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Adoption of Diffused Renewable Energy Technologies: Patterns and Drivers of Residential 

Photovoltaic (PV) Systems in Connecticut, 2005-2013 

Marcello Graziano, PhD 

University of Connecticut, 2014 

 

Growing concern about global climate change and energy security are prompting reconsideration 

of how energy—particularly electricity—is generated, transmitted, and consumed in the United 

States and across the globe. While an increasing amount of households are adopting solar power 

across the developed world, the spatial and socioeconomic factors that shape whether or not 

people adopt this technology is under-theorized (especially with regard to spatial drivers), and 

not well researched from an empirical perspective. In my dissertation, I present a conceptual 

model to describe and understand the socioeconomic and spatial factors affecting the diffusion of 

PV systems. I build my model on the socio-technical tradition. Further, I present two empirical 

studies where I combine statistical and mapping techniques aimed at finding the spatial patterns 

and the underlying drivers influencing the adoption of PV systems in Connecticut since 2005. I 

develop an innovative spatiotemporal band to control for spatial peer effects, while using several 

socioeconomic and spatial variables to control for other factors. Contrary to previous literature, I 

find that medium-sized centers represent the source of the diffusion, rather than larger, more 

populous towns. Further, I find that spatial peer effects positively affect the adoption process, 

while the lack of more refined and spatially conscious policies tend to make adoption more 

difficult in densely populated areas. However, spatial peer effects tend to decrease in magnitude 

as time and space increase. Finally, I find that current policies, which do not taking in to account 

the differences in the socioeconomic and built environment among towns in Connecticut, fail to 

reach potential adopters residing in multi-family buildings or in renter-occupied houses. 
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Overview 

Literature on the processes governing the diffusion of new goods and services is rich, both 

theoretically and empirically. Nevertheless, we still do not have a comprehensive, simple and 

temporal dynamic conceptual model describing the relationships linking the sources influencing 

the diffusion of diffused renewable energy technologies (DRETs). Furthermore, our knowledge 

of the interaction between spatial and socioeconomic drivers governing any diffusion process is 

limited, having become only recently central in the discourse on the transition towards more 

sustainable societies. In rooting my research within the socio-technical tradition, the work of 

Hägerstrand, and the works on diffusion studies hosted within economics, particularly the one of 

Bollinger and Gillingham (2012), I seek to expand our knowledge on how policies, space and 

socioeconomic factors interact to either support or impede the diffusion of DRETs. In 

operationalizing my model, I focus on a family of DRETs: residential rooftop photovoltaic 

systems (PV systems). Literature has only recently began to research the underlying factors 

driving the adoption of PV systems, as they become a more viable option to reduce our 

dependence on fossil fuels.  However, as rich as it is, literature on DRETs diffusion and PV 

systems diffusion has yet to answer to the following questions: 

1. How can we conceptualize the diffusion process of DRETs over space and time, 

accounting for the continuous changes occurring the elements of the process themselves? 

2. Can researchers operate this conceptual model within case studies? Specifically, is it 

capable of describing the diffusion of PV systems? 

3. Does the diffusion of PV systems follow a specific pattern across time and space? If so, 

what are the elements driving this diffusion? 
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4. How do policies regulating PV systems operate across space and time, as the geography 

of the area changes over time? Specifically, how does the diffusion process change in 

highly urbanized areas? 

5. How do spatial peer effects affect the diffusion process? 

6. Does time affect spatial peer effects? 

Providing answers to these questions is the scope of my dissertation. Specifically, my research 

objectives are: 

1. To develop a dynamic conceptual model inclusive of all the major components affecting 

the diffusion of DRETs over time and space; 

2. To use the model as a guidance in the interpretation of  two empirical studies on the 

diffusion of PV systems in Connecticut; 

3. To identify specific spatial patterns in the diffusion of PV systems over time; 

4. To identify the role played by the frictions occurring between current policies and the 

geography of the diffusion area of PV systems; and 

5. To identify how spatial peer effects affect the diffusion of PV systems in Connecticut. 

Answering to each of the questions above through the fulfillment of these objectives will provide 

important insights for policymakers. Accounting for the different settings within which they 

operate will make policies more effective and efficient. For instance, resources can be targeted 

differently for densely populated areas where households reside in multi-family buildings. These 

conclusions are mere speculations unless proven: this is the motif for developing this study under 

the rules and requirements of academic research and integrity.  
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To fulfill these objectives, I divide my dissertation in to three main chapters. In the first chapter, 

I provide a careful review of the literature on diffusion, highlighting the fundamental theoretical 

and empirical changes occurred since the 1950s. From this survey of the literature, I then 

develop a conceptual model that aims to understand what are the elements involved in the 

diffusion of DRETs. I root my model within the socio-technical tradition, particularly the work 

of Geels (2002), although I expand the sources of diffusion of innovations and introduce the role 

of both time and area geography as factors shaping the process itself, as suggested by 

Hägerstrand (1952). In the second chapter, I present an empirical work seeking to identify and to 

quantify the role of spatial peer effects and the area geography in the diffusion process of PV 

systems. This first empirical work extracts some of the concepts outlined within the conceptual 

framework, and in particular the interaction among adopters and the relationship between current 

incentive policies and the geography of the jurisdiction where these policies are implemented. 

Further, in my third chapter I present second empirical work on how variations in the relative 

profile and built environment among urban areas can affect the diffusion of PV systems when 

policies do not account for these variations. Finally, I provide a brief conclusion in which I link 

my empirical findings to the conceptual model.  
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Section I: Introduction 

 

Growing concern about global climate change and energy security are prompting reconsideration 

of how energy—particularly electricity—is generated, transmitted, and consumed in the United 

States and across the globe (Devine-Wright 2008; Pasqualetti 2011; Freitas, 2012). Many 

jurisdictions have set ambitious renewable energy goals, targeting 20% of their electricity to be 

generated by renewable sources by 2020 (e.g. the European Union, EU 2012).  Targets can be 

met using a variety of low-emission alternative energy projects at various technological scales.  

While an increasing amount of households are adopting solar power across the developed world, 

the factors that shape whether or not people adopt this technology is under-theorized (especially 

with regard to spatial drivers), and not well researched from an empirical perspective. One aspect 

of renewable energy technologies (RETs) that is particularly poorly understood is the way in 

which this technology diffuses over space and time, and what factors influence adoption. When 

studying innovations, the process of adopting the innovation itself is considered as important as 

the material development of innovation, sometimes referred to as ‘invention’ (Hägerstrand, 

1962; Brown, 1981).  The process of adoption, in which people or institutions decide to acquire 

the new good, finds its outcome in the diffusion of the innovation itself. The diffusion process is 

influenced by many factors, including geographic characteristics and homophilic-related effects, 

better known as peer-effects (Hägerstrand, 1967; Bollinger and Gillingham, 2012). Peer-effects 

are occur when ‘the decision of others to adopt influences the utility an individual receives from 

adopting’ (Gillingham and Sweeney, 2012, p.13). Potentially, peer-effects generate externalities 

affecting the overall diffusion process, such as adoption even in the case of financial losses for 

emulating other agents (Bollinger and Gillingham, 2012). In the case of durable goods visible to 

others. Spatially-related peer effects may occur, creating an involuntary effect on nearby 
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residents. Similarly, the geography of an area can affect the diffusion process (Hägerstrand, 

1967; Geels, 2001). Many technologies are adopted and operated with a context of spatially-

uniform policies, which do not take in to account the nature of the specific technology and how 

the built environment could affect the adoption decision (Bronin, 2012). 

Researchers recognize the existence of two main families of renewables: centralized and diffused 

(Gillingham and Sweeney 2012). The former, sometimes labeled as ‘large-scale’, resemble the 

spatial organization of current fossil plants. Large, capital intensive and efficient plants are built 

in selected locations and distribution is made possible through the construction of multi-modal 

systems (e.g. power-lines). These systems are not the focus of the present research. Although 

they similar barriers and drivers with diffused technologies, the key players involved and the 

relationships among stakeholders in the case of large plants are different (Gillingham and 

Sweeney, 2012). The second family of technologies, ‘diffused renewable energy technologies’ 

(DRETs)1 have captured the interest of those regions where distribution is costly or the co-

existence of renewable power and fossil-fuel power is more difficult for technical reasons.2 

Policymakers have considered DRETs as a way to diffuse renewable energies faster than large-

scale projects and at a lower price.3 Specifically, residential rooftop solar photovoltaic systems 

(PV systems) have become more common in certain regions of the USA and of the world 

(Guidolin and Mortarino, 2010). Between 2010 and 2011, residential photovoltaic systems have 

by 24% in the USA, with increases in every state thanks to the continuous implementation of 

                                                 
1 With the acronym ‘DRETs’ I mean household-level, small scale renewable energy technologies. Example of these technologies are PV systems 
below 100 kW of capacity, thermal solar installations, and micro-wind turbines.   
2 As an example, consider the instability of power production from solar farm, as the overall production decreases at night or during winter. The 
power lines would be subject to strong variations in the load that is delivered to the main grid, thus affecting the delivery of power to consumers.  
3 The focus of my study is not to compare the two families of technologies: they are not mutually exclusive, and are usually adopted together in 
order to suit local needs.   
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Renewable Portfolio Standards (RPS),4 local policies and improved information (Busche, 2010; 

Sherwood, 2012; Bollinger and Gillingham, 2012).  

A better understanding of the relative importance of various factors that influence adoption such 

as socio-demographic characteristics, housing characteristics (e.g. tenancy) and socio-economic 

characteristics is needed in order to inform policies intended to promote the adoption of 

alternative energy. Despite being rich in studies dealing with diffusion and innovation processes 

in general, literature has yet to explain the specific mechanisms involved in DRETs diffusion in 

general and PV systems in particular.  

I organize the remainder of the paper as follows: Section II we provide a thorough review of 

relevant literature on DRETs, highlighting the disadvantages of current socio-technical models, 

in particular those based on the work of Geels (2002) relative to DRETs. In Section III, we 

present the elements and the structure of the conceptual model. In Section IV, we explores the 

ways in which the elements of the model connect to each other and influence the diffusion 

process of DRETs. Finally, in Section V, I highlight the advantages of the proposed model 

compared to previous socio-technical models of diffusion.   

Section II: Review of the Literature 

 

Public institutions have long been using incentive schemes to promote the diffusion of RETs in 

general and DRETs more specifically. These incentives are necessary due to the higher costs of 

DRETs and RETs compared to fossil fuels (Gillingham and Sweeney, 2012; IEA, 2010). Even 

when operated at lower costs than non-renewable sources, adopters of DRETs may require 

additional financial incentives due to the initial capital costs for switching to the new energy 

                                                 
4 ‘A renewable portfolio standard (RPS) is a regulatory mandate to increase production of energy from renewable sources such as wind, solar, 
biomass and other alternatives to fossil and nuclear electric generation. It's also known as a renewable electricity standard’ (NREL, 2013). 
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source (IEA, 2010; Gillingham and Sweeney, 2012). Even in presence of strong monetary 

incentives, it is important for policymakers to understand what other drivers contribute to the 

diffusion of DRETs. Recently, literature has shown mixed results on the effectiveness of 

monetary incentives for DRETs, thus suggesting that other policies (e.g. programs providing 

previous experiences) and factors related to the profile of residents influence the diffusion of 

renewable energies (Carley, 2009; Doris and Gelman, 2011). Consequently, the relationship 

between non-monetary policies, adopters and local/federal regulations and incentive schemes has 

been recognized as important in explaining the differences in adoption among regions, 

particularly in jurisprudential literature and economics (Busche, 2010; Bronin, 2012; Bollinger 

and Gillingham, 2012).  

The first section of the literature review surveys the major works that inform on DRETs and the 

methodologies associated with DRETs diffusion. The second section is organized around the 

major fields of research from which the works generate.  

[Figure 1 About Here] 

As shown in Figure 1, research on DRETs diffusion draws from four main research streams, 

belonging to as many broader fields. Technology Diffusion Research (TD), research on 

Environmental Values, Policy Design and Spatial Analysis. As DRETs are durable goods, their 

adoption process follows the one of this category of goods (Bollinger and Gillingham, 2012). 

Usually, DRETs deliver energy at a price higher than non-DRETs, such as large-scale coal 

plants, or wind farms (EIA, 2013). Consequently, and in absence of major concern on delivery 

reliability, other factors influence the decision of adopting DRETs. Among others, researchers 

found peer-effect, personal attitude/values and favorable subsidies (Bollinger and Gillingham, 

2012; Tate et al., 2012).     
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In Figure 1, the yellow block represents the research on policy design. Rules, incentives and 

barriers implemented by local and national authorities can influence the diffusion of DRETs 

(Bronin, 2012). The cluster dealing with environmental policies is a natural focus for DRETs, 

and includes regulations dealing with energy policies and those regulating the protection of the 

environment. Finally, the red block represents the contributions brought by Spatial Analysis in 

general and Behavioral Analysis in particular. Literature on behavioral analysis comes from 

different disciplines, although its origins are deeply rooted in geography and the original work of 

Hägerstrand (Johnston, 1997).  

DRETs have some similarities with other technologies in their adoption patterns. DRETs are 

usually durable goods and adopters usually incur in monetary expenses for adopting these goods. 

Adopters would not incur these costs if they decided to maintain the current energy systems. 

Finally, spillover effects from adopters influence the decision of other agents (Bollinger, and 

Gillingham, 2012). Being durable goods, DRETs tend to be purchased few times, and their use 

spans over many years. Consequently, the commitment faced by adopters is higher than in the 

case of non-durable goods (Bass, 1969).  

Additionally, DRETs can face similar opposition and barriers to non-DRETs technologies due to 

public perception, policy design, NIMBY5 syndrome and lack of information about the impact 

on landscape and the environment (Warren et al., 2005; Devine-Wright, 2007; Klick and Smith, 

2010; Gillingham and Sweeney, 2012; Bronin, 2012). Adoption of DRETs is subject to the 

influence of environmental values (Dietz et al., 2005). Values shape and are shaped by the socio-

geographical framework of the area proper to the DRET under examination (Hägerstrand, 2002). 

Consequently, the political framework, the economic profile and the geography of a location 

                                                 
5 Not-in-my-backyard. 
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play a major role in defining specific DRETs diffusion (Hägerstrand, 2002; Verbeek and Slob, 

2006; Gillingham and Sweeny, 2012; Verbruggen et al., 2010).6  

II.1 Technology Diffusion and DRETs  

Understanding the factors driving the diffusion of industrial processes, goods and behaviors is 

important for policy makers and market agents for formulating policies and strategies. In a paper 

published in 1952 on innovation waves, Hägerstrand was the first scholar to use mathematical 

modeling applied to Technology Diffusion research (TD) (Hägerstrand, 1952; Brown, 1981 and 

Johnston, 1997). Hägerstrand made many contributions to different fields of geography, 

including behavioral geography and spatial analysis. The latter field drove the research in TD 

until the beginning of the 1960s, when other disciplines started contributing to diffusion 

processes in general, and on TD in particular (Davies, 1979). After his initial contribution on TD 

analysis, Hägerstrand published a second body of work introducing the concept of time-

geography (Hägerstrand, 1988 and 1993). This second work and the voluminous literature 

produced in the last forty years on time and space differs considerably from the linear dimension 

introduced by Bass (Sui, 2012). First, time-geography seeks to introduce time with an historical 

component, that is, effects become endogenous as time passes (Hägerstrand, 1982; Sui, 2012). 

Second, time plays an active role with and over space, thus ending to be provide one of the 

contexts within which action (e.g. adoption) takes place, and becoming an endogenous factor in 

the analytical process (Sui, 2012). Third, Hägerstrand’s work brought the focus back on both 

individuals and their surrounding environment, with the latter being defined as any physical 

object surrounding agents, including those expanding their virtual and social space, such as 

communication devices (Sui, 2012; Ellegard, 1999). This dissertation focuses on spatial 
                                                 
6 I use the term ‘geographic setting’ as equivalent of ‘built environment’ as used in Van Geehuizen et al. (2012). For 
a more specific definition, see the methodological section.  
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proximity: spatial spillovers alone have been found to affect positively the adoption of DRETs 

(Bollinger and Gillingham, 2012). Therefore, network peer effects are beyond the scope of the 

present work. 

The major breakthroughs introduced by Hägerstrand and the subsequent adaptations and 

modifications, have created the basis upon which the study of TD has been developed in the last 

forty years (Sui, 2012). In social sciences, including geography, the study of TD has followed 

two pathways. The first focused on the adoption processes of single agents, usually households. 

This branch has its seminal works in those of Hägerstrand (1952), Rogers (1962) and Bass 

(1969). The second branch of study deals with TD within and among industrial organizations, 

and usually belongs to literature in economics and managerial sciences (Davies, 1979). 

Households’ response to policies and market signals is the perspective followed by scholars to 

depict TD of DRETs (Bollinger and Gillingham, 2012). More recently, the study on the diffusion 

of DRETs has developed along with that of environmental and socio-technical approaches: 

scholars have been focusing more on the policy aspect of DRETs, and their public perception 

(Verbeek and Slob, 2006).  

II.2 Policy Design and DRETs 

Policies can either accelerate or slow down the diffusion of DRETs (Painuly et al., 2001; 

Verbruggen et al., 2010; Gillingham and Sweeny, 2012). Verbruggen et al. (2010) argued that 

policies affect directly DRETs costs, prices, and technology innovation. Further, policies are the 

original source of all man-made barriers, thus affecting the final potential of DRETs.7 

Previously, Painluy identified seven major categories of barriers affecting the diffusion of both 

RETs and DRETs. These families of barriers are ‘Market failures’, ‘Market Distortions’, 

                                                 
7 For the specific definition of ‘potential’, see Verbruggen et al. (2010). 
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‘Economic and Financial’, ‘Institutional’, ‘Technical’, ‘Social, Cultural and Behavioral’ and 

‘Other Barriers’ (Painluy, 2001). With the exception of few elements listed under ‘Technical’, all 

other barriers relate to or can become through policy design. Even in the case of those barriers 

grouped under ‘Social, Cultural and Behavioral’ education and information through public 

institutions can increase the acceptance towards RETs and DRETs. One important element 

emerging from Painluy’s work is the fact that these barriers are location-dependent. The author 

stated: 

‘However, several barriers, which may vary across countries, impede the penetration of RETs. 
The barriers need to be identified and overcome before this potential can be realized (sic)’. 
[Painluy, 2001, p.88]. 
 
 
My research will draw from the work of Bronin (2012). In her work, the author argued that 

policies influence the adoption of DRETs in two stages. First, policies influence the adoption of 

DRETs before agents purchase them, for example by guaranteeing subsidies or imposing local 

fees. Second, policies influence the adoption of DRETs by regulating the way in which they can 

operate (Bronin, 2012). Other authors have worked on siting and operating DRETs looking at the 

regulatory context (see for example Outka, 2010 and 2011; Rule, 2010). This stream of research 

parallels the one on environmental values in that it recognizes that disputes over DRETs emerge 

between users and neighbors (Rule, 2010). Thus, perception and acceptance of DRETs is as 

important as the policies regulating their adoption, in that the former can prevent the emergence 

of conflicts between adopters and non-adopters. Recent studies have attempted to profile the 

potential users of environmentally responsible technologies (e.g. Gunther et al., 2012). Although 

literature is not rich in studies on DRETs diffusion, researchers have been working on electric 

vehicles and mobility-related technologies (Hjorthol, 2013). This stream of research links 

diffusion of DRETs, TD analysis and studies on environmental values, by focusing on 
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understanding how perception and beliefs influence people’s willingness to adopt electric 

vehicles. Mathisen et al. (2012) interviewed and surveyed companies to get responses on how 

electric vehicles (EV) were perceived by businesspersons. The authors found that the negative 

elements were associated with technical problems such as functionality in winter. Rodseth 

(2009) found that differences among social groups might provide valuable insight over the 

diffusion of EVs. The author found that one of the major factors affecting the decision to 

purchase an EV is the perception that they are environmental friendly, and this characteristic was 

considered more important than higher purchase costs compared to oil-fueled car.  

II.3 Environmental Values and DRETs 

Scholars have integrated DRETs diffusion within the broader research of pro-environmental 

behaviors and policies (Hägerstrand, 2002; Elzen, 2006; Laws; Verbeek and Slob, 2006b). 

Verbeek and Slob placed this work at the intersection of policy and research ‘socio-technical’ 

studies (Verbeek ad Slob, 2006). The terms indicates the importance of sociological and 

economic characteristics of each area of analysis combined with the character of the RET 

analyzed. This set of approaches requires deriving multidisciplinary and interdisciplinary 

perspectives integrating different disciplines across them (Gibbons, et al., 1994). The work of 

Dietz et al. (2005) offers a well-documented overview of the advancements made in the 

literature on environmental values. This strand of literature on environmental values is central to 

any investigation of residential DRETs such as solar photovoltaic systems because the adoption 

decision is a change of the current status quo and includes a capital spending decision (Becker et 

al., 1981).   

Researchers have started recognizing how people’s perceptions of DRETs affect their diffusion. 

Sovacool (2009) argued that there is a disconnect between how electricity is produced and how it 
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is socially perceived. This disconnect was made possible through the centralized and remote 

generation of power, cheap access to electricity and the role of psychological resistance. This 

resistance is due to a strong preference for the status quo and the role of ‘comfort’ (Becker et al., 

1981). All these factors play a major role through the decentralization of power-generating 

technologies and the ‘intrusion’ of DRETs into people’s sight. Pasqualetti first introduced the 

concept of intrusion relative to landscapes and DRETs (Pasqualetti, 2000). In his work, the 

author argued that the remoteness of most of generating technologies have hidden the true cost of 

electricity generation, creating a sense of intolerance towards generating technologies once these 

re-enter citizens’ landscapes (Pasqualetti, 2000). Gee found empirical evidence of the 

relationships between landscape and perception of offshore wind power projects in the North Sea 

(Gee, 2010). Warren et al. (2005) have found that knowledge of DRETs significantly reduces the 

negative perception of wind power turbines. Literature is rich in case studies on wind power and 

its perception, possibly because of the strong opposition by many groups despite its well-

recognized advantages (Klick and Smith, 2010). Firestone and Kempton (2007) found that the 

perception of DRETs and the relation with the status quo depends on the demographic and 

socioeconomic profile of respondents. In their work, the authors found that opposition to a wind 

power project off the shores of Cape Cod, MA (USA) came mostly from wealthy, older 

residents. The respondents were concerned more about the changes occurring on the seascape 

rather than the advantages of wind turbines in terms of emissions reduction. Residential 

photovoltaic systems may face a lower degree of opposition due to their small-scale nature. 

Nevertheless, issues remain in defining solar rights (Bronin, 2009).  

As mentioned in the previous section, there is a lack of literature profiling the potential adopters 

of DRETs. Nevertheless, research dealing with electric vehicles offers insights into the profile of 
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those who adopt environmentally friendly technologies. Scholars have found that psychological 

drivers may inhibit the adoption of electric vehicles, even when socioeconomic characteristics 

would support the adoption (Franke et al., 2012). Strategies such as information, training and 

education can counter these effects. These findings are consistent with those on wind power by 

Warren et al. (2005), thus creating a theoretical bridge among environmentally conscious 

technologies.  

II.4 Spatial Analysis and DRETs 

The original Bass diffusion model incorporated time and agent-specific characteristics, 

particularly in its later articulations (Bass, 1969). In his model, Bass tested the idea that durable 

goods are adopted in stages, with early adopters (‘innovators’) driving the passage from one 

technology to the other. The idea of stages and the role of early adopters was present in Rogers 

(1964). However, Bass provided both an empirical test of the stages.  

Starting the 1980s, various authors conjugated spatial analysis, behavioral sciences and TD. 

Authors have focused on creating sophisticated concepts of time and space (Brown, 1981; 

Hägerstrand, 2002; Verbeek and Slob, 2006b).Time became ‘history’, meaning that agents have 

memories and technologies are not introduced in to a vacuum. Place and scale have become 

endogenous characteristic of the diffusion process. Models tried to look at the reasons behind 

certain distribution phenomena. While the first TD models were descriptive, later models have 

tried to discern the drivers behind certain diffusion patterns (Brezet, 2006 and Verbeek and Slob, 

2006).  

The socioeconomic and demographic characteristics of agents and those of the agents’ 

surroundings are the focus of many studies in DRETs diffusion. Agents act like other ‘peers’ for 
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two main reasons: for emulating someone perceived as guidance; or for reducing the risk 

associated in being an innovator (Bollinger and Gillingham, 2012). Studies on TD in general 

have described the relationships between innovators and followers: Hägerstrand included 

information and emulation in his original work (Hägerstrand, 1967). Subsequent research 

developed in marketing sciences and economics has tested the role of social interactions and self-

selection of reference groups (Manski, 1993; Soetevent, 2006).8 For instance, Manski found that: 

Inference is difficult to impossible if these variables are functionally dependent or are 
statistically independent. The prospects are better if the variables defining reference groups and 
those directly affecting outcomes are moderately related in the population. (Manski, 1993, p.1) 

 

With the development of new sources of data and behavioral models, the problems stated by 

Manski have been solved (Soetevent, 2006). Soetevent provided a review of the recent 

development to account for neighborhood effects and peer-effect. In his work, the author argued 

that: 

‘Most reference group definitions put forward by empirical researchers are ad hoc and based on 

• Social proximity 

• Geographical proximity.’ (Soetevent, 2006 p.220 ) 

Bollinger and Gillingham found that a peer effect exists for solar photovoltaic in California 

(Bollinger and Gillingham, 2012). The authors used econometric models to estimate the spatial 

peer-effect in the case of PV systems in California, finding:  

‘[…] strong evidence for causal peer effects, indicating that an extra installation in a zip code 
increases the probability of an adoption in the zip code by 0.78 percentage points when 
evaluated at the average number of owner-occupied homes in a zip code. (Bollinger and 
Gillingham, 2012, p. 23) 

 

                                                 
8 The definition of peer-effect used in my research is the one adopted by Bollinger and Gillingham (2012). 



17 
 

The findings of Bollinger and Gillingham shed light over the role of spatial peer-effect of 

DRETs and in general and PV systems in particular. The physical presence of the panels creates 

a sense of security, reducing the perceived risk for potential adopters and showing the change 

from the business-as-usual is possible. Other authors investigated the same effect in the UK; 

their results show stronger adoption in regions where agents first adopted photovoltaic systems 

and a concentric pattern, with lower adoption in the further areas (Snape and Rynikiewicz, 

2012). The two authors partly used the same assumptions used by Bollinger and Gillingham in 

their 20112 study, although focusing on the spatial patterns, rather than using econometric 

techniques.  MacEachren and Hanson (2008) identified three major streams of research in 

diffusion of technology: demand-focused, place-focused and a combination of the two, which is 

the one they used. The authors provided an interesting perspective in their work because they 

combined fieldwork and econometric models to study the adoption of PV systems in Sri Lanka. 

The authors analyzed how the socio-geographic context of villages influences the adoption 

decision, finding that social characteristics of villages influence the adoption patterns. The two 

scholars used linear regression models to estimate the weight of the socio-geographic drivers on 

the diffusion of PV systems due to the difficulty of collecting multi-year data. Through their 

study, the two authors managed to find empirical evidence supporting Brown’s contentions that 

the diffusion of technologies is affected by market and infrastructural elements (Brown, 1981; 

MacEachren and Hanson, 2008). In addition, they found that informal relationship between 

villagers and between villagers and politicians affected the diffusion of solar home systems. 

Those villagers outside the social milieu tend to adopt faster, as they do not rely as much on 

social consensus and neither trust politicians, especially if the adopters belong to other 

ethnicities. One of the strength of their work is the inclusion of variables related to the area they 
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studied that made the predictors interesting for any policymaker interested in similar contexts. La 

Gennusa et al. (2011) and Theodoridou et al. (2012) looked at the characteristics of the cities. La 

Gennusa et al. employed a GIS-based approach to estimate the potential of power production 

from PV systems in an urban environment, specifically within inner cities. These approaches are 

certainly useful in that they spatially identify areas where DRETs could be installed. 

Nevertheless, their limits are evident: the authors focused purely on technical aspect and spatial 

aspects, excluding any consideration related to the political, cultural or socioeconomic 

landscapes in which these technologies were supposed to operate. Theodoridou et al. (2012) 

followed a similar approach: the authors assessed the profitability and energy potential of 

retrofitting building in densely populated urban areas. They concluded that:  

“Conclusively, the general outcome obtained by current research, indicate that denser urban 
areas perform limited potential both for retrofitting interventions on buildings’ envelope and 
solar systems applications, apart from the quality and the age of building constructions”. 
(Theodoridou et al., 2012, p. 6239). 

 

Related to the work Theodoridou et al. (2012), Van Geenhiuzen et al. (2012) tried to find the 

best PV systems for urban areas. Specifically, the authors analyzed the various solar technologies 

for residential use, trying to find the best technology to expand the diffusion of PV systems in 

urban areas. The authors argued that incentives for specific PV systems design and technologies 

might be a solution for insuring that the most efficient and cheapest technologies are adopted in 

urban contexts. Maes and Van Passel (2012) studied how policies can affect the efficient 

diffusion of DRETs solar systems in the region of Flanders (Belgium) and the Netherlands, 

comparing how policies and uncertainty affect the diffusion of hybrid and cogeneration energy 

systems.9 The authors found that uncertainty reduces the diffusion of DRETs: because of its 

                                                 
9 Cogeneration systems produce electricity and heat simultaneously, thus increasing the overall efficiency of the system itself.   
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widespread use in greenhouses in the Netherlands, cogeneration reacts better when uncertainty is 

introduced, thus providing a better financial performance. Finally, the two authors found that 

public policies greatly influence whether a specific DRET diffuse over others or even over RETs 

in general. For instance, in the case of the Belgian region, the “[…] strong support [by public 

authorities] might put other energy technologies in a less favourable position on the market. The 

support for cogeneration units in Flanders is so large, that solar panels are no longer interesting 

for the investor”. (Maes and Van Passel, 2012 p.680). Given solar panels reduce CO2 emissions 

more cheaply than cogeneration systems. The authors concluded that:  

“The future evolution of public policy should take the current disequilibrium into account” 
(Maes and Van Passel, 2012 p.680). 

 

This conclusion highlights the importance of integrating institutions and policies in the study of 

DRETs diffusion: PV systems are found to be more convenient in the Flanders when compared 

to cogeneration, but, still, public policies made possible for cogeneration to spread faster. The 

authors did not detail the reasons behind the support towards cogeneration. It may have to do 

with reasons associated with local preferences, expertise, need of a specific sector, etc. These 

reasons, too, should be taken in to account before suggesting redirecting subsidies from one 

DRET to another.  

Studying the barriers/drivers to the diffusion of DRETs is a need recognized at national level by 

the U.S. Department of Energy (DoE). The DoE has recently promoted a new initiative to study 

the diffusion and evolution of solar energy (DoE, 2012). The request for proposals of the DoE 

indicates that further research is required, and spatial models can play a major role in 

understanding solar energy adoption patterns. 

II.5 An Historic Perspective of Literature on DRETs Diffusion  
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Literature on diffusion of innovations has multiple roots, spanning from the first third of the 

Twentieth century with the work of Sauer (Brown, 1981) to the latest development in recent 

years across a variety of disciplines. The first major theoretical and empirical work on diffusion 

research can be traced back to the works of Hägerstrand (1952, 1967), although this author drew 

from previous works by Sauer and others (Brown, 1981). In his work, Hägerstrand focused on 

the demand side to explain the diffusion of innovations, from the agent perspective, trying to 

understand the drivers behind the diffusion process. In particular, he focused on the role of 

‘information’ as the way through which innovations diffuse. Consequently, Hägerstrand 

integrated the role of the geography affecting information with the diffusion of innovations 

(Webber, 2006). Aside from the specific methodological contributions and findings, 

Hägerstrand’s work is crucial as it brings together various approaches; the author understood that 

a single perspective was simply not enough to explain the diffusion process of innovations. 

Consequently, the Swedish author first gathered data on the diffusion over time of several 

durable goods, labeled ‘indicators’. He divided these indicators of innovation in to two 

categories:  

1. Agricultural indicators: 

a. State subsidized pastures; 
b. Control bovine tuberculosis; and 
c. Soil mapping 

 

2. General indicators: 

a. Postal checking services; 
b. The automobile; and 
c. The telephone.  
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The first set of indicators comprised only goods and services proper of farmers. The second set 

comprised goods that could be found among the entire population. Along these indicators, for 

which the author had consistent datasets across time and space was possible, Hägerstrand 

included ‘complementary indicators’, similarly grouped in the two categories ‘agriculture’ and 

‘general’.10 These goods served as control, and were though to either be adopter prior or 

necessarily after the adoption of the two sets of indicators listed above.  

[Figure 2 About Here] 

 

Subsequently, he prepared the population maps representing the demography for the study area 

(Southern Östergötland, in Sweden). This step, which occupies a significant of the book edited 

by Pred in 1967 may look obvious today, as digital maps are commonly available, particularly 

for population data. However, at the time, this was a fundamental step towards the development 

of the model, and a great research effort because no such maps existed. Then, the author adopted 

Markov-Chain Monte Carlo analysis is order to test the diffusion results over time, creating 3 

models to test whether the diffusion of innovations take place as a decision of individuals or it is, 

in reality, a more complex and group-based, information-driven process. In his first model, 

Hägerstrand assumed that the diffusion of innovations was completely based on people’s choice, 

and hypothesized that the individual characteristics would predict the process. This model 

proved to be far from reality, as the control tests showed. In his second model, the author 

assumed that information could spread from people in all directions from a central point. The 

areas around these central points retain higher adoption rates as time passes. This second model 

proved superior when compared with reality, although discontinuity appeared as time elapsed. In 

                                                 
10 These elements are tractor, automatic binder, milking machine, horse-drawn hoe, plumbing in barn, and plumbing 
in farmer’s residence (agricultural). Household plumbing, refrigerator and the electric range (general).  
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his third model, Hägerstrand introduced the concept of ‘Resistance to the fictional innovation’,11 

defined as “The sum of direct contacts concerning the innovation made with already accepting 

individuals prior to P’s own acceptance” (Hägerstrand, 1967, p. 265). Where P is the accepting 

entity. The concept of barriers to diffusion and the introduction of information as part of the 

diffusion process was not new at the time. However, as Pred said in the postscript to the 

American edition of Innovation Diffusion as a Spatial Process, the novelty of Hägerstrand 

resides in the “ […] Weightiest ramifications of the models ultimately derive from their 

combination of random and non-random elements” (Hägerstrand, 1967, p. 307). The method, the 

meticulous modeling, the testing and the inference of the results in light of the assumptions used 

was the greatest contribution of the Swedish scholar through his first works. These contributions 

distinguished Hägerstrand from previous authors such as Sauer, or those listed in the well-

conceived review by Rogers (1962) in that simplified models were developed to deepen the 

knowledge of complex problems.  

The rich literature on the topic that has emerged after the end of WWII requires some form of 

organization. I identify three major streams of research developed during the Twentieth century. 

The first stream started at the end of 1960s, finding its major work in the Bass’ model (Bass, 

1969). With his model, Bass attempted to forecast the diffusion of adoption of durable goods 

focusing on the demand side once again, although giving more weight on the data portion of the 

analysis. Later models, particularly in economics and marketing, adopted different mathematical 

approaches to model the diffusion of innovations from the perspective of organizations, 

individuals and the role of entrepreneurs/innovators (Davis, 1979; Brown, 2006). During the 

same years, another stream of literature was developing, this time closer to geography. The 

major work of this period is Diffusion of Innovations by Brown (Brown, 1981; Webber, 2006; 
                                                 
11 The term ‘fictional’ here refers to the innovation in the stylized model developed by Hagerstrand.  
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Lutz, 2006). Brown built upon the ideas of Hägerstrand, expanding the concepts involved in 

understanding the process of diffusion. In particular, Brown added three major factors (Webber, 

2006): 

1. The supply side of innovations plays a major role in the diffusion process; 

2. The role of agencies in helping the diffusion process; 

3. The impacts that the innovations have on the area where they take place. 

Brown admitted the role of factors, capable of reducing or encouraging the diffusion process 

(e.g. policies). For example, in the case of Hägerstrand’s study on the diffusion of selected 

agricultural machineries in Southern Sweden, a post-1981 researcher would look at the role that 

various local and state agencies played in encouraging the diffusion of these technologies across 

time, including the how financing took place. In the field of DRETs, this advancement is 

important because incentives and requirements are fundamental in supporting the adoption of 

renewable technologies (Gillingham and Sweeney, 2012). Further, these same agencies can play 

an important role in spreading the information, thus forming the demand side studied by 

Hägerstrand. The third factor introduced by Brown adds the role of time more vigorously, 

creating a connection between how innovations spread and how they interact with future 

innovations and development (Webber, 2006). From the work of Brown, I identify an additional 

barrier towards DRETs diffusion, which includes by the later works of Hägerstrand and in 

particular his efforts to include the role of the environment in influencing people’s choices 

(Hägerstrand, 1993).  

I identified an additional tradition, whose roots can be found in the work of Rogers (1962). I 

labeled this tradition as ‘sociological’ not because purely influencing sociology but, rather, 

because of methodological approach focused on the theoretical aspects of defining and ordering 
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the concepts and the elements of the diffusion process. In time, this tradition has merged with the 

one formed upon the works of Hägerstrand and Brown, providing concepts and definitions used 

by social scientists to communicate and frame empirical findings.   

The section of Figure 2 below the dotted line represent a close-up on the more relevant streams 

of research related to DRETs diffusion. The dotted arrows and the lines highlight the “jump” 

forward in time and the shrink in focus. I intentionally left out several major contributions (e.g. 

Hudson, 1969) in order to provide a better understanding of the more recent contribution in 

DRETs diffusion, rather than on diffusion in general.  

In recent years, I identified two major streams of research dealing with DRETs diffusion process. 

Both these streams draw from the literature concepts, models and ways of inferring results. 

However, they differ in the focus of their approach. The first of these two approaches is ‘Socio-

Economic Models’ (SEMs). These models are direct heirs of the tradition established in 

economics and marketing, and employ massive quantitative analysis, usually rooted in 

econometrics. Examples of these works are Rodseth (2009), Guidolin and Mortarino (2010), 

Pierre et al. (2011), Bollinger and Gillingham (2012), Snape and Rynickiewicz (2012), Freitas et 

al. (2012), and Tate et al. (2012). Conceptually, these valuable works have the intrinsic limit of 

focusing on either the supply or the demand side to explain the diffusion of DRETs. Even when 

the variables employed cover both sides, the overall understanding of the relationship among 

agencies/supply and demand is not considered. Nevertheless, this stream of research provides 

models about specific relationships among the diffusion subjects (e.g. spatial peer effects).  

The other stream of literature has a wider breath: it includes analyses aimed at developing 

policies dealing with sustainability as a whole (Verbeek and Slob, 2006b; 2006). The difference 

from the last black block in Figure 1 is not in the methodologies used: in fact, some of these 
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studies employ quantitative tools and surveys (e.g. Firestone and Kempton, 2007; MacEacheran 

and Hanson, 2008; Gee, 2010; Donovan and Nunez, 2012). Rather, the two blocks differ in terms 

of perspective, for the literature descending directly from the economics/marketing tradition aims 

at exploring the specific drivers leading to adoption of DRETs, whereas the other stream of 

research aims at a more complete understanding of the causes of these drivers (Geels 2002; 

Verbeek and Slob, 2006).        

Section III: Elements of the Conceptual model 

 

The conceptual model12 described in the following sections comprises three main elements:  

1. The Area Geography (AG); 

2. The institutional Framework (IF); and 

3. The Adopting Agents (AA). 

[Figure 3 About Here] 

 

Figure 3 shows the overall model concept. Each elements within the model is explained in detail 

in this section. Overall, the three main elements in the model are nested and arranged in a loose 

hierarchy, based on the spatial width of each of them. The hierarchy is loose, as the IF can be 

larger than the AG: however, the AG will still provide the physical limits for the total energy 

available. The AG is filled to highlight the pervasiveness of its nature. There is a file rouge 

connecting all the elements: this is the sum of the relationships occurring between each pair of 

the elements.13 These relationships are bi-directional, meaning that each elements affects and is 

affected by the others. The diffusion of a DRET takes place within this context: it reacts to the 

                                                 
12 For clarity’s sake, I will refer to it as ‘model’. 
13 AG-IF; AG-AAs; IF-AAs; AAs-AG; IF-AG; AAs-IF.  
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changes and the set of pressures and frictions occurring along the borders of each of the 

elements.  

I identify each of the components as a ‘subject’ of the diffusion process of DRETs. The term 

highlights the centrality of these three elements in defining and influencing the diffusion process. 

These three elements are not just places in which the diffusion of DRETs takes place. As 

subjects, they influence and are influenced by the diffusion of DRETs. These elements are active 

receiver and shaper of the process as a whole. Although using different labels and names, 

literature has recognized the role of each of these subjects separately. For instance, Verbruggen 

et al. (2010) and Maes and Van Passel (2012) recognized and explored the role of public 

organizations in the diffusion process of solar energy. Bollinger and Gillingham (2012) and Gee 

(2010) looked at how agents influence the adoption process itself, although from different 

perspectives. Although indirectly, Hägerstrand (1993) described the role of the environment, 

here AG, in influencing people’s attitudes and culture, which, in turn, influence agents’ behavior 

(Dietz et al., 2005). Within each of the subjects, there are interconnected elements, arranged in 

networks and interacting with each other, as described by Geels (2002). The strong hierarchical 

character of Geels’ work fails to take into account changes deriving from institutions, the human 

and the natural environment, and time.  

III.1 Area Geography 

Definition: ‘The mise en scene of fabricated and natural elements within the study area’. 

Examples: Area geology, area morphology, area parcelization, districting, building set-ups, 
logistic set-up (e.g. roads).  

 

I label the first subject of my model ‘Area Geography’ (AG). So far, the term ‘diffusion’ has 

appeared many times. The use of a spatial concept implies that the process itself has to take place 
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within a space, which is both physical and institutional (Buttimer, 2001; Geels, 2002). Previous 

literature has included this concept in different ways, almost following the two questions posed 

by Hägerstrand in his works dealing with the role of people and the environment in Regional 

Sciences (Hägerstrand, 1993). One major stream regards AG purely as a physical concept, 

focusing on the interaction between humans and the natural environment (Hägerstrand, 1993; 

Johnston, 1997). Other authors included both the natural and human environment under terms 

such as landscape, socio-technical landscape or alike (Hägerstrand, 1993; Rip and Kemp, 1998; 

Geels, 2002). Geels provides a clear definition of socio-technical landscape: 

‘[…] a set of deep structural trends. The metaphor ‘landscape’ is chosen because of the literal 

connotation of relative ‘hardness’ and the material context of society […]’ (Geels, 2002, 

p.1260). 

The character of ‘hardness’ mentioned by Geels is present in geography and diffusion studies 

since their very beginning, particularly in the works of Hägerstrand and Sauer (Brown, 1981; 

Johnston, 1997). The difference between these two visions lays in the relationship between 

agents, usually humans, and the AG and the conceptual width of AG. Socio-technical scholars 

tend to place the AG hierarchically higher, as depicted in Figure 4.  

 

[Figure 4 About Here] 

 

The hierarchy of the picture is in terms of macro-meso-micro levels, the macro level being the 

hardest/slowest to change. In Hägerstrand’s work, the landscape is more directly associated with 

human’s actions, and is one of the components in the author’s dioramas (Hägerstrand, 1988; Sui, 

2004). Further, the model depicted above confines agents and the relationships between them 
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and the IF at the meso-level (‘patchwork of regimes’), with niches left to be the engine of 

innovation.  

I define the Area Geography as ‘The mise en scene of fabricated and natural elements within the 

study area’.  The definition retains the character of ‘hardness’ common to both Hägerstrand and 

Geels. Additionally, the use of the term ‘mise en scene’ is important because it implies that the 

natural and fabricated components of the AG are arranged by the IF and/or the AAs. The 

immateriality of the AG arises when it is perceived, rather than from its mere existence. In itself, 

the AG provides AAs and the IF with possibly the only true limit: the total amount of energy 

when efficiency is 100%. When dealing with multiple DRETs, this limit is overcome using new 

technologies and fuels. For PV systems, the current efficiency is not nearly close to 100%, and, 

consequently, increases in efficiency are still possible (Goodrich et al., 2012). 

The term ‘Area’ indicates the geography of the location where diffusion takes place. Far from 

making diffusion a ‘regionalist’ field of study, this term highlights the importance of scale and 

location (Buttimer, 2001). However, these two factors can be changed in their size and focus, 

and uniqueness of areas is not implied. It is beyond the scope of this work to explore the 

implications of scale and location in natural resource and energy studies. I will defer to the 

importance of area specification to the work of Hägerstrand and Brown. Both these authors 

recognized that diffusion as a spatial process takes place somewhere, and that specific 

somewhere influences the process itself. Nevertheless, neither of these two authors implied 

regionalism in its classic meaning (Hägerstrand, 1967; Brown, 1981; Johnston, 1997).  

III.2 Institutional Framework 

Definition: ‘The ensemble of private and public organizations, including local, national and 

international governing bodies and financial institutions’. 
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Examples: Energy investment institutions, utility companies, national governments.  

 

Nelson and Winters were the first to introduce the concept of ‘technological regimes’ as ‘the 

outcome of organizational and cognitive routines’ (Nelson and Winters, 1982; Geels, 2002, 

p.1259). With the expansion of the concept by Rip and Kemp, the routines have become rules, 

and the participants in the process have expanded (Rip and Kemp, 1998; Geels, 2002). Figure 5 

shows the meso-level in Geels conceptual framework embracing the definition provided by Rip 

and Kemp. 

[Figure 5 About Here] 

The multi-actor network depicted by Geels hosts some the elements forming the IF, for Public 

authorities, research networks and institutions, and financial networks are the elements of this 

subject. Based on the role of networks and interactions, previous socio-technical literature tends 

to focus on the interactions among these elements (Geels, 2002; Verbeek and Slob, 2006 and 

2006b). In this conceptual model, the IF is an additional, smaller field of action for agents.14 The 

relationships within each component of the IF is not described, and neither the inclusion of 

niches. This is because adopters find the IF as an integrated system of laws, financing and 

economic opportunities/risks and technical solutions. 

The IF is not a static or unchangeable: the relationships depicted by socio-technical scholars are 

still in place. However, the IF is a ‘stock’ figure when the adoption decision is made. In other 

words, potential adopters will not decide whether to adopt or not based on the possibility of 

optimizing the IF. Rather, they will first change it and then make the adoption decision based on 

the current IF. At most, uncertainty and instability can be a character of the IF.  

                                                 
14 See next section for agents’ description. 
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Previous literature has studied the role of the IF on the diffusion processes in general, and the 

one of renewable energy technologies (RETs) and DRETs in particular. Authors such as Nelson 

and Winters (1982), Rip and Kemp (1998) and Geels (2002) focused on the coordinated 

relationships existing among institutions, private companies, researchers and societal groups. 

Others pictured the IF as a possible source of adoption impairment or, at most, research 

advancements. Gillingham and Sweeney listed public organizations among potential barriers to 

the diffusion of DRETs (Gillingham and Sweeney, 2012). Maes and Van Passel specifically 

studied how policy and incentive design can prevent the spread of certain DRETs to be adopted 

(Maes and Van Passel, 2012). The IF is not solely a negative element for the diffusion process of 

DRETs. Verbrueggen et al. (2012) introduced a positive aspect of IF.15 In their work, the authors 

listed the IF as source of research alongside the usual source of barriers to the diffusion of 

DRETs. Despite focusing on networks, Nelson and Winters (1982), Rip and Kemp (1998) and 

Geels (2002) admitted that the IF could have either a positive or a negative effect on diffusion. In 

the sections dealing with the links among the three components of my model, I will explore how 

these connections take place.  

III.3 Adopting Agents 

Definition: ‘The agent responsible for the final adoption decision’.  

Examples: Households, commercial estates, private organizations.  

 

The third subject of the conceptual model are adopting agents (AAs). I identify AAs as the 

element responsible for making the adoption decision. This means that the agent can be any 

potential adopter of a DRET, where the smallest case is the individual person. 

                                                 
15 In the present work, the adjective ‘positive’ indicates the presence of certain qualities rather than a moral qualification.  
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The agents are the atoms constituting each of the upper levels in the diffusion model. In socio-

technical models, adopters are included in the meso-level and in the micro-level (Geels, 2002). 

At the micro-level, adopters are nested within niches, which represent the main engine of 

diffusion. At the meso-level, networks of adopters interact with other networks (e.g. producers) 

to enable change and modify the landscape (Rip and Kemp, 1998; Geels, 2002). In Hägerstrand’s 

model, agents are the smallest unit of adoption: the have the ultimate decision of adoption and 

enable technologies to diffuse faster (Hägerstrand, 1967). I draw from both Hägerstrand and 

Geels: AAs are the basic subjects of the model. However, they are not necessarily households or 

people. Additionally, their network and interactions become part of the IF as societal groups or 

organizations.     

Section IV: Interactions within the Conceptual model 

 

This section describes how the various elements of the conceptual model interact with each other 

and how they affect the diffusion of DRETs. Within the model, each element is both active and 

passive at the same time. That is, each subject contribute to modify the others and it is affected 

by these changes through the new inputs coming from the other subjects.  

DRETs enter the model either spatially exogenously or endogenously. Spatially-exogenous 

DRETs generate outside the AG and are imported in to it through the adoption. The adoption of a 

new DRET is part of the innovation process (Hägerstrand, 1967). Spatially-endogenous DRETs 

are generated within the AG and heavily rely on the role of the IF. The exogenous ones are 

imported within the AG. In his work, Geels describes the dynamic of innovation hierarchically 

through the sequence micro, meso and macro-levels. The first of these three levels is where 

innovation takes place: niches are the engine of innovation, and they provide the networks at the 
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meso-level with the fuel for changing the landscape (macro-level). The model presented here 

focuses on the diffusion process, allows innovation to arise within any level. 

IV.1 How Area Geography influences the IF 

Whether labeled as landscape, environment or Area Geography, the influence exercised by the 

physical elements of the world over human organizations and interactions has been one of the 

leitmotif in geography. Starting the 1910s, works on environmental and climate determinism 

have tried to uncover the links between nature and human activities, even if some authors 

assumed extreme positions (Johnson, 1997).  

In the model presented here, the AG interacts with the IF providing the resource endowment 

available to DRETs. The endowment provided by the AG works like a budget constraint over the 

IF. DRETs need fuel to generate energy in all its forms. This fuel can be wind, solar radiation, 

biomass or any other renewable fuel. Every AG has a certain amount of fuel available. Partly, 

this availability depends on the physical setting of the AG. For instance, an area with extensive 

protected areas will have its resource endowment limited. An additional element defining the 

resource endowment is the efficiency of the DRETs available through the IF. For instance, solar 

panels that are more efficient result in an increased availability of solar energy. Figure 6 shows 

how this push-pull effect affect the resource endowment. The dynamic of this effect follows that 

one of a budget constraint usually adopted in microeconomics (Mass-Colell, 1995). 

[Figure 6 About Here] 

The AG does not only provides resources in a positive way. By imposing an endowment, even a 

one that can be modified, the AG generates a pressure over the IF. This pressure generates the 

incentive on the IF to find new renewable fuels.  

IV.2 How the IF influences the Area Geography 
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In the model, I borrow from the definitions and concepts of Hägerstrand and Geels, recombining 

them in a way appropriate for the diffusion of process of DRETs. However, there are several 

conceptual differences in from these two author. First, my model allows the IF to change the AG 

at any time and at any rate. The IF can change the status quo of the AG for the diffusion of 

DRETs very quickly. This situation can take place, for instance, in the case of major shocks, 

such as the recent series of moratoria on nuclear power put in place in Germany after the 

Fukushima-Daichi disaster in 2011 (Wittneben, 2012). The immediate consequence, among 

others, has been the opening of new non-nuclear power plants and the consequent change in the 

built environment.  Second, differently from Hägerstrand, I include private organizations within 

the IF.16 This is because in DRETs diffusion processes private organizations are part of the 

‘offering’ made to the adopting agents, providing services and goods and influencing public 

organizations in their legislative efforts.17 

In my model, the IF has two major ways to shape the AG and influence the diffusion of DRETs: 

1. Legislation (including Laws, Regulations and Policies, Hägerstrand, 2001); 

2. Research and Development (Verbruggen et al., 2010; Fri, 2003); 

3. Deployment. 

According to Hägerstrand, ‘Legislation […] is the fundamental instrument of governing’ 

(Hägerstrand, 2001, p.43). Even those authors identifying public organizations as source of 

barriers in the diffusion of renewable energies focus on this particular instrument (Verbrueggen 

et al., 2010; Gillingham and Sweeney, 2012). Laws can modify the AG very quickly or over 

time, as their period of implementation vary considerably. There are two examples that best 

                                                 
16 Unless all or part of these are among the potential adopters of a specific DRET.  
17 Describing the dynamics within each of the subjects of my model is beyond the scope of this paper. However, I accept the description of 
network-based interaction proposed by Geels (2002), although some of the elements part of the meso-level described by the Dutch author are 
presented here as Adopting Agents.  



34 
 

describe how legislation affect the AG of DRETs. First, consider the role of renewable portfolio 

standards (RPS). RPS is ‘[…] a policy that requires electricity retailers to provide a minimum 

percentage or quantity of their electricity supplies from renewable energy sources. An RPS 

establishes a base level of demand but allows the market to determine which renewable energy 

resources will meet that demand’ (Cory and Swezey, 2007). In recent years, national and local 

governments have used RPS as a way to shift towards renewable energy generation. The 

combination of RPS and subsidies directed to RETs in general have expanded the number of 

RETs in adopting states.18 The changes in the AG occur through the diffusion of RETs and the 

closure of non-RET plants (Gee, 2010). As a second example to show how legislation changes 

the AG, consider districting and panning regulations. Local governments can either boost of tap 

the availability of natural resources and locations for siting DRETs and RETs simply imposing a 

ban on parks or banning the installation of solar panels on multi-story buildings. Areas belonging 

to the AG have to be excluded as part of the resource endowment. This modification of the AG 

can happen very quickly once the law/regulation is approved, thus showing that the AG is not 

necessarily the most difficult level to modify.   

The second tool is Research. The way Research changes the AG is easy to understand: 

increasing the efficiency (or reducing the relative cost). Consequently, thanks to new 

technologies and approaches, the same AG provides additional energy resources. Fri (2003) and 

Verbruggen et al. (2010) allocate research to public institution. However, private companies are 

among the largest investors in Research and Development (R&D) in most of the developed 

countries. For example, in the USA, private organizations investments in Research and 

Development amounted to 209.6% of investments in research from all other public sectors 

                                                 
18 http://www.cleanenergystates.org/assets/2012-Files/RPS/RPS-SummitDec2012Barbose.pdf. Accessed on 08/11/2013. 
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(Battelle, 2011).19 Similarly, within the European Union,20 the private sector invests the 

equivalent of 1.26% of the gross domestic product in R&D, the public and non-profit sector only 

0.76% (EUROSTAT, 2013). These data show the importance of including private organizations 

and organizations in to the IF.21  

Deployment is the last tool through which the IF affects the AG. Deployment refers to the 

supply of DRETs and services in terms of market choices. Firms and public organizations make 

DRETs influences the availability of DRETs within an AG not just through subsidies or other 

policies. Marketing decisions and the physical availability of certain technologies are 

fundamental factors in the spread of DRETs. Additionally, services associated with DRETs are 

equally important. The lack of financing options or technologies such as smart and sub-metering 

may affect hurt the diffusion of DRETs. This last concept is probably the one most strictly 

dependent on the networks within the IF. Private organizations operate within their networks, 

which are usually regulated by laws and policies. 

IV.3 How the Area Geography interacts with Adopting Agents  

The AG affects the decision process of AA through Culture. The term ‘Culture’ is wide in its 

meaning. Authors such as Hägerstrand (1988), Geels (2001), Brown (1981), , Verbeek and Sloeb 

(2006), Elzen (2006), Gee (2010) and Verbrueegen et al. (2010) have introduced in one form or 

the other AG as a factor shaping the perceptions and behavior of people and human 

organizations. Possibly, the best work to understand the meaning of the word Culture and its role 

in shaping AA’s behavior towards the diffusion of DRETs come from the works of Dietz et al. 

(2005) and Hägerstrand’s (1988). With the work ‘What about nature in Regional Sciences?’ 

                                                 
19 The first number includes expenses by non-profit private organizations. Expenditures from Higher education institutions are aggregated in to 
federal and other U.S. agencies.  
20 EU-28. 
21 Hagerstrand calls these ‘firms’. The terminology employed in the present paper (‘private organizations’ or ‘private institutions’) are more 
appropriate because of their broader meaning.   
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Hägerstrand eminently reintroduced the role of nature in to the discourse of diffusion. In 

particular, the Swedish scholar has focused on the problems associated with limited resources 

and the consequences these limits can have on development (Hägerstrand 2001). Hägerstrand 

had an initial intuition of the effects of the AG over AAs in its original work on diffusion, as he 

recognizes the spatiality of the adoption process through information and personal contact 

(Hägerstrand, 1967). In the previous section of the present paper, we saw how these limits might 

not be static, as the IF has the power to redefine the part of these constraints through research. 

Nevertheless, the presence of constraints and definitions imposed by the AG are perceived by the 

AAs through the formation of values-norms-beliefs. Figure 7 was developed by Prof. Atkinson-

Palombo, and it is based on the work of Dietz et al. (2005). 

[Figure 7 About Here] 

In my model, I borrow from the concept developed by Prof. Atkinson-Palombo in that the model 

shown in the figure above describes the relationships creating AAs behaviors. Building on these 

concepts, I add the concepts of Culture, which generates memory. Through these memories, 

behaviors are continued through time. However, the modification of the AG through these 

behaviors ingenerate new changes in Values, which ignite changes in Beliefs and so on (Figure 

8).  

[Figure 8 About here] 

AG contributes to the creation of Culture, which in turns affect values and, therefore, 

environmentalism. Adoption of DRETs depends on environmental values, especially when 

DRETs are more expansive then non-DRETs. The relationship between DRETs and the AG 

affects the perception of that AAs have of the AG. Some changes affect this perception 
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negatively to the point that agents oppose the diffusion of certain DRETs (Devine-Wright, 2007; 

Gee, 2010). The perception of the AG is ‘passive’: AAs react to a change in the AG that was not 

implemented by the AG itself, but, rather, by changes occurred by and within the IF. As an 

example, consider the case of incentives introduced for adopting solar PV systems. If there is an 

increase in adoption, the landscape will change, as more systems will appear on roofs and in 

backyards. At that point, AAs may react negatively due to negative perception of solar PV 

systems as part of the landscape. On the other hand, AAs may actually accelerate their adoption 

rate because they see their landscape modified by peers, therefore increasing their confidence in 

DRETs (Bollinger and Gillingham, 2012). The dynamicity of landscape changes reinforces the 

role of time in the diffusion process: Culture changes and perception changes along with the 

landscape. The relationship between Time, Culture and Technological Change is well established 

in geography since the 1980s (see Hägerstrand, 1988; Marchetti, 1988; Schwartz, 1988). The 

addition of time as a common denominator of the system is required because it reinforces the fact 

that not even the AG (or landscape in Atkinson-Palombo’s Figure) remains the same. The 

‘dynamism of time’ has to be the constant, rather than a variable (Schwarz, 1988) or a ‘Cultural 

structure’ (Marchetti, 1988), where the term ‘structure’ identifies a fixed element within the 

study of technology diffusion.  

Despite being an extremely strong force in affecting adoption decisions and patterns, the 

relationship between the AG and AAs is complex, and still matter of study (Dietz et al., 2005; 

Devine-Wright, 2007). 

 

IV.4 How Adopting Agents influence Area Geography 
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AAs influence and modify the AG through their behavior. Any potential AA acts within the AG. 

A good example of this relationship involving DRETs is the behavior of households adopting 

solar PV systems. The adoption itself modifies the AG, particularly in case of small-scale solar 

farms. In general, any behavior of AAs affects the AG. For instance, increasing the demand of 

energy under the current scenario generates further emissions, thus accelerating the global 

increase in temperature and modifying the AG. As AAs, organizations affect the AG with their 

decisions: opening a new plant and powering it with DRETs will affect the landscape. Figure 9 

shows the effects of AA behavior over the AG along time. The behaviors are consequences of 

the chain Values-Beliefs-Norms, particularly of those affecting environmentalism. This scheme 

draws from the findings of Dietz et al. (2005). Behaviors affect the AG over time, contributing to 

reshape the AG. The new form of the AG will affect Values through Culture, thus re-initiating 

the cycle. The role played by time is extremely important: the decision of adoption of DRETs 

does not face the same AG, and neither the same AAs. If this were the case, then diffusion of 

DRETs would happen always in the same way within the same AGs.  

[Figure 9 About Here] 

 

3.4.5 How the Institutional Framework influences Adopting Agents 

The IF influences the perception, behavior and DRETs adoption patterns of AAs in three ways: 

1. Policies/Laws/Regulations (Policies); 

2. Supply of DRETs; and 

3. Education/Information (Education).  



39 
 

Policies can either prevent, slow or encourage the adoption of DRETs. For example, the 

prohibition of sub-metering affects the diffusion of DRETs technologies in rental and multi-

family complexes in Connecticut (Bronin, 2012). On the other hand, subsidies can help to make 

DRETs more affordable, lowering the barriers associated with capital requirements and 

increasing the speed diffusion (Sarzynski et al., 2012). 

The Supply of DRETs is the second way the IF interacts with AAs. In most cases, firms are the 

suppliers, although there may be locations where public organizations play this role. The supply 

of DRETs is fundamental, for most of the times AAs are not the developers of the technologies. 

Additionally, when a potential adopter investigates the market to see what is available it will take 

her  decision based on the products offered.  

Education influences the adoption decision of AAs in two ways. First, it affects the pre-adoption 

process in that it provides AAs with the tools to understand and to know the direct and indirect 

advantages of adopting DRETs. Literature has shown that higher education attainment and 

training about DRETs increase the likelihood of adoption (Pierce et al. 2009; Tate et al., 2012). 

Information plays a key-role in the diffusion of DRETs. Knowledge about the existence of 

DRETs, their accessibility, their role and advantages positively affects acceptance and adoption 

(Warren et al., 2005; Devine-Wright, 2007; Pierce et al. 2009; Tate et al., 2012). In general, 

Education/Information shape the way in which AAs perceive DRETs, whereas Culture from the 

AG shape adopters’ view of the environment and their environmental values. 

IV.5 How the Adopting Agents influence the Institutional Framework 

The last relationship arising within the factors of the model is the one generating from the AAs 

and directed towards the IF. This flux of influence is particularly important as it bonds the most 
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basic subject of the model with the container of the diffusion engine. AAs have influence the 

actions of the IF in two ways: 

1. Participation; and 

2. Voting/Support. 

Participation in the IF is the positive way through which AAs affect the IF. Within governmental 

institutions, elected officials and administrative staff are both potential adopters and par of the 

IF. Similarly, in private organizations, owners, workers, researchers are potential adopters and 

part of the IF. Voting/Support is a less direct way through which AAs affect the IF. Certainly, the 

base of AAs potentially involved in this action is broader: in democratic countries, all citizens 

meeting certain age requirement can vote. In non-democratic countries, consensus is still an 

important component for the ruling authority to maintain the status quo. Additionally, 

organizations do not directly vote: nevertheless, they can affect voting decisions and divert 

political support to specific DRETs through lobbying (Hughes and Lipscy, 2013).  

Finally, a remark about prices. The AG provides a first constraint in terms of resource 

endowment the IF and the AA can use. The networks within the AA and the IF are responsible 

for setting the first levels of demand and supply. The encounter of these two forces will generate 

the absolute and relative prices of DRETs. The IF through its internal networks generates any 

distortion of the perfect market. The AAs will face the price, which, in turn, will affect their 

decision. The decision of the AAs will influence the supply side, both at the production and at 

the political level. For example, public organizations (e.g. government) may decide to fund 

research to make DRETs cheaper, or cut tax subsidies towards fossil fuels.  

IV.6 The Dynamic of DRETs Diffusion 
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Changes in the ‘field-of-play’ or in the configuration of potential adopters are easy to relate with 

changes in the diffusion  

Figure 10 shows how a DRET will diffuse within the model. A similar figure would explain the 

aggregate diffusion of all DRETs. For simplicity’s sake, I assume the DRET at hand to be 

residential solar PV systems (RPV systems).  

[Figure 10 about here] 

 

The two constant in the diffusion process are Time and a measure of adoption (X and Y Axis 

respectively). The former measures the how long the process requires. The latter records how 

deep PV Systems have penetrated the study area. The additional axis measures the amount of 

energy produced by all users combined. The diffusion process occurs within the three nested 

subjects: the orange one, representing the total number of possible AAs is where the adoption 

curve evolves. The area between the three subjects is where the events affecting the diffusion 

take place. This area is the one where the connections described in the previous sections arise. In 

the curve depicted above, I introduced four symbols, two minuses and two pluses. The former 

represent events negatively affecting diffusion. The latter those boosting it. The region between 

the subjects is where these events generates, ‘dropping’ on the pathway of the diffusion curve. 

Initially, DPV Systems are introduced on the market and someone adopts them. The rate at 

which this initial step occurs and the condition of adoption derive from the AG-IF-AAs 

interaction. Usually, the increase in adoption at this stage is driven by factors inherent to the 

AAs, such as environmental values and information. Decline in the diffusion/adoption curve 

have multiple reasons. Decreases in energy prices can make a DRET too expensive. Similarly, 
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logistic and other technical problems may arise in during the diffusion process, thus impairing 

the adoption.  

Section V 

 

The model presented here allows understanding the three subjects affecting the diffusion of 

DRETs within and area. There are several major important contributions produced by this model. 

First, there is not specific hierarchy for the source of diffusion in terms of difficulty to modify 

one of the factors. Thus, the AG changes quickly or slowly. Second, the heart of the process lies 

not in one of the subjects, but, rather, in the relationships among them. Thus, if in Geels (2002) 

the source of the engine was in ‘Niches’, in the present model the engine is a dynamic force, 

emanated by the limits and structures existing within the study area. If not IF. AG or AAs existed 

the adoption would be zero. If only AAs existed, then adoption would be 100%. Of course, this 

case is impossible, as we should live in an endless world, with no resource-constraint, not even 

time and space. If no IF existed, then the AAs could not overcome the limitations imposed by the 

AG or develop DRETs at all.22 Third, with the inclusion of public and private organizations 

together within the IF, the public sector is not necessarily a negative force anymore. Fifth, the 

inclusion of the AG, a concept similar to the socio-technical ‘landscape’ provides the model with 

space-dependency and scale dependency. As location matters, so does the interaction between 

the location and the IF: the AG is the canvas where the IF decisions are shown. Sixth, policies 

become spatially sensitive because of the need of spatial appropriateness introduced by the 

model and based on Buttimer (2001). Policies failing to recognize the importance of the way the 

AG is the reflection of the IF decisions may be incomplete, such as in the case of Connecticut 

(Bronin, 2012). Seventh, adopting agents are not passive receivers of the diffusion process whose 

                                                 
22 Even in the case of ‘free donations’ from an exogenous IF (e.g. a foreign country) a minimal IF would be et-up to educate and inform the AAs 
of the DRET specifications.  
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decision rest in the adoption itself. Rather, they can actively change the AG and the IF, that is, 

they are the process itself. Whether they are depicted as networks (e.g. in Geels, 2002; Bollinger 

and Gillingham, 2012) or as single agents, AAs are affected by the diffusion process, which, in 

turn, modifies every level of the model. Finally, because the three subjects change, time becomes 

part of the model: situations or dioramas generated by the model are not static, but follow paths 

created by the interaction among the subjects of the diffusion process. The major consequence is 

that the model does not describes the diffusion process at a specific point in time, but, rather, 

provides the elements to understand the path followed by the adoption/diffusion process.  
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Figure 1. The Place of DRETs in Research 
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Figure 2. Historic Perspective of Literature on DRETs Diffusion 

 

Figure 3. Components of the Conceptual model 
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Figure 4. Multiple levels as a nested hierarchy (Geels, Fig.3, 2002) 

 

 

Figure 5. The multi-actor network involved in sociotechnical regimes. (Geels, 2002, Figure 

2) 
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Figure 6 The Push-Pull Effect Defining the AG Resource Endowment 

 

Figure 7. Values-Beliefs-Norms Influence over Behavior 
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Figure 8. AG Influencing the Adopting Agents 

 

Figure 9. Values-Beliefs-Norms Influence over Are (see notes) 
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Figure 10. Diffusion of DRETs in Conceptual model 
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Spatial Patterns of Solar Photovoltaic System Adoption: The 
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1. Introduction 

 
Economists and geographers have long been interested in the factors governing the patterns of 

diffusion of new technologies. Since the work of Hägerstrand (1952) and Rogers (1962), many 

authors have explored the characteristics of technology diffusion and the role of policies, 

economic factors, and social interactions in influencing the waves of diffusion seen for many 

new products (Bass, 1969; Brown, 1981; Webber, 2006; Towe and Lawley, 2013). 

Understanding the patterns of diffusion—and particularly spatial patterns—is important not only 

from a scholarly perspective, but also from a policy and from marketing perspective. This is 

especially true when examining the diffusion of technologies with both private and public good 

characteristics, such as renewable energy technologies. 

This paper examines the spatial pattern of adoption of an increasingly important renewable 

energy technology: residential rooftop solar photovoltaic systems (henceforth “PV systems”). 

Our study area is the state of Connecticut (CT), which has actively used state policy to promote 

PV system adoption. We explore the patterns of diffusion using geostatistical approaches, 

finding that diffusion of PV systems in CT tends to emanate from smaller and midsized 

population centers in a wave-like centrifugal pattern. To explain the factors underlying these 

patterns of adoption, we perform a panel data analysis of the effects of nearby previous 

adoptions, built environment, demographic, socioeconomic, and political affiliation variables on 

PV system adoptions. We develop a new set of spatiotemporal variables that both capture recent 

nearby adoptions and retain the ability to control for unobserved heterogeneity at the Census 

block group level. We find clear evidence of spatial neighbor effects (often known as “peer 

effects”) from recent nearby adoptions that diminish over time and space. For example, our 

results indicate that adding one more installation on average within 0.5 miles of adopting 



58 
 

households in the year prior to the adoption increases the number of installations in a block 

group by 0.30 PV systems. We also find that built environment variables, such as housing 

density and the share of renter-occupied dwellings, are also important factors influencing the 

adoption of PV systems that are just as important as factors such as median household income 

and political affiliation. 

Several recent studies have explored the diffusion of PV systems in different contexts. 

McEachern and Hanson (2008) study the adoption process of PV systems across 120 villages in 

Sri Lanka and find that PV system adoption is driven by expectations of the government 

connecting the villages to the electricity grid, as well as tolerance for non-conformist behavior in 

the villages. Such findings suggest the possibility of social interactions influencing the decision 

to adopt a PV system, in line with a large literature on spatial knowledge spillovers in the form 

of neighbor or peer effects (e.g., Glaeser, Kallal, Scheinkman, and Shleifer (1992), Foster and 

Rosenzweig (1995), Bayer, Pintoff, and Pozen (2009), Conley and Udry (2010)). 

Bollinger and Gillingham (2012) are the first to demonstrate an effect of previous nearby 

adoptions on PV system adoption. Specifically, Bollinger and Gillingham use a large dataset of 

PV system adoptions in California (CA) to show that one additional previous installation in a zip 

code increases the probability of a new adoption in that zip code by 0.78%. Bollinger and 

Gillingham find evidence of even stronger neighbor effects at the street level within a zip code 

and use a quasi-experiment to verify their results. Richter (2013) uses a similar empirical 

strategy to find small but statistically significant neighbor effects in PV system adoption at the 

postcode district level in the United Kingdom. Both studies artificially constrain such effects 

along postal boundaries, potentially risking spatial measurement error. Such artificial boundaries 

also prevent an analysis of how the effect dissipates over time and space. Moreover, these studies 
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do not explore the spatial patterns of diffusion PV systems, which may provide insight into 

future technology diffusion. 

 Rode and Weber (2013) use spatial bands around grid points to reduce the possible 

measurement error bias from artificial borders. Using an epidemic diffusion model, they estimate 

localized imitative adoption behavior in Germany that diminishes over space. Their approach 

uses over 550,000 observations coded around a grid of points 4 km to 20 km apart covering 

Germany. Müller and Rode (2013) focus on a single city in Germany, Wiesbaden, and use the 

actual physical distance between new adoptions in a binary panel logit model. Müller and Rode 

also find a clear statistically significant relationship between previous nearby adoptions that 

diminishes with distance.23 Neither Rode and Weber (2013) nor Müller and Rode (2013) explore 

the spatial patterns of diffusion of other factors that may influence PV system adoption. 

All studies attempting to identify a spatial neighbor or peer effect must argue that they overcome 

the classic identification challenges of identifying peer effects: homophily, correlated 

unobservables, and simultaneity (Brock & Durlaf, 2001; Manski, 1993; Moffit, 2001; Soetevent, 

2006). Homophily, or self-selection of peers, could bias an estimate of a spatial peer effect 

upward if neighbors with similar views and interests move to the same neighborhoods. If there is 

self-selection of peers, the coefficient on the previous nearby installations would simply capture 

common preferences. Correlated unobservables, such as localized marketing campaigns, would 

also clearly pose an endogeneity concern. Finally, simultaneity or “reflection” could also bias 

estimates to the extent that one is affected by their peers just as their peers affect them.24 

                                                 
23 Rai and Robinson (2013) provide further evidence suggestive of neighbor effects with survey data of PV adopters 
in Austin, Texas. Of the 28% of the 365 respondents who were not the first in their neighborhood to install, the vast 
majority expressed that their neighbors provided useful information for their decision. 
24 See Bollinger and Gillingham (2012) for a mathematical exposition of each of these issues. 
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Hartmann et al. (2008) discusses approaches to address each of these identification issues, 

including the fixed effects and quasi-experimental approaches taken in some studies, such as 

Bollinger and Gillingham (2012). In this study, we address the possibility of homophily with a 

rich set of fixed effects at the Census block group level. To control for the possibility of time-

varying correlated unobservables, we include block group-semester fixed effects. Finally, 

simultaneity is not a concern for our estimation of spatial neighbor effects because we use 

previously installed PV systems. Our fixed effects strategy also addresses potential confounders 

for the other factors we examine that may influence the adoption of PV systems. 

The remainder of the paper is organized as follows. In the next section, we provide institutional 

background on the solar PV system market in our area of study, CT. In Section 3 we present our 

data sources and summarize our detailed dataset of PV systems in CT. Section 4 analyzes the 

spatial patterns of diffusion of PV systems using geostatistical approaches. In Section 5 we 

describe our approach to empirical estimation, including the development of our spatiotemporal 

variables, our empirical model, and identification strategy. Section 6 presents our empirical 

results, showing the primary factors that have influenced diffusion of solar PV in CT, such as 

spatial neighbor effects and area geography. Finally, Section 7 concludes with a discussion of 

our findings and policy implications. 

 

2. Background on Solar Policy in Connecticut 

 

The state of CT is a valuable study area for the diffusion of PV systems. Despite less solar 

insolation than more southerly states, CT is surprisingly well suited for solar with high electricity 

prices, a relatively dispersed population with many suitable rooftops, and few other renewable 

energy resources (EIA, 2013; REMI, 2007). Moreover, the CT state government has been very 
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supportive of promoting solar PV technology, with several ambitious state programs. At the 

utility level, electric suppliers and distribution companies in CT are required to meet a 

Renewable Portfolio Standard (RPS) that requires 23 percent of electricity to be generated by 

renewable energy sources by 2020. Furthermore, CT Public Act 11-80 of 2011 requires the CT 

Clean Energy Finance and Investment Authority (CEFIA) to develop programs leading to at least 

30 MW of new residential solar PV by December 31, 2022. This solar energy can be used in 

support of the utility RPS requirement, leading to more utility support for PV systems than in 

other states (DSIRE, 2013). 

The CEFIA programs involve both state incentives, which started at $5/W in 2005 and are 

currently $1.25/W for resident-owned systems up to 5kW (there is a slightly different incentive 

scheme for third-party owned systems), as well as a series of community-based programs to 

promote PV systems (CADMUS, 2014).25 These programs, begun in 2012, designate “Solarize” 

towns that choose a preferred installer, receive a group buy that lowers the price with more 

installations, and receive an intensive grassroots campaign with information sessions and local 

advertising. The first phase of the program involved four towns, subsequently expanded to five 

by March 2013. The program currently involves 30 participating towns out of the 169 across the 

state, and has been quite successful in increasing the number of installations in these towns 

(Solarize CT, 2013).26 

 

                                                 
25 As of 01/06/2014; incentive for system above 5kW is $0.75/W, up to 10 kW. These values refer to the Residential 
Solar Investment Program. Performance-based incentives are also available and are currently set at $0.18 kW/h. 
26 The Phase I Towns are: Durham, Fairfield, Portland and Westport. The Phase II Towns are: Bridgeport, Canton, 
Coventry, and Mansfield/Windham. The current towns (as of February 2014) are: Ashford, Chaplin, Hampton, 
Pomfret, Cheshire, Columbia, Lebanon, Easton, Redding, Trumbull, Enfield, Glastonbury, Greenwich, Hamden, 
Manchester, Newtown, Roxbury, Washington, Stafford, West Hartford and West Haven. Some towns participate as 
a joint effort.  
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3. Data  

 
To study the drivers and the spatial patterns of PV systems adoption in CT, we rely on several 

sources, as described in this section. 

 

3.1 PV System Adoptions 

 
CEFIA collects and maintains a database with detailed technical and financial characteristics of 

all residential PV systems adopted in state that received an incentive since the end of 2004. The 

database, updated monthly, contains detailed PV system characteristics for nearly all installations 

in CT.27 Two variables are particularly important for this study: the application date and address. 

Using the address information, we successfully geocoded 3,833 PV systems that were installed 

in CT from 2005 through the end of September 2013 at the Census block group level out of the 

3,843 installations in the database. 

 

[ FIGURE 1 ABOUT HERE ] 

 

Despite a slight reduction in new systems in 2011, CT residents have steadily adopted an 

increasing number of residential PV systems each quarter, as shown in Figure 1. In the last four 

quarters for which data are available, adoptions averaged 340 per quarter, or 11.7% increase 

from quarter to quarter. We will explore the spatial patterns of this technology diffusion in 

Section 4. 

 

3.2  Demographic, Socioeconomic, and Voting Data 

 

                                                 
27 Our understanding is that the only PV systems not in the CEFIA database are those in the small municipal utility 
regions (e.g., Wallingford, Norwich, and Bozrah). We expect that these are few. 
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We focus our analysis on the Census block group level, which is the most disaggregated level 

available for which key variables, such as median household income, are available. There are 

2,585 block groups in CT. We drop ocean block groups, and those including only university 

campuses or prisons, such as Yale University in New Haven and the prison block groups in 

Somers. We retained 2,574 (99.6% of the block groups). 

We employ socioeconomic and demographic data from several waves of the U.S. Census. We 

use the 2000 and 2010 U.S. Decennial Census as well as the 2005-2009, 2006-2010, and 2007-

2011 waves of the American Community Survey (ACS) (U.S. Census Bureau, 2013). Since 

Census boundaries changed after the 2005-2009 ACS, we convert the 2000 Census and 2005-

2009 ACS to the 2010 Census boundaries. For this conversion, we calculate the share of land 

assigned and lost to and from each block group and then take a weighted average of the variables 

in the 2000 boundaries based on land area. Once all of the Census data are based on 2010 

boundaries, we use a quadratic regression to interpolate values for the unobserved years, 

providing a panel of socioeconomic and demographic data.28 We also add the Dow Jones 

Industrial Average stock market prices (not varying over block groups), which may be 

particularly important in our setting, given the strong influence of the financial sector in CT 

(FRED, 2013). In addition, we bring in the statewide annual electricity price average from the 

preceding year to account for changes in electricity prices, which may affect the attractiveness of 

PV systems (EIA, 2013). 

We also use voter registration data provided by the Connecticut Secretary of State (SOTS). 

These data are collected on the last week of October of every year (CT SOTS, 2013). They 

                                                 
28 We use the mid-point of each ACS to provide values for 2007, 2008, and 2009. We carefully checked the 
interpolation and when it led to unrealistically low or high values, we cut off the values at 18 years for a minimum 
median age, 70 years for a maximum median age, and we cut all probabilities at 0 and 100. 
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include both active and inactive registered voters for each of the major political parties, as well 

as total voter registration. Unfortunately, SOTS data only provide aggregate data on “minor 

party” registration, so we are unable to separately identify enrollment in green and environmental 

parties from enrollment in other minor parties, such as the libertarian party. Using an analogous 

methodology to our approach for the Census data, we develop an estimate for block group-level 

political affiliation from the precinct-level data provided. 

We calculate housing density by dividing population by land area. The land area field used is 

‘ALAND’ in shapefiles available from the Map and Geographic Information Center (MAGIC) at 

the University of Connecticut (MAGIC, 2013). ‘ALAND’ is not the ideal field, for there may be 

land uses that should not be included (e.g., wetlands and forest) and it misses local differences in 

types of housing units. However, it captures the broader differences in housing across block 

groups quite well, with higher housing density in center cities and decreasing housing density 

further out. In Table 1, we summarize the descriptive statistics for each variable. 

[ TABLE 1 ABOUT HERE ] 

 

3.3 Spatial Data 

 
To examine the factors influencing patterns of diffusion of PV systems, we combine spatial data 

(GIS layers and map data) with the adoption data contained in the CEFIA Solar database. Our 

sources for the spatial data are the CT Department of Energy and Environmental Protection 

(DEEP, 2013) and the University of Connecticut MAGIC data holdings mentioned above. 

 

4. Spatial Patterns of PV System Diffusion 

 
4.1 Adoption Rates across Towns in Connecticut 
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The diffusion of PV systems displays surprising spatial patterns across CT. Figure 2 shows the 

density of PV systems at the town level as of September 2013.29 The two upper corners of the 

state show higher per-capita density, with northwestern Connecticut recording among the highest 

values. These towns are mostly rural or semi-rural communities, with a strong presence of 

vacation homes for residents of the New York and the Greater Boston areas. In the southern-

central part of the state, the town of Durham (a Phase I Solarize town) shows among the highest 

rate of adoption in the state. 

[ FIGURE 2 ABOUT HERE ] 

 

A knowledgeable CT resident will quickly observe that PV system adoption does not entirely 

follow patterns of income in CT. For example, the southwestern corner of the state hosts some of 

the wealthiest municipalities in the U.S., yet displays a lower rate of adoption than much less 

wealthy towns in southeastern CT. This can be seen clearly in Figure 3. 

 

[ FIGURE 3 ABOUT HERE ] 

 
4.2 Hot Spots and Cold Spots in PV System Diffusion 

 
Looking at adoption rates by town provides insight, but aggregating results at the town level 

imposes artificial boundaries, reducing the effects of agglomerations at the edges of towns, 

which may be particularly problematic for smaller and more densely populated towns. For a 

clearer picture of the location of agglomeration clusters of PV systems, we use two well-known 

spatial techniques: Optimized Getis-Ord method (OGO) and Anselin’s Cluster and Outlier 

Analysis (COA) (Anselin, 1995; Getis & Ord, 1992; Ord & Getis, 1995). These approaches have 
                                                 
29 As mentioned above, Norwich, Bozrah, and Wallingford are served by municipal utility companies and do not 
participate in the CEFIA incentive program. Thus, these towns have no data. 



66 
 

been applied to many fields, from epidemiology (Robinson, 2000) to land use change and 

sustainability (Su, Jiang, Zhang, & Zhang, 2011). By identifying agglomeration clusters and 

mapping them against other spatial factors, these approaches provide guidance on the underlying 

factors influencing adoption. 

We run all three of these techniques using ESRI’s ArcMap 10.2. All three require aggregated 

data, in order to achieve variability within the adoption values. Our scale is the block group 

level, thus we use the geographic center (centroid) of each bock group as the point. For COA, we 

use a 10-mile threshold and an inverse distance spatial relationship. OGO chooses the threshold 

to optimize the balance between statistical significance and observation size and thus is self-

selected by ArcGIS. Of course, these methodologies are sensitive to the input parameters, so we 

test each with different thresholds, starting at 1-mile radius around each block group centroid, up 

to the cutoff distance of 10 miles. We find little difference in the results. In fact, in GOH, results 

did not change appreciably even using the maximum distance in the study area as the threshold. 

Figure 4 presents the results of the spatial analysis. For reference, Panel A shows the housing 

density in CT by Census block group and the geocoded PV systems. Panel B presents the results 

from the OGO approach and Panel C the results from the COA approach. Hartford is highlighted 

as a reference town across the maps. 

 

[ FIGURE 4 ABOUT HERE ] 

 
The results are quite consistent across the three methodologies: there is clustering of hot spots in 

the northeastern, central-eastern, and southeastern parts of CT. In addition, there is a hotspot in 

Fairfield County in southwestern CT. There is a clustering of cold spots through the middle of 

the state, which corresponds with the most densely populated urban areas, which includes urban 
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areas such New Haven, Bridgeport, Meriden, and Waterbury. Remarkably, there also appears to 

be a cold spot in some of the wealthiest areas of CT in the southeast, which includes towns such 

as Greenwich and Stamford. These initial results do not mean that income plays no role in the 

adoption process. Rather, it suggests that policies aimed solely at lowering the cost of PV 

systems are not enough, and policymakers need to undertake other efforts in order to spread the 

adoption of PV systems. These maps greatly enrich our view of the diffusion of PV systems from 

Figure 4 and underscore the complex relationships between housing density and income, and the 

rate of PV system adoption.  

 

4.3 Spatial Patterns of Diffusion over Time 

The diffusion of any new technology is a dynamic process, which often exhibits a characteristic 

spatial pattern over time. For example, classic diffusion models often show that new 

technologies are adopted in a centrifugal, wave-like pattern, starting from larger population 

centers (e.g., see Hägerstrand (1952) and Brown (1981)). 

To examine the pattern of diffusion over time and space, we use fishnetting (Mitchell, 2005). We 

specify the size of each cell in the fishnet as 1.5 miles, a length small enough to effectively 

disaggregate our block group level data, but large enough to capture more than one adoption in 

each cell. Figure 5 illustrates our fishnetting analysis for adoption at the end of 2005 and at the 

end of our dataset in 2013. Each colored cell displays the actual number of installations within 

2.25 sq. miles.  

 

[ FIGURE 5 ABOUT HERE ] 
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In Figure 5, we highlight two areas: Westport-Fairfield (black circle) and Windham-Mansfield 

(blue circle). In Westport-Fairfield, we see a case of town that already had PV system adoptions 

in 2005, and these adoptions multiplied substantially by 2013. In contrast, Windham-Mansfield 

had no adoptions in 2005 and had very few adoptions in neighboring cities. Yet, with the Phase 

II Solarize program providing a major boost, the two towns now have a very high density of PV 

systems, with up to 24 adoptions in 4.5 sq. miles. These examples highlight the factors that 

influence the dynamics of the diffusion process in CT: areas “seeded” with installations early on 

appear to have an increasing density of adoption, while at the same time programs like Solarize 

can transform the number of PV systems in a locality in a short amount of time.  

The fishnetting approach is also well-suited for testing the hypothesis that the diffusion of PV 

systems follows the typical pattern of diffusion from larger population centers. To examine the 

spatial relationship between population and PV system adoption, we map the town population 

along with the fishnet of PV system adoptions for 2005, 2008, and 2013 in Figure 6. The ten 

largest towns by population are outlined in red and the ten smallest towns are outlined in black. 

 

[ FIGURE 6 ABOUT HERE ] 

 
If the adoption process of PV systems followed a wave-like centrifugal pattern based in the 

largest towns, we would expect to see initial concentrations within the largest towns in the state, 

with adoptions multiplying within these areas and diffusing to the smaller towns over time. The 

pattern we observe differs from these expectations in two ways. 

First, it appears that PV systems diffuse not only from the largest centers, but also from many 

midsized and smaller towns. For example, consider Durham, in south-central CT, with a 

population of 7,388, which is about a third of the state mean of 21,300 residents per town. 



69 
 

Durham hosted one of the very first PV systems, and, as of September 2013, it has the highest 

number of PV systems in the state (143), thanks in part to the Solarize CT program. Second, new 

agglomeration centers appear over time in areas that did not have installations in 2005. For 

example, the town of Bethlehem (pop. 3,607) had neither a single PV system in 2005 nor a 

neighboring town with one. By the end of 2008, the town still had very few adoptions. By 2013 

it had 23 PV systems. Interestingly, it appears that by 2013, Bethlehem served as a small center, 

with neighboring areas also adopting PV systems in a centrifugal pattern around the center. 

Why might we see medium-sized and smaller towns acting as centers for diffusion of PV 

systems, in contrast to the classic results? The combination of the technical characteristics of PV 

systems along with the built environment and institutional setting in CT provides likely 

explanations. Most directly, PV systems are most suitable for single-family housing, due to the 

larger roof space and lack of split incentives that multifamily dwellings must contend with. 

Many of the single-family homes in CT that are well-suited for PV systems are in smaller 

communities. Many of the better off-communities in CT are also small communities, and PV 

system customers must be able to afford the investment. In addition, local permitting regulations 

and fees have an important influence on the speed and difficulty of installing a PV system. A 

new pro-solar local administration can expedite the process of installing a PV system and 

provide an example for neighboring towns. This could quickly change a town from a town with 

few adoptions to source of diffusion waves. The Solarize program has the potential to do the 

same. 

These results, while deviating from the classic models of diffusion, make sense and may apply in 

other contexts as well.  Of course, a different set of regulatory, socioeconomic, and technological 

characteristics would likely create a very different pattern. The results in McEachern and Hanson 
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(2008), indicating a wave-like pattern emanating from peripheral villages with limited 

connection to the central grid is a case in point. In the next section, we turn to an empirical 

model designed to explore the factors that underlie the spatial diffusion patterns observed here. 

 
 

5. Empirical Approach 

 

5.1 Creation of the Spatiotemporal Neighbor Variables 

 

One major factor that may mediate the diffusion of solar PV is the presence of spatial neighbor 

effects. At the heart of our empirical approach is our methodology for creating spatiotemporal 

variables to capture the influence of previous neighboring installations on adoption. 

For each PV system application in the database, we record how many PV systems had previously 

been completed within a 0.5, 1, and 4 mile radius of the installation. We make the calculation 

recording the number of installations within each radius in the 12 months prior to the installation, 

24 months prior to the installation, and since 2005 (there were very few installations prior to 

2005 in CT). In other words, for each PV system k we counted the number of neighboring 

installations j, such that:  

 
dk,j <= D 

 
and 
 
tk – tj <= T or tk => tj , 

 
where dk,j is the Euclidean distance (in feet) between PV system k and j, D is the distance 

specification (2640, 5280 or 21120 feet), tk is the application date of PV system k, tj is the 

application date of  PV system j, and T is the temporal lag (12 months or 24 months). To more 

precisely examine the effect at each distance, we subtract the inner distances from the outer radii, 
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in order to see an effect within 0.5 miles, from 0.5 to 1 mile, and from 1 mile to 4 miles. This 

approach is a multiple-ring buffer method, where the buffers are both spatial and temporal, as 

shown graphically in Figure 7. 

 

[ FIGURE 7 ABOUT HERE ] 

 

Importantly, we remove other installations with applications during the same year-quarter (e.g., 

2005Q1) as the household adopting in the count of recent neighbors adopting. This entirely 

avoids the simultaneity, or reflection, problem discussed in the introduction and reduces the 

likelihood that the decision to install is made before some of the other neighbors chose to install, 

for some households may have made the decision before the application is submitted.30 

These spatiotemporal counts of nearby PV systems capture the relevant previous installations 

that we hypothesize will influence the household decision to adopt a PV system. We finally 

convert these variables to the block group-level by calculating the mean of the spatiotemporal 

count in that block group for each of the radii and period. This provides a useful measure of the 

average number of neighbors that are influencing new adopters in a block group. Since the 

variable is at the block group-level, it can be matched with our Census data to allow for a panel 

data analysis. We call these block group-level variables our “spatiotemporal neighbor” variables. 

This approach has significant advantages over the previous approaches to quantifying spatial 

neighbor effects. For example, Bollinger and Gillingham (2012) use variables for the cumulative 

number of installations in a zip code, which they call the “installed base,” as well as the 

cumulative number of installations on a street in a zip code. Estimates based on the zip code may 

                                                 
30 It turns out that removing these installations does not change our primary results much at all, but for consistent 
estimation of our coefficients, we recognize that this is important. 
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be subject to a measurement error bias, analogous to the well-known areal bias (e.g. Openshaw 

(1984)), for there is a clear bias for households on the edge of zip codes. Moreover, zip codes are 

much larger than block groups. 

Müller and Rode (2013) avoid this potential measurement error bias by examining the distance 

between 286 geocoded buildings with PV systems in Wiesbaden, Germany. Despite the small 

sample, this is an improvement over a zip code-level or street-level analysis. However, from a 

spatial perspective, several possible errors were introduced: issues with geocoding led to 149 of 

the PV systems assigned to proximate buildings and 38 PV systems that were second or third 

systems on these buildings are allocated to nearby buildings rather than assigned to the building 

they were on. From an econometric perspective, a reader may also be concerned that no effort 

was taken to address the classic issues in identifying peer effects discussed in the introduction. 

We feel that our approach is a useful compromise that allows for a block group panel data 

analysis to address peer effect identification concerns, while at the same time leveraging careful 

spatial analysis to reduce spatial measurement error. 

 

5.2 Model of Demand for PV Systems 

 

To examine the factors that influence residential PV system adoption, we model the demand for 

residential PV systems in a block group i and at time t as a function of a variety of 

socioeconomic, demographic, political affiliation, built environment, policy, and installed base 

variables. Our specification can be parsimoniously written as follows: 

 

PVcounti,t =α + Ni,t β + Bi,t γ + Di,t θ + π Si,t + µi  + φt + εi,t (3) 
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where PVcounti,t is the number of new PV system adoptions in block group i at time t; Ni,t is a 

vector of the spatiotemporal neighbor variables described above (we run separate regressions for 

12 months prior and 24 months prior); Bi,t is a vector of built environment variables; Di,t is a 

vector of socioeconomic, demographic, and political affiliation variables; Si,t is the percentage of 

installations in the block group-year that are from a Solarize campaign; µi are block group fixed 

effects; φt are time dummy variables; and εi,t is a mean-zero error term.31 In one of our 

specifications we consider the number of new adoptions in a year-quarter (i.e., 2005Q1), so t is 

the year-quarter. In addition, we also examine a specification with block group-semester fixed 

effects (the two semesters are defined as the January through June and July through December). 

In this specification, µi   and φt would be combined into a single interaction fixed effect. 

Vector Di,t contains variables for the Dow Jones Industrial Average to capture overall economic 

conditions, the electricity price (largely constant within utility region over time),  median age, a 

dummy for the median age being in the oldest 5% of our sample to capture concentrations of 

elderly, percentage of population who are white, percentage of the population who are black, 

percentage of the population who are Asian, median household income, percentage of registered 

voters who are democrats, and percentage of voters who are registered to minority parties (e.g., 

the green party or libertarian party). These variables in are important controls and are also useful 

to interpret. For example, the political affiliation variables help us understand the effects of 

environmental values on the adoption of PV systems, for democrats consistently tend to vote in 

favor of RPS regulations (Coley & Hess, 2012). 

The vector of built environment variables Bi,t includes the housing density, the number of 

houses, and the share of renters. These variables control for differences in the number of 

                                                 
31 We use a fixed effects approach, as a Hausman test results allow us to reject the orthogonality assumption of the 
random effects model at 99% confidence level. 
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households available to install PV systems. Finally, our block group fixed effects and time 

dummies are critical for controlling for unobserved heterogeneity at the block group level and 

over time. For example, block group fixed effects control for any non-time-varying block group-

specific unobservables, such as a solar installer being headquartered in that location. Time 

dummies help control for broader trends in increased adoption over time due to lower prices and 

increased awareness of PV systems. Furthermore, our results with block group-semester fixed 

effects address the possibility that there are localized trends that work at the sub-yearly level that 

could confound our estimates of our estimate of the peer effect. For instance, if a new solar 

installer moved into a block group, we might see a surge of adoptions in a localized area. 

 

5.3 Estimation and Identification 

 

We estimate this model first using a linear fixed effects approach and then using a Negative 

Binomial approach as a robustness check. The Negative Binomial model is a common approach 

for use with count data when the mean of the count variable does not equal the variance, but it 

involves additional structural assumptions about the relationship (e.g., see Cameron and Trivedi 

(1998)). We also examine the results of a Poisson model as an additional check.   

Our approach follows the logic in Bollinger and Gillingham (2012) and discussed in Hartmann et 

al. (2008) by using a flexible set of fixed effects to identify spatial peer effects. Block group 

fixed effects clearly control for endogenous group formation leading to self-selection of peers 

(homophily).  Simultaneity, whereby one household influences others at the same time that they 

are influenced by others is addressed by the temporal lag between when the household decision 

to adopt is made and when others have adopted. Specifically, we create our spatiotemporal 

installed base variables in such a way that we are focusing on the effect of previous installations 
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on the decision to adopt. Finally, we flexibly control for correlated unobservables, such as time-

varying marketing campaigns or the opening up of a new headquarters by an installer, with block 

group-semester fixed effects. These approaches follow the state-of-the-art in the literature in 

identifying peer effects in the absence of a quasi-experiment and at the same time address 

possible identification concerns regarding the coefficients on the other covariates of interest. 

 

6. Results 

 

6.1 Primary Results 

 

We are particularly interested in the vector of parameters β, which tells us the extent to which 

spatial neighbor effects influence the decision to adopt PV systems. In addition, we are also 

interested in many of the other coefficients to help us better understand the influence of different 

built environment, socioeconomic, political affiliation, and demographic factors on the decision 

to adopt. 

In Table 2, we present our primary results. The first two columns present OLS results with year-

quarter dummy variables, to control for changing trends in the PV system market, but no block 

group fixed effects. Columns 3 and 4 present results with both year-quarter dummy variables and 

block group fixed effects to control for unobserved heterogeneity at the block group level. 

Columns 5 and 6 present results with block group-year-semester fixed effects to address possible 

time-varying correlated unobservables. Each column uses a different vector of spatiotemporal 

variables. The first column includes all nearby installations in the previous 12 months and the 

second includes all nearby installations in the previous 24 months, and the third all nearby 

installations since the beginning of our dataset (January 1, 2005). Our preferred results are those 
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with block group-year-semester fixed effects in columns 4 through 6, although we are comforted 

that the results are quite similar regardless of the fixed effects used. 

 
[ TABLE 2 ABOUT HERE ] 

 

Our results show clear evidence suggestive of a spatial neighbor effect.  Regardless of whether 

we include block group or block group-year-semester fixed effects, our spatiotemporal variables 

are positive, statistically significant and of a similar magnitude. This finding demonstrates that 

the mean number of installations surrounding households increases the number of adoptions in 

that block group. For example, in column 5, the coefficient on the number of neighbors within 

0.5 miles indicates that if the households that install PV systems have on average one additional 

nearby installation within 0.5 miles in the previous 12 months, then the number of installations in 

the block group per quarter will increase by 0.30 PV systems. At the average number of block 

groups in a town (15), this implies 18 additional PV systems per town due to the spatial neighbor 

effect. 

Furthermore, the change in the results across space and time is intuitive. The coefficients are 

generally smaller when we consider installations that are further away, such as between 0.5 and 

one mile, and between 1 and 4 miles (although not always statistically significant). These results 

are consistent with Bollinger and Gillingham (2012), who find evidence of a stronger effect of 

neighboring installations at the street level than at the zip code level. Similarly, the coefficients 

for each of the spatiotemporal variables are smaller as we move from the 12 month to the 24 

month results, suggesting a diminishing spatial peer effect over time. 

In contrast to Rode and Weber (2013), and Müller and Rode (2013), the spatial peer effect does 

not appear to fade after 1 or 1.2 km. While the magnitude of the coefficient decreases with 
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distance, it is still highly statistically and economically significant in the 1 to 4 mile range.32 This 

result may be explained in part by a difference in area geography. Wiesbaden, the city studied by 

Müller and Rode (2013), is an urban area with a population density almost double the population 

density in CT (CIA, 2013; Statistik Hessen, 2013). Moreover, the transportation system and 

physical mobility is quite different: CT has 0.86 vehicles per capita, while Wiesbaden has only 

0.52 (Bank, 2013; DOE, 2013). We would expect spatial peer effects to extend over a larger area 

when potential adopters tend to move further to pursue their normal social interactions. 

Our results also highlight the important role of our built environment variables. Consistent with 

our geospatial analysis, housing density appears to decrease adoption. Similarly, the share of 

renters decreases adoption. These results are consistent with the presence of split incentive 

problems in multi-family and renter-occupied dwellings (Bronin, 2012; Gillingham, Harding, & 

Rapson, 2012; Gillingham & Sweeney, 2012). In owner-occupied multifamily dwellings, it may 

not be possible to prevent free-ridership and recoup the costs of the installation. Similarly, when 

the landlord pays for electricity in a rental arrangement, the landlord may not be able to contract 

with the renter to pay for the cost of the installation. Even when the renter pays for electricity, 

there may still be barriers: the renter may not have permission to install a PV system and may not 

plan on staying in the dwelling long enough to make a PV system pay off.  

Our results show less statistically significant results when it comes to most other socioeconomic 

and demographic variables. There is weak evidence that higher median household income 

increases adoption, which may not be surprising, given the complicated spatial relationship 

shown in Section 4 between income and PV system adoption, The racial variables are largely not 

statistically significant, with only weak evidence of more adoption when there is a higher 

                                                 
32 We also performed specifications with a 1 to 2 and 2 to 4 mile range, which show a similar pattern, but with less 
statistical significance. 
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percentage of whites in the block group and a lower percentage of non-whites. There is weak 

evidence that a higher median age increases adoption, but block groups with the very highest 

median age appear to have lower adoption. The political affiliation variables are not statistically 

significant, nor is the Dow Jones Industrial Average. 

On the other hand, the electricity price is positive and highly statistically significant until the 

block group-year-semester fixed effects are applied. The result can be interpreted as indicating 

that a one dollar increase in the electricity cost increases the number of adoptions in a block 

group and a year-quarter by 0.5 to 0.6 additional installations. The percentage of PV systems that 

are part of the Solarize program is an important control when we do not have block group-year-

semester fixed effects, for it is a localized marketing campaign. Not surprisingly, it is highly 

statistically significant until we add the block-group-year-semester fixed effects. The results 

suggest that a one-percentage point increase in Solarize adoptions in a block group leads to small 

(0.005 additional installations) increase in adoptions in that block group. This may be more 

sizable at the town level when a larger percentage increase in Solarize programs is considered. 

To summarize, we find strong evidence of localized spatial neighbor effects and built 

environment variables influencing the adoption of PV systems and much weaker evidence of 

other socioeconomic, demographic, and political affiliation variables influencing adoption. This 

result may seem surprising, but in light of the spatial patterns seen in Section 4, it makes a great 

deal of sense. 

 
 6.2 Robustness Checks 

 
We perform a several robustness checks on our results in Table 2, such as varying the spatial 

distance and time frame of our spatiotemporal variables and exploring additional fixed effects 

specifications. We do not report these results here for they are entirely consistent with the results 
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in Table 2. We do report the results using the cumulative number of adoptions in each block 

group (the “installed base”) rather than the spatiotemporal variables in order to compare our 

specification to that in Bollinger and Gillingham (2012). Columns 1 and 2 in Table 3 shows the 

results of our specifications in columns 3 and 4 in Table 2 for reference. Column 3 shows the 

same specification with the same controls, only with the cumulative installed base, rather than 

our spatiotemporal variables. The results indicate a highly statistically significant positive effect, 

indicating that one additional installation in the installed base increases adoptions in a block 

group by 0.11 in that quarter. This is a comparable effect to the effect shown in our 

spatiotemporal variables, but appears to be an average of the effect over space and time. A major 

contribution of this paper is that it allows for a much more detailed view of the levels at which 

neighbor effects work. 

 
 

[ TABLE 3 ABOUT HERE ] 
 
 
Table 3 also performs another useful robustness check. Columns 4 and 5 show the results of a 

Negative Binomial regression with comparable specification to our primary specifications in 

Table 2, only with year dummy variables (the model did not converge with year-quarter dummy 

variables or with block group fixed effects). As mentioned above in Section 5, the nonlinear 

Negative Binomial model is a common approach to use with count data for the dependent 

variable. It adds a structural assumption, but this structure may make sense if adoptions occur 

according to a Negative Binomial distribution. The Negative Binomial model is preferred to the 

other common nonlinear model used for count data, the Poisson model, when the mean of the 

count variable is not equal to the variance, for a characteristic of the Poisson distribution is that 

the mean is equal to the variance. 
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In our data, the mean of our PV count variable is 0.04 and the variance is 0.07. This suggests that 

a Negative Binomial model is preferable to a Poisson distribution. The results in columns 4 and 5 

are largely consistent with those in our preferred linear specification. These results can be 

viewed as confirmatory of our previous results, which we view as our preferred results due to the 

ability to include additional fixed effects as controls for unobserved heterogeneity.33 

 

7. Conclusions 

 
This paper studies the primary drivers influencing the diffusion of solar PV systems across time 

and space. We use detailed data on PV systems in CT, along with built environment, 

socioeconomic, demographic, and political affiliation data, to highlight the key drivers through 

both a geospatial analysis and a panel data econometric analysis. 

Our geospatial analysis reveals that the pattern of PV system diffusion does not simply follow 

patterns of housing density or income, as might be expected. Indeed, the patterns we find 

indicate that small and mid-sized centers of housing density are just as important—if not more 

important—than larger centers as the main players for the diffusion of PV systems. Previous 

literature suggests that the diffusion would be expected to emanate from larger centers, while we 

find wave-like patterns of diffusion primarily from smaller and mid-sized centers. We speculate 

that this pattern in CT is a result of the state’s jurisdictional and socioeconomic fragmentation, 

current regulations affecting adoption in multi-family buildings, and the Solarize community-

based programs. 

Our panel data analysis develops a new set of spatiotemporal variables that we have not 

previously seen in the literature. These variables allow us to more carefully model the spatial and 

                                                 
33 Results from a Poisson model with block group fixed effects did converge, and also provided comparable results, 
but with very weak statistical significance for nearly all coefficients, including the spatiotemporal ones. 
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temporal aspects of the influence of neighboring installations on the decision to install, while still 

retaining a panel data structure that allows us to address the primary confounders of any peer 

effects or neighbor effects analysis: homophily, correlated unobservables, and simultaneity. We 

consider the refined scale of our analysis as an important contribution. 

We find evidence that the primary determinants of the patterns of diffusion of PV systems in CT 

are spatial neighbor effects and built environment variables. The electricity price and existence 

of a Solarize program also play an important role in influencing adoption. Our results indicate 

that there are important spatial neighbor effects: adding one more adoption on average increases 

the number of PV system adoptions in a block group per year-quarter by roughly 0.2 to 0.3 PV 

systems. Over a year, this is roughly one additional system in a block group or 12-18 per town 

when taken at the average number of block groups per town. Of course, CT is in the early stage 

of adoption of PV systems, so this effect is capturing the early stage of a classic “S-shaped” 

diffusion curve (Rogers, 1962). Eventually, nearly all rooftops suitable for PV systems have 

already adopted and block groups in CT will become saturated. This is an important context to 

keep in mind for extrapolating our results forward in time. 

Our built environment empirical results align with our spatial analysis. We find that adoptions 

are decreasing in housing density and the share of renter-occupied dwellings, corresponding to 

our finding that large centers are less important for the diffusion of the new technology. We view 

these results as consistent with the possibility of split incentives in multi-family and rental 

properties (Bronin, 2012; Gillingham & Sweeney, 2012). 

Besides providing fresh evidence on the nature of the diffusion process of an important 

renewable energy technology, our results also have several policy and marketing implications for 

CT and comparable settings. The demonstrated importance of spatial neighbor effects is 
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undoubtedly useful for PV system marketers and policymakers interested in promoting PV 

systems, for it suggests carefully considering measures to leverage such spatial neighbor effects. 

Indeed, the community-based Solarize programs are designed to foster social interactions about 

solar PV systems and have thus far appeared in our data to be quite successful in increasing PV 

system adoption. Our results showing the pattern of adoption of PV systems are also relevant to 

policymakers, for they underscores Bronin’s finding that split incentives are quite important in 

hindering the adoption in many more populated communities in CT. Policies reducing regulatory 

barriers for “shared solar” or “community-based solar” may allow for greater penetration of PV 

systems in more densely populated and less wealthy communities.  
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Figures 

 

 

Figure 1. Total and additional adoptions PV Systems in CT over time. 
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Figure 2. PV system density and Phase I and II Solarize CT towns in 2013. 
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Figure 3. PV systems and median household income in Connecticut in 2013. 
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Figure 4. Spatial distribution of PV system hot spots and cold spots using different 

approaches. Panel A shows PV systems and housing density. Panel B Optimized Getis-Ord 

(OGO) and Panel C shows Local Moran’s I (COA) results. 

 

 

Figure 5. Using fishnetting to examine the pattern of adoption of PV systems between 2005 

and 2013. 
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Figure 6. Fishnetting reveals patterns in PV systems adoption and population over time. 
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Figure 7. Selection of all neighbors since 2005 (left) and in previous 12 months (right). 
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Tables 

 

Table 1. Summary Statistics 
Variable Mean Std. Dev. Min Max Source 

Count of new PV systems by 
block group and quarter 

0.04 0.27 0 18 CEFIA (2013) 

Installed base 0.48 1.24 0 39 CEFIA (2013) 

Average neighboring 
Installations, 0.5 Miles - 12 
months 

0.02 0.25 0 17 Calculated 

Average neighboring 
installations, 0.5 to 1 mile - 12 
months 

0.02 0.24 0 15 Calculated 

Additional number of new 
installations, 1 to 4 mile - 12 
months 

0.17 1.59 0 91 Calculated 

Average Neighboring 
Installations, 0.5 Miles - 
24months 

0.03 0.34 0 19.33 Calculated 

Average Neighboring 
Installations, 0.5 to 1 mile - 24 
months 

0.03 0.35 0 18 Calculated 

Average Neighboring 
Installations, 1 to 4 mile - 24 
months 

0.28 2.31 0 108 Calculated 

Number of Housing Units 
(1,000s) 

0.61 0.37 0.01 13.38 U.S. Census 

Housing Density (0.001s) 0.79 1.30 >0.01 28.91 Calculated 
% of Renter-occupied Houses 32.03 27.82 0 100 U.S. Census 
Median Household Income (tens 
of thousands of 2013 dollars) 

7.89 4.71 0.15 76.86 U.S. Census 

% pop who are white 77.38 23.45 0 100 U.S. Census 
% pop who are black 10.70 16.86 0 100 U.S. Census 
% pop who are Asians 4.34 5.79 0 73.12 U.S. Census 
Median Age 40.41 8.50 11.10 80 U.S. Census 

Median Age in Highest 5% 0.10 0.30 0 1 U.S. Census 

% democrats 37.70 13.73 0 75.23 CT SOTS 

% pop in minor parties 0.53 0.56 0 7.06 CT SOTS 

Electricity cost (Cent/kWh) 18.39 1.40 16.28 20.46 EIA (2013) 
Dow Jones Level (1,000s) 116.46 17.02 77.58 152.86 FRED (2013) 
% of Solarize CT PV Systems 0.43 6.30 0 100 CEFIA (2013) 
Notes: all variables have 90,090 observations, where the observation is a block group-year-
quarter. 
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Table 2. Primary Specifications 

 
Year-Quarter Dummies 

Block Group FE & 
Year-Quarter Dummies 

Block Group-Year-
Semester FE 

 
12 Months 24 Months 12 Months 24 Months 

12 
Months 

24 
Months 

Average 
Neighbors within 
0.5 Miles 

0.18*** 0.11*** 0.17*** 0.10*** 0.30*** 0.16*** 

(0.0625) (0.0380) (0.0615) (0.0369) (0.0781) (0.0462) 

Average 
Neighbors 0.5 to 1 
Mile 

0.12*** 0.069*** 0.12*** 0.071*** 0.21*** 0.097*** 

(0.0420) (0.0235) (0.0420) (0.0233) (0.0587) (0.0284) 

Average 
Neighbors 1 to 4 
Miles 

0.050*** 0.042*** 0.052*** 0.043*** 0.065*** 0.056*** 

(0.0066) (0.0042) (0.0065) (0.0042) (0.0080) (0.0048) 

Number of 
Housing Units 
(1,000s) 

0.032*** 0.030*** 0.015** 0.014** -0.022 -0.057 

(0.0053) (0.0052) (0.0062) (0.0060) (0.0404) (0.0545) 

Housing Density 
(0.001s) 

-0.0063*** -0.0059*** -0.0088*** -0.0083*** 0.0015 0.0041 
(0.0009) (0.0008) (0.0014) (0.0014) (0.0094) (0.0113) 

% of Renter-
occupied Houses 

-0.00024*** 
-

0.00021**
* 

-
0.00039**

* 

-
0.00038**

* 

-
0.000034 

0.00042 

(0.0000) (0.0000) (0.0001) (0.0001) (0.0006) (0.0007) 
Median Household 
Income ($10,000) 

0.00074** 0.00067** 0.00041 0.00029 0.0033 0.010 
(0.0003) (0.0003) (0.0005) (0.0005) (0.0061) (0.0082) 

% pop who are 
white 

0.00017** 0.00014** 0.00013 0.000088 -0.00026 -0.00090 
(0.0001) (0.0001) (0.0001) (0.0001) (0.0017) (0.0019) 

% pop who are 
black 

-0.000017 -0.000021 -0.00032** -0.00034** 0.00061 0.00090 
(0.0001) (0.0001) (0.0001) (0.0001) (0.0015) (0.0014) 

% pop who are 
Asians 

-0.00071*** 
-

0.00073**
* 

-0.000070 -0.00016 0.0063 0.0054 

(0.0001) (0.0001) (0.0003) (0.0003) (0.0065) (0.0066) 

Median Age 
0.00029* 0.00029* 0.00012 0.00012 0.0031 0.0023 
(0.0002) (0.0002) (0.0002) (0.0002) (0.0021) (0.0024) 

Median Age in 
Highest 5% 

-0.0088* -0.0076 -0.0093* -0.0082* -0.073 -0.0025 
(0.0047) (0.0047) (0.0048) (0.0047) (0.0578) (0.0520) 

% democrats 
-0.000100 -0.00013 0.00028 0.00028 -0.00082 -0.0014 

(0.0001) (0.0001) (0.0003) (0.0003) (0.0037) (0.0041) 
% pop in minor 
parties 

-0.00060 0.000011 0.0013 0.0018 0.0054 0.0052 
(0.0020) (0.0019) (0.0027) (0.0026) (0.0135) (0.0188) 

Electricity cost 
(Cent/kWh) 

0.0056*** 0.0038*** 0.0064*** 0.0045*** -0.0044 -0.0053 
(0.0013) (0.0012) (0.0014) (0.0013) (0.0050) (0.0060) 

Dow Jones Level -0.00024 - -0.000084 -0.00038** 0.00025 0.00017 
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(1,000s) 0.00053**
* 

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) 
% of Solarize CT 
PV Systems 

0.0055*** 0.0061*** 0.0051*** 0.0057*** -0.00068 0.00038 
(0.0013) (0.0013) (0.0012) (0.0013) (0.0008) (0.0006) 

Constant 
-0.088** -0.024 -0.10** -0.038 -0.041 0.025 
(0.0404) (0.0359) (0.0412) (0.0368) (0.1751) (0.2099) 

R-squared 0.34 0.37 0.33 0.36 0.36 0.38 
Observations 90,090 90,090 90,090 90,090 90,090 90,090 
Notes: Dependent variable is the number of installations in a block group in a year-quarter. An observation is a block group-year-
quarter. Standard errors clustered on block group in parentheses.* denotes p<0.10,  ** p<0.05, and *** p<0.010. 

Table 3. Robustness Checks 

 
Block Group FE & 

Year-Quarter Dummies 
Negative Binomial  

with Year Dummies 

 
12 Months 24 Months 

Installed 
Base 

12 Months 24 Months 

Average 
Neighbors 
within 0.5 Miles 

0.17*** 
(0.0615) 

0.10*** 
(0.0369) 

 
0.47*** 
0.1048 

0.22*** 
(0.0677) 

Average 
Neighbors 0.5 
and 1 Mile 

0.12*** 
(0.0420) 

0.071*** 
(0.0233) 

 
0.30*** 
(0.0983) 

0.13** 
(0.0608) 

Average 
Neighbors 
1 and 4 Miles 

0.052*** 
(0.0065) 

0.043*** 
(0.0042) 

 
0.52*** 
(0.0224) 

0.34*** 
(0.0135) 

Cumulative 
Installed Base   

0.11*** 
(0.0088) 

 
 

Number of 
Housing Units 
(1,000s) 

0.015** 
(0.0062) 

0.014** 
(0.0060) 

-0.038*** 
(0.0123) 

0.86*** 
(0.1248) 

0.83*** 
(0.1307) 

Housing Density 
(0.001s) 

-0.0088*** 
(0.0014) 

-0.0083*** 
(0.0014) 

0.017*** 
(0.0031) 

-0.81*** 
(0.1894) 

-0.97*** 
(0.2138) 

% of Renter-
occupied Houses 

-
0.00039**

* 
(0.0001) 

-
0.00038**

* 
(0.0001) 

-0.000056 
(0.0001) 

-
0.0078*** 

(0.0022) 

-
0.0076*** 

(0.0023) 

Median 
Household 
Income ($10,000) 

0.00041 
(0.0005) 

0.00029 
(0.0005) 

-0.00025 
(0.0006) 

-0.017*** 
(0.0052) 

0.014** 
(0.0054) 

% pop who are 
white 

0.00013 0.000088 -0.00010 0.018*** 0.014** 
(0.0001) (0.0001) (0.0001) (0.0059) (0.0064) 

% pop who are 
black 

-0.00032** -0.00034** 0.00024* -0.0079 -0.014 
(0.0001) (0.0001) (0.0001) (0.0080) (0.0086) 

% pop who are 
Asians 

-0.000070 
(0.0003) 

-0.00016 
(0.0003) 

0.00027 
(0.0003) 

-0.021** 
(0.0088) 

-0.027*** 
(0.0094) 
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Median Age 
0.00012 0.00012 -0.00027 0.012** 0.0096* 
(0.0002) (0.0002) (0.0002) (0.0054) (0.0056) 

If Median Age in 
Highest 5% 

-0.0093* 
(0.0048) 

-0.0082* 
(0.0047) 

-0.015** 
(0.0065) 

-0.15 
(0.01071) 

-0.10 
(0.1098) 

% democrats 
0.00028 
(0.0003) 

0.00028 
(0.0003) 

-
0.0012*** 

(0.0004) 

-0.00039 
(0.0047) 

-0.0013 
(0.0050) 

% pop in minor 
parties 

0.0013 
(0.0027) 

0.0018 
(0.0026) 

-0.0071* 
(0.0042) 

0.16** 
(0.0376) 

0.014*** 
(0.0403) 

Electricity cost 
(Cent/kWh) 

0.0064*** 
(0.0014) 

0.0045*** 
(0.0013) 

0.00014 
(0.0018) 

-
0.0007*** 

(0.0003) 

0.10*** 
(0.0147) 

0.081*** 
(0.0153) 

Dow Jones Level 
(1,000s) 

-0.000084 
(0.0002) 

-0.00038** 
(0.0002) 

0.0084 
(0.0013) 

0.0091*** 
(0.0014) 

% of Solarize CT 
PV Systems 

0.0051*** 
(0.0012) 

0.0057*** 
(0.0013) 

0.0069*** 
(0.0007) 

-0.00031 
(0.0030) 

0.031 
(0.0026) 

Constant 
-0.1038** 

(0.0412) 
-0.0382 

(0.0368) 
0.13 

(0.0644)* 
-9.08*** 
(0.6983) 

-8.19*** 
(0.7403) 

R-squared 0.34 0.37 0.23  
 

Observations 90,090 90,090 90,090 90,090 90,090 
Notes: Dependent variable is the number of installations in a block group in a year-quarter. An observation is a 
block group-year-quarter. Standard errors clustered on block group in parentheses.* denotes p<0.10,  ** 
p<0.05, and *** p<0.010. 
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The Influence of Spatial Setting and Socioeconomic Profile of Urban 
Areas in the Diffusion of Residential PV System



 
 

 

 

 

 

 

1. Introduction 

 
Due to rising concerns related to global warming, national security, rising energy prices 

and resource scarcity, scholars, policymakers and marketers in the energy sector have 

turned their attention to encourage the adoption of residential and commercial renewable 

energy technologies (RETs). In this context, the USA have devoted resources to 

encourage the adoption of residential photovoltaic systems (PV systems). The choice of 

this RET is not fortuitous.  PV systems emit virtually zero CO2 when producing power, 

marginal production costs are nearly zero, and they can be scaled down relatively easily, 

operating as stand-alone systems (Guidolin and Mortarino, 2010). However, in many 

regions of the USA and the world, PV systems remain relatively expansive, requiring 

jurisdictions to create monetary incentives for adopters (Gillingham and Sweeney, 2012). 

However, thanks to improved technology and rising energy prices, beginning 2012 PV 

systems have achieved grid parity in several regions within the USA and abroad (Zaman 

and Lockman, 2011). As this trend continues, policymakers will have to recognize that 

even generous monetary incentives may not actually increase the adoption of PV 

systems, and, consequently the transition towards a sustainable society. In the USA, 

states have acknowledged the role that non-monetary drivers play in the adoption process 

of PV systems. Several states have promoted programs with components aimed at 

exploiting network interactions such as peer effects, which previous research have found 

to influence positively the adoption of PV systems (e.g. Bollinger and Gillingham, 2012). 

These programs are linked with the local characters of the jurisdictions where they take 



 
 

 

 

 

 

place. Within a U.S. state, for example, the role of smaller jurisdictional subdivisions, 

such as towns, increases as state programs try to exploit non-monetary incentives. 

Additionally, because many times these programs are designed at state level, they may 

not be capable of capturing local differences in the socioeconomic profiles of residents, 

thus not unfolding their full potential. Recently, literature on the diffusion of PV systems 

has highlighted the role of several socioeconomic and spatial drivers in the adoption 

process of PV systems. Within this stream of research, Bollinger and Gillingham (2013) 

were the first to the role of spatial peer effects, while controlling for other socioeconomic 

characters, such as income. The two authors focused their study in California, 

demonstrating that an additional PV system increases the adoption rate within each ZIP-

code by 0.78%. Similarly, Richter (2013) found evidence of smaller, although 

statistically significant, spatial peer effects within postal area codes in the United 

Kingdom. Rode and Weber (2012) and Müller and Rode (2013) found evidences of 

spatial peer effects at two different scales in Germany. The first two authors use an 

epidemic diffusion model built around an artificial grid to test the existence of spatial 

peer effects, income levels and housing density across Germany. Müller and Rode (2013) 

focused on the town of Wiesbaden and its urban surroundings, using the actual Euclidean 

distance between adoptions, as well as a set of socioeconomic variables to control for 

additional adopters’ characteristics. Both these works identified the limit of spatial peer 

effects at around 1-1.2 km. The generalization of this finding is partially disputed by 

Graziano and Gillingham (2014). The two authors focused on the role that spatial peer 



 
 

 

 

 

 

effects, built environment and income play on the diffusion of PV systems in 

Connecticut. In their work, Graziano and Gillingham used a multi-ring spatiotemporal 

buffer based on the location of PV systems to control for spatial peer effect. This 

approach represents a novelty compared to the use of installed base, as in previous 

literature. The two authors found that spatial peer effects positively affect the diffusion of 

PV systems up to four miles and 24 months, although decreasing in magnitude over time 

and space. In addition, they found that housing density and renter-occupied houses tend 

to reduce the probability of adoption at block group level, while income appears to have 

no effect. Because of these results, the two authors suggested that difference in results 

between their work and the work of Rode and Weber (2012), and Müller and Rode 

(2013) in spatial and socioeconomic differences among the three study areas.  

In the present work, we focus on the different profiles of adopters within four towns in 

Connecticut: East Hartford, Glastonbury, Hartford and Manchester. We draw from the 

previous studies of Graziano and Gillingham (2014), and Bollinger and Gillingham 

(2012) to understand the role of the jurisdictional and built environment in the adoption 

of PV systems, through their effect on other socioeconomic drivers such as spatial peer 

effects. Additionally, we seek to understand what degree of generalization can be reached 

by analysts when studying with social and spatial drivers to adoption of PV systems. To 

achieve this, we use partition our four towns in to block groups, and conduct a typology 

analysis of the block groups with higher adoption rates of PV systems in 2013. We find 

that the profile of the potential adopters changes between towns, with Hartford and 



 
 

 

 

 

 

Glastonbury providing two quite interesting conflicting results in terms of area geography 

and socioeconomic status. In addition, we use the area-wide profile to understand how 

this matches the findings provided by panel and Cross-Sectional models based on 

Graziano and Gillingham (2014), for which we use more refined density values. We find 

that the built environment affects the diffusion of PV systems indirectly, as it limits the 

temporal and distance extent of spatial peer effects.  

 

1.1 Connecticut and the Four Towns 

Connecticut represents an interesting study area for PV systems diffusion. As of 2012, 

Connecticut has the third highest median household income in the USA (2012 $66,844), 

about 30% higher than the national value (Census, 2013). Despite appearing quite 

wealthy on aggregate, Connecticut has widespread income inequality, the third highest in 

the USA according to its GINI index, and poverty, which affects 21% of its residents 

(Census, 2012; Carstensen and Coghlan, 2013). These differences within the state are 

backed by the current jurisdictional fragmentation: the state is divided in to 169 towns, 

which retain wide powers in several regulatory matters. This fragmentation creates 

jurisdictional barriers dividing bordering towns and making them extremely 

socioeconomically varied. Relative to PV systems, Connecticut is currently investing 

heavily in this RET, offering monetary incentives and programs such as Solarize CT, 

conjugating monetary and social incentives (Graziano and Gillingham, 2014). 

Connecticut has reached grid parity as of 2014, mostly thanks to the high electricity 



 
 

 

 

 

 

prices in the state and the generous state incentives. The incentive programs are managed 

at state-level, with incentive levels and typologies set equal for the state as a whole. Even 

in the case of Solarize CT, towns have to apply to be part of the program. Further, even 

Solarize CT acts similarly across various towns, despite great socioeconomic differences 

among them. Along with differences in the socioeconomic profile of potential adopters, 

Connecticut towns vary in terms of built environment. Residents of smaller towns reside 

in single-family houses, whereas those of larger, and older, urban centers such as 

Hartford or New haven live in multi-family buildings. Due to the statewide prohibition of 

sub-metering and the lack of split-incentives to encourage the adoption in these areas, 

even in presence of higher income neighborhoods adoption of PV systems might be 

difficult (Bronin, 2012). In aggregate, the state has seen a surge of PV systems adoption 

in recent years. As of September 2013, 3,843 residents have adopted rooftop PV systems, 

with an increase of 36.5% from December 2012 (CEFIA, 2013). However, given the 

socioeconomic and structural differences within and between towns, current statewide 

regulations and incentive programs might work below their potential because several 

potential adopters are effectively cut out from the incentive schemes.  

Within this context, our study area offers a wide range of socioeconomic conditions. 

Figure 1 shows the extent and location of our four towns and the median household 

income at town level.  

 

[Figure 1 ABOUT HERE] 
 



 
 

 

 

 

 

The towns play different role within the Connecticut’s economy. Hartford, the capital, 

hosts several governmental buildings and it is one of the major international centers for 

insurance companies. East Hartford still hosts few large manufacturing plants. Both these 

towns have several problems related to poverty and crime. Manchester hosts one of the 

largest shopping areas in the state. Finally, Glastonbury has recently developed as a 

wealthier, sub-urban community, although it hosts several plots of farmland. Overall, the 

four towns extend for about 300 sq. km of land, and is home to 268,000 people, or 7.5% 

of the state population (Census, 2012), with Hartford being the third most populous in the 

state.  

 
The remainder of the paper is as follows: in section 2 we present a brief profile of the 

four towns and the data sources, including drawing some concerns about current data 

accessibility to scholars and policymakers. In section 3, we present the results of 

hierarchical clustering analysis; and the profile of PV adopters within the study area and 

within each town. In section 4, we present our panel and Cross-Sectional models. In 

section 5, we present and discuss the results of the econometric analysis, providing a 

comparison with the profile emerging from section 3. Finally, in section 6 we draw some 

conclusion related to current generalization associated with PV systems diffusion and 

policies.   

2. Study Area and Data Sources  

 
In the present study, we select four contiguous towns in central Connecticut: Hartford 

(the state capital), East Hartford, Manchester and Glastonbury. All combined, these four 



 
 

 

 

 

 

contiguous towns account for about 10% of the state population and 7% of the state land 

surface, or 300 sq. km. We conduct our analysis at the block group level, selecting data at 

this aereal unit when possible. Table 1 provides an overview of the sources used.  

 
[Table 1 ABOUT HERE] 

 
2.1 Socioeconomic Data 

 

In the present study, we use the socioeconomic data prepared by Graziano and 

Gillingham (2014). We selected the Block Groups belonging to Hartford, East Hartford, 

Glastonbury and Manchester from their main dataset using ESRI’s ArcMap 10.2 and 

STATA 12. These data are the result of interpolated values from actual observation 

points derived from the Census 2000 and 2010 and the American Community Surveys 

(ACS) – 5-year averages from 2005 to 2011 (Census, 2013b). The time period covered is 

2005 through September 2013. In the interpolation process, Graziano and Gillingham 

accounted for the changes in block group boundaries, using the newer boundaries 

assigned by the U.S. Census after 2008.  

 
2.2 PV Systems Data and Neighborhood Effect 

 
Data about PV systems location and date of application to the CEFIA incentive program 

come from the CEFIA Solar Database (CEFIA, 2013). The dataset contains several 

information about adopters, including address of location and the day, month and year of 

installation. The dataset records each residential installation since 2004. Because of the 

methodology used, we dropped the (few) observation available for the first year. Overall, 



 
 

 

 

 

 

the period considered runs from January 2005 and September 2013, equal to 9 years or 35 

quarters  

To understand the role of spatial peer effects, we build upon the work of Graziano and 

Gillingham (2014), introducing the spatiotemporal variable developed by the two authors. 

This variable aggregates at block group level the number of PV installations within 12 

and 24 months from each actual PV system location at various spatial distances starting 

0.5 miles. In the present work, we allow the search model to account for installations in 

towns outside the study area. However, we change our specifications to account for the 

different total extent of our study area, as explained in the model specifications.  

 
2.3 Spatial Data and Issues with Parcels Data Collection 

 
The majority of the spatial and boundary data employed assess the role of peer effect and 

for display purposes come from the University of Connecticut Map and Geographic 

Information Center (MAGIC, 2013). For understanding the role of the built environment, 

we use the parcels data created by each of these towns. Compared to previous studies, we 

do not use gross housing density (e.g. Graziano and Gillingham, 2014) or population 

density (e.g. Rode and weber, 2012) for estimating differences in the urban setting and 

the built environment. Rather, thanks to the more refined scale, we calculate the net 

housing density. This density is expressed as: 
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We recognize that using the actual living area footage would have been better. However, 

data limitation, explained below in detail, do not allow for the use of that measure. 

Despite this limitation, this density is acceptable given the urban setting of the study area. 

Many of the parcels within these four towns have been developed pre-1970, and 

dwellings tend to occupy almost the entirety of each parcel, with little space for yards. 

Because of the data limitation, we adopt a gross housing density in our panel models. 

This can be written as: 
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A second measure controlling for the urban setting is the share of single-family houses 

within each block group. We define this variable as follows: 

"#"�	���$�� 
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In the paragraph above, we did not report a single source for the parcels data. Indeed, 

Connecticut does not have a statewide or a region-wide depository of such data. 

Consequently, each of the 169 towns is responsible for collecting, storing and sharing its 

own parcels data. This extreme fragmentation is increased by a sub-fragmentation within 

each town: several offices (usually two or three) are responsible for parts of the dataset, 

and they seldom develop common fields in order to join the data in to a single dataset. 

Additionally, even when towns have their datasets displayed online in built-in GIS 

webpages, they either do not know how or are unwilling to make data available for 



 
 

 

 

 

 

research purposes, or, even worse, do not know how to get the underlying dataset, which 

have been contracted out to private companies. Finally, no attempt has ever being made 

to standardize the quality, amount and recording procedures of the datasets. As an 

example, few towns consider the ‘living area’ the actual livable square footage, whereas 

others only measure the external size of a dwelling. Additionally, the dataset rarely 

coincide with the official town borders, and several towns claim as theirs parcels 

belonging to other towns according to the U.S. Census Bureau.  

This situation rises concerns about the ability of towns and the state to take informed 

decisions, especially when it comes to projects involving more than one town, such as 

planning a new transportation corridor or a hospital servicing multiple towns.  

 

3. Typifying Selected Towns 

 
In our analysis, we focus on four towns in the central area of Connecticut: Hartford, the 

state capital, East Hartford, Glastonbury, and Manchester. All these towns are relatively 

old by U.S. standards, some having being founded as early as the XVI century. The 

towns form an interrelated space within the Hartford Metropolitan Statistical Area, and 

have strong economic ties. Nevertheless, each town is administered independently, and, 

even though they all enjoy the same statewide incentives, they regulate the processes 

through which PV systems can be licensed. In the present work, we analyze the 

socioeconomic and the spatial differences among these towns. We find that these 

differences affect the profile of adopters among these towns. Consequently, statewide 



 
 

 

 

 

 

policies and current limitations in terms of sub-metering and slit incentives curb the 

overall limit the efficiencies of the state’s incentives.  

 

3.1 Typology Analysis and Residential Spatial Barriers 

 

To capture the differences within and among towns, we use two methodologies. First, we 

use hierarchical clustering to assess the number of clusters within each town, and the 

major breakdown components (Kaufman, 2009). We display these results in dendograms 

(in appendix A). From this analysis, we infer that that the optimal number of clusters is 

four, with income being the major element determining the dataset partition. In the 

following section, we will use these results to create and compare adopters’ profiles 

across the four towns. As a first step, we analyze the presence of spatial gaps within 

residential areas. These gaps reduce and cluster the strength of spatial peer effects. 

Recent literature on PV systems diffusion have greatly highlighted the positive influence 

that these effects have on adoption (e.g. see Bollinger and Gillingham, 2012). However, 

in urban environments these effects may be reduced in presence of large portions of land 

occupied by non-residential parcels. Once aggregated at block group, or tract level, these 

effects will influence the overall adoption. Understanding the extent of these spatial gaps 

provides a better understanding of the built environment within which policies and 

adopters interact with each other.   



 
 

 

 

 

 

In Figure 2, we show the four towns, highlighting the residential parcels over all other 

town parcels. It appears quite clear that the four towns have quite different traits in terms 

of residential distribution within their boundaries.   

 

[Figure 2 About Here] 

 

Starting with Hartford, we can easily identify gap in the eastern part of the town, where 

very few residential parcels are located. This area coincides with the business district 

servicing both Hartford and the other surrounding towns, and hosts several headquarters 

of large multinational corporations (mostly insurance companies), as well as 

governmental buildings. The few residents of this area live in multifamily buildings, 

which are already penalized by the current policies (or lack of) regulating submetering in 

Connecticut (Bronin, 2012). Looking at the distribution of the (few) PV systems, we 

notice that six out of nine of the installations appear concentrated in distinct 

neighborhoods. Moving towards East Hartford, we notice that the town is almost a 

reversed copy of Hartford, in that the western portion is mostly non-residential. East 

Hartford has several spatial gaps represented by manufacturing plants. The larger plants, 

owned by Pratt and Whitney, a UTC subsidiary, has provided jobs for East Hartford 

residents for several years. This plant separate the town in to three residential areas. To 

the north, we find few adopters, spatially separated one from the other. In the center, 

adopters are closer, with an outlier laying in between two large non-residential areas. 



 
 

 

 

 

 

Finally, the southern portion, towards Glastonbury, becomes more densely populated and 

PV systems are closer to each other. Moving to Glastonbury, one can notice that the 

northern portion of this town hosts several closely built installations, and it is continuous 

with the dwellings in East Hartford. The town develops further south, and it articulates in 

to several neighborhood relatively contiguous, with several installations very close to 

each other, although the distance increases in the southern portion of the town. Finally, 

Manchester offers an interesting case of old town that has recently undergone a 

suburbanization process. Founded in the late XVI century, Manchester became one of the 

main industrial centers in the USA, hosting several mills and mechanical companies 

(MHS, 2013). After a period of decline following the closure of many companies, the 

town now hosts one of the largest shopping areas in Connecticut (‘Mall Area’ in Figure 

2). The original structure is still visible in the central-eastern portion of the settlement, 

delimited by the mall and other non-residential parcels. In this context, PV systems are 

concentrated within specific neighborhood. The clusters of PV systems are quite visible, 

suggesting that those areas have characteristics that encourage adoption.  

Overall, the towns display several spatial gaps in their residential patterns. It is significant 

that the nature of these gaps changes. For example, parks and green spaces can be easily 

access and can provide places of aggregation. Effectively, spatial peer effects appear to 

be concentrated within neighborhoods, depending on the layout of each town. 

Consequently, programs partly based on community incentives will have to target several 

neighborhoods within each town, rather than treating these towns as uniform entities. 



 
 

 

 

 

 

3.2 Profiling Adopters  

 

We employ to scales for comparing the profile of adopters. First, the characteristics, both 

socioeconomic and related to the built environment, of the block groups within these 

towns. Second, whether or not these characteristics are common across the study area. 

Table 2 presents summarizes the profile of the adopters for each town and the one for the 

region as a whole.34  

[Table 2 About Here] 

The description of the average adopter within the study area could sound like the 

following: “a high-income, white home-owner, around 45 years of age living in a newly 

built, large house in the outskirt of the towns. For each of these characteristics we can 

find an exception when looking at the profile within each town. In particular, income and 

race appear to vary across the towns. In Table 3, we present the same data in a different 

way: we present each characteristic compared to the average for the study area, 

displaying the actual value of reference and the ranking within each town’s groups.  

[Table 3 About Here] 

Comparing the towns provides a different perspective about the profile and distribution of 

PV systems.  Overall, the rate of adoption35 (PV rate) is far higher in Glastonbury than in 

all other towns. However, most of these installations are contained within one block 

group, which display a value several times higher than the average for the area 

geography. The consequence of this difference is that while in Glastonbury adoption 

                                                 
34 See Appendix B for full tables.  
35 PV systems installed as of September 2013/Residential Parcels in 2013. 



 
 

 

 

 

 

appears more diffused, East Hartford is at a different stage of PV systems penetration. 

Income is another characteristic changing its relative value across the towns. Although 

levels above $100,000 are displayed in three of the towns, adopters in Hartford appear to 

reside in medium-low income areas. Further, the same income level places adopters at 

different levels within each town. In Glastonbury, the same income level of East Hartford 

belongs only to the second highest income brackets, whereas in Manchester, the top 

earners make twice as much as East Hartford. Overall, a household income of around 

$100,000 is expected to characterize the block groups where adopters reside. Additional 

differences are evident in the racial profile of adopters. In Glastonbury, the adopters tend 

to be described as residents of diverse neighborhood. In Hartford, the larger number of 

adopters are in areas with the highest percentage of white people. However, the ‘diverse’ 

neighborhood in Glastonbury has twice as much the share of white people than the one in 

Hartford.  

3.3 Built Environment and Social Status 

 

We turn out attention at the built environment. Following the findings of Bronin (2012), 

and Graziano and Gillingham (2014), it appears that current policies in support of PV 

systems in Connecticut tend to favor single-family, owner-occupied houses in low-

density areas. The results from the study area as a whole seem to confirm these findings. 

However, when looking each town, we find a great deal of variation among 

characteristics such as housing density, size, tenure, age and housing type. 



 
 

 

 

 

 

Within these characteristics, Hartford is an outlier compared to the other towns and the 

study area as a whole, except in the age of the adopting houses. Adopters live in smaller 

houses usually in areas with higher housing density and mixed housing types. These 

characteristics are consistent with the layout of Hartford (Figure 2): residential parcels are 

small and clustered together in several areas. Overall, the socioeconomic profile of 

adopters across these towns appear to be quite different from the overall profile across the 

study area. However, with the partial exception of Hartford, the area geography 

characterizing the presence of adopters is consistent with the one of the study area, and 

consistent with the findings of Graziano and Gillingham (2014). The higher adoption rate 

in low-density and single house block groups, combined with the mixed results from 

income confirm that additional elements influence the adoption patterns of PV systems. 

Additionally, overall low adoption rates among the more densely built towns, supports 

the finding of Bronin (2012) in that current policies favor adoption by owner-occupied, 

single-family houses.  

 

4. Quantifying Drivers and the role of the Built Environment: Models and 

Specifications 

 

The analysis of block groups’ characteristics has provided us with two main results. First, 

we identified the general profile of PV adopters, or, more precisely, the profile of an 

adopter block group. Second, we established that this profile changes across the towns, 

and, in light of the state jurisdictional and socioeconomic fragmentation, current 



 
 

 

 

 

 

statewide policies not capable of capturing these local nuances may result in an overall 

lower efficiency or bias towards specific regions. In the present section, we build on the 

previous work of Graziano and Gillingham (2014), and Bollinger and Gillingham (2013) 

using panel fixed-effect and Cross-Sectional models.36 Our specifications can be stated 

as: 

PVcounti,t = α + Ni,t β + Bi,t γ + Di,t θ + µi + ψt + εi,t                                           (3) 

where PVcounti,t  is the number of new adoptions in block group i at time t; Ni,t is the 

vector of spatiotemporal variables built by Graziano and Gillingham; Bi,t  is the vector of 

built environment variables; Di,t is a vector of socioeconomic and demographic variables; 

µi are block group fixed effects; ψt are time dummy variables; and εi,t is a mean-zero error 

term. Compared to the work of Graziano and Gillingham, we limit maximum extent of 

the spatiotemporal variables to two miles. We choose a shorter cut-off distance to account 

for the relative size of the study area: four miles would equal the diameter of the largest 

of the towns (Glastonbury), thus extending the neighborhood effects to the whole town. 

This approach is consistent with the rationale in the paper by the two authors: the area 

geography and social characteristics vary compared to the analysis of the state as a 

whole. Consequently, a variation in the magnitude and spatial peer effects is expected. 

The vector Bi,t varies between the panel models and the Cross-Sectional models due to 

data limitation. In the former, we include the ‘Gross Housing Density’, presented above, 

to control for housing densities and, to a certain extent, housing type. In the Cross-
                                                 
36 We use a fixed effects approach, as a Hausman test results allow us to reject the orthogonality 
assumption of the 
random effects model at 99% confidence level 



 
 

 

 

 

 

Sectional models, we replace this control with the ‘Net Housing Density’. Further, we 

introduce the share of single-family houses, thus actually controlling for the housing type. 

Finally, both models include the share of owner-occupied houses. As a whole, these 

variables control for the relationship between the built environment and current state 

policies. We seek to understand whether current regulations on sub-metering and split 

incentives would increase adoption of PV systems, as suggested by Bronin (2012).  

Additional controls for this group are the average year houses were built (Cross-Sectional 

models only) and share of houses with five or more bedrooms. The vector Di,t  contains 

the socioeconomic and demographic variables. The vector contains controls for median 

income, racial and age profile for each block group, with controls similar to those of 

Graziano and Gillingham. We include an additional income (dummy) control, 

income100k. This variable serves to control if the level of $100,000 positively affect 

adoption, as it appears from the towns’ profile.  As usual for panel models, we use time 

dummy to capture year-specific effects.       

 

4.1 Models Selection   

In the present work, we use several different specifications following the research of 

Graziano and Gillingham (2014), Bollinger and Gillingham (2012). In line with the work 

of these authors, we use a series of fixed-effect (FE) models to estimate spatial peer 

effects and the other socioeconomic drivers. However, due to data limitations such as the 

lack of consistent historic parcels data, we have to use a much larger time-gap (the year) 



 
 

 

 

 

 

and to make use of time-invariant models, specifically OLS and zero-negative inflated 

binomial. These second sets of models seeks to identify the influence of the area 

geography at a more refined scale than the previous works. We are confident that as 

historic parcels data will become available in the future, this work could be expanded to 

account for changes in the area geography of places. Due to the limited number of 

observations, we deem town-level analysis of little use, and, instead, focus on the study 

area as a whole.  

 

5. Results 

 

 5.1 Panel and Cross-Sectional Analysis 

 

In the present work, we are interested in: (i) the parameter β, which controls for spatial 

peer effects; (ii) the parameter γ, which would link the effect of current polices with 

area geography and the adopter’s profile; and (iii) the parameter θ associated with 

Income100k. Table 4 presents the results of our econometric analysis.  

[Table 4 About Here] 

Overall, our results are relatively consistent with previous literature: we identify spatial 

peer effect in several of our specifications, and these fade as time and space increase.37 

However, the controls associated with the adopter’s socioeconomic profile and the built 

environment show less consistency across the various models. In Table 4, the first 

column shows the result of the OLS specification with year dummies. Column two 

                                                 
37 We performed several additional runs, including quarter-level specifications and town-year FE. Results 
are available in Appendix B   



 
 

 

 

 

 

through four shows the results for the actual panel FE models. Each of these columns 

uses a different set of spatiotemporal variables, leaving unchanged the other variables. 

Column 2 uses the installed base as a control for spatial peer effect. This is the more 

common control in works on PV diffusion (e.g. Rode and Weber, 2012), and provides a 

comparison with the other spatiotemporal estimates. Column (3) and (4) shows the results 

for our preferred panel specifications. The two models are identical except that in column 

(3) the peer effects are limited to the PV systems installed up to 12 months before the 

observation. Column (4) extends this temporal distance to 24 months, thus, potentially, 

including a higher number of neighboring adoptions.  

Our results suggest that spatial peer effects fade for distances greater than 1 mile and 

when the temporal extent is increased to 24 months, and it is relatively constant even 

when we perform additional tests (Appendix B). Only distances up to 1 mile are constant 

in their prediction power, thus suggesting that spatial peer effects is relatively well 

established up to that distance within one year from the adoption. This result suggests 

that within the four towns, adopters are not influenced by changes in the urban landscape 

after one year. Furthermore, within the 12 months-period (column 3), the influence 

exerted by previous installations fades within a radius lower than the one previously 

found by Graziano and Gillingham (2012). In light of the empirical findings of these two 

authors, ad their comparison with previous works (e.g. Müller and Rode, 2013), these 

results highlight the sensitivity of spatial peer effects to the geography of the study area. 

In densely populated, although fragmented urban areas like the one analyzed in our work, 



 
 

 

 

 

 

spatial and social interaction requires shorter distances than in suburban towns. 

Additionally, the urban environment is more variegated, and new installations become 

easily part of what agents perceive as ‘familiar’. The results from the variables on the 

built environment are less conclusive. In our panel models, none of the variables 

controlling for housing density or tenure are significant. Of all other socioeconomic and 

demographic controls, specifications (3) and (4) are consistent in the negative impact 

associated with higher share of self-defined black residents. This result needs to be 

interpreted in light of the disproportionate number of low-income non-white population 

in the Connecticut and in the USA (Carstensen and Coghlan, 2013; Li and Harris, 2008). 

Finally, Median household income and the control for income above $100,000 are not 

significant. Nevertheless, the indicator for the Dow Jones Industrial Average is positive 

for specifications (3) and (4). Although uniform across all block groups, this variable has 

the advantage of capturing the global influence the economic cycle exerts over the 

adoption decision. Unsurprisingly, when the economy is in good health adoption 

increases and for an additional 1,000 points in the Dow Jones average level, we would 

expect 0.014 additional installations within each block group.  

Because of collinearity issues, we are forced to introduce our refined density and housing 

typology in Cross-Sectional models. We present these results in Table 5, and test those 

over five different specifications: OLS (12 and 24 months bands, and installed base) and 

Zero-Inflated Negative Binomial (12 and 24 months). The latter is used to account for the 

evident excess zeroes in the independent variable. We prefer this model to a Zero-Inflated 



 
 

 

 

 

 

Poisson because the mean of the count variable is not equal to its variance. In our data, 

‘PVCount’ has variance 0.33 and mean 0.22.   

[Table 5 About Here] 

The Cross-Sectional models confirms the existence of spatial peer effects up to 1 mile, 

although the results of the count models are relatively disappointing. The very low 

numbers of non-zero values in the count variable may have contributed to this outcome, 

in spite of the inflated zero values. Our preferred specification is presented in column (1). 

Within these models, we are more interested in the effects of the built environment. We 

find that the net housing density negatively affect adoption. The magnitude of this 

parameter is relatively low because of the scale chosen. An additional house within one 

square kilometer is a relatively small addition, especially in an urban environment of 300 

sq. km. This result conforms to the findings of Graziano and Gillingham (2014), and it is 

in line with the argument of Bronin (2012). It is true that single-family houses are not 

significant: however, this result may be due to aggregation issues at block group level. 

Income shows conflicting results. Median income appears to influence adoption 

negatively. However, this effect is more than balanced once we control for earners above 

$100,000 per year. This result suggests that income provides a socioeconomic level that 

allows the decision to take place. Additionally, and in light of the work of Graziano and 

Gillingham (2014), and our analysis on towns’ profiles, we argue that income is a more 

complex variable. It interacts and defines the physical and social space of households, 



 
 

 

 

 

 

thus affecting the adoption decision through the definition, for example, of the built 

environment or the educational level.  

 

To summarize, we find that spatial peer effect within our study area contribute positively 

to the adoption process, although within a shorter time period (12 months) and a smaller 

distance (1 mile). This first result is consistent with the findings of Graziano and 

Gillingham (2014) and their consideration on differences across study areas and their 

geography. This brings us to argue that the jurisdictional, social and spatial extent of the 

study areas and its component may affect the analysis and the actual adoption process, 

thus making a priori assumptions about the temporal and spatial extent of spatial peer 

effects erroneous. In addition, this result raises questions about the ability of urban 

environment to ‘absorb’ new elements of the urban landscape faster than mixed areas. In 

terms of built environment, we find that only the net housing density affects adoption 

negatively, although single-family ownership does not constitute a good predictor. 

Finally, income does not provide any meaningful insight, except in our OLS 

specifications. In those, its prediction power is split between the negative effect of 

median household income, and the positive, strong effect that block groups with median 

household income above $100,000 have on the adoption process.  

 

 

6.  Conclusions and Future Research: New Regionalism or Flexible Modelling?  

 



 
 

 

 

 

 

In the present work, we study present different drivers and profiles associated with PV 

systems adopters in four Connecticut towns. Comparing the results of the town and rea 

profiles with those of the econometric models, we find that the role of income and the 

built environment are greatly reduced in the latter. The differences in the adopter’s 

neighborhood profiles among the towns and between the each town and the study area as 

a whole suggests that policies promoting the adoption of PV systems should expand their 

degree of flexibility to account for multi-family housing units. In addition, in towns with 

large spatial gaps between residential areas, group-based programs like Solarize CT 

should be replicated within each neighborhood, rather than at town level, thus 

aggregating adopters from within the same spatial region. Finally, we found that spatial 

peer effects last shorter within the urban environment of these four towns than what 

previously found for Connecticut as a whole, suggesting that PV systems are absorb 

faster within urban environments than in suburban areas (Graziano and Gillingham, 

2014). Comparing our findings with those of other studies on spatial peer effects and 

socioeconomic profile of PV adopters, we persistently find differences related to the built 

environment, the jurisdictional fragmentation, and socioeconomic levels. We are not 

suggesting a return to a strong regionalism, where no region is similar to another. Several 

works have found sets of socioeconomic demographic and spatial elements that 

encourage or reduce adoption of PV and other energy systems across various study areas. 

However, we argue that the interaction among these elements does not always follow the 

same pattern. In our work, a different interaction emerge between spatial peer effects and 



 
 

 

 

 

 

the built environment, for the former are reduced in time. Therefore, policies will have to 

allow adopters and marketers to operate within different spatial, socioeconomic and legal 

framework, using tools such submetering, split-incentives or income-based monetary 

incentive schemes.   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Literature Cited 

 



 
 

 

 

 

 

Bollinger, B., Gillingham, K. (2012) Peer Effects in the Diffusion of Solar Photovoltaic 
Panels. 
Marketing Science, 31(6): 900-912. 
 
Bronin, S. (2012) Building-Related Renewable Energy and the Case of 360 State Street. 
Vanderbilt Law Review, 65(6): 1875-1934. 
 
Bronin, C., Wiseman, H. (2013). Community-Scale Renewable Energy. San Diego 
Journal of Climate & Energy Law, 
 
Carstensen, F., Coghlan, J. (2013). Meeting the Challenge – The Dynamics of of Poverty 
in Connecticut. Connecticut Center for economic Analysis. From 
http://ccea.uconn.edu/studies/CT-PovertyReport_Final.pdf  
 
Connecticut Energy Finance Investment Authority (2013). Solar Database, 2004-2013.  
 
FRED. (2013) Federal Reserve Economic Data: S&P Dow Jones Industrial Average.   
Retrieved 11/20/2013, from http://www.djaverages.com/?go=industrial-component  

 
Gillingham, K., Sweeney, J. (2012) Barriers to the Implementation of Low Carbon 
Technologies. 
Climate Change Economics, 3(4): 1-25. 
 
Graziano, M., Gillingham, K. (2014). Spatial Patterns of Solar Photovoltaic System 
Adoption: The Influence of Neighbors and the Built Environment. Forthcoming. 
 
Guidolin, M., Mortarino, C. (2010). Cross-country diffusion of photovoltaic systems: 
Modelling choices and forecasts for national adoption patterns. Technological 
Forecasting & Social Change, 77: 279-296. 
 
Kaufman, L. (2009). Finding Groups in Data: An Introduction to Cluster Analysis. 
Hoboken, NJ, USA: John Wiley & Sons, Inc.  
 
Li, A.C., Harris, D.,R. (2008). The Colors of Poverty: Why Racial and Ethnic Disparities 
Persist. New York, NY, USA: Russell Sage Foundation. 
 
MAGIC. (2013) University of Connecticut Map and Geographic Information Center. 
Retrieved 
10/1/2012, from http://magic.lib.uconn.edu/ 
 
Manchester Historical Society (MHS, 2013). History of Manchester. Retrieved 
03/20/2014, from http://www.manchesterhistory.org/MHS3_History.html  



 
 

 

 

 

 

 
Müller, S., Rode, J. (2013) The Adoption of Photovoltaic Systems in Wiesbaden, 
Germany. Economics of Innovation and New Technology, 22(5): 519-535.  
 

Richter, L.-L. (2013) Social Effects in the Diffusion of Solar Photovoltaic Technology in 
the UK. University of Cambridge Working Paper in Economics 1357.  
 
Rode, J., Weber, A. (2013) Does Localized Imitation Drive Technology Adoption? A 
Case Study 
on Solar Cells in Germany. TU Darmstadt Working Paper. 
 
U.S. Census Bureau (2012). American Community Survey – 2008-2012, 5 Years 
Average. Retrieved on 01/19/2014, from 
http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_
12_5YR_B19083&prodType=table  
 
U.S. Census Bureau (2013). Annual Social and Economic Supplement – Income. 
Retrieved on 03/19/2014, from 
http://www.census.gov/hhes/www/income/data/statemedian/  
 
U.S. Census Bureau. (2013b) Connecticut Census Data. Retrieved 6/11/2013, from 
http://ctsdc.uconn.edu/connecticut_census_data.html 
 
Zaman, A., Lockman, S. (2011). Solar Industry Growth… You Ain’t Seen Nothin’ Yet – 
The Grid Parity Decade. Piper Jaffrey. From: 
http://www.strategicsiliconservices.com/wp-content/uploads/2011/09/MR-PJ-
01012011.pdf  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figures 

 



 
 

 

 

 

 

 
 
 

 
 
Figure 1 – Study Area with Median Household Income at town level, 2012 
 



 
 

 

 

 

 

 

 
 
Figure 2 – Spatial Barriers and Adopters, 2013 
 
 
 



 
 

 

 

 

 

 
 
 
 
 
 
Tables  
 

Table 1. Summary Statistics and Sources  

Variable Mean 
Std. 

Dev. 
Min Max Source 

Number of new Adoptions 0.06 0.29 0.00 3.00 CEFIA (2013) 

Cumulative Installed Base 0.65 1.97 0.00 24.00 CEFIA (2013) 

Average Neighbors   

within 0.5 Mile (12 months) 

0.11 0.71 0.00 11.33 Calculated 

Average Neighbors 0.5 and 1 Mile  

(12 months) 

0.11 0.70 0.00 11.00 Calculated 

Average Neighbors 

1 and 2 Miles (12 moths) 

0.23 1.39 0.00 23.00 Calculated 

Average Neighbors 

within 0.5 Mile (24 months) 

0.44 2.54 0.00 30.00 Calculated 

Average Neighbors 0.5 and 1 Mile 

(24 months) 

0.46 2.63 0.00 33.00 Calculated 

Average Neighbors  

1 and 2 Miles (24 months) 

0.94 5.22 0.00 63.00 Calculated 

Number of Housing Units  

(1,000s) 

0.63 0.41 0.05 3.65 U.S Census 

% of Owner-occupied Houses 49.18 33.80 0.00 100.00 U.S Census 

% of Houses >5 bedrooms 3.52 6.42 0.00 65.86 U.S Census 

Gross Housing Density 1541.59 2283.09 9.50 28908.94 Calculated 



 
 

 

 

 

 

Median Household Income 

 ($10,000) 

5.60 3.71 0.15 25.57 U.S Census 

If income >$100,000 0.16 0.36 0.00 1.00 U.S Census 

Dow Jones Level (1,000) 11.75 1.65 8.89 14.87 FRED (2013) 

% pop who are white 52.45 28.59 0.00 100.00 U.S Census 

% pop who are black 25.57 24.83 0.00 100.00 U.S Census 

% pop who are Asians 5.68 8.08 0.00 73.12 U.S Census 

Median Age 36.71 9.47 11.61 80.00 U.S Census 

If Median Age in Highest 5% 0.08 0.27 0.00 1.00 U.S Census 

Cross-Sectional Variables 

Net Housing Density 886.49 524.47 0.00 2753.67 Calculated 

Share of Single-Family Houses 55.67 35.12 0.00 100.25 Calculated 

 
 

Table 2. Adopters’ Profile, Towns and Study Area 
Characteristic  East Hartford Glastonbury Hartford Manchester Study Area 

Income High income Middle income 
Middle-lower 

income 
High income High income 

Race White Diverse White Diverse White 
Home 
Ownership 

Homeowner Homeowner Homeowner Non-homeowner Homeowner 

House Size  Large houses Smaller houses Large houses Large houses Large houses 
Housing Age Recent houses Old houses Recent houses Old houses Recent houses 
Residents Age Relatively old Relatively young Relatively old Relatively old Relatively old 

Housing Density  
In sparsely 
populated 

neighborhood 

In sparsely 
populated 

neighborhood 

In densely 
populated 

neighborhood 

In sparsely 
populated 

neighborhood 

In sparsely 
populated 

neighborhood 
Housing Type Single family Single family Mixed  Single family Single Family 

 
 
 

Table 3. Adopters’ Characteristics – Relative Rankings 
Characteristic*  East Hartford Glastonbury Hartford Manchester 

Overall Adoption (PV 
Rate) 

Higher (0.0026) Highest (3.79) Lowest (0.004) Higher (0.028) 

Income (Mean) Average ($110,000; II) Highest ($110,000; III) 
Lowest ($36,000; 
III) 

Higher 
($245,000; I) 



 
 

 

 

 

 

Diversity (% white) Diverse (60%; I) Uniform (79%, III) Diverse (35%; I) 
Moderately 
Uniform (61%; 
IV) 

Home Ownership (% 
owners) 

Higher (78%, I) Highest (80%, I) Lowest (32%; III) Higher (98%; I) 

House Size (% homes > 
5 bedrooms) 

Lowest (22%; I) Highest (2%, IV) Average (5%, II) Lower (12%; I) 

Housing Age (max) 
Relatively old (1950; II 
recent) 

Relatively recent 
(1970; oldest) 

Most Recent (1976, 
II recent) 

Oldest (1860; 
oldest) 

Residents Age (median 
age) 

Average (45; oldest) 
Highest (46; II 
youngest) 

Lowest (37; II 
youngest) 

Lower (47; 
oldest) 

Housing Density (max 
residential/sq.km) 

Below average (636; II 
lowest) 

Lowest (258; lowest) 
Highest (2325, 
highest) 

Lower (354; 
lowest) 

Housing Type (% single 
family houses) 

Single Family (91%; 
lowest) 

Single Family (81%, II 
lowest) 

Mixed (40%; II 
highest) 

Mixed-Single 
Family (97%; 
Highest) 

*Notes: Description is relative to whole area. Level and ranking of highest adopting group are shown in parentheses.  

 
 
 

Table 4. Panel Models  

 
Year 

Dummies 
Block Group and Year FE 

 
12 Months 

(1) 

Installed 
Base 
(2)   

12 Months 
(3) 

24 Months 
(4) 

Average 
Neighbors 
within 0.5 Miles 

0.13*** 
(0.0117) 

 

0.13*** 
(0.0396) 

0.016 
(0.0239) 

Average 
Neighbors 0.5 and 
1 Mile 

0.13*** 
(0.0133) 

0.13** 
(0.0558) 

0.016 
(0.0178) 

Average 
Neighbors 1 and 2 
Miles 

0.022*** 
(0.0072) 

0.027 
(0.0294) 

0.018 
(0.0134) 

Installed Base 
 

0.076*** 
(0.0183)   

Number of 
Housing Units 
(1,000s) 

0.040*** 
(0.0138) 

-0.049 
(0.0358) 

-0.045 
(0.0358) 

-0.072* 
(0.0436) 



 
 

 

 

 

 

% of Owner-
occupied Houses 

0.00054** 
(0.0002) 

0.000054 
(0.0008) 

0.00073 
(0.0005) 

-0.00013 
(0.0009) 

% of Houses >5 
bedrooms 

0.00092 
(0.0007) 

-0.0051** 
(0.0020) 

-0.00038 
(0.0014) 

-0.0025 
(0.0020) 

Gross Housing 
Density 

-0.0000043* 
(0.0000) 

0.0000013 
(0.0000) 

-
0.000000066 

(0.0000) 

-0.0000039 
(0.0000) 

Median Household 
Income ($10,000) 

-0.0041 
(0.0025) 

-0.000024 
(0.0081) 

-0.0052 
(0.0035) 

0.0012 
(0.0070) 

If income 
>$100,000 

0.097*** 
(0.0206) 

0.029 
(0.0451) 

0.014 
(0.0424) 

0.0068 
(0.0504) 

Dow Jones Level 
(1,000s) 

0.011 
(0.0070) 

0.011* 
(0.0058) 

0.014** 
(0.0054) 

0.0065** 
(0.0026) 

% pop who are 
white 

0.000087 
(0.0004) 

0.0014** 
(0.0006) 

-0.00037 
(0.0005) 

0.00015 
(0.0006) 

% pop who are 
black 

-0.00016 
(0.0003) 

-0.00059 
(0.0006) 

-0.0010** 
(0.0004) 

-0.0011* 
(0.0006) 

% pop who are 
Asians 

0.0010 
(0.0006) 

0.0022 
(0.0015) 

0.0022 
(0.0014) 

0.00074 
(0.0016) 

Median Age 
-0.00028 
(0.0007) 

0.0019 
(0.0014) 

0.00085 
(0.0011) 

0.0049** 
(0.0019) 

If Median Age in 
Highest 5% 

0.075*** 
(0.0217) 

0.026 
(0.0484) 

0.0098 
(0.0359) 

-0.030 
(0.0415) 

Constant 
-0.15* 

(0.0884) 
-0.23** 

(0.1059) 
-0.13* 

(0.0753) 
-0.19* 

(0.0981) 
Year Dummies Y Y Y Y 
R-squared 0.58 0.20 0.57 0.47 
Observations 1845 1845 1845 1845 

Notes: Dependent variable is the number of new installation in each block group 
each year, * p<0.10 ** p<0.05  *** p<0.010 

 
 

Table 5. Cross-Sectional Models  

 
OLS 

Zero-Inflated Negative 
Binomial 

 
12 

Months 
24 

Months 
Installed Base - 

12 Months 
12 Months 

(4) 
24 Months 

(5) 



 
 

 

 

 

 

(1) (2) (3) 
Average 
Neighbors 
within 0.5 Miles 

0.13*** 
(0.0306) 

0.047 
(0.0456)  

0.032 
(0.1147) 

0.027 
(0.1251) 

Average 
Neighbors 0.5 and 
1 Mile 

0.16*** 
(0.0289) 

0.10** 
(0.0496)  

0.067 
(0.1017) 

0.025 
(0.1355) 

Average 
Neighbors 
1 and 2 Miles 

-0.024 
(0.0170) 

0.017 
(0.0237)  

-0.019 
(0.0568) 

-0.022 
(0.0731) 

Cumulative 
Installed Base   

0.11*** 
(0.0125)   

Number of 
Housing Units 
(1,000s) 

0.031 
(0.0379) 

0.034 
(0.0478) 

0.023 
(0.0500) 

0.010 
(0.5447) 

0.070 
(0.6994) 

% of Owner-
occupied Houses 

0.0027** 
(0.0013) 

0.0020 
(0.0016) 

0.00010 
(0.0017) 

-0.0029 
(0.0236) 

-0.0071 
(0.0262) 

% of Houses >5 
bedrooms 

-0.00035 
(0.0024) 

-0.0036 
(0.0030) 

-0.0074** 
(0.0031) 

-0.0038 
(0.0187) 

-0.0074 
(0.0186) 

Net Housing 
Density (# 
residential 
parcels/sq.km of 
residential parcels) 

-
0.00013** 
(0.0001) 

-
0.00012* 
(0.0001) 

0.000078 
(0.0001) 

-0.00013 
(0.0006) 

-0.000032 
(0.0006) 

% of Single-family 
parcels 

-0.00032 
(0.0010) 

0.000080 
(0.0013) 

0.0012 
(0.0014) 

0.00067 
(0.0125) 

0.0019 
(0.0123) 

Median Household 
Income ($10,000) 

-0.027*** 
(0.0083) 

-0.013 
(0.0105) 

-0.0045 
(0.0110) 

-0.016 
(0.0469) 

-0.000077 
(0.0442) 

If income 
>$100,000 

0.32*** 
(0.0950) 

0.21* 
(0.1185) 

0.083 
(0.1257) 

0.52 
(0.5956) 

0.45 
(0.5739) 

% pop who are 
white 

0.00058 
(0.0017) 

0.00069 
(0.0021) 

0.0017 
(0.0022) 

0.019 
(0.0321) 

0.022 
(0.0339) 

% pop who are 
black 

-0.00071 
(0.0016) 

-0.00079 
(0.0020) 

-0.00020 
(0.0021) 

0.020 
(0.0333) 

0.022 
(0.0353) 

% pop who are 
Asians 

0.0020 
(0.0029) 

-0.00037 
(0.0037) 

0.0028 
(0.0038) 

0.031 
(0.0383) 

0.033 
(0.0371) 

Median Age 
0.00074 
(0.0031) 

0.0069* 
(0.0038) 

0.0061 
(0.0040) 

0.015 
(0.0349) 

0.027 
(0.0412) 

If Median Age in 
Highest 5% 

0.089 
(0.0894) 

-0.070 
(0.1126) 

0.038 
(0.1178) 

0.13 
(0.6738) 

-0.063 
(0.7470) 



 
 

 

 

 

 

Constant 
0.088 
(0.1866) 

-0.091 
(0.2336) 

-0.38 
(0.2442) 

-2.50 
(2.9598) 

-3.00 
(2.993) 

Inflated: 
# New Adoptions 
Constant 

 

  
-45.5 
(18873.88) 

-44.9 
(15448.52) 

23.8 
(15705.55) 

23.5 
(12781.16) 

Lnalpha 
Constant 

  
-27.5 
(656.27) 

-20.0 
(667.35) 

R-squared 0.72 0.55 0.50 
  

Observations 205 205 205 205 205 
Notes: Dependent variable is the number of new installation in each block group  

* p<0.10 ** p<0.05  *** p<0.010 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

 

 

 

 
 
 
 
 
 
 
 
 

Appendix A 

 
A1. East Hartford  
 
 
 
 
 
 
 



 
 

 

 

 

  



 
 

 

 

 

 

A2. Glastonbury 
 

 
 
 
A3. Hartford 
 



 
 

 

 

 

  



 
 

 

 

 

 

A4. Manchester 
 



 
 

 

 

 

  



 
 

 

 

 

 

Appendix B 

 
B1. Town-Year Fixed Effect  
 
 Town-Year 

FE 
Block Group and 

Quarter FE 
Zero Negative 

Binomial 
Town-Year FE 

 12 Months 12 Months 12 Months 
Average 
Neighbors 
within 0.5 Miles 

0.13*** 
(0.0426) 

0.072*** 
(0.0069) 

0.35** 
(0.1595) 

Average 
Neighbors 0.5 
and 1 Mile 

0.13** 
(0.0537) 

0.057*** 
(0.0091) 

0.044 
(0.1704) 

Average 
Neighbors 
1 and 2 Miles 

0.027 
(0.0259) 

0.060*** 
(0.0049) 

-0.036 
(0.1056) 

Number of 
Housing Units 
(1,000s) 

0.028 
(0.0172) 

0.010** 
(0.0039) 

0.71*** 
(0.2524) 

% of Owner-
occupied Houses 

0.00079** 
(0.0003) 

0.00018*** 
(0.0001) 

0.019*** 
(0.0069) 

% of Houses >5 
bedrooms 

0.0012 
(0.0009) 

0.00027 
(0.0002) 

0.0092 
(0.0135) 

Gross Housing 
Density 

-0.00000079 
(0.0000) 

-0.000000040 
(0.0000) 

0.000038 
(0.0001) 

Median 
Household 
Income ($10,000) 

-0.0096 
(0.0061) 

-0.00090 
(0.0006) 

-0.026 
(0.0316) 

If income 
>$100,000 

0.089* 
(0.0507) 

0.0094 
(0.0066) 

0.30 
(0.3684) 

Dow Jones Level 
(1,000s) 

 0.000047 
(0.0002) 

0.0015 
(0.0142) 

 
% pop who are 
white 

0.00014 
(0.0002) 

0.000098 
(0.0001) 

0.044*** 
(0.0159) 



 
 

 

 

 

 

% pop who are 
black 

0.0000080 
(0.0001) 

0.000013 
(0.0001) 

0.023 
(0.0166) 

% pop who are 
Asians 

0.0012* 
(0.0006) 

0.00027 
(0.0002) 

0.058*** 
(0.0186) 

Median Age 
-0.00090* 

(0.0005) 
-0.000041 

(0.0002) 
-0.00017 
(0.0191) 

If Median Age in 
Highest 5% 

0.081** 
(0.0365) 

0.016*** 
(0.0059) 

0.32 
(0.3883) 

Constant 
0.021 

(0.0271) 
-0.014 

(0.0226) 
6.15 

(532.7771) 

R-squared 0.54 
1845 

0.39 
7175 

 
Observations 5083 

Notes: Dependent variable is the number of new installation in each block group 
* p<0.10 ** p<0.05  *** p<0.010 

 
 
 
B2. Quarter and Year Level, No Dow Jones  
 
 

 
Block and Quarter FE,  Block and Year FE,  

 12 Months 12 Months 

Average Neighbors 
within 0.5 Miles 

0.072*** 
(0.0069) 

0.13*** 
(0.0397) 

Average Neighbors 0.5 
and 1 Mile 

0.057*** 
(0.0091) 

0.13** 
(0.0559) 

Average Neighbors 
1 and 2 Miles 

0.060*** 
(0.0049) 

0.027 
(0.0295) 

Number of Housing 
Units (1,000s) 

0.010** 
(0.0039) 

-0.043 
(0.0358) 

% of Owner-occupied 
Houses 

0.00018*** 
(0.0001) 

0.00073 
(0.0005) 



 
 

 

 

 

 

% of Houses >5 
bedrooms 

0.00027 
(0.0002) 

-0.00047 
(0.0014) 

Gross Housing Density 
-0.000000040 

(0.0000) 
-0.00000012 

(0.0000) 

Median Household 
Income ($10,000) 

-0.00090 
(0.0006) 

-0.0050 
(0.0035) 

If income >$100,000 
0.0094 

(0.0066) 
0.014 

(0.0424) 

% pop who are white 
0.000098 
(0.0001) 

-0.00040 
(0.0005) 

% pop who are black 
0.000013 
(0.0001) 

-0.0010** 
(0.0004) 

% pop who are Asian 
0.00027 
(0.0002) 

0.0020 
(0.0014) 

Median Age 
-0.000041 

(0.0002) 
0.00083 
(0.0011) 

If Median Age in 
Highest 5% 

0.016*** 
(0.0059) 

0.010 
(0.0360) 

Constant 
-0.0085 

(0.0096) 
0.033 

(0.0463) 

Temporal 
Dummies 

Y Y 

R-squared 0.39 0.57 

Observations 7175 1845 

Notes: Dependent variable is the number of new installation in each block 
group 

* p<0.10 ** p<0.05  *** p<0.010 

 
 

 

 

 

 

 



 
 

 

 

 

 

Conclusions  

In my dissertation, I have presented several result relevant to the current research on the 

diffusion of DRETs and PV systems. The three works presented here provide new 

answers to the questions outlined in the introduction, and represent useful findings for 

policymakers and scholars. In relation to the overarching objectives, I propose a 

temporally dynamic conceptual model capable of accounting for the role of organizations 

as well as the one of area geography, thus expanding the notion of innovation through the 

mere contribution of niches. I used two concepts within the model, the spatial 

relationships between agents (in terms of spatial peer effects) and the interaction between 

policies and area geography in the two empirical works on PV systems. In terms of 

spatial patterns, PV systems in Connecticut appear to contradict previous literature: towns 

with the largest populations are not the engine of the diffusion, which, instead, generates 

in medium-sized towns with populations within Connecticut’s average. Further, my 

empirical estimation demonstrates a strong relationship between adoption and the number 

of nearby previously installed systems as well as built environment and policy variables. 

The effect of nearby systems diminishes with distance and time, suggesting a spatial 

neighbor effect conveyed through social interaction and visibility. Finally, I find that 

socioeconomic and spatial differences among urban areas within the same jurisdiction 

(Connecticut) can greatly affect the diffusion process, especially when policies aimed at 

encouraging the adopting of PV systems do not account for these spatial and social 

differences. Furthermore, in the four towns studied in the third chapter, I find that the 



 
 

 

 

 

 

temporal extent of spatial peer effects is reduced in time and space. This result suggests 

that the urban environment could easily absorb and reduce the novelty effect of an 

additional installation, possibly because the landscape is already dominated by man-made 

objects. Due to data limitation and the risk of including effects due to ‘green on green’ 

effects, my dissertation does not include the effect of tree cover over the adoption’s 

decision. I recognize that this, like other sources of shadowing effects, could potentially 

effect the diffusion of PV systems, especially in a highly forested region like 

Connecticut. However, the use of fixed effects in the two empirical studies account for 

the changes in land cover, without shifting the overall focus away from the stated 

objectives with issues beyond the scope of the current work. 

As a whole, my dissertation provides new insight in the interconnected role of space, time 

and policies, and argues for the need of encouraging the adoption of PV systems through 

policies capable of addressing the socioeconomic and spatial differences, particularly 

within inner cities. Within the conceptual framework, these findings relate to the 

interaction between agents and those between agents, institutional framework and area 

geography. The existence of spatial peer effects, and enriched by the addition of time, 

confirms the results from previous literature, and relates to the adopting agents. The 

findings on built environment are more strictly related to the interactions between 

policies and area geography. In Connecticut, the study area of my dissertation, this 

interaction is regulated on the one hand by strong monetary and non-monetary incentives 

to promote the diffusion of PV systems. However, the same set of relationships are 



 
 

 

 

 

 

regulated through the current prohibition of submetering and the lack of split incentives, 

which effectively limit the adoption to a sub-set of residents, mostly owners in areas with 

lower housing densities. Beyond the specific findings, my dissertation argues for the need 

of more empirical research to understand how the area geography, time and institutions 

operate and affect the diffusion of PV systems and other DRETs.  
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