)δ1δ2 M
0
4 (ˆ̄1q, (̃ij)g, (̃jk)g,

ˆ̄2q̄)J
(2)
2 (pĩj, pj̃k)

+ b0 log

(
µ2

|s2kj|

)
d0

3(ˆ̄2q̄, kg, jg)δ1δ2 M
0
4 (ˆ̄1q, ig, (̃jk)g,

ˆ̄̄2q̄)J
(2)
2 (pi, pj̃k)

+
1

2

[
1

2
D0

3,q(s¯̄1(̃ij)
)− 1

2
D0

3,q(s1̄j)−
1

3
F0

3 (s
(̃ij)k

) +
1

3
F0

3 (sjk) +A0
3,qq̄(s1̄2̄)−A0

3,qq̄(s¯̄12̄)

+δ1δ2

(
S(s

(̃ij)k
, sjk, x(̃ij)k,jk

)− S(sjk, sjk, 1)− S(s¯̄1(̃ij)
, sjk, x¯̄1(̃ij),jk

)

+S(s1̄j, sjk, x1̄j,jk)
)]

d0
3(ˆ̄1q, ig, jg) M

0
4 (ˆ̄̄1q, (̃ij)g, kg,

ˆ̄2q̄) J
(2)
2 (pĩj, pk)

+
1

2

[
− 1

2
D0

3,q(s1̄(̃ij)
) +

1

2
D0

3,q(s1̄i)−
1

2
D0

3,q(s2̄(̃jk)
) +

1

2
D0

3,q(s2̄k) +
1

3
F0

3 (s
(̃ij)(̃jk)

)

−1

3
F0

3 (sik) + δ1δ2

(
− S(s

(̃ij)(̃jk)
, sik, x(̃ij)(̃jk),ik

) + S(sik, sik, 1)
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+S(s
1̄(̃ij)

, sik, x1̄(̃ij),ik
)− S(s1̄i, sik, x1̄i,ik) + S(s

2̄(̃jk)
, sik, x2̄(̃jk),ik

)

−S(s2̄k, sik, x2̄k,ik)
)]

f 0
3 (ig, jg, kg) M

0
4 (ˆ̄1q, (̃ij)g, (̃jk)g,

ˆ̄2q̄) J
(2)
2 (pĩj, pj̃k)

+
1

2

[
1

2
D0

3,q(s¯̄2(̃jk)
)− 1

2
D0

3,q(s2̄j)−
1

3
F0

3 (s
i(̃jk)

) +
1

3
F0

3 (sij) +A0
3,qq̄(s1̄2̄)−A0

3,qq̄(s1̄¯̄2)

+δ1δ2

(
S(s

i(̃jk)
, sij, xi(̃jk),ij

)− S(sij, sij, 1)

−S(s¯̄2(̃kj)
, sij, x¯̄2(̃kj),ij

) + S(s2̄j, sij, x2̄j,ij)
)]

× d0
3(ˆ̄2q̄, kg, jg) M

0
4 (ˆ̄1q, ig, (̃kj)g,

ˆ̄̄2q̄) J
(2)
2 (pi, pj̃k)

+
1

2

[
−A0

3,qq̄(s¯̄1¯̄2) +A0
3,qq̄(s1̄2̄) +

1

2
D0

3,q(s¯̄1j̃)−
1

2
D0

3,q(s1̄j) +
1

2
D0

3,q(s¯̄2k̃)

−1

2
D0

3,q(s2̄k) + δ1δ2

(
S(s¯̄1¯̄2, sj̃k̃, x¯̄1¯̄2,j̃k̃)− S(s1̄2̄, sjk, x1̄2̄,jk)

−S(s¯̄1j̃, sj̃k̃, x¯̄1j̃,j̃k̃) + S(s1̄j̃, sjk, x1̄j̃,jk)− S(s¯̄2k̃, sj̃k̃, x¯̄2k̃,j̃k̃)

+S(s2̄k, sjk, x2̄k,jk)
)]

A0
3(ˆ̄1q, ig, ˆ̄2q̄) M

0
4 (ˆ̄̄1q, j̃g, k̃g,

ˆ̄̄2q̄) J
(2)
2 (pj̃, pk̃)

}
(5.29)

After integration only those terms introduced at the real-virtual level are passed

down to the double virtual subtraction term. Terms of the form (D0
3,q × A0

3) and

(A0
3,qq̄×d0

3) which were introduced at the real-virtual level, cancel. This means that

the only terms containing the spurious initial-initial antennae to be passed down to

the double virtual level are of the form Ã1
3 and (A0

3,qq̄×A0
3). As demonstrated in the

following section, these terms are combined with the integrated spurious four-parton

antenna Ã0
4 in the double virtual subtraction term.

5.3.3 Construction of the double virtual subtraction term

Following the discussion in section 2.6.4 and the explicit examples in chapters 3 and

4, the double virtual subtraction term can be constructed from the remaining terms

from the double real level, those terms introduced at the real-virtual level and the

appropriate double virtual mass factorization contribution. The resultant double

virtual subtraction term can be written in terms of single and double unresolved

integrated antenna strings, fitting the structure already seen in chapters 3 and 4 for

the simpler calculations presented there.

dσ̂Uqq̄ = −N 2
4 dΦ2(p3, p4; p1, p2)

1

2!

∑
{i,j}∈{3,4}

{
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J
(1)
4 (ˆ̄1q, ig, jg, ˆ̄2q̄)

(
M1

4 (ˆ̄1q, ig, jg, ˆ̄2q̄)−
b0

ε
M1

4 (ˆ̄1q, ig, jg, ˆ̄2q̄)

)
+

1

2
J

(1)
4 (ˆ̄1q, ig, jg, ˆ̄2q̄)⊗ J (1)

4 (ˆ̄1q, ig, jg, ˆ̄2q̄) M
0
4 (ˆ̄1q, ig, jg, ˆ̄2q̄)

+ J
(2)
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) M

0
4 (ˆ̄1q, ig, jg, ˆ̄2q̄)

}
J

(2)
2 (pi, pj). (5.30)

The explicit form of the single unresolved integrated antenna string can be derived

from the strings listed in section B.1, whereas the form of the double unresolved

integrated antenna string is listed in section B.2. The explicit poles of this subtrac-

tion term are expected to match those of the two-loop amplitude, thus rendering

the leading colour NNLO correction to q q̄ → g g scattering finite at all stages of

the calculation.

It is interesting to compare the form of the double virtual subtraction term for

this calculation with the leading colour subtraction term for the e+e− → 3j antenna

subtraction calculation [108]. Although the e+e− annihilation calculation involves

only final-state partons, the integrated form of the subtraction terms is expected to

closely follow the qq̄ → gg double virtual subtraction term up to mass factorization

contributions. The double virtual subtraction term as presented in [108] can be

reformulated in terms of final-state integrated antenna strings to fit the double

virtual structure discussed in section 2.6,

dσ̂U = N dΦ3(p1, p2, p3, q
2)

{
J

(1)
3 (1q, 3g, 2q̄)

(
M1

3 (1q, 3g, 2q̄)−
b0

ε
M0

3 (1q, 3g, 2q̄)

)
+

1

2
J

(1)
3 (1q, 3g, 2q̄)⊗ J (1)

3 (1q, 3g, 2q̄) M
0
3 (1q, 3g, 2q̄)

+ J
(2)
3 (1q, 3g, 2q̄) M

0
3 (1q, 3g, 2q̄)

}
J

(3)
3 (p1, p2, p3). (5.31)

The single unresolved integrated antenna string is listed in section B.1. The double

unresolved integrated antenna string for the relevant final-state partons is given by,

J
(2)
3 (1q, 3g, 2q̄) = −1

2
D0

4(s13) +
1

2
D0

4(s23)− 1

2
Ã0

4(s12)

+
1

2
D1

3(s13) +
1

2
D1

3(s23)− Ã1
3(s12)

+
1

2

b0

ε
D0

3(s13) +
1

2

b0

ε
D0

3(s23)− 1

4
D0

3(s13)⊗D0
3(s13)
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− 1

4
D0

3(s23)⊗D0
3(s23) +

1

2
A0

3(s12)⊗A0
3(s12). (5.32)

The ⊗ symbol here just denotes trivial multiplication and the factor N carries all

overall colour factors, QCD coupling and non-QCD factors. It is clear that simi-

lar combinations of integrated antennae occur in the double unresolved integrated

antenna string generated in the qq̄ → gg calculation. For future research it would

be interesting to calculate the analogue of this process for hadronic initial states,

the leading colour contribution to qq̄ → V + g and compare the double unresolved

integrated antenna string for that calculation. In particular it remains an open

question whether the double unresolved integrated antenna strings obey the same

combination rules that the single unresolved integrated antenna strings obey, i.e.

establishing whether or not the following equality holds,

J
(2)
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) = J

(2)
2 (ˆ̄1q, ig) + J

(2)
2 (ig, jg) + J

(2)
2 (jg, ˆ̄2q̄). (5.33)

In this equation the J
(2)
2 (ˆ̄1q, ig) contains a suitable partition of the spurious initial-

initial antennae in (5.32) and J
(2)
2 (ig, jg) can be calculated from the NNLO leading

colour correction to the process H → gg.
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Chapter 6

Discussion, Conclusions and

Outlook

The research presented in this thesis aims to address two main issues in the field

of precision QCD calculations: the extension of the antenna subtraction formalism

to hadronic initial states including quark processes, and uncovering the general

structure of NNLO calculations within the antenna framework.

The issue of introducing quarks to scattering processes with hadronic initial

states presents the antenna subtraction formalism with both practical and theoreti-

cal challenges. One of the great advantages of the antenna approach to subtraction

is its generality. The method is to a large degree independent of the specific cal-

culation being performed, that information is instead held in the choice of antenna

function used in a particular calculation.

When extending the method to include quarks, the appropriate substitution

of antenna functions is often sufficient. A clear example of this is the double

real subtraction term for the process qq̄ → gggg presented in chapter 5. The

analogous process involving only gluons is the double real subtraction term for

the process gg → gggg in the “X6 topology” (where the initial-state gluons are

colour adjacent); the antenna subtraction term for this process has been previ-

ously calculated and presented in [125]. Comparing the two subtraction terms, it

is clear that many of the terms are related by a simple substitution of quarks for

gluons in the antenna functions and matrix elements. For example, the initial-
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final and initial-initial four-parton antennae undergo the following substitutions,

F 0
4 (1, i, j, k) → D0

4(1, i, j, k), F 0
4 (1, i, 2, k) → Ã0

4(1, i, k, 2). The latter substitution

is interesting as it demonstrates nicely that the spurious limits removed using the

Ã0
4 antenna are not specific to the D0

4 antenna, but a result of the more general

problem of unresolved gluons separated by an initial state parton. Such a configu-

ration cannot occur in the physical matrix elements for either the quark initiated

process or the X6 topology of the gluonic process. This demonstrates that not only

are the general properties of the physical cross section mimicked by the antenna

formalism, but also the spurious behaviour of the antenna formalism is to a large

degree process independent, with the specific form of the antenna used to remove

any spurious behaviour dictated by the process dependent information.

The comparison between gluonic and quark initiated subtraction terms also high-

lights a disadvantage of the antenna subtraction method at NNLO. For processes

requiring quark-gluon or gluon-gluon four-parton antennae in either the final-final

or initial-final configurations the singularity structure of the antenna does not ex-

actly match the singularity structure of the physical matrix elements. The colour

structure of the physical amplitudes used to define the quark-gluon and gluon-gluon

antenna functions is a trace over adjoint colour indices. This colour structure will

never match the colour structure (and thus IR singularities) of a particular string of

partons in a physical matrix element due to the colour correlations between partons

at either end of the antenna, not present in the physical matrix elements. In the case

of the final-final antennae, the problem is solved by decomposing the antenna into

sub-antennae which have singularity structures appropriate to the colour ordering of

the physical matrix elements. The additional colour correlations in the initial-final

antennae are taken care of by allowing a single antenna to provide the subtraction

for several matrix elements with permuted gluon orderings. The remaining singu-

larities associated with unphysical configurations are removed using initial-initial

antennae, such as the F 0
4 (1, i, 2, k) and Ã0

4(1, i, k, 2) previously discussed.

Although the similarities between gluonic and quark subtraction terms highlight

some interesting issues, the correspondence between the two is limited. The main

problem when introducing quarks is the identity changing nature of many collinear
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limits. Gluonic scattering processes only contain one flavour of parton whereas

scattering processes involving quarks have to accommodate gluon-gluon, quark-

gluon and quark-anti-quark collinear limits. The quark-antiquark collinear limits

change the type of process being considered, with each quark-anti-quark collinear

configuration reducing the number of quarks in the resulting configuration by two.

The antenna subtraction method is well suited to accommodate such configurations

through use of the E, G and H species of antenna functions which contain the

appropriate limits.

The quark-gluon collinear limits are more problematic because although they do

not change the overall partonic content of the process, the identity of an initial-state

parton may change in such a limit. The issue of gluon initiated antennae involving

quarks was discussed in detail in sections 2.5.1 and 2.6.1. At NLO, the issue of

initial-state gluons has been tackled by partitioning the quark-gluon antennae into

sub-antennae via partial fractioning, as described in [36]. This method has been

demonstrated by explicit calculations in chapters 3 and 4 where use was made of

the gluon initiated D0
3 sub-antennae. In this thesis an alternative method for dealing

with such configurations has been presented. Instead of decomposing the antennae

into sub-antennae, the IR divergent limits are removed using a particular choice of

full antenna functions, some of which belong to the initial-initial configuration. This

method is equivalent to the sub-antenna approach at NLO but it less straightforward

so has not been used for the practical calculations presented here.

Where the new method is applicable is at NNLO for double unresolved con-

figurations involving initial-state gluons and final-state quarks. The sub-antenna

approach to this problem has not been fully developed and may require additional

master integrals to compute the integrated sub-antenna. Unlike the case for the

decomposition of the final-final antennae into sub-antennae, where only the integral

of the full antenna was required, the quark-gluon or gluon-quark sub-antennae con-

tained within the initial-final D0
4 antenna factor onto physically different matrix ele-

ments so the analytic integration of the sub-antennae themselves would be required.

The alternative approach using full antennae, as outlined in 2.6.1, requires no addi-

tional integrals or decompositions to the ones already documented. The problematic

September 24, 2012



Chapter 6. Discussion, Conclusions and Outlook 222

configurations occur in the quark-gluon and gluon-gluon initiated channels for two-

quark four-gluon scattering and implementing the method described in section 2.6.1

is an important next step in the pp → 2j calculation. Although implemented for a

different purpose, the method of using an initial-initial antenna to remove spurious

singularities has been used before when removing the spurious limits of the initial-

final F 0
4 and D0

4 antennae. It is encouraging that this method has been shown to

work in two different calculations, the details of which may provide useful guidance

when implementing the method for initial-state gluons.

By resolving the remaining issues associated with unresolved configurations in-

volving quarks, the method of antenna subtraction at NNLO for hadronic collisions

involving quarks is now at the same level of development as is the case for purely

gluonic scattering. The double real, real-virtual and double virtual subtraction

terms are currently under construction for the remaining partonic channels involv-

ing quarks contributing to dijet production at the LHC.

The other main aim of the research presented in this thesis is to understand

the structures present in the double real, real-virtual and double virtual subtraction

terms within the antenna subtraction method. At NLO the construction of the real

subtraction term is straightforward and general subtraction terms have been defined

for every possible colour-ordered string of partons involving initial-state or final-state

partons. By considering the integrated form of these general subtraction terms and

studying the form of the NLO mass factorization contributions, the concept of an

integrated antenna string has been introduced. By systematically combining the

mass factorization terms and the integrated antennae into an integrated antenna

string free from initial-state collinear poles, the explicit IR poles of the virtual sub-

traction term can be cancelled against the explicit poles of the virtual contribution

with ease.

The formulation of the virtual subtraction term using integrated antenna strings

and tree-level matrix elements reflects Catani’s one-loop factorization formula and

there is a simple correspondence between the poles of the colour-ordered insertion

operators and the integrated antenna strings. An interesting consequence of this

correspondence is that with the structure of the calculation understood, the calcu-
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lation can start with the virtual contribution rather than the more complicated real

contribution. The poles of the virtual contribution are easily written in terms of

integrated antenna strings. From the integrated antenna strings, the unintegrated

subtraction term can be inferred and applied to the IR divergent real cross section.

In addition to the integrated antenna strings containing the poles of the virtual

amplitude, the IR finite identity changing integrated antenna strings can also be

extracted from the form of the one-loop contribution. From the identity changing

integrated antenna strings the unintegrated form of the subtraction term which re-

moves identity changing initial-state collinear divergence from the real cross section

can be inferred and implemented. It is clear that by understanding the general

structure of the NLO calculation at both the real and virtual levels in terms of inte-

grated antenna strings, the antenna subtraction method can be implemented using

either the real or virtual contribution as the starting point.

At NNLO, the antenna structure of the calculation is more complicated due to

the multiple unresolved limits and various colour correlations between unresolved

partons. Nonetheless structures have been found which naturally extend the struc-

tures present in NLO calculations and correspond to the well known singularity

structures of one- and two-loop matrix elements. The structure of the double real

subtraction term, previously described in [32,108,125] has been reorganised so that

it corresponds more closely to the structures seen in the real-virtual and double

virtual subtraction terms. In this new form, it is clear where in the real-virtual or

double virtual subtractions terms each block of terms in the double real is added

back to after integration.

At the real-virtual level, the terms inherited from the double real after integration

can in many instances be collected together with the appropriate mass factorization

terms to form integrated antenna strings. Such strings are useful for removing the

explicit poles of one-loop physical matrix elements, reduced matrix elements and an-

tenna functions. Understanding the general structure of the real-virtual subtraction

in terms of integrated antenna strings and other predictable structures allows, in

principle, for the real-virtual subtraction term to be constructed without reference

to the double real subtraction term and indeed can even inform the construction of
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the double real subtraction term. The presence of spurious singularities in the dou-

ble real subtraction term can alter the structure at the real-virtual level, as seen by

the presence of the initial-initial A0
3 and Ã1

3 antennae in the real-virtual subtraction

term in chapter 5. These terms, although not precisely fitting the general struc-

ture as laid out in section 2.6, modify the formulae in a systematic and predictable

fashion.

By organising the double real and real-virtual subtraction terms as described in

section 2.6 the structure of the terms passed down to the double virtual subtraction

term is evident. In particular, some consideration has been given to the best way

to incorporate the double virtual mass factorization contribution and combine it

with the various integrated antenna functions. A formulation of the double virtual

subtraction term has been presented which systematically combines the mass fac-

torization kernels and integrated antenna functions into integrated antenna strings

containing explicit poles but free from initial-state collinear poles. This is achieved

by defining a double unresolved integrated antenna string , J
(2)
n , in addition to the

previously defined single unresolved integrated antenna string, J
(1)
n . The final for-

mulation of the double virtual subtraction term reflects the structure of Catani’s

two loop factorization formula.

The results and discussion of chapter 5 suggest that the double unresolved in-

tegrated antenna strings may be constructed along the same lines as the single

unresolved integrated antenna string, using knowledge of the colour ordering of the

two-loop matrix element and the known general structure of J
(2)
n . If so, the antenna

subtraction formalism would allow the IR poles of the double virtual contribution

to be straightforwardly written in terms of integrated antenna functions which have

a direct analogue as subtraction terms in the double real and real-virtual calcula-

tions. The gain from this approach is that double real corrections generally involve

a large number of permutations of gluons and complicated cross-cancellations be-

tween orderings. If the overall subtraction term were predictable from the virtual

contribution, less time and effort would have to be paid in the construction of the

double real subtraction term.

This approach may be particularly useful when dealing with sub-leading colour

September 24, 2012



Chapter 6. Discussion, Conclusions and Outlook 225

contributions to the double real cross section. For relatively large numbers of par-

tons it becomes difficult to rewrite the sub-leading colour contributions in terms

of squared matrix elements with well understood factorization properties. In these

cases if the form of the double real subtraction term could be inferred from the real

virtual and double virtual subtraction terms then a successful double real subtrac-

tion term may be constructed without having to reformulate the sub-leading colour

matrix elements into a useful form.

Further insights into the general structure of NNLO calculations within the an-

tenna subtraction framework will come from performing additional calculations for

the remaining dijet production channels, at leading and sub-leading colour, as well

as the complementary V+jet and H+jet calculations currently under construction.

It is anticipated that in addition to the value of the explicit calculations presented

here, the techniques and structures devised during the course of research for this

thesis will accelerate the completion of the remaining calculations and provide a

greater understanding of precision QCD.
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Appendix A

Collinear splitting kernels

A.1 Tree-level splitting kernels

The splitting kernels present in the definition of the mass factorisation terms (2.138),

(2.195) and (2.207) contain colour factors which can distribute the colour ordered

splitting kernels across multiple orders in the colour decomposition. In a similar

fashion to the definition of b0 and b0,F as the N and NF proportional terms in the

first coefficient of the QCD β-function, the colour ordered splitting kernels can be

decomposed into different colour structures. The tree-level splitting kernels may be

decomposed into a number of different colour structures.

The CF , CA, NF decomposition

Following a decomposition in the Casimir operators CA, CF as well as TR, NF [19],

P (0)
qq (x) = CF p̄(0)

qq (x),

P (0)
qg (x) = TR p̄

(0)
qg (x),

P (0)
gq (x) = CF p̄(0)

gq (x),

P (0)
gg (x) = CA p̄

(0)
gg (x) +NF p̄

(0)
gg,F (x), (A.1)

In this decomposition the colour ordered splitting kernels are given by [36],

p̄(0)
qq (x) = 2D0(x)− 1− x+

3

2
δ(1− x),

p̄(0)
qg (x) = 1− 2x+ 2x2,
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p̄(0)
gq (x) =

2

x
− 2 + x,

p̄(0)
gg (x) = 2D0(x) +

2

x
− 4 + 2x− 2x2 + b0δ(1− x),

p̄
(0)
gg,F (x) = b0,F δ(1− x), (A.2)

where the distributions Dn(x) are defined in terms of plus-distributions,

Dn(x) =

(
lnn(1− x)

1− x

)
+

. (A.3)

The mass factorisation kernels are classified using a similar notation to the splitting

kernels and are decomposed into the appropriate colour structures accordingly,

Γ1
qq(x) = CF Γ̄1

qq(x),

Γ1
qg(x) = TR Γ̄1

qg(x),

Γ1
gq(x) = CF Γ̄1

gq(x),

Γ1
gg(x) = CA Γ̄1

gg(x) +NF Γ̄1
gg,F (x), (A.4)

where the mass factorization kernels in the MS scheme are related to the splitting

kernels by [47],

Γ1
ij(x) = −1

ε
P

(0)
ij (x) (A.5)

The N , NF decomposition

An alternative decomposition is in the colour factors N and NF . Expanding the

splitting kernels into this set of colour factors defines a new set of colour ordered

splitting kernels,

P (0)
qq (x) =

(
N2 − 1

N

)
p(0)
qq (x),

P (0)
qg (x) = p(0)

qg (x),

P (0)
gq (x) =

(
N2 − 1

N

)
p(0)
gq (x),

P (0)
gg (x) = N p(0)

gg (x) +NF p
(0)
gg,F (x). (A.6)

Decomposing the mass factorisation kernels in the same colour factors yields,

Γ1
qq(x) =

(
N2 − 1

N

)
Γ1
qq(x),
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Γ1
qg(x) = Γ1

qg(x),

Γ1
gq(x) =

(
N2 − 1

N

)
Γ1
gq(x),

Γ1
gg(x) = N Γ1

gg(x) +NF Γ1
gg,F (x). (A.7)

The splitting kernels in the N, NF expansion are related to those defined in (A.2)

via the relations:

p(0)
qq (x) =

1

2
p̄(0)
qq (x),

p(0)
qg (x) =

1

2
p̄(0)
qg (x)

p(0)
gq (x) =

1

2
p̄(0)
gq (x)

p(0)
gg (x) = p̄(0)

gg (x)

p
(0)
gg,F (x) = p̄

(0)
gg,F (x)

(A.8)

with the mass factorisation kernels in each expansion obeying equivalent relations.

A.2 One-loop splitting kernels

At NLO the P
(1)
qiqj and P

(1)
qiq̄j splitting kernels contain non-trivial flavour structure

and are classified according to flavour singlet, P S(1), and flavour non-singlet, P V (1)

contributions [19].

P (1)
qiqj

= δijP
V (1)
qq + P S(1)

qq ,

P
(1)
qiq̄j = δijP

V (1)
qq̄ + P

S(1)
qq̄ , (A.9)

where P
S(1)
qq̄ = P

S(1)
qq . The one-loop splitting kernels contain several colour structures

and can be decomposed in a similar fashion to the leading-order splitting kernels.

The CF , CA, NF decomposition

P V (1)
qq = C2

F p̄V (1)
qq,a + CFCA p̄

V (1)
qq,b + CFNFTR p̄

V (1)
qq,c ,

P
V (1)
qq̄ = CF

(
CF −

CA
2

)
p̄
V (1)
qq̄ ,
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P S(1)
qq = CF p̄S(1)

qq ,

P (1)
qg = CFTR p̄

(1)
qg,a + CATR p̄

(1)
qg,b,

P (1)
gq = C2

F p̄(1)
gq,a + CFCA p̄

(1)
gq,b + CFNFTR p̄

(1)
gq,c,

P (1)
gg = C2

A p̄
(1)
gg,a + CANFTR p̄

(1)
gg,b + CFNFTR p̄

(1)
gg,c, (A.10)

where the explicit forms of the one-loop splitting kernels are documented in [19,128,

129].

For the purposes of the DGLAP evolution, the parton distributions are decom-

posed into a flavour basis of non-singlet fn and singlet fs combinations. The flavour

asymmetry distributions are given by,

f±n,ij = (fi ± f̄i)− (fj ± f̄j). (A.11)

The total valence distribution is given by,

f vn =

NF∑
i=1

(fi − f̄i), (A.12)

and the singlet distribution, which mixes with the gluon distribution during DGLAP

evolution, is given by,

fs =

NF∑
i=1

(fi + f̄i). (A.13)

Each distribution is respectively evolved between momentum scales using their cor-

responding DGALP evolution kernels, P±n , P v
n and Ps. These kernels are related to

the splitting kernels which appear in fixed order calculations in the following way,

P±n = P V
qq ± P V

qq̄ ,

P v
n = P V

qq − P V
qq̄ +NF (P S

qq − P S
qq),

Ps = P V
qq + P V

qq̄ +NF (P S
qq + P S

qq̄). (A.14)

The singlet and non-singlet splitting kernels have the perturbative expansions,

P V
qq = P (0)

qq +

(
αs
2π

)
P V (1)
qq +O(α2

s),

P V
qq̄ = 0 +

(
αs
2π

)
P
V (1)
qq̄ +O(α2

s),
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P S
qq = 0 +

(
αs
2π

)
P S(1)
qq +O(α2

s),

P S
qq̄ = 0 +

(
αs
2π

)
P
S(1)
qq̄ +O(α2

s). (A.15)

As previously mentioned, at one-loop order P
S(1)
qq = P

S(1)
qq̄ , which simplifies the

one-loop DGLAP evolution kernels,

P±(1)
n = P V (1)

qq ± P V (1)
qq̄ ,

P v(1)
n = P V (1)

qq − P V (1)
qq̄ ,

P (1)
s = P V (1)

qq + P
V (1)
qq̄ + 2NFP

S(1)
qq . (A.16)

Finally, a set of like-flavoured and unlike-flavoured quark-quark and quark-antiquark

one-loop splitting kernels can be defined,

P (1)
qq = P V (1)

qq + P S(1)
qq ,

P
(1)
qq̄ = P

V (1)
qq̄ + P S(1)

qq ,

P
(1)
qQ = P S(1)

qq ,

P
(1)

qQ̄
= P S(1)

qq , (A.17)

which have the following colour decompositions,

P (1)
qq = CF

[
CF p̄(1)

qq,a + CA p̄
(1)
qq,b +NFTR p̄

(1)
qq,c + p̄

(1)
qq,d

]
, (A.18)

P
(1)
qq̄ = CF

[(
CF −

CA
2

)
p̄

(1)
qq̄,a + p̄

(1)
qq̄,b

]
,

P
(1)
qQ = CF p̄

(1)
qQ,

P
(1)

qQ̄
= CF p̄

(1)

qQ̄
, (A.19)

where p̄
(1)
qq,d = p̄

(1)
qq̄,b = p̄

(1)
qQ = p̄

(1)

qQ̄
= p̄

S(1)
qq and P

S(1)
qq = CF p̄

S(1)
qq . It is worth not-

ing the simple colour structure of the singlet quark-quark (and quark-anti-quark)

splitting kernel, it being simply an overall colour factor with no more complicated

colour structures. This simplification can be traced back to the fact that the singlet

splitting kernel is zero at O(α0
s), so the one-loop correction is actually the leading

order contribution and only carries a single overall colour factor. A similar situation

occurs for the non-singlet quark-anti-quark splitting function which only contains a
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single overall colour structure which can be rewritten as,

CF

(
CF −

CA
2

)
= − CF

2CA
. (A.20)

This “leading order” overall colour structure can again be attributed to the fact that

the conventional leading order contribution is zero for the quark-anti-quark splitting

kernel.

Although the one-loop splitting kernels are a key ingredient for the NNLO mass

factorisation contribution, it is the mass factorisation kernel Γ2
ba(x) [46, 47], which

enters explicitly into the formula (2.207) for the double virtual mass factorisation

terms. This quantity may be decomposed into the appropriate colour structures

accordingly,

Γ2
qq = CF

[
CF Γ̄2

qq,a + CA Γ̄2
qq,b + Γ̄2

qq,c +NF Γ̄2
qq,d

]
,

Γ2
qq̄ = CF

[
Γ̄2
qq̄,a +

(
CF −

CF
CA

)
Γ̄2
qq̄,b

]
,

Γ2
qQ = CF Γ̄2

qQ,

Γ2
qQ̄ = CF Γ2

qQ̄,

Γ2
qg = CF Γ̄2

qg,a + CA Γ̄2
qg,b +NF Γ̄2

qg,c,

Γ2
gq = CF

[
CF Γ̄2

gq,a + CAΓ̄2
gq,b +NF Γ̄2

gq,c

]
,

Γ2
gg = C2

A Γ̄2
gg,a + CANF Γ̄2

gg,b + CFNF Γ̄2
gg,c +N2

F Γ̄2
gg,d, (A.21)

with the colour ordered mass factorisation kernels given by:

Γ̄2
qq,a =

1

2ε2
[
p̄(0)
qq ⊗ p̄(0)

qq

]
− 1

2ε
p̄(1)
qq,a,

Γ̄2
qq,b =

b0

2ε2
p̄(0)
qq −

1

2ε
p̄

(1)
qq,b,

Γ̄2
qq,c =

1

4ε2
[
p̄(0)
qg ⊗ p̄(0)

gq

]
− 1

2ε
p̄

(1)
qq,d,

Γ̄2
qq,d =

b0,F

2ε2
p̄0
qq −

1

4ε
p̄(1)
qq,c. (A.22)

Γ̄2
qq̄,a =

1

4ε2
[
p̄(0)
qg ⊗ p̄(0)

gq

]
− 1

2ε
p̄

(1)
qq̄,b,

Γ̄2
qq̄,b = − 1

2ε
p̄

(1)
qq̄,a. (A.23)

Γ̄2
qQ =

1

4ε2
p̄(0)
qg ⊗ p̄(0)

gq −
1

2ε
p̄

(1)
qQ.

Γ̄2
qQ̄ =

1

4ε2
p̄(0)
qg ⊗ p̄(0)

gq −
1

2ε
p̄

(1)

qQ̄
.
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Γ̄2
qg,a =

1

4ε2
[
p̄(0)
qq ⊗ p̄(0)

qg

]
− 1

4ε
p̄(1)
qg,a,

Γ̄2
qg,b =

1

4ε2

[[
p̄(0)
qg ⊗ p̄(0)

gg

]
+ b0 p̄

(0)
qg

]
− 1

4ε
p̄

(1)
qg,b,

Γ̄2
qg,c =

1

4ε2

[[
p̄(0)
qg ⊗ p̄

(0)
gg,F

]
+ b0,F p̄(0)

qg

]
. (A.24)

Γ̄2
gq,a =

1

2ε2
[
p̄(0)
gq ⊗ p̄(0)

qq

]
− 1

2ε
p̄(1)
gq,a,

Γ̄2
gq,b =

1

2ε2

[[
p̄(0)
gg ⊗ p̄(0)

gq

]
+ b0 p̄

(0)
gq

]
− 1

2ε
p̄

(1)
gq,b,

Γ̄2
gq,c =

1

2ε2

[[
p̄

(0)
gg,F ⊗ p̄

(0)
gq

]
+ b0,F p̄(0)

gq

]
− 1

4ε
p̄(1)
gq,c. (A.25)

Γ̄2
gg,a =

1

2ε2

[[
p̄(0)
gg ⊗ p̄(0)

gg

]
+ b0 p̄

(0)
gg

]
− 1

2ε
p̄(1)
gg,a,

Γ̄2
gg,b =

1

2ε2

[[
p̄(0)
gg ⊗ p̄

(0)
gg,F + p̄

(0)
gg,F ⊗ p̄

(0)
gg

]
+ b0 p̄

(0)
gg,F + b0,F p̄(0)

gg

]
− 1

4ε
p̄

(1)
gq,b,

Γ̄2
gg,c =

1

4ε2
[
p̄(0)
gq ⊗ p̄(0)

qg

]
− 1

2ε
p̄(1)
gg,c,

Γ̄2
gg,d =

1

2ε2

[[
p̄

(0)
gg,F ⊗ p̄

(0)
gg,F

]
+ b0,F p̄

(0)
gg,F

]
. (A.26)

The N , NF decomposition

As was done for the tree level splitting kernels it is possible to decompose the one-

loop splitting kernels into the N, NF colour factors:

P (1)
qq =

(
N2 − 1

N

)[
N p(1)

qq + p̃(1)
qq +

1

N
˜̃p(1)
qq +NF p

(1)
qq,F

]
,

P
(1)
qq̄ =

(
N2 − 1

N

)[
p

(1)
qq̄ +

1

N
p̃

(1)
qq̄

]
,

P
(1)
qQ =

(
N2 − 1

N

)
p

(1)
qQ,

P
(1)

qQ̄
=

(
N2 − 1

N

)
p

(1)

qQ̄
,

P (1)
qg = N p(1)

qg +
1

N
p̃(1)
qg ,

P (1)
gq =

(
N2 − 1

N

)[
N p(1)

gq +
1

N
p̃(1)
gq +NF p

(1)
gq,F

]
,

P (1)
gg = N2 p(1)

gg +NNF p
(1)
gg,F +

NF

N
p̃

(1)
gg,F , (A.27)
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The relations between the two sets of colour-ordered splitting kernels are obtained

by comparing coefficients,

p(1)
qq =

1

4
p̄(1)
qq,a +

1

2
p̄

(1)
qq,b,

p̃(1)
qq =

1

2
p̄

(1)
qq,d,

˜̃p(1)
qq = −1

4
p̄(1)
qq,a,

p
(1)
qq,F =

1

4
p̄(1)
qq,c. (A.28)

p
(1)
qq̄ =

1

2
p̄

(1)
qq̄,b,

p̃
(1)
qq̄ = −1

4
p̄

(1)
qq̄,a. (A.29)

p
(1)
qQ =

1

2
p̄

(1)
qQ. (A.30)

p
(1)

qQ̄
=

1

2
p̄

(1)

qQ̄
. (A.31)

p(1)
qg =

1

4
p̄(1)
qg,a +

1

2
p̄

(1)
qg,b,

p̃(1)
qg = −1

2
p̄(1)
qg,a. (A.32)

p(1)
gq =

1

4
p̄(1)
gq,a +

1

2
p̄

(1)
gq,b,

p̃(1)
gq = −1

4
p̄(1)
gq,a,

p
(1)
gq,F =

1

4
p̄(1)
gq,c. (A.33)

p(1)
gg = p̄(1)

gg,a,

p
(1)
gg,F =

1

2
p̄

(1)
gg,b +

1

4
p̄(1)
gg,c,

p̃
(1)
gg,F = −1

4
p̄(1)
gg,c. (A.34)

Using this decomposition for the tree-level and one-loop splitting kernels, the mass

factorisation kernels can be written in the form,

Γ2
qq =

(
N2 − 1

N

)[
N Γ2

qq + Γ̃2
qq +

1

N
˜̃Γ2
qq +NF Γ2

qq,F

]
,

Γ2
qq̄ =

(
N2 − 1

N

)[
Γ2
qq̄ +

1

N
Γ̃2
qq̄

]
,

Γ2
qQ =

(
N2 − 1

N

)
Γ2
qQ,

Γ2
qQ̄ =

(
N2 − 1

N

)
Γ2
qQ̄,
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Γ2
qg = N Γ2

qg +
1

N
Γ̃2
qg +NF Γ2

qg,F ,

Γ2
gq =

(
N2 − 1

N

)[
N Γ2

gq +
1

N
Γ̃2
gq +NF Γ2

gq,F

]
,

Γ2
gg = N2 Γ2

gg +NNF Γ2
gg,F +

NF

N
Γ̃2
gg,F +N2

F Γ2
gg,F 2 , (A.35)

with the colour ordered mass factorisation kernels given by:

Γ2
qq =

1

2ε2

[[
p(0)
qq ⊗ p(0)

qq

]
+ b0 p

(0)
qq

]
− 1

2ε
p(1)
qq ,

Γ̃2
qq =

1

2ε2
[
p(0)
qg ⊗ p(0)

gq

]
− 1

2ε
p̃(1)
qq ,

˜̃Γ2
qq = − 1

2ε2
[
p(0)
qq ⊗ p(0)

qq

]
− 1

2ε
˜̃p(1)
qq ,

Γ2
qq,F =

1

2ε2
b0,F p(0)

qq −
1

2ε
p

(1)
qq,F . (A.36)

Γ2
qq̄ =

1

2ε2
[
p(0)
qg ⊗ p(0)

gq

]
− 1

2ε
p

(1)
qq̄ ,

Γ̃2
qq̄ = − 1

2ε
p̃

(1)
qq̄ . (A.37)

Γ2
qQ =

1

2ε2
[
p(0)
qg ⊗ p(0)

gq

]
− 1

2ε
p

(1)
qQ. (A.38)

Γ2
qQ̄ =

1

2ε2
[
p(0)
qg ⊗ p(0)

gq

]
− 1

2ε
p

(1)

qQ̄
. (A.39)

Γ2
qg =

1

2ε2

[[
p(0)
qg ⊗ p(0)

gg

]
+
[
p(0)
qq ⊗ p(0)

qg

]
+ b0 p

(0)
qg

]
− 1

2ε
p(1)
qg ,

Γ̃2
qg = − 1

2ε2
[
p(0)
qq ⊗ p(0)

qg

]
− 1

2ε
p̃(1)
qg ,

Γ2
qg,F =

1

2ε2

[[
p(0)
qg ⊗ p

(0)
gg,F

]
+ b0,F p(0)

qg

]
. (A.40)

Γ2
gq =

1

2ε2

[[
p(0)
gg ⊗ p(0)

gq + p(0)
gq ⊗ p(0)

qq

]
+ b0 p

(0)
gq

]
− 1

2ε
p(1)
gq ,

Γ̃2
gq =

1

2ε2
[
p(0)
gq ⊗ p(0)

qq

]
− 1

2ε
p̃(1)
gq ,

Γ2
gq,F =

1

2ε2

[[
p

(0)
gg,F ⊗ p

(0)
gq

]
+ b0,F p(0)

gq

]
− 1

2ε
p

(1)
gq,F . (A.41)

Γ2
gg =

1

2ε2

[[
p(0)
gg ⊗ p(0)

gg

]
+ b0 p

(0)
gg

]
− 1

2ε
p(1)
gg ,

Γ2
gg,F =

1

2ε2

[
2
[
p(0)
gg ⊗ p

(0)
gg,F

]
+
[
p(0)
gq ⊗ p(0)

qg

]
+ b0 p

(0)
gg,F + b0,F p(0)

gg

]
− 1

2ε
p

(1)
gg,F ,

Γ̃2
gg,F = − 1

2ε2
[
p(0)
gq ⊗ p(0)

qg

]
− 1

2ε
p̃

(1)
gg,F ,

Γ2
gg,F 2 =

1

2ε2

[[
p

(0)
gg,F ⊗ p

(0)
gg,F

]
+ b0,F p

(0)
gg,F

]
. (A.42)
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Appendix B

Integrated antenna strings

In this chapter a number of explicit expressions for the relevant integrated antenna

strings are collected for reference. In the initial-final and initial-initial configurations

the following notation is employed: δ1 = δ(1− x1), δ2 = δ(1− x2).

B.1 Single unresolved integrated antenna strings

Final state strings:

J
(1)
2 (iq, jq̄) = A0

3(sij)

J
(1)
3 (iq, jg, kq̄) =

1

2
D0

3(sij) +
1

2
D0

3(sjk)

J (1)
n (aq, ig, jg, · · · , kg, lg, bq̄) =

1

2
D0

3(sai) +
1

3
F0

3 (sij) + · · ·+ 1

3
F0

3 (skl) +
1

2
D0

3(slb)

J (1)
n (ig, jg, · · · , kg, lg) =

1

3
F0

3 (sij) + · · ·+ 1

3
F0

3 (skl) +
1

3
F0

3 (sil)

J
(1)
2,NF

(ig, jg) =
1

2
G0

3(sij)

J
(1)
2,NF

(iq, jg) =
1

2
E0

3 (sij) (B.1)

Initial-final strings:

J
(1)
2 (ˆ̄1g, ig) =

1

2
F0

3,g(s1̄i)−
1

2
Γ1
ggδ2,

J
(1)
2,NF

(ˆ̄1g, ig) = G0
3,g(s1̄i),

J
(1)
2 (ˆ̄1q, iq̄) = A0

3,q(s1̄i)− Γ1
qqδ2,

235
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J
(1)
2 (ˆ̄1q, ig) =

1

2
D0

3,q(s1̄i)− Γ1
qqδ2,

J
(1)
2 (iq, ˆ̄1g) = D0

3,g,gq(s1̄i)−
1

2
Γ1
ggδ2,

J
(1)
2,NF

(ˆ̄1q, ig) =
1

2
E0

3;q,q′q̄′(s1̄i),

J
(1)
2,NF

(iq, ˆ̄1g) = −Γ1
gg,F δ2,

J
(1)
2,g→q(

ˆ̄1q, iq̄) = A0
3,g(s1̄i)− Γ1

qgδ2,

J
(1)
2,g→q(

ˆ̄1q, ig) = D0
3,g,qg(s1̄i)− Γ1

qgδ2,

J
(1)
2,q→g(iq,

ˆ̄1g) = E0
3;q,qq′(s1̄i)− Γ1

gqδ2,

J
(1)
2,q→g(ig,

ˆ̄1g) = G0
3,q(s1̄i)− Γ1

gqδ2 (B.2)

Initial-initial strings:

J
(1)
2 (ˆ̄1g, ˆ̄2g) = F0

3,gg(s1̄2̄)− 1

2
Γ1
gg(x1)δ2 −

1

2
Γ1
gg(x2)δ1,

J
(1)
2,NF

(ˆ̄1g, ˆ̄2g) = −Γ1
gg,F (x1)δ2 − Γ1

gg,F (x2)δ1,

J
(1)
2 (ˆ̄1q, ˆ̄2q̄) = A0

3,qq̄(s1̄2̄)− Γ1
qq(x1)δ2 − Γ1

qq(x2)δ1,

J
(1)
2 (ˆ̄1q, ˆ̄2g) = D0

3,qg(s1̄2̄)− Γ1
qq(x1)δ2 −

1

2
Γ1
gg(x2)δ1,

J
(1)
2,g→q(

ˆ̄1q, ˆ̄2q̄) = A0
3,qg(s1̄2̄)− Γ1

qg(x1)δ2,

J
(1)
2,g→q(

ˆ̄1q, ˆ̄2g) = D0
3,gg(s1̄2̄)− Γ1

qg(x1)δ2,

J
(1)
2,q→g(

ˆ̄1q, ˆ̄2g) = E0
3,qq′(s1̄2̄)− Γ1

gq(x2)δ1,

J
(1)
2,q→g(

ˆ̄1g, ˆ̄2g) = G0
3,gq(s1̄2̄)− Γ1

gq(x2)δ1 (B.3)

B.2 Double unresolved integrated antenna strings

J
(2)
2 (ˆ̄1q, ˆ̄2q̄) = A0

4,qq̄(s1̄2̄) +A1
3,qq̄(s1̄2̄) +

b0

ε
A0

3,qq̄(s1̄2̄)

(
s1̄2̄

µ2

)−ε
− 1

2

[
A0

3,qq̄ ⊗A0
3,qq̄

]
(s1̄2̄)− Γ2

qq(z1)δ2 − Γ2
qq(z2)δ1

+
1

2

[
Γ1
qq ⊗ Γ1

qq

]
(z1)δ2 +

1

2

[
Γ1
qq ⊗ Γ1

qq

]
(z2)δ1,

J
(2)
2,NF

(ˆ̄1q, ˆ̄2q̄) = B0
4,qq̄(s1̄2̄) + Â1

3,qq̄(s1̄2̄) +
b0,F

ε
A0

3,qq̄(s1̄2̄)

(
s1̄2̄

µ2

)−ε
+Γ2

qq,NF
(z1)δ2 + Γ2

qq,NF
(z2)δ1,
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J̃
(2)
2 (ˆ̄1q, ˆ̄2q̄) =

1

2
Ã0

4,qq̄(s1̄2̄)− 2C0
4,qq̄(s1̄2̄) + Ã1

3,qq̄(s1̄2̄)

− 1

2

[
A0

3,qq̄ ⊗A0
3,qq̄

]
(s1̄2̄)− Γ2

qq,1/N(z1)δ2 + Γ2
qq,1/N(z2)δ1

+
1

2

[
Γ1
qq ⊗ Γ1

qq

]
(z1)δ2 +

1

2

[
Γ1
qq ⊗ Γ1

qq

]
(z2)δ1,

J
(2)
2,q→g→q(

ˆ̄1q, ˆ̄2q̄) = B0
4,qQ̄(s1̄2̄) + B0

4,Q̄q(s1̄2̄)

+
[
Γ1
gq ⊗ Γ1

qg

]
(z2)δ1 +

[
Γ1
qg ⊗ Γ1

qg

]
(z2)δ1,

−
[
Γ1
gq ⊗A0

3,qg

]
(s1̄2̄)−

[
Γ1
gq ⊗A0

3,gq

]
(s1̄2̄),

J
(2)
2,g→q(

ˆ̄1q, ˆ̄2q̄) = A0,adj
4,qg (s1̄2̄) +A0,n.adj

4,qg (s1̄2̄) +A1
3,qg(s1̄2̄) +

b0

ε
A0

3,qg(s1̄2̄)

(
s1̄2̄

µ2

)−ε
,

− Γ2
qg(z2) +

[
Γ1
gg ⊗ Γ1

qg

]
(z2) + Γ1

qq(z1)Γ1
qg(z2)−

[
Γ1
qq ⊗ Γ1

qq

]
(z2)

+
[
Γ1
qq ⊗A0

3,qg

]
(s1̄2̄)−

[
Γ1
gg ⊗A0

3,qg

]
(s1̄2̄)−

[
Γ1
qg ⊗A0

3,qq̄

]
(s1̄2̄),

J̃
(2)
2,g→q(

ˆ̄1q, ˆ̄2q̄) = Ã0
4,qg(s1̄2̄) + Ã1

3,qg(s1̄2̄)− Γ̃2
qg(z2)−

[
Γ1
qg ⊗ Γ1

qq

]
(z2)

− Γ1
qq(z1)Γ1

qg(z2) +
[
Γ1
qq ⊗A0

qg

]
(s1̄2̄) +

[
Γ1
gg,F ⊗A0

qg

]
(s1̄2̄)

+
[
Γ1
qg ⊗A0

qq̄

]
(s1̄2̄),

J
(2)
2,g→q,g→q(

ˆ̄1q, ˆ̄2q̄) = 2A0
4,gg(s1̄2̄) + Γ1

qg(z1)Γ1
qg(z2)−

[
Γ1
qg ⊗A0

3,qg(s1̄2̄; z2)
]
(z1)δ2

−
[
Γ1
qg ⊗A0

3,gq(s1̄2̄; z1)
]
(z2)δ1,

J
(2)
2,Q→q̄(

ˆ̄1q, ˆ̄2q̄) = B0
4,qQ(s1̄2̄) + B0

4,Qq(s1̄2̄)− Γ2
qQ̄(z2)−

[
Γ1
gq ⊗ Γ1

qg

]
(z2)δ1

+
[
Γ1
gq ⊗A0

3gq(s1̄2̄; z2)
]
(z1) +

[
Γ1
gq ⊗A0

3gq(s1̄2̄; z1)
]
(z2),

J
(2)
2,q→q̄(

ˆ̄1q, ˆ̄2q̄) = C0
4,qq̄(s1̄2̄)− Γ2

qq̄(z2)

J̃
(2)
2,g→q,g→q(

ˆ̄1q, ˆ̄2q̄) = Ã0
4(s1̄2̄) + Γ1

qg(z1)Γ1
qg(z2)−

[
Γ1
qg ⊗A0

3,qg(s1̄2̄; z2)
]
(z1)δ1,

−
[
Γ1
qg ⊗A0

3,gq(s1̄2̄; z1)
]
(z2)δ1,

J
(2)
2,g→q,NF

(ˆ̄1q, ˆ̄2q̄) = Â1
3,qg(s1̄2̄) +

b0,F

ε
A0

3,qg(s1̄2̄)

(
s1̄2̄

µ2

)−ε
− Γ2

qg,F (z2)δ1 +
[
Γ1
gg,F ⊗ Γ1

qg

]
(z2)δ1,

J
(2)
2 (ˆ̄1g, ˆ̄2g) = 2F0,adj

4,gg (s1̄2̄) + F0,n.adj
4,gg (s1̄2̄) + F1

3,gg(s1̄2̄) +
b0

ε
F0

3,gg(s1̄2̄)

(
s1̄2̄

µ2

)−ε
− Γ2

gg(z1)δ2 − Γ2
gg(z2)δ1 − 2

[
F0

3,gg ⊗F0
3,gg

]
+

1

2

[
Γ1
gg ⊗ Γ1

gg

]
(z1)δ2 +

1

2

[
Γ1
gg ⊗ Γ1

gg

]
(z2)δ1,

J
(2)
2,NF

(ˆ̄1g, ˆ̄2g) = 2G0
4,gg(s1̄2̄) + F̂1

3,gg(s1̄2̄) +
b0,F

ε
F0

3,gg(s1̄2̄)

(
s1̄2̄

µ2

)−ε
− Γ2

gg,F (x1)δ2 − Γ2
gg,F (x2)δ1 −

1

2

[
F0

3,gg ⊗F0
3,gg

]
(s1̄2̄)
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+
1

2

[
Γ1
gg ⊗ Γ1

gg,F

]
(z1)δ2 +

1

2

[
Γ1
gg ⊗ Γ1

gg,F

]
(z2)δ1

J̃
(2)
2,NF

(ˆ̄1g, ˆ̄2g) = G̃4,gg(s1̄2̄)− Γ̃1
gg,F (z1)− Γ̃1

gg,F (z2),

J
(1)

2,N2
F

(ˆ̄1g, ˆ̄2g) = −Γ2
gg,N2

F
(z1)δ2 − Γ2

gg,N2
F

(z2)δ1.

J
(2)
2,q→g(

ˆ̄1g, ˆ̄2g) = G0,adj
4,qg (s1̄2̄) + G0,n.adj

4,qg (s1̄2̄) + G1
3,qg(s1̄2̄) +

b0

ε
G0

3,qg(s1̄2̄)

(
s1̄2̄

µ2

)−ε
− Γ2

gq(z1) +
[
Γ1
gq ⊗ Γ1

gg

]
(z1) +

[
Γ1
qq ⊗ Γ1

gq

]
(z1)

− 2
[
F0
gg ⊗F0

gg

]
(s1̄2̄)−

[
Γ1
gg ⊗ G0

gq

]
(s1̄2̄)−

[
Γ1
qq ⊗ G0

gq

]
(s1̄2̄),

J̃
(2)
2,q→g(

ˆ̄1g, ˆ̄2g) = G̃0
4,qg(s1̄2̄) + G̃1

3,qg(s1̄2̄)− Γ̃2
gq(z1)

−
[
Γ1
qq ⊗ Γ1

gq

]
(z1)−

[
Γ1
qq ⊗ G0

gq

]
(s1̄2̄),

J
(2)
2,q→g,NF

(ˆ̄1g, ˆ̄2) = Ĝ1
3,qg(s1̄2̄) +

b0,F

ε
G0

3,qg(s1̄2̄)

(
s1̄2̄

µ2

)−ε
− Γ2

gg,F (z1)

+
[
Γ1
gq ⊗ Γ1

gg,F

]
(z1),

J
(2)
2,q→g,q̄→g(

ˆ̄1g, ˆ̄2g) = H0
4,qq̄(s1̄2̄) + Γ1

gq(z1)Γ1
gq(z2)

−
[
Γ1
gq ⊗ G0

3,qg

]
(z1, z2; s1̄2̄)−

[
Γ1
gq ⊗ G0

3,gq

]
(z1, z2; s1̄2̄),

J
(2)
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) = D0

4,q(s1̄i) +
1

2
F0

4 (sij) +D0
4,q(s2̄j)− Ã0

4,qq̄(s1̄2̄)

+ D1
3,q(s1̄,i) + F1

3 (sij) +D1
3,q(s2̄,j)−A1

3,qq̄(s1̄2̄)

+
b0

ε

(
s1̄i

µ2

)−ε
1

2
D0

3(s1̄i) +
b0

ε

(
sij
µ2

)−ε
1

3
F0

3 (sij)

+
b0

ε

(
s2̄j

µ2

)−ε
1

2
D0

3(s2̄j)−
1

4

[
D0

3,q ⊗D0
3,q

]
(s1̄i)

− 1

9

[
F0

3 ⊗F0
3

]
(sij)−

1

4

[
D0

3,q ⊗D0
3,q

]
(s2̄j)

+
1

2

[
A0

3,qq̄ ⊗A0
3,qq̄

]
(s1̄2̄)− Γ2

qq(z1)− Γ2
qq(z2)

+
1

2

[
Γ1
qq ⊗ Γ1

qq

]
(z1) +

1

2

[
Γ1
qq ⊗ Γ1

qq

]
(z2) (B.4)
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