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B → K∗µ+µ− and Form Factors for

Semi-Leptonic and Radiative B Decays

Aoife Katy Manek Bharucha

The hadronic environment of the LHC favours the study of exclusive modes, and

of these semi-leptonic and radiative B decays will play a leading role in the search

for new physics (NP). A prime example is the rare decay B → K∗(→ Kπ)µ+µ−,

where the many measurable quantities offer important new tests of the Standard

Model and its extensions. We define sets of CP-conserving and CP-violating ob-

servables which are studied in terms of the full form factors, calculated in QCD

sum rules on the light-cone (LCSR), and QCD factorisation. Those with reduced

dependence on hadronic quantities and sensitivity to NP are identified. In the

first few years of data–taking at the LHC, the focus will be on quantities which

are simple to extract while maximising the available NP sensitivity. Out of three

such observables, two are well known to the experimental community. However a

third, one of the CP-conserving angular observables, leads to significant additional

constraints on parameter space. We then study form factors for rare semi-leptonic

and radiative B decays to K(∗), ρ and φs mesons, combining theoretical and phe-

nomenological constraints from Lattice QCD, LCSR, and dispersive bounds. We

pay particular attention to form factor parameterisations which are based on the

so-called series expansion, and study the related systematic uncertainties on a

quantitative level. Finally we calculate the leading-twist O(α2
sβ0) corrections to

the B → π transition form factor f+(0) in LCSR, allowing an improved determi-

nation of the CKM matrix element |Vub|.
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Chapter 1

Introduction

‘Grace had stood her ground during that discussion. “There are plenty of things
nobody can see,” she said. “What about that particle thingy that they’re trying
to find. That Higgs bison, or whatever.”

“Boson,” Jamie had interjected. “Higgs boson. It’s a sort of . . . ”

“Boson,” said Isabel. “I saw Professor Higgs the other day, you know. He
was walking along Heriot Row looking down at the pavement.”

“He won’t find his boson down there,” said Grace.

“He wouldn’t have been looking for it,” said Jamie. “It exists only in the
mathematics he did. It’s a theory.” ’

—Alexander McCall-Smith in “The Lost Art of Gratitude”

The Large Hadron Collider (LHC) at CERN, Geneva is slowly creeping into public

consciousness, being advertised either as a “Big Bang” machine, or as an experiment

looking for the Higgs Boson [1], the particle which is responsible for endowing mass on

the elements of the Standard Model (SM) [2–9]. This can be inferred from both the 5

million “YouTube” hits of the “Large Hadron Rap” and media coverage the day the LHC

switched on. The attention of the press has been in part focused on the anxiety that the

high energy of the collisions at the LHC might create a black hole, which could literally

mean the end of the world. Strong arguments against these ideas were formulated in

Ref. [10], where it was explained that cosmic rays have been colliding with the Earth and

Sun etc. at much higher energies for billions of years. From the stability of astronomical

bodies we can strongly constrain the rate of accretion of any stable microscopic black

12



Introduction 13

holes that were produced in such collisions. On the other hand, references to the Higgs

in books completely unrelated to science, as shown in the quotation above, indicate that

some notion of the physics we hope to unravel at the LHC has reached an astonishingly

wide audience.

Even if the LHC does detect signs that the Higgs boson exists, and electroweak

precision data suggests that it will, there are still many problems of the SM that the

Higgs cannot resolve e.g. the origin of flavour, the baryon asymmetry, the presence of

dark matter (for a recent review of the SM and its problems see Ref. [11]). In addition,

the scalar mass of the Higgs is not protected from quadratic divergences by gauge or

chiral symmetries, so in order to avoid fine tuning, i.e. the cancellation of relatively large

quantum effects to give a much smaller result, we hope and expect to see signs at the

LHC of what lies beyond the frontier of particle physics, as described in Ref. [12]. The

detectors which will be probing this frontier directly are ATLAS [13] and CMS [14]. A

complementary approach, looking for the unknown via indirect production, is adopted

by another detector, LHCb [15], as well as the B physics programs of CMS and ATLAS,

reviewed recently in Ref. [16]. More specifically, this involves the study of B meson

decays, where non-SM particles might appear in loops, resulting in observed deviations

from the SM predictions. Since the size of the effects decreases as the mass scale of the

“new physics” (NP) particles increases, high precision B physics measurements can result

in sensitivity to a much larger range of scales than via direct production, as elaborated

on in the context of effective field theories in Sec. 1.2. This indirect approach has proved

invaluable time and again, for example in the prediction of the charm quark mass from

the observation of K0 − K̄0 mixing [17] prior to its discovery by direct production, and

similarly for the top quark mass via B0 − B̄0 mixing [18].

1.1 Flavour structure of the Standard Model

B decays are particularly interesting due to their intrinsic relation to the quark flavour

structure of the SM Lagrangian (LSM). For a detailed derivation of LSM see Ref. [19].

Following Electroweak symmetry breaking, the Yukawa terms Lq
Y , break the SM quark

flavour symmetry described by the group SU(3)3
q [20], via

LSM = LK + LH − Lq
Y − Ll

Y . (1.1)
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where LK contains the kinetic and gauge terms for the electroweak and strong interac-

tions, LH the Higgs terms and Ll
Y the Yukawa terms for the leptons. These SU(3)3

q-

breaking terms take the form

Lq
Y = Y d

ijQ̄Li
· φDRj

+ Y u
ij Q̄Li

· φ̃URj
+ h.c. (1.2)

where QLi
is a left handed quark doublet, URj

is a right handed up-type quark singlet,

DRj
is a right handed down-type quark singlet, Y u,d

ij are the Yukawa couplings, φ is

the Higgs scalar, φ̃ = iτφ† and i, j indicate the quark generation. Lq
Y is therefore not

invariant under transformations of the formQL → VQQ
′
L, UR → VUU

′
R andDR → VDD

′
R,

VQ, where VU and VD are unitary matrices. This called for a convention to be chosen

for the quark basis, i.e. Y d = λd and Y u = V †λu where λu,d are diagonal, minimising

the number of parameters. V is a unitary matrix, known as the Cabibbo-Kobayashi-

Maskawa (CKM) matrix [21; 22]. Due to the unitarity of V , at tree level it only affects

charged current weak interactions. Here the participating eigenstates (d′, s′, b′) differ

from the mass eigenstates (d, s, b). This results in flavour changing charged currents

(FCCC’s), which play a leading role in B decays. Note that the vanishing of flavour

changing neutral currents (FCNC’s) at tree level is known as the Glashow-Iliopoulos-

Maiani (GIM) mechanism [23].

The CKM matrix can be described by three real angles and a CP-violating phase;

the first experimental evidence of this phase was found in K0− K̄0 mixing [24] and later

in B0 − B̄0 mixing at Babar and Belle [25; 26]. Note that the only other instance of

a CP-violating phase in the SM is the strong CP phase, θQCD. However, experimental

measurements of the neutron electron dipole moment force it to be unnaturally small,

resulting in the strong CP problem, for more details see Ref. [27]. The experimental

observation in 1983 that b quarks decays predominantly to c, i.e. |Vub| << |Vcb|, along

with the recognition that |Vcb| ∼ |Vus|2, resulted in the parameterisation in terms of λ,

A, ρ and η by Wolfenstein [28],

V =











Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb











=











1 − λ2/2 λ Aλ3(ρ− iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1











+ O(λ4), (1.3)
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expanding in the small parameter λ ≈ 0.22. The unitarity of the CKM matrix results

in a number of orthogonality conditions, e.g. between the first and third columns of V,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (1.4)

This relation, rescaled by VcdV
∗
cb, is often represented in the complex ρ̄− η̄ plane by the

unitarity triangle, defined by the origin, {1, 0} and the point {ρ̄, η̄} where, for conve-

nience, the phase convention is chosen such that the side of length 1 is real. Note that

to ensure that the unitarity of the CKM matrix holds to all orders in λ, ρ and η are

rescaled to ρ̄ = ρ (1 − λ2/2) and η̄ = η (1 − λ2/2) [29]. The three angles of the triangle,

α, β and γ, are given by

α ≡ arg

(

− VtdV
∗
tb

VudV ∗
ub

)

, β ≡ arg

(

−VcdV
∗
cb

VtdV ∗
tb

)

, γ ≡ arg

(

−VudV
∗
ub

VcdV ∗
cb

)

. (1.5)

The major success of the B Factories, the BaBar detector at PEP-II, and the Belle

detector at KEK-B, was measuring these angles and the parameters λ, A, ρ and η, in

an attempt to overconstrain the unitarity triangle. For example, λ can be determined

from K → πlν, A from b → clν, sin 2β from the CP asymmetry in B → ΨKs, |Vub|
from inclusive and exclusive b→ ulν, γ from B → DK decays, α from B → ππ, πρ, ρρ

decays, |Vts/Vtd| from the ratio of the mass splitting in Bs and Bd mixing [30]. Any in-

consistencies in these measurements would indicate a possible new physics contribution.

Constraints on the Unitarity Triangle as imposed from numerous experimental sources

have been complied by the UTfit collaboration [31] and the CKMFitter group [32], which

adopt a Bayesian and frequentist approach respectively. From these results it is clear

that the matter-antimatter asymmetry cannot be explained by electroweak baryogenesis

and CP violation in the CKM triangle alone, and physics beyond the SM must con-

tribute either via flavour blind phases in the quark sector, or through leptogenesis (for

an overview of electroweak baryogenesis see Ref. [33]).

1.2 Effective Field Theories and Renormalisation

Extracting the desired parameters from experimental observables requires a varying

degree of theoretical input, more so in the case of exclusive decays where the perturbative

quark interaction must be related to the hadronic matrix element. These hadronic effects

are discussed in Secs. 1.3-1.6. First however, we must consider the calculation of heavy



Introduction 16

b quark interactions which is greatly simplified by the indispensable tool of effective

field theories. This allows the separations of long and short distance contributions into

effective operators and perturbatively calculable Wilson coefficients respectively, such

that the resulting effective Hamiltonian takes the form

Heff ∼
∑

i

CiOi. (1.6)

The operators Oi contain the degrees of freedom relevant below the factorisation or

renormalisation scale. The effective couplings for these operators are then the Wilson

coefficients Ci, which can be obtained by, in path-integral language, “integrating out”

all fields above this scale, i.e. removing such fields as dynamical degrees of freedom [34].

More specifically for B → K∗µ+µ−, the subject of Chs. 2 and 3, we require the effective

Hamiltonian for b→ sµ+µ− transitions, given by [35; 36]

Heff = −4GF√
2

(

λtH(t)
eff + λuH(u)

eff

)

. (1.7)

Here λi indicates the CKM combination VibV
∗
is and the Fermi coupling constant GF is

defined by

GF√
2

=
g2
2

8M2
W

, (1.8)

where g2 is the weak coupling constant and MW is the mass of the charged weak boson,

W±. Finally we define

H(t)
eff = C1Oc

1 + C2Oc
2 +

10
∑

i=3

CiOi ,

H(u)
eff = C1(Oc

1 −Ou
1 ) + C2(Oc

2 −Ou
2 ) .

The operators are as in the basis defined by Chetyrkin, Misiak and Münz (CMM) [37].

These are identical to the Pi given in Ref. [35], and are defined by,

Ou
1 = (s̄γµT

aPLu)(ūγ
µT aPLb),

Ou
2 = (s̄γµPLu)(ūγ

µPLb),

(1.9)
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Oc
1 = (s̄γµT

aPLc)(c̄γ
µT aPLb),

Oc
2 = (s̄γµPLc)(c̄γ

µPLb),

O3 = (s̄γµPLb)
∑

q(q̄γ
µq),

O4 = (s̄γµT
aPLb)

∑

q(q̄γ
µT aq),

O5 = (s̄γµ1
γµ2

γµ3
PLb)

∑

q(q̄γ
µ1γµ2γµ3q),

O6 = (s̄γµ1
γµ2

γµ3
T aPLb)

∑

q(q̄γ
µ1γµ2γµ3T aq),

O7 = e
g2mb(s̄σ

µνPRb)Fµν ,

O8 = 1
g
mb(s̄σ

µνT aPRb)G
a
µν ,

O9 = e2

g2 (s̄γµPLb)
∑

l(l̄γ
µl),

O10 = e2

g2 (s̄γµPLb)
∑

l(l̄γ
µγ5l),

(1.10)

where g is the strong coupling constant, PL,R = (1∓γ5)/2, Fµν and Gµν are the photonic

and gluonic field strengths, and sums over q and l denote sums over light quarks and

leptons, respectively. mb denotes the running b quark mass in the MS scheme described

below. Note that msPL contributions to O7, O8 are neglected here. The inclusion of

the factors 16π2/g2 = 4π/αs in the definition of the operators Oi≥7 serves to allow a

more transparent organisation of the expansion of their associated Wilson coefficients in

perturbation theory: all Ci are expanded as

Ci = C
(0)
i +

αs

4π
C

(1)
i +

(αs

4π

)2

C
(2)
i +O(α3

s) , (1.11)

where C
(0)
i is the tree-level contribution, which vanishes for all operators but O2, and in

our notation C
(0)
9 is also non-zero. C

(n)
i denotes an n-loop contribution.

Both the bare operators and Wilson coefficients contain divergences, which must be

removed by a process know as renormalisation (for a detailed introduction to renormal-

isation see Ref. [19]). This is a two step procedure, first the theory is regulated to allow

manipulation of quantities, and then the divergent terms are removed. In the following

we work in näıve Dimensional regularisation [38–40], where the number of dimension is

set to 4 − 2ǫ, and γ5 is treated as in 4 dimensions, though care must be taken when
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evaluating certain traces as the cyclicity of the trace is lost [41]. We then use the MS

scheme [42], simply subtracting the divergences, as in the minimal subtraction (MS)

scheme [43], along with the associated ln 4π and γE terms. This involves multiplying

the bare quantities by renormalisation constants Z(µ), which leaves the renormalised

quantities finite. A scale µ must also be introduced such that the strong coupling is

dimensionless in 4 − 2ǫ dimensions. Explicitly for the strong coupling g and the mass

m,

g0 = Zggµ
ǫ m0 = Zmm. (1.12)

One can obtain the scale dependence of the renormalised parameters using the fact that

the bare ones must be scale independent [44]. Therefore the strong coupling in partic-

ular must be scale dependent, and as the renormalisation constants are perturbatively

expanded in the strong coupling, they also acquire a scale dependence,

d g

d lnµ
≡ −gβ (1.13)

dm

d lnµ
≡ −γmm. (1.14)

Here we see that this dependence is described by the QCD β function and the anoma-

lous dimension γm of the mass operator respectively. The β function and anomalous

dimension γm are defined by their relation to the renormalisation constants Zg and Zm

respectively, by

β = Z−1
g

dZg

d lnµ
,

γm = Z−1
m

dZm

d lnµ
(1.15)

It is often more convenient to define the running of αs instead of g, where αs = g2/(4π),

d αs

d lnµ
≡ −2β αs. (1.16)

The functions β and γm can be expanded in perturbation theory,

β = β0
αs

4π
+ β1

(αs

4π

)2

+ . . . and γm = γm,0
αs

4π
+ γm,1

(αs

4π

)2

+ . . . (1.17)
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where

β0 = 11 − 2

3
Nf , β1 =102 − 10Nf − 2CFNf ,

γm,0 = 6CF and γm,1 =3C2
F + 97CF − 10

3
CFNf , (1.18)

with Nf being the number of active flavours.

We can use Eqs. (1.14) and (1.16) to obtain the running of m and αs with respect to

the scale, e.g. for αs,

αs(µ) =
αs(µ0)

v(µ)

(

1 − β1

β0

αs(µ0)

4π

ln v(µ)

v(µ)

)

(1.19)

with

v(µ) = 1 − β0
αs(µ0)

4π
ln
µ2

0

µ2
. (1.20)

If we expand the leading term in Eq. (1.19) in αs(µ0) we get

αs(µ) = αs(µ0)
∞
∑

m=0

(

β0
αs(µ0)

4π
ln
µ2

0

µ2

)m

(1.21)

Thus Eq. (1.19) automatically sums the logarithms ln(µ2
0/µ

2) which become large for

µ ≪ µ0, spoiling the convergence of the perturbation series. In general solving the

RGE equations to leading order in αs allows us, in the leading logarithmic (LL) approx-

imation, to sum up the terms (αs ln(MW/µ))n to all orders in n. In the next-to-leading

logarithmic (NLL) approximation, going to NLO in the RGE equation means that terms

αs(αs ln(MW/µ))n are summed to all orders in n, etc.. This leads to the RG improved

perturbation theory (for an introduction see Ref. [34].

Coming back to the renormalisation of the operators, this requires renormalisation

constants which have associated anomalous dimensions. However, the mixing of the

operators under renormalisation results in the scale dependence of the associated Wilson

coefficients being described by an anomalous dimension matrix,

µ
dCi(µ)

dµ
= γijCj(µ), where γji = Z−1

ik

dZjk

d lnµ
. (1.22)
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The Wilson coefficients are usually calculated by matching to the full theory at the scale

MW , in a perturbative expansion in powers of αs(mW ). These can be evolved down to

the required scale µ ∼ mb using

Ci(µ) = Uij(µ,MW )Cj(MW ), (1.23)

where RG improved perturbation theory is employed to sum large logs. The next-to-

next-to-leading logarithmic (NNLL) accuracy of our calculations in Chs. 2 and 3 requires

the matching conditions at µ = mW to two-loop accuracy, as calculated in Ref. [35].

Two-loop accuracy in the matching requires the inclusion of anomalous dimensions in

the renormalisation-group equations to three-loop accuracy given by the 10 × 10 SM

anomalous dimension matrix calculated in Refs. [45; 46]. Additional scale dependence

in C9 and C10 comes from the factor 1/g2, which otherwise would be scale independent.

This procedure is discussed in further detail in App. C of Ref. [47].

Using effective field theories means that effects beyond the SM correspond to changes

to the Wilson coefficients, or to new operators becoming relevant. Constraints on the

Wilson coefficients therefore translate into constraints on NP models. For example,

the precise measurement of the branching ratio of the flavour changing neutral current

process b → sγ at the B Factories and the TeVatron has greatly restricted the flavour

structure of physics beyond the SM. At leading order, neglecting the mass of the strange

quark, the decay amplitude for b → sγ depends largely on O7, therefore, in order to

see visible effects, NP would need to induce changes to C7. These effects would be

suppressed by the NP scale, ΛNP, and multiplied by a coupling specific to the model.

In the SM, the FCNC nature of the decay means that it is suppressed by the CKM

elements, and the electroweak scale, i.e. GF V
∗
tsVtb/M

2
W . There is no reason to expect

such a Cabibbo suppression for NP, however if the NP coupling is of O(1), then ΛNP

is pushed up to 10-100 TeV [20]. This is in conflict with expectations from electroweak

constraints, and is known as the “flavour problem” [48], spurring the proposal of a

class of models that display Minimal Flavour Violation (MFV) [49; 50], in which the

flavour structure of the new theory mirrors the flavour structure of the SM. Two possible

extensions of MFV which have consequences for flavour observables are an additional

Higgs doublet, or flavour blind CP-violating phases as in Ref. [51; 52]. Note that hints

of a large NP Bs mixing phase at the TeVatron [53; 54] are not compatible with MFV,

and that the flavour structure of TeV scale physics is distinct from that of the SM is still

very much a possibility. This can be further explored by making precise measurements

of observables sensitive to this structure, and comparing with theoretical predictions
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in the SM. At the LHC, marked improvements in the measurement of B → K∗µ+µ−

observables, B(Bs,d → µ+µ−), S(Bs → ψφ) and γ via B → DK will hopefully result

in the observation of deviations from the SM. If not it will make the case for MFV

much stronger. In order to maximise the success of the LHC, the above mentioned

theoretical predictions should be as accurate as possible. To this end, in the following

we concentrate on exclusive decays for semi-leptonic and radiative decays.

1.3 Motivation for Studying Exclusive B Decays

Inclusive B decays involve a summation over all possible final states. This is theoret-

ically straightforward in principle but in practise involves corrections via heavy quark

expansion (see e.g. Ref. [55]). Experimentally these decays are more challenging than

their exclusive counterparts. Particularly due the hadronic environment of the LHC, and

notably at LHCb, exclusive B meson decays will play one of the major roles for precision

tests of the flavour sector in the Standard Model (SM) and its possible New Physics (NP)

extensions [48; 56]. However, to make theoretical predictions for these decays we need to

take hadronic effects into account, and in Sec. 1.4 we will introduce the techniques used

to achieve this. First however, we will discuss why exclusive semi-leptonic and radiative∗

exclusive processes are particularly interesting.

1.3.1 Determination of CKM Parameters

Semi-leptonic decays play an important role in the determination of parameters of the

CKM matrix defined in Eq. (1.3). |Vcb| was determined at the B Factories to < 2% from

inclusive decays [57], however the inclusive determination of |Vub| is experimentally more

difficult due to the large b → c lν background,and instead can be extracted from the

exclusive channels B → πlν or B → ρlν, using the absolute prediction of the hadronic

decay, and the absolute branching fraction. |Vub| from B → πlν is currently known

at the 10% level [56] and, as the B Factory measurement for the B → π semileptonic

branching ratio is likely to be improved at Super-B, this should be reduced to ∼ 4% [58].

Theoretical improvements are therefore required to compete with experiment, the sub-

ject of Ch. 5. Together the experimental and theoretical advances might even resolve

the tension, i.e. the 2σ discrepancy, between the latest averages [57] for the inclusive

∗By the term “radiative decays” we mean B decays to a final state containing a photon or an excited
photon which thereafter decays to a lepton pair.
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and exclusive determinations of |Vub|. Note that the current estimated uncertainty on

|Vub| from inclusive decays is similar to that from exclusive decays, but interestingly the

value of |Vub| obtained using sin 2β is closer to the exclusive result [59], so the exclusive

determination is thought to be more promising.

1.3.2 Study of Flavour Changing Neutral Currents

The FCNC decay b → sγ, first observed experimentally as B → K∗γ at CLEO in

1993 [60], provides one of the most stringent constraints on physics beyond the SM, as

discussed in Sec. 1.1. However, it only gives rise to a limited number of observables–

the branching ratio and CP asymmetries, e.g. the time-dependent CP asymmetry in

B → K∗γ [52; 61]. Instead, the focus at the LHC will be on rare b→ s(d)l+l− exclusive

decays as these, and in particular decays to muons, can be measured with unprecedented

accuracy. Known as “rare decays” due to their suppression in the SM, these are a

challenge to experimentalists due to large backgrounds from semi-leptonic B and D

decays and long-distance contributions e.g. B → J/ΨXs. These problems however

are manageable in the case of exclusive decays to the simplest final states e.g. B →
K(∗)l+l−, B → ρl+l− and Bs → φ l+l−, where l is restricted to e, µ [48]. As opposed

to b → sγ, the three or four body final state gives rise to a multitude of promising

angular observables. In addition, many more of these rare decays will be seen at the

LHC than were observed at the B Factories, for example an order of magnitude more

B → K(∗)l+l− events will be seen at LHCb [62]; these decays are the subject of Chs. 2 and

3. From measurements of interesting B → K(∗)l+l− observables and the branching ratio

for Bs(d) → l+l− (on which the current upper bound is an order of magnitude above the

SM prediction) invaluable information on the the flavour structure of TeV scale physics

as well as the Higgs structure and any flavour-diagonal CP-violating phases present can

be obtained [52].

1.4 Understanding Exclusive Processes

In heavy-to-light semi-leptonic and radiative B decays, the b quark decays to a light

quark (the recoiling quark), with which the spectator (i.e. the light quark in the B

meson) must combine to form the final state meson (for a detailed description and

diagrams see e.g. Ref. [63]). The dominant configuration is that in which the B and final
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state mesons contain the minimum number of Fock constituents. Such a configuration is

characterised by the wave function Φ(u, k⊥), where u is the momentum fraction carried

by the quark, and k⊥ its transverse momentum. In order to form such a state, the

recoiling quark must transfer energy to the “soft cloud”. This is difficult as it is usually

much more energetic than the spectator.

If a hard gluon transfers momentum from the b or recoiling quark to the specta-

tor, this ensures that the transverse separation between the two final state quarks is

small, facilitating the production of the final state meson. This is known as the hard

mechanism, and can be calculated by the convolution of a perturbative hard-scattering

kernel TH with the distribution amplitudes of the mesons involved φ(u, µ2) at the scale

µ, as initially advocated by Brodsky and Lepage. They found that this mechanism is

dominant in the Sudakov limit, applicable to exclusive interactions of light hadrons in

the limit of large momentum transfer, and could therefore be used to describe the elec-

tromagnetic pion form factor [64]. As the transverse momentum is restricted, one can

calculate the distribution amplitude for the mesons by integrating the Bethe-Salpeter

wavefunction Φ(u, k⊥) up to k⊥ = µ. As this approach was successful for light mesons,

it was extended in Ref. [65] to B meson decays. For example, schematically, the matrix

element for the process B →Mγ(∗) would be expressed as

〈Mγ(∗)|Heff |B〉 ∼ φB ⊗ TH ⊗ φM + O(1/mb), (1.24)

However, at mb ≈ 5GeV the Sudakov limit does not apply and this approach neglects an

important contribution. This other contribution important for heavy meson decays is

the soft mechanism, where the final state meson is formed in an end-point configuration,

such that 1 − x ∼ O(1/mb). As this does not impose any conditions on the trans-

verse momentum between the recoiling quark and spectator, the wavefunction should

be known as a function of k⊥. A comprehensive description of B decays must include

both these mechanisms.

For semi-leptonic decays, one can simply factorise the decay amplitude into two ma-

trix elements, one describing the hadronic matrix element and the other the leptonic

current. This “näıve factorisation” approach is justified here, as gluons between the two

matrix elements do not arise. Matrix elements for the decay of a B to a light meson are

described by quantities known as form factors (FFs). The form factors therefore contain

all hadronic information for semi-leptonic decays, including the soft and hard mecha-

nisms described above. Being non-perturbative quantities, they must be calculated using
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non-perturbative techniques as discussed in Sec. 1.5. Applying “Näıve factorisation” to

radiative decays is less successful, as the non-factorisable gluons between the two ma-

trix elements below the scale µ ∼ mb cannot be ignored. Without these additional

strong corrections the scale dependence of the form factors and Wilson coefficients do

not reproduce the correct scale dependence of the original matrix element. In addition,

the renormalisation scheme dependence of the Wilson coefficients cannot cancel in the

amplitude as the form factors are renormalisation scheme independent. This calls for a

more careful approach to factorisation which we will introduce in Sec. 1.6.

1.5 Form Factors and QCD Sum Rules on the

Light-Cone

As stated earlier, being non-perturbative hadronic quantities, the theoretical calculation

of FFs requires techniques such as Lattice QCD (see e.g. Refs. [66–70]) or QCD sum

rules on the light cone (LCSR, see e.g. [71; 72], and [73] and references therein). Before

we discuss these methods, particularly LCSR, we first define the form factors in order to

introduce notation which will be referred to throughout this thesis. For the decay to a

generic pseudoscalar meson P , three FFs are required, f0(q
2), f+(q2) and fT (q2), which

depend on the momentum transfer q2 = (p− k)2,

〈P (k)|q̄γµb|B(p)〉 =

(

pµ + kµ − qµ
m2

B −m2
P

q2

)

f+(q2) +
m2

B −m2
P

q2
qµ f0(q

2) ,

〈P (k)|q̄σµνq
νb|B(p)〉 =

i

mB +mP

(

q2(p+ k)µ − (m2
B −m2

P ) qµ
)

fT (q2) . (1.25)

At zero momentum transfer, the additional relation f+(0) = f0(0) holds.

Similarly, the matrix elements for the transition between a B meson and a generic

vector meson V † can be written in terms of FFs V (q2), A0−3(q
2), T1−3(q

2), which are

conventionally defined as

〈V (k, ε)|q̄γµb|B̄(p)〉 = iǫµνρσ ε
∗ν(k) pρkσ 2V (q2)

mB +mV

,

†Here our phase convention for the vector state, to be used in Ch. 4, differs by a relative factor of i
from the conventional definition that is used in Chs. 2 and 3.
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〈V (k, ε)|q̄γµγ5b|B̄(p)〉 = −ε∗µ(k) (mB +mV )A1(q
2) + (p+ k)µ (ε∗(k) · q) A2(q

2)

mB +mV

+qµ (ε∗(k) · q) 2mV

q2

(

A3(q
2) − A0(q

2)
)

, (1.26)

where A0(0) = A3(0). For transitions involving a tensor current, the matrix elements

are characterised by the tensor FFs,

〈V (k, ε)|q̄σµνq
νb|B̄(p)〉 = iǫµνρσ ε

∗ν pρkσ 2T1(q
2) ,

〈V (k, ε)|q̄σµνq
νγ5b|B̄(p)〉 = T2(q

2)
(

ε∗µ(k) (m2
B −m2

V ) − (ε∗(k) · q) (p+ k)µ

)

+T3(q
2)(ε∗(k) · q)

(

qµ − q2

m2
B −m2

V

(2p− q)µ

)

,(1.27)

where T1(0) = T2(0). The equations of motion for the quarks imply the additional

constraint

A3(q
2) =

mB +mV

2mV
A1(q

2) − mB −mV

2mV
A2(q

2) , (1.28)

and therefore the B → V transitions are characterised by seven independent FFs.

It is worth mentioning that certain decays, e.g. decays to unstable hadrons, are more

challenging in Lattice QCD, and in some cases only quenched results exist for a subset of

the FFs. On the other hand all relevant heavy–to–light form factors can be calculated in

the LCSR framework, incorporating both soft and hard mechanisms discussed in Sec. 1.4.

Light-cone sum rules evolved from the traditional QCD sum rules approach [74; 75],

which concerns the evaluation of correlators of quark currents between vacuum states.

This is possible on one hand in terms of a sum over hadronic states, where around mB

the B meson pole is dominant, and above which a continuum of resonances contributes.

On the other hand the correlation function can be calculated by way of an operator

expansion in terms of non-local condensates, the coefficients of which are calculated

perturbatively. LCSR takes a different approach, considering instead correlators of the

T product of two quark currents sandwiched between a final on-shell meson and the

vacuum [76; 77]. This can be expanded about the light-cone, in terms of perturbatively

calculable hard scattering kernels convoluted with non-perturbative, universal light-cone

distribution amplitudes. The correlator can also be expressed as the sum over excited

states, the first being the B meson, followed by the continuum. Then assuming quark

hadron duality above a certain continuum threshold, one can equate the continuum
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contributions on both sides. Borel transforming this relation improves the sum rule by

ensuring that this assumption, and the truncation of the series, has a minimal effect on

the result.

To illustrate the LCSR approach to the calculation of the form factor f+(q2), and

introduce the notation which will be required in Ch. 5, we consider the correlator of two

quark currents sandwiched between the vacuum and pion,

Πµ = imb

∫

dDxe−i pB·x〈π(p)|T{ū(0)γµb(0)b̄(x)iγ5d(x)}|0〉 (1.29)

= (pB + p)µΠ+(p2
B, q

2) + (pB − p)µΠ−(p2
B, q

2). (1.30)

This will have a pole due to the B meson contribution at p2
B = m2

B. In the region around

the pole, Π+(p2
B, q

2) can be factorised into two matrix elements, one corresponding to

the B → π transition, described by f+(q2) and f−(q2)

〈π(p)|ūγµb|B(pB)〉 = (pB + p)µf+(q2) + (pB − p)µf−(q2), (1.31)

where pB and p are the momenta of the B and π mesons respectively and q2 = (pB−p)2‡,

and the other corresponding to the decay of theB meson, described by the decay constant

fB,

mb〈0|d̄iγ5b|B〉 = m2
BfB. (1.32)

This leads to an expression for the correlator of the form

Π+(p2
B, q

2) = fBm
2
B

f+(q2)

m2
B − p2

B

+

∫

s>m2
B

ds
ρhad

s− p2
B

, (1.33)

where ρhad is the spectral density of the higher-mass hadronic states.

Alternatively, the correlator can be calculated in the Euclidean region, where p2
B−m2

B

is large and negative, using a light-cone expansion about x2 = 0. Integrating out the

transverse and minus degrees of freedom below the scale µ, the longitudinal momentum

‡Due to differences in notation in Chs. 4 and 5, Eq. (1.31) is not identical to Eq. (1.25); the two
definitions can be related by making the replacement f−(q2) → f0(q

2) − f+(q2). In addition, here
we define the B and π meson momenta to be pB and p respectively, as opposed to p and k in
Eq. (1.25).
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fraction u remains relevant. The transverse degrees of freedom are included below the

scale µ as higher twist contributions, and above µ as perturbative effects. This leads to

the collinearly factorised expression

Π+(p2
B, q

2) =
∑

n

∫

du T (n)(u, p2
B, q

2, µ2)φ(n)(u, µ2) (1.34)

where T (n)(u, µ2) are the perturbatively calculable hard kernels, and φ(n)(u, µ2) are the

non-perturbative light-cone distribution amplitudes (DA’s) for a given twist n. This

factorisation theorem is not proven for all orders, but can be verified for a given order

by the cancellation of IR and soft divergences, the latter arising when the convolution

does not converge at the endpoints.

As mentioned earlier, in the following we will be interested in the leading-twist con-

tribution, such that b(0)b̄(x) is simply the perturbative propagator. At tree-level, we

find the trivial result

Π+(p2
B, q

2) =
1

2
fπm

2
b

∫ 1

0

du
φ(u, µ2)

m2
b − up2

B − ūq2
. (1.35)

Here φ(u, µ2) is the leading-twist pion distribution amplitude (DA), which contains the

distribution of the momentum fraction u of partons in the pion’s infinite momentum

frame for the lowest Fock state. We postpone the discussion of DA’s to Sec. 5.5.1, and

here simply state the definition to be

〈π(p)|ū(0)γµγ5[0, x] d(x)|0〉 = −ifπpµ

∫ 1

0

du eiūp·xφ(u, µ2) + . . . , (1.36)

where fπ is the decay constant of the pion, ū = 1 − u, µ is the renormalisation scale,

[0, x] is the Wilson line connecting the points 0 and x, and the ellipses indicate the

contributions at higher-twist§. In the following we work in the in the Fock-Schwinger

or light-cone gauge where the Wilson lines are 1. Making the substitution u = (m2
b −

q2)/(s − q2) in Eq. (1.35), and taking the imaginary part, we can define the spectral

density ρT2 at leading-twist, which can be extended to include higher order perturbative

corrections,

Π+(p2
B, q

2) =

∫ ∞

0

ds
ρT2

s− p2
B

+ . . . , (1.37)

§The explicit form of these terms can be found in Ref. [71]
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where again the ellipses indicate the contributions at higher-twist. Equating the expres-

sions for Π+(p2
B, q

2) in Eqs. (1.33) and (1.37), results in

fBm
2
B

f+(q2)

m2
B − p2

B

+

∫

s>m2
B

ds
ρhad

s− p2
B

=

∫ ∞

0

ds
ρT2

s− p2
B

. (1.38)

Above the continuum threshold s0, a continuum of states contribute and the approxi-

mation of quark-hadron duality is thought to be reasonable, such that

ρhad = ρT2 Θ(s− s0). (1.39)

Subtracting this term arising from the continuum from Eq. (1.38) leads to the relation

fBm
2
B

f+(q2)

m2
B − p2

B

=

∫ s0

m2
b

ds
ρT2

s− p2
B

. (1.40)

Now applying a Borel transform B̂ to both sides using

B̂
1

s− p2
B

=
1

M2
e−s/M2

, (1.41)

results in the sum rule for f+(q2),

f+(q2) =
1

fBm2
B

∫ s0

m2
b

ds ρT2 e
−(s−m2

B)/M2

, (1.42)

whereM2 is the Borel parameter. The approximation of quark-hadron duality introduces

an unavoidable uncertainty into the sum rule, but this is reduced by taking the Borel

transform, and making appropriate choices for s0 and M2 such that the result for f+(q2)

is flat with respect to these parameters. The LCSR method can be applied to all heavy

to light form factors for B decays, and can be systematically improved by going to higher

orders in twist and the perturbative expansion.

1.6 QCD Factorisation and Radiative Decays

As mentioned in Sec. 1.4, radiative B decays cannot be described entirely by form

factors due to strong interaction effects, known as non-factorisable corrections. These

take the form of electromagnetic corrections to the matrix elements of purely hadronic

operators, i.e. O1−6 and O8, of the weak effective Hamiltonian defined in Eq. (1.9). QCD
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factorisation (QCDF) is a framework by which these can be computed in the combined

heavy quark and large energy limit [47]. Here large energy refers to that of the final state

meson, E ∼ O(mB/2). The discussion of QCDF here will be confined to the context of

B → K∗µ+µ−, where E is related to q2, the dilepton invariant mass, and mK∗ , the mass

of the K∗, by

2mBE = m2
B +m2

K∗ − q2 . (1.43)

The extension to other radiative decays is straightforward, e.g. toB → ρl+l− in Ref. [78].

The calculation of hard scattering effects is similar to that of light hadronic exclusive

processes in the Brodsky-Lepage formalism, as in Eq. (1.24), computing the perturbative

O(αs) hard scattering kernel which must be convoluted with the distribution amplitude

of the B meson and the K∗. As described earlier,the “hard mechanism” is not the full

description for B decays; the soft mechanism cannot be neglected as it contributes at

the same (leading) order in 1/mb. Therefore QCDF proposes an expression for the decay

amplitude consisting of two terms, separating soft and hard perturbative contributions

into C
(i)
a and T

(i)
a , and extending Eq. (1.24) schematically we find,

〈Mγ∗|H(i)
eff |B〉 ∼ ξaC

(i)
a + φB ⊗ T (i)

a ⊗ φa,K∗ +O(1/mb), (1.44)

with a =⊥, ‖ and i = u, t. Here φB and φa,K∗ are light-cone distribution amplitudes

for the B meson and the K∗ respectively. Note that non-factorisable corrections do

not affect O9/10, but only contribute to the decay amplitude through the production

of a virtual photon, which then decays into the lepton pair, therefore in Eq. (1.44) we

consider the decay amplitude to a virtual photon.

Figure 1.1: Leading contributions to 〈γ∗K̄∗|Heff |B̄〉 where the crossed circles indicate possible
virtual photons (from Ref [79]).

In Eq. (1.44), as in Refs. [47; 78; 79], the C
(i)
a are multiplied by ξ⊥ and ξ‖, known

as soft form factors, which correspond to the polarisation of the vector meson. These
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Figure 1.2: Non-factorisable contributions to 〈γ∗K̄∗|Heff |B̄〉, where the crossed circles indi-
cate possible virtual photons (from Ref [79]).

are defined in the heavy quark and large energy limit, where the number of independent

form factors reduces from 7 to 2. Neglecting O(αs) corrections, the ξ’s are defined in

Ref. [78] to leading order as

ξ⊥(q2) =
mB

mB +mK∗

V (q2) , (1.45)

ξ‖(q
2) =

mB +mK∗

2E
A1(q

2) − mB −mK∗

mB
A2(q

2) . (1.46)

We can express the matrix element for the B → K∗γ∗ transition more specifically in

terms of the functions T (i)
1−3(q

2),

〈γ∗(q, µ)K̄∗(k, ε∗)|H(i)
eff |B̄(p)〉 =

igemmb

π2

{

2 T (i)
1 (q2) ǫµνρσε∗ν pρp

′
σ

−i T (i)
2 (q2)

[

(m2
B −m2

K∗) ε∗µ − (ε∗ · q) (pµ + p′µ)
]

−i T (i)
3 (q2) (ε∗ · q)

[

qµ − q2

m2
B −m2

K∗

(pµ + p′µ)

]

}

, (1.47)

where i = u, t, p and k are the momenta of the B andK∗ mesons and ǫ∗ is the polarisation

vector of the K∗. The factor of mb is defined to be the pole mass. In the case of the
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effective Lagrangian defined in Sec. 1.2,

Heff = −4GF√
2

(

λtH(t)
eff + λuH(u)

eff

)

, (1.48)

including the contribution from the electromagnetic dipole operator O7 shown in Fig. 1.1(a)

as well as the diagrams involving the four-quark operators O1−6 shown in Fig. 1.1(b) (but

not annihilation contributions shown in Fig. 1.1(c)), the leading logarithmic expressions

are [80]

T (t)
1 (q2) = C eff

7 T1(q
2) + Y (q2)

q2

2mb(mB +mK∗)
V (q2), (1.49)

T (t)
2 (q2) = C eff

7 T2(q
2) + Y (q2)

q2

2mb(mB −mK∗)
A1(q

2), (1.50)

T (t)
3 (q2) = C eff

7 T3(q
2) + Y (q2)

[

mB −mK∗

2mb
A2(q

2) − mB +mK∗

2mb
A1(q

2)

]

. (1.51)

C7,9 always appear in a particular combination with other Ci, so we define effective

coefficients C ′eff
7,9 , and also C ′eff

8,10, given by [81],

Ceff
7 =

4π

αs
C7 −

1

3
C3 −

4

9
C4 −

20

3
C5 − 80

9
C6 ,

Ceff
8 =

4π

αs
C8 + C3 −

1

6
C4 + 20C5 − 10

3
C6 ,

Ceff
9 =

4π

αs

C9 + Y (q2) ,

Ceff
10 =

4π

αs

C10 (1.52)

with Y (q2) = h(q2, mc)

(

4

3
C1 + C2 + 6C3 + 60C5

)

− 1

2
h(q2, mb)

(

7C3 +
4

3
C4 + 76C5 +

64

3
C6

)

− 1

2
h(q2, 0)

(

C3 +
4

3
C4 + 16C5 +

64

3
C6

)

+
4

3
C3 +

64

9
C5 +

64

27
C5 . (1.53)
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Note that these definitions differ from those in Ref. [47], due to a different normalisation

of the operators O7−10. As explained in Sec. 1.2, we include a factor 16π2/g2 = 4π/αs

in the definition of the operators Oi≥7 to allow a more transparent organisation of the

expansion of their Wilson coefficients in perturbation theory. The function

h(q2, mq) = −4

9

(

ln
m2

q

µ2
− 2

3
− z

)

− 4

9
(2 + z)

√

|z − 1|



















arctan
1√
z − 1

z > 1

ln
1 +

√
1 − z√
z

− iπ

2
z ≤ 1

(1.54)

is related to the basic fermion loop, and z is defined as 4m2
q/s. The contributions from

the four-quark operators O1−6 are usually combined with the coefficient C9 into an

“effective” (basis- and scheme-independent) Wilson coefficient C eff
9 (q2) = C9 + Y (q2).

In Ref. [79], the full form factors are replaced by the soft form factors, such that

Eqs.(1.49-1.51) simplify to

T (t)
1 (q2) ≡ T (t)

⊥ (q2) = ξ⊥(q2)

[

C eff
7 δ1 +

q2

2mbmB

Y (q2)

]

, (1.55)

T (t)
2 (q2) =

2E

mB
T (t)
⊥ (q2), (1.56)

T (t)
3 (q2) − mB

2E
T (t)

2 (q2) ≡ T (t)
‖ (q2) = −ξ‖(q2)

[

C eff
7 δ2 +

mB

2mb
Y (q2) δ3

]

. (1.57)

The factors δi are defined such that δi = 1 + O(αs), where the αs-corrections are the

O(αs) contributions to Eqs. (1.46), computed in [79]. The results of Ref. [47] can there-

fore presented in terms of two invariant amplitudes T⊥, ‖(q
2), instead of three, which

refer to the decay into a transversely and longitudinally polarised vector meson (virtual

photon), respectively. In QCDF, the next-to-leading order extensions of these quantities,

including both hard and soft contributions in analogy to Eq. (1.44), take the form

T (i)
a = ξa

(

C(0,i)
a +

αsCF

4π
C(1,i)

a

)

+
π2

Nc

fBfK∗, a

mB
Ξa

∑

±

∫

dω

ω
φB,±(ω)

∫ 1

0

du φK∗, a(u)T
(i)
a,±(u, ω), (1.58)
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where CF = 4/3, Nc = 3, Ξ⊥ ≡ 1, Ξ‖ ≡ mK∗/E, and Ta,±(u, ω) is expanded as

T
(i)
a,±(u, ω) = T

(0,i)
a,± (u, ω) +

αsCF

4π
T

(1,i)
a,± (u, ω). (1.59)

Here the usual K∗ decay constant fK∗ is given by fK∗, ‖, and fK∗,⊥ is the (scale-

dependent) transverse decay constant defined by the matrix element of the tensor cur-

rent. Note that one can obtain the leading-order coefficient C
(0,t)
a by comparing Eqs. (1.55)

and (1.57) setting δi = 1. The leading -order coefficient T
(0,t)
a,± (u, ω) was obtained in

Ref. [47] by calculating the non-factorisable weak annihilation contribution as in Fig. 1.1.

The diagrams in Fig. 1.2, involving the four-quark operators and the chromomagnetic

dipole operator with virtual photon emission, were also calculated, and result in non-

factorisable corrections to both C
(t)
a and T

(t)
a

¶. Here the numerically small vertex cor-

rections to the weak annihilation diagram in Fig. 1.1(c) are neglected. Extending the

relations in Eq. (1.45) to O(αs) [79] in the heavy quark limit, results in factorisable

corrections to C
(t)
a .

For the decay B → K∗µ+µ−, CP violation in the SM is only induced by the weak

phase present in λu = VubV
∗
us. Therefore the calculation of CP asymmetries in Ch. 2

requires the inclusion of the doubly Cabibbo suppressed H(u)
eff contribution, and the

necessary results for C
(u)
a and T

(u)
a,±(u, ω) can be found in the appendix of Ref. [78]. On

the other hand, the B → K∗µ+µ− observables studied in the first few years at the LHC

(as investigated in Ch. 3) will not be sensitive to these effects, so H(u)
eff is neglected. Note

that extending the b → s formalism to b → d decays is straightforward [78], and in

this case both H(u)
eff and H(t)

eff are CKM suppressed, so both must be taken into account.

For decays to charged ρ mesons the 1/mb suppressed weak annihilation effects must be

included as they are enhanced by the large Wilson coefficient C2, and therefore affect the

isospin asymmetries [78]. Altogether QCDF provides a framework for the calculation of

non-factorisable strong interaction corrections (i.e. those corrections not related to form

factors) in the heavy quark limit. This is complete to O(αs), with the exception of the

suppressed weak annihilation contribution which is included to leading order.

We are now armed with the tools required to obtain predictions for exclusive semi-

leptonic and radiative processes, namely effective field theories (Sec. 1.2), QCD sum rules

on the light cone and QCD factorisation (Sec. 1.6). From the discussion in Sec. 1.3, it

is clear that a particular decay deserving attention at the LHC is B → K∗µ+µ−, and

in Ch. 2 we will present observables for this decay in the SM and beyond, followed in

¶Note that O7,9,10 do not induce non-factorisable corrections, as they are 2-quark operators
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Ch. 3 by a study of the potential to constrain NP in the early LHC era using these

observables. Form factors (Sec. 1.5) are key in the calculation of semi-leptonic and

radiative exclusive decays, and the non-perturbative techniques used to calculate them

such as Lattice QCD and LCSR are often only valid in certain ranges of momentum

transfer. In Ch. 4 we therefore explore the extrapolation of predictions for these form

factors, using theoretical constraints from dispersive bounds. Finally in Ch. 5 we consider

twist-2 O(α2
sβ0) corrections to the form factor f+(q2) at zero recoil for B → πlν, using

light cone sum rules, relevant to the extraction of the CKM element |Vub| (see Sec. 1.1),

and conclude in Ch. 6.



Chapter 2

Symmetries and Asymmetries of

Bd → K∗0µ+µ−

2.1 Introduction

The exclusive rare decay B → K∗ℓ+ℓ− is a golden channel for LHCb, due to its sen-

sitivity to non-standard flavour and CP-violating effects combined with the vast array

of possible observables. For example, a number of asymmetries, like the well-known

forward-backward asymmetry (AFB), can be constructed with sensitivity to a variety

of NP effects. Excluding the resonance-dominated region around the charmonium res-

onances with B → K∗ψ(→ ℓ+ℓ−), B → K∗ℓ+ℓ− is one of the rarest B decays ever

observed; the first B → K∗(→ Kπ)ℓ+ℓ− events were first seen at the B factories BaBar

and Belle, (230 at Belle [82]). Current experimental results are compiled in Tab. 2.1.

The LHC hopes to improve on these results by an order of magnitude, and a recent

study by the LHCb collaboration [62] predicts 7200 signal events with a data set of

2 fb−1, which corresponds to one nominal year of running. It was shown that this would

enable a determination of the zero-crossing point of AFB with the expected precision of

0.46 GeV2.

We present an analysis of this channel, based on QCD factorisation and including

the full set of LCSR form factors (as discussed in Secs. 1.5, 1.6), whereby we include

the dominant effects suppressed by the b quark mass. We focus on the decays of neutral

B’s, B̄0 → K̄∗0(→ K−π+)µ+µ− and its CP-conjugate B0 → K∗0(→ K+π−)µ+µ−, as

the LHC has a preference for charged particles in the final state, and such that the

flavour of the decaying B meson (B0 or B̄0) is unambiguously tagged. We also focus on

35
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Experiment BaBar [83] Belle [82] CDF [84]

BR(B → K∗µ+µ−) × 107 11.1 ± 1.9 ± 0.7 10.8+1.0
−1.0 ± 0.9 8.1 ± 3.0 ± 1.0

Number of BB̄ events 384 × 106 657 × 106 –

Table 2.1: Experimental results for the branching ratio of B → K∗µ+µ−; the region around
the charm resonances with B → K∗ψ(→ µ+µ−) is excluded. The first error is
statistics, the second systematics.

ℓ = µ which can be cleanly measured at the LHC; see Ref. [85] for a discussion of effects

arising by considering instead ℓ = e.

A wealth of literature exists on B → K∗µ+µ− decays. Notably in 1999, Ali et al.

calculated the dilepton mass spectrum and AFB in the SM and various SUSY scenarios

using näıve factorisation and QCD sum rules on the light cone [86]. QCD factorisation

in the heavy quark limit was first applied to B → K∗µ+µ− by Beneke et al. [47; 78].

Here the size of the O(1/mB) effects is not yet fully known. In Ref. [87], a calculation of

B → K∗µ+µ− using soft-collinear theory (SCET) was presented. Two recent analyses

also use QCD factorisation, the first focused on possible NP effects in CP asymmetries

[88] and the second on observables available from angular distributions [89]. There are

also many papers investigating the sensitivity of this channel to NP effects. Most of

these however, except Ref. [90], focus on the effects of NP on AFB, while we shall argue

that there could be large effects in many angular observables not considered before, see

Sec. 2.3.

We aim to improve on previous studies as follows:

• we include the full set of 7 form factors, rather than the 2 form factors in the heavy

quark limit, calculated from QCD sum rules on the light-cone∗;

• we give an up-to-date prediction of the B → K∗(→ Kπ)µ+µ− observables in the

SM and shall argue that the bulk of power-suppressed corrections is due to the

difference between the full QCD form factors and their heavy quark limit;

• we study all angular observables in the decay B → K∗(→ Kπ)µ+µ− and identify

those with small sensitivity to hadronic and large sensitivity to NP effects;

• we include the effects of scalar and pseudoscalar operators, which are extremely

suppressed in the SM, on all angular observables;

∗Our set of form factors is shown to fulfil all correlations required in the heavy quark limit in Ref. [52].
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The rest of the chapter is organised as follows: in Sec. 2.2 we review the theoreti-

cal framework, based on the trinity of effective Hamiltonian, form factors and QCD

factorisation. In Sec. 2.3 we discuss the kinematics of the decay and define the basic ob-

servables in the process. In Sec. 2.3.5 we define observables satisfying the requirements

of theoretical cleanliness and sensitivity to NP effects. Sec. 2.4, the centre part of our

paper, contains the phenomenological analysis of those observables in the SM, and in a

model-independent way. We conclude in Sec. 2.5, briefly reviewing our main results.

2.2 Theoretical Framework

The calculation of the B → K∗µ+µ− decay amplitude consists of three steps, as outlined

in Ch. 1, and further details specific to our calculation are described in this section:

• the definition of additional operators required in the effective Hamiltonian Heff for

a generic new physics model;

• the discussion of specific details about the LCSR form factors employed;

• the approach taken to include QCD factorisation (QCDF) corrections in our cal-

culation.

QCDF is only valid for small invariant dilepton mass q2 ∼ O(1 GeV2), or, equivalently,

large K∗ energy E ∼ O(mB/2). For this reason, and others discussed in Sec. 2.2.4 we

concentrate on the region 1 GeV2 < q2 < 6 GeV2. After having discussed the above

steps we will explain our strategy for calculating the B → K∗µ+µ− amplitude.

2.2.1 Effective Hamiltonian

In order to investigate the effects of New Physics, we extend the operator basis defined

in Eq. (1.9) to include primed operators, which have opposite chirality to the unprimed

ones, and vanish or are highly suppressed in the SM. We also include the scalar and

pseudoscalar operators OS,P , and their primed equivalents O′
S,P , which vanish in the SM.

We neglect the contributions of O′
i for 1 ≤ i ≤ 6, as, although they may be generated

in certain NP scenarios e.g. left-right symmetric models or the general MSSM, their

impact is either greatly constrained or very small. Therefore we now define H(t)
eff and
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H(u)
eff ,

H(t)
eff = C1Oc

1 + C2Oc
2 +

6
∑

i=3

CiOi +
∑

i=7−10,P,S

(CiOi + C ′
iO′

i) , (2.1)

H(u)
eff = C1(Oc

1 −Ou
1 ) + C2(Oc

2 −Ou
2 ) . (2.2)

where the remaining operators are given by

O′
7 =

e

g2
mb(s̄σµνPLb)F

µν , O′
8 =

1

g
mb(s̄σµνT

aPLb)G
µν a, (2.3)

O′
9 =

e2

g2
(s̄γµPRb)(µ̄γ

µµ), O′
10 =

e2

g2
(s̄γµPRb)(µ̄γ

µγ5µ), (2.4)

OS =
e2

16π2
mb(s̄PRb)(µ̄µ), O′

S =
e2

16π2
mb(s̄PLb)(µ̄µ), (2.5)

OP =
e2

16π2
mb(s̄PRb)(µ̄γ5µ), O′

P =
e2

16π2
mb(s̄PLb)(µ̄γ5µ), (2.6)

and again, g is the strong coupling constant, PL,R = (1 ∓ γ5)/2 and mb denotes the

running b quark mass in the MS scheme.

Any NP contributions to the decay enter through Ci(mW ), which is then evolved to

lower scales as in the SM. As described in Sec. 1.2, the next-to-next-to-leading logarith-

mic (NNLL) accuracy of our calculation in the SM requires the matching conditions at

µ = mW to two-loop accuracy, as calculated in Ref. [35]. NP contributions, on the other

hand, will be included to one-loop accuracy only.†

Two-loop accuracy in the matching requires the inclusion of anomalous dimensions

in the renormalisation-group equations to three-loop accuracy given by the 10 × 10 SM

anomalous dimension matrix calculated in Refs. [45; 46]. The operators O(′)
S,P , being

conserved currents, are scale-independent and do not mix such that their Wilson coef-

ficients are given by the coefficients at the matching scale. O9 mixes with O1,...,6, via

diagrams with a virtual photon decaying into µ+µ−. Additional scale dependence in C9

and C10 comes from the factor 1/g2, which otherwise would be scale independent.

Tab. 2.2 contains all the SM values of the Wilson coefficients to NNLL accuracy. As

in Eq. (1.53) where we defined Ceff
7,9 and Ceff

8,10, we define effective coefficients C ′eff
7,9 , and

†An explicit calculation of two-loop corrections in the MSSM [36] shows that they are small.
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C1(µ) C2(µ) C3(µ) C4(µ) C5(µ) C6(µ) Ceff
7 (µ) Ceff

8 (µ) Ceff
9 (µ) − Y (q2) Ceff

10 (µ)

−0.257 1.009 −0.005 −0.078 0.000 0.001 −0.304 −0.167 4.211 −4.103

C̄1(µ) C̄2(µ) C̄3(µ) C̄4(µ) C̄5(µ) C̄6(µ) C ′
7
eff(µ) C ′

8
eff(µ)

−0.128 1.052 0.011 −0.032 0.009 −0.037 −0.006 −0.003

Table 2.2: SM Wilson coefficients at the scale µ = mb = 4.8 GeV, to NNLL accuracy. All
other Wilson coefficients are heavily suppressed in the SM. The “barred” C̄i are
related to Ci as defined in Ref. [47]. Input: αs(mW ) = 0.120, αs(mb) = 0.214,
obtained from αs(mZ) = 0.1176 [30], using three-loop evolution. We also use
mt(mt) = 162.3GeV [91], mW = 80.4GeV and sin2 θW = 0.23.

also C ′eff
8,10, given by

C ′,eff
7,8,9,10 =

4π

αs
C ′

7,8,9,10 . (2.7)

Later it will become clear that in the B → K∗(→ Kπ)µ+µ− decay amplitude certain

Wilson coefficients only arise in combinations, e.g. CS − C ′
S, and cannot be accessed

separately.

2.2.2 Form Factors

The B → K∗ matrix elements of the operators O(′)
7,9,10,S,P can be expressed in terms of

seven form factors V (q2), A1−3(q
2) and T1−3(q

2), as defined in Eqs. (1.26,1.27). As usual

we define the momentum transfer q2, where qµ = pµ − kµ, between the B and the K∗,

with momentum p and k respectively. No lattice calculation of a full set of form factors

is available yet, although recent (quenched) results for T1(0) relevant for B → K∗γ give:

T1(0) = 0.24 ± 0.03+0.04
−0.01 [92]. Preliminary results from an alternative lattice calculation

of T1(0) have been reported in Ref. [93]. At present, a more promising method for

calculating form factors at large energies of the final-state meson (i.e. at small q2) is

offered by QCD sum rules on the light-cone (LCSRs) as introduced in Sec. 1.5. The

LCSR approach was applied to B → K∗ form factors in, for instance, Refs. [72; 94].

LCSRs for all 7 form factors except for A0 are available at O(αs) accuracy for twist-2

and-3 and tree-level accuracy for twist-4 contributions [72]. In Ref. [52], the LCSR for

A0 was also calculated to the same accuracy.



Symmetries and Asymmetries of Bd → K∗0µ+µ− 40

B parameters

fB [95] λB(µh) [96] µh

200(25) MeV 0.51(12) GeV 2.2 GeV

K∗ parameters

f
‖
K∗ f⊥

K∗(2GeV) a
⊥,‖
1 (2GeV) a

⊥,‖
2 (2GeV)

220(5) MeV 163(8) MeV 0.03(3) 0.08(6)

quark masses

mb(mb) [97] mc(mc) [97] mt(mt) [91]

4.20(4) GeV 1.30(2) GeV 162.3(1.1) GeV

Table 2.3: Numerical values of hadronic input parameters. a
⊥,‖
i are parameters of the twist-2

K∗ DAs and are taken from Ref. [98–101],as well as all higher-twist parameters
not included in the table.

Higher twist contributions are suppressed by a factor mK∗/mb, such that the next

term in the light-cone expansion contains twist-3, -4 and -5 DAs and at q2 = 0 is of

order (mK∗/mb)
3. Note that for q2 > 0, the expansion parameter is mbmK∗/(m2

b −q2) ≈
mK∗/(2E), where E is the energy of the K∗. The light-cone expansion is therefore

restricted to large E i.e. small q2. However, the LCSR method does not rely on mb

being a large (or hard) scale.

The form factors used in the analysis are the same as those calculated in Ref. [52],

and further details about the calculation can be found there. The resulting values of the

form factors at q2 = 0 are given in Tab. 2.4. With fB fixed, the errors of the form factors

become rather small and are below 20%. The q2-dependence follows directly from the

sum rules. In Fig. 2.1 we plot the central values of all form factors as functions of q2.

2.2.3 QCD Factorisation

As explained in Sec. 1.6, in addition to terms proportional to the form factors, we also

need to include “non-factorisable” contributions to the B → K∗µ+µ− amplitude, involv-

ing the purely hadronic operators O1 to O6 and the chromomagnetic-dipole operator O8

with additional (virtual) photon emission. These effects were calculated in QCD factori-
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A0(0) A1(0) A2(0) V (0)

0.333 ± 0.033 0.233 ± 0.038 0.190 ± 0.039 0.311 ± 0.037

T1(0) T3(0) ξ‖(0) ξ⊥(0)

0.268 ± 0.045 0.162 ± 0.023 0.118 ± 0.008 0.266 ± 0.032

Table 2.4: LCSR results for q2 = 0. T2(0) = T1(0). The scale-dependent form factors Ti

and ξ‖,⊥ are evaluated at µ = 4.8GeV. The soft form factors ξ⊥,‖ are intro-
duced in Sec. 2.2.3. The error is calculated from varying s0 by ±2GeV2, M2 by
±2GeV2 and all hadronic input parameters according to their uncertainties given
in Tab. 2.3, except for fB [52]..
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Figure 2.1: Form factors from LCSRs for central values of input parameters. Left: Solid
curve: A0, long dashes: A1, short dashes: A2, dot-dashed curve: V . Right: Solid
curve: T1, long dashes: T2, short dashes: T3 [52].

sation in Refs. [47; 78; 79] which, as mentioned earlier, is valid in the limit of large energy

of the K∗, E ∼ O(mB/2), and the heavy quark limit (E is as defined in Eq. (1.43)). As

QCDF is not valid above the charm threshold, for the phenomenological analysis, we re-

quire E > 2.1 GeV, which corresponds to q2 < 6 GeV2, well below the charm threshold.

Above the charm resonances other techniques are required to predict the B → K∗µ+µ−

matrix element. Näıve factorisation is probably a reasonable approximation at the 10 to

20% level. Corrections to the decay amplitude in the large q2 region were calculated in

Ref. [102], computing long-distance effects from quark loops using an operator product

expansion in 1/Q, where Q = mb, q
2. Here terms of O(m2

c/Q
2) and O(1/Q) are included

up to αs. The scale and scheme independence of the results for physical observables

indicates that this approach is an improvement on the näıve factorisation.
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As the QCDF corrections are calculated in the heavy quark limit, the success of

this technique relies on the O(1/mb) corrections being small. One source of corrections

arises from using the soft form factors instead of the full form factors. Therefore if we

use the full LCSR form factors we can automatically include these O(1/mb) corrections,

the importance of which is discussed in App. B of Ref. [52]. However, we still need to

consider the remaining α0
s/mb corrections. Weak annihilation contributes at this order,

but is suppressed due to the small size of the Wilson coefficients it depends on, C3

and C4, so here the O(1/mb) terms can be safely neglected. Finally certain diagrams,

formally of O(αs/mb), might become relevant due to an end-point divergence in the

convolution. Such a divergence would signal that additional soft contributions should

also be considered, of O(1/mb) as αs is non-perturbative. However, in light-cone sum

rules, similar contributions described by three-particle DA’s of type 〈0|q̄ G s|K̄∗〉, with G

the gluonic field-strength tensor are numerically small [98–101]. This leads us to believe

that we are justified in neglecting such soft terms. Further details, and the exact form

of the QCDF corrections we include, are found in Sec. 2.3.4.

2.2.4 Our Strategy

Based on the above discussion, our strategy for calculating B → K∗(→ Kπ)µ+µ− decays

is the following:

• we predict observables in the dilepton mass range 1 GeV2 < q2 < 6 GeV2;

• we include the main source of power-suppressed corrections by using the full QCD

form factors in the näıvely factorised amplitude, and the ξ form factors in the

QCDF corrections;

• we concentrate on the prediction of observables which are independent of the ab-

solute values of form factors, and only depend on their ratios;

• for the error analysis, we employ correlated errors between form factors, which

follow from the light-cone sum rules;

• we include new-physics effects in the Wilson coefficients C7,9,10,S,P , and their primed

counterparts, but not in the other Ci.

As mentioned earlier, QCDF breaks down close to the charm resonances, resulting

in a threshold at q2 = 4m2
c . In order to stay sufficiently below the threshold, we set

q2
max = 6 GeV2. Meanwhile at q2 close to the kinematical minimum, the decay amplitude

is dominated by the photon pole and by just one Wilson coefficient, Ceff
7 . Hence, in
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this region one cannot gain any information not already known from the well-studied

radiative decay b → sγ. Further, there could be (unknown) resonance contributions

from ρ or other mesons, and for these reasons we set q2
min = 1 GeV2.

2.3 Differential Decay Distribution and Spin

Amplitudes

In this section we discuss the kinematics of the 4-body decay B → K∗(→ Kπ)µ+µ−,

define the angular observables in the spectrum and derive explicit formulae in terms of

form factors and Wilson coefficients.

2.3.1 Differential Decay Distribution

The decay actually being observed in experiment is not B → K∗µ+µ−, but B → K∗(→
Kπ)µ+µ−. As discussed in Ref. [103], the additional information provided by the angle

betweenK and π is sensitive to the polarisation of theK∗ and thus provides an additional

probe of the effective Hamiltonian.

The matrix element of the effective Hamiltonian for the decay B → K∗(→ Kπ)µ+µ−

can be written, in näıve factorisation, as

M =
GFα√

2π
VtbV

∗
ts

{[

〈Kπ|s̄γµ(Ceff
9 PL + C ′eff

9 PR)b|B̄〉

− 2mb

q2
〈Kπ|s̄iσµνqν(C

eff
7 PR + C ′eff

7 PL)b|B̄〉
]

(µ̄γµµ)

+ 〈Kπ|s̄γµ(Ceff
10PL + C ′eff

10 PR)b|B̄〉(µ̄γµγ5µ)

+〈Kπ|s̄(CSPR + C ′
SPL)b|B̄〉(µ̄µ)+〈Kπ|s̄(CPPR + C ′

PPL)b|B̄〉(µ̄γ5µ)

}

.

(2.1)

To express the B → Kπ matrix elements in terms of the B → K∗ form factors discussed

in Sec. 2.2.2, one assumes that the K∗ decays at resonance‡. Then, one can use a

‡For a study of off-resonance effects, see Ref. [104].
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narrow-width approximation by making the following replacement in the squared K∗

propagator:

1

(k2 −m2
K∗)2 + (mK∗ΓK∗)2

ΓK∗≪mK∗−−−−−−→ π

mK∗ΓK∗

δ(k2 −m2
K∗). (2.2)

In this way, the form factors are independent of the K∗Kπ coupling gK∗Kπ [103; 105],

because it cancels between the vertex factor and the width

ΓK∗ =
g2

K∗Kπ

48π
mK∗β3, (2.3)

where

β =
1

m2
K∗

[

m4
K∗ +m4

K +m4
π − 2(m2

K∗m2
K +m2

Km
2
π +m2

K∗m2
π)
]1/2

. (2.4)

Writing the matrix elements in Sec. 2.2.2 as

〈K̄∗(k)|Jµ|B̄(p)〉 = ǫ∗νAνµ, (2.5)

where Aνµ contains the B → K∗ form factors, the corresponding B → Kπ matrix

element can then be expressed as

〈K̄(k1)π(k2)|Jµ|B̄(p)〉 = −DK∗(k2)W νAνµ, (2.6)

where [103]

|DK∗(k2)|2 = g2
K∗Kπ

π

mK∗ΓK∗

δ(k2 −m2
K∗) =

48π2

β3m2
K∗

δ(k2 −m2
K∗), (2.7)

W µ = Kµ − m2
K −m2

π

k2
kµ, kµ = kµ

1 + kµ
2 , Kµ = kµ

1 − kµ
2 . (2.8)

With an on-shell K∗, the decay is completely described by four independent kinemat-

ical variables: the dilepton invariant mass squared q2 and the angles θK∗ , θl and φ. The

three angles are defined as follows: θK∗ is the angle between the K− and B̄ in the rest

frame of the K∗, and is defined in the range −1 ≤ cos θK∗ ≤ 1; θl is defined as the angle

between the µ− and B̄ in the di-muon centre of mass frame, and is defined in the range

−1 ≤ cos θl ≤ 1. φ is the angle between the normal to the K-π plane and the normal

to the di-muon plane, and is defined in the range 0 ≤ φ ≤ 2π. For the conjugate decay,
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the angles are defined analogously, but with reference to the K+ and µ+. Squaring the

matrix element, summing over spins of the final state particles and making use of the

kinematical identities given in the same appendix, one obtains the full angular decay

distribution of B̄0 → K̄∗0(→ K−π+)µ+µ−:

d4Γ

dq2 d cos θl d cos θK∗ dφ
=

9

32π
I(q2, θl, θK∗ , φ) , (2.9)

where

I(q2, θl, θK∗ , φ) = Is
1 sin2 θK∗ + Ic

1 cos2 θK∗ + (Is
2 sin2 θK∗ + Ic

2 cos2 θK∗) cos 2θl

+ I3 sin2 θK∗ sin2 θl cos 2φ+ I4 sin 2θK∗ sin 2θl cosφ

+ I5 sin 2θK∗ sin θl cos φ

+ (Is
6 sin2 θK∗ + Ic

6 cos2 θK∗) cos θl + I7 sin 2θK∗ sin θl sin φ

+ I8 sin 2θK∗ sin 2θl sin φ+ I9 sin2 θK∗ sin2 θl sin 2φ . (2.10)

The corresponding expression for the CP-conjugated mode B0 → K∗0(→ K+π−)µ+µ−

is

d4Γ̄

dq2 d cos θl d cos θK∗ dφ
=

9

32π
Ī(q2, θl, θK∗ , φ) . (2.11)

The function Ī(q2, θl, θK∗, φ) is obtained from (2.10) by the replacements [103]

I
(a)
1,2,3,4,7 −→ Ī

(a)
1,2,3,4,7 , I

(a)
5,6,8,9 −→ −Ī(a)

5,6,8,9 , (2.12)

where Ī
(a)
i equals I

(a)
i with all weak phases conjugated. The minus sign in (2.12) is

a result of our convention that, while θK∗ is the angle between the K̄∗0 and the K−

flight direction or between the K∗0 and the K+, respectively, the angle θl is measured

between the K̄∗0 (K∗0) and the lepton µ− in both modes. Thus, a CP transformation

interchanging lepton and antilepton leads to the transformations θl → θl−π and φ→ −φ.

This convention agrees with Refs. [88; 103; 106], but is different from the convention

used in some experimental publications [62], where θl is defined as the angle between

K∗0 and µ+ in the B0 decay, but between K̄∗0 and µ− in the B̄0 decay.
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The angular coefficients I
(a)
i , which are functions of q2 only, are usually expressed

in terms of K̄∗ transversity amplitudes. Since we want to explicitly keep lepton-mass

effects and include also contributions from scalar and pseudoscalar operators, this step

deserves a closer look.

2.3.2 Transversity Amplitudes

To introduce the transversity amplitudes, consider for the moment the decay B → K∗V ∗,

with the B meson decaying to an on-shell K∗ and a virtual photon or Z boson (which

can later decay into a lepton-antilepton pair). The amplitude for this process can be

written as

M(m,n)(B → K∗V ∗) = ǫ∗µK∗(m)Mµν ǫ
∗ν
V ∗(n) (2.13)

where ǫµV ∗(n) is the polarisation vector of the virtual gauge boson, which can be trans-

verse (n = ±), longitudinal (n = 0) or timelike (n = t). In the B meson rest frame, the

four basis vectors can be written as [105; 107]

ǫµV ∗(±) = (0, 1,∓i, 0)/
√

2, (2.14)

ǫµV ∗(0) = (−qz, 0, 0,−q0)/
√

q2, (2.15)

ǫµV ∗(t) = (q0, 0, 0, qz)/
√

q2, (2.16)

where qµ = (q0, 0, 0, qz) is the four-momentum vector of the gauge boson. They satisfy

the orthonormality and completeness relations

ǫ∗µV ∗(n)ǫV ∗ µ(n
′) = gnn′, (2.17)

∑

n,n′

ǫ∗µV ∗(n)ǫνV ∗(n′)gnn′ = gµν , (2.18)

where n, n′ = t,±, 0 and gnn′ = diag(+,−,−,−).

The K∗, on the other hand, is on shell and thus has only three polarisation states,

ǫµK∗(m) with m = ±, 0, which read in the B rest frame

ǫµK∗(±) = (0, 1,±i, 0)/
√

2, (2.19)
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ǫµK∗(0) = (kz, 0, 0, k0)/mK∗, (2.20)

where kµ = (k0, 0, 0, kz) is the four-momentum vector of the K∗ (note that kz = −qz).
They satisfy the relations

ǫ∗µK∗(m)ǫK∗ µ(m′) = −δmm′ , (2.21)

∑

m,m′

ǫ∗µK∗(m)ǫνK∗(m′) δmm′ = −gµν +
kµkν

m2
K∗

. (2.22)

The helicity amplitudes H0, H+ and H− can now be projected out from Mµν by con-

tracting with the explicit polarisation vectors in (2.13),

Hm = M(m,m)(B → K∗V ∗), m = 0,+,−. (2.23)

Alternatively, one can work with the transversity amplitudes defined as [106]

A⊥,‖ = (H+1 ∓H−1)/
√

2, A0 ≡ H0. (2.24)

In contrast to the decay of B to two (on-shell) vector mesons, to which this formalism

can also be applied, there is an additional transversity amplitude in the case of B →
K∗V ∗ because the gauge boson is virtual, namely

At = M(0,t)(B → K∗V ∗), (2.25)

which corresponds to a K∗ polarisation vector which is longitudinal in the K∗ rest frame

and a V ∗ polarisation vector which is timelike in the V ∗ rest frame.§

If we now consider the subsequent decay of the gauge boson into a lepton-antilepton

pair, the amplitude becomes

M(B → K∗V ∗(→ µ+µ−))(m) ∝ ǫ∗µK∗(m)Mµν

∑

n,n′

ǫ∗νV ∗(n)ǫρV ∗(n′) gnn′ (µ̄γρPL,Rµ). (2.26)

This amplitude can now be expressed in terms of six transversity amplitudes AL
⊥,‖,0 and

AR
⊥,‖,0, where L and R refer to the chirality of the leptonic current, as well as the seventh

§Unlike sometimes stated in the literature, At does not correspond to a timelike polarisation of the K∗

meson. As mentioned above, the K∗ decays on the mass shell and thus has only three polarisation
states.
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transversity amplitude At. The reason that for At no separate left-handed and right-

handed parts have to be considered can be seen as follows. Noticing that the timelike

polarisation vector in (2.16) is simply given by ǫµV ∗(t) = qµ/
√

q2, one can see from

current conservation,

qµ(µ̄γµµ) = 0, qµ(µ̄γµγ5µ) = 2imµ(µ̄γ5µ), (2.27)

that the timelike component of the V ∗ can only couple to an axial-vector current. In

addition, this shows that At vanishes in the limit of massless leptons.

Now, having shown that the amplitude of the sequential decay B → K∗V ∗(→ µ+µ−)

can be expressed in terms of seven transversity amplitudes, it is clear that this is true for

all contributions of the operators O(′)
7 , O(′)

9 and O(′)
10 to the decay of interest, B → K∗(→

Kπ)µ+µ−, regardless of whether they originate from virtual gauge boson exchange (i.e.

photon or Z penguin diagrams) or from box diagrams.

Does this also apply to decays mediated not by a vector, but a scalar and pseudoscalar

operator? Inspecting Eqs. (2.5), (2.6) and (2.27), one can see that the combination (OP−
O′

P ) can be absorbed into the transversity amplitude At, because it couples to axial-

vector currents, just like the timelike component of a virtual gauge boson. However, this

is not possible for the scalar operators O(′)
S . Therefore, the inclusion of scalar operators

in the decay B → K∗(→ Kπ)µ+µ− requires the introduction of a an additional, “scalar”

transversity amplitude, which we denote AS.

To summarise, the treatment of the decay B → K∗(→ Kπ)µ+µ− by decomposition

of the amplitude into seven transversity amplitudes AL,R
⊥,‖,0 and At is sufficient as long

as the operators O(′)
7,9,10 and O(′)

P are considered, but has to be supplemented by an

additional, eighth transversity amplitude AS once contributions from scalar operators

are taken into account.

Finally, we give the explicit form of the eight transversity amplitudes (up to correc-

tions of O(αs), whose discussion we postpone until Sec. 2.3.4):

A⊥L,R = N
√

2λ1/2

[

[

(Ceff
9 + Ceff′

9 ) ∓ (Ceff
10 + Ceff′

10 )
] V (q2)

mB +mK∗

+
2mb

q2
(Ceff

7 + Ceff′
7 )T1(q

2)

]

,

(2.28)

A‖L,R = −N
√

2(m2
B −m2

K∗)

[

[

(Ceff
9 − Ceff′

9 ) ∓ (Ceff
10 − Ceff′

10 )
] A1(q

2)

mB −mK∗
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+
2mb

q2
(Ceff

7 − Ceff′
7 )T2(q

2)

]

, (2.29)

A0L,R = − N

2mK∗

√

q2

{

[

(Ceff
9 − Ceff′

9 ) ∓ (Ceff
10 − Ceff′

10 )
]

×
[

(m2
B −m2

K∗ − q2)(mB +mK∗)A1(q
2) − λ

A2(q
2)

mB +mK∗

]

+ 2mb(C
eff
7 − Ceff′

7 )

[

(m2
B + 3m2

K∗ − q2)T2(q
2) − λ

m2
B −m2

K∗

T3(q
2)

]}

,

(2.30)

At =
N
√

q2
λ1/2

[

2(Ceff
10 − Ceff′

10 ) +
q2

2mµ
(CP − C ′

P )

]

A0(q
2), (2.31)

AS = −Nλ1/2(CS − C ′
S)A0(q

2), (2.32)

where

N = VtbV
∗
ts

[

G2
Fα

2

3 · 210π5m3
B

q2λ1/2βµ

]1/2

, (2.33)

with λ = m4
B +m4

K∗ + q4 − 2(m2
Bm

2
K∗ +m2

K∗q2 +m2
Bq

2) and βµ =
√

1 − 4m2
µ/q

2.

2.3.3 Angular Coefficients

With the eight transversity amplitudes defined in the preceding subsection, the angular

coefficients Ii in (2.10) can be written as

Is
1 =

(2 + β2
µ)

4

[

|AL
⊥|2 + |AL

‖ |2 + (L→ R)
]

+
4m2

µ

q2
Re
(

AL
⊥A

R
⊥

∗
+ AL

‖A
R
‖

∗)
, (2.34)

Ic
1 = |AL

0 |2 + |AR
0 |2 +

4m2
µ

q2

[

|At|2 + 2Re(AL
0A

R
0

∗
)
]

+ β2
µ|AS|2, (2.35)

Is
2 =

β2
µ

4

[

|AL
⊥|2 + |AL

‖ |2 + (L→ R)
]

, (2.36)

Ic
2 = −β2

µ

[

|AL
0 |2 + (L→ R)

]

, (2.37)
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I3 =
1

2
β2

µ

[

|AL
⊥|2 − |AL

‖ |2 + (L→ R)
]

, (2.38)

I4 =
1√
2
β2

µ

[

Re(AL
0A

L
‖

∗
) + (L→ R)

]

, (2.39)

I5 =
√

2βµ

[

Re(AL
0A

L
⊥

∗
) − (L→ R) − mµ

√

q2
Re(AL

‖A
∗
S + AR

‖ A
∗
S)

]

, (2.40)

Is
6 = 2βµ

[

Re(AL
‖A

L
⊥

∗
) − (L→ R)

]

, (2.41)

Ic
6 = 4βµ

mµ
√

q2
Re
[

AL
0A

∗
S + (L→ R)

]

, (2.42)

I7 =
√

2βµ

[

Im(AL
0A

L
‖

∗
) − (L→ R) +

mµ
√

q2
Im(AL

⊥A
∗
S + AR

⊥A
∗
S)

]

, (2.43)

I8 =
1√
2
β2

µ

[

Im(AL
0 A

L
⊥

∗
) + (L→ R)

]

, (2.44)

I9 = β2
µ

[

Im(AL
‖

∗
AL

⊥) + (L→ R)
]

. (2.45)

A few comments are in order:

• In contrast to the transversity amplitudes themselves, the angular coefficients Ii are

all physical observables. In fact, they contain the complete information that can

be extracted from the measurement of the decay B̄0 → K̄∗0(→ K−π+)µ+µ−. We

will discuss in Sec. 2.3.5 which combinations of the angular coefficients constitute

theoretically clean observables.

• In the limit of massless leptons, the well-known relations Is
1 = 3Is

2 and Ic
1 = −Ic

2

hold.

• The coefficient Ic
6 vanishes unless contributions from scalar operators and lepton

mass effects are taken into account. Therefore, to our knowledge, it has never been

considered in the literature before. However, it is a potentially good observable for

scalar currents. We will come back to this point in Sec. 2.4.2.
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2.3.4 Additional Corrections to Transversity Amplitudes

As mentioned in Sec. 2.3.2, the transversity amplitudes defined in Eqs. (2.28) to (2.32) do

not include effects from spectator interactions, which do induce, on the one hand, O(αs)

corrections and, on the other hand, corrections from weak annihilation (WA). These

corrections have been calculated within the QCD factorisation (QCDF) framework in

Refs. [47] and [78] in terms of the soft form factors ξ⊥ and ξ‖, as defined to leading order in

Eq. (1.45). In Ref. [47], two types of O(αs) corrections, factorisable and non-factorisable,

are presented, of which we only require the latter. The factorisable corrections arise

when expressing the full form factors in terms of ξ‖ and ξ⊥, are given by the radiative

corrections in Eqs. (B.1)–(B.4) in App. B of Ref. [52] and since we use the full form

factors at LO these are redundant in our set-up¶.

The second QCDF correction to the transversity amplitude in Sec. 2.3.2 is given by

the WA contribution, T
(0)
‖,−(u, ω) in the notation of Ref. [47]. It is induced by the penguin

operators O3 and O4 and hence is numerically small, see Tab. 2.2. This is a term which

is leading in 1/mb and O(αs), so in principle one should also include power-suppressed

and radiative corrections. However, in view of its small size at L.O., we feel justified

in neglecting these corrections. Note that the WA contribution to the λu amplitude

for B+ → K∗+µ+µ−, contains the factor C2 ≈ 1 and hence should be included for this

process. However this is not of consequence for our study as we focus on neutral meson

decays.

On introducing the chirality-flipped operators, the T (t,u)
⊥,‖ introduced in Eq. (1.58),

and also mentioned in Sec. 2.2.3, are promoted to T ±(t,u)
⊥,‖ corresponding to the notations

of Ref. [108]. In terms of these quantities, we can define the additional corrections to

the transversity amplitudes‖:

∆AQCDF
⊥L,R =

√
2N

2mb

q2
(m2

B − q2)(T +(t),WA+nf
⊥ + λ̂uT +(u)

⊥ ) ,

∆AQCDF
‖L,R = −

√
2N

2mb

q2
(m2

B − q2)(T −(t),WA+nf
⊥ + λ̂uT −(u)

⊥ ) ,

¶In Ref. [47] factorisable corrections also arise due expressing the MS b quark mass in the operators
O7,8, Eq. (1.9), by a mass parameter in a different renormalisation scheme. In our numerical analysis,
however, we use the running b quark mass in the MS scheme throughout so these factorisable O(αs)
corrections calculated in Refs. [47; 78] are also dropped

‖It should be noted that the functions F
(7,9)
1,2,u entering the non-factorisable corrections are defined with

a different overall sign in Refs. [78] and [109]
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∆AQCDF
0L,R =

N(m2
B − q2)2

mK∗m2
B

√

q2
mb(T −(t),WA+nf

‖ + λ̂uT −(u)
‖ ) . (2.46)

The superscript, WA+nf, on T ±(t)
⊥ indicates that only contributions from WA and non-

factorisable O(αs) corrections are to be included. In accordance with Ref. [88], we

define λ̂u = λu/λt. The total transversity amplitudes are given by the expressions in

(2.28)–(2.30) plus the above terms ∆AQCDF. Note there are no corrections to At or AS.

2.3.5 Observables

As discussed in Sec. 2.3, the decay B̄0 → K̄∗0(→ K−π+)µ+µ− is completely described

in terms of twelve angular coefficient functions I
(a)
i . The corresponding CP-conjugate

mode B0 → K∗0(→ K+π−)µ+µ− gives access to twelve additional observables, the CP-

conjugate angular coefficient functions Ī
(a)
i . These quantities have a clear relation to

both experiment and theory: theoretically they are expressed in terms of transversity

amplitudes, and experimentally they describe the angular distribution. A physical inter-

pretation of these I
(a)
i can be drawn from Eqs. (2.34) to (2.45). For example, Ic

6 depends

on scalar operators and I7 to I9 depend on the imaginary part of the transversity ampli-

tudes, and consequently on their phases, which come either from QCD effects and enter

the QCD factorisation expressions at O(αs), see Sec. 2.2, or are CP-violating SM or NP

phases.

To separate CP-conserving and CP-violating NP effects, we find it more convenient

to consider the twelve CP averaged angular coefficients

S
(a)
i =

(

I
(a)
i + Ī

(a)
i

)

/

d(Γ + Γ̄)

dq2
(2.47)

as well as the twelve CP asymmetries∗∗

A
(a)
i =

(

I
(a)
i − Ī

(a)
i

)

/

d(Γ + Γ̄)

dq2
. (2.48)

These are our primary observables to be used in the phenomenological analysis in

Sec. 2.4. They offer a clean and comprehensive way to analyse the full richness of

angular distributions in B → K∗(→ Kπ)µ+µ− decays. We shall show below that all

previously studied observables, for example the forward-backward asymmetry AFB, can

∗∗ Note that our definition of the CP asymmetries differs from Ref. [88] by a factor of 3
2 .
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mµ = 0 mµ 6= 0

SM 18 22

SM + O(′)
S 20 24

Table 2.5: Number of independent observables in B → K∗(→ Kπ)µ+µ−, depending on
whether lepton mass effects and/or scalar operators are taken into account.

be easily expressed in terms of our new observables. S
(a)
i and A

(a)
i are normalised to

the CP-averaged dilepton mass distribution to reduce both experimental and theoretical

uncertainties. Taking the CP average means that CP-violating effects in the S
(a)
i are

washed out, resulting in a cleaner observable. Taking the CP asymmetry, on the other

hand, means that any non-standard CP violation can be easily identified.

These CP asymmetries, i.e. A
(a)
i , are expected to be small in the SM, as previously

noted in Ref. [88]. This is because the only CP-violating phase affecting the decay enters

via λu and is doubly Cabibbo-suppressed. Therefore we are particularly keen to examine

these asymmetries in the context of CP-violating phases in NP models.

It should be stressed that out of these 24 observables, two vanish in the SM, namely

Sc
6 and Ac

6, which are generated only by scalar operators, and four are related in the

limit of massless leptons through Ss
1 = 3Ss

2, S
c
1 = −Sc

2 and As
1 = 3As

2, A
c
1 = −Ac

2 (see

Sec. 2.3.3). Tab. 2.5 summarises the number of independent observables in these limits.

In addition, even for non-zero lepton mass, only three of the four Ss,c
1,2 are independent,

which can be seen as follows. The dilepton mass distribution can be expressed in terms

of angular coefficients as

dΓ

dq2
=

3

4
(2 Is

1 + Ic
1) −

1

4
(2 Is

2 + Ic
2). (2.49)

Therefore, due to the normalisation given in Eq. (2.47), there is the relation

3

4
(2Ss

1 + Sc
1) −

1

4
(2Ss

2 + Sc
2) = 1. (2.50)

Consequently, the complete set of 24 independent observables would be given by the

twelve A
(a)
i , eleven S

(a)
i and the CP-averaged dilepton mass distribution d(Γ + Γ̄)/dq2.

However, the latter is the only observable for which the normalisation of the form factors

is relevant, so theoretically it is not as clean.
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In our opinion, the quantities S
(a)
i and A

(a)
i are the natural starting point for an

experimental analysis. In Ref. [89], a detailed investigation was carried out showing that

a full angular fit was the preferred way to extract observables. This would involve fitting

Eqs. (2.9) and (2.11) to data. From such a fit the I
(a)
i and Ī

(a)
i would be found directly,

and could be combined using Eqs. (2.47) and (2.48) to give the desired quantities. We

suggest that a similar full angular fit could be carried out for the four-fold spectrum

d4(Γ ± Γ̄), so S
(a)
i and A

(a)
i would be instantly accessible. Note that, due to Eq. (2.12),

the CP-averaged decay distribution d4(Γ + Γ̄) gives access to S
(a)
1,2,3,4,7 and A

(a)
5,6,8,9, while

the remaining observables can be obtained from d4(Γ − Γ̄).

Alternatively, S
(a)
i and A

(a)
i can be found by taking asymmetries and/or integrating

d4(Γ± Γ̄) over the angles θl, θK and φ. Details for the extraction of some of the A
(a)
i are

given in Ref. [88], but we stress that all our observables can be determined in a similar

manner. To illustrate this point, one case not mentioned in Ref. [88] is S5, which can be

obtained by integrating over two angles:

S5 = −4

3

(

∫ 3π/2

π/2

−
∫ π/2

0

−
∫ 2π

3π/2

)

dφ

(
∫ 1

0

−
∫ 0

−1

)

d cos θK
d3(Γ − Γ̄)

dq2 d cos θKdφ

/

d(Γ + Γ̄)

dq2
.

(2.51)

As stated above, we normalise the S
(a)
i and A

(a)
i to the CP-averaged dilepton mass

distribution in order to reduce the dependence on the form factors. Our approach de-

scribed in Secs. 2.3.2 and 2.3.4 makes use of the full form factors for the dominant

leading-order contribution and the soft form factors for additional suppressed contribu-

tions. Therefore our results are largely independent of the relation between the soft form

factors and the full form factors. However, it is still interesting to note that in App. B of

Ref. [52] it was found that relations involving ξ⊥ are almost independent of q2, whereas

those involving ξ‖ have a considerable dependence on q2 due to the neglected 1/mb terms.

Therefore we stress that the transversity amplitudes AL,R
⊥,‖ of Sec. 2.3.2, and all angular

observables built from them, should be more or less insensitive to 1/mb corrections, i.e.

corrections to QCDF, while AL,R
0 and all corresponding angular variables will be slightly

more affected by such corrections. These findings impact on prior work carried out in

this channel, where the transversity amplitudes were given entirely in terms of the soft

form factors using QCDF.
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All established observables can be expressed in terms of S
(a)
i and A

(a)
i . For example,

the CP asymmetry in the dilepton mass distribution is given by (see Eq. (2.50))

ACP =
d(Γ − Γ̄)

dq2

/

d(Γ + Γ̄)

dq2
=

3

4
(2As

1 + Ac
1) −

1

4
(2As

2 + Ac
2). (2.52)

We prefer to define the normalised forward-backward asymmetry as a ratio of CP-

averaged quantities, to wit

AFB =

(
∫ 1

0

−
∫ 0

−1

)

d cos θl
d2(Γ − Γ̄)

dq2 d cos θl

/

d(Γ + Γ̄)

dq2
=

3

8
(2Ss

6 + Sc
6). (2.53)

The CP average is numerically irrelevant in the SM, but makes the connection to exper-

iment more transparent. In addition, this definition is complementary to the forward-

backward CP asymmetry [110],

ACP
FB =

(
∫ 1

0

−
∫ 0

−1

)

d cos θl
d2(Γ + Γ̄)

dq2 d cos θl

/

d(Γ + Γ̄)

dq2
=

3

8
(2As

6 + Ac
6). (2.54)

Additional well-established observables are the K∗ longitudinal and transverse polar-

isation fractions FL, FT , which are usually defined in terms of transversity amplitudes.

We prefer to directly express them in terms of CP-averaged observables and define

FL = −Sc
2, FT = 4Ss

2. (2.55)

The well-known relation FT = 1− FL is then a consequence of Eq. (2.50) in the limit of

vanishing lepton mass.

In Refs. [89; 106], the transverse asymmetries A
(i)
T were introduced. They can be

expressed in terms of our observables as

A
(2)
T =

S3

2Ss
2

,

A
(3)
T =

(

4S2
4 + S2

7

−2Sc
2 (2Ss

2 + S3)

)1/2

,

A
(4)
T =

(

S2
5 + 4S2

8

4S2
4 + S2

7

)1/2

. (2.56)
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Finally, for some observables it is useful to consider their q2 average. We define

〈

S
(a)
i

〉

=

∫ 6GeV2

1GeV2

dq2
(

I
(a)
i + Ī

(a)
i

)

/∫ 6GeV2

1GeV2

dq2d(Γ + Γ̄)

dq2
, (2.57)

〈

A
(a)
i

〉

=

∫ 6GeV2

1GeV2

dq2
(

I
(a)
i − Ī

(a)
i

)

/
∫ 6GeV2

1GeV2

dq2d(Γ + Γ̄)

dq2
. (2.58)

The reasons for choosing the interval 1 GeV2 ≤ q2 ≤ 6 GeV2 are discussed in Sec. 2.2.4.

We proceed in the next section by studying the predictions for S
(a)
i and A

(a)
i , keeping

in mind the sensitivity to hadronic effects. This is carried out first in the SM and later

in a model independent NP study.

2.4 Phenomenological Analysis

We are now in a position to perform a phenomenological analysis of the observables

defined in Sec. 2.3.5, first in the SM, then in a model-independent manner, and finally

for specific NP scenarios.

2.4.1 Standard Model

The importance of the observables discussed in the present paper for tests of the SM

originates from the following facts:

• Several of the observables we consider are predicted to be strongly suppressed in

the SM or even vanish so that New Physics (NP) effects can be seen more easily

than in the branching ratio of B → K∗µ+µ− which is measured to be consistent

with the SM expectations.

• The relatively small number of relevant SM parameters which are already well

constrained by a number of processes allows rather definitive predictions for many

observables subject mainly to the theoretical uncertainty of form factors.

• In certain cases the sign of a given observable has a unique prediction in the SM,

which can be tested more easily than the magnitude itself.
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However, to use these facts in a meaningful way, it is essential to have reliable calculations

of the relevant form factors. In fact the use of the improved form factors presented here

and the consideration of correlations between the uncertainties of the different form

factors allows one to obtain rather reliable predictions for angular coefficients in the

SM. Our predictions for the CP-averaged angular coefficients S
(a)
i in the SM are shown

in Fig. 2.2. Ss
1 and Sc

1 have been omitted since the relations Ss
1 = 3Ss

2 and Sc
1 = −Sc

2

(see Sec. 2.3.3) are fulfilled up to lepton-mass effects, which amount to at most 1%.

Ss,c
1,2 are numerically large as expected. S4, S5, S

s
6 are similar in magnitude, but are

particularly interesting as they each have a zero in q2. All these predictions are seen

to have small uncertainties, as the normalisation results in a cancellation of hadronic

effects. In Tab. 2.6, we show our predictions for the positions of the zeros of S4, S5

and Ss
6, denoted by q2

0(S
(a)
i ) from now on. S3 is numerically small in the SM since

it is approximately proportional to the chirality-flipped Wilson coefficient C ′
7, which

is suppressed by a factor ms/mb. S7, S8 and S9 are small as well and have a larger

error-band as they arise from the imaginary part of the transversity amplitudes.

The error bands have been obtained by adding various uncertainties in quadrature.

We estimate the uncertainty due to the form factors by varying the Borel parameter and

continuum threshold as discussed in Sec. 2.2.2. The renormalisation-scale uncertainty is

found by varying µ between 4.0 and 5.6 GeV, where µ is the scale at which the Wilson

coefficients, αs and the MS masses are evaluated. We also include parametric uncertain-

ties which are estimated by varying the hadronic parameters as indicated in Tab. 2.3,

the ratio mc/mb between 0.25 and 0.33, and the CKM angle γ, which is particularly

important for the doubly Cabibbo-suppressed contribution to the CP asymmetries, be-

tween 60◦ and 80◦.†† In addition, we show the leading-order prediction as a dashed line.

We find that the impact of radiative QCDF corrections is moderate for observables like

S2,3,4,5,6 that, in the SM, are largely independent of weak or strong phases, but becomes

more prominent for observables built from imaginary parts, like S7,8,9 and Ai, where the

main contribution comes from strong phases induced by O(αs) corrections in QCDF.

Some of these S
(a)
i can be directly compared to previous results in the literature. Ss

2

and Sc
2 correspond to the K∗ longitudinal and transverse polarisation fractions FL and

FT , see Eq. (2.55), and Ss
6 yields the forward-backward asymmetry AFB, see Eq. (2.53).

In particular, q2
0(S

s
6) in Tab. 2.6 is identical to the zero of the forward-backward asym-

metry which has been extensively studied in the literature. For completeness, in the last

††The discontinuity in some of the error bands just below 6 GeV2 is an unphysical artifact resulting
from small charm quark masses ∼ 1.2 GeV allowed in the estimation of the error. This feature was
already observed in Ref. [47].
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Figure 2.2: CP-averaged angular coefficients S
(a)
i , CP-averaged dilepton mass distribution

d(Γ + Γ̄)/dq2 and transverse asymmetries A
(3,4)
T in the SM as a function of q2.

The dashed lines are the leading-order (LO) contributions, obtained in näıve
factorisation. The thick solid lines are the full next-to-leading order (NLO) pre-
dictions from QCD factorisation (QCDF), as described in Sec. 2.2.4. The blue
band defines the total error for the NLO result as described in the text.
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Figure 2.3: CP asymmetries A
(a)
i and ACP in the SM as a function of q2. The meaning of

the curves and bands is as in Fig. 2.2.
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row of Fig. 2.2 we also show the CP averaged dilepton mass distribution d(Γ + Γ̄)/dq2

and the observables A
(3)
T and A

(4)
T defined in Ref. [89], see Sec. 2.3.5. We find that our

results for all these observables compare well to those in the literature. However, we

note that the peak in the plot of A
(4)
T is a manifestation of the zero q2

0(S4) of S4, see

Eq. (2.56). This division by a near-zero quantity induces a large theoretical uncertainty

both in the position of the peak and its height. We stress that such uncertainties do

not arise if the observables S4 and S5 are considered instead of A
(3)
T and A

(4)
T . In fact,

as dΓ/dq2 is a smooth function in the range of q2 considered, none of our observables Si

and Ai is affected by accidental and delicate cancellations in the denominator.

As explained in Sec. 2.3.5, the CP asymmetries are close to zero in the SM, which

is evident from Fig. 2.3, where we show all the A
(a)
i (again except for As,c

1 ) and the CP

asymmetry in the decay distribution, ACP. As explained above, the shift from LO to

NLO is substantial. Our results are in good agreement with Ref. [88], but do not coincide

exactly. This can be understood by recalling that we use the full LCSR form factors and

that our normalisation of the soft form factors, especially ξ‖, is different from that used

in Ref. [88]. Also our choice of quark masses, in particular mc/mb and mt, as well as

the scale µ at which the QCDF hard-scattering corrections are evaluated, differs from

[88]. We stress that, in view of the smallness of the SM values of Ai, these discrepancies

become irrelevant once large NP contributions start to dominate these observables, as

we shall see in the remainder of this section.

In Tab. 2.7, we list our predictions for the q2-integrated CP-averaged angular co-

efficients and CP asymmetries as defined in Eqs. (2.57) and (2.58). 〈Sc
2〉, 〈Ss

6〉 and

〈ACP〉 can be directly compared to existing experimental results from BaBar and Belle

[111; 112].

Obs. S4 S5 Ss
6

q2
0 [GeV2] 1.94+0.12

−0.10 2.24+0.06
−0.08 3.90+0.11

−0.12

Table 2.6: Predictions for the zero positions q20(S
(a)
i ) of S4, S5 and Ss

6 in the SM.
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Obs. 10−2 × . . . Obs. 10−2 × . . . Obs. 10−3 × . . . Obs. 10−3 × . . .

〈Ss
1〉 16.0+0.6

−0.6 〈S5〉 −14.2+0.8
−1.2 〈As

1〉 −0.2+0.2
−0.1 〈A5〉 −5.7+0.6

−0.5

〈Sc
1〉 79.3+0.8

−0.8 〈Ss
6〉 3.5+0.8

−1.1 〈Ac
1〉 6.3+0.7

−0.8 〈As
6〉 −4.5+0.5

−0.4

〈Ss
2〉 5.3+0.2

−0.2 〈S7〉 4.8+1.7
−1.7 〈As

2〉 −0.1+0.1
−0.0 〈A7〉 3.4+0.4

−0.5

〈Sc
2〉 −76.6+0.7

−0.7 〈S8〉 −1.5+0.6
−0.6 〈Ac

2〉 −6.1+0.7
−0.6 〈A8〉 −2.6+0.4

−0.3

〈S3〉 −0.3+0.4
−0.3 〈S9〉 0.1+0.1

−0.1 〈A3〉 −0.1+0.1
−0.1 〈A9〉 0.1+0.1

−0.1

〈S4〉 10.1+1.0
−1.2 〈A4〉 1.5+0.2

−0.2 〈ACP〉 5.9+0.6
−0.6

Table 2.7: Predictions for the integrated CP-averaged angular coefficients 〈S(a)
i 〉 (in units of

10−2) and the integrated CP asymmetries 〈A(a)
i 〉 (in units of 10−3) in the SM. Note

the different normalisation of the 〈A(a)
i 〉 with respect to Ref. [88], see footnote ∗∗.

Wilson coefficients largest effect in

C7, C
′
7 Ss

1, S
c
1, S

s
2, S

c
2, S3, S4, S5, S

s
6,

A7, A8, A9,

BR(B → Xsγ), BR(B → Xsµ
+µ−)

C9, C
′
9, C10, C

′
10 Ss

1, S
c
1, S

s
2, S

c
2, S3, S4, S5, S

s
6,

A7, A8, A9,

BR(B → Xsµ
+µ−)

CS − C ′
S Sc

6,

BR(Bs → µ+µ−)

CP − C ′
P Sc

1 + Sc
2,

BR(Bs → µ+µ−)

Table 2.8: The Wilson coefficients relevant in B → K∗µ+µ− and the observables they have
the largest impact on.

2.4.2 Model-independent Considerations

Before turning to specific NP scenarios, we investigate the model-independent impact of

the Wilson coefficients on our observables.
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Observable mostly affected by

Ss
1, S

c
1, S

s
2, S

c
2 C7, C

′
7, C9, C

′
9, C10, C

′
10

S3 C ′
7, C

′
9, C

′
10

S4 C7, C
′
7, C10, C

′
10

S5 C7, C
′
7, C9, C

′
10

Ss
6 C7, C9

A7 C7, C
′
7, C10, C

′
10

A8 C7, C
′
7, C9, C

′
9, C

′
10

A9 C ′
7, C

′
9, C

′
10

Sc
6 CS − C ′

S

Table 2.9: The most interesting angular observables in B → K∗µ+µ− and the Wilson coeffi-
cients they are most sensitive to.

Impact of Wilson Coefficients on Observables

The impact of NP on the angular observables discussed in our paper is given by the

changes of the Wilson coefficients of the affected operators. One can group these Wilson

coefficients into three classes:

• Dipole coefficients: C7, C
′
7, C8 and C ′

8. The role of the gluon dipole operators is

subleading in the decay considered.

• Semileptonic coefficients: C9, C
′
9, C10 and C ′

10.

• Scalar coefficients: CS − C ′
S and CP − C ′

P .

Before entering the discussion of various NP scenarios, it is useful to study the correlation

between the angular coefficients and the Wilson coefficients. In Tab. 2.8 we show which

observables are most affected by a significant change of a given coefficient. In Tab. 2.9

we show, on the other hand, which Wilson coefficients should be altered to produce a

large effect in specific observables.

We observe:

• C7, C
′
7, C9, C

′
9, C10 and C ′

10 can induce large effects in many observables, or at

least in those that do not require the presence of strong phases. To be precise, the

Ai are mainly induced by imaginary parts of the Wilson coefficients, while the Si

are induced by their real parts.
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Figure 2.4: Left: correlation between q20(S4), the position of the zero of S4, and the NP
contribution to C10 − C ′

10. Right: correlation between q20(S
s
6) and the NP con-

tribution to C9. We use the branching ratio for B → Xsγ to constrain the NP
contributions to C7 and C ′

7. The green (red) band corresponds to a value of
BR(B → Xsγ) at the upper (lower) end of the experimental 2σ range, the blue
band to SM values for C7, C

′
7.

• Only the primed coefficients C ′
7, C

′
9 and C ′

10 can significantly affect the observables

S3 and A9. As can be seen from Eq. (2.56), S3 corresponds to the transverse

asymmetry A
(2)
T and the impact of NP physics contributions to C ′

7 on this observable

has been studied for example in Refs. [89; 106; 108].

• The scalar operators affect mainly Sc
6 and the branching ratio for Bs → µ+µ−.

This implies interesting correlations between these two observables as discussed in

Sec. 2.4.2.

Model-independent Analysis of S4, S5 and Ss

6

The zero of the forward-backward asymmetry has been the focus of many experimental

and theoretical studies (see for example Refs. [62; 113]) as it is established as being an

observable free from hadronic effects and capable of distinguishing between NP scenarios.

In Sec. 2.3.5 we expressed the CP-averaged forward-backward asymmetry in terms of

Ss
6 through Eq. (2.53), so Ss

6 could clearly be studied instead of AFB. In addition, from

Fig. 2.2, we find there are two more observables with such a zero in q2, S4 and S5. A

study of these three observables in a model-independent way could allow us to constrain

the NP contributions to the Wilson coefficients.

From Tab. 2.9 we see that the zero of S4, q
2
0(S4), is largely sensitive to C7, C

′
7, C10 and

C ′
10. This dependence arises only through C7 −C ′

7 and C10 −C ′
10. We therefore explore

how the position of the zero in q2 is affected by NP modifications to C10 − C ′
10 and C7.
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Figure 2.5: Left: Experimental constraints on the NP contribution to C7. The blue circles
show the constraint from the central and ±2σ values of BR(B → Xsγ), assuming
C ′NP

7 = 0. The black circle corresponds to the 2σ bound from BR(B → Xsℓ
+ℓ−),

assuming C
(′)NP
10 = 0. The solid thick and the dotted lines have been obtained

assuming SM and SM±25% values for C9, respectively. Right: Correlation of the
zero in Ss

6 with the NP contribution to Re(C7). The blue, red and green bands
indicate SM, SM+25% and SM−25% values for C9 with the associated theoretical
uncertainty. The vertical dashed lines correspond to the upper and lower bounds
on Re(C7) in the absence of an imaginary part of C7. (The corresponding points
in the left-hand plot are highlighted by red dots.) For an arbitrary imaginary
part, the upper bound on Re(C7) is removed, and q20(S

s
6) can be at or below

1GeV2.

The current experimental value of the branching ratio of B → Xsγ provides a constraint

on C7 and C ′
7. We find a strong dependence of q2

0(S4) on C10−C ′
10, and its measurement

would provide very interesting information about these Wilson coefficients. In Fig. 2.4,

we show this dependence for real values of C7.

If the NP introduces an imaginary part to C7, the bound from B → Xsγ is weakened,

allowing large effects in the zeros. In fact, large values of Im(C7) significantly enhance

the branching ratio of the decay B → Xsγ and in order to be in agreement with the

experimental data, large positive contributions to Re(C7) that interfere destructively

with CSM
7 are required. For such values of the Wilson coefficients, the branching ratio

of the decay B → Xsµ
+µ− is largely enhanced, effectively setting a new upper bound

on Re(C7). In the left-hand plot in Fig. 2.5, we show these combined constraints on

C7 in the complex plane. Exactly the large positive contributions to Re(C7), which are

allowed in the presence of phases in CNP
7 , then unambiguously shift the zeros of S4, S5
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and Ss
6 towards lower values. In the right-hand plot in Fig. 2.5, we show as an example

that the allowed range for q2
0(S

s
6) is greatly enhanced in the case of complex C7.

This analysis can also be applied to Ss
6, which depends strongly on C7 and C9. We

examine the dependence of q2
0(S

s
6) on NP contributions to C9 and C7. This again is

restricted by the experimental value of the branching ratio of B → Xsγ. We find

a strong dependence on C9, and for real values of C7 this would be a clean way to

determine information about a possible NP contribution to C9 as seen in Fig 2.4. Again,

if NP induces a complex phase of C7, the range in q2
0(S

s
6) increases dramatically.

It is a greater challenge to extract information about the Wilson coefficients from S5

due to its dependence on C7, C
′
7, C9 and C ′

10. However, a measurement of q2
0(S5) could

provide a consistency check with C10−C ′
10 and C9 determined from S4 and S6, provided

C7, C
′
7 are real. In addition, this might allow one to untangle the effects of CNP

10 and

C ′NP
10 in Fig. 2.4.

Impact of Scalar Currents

As mentioned in the introduction, the impact of the scalar and pseudoscalar operators

O(′)
S,P on the angular distribution of B → K∗(→ Kπ)µ+µ− has been considered before

[105], and no relevant effects on the observables of interest were found. However, as

shown in Sec. 2.3.2, the inclusion of lepton-mass effects∗, which were neglected in previ-

ous studies, gives rise to an additional observable in models with scalar currents, which

can serve as a precision null-test of the SM and, as we will show, in principle allows one

to distinguish between different NP models.

To assess the size of the possible effects generated by these operators, we first consider

the allowed ranges for the Wilson coefficients C
(′)
S,P . The most stringent constraint on

these coefficients comes from the measurement of Bs → µ+µ−, which is strongly helicity

suppressed in the SM, with a predicted branching ratio of [114; 115]

BR(Bs → µ+µ−) = (3.37 ± 0.31) × 10−9. (2.59)

The most recent experimental upper bound still lies, at the 95% confidence level, one

order of magnitude above the SM [116]:

BR(Bs → µ+µ−) < 5.8 × 10−8 . (2.60)

∗We stress that we restricted ourselves to muons in our numerical analysis.
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However, in many models, e.g. the MSSM at large tanβ, this branching ratio can be

greatly enhanced.

In a generic NP model, the branching ratio is given by

BR(Bs → µ+µ−) = τBs
f 2

Bs
mBs

α2
emG

2
F

16π3
|VtbV

∗
ts|2
√

1 − 4m2
µ

m2
Bs

[

|S|2
(

1 − 4m2
µ

m2
Bs

)

+ |P |2
]

,

(2.61)

where

S =
m2

Bs

2
(CS − C ′

S), P =
m2

Bs

2
(CP − C ′

P ) +mµ(C10 − C ′
10). (2.62)

Considering the experimental bound in Eq. (2.60), these formulae imply the approximate

bounds

|CS − C ′
S| . 0.12 GeV−1, −0.09 GeV−1 . CP − C ′

P . 0.15 GeV−1, (2.63)

barring large NP contributions to the Wilson coefficients C
(′)
10 .

Now, inspecting the formulae for the angular coefficients, Eqs. (2.34)–(2.45), one can

see that the only terms in which C
(′)
S and C

(′)
P are not suppressed by the lepton mass enter

in the angular coefficient Ic
1. However, due to the small size of the Wilson coefficients

themselves, see (2.63), these terms turn out to be numerically irrelevant in general once

the bound from Bs → µ+µ− is taken into account.

Since the pseudoscalar operators do not contribute to any other angular coefficient,

this implies that they are indeed irrelevant in the phenomenological study of B → K∗(→
Kπ)µ+µ−. For the scalar operators, however, the situation is different, because of the

new angular coefficient Ic
6, Eq. (2.41), which is directly proportional to the real part of

(CS − C ′
S) and thus vanishes in the SM. So, although numerically small, this angular

coefficient is an appealing observable because any measurement of a non-zero value would

constitute an unambiguous signal of scalar currents at work.

This is in contrast to the process Bs → µ+µ−, where a large enhancement of the

branching ratio compared to the SM could be caused by both scalar and pseudoscalar

currents. In addition, the measurement of a non-zero Sc
6 (the CP-averaged counterpart

of Ic
6) would allow to determine the sign of Re(CS −C ′

S). In fact, by a combined study of

Bs → µ+µ− and the observable Sc
6, one would be able to constrain the relative sizes of
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Figure 2.6: Correlation between the observable 〈Sc
6〉 and the branching ratio for Bs → µ+µ−.

The blue band is obtained by assuming NP contributions only to the Wilson
coefficient CS , the black curve (where error bars are omitted) by assuming CP =
−CS . The horizontal dashed lines indicate the SM prediction for BR(Bs →
µ+µ−) (2.59) and the current experimental upper bound (2.60).

the scalar and pseudoscalar Wilson coefficients, which can serve to distinguish different

models of NP. For example, in the MSSM, the ratio of CS and CP is

CP

CS

≈ −M2
A0

M2
H0

≈ −1 (2.64)

to a very good accuracy, a relation which could be tested by a measurement of BR(Bs →
µ+µ−) and Sc

6.

To illustrate this point, we show, in Fig. 2.6, the correlation between BR(Bs → µ+µ−)

and 〈Sc
6〉 (as defined in Eq. (2.57)). The blue band has been obtained by assuming

that NP contributions enter only through CS, i.e. setting CP/CS = 0, and varying CS

accordingly; the error band takes into account all the sources of error as discussed in

Sec. 2.4.1. Assuming, in contrast, CP/CS = −1, as would be the case in the MSSM, one

obtains the black parabola.

To summarise, while pseudoscalar operators are numerically irrelevant in the decay

B → K∗(→ Kπ)µ+µ−, a study of the angular distribution allows one to probe the scalar
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sector of a theory beyond the SM, in a way that is theoretically clean and complementary

to Bs → µ+µ−.

2.5 Summary

In this chapter we have analysed the angular distribution of the rare decay B → K∗(→
Kπ)µ+µ−, and identified a complete set of variables, S

(a)
i and A

(a)
i which are defined in

Sec. 2.3.5. These variables emphasise CP-conserving and CP-violating effects, and are

normalised by the total decay rate which results in a cancellation of hadronic uncertain-

ties. The angular observables offer new important tests of the SM and its extentions,

as explored in [52]. The next chapter will focus on the measurement of some of these

observables in the early LHC era, but an accurate measurement of some will only be

possible at an upgraded Belle and a Super-B facility. We have studied the effect of NP

on our chosen observables in a model independent way. To this end we have improved

on previous studies in a number of ways that have been listed in Sec. 2.1.

The main messages from this study are as follows:

• Our predictions for the CP-averaged angular coefficients S
(a)
i in the SM are shown

in Fig. 2.2. Some of these S
(a)
i are found to be large.

• On the other hand, as evident from Fig. 2.3, the CP asymmetries A
(a)
i are close to

zero in the SM.

• The observables S4, S5 and Sc
6 show zero-crossing points which are insensitive to

hadronic effects. It is shown that in MFV scenarios the position of the zero-crossing

is well-constrained by b → sγ. However, additional CP phases contributing to the

Wilson coefficient C7 can result in large deviations from the SM as seen in Figs. 2.4

and 2.5.

• Our model independent study shows that pseudoscalar operators are numerically

irrelevant in the decay B → K∗µ+µ−. On the other hand a study of the angular

distributions allows, in a way which is theoretically clean and complementary to

Bs → µ+µ−, to probe the scalar sector of a theory beyond the SM.

Clearly, it will be very exciting to monitor the upcoming LHC, Belle upgrade and

eventually Super-B factory in this and in the next decade to see whether the angular

observables discussed in our paper will give a hint for any of the extensions of the SM.



Chapter 3

Prospects for Bd → K∗0µ+µ− in

the first few years

3.1 Introduction

The properties of the angular distribution for Bd → K∗0µ+µ− were introduced Ch. 2

where a number of interesting potential measurements identified (also see Refs. [52; 88;

89; 106; 117; 118]). Particular emphasis has so far been placed on finding angular ob-

servables with reduced theoretical uncertainties or sensitivity to particular classes of

NP. However, in the first few years of LHC data–taking the dominant sources of uncer-

tainty will be experimental, meaning that the emphasis should be on finding quantities

which can be cleanly extracted with relatively small uncertainty. With very large data

sets it will be possible to use a full angular analysis to extract the various underlying

amplitudes directly, [89; 119]. This will allow a determination of many theoretically

clean observables. However performing this kind of analysis will not be possible until

detectors are very well understood and the number of collected signal events are in the

thousands. Before this, asymmetries of the angular distribution can be used to extract

some observables individually, [52; 62; 88; 120; 121].

In this chapter we focus on observables which can be extracted from the Bd →
K∗0µ+µ− angular distribution by counting the number of signal events as a function

of one or two decay angles. The rest of the chapter is structured as follows. In the

next section we give a brief overview of the theoretical framework employed with details

of the calculation of the decay amplitude involving Wilson coefficients, form–factors

and QCD factorisation corrections. In Sec. 3.3.1 observables which will be relevant

69
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C1(µ) C2(µ) C3(µ) C4(µ) C5(µ)

-0.135 1.054 0.012 -0.033 0.009

C6(µ) Ceff
7 (µ) Ceff

8 (µ) ∆Ceff
9 (µ) Ceff

10 (µ)

-0.039 -0.306 -0.159 4.220 -4.093

Table 3.1: SM Wilson coefficients at µ = mb = 4.52GeV/c2, where ∆Ceff
9 (µ) ∼ Ceff

9 (µ) −
Y (q2).

for analyses with the first few years data are discussed, and details of benchmark NP

models which we use to study these observables provided. We summarise the impact of

existing experimental measurements on constraining the NP contribution to the Wilson

coefficients. In Sec. 3.4, we then assess how such measurements would further constrain

the effect of NP on the Wilson coefficients. Finally, in Sec. 3.5 a short summary is given.

3.2 Theoretical Details

A decay model following Ref. [86] has become the standard tool for studies of Bd →
K∗0µ+µ− within the experimental community due to its inclusion in the decay simulator

EvtGen [122]. Here we have developed a significantly updated version of that model

with much improved support for the simulation of NP. Hence, we present our theoretical

framework in a way which allows direct comparison with Ref. [86], where it is shown

that it is possible to express the decay amplitude in terms of auxiliary functions. The

calculation of these requires Wilson coefficients, form factors and QCD factorisation

(QCDF) corrections, as described in the previous chapters. Here we provide details

specific to this calculation.

In this chapter we neglect doubly Cabibbo–suppressed contributions H(u)
eff , as these

will not be detectable in an early analysis of the observables. The weak effective Hamil-

tonian reduces to H(t)
eff defined in Eq. (2.1). The primed operators O′

7−10, the scalar and

the pseudoscalar operators, OS/P , and their primed equivalents are included, which van-

ish or are suppressed in the SM but may become important in certain NP scenarios. The

Wilson coefficients are calculated as described in Sec. 2.2.1. Tab. 3.1 gives the values of

the Wilson coefficients at µ = mb,PS(2GeV) in the SM∗. The treatment of quark masses

in the PS scheme is discussed in Sec. 3.2.2.

∗Note that the Wilson coefficients are evaluated at a different scale from Ch. 2, as discussed in Sec. 3.2.2
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Model

SM FBMSSM GMSSM UED

Ceff
7 (µ) -0.306 0.031+0.475i -0.186+0.002i -0.297

C ′ eff
7 (µ) -0.007 0.008+0.003i 0.155+0.160i -0.007

Ceff
8 (µ) -0.159 -0.085+0.149i -0.062+0.004i -0.137

Ceff
8 (µ) -0.004 -0.000+0.001i 0.330+0.336i -0.003

∆Ceff
9 (µ) 4.220 4.257 +0.000i 4.231+0.000i 4.230

C ′ eff
9 (µ) 0.000 0.002+0.000i 0.018+0.000i 0.000

Ceff
10 (µ) -4.093 -4.063 +0.000i -4.241+0.000i -4.212

C ′ eff
10 (µ) 0.000 0.004 +0.000i 0.003+0.003i 0.000

(CS − C ′
S)(µ) 0.000 -0.044-0.056i 0.000+0.001i 0.000

(CP − C ′
P )(µ) 0.000 0.043+0.054i 0.001+0.001i 0.000

Table 3.2: NP Wilson coefficients at µ = mb,PS(2GeV/c2) = 4.52GeV/c2.

QCD sum rules on the light cone (LCSR) provides results for the desired range in q2

[72]. We use the full set of LCSR form factors in the model [123] and estimate uncertainty

using the errors provided in Ref. [72] for q2 = 0.We express our leading order results

for the decay amplitude in terms of the full form factors, making these factorisable

corrections redundant as well as including the main source of O(1/mb) corrections, as

argued in Ch. 2. The weak annihilation correction is leading order in 1/mb and O(αs),

but is dependent on the numerically small C3 and C4 so can be neglected.

We define T NLO
‖ (q2) and T NLO

⊥ (q2) to include the relevant O(αs) contributions to

T‖(q
2) and T⊥(q2), as in Ref. [47]. We also define the analogous T ′NLO

‖ (q2) and T ′NLO
⊥ (q2)

where the primes denote that the unprimed Wilson coefficients should be replaced by

their primed equivalents. This means that in order to extend the results in Ref. [86] to

include NLO corrections, we must make the following replacements:

C
(′) eff
7 T1(q

2) →C
(′) eff
7 T1(q

2) + T (′) NLO
⊥ (q2)

C
(′) eff
7 T2(q

2) →C
(′) eff
7 T2(q

2) + 2
E

mB
T (′) NLO
⊥ (q2)

C
(′) eff
7 T3(q

2) →C
(′) eff
7 T3(q

2) + T (′) NLO
⊥ (q2) + T (′) NLO

‖ (q2) (3.1)
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Here E is the energy of the K∗, as defined in Eq. (1.43), and mB is the mass of the B

meson. These replacements are in keeping with Ref. [47].

3.2.1 Decay amplitudes

The Hamiltonian defined in Eq. (1.7), in combination with the standard definitions for

the form factors, leads to the following decay amplitude, as in Refs. [86; 124],

M ∝
[

T 1
µ (µ̄ γµ µ) + T 2

µ (µ̄ γµγ5 µ) + S(µ̄ µ)
]

(3.2)

where

T 1
µ = A(q2)ǫµραβǫ

∗ρ p̂α
B p̂

β
K∗ − iB(q2) ǫ∗µ + iC(q2)(ǫ∗ · p̂B) p̂µ + iD(q2)(ǫ∗ · p̂B) q̂µ

T 2
µ = E(q2)ǫµραβ ǫ

∗ρp̂α
B p̂

β
K∗ − iF (q2) ǫ∗µ + iG(q2)(ǫ∗ · p̂B) p̂µ + iH(q2)(ǫ∗ · p̂B) q̂µ (3.3)

and

S = i2m̂K∗(ǫ∗ · p̂B) I(q2).

Here pB, pK∗ and mB, mK∗ are the four–momenta in the B meson rest frame and the

masses of the respective particles, p ≡ pB + pK∗, q ≡ pB − pK∗ and ǫ∗µ is theK∗polarisation

vector. The circumflex denotes division by mB, so for example m̂K∗ ≡ mK∗/mB. The

auxiliary functions A-I(q2) follow Ref. [86], but we have updated the previous expres-

sions by including additional primed, scalar and pseudoscalar operators, and the QCDF

correction via T (′)NLO
‖ (q2) and T (′)NLO

⊥ (q2) as outlined in Sec. 3.2.

A(q2) =
2

1 + m̂K∗

(Ceff
9 + C ′ eff

9 )V (q2) +
4m̂b

q̂2

(

(Ceff
7 + C ′ eff

7 )T1(q
2)

+ T NLO
⊥ (q2) + T ′NLO

⊥ (q2)

)

B(q2) =(1 + m̂K∗)

{

(Ceff
9 − C ′ eff

9 )A1(q
2) +

2m̂b

q̂2
(1 − m̂K∗)

(

(Ceff
7 − C ′ eff

7 )T2(q
2)
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+ 2Ê(T NLO
⊥ (q2) − T ′NLO

⊥ (q2))

)}

C(q2) =
1

1 − m̂2
K∗

{

(1 − m̂K∗)(Ceff
9 − C ′ eff

9 )A2(q
2)

+ 2m̂b

(

(Ceff
7 − C ′ eff

7 )(T3(q
2) +

1 − m̂2
K∗

q̂2
T2(q

2))

+ (1 +
(1 − m̂2

K∗) 2Ê

q̂2
)(T NLO

⊥ (q2) − T ′NLO
⊥ (q2)) + T NLO

‖ (q2) − T ′NLO
‖ (q2)

)}

E(q2) =
2

(1 + m̂K∗)
(Ceff

10 + C ′ eff
10 )V (q2)

F (q2) =(1 + m̂K∗)(Ceff
10 − C ′ eff

10 )A1(q
2)

G(q2) =(Ceff
10 − C ′ eff

10 )
A2(q

2)

(1 + m̂K∗)

H(q2) =
1

q̂2
(Ceff

10 − C ′ eff
10 )

(

(1 + m̂K∗)A1(q
2) − (1 − m̂K∗)A2(q

2)

− 2m̂K∗A0(q
2)

)

− m̂K∗mB

2m̂µ

A0(q
2)(CP − C ′

P )

I(q2) = − A0(q
2)(CS − C ′

S). (3.4)

Note that using the equations of motion for the muons,

qµ(µ̄γµ µ) = 0 and qµ(µ̄γµγ5 µ) = −2mµµ̄γ5 µ, (3.5)

where mµ is the muon mass, we see that D(q2) vanishes and H(q2) is suppressed by a

power of mµ. However H(q2) receives a pseudoscalar contribution inversely proportional

to mµ allowing for some sensitivity to CP − C ′
P , [124]. The observables described in

Sec. 3.3.1 may be calculated directly from the amplitudes defined above in Eq. (3.4),

and the necessary formulae are presented in App. A. The results can then be compared

with those extracted from the angular distribution produced by our Monte–Carlo model.
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Parameter Value Ref.

ms 0.104 [125]

mc,PS(0.7 GeV) 1.5 GeV [126]

mb,PS(2 GeV) 4.52 GeV [127]

m̂t(m̂t) 162.3 GeV [91]

Table 3.3: Quark masses

3.2.2 Numerical Input

Quark Masses: The calculation of these auxiliary functions requires the bottom quark

pole mass, which is known to contain large long distance corrections. To avoid this issue a

renormalisation scheme known as the potential subtraction scheme (PS) was introduced

in Ref. [128]. The quark mass defined in the PS scheme has the advantage that the

large infrared contributions are absent, while numerically being relatively close to the

pole mass. It is suitable for calculations in which the quark is nearly on-shell. Following

Ref. [47], although note this differs from the procedure used in Ch. 2, we therefore replace

the pole mass by the PS mass mPS(µf) given in Tab. 3.3, using

m = mPS(µf) +
4αs

3π
µf + O(α2

s) (3.6)

and any resulting terms of O(α2
s) may be neglected. Here µf is the scale at which the

PS mass is calculated. Therefore all occurrences of mb in our results refer to the PS

mass at the scale mb, mb,PS(mb).

Note that the operator O7 is defined in terms of the MS mass. Therefore, when the

b quark mass arises in combination with Ceff
7 , we replace the MS mass, m̄, by the pole

mass, using

m̄(µ) = m

(

1 +
αs

3π

(

3 ln
m2

b

µ2
− 4

)

+ O(α2
s)

)

. (3.7)

This leads to factorisable O(αs) corrections to T NLO
⊥/‖ (q2) and T ′NLO

⊥/‖ (q2) as found in

Ref. [47].

For consistency, we calculate the charm quark pole mass using Eq. (3.6). Here the

PS mass is taken from the most recent calculation as in Tab. 3.3. The resulting pole

mass agrees with results in Ref. [125] where it is calculated from the MS mass. The top
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Parameter Value Parameter Value

mB 5.28 GeV Vus 0.226 ± 0.002

mK∗ 0.896 GeV Vub (3.93 ± 0.36)10−3

mµ 0.106 GeV γ (77+30
−32)

◦

MW 80.4 GeV GF (1.166)10−5

Table 3.4: CKM matrix parameters, additional masses and constants from Ref. [125].

quark mass enters the calculation of the Wilson coefficients, and for this it is suitable to

use the MS mass in Tab. 3.3, as in Ch. 2.

Hadronic Parameters: In addition to the form factors described in Sec. 3.2, the

QCDF corrections require light-cone distribution amplitudes and decay constants. The

light-cone distribution amplitude for both the B and K∗mesons enter the hard scattering

corrections. For the B meson we follow the prescription in Ref. [47] using the values for

ΛB given in Tab. 2.3. For the K∗meson we use the standard Gegenbauer expansion,

Φm
K∗ = 6u(1 − u)(1 + am

1,K∗C
(3/2)
1 (2u− 1) + am

2,K∗C
(3/2)
2 (2u− 1)) (3.8)

for m =⊥, ‖, taking the coefficients from Tab. 2.3 in Ch. 2. We also require the decay

constant for both the B and K∗mesons, and use latest results as in Tab. 2.3. Additional

parameters are summarised in Tab. 3.4.

3.3 Observables and New physics

Having established the basic theoretical framework, we proceed to discuss experimental

observables for Bd → K∗0µ+µ−.

3.3.1 Observables

The full angular decay distribution can be interpreted as in Eqs. (2.9) and (2.10), where

it is described in terms of the angular coefficients I
(a)
i , for i = 1 to 9 and a = s or c. A

natural set of observables was identified in Eqs. (2.47,2.48) by taking combinations of
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these I
(a)
i ’s that emphasise CP-conserving and CP-violating effects. In addition to these

observables we introduce the rate average, which for a variable V (q2) is given by

〈V 〉1−6 GeV2 =

∫ 6GeV2

1GeV2

dq2

(

V (q2)
d(Γ + Γ̄)

dq2

)

/

∫ 6GeV2

1GeV2

dq2d(Γ + Γ̄)

dq2
. (3.9)

Using the above, it is possible to reconstruct standard observables such as the forward-

backward asymmetry, AFB, and the longitudinal polarisation fraction, FL:

AFB =
3

8
(2Ss

6 + Sc
6) and FL = −Sc

2. (3.10)

As explained in Sec. 3.1, our focus is on those observables that will be measurable

at LHCb without a full-angular analysis. In order to keep the experimental complexity

to a minimum, these observables should require information on only one or two of the

angles. AFB, which depends only on θl, and FL, which depends only on θK∗ , are well

known examples. Note that in order to extract a simple expression for FL, one requires

the relations, valid in the limit of massless leptons,

Ss
1 = 3Ss

2 , Sc
1 = −Sc

2 and
3

4
(2Ss

1 + Sc
1) −

1

4
(2Ss

2 + Sc
2) = 1.

AFB and FL can then be expressed as:

AFB =
4

3

(
∫ 1

0

−
∫ 0

−1

)

dθl
d2(Γ + Γ̄)

dq2 dθl

/

d(Γ + Γ̄)

dq2

FL =
1

9

(

16

∫ 1/2

−1/2

d(Γ + Γ̄)

dq2 d cos θK∗

/

d(Γ + Γ̄)

dq2
− 11

)

(3.11)

We can also study the possibility of an early measurement of S5, which can all be

extracted with information about cos θK∗ and φ. It is possible to express this, as in

Eq. (2.51), as

S5 =
4

3

(

∫ π/2

0

+

∫ 2π

3π/2

−
∫ 3π/2

π/2

)

dφ

(
∫ 1

0

−
∫ 0

−1

)

d cos θK∗

d3(Γ − Γ̄)

dq2 d cos θK∗ dφ

/

d(Γ + Γ̄)

dq2
.

(3.12)

A comprehensive study of the effects of the Wilson coefficients on the above observables,

and vice–versa can be found in Tabs. 2.8 and 2.9. We note that S3, A7, and A9 can
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Observable Wilson Coefficients

AFB Ceff
7 , Ceff

9

FL Ceff
7 , C ′ eff

7 ,Ceff
8 ,C ′ eff

9 , Ceff
10 , C ′ eff

10

S5 Ceff
7 , C ′ eff

7 , Ceff
9 , C ′ eff

10

Table 3.5: Relevant observables and the Wilson coefficients they most strongly depend
on [52].

also be extracted by the counting of signal events over one or two angles. S3 is related

to the well known and theoretically clean observable A
(2)
T [106]; to be precise, S3 equals

1
2
(1 − FL)A

(2)
T in the massless lepton limit. While significant enhancement of A

(2)
T is

possible in the presence of non–SM C ′ eff
7 [108], the 1

2
(1 − FL) prefactor means that

the enhancement is less pronounced in S3 [121]. The smallness of S3 means that the

experimental sensitivity to 〈S3〉1−6GeV2 will be limited in the first few years of LHCb

data taking. The study of S3 is thus left for other works [89]. Enhancements to A7

and A9 in the presence NP phases can however be sizable [88] and could in principle

lead to reasonable experimental resolutions, particularly for 〈A9〉1−6GeV2. However, these

measurements will still be experimentally challenging in the first few years. For these

reasons we choose to focus on AFB, FL and S5 for early study at LHCb.

As stated earlier, NP enters the calculation through contributions to the Wilson

coefficients, and constraints on these contributions are described in the following sub-

section. It is well known that for certain values of q2, the observables AFB and S5

vanish. We refer to these values of q2 as the zero-crossing points, q2
0(AFB) and q2

0(S5).

They are particularly sensitive to NP, and can be used to further constrain the values of

the Wilson Coefficients. At leading order, in the large recoil limit, and for real values of

the Wilson coefficients, it is possible to obtain simple expressions for q2
0(AFB) [47] and

q2
0(S5),

q2
0(AFB) = −2mB mb

Ceff
7

Ceff
9

and q2
0(S5) =

−mB mb(C
eff
7 + C ′ eff

7 )

Ceff
9 + m̂b(C

eff
7 + C ′ eff

7 )
. (3.13)

Here we make use of the soft form factors, following Refs. [47; 78]. We can define the

slope of AFB and S5 at the zero-crossing point,

G0(O) =
dO
dq2

∣

∣

∣

∣

q2
0
(O)

, (3.14)
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where O is the observable AFB or S5.

3.3.2 Overview of Specific Models and Effects on Wilson

Coefficients

We have investigated three sets of Wilson coefficients in a variety of NP scenarios. The

observables for Bd → K∗0µ+µ− are most sensitive to the Wilson coefficients Ceff
7 , Ceff

9 ,

Ceff
10 , CS, CP and their primed equivalents, so we concentrate on the NP contributions

to these.

• Universal Extra Dimensions (UED): This model proposes that all SM particles

can propagate freely in additional dimensions. Following the model described in

Ref. [129] with a single extra dimension, orbifold compactification at the scale R

results in a tower of Kaluza-Klein excitations for each SM particle. The simplicity

of this model, requiring only a single extra parameter R, is appealing. Here, in

order to create maximal effects while respecting existing experimental constraints,

we use 1/R = 400 GeV/c2. UED does not result in any additional operators or

CP/flavour violation beyond Minimal Flavour Violation (MFV), so CS =0 and CP

=0, primed operators are suppressed and there are no additional complex phases

contributing to the Wilson coefficients. There can however be large deviations from

the SM in Ceff
7 , Ceff

9 and Ceff
10 , as shown in Ref. [130]. This is similar to the case of

the constrained MFV models discussed in Ref. [52].

• Flavour Blind MSSM (FBMSSM): Here the MFV version of the Minimal Su-

persymmetric Standard Model (MSSM) is modified by some flavour conserving but

CP violating phases in the soft SUSY breaking trilinear couplings [51]. The Wilson

coefficients we use correspond to those calculated in scenario FBMSSM II defined

in Tab. 11 in Ref. [52]. The additional CP violation contributes substantial com-

plex phases to Ceff
7 , however there is no flavour structure beyond the SM, so primed

operators are suppressed as in the SM. As in all supersymmetry (SUSY) models,

scalar and pseudoscalar operators arise due to the additional Higgs doublet.

• General MSSM (GMSSM): Minimal flavour violation is not imposed, and generic

flavour- and CP-violating soft SUSY-breaking terms are allowed [131]. The Wil-

son coefficients we use are in close correspondence to the scenario GMSSM IV in

Ref. [52], corresponding to large NP contributions to both Ceff
7 and C ′ eff

7 which are

allowed by existing experimental bounds [132]. This scenario is not possible in any

of the other models mentioned.
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Figure 3.1: Theoretical predictions for (a) AFB, (b) FL and (c) S5. The red (continuous) line
is the SM, the blue (dashed) line is the GMSSM, and the purple (dotted) line is
the FBMSSM.
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3.3.3 Theory Predictions

The Wilson coefficients in the above scenarios are given explicitly in Tab. 3.2. The cen-

tral values for the distributions of AFB, FL, and S5 are shown in Fig. 3.1 for the SM,

the GMSSM, and FBMSSM, along with estimates of the theoretical uncertainties. The

agreement with previous results is good. The predominant sources of the uncertainties

are the form factors, hadronic parameters, and quark masses, which are determined as

discussed in Sec. 3.2. We also include the uncertainty arising from varying the factori-

sation scale, µ, in the range µ ∈ [µ/2, 2µ]. Note that these uncertainties improve on the

previous model. Quantitatively, the position of the zero for AFB found in Ref. [86] is

s0 = 2.88+0.44
−0.28 GeV2, as opposed to our NLO result s0 = 4.03± 0.12 GeV2; the reduction

in the uncertainty is evident†. The three distributions all show significant variation for

the models considered here, as do the position or absence of the zero-crossing points in

AFB and S5 in the range q2 ∈ [1, 6] GeV2.

3.3.4 Constraints

Experimental results can be used to constrain NP contributions, CNP
i , to the Wilson coef-

ficients, Ci, where Ci = CSM
i +CNP

i . We can then determine possible model-independent

effects of NP on Bd → K∗0µ+µ−. The most important constraints on the Wilson coeffi-

cients are from the following measurements:

• Branching Ratio for Bs → µ+µ−: This is used to constrain the possible NP

contribution to the scalar and pseudoscalar operators. To calculate the branching

ratio we use the standard result as in Eq. (2.61),

B(Bs → µ+µ−) = τBs
f 2

Bs
mBs

α2
EMG

2
F

16π3
|VtbV

∗
ts|2
√

1 − 4m2
µ

m2
Bs

(|S|2
(

1 − 4m2
µ

m2
Bs

)

+ |P |2),

(3.15)

with the definitions

S =
m2

Bs

2
(CS − C ′

S) and P =
m2

Bs

2
(CP − C ′

P ) +mµ(Ceff
10 − C ′ eff

10 ). (3.16)

†The old model, based on Ref. [86], was updated in preparation for Ref. [133], however this only
partially included the NLO QCDF corrections. The resulting SM predictions are closer to our
results, but the model still leads to strange effects due to e.g. the scale handling at q2 ≈ 5.5.
Specifically for AFB, s0 = 4.1 GeV2, but the theoretical uncertainty on this number is not obvious
due to the partial inclusion of NLO corrections.
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In agreement with existing results, we find the SM prediction BR(Bs → µ+µ−) =

(3.70±0.31) ·10−9 to be well below the current experimental upper bound 3.6 ·10−8

[116; 134].

• Branching Ratio for B → Xsl
+l−: We compare NP predictions for B(B →

Xsl
+l−)1−6GeV2 to the mean experimental value (1.60 ± 0.51) · 10−6, as adopted in

Ref. [88] combining the results of BABAR, (1.8± 0.7± 0.5) · 10−6 [135], and Belle,

(1.49+0.41
−0.32±0.50)·10−6 [136]. This helps to constrain the NP contribution toC

(′) eff
7,9,10 as

well as C
(′)
S,P . As an inclusive mode, the calculation for the region q2 ∈ [1, 6] GeV2 of

the branching ratio is theoretically clean. We use the expression for the differential

decay distribution in Ref. [85], but also include the NLO corrections computed in

Ref. [137], and the contribution of the primed operators as in Ref. [138]. Using our

parameters we predict B(B → Xsl
+l−) = (1.96 ± 0.11) · 10−6, for the SM.

• Branching Ratio for B → Xsγ: We use the recent theoretical result of Ref. [139],

(3.28 ± 0.25) · 10−4, and include NP effects as in Ref. [108]. This can be com-

pared to the current experimental average for Eγ > 1.6 GeV, B(B → Xsγ) =

(3.52 ± 0.23 ± 0.09) · 10−4, as calculated by the Heavy Flavor Averaging Group

[140].

• Time dependent CP Asymmetry S(B → K∗γ): This constraint is sensitive

to the photon polarisation, and hence to C ′ eff
7 . Our result S(B → K∗γ) = (−0.26±

0.05) · 10−1 agrees with that of Ref. [88] within uncertainties. This should be

compared to S(B → K∗γ) = (−1.6 ± 2.2) · 10−1 from experiment [140].

• Integrated Forward-Backward Asymmetry 〈AFB〉1−6GeV2 for

Bd → K∗0µ+µ− : We use existing Bd → K∗0µ+µ− measurements as constraints.

Recently Belle has made a measurement of the Forward-Backward Asymmetry,

and find the integrated AFB in the region 1− 6 GeV2 to be −0.26± 0.29, [82]. This

is to be compared to our SM prediction of 0.04 ± 0.03, which is in agreement with

the recent result in Ref. [141]. This observable constrains the Wilson coefficients

as seen in Tab. 3.5.

• Integrated Longitudinal Polarisation Fraction 〈FL〉1−6GeV2 for

Bd → K∗0µ+µ− : Belle has also recently measured the Longitudinal Polarisa-

tion Fraction to be 0.67±0.24, [82]. This should be compared to our SM prediction

0.76± 0.08, also in agreement with Ref. [141]. Again this constraint affects Wilson

coefficients as seen in Tab. 3.5.
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Observable Experiment SM Theory

B(Bs → µ+µ−) 3.6 · 10−8 [116; 134] (3.70 ± 0.31) · 10−9

B(B → Xsl
+l−)1−6GeV2 (1.60 ± 0.51) · 10−6 [88] (1.97 ± 0.11) · 10−6

B(B → Xsγ) (3.52 ± 0.23 ± 0.09) · 10−9 [140] (3.28 ± 0.25) · 10−4

S(B → K∗γ) (−1.6 ± 2.2) · 10−1 [140] (−0.28 ± 0.05) · 10−1

〈AFB〉1−6GeV2 −0.26 ± 0.29 [82] 0.04 ± 0.03

〈FL〉1−6GeV2 0.67 ± 0.24 [82] 0.76 ± 0.08

Table 3.6: Experimental measurements used as constraints, along with theoretical predictions
in the SM.

We are interested in assessing the impact of these constraints on the underlying Wil-

son coefficients in as general a way as possible. Therefore, in order to allow (CS − C ′
S),

(CP −C ′
P ) and the NP components of C

(′) eff
7−10 to vary simultaneously, both in magnitude

and phase, we have performed a semi–random walk through parameter space. To our

knowledge this has not been done in previous studies. At each randomly chosen point

in parameter space, predictions are made for the six observables listed above. The point

is then either accepted or rejected using a modified χ2 metric which treats experimen-

tal uncertainties as being normally distributed, but theoretical uncertainties as having

uniform probability within the specified range. Following traditional minimisation tech-

niques, the random walk is guided by the value of this modified χ2 so that regions with

lower values may be identified. Using this method, a sample of ∼ 2.5 · 105 independent

sets of Wilson coefficients was produced. Each set results in predictions for the observ-

ables listed above with better than 2σ agreement with current measurements. It was

found that the agreement of existing measurements with the SM is excellent, with a χ2

per degree of freedom of 0.35.

Fig. 3.2 shows the range of values found for the phase and magnitude of the NP

contribution to Ceff
7 and C ′ eff

7 during the parameter space exploration. The colour index

shows the mean value of the probability that a point is compatible with current experi-

mental results. Areas with probability greater than 1σ are shaded red, while those with

less than 1σ are shaded blue. The outline of the 1σ contour can clearly be seen. This can

be compared to similar plot in Ref. [88] of the constraints on NP contributions to Ceff
7

and C ′ eff
7 . However, this plot differs from ours as the Wilson coefficients were assumed

to be real, and all other Wilson coefficients were assumed to be SM-like. Similar figures

are shown for the other Wilson coefficients in Fig. 3.3 and 3.4. The allowed regions of
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Figure 3.2: Allowed parameter space for the NP contribution to Ceff
7 and C ′ eff

7 , as described
in Sec. 3.3.4. Points with a compatibility with data of 68% or better are drawn
with a red (dark grey) colour palette, while those with less than this are drawn
with a blue (light grey) palette. The SM point is shown in black at the origin,
while the UED point is a blue triangle, the FBMSSM is a green square and the
GMSSM is an orange disk.

parameter space are still large. The plot showing the phase and magnitude of the NP

contribution to Ceff
10 can also be compared to a similar one in Ref. [88], but this again

differs from ours as all other Wilson coefficients were assumed to be SM-like. Note that

the latter plot also includes the constraint from AFB at low recoil, which we do not

include as we feel that NLO effects are not under control in this region. Nevertheless,

the plots show a clear resemblance.

The ensemble of constrained NP models can also be used to explore the likely values

of the AFB and S5 zero–crossing points. It was found that 8% of parameter space points

considered had no AFB zero in the range q2 ∈ [0.5, 15] GeV2, and 12% for S5. While

it should be noted that theoretical uncertainties are not well controlled over this q2

range, the majority of points within the 1σ contour lie within the theoretically clean

region, q2 ∈ [1, 6] GeV2. The distribution can be seen in Fig. 3.5a. Fig. 3.5b shows the

distribution of the AFB and S5 gradients at their zero–crossing points. We find for the

majority of points, G0(S5) is greater than G0(AFB). This will have an impact of the

q2
0(S5) experimental analysis discussed in the next section.
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(a) (b)

(c) (d)

Figure 3.3: Allowed parameter space for the Wilson coefficients C
(′) eff
8−9 after applying relevant

b→ s experimental constraints. The colour coding is the same as in Fig. 3.2.
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(a) (b)

(c) (d)

Figure 3.4: Allowed parameter space for the Wilson coefficients C
(′) eff
10 and (CS,P − C ′

S,P )
after applying relevant b→ s experimental constraints. The colour coding is the
same as in Fig. 3.2.
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(a) (b)

Figure 3.5: Fig. (a) shows allowed values of the AFB and S5 zero–crossing points in the
range q2 ∈ [0.5, 15]GeV2. The SM point and its uncertainty is shown as a black
ellipse. Fig. (b) shows the gradient of the AFB and S5 at the zero–point. In each
case the colour index has the same meaning as in Fig. 3.2.

Observable 2 fb−1 1 fb−1 0.5 fb−1

q2
0(AFB) +0.56

−0.94
+1.27
−0.97 –

q2
0(S5)

+0.27
−0.25

+0.53
−0.40 –

〈AFB〉1−6GeV2
+0.03
−0.04

+0.05
−0.03

+0.08
−0.06

〈FL〉1−6GeV2
+0.02
−0.02

+0.04
−0.03

+0.04
−0.06

〈S5〉1−6GeV2
+0.07
−0.08

+0.09
−0.11

+0.16
−0.15

Table 3.7: Estimated 1σ LHCb sensitivities for 2 fb−1, 1 fb−1 and 0.5 fb−1 of integrated
luminosity, assuming the SM (taken from Ref. [142]).
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(a) (b)

Figure 3.6: The relative impact of different proposed LHCb measurements after 2 fb−1 of inte-
grated luminosity, assuming the SM, on the NP component of Ceff

7 . Here Fig. 3.6a
shows the impact of 〈AFB〉1−6GeV2 and q20(AFB) and Fig. 3.6b 〈FL〉1−6GeV2 and
Fig. 3.7 〈S5〉1−6GeV2 and q20(S5). In each case the colour index has the same
meaning as in Fig. 3.2.

3.4 Experimental Impact

A number of observables have been introduced in Sec. 3.3.1 that can be extracted as

a function of q2 by counting signal events in specific angular bins using Eqs. (3.11)-

(3.12). LHCb [15] is expected to collect ∼ 6.2 · 103 signal events per 2 fb−1 of integrated

luminosity, with a signal to background ratio of ∼ 4 [143]. With relatively small data

sets it should be possible to extract the q2 integrated values of these observables. These

measurements offer an early chance to discover NP in b→ s transitions. For larger data

sets it will be possible to map out the q2 distribution too, allowing for additional NP

discrimination. Studies of these two approaches can be found in Refs. [62; 120] for the

observable AFB.

The relative impact of the different observables, whose sensitivities are shown in

Tab. 3.7, can be assessed by revisiting the parameter space exploration performed in

Sec. 3.3.4. We are interested in how including these new measurements would affect

the current constraints on parameter space. It is assumed that LHCb will make 2 fb−1

measurements of the observables 〈AFB〉1−6GeV2, 〈S5〉1−6GeV2 , 〈FL〉1−6GeV2 , q2
0(AFB), and

q2
0(S5) and that the resultant experimental uncertainties are symmetrised versions of
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Figure 3.7: The relative impact of the LHCb measurement of Fig. 3.7 〈S5〉1−6 GeV2 and q20(S5)

after 2 fb−1 of integrated luminosity, assuming the SM, on the NP component of
Ceff

7 . In each case the colour index has the same meaning as in Fig. 3.2.

those given in Tab. 3.7. In addition, we assume that the extracted value of these observ-

ables is not affected by NP, and are as given in Tab. 3.6. The total χ2 for each point in

parameter space is then updated to reflect these hypothetical SM measurements. Where

individual measurements are superseded by LHCb measurements, they are replaced with

no attempt at combination. However, other current constraints such as B(B → Xsγ) are

included as before. In this way the constraining power of each analysis can be compared.

Figs. 3.6, 3.7 show the relative impact of these measurements on the NP component of

Ceff
7 . In Fig. 3.6a, SM values of 〈AFB〉1−6GeV2 and q2

0(AFB) are imposed with the estimated

2 fb−1 experimental sensitivities taken from Tab. 3.7. Fig. 3.6b shows the impact of

〈FL〉1−6GeV2 and Fig. 3.7 of both 〈S5〉1−6GeV2 and q2
0(S5) for the same LHCb integrated

luminosity. These should be compared with the currently allowed Ceff
7 parameter space

shown in Fig. 3.2. The small statistical uncertainty found in Ref. [142] for q2
0(S5) allows

for the most stringent constraints on parameter space to be made. This emphasises the

importance of an early measurement of S5.

Fig. 3.8 shows the combined effect of the proposed measurements, again assuming the

SM and the estimated sensitivities from Tab. 3.7 for the Wilson coefficients Ceff
7 , C ′ eff

7 ,

Ceff
9 and C ′ eff

10 . The amount of parameter space left after these measurements would be

significantly reduced, with most NP contributions excluded at the 1σ level unless there

are large NP phases present. This again illustrates the importance of CP observables as

described in [88].
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(a) (b)

(c) (d)

Figure 3.8: Allowed parameter space for the Wilson coefficients Ceff
7 , C ′ eff

7 , Ceff
9 and C ′ eff

10

after 2 fb−1 measurements at LHCb of 〈FL〉1−6GeV2 , 〈AFB〉1−6GeV2, q20(AFB),
〈S5〉1−6GeV2 and q20(S5), assuming the SM. The colour coding is the same as
in Fig. 3.2.
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3.5 Summary

The NP reach of LHCb in the first few years of data taking with the rare decay

Bd → K∗0µ+µ− has been investigated. A new next–to–leading order model which

includes QCD factorisation corrections and full LCSR form factors was presented. We

have identified observables which are promising for relatively early measurements, as

they can be measured with relatively little angular information. We have also provided

a simple expression for the position of its zero-crossing point, q2
0(S5), at leading order, in

terms of Ceff
7 , C ′ eff

7 and Ceff
9 . In Ref. [142], the sensitivity of LHCb to these observables,

in particular S5 and its zero–crossing was estimated. Based on this work, using a com-

bination of 〈FL〉1−6GeV2 , 〈AFB〉1−6 GeV2 , q2
0(AFB), 〈S5〉1−6GeV2, and q2

0(S5), 2 fb−1 of LHCb

data is shown to reduce the allowed parameter space significantly. The contribution of

S5 to this is significant and can in part be attributed to the small statistical uncertainty

expected on q2
0(S5). In addition, if the decay is SM-like, the GMSSM and FBMSSM

points considered should be ruled out by LHCb with 2 fb−1. We conclude by stressing

that making measurements of S5 and its zero–crossing would provide a interesting and

complementary measurement to others currently planned. Bd → K∗0µ+µ− is a promis-

ing channel for constraining models or making a NP discovery. We look forward to the

first LHC results for this decay.



Chapter 4

Form Factors for Radiative and

Semi-Leptonic B Decays

4.1 Introduction

In order to extract information about the underlying short-distance flavour transitions

from measurements of exclusive decays, hadronic matrix elements are required as theo-

retical input. As explained in Sec. 1.5, transition form factors (FFs) describe hadronic

matrix elements for B meson decays into light mesons, and these are the subject of this

chapter. The two main methods successfully applied to the calculations of the FFs are

applicable in complementary regions of the momentum transfer q2 between the initial

and final-state mesons. In Lattice QCD, results are more easily obtainable at high values

of q2, as discretisation effects can only be controlled for small momenta of the final state

in units of the Lattice spacing. This is in contrast to the LCSR method, which involves

an expansion in inverse powers of the energy of the light daughter meson valid for low

values of q2.

Different FF parameterisations, which can be used to interpolate between the results

for small and large momentum transfer, have been suggested in the literature; a good

review can be found in Ref. [69]. These include simple pole-type parameterisations, like

the Bećirević–Kaidalov (BK) approach [144], or variations like the Ball–Zwicky (BZ)

parameterisation [71]. Another representation is derived from the Omnes solution to

the dispersion relation, a detailed discussion can be found in Ref. [145; 146]. In this

paper, we will make use of the so-called Series Expansion (SE), which was advocated

in Refs. [147–151]. Here, one can make use of dispersive bounds to obtain additional

91
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theoretical constraints on the expansion coefficients. A simplified version of the SE (SSE)

was recently suggested in Ref. [146]. The aim of this chapter is to use the SE/SSE

to describe the transition FFs by fitting to recent Lattice and LCSR results; we also

include a detailed analysis of systematic errors. We will focus in particular on the

FFs for B → V γ, B → L ℓ+ℓ−, B → Lνν̄ decays, where L = P, V is a light vector

or pseudoscalar meson. We will give numerical results for B → ρ,K,K∗ and Bs →
φ transitions, which are particularly interesting with respect to NP studies, see e.g.

Refs. [48; 52; 56; 78; 89; 152; 153]. Detailed phenomenological studies for FFs relevant

to the determination of the CKM elements |Vub| and |Vcb| from semi-leptonic B decays

can be found in the recent literature [66–68; 146; 154]. For the discussion of dispersive

bounds for tensor FFs, we will include the result of a precise calculation of the tensor

current two-point correlator at NLO in the QCD coupling constant.

The rest of this chapter is organised as follows. In Sec. 4.2, we provide convenient

definitions for the B meson FFs and introduce the idea of the SE/SSE. In Sec. 4.3,

we review the derivation of dispersive bounds from current-correlation functions and

summarise the results for the profile functions obtained from the operator-product ex-

pansion. We apply our formalism to B → K, B → ρ, B → K∗ and Bs → φ FFs, by

fitting the (truncated) SE/SSE to theoretical “data” from Lattice QCD and/or LCSRs

in Sec. 4.4.3. Our conclusions are presented in Sec. 4.5, and some technical details are

given in App.B.2.

4.2 Form Factors

In this section, we will first provide the definitions for the various B → L meson FFs in

question, where L is a generic light meson, fix the notation to be used in the subsequent

discussion, and introduce the SE/SSE.

4.2.1 Definition of Form Factors and Helicity Amplitudes

The form factors defined in Eqs. (1.25-1.27) constitute the standard definitions for the

FFs widely used in the literature. However, here we find it convenient to work with

certain linear combinations of these, dubbed helicity amplitudes in Ref. [149]. This is

primarily in order to diagonalise the unitarity relations, which shall be used to derive

the dispersive bounds on certain FF parameterisations. The helicity amplitudes also
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have definite spin-parity quantum numbers, and this is useful when considering the

contribution of excited states. In addition, they can easily be related to the universal soft

FFs, appearing in the heavy-quark and/or large-energy limit (see App. B of Ref. [155]),

and lead to simple expressions for the observables in B → L ℓ+ℓ− decays in the naive

factorisation approximation. In order to simplify imposing the dispersive bounds, we

also choose a particular normalisation convention and define new B → P vector FFs,

for the decay to a pseudoscalar meson P , via

AV,σ(q
2) =

√

q2

λ
ε∗µσ (q) 〈P (k)|q̄ γµ b|B̄(p)〉 . (4.1)

Here

λ =
(

(mB −mP )2 − q2
) (

(mB +mP )2 − q2
)

≡ (t− − q2)(t+ − q2) (4.2)

is a standard kinematic function, and ε∗µσ (q) are transverse (σ = ±), longitudinal (σ = 0)

or time-like (σ = t) polarisation vectors as defined in the App. B of Ref. [155]. This

implies

AV,0(q
2) = f+(q2) , AV,t(q

2) =
m2

B −m2
P√

λ
f0(q

2) , (4.3)

while the transverse projections vanish. Similarly, for the B → P tensor FF, we define

AT,σ(q
2) = (−i)

√

1

λ
ε∗µσ (q) 〈P (k)|q̄ σµνq

ν b|B̄(p)〉 . (4.4)

Here, the only non-zero FF is∗

AT,0(q
2) =

√

q2

mB +mP

fT (q2) . (4.5)

A similar analysis for the B → V vector and axial-vector FFs, for the decay to a

vector meson V , yields

BV,σ(q2) =

√

q2

λ

∑

ε(k)

ε∗µσ (q) 〈V (k, ε(k))|q̄ γµ(1 − γ5) b|B̄(p)〉 (4.6)

∗The newly defined tensor FF AT,0(q
2) vanishes as

√

q2, which might look somewhat artificial at first,
but in light of the fact that the tensor current does not contribute to physical processes at q2 = 0
we feel the definition is appropriate.
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with

BV,0(q
2) =

(mB +mV )2 (m2
B −m2

V − q2)A1(q
2) − λA2(q

2)

2mV

√
λ (mB +mV )

,

BV,t(q
2) = A0(q

2) ,

BV,1(q
2) ≡ −BV,− − BV,+√

2
=

√

2 q2

mB +mV
V (q2) ,

BV,2(q
2) ≡ −BV,− + BV,+√

2
=

√

2 q2 (mB +mV )√
λ

A1(q
2) . (4.7)

Finally, the B → V matrix elements with tensor currents are projected on

BT,σ(q2) =

√

1

λ

∑

ε(k)

ε∗µσ (q) 〈V (k, ε(k))|q̄ σµαq
α(1 + γ5) b|B̄(p)〉 (4.8)

giving rise to the FFs

BT,0(q
2) =

√

q2 (m2
B + 3m2

V − q2)

2mV

√
λ

T2(q
2) −

√

q2 λ

2mV (m2
B −m2

V )
T3(q

2)

BT,1(q
2) = −BV,− − BV,+√

2
=

√
2 T1(q

2) ,

BT,2(q
2) = −BV,− + BV,+√

2
=

√
2 (m2

B −m2
V )√

λ
T2(q

2) . (4.9)

4.2.2 Series Expansion

Resonances

An important factor in determining the shape of the FF is the presence of low-lying

resonances with appropriate quantum numbers and mass mR in the range t− < m2
R < t+.

Common to several parameterisations is the inclusion of the low-lying resonance by

means of a simple pole. The various descriptions differ in the modelling of the continuous

part. In the following, we use the abbreviation P (q2) = 1−q2/m2
R. If multiple resonances

are present in the given region, then P (q2) should be a product of such poles, and if no

resonances are present then P (q2) = 1. A summary of the relevant resonance masses is

provided in Tab. 4.1.
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Table 4.1: Summary of the masses of low-lying Bd and Bs resonances, using PDG values
[30] and/or theoretical estimates from heavy-quark/chiral symmetry [156]. Notice
that the mass values for (0+, 1+) predicted in Ref. [156] have not been confirmed
experimentally, yet. Instead the PDG quotes “effective” resonances B∗

J(5698) and
B∗

sJ(5853) with undetermined spin/parity.

Transition JP Mass (GeV) JP Mass (GeV) Ref.

b→ d 0− 5.28 1− 5.33 [30]

0+ 5.63 1+ 5.68 [156]

1+ 5.72 2+ 5.75 [30]

b→ s 0− 5.37 1− 5.42 [30]

0+ 5.72 1+ 5.77 [156]

1+ 5.83 2+ 5.84 [30]

Series Expansion (SE)

The SE parameterisation is derived using dispersive relations [147–149; 151]. The

starting point is to extend the FFs defined in the physical range (from q2 = 0 to

t− = (mB − mL)2) to analytic functions throughout the complex t = q2 plane, ex-

cept for along the branch cut at the threshold for production of real BP/BV pairs at

q2 ≥ t+ = (mB +mL)2. If low-lying resonances are present below t+, they are accounted

for by the so called Blaschke factor B(t), see below. Complex analysis can then be used

to map the cut t–plane onto the unit disc in terms of the coordinate z(t). The variable

z(t) is found to be an excellent expansion parameter for the FFs. Furthermore, with an

appropriately chosen normalisation function φf(t), one obtains simple dispersive bounds

on the coefficients of the SE, see below. We will discuss the calculation of the functions

φf(t) as well as the derivation of the dispersive bounds in greater detail in Sec. 4.3. The

Series Expansion (SE) then corresponds to the following FF parameterisation,

f(t) =
1

B(t)φf(t)

∑

k

αk z
k(t) , (4.10)

with

z(t) ≡ z(t, t0) =

√
t+ − t−√

t+ − t0√
t+ − t+

√
t+ − t0

. (4.11)
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Here 0 ≤ t0 < t− is a free parameter which can be optimised to reduce the maximum

value of |z(t)| in the physical FF range,

t0
∣

∣

opt.
= t+

(

1 −
√

1 − t−
t+

)

. (4.12)

We will later see that with the optimised value for t0, the FFs can be well described by

a SE which is truncated after the second term proportional to z(t). Other values of t0

(e.g. t0 = 0) are also allowed but sometimes one is then required to go to higher order

in the SE.

As a crucial property, the function z(t) satisfies |z(t)| ≡ 1 in the pair-production

region, t ≥ t+. The Blaschke factor is thus chosen as B(t) = z(t,m2
R). As for P (q2)

defined above, if multiple resonances are present, then B(t) is a product of the corre-

sponding Blaschke factors. Further discussion about the physical basis for the SE is

found in Ref. [149].

Simplified Series Expansion (SSE)

Another form of the Series Expansion method can also be considered. Instead of the

Blaschke factor B(t), one can use a simple pole P (q2) to account for low-lying resonances.

This idea was proposed in Ref. [146], yielding

f(t) =
1

P (t)

∑

k

α̃k z
k(t, t0) . (4.13)

It was found that the dispersive bounds can still be imposed on the coefficients α̃k of the

SSE. We will discuss this and other issues concerning the validity of the simplifications

in the following section.

4.3 Dispersive Bounds

The FFs describe the process B → L with L = P, V in the decay region 0 < q2 <

t− = (mB −mL)2. Using crossing symmetry, they can also describe the process in the

pair-production region q2 > (mB + mL)2. This can be exploited to obtain a bound on

parameters describing the FFs. A detailed derivation of this bound can be found in
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Refs. [148; 150]. Here we provide a brief outline of the argument, in order to introduce

our notation and to extend the method to tensor the FFs.

The crucial observation of the idea of dispersive bounds (as it is for QCD sum rules)

is the possibility to evaluate the correlator of two flavour-changing currents,

ΠX
µν(q

2) = i

∫

d4x ei q·x 〈0|T jX
µ (x) j†X

ν (0) |0〉 , (4.14)

either by an operator product expansion (OPE) or by unitarity considerations. Here the

relevant currents jX
µ are defined as†

jV
µ = q̄γµb , jV −A

µ = q̄γµ(1 − γ5)b ,

jT
µ = q̄σµαq

αb , jT+AT
µ = q̄σµαq

α(1 + γ5)b . (4.15)

Furthermore, we introduce longitudinal and transverse helicity projectors,

P µν
L (q2) =

qµqν

q2
, P µν

T (q2) =
1

D − 1

(

qµqν

q2
− gµν

)

, (4.16)

which allow us to rewrite the correlation functions in terms of Lorentz scalars,

ΠX
I (q2) ≡ P µν

I (q2) ΠX
µν(q

2) , (I = L, T ). (4.17)

As ΠX
I (q2) is an analytic function, it satisfies the subtracted dispersion relation,

χX
I (n) =

1

n!

dnΠX(q2)

dq2n

∣

∣

∣

∣

q2=0

=
1

π

∞
∫

0

dt
Im ΠX

I (t)

(t− q2)n+1

∣

∣

∣

∣

q2=0

, (4.18)

where the number of subtractions n is chosen to render the resulting function χX
I (n)

finite.

†In phenomenological applications, we are only interested in the currents jT+AT

µ . The connection to
correlators with genuine tensor currents jµν = q̄σµνq is given in App. D of Ref. [155].
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4.3.1 Hadronic representation of the Correlator

Unitarity allows us to express Im ΠX
I (q2) as the positive definite sum over all hadronic

states Γ with allowed quantum numbers:

Im ΠX
I (q2) =

1

2

∑

Γ

∫

dρΓ (2π)4 δ4(q − pΓ)P µν
I 〈0| jX

µ |Γ〉 〈Γ| j†Xν |0〉 . (4.19)

where pΓ is the total momentum of the final state, and dρΓ contains the appropriate

phase-space weighting. For a particular choice of intermediate state, Γ = BL, we define

Im ΠX
I,BL(q2) = η

∫

dρBL P
µν
I 〈0| jX

µ |BL〉 〈BL| j†Xν |0〉 , (4.20)

where η is an isospin-degeneracy factor for a given channel, and we relegate the contri-

bution from phase space to the function

dρBL =
1

4π2

∫

d3pB

2EB

d3pL

2EL
δ4(q − pB − pL) . (4.21)

Clearly, this results in the inequality

ImΠX
I,BL(t) ≤ ImΠX

I (t) . (4.22)

Now, by extending the FFs to analytic functions throughout the t–plane, except for

along the branch cut at the threshold for production of real BL pairs, one can use

crossing symmetry to relate the matrix elements 〈0| jX |BL〉 to 〈B| jX |L〉. The latter

can be rewritten in terms of FFs, as defined in Sec. 4.2. As stated earlier, we use helicity-

based linear combinations of the traditional FFs, such that all production amplitudes

‘diagonalise’:

P µν
T 〈P |jV

µ |B〉〈B|j†Vν |P 〉 =
λ

3q2
|AV,0|2 ,

P µν
L 〈P |jV

µ |B〉〈B|j†Vν |P 〉 =
λ

q2
|AV,t|2 ,

P µν
T 〈P |jT

µ |B〉〈B|j†Tν |P 〉 =
λ

3
|AT,0|2 , (4.23)
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for B decays into pseudoscalars, and for decays into vectors,

P µν
T 〈V |jV −A

µ |B〉〈B|j†,V −A
ν |V 〉 =

λ

3q2

2
∑

i=0

|BV,i|2 ,

P µν
L 〈V |jV −A

µ |B〉〈B|j†,V −A
ν |V 〉 =

λ

q2
|BV,t|2 ,

P µν
T 〈V |jT+AT

µ b|B〉〈B|j†,T+AT
ν b|V 〉 =

λ

3

2
∑

i=0

|BT,i|2 . (4.24)

We can now express Im ΠX
I,BL in compact form,

Im ΠX
I,BL = η

∫

dρBL
λ

3t

∣

∣AX
I

∣

∣

2
=

η

48π

λ3/2

t2
∣

∣AX
I

∣

∣

2
, (4.25)

where the
∣

∣AX
I

∣

∣

2
can be read off (4.23,4.24),

∣

∣AV
T

∣

∣

2
= |AV,0|2 ,

∣

∣AV
L

∣

∣

2
= 3 |AV,t|2 ,

∣

∣AT
T

∣

∣

2
= q2 |AT,0|2 , (4.26)

for decays into pseudoscalars, and

∣

∣AV −A
T

∣

∣

2
=

2
∑

i=0

|BV,i|2 ,
∣

∣AV −A
L

∣

∣

2
= 3 |BV,t|2 ,

∣

∣AT+AT

T

∣

∣

2
= q2

2
∑

i=0

|BT,i|2 , (4.27)

for decays into vector mesons.

4.3.2 OPE for the Correlator

Alternatively, we can examine the correlator in Eq. (4.14), using an OPE for the T-

ordered product of currents in the limit q2 = 0 ≪ t+. The standard expansion takes the

form [74; 75; 157]

i

∫

dx ei q·x P µν
I T

{

jX
µ (x) j†X

ν (0)
}

=

∞
∑

k=1

CX
I,k(q)Ok , (4.28)

where CX
I,n(q) are Wilson coefficients for a given current X and projector I, and On are

local gauge-invariant operators, consisting of quark and gluon fields. Here, the operators
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are ordered by increasing dimension k. We can use the above, to express the correlator,

ΠX
I,OPE(q2) =

∞
∑

k=1

CX
I,k(q

2) 〈Ok〉 . (4.29)

Besides the identity operator, whose Wilson coefficient contains the purely perturbative

contribution to the correlator, we will specifically consider the first few operators re-

lated to the non-perturbative contribution from the quark condensate 〈mq̄q〉, the gluon

condensate 〈αs

π
G2〉, and the mixed condensate 〈q̄σgGq〉. We will elaborate on our cal-

culation of the Wilson coefficients, CX
I,k(q

2), later. Specifically, we must calculate the

Wilson coefficients entering the functions χX
I (n) defined in Eq. (4.18).

4.3.3 Bounds on coefficients in the SE

Using Eq. (4.22), we find

1

π

∞
∫

0

dt
Im ΠX

I,BL(t)

(t− q2)n+1

∣

∣

∣

∣

q2=0

=
1

π

∞
∫

t+

dt
η λ3/2(t)

48π tn+3

∣

∣AX
I (t)

∣

∣

2 ≤ χX
I (n) , (4.30)

where χX
I ≡ χX

I,OPE is calculated from Eq. (4.29). Mapping the pair-production region

t ≥ t+ onto the unit circle |z(t)| = 1, this inequality could be written in the form

1

2πi

∮

dz

z
|φX

I A
X
I |2(z) ≤ 1 ⇔ 1

π

∫ ∞

t+

dt

t− t0

√

t+ − t0
t− t+

|φX
I A

X
I |2(t) ≤ 1 , (4.31)

where the function |φX
I (t)|2 can be obtained by comparing (4.31) and Eq. (4.30), and

using λ(t) = (t+ − t)(t− − t),

|φX
I (t)|2 =

η

48π χX
I (n)

(t− t+)2

(t+ − t0)1/2

(t− t−)3/2

tn+2

t− t0
t

. (4.32)

The isospin-degeneracy factor η takes the values 3/2, 2 and 1 for B → ρ, B → K(∗) and

Bs → φ respectively. We may now generically write the helicity-based FFs AX
I (t) as

AX
I (t) =

(
√

−z(t, 0))m(
√

z(t, t−))l

B(t)φX
I (t)

∞
∑

k=0

αk z
k (4.33)
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with real coefficients αk, and a Blaschke factor B(t) =
∏

i z(t,m
2
Ri

), representing poles

due to sub-threshold resonances of masses mRi
, and satisfying |B(t)| = 1 in the pair-

production region. The additional factors (
√

−z(t, 0))m and (
√

z(t, t−))l have been

added to take into account the unconventional normalisation of our FF functions through

factors of
√

q2 and
√
λ (e.g. m = 1 for AT,0, and l = −1 for AV,t, cf. above).‡ The

function φX
I (t) has to be constructed in such a way that its absolute value satisfies

Eq. (4.32), while Eq. (4.33) retains the analytical properties of the FF. This can easily

be achieved by replacing potential poles and cuts in
√

|φX
I (t)|2, by making replacements

of the form

1

t−X
→ −z(t, X)

t−X
, (4.34)

which is allowed as |z(t, X)| = 1 in the pair-production region. This results in (see also

[158])

φX
I (t) =

√

η

48πχX
I (n)

(t− t+)

(t+ − t0)1/4

(

z(t, 0)

−t

)(3+n)/2(
z(t, t0)

t0 − t

)−1/2(
z(t, t−)

t− − t

)−3/4

.

(4.35)

Inserting the parameterisation from Eq. (4.33) into Eq. (4.31), and using |z(t, t0)| =

|z(t,m2
R)| = |z(t, 0)| = 1, the integration dz/z = dϕ along the unit circle is trivial,

yielding the desired bound on the coefficients αk,

∞
∑

k=0

α2
k < 1 . (4.36)

For decays into vector mesons, using an analogous parameterisation as in Eq. (4.33)

for each individual FF contribution in Eq. (4.27), one obtains a bound on the sum

of the corresponding coefficients. As an example, let us consider AV −A
T (t), where we

parametrise

BV,0(t) =
1

B(t)
√

z(t, t−)φV −A
T (t)

K−1
∑

k=0

β
(V,0)
k zk ,

‡These factors could also be considered as part of the Blaschke factor. Note that under a change
of normalisation convention for the FFs, both, the so-constructed Blaschke factor as well as the
function φ(t) have to be modified, while the coefficients αk of the SE remain the same.
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BV,1(t) =

√

−z(t, 0)

B(t)φV −A
T (t)

K−1
∑

k=0

β
(V,1)
k zk ,

BV,2(t) =

√

−z(t, 0)

B(t)
√

z(t, t−)φV −A
T (t)

K−1
∑

k=0

β
(V,2)
k zk , (4.37)

resulting in the dispersive bound

K−1
∑

k=0

(

(β
(V,0)
k )2 + (β

(V,1)
k )2 + (β

(V,2)
k )2

)

< 1 . (4.38)

4.3.4 The coefficients χX
I (n)

In Tab. 4.2 we summarise the numerical result of our calculation of the various coefficients

χX
I (n), which enter the functions φX

I (t) in the SE. We quote individual numbers for the

perturbative LO and NLO results, as well as from the condensate contributions, for

two different values of light-quark masses, m = md and m = ms. The number of

subtractions is also indicated. Details of the calculation as well as analytical formulae

for the perturbative coefficients can be found in App. B.2. As can be observed from

Tab. 4.2§, the NLO perturbative corrections are essential for a reliable estimate for the

coefficients χX
I (n), while the quark condensate gives only small contributions, and the

gluon condensate and the mixed quark-gluon condensate are negligible.

4.4 Form Factor Fits to Theoretical Data

4.4.1 Theory Input from Lattice and LCSR

As mentioned in the introduction, LCSR and Lattice are largely complementary, as they

perform best in different regimes of momentum transfer q2. It is worth mentioning that

certain decays, e.g. decays to unstable hadrons, are more challenging in Lattice QCD,

and in some cases only quenched results exist for a subset of the FFs. On the other hand,

LCSRs provide results for all decay channels considered here, including the complete set

of seven FFs for B → K∗ and Bs → φ, which so far have not been fully addressed by

§Note that here the coefficients are evaluated at the scale of the MS b quark mass in order to consistent
with previous literature
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Table 4.2: Summary of OPE results for the coefficients χX
I (n). The following parameter

values have been used [74; 159–161]: µ̄ = mb = 4.2 GeV, md = 4.8 MeV,
ms = 104 MeV, αs = 0.2185,

〈

d̄d
〉

= (278 MeV)3, 〈s̄s〉 = 0.8
〈

d̄d
〉

,
〈

αs

π G
2
〉

=
0.038 GeV4, 〈q̄σgGq〉 = (1.4 GeV)2 〈q̄q〉.

q Correlator Subtractions LO NLO 〈q̄q〉
〈

α
π
G2
〉

〈q̄σgGq〉 Σ

100 ×m2
bχ

S 2 1.265 0.589 0.029 0.001 −0.003 1.88

100 ×m2
bχ

P 2 1.268 0.590 0.029 0.001 −0.003 1.88

100 × χV
L 1 1.262 0.211 0.029 0.001 −0.003 1.50

d 100 × χA
L 1 1.271 0.205 0.029 0.001 −0.003 1.50

100 ×m2
bχ

V
T 2 0.951 0.236 −0.029 −0.001 0.007 1.16

100 ×m2
bχ

A
T 2 0.948 0.237 −0.029 −0.001 0.007 1.16

100 ×m2
bχ

T
T 3 2.539 0.579 −0.029 −0.000 0.008 3.10

100 ×m2
bχ

AT
T 3 2.527 0.586 −0.029 −0.001 0.008 3.09

100 ×m2
bχ

S 2 1.233 0.571 0.024 0.001 −0.003 1.83

100 ×m2
bχ

P 2 1.296 0.608 0.022 0.001 −0.003 1.93

100 × χV
L 1 1.172 0.229 0.023 0.000 −0.003 1.42

s 100 × χA
L 1 1.361 0.187 0.023 0.002 −0.003 1.57

100 ×m2
bχ

V
T 2 0.980 0.237 −0.022 0.000 0.005 1.20

100 ×m2
bχ

A
T 2 0.916 0.238 −0.024 −0.002 0.006 1.13

100 ×m2
bχ

T
T 3 2.652 0.569 −0.023 0.001 0.006 3.21

100 ×m2
bχ

AT
T 3 2.404 0.603 −0.024 −0.002 0.007 2.99
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Lattice QCD. However, as LCSR results are only valid in the low–q2 regime, in these

cases further theoretical information is needed to extrapolate to large values of q2, as

will be discussed in the following section.

In our analysis, we will use the LCSR predictions from Refs. [71; 72], taking 3(4)

points at low values of q2 as input, see Tab. 4.3. The errors quoted are extrapolated

from the value quoted for q2 = 0 in the references specified in the table. Lattice data is

available for B → ρ and B → K decays, and is as shown in Tab. 4.4.¶ For those data

points which have an asymmetric statistical or systematic error, in order to perform the

fit, we take the FF to be the central value in this statistical or systematic range, and

take half the range to be the statistical or systematic error [162].

For B → ρ and B → K decays, we use LCSR and Lattice data to interpolate between

the low and high–q2 region. The result can be compared to the case where we extrapolate

to the high–q2 region only on the basis of LCSR predictions. This procedure will gives

us an idea about the confidence in the extrapolations for those cases where Lattice data

is lacking.

4.4.2 Parameterisation of FFs as Series Expansion

For those channels where Lattice data is not available, it is essential to employ a FF

parameterisation that takes into account the characteristic features of the FF shape as

determined from the analyticity and unitarity consideration above. For every considered

FF, we will therefore define a parameterisation based on the SE,

AV,0(t) =
1

B(t)φV
T (t)

K−1
∑

k=0

α
(V,0)
k zk ,

AV,t(t) =
1

B(t)
√

z(t, t−)φV
L (t)

K−1
∑

k=0

α
(V,t)
k zk ,

AT,0(t) =

√

−z(t, 0)

B(t)φT
T (t)

K−1
∑

k=0

α
(T,0)
k zk , (4.39)

¶ We are very grateful to Sara Collins of the QCDSF collaboration for providing us with specific values
for B → K.
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Table 4.3: Overview of LCSR points used, transformed to the helicity amplitude basis.

Decay FF LCSR/q2 (GeV2) Ref.

B → K q2 3 6 9 12 Tab. 3, [71]

AV,0 0.40 ± 0.05 0.48 ± 0.06 0.59 ± 0.07 -

AV,t 0.40 ± 0.05 0.51 ± 0.06 0.65 ± 0.08 -

AT,0 0.13 ± 0.01 0.22 ± 0.02 0.34 ± 0.03 -

B → ρ q2 3 6 9 12 Tab. 8, [72]

BV,0 0.37 ± 0.12 0.46 ± 0.13 0.60 ± 0.14 -

BV,1 0.16 ± 0.01 0.27 ± 0.02 0.41 ± 0.04 -

BV,2 0.16 ± 0.02 0.29 ± 0.03 0.46 ± 0.04 -

BV,t 0.37 ± 0.04 0.46 ± 0.04 0.58 ± 0.06 -

BT,0 0.17 ± 0.35 0.3 ± 0.26 0.47 ± 0.23 0.71 ± 0.22

BT,1 0.45 ± 0.04 0.55 ± 0.05 0.69 ± 0.06 0.9 ± 0.08

BT,2 0.46 ± 0.04 0.58 ± 0.05 0.76 ± 0.07 1.0 ± 0.1

B → K∗ q2 3 6 9 12 Tab. 8, [72]

BV,0 0.45 ± 0.13 0.56 ± 0.13 0.73 ± 0.15 -

BV,1 0.19 ± 0.02 0.32 ± 0.03 0.49 ± 0.04 -

BV,2 0.20 ± 0.02 0.35 ± 0.03 0.57 ± 0.06 -

BV,t 0.44 ± 0.04 0.54 ± 0.05 0.67 ± 0.06 -

BT,0 0.23 ± 0.36 0.39 ± 0.27 0.60 ± 0.24 0.90 ± 0.22

BT,1 0.59 ± 0.06 0.72 ± 0.07 0.89 ± 0.08 1.2 ± 0.1

BT,2 0.61 ± 0.06 0.77 ± 0.07 1.0 ± 0.1 1.4 ± 0.1

Bs → φ q2 3 6 9 12 Tab. 8, [72]

BV,0 0.55 ± 0.12 0.68 ± 0.13 0.85 ± 0.14 -

BV,1 0.2 ± 0.02 0.34 ± 0.03 0.52 ± 0.04 -

BV,2 0.21 ± 0.02 0.38 ± 0.04 0.62 ± 0.06 -

BV,t 0.56 ± 0.04 0.68 ± 0.05 0.85 ± 0.06 -

BT,0 0.26 ± 0.39 0.44 ± 0.29 0.67 ± 0.26 1.0 ± 0.3

BT,1 0.59 ± 0.06 0.72 ± 0.07 0.89 ± 0.08 1.2 ± 0.1

BT,2 0.61 ± 0.06 0.77 ± 0.07 1.0 ± 0.1 1.4 ± 0.1
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Table 4.4: Overview of Lattice points used, transformed to the helicity amplitude basis.
Note that specific values for B → ρ are as in Tab. 2 of Ref. [145].

Decay q2 (GeV2) FF Ref.

B → K AV,0 AV,t AT,0 QCDSF [67]

14.5 0.94 ± 0.19 1.1 ± 0.2 -

15.6 1.1 ± 0.2 1.3 ± 0.3 -

16.7 1.2 ± 0.2 1.5 ± 0.3 -

17.9 1.4 ± 0.3 1.8 ± 0.3 -

19. 1.6 ± 0.3 2.3 ± 0.4 -

20.1 1.9 ± 0.4 3.± 0.6 -

21.3 2.3 ± 0.4 4.4 ± 0.8 -

22.4 2.9 ± 0.6 8.7 ± 1.7 -

B → ρ BV,0 BV,1 BT,2 UKQCD [70]

12.7 0.64 ± 0.78 0.34 ± 0.27 0.9 ± 0.18

13. 0.71 ± 0.72 0.39 ± 0.25 0.96 ± 0.18

13.5 0.8 ± 0.66 0.48 ± 0.22 1.1 ± 0.2

14. 0.9 ± 0.62 0.58 ± 0.19 1.2 ± 0.2

14.5 1.0 ± 0.6 0.68 ± 0.16 1.3 ± 0.2

15. 1.1 ± 0.6 0.78 ± 0.15 1.4 ± 0.2

15.5 1.3 ± 0.7 0.89 ± 0.15 1.6 ± 0.2

16. 1.4 ± 0.8 1.0 ± 0.2 1.8 ± 0.2

16.5 1.6 ± 0.9 1.2 ± 0.3 2.1 ± 0.2

17.1 1.8 ± 1.2 1.4 ± 0.4 2.4 ± 0.2

17.6 2.1 ± 1.5 1.7 ± 0.6 2.7 ± 0.3

18.2 2.5 ± 2. 2.1 ± 0.9 3.3 ± 0.3
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and

BV,t(t) =
1

B(t)φV −A
L (t)

K−1
∑

k=0

β
(V,t)
k zk ,

BT,0(t) =

√

−z(t, 0)

B(t)
√

z(t, t−)φT+AT

T (t)

K−1
∑

k=0

β
(T,0)
k zk ,

BT,1(t) =
1

B(t)φT+AT

T (t)

K−1
∑

k=0

β
(T,1)
k zk ,

BT,2(t) =
1

B(t)
√

z(t, t−)φT+AT

T (t)

K−1
∑

k=0

β
(T,2)
k zk , (4.40)

and BV,0−2 already given in Eq. (4.37). Here we have used our FF convention defined

in Eqs. (4.1), (4.4), (4.6) and (4.8) along with the prefactors necessary to obtain the

correct analytical behaviour of our FFs.‖ In our fits below, we will find that in general

the SE can be truncated after the first two terms, i.e. the parameter K can be set to

2. We should point out, however, that this does not necessarily imply that higher-order

terms in the SE are negligible: Although |z|2 ≪ 1 in the semi-leptonic region, one may

still have |α2z
2| ∼ |α1z| if the coefficients satisfy α1 ≪ α2 . 1. From the theoretical

point of view, this reflects an irreducible source of uncertainty. From the practical point

of view, we consider the truncated series expansion as a reasonable parameterisation

which is easy to implement (and easy to refine) in phenomenological studies.

For simplicity, the theoretical relations that some of the FFs fulfil at q2 = 0 (see

App. B of Ref. [155]) will not be implemented in the fit, as they are automatically satisfied

by the rather precise input from LCSR at this point. However, the helicity-based FF

definition further implies a relation between the FFs BV,0 and BV,2, and similarly between

BT,0 and BT,2 at the kinematic endpoint q2 = t− = (mB −mL)2,

lim
q2→t−

BV,2(q
2)

BV,0(q2)
= lim

q2→t−

BT,2(q
2)

BT,0(q2)
=

√
2 , (4.41)

‖In Refs. [151] and [146; 150], the predictions from perturbative QCD for the scaling of the FFs at
large values of q2 have been used as an additional constraint on the shape of the FFs. We have
found that these constraints do not influence the FF fits in the decay region significantly. As the
asymptotic behaviour of exclusive observables in QCD is still a matter of controversy, we therefore
find it safer and simpler not to include these constraints in our parameterisation.
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which we will implement as an additional constraints on the corresponding coefficients

in the SE. From the above parameterisations, the SSE is obtained by the replacements

φX
I (t) → 1 , B(t) → P (t) ,

√

−z(t, 0) →
√

q2/mB ,
√

z(t, t−) →
√
λ/m2

B , (4.42)

with new coefficients α̃k and β̃k.

Unitarity constraints

For the SE parameterisation, the unitarity constraints take the form

K−1
∑

k=0

(αk)
2 ≤ 1 for AV,0 and AT,0, 3

K−1
∑

k=0

(αk)
2 ≤ 1 for AV,t, (4.43)

and

3

K−1
∑

k=0

(β
(V,t)
k )2 ≤ 1 for BV,t,

K−1
∑

k=0

{

(β
(V,0)
k )2 + (β

(V,1)
k )2 + (β

(V,2)
k )2

}

≤ 1 for BV,0, BV,1, and BV,2,

K−1
∑

k=0

{

(β
(T,0)
k )2 + (β

(T,1)
k )2 + (β

(T,2)
k )2

}

≤ 1 for BT,0, BT,1, and BT,2. (4.44)

For the SSE parameterisation, imposing the unitarity bound is more complicated, as

shown in Ref. [146]. We repeat the derivation of this bound in order to define notation

used later. One first compares the SE and SSE parameterisations:

K−1
∑

k=0

αk z
k = Λ(z)

K−1
∑

k=0

α̃k z
k (4.45)

One can simply obtain Λ(z) by combining the prefactors from the SE expansion with

the prefactors from the SSE expansion, and expressing the result as a function of z(t, t0).

Since z is a small parameter, we can expand Λ(z) in powers of z:

Λ(z) =
∑

k

ζk z
k. (4.46)
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We can therefore obtain a relation between the coefficients αk and α̃k,

αi =

min[K−1,i]
∑

k=0

ζi−k α̃k , 0 ≤ i ≤ K − 1 , (4.47)

which results in bounds of the type

K−1
∑

j,k=0

Cjk α̃j α̃k ≤ 1 , (4.48)

where

Cjk =

K−1−max[j,k]
∑

i=0

ζi ζi+|j−k| (4.49)

is a positive definite matrix.

4.4.3 Fitting prescription

We perform a fit to the LCSR data, as well as, where possible, a combined fit to the

LCSR and Lattice data, by minimising a χ2 function defined by

χ2(~θ) =
(

Fi − F (ti, ~θ )
)

[

V −1
]

ij

(

Fj − F (tj, ~θ )
)

, (4.50)

where ~θ contains the parameters of a given FF parameterisation, Fi are the FF values

from LCSR/Lattice at given points ti, and Vij are elements of the covariance matrix as

defined below.

As explained above, we will be investigating parameterisations based on the SE

and SSE, where the parameters will be subject to additional constraints derived from

dispersive bounds on the FFs.

• In the conventional series expansion (SE), we use (4.10), and truncate the series

after the first 2 terms, such that

~θ = {α0, α1} ,
∑

α2
i

!
< 1 .
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• The simplified series expansion (SSE) uses (4.13), with

~θ = {α̃0, α̃1} ,
1
∑

i,j=0

Cij α̃iα̃j

!
< 1 ,

where the matrix Cij is defined in Eq. (4.49).

In constructing the covariance matrix, when we do a combined fit to LCSR and

Lattice data, we assume the matrix to be block diagonal with independent blocks for

Lattice and LCSR, equivalent to χ2 = χ2
LCSR + χ2

Lat, where

χ2
LCSR(~θ) =

(

Fi − F (ti, ~θ )
)

[

V −1
LCSR

]

ij

(

Fj − F (tj , ~θ )
)

, (4.51)

and

χ2
Lat(

~θ) =
(

Fi − F (ti, ~θ )
)

[

V −1
Lat

]

ij

(

Fj − F (tj, ~θ )
)

, (4.52)

We consider the statistical and systematic contributions to the Lattice errors sepa-

rately. Where results were not available in the literature, we received the breakdown by

private communication with the authors. In obtaining the covariance matrix, we make

the following conservative assumptions:

• Statistical errors of Lattice data are 50% correlated [67; 70].

• Systematic errors of Lattice data are 100% correlated [67; 70].

• Errors of LCSR data are due to parametric as well as to systematic uncertainties

from different sources. In order to provide a concrete number for the χ2 value

characterising the quality of the fit, we have estimated these errors at different

values ti to be 75% correlated∗∗.

This prescription leads to a covariance matrix V ij = cov[ti, tj], containing

V ij
LCSR =

1

4
κiκjδij +

3

4
κiκj and (4.53)

V ij
Lat =

1

2
σiσjδij +

1

2
σiσj + εiεj (4.54)

∗∗We have checked that using a 90% or 50% correlation instead, of course changes the value of χ2, does
not influence the optimal parameter values. A similar comment applies to the number of individual
LCSR points used in the fit.
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where σi are the statistical errors, εi are the systematic errors for the Lattice data, and

κi are the errors for the LCSR predictions.

Minimising χ2(~θ) then yields the best fit parameters ~θ∗, as well as the covariance

matrix of the fit, Uij = cov[θi, θj],

(

U−1
)

ij
=

1

2

∂2χ2(~θ)

∂θi ∂θj

∣

∣

∣

∣

∣

~θ=~θ∗

, (4.55)

from which we calculate the error associated to the fitted FF function:

∆F (t, ~θ∗) =
∂F (t, ~θ)

∂θi

∣

∣

∣

∣

∣

~θ=~θ∗

Uij
∂F (t, ~θ)

∂θj

∣

∣

∣

∣

∣

~θ=~θ∗

(4.56)

4.4.4 Results

Having established the fitting procedure, we consider FFs for the decays B → ρ, B → K,

B → K∗ and Bs → φ. We concentrate on radiative and semi-leptonic decays, as

previously the dispersive bounds had not been calculated for the tensor current, so

could not be applied to these decays. The phenomenological motivations for studying

the chosen decays are as follows. First, they involve flavour changing neutral currents via

e.g. electroweak penguins, so they are particularly sensitive to new physics. Secondly, the

di-lepton signature can easily be detected at the LHC, and the three-body or four-body

final state (for subsequent decays K∗ → Kπ and φ → KK) involves many promising

observables related to various angular distributions [52; 88; 89; 142; 152].

From the theoretical point of view, the B → V γ decay as well as the low-q2 region of

B → L ℓ+ℓ− transitions allow for a systematic inclusion of radiative corrections within

the QCD factorisation approach at leading order in the 1/mb expansion [47; 78]. In this

region, the transition FFs (which still determine a major part of non-perturbative input)

can be obtained from LCSR estimates alone. As it has been discussed, for instance, in

Ref. [102; 163], the high-q2 region may also be interesting in order to constrain NP con-

tributions (notably to the short-distance Wilson coefficients C9 and C10), and therefore

our extrapolations of LCSR results for the tensor FFs in that region will be particularly

relevant for this purpose. In the following subsection, we present the results of fitting

the specific FFs to both, the SE and SSE parameterisations, using LCSR and Lattice

data where appropriate as discussed in Sec. 4.4.1. For the light meson masses, we use

mK = 494 MeV, mK∗ = 892 MeV, mρ = 776 MeV, mφ = 1.02 GeV.



Form Factors for Radiative and Semi-Leptonic B Decays 112

B → K form factors: In Figs. 4.1–4.5, we show the fit for the various B → K FFs,

which enter, for instance, the radiative B → Kℓ+ℓ− and B → Kνν̄ decays. We compare

the result of the SE and SSE parameterisations using LCSR data, and investigate the

changes when the Lattice data is included. The numerical results for the best-fit param-

eters of the SE and SSE fit are found in corresponding Tabs. 4.5–4.6. The covariance

matrices for these fits can also be found in App. B.3.

Generally, both parameterisations are seen to fit the data well, and importantly, we

find agreement with the Lattice predictions for AV,0 and AV,t, even when they are not

included in the fit. We therefore consider our extrapolation of LCSR data for the tensor

FF AT,0 to the high-q2 region, where Lattice data does not exist, as sufficiently reliable.

The quality of the fits is astonishingly good, considering the χ2 values for only two free

parameters in the expansion. The differences between the SE and SSE are only marginal,

which can be traced back to the usage of the optimised value for the auxiliary parameter

t0 in Eq. (4.12). The dispersive bounds turn out to be far from being separated, and

therefore they have only little impact on the FF fit. This observation is in line with

other studies of heavy-to-light FFs in the literature, see e.g. [147; 151; 164].

In order to address the question of potential contributions from higher-order terms

in the series expansion, we consider the LCSR prediction for the vector and tensor form

factors AV,0 , AT,0 and fit to a SE with K = 3, where the coefficient a2 of the z2 term

in the expansion has been fixed to values between [0.9,+0.9], representing almost the

maximal range allowed by the unitarity constraints. The results of these fits are shown in

Figs. 4.2 and 4.6. Let us first consider the case where only LCSR data is used in the fit.

We observe that, as expected, the constraints from the LCSR points at low values of q2

are not sufficient to determine the behaviour at large q2, if higher-order terms in the SE

(with no further phenomenological constraints) are allowed for. However, the behaviour

of the form factor corresponding to the extreme values of a2 does not appear very realistic

(even a rough numerical estimate of coupling constants for the first low-lying resonances

with the considered hadronic transition would be sufficient to exclude the curves at

the margin). Therefore the associated error estimate appears too pessimistic to us.

Moreover, typically, exclusive semi-leptonic branching fractions are suppressed relative

to the inclusive ones by a factor of about 20. This suggests that the right-hand side of the

dispersive bounds should not exceed a value of 5% (instead of 100%). Correspondingly,

a realistic range of allowed a2 values should rather be taken as [0.25,+0.25], which is

indicated by the thick central lines in Fig. 4.2. The associated uncertainty is only slightly

larger than that obtained from the variation of (a0, a1) for the SE fit with K = 2. If,
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on the other hand, the lattice information (in the case of AV,0) is taken into account,

the cases with |a2| & 0.25 actually do not yield a satisfactory fit anymore, and again

the error estimate of the linear fit seems to be sufficient to estimate the fit errors. In

view of the generic difficulties in estimating systematic theoretical uncertainties, we thus

consider the SE/SSE parameterisation with K = 2 and the associated error estimates

as sufficiently reliable for practical applications.

Another comment applies to the scalar FFs AV,t: As shown in Tab. 4.1, the com-

bined heavy-quark/chiral-symmetry limit considered in Ref. [156] predicts a scalar Bs

resonance below BK-production threshold (such a state is also favoured by a Lattice

computation in [165]). On the other hand, the PDG only finds resonances at masses

near/above the production threshold. We have therefore chosen to compare two vari-

ants of the fit, with/without a scalar resonance.†† As can be seen, the fit with a scalar

resonance from [156] describes the combined Lattice/LCSR data significantly better

than the fit without a low-lying resonance (where in the latter case again the dispersive

bounds constrain the FF to lie systematically below the Lattice data). However, within

the present uncertainties of Lattice and LCSR data, this could only be taken as a very

indirect argument in favour of a scalar resonance in the anticipated mass region.

Table 4.5: B → K: Fit of SE parameterisation to LCSR or LCSR/Lattice results, for AV,0

(X = 1), AV,t (X = 3) and AT,0 (X = 1).

AX mR α0 α1 Fit to χ2
fit X

∑

i

α2
i

AV,0 5.41 −2.4 × 10−2 6.2 × 10−2 LCSR and Lattice 5.07 × 10−3 4.43 × 10−3

AV,t - −6.8 × 10−2 0.20 LCSR and Lattice 0.200 0.129

AV,t 5.72 −4.8 × 10−2 0.11 LCSR and Lattice 1.54 × 10−4 4.34 × 10−2

AV,0 5.41 −2.8 × 10−2 6.0 × 10−2 LCSR 3.94 × 10−3 4.40 × 10−3

AV,t - −6.7 × 10−2 0.18 LCSR 1.44 × 10−3 0.111

AV,t 5.72 −2.5 × 10−2 7.2 × 10−2 LCSR 0.329 5.77 × 10−3

AT,0 5.41 −4.5 × 10−2 8.9 × 10−2 LCSR 0.234 2.99 × 10−2

††Notice that BZ [71] use an effective resonance mass above production threshold to parametrise the
scalar FFs.
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Table 4.6: B → K: Fit of SSE parameterisation to LCSR or LCSR/Lattice results, for AV,0

(X = 1), AV,t (X = 3) and AT,0 (X = 1).

AX mR α̃0 α̃1 Fit to χ2
fit X

∑

i,j

Ci,jα̃iα̃j

AV,0 5.41 0.48 −1.0 LCSR and Lattice 5.15 × 10−3 4.04 × 10−3

AV,t - 0.54 −1.7 LCSR and Lattice 0.904 0.142

AV,t 5.72 0.30 0.20 LCSR and Lattice 7.17 × 10−5 5.32 × 10−2

AV,0 5.41 0.48 −1.1 LCSR 8.15 × 10−3 3.06 × 10−3

AV,t - 0.52 −1.4 LCSR 2.27 × 10−3 9.55 × 10−2

AV,t 5.72 0.50 −1.4 LCSR 0.940 6.51 × 10−3

AT,0 5.41 0.28 0.35 LCSR 0.128 3.15 × 10−2
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Figure 4.1: B → K: Fit of SE (left) and SSE (right) parameterisations to LCSR (top) and
to LCSR and Lattice (bottom) for AV,0. The LCSR and Lattice data are shown
by black points with error bars in the appropriate q2 range.
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Figure 4.2: B → K: Fit of the SE parameterisation to LCSR (top) and to LCSR and
Lattice (bottom) for AV,0 with the parameter a2 varied between [−0.9,+0.9]
(left). The thick dark lines show a2 = ±0.25. For comparison we again show the
fits truncated after a1.
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Figure 4.3: B → K: Fit of SE (left) and SSE (right) parameterisations to LCSR (top) and
to LCSR and Lattice (bottom) for AV,t. The LCSR and Lattice data are shown
by black points with error bars in the appropriate q2 range.
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Figure 4.4: B → K: The same as Fig. 4.3 but without using the scalar Bs resonance in the
fit ansatz.
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Figure 4.5: B → K: Fit of SE (left) and SSE (right) parameterisations to LCSR for AT,0.
The LCSR data is shown by black points with error bars.
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Figure 4.6: B → K: Fit of the SE parameterisation to LCSR for AT,0 with the parameter

a2 varied between [−0.9,+0.9] (left). The thick dark lines show a2 = ±0.25. For
comparison we again show the fit truncated after a1.

B → ρ form factors: Our FF fits for B → ρ transitions, relevant for the radiative

B → ργ and B → ρℓ+ℓ− decays, are summarised in Figs. 4.7–4.13 and Tabs. 4.7 and

4.8, where we again compare the fit to SE and SSE parameterisations. As in the case of

B → K FFs, we observe similarly good results in general for SE and SSE fits, with the

dispersive bounds again playing only a minor role in restricting the coefficients of the

SE/SSE. The covariance matrices for the fits can again be found in App. B.3.

Lattice results are restricted to the (axial–)vector FFs, and we again study how the

fits change when the Lattice data is included: In the case of the FF BV,0, the uncertainties

on the Lattice data are large, and the fit is dominated by the LCSR points at low values

of q2. Still, we find that the best-fit curve also describes the central values of the Lattice

estimates well. The situation is somewhat different for BV,1, where the central values of

the Lattice points do not quite agree with the extrapolation of the LCSR prediction. The

fit is consistent within Lattice uncertainties, but a rather large value of χ2, dominated

by the deviations from the Lattice points, is generated. On the other hand, for BV,1

the Lattice data are competitive with the LCSR input, and we can again observe that

the extrapolation of the LCSR predictions describes the Lattice points very well, while

inclusion of the Lattice data in this case leads to a very precise FF description.

In the remaining cases, we provide the extrapolations for the FFs from LCSR input,

as Lattice data is not currently available. Note that the uncertainties for the FF BT,0

are quite large, because we had to determine the LCSR input values from the difference

of two FFs in Eq. (4.8). Of course, it would be desirable to directly calculate the FF

BT,0 in the LCSR approach which should lead to significantly smaller uncertainties for
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the input data and the extrapolation to large values of q2. A similar comment applies

to the FF BV,0.

Table 4.7: B → ρ: Fit of SE parameterisation to LCSR or LCSR/Lattice results for BV,0−2

(X = 1), BV,t (X = 3) and BT,0−2 (X = 1).

BX mR β0 β1 Fit to χ2
fit X

∑

i

β2
i

BV,0 5.72 −8.0 × 10−3 2.5 × 10−2

BV,1 5.33 −3.5 × 10−2 0.11 LCSR and Lattice 32.1 1.98 × 10−2

BV,2 5.72 −2.5 × 10−2 7.8 × 10−2

BV,0 5.72 −7.5 × 10−3 1.4 × 10−2

BV,1 5.33 −3.7 × 10−2 8.9 × 10−2 LCSR 9.56 × 10−2 1.28 × 10−2

BV,2 5.72 −2.3 × 10−2 5.2 × 10−2

BV,t 5.28 −3.2 × 10−2 8.9 × 10−2 LCSR 3.81 × 10−3 2.66 × 10−2

BT,0 5.72 −1.4 × 10−2 −8.3 × 10−3

BT,1 5.33 −1.0 × 10−2 3.4 × 10−2 LCSR 4.18 × 10−2 1.86 × 10−3

BT,2 5.72 −6.3 × 10−3 1.7 × 10−2

Table 4.8: B → ρ: Fit of SSE parameterisation to LCSR or LCSR/Lattice results for BV,0−2

(X = 1), BV,t (X = 3) and BT,0−2 (X = 1).

BX mR β̃0 β̃1 Fit to χ2
fit X

∑

i,j

Ci,jβ̃iβ̃j

BV,0 5.72 0.26 0.14

BV,1 5.33 0.51 −1.7 LCSR and Lattice 33.0 1.85 × 10−2

BV,2 5.72 0.40 −0.15

BV,0 5.72 0.26 0.50

BV,1 5.33 0.54 −1.4 LCSR 4.34 × 10−2 1.10 × 10−2

BV,2 5.72 0.37 0.24

BV,t 5.28 0.43 −1.3 LCSR 8.49 × 10−3 2.16 × 10−2

BT,0 5.72 0.35 0.94

BT,1 5.33 0.52 −1.5 LCSR 3.57 × 10−2 1.79 × 10−3

BT,2 5.72 0.34 0.31 B
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Figure 4.7: B → ρ: Fit of SE (left) and SSE (right) parameterisations to LCSR (top) and
to LCSR and Lattice (bottom) for BV,0. The LCSR and Lattice data are shown
by black points with error bars in the appropriate q2 range.
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Figure 4.8: B → ρ: Fit of SE (left) and SSE (right) parameterisations to LCSR (top) and
to LCSR and Lattice (bottom) for BV,1. The LCSR and Lattice data are shown
by black points with error bars in the appropriate q2 range.
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Figure 4.9: B → ρ: Fit of SE (left) and SSE (right) parameterisations to LCSR (top) and
to LCSR and Lattice (bottom) for BV,2. The LCSR and Lattice data are shown
by black points with error bars in the appropriate q2 range.
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Figure 4.10: B → ρ: Fit of SE (left) and SSE (right) parameterisations to LCSR for BV,t.
The LCSR data is shown by black points with error bars.
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Figure 4.11: B → ρ: Fit of SE (left) and SSE (right) parameterisations to LCSR for BT,0.

The LCSR data is shown by black points with error bars.
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Figure 4.12: B → ρ: Fit of SE (left) and SSE (right) parameterisations to LCSR for BT,1.
The LCSR data is shown by black points with error bars.
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Figure 4.13: B → ρ: Fit of SE (left) and SSE (right) parameterisations to LCSR for BT,2.
The LCSR data is shown by black points with error bars.
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B → K∗ and Bs → φ form factors: The analysis of B → K∗ transitions is

more difficult on the Lattice, as the K∗–meson is unstable. Quenched calculations on

the Lattice have been attempted for the tensor FFs needed in B → K∗γ, at q2 = 0, but

we do not include these results in our analysis as the other FFs for this decay have not

so far been calculated. Therefore, we can only fit to the LCSR data, and our numerical

results for the best-fit parameters of the SE and SSE fit are found in Tabs. 4.9 and 4.10.

The covariance matrices for the fits can also be found in App. B.3.

Table 4.9: B → K∗: Fit of SE parameterisation to LCSR results for BV,0−2 (X = 1), BV,t

(X = 3) and BT,0−2 (X = 1).

BX mR β0 β1 Fit to χ2
fit X

∑

i

β2
i

BV,0 5.83 −9.4 × 10−3 1.4 × 10−2

BV,1 5.41 −5.0 × 10−2 0.10 LCSR 0.149 1.86 × 10−2

BV,2 5.83 −3.0 × 10−2 6.8 × 10−2

BV,t 5.37 −4.4 × 10−2 0.11 LCSR 1.72 × 10−3 4.25 × 10−2

BT,0 5.83 −1.9 × 10−2 −1.9 × 10−2

BT,1 5.41 −1.4 × 10−2 4.1 × 10−2 LCSR 1.88 × 10−2 3.14 × 10−3

BT,2 5.83 −8.0 × 10−3 2.2 × 10−2

Table 4.10: B → K∗: Fit of SSE parameterisation to LCSR results for BV,0−2 (X = 1), BV,t

(X = 3) and BT,0−2 (X = 1).

BB BX mR β̃0 β̃1 Fit to χ2
fit X

∑

i,j

Ci,jβ̃iβ̃j

BV,0 5.83 0.31 0.74

BV,1 5.41 0.62 −1.4 LCSR 5.84 × 10−2 1.63 × 10−2

BV,2 5.83 0.45 0.35

BV,t 5.37 0.49 −1.4 LCSR 4.63 × 10−3 3.62 × 10−2

BT,0 5.83 0.45 1.4

BT,1 5.41 0.60 −1.5 LCSR 9.65 × 10−3 2.75 × 10−3

BT,2 5.83 0.42 0.45
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As in the case of B → K∗, Lattice QCD predictions for Bs → φ FFs are lacking,

and we can only fit to the LCSR data. Our numerical results for the best-fit parameters

of the SE and SSE parameterisations are found in Tabs. 4.11 and 4.12. The covariance

matrices for the fits can also be found in App. B.3. In all cases, we find a good description

of the LCSR input at low q2, and from the experience in B → K and B → ρ transitions

we expect the extrapolation to high q2 to be sufficiently reliable. Still, input from Lattice

computations – if feasible – for B → K∗ and Bs → φ transitions at intermediate values

of q2 would be most welcome.

Table 4.11: Bs → φ: Fit of SE parameterisation to LCSR results for BV,0−2 (X = 1), BV,t

(X = 3) and BT,0−2 (X = 1).

BX mR β0 β1 Fit to χ2
fit X

∑

i

β2
i

BV,0 5.83 −5.8 × 10−3 3.5 × 10−3

BV,1 5.41 −3.4 × 10−2 9.6 × 10−2 LCSR 0.124 1.29 × 10−2

BV,2 5.83 −1.8 × 10−2 4.7 × 10−2

BV,t 5.37 −3.4 × 10−2 9.3 × 10−2 LCSR 8.93 × 10−3 2.96 × 10−2

BT,0 5.83 −1.1 × 10−2 −1.5 × 10−2

BT,1 5.41 −9.0 × 10−3 3.5 × 10−2 LCSR 4.45 × 10−2 1.86 × 10−3

BT,2 5.83 −4.6 × 10−3 1.4 × 10−2

Table 4.12: Bs → φ: Fit of SSE parameterisation to LCSR results for BV,0−2 (X = 1), BV,t

(X = 3) and BT,0−2 (X = 1).

BB BX mR β̃0 β̃1 Fit to χ2
fit X

∑

i,j

Ci,jβ̃iβ̃j

BV,0 5.83 0.37 1.1

BV,1 5.41 0.67 −2.1 LCSR 1.44 × 10−2 1.15 × 10−2

BV,2 5.83 0.50 0.19

BV,t 5.37 0.61 −1.8 LCSR 1.57 × 10−2 2.58 × 10−2

BT,0 5.83 0.51 1.7

BT,1 5.41 0.66 −2.2 LCSR 3.49 × 10−2 1.66 × 10−3

BT,2 5.83 0.46 0.26
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4.5 Summary

We have shown that the form factors (FFs) relevant for radiative and semi-leptonic

decays of B and Bs mesons into light pseudoscalar or vector mesons can be conve-

niently parametrised via a series expansion (SE) in the variable z(t) (see the definition

in Eq. (4.11)). With the current accuracy of theoretical estimates from light-cone sum

rules (LCSRs) and (where available) Lattice QCD, we found that keeping only two

terms in the expansion and correctly implementing the analytical behaviour due to

below-threshold resonances, results in a very good description of the FFs over the whole

range of momentum transfer in the physical decay region.

The coefficients of the SE are further constrained by dispersive bounds, exploiting

the crossing symmetry between the physical B meson decay and the pair-production of

heavy and light mesons by the considered decay current. In order to put the discussion

for the various FFs on a common footing, we found it convenient to use a basis where

the decay/production currents are projected by transverse, longitudinal and time-like

polarisation vectors with respect to momentum transfer t. Considering the corresponding

projections for the current correlators, the constraints take the simple form as indicated

in Eqs. (4.43,4.44). We stress that for decays into vector mesons the dispersive bounds

constrain the sum of (squared) coefficients for the three axial-vector FFs, as well as for

the three tensor FFs. In a simultaneous fit of all FFs, these constraints are thus stronger

than those for the individual FFs in that sum.

In order to determine the correct normalisation of the SE, given by the profile func-

tions φ(z(t)), we calculate the current correlators using an OPE, including NLO per-

turbative corrections and the leading non-perturbative contributions from quark, gluon

and mixed condensates. In particular, we provide the NLO results for the perturbative

contribution to the tensor-current correlation functions, which are relevant for the FFs

appearing in radiative and rare semi-leptonic B decays.

With these theoretical tools at hand, we have performed numerical fits to LCSR

(Lattice) predictions at low (medium) momentum transfer for all the FFs appearing

in B → K, ρ,K∗ and Bs → φ transitions. We have also investigated a simplified

form of the SE, where the profile functions φ(z(t)) are re-expanded in powers of z(t),

while the dispersive bounds take a somewhat more complicated form. We find that

both the standard and the simplified SE give a similarly good description of the FF

functions. In those cases, where Lattice estimates of the FFs is lacking, the SE is used
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to extrapolate the LCSR predictions to the high-q2 region. Comparing fits with/without

using the available Lattice data for B → K and B → ρ transitions, we judge these

extrapolations to be rather reliable. Some of our results could be further improved in

the future by the following: experimentally confirming a scalar Bs resonance below B–K

threshold, contributing to the scalar B → K FF; decreasing the uncertainties in Lattice

predictions for B → ρ axial-vector FFs; calculating LCSRs directly in the helicity basis

and computing of B → K∗ and Bs → φ FFs on the Lattice with dynamical fermions.

In conclusion, we have shown that the parameterisation of heavy-to-light FFs as a

truncated series expansion in z(t) in combination with theoretical estimates from LCSRs

and Lattice QCD is very useful, not only for the determination of the CKM element |Vub|
from charged semi-leptonic B → π or B → ρ decays, but also for the description of FFs

for radiative and semi-leptonic b→ s and b → d transitions, which will continue to play

a major role for the indirect search of new physics effects from rare flavour decays.



Chapter 5

The B → π Form Factor in

Light-Cone Sum Rules at NNLO

5.1 Introduction

Improving the precision on |Vub| helps in the effort to overconstrain the sides of the

unitarity triangle, one of which is given by |Vub/|Vcb|, thereby testing the CKM mecha-

nism of the Standard Model. The semi-leptonic decay B → πlν offers a determination,

promising both theoretically and experimentally. Being an exclusive mode, extracting

|Vub| requires information about the relevant hadronic matrix element, parametrised by

the form factors f+(q2) and f−(q2) defined in Eq. (1.31).

In the limit of massless leptons, applicable to l = e and µ, only f+(q2) is required [166],

dΓ

dq2
(B0 → π−l+νl) =

G2
F |Vub|2

192π3m3
B

λ3/2(q2)|f+(q2)|2, (5.1)

where GF is the Fermi coupling constant and λ(q2) = (m2
B + m2

π − q2)2 − 4m2
Bm

2
π for

masses mB and mπ of the B and π mesons respectively. Therefore the extraction of

|Vub| relies on the theoretical prediction for f+(q2), via Lattice QCD or LCSR. Recent

calculations are summarised in Tab. 5.1.

As discussed in Ch. 4, LCSR are restricted to large recoil energies of the pion, cor-

responding to q2 . 14 GeV, and Lattice results to small values of the pion momentum,

i.e. q2 & 15 GeV. However, note that the form factor at q2 = 0 was recently obtained

in a quenched calculation on a very fine lattice [67]. Experimentally the q2 distribu-
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tion has been measured with increasing accuracy at CLEO [169; 170], Babar [171–173]

and Belle [174]. In order to maximally exploit these theoretical and experimental re-

sults, one requires a well motivated parameterisation for the q2 dependence of f+(q2).

There are a number of approaches, either assuming vector meson dominance as in

Refs. [144; 167], using dispersive bounds to constrain the coefficients of a series ex-

pansion as in Refs. [146; 148] or using the Omnès representation as in Refs. [145; 175].

In all these, the normalisation provided by the LCSR prediction at q2 = 0 plays a crucial

role.

We are interested in calculating the gauge invariant subset of two-loop radiative

corrections to f+(0) proportional to β0, making the assumption, to be discussed in

Sec. 5.3, that these are a good approximation to the complete next-to-next-to-leading

order (NNLO) result. In addition to the motivation already mentioned, this calculation

will allow us to investigate the size of these radiative corrections in view of the large two-

loop corrections calculated for fB in QCD sum rules [176; 177]. The LCSR approach to

form factors involves taking the ratio of fBf+(q2) to fB. We therefore test the argument

that radiative corrections to these quantities should cancel in this ratio when both are

calculated in sum rules. The form factor f+(q2) has already been calculated in LCSR

to high accuracy. The next-to-leading order (NLO) twist-2 corrections were calculated

in Ref. [178] and the leading order (LO) corrections up to twist-4 were calculated in

Ref. [179]. Since the LO twist-3 contribution was found to be large, further improvements

were made by calculating the NLO corrections in Ref. [167]. A recent update where the

MS mass is used in place of the pole mass for mb can be found in Ref. [168].

The rest of this chapter is structured as follows: Sec. 5.2 contains the set-up for

the calculation, including the expression for the one-loop correction at leading-twist; in

Sec. 5.3 we discuss Näıve Non-abelianisation, and give details of the two-loop calcula-

tion; in Sec. 5.4 we describe the structure of the divergences of the bare result and the

Method Collaboration Ref.

LCSR Ball and Zwicky [167]

LCSR Duplančić et al. [168]

LQCD HPQCD [69]

LQCD Fermilab-MILC [66]

Table 5.1: Summary of the latest theoretical calculations of f+(q2) in QCD sum rules on the
light-cone (LCSR) and unquenched Lattice QCD (LCQD).
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renormalisation procedure; a detailed analysis of our numerical results, paying particular

attention to fB and the moments of the twist-2 light-cone distribution amplitude, can

be found in Sec. 5.5; finally we summarise in Sec. 5.6.

5.2 Set-up of the Calculation

The leading-order light-cone sum rule at twist-2 for f+(q2) is derived in Ch. 1. Returning

to the correlator introduced in Eq. (1.29), we now consider the perturbative corrections

to the leading-twist term in the expansion about the light-cone x2 = 0, as calculated to

NLO in Ref. [178]. In analogy to Eq. (1.34), we express the correlator in the collinearly

factorised form,

Πµ(p
2
B, q

2) =
∑

n

∫

du T (n)
µ (u, µ2)φ(n)(u, µ2). (5.2)

We can then obtain the twist-2 contribution using the completeness relation,

ūadb =
1

4
1ba(ūd) −

1

4
(iγ5)ba(ūiγ5d) +

1

4
(γµ)ba(ūγ

µd) − 1

4
(γµγ5)ba(ūγ

µγ5d) + . . . . (5.3)

Despite only being valid in four dimensions, we can use this relation as the additional

terms arising in D dimensions, required for dimensional regularisation, are found to

cancel with corresponding terms arising in association with the counterterms. More

specifically, we obtain the leading-twist hard scattering kernel, T (2)
µ (u, µ2), using the

projector

i

4
fπp/γ5

∫ 1

0

du eiūp·xφ(u, µ2). (5.4)

The tree-level term Π
(0)
µ is then found to be

Π(0)
µ = −1

4
fπ mb

∫ 1

0

du φ(u, µ2) tr{γµ
6 pB − ūp/+mb

(pB − ūp)2 −m2
b

p/}, (5.5)

where we have perturbatively expanded the leading-twist contribution to the correlator,

ΠT2
µ =

∫

du T (2)
µ (u, µ2)φ(u, µ2) (5.6)

= Π(0)
µ +

αs

4π
Π(1)

µ +
(αs

4π

)2

Nf Π(2)
µ . . . . (5.7)
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The O(αs) radiative corrections to the correlator, involving six further diagrams, were

first calculated in Ref. [178],

Π(1)
µ =

N
4

∫ 1

0

du φ(u, µ2)

∫

dDk

(2π)D

gαβ

k2
FT

µ , (5.8)

where the normalisation N is defined as

N = −i (4π)2CFfπ mb. (5.9)

FT
µ contains the total contribution of the traces and fermionic propagators for the weak-

vertex correction, B-vertex correction, box, b quark self-energy and light quark self-

energy diagrams. We do not include the gluon propagator in FT
µ for reasons that will

become clear later. To be explicit, we define FT
µ to be

FT
µ = FWV

µ + FBV
µ + FBX

µ + F SE
µ + F LSE

µ , (5.10)

where the contribution of individual diagrams in Feynman gauge are found to be

FWV
µ = tr{γα

k/− up/

(k − up)2
γµ

q/− k/+ up/+mb

(q − k + up)2 −m2
b

γβ
p/B − ūp/+mb

(pB − ūp)2 −m2
b

p/} (5.11)

FBV
µ = tr{γµ

p/B − ūp/+mb

(pB − ūp)2 −m2
b

γα
−p/B − k/+ ūp/−mb

(pB + k − ūp)2 −m2
b

k/− ūp/

(k − ūp)2
γβ p/} (5.12)

FBX
µ = tr{γα

up/− k/

(up− k)2
γµ

p/B − ūp/− k/+mb

(pB − ūp− k)2 −m2
b

k/+ ūp/

(k + ūp)2
γβ p/} (5.13)

F SE
µ = tr{γµ

p/B − ūp/+mb

(pB − ūp)2 −m2
b

γα
−p/B + ūp/+ k/−mb

(pB − ūp− k)2 −m2
b

γβ
p/B − ūp/+mb

(pB − ūp)2 −m2
b

p/}.(5.14)

As in previous calculations, we take the limit that the light quarks are massless, i.e.

p2 = 0, such that the self-energy diagrams for the external light quarks only contribute

logarithmic terms in dimensional regularisation, which we will return to in Sec. 5.4.

As stated earlier, the diagrams for the O(αs) corrections have all been calculated by a

number of authors in the past so here we will only discuss the technical details for the

O(α2
sβ0) corrections. We also will not discuss details of the higher twist calculations,

which can be found in Ref. [167], although these will be incorporated in our numerical

analysis.
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5.3 Radiative Corrections at Order α2
sβ0

In analogy with QED, where the running of the β-function is connected to the photon

polarisation, Brodsky, Lepage and Mackenzie had the idea that one can associate the

running of the QCD β-function with fermion loop insertions in the lowest order correc-

tions, provided the tree-level diagram does not contain any gluons. The running of the

β-function for QCD is given by β = αs/(4π) β0+. . . where β0 = 11CA−2/3Nf . The scale

of the lowest order correction can therefore be set by demanding that this contribution

to the two-loop correction vanishes, a procedure known as BLM scale setting [180].

In Ref. [181], it was observed that in a number of cases where the left-over part of

the two-loop correction could be calculated e.g. higher order corrections to observables

from hadronic vacuum polarisation and to the pole mass, it was found to be small in

comparison to the fermion-loop contribution. Here a technique labelled Naive Non-

abelianisation (NNA) was proposed, where “the non-abelian theory is estimated by

replacing the leading term in the β-functions of the large-Nf abelian theory by its non-

abelian counterpart”. Further, in Refs. [182; 183], a generalisation of the BLM scale

setting was proposed, whereby fermion loop insertions in the lowest order corrections

were re-summed to all orders. The one-loop running of αs has the potential to generate

large corrections, and by setting the scale in this way one can reduce the uncertainty of

an observable due to the lack of exact higher order results.

BLM scale-setting and NNA are not entirely distinct techniques, however, in BLM

scale-setting the left-over part of the two-loop correction is not required to be small,

but NNA asserts that this is the case. We therefore calculate fermion-loop insertions in

O(αs) diagrams and replace Nf in the resulting expressions by −(3/2)β0 ≡ Nf − 33/2.

According to the NNA philosophy, this is a good approximation to the complete two-loop

result. The corrections take the form,

Π(2)
µ = N

∫ 1

0

du φ(u, µ2)

∫

dDk

(2π)D

Γ(ǫ)Γ(2 − ǫ)2

Γ(4 − 2ǫ)

( −k2

4πµ2

)−ǫ
1

k2

(

gαβ − kαkβ

k2

)

FT
µ ,

(5.15)

where FT
µ is as defined in Eq. (5.10). The relevant Feynman diagrams are shown in

Fig. 5.1. The calculation is similar to the one-loop case, however, the additional fermion

loop induces two important changes. Firstly, the tensor structure of the gluon propagator
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ūpup

q pB

ūpup

q pB

ūpup

q pB

ūpup

q pB

Figure 5.1: Feynman diagrams for O(α2
sβ0) corrections to ΠT2

µ . From left to right, the B-
vertex correction, weak vertex correction, box and b quark self-energy diagrams
are shown. The external quarks are on-shell with momenta as indicated and the
dashed line represents the B meson.

changes from the form

−igαβ

k2
→ −i

k2

(

gαβ − kαkβ

k2

)

(5.16)

resulting in additional terms in the trace (although these cancel in the sum of all diagrams

due to gauge invariance [184]). Secondly, the factor Γ(ǫ) means that the integrals must

be expanded to a higher order in ǫ. The increased complexity of the calculation is

slightly compensated by the fact that we set q2 = 0. More specifically, we perform

the traces using the mathematica package FeynCalc [185], and calculate the integrals

using Feynman parameters to rearrange them such that we can apply the useful formula

found in Ref. [44]. We then expand the hypergeometric functions using the mathematica

package HypExp [186]. The resulting expression must then be simplified and rearranged

into a form facilitating the convolution with the distribution amplitude, a task which

requires the use of a number of known di- and tri-logarithmic identities, for example,

Li3(z) = − Li3

(

z

z − 1

)

− Li3

(

1

1 − z

)

+
1

3
log3(1 − z) − 1

2
log(−z) log2(1 − z)

− 1

6
π2 log(1 − z) + ζ(3) , z /∈ (1,∞) (5.17)

Li3(z) =Li3

(

1

z

)

− 1

6
log3(−z) − i π

2

(

√

z − 1

z

√

z

z − 1
− 1

)

log2(z) − 1

6
π2 log(−z)

(5.18)
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5.4 Structure of the Divergences

The bare O(α2
sNf) results, containing both infra-red (IR) and ultra-violet (UV) diver-

gences, are treated in näıve dimensional regularisation, with totally anti-commuting γ5,

renormalising the UV divergences in the MS scheme. As mentioned earlier, although the

light quark self energy diagrams vanish, the UV and IR divergences arising from these

diagrams cannot be neglected:

Π(2),LSE
µ = N

∫ 1

0

du φ(u, µ2)

∫

dDk

(2π)D

Γ(ǫ)Γ(2 − ǫ)2

Γ(4 − 2ǫ)

( −k2

4πµ2

)−ǫ
1

k2

(

gαβ − kαkβ

k2

)

F LSE
µ

=
1

2
CF Nf Π(0)

µ

(

1

ǫUV
− ln

m2
B

µ2
UV

− 1

ǫIR
+ ln

m2
B

µ2
IR

)

, (5.19)

where D = 4 − 2ǫ, and we distinguish between the UV and IR scales µUV and µIR.

On adding all the diagrams together, we first perform the gluon self-energy renormal-

isation using the O(αsNf) contribution to the corresponding renormalisation constant

Z3YM, multiplied by Π
(1)
µ , where [44]

Z
(2nf )
3YM = −αs

4π
CFNf

(

2

3ǫ

)

. (5.20)

This results in a counter-term of the form

Π(2),CT
µ = N

∫ 1

0

du φ(u, µ2)

∫

dDk

(2π)D

(

1

6ǫ

)

1

k2

(

gαβ − kαkβ

k2

)

FT
µ . (5.21)

The remaining UV poles can be removed by mass renormalisation, using the O(α2
sNf)

contribution to the renormalisation constants Zm,

Z
(2nf )
m =

(αs

4π

)2

CFNf

(

− 1

ǫ2
+

5

6ǫ

)

. (5.22)

The result is now UV finite, and we factorise the remaining IR divergences into the form

of a renormalisation constant which we will refer to as Z
(2nf )
T .

In order to achieve a complete cancellation of the IR divergences, one must consider

the renormalisation group (RG) running of the bare DA. This can be expressed in terms
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of the evolution kernel V (u, v), defined by

µ2 d

dµ2
φ(u, µ2) =

∫ 1

0

dy V (u, v)φ(y, µ2). (5.23)

It was first calculated to two-loop accuracy in Refs. [187; 188]. We require the contribu-

tion at O(α2
sNf),

V (u, v) =
αs

2π
V0(u, v) +

(αs

2π

)2
1
2
Nf CF VN(u, v) + . . . , (5.24)

where expressions for V0(u, v) and VN(u, v) can be found in Ref. [188], and the ellipses

indicate other O(α2
s) and higher order terms. This RG running arises due to the UV

singularity of the DA, which can be expressed in terms of the renormalisation function

Zφ(u, v), related to V (u, v) via (see Ref. [184])

V (u, v) = − 1

Zφ(u, v)

(

µ2 ∂

∂µ2
Zφ(u, v)

)

. (5.25)

Z
(2nf )
φ (u, v), i.e. the O(α2

sNf ) contribution to Zφ(u, v), can be expressed in terms of

VN(u, v) by

Z
(2nf )

φ (u, v) =
(αs

4π

)2

CFNf
VN(u, v)

ǫ
. (5.26)

Note that, as we use the asymptotic DA, the contribution due to V0(u, v) vanishes on

convolution with the DA, and therefore we neglect the terms ∼ V0(u, v)/ǫ
2. On explicit

calculation, when the IR scale is set to be equal to the factorisation scale, we find

that the UV divergence of the DA (Z
(2nf )

φ (u, v)) cancels the IR divergence of the hard

scattering kernel (Z
(2nf )
T ) exactly at O(α2

sNf ). Therefore Z
(2nf )
T can be absorbed into

the DA, as discussed in detail in Ref. [189]. Note that replacing the MS mass for mb by

the pole mass [190] removes all UV scale dependence of our result. All remaining scale

dependence is therefore given by the factorisation scale, which in the following will be

denoted by µ.

5.5 Results

Now, having shown that our results for the perturbative corrections at O(α2
sNf ) are UV

and IR finite, we can proceed to analyse how this affects the value of the form factor
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at zero recoil, f+(0). First we require predictions for the twist-2, 3 and 4 light-cone

distribution amplitudes. We then must extract the spectral density from the correlation

function Πµ. Finally we need the QCD sum rules result for the B meson decay constant

fB. We will discuss these steps before coming to the numerical analysis.

5.5.1 Distribution Amplitudes

Light-cone distribution amplitudes (DA’s) describe the matrix elements of non-local

operators expanded about the light-cone i.e. x2 = 0. They contain the distribution

of the momentum fraction of partons in the hadron’s infinite momentum frame. The

theory of DA’s is well known (see e.g. Ref. [191]). They are ordered by twist and at

leading-twist the pion DA φ(u, µ) in the Fock-Schwinger or light-cone gauge is defined

by

〈π(p)|ū(0)γµγ5 d(x)|0〉 = −ifπpµ

∫ 1

0

du eiūp·xφ(u, µ2). (5.27)

Due to the conformal symmetry of QCD broken by radiative corrections, the leading-

twist pion DA can be expressed in terms of a partial wave expansion in conformal spin,

φ(u, µ2) = 6u(1 − u)
∞
∑

n=0

an(µ2)C3/2
n (2u− 1). (5.28)

In the case of the pion, the odd moments are zero by G-parity. This expansion is

usually truncated, as the higher moments are suppressed due to the highly oscillatory

behaviour of the Gegnbauer polynomials. However, the truncation is only justified if

the hard scattering kernel T (n)
µ is slowly varying and non-singular for all u [192]. We

include the DA up to a4 for the O(αs) contribution, but use the asymptotic DA (i.e.

φ(u,∞) = 6u(1 − u)) for the O(α2
sβ0) contribution as the effect of a2,4(µ) at this order

in the perturbative expansion should be negligible∗.

As we also include the previously calculated twist-3 and 4 contributions in our anal-

ysis, the corresponding DA’s are required. The definitions of these can be found in

Ref. [167] where it is shown that, for a given twist, the two and three particle distribu-

tion amplitudes can be related by an equation of motion resulting in a reduced number

of independent parameters: η3,4 and ω3,4. These parameters, along with an are known

∗This can be inferred from Fig. 1 of Ref. [166], where the respective size of different contributions in
an to f+(q2) were shown as a function of q2
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γan γη3
γω3

γη4
γω4

4CF

(

ψ(n+ 2) + γE − 3
4
− 1

2(n+1)(n+2)

)

16
3
CF + CA −25

6
CF + 7

3
CA

8
3
CF −8

3
CF + 10

3
CA

Table 5.2: One-loop anomalous dimensions of the parameters an, η3,4 and ω3,4 describing
the DAs [167; 193].

to renormalise multiplicatively to leading log accuracy [192],

c(µ2) = c(µ2
0)

(

αs(µ
2)

αs(µ
2
0)

)γc/β0

(5.29)

where µ0 is the initial scale at which the parameter has been calculated, γc are the

one-loop anomalous dimensions for the parameter c = an, η3,4 or ω3,4, as defined in

Tab. 5.2. Since we calculate the hard scattering kernel to O(α2
sNf ), we should take the

scale dependence of the twist-2 DA to the same order. This involves adding the term

2CFVN(u, v) ln(µ2/µ2
0)Π

(0)
µ to the result for Π

(2)
µ , where VN is as defined in Eq. 5.24.

5.5.2 Spectral Density

Having obtained a finite total result for the twist-2 contribution to Πµ, we need to extract

the imaginary part to obtain the spectral density which enters in the sum rule. As in

Eq. (1.30), we define ΠT2
+ in terms of ΠT2

µ via

ΠT2
µ = (pB + p)µΠT2

+ (p2
B, q

2) + (pB − p)µΠT2
− (p2

B, q
2). (5.30)

It is then straightforward to extract the relevant spectral density

ρT2 =
1

π
ImΠT2

+ . (5.31)

An expression for the NNLO correction to ρT2 is given explicitly in App. C. In order

to obtain the O(α2
sβ0) result, Nf in ρT2 should be replaced by −3/2 β0. Including the

contributions at twist-3 to one-loop accuracy and twist-4 to leading order accuracy,

ρΠ+
(s, 0) = lim

q2→0
(ρT2 + ρT3 + ρσ + ρp + ρ2p

T4 + ρ3p
T2), (5.32)
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where ρT3, ρσ and ρp are contributions at twist-3 and ρ
2(3)p
T4 are contributions at twist-

4 as defined in Ref. [167]. An additional twist-4 term, T4c cannot be expressed via

a dispersion relation so must be included separately. Therefore, on taking the Borel

transformation of Π+, we have

B̂Π+ =

∫ ∞

m2
b

ds ρΠ+
(s, 0)e−s/M2

+ T4(0)
c . (5.33)

where we have defined T4
(0)
c via

T4(0)
c = lim

q2→0
T4c. (5.34)

5.5.3 Decay Constant fB

The sum rule is now given by

f+(0) =
1

m2
BfB

(

∫ s0

m2
b

ds ρΠ+
(s, 0)e(m

2
B−s)/M2

+ T4c e
m2

B/M2

)

, (5.35)

such that in order to obtain a numerical result for f+(0), fB is required as input. For

consistency we use the QCD sum rules result, also calculated to O(α2
sβ0), in the hope

that there will be a cancellation of radiative corrections as well as the dependence on

other input parameters such as mb and µ. The full O(α2
s) corrections were analysed in

Refs. [176] (and [177]), and were found to be large. The sum rule for fB is given by

fB =
1

m2
B

(

∫ s0

m2
b

ds ρpert(s)e
(m2

B−s)/M2

+ Cq̄q〈q̄q〉 + Cq̄Gq〈q̄σgGq〉
)

1

2

, (5.36)

where Cq̄q and Cq̄Gq are Wilson coefficients for the OPE in terms of the quark and mixed

condensates respectively [194; 195], and ρpert(s) can be expanded in αs(µ),

ρpert(s) = ρ
(0)
pert(s) +

αs

4π
ρ

(1)
pert(s) +

(αs

4π

)2

Nfρ
(2)
pert(s) . . . . (5.37)

The tree level result is trivially found to be

ρ
(0)
pert(s) =

Nc

8π2
m2

b s

(

1 − m2
b

s

)2

. (5.38)
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Parameter Value Ref. Parameter Value Ref.

mπ 139.6 MeV [30] fπ 130.4 MeV [30]

η3 0.015 [193] ω3 -3 [193]

η4 10 [193] ω4 0.2 [193]

〈q̄q〉 (−0.24 ± 0.01)3 GeV3 [167] 〈q̄σgGq〉 0.8 〈q̄q〉 [167]

Table 5.3: Summary of values of parameters used in the numerical analysis. Note the quark
condensate is given at the scale 1 GeV.

The O(αs) result ρ
(1)
pert(s) can be obtained from Ref. [196]. The full O(α2

s) corrections to

ρpert(s), in the case that the light quark is massless, have been calculated in Refs. [197]

and [198]. An analytical calculation of all diagrams was not feasible, so Padé approxi-

mations and conformal mapping were used to obtain semi-numerical results, which the

authors have kindly provided in publically available code. We can express ρ
(2)
pert(s) in

terms of the quantity R
(2),s
FL (s) defined in Ref. [197] using

ρ
(2)
pert(s) = CF m

2
b sR

(2),s
FL (s). (5.39)

To obtain the O(α2
sβ0) result, Nf in ρpert(s) should be replaced by −3/2 β0. The result

for R
(2),s
FL (s) is given at the scale mb, and the pole mass is used for the b quark. We must

therefore include the O(α2
sβ0) corrections which arise on re-expressing αs(mb) in terms

of αs(µ), and take the form

∆ρ
(2)
pert(s) = CF ln

mb

µ
ρ

(1)
pert(s) (5.40)

This results in a sum rule for fB largely independent of the renormalisation scale µ.

5.5.4 Numerical Analysis

The LCSR approach requires a careful choice of numerical values for the continuum limit

s0 and the Borel parameter M2. Note that we rescale the Borel parameter by 〈u〉−1 as

defined in Ref. [167], as it was found that the effective Borel parameter in the tree-level

sum rule is uM2
LC rather than M2

LC corresponding to M2 in Eq. (5.35). The continuum

threshold s0 is chosen such that the continuum contribution is approximately 25-30%

of the B contribution. The role of the Borel transformation is to ensure the effects of
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Set mb (GeV) s0 (GeV2) M2 (GeV2) fB(MeV)

1 4.78 34.1 4.0 0.181

2 4.84 33.2 4.0 0.162

3 4.90 32.4 4.0 0.144

Table 5.4: Values of fB along with the associated Borel parameter (M2) and continuum
threshold (s0) for three values of mb. The three parameter sets are used in the
final analysis of f+(0).

higher states are sufficiently suppressed, reducing the impact of the assumption of quark-

hadron duality, and improving the convergence of OPE. The rescaled Borel parameter

M2 is therefore fixed to ensure the sum rule is flat in the range 4-10 GeV2. We find

that treating the sum rules for fBf+(0) and fB separately results in a value f+(0) which

exhibits little dependence on, but a clear extremum as a function of these parameters.

We also ensure that the sum rule for mB, which can be obtained by differentiating the

sum rule for fB or f+(0) by 1/M2, is fulfilled to 0.1% [167]. The values s0 and M2 used

for fB and fBf+(0) are specified in Tabs. 5.4 and 5.5.

From Eq. (5.28) it is clear that making numerical predictions for the twist-2 pion

DA comes down to determining the moments of the conformal expansion. This is not

straightforward, as they can only be calculated by non-perturbative methods, such as

QCD sum rules or Lattice QCD. The first QCD sum rules calculation, by Chernyak

and Zhitnitsky [199], found a2(0.5 GeV) = 2/3 which was larger than expected. How-

ever this calculation employed local condensates, and later LCSR calculations [191] and

QCD sum rules calculations with non-local condensates yielded smaller values [200].

More recently, Lattice QCD has made predictions for a2(2 GeV), first in the quenched

approximation [201], and later with dynamical fermions in Refs. [202; 203]. Combin-

ing these Lattice results with experimental constraints, i.e. measurements of the γγ∗π

form factor at CLEO [204] up to 9 GeV2 and CELLO [205] in the low q2 regime, one

can obtain an estimate for a4(µ) [206]. In order to account for the present uncer-

tainty on these moments, we present our results for five possible values of a2(2 GeV) =

{0.0, 0.1, 0.2, 0.3, 0.4}, keeping a4 fixed at 0, which is compatible with all current de-

terminations. We also explored the affect of a non-zero a4, taking the conservative range

of values a4(2 GeV) = {−0.1, 0.0, 0.1}.

Parameters describing the twist-3 and 4 DA’s η3, ω3, η4 and ω4 were introduced in

Sec. 5.5.1. These were first calculated in QCD sum rules [191], using nonlocal operator
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Set 1 Set 2 Set 3

a2(2 GeV) s0 (GeV2) f+(0) s0 (GeV2) f+(0) s0 (GeV2) f+(0)

0.0 33.9 0.246+0.010
−0.011 32.7 0.232+0.012

−0.013 31.7 0.214+0.015
−0.015

0.1 34.6 0.270+0.010
−0.011 33.2 0.259+0.012

−0.013 32.0 0.243+0.015
−0.015

0.2 35.6 0.294+0.010
−0.011 33.7 0.286+0.013

−0.013 32.4 0.272+0.017
−0.016

0.3 36.9 0.316+0.010
−0.011 34.4 0.312+0.013

−0.013 32.6 0.301+0.018
−0.017

0.4 39.1 0.337+0.009
−0.011 35.2 0.337+0.013

−0.013 32.9 0.328+0.019
−0.018

Table 5.5: Results for f+(0) and associated continuum threshold for the three parameter sets
defined in Tab. 5.4, keeping the Borel parameter fixed at M2 = 8.0GeV2, and
a4(2GeV) = 0.0

a4(2 GeV) s0 (GeV2) f+(0)

-0.1 32.8 0.283+0.014
−0.014

0.0 33.9 0.286+0.013
−0.013

0.1 35.1 0.286+0.012
−0.012

Table 5.6: Results demonstrating the dependence of f+(0) on a4 for parameter set 2 defined in
Tab. 5.4, keeping the Borel parameter fixed at M2 = 8GeV2, and a2(2GeV) = 0.2

product expansion and conformal expansion, and the updated values from Ref. [193],

summarised in Tab. 5.3, are used in our numerical analysis. The error on each of these

parameters is approximately 50%. The condensates are also required as input; we use

〈q̄q〉 as in Tab. 5.3, 〈q̄σgGq〉 = 0.8 〈q̄q〉, and we neglect the gluon condensate as its

contribution is comparably small.

The b quark mass required is the pole mass mb, calculated at O(α2
sβ0) from the

running quark mass. The RG improved b quark mass, in the potential substraction

scheme (see Ref. [128]) was calculated at NNLO from sum rules in Ref. [127] to be

mPS
b (2 Gev) = 4.52 ± 0.06 GeV, as in Tab. 5.3. The central pole mass used in our

numerical analysis is calculated to be 4.84 GeV at O(α2
sβ0), a good approximation to

the full two-loop result 4.81 GeV. It is also in agreement with the full two-loop result for

the pole mass obtained from the MS mass, 4.79+0.19
−0.08 GeV [30]. We carry out the analysis

for each of three parameter sets, defined in Tab. 5.4 for mb = {4.78, 4.84, 4.90} GeV.
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Figure 5.2: Results for f+(0), including the twist-2 O(α2
sβ0) corrections (blue), for central

values of input parameters. In both plots dotted lines show f+(0) for mb = 4.78
GeV (upper green) and for mb = 4.90 GeV (lower red). The left-hand plot
provides a comparison with the previous result [167] (dashed blue), as a function
of the Borel parameter M2. The right-hand plot shows f+(0) as a function of
a2(2GeV), where the vertical lines indicate the recent Lattice prediction for a2

(central) with errors (dashed) [203].

Finally the factorisation scale µ is chosen to be the typical virtuality of the b quark,
√

m2
B −m2

b . The uncertainty on f+(0) can then be obtained by varying s0 and M2, the

various input parameters as indicated in Tab. 5.3 and the factorisation scale. We find

that the dominant uncertainties on f+(0) arise due to varying the following:

• the continuum threshold s0 by ±0.5 GeV2 and the Borel parameterM2 by ±1.2 GeV2

for both f+(0)fB and fB;

• the condensates as indicated in Tab. 5.3;

• the twist-3 parameter η3 by ±50%;

• the factorisation scale in the range µ/2 to 2µ.

The uncertainties arising from each of the above are calculated independently, and then

added in quadrature. These are summarised along with our results for f+(0) in Tab. 5.5

for each of the parameter sets defined in Tab. 5.4 and for values of a2(2 GeV) as indi-

cated. The uncertainties are seen to be small, approximately 4-7%, and could be further

improved by better determinations of the condensates and the twist-3 parameters from,

for example, Lattice QCD. In Tab. 5.6 we demonstrate that a4 has a small effect ∼ 1%,

justifying our central value a4 = 0 in Tab. 5.5. Note that for certain values of a2(2 GeV)

and mb, i.e. a2(2 GeV) = 0.4 in Set 1 and a2(2 GeV) = 0.0 in Set 3, the sum rule for

fBf+(0) only exhibits an extremum for values of the continuum threshold outside the

optimal range described earlier, such that the result is probably less reliable.
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We compare our result for f+(0), including the twist-2 O(α2
sβ0) corrections, to the

previous result [167] in the left-hand plot of Fig. 5.2. Despite the large O(α2
sβ0) correc-

tions to fB mentioned earlier, there is little change in f+(0), only ∼ 2%. This observation

reinforces the reliability of the light-cone sum rule approach to the calculation of form

factors, as it seems that the results are stable with respect to higher order corrections.

It also acts as confirmation that the QCD sum rules result for fB should be used in

preference to the Lattice QCD result in LCSR calculations of the form factors. By in-

terpolating between the results in Tab. 5.5, we obtain f+(0) as a function of a2(2 GeV),

as shown in the right-hand plot of Fig. 5.2. Here the most recent Lattice prediction

for a2(2 GeV) is highlighted. The sensitivity of f+(0) to a2 is clear. However, this plot

should allow our result for f+(0) to be easily obtained on more precise Lattice results

for a2 becoming available.

5.6 Summary

In this chapter we have calculated the O(α2
sβ0) corrections to f+(0) at leading-twist

in QCD sum rules on the light-cone. We have shown that in spite of large positive

NNLO corrections to the QCD sum rules result for fB, the LCSR prediction for the

form factor f+(0) only increases by ∼ 2%, as seen in Fig. 5.2 (left-hand plot). This

increases our confidence in the stability of LCSR calculations for form factors with

respect to radiative corrections. We have performed a comprehensive numerical analysis

of our result, including twist-3 contributions at NLO and twist-4 contributions at LO.

We find the main sources of theoretical uncertainty are due to a2 and mb, and therefore

have presented our results for values a2(2 GeV) = {0.0, 0.1, 0.2, 0.3, 0.4} and mb =

{4.78, 4.84, 4.90} GeV, as seen in Tab. 5.5. Our assumption a4 = 0 is justified in

Tab. 5.6 where the maximal effect of a4 on the result is seen to be of order 1%. The

remaining uncertainty is found to be, at most, of order 7%, which could be reduced

in the future by the determination of the condensates and twist-3 parameters on the

Lattice. Our central results from Tab. 5.5 were presented in Fig. 5.2 (right-hand plot)

as a function of a2(2 GeV). We hope that, when improved calculations of the leading

moment of the π DA become available, this will allow instant access to our numerical

prediction for f+(0). We stress that our approach to f+(0) in LCSR is complementary

to Lattice QCD calculations of f+(q2) as the latter are more applicable to the region of

large q2. Future analyses taking both into account, as in Refs [146; 175], should then

facilitate an improved determination of the CKM matrix element |Vub|.



Chapter 6

Conclusion

This thesis is dedicated to the study of observables for B → K∗µ+µ− and form factors

for radiative and semi-leptonic B decays. In Ch. 2 we examined the angular distribution

of B → K∗µ+µ−, and identified sets of observables, the S
(a)
i ’s and A

(a)
i ’s, emphasising

CP-conserving and CP-violating effects respectively. Our predictions for these in the

SM, calculated at NLO in QCD factorisation using the LCSR full form factors, were

shown in Figs. 2.2 and 2.3, where the S
(a)
i ’s were found to be numerically significant,

whereas the A
(a)
i ’s, being doubly Cabibbo suppressed, are close to zero. In particular,

the plots of S4, S5 and Ss
6 as a function of q2 were seen to exhibit a zero-crossing point

in the range 1 − 6 GeV2, insensitive to hadronic effects, and these points were shown

in Figs. 2.4 to be sensitive to model independent New Physics effects. We also found

that Sc
6 is zero in the SM, only arising in NP models where scalar operators contribute.

Therefore this observable can be used along with the branching ratio for Bs → µ+µ− to

distinguish between the effects of scalar and pseudoscalar operators, as seen in Fig. 2.5,

thus probing the possibility of an additional Higgs doublet.

We then investigated the potential to study this angular distribution in the first

few years at LHCb in Ch. 3, identifying three observables in particular which can be

measured with relatively little angular information, AFB, FL and S5. By considering

the current constraints on the NP contribution to the Wilson coefficients relevant to

this decay, we showed that by measuring these observables with 2 fb−1 at LHCb, the

parameter space would be considerably reduced, as seen in Figs. 3.8. In addition we

found that S5 and its zero crossing play an interesting and complementary role here, as

seen in Figs. 3.7.

In Ch. 4 we studied the extrapolation of the form factors (FFs) for B → K(∗), ρ

and Bs → φ decays. Considering two parameterisations, the series expansion and the

144
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simplified series expansions as defined in Eqs. (4.10,4.13), we used dispersive bounds to

constrain the coefficients of these expansions. This involved a new NLO calculation of

the bound for the tensor form factors required for radiative decays. Comparing fits of

the B → K, ρ form factors to LCSR with and without using the available Lattice data

(in Figs. 4.1 to 4.1 for B → K and Figs. 4.7 to 4.13 for B → ρ) gives us confidence in

the reliability of these extrapolations for those channels where Lattice data is lacking.

These parameterisations for the FFs will be useful not only for the determination of |Vub|
from B → π, ρ lν, but also rare radiative decays e.g. B → ρ/K(∗) l+l− for the indirect

search of new physics effects.

Finally in Ch. 5 we calculated the O(α2
sβ0) corrections to f+(0) at leading-twist in

QCD sum rules on the light-cone. In spite of large positive NNLO corrections to the QCD

sum rules result for fB, the LCSR prediction for the form factor f+(0) only increases by

∼ 2%, as seen in Fig. 5.2 (left-hand plot). This increases our confidence in the stability of

LCSR calculations for form factors with respect to radiative corrections. We presented

our results in a range of values of a2(2 GeV) and mb, the main sources of theoretical

uncertainty, as seen in Tab. 5.5 and Fig. 5.2 (right-hand plot). Future analyses taking

both into account, as in Refs [146; 175], should then facilitate an improved determination

of the CKM matrix element |Vub|. We hope that, in conjunction with measurements of

exclusive radiative and semi-leptonic B decays at LHCb and future B-factories, this

work will help in the effort not only to test the SM, but also to explore the structure of

TeV scale physics.



Appendix A

Angular Coefficients

Here we provide the relations between the angular coefficients, I
(s/c)
i , and the auxiliary

functions defined in Eq. (3.4). The I
(s/c)
i ’s were defined in Chapter 2, as in Ref. [52], in

terms of the transversity amplitudes A⊥/‖, A0 and At. These transversity amplitudes
are projections of the decay amplitude onto various combinations of helicity states of
the K∗and the virtual gauge boson. The projections can be achieved by contracting
T 1/2

µ with the virtual gauge boson polarisation vector. We use four basis vectors for the
virtual gauge boson polarisation vector corresponding to transverse (±), longitudinal (0)
and timelike (t) states, and three basis vectors for the virtual gauge boson polarisation
vector corresponding to transverse (±) and longitudinal (0) states. One first extracts the
helicity amplitudes H+, H− andH0 using the basis polarisation vectors +,-,0 respectively
for both the K∗and the virtual gauge boson. Ht is found by taking the longitudinal
polarisation vector for the K∗and the timelike polarisation vector for the virtual gauge
boson. Using the relations

A⊥/‖ =
H+ ∓H−√

2
(A.1)

and A0 = H0, At = Ht, one then obtains expressions for the transversity amplitudes in
terms of A(q2) to S(q2),

Ai
⊥(q2) =

√
2 λN mB ci(q

2) (A.2)

Ai
‖(q

2) = −
√

2N mB ai(q
2) (A.3)

Ai
0(q

2) =
N mB

m̂K∗

√

q̂2

(

−1 − m̂2
K∗ − q̂2

2
ai(q

2) + λ bi(q
2)

)

(A.4)

At(q
2) =

N mB

√
λ

m̂K∗

√

q̂2

(

F (q2) − (1 − m̂K∗)G(q2) − q̂2H(q2)
)

, (A.5)
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where i = L/R. We use the standard normalisation and definitions following Ref. [106],

β =

√

1 − 4m2
µ

q2
(A.6)

λ =1 + m̂4
K∗ + q̂4 − 2

(

q̂2 + m̂2
K∗

(

1 + q̂2
))

(A.7)

N =

(

G2
F α

2

3 · 210π5mB
|VtsV

∗
tb|2q2 λ1/2 β

)
1

2

, (A.8)

where α is the electromagnetic coupling constant and GF is the Fermi constant. In
the above definitions of the transversity amplitudes, the functions aL/R(q2), bL/R(q2),
cL/R(q2), are analogous to those defined in Ref. [105].

aL/R(q2) = B(q2) ∓ F (q2) (A.9)

bL/R(q2) =
1

2

(

C(q2) ∓G(q2)
)

(A.10)

cL/R(q2) =
1

2

(

A(q2) ∓ E(q2)
)

. (A.11)

Using the above it is possible to compare the predictions of Eqs. (3.4) to the standard
results in the literature, and are found to agree with those given in Chapter 2 [52].



Appendix B

Dispersive Bounds and Fit Results

B.1 Kinematics and Polarisation Vectors

In the following, we consider a B-meson decaying in its rest frame to a final-state meson
travelling in the z-direction. The polarisation vectors for a (virtual) vector state, with
4-momentum qµ = (q0, 0, 0,−|~q |), are defined as

εµ
±(q) = ∓ 1√

2
(0, 1,∓i, 0) , εµ

0(q) =
1
√

q2
(|~q |, 0, 0,−q0) ,

εµ
t (q) =

1
√

q2
qµ . (B.1)

In particular, for the decay of a B-meson at rest into a light meson with mass mL and
momentum ~k, we have

q0 = mB −E =
m2

B −m2
L + q2

2mB

, |~q | = |~k | =

√
λ

2mB

, (B.2)

with λ defined in (4.2). We also define the linear combinations

εµ
1(q) =

εµ
−(q) − εµ

+(q)√
2

= (0, 1, 0, 0) , εµ
2(q) =

εµ
−(q) + εµ

+(q)√
2

= (0, 0, i, 0) . (B.3)

In the same way, the polarisation vectors for an on-shell K∗ meson with momentum
kµ = (E, 0, 0, |~k |) are given as

εµ
±(k) = ∓ 1√

2
(0, 1,±i, 0) , εµ

0(k) =
1

mK∗

(|~k |, 0, 0, E) . (B.4)
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Figure B.1: One- and two-loop diagrams contributing to the correlation function. The
crossed circle indicates the insertion of the corresponding scalar, vector or tensor
currents. The counter-term diagrams related to the fermion self-energies are not
shown.

B.2 Calculation of Wilson Coefficients χX
I

As explained in Sec. 4.3.2, the correlator in Eq. (4.14) can be calculated using an OPE,

ΠX
I,OPE(q2) =

∞
∑

k=1

CX
I,k(q

2) 〈Ok〉 . (B.1)

where CX
I,n(q) are Wilson coefficients for a given current X and projector I, and On

are local gauge-invariant operators, consisting of quark and gluon fields. The operators
are ordered by increasing dimension k. Besides the identity operator, whose Wilson
coefficient contains the purely perturbative contribution to the correlator, we include
the first few operators related to the non-perturbative contribution from the quark con-
densate 〈mq̄q〉, the gluon condensate 〈αs

π
G2〉, and the mixed condensate 〈q̄σgGq〉. The

contributions of the condensates to the scalar and vector correlators were calculated to
all orders in the quark mass and lowest order in the coupling constant in [207]. This
was extended to the tensor correlators in App. C.2 of Ref. [155]. Here we calculate the
one- and two-loop diagrams (see Fig. B.1) contributing to the perturbative part of the
correlation functions, as described below.

More specifically, we require χX
I (n) defined in Eq. (4.30), where n is the necessary

number of subtractions, for the scalar, vector and tensor correlators, which can be ob-
tained by making use of a Taylor expansion of the Wilson coefficients at q2 = 0. This
expansion greatly simplifies the calculation, allowing one to eliminate external momenta
in the propagators and to use tensor reduction and recursion relations to express the
two-loop integrals in terms of two fundamental master integrals. We find it useful to
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present the result in terms of the dimensionless variable

v ≡ M −m

M +m
, (B.2)

where M and m are the masses of the heavy and light quark in the loop. We further
define the functions

f1(v) ≡ 1 − v2

v
atanh(v) ,

f2(v) ≡ 1

v
ln

(

1 − v

1 + v

)

− 2

1 − v
ln

(

1 + v

2

)

− 2

1 + v
ln

(

1 − v

2

)

,

f3(v) ≡ 1

v
Li2

(

4v

(1 + v)2

)

− 1

v
Li2

(

− 4v

(1 − v)2

)

− 4 (1 + v2)

v2
atanh2(v) , (B.3)

which are symmetric under the exchange of light and heavy quarks (v → −v), and take
finite values in the limits v → {−1, 0, 1}. From our results for the scalar, vector and
tensor currents given below, one can obtain expressions for the currents with opposite
parity by making the substitution v → 1/v. Note that our expressions for scalar and
vector currents coincide with [207]; the results for the tensor currents are new.

B.2.1 Scalar Correlator

For the correlator of two scalar currents, we obtain

χS(2)
∣

∣

∣

LO
=

(3 + v2)(3v2 − 1)

64π2(M +m)2 v4

v→1→ 1

8π2M2
,

χS(2)
∣

∣

∣

NLO
=

αsCF

4π

1

64π2(M +m)2 v4

{

6
(

3f1 (1 − v2)2

+(3 + v2)(3v2 − 1)
)

(

f2 (1 − v2) − 4 log

(

m+M

µ

))

−f 2
1

(

11v4 − 50v2 + 23
)

+ f1

(

47v4 − 126v2 + 103
)

+4 f3 v
2 (5v2 − 1) + 2

(

29v4 + 65v2 − 40
)

}

(B.4)

v→1→ 1

8π2M2

αsCF

4π

(

− 24 log

(

M

µ

)

+
2π2

3
+

27

2

)

. (B.5)
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B.2.2 Vector Correlator

For the different projections of the correlator of two vector currents, we obtain

χV
L (1)

∣

∣

∣

LO
=

(3 + v2)(3v2 − 1)

64π2 v2

v→1→ 1

8π2
, (B.6)

χV
L (1)

∣

∣

∣

NLO
=

αsCF

4π

1

64π2 v2

{

f 2
1

(

25v4 + 14v2 − 23
)

+2f1

(

19v4 − 6v2 + 23
)

+4f3 v
2 (5v2 − 1) − 23 + 14v2 + 13v4

}

v→1→ αsCF

4π

1

8π2

(

1

2
+

2π2

3

)

, (B.7)

and

χV
T (2)

∣

∣

∣

LO
=

−21v6 + 53v4 + 13v2 + 3

512π2 (M +m)2 v4

v→1→ 3

32π2M2
, (B.8)

χV
T (2)

∣

∣

∣

NLO
=

αsCF

4π

−1

1536π2 (M +m)2 v4

{

f 2
1

(

803v6 − 863v4 − 155v2 − 73
)

2f1

(

677v6 − 741v4 + 279v2 + 73
)

4f3 v
2
(

19v4 − 86v2 − 5
)

− 73 − 323v2 − 755v4 + 551v6

}

v→1→ αsCF

4π

3

32π2M2

(

25

6
+

2π2

3

)

. (B.9)

B.2.3 Tensor Correlator

The relevant projection of the tensor current gives rise to

χT
T (3)

∣

∣

LO
=

−9f1 (v2 − 1)
2
(3v2 + 1) + 4 (−9v6 + 21v4 + v2 + 3)

256π2 (m+M)2 v4
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v→1→ 1

4π2M2
(B.10)

χT
T (3)

∣

∣

NLO
=

αsCF

4π

1

384π2(M +m)2v4

{

12
(

3(v2 − 1)2(3v2 + 1)f1 − 3

−v2 − 21v4 + 9v6
)

(

f2 (1 − v2) − 4 log

(

m+M

µ

))

−f 2
1

(

766v6 − 598v4 − 142v2 − 218
)

−f1

(

1091v6 − 1137v4 + 297v2 + 325
)

−8f3 v
2
(

7v4 − 26v2 − 5
)

+ 107 + 69v2 + 469v4 − 325v6

}

(B.11)

v→1→ αsCF

4π

1

4π2M2

(

10

3
+

2π2

3
+ 8 log

(

M

µ

))

. (B.12)

B.3 Covariance Matrices

Here we give the covariance matrices as defined in (4.55) for the parameters correspond-
ing to the best-fit parameters in Tables 4.5 to 4.12.

B → K form factor fit:

• The fit of B → K FFs to LCSR data alone gives the covariances matrices:

SE SSE

AV,0

(

1.56 × 10−5 −1.04 × 10−4

−1.04 × 10−4 9.59 × 10−4

) (

4.39 × 10−3 −2.91 × 10−2

−2.91 × 10−2 0.266

)

Ano res.
V,t

(

1.19 × 10−4 −7.87 × 10−4

−7.87 × 10−4 6.98 × 10−3

) (

7.17 × 10−3 −4.75 × 10−2

−4.75 × 10−2 0.423

)

AV,t

(

6.27 × 10−6 −2.72 × 10−5

−2.72 × 10−5 2.19 × 10−4

) (

2.61 × 10−3 −1.08 × 10−2

−1.08 × 10−2 8.86 × 10−2

)

AT,0

(

2.1 × 10−5 −6.55 × 10−5

−6.55 × 10−5 5.37 × 10−4

) (

7.63 × 10−4 6.3 × 10−4

6.3 × 10−4 8.32 × 10−3

)
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• For the fit of scalar/vector B → K FFs to LCSR and Lattice data, we obtain the
covariance matrices:

SE SSE

AV,0

(

1.48 × 10−5 −9.81 × 10−5

−9.81 × 10−5 8.76 × 10−4

) (

6.26 × 10−3 −4.15 × 10−2

−4.15 × 10−2 0.382

)

Ano res.
V,t

(

4.82 × 10−5 −2.03 × 10−4

−2.03 × 10−4 1.6 × 10−3

) (

3.08 × 10−3 −1.39 × 10−2

−1.39 × 10−2 0.11

)

AV,t

(

6.21 × 10−5 −4.11 × 10−4

−4.11 × 10−4 3.75 × 10−3

) (

3.45 × 10−3 −2.37 × 10−2

−2.37 × 10−2 0.261

)

B → ρ form factor fit:

• Fitting to LCSR data alone, the covariance matrices for the B → ρ FFs are given
by:

SE SSE

BV,0

(

4.15 × 10−6 −3.2 × 10−5

−3.2 × 10−5 7.93 × 10−4

) (

5.26 × 10−3 −4.33 × 10−2

−4.33 × 10−2 1.57

)

BV,1

(

1.57 × 10−5 −1.28 × 10−4

−1.28 × 10−4 1.92 × 10−3

) (

3.29 × 10−3 −2.7 × 10−2

−2.7 × 10−2 0.396

)

BV,2

(

6.45 × 10−6 −5.23 × 10−5

−5.23 × 10−5 7.98 × 10−4

) (

1.83 × 10−3 −1.42 × 10−2

−1.42 × 10−2 0.274

)

BV,t

(

1.19 × 10−5 −9.76 × 10−5

−9.76 × 10−5 1.42 × 10−3

) (

2.19 × 10−3 −1.81 × 10−2

−1.81 × 10−2 0.258

)

BT,0

(

1.01 × 10−5 1.29 × 10−4

1.29 × 10−4 1.72 × 10−2

) (

6.49 × 10−3 9.63 × 10−2

9.63 × 10−2 15.3

)

BT,1

(

7.45 × 10−7 −4.16 × 10−6

−4.16 × 10−6 5.21 × 10−5

) (

1.86 × 10−3 −9.82 × 10−3

−9.82 × 10−3 0.13

)

BT,2

(

2.7 × 10−7 −1.41 × 10−6

−1.41 × 10−6 1.89 × 10−5

) (

8.09 × 10−4 −2.15 × 10−3

−2.15 × 10−3 6.88 × 10−2

)
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• For the fit of vector and axial-vector B → ρ FFs to LCSR and Lattice data, the
covariance matrices read:

SE SSE

BV,0

(

2.62 × 10−6 −1.35 × 10−5

−1.35 × 10−5 5.35 × 10−4

) (

2.86 × 10−3 −5.12 × 10−3

−5.12 × 10−3 0.796

)

BV,1

(

5.72 × 10−6 −3.08 × 10−5

−3.08 × 10−5 9.15 × 10−4

) (

1.24 × 10−3 −7.07 × 10−3

−7.07 × 10−3 0.193

)

BV,2

(

1.99 × 10−6 −3.02 × 10−6

−3.02 × 10−6 2.26 × 10−4

) (

5.21 × 10−4 1.52 × 10−3

1.52 × 10−3 6.4 × 10−2

)

B → K∗ form factor fit: The covariance matrices for the B → K∗ FFs are given
by:

SE SSE

BV,0

(

4.38 × 10−6 −3.12 × 10−5

−3.12 × 10−5 1.08 × 10−3

) (

4.85 × 10−3 −3.26 × 10−2

−3.26 × 10−2 1.85

)

BV,1

(

1.94 × 10−5 −1.63 × 10−4

−1.63 × 10−4 3.06 × 10−3

) (

3.× 10−3 −2.54 × 10−2

−2.54 × 10−2 0.467

)

BV,2

(

1.01 × 10−5 −8.52 × 10−5

−8.52 × 10−5 1.59 × 10−3

) (

2.42 × 10−3 −1.87 × 10−2

−1.87 × 10−2 0.456

)

BV,t

(

1.79 × 10−5 −1.53 × 10−4

−1.53 × 10−4 2.75 × 10−3

) (

2.24 × 10−3 −1.93 × 10−2

−1.93 × 10−2 0.34

)

BT,0

(

1.63 × 10−5 3.6 × 10−4

3.6 × 10−4 2.41 × 10−2

) (

9.38 × 10−3 0.246

0.246 17.7

)

BT,1

(

1.17 × 10−6 −6.23 × 10−6

−6.23 × 10−6 9.82 × 10−5

) (

2.26 × 10−3 −1.12 × 10−2

−1.12 × 10−2 0.191

)

BT,2

(

4.04 × 10−7 −2.07 × 10−6

−2.07 × 10−6 3.4 × 10−5

) (

1.12 × 10−3 −2.27 × 10−3

−2.27 × 10−3 0.11

)
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Bs → φ form factor fit: The covariance matrices for the Bs → φ FFs are given by:

SE SSE

BV,0

(

1.16 × 10−6 −8.32 × 10−6

−8.32 × 10−6 3.47 × 10−4

) (

4.56 × 10−3 −2.81 × 10−2

−2.81 × 10−2 1.98

)

BV,1

(

8.44 × 10−6 −7.79 × 10−5

−7.79 × 10−5 1.63 × 10−3

) (

3.37 × 10−3 −3.15 × 10−2

−3.15 × 10−2 0.643

)

BV,2

(

3.6 × 10−6 −3.26 × 10−5

−3.26 × 10−5 7.08 × 10−4

) (

2.91 × 10−3 −2.38 × 10−2

−2.38 × 10−2 0.662

)

BV,t

(

6.61 × 10−6 −6.07 × 10−5

−6.07 × 10−5 1.28 × 10−3

) (

2.05 × 10−3 −1.9 × 10−2

−1.9 × 10−2 0.394

)

BT,0

(

7.03 × 10−6 1.75 × 10−4

1.75 × 10−4 1.04 × 10−2

) (

1.41 × 10−2 0.406

0.406 25.2

)

BT,1

(

6.39 × 10−7 −3.91 × 10−6

−3.91 × 10−6 6.67 × 10−5

) (

3.37 × 10−3 −1.93 × 10−2

−1.93 × 10−2 0.35

)

BT,2

(

1.63 × 10−7 −8.97 × 10−7

−8.97 × 10−7 1.69 × 10−5

) (

1.64 × 10−3 −3.86 × 10−3

−3.86 × 10−3 0.187

)



Appendix C

Spectral Density

In analogy to Eq. (5.7), we can perturbatively expand the twist-2 spectral density,

ρT2 = ρ
(0)
T2 +

αs

4π
ρ

(1)
T2 +

(αs

4π

)2

Nf ρ
(2)
T2 . . . . (C.1)

Our NNLO correction ρ
(2)
T2 then takes the form,

ρ
(2)
T2 = fπCF

{
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