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Anticipating the Effects of Economic Displacement in Marine Space with  
Agent Based Models 

Kevin Patrick Nebiolo, PhD 

University of Connecticut, 2017 

 

As marine space is managed into appropriate resource use areas, it is inevitable that some is allocated 

towards a mutually exclusive spatial activity.  This exclusion results in displacement that has real 

economic consequences.  When a wind energy area is placed in coastal waters, navigable space is reduced 

and vessels are displaced from their former routes.  The USCG is concerned that re-routing will result in 

vessels navigating within closer proximity than they would otherwise in an open ocean scenario, and fear 

that this will increase the risk of vessel collision (USCG 2016).  They recommend research into tools that 

are capable of predicting changes in vessel traffic patterns (USCG 2016).   Agent based models are a 

method capable of predicting these traffic patterns, and are composed individual, autonomous goal 

directed software objects that form emergent behavior of interest.  Agents are controlled by a simple 

behavioral rule, they must arrive at their destination without colliding with an obstacle or other vessel.  

They enforce this rule with the gravitational potential that exists between two objects.  Attractive forces 

pull each agent towards their destination, while repulsive forces push them away from danger.   We 

validated simulated vessel tracks against real turning circle test data, tested for the presence of chaotic 

systems, developed metrics to assess transportation costs, and applied the method to assess a WEA 

located outside of the entrance to the Port of New York and New Jersey.     
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Chapter 1 

Introduction 

 

 

 

1.1 Introduction 

With the Bureau of Ocean Energy Management (BOEM) siting Wind Energy Areas (WEAs) 

within navigable water and fisheries management agencies enforcing Marine Protected Areas (MPAs) 

that shelter resources from harvesters, spatial regulations manage resource use within appropriate areas in 

marine space.  In contrast to a traditional sectoral resource management paradigm, Marine Spatial 

Planning (MSP) conceptualizes marine space as a coupled socio-ecological system.  Resource managers 

allocate space towards a restricted set of resources uses that exclude certain activities, leading to 

economic, social and environmental change within a system.  Socio-economic systems that are not 

resilient, (i.e. cannot endure too much stress), may decline or fail.  Therefore, a successful MSP will 



 
 

2 

implement spatial management decisions that do not erode the ability of individual system components to 

adapt to change, thus ensuring their sustainability.   

Sustainable, ecosystem based MSP is an integrated planning framework that allocates marine 

space among competing resource uses (Foley, et al. 2010).  MSP is necessary because of the 

uncoordinated expansion of existing and emerging uses of marine space such as renewable energy and 

large-scale aquaculture.  Along with a rapidly growing coastal population, these conditions are likely to 

exacerbate the decline of marine ecosystem health (Foley, et al. 2010).  Ecosystem-based MSP provides 

economic, ecological and administrative benefits for practitioners and resource users alike.  Most 

importantly, ecosystem based marine spatial planning seeks to resolve conflict among competing users of 

ocean space and to reduce the cumulative impacts of these activities on the marine environment (Douvere 

and Ehler 2009).  Ecosystem based MSP accomplishes this by taking into account the entire marine 

ecosystem, rather than individual sites, and it ensures that economic and social objectives respect 

environmental limits (Ehler 2008).  As a result, implementing sustainable, ecosystem based MSP requires 

that planners utilize methods that take into consideration the interconnected nature of complex systems in 

order to anticipate the consequences of spatial management decisions.   

1.2 Statement of the Problem  

When siting competing mutually exclusive ocean uses, many MSP applications lack the ability to 

anticipate the consequences of economic displacement resulting from foregone space.  Foregone space 

represents the area lost to a particular use when exclusive rights for that space are granted to a competing 

use.  MPAs represent foregone space for fishers, while WEAs are foregone space for marine trade.  Their 

siting results in displacement, which simply means that effort is moved from one place to another 

(Agardy, Notarbartolo di Sciara and Christie 2011).  For example, ocean renewable energy infrastructure 

(OREI) displaces commercial traffic because vessels cannot safely navigate within a project boundary 

(MCA 2008).  Recently, the United States Coast Guard (USCG) ruled that creating routing measures 
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where structures currently do not exist (i.e. displacing navigational channels), would more than likely 

result in an increase in risk due to vessel navigation in closer proximity to each other in than they would 

otherwise in an open ocean scenario (USCG, 2016).  They recommend creating modeling and analysis 

tools that are capable of predicting changes in vessel traffic patterns, and much more stringent spatial 

planning protocols (USCG, 2016).  OREI can also impact commercial fishing, as fishers are hesitant to 

deploy mobile gear (long lines, gillnets and trawls) near these facilities as they risk entanglement with 

anchoring structures (Fayram and de Risi 2007).  For some spatial plans, displacement is intended as a 

measure to protect resources and habitats (MPAs), while for others, displacement is a consequence of 

siting a mutually exclusive use (WEAs).  For either case, the socio-economic consequences of 

displacement can have broader implications for the region. 

Displacement has real economic costs for marine industry, it leads to increased time at sea, 

greater fuel costs and lower profit margins.  For fishers, their efficiency is further reduced in terms of 

catch per unit effort because of the costs associated with learning where the productive areas are in new 

fishing grounds (Agardy, Notarbartolo di Sciara and Christie 2011).  Displacement costs reduce the 

profitability of marine industrial sectors, making them less resilient to change.  Because of the 

interconnected nature of human socio-economic systems, these consequences can also follow through 

onto land as well.  In the outlying coastal counties of the Northeastern United States, the location quotient 

for the marine economy was high, meaning these areas are more dependent upon the marine sector than 

on average.  Spatial management decisions that affect the profitability of marine trade and fishing can 

have severe repercussions for regions that are dependent upon the marine economy.  As these industries 

falter or even fail, coastal economies dependent upon them will retract as well.  Therefore, limiting access 

to resources (including space itself) has the potential to disrupt the socio-economic stability of coastal 

communities, and result in conflict among user groups with competing interests over the same limited 

resources (Agardy, Notarbartolo di Sciara and Christie 2011).  Understanding and anticipating the 

negative consequences from displacement is necessary for a successful MSP.   
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Displacement related impacts are often indirect consequences of a MSP, few researchers have 

addressed them, and those that have primarily address fishery sectors.  Agardy, Notarbartolo di Sciara and 

Christie (2011) found that few analytical studies actually quantify displacement impacts, let alone address 

the long-term resiliency of socio economic sectors.  Those that have were inconclusive or lacked the rigor 

of quantitative analysis.  Marine Protected Areas (MPAs) conserve important habitat areas for fisheries 

resources by prohibiting fishing, thereby directly displacing effort.  They were found to affect the social 

well-being and political power of fishers, but there was no clear effect on the economic well-being of 

coastal communities (Mascia, Claus and Naidoo 2010).  Greenstreet, Fraser and Piet (2009) developed a 

fisheries effort displacement model that reallocated effort to areas outside of an MPA.  Their method 

assumes that a fisher will focus their effort on a new, empty area, regardless of that area’s prior 

productivity.  In other words, they assumed fishers will simply spread out without attempting to maximize 

catch.  However, their assumptions were incorrect.  Actual fishing data suggests that fishers congregate 

along the boundary of an MPA in an effort to catch biological spillover, a phenomenon known as “fishing 

the line” (Kellner, et al. 2007).  Campbell, et al. (2014) employed vessel management system (VMS) data 

to map and characterize fishery activity within the English Channel.  They designed their output to be 

incorporated into a multi-criteria decision analysis that minimized impacts to fisheries.  While their 

approach demonstrates the utility of high-resolution use data (VMS) for making informed management 

decisions, it cannot anticipate the consequences of an MPA.  Their method has no way of calculating 

displacement related effects, planners can only locate an MPA in areas less frequented by fishers.  In an 

analysis of the noncompliant behavior that results from poor MPA design, Peterson and Stead (2011) 

found that displacement generally leads to four options for fishers: fish illegally, change fishing grounds, 

change fishing gears, or move effort to alternative methods.  However, their method stops short of 

quantifying any real economic cost resulting from a spatial management decision.  Besides fishing, 

marine trade is impacted by MSPs as well.  However, studies have not addressed displacement of 

commercial shipping, feedback effects associated with rerouting commercial vessels, nor the long-term 
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economic sustainability of the commercial shipping industry due to these impacts.  Therefore, current 

MSP practices still have a long way to go before a plan anticipates the sustainability for socio-economic 

sectors dependent upon the space they are restricting. 

1.3 Purpose 

The purpose of this study is to implement methods that can anticipate the displacement of 

mutually exclusive activities resulting from foregone space.  Particularly, it will study the effects of a 

WEA on the marine trade and transport industry.  The resulting displacement has real economic costs, 

which can potentially lower the industry’s profit margin.  The rerouting of vessels will not only result in 

longer voyages in both time and distance, but routing all vessels into narrower navigational channels may 

lead to traffic congestion and increased risk of vessel collision.  These secondary effects could lead to 

even longer voyage times and worse, loss of life and property.  Currently, MSPs do not account for these 

effects, and often times they are addressed after the fact through adaptive management protocols.  

Planners can test the sustainability of spatial regulations by developing simulation methods that anticipate 

these effects. 

1.4 Theoretical Framework 

Agent based models (ABM) are comprised of autonomous interacting agents that produce 

emergent behavior on a simulated landscape (Macal and North 2005).  They offer a way to experiment 

prior to a plan’s implementation.  ABMs examine the sustainability of potential configurations without 

having to enact a plan in real life and study its affects after the fact.  ABMs are also an approach to 

modeling complex adaptive systems through individual interaction.  In the case of competition over 

marine space, individual agents are the mariners piloting the ships in the marine trade industry.  Agent 

behavior can range from primitive stimulus-reaction decision rules to complex adaptive intelligence 

(Macal and North 2005).  These adaptive traits are behavioral rules or simple heuristics that allow an 
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individual agent to make decisions (Jorgensen and Fath 2011).  Through complex interactions between 

individuals, emergent patterns of agent behavior manifest on the landscape.  Then, as the system is 

constrained in some way, agents will adapt to the new conditions, producing new emergent states (Abbott 

2007).  Emergence is a property of the system; it is not reducible to, nor readily predictable from the 

properties of the individual agents (Halley and Winkler 2008).  This is because emergence results from 

individual interaction between rational, goal-directed agents that combine to produce novel behavioral 

patterns.  While useful for exploring the consequences of plan options, their implementation is quite 

difficult. 

In work that paved the way for complex systems thought, Lorenz (1963) developed a simple 

abstraction capturing the essence of a three-dimensional convection model with intention of modeling 

weather, and he found that the prediction of the sufficiently distant future was impossible by any method 

unless the present conditions are known exactly.  Therefore, in the view of imperfect models and 

information, long-term prediction is impossible (Lorenz, 1963).  Given that these models lose 

predictability over time, their duration must be short.  Therefore, the model durations herein are on the 

magnitude of a single voyage.  Aside from short, but meaningful durations, model validation is important.   

Reproducing past observations, or verifying the structural similarity between the model and 

present knowledge of the system validates ABMs (Gross and Strand, 2000).  However, given the 

complexity of real systems, there can probably be no true one-to-one validation of system components in 

terms of structural similarity (Gross and Strand, 2000).  Therefore, the marine planner must validate their 

model by comparing the emergent states of many iterations with empirical data from past events.   

1.5 Research Questions  

A major concern for the marine spatial planner should be that of the effect of foregone space (in 

total area and configuration) and resultant economic displacement of mutually exclusive spatial activities.  
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WEAs reduce the navigable area for commercial vessels.  It is thought that this can lead to an increase in 

voyage duration, greater transportation costs, and an increased risk of collision with infrastructure and 

other vessels in congested channels, thereby reducing the resiliency and safety of the marine trade sector.  

An ABM, designed to simulate the marine trade and transport industry, will anticipate the negative 

consequences of a WEA with a population of autonomous ship-agents.   

1.6 Importance of the Study  

This study is timely considering energy derived from marine renewables (wind, wave and tides) 

are poised to reduce reliance on fossil fuel for energy production in the northeast United States and to 

reduce the current rates of C02 emissions affecting global climate.  However, siting WEAs may have 

unforeseen consequences for the marine trade sector, a globally and regionally important socio-economic 

sector that is closely tied to the economic well-being of the coastal counties within the northeast United 

States.  In 2016, economic downturn in advanced economies reduced exports coming from China, and the 

industry is projected to experience zero growth (Northam, 2016).  Following the announcement of 

troubles for the global shipping industry, Hanjin Shipping company, one of the world’s largest shipping 

companies filed for bankruptcy protection while leaving some 500,000 containers stranded at sea 

(Northam, 2016a).  The industry is showings signs of stress, and improper planning could apply more 

pressure.  The current plans for WEAs along the Northeast’s coastline place some developments close to 

major shipping channels.  However, these plans do not take into consideration that marine traffic, 

especially tug and barge traffic, do not always navigate within the confines of marked channels.  The 

much slower and much less maneuverable barge traffic could impede the movements of faster vessels 

leading to congestion and an increased risk of collision.   
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1.7 Scope of the Study  

An ABM, simulating the marine trade and transport sector will anticipate the socio-economic 

impacts following the implementation of a marine spatial plan off the coast of the northeastern United 

States.  This project will address three important research priorities.  The first will develop a series of 

computational experiments and analytical methods designed to quantify economic displacement as a 

function of the plan’s size and configuration and the number of individuals in the population.  The first 

will assess the ability of an agent-based model to simulate a socio-economic sector and reproduce 

emergent pattern as depicted with actual ship trajectory scenarios from a theoretical and analytical 

perspective.   

1.8 Summary 

Ecosystem based MSP gives planners and regulators the tools they need to create sustainable 

plans that balance mutually exclusive uses of marine space.  However, current methodologies lack the 

ability to anticipate the negative consequences of a plan, potentially leading to the degradation of globally 

and regionally important marine socio-economic sectors.  These sectors are complex adaptive systems 

comprised of autonomous agents maximizing their own wellbeing and competing for space.  Following 

plan implementation, they will interact in novel ways producing new emergent states that may lead to 

economic hardship or a reduction in the safety of the industry.  ABMs are a tool that can anticipate these 

negative consequences and give planners and regulators the insight they need to make better, more 

informed decisions.    
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Chapter 2 

Literature Review 

 

 

 

2.1 Traditional and Expanding Uses of Marine Space 

Traditional socio-economic uses of marine space include the fishing and marine trade and 

transport industry.  In capture fisheries, fish are hunted in wild ecosystems using techniques ranging from 

spears, traps and hooks, to massive nets guided by sophisticated equipment (Campling, Havice, & 

Howard, 2012).  Because fish are mobile and inhabit expansive swaths of coastal ocean, capture fisheries 

spread out to find the most productive areas for exploitation.  Prior to the development of MPAs, the only 

spatial regulations on capture fisheries that were enforced were to abide by the exclusive economic zone 

of sovereign states (Campling, Havice, & Howard, 2012).  Over time, as fishers identified the most 

productive areas and developed effective gear, fishery stocks began to feel pressures from 
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overexploitation.  Now, approximately 75% of the world’s fisheries are at or beyond exploitation rates, 

and their populations are expected to decline (Campling, Havice, & Howard, 2012), forcing many natural 

resource agencies to enact spatial regulation.   

MPAs are spatially defined marine units in which one or more human activities are restricted 

(McKay and Jones 2011).  A majority of the MPAs prohibit fishing, while some restrict recreational uses 

as well.  MPAs displace fishers that at one time directed their effort into these locations, forcing them to 

find new areas to exploit.  Displaced fishers can mitigate economic losses if they can relocate to another 

productive area (Carter 2003) or if biological spillover occurs resulting in higher catches along the 

margins of MPAs (Kellner, et al. 2007).  Displacement has other unintended consequences.  Fishing fleets 

are rational economic entities, meaning they make decisions that maximize their well-being within the 

constraints placed on them through spatial management (Hilborn 2007).  If an MPA displaces a fisher 

from their traditional fishing grounds, they will find new species and habitats to target.  Therefore, efforts 

to protect an imperiled species through spatial measures inadvertently increase harvesting pressure on 

others (Abbott and Hayne 2012).  Aside from displaced effort, a reallocation of resource use and access 

rights also occurs.  This affects the economic well-being, health, education, social capital, and the culture 

of traditional resource users, local communities and other social groups (Mascia and Claus 2008).  The 

unintended consequences and socio-economic ripple effects of spatial management plans have the 

greatest effect on the sustainability of coastal communities.  Spatial management can erode the resiliency 

of traditional fishing communities, and regulators need to anticipate these impacts.  The fishing industry 

is not the only traditional marine industry at odds with new uses of marine space. 

The marine trade and transport industry is a traditional socio-economic use of marine space, and 

consists of several different industries, including freight transportation, passenger transportation, 

transportation logistics, warehousing, electronics, and the ancillary land based sectors dependent upon the 

marine economy (Kildow, Colgan, and Scorse, 2009).  Consequently, this expansive industry is a major 
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sector in coastal economies.  In a study of the marine economy in Ireland, Morrissey, O’Donoghue, and 

Hynes (2011) found that the shipping and marine transport made up a significant portion of the economy.  

In Europe, the promise of short-sea-shipping, or short-run coastal freight shipping, is expected to alleviate 

pressures on already overcrowded transportation infrastructure (Baird, 2007).  As the 21st century 

witnesses an increase in the use of maritime trade corridors, we are also expanding our footprint into the 

coastal ocean by constructing OREI infrastructure.   

OREI has the potential to make significant contributions to future energy supplies (Kerr, 2007) as 

well as reduce emissions of greenhouse gases.  Technologies are available that can harness mechanical 

power from waves and tides, while offshore platforms are constructed to support traditional wind 

turbines.  Tidal power (referring to instream hydrokinetics and not tidal barrages) is highly predictable 

and reliable compared with other renewables (Pelc and Fujita, 2002), but it requires site-specific 

conditions that accelerate tidal flows into currents greater than 2 m/s (Kerr, 2007).  Therefore, finding 

appropriate sites for tidal development is difficult.  Regardless, marine hydrokinetic technology could 

harness considerable power from sites with favorable conditions.  A numerical study of the central Maine 

coast found peak power densities as high as 6.5 kW/m2 (Brooks, 2011).  Harnessing this resource will 

produce 2700 MWh, or enough power for 150 homes (Brooks, 2011).  As the depth of the structure 

increases, navigational concerns diminish, but environmental concerns may remain.  Collision impacts 

with marine organisms are a concern; however, their proper location can mitigate impacts (Cada and 

Bevelhimer 2011).  OREI technologies that reduce the hydrokinetic energy of some systems by extracting 

tidal or wave energy may produce environmental conditions that are at odds with the ecological 

communities that have adapted to these high-energy environments (Shields, et al. 2011).  Again, proper 

location can mitigate these impacts.  At this time, tidal power and wave energy is not expected to reach 

the scale of development as proposed with offshore wind; therefore, the expected impact to navigability 

from these technologies is low.  Meanwhile, offshore wind, another OREI technology, requires large 

tracts of contiguous and empty ocean space.   
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The amount of space required for an offshore wind project with sufficient economies of scale is 

great.  For example, to maximize the efficiency of offshore windfarm turbines, the required inter-array 

spacing is as high as 7 – 10.5 rotor diameters (Barthelmie, et al., 2010).  A 6 MW turbine with a 126-

meter rotor diameter will require a buffer area between 882 and 1,323 m2.  Therefore, a 90 MW wind 

farm (30 turbines) requires at least 26.46 to 36.69 km2 of the coastal ocean.  Since some large commercial 

vessels cannot safely navigate within a wind farm, renewable energy infrastructure that is near shipping 

corridors may increase vessel density, affecting the navigability of the region causing mariners to reduce 

their speed, change course, or implement collision avoidance procedures.  The Maritime and Coastguard 

Agency, the United Kingdom’s equivalent of the United States Coast Guard, recommends shipping routes 

be at least 0.45 nautical miles (800 m) from a turbine (MCA, 2008).  Exclusion could lead to navigational, 

safety or routing problems as vessels must follow a less than optimum route (MCA, 2008).  Not only will 

voyage distances increase as vessels must now navigate around obstructions, but an increase in vessel 

density could lead to congestion effects that reduce the serviceability of ports because vessels are 

competing over limited space in navigational approach corridors.  Removing navigable space that was 

once available to the marine trade and transport industry can have significant consequences.  Longer 

navigation routes and increased vessel density will lead to higher transportation costs (Clark, Dollar, and 

Micco, 2004).  Removal of navigable space may reduce the marine trade and transport industry’s capacity 

to absorb economic impacts from other external forces.  These forces could be new forms of industry 

regulation, competition from terrestrial or aerial forms of commercial transportation, or natural events that 

cause an increase in industry costs.  

2.2 Displacement Impacts on Navigation 

 

 Displacement affects the marine trade and transport industry.  From farther distances travelled 

and more time at sea, to increased traffic congestion and density related impacts around installations, the 
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industry will incur greater costs as the result of OREI development.  Measuring an increase in the distance 

travelled and the cost incurred for a vessel to navigate around an OREI development is somewhat trivial.  

Rather, it is the impacts of congestion and or vessel safety that may affect industry the most, and 

consequently, are the most difficult to anticipate.  For maritime transport, voyage costs are influenced by 

distance travelled and time spent at sea (Cullinane and Khanna 2000).  A small reduction in voyage 

efficiency (lower vessel speeds due to higher congestion) can have severe economic costs (Fagerholt 

2004).  Vessel interaction, particularly meeting and passing maneuvers, are the most critical navigation 

problem (Hewlett 1994), and when congestion is increased, the frequency of these critical moments 

increase.  Aside from the at-sea impacts, the land-based marine economic sectors will also face 

displacement related impacts. 

Any time a vessel is operating at speeds below cruising, they will incur economic penalties 

associated with a longer time at sea, and the shipping line may choose another port with easier access.  In 

an analysis of large container ships, Cullinane and Khanna (2000), found that when ports are congested or 

inefficient, diseconomies of scale have greater significance.  In other words, the greater the size and cargo 

capacity of a vessel, the more congestion hurts their profitability.  Congestion is a significant problem 

around access channels to ports and can represent bottlenecks in global maritime transportations systems 

(Notteboom 2006).  OREI developments that lead to greater congestion and delays can have significant 

impacts in worldwide transportation networks, where unexpected vessel waiting times in strategic 

locations can cascade throughout the whole loop (Notteboom 2006).  As congestion increases and liner 

profitability decreases, shipping firms may choose other ports with better serviceability. 

Maintaining port serviceability is critical for the economic viability of the port and tertiary sectors 

dependent upon steady maritime traffic.  Following containerization and deregulation, maritime carriers 

set contracts with rail services to establish rates independent of location, resulting in intensified 

competition between ports (Malchow and Kanafani 2004).  Regional ports compete with one another to 
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become destinations for large shipping alliances (Chang, Lee and Tongzon 2008).  Chang, Lee and 

Tongzon (2008) found that cargo volume, terminal handling changeover, berth availability, location, and 

feeder connection are important predictor variables in port choice.  They also found that feeder ports must 

compete with other feeder ports to provide more comprehensive and value-added services.  Nir, Lin, and 

Liang (2003) found that travel time and cost explained port choice.  Tongzon and Sawant  (2007) 

conducted a stated preference survey, and found port efficiency to be of prime importance followed by 

charges, economic connectivity, location, infrastructure, ancillary port services, and maximum cargo size.  

With efficiency the primary factor in port choice, any reduction may prompt shippers to find another port.  

Displacement related congestion could tip the balance in favor of another port.  Therefore, the economic 

viability of a port and local economy hinges on how efficient they can load and offload goods.  Ports that 

are a long distance from demand centers are at a greater risk of impact from congestion related impacts 

because they are less resilient than ports closer to demand centers.  Other sectors within the marine trade 

industry are also affected by congestion.   

Ferries transport human cargo across open expanses of water in an effort to bypass congested 

road networks or to connect island populations to the mainland.  Their long-term sustainability depends 

upon safe and timely service.  In 2003, a study was commissioned to assess the safety of increased ferry 

services within San Francisco Bay (Merrick, et al. 2003).  The authors conducted a traffic simulation 

study and found areas of greater congestion and increased risk of accidents.  They concluded that the 

current safety levels enjoyed by San Francisco’s ferry operators cannot be maintained under the planned 

expansion scenarios (Merrick, et al. 2003).  Clearly, congestion related impacts to the marine trade and 

transport industry far outweigh those of greater distance travelled.  Marine spatial plans that lead to 

increased congestion can affect safety of ferry traffic, the sustainability of trade industries, the ports they 

choose, and the coastal economies that service them as well.  In an analysis of coastal counties, the 

location quotient for outlying counties reliant upon the marine sector was high (Figure 2.1).  Within large 

metropolitan areas, the coastal economy is primarily  
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Figure 2.1 a depiction of the location quotient for the total marine industry within the coastal counties of the Northeastern 
United States. 
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professional service based (Kildow, Colgan, & Scorse, 2009).  However, outside of the economically 

diverse metropolitan areas, the periphery relies upon a few key marine-based sectors.  In the northeast 

United States, these are the living resource industries (fisheries), tourism and recreation industry, marine 

trade, and marine manufacturing and construction.  However, with few shipyards and no mineral or oil 

and gas exploration, this last sector makes up only a tiny fraction of the region’s marine based economy.   

Economies change and adapt over time to patterns of supply and demand in much the same manner an 

ecosystem would adapt to new environmental stimuli.  For an ecosystem to evolve, selection operates on 

the system’s individual components (Levin & Lubichenco, 2008).  The ability of a system to alter its 

composition in a changing environment is maintained through diversity and heterogeneity (Holling, 1973 

and Levin & Lubichenco, 2008).  The more homogenous the system, the more likely it is to have low 

resilience or robustness (Holling, 1973).  Therefore, any development that may reduce the sustainability 

of marine industries will also have repercussions for land based economy that provides critical support 

services for marine trades.  

The remainder of the 21st century will see a continued development in coastal areas placing 

considerably more stress onto coastal ecosystems and socio-economic sectors than current exploitation 

does now.  With new uses for marine space directly competing with traditional uses and ecosystem 

services in steep decline, natural resource managers must embrace systems thinking else we risk eroding 

our current systems further and to the point they are no longer sustainable.   

2.3 Ecosystem Based Marine Spatial Planning  

The term Ecosystem Based Management can be misleading.  It is not solely focused on the 

stewardship of biodiversity, but also considers the complex mix of property rights, local customs and 

regulations, and the diverse range of human use activities in the marine region (Peel and Lloyd, 2004).  

The ultimate goal is to allow existing and emerging uses while supporting healthy ecosystems and 
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sustaining their production of goods and services for future generations (Foley, et al., 2010 and Levin and 

Lubichenco, 2008).  Managers and planners must consider who will be affected by management 

decisions, along with how and where the changes will take place (Harrill, 1999).  EBM seeks to resolve 

the inadequacies of sectoral management by developing a method that views the ecosystem as a whole, 

where all drivers and their impacts are considered for their effect on ecosystem functioning (Curtin and 

Prezello, 2010).  EBM has solid foundations in classical and contemporary ecological thought (Crowder 

and Norse, 2008 and Curtin and Prezello, 2010).  It takes into account the behavior of complex adaptive 

systems (Gunderson and Holling, 2002 and Crowder and Norse, 2008), the maintenance of ecosystem 

resilience through heterogeneity (Holling, 1973 and Reynolds, 2002 and Levin and Lubichenco, 2008 and 

Mori, 2011), the study of thresholds (Jogiste, Moser, and Mandre, 2005 and Samhouri, Levin, and 

Ainsworth, 2010), and connectivity and flow of materials and information between system elements 

(Crowder and Norse, 2008 and Foley, et al., 2010). 

EBM understands that each socioeconomic sector is made up of individual components that 

interact and produce their own emergent patterns of use.  These sectors include recreational users, the 

marine trade and transport industry, and even offshore energy installations.  Meanwhile there is 

connectivity and flow within and between sectors, occurring across multiple spatial scales.  Fisheries will 

compete with the burgeoning offshore renewables sector, as both require vast expanses of ocean space.  

Offshore renewable energy installations require multiple devices spread across a seascape to achieve 

utility size economies of scale (Johnson, Kerr, and Side, 2013).  Competition arises between sectors 

because development of offshore renewable energy installations limit access and navigation, and can have 

potential negative impacts upon commercially fished species (Alexander, Wilding, and Heymans, 2012) 

as well as closing large areas of ocean once open to fishing.  To date this conflict has not been addressed.  

Models incorporating multiple uses and examining tradeoffs are being developed that incorporate multi 

criteria decision analysis (Villa, Tunesi, and Agardy, 2002), numerical optimization (Klein, Steinback, 

Watts, Scholz, and Possingham, 2010), fuzzy logic (Teh, Teh, and Meitner, 2012) and spatial decision 
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support systems (Alexander, Janssen, Arciniegas, O'Higgins, Eikelboom, and Wilding, 2012).  However, 

these methods have yet to produce robust management recommendations.  They are still focused on single 

sectors and fail to incorporate interactions among system components.  Methods emulating complex 

adaptive systems can produce a robust management solution that has adapted to the most probable system 

states.  Therefore, resiliency is built into the management recommendations.  The solution is robust; 

because it has been shown to withstand future changes in system states.  EBM requires the spatial planner 

to identify, describe and understand interaction among its component parts, as well as how these 

interactions form patterns of behavior across the marine landscape.   

2.4 Embracing Complexity  

Complexity science is the study of complex and complex adaptive systems (CAS).  These 

systems are collections of individual autonomous objects competing for some type of limited resource 

(Johnson N. F., 2009), in the case of MSP, that limited resource is space.  Causal connections among 

these autonomous components impairs top-down modeling (Gross and Strand, 2000), making complexity 

anti-reductionist.  Martin and Sunley (2007) write, “a system is complex when it comprises non-linear 

interactions between its parts, such that an understanding of the system is not possible through a simple 

reduction to its component elements.”  Further, interaction provides a means for a complex system to 

restructure itself over time (Martin and Sunley, 2007), a property called emergence.  A traditional 

reductionist approach to studying systems is to correlate these emergent system states with management 

directives.  However, complexity allows us to produce emergent system states through individual 

interaction.  It is a bottom up approach to understanding emergent pattern in systems.  Complexity 

therefore studies the spatial ordering that arises from injections of energy (Thrift, 1999) that lead to novel 

interaction among its components.  Natural forcing or human induced changes in system state provide 

Thrift’s energy.  An emergent property is the spatial ordering that results in response to energy input.  

Complexity provides a descriptive link between emergent geographical pattern, individual system 
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components whose interaction produced that pattern, and the change in system state that instigated novel 

interaction among its individuals.  Understanding complex systems requires an understanding of 

determinism, particularly path dependence, from inputs of energy to emergent pattern. 

Under determinism, Ruelle (1991) stated that if someone were to toss a coin, the laws to classical 

mechanics determine with certainty how it will fall.  If the present state of a system is known exactly, and 

its physics have been properly defined, it is possible to predict with precision the future state of a system.  

This of course assumes perfect information.  Further, complex systems are sensitive to initial conditions.  

In complex systems, small changes in the initial state of a system at time zero produce a later change that 

grows exponentially with time (Ruelle 1991).  Therefore, uncertainty in the present state can lead to 

dramatic changes in the future state of a system.   Ruelle describes this phenomenon with a thought 

experiment using billiard balls (Ruelle 1991).  If two billiard balls were to start from the same position, 

but their trajectories altered ever so slightly by an angle of ܽ, the billiard balls will only diverge by ܽ 

degrees per second until they strike a convex obstacle and form a divergence angle ܽ′ which is twice the 

original angle ܽ (Ruelle 1991).  After the second collision, ܽ′ is now 4 times ܽ and after 10 collisions ܽ′ is 

now 1024 times larger than ܽ (Ruelle 1991).  It does not take many interactions for the final state of the 

billiard balls to become completely different from a model with nearly identical starting conditions.  

Incrementally small changes will produce an output that is completely unpredictable from the simulation 

that came before it.  A simulation of the marine trade and transport industry will behave in much the same 

way as Ruelle’s billiard balls with added potential for complexity because each billiard ball is goal 

directed.   

Because of sensitivity to initial conditions, complex systems are not forwardly predictable in the 

long term (Abbott, 2007), repeated simulations demonstrating a propensity towards an attractor, or 

singular emergent state, could allow it to anticipate the implications of spatial plans.  The validation of a 

predictive model based on complex interactions pose significant verification challenges that are hard to 
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meet (Gross and Strand, 2000).  Our aim for assessing the sustainability of a spatial management program 

requires prediction.  Gross and Strand (2000) state that validating a predictive model requires comparing 

its predictions with past observations.  However, a certain degree of accuracy and precision must 

accompany these predictions so that spatial planners can anticipate the most probable emergent states.  

Only under carefully controlled scenarios, designed to anticipate impact across a range of probable 

system states, can we have faith in the predictive capacities of models that invoke complexity.  Assuming 

a validated model of a complex socio-economic system exists, applying CAS theory to quantify a metric 

of sustainability is straightforward.  

2.5 Resiliency as a Measure of Sustainability 

A system’s resilience determines the persistence of relationships within a system and is a measure 

of its ability to absorb change and persist in its present state (Holling, 1973).  Resilience bounds the 

amount of disturbance, or impact, that a system can withstand before it changes state.  Researchers have 

found that the heterogeneity and diversity of habitats and species assemblages increases the resilience of 

an ecosystem (Levin and Lubichenco, 2008; Foley, et al., 2010).  Likewise, the heterogeneity and 

diversity in socio-economic systems increase their resiliency.  Without variability, there can be no 

adaptation, and without adaptive capacity, populations cannot respond to change (Levin and Lubichenco, 

2008).  Preserving the diversity of habitat (the physical space in which species interact) is as important as 

maintaining species diversity and is often a goal of EBM (Crowder and Norse, 2008; Levin and 

Lubichenco, 2008).  Robustness is not only the system’s resistance to change, but also the ability to return 

to a steady state (Levin and Lubichenco, 2008; Crowder and Norse, 2008; Gunderson and Holling, 2002).  

Achieving robustness typically requires the maintenance of sufficient variability so that adaptation can 

operate, and that the system can survive a catastrophic loss in redundancy after a species or habitat is 

removed (Levin and Lubichenco, 2008).  A system is able to maintain resiliency until anthropogenic or 

natural forcing arrives at a threshold, leading to a change in system state, and ushering in adaptive 
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responses.  An ecological threshold is the point at which an incrementally small change in an 

environmental variable can produce large and abrupt responses in the state of an ecosystem (Samhouri, 

Levin, and Ainsworth, 2010) including irreversible events (i.e. extinction).  Understanding resiliency is a 

matter of understanding thresholds.  How much change can a system withstand before it ushers in a new 

state?  Methods that find these thresholds can inform spatial managers on the best course of action to take. 

2.6 Leveraging Complex Adaptive Systems for Ecosystem Based Management 

Few methods exist that model and provide understanding of complex adaptive systems, and to 

leverage their explanatory power to aid in natural resource decision-making is even more daunting.  One 

promising area of research -- agent based modeling -- has made significant progress into this area, with 

many applications in geography and natural resources.   

2.6.1 Agent Based Modeling 

Agent based models have direct historical roots in complex systems (Macal and North, 2005).  

With agent-based models, the relations and descriptions of the global variables of traditional (top-down) 

models are replaced by an explicit representation of the microscopic features of the system (Gross and 

Strand, 2000).  Specifically, the study of complex systems concerns itself with the question of how 

emergent behaviors arise in nature among autonomous agents (Macal and North, 2005).  Agents are 

autonomous objects within an object oriented simulation framework.  They are situated/living in a 

simulated environment and can interact with other agents and the environment through a set of protocols 

that limit their interaction (Macal and North, 2005).  Agents are goal directed and heterogeneous with 

respect to their attributes and behavioral rules (Macal and North, 2005).  An important outcome of agent-

based models is the unexpected macroscopic behavior that is the result of individual interaction 

(Jorgensen and Fath, 2011).  These macroscopic behaviors are the emergent patterns we seek to 

understand and predict.  Agent based models are an appropriate tool that can help planners understand the 
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implications of spatial management measures, and they have already been used in many geographic 

applications.   

2.6.2 Geographical Applications of Agent Based Modeling 

Agent based modeling is not new for geographic applications and geographers routinely employ 

agent based models to describe pattern and process from micro- to macro-scales of behavior.  The 

methodology has enjoyed a rich application history stretching from localized animal dispersal and 

migration studies to regional applications that study coupled human natural systems, land use change and 

urban dynamics.  The local scale models tend to be sector based, whereas regional models tend to capture 

a more holistic view of dynamic system processes.   

In the literature, local scale models tend to be calibrated for a single sector, whether it natural or 

socio economic in nature.  Graniero and Robinson (2006) created an agent based squirrel dispersal model 

where landscape processes influenced individual interaction and movement decisions.  Their work 

underscores the need for agents to respond to environmental forcing as well as individual interactions, as 

it provides behavior that is more realistic.  Bennett and Tang (2006) developed a multi-agent model to 

simulate migratory behavior of elk on Yellowstone’s northern range, where intelligent agents learned 

from their environment and experiences, which enabled them to mimic real-world behaviors and adapt to 

changing landscape metrics.  Their approach was further refined in Tang and Bennett (2010) where 

agent’s context-driven decision-making takes place within real dynamic spatial environments.  Again, 

they applied their approach to an agent-based model of elk movement, where individual agents are 

contextual decision makers, capable of learning optimal movement patterns from experience and reacting 

to a heterogeneous landscape.  Their approach required an agent to repeatedly sample its environment 

before choosing their next move and to make utility maximizing decisions.  Local scale ABMs have also 

been applied to human systems. 



 
 

23 

 Batty, Desyllas, and Duxbury (2003) proposed that small-scale interactions (individual agent 

reaction) accumulate over space and time to form emergent behavior of interest to safety planners, 

including congestion, crowding and panic among others.  Their research has implications for an agent-

based model of ship behavior where individual ship-agents interact during collision detection and 

avoidance procedures, which might lead to erratic behavior, slower speeds, and increased traffic density.  

Arentze, Pelizaro and Timmermans (2010) implemented an agent-based model where pedestrians not 

only learned spatially optimal routes for their daily routines, but they also adapted the timing of their 

activities for the most efficient travel.  Torrens (2012) developed an approach for agent movement that 

relied less on particle physics and more on path dependence, where agents perceive and sort objects, plan 

routes, steer around obstructions, and interact with other agents, which all affects individual movement 

decisions.  Torrens approach is similar to the approach applied herein, rather than physical dispersion 

physics or network flow models; movement is based on individual perception and utility maximizing 

decision rules.  Torrens and McDaniel (2013) modeled riotous crowds.  Their simulation architecture 

gave agents spatial perception, cognition, and the ability to act on their decisions on where, when and how 

to move across the study area.  Contrary to local scale models, sectors should not be modeled in isolation 

for applications that encompass regional landscapes.   

An, et al. (2005) developed, implemented and validated an agent based spatial model that 

simulates the impact of growing rural population on the forests and panda habitat adjacent to the Wolong 

Nature Reserve in China.  Their model coupled human forcing with environmental responses, and it 

informed land use decision makers on how to regulate further development.  On the regional scale, agent 

based models are used traditionally for land use change studies and research into urban dynamics and 

sprawl.  Crooks  (2010) expanded beyond the raster cell, and represented the urban environment as vector 

data to study residential segregation.  This vector representation of space was one of the few approaches 

to expand beyond a square discrete grid and into continuous space.  Although it can produce models that 

approach real world accuracy, their application remains a challenge due to computational requirements.  
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Chen, et al. (2012) relied upon economic theory that suggested the formation of urban structure results 

from interaction among individual actors, and they coupled an ABM with GIS and urban economic 

models to simulate residential dynamics.  Their validated model had traditional economic theories driving 

agent behavior, an approach closely followed herein.  Aside from coupling human-agent models with 

landscape response models, geographers have taken these coupled approaches and used them to inform 

resource management directives.   

Bone, Dragicevic, and White (2011) integrated top down and bottom-up approaches for 

enhancing land use change modeling to support management directives.  Their results suggest that 

bridging bottom-up (ABM) and top down models leads to negotiated land-use patterns in which the 

desires and objectives of all individuals are constrained by behaviors of others.  This study provides the 

logical next step for marine spatial planning objectives, from plan creation to sustainability assessment, 

coupling bottom up with top down approaches can allow resource managers to meet in the middle without 

having to experiment with real life systems first.  Sengupta and Bennett (2003) coupled an agent-based 

model for spatial decision support, where their model evaluated the ecological and economic impacts of 

agricultural policy for the Cache River watershed in Southern Illinois.  Their effort assessed the 

sustainability of a resource management plan, which informed the next round of resource management 

evaluations.  By coupling an ABM with traditional spatial decision support systems, Sengupta and 

Bennett  (2003) validated the use of an ABM to assess the sustainability of a spatial resource management 

plan.  Chen, et al. (2010) applied an agent based model directly towards a land use optimization problem 

for the Pearl River Delta in China.  This is different from Sengupta and Bennett’s (2003) because the 

ABM assesses current land use regimes to inform future implementations, while the former is a direct 

optimization routine.  In a similar approach, the ABM developed by Bone and Dragićević (2010) learns 

through repetitive simulation on how to make decisions regarding natural resource extraction in an 

approach similar to evolutionary programming, where resource management regimes are tested against 

each other and better performing agents remain in future iterations.   
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Researchers have also constructed ABMs of the marine trade industry.  Moon and Tudhope 

(2006) created a marine system simulator that utilizes ship agents for training purposes and investigates 

the potential of agent-based systems to maintain realistic behaviors.  Their agents perform collision 

avoidance in much the same was as a human navigator would; if a dangerous situation is detected then 

rules are passed to determine what if any action an agent should take to avoid collision (Moon and 

Tudhope 2006).  Their research demonstrated that an agent directed architecture can be used to build a 

simulator with reasonably realistic target ship motion, including track keeping and collision avoidance 

maneuvers.  They also found that the interaction of relatively simple autonomous agents helps to produce 

reasonably realistic complex simulations.  Moon and Tudhope’s (2006) application shows that an ABM 

can develop realistic scenarios of marine trade, if an agent based architecture is good enough for a trainer 

simulation than it should be applicable to understand the ramifications of altering navigable space.  Xiao, 

et al. (2012) developed an agent based model to assess collision risk in China’s internal waterways.  Their 

agents simulated movement with numerical models incorporating realistic vessel physics while collision 

avoidance procedures relied upon artificial force fields to guide an agent to its destination.  With these 

applications in mind, and research on navigation and maneuvering of autonomous surface water vessels, 

an agent based model of the marine trade and transport sector can be developed, validated with AIS data 

and tested against OREI development scenarios. 

2.7 Producing an ABM of the Marine Trade Sector 

Geographical applications of agent-based models are not new; however, few applications assess the 

impacts of increased congestion and risk of vessel collision, and none have tried to understand how these 

impacts affect the resiliency of the marine trade and transport sector.  Not only does the maneuverability 

of the simulated vessels have to approach reality, but the decision-making capabilities of the mariners 

with regard to the navigation problem, namely collision avoidance in congested space and route planning 

must also be realistic for the results of the ABM to have any merit when assessing the sustainability of an 
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OREI project.  While no one application incorporates every facet of this project, many have touched upon 

these various themes.   

2.7.1 Modeling the Maneuverability of Marine Vessels 

Having knowledge of the maneuvering capabilities of ships allows practitioners to simulate their path 

as a function of their control settings (Sutulo, Moreira and Soares 2002).  The ability to simulate vessel 

movement allows an intelligent agent to interact with or respond to spatial management scenarios, other 

agents, and congestion.  The fastest mathematical ship models are purely kinematic and are effective at 

short-term path prediction, but they cannot account for any control change (Sutulo, Moreira and Soares 

2002).  Therefore, a numerical method that incorporates realistic vessel physics into movement models 

that allow for agent directed control change is required. 

Researchers have placed significant attention to developing mathematical models for guidance and 

control of marine vessels.  From control systems for forward speed, autopilots for course keeping, turning 

controllers, and track keeping systems (Fossen 1994), researchers have formalized the mathematics of 

ship control allowing for an intelligent software agent to realistically maneuver a virtual vessel in a 

simulated environment.  Specifically, guidance is the action of determining the course, attitude and speed 

of the vehicle, relative to some reference frame (usually the earth) (Fossen 1994).  Input from an agent’s 

navigational decision-making and collision avoidance procedures are the direct control inputs for 

guidance algorithms.  It is through these formulae that an agent maneuvers their vessel.  Control is the 

development and application of appropriate forces and moments for operating point control, tracking and 

stabilization of a vehicle (Fossen 1994).  These algorithms help an agent maintain course and speed.  

Modeling marine vehicles incorporates static models that are concerned with the equilibrium of bodies at 

rest or moving with constant velocity, and dynamic models that are concerned with bodies that accelerate 

(Fossen 1994).   
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Figure 2.2 a picture of a ship with movement forces of surge (ࢄ), sway (ࢅ) and yaw (ࡺ). 

 

The movement of marine vehicles occurs with 6 degrees of freedom (DOF), (Figure 2.2) because 6 

independent coordinates are necessary to determine the position and orientation of a rigid body (Fossen 

1994).  The first set of three coordinates correspond to X, Y and Z positions while their time derivative 

(linear velocity) describes motion along the x (surge), y (sway) and z (heave) axes.  The last three 

coordinates (K, M, N) and their time derivatives (p: role, q: pitch, and r: yaw) describe orientation and 

rotational motion (angular velocity) (Fossen 1994).   

The study of ship maneuvering and control is broken up into two parts; kinematics and kinetics, 

whose series of equations operate over each axis of movement.  Kinematics describes  

 

 

 

 

 

 

 

the geometrical aspects of motion (Fossen 1994).  They describe the transfer of the ship from one location 

to another over the course of a time step.  Kinetics analyze the forces causing this motion (Fossen 1994).  

For example, these forces could be in the form of a thrust (propeller RPM) or turning (rudder angle) 

control.  Speed and ship steering equations for rigid body ship dynamics are based on the following 

assumptions; (1) that there is a homogenous mass distribution and the hull is symmetrical, and (2) that 

heave, roll, and pitch can be neglected (Fossen 1994).  This gives us a series of equations describing a 

ship’s maneuvering abilities:  
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ሶݑ)݉ − ݎݒ − (ଶݎீݔ  = ܺ (2.1) 

ሶݒ)݉ + ݎݑ + (ଶݎீݔ = ܻ (2.2) 

ሶݎ௭ܫ + ሶݒ)ீݔ݉ + (ݎݑ = ܰ (2.3) 

where ܺ is motion in the x-direction (surge), ܻ is motion in the y-direction (sway), ܰ is rotation about 

z-axis (yaw), ݒ ,ݑ and ݎ are linear and angular velocities for ܺ, ܻ and ܰ respectively, ݉ is the object’s 

mass, ீݔ is the center of the ship, and ܫ௭ is the moment of inertia about the Z axes.  The perturbed 

equations of motion are based on an additional assumption that states sway velocity (ݒ), the yaw rate (ݎ) 

and the rudder angle (ߜ) are small (Fossen 1994).  Further, the equation for surge can be decoupled from 

the sway and yaw equations if we assume that the mean forward speed ݑ଴ is constant for constant thrust, 

and that the mean sway and yaw velocities are 0; ݒ଴ = ଴ݎ = 0 (Fossen 1994).  After applying these 

assumptions, we find (Fossen 1994): 

ݑ = ଴ݑ  + ;ݑ∆ ݒ  = ;ݒ∆ ݎ   = ;ݎ∆   ܺ =  ܺ଴ + ∆ܺ; ܻ =  ∆ܻ; ܰ = ∆ܰ (2.4) 

Each ∆ represents small perturbations from nominal values.  After assuming that higher order 

perturbations can be neglected, the nonlinear equations of motion can be expressed as (Fossen 1994): 

 

Speed ݉ݑሶ = ܺ (2.5) 

Steering 

ሶݒ)݉ + ݎ௢ݑ + (ሶݎீݔ = ܻ (2.6) 

ሶݎ௭)ܫ + ሶݒ)ீݔ݉ + (ݎ௢ݑ = ܰ (2.7) 

Thus, speed is controlled with the classic model of Newtonian motion where Surge force (ܺ) is equal to 

mass (݉) times acceleration (ݑሶ ).   
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This implies that the surge mode can be decoupled from the sway and yaw modes by assuming that 

the mean forward speed ݑ଴is constant for constant thrust (Fossen 1994).  Equation 1 is commonly 

referred to as the speed equation or thrust, while equations 2 and 3 are commonly referred to as the 

steering equations.  Aside from controlling their speed and maneuverability, our agents must also navigate 

their vessels in a manner that real world practitioners would. 

2.7.2 Navigation 

Navigation involves knowing the location of the vessel and controlling its movement towards a 

destination.  It encompasses two important behaviors that act at different time scales.  At the scale of a 

voyage, a ship captain will plan a general route that minimizes distance travelled while avoiding known 

obstacles (land, reefs, or infrastructure).  At the scale of an individual time step, an agent must avoid other 

autonomous moving agents in such a manner that they comply with the COLREGs.   

2.7.2.1 Collision Avoidance 

 

Humans perform navigation to a satisfactory level, but their critical decisions are highly 

subjective, which can lead to error and increase collision potential (Statheros, Howells and Maier 2008).  

In 2002, 148 vessels suffered total losses with 1,274 lives lost, and 80 percent of these accidents occurred 

because of human error (Shi, Zhang and Peng 2007).  An intelligent ship agent must avoid collision while 

maintaining a course towards their destination.  Further, agent’s behavior, especially collision avoidance 

procedures, must follow a strict set of behavioral rules set forth by the COLREGs.  In 1977, the 

Convention on the International Regulations for Preventing Collision at Sea became effective thus 

applying a strict, codified protocol for collision avoidance for all flagged vessels upon the high seas and 

in all water connected by navigable seagoing vessels (USCG, Navigation Rules: International-Inland 

2015).  As such, collision avoidance is one of the major issues mariners face while at sea, and the model 

must take into consideration all of the human operations that are performed for collision avoidance 
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purposes.  Researchers have developed a suite of applications for collision avoidance for autonomous 

vessels including potential fields, soft computing and methods incorporating fuzzy rules sets and expert 

systems.  The most widely used, potential fields are also the method favored here. 

Potential fields have traditionally been applied towards autonomous mobile robot navigation, 

however, they are well suited for agent based navigation.  A potential field is a configuration of space that 

has a global minimum potential at the goal while all obstacles and walls are treated as high potential hills 

(Xue, et al. 2011).  The robot is attracted to the goal position while simultaneously getting repelled from 

all obstacles (Xue, et al. 2011).  Because of its mathematical elegance and simplicity, it allows for real 

time operation in a complex environment (Xue, et al. 2011).  As humans approach an obstacle, they 

perceive the threat and assess a level of danger.  The closer they are to the object; the more danger they 

feel.  The perceived level of ‘danger’ is a function of distance, in much the same way potential is a 

function of distance.  The closer an agent is to an obstacle, the more potential there is and the more 

extreme their evasive actions become.  The simpler and more elegant the mathematical approach to the 

collision avoidance problem, the better suited it is for efficient computational modeling. 

Since the method’s inception, authors have iterated and improved upon potential fields with 

applications spanning autonomous robot navigation to ship maneuvering simulations.  In 1991, 

Borenstein and Koren developed the vector field histogram (VFH) method, which permits detection of 

unknown objects and avoids collision while navigating through a two-dimensional Cartesian histogram 

grid world.  In their application, mobile robots are navigating over raster space, where cell values 

represent collision potential.  The robot navigates to the goal cell by choosing the path with lowest 

collision potential.  Unfortunately, this method is inappropriate because an intelligent agent requires a fine 

scale for collision avoidance maneuvers, meaning each VFH cell would have to be very small.  

Determining collision potential and quantifying a least cost pathway at every time step would be 

computational inefficient and impractical to implement over a large area with many agents.  Ge and Cui 
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(2002) proposed mobile robot planning in a dynamic environment where both the target and obstacles are 

moving.  Their robot would chase the target while simultaneously avoiding moving obstacles.  However, 

their methods have no mechanism to abide by the COLREGS.  Lee, Kwon, and Joh (2004) expanded 

upon Ge and Cui (2002) so that a virtual ship can keep track or avoid collisions with a set of fuzzy rules 

designed to maintain COLREGs.  In 2007, Shi, Zhang and Peng expanded upon the potential field 

approach with their harmonic potential field (HPF).  Their approach, analogous to fluid dynamics, 

generates streamlines between initial and goal locations, where the gradient of the field constitutes the 

velocity field, which is then used to plan and control the ship’s motion (Shi, Zhang and Peng 2007).  In 

practice, the harmonic potential field causes ships to follow a path equidistant between boundaries while 

navigating a channel, an important consideration to take when exploring the application of gravity 

potential fields here.   

While potential field methods enjoy wide adoption in the mobile autonomous robotics 

community, there are issues that will have to be addressed for our agents’ behavior to approach that of 

mariners.  Koren and Borenstein (1991) identified problems inherent to potential field methods.  First, 

local minima may trap agents with negative potential in every direction.  Local minima problems are 

resolved with simple heuristics or global recovery methods.  In certain circumstances, Koren and 

Borenstein (1991) found no passage between closely spaced obstacles, which may lead to unnatural agent 

behavior when ships attempt to enter a navigational channel or constricted pathway.  They also found 

oscillations in the presence of obstacles and narrow passageways (Koren and Borenstein 1991).  

However, (Xue, et al. 2011) found a simple solution for oscillations in narrow passageways by placing 

less vertices along the boundary of a corridor.  Aside from potential fields, evolutionary computation has 

also been applied to collision avoidance. 

Smierzchalski (1999) developed a method based on evolutionary computation to estimate safe 

and near optimal pathway.  The application develops safe routing that avoids collision for ships at their 
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starting location.  However, there may be real-time changes to system state that the evolutionary 

algorithm cannot account for because it is designing optimal collision free paths using starting conditions 

only.  The procedure is also computationally expensive and would be prohibitive to repeat for all agents at 

all time steps.   Expert rule based systems are another method used for collision avoidance.   

 Expert systems use rules to make deductions or choices.  Nikitakos and Fikaris (2009) developed 

a collision avoidance method to select the best decision out of a set of existing decisions taking into 

account weather, loading, and ship type.  Their approach uses Case Based Reasoning, which solves 

current problems or situations with the assistance of similar cases that were dealt with successfully in the 

past.  The cases are stored in a library and retrieved by the system using indices.  The retrieved cases are 

then ranked according to criteria and the system proposes the best solution to solve the current problem.  

The method unfortunately lacks mathematical rigor, and ranking of retrieved cases is arbitrary.  The 

application mimics Bayesian decision making which makes use of prior data to reach a posterior 

conclusion on the best course of action to take, but does not use inductive reasoning, which may be more 

appropriate in the context given uncertainty in data.  Expert rule based systems are one of the many 

decision methods that make use of prior information to choose the best course of action to take.  Fuzzy 

logic is another one of these methods applied to the collision avoidance problem. 

Fuzzy logic enables modelers to build a model that simulates approximate reasoning, where causal 

inferences drive decision making using linguistic variables (Bonissone 1980).  Even though the models 

lack mathematical formalism, fuzzy control has been effectively used in the context of complex ill-

defined processes, especially those that can be controlled by a skilled human operator without the 

knowledge of their underlying dynamics (Castro 1995).  Castro notes that fuzzy logic controllers are 

universally capable of approximating any real continuous function on a compact set to arbitrary accuracy.  

Researchers have capitalized on the fact that fuzzy logic works well on ill-defined systems and that they 

can approximate any real function capable of directing behavior.  Perera, Carvalho, and Soares (2009) 
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developed a fuzzy logic based decision making system to facilitate collision avoidance with respect to 

COLREGs rules and regulations.  After collecting target vessel position and velocity and calculating 

relative and future positions, the data is “fuzzified” into membership functions that respect COLREGs 

(Perera, Carvalho and Soares 2009).  These membership functions then inform the behavior of the agent.  

Kao, et al. (2007) proposed adding fuzzy collision avoidance capaiblity to vessel traffic systems that 

respect COLREGs.  Fuzzy logic is fundamentally similar to Bayesian analysis, but it lacks the 

mathematical rigor and proof.  Perera, Carvalho, and Soares’ (2009) method is similar to the calculation 

of a Bayesian posterior, especially as it approximates real functions for decision analysis.   Use of 

Bayesian estimation for robot or intelligent agent decision making is not new for vessel maneuverability 

applications. 

Martins and Maturana (2013) used bayesian netwoks to evluate operational risks of a navigational 

system. They presented a methodology for human reliability analysis based on a bayesian belief network 

and applied this method to model the event of a tanker collision (Martins and Maturana 2013). Bayesian 

networks are graphic reasoning models based on uncertainty that can represent discrete and continuous 

variables with argches between nodes representing the direct connection between variables.  They 

evaluated the operational risks of a system that considers all adverse effects that could occur (Martins and 

Maturana 2013).  Not all of the potential events in their netowrk have the same probability of occurrence, 

and they state that for complex systems it is impractical to manipulate all of the hazard factors in 

operation.  Instead a probabilistic study allows the analyst to classify events in terms of consequences and 

frequencies, with the selection of limits for these parameters guided by desired degree of operational 

safety.  They used concept of probability as the analyst’s (or in our case, the agent’s) degree of belief 

allowing for expert judgements to be used as the information to fill conditional probability tables.  While 

this method was not directly applicable to agent based decision making, the authors have developed an 

analogy that can “learn” from AIS data and develop a series of probabilistic rules that ship-agents will 

follow during collision avoidance procedures.  From slowing down at certain traffic densities, to 
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identifying when it is safe for an agent to turn and by how much, a bayesian belief network can direct and 

agent’s behavior in much the same way fuzzy logic does, but with a degree of mathematical formalism 

nor offered in the latter. 

 Due to their simplicity and mathematical elegance, collision avoidance procedures based on 

potential fields are the favored method.  Methods that incorporate evolutionary computation would be 

inefficient to run for every agent at every time step in the simulation.  Fuzzy logic and expert rule based 

systems lack the mathematical rigor of Bayesian networks.  Bayesian methods can signal when an agent 

should take evasive action, however it is difficult to identify and quantify the collision avoidance 

procedures of real vessels from AIS data.  For this reason, collision avoidance is performed with potential 

fields.  Route planning is the last behavior our agents must reproduce for a simulation of industrial 

shipping.  

2.7.2.2 Route Planning 

Aside from maneuverability and collision avoidance, the agent-based model must also recreate 

the route planning procedures undertaken by real vessels.  An agent’s path towards the destination must 

encompass the shortest route while avoiding known obstacles.  Route planning algorithms have been 

developed for continuous and discrete space.  Hong and Murray (2013) state that the shortest route 

between two points in the presence of obstacles is comprised of one or more intermediate points along the 

convex hull of those obstacles.  Measuring the Euclidean distance in the presence of obstacles has been 

referred to as the Euclidean shortest path (ESP), and most of the prominent approaches employ a visibility 

graph that connects all mutually visible vertices in a given area (Hong and Murray 2013).  The visibility 

graph represents all line segments between every paired origin, destination, obstacle and boundary vertex 

that does not intersect another obstacle or boundary (Hong and Murray 2013).  However, finding the 

shortest route within this visibility graph becomes inefficient when the size of the visibility graph 

increases (Hong and Murray 2013).  Hong and Murray’s (2013) implementation exploits spatial 
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knowledge by considering only relevant obstacles and the portions of the regional boundary that directly 

impede travel towards the destination.   Other efficient algorithms have been developed for route selectin 

in discrete space  

Smierzchalski (1999) developed an evolutionary method for estimating the safe and optimum 

path between an own ship’s trajectory and the environment.  They found that evolutionary algorithms can 

solve collision avoidance and find an optimum least cost pathway to the agent’s destination.  Lee, Kong, 

Kim, Kim, and Lee (2002) developed a network decision model that minimizes costs (sailing time, fuel 

consumption while considering weather conditions) and solved with a depth-first search algorithm (A*).  

In a similar method, Montes (2005) developed a ship router for the US Navy that used a binary heap 

version of Dijkstra’s algorithm over a network graph of the Pacific Ocean with model generated wind and 

seas as input.  Montes tested the model against recent weather data to verify performance and found that it 

avoided adverse weather and solved the least-time path to a destination.  Prior to Montes application, 

naval officers formulated diversion routes and ocean voyages based on climatology, numerical weather 

forecasts, satellite products, and individual ship’s sailing capabilities with manual techniques.  A 

combination of Hong and Murray’s (2013) convex path approach and Dijkstra’s algorithm will provide 

efficient route finding for a population of agents.   

2.7.3 The Rational Economic Actor; Utility Theory 

A utility-based approach is most suitable for economic actors such as ship-agents.  Utility theory is a 

treatment of normative approaches that evaluate an individual’s preferences in a variety of decision 

situations (Fishburn 1970).  For ship-agents, it simply states that individuals will seek to maximize their 

utility, in this case profits and safety.  At any given time step, the agent chooses an optimal policy, which 

is the action from the set of all possible actions that an agent can do that leads to the highest expected 

utility (Salamon 2011).  However, an ABM consisting of hundreds of agents over thousands of time steps 

cannot use exact optimization methods because of a lack of computational power and the realization that 
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ship captains are not performing continuous exact optimizations in real time.  They may optimize their 

global route, but in real time, decision-making must be fast and computationally cheap.  Therefore, a key 

challenge in designing a software agent that represents real decision-makers is determining the manner in 

which each agent solves problems (Manson 2006) while reaching their global objective.  Agents do not 

have global information, nor have infinite computational power (Epstein 1999).  They typically make use 

of simple rules based on local information (Epstein 1999).  These simple rules are usually heuristics, 

which provide an adequate solution cheaply, where elaborate approaches would be expensive, time 

consuming and underutilized (Conlisk 1996).  The optimizing, utility driven behavior of ship agents is 

bound with simple heuristics, which guide agent behavior and maintain the assumption of rational 

economic actors. 

There are three major components regulating ship-agent behavior: physical, regulatory and 

economical.  The first, physical, states that an agent can only travel so fast, that inertia affects the ability 

to decelerate, and that large vessels are not maneuverable.  Agent movement is guided by numerical 

methods that incorporate vessel physics so that their simulated behavior approaches reality.  Aside from 

the physical controls, agents are also rational actors in regards to regulations.  The Convention on the 

International Regulations for Preventing Collisions at Sea (1972) produced a set of regulations, called the 

COLREGS, that bind all flagged vessels to a set of rules governing ship-ship interaction at sea (USCG, 

Navigation of Rules, International - Inland 2015).  These set of rules affect all vessels operating on the 

high seas and all water connected to them that are navigable by sea going vessels (Benjamin and Curcio 

2004).  A ship captain cannot act in a manner that would put his vessel or cargo at risk of collision, and 

the COLREGS provide a manner in which to regulate.  The last major component making up the ship-

agent rule set ensures that individuals are rational, economic actors.  The job of a ship captain is to get his 

vessel, crew and cargo to the destination as quickly and safely as possible.  Time is money, and the longer 

the duration the less their profits.  If rational, economic ship-agents are encoded with a strong desire to 



 
 

37 

minimize costs, then the choices they make concerning route selection would find individuals minimizing 

voyage duration.    

2.8 Summary 

The USCG recently ruled that creating routing measures where structures currently do not exist 

(i.e. displacing navigational channels), would more than likely result in an increase in risk due to vessel 

navigation in closer proximity to each other in than they would otherwise in an open ocean scenario 

(USCG, 2016).  Thus, a potential conflict may arise between the marine offshore renewable energy 

industry and marine trade, and this application will seek to understand the interaction between the marine 

trade and transport industry and proposed wind farms along the continental shelf of the northeastern 

United States.  Further, current MSP measures lack the ability to quantitatively understand displacement 

and/or anticipate the unintended consequences of foregone space, and this application seeks to develop a 

protocol that can be employed by MSP professionals when sighting their next project.   

Impacts to the marine trade and transport industry will be assessed with an agent based model 

employed within an ecosystem based management framework.  The ABM will simulate the marine trade 

and transport sector as it reacts to a proposed wind farm in New York Bight at the entrance to the third 

busiest marine terminal in the United States.  The ABM will rely upon empirically derived and validated 

rigid hull ship movement models and collision avoidance procedures based upon gravitational potential.  

It is hypothesized that as long as the agents behave as rational actors, then their simulated behavior will 

approach reality.  Therefore, the emergent behavior produced by the ABM will inform the marine spatial 

planner how and to what degree the proposed project will impact the industry. 
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Chapter 3  

Methods 

 

 

3.1 Introduction  

 This chapter presents the methodology for an agent based model of the commercial shipping 

industry.  The agents in this simulation represent the individual ships of the marine trade and transport 

sector (henceforth known as the ‘sector’) as they interact with each other while competing for space 

within a constrained navigable waterway.  Behavioral rules govern their interaction, which produce 

emergent properties of interest to resource management professionals.  These properties can include 

everything from the location, heading and velocity of agents in time, to the location and number of 
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collision incidents, as well as calculated indices including time at sea and length of voyage.  With an 

accurate simulation, spatial planners have the tools they need to anticipate impacts to navigation.   

3.2 Overview 

 This agent-based model of commercial ship behavior is described with the Overview, Design 

Concepts, and Details (ODD) framework, meant to present ABMs in a hierarchical manner as an 

overview of model structure and processes followed by details on those processes (Heppenstall, et al., 

2012).   

3.2.1 Objective  

The ABM’s objective is to simulate the sector and the socio-economic consequences of 

locating a WEA approximate to or within navigable space.  WEAs are contiguous areas of the 

coastal ocean thought to hold high potential for the development of offshore wind farms.  If 

WEAs are placed within navigable space, displacement will lead to a cascade of change within 

the system.  As a consequence of the reduction in navigable space, the model estimates the 

increase in voyage length and duration over baseline conditions, as well as the frequency and 

severity of collision avoidance maneuvers.  As more space is removed, the total distance travelled 

and voyage duration is likely to increase, individual vessel velocity will likely decrease, and the 

potential for collisions may increase; all of which will reduce profit margin.  In other words, the 

model aims to quantify socio-economic impact.  This model seeks to identify those thresholds 

(vessel density and the size and location of OREI) that disrupt the system and lead to novel 

emergent pattern.   

A secondary objective is to implement the ABM in Python 2.7, an open source, object 

oriented programming language (Python 2016).   Python is an ideal language for spatial planners 

familiar with industry standard GIS software (e.g. ESRI), which allow and encourage the open 
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source community to development new capabilities and implement them within a GIS 

environment.   

3.2.2 Entities, State Variables and Scale:  

The system entities (agents) represent individual ships that belong to more than one operational 

class.  Modeled together, the agents represent the marine trade and transport sector (sector). The sector is 

comprised of multiple classes with different roles and capabilities.  However, the current version of this 

ABM only simulates tankers and cargo vessels.  Each agent is a separate Python class object, which 

allows for individualized method calls and the ability to store arbitrary data about the agent (Python 

2016).  During initialization, the simulation software creates a Python class object for every desired agent, 

and assigns them to one of two ship types (tanker or cargo vessel).  Functions that identify navigational 

routes and control agent behavior are ‘methods’ bound to each class object.  As the simulation progresses, 

the ABM iterates over each individual, calling methods that apply to the current agent only, thus ensuring 

their autonomy.  Python class objects are also useful holders that describe agent parameters.  

Python class objects are containers for arbitrary data (Python 2016).  These containers are useful 

for storing variables including length (ߣ) (units: m, type: floating point), width (ߚ) (units: m, type: 

floating point), draft (ߜ) (units: m, type: floating point), velocity (ݑ) (units: m/s, type: floating point), and 

vessel type (type: string, ‘cargo’, ‘tanker’).  At initialization, the model draws these characteristics from 

statistical distributions of real vessel data.  This application relied upon automatic information system 

(AIS) data for the calendar year 2014 provided by BOEM (2014).  As the simulation progresses, the 

agents will use knowledge about themselves, their environment, and other agents as they move towards 

their destination and interact with each other. 

The ship-agents are autonomous software objects interacting with each other over a simulated 

seascape.  At every time step they must sample their environment and make decisions that maximize their 

well-being, all while interacting with other agents.  Interactions only occur between two agents at a time, 
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Figure 3.1 shows a crescent shaped 
navigation obstruction and its convex 
hull.  The convex hulls of all 
obstructions are known to the agent at 
the start of the simulation. 

the own-agent (Γ௢) and target-agent (Γ௧).  One must view the own-agent (Γ௢) from a first-person 

perspective as it iterates over all target-agents within proximity (Γଵ … Γ௡).  When interacting with the 

current (݊௧௛) target-agent (Γ௡), the own-agent (Γ௢) knows the target’s heading, velocity, and vessel 

parameters that are typically made available through AIS data, but it does not know the target’s 

destination.  With this information, the own-agent (Γ௢) can anticipate where the target (Γ௡) will most 

likely move during the current time step and can plan their own movement to minimize risk of collision.  

The population of agents are not only affected by each other, but state variables as well. 

In real systems, there are a host of state variables that effect the navigability of a region, such as 

wind, waves and tide, but these are assumed to be negligible and have no effect on navigability.  The 

main state variables that drive emergent behavior are the location of obstructions, other ship-agents, and 

the spatial plans that serve to displace the sector.  At initiation, the agents are aware of the location of all 

navigational obstructions (including the proposed OREI), with their boundaries described by convex hulls 

(Figure 3.1).  
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The amount of space required to stop large sea-going vessels are a direct consequence of their 

size and the momentum.  Therefore, ship-agents must plan out their interactions and route changes 

kilometers in advance, which consequently dictates a large study area.  We chose the charted navigational 

approach to the port of New York and New Jersey, the third largest container port in North America  

(PANYNJ 2016), as our study area because the BOEM has located a WEA within the region (Error! 

Reference source not found.).   All coordinates are within UTM Zone 18N.  We also gave consideration 

to temporal scale.  The model operates within continuous space at discrete one second time intervals, 

which are appropriate because large commercial vessels cannot move more than their length in one time-

step. 

3.2.3 Process overview and scheduling:  

As the model initializes, it creates the number of agents (݊) desired by the spatial planner.  For 

each new agent, internal methods within the class object choose vessel characteristics from statistical 

distributions, and then finds the shortest route to its destination.  Then, every agent executes the following 

actions once per time step until the simulation terminates.  In an iterative fashion, an agent first assesses 

attraction towards its next waypoint, and then it quantifies the repulsive force generated by the other 

agents and obstacles around it.  The agent uses attractive forces to orient itself towards its next way point 

and repulsive forces to keep it from danger.  Aside from reacting to these navigational forces, the agent 

also regulates speed by controlling the engine’s throttle.  Finally, at the end of every time step, the agent 

resolves movement through a first order Nomoto model.  When the model starts, agents are scattered 

throughout the study region, each with their own origin and destination.  If agents are added during a 

simulation, then they can only enter from the sides.   
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Figure 3.2 A depiction of the Entrance to the Port of New York and New Jersey, the Study Area for the Agent Based 
Model.  The USCG has defined a traffic separation scheme designed to minimize congestion and the risk of collision 
into and out of the 3rd largest container port in the United States.  The arrows indicate the direction of travel within 
each lane.  Note the location of the WEA placed between two approaches. The labeled channels are as follows; A: 
Nantucket to Ambrose, B: Ambrose to Nantucket, C: Hudson Canyon to Ambrose, D: Ambrose to Hudson Canyon, E: 
Barnegat to Ambrose and F: Ambrose to Barnegat.   
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3.3 Design Concepts 

The ABM aims to quantify key emergent properties, including aggregate measures of voyage 

duration and spatial behavior patterns in response to the planned construction of offshore renewable 

energy infrastructure.  The model also exhibits adaptive behavior indicative of CAS: ship-agents react to 

their environment during initial routing, plan around obstructions and react to individual agents in real 

time.  Initial routing consists of finding the shortest route to their destination that avoids known 

obstructions.  During a voyage, a ship agent’s only objective is to arrive at their destination while 

avoiding collisions.   

3.3.1 Emergence 

As traffic density within a constricted navigational corridor increases, traffic can form into 

ordered, laminar rows with reduced velocity indicative of traffic jams and form kinematic waves of low 

velocity that propagate through the population of agents.  As vessel’s come closer together they might 

have to implement emergency stopping procedures.  It is the intent of the model to create abrupt changes 

in system state (i.e. traffic jams) as a response to spatial regulation.  The system constraints under 

consideration are management decisions that remove navigable space and the number of agents within the 

system at any one time.  Although complex systems tend not to be forwardly predictable (Abbott, 2007), 

repeated simulations demonstrating a propensity towards a singular emergent state (attractor) allows 

spatial planners to develop confidence when gauging impact.  If there is an attractor, it can provide a 

means of assessing the sustainability of mutually exclusive economic activities, namely the offshore wind 

industry and the marine trade and transport sector.  Aside from modeling emergence, this ABM also 

incorporates adaptation. 

3.3.2 Adaptation 

Agents alter their behavior due to external pressures from their environment and from interactions 

with other vessels because they are rational actors that must minimize risk of collision. Their initial route 
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is the shortest that avoids known obstructions.  During a voyage agents steer from dangerous interactions 

and regulate their speed.  When they are not interacting with other agents or in regulated navigational 

channels, the agents accelerate to their maximum cruising speed.  The cruising speed is designed to 

maximize voyage profit, and is usually set at the onset of a voyage by the shipping company.  Aside from 

adapting to present conditions, agents also have some predictive capabilities. 

3.3.3 Prediction 

In real systems, vessels are equipped with redundant and state- of- the- art safety systems 

including multiple radar and AIS technologies.  Therefore, it is assumed that an agent knows where the 

locations of all obstacles exist, as well as the location, heading, velocity and characteristics of all vessels 

within proximity.  The agent uses this information to minimize the risk of collision while navigating 

toward the next waypoint.   

Collision avoidance requires the own agent (Γ௢) to anticipate the future location of itself and other 

vessels (Γଵ … Γ௡), which requires predictive capacity.  Collision avoidance procedures use movement 

parameters (heading, forward and rotational velocity) of the own- (Γ௢) and target-agent (Γ௡) to anticipate 

where they and the target vessel are headed.  The agent’s predictive capabilities rely upon numerical 

methods of classical mechanics with two principle forces, drag and thrust, acting upon the hull of each 

vessel. 

3.3.5 Stochasticity 

 The agents’ classes and their starting locations, destinations, headings, and speeds are chosen 

randomly.  The starting locations, although random, are constrained to be near the edge of the study area, 

as are the destinations.  The software draws an agent’s class from a multinomial probability distribution.  

The classes then define fundamental vessel shape and maneuvering characteristics such as length (ߣ), 

beam (ߚ), draft (ߜ), and weight (ߤ) because it is assumed that different vessel types will have different 

shape characteristics. 
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3.3.6 Observation 

The ABM creates a wealth of data as the simulation progresses, all of which are suitable for 

diagnostic purposes.  From the locations and movement parameters of every agent in time, to their full 

decision making history, every interaction and resulting pattern can be accounted for and analyzed.  

During a simulation, the ABM logs data into an SQLite database, and after the simulation completes, 

diagnostics scripts analyze the event log and quantify emergent pattern.  Because the location and 

internal state of each agent is tracked in time, it is possible to identify thresholds that drive a system 

towards a particular state.   

3.3.7 Validation 

There are two types of validation we aim to achieve in this application (system and micro 

simulation) with the hope that the ABM can reconstruct meaningful emergent states of use to spatial 

planners.  For system validation purposes, the application will use AIS data for the study region provided 

in ESRI geodatabase format (BOEM 2014).  This information contains the timestamped positions of 

actual vessels and their related characteristics (class, length, width, draft, and tonnage).  The ABM was 

constructed to be realistic: the code was debugged by comparing simulated vessel tracks with actual 

tracks. Nonetheless, it is also stochastic, which precludes exact replication of the AIS data when running 

scenarios. So, with AIS data, we are not validating the positions of simulated vessels against actual 

scenarios, rather the emergent states within real system data.  For example, do kinematic waves propagate 

through actual vessel traffic in the same manner it propagates through simulated traffic?  The model 

provides researchers the means to create scenarios and to test them Monte-Carlo style to understand the 

threshold levels that drive emergent patterns (vessel density and plan configuration and size) rather than 

how well the simulation can reproduce traffic patterns on a specific day and time.   
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3.4 Details 

 The details section contains subsections on the ABM initialization routines, and on numerical 

models that guide navigation, route finding, collision avoidance, orienteering, throttle control, and then 

forward and angular movement. 

3.4.1 Model Initialization 

The end user defines a population of agents Γଵ … Γ௡, of length ݊, and the values for basic ship 

parameters (tonnage (ߤ), length (ߣ), beam (ߚ) and draft (ߜ)), the vessel class (cargo or tanker), and their 

origin (࡭) and destination (࡮).  Positions must be given in rectangular coordinates (i.e., not longitude and 

latitude). For this project, the origin and destination are XY coordinate pairs {࡭ = ,஺ݔ) ,(஺ݕ ࡮ = ஻ݔ) ,   .{(஻ݕ

Given ࡮,࡭ and set of obstacles ܱ, the software creates each agent’s route and stores the waypoints within 

each ship-agent object as a list of ܻܺ coordinate pairs.  The last initialization step rotates the agent so that 

it is oriented towards its first waypoint.   

3.4.2 Submodules 

Numerical submodules control agent behavior and are designed in such a manner that after 

calibration and validation, they mimic the behavior of individual actors in the system we are trying to 

emulate.  The first set of submodules controls an agent’s ability to navigate through the study area. 

3.4.2.1 Navigation 

Navigation involves knowing the location of the vessel and controlling its movement towards the 

destination.  Reproducing the ability to navigate requires submodules for route planning, orienteering, 

collision avoidance and throttle control.  Route planning only occurs once, while orienteering, collision 

avoidance and throttle control occur at every time step. 
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3.4.2.1.1 Route Finding 

We developed a modified Hong and Murray’s (2013) Euclidean shortest path (ESP) route finding 

algorithm.  The ESP identifies the shortest pathway between two locations that avoid all obstacles to 

travel (Hong and Murray 2013).  If the ESP finds no obstacles between the origin and destination, then 

the Euclidean distance is the shortest length path (Hong and Murray 2013).  However, if there are 

obstacles, then the shortest path that avoids them requires a route comprised of one or more intermediate 

waypoints (Hong and Murray 2013).  Their ESP algorithm finds those points.   

Identifying the intermediate points that minimize path length is not trivial because we must locate 

an indeterminate number of points in continuous space while satisfying several conditions (Hong and 

Murray 2013).  Hong and Murray (2013) also state that constraining conditions are challenging to impose 

because all intermediate points have to be located such that connected line segments avoid all obstacles.   

The shortest path algorithm finds the number and location of an indeterminate number of 

waypoints (ܹ) of length ݖ.  and their location through which the path is routed (Hong and Murray 2013).  

Each element (ݓ) of ܹ is stored as an XY coordinate pair (ݔ௪ ,    .(௪ݕ

Formally, the algorithm minimizes (Hong and Murray 2013):  

෍ ݁ݖ݅݉݅݊݅ܯ ට൫ݔ෤௝ିଵ − ෤௝൯ݔ
ଶ

+ ൫ݕ෤௝ିଵ − ෤௝൯ݕ
ଶ

௭ାଵ

௝ୀଵ

 
3.1 

 

where (ݔ෤଴, ,஺ݔ) = (෤଴ݕ ,෤௭ାଵݔ) ஺) andݕ ஻ݔ) = (෤௭ାଵݕ ,  ஻) (Hong and Murray 2013).  The straight line betweenݕ

two consecutive points ݓ and ݓ + 1 within ܹ must not cross any obstacle (Hong and Murray 2013).   

Hong and Murray (2013) use polygons to describe obstacles within the study area.  Each obstacle 

Ω௜ belongs to the set of all obstacles ܱ = {Ωଵ … Ω௞}.  Each obstacle is constructed of a set of vertices 

stored as a list of XY coordinate pair: Ω௞ = ൛(ݔො௞ଵ, ,(ො௞ଵݕ … , ൫ݔො௞௡ೖ
, ො௞௡ೖݕ

൯ൟ, where ݊௞ is the number of 

vertices in the ݇௧௛ obstacle.   
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With an agent’s (Γ௡) origin ࡭ and destination ࡮ known, and the locations of all obstacle vertices 

also known (ܱ), we can define Φ as the set of all obstacle vertices and points ࡭ and ࡮: Φ = ܱ ∪

,஺ݔ) (஺ݕ ∪ ஻ݔ) ,  ஻).  Hong and Murray (2013) show that this set (Φ) is important for two reasons.  First, itݕ

reduces the number of points within the problem from potentially infinite to a more manageable amount.  

Second, they proved that the shortest path will consist of points in Φ, therefore, the search for 

intermediate points that make up the shortest path is limited to Φ (Hong and Murray 2013).  The difficult 

task is to filter out those line segments between members of Φ that do not intersect the interior of Ω௞ for 

any obstacle ݇ (Hong and Murray 2013).  That is, ݅, ݆ ∈ Φ | ଓଔ ഥ ∩ (Ω௞)ݐ݊݅ ≠ ∅ for any ݇, where ݅݊ݐ(Ω௞) 

is the interior of the ݇௧௛ obstacle Ω௞  ଓଔഥ is the line segment connecting vertex ݅ to ݆, and ∅ means the 

empty set (Hong and Murray 2013). 

For problems where travel is inhibited by a regional boundary, ܪ is the set of all vertices of 

length ݃ representing the boundary of the study region: ܪ =  ൛(̅ݔଵ, ,(തଵݕ … , ൫̅ݔ௚,  ത௚൯ൟ.  When travel isݕ

restricted by a regional boundary, Φ is expanded to also include ܪ: Φ = ܪ ∪ ܱ ∪ ,஺ݔ) (஺ݕ ∪ ஻ݔ) ,  (஻ݕ

(Hong and Murray 2013).   

To derive the shortest path, Hong and Murray (2013) create a graph ܩ of the vertices in Φ, by 

linking each vertex to members of the set ܰ.  The set ܰ is contained within Φ (Φ ⊂ ܰ) and consists of 

vertices that can be connected without intersecting the interior of obstacles or outside of the regional 

boundary (Hong and Murray 2013).  Thus ܩ represents all of the feasible path segments to travel from ܣ 

to ܤ.  However, ܩ can be very large, therefore Hong and Murray (2013) were interested in finding an 

efficient graph ܩ∗ within ܩ where ܩ∗ ∈  Hong and Murray (2013) state that the formulation of the ESP  .ܩ

can be structured based on the graph ܩ (or ܩ∗)for the origin and destination locations ࡭ and ࡮.   

Hong and Murray (2013) proved two theorems that allow us to implement an algorithm that 

derives ܩ∗ and solves the shortest path problem for a population of agents in real time.  The first of these 

theorems stated that the ‘optimal ESP between two points separated by single continuous obstacle will be 
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on the convex hull boundary.’  With this proof, an algorithm (Convexpath) is possible for selectively 

identifying the vertices and arcs in ܩ∗that contains the ESP (Hong and Murray 2013).  Hong and Murray 

also prove that ܩ∗ contains the optimal ESP between two points with multiple obstacles inhibiting travel.  

With Hong and Murray’s work, identifying the shortest route for our agents is simple.  We only need to 

supply the algorithm with the convex hulls of all known obstacles and the agent’s origin and destination.   

Rather than implement Hong and Murray’s (2013) convexpath, we developed an algorithm 

(route) that relies upon an iterative testing procedure to gradually build ܩ∗ from the origin (࡭) by always 

working towards the destination (࡮).  Hong and Murray (2013) constrained the shortest path network 

problem to ensure ܩ∗ flows from the origin (࡭) towards the destination (࡮).  Therefore, ܩ∗is a directed 

graph consisting of nodes for the origin (࡭), destination (࡮), and all intermediate waypoint nodes (ܹ), 

with edges connecting them in such a manner that they conserve the direction of flow towards the 

destination.  The origin (࡭) and destination (࡮) are supplied to the algorithm as XY coordinate pairs, 

,஺ݔ) ,(஺ݕ ஻ݔ) , ௪ݔ) ஻).  Each element (࢝) of ܹ is stored as an XY coordinate pairݕ ,  ௪).  To identify theݕ

intermediate vertices (࢝), route also needs to know the location of all obstacles within the study area.   

The obstacles that ship-agents will need to avoid include wind farms, shipping lanes that guide 

opposing traffic, and the shoreline.  A GIS preprocesses the convex hull of each obstacle within the study 

area and buffers them by one kilometer, 200 more than that required in the UK (MCA 2008).  The set of 

all obstacles (ܱ) within the study area is of length ݇ (ܱ ∈ Ω௞).  The ݇௧௛ polygon (Ω௞) consists of a set of 

vertices (൛(ݔොଵ, ,(ොଵݕ … , ൫ݔො௡ೖ
, ො௡ೖݕ

൯ൟ) of length ݊௞.  The agent stores each obstacle Ω௜ as a Shapely polygon 

object (Gillies 2013).  With the origin (࡭), destination (࡮), and set of obstacle vertices (Φ) known, we can 

derive ܩ∗, a directed graph with edge weights measured as the Euclidean distance between connected 

nodes.   

During initialization, an agent’s route method finds the shortest path to the destination.  The 

method starts by creating an empty NetworkX graph object ܩ∗ (Hagberg, Schult and Swart 2008)  and 

adds the origin (࡭) and destination (࡮) as nodes.  The iterative graph building procedure begins with the 
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creation of a Shapely line segment (Gillies 2013) connecting the origin and destination ࡮࡭തതതത.   The 

algorithm then iterates over each obstacle polygon (ܱ ∈ Ω௞), and uses Shapely functions (Gillies 2013) to 

determine if ࡮࡭തതതത intersects or is within the ݇௧௛ obstacle Ω௞.  If ࡮࡭തതതത does not cross any polygon, an 

edge connecting the nodes ࡭ and ࡮ and edge (ܤܣ)is added to ܩ∗ and the route algorithm terminates as the 

shortest route to the destination is found.  However, if either function returns true, then the ݊௞ vertices of 

݇௧௛ intersecting polygon Ω௞ =  ൛(ݔොଵ, ,(ොଵݕ … , ൫ݔො௡ೖ
, ො௡ೖݕ

൯ൟ are added to a list of test vertices Υ (Figure 3.3).  

The algorithm then iterates over each vertex ࢏ in the test list Υ, and creates a Shapely line segment 

between ࡭ and the current vertex ࡭ ,࢏ଙ,തതതത.  Then, route iterates over all polygons in ܱ. If the line 

segment ࡭ଙ,തതതത crosses or is within the ݇௧௛ obstacle polygon (Ω௞), route removes ࢏ from Υ.  If the 

segment is without spatial conflict, route adds ࢏ and ݅ܣ to ܩ∗as a node and edge, adds ࢏ to a list of new 

nodes χ, and removes ࢏ from Υ (Figure 3.4).  After the algorithm iterates over all vertices ࢏ in Υ, it then 

iterates over all of the new nodes ࢐ in χ.  The algorithm creates a Shapely line segment between each ࢐ and 

the destination ࡮, ଚ࡮തതതത.  Then, ݁ݐݑ݋ݎ tests for spatial conflict with every obstacle polygon in ܱ with the 

Shapely functions crosses and within.  If ଚ࡮തതതത does not conflict with any polygon, route adds ଚ࡮തതതത to ܩ∗ 

as an edge and removes ࢐ from χ.  We do not add the node ࡮ to ܩ∗, because it was added when the graph 

was created.  If there is conflict with ଚ࡮തതതത, then the ݊௞ vertices of ݇௧௛ intersecting polygon Ω௞ =

 ൛(ݔොଵ, ,(ොଵݕ … , ൫ݔො௡ೖ
, ො௡ೖݕ

൯ൟ are added to the list of test vertices Υ and ߦ is removed from χ.  The algorithm 

repeats this iterative test procedure until there are no more vertices in χ to test and add to ܩ∗, or when it 

discovers all edges that connect to the destination node ܤ (Figure 3.5).  When ܩ∗is complete, 

networkx.dijkstra_path implements Dijkstra’s algorithm (Dijkstra 1959) to find the shortest 

path to the destination.  The function call incorporates edge weights, which represent the Euclidean 

distance between nodes (Figure 3.6). 

What differentiates this implementation of the ESP from Hong and Murray’s, is that this 

algorithm requires an extra preprocessing step.  By creating convex hulls of all navigational obstructions, 
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the algorithm does not use computational resources to determine if a potential edge is on the convex hull 

or not.  We are already insured it does.  In addition, by forcing the algorithm to always attempt a segment 

towards the destination, it only encounters polygons that happen to lie in its path.  Therefore, the resulting 

edges in the directed graph are always headed towards the destination (ܤ), and the size of ܩ∗ is greatly 

reduced making the implementation of Dijkstra’s even more efficient.  Route was implemented in Python 

2.7.5 as a method of an agent (Python class object), and is called during initialization (see pseudo code).  

The algorithm is supported by Shapely 1.5.1 (Gillies 2013) for all applied geometrical operations and 

spatial data management, while Networkx 1.10-2 (Hagberg, Schult and Swart 2008) provided graph 

theoretical operations. 

Route: 
create ܩ∗,  
add nodes ܤ,ܣ to ܩ∗  
create line segment ܤܣതതതത 

 for Ω௞ in ܱ: 

  if ܤܣതതതത crosses or is within Ω௞: 

   add Ω௞to cross list 
if cross list is empty: 

  add the edge ܤܣ to ܩ∗ 
 else: 

  for Ω௞ in cross list: 

   for ݅ in Ω௞:  
    create ܣଓതതത 
    feasible = 1 

                    for Ω௞ାଵ in ܱ: 

         if ܣଓതതത crosses or is contained by Ω௞ାଵ: 
                             feasible = 0 
    if feasible is equal to 1: 
     add ݅ to Κ 
     add ݅ and ݅ܣ to ܩ∗ 
        while Κ is not empty: 
           for ݅ in Κ 
                           create ଓܤതതത 

                 for Ω௞ in ܱ: 

               if ଓܤതതത crosses or is contained by Ω௞: 

              add Ω௞ to cross list 
               else: 
              add ଓܤതതത to ܩ∗ 

                 for Ω௞ in cross list: 

                 for ݆ in Ω௞: 
                create ଓଔഥ 
                feasible = 1 

                for Ω௞ାଵ in ܱ: 
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              if ଓଔഥ crosses or is contained by Ω௞ାଵ: 
             feasible = 0 
                if feasible is equal to 1: 
              if ݆ not in Μ: 
                                             add ݆ to test list 
            add ݆ and ଓଔഥ to ܩ∗ 
         remove ݅ from Κ 
         add ݅ to list of Μ 
       Apply Dijkstra’s on ܩ∗ with distance weights, return list of waypoints          
end;    

  

After all agents identify their initial route, the simulation begins.  During each time step, the agents rely 

upon the remaining navigation submodules (collision avoidance, orienteering and throttle control).  At the 

beginning of each time step, the agent samples their environment and implement collision avoidance 

procedures.   

3.4.2.1.2 Collision Avoidance 

Under normal operating conditions, the own agent (Γ௢) sets its heading {߰ ∈ ℝ|0 ≤ ߰ < 360}  

and propeller speed in revolutions per second (RPS) ({ݎ ∈ ℤ| − 5 ≤ ݎ ≤ 60) to their optimal settings 

(see: section 3.4.2.4 Orienteering).  However, in the presence of obstacles (ܱ) and other target-agents 

within range (Γଵ … Γ௡), the own-agent (Γ௢) must take evasive action.  Agents minimize risk of collision 

with potential fields, which calculate the repulsive force generated by other agents and obstacles, and that 

serve to push the own-agent (Γ௢) away from danger.  The method, F_rep_agn quantifies the repulsive 

force generated by the ݊௧௛ target-agent Γ௡, while the method F_rep_obs quantifies the repulsive force 

generated by the ݇௧௛ obstacle Ω௞.     
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Figure 3.4 a depiction of the second step of the ESP 
algorithm.  If the line segment ࡮࡭തതതത intersects any polygon, 
line segments are drawn from A to each intersecting 
polygon vertex ࣏.  Only those segments that do not cross or 
are not contained by a polygon are kept. 

Figure 3.3 A depiction of the first step of ESP that creates a 
line segment ࡮࡭തതതത between the origin (A) and destination 
(B).  Note, the line segment ࡮࡭തതതത will intersect both obstacle 
polygons   

Figure 3.6 depicts the solution to the ESP.  Following the 
creation of ࡳ∗, Dijkstra’s algorithm finds the shortest path 
between A and B. 

Figure 3.5 a depiction of the ESP edge testing procedure.  
The algorithm repeats in this manner until there are no 
more line segments to add, or all edges connecting with the 
destination B have been found. 
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The method F_rep_agn is comprised of a series of Boolean logical operations designed to guide 

the own-agent (Γ௢) on how to react to the ݊௧௛ target-agent (Γ௡).  At the start of each time-step, the own-

agent (Γ௢) iterates over all target agents within proximity Γ௧భ
… Γ௡.  The own-agent (Γ௢) is at position 

૙࢖ = ୻೚ݔ)
, ୻೚ݕ

)  in UTM Zone 18N and the ݊௧௛ target (Γ௡) is at ࢗ૙ = ൫ݔ୻೙
, ୻೙ݕ

൯ also in UTM Zone 18N.  

The vector from ࢖૙ to ࢗ૙, ࢜ = ૙ࢗ −   .૙, is the position of the target (Γ௡) relative to the own-agent (Γ௢)࢖

The associated unit vector of ࣇ is ෝ࢜ = ࢜/|࢜|.  Collision avoidance procedures also require the position of 

the own-agent (Γ௢) relative to the target agent (Γ௡), where ࢜ᇱ = ૙࢖ −  ૙, and the associated unit vector isࢗ

ෝ࢜′ = ࢜′/|࢜′|.  The distance between agents is the norm of the vector |࢜|.  If |࢜| < 5,000 m, then the own-

agent computes ݐܽݓݏℎ.  Swath determines if the ݊௧௛ target-agent Γ௡ has the potential to interact with the 

own-agent Γ௢ with:  

ℎݐܽݓݏ =  ߰௢ − 135 < ොݒ∠  <  ߰௢ + 135 3.2 

where ߰௢ is the own-agent’s heading measured in degrees, and ∠ݒො is the angle of the target-agent relative 

to the own measured in degrees.  In other words, the own agent only considers interactions that are within 

a 270o swath around it, split equally between 135o port and 135o starboard (Figure 3. 3.7).  If the target-

agent is not within this swath, no repulsive force is applied (Figure 3.8).    

When the ݊௧௛ target-agent (Γ௡) is within the 270o swath, the own-agent (Γ௢) creates trajectory 

polygons for itself Ψ௢ and the target vessel Ψ௡.  Trajectory polygons represent a rough approximation of 

the area an agent could traverse while under inertial stop.  Inertial stop is when a vessel uses only drag to 

slow itself down.  This scenario should be considered the worst case and represents the maximum 

stopping area of the vessel.   
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Figure 3.7 depicts a the ࢎ࢚࢔ target-agent ࢔ࢣ within the 
collision risk swath of the own-agent ࢕ࢣ.  The own-agent 
 of 45o ࢕࣒ and traveling with a heading ࢕࢖ is located at ࢕ࢣ
as indicated by the arrow, while the ࢎ࢚࢔ target-agent ࢔ࢣ is 
located at ࢗ૙.  Note the own-agent does not yet take into 
account the direction of travel of the ࢎ࢚࢔ target-agent ࢔ࢣ. 

Figure 3.8 depicts a the ࢎ࢚࢔ target-agent ࢔ࢣ outside of the 
collision risk swath of the own-agent ࢕ࢣ.  The own-agent 
 of 45o ࢕࣒ and traveling with a heading ࢕࢖ is located at ࢕ࢣ
as indicated by the arrow, while the ࢎ࢚࢔ target-agent ࢔ࢣ is 
located at ࢗ૙.   

 

 

 

 

 

 

 

 

 

The first step in the creation of trajectory polygons quantifies the inertial stop displacement of the 

own ݏ௢ and target-agent ݏ௧.  This function only considers the resistance force generated by drag.  There is 

no reverse thrust force acting on the hull of the ship because RPS (ݎ) is set to zero.  To find the stopping 

distance, we first calculate the velocity at time (ݐ) with (Personal Comm. Meyer): 

௧ݑ =
଴ݑ ߤ

ߤ + ଴ݑ ݐ ஽ܥ ܽ
 3.3 

Where ݐ is the time in seconds, ݑ௧ is the velocity at time (ݐ) in m/s, ߤ is the mass of the vessel in 

kilograms (݇݃), ܽ is the cross-sectional area of the vessel measured in square meters (݉ଶ), ܥ஽ is the drag 

coefficient, and ݑ଴ is the initial velocity of the vessel measured in meters per second (݉/ݏ).  At the start 

of every time step, the method inertialStop vectorizes equation (3.3) and solves for ݑ௧ over an array of 

time steps of length ݉=7200, (ઢ = ଵݐ] … ௜ݐ ௠] andݐ ∈ ℤ௠)  with numpy.vectorize.  Numpy 

broadcasts a vectorized function over an input array (ઢ) of length ݉ = 7200 and returns an array of 

velocities (ࢁ) of length ݉ = 7200 by evaluating (3.2) over each element in ઢ (Van Der Walt, Colbert 
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and Varoquaux 2011).  Displacement over each time step was calculated as the velocity (ࢁ) multiplied by 

the change in time (݀ݐ = 1) where: ࡰ =  The equation, which ignores friction, reveals that, under  .ݐ݀ࢁ

inertial stop, the vessel will never come to rest; therefore when the 0.1 > ݑ m/s, the vessel is considered 

stopped. The function numpy.where (Van Der Walt, Colbert and Varoquaux 2011) returns the index (݈) 

of the first velocity less than 0.1 m/s in ࢁ , ݀௟ ≤ ≥ If the vessel does not slow down to  .ݏ/݉ 0.1

݈ then ,ݏ/݉ 0.1 = 7200.    The inertial stop displacement (ݏ௡) of the ݊௧௛ agent is the sum of all 

displacements where ࡰ ⊂ ݀ଵ … ݀௟ and ݏ௡ = ∑ ݀௜
௟
௜ୀଵ .   

With the inertial stopping distance of the own ݏ௢ and target-agent ݏ௧ known, the position of the 

own (Γ௢) and ݊௧௛ target-agent (Γ௡) at the inertial stop displacement is computed with 3.4 and 3.5 

respectively: 

௦࢖ = ૙࢖ + ௢ ෡࣒ݏ  ௢ 3.4 

௦ࢗ = ૙ࢗ + ௧೙ݏ 
 ෡࣒ ௡ 3.5 

Where ࢖૙ and ࢗ૙ are the current positions of the own (Γ௢) and the ݊௧௛ target-agent (Γ௡) in UTM Zone 

18N, ݏ௢ and ݏ௡ are the inertial stop displacements of the own (Γ௢) and the ݊௧௛ target-agent (Γ௡), and ෡࣒ ௢ 

and ෡࣒ ௡ are the unit vectors given with 3.6and 3.7 

෡࣒ ௢ = ࣒௢/|࣒௢| 3.6 

෡࣒ ௡ = ࣒௡/|࣒௡| 3.7 

where ࣒௢ is the vector ࣒௢ = ૚ି࢖ − ૙ and ࣒௡ is the vector ࣒௡࢖ = ૚ିࢗ −  ,૙.  The positionsࢗ

 ૙ are the previous and current positions of the own (Γ௢) and ݊௧௛ target-agent (Γ௡)ࢗ ,૚ିࢗ ,૙࢖ ,૚ି࢖

respectively.   

 To finish the trajectory polygons of the own (Γ௡) and the ݊௧௛ target-agent (Γ௡), Ψ௢ and Ψ௡, 

F_rep_agn  rotates ࢖௦ and ࢗ௦ to port and starboard by the maximum rudder deflection angle of each 

vessel (߬௢ and ߬௡) with equation 3.8 through 3.11: 
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௦࢖
ఛ = ଴࢖ + ௢ݏ ቆ൤

cos ߬௢ − sin ߬௢
sin ߬௢ cos ߬௢

൨ ∙ ൥
෡࣒ ௢భ,భ

෡࣒ ௢మ,భ

൩ቇ 
3.8 

௦࢖
ିఛ = ଴࢖ + ௢ݏ ቆ൤

cos −߬௢ − sin −߬௢
sin −߬௢ cos −߬௢

൨ ∙ ൥
෡࣒ ௢భ,భ

෡࣒ ௢మ,భ

൩ቇ 
3.9 

௦ࢗ
ఛ = ଴ࢗ + ௡ݏ ቆ൤

cos ߬௡ − sin ߬௡
sin ߬௡ cos ߬௡

൨ ∙ ൥
෡࣒ ௡భ,భ

෡࣒ ௡మ,భ

൩ቇ 
3.10 

௦ࢗ
ିఛ = ଴ࢗ + ௡ݏ ቆ൤

cos −߬௡ − sin −߬௡
sin −߬௡ cos −߬௡

൨ ∙ ൥
෡࣒ ௡భ,భ

෡࣒ ௡మ,భ

൩ቇ 
3.11 

 

where the positions ࢖௦
ఛ೚,࢖௦

ିఛ೚,ࢗ௦
ఛ೙, and ࢗ௦

ିఛ೙ are the inertial-displaced and rotated-positions of the own 

(Γ௢) and ݊௧௛ target agent (Γ௡), ࢖଴ and ࢗ଴.  The superscript ߬ refers to rudder deflection to port, while −߬ 

refers to rudder deflection starboard.  Thus ߬௢ and −߬௢ are the maximum rudder deflections to port and 

starboard for the own-agent (Γ௢), while ߬௡ and −߬௡ are the maximum rudder deflections for the ݊௧௛ 

target-agent (Γ௡).  Equations 3.8 through 3.11 also have the unit vectors ෡࣒ ௢ (3.6) and ෡࣒ ௧(3.7) written in 

matrix form.   

 The positions (࢖଴, ௦࢖
ఛ೚ , ,௦࢖ ௦࢖

ିఛ೚) form the trajectory polygon (Ψ௢) of the own-agent (Γ௢), 

while (ࢗ଴, ௦ࢗ
ఛ೟೙ , ,௦ࢗ ௦ࢗ

ିఛ೟೙ ) form the trajectory polygon (Ψ௡) of the ݊௧௛ target-agent (Γ௡).  The method 

F_rep_agn  creates Shapely polygons (Gillies 2013) for both trajectory polygons, Ψ௢ and Ψ௡, and tests for 

overlap with the function shapely.intersects.  If the trajectory polygons (Ψ௢ and Ψ௡) intersect 

(Ψ௢ ∩ Ψ௡ = Ψ௖), then the interaction between the own (Γ௢) and the ݊௧௛ target-agent (Γ௡) warrants further 

inspection (Figure 3.9), if they don’t (Ψ௢ ∩ Ψ௡ = ∅) then the own-agent Γ௢ assesses the potential for 

collision with the next target-agent within range Γ௡ାଵ (Figure 3. 3.10).  When trajectory polygons 

intersect, F_rep_agn  creates the intersection (Ψ௖) of Ψ௢ and  Ψ௡ with shapely.intersection 

(Gillies 2013) and measures the minimum collision distance (ܿ) from ࢖଴ to the intersection (Ψ௖) of  Ψ௢ 

and  Ψ௡ with shapely.distance (Gillies 2013). 
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Figure 3.9 depicts the trajectory polygon ࢕ࢸ of the own 
agent ࢕ࢣ with a heading of ࣒࢕formed by the points 
,૙࢖} ࢙࢖

࣎, ,࢙࢖ ࢙࢖
ି࣎, } intersecting the trajectory polygon ࢔࢚ࢸ

 of 
the ࢎ࢚࢔ target agent ࢔࢚ࢣ

 with a heading of ࣒࢚ formed by the 
points {ࢗ૙, ࢙ࢗ

࣎, ,࢙ࢗ ࢙ࢗ
ି࣎}.  If the trajectory polygons overlap, 

there is potential for collision within the shaded area and 
the own-agent ࢕ࢣ continues assessing risk. 

Figure 3.10 depicts the trajectory polygon ࢕ࢸ of the own 
agent ࢕ࢣ with a heading of ࣒࢕formed by the points 
,૙࢖} ࢙࢖

࣎, ,࢙࢖ ࢙࢖
ି࣎, } not intersecting the trajectory polygon 

࢔࢚ࢸ
 of the ࢎ࢚࢔ target agent ࢔࢚ࢣ

 with a heading of ࣒࢚ 
formed by the points {ࢗ૙, ࢙ࢗ

࣎, ,࢙ࢗ ࢙ࢗ
ି࣎}.  If the trajectory 

polygons do not overlap, there is no potential for collision 
and the own-agent ࢕ࢣ assesses risk of collision with the 
next target-agent ࢔࢚ࢣశ૚

 within range. 

 

 

 

 

 

 

 

 

 

 

 

 Interactions between the own (Γ௢) and the ݊௧௛ target-agent (Γ௡) with overlapping trajectory 

polygons belong to one of five categories: (I) the current position of the ݊௧௛ target-agent Γ௡ is within the 

trajectory polygon Ψ௢ of the own-agent Γ௢, (II) the agents (Γ௢ , Γ௡) are approaching head on, (III) the own 

agent (Γ௢) is in-line with but behind the  ݊௧௛ target-agent Γ௡ , (IV) the own-agent (Γ௢) is approaching the 

port side of the ݊௧௛ target-agent Γ௡, or (V) the own-agent (Γ௢) is approaching the starboard side of the ݊௧௛ 

target-agent Γ௡.  The method F_rep_agn classifies each interaction, and depending upon the interaction 

type and collision distance ܿ, enacts different collision-avoidance protocols. 

 After finding that trajectory polygons intersect, F_rep_agn classifies the interaction between 

the own-agent Γ௢ and ݊௧௛ target-agent Γ௧೙
 with a series of Boolean operations.  The first of which, 
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Figure 3.11 shows an example of a head on interaction 
between two agents, the own (࢕ࢣ) and ࢎ࢚࢔ target (࢔࢚ࢣ

).  
The own-agent (࢕ࢣ) has a heading (࣒࢕) of 0.0o while the 
࢔࢚ࢣ) target-agent ࢎ࢚࢔

) has a heading (࣒࢚࢔
) of 180o. 

ݐ݅ݓ , looks for the presence of Type I interactions, where the ݊௧௛ target-agent Γ௡ is within the 

trajectory polygon Ψ௢of the own-agent Γ௢ (3.12): 

ℎ݅݊ݐ݅ݓ = (Ψ௢)ݐ݊݅  ∋  ଴ 3.12ࢗ

where ݅݊ݐ(Ψ௢) is the interior of the own-agent’s (Γ௢) trajectory polygon (Ψ௢) formed by the vertices 

൛࢖଴, ௦࢖
ఛ೚ , ௦࢖ , ௦࢖

ିఛ೚ൟ and ࢗ଴ is the current position of the ݊௧௛ target-agent (Γ௡).  Type I interactions are the 

worst-case scenario and occur when the Shapely function within returns true.  When this occurs, 

F_rep_agn enacts collision avoidance procedures, including setting the propeller speed (ݎ) in revolutions 

per second (RPS) to maximum reverse ݎ =  −5 and quantifying repulsive force.  If within is false, 

F_rep_agn tests for the presence of head on interactions.  

   

 

 

 

 

 

 

 Type II interactions (3.13), occur when the difference between the ݊௧௛ target’s heading (߰௡) 

and own-agent’s heading (߰௢) range between -190o and -170o or between 1700 and 190o as with the 

Boolean operation ℎܱ݁ܽ݀݊: 

ℎܱ݁ܽ݀݊ = 170 <  ߰௡ − ߰଴ < 190 ∨  −190 <  ߰௡ − ߰଴ < −170  3.13 
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where ߰௡ is the heading of the ݊௧௛ target-agent Γ௡heading and ߰଴ is heading of the own-agent Γ௢.  When 

the agents are head on, the Boolean operator evaluates to true as depicted with (Figure 3.11), and protocol 

requires the own-agent (Γ௢) to implement collision avoidance procedures.   

If the agents are not approaching each other head on, then ݌݁ݎ_ܨ_ܽ݃݊ assesses for conditions 

where the own- (Γ௢) and (݊௧௛) target-agent (Γ௡) are in-line, with the own-agent behind the target-agent 

(Type III).  The Boolean operation ݅݊݁ܤ݁݊݅ܮℎ݅݊݀ (Equation 3.14) tests for the presence of this scenario 

with the heading of the own -agent (߰௢), the angle of the ݊௧௛ target-agent (Γ௡) relative to the own (Γ௢) in 

degrees (∠ݒො), the own-agent’s unit heading-vector ( ෡࣒ ௢), and target-agent’s unit heading-vector ( ෡࣒ ௡): 

ℎ݅݊݀݁ܤ݁݊݅ܮ݊݅ = (߰௢ − 22.5௢) < ොݒ∠ < (߰଴ + 22.5௢) ∧ ൫݊݃݅ݏ ෡࣒ ௢൯ ≡ ൫݊݃݅ݏ ෡࣒ ௡൯ 3.14 

Note the use of the ‘and’ operator (⋀), which requires both Boolean operations to return true.  The first 

logic operator ensures and ݊௧௛ target-agent (Γ௡) is within a narrow 44.5o arc in front of own-agent (Γ௢).  

The second operator requires that the sign of the own-agent’s unit heading-vector ( ෡࣒ ௢) and ݊௧௛ target-

agent’s (Γ௡) unit heading-vector ( ෡࣒ ௡) are equivalent.  Use of the equivalence operator (≡) requires that 

the sign of the first and second element in ෡࣒ ௢ must match their corresponding pair in ෡࣒ ௡.  In other words, 

൫݊݃݅ݏ ෡࣒ ௢൯ ≡ ൫݊݃݅ݏ ෡࣒ ௡൯, means that the heading of the own (Γ௢) and ݊௧௛ target-agent (Γ௡) must be within 

the same quadrant bearing.  The function numpy.sign returns an element-wise indication of the sign 

of a number within an array (Van Der Walt, Colbert and Varoquaux 2011).  When ݅݊݁ܤ݁݊݅ܮℎ݅݊݀ returns 

true, we are ensured that the ݊௧௛ target-agent Γ௡ is directly in front of the own-agent Γ௢, and that they are 

headed in the same relative direction (Figure 3.12). If ݅݊݁ܤ݁݊݅ܮℎ݅݊݀ is true, then the own-agent must 

implement collision avoidance procedures, including quantifying repulsive force and suggested RPS 

settings (ݎ).   

When ݅݊݁ܤ݁݊݅ܮℎ݅݊݀ is false, ݌݁ݎ_ܨ_ܽ݃݊ determines if the own-agent Γ௢ is approaching the ݊௧௛ target-

agent (Γ௡) from the left with ܿܽ݋ݎ݌݌ܣݐݎ݋݌ℎ (Type IV).  The COLREGs state that vessels must yield to  



 
 

62 

Figure 3.12 shows an example of the own-agent (࢕ࢣ) in line and behind 
the ࢎ࢚࢔ target (࢔࢚ࢣ

).   

 

 

 

 

 

 

 

 

those crossing from their starboard side (USCG 2015).  If the target-agent (Γ௡) is performing a starboard 

cross, then own-agent Γ௢ is approaching the port side of the target.  The Boolean operation 

ܿܽ݋ݎ݌݌ܣݐݎ݋݌  is given with (Personal Comm. Meyer): 

ℎܿܽ݋ݎ݌݌ܣݐݎ݋݌ = ݊݃݅ݏ  ቀ ෡࣒ ௢(ଵ,ଵ)ෝ࢜(ଶ,ଵ) − ෝ࢜(ଵ,ଵ) ෡࣒ ௢(ଶ,ଵ)ቁ ≡ −1 3.15 

where ෡࣒ (ଵ,ଵ) and ෡࣒ (ଶ,ଵ) are the X and Y components of the own agent’s unit heading-vector ෡࣒  and ෝ࢜(ଵ,ଵ) ࢕

and ෝ࢜(ଶ,ଵ) are the X and Y components of the unit vector ෝ࢜ that describes the position of the ݊௧௛ target-

agent (Γ௡) relative to the own agent (Γ௢).  When the sign is negative, the target-agent (Γ௡) is on the right 

and the own agent (Γ௢) yields (Figure 3.13).  When ܿܽ݋ݎ݌݌ܣݐݎ݋݌  is false, the own-agent approaches the 

starboard side of the target-agent, and does not yield (Type V) (Figure 3.14).    
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Figure 3.13 depicts the own-agent (࢕ࢣ) approaching the 
port side of the ࢎ࢚࢔ target (࢔࢚ࢣ

).  The own-agent (࢕ࢣ) must 
implement evasive maneuvers. 

Figure 3.14 depicts the own-agent (࢕ࢣ) approaching the 
starboard side of the ࢎ࢚࢔ target (࢔࢚ࢣ

).  The own-agent (࢕ࢣ) 
is not required to implement evasive maneuvers. 

 

 

 

 

 

 

 

 

 

If ݐܽݓݏℎ is true, the trajectory polygons of the own Ψ௢ and target-agent Ψ௧೙
 overlap, and the 

interaction is either a Type I, II, III or IV, then the own-agent (Γ௢) is at risk of collision with the ݊௧௛ 

target-agent Γ௡ and must implement evasive maneuvers.  Evasive maneuvers include changes in heading 

and/or propeller speed (ݎ) measured in RPS.  These actions are designed to slow the agent down and 

minimize risk of collision.  Not all interactions require an agent to change their course, the following 

pseudo code outlines how the own-agent Γ௢ decides to react to the ݊௧௛ target agent Γ௧೙
: 

If |࢜| < 5000: 
If ߰௢ − 135 < ොݒ∠  <  ߰௢ + 135: 

If Ψ௖ ≠ ∅: 
If ݅݊ݐ(Ψ௢) ∋  :଴ (Type I)ࢗ

Calculate: ज௧೙,௢ 

If ݏ௢ <
ଷ

ସ
ܿ  then:  

Suggested RPS: ݎ =  −5 
Else: 

Suggested RPS: ݎ =  0 
 Else If 170 <  ߰௧೙

− ߰଴ < 190 ∨ −190 <  ߰௧೙
− ߰଴ < −170 (Type II): 

Calculate: ज௧೙,௢ 

If ݏ௢ <
ଷ

ସ
ܿ  then:  

Suggested RPS: ݎ =  −5 
Else: 

Suggested RPS: ݎ =  0 
Else If (߰௢ − 22.5௢) < ොݒ∠ < (߰଴ + 22.5௢) ∧ ൫෡࣒݊݃݅ݏ ௢൯ ≡ ൫෡݊݃݅ݏ ௧೙

൯ (Type III): 
       Do not calculate: ज௧೙,௢ = [0,0] 

If ݏ௢ <
ଷ

ସ
ܿ  then:  

Suggested RPS: ݎ =  −5 
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Else: 
Suggested RPS: ݎ =  0 

Else If ݊݃݅ݏ ቀ ෡࣒ ௢(ଵ,ଵ)ෝ࢜(ଶ,ଵ) − ෝ࢜(ଵ,ଵ) ෡࣒ ௢(ଶ,ଵ)ቁ ≡ −1 (Type IV): 

Calculate: ज௧೙,௢ 

If ݏ௢ <
ଷ

ସ
ܿ  then:  

Suggested RPS: ݎ =  −5 
Else: 

Suggested RPS: ݎ =  0 

Else If ݊݃݅ݏ ቀ ෡࣒ ௢(ଵ,ଵ)ෝ࢜(ଶ,ଵ) − ෝ࢜(ଵ,ଵ) ෡࣒ ௢(ଶ,ଵ)ቁ ≡ 1 (Type V): 

Do not calculate: ज௧೙,௢ = [0,0] 
Suggested RPS: ݎ =  ௢௣௧ݎ 

Else: 
Do not calculate: ज௧೙,௢ = [0,0] 
Suggested RPS: ݎ =  ௢௣௧ݎ 

Else: 
Do not calculate: ज௧೙,௢ = [0,0] 
Suggested RPS: ݎ =  ௢௣௧ݎ 

Else: 
Do not calculate: ज௧೙,௢ = [0,0] 
Suggested RPS: ݎ =  ௢௣௧ݎ 

 

where ज୻೙
 is the repulsive force generated by the ݊௧௛ target-agent Γ௧೙

, and ݎ௢௣௧ is the optimal propeller 

speed (see section:3.4.2.5 Throttle Control).  When required, the repulsive force, ज୻೙
, generated by the 

݊௧௛ target-agent Γ௡ is given with equation (3.16): 

ज୻೙
=

௡ ෝ࢜ߤܩ
(|࢜| ௢ߣ) + ⁄௡ߣ ))ଶ 

3.16 

where ज୻೙
 is the repulsive force generated by the ݊௧௛ target-agent Γ௡, ܩ is the universal gravitational 

constant (6.67408 ∗ 10ିଵଵ ݉ଷ݇݃ିଵିݏଶ), ߤ௡ is the mass of the ݊௧௛ target-agent (Γ௡) in kg, ෝ࢜ is the unit 

vector from the ݊௧௛ target-agent Γ௡ towards the own-agent (Γ௢), |࢜| is the norm of the position vector ࢜, 

 ௡ is the length of the ݊௧௛ target-agent Γ௡ in m.  The closerߣ ௢ is the length of the own-agent Γ௢ in m, andߣ

the own agent is to the target agent, the greater the repulsive force becomes.  The direction of the 

repulsive force (ෝ࢜) acts pushing the own agent away from danger.  The total repulsive force (ज୻) exerted 

by the target-agents {Γଵ … Γ௡} as felt by the own-agent (Γ௢) is the sum of all proximate target-agent 

{Γଵ … Γ௡}  repulsive forces, and is given with: ज୻ = ∑ ज୻೔
௡
௜ୀ௡ .   After calculating ज୻, the ABM then 

calculates the repulsive force generated by all obstacles (ܱ) with the agent class-method F_rep_obs.   
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 The own-agent’s (Γ௢) original route avoids known obstructions.  However, interaction with 

other agents throughout the course of a simulation may push the own-agent (Γ௢) to within close proximity 

of an obstacle (Ω௞).  The agent class-method, F_rep_obs, quantifies the repulsive force of obstacles that 

are within 5 km of the own-agent (Γ௢) and within the own-agent’s (Γ௢) trajectory polygon (Ψ௢).  The 

distance to the nearest point (࣓) on the ݇௧௛ obstacle Ω௞ is the norm of the vector ࣍ = ࣓ −  ,࣓ ௢.  To find࢖

Shapley’s linear referencing function project (Gillies 2013) returns the distance along the ݇௧௛ 

obstacle’s (Ω௞) boundary that is nearest to current position (࢖௢) of the own-agent (Γ௢).  Then, 

shapely.interpolate (Gillies 2013) returns the point at the specified distance (࣓) along the 

boundary of Ω௞   as calculated with project.   

With the nearest obstacle point (࣓) and distance |࣍| to the own- agent (Γ௢) known, Boolean logic 

(3.17) determines whether or not the own-agent Γ௢ reacts to the ݇௧௛ obstacle Ω௞ with.: 

|࣍| < s௢⋀ Ψ௢ ∩ Ω௞ ≠ ∅ 3.17 

Where |࣍| is the distance from the own-agent (Γ௢) to the nearest point (࣓) along the boundary of the ݇௧௛ 

obstacle (Ω௞), s௢ is the inertial stopping distance of the own-agent (Γ௢), and Ψ௢ is the trajectory polygon 

of the own-agent (Γ௢).  Use of the ‘and’ operator (⋀) requires that the distance between the ݇௧௛ obstacle 

(Ω௞) and own-agent (Γ௢) is less than the inertial stopping distance (s௢), and that the intersection (∩) of the 

trajectory polygon (Ψ௢) and obstacle (Ω௞) is not empty (≠ ∅).  The function shapely.distance 

(Gillies 2013)  measures the distance between the own-agent (Γ௢) and obstacle polygon (Ω௞) boundary 

point (࣓), while shapely.intersection (Gillies 2013) finds the intersection of the ݇௧௛ obstacle Ω௞ 

and trajectory polygon (Ψ௢).  The pseudo code in outlines the own-agent’s (Γ௢) decision logic when 

reacting to an obstacle (Ω௞). 

If |࣍| < s ௢⋀ Ψ௢ ∩ Ω௞ ≠ ∅ then: 
     Calculate: जஐೖ

  

     If ݏ௢ <
ଷ

ସ
|࣍| then: 
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          Suggested RPS: ݎ =  −5 
     Else: 
          Suggested RPS: ݎ = 0 
Else: 
     Do not calculate: जஐೖ

= [0,0] 
     Suggested RPS: ݎ =  ௢௣௧ݎ 

 

where जஐೖ
 is the repulsive force generated by the ݇௧௛ obstacle Ω௞ in the direction of ො࣍ where ො࣍ = ࣍/|࣍|, 

Ψ௢ is the trajectory polygon of the own-agent (Γ௢), and ݏ௢ is the stopping distance of the own-agent (Γ௢).  

The repulsive force generated by the ݇௧௛ obstacle Ω௞, जஐೖ
 is given with equation 3.18: 

जஐೖ
 =

ஐೖߤܩ
 ො࣍ 

(|࣍| ⁄௢ݏ )ଶ 
3.18 

where ߤஐೖ
 is the mass of the ݇௧௛ navigational obstruction Ω௞ measured in kg,  ො࣍ is the unit vector from 

the ݇௧௛ navigational obstruction Ω௞ to the own-agent Γ௢, and |࣍| is the norm of the vector ࣍.  The total 

repulsive force (जஐ) exerted by the obstacles as felt by the own-agent (Γ௢) is the sum of the repulsive 

forces from all other agents in proximity {Ωଵ … Ω௞}, and given with: ∑ जஐ೔
௞
௜ୀ௞ .   

 The ABM passes on the suggested RPS settings to the throttle control module (see section 

3.4.2.5 Throttle Control), and passes on the repulsive forces (ℛ୻, ℛஐ) to the orienteering module. 

3.4.2.1.3 Orienteering 

Aside from route finding and collision avoidance, the navigation submodule also has functions 

that orient the own-agent (Γ௢) towards the next waypoint (࢝௜ାଵ) while minimizing risk of 

collision.  Attractive force (ऋ) is the gravitational potential that exists between the own-agent 

Γ௢ and the next waypoint ࢝௜ାଵ.  The attractive force ऋ acts to pull the own agent towards the 

next waypoint ࢝௜ାଵ  in the direction of ෝ࣌ and is given with (3.19): 

ऋ =  ௪ ෝ࣌ߤܩ−

3.19 
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 where ܩ is the acceleration due to gravity 9.8 m/s2, ߤ௪ is the mass of the next waypoint ࢝௜ାଵ 

measured in kg, and ෝ࣌ is the unit vector of ࣌ = ௢࢖ − ࢝௜ାଵ.  Note that the attractive potential force ऋ is 

not affected by the inverse-square law, meaning the attractive potential towards the next waypoint (࢝௜ାଵ) 

has the same magnitude throughout the study region.  If the inverse distance squared term remained 

within the attractive force equation, the own-agent (Γ௢) becomes too sensitive to repulsive forces 

(ज୻, जஐ) far from the next waypoint (࢝௜ାଵ), and can potentially ignore critical collision scenarios close 

to ࢝௜ାଵ.   

After resolving repulsive (ज୻, जஐ)  and attractive forces (ऋ), the own-agent (Γ௢) then sums all 

steering forces with (3.20): 

ऐ =  ज୻ + जஐ + ऋ 3.20 

where ऐ is the steering force vector, ज୻ is the repulsive force generated by all target-agents within 

proximity ൛Γ௧భ
… Γ௡ൟ, जஐ is the repulsive force generated by all obstacles in proximity {Ωଵ … Ω௞}, and ऋ 

is the attractive force of the next waypoint (࢝௜ାଵ).  The repulsive forces (ज୻, जஐ) are a function of the 

inverse distance squared between objects.  While very low and inconsequential at long distances (ज୻ +

जஐ ≪ ऋ), the repulsive force will outweigh the attractive force the closer the own-agent (Γ௢) gets to an 

object (ज୻ + जஐ ≫ ऋ), eventually prompting a change in course.  Equations (3.17 and 3.18) have 

measures in the inverse distance term that ensure the repulsive force is large enough to implement a 

change in course far enough in advance so that the own-agent has enough space to maneuver out of the 

way.  For example, when the distance between the own (Γ௢) and ݊௧௛ target-agent (Γ௧೙
) are within 2 vessel 

lengths, the denominator in equation 3.17 is < 1, thus amplifying the repulsive force and causing the own-

agent to implement emergency maneuvers with enough time for a commercial shipping vessel to escape.    

 The unit vector of ऐ෡ , given with ऐ෡ = ऐ/|ऐ|, describes the direction that resolves all 

steering forces, striking a balance between the desire to reach the destination and the need for self-
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preservation.  After converting the unit vector ऐ෡  to degrees (∠ ℱ), the own-agent (Γ௢) then calculates the 

change in heading command with 3.21: 

Δ߰௢ = ∠ ℱ − ߰௢ 3.21 

where Δ߰௢ is the change in heading command, ߰௢ is the current heading in degrees and ∠ ℱ is the 

optimal heading.  Change in heading is restricted by the maximum rudder deflection angle ߬ with (3.22): 

Δ߰௢ >  ߬௢⋁Δ߰௢ < −߬௢ → ߬௢ ∗  3.22 (Δ߰௢)݊݃݅ݏ

which restricts the change in heading to be within the range ±߬௢.   

 Figure 3. graphically depicts the collision avoidance and orienteering navigational 

submodules.  Here, the own-agent (Γ௢) interacts with two target-agents (Γଵ and Γଶ) and reacts to the ݇௧௛ 

obstacle (Ω௞) while navigating towards the next waypoint (࢝௜ାଵ).  The gravitational potential (ऋ) that 

exists between the own-agent Γ௢ and the next waypoint ࢝௜ାଵ serves to pull the agent through the study 

area, while inverse gravitational forces (ज୻భ
, ज୻మ

, and जஐೖ
) push the agent away from navigational 

obstructions (Ω௞) and other agents (Γଵ and Γଶ).  Given the current location (ࢗ଴
ଵ , ଴ࢗ

ଶ), heading (߰ଵ, ߰ଶ) and 

inertial displacement (ݏଵ, ,ଶ) of each target-agent (Γଵݏ Γଶ), and the point of impact (࣓) along the boundary 

of Ω௞, the own-agent resolves all repulsive forces acting upon its hull and computes the steering force 

vector (ऐ).   

 Figure 3.15 also displays the trajectory polygons of the own Ψ௢ and target-agents Ψଵ, Ψଶ, 

and we find that the interaction with target-agent 1 (Γଵ) is a Type II, while the interaction with target-

agent 2 (Γଶ) is a Type IV.  Both instances require the own-agent to compute repulsive force (ज୻భ
, ज୻మ

).   

 We also find the trajectory polygon (Ψ௢) of the own-agent (Γ௢) intersecting the ݇௧௛ obstacle 

(Ω௞), which prompts the own-agent (Γ௢) to calculate the repulsive force (जஐೖ
) of the ݇௧௛ obstacle (Ω௞).  

The own-agent Γ௢ then sums the steering force ऐ, and calculates the change in heading Δ߰௢ with equation 
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Figure 3.15 depicts the collision avoidance and orienteering submodules.  The trajectory polygon and 
parameters of each agent ࢕ࢣ, ,૚ࢣ   .have been color coded to aid the reader ࢑ࢹ ૛ and obstructionࢣ
Note, that the gravitational potentials have been scaled by a factor of 105 for illustrative purposes, 
however the relative length of each force vector is indicative of the weight of the obstruction or agent 
and the distance to the own agent ࢕ࢣ.  The steering force is ऐ = जࢣ૚

+ जࢣ૛
+ ज࢑ࢹ

+ ऋ.  This 
situation depicts overwhelming force pushing on the own-agent causing it to change course as it gives 
the command for maximum starboard rudder deflection. 

3.22.  Given overwhelming repulsive forces (ज୻ + जஐ ≫ ऋ), the own-agent (Γ௢) reverses course with a 

heading command for full starboard rudder (Δ߰௢ = −35௢). 
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3.4.2.1.4 Throttle Control 

During collision avoidance procedures, the own-agent (Γ௢) classifies the severity of each 

interaction, and the suggested RPS setting ݎ can take 1 of 3 values: {−5,0,  ௢௣௧}.  Most interactions do notݎ

warrant emergency stopping protocols, meaning the own-agent (Γ௢) finds the propeller speed (ݎ௢௣௧) that 

accelerates to the desired cruising velocity (ݑ′).  However, some interactions come with greater collision 

risk, and the own-agent (Γ௢) must slow down.  If any of the interactions are severe enough to warrant full 

astern thrust, then the own-agent sets ݎ = −5.  If any of the interactions are severe enough to warrant 

inertial stop, then the agent sets ݎ = 0.  If the interaction does not warrant either emergency action, then 

the own-agent (Γ௢) finds the optimal propeller speed ݎ௢௣௧ with 3.23: 

උݎ௢௣௧ඇ =  ඨ
ሶݑ݉ ′ + ࣞ

ସߢߩ௧ܭ  
3.23 

where උݎ௢௣௧ඇ is the nearest integer optimal propeller setting in RPS, ݉ is the mass of the ship in kg, ݑሶ ′ is 

the acceleration required to reach the desired velocity in 1 minute (see equation 3.24) given in m/s2, ࣞ is 

the force of drag on the own-agent’s (Γ௢) hull (3.253.24), ܭ௧ is the dimensionless propeller thrust 

coefficient (ܭ௧ =  is the diameter of the propeller ߢ is the density of seawater (1029 kg/m3), and ߩ ,(1.2

measured in m. When not in corridors that regulate speed, the own-agent (Γ௢) attempts to reach the 

desired cruising velocity (ݑ′) as set by the shipping firm at the onset of the voyage.  The own-agent 

regulates their velocity by adjusting propeller speed (ݎ), but must first calculate the acceleration (ݑሶ ′) 

required to reach the desired velocity (ݑ′) within 1 minute with 3.24: 

ሶݑ ′ =
′ݑ − ݑ

60
 

3.24 

 where ݑ′ is the desired velocity (m/s) and ݑ is the current velocity (m/s).  The ship is limited to a 

maximum RPS of 60.  The desired acceleration will push most ݎ௢௣௧ well over the design capacity of the 

engines, therefore for most acceleration scenarios the agent will set the vessel to full throttle (60 RPS). 
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3.4.2.2 Movement 

 Following collision avoidance, orienteering and throttle control, the own-agent (Γ௢) now 

resolves movement by passing on the commands for RPS (ݎ) and heading change (Δ߰௢).  These 

movement submodules control an agent’s movement over the course of a time step.  They conserve 

forward and angular momentum while incorporating navigation commands (Δ߰௢,  and approximating (ݎ

the movement of real commercial vessels.   As previously discussed, researchers have decoupled 

movement equations for speed (2.5) and steering (2.6 and 2.7).  Forward movement, or surge, is modeled 

with classical mechanics, while angular movement is modeled with a first order Nomoto model.   

3.4.2.2.1 Forward Movement: Surge 

Newton’s second law of motion (ܨ = ሶݑ݉ ) states that the acceleration (ݑሶ ) of an object is caused 

by a force ܨ that is inversely proportional to its mass ݉ (Meyer 2010).  The own-agent (Γ௢) must resolve 

thrust (࣮) and drag (ࣞ) to solve the surge component of movement (ࣲ).  Thrust (࣮) pushes the own-

agent forward, while drag (ࣞ) acts in the direction opposite of travel pulling the own-agent (Γ௢) to a stop.  

When ࣮ > ࣞ the vessel accelerates, and when ࣮ < ࣞ the agent slows down.  If ࣮ = ࣞ, there is no net 

force in either direction and the own-agent (Γ௢) maintains velocity.  The force of drag (ࣞ) is proportional 

to the square of the agent’s speed (ݑଶ) and the ship’s wetted area (ߙ) (Ueng, Lin, & Liu, 2008), and is 

given with equation 3.25: 

ࣞ = ଵ
ଶ

 ଶ 3.25ݑ ߙ ஽ܥ ߩ 

where drag (ࣞ) is the resistive force of the water along the hull, ߩ is the density of seawater (1029 kg/m3), 

  .ଶ is the square of the velocity (m/s)ݑ is the wetted area of the hull m2, and ߙ ,஽ is the drag coefficientܥ

The drag coefficient (ܥ஽) is a dimensionless quantity used to quantify the drag or resistance of an object 

in a fluid environment (Zubaly 1996).  The current ABM employs a standard ܥ஽  of 0.04 for streamlined 
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bodies.  Wetted area (ߙ) is the area of the own-agent’s (Γ௢) hull submerged in water, and is estimated 

with: 

ߙ = ߚߣ) ஻ܥ + ߜߣ2 +  3.26 (ߜߚ2

where ܥ஻ is the vessel’s block coefficient, ߚ ,ߣ, and ߜ are the typical ship dimensions of length (ߣ), beam 

 is the ratio of a vessel’s displacement to the (஻ܥ) in meters.  The block coefficient (ߜ) and draft ,(ߚ)

product of its ship dimensions (Zubaly 1996). The closer the block coefficient (ܥ஻) is to 1, the closer the 

hull is to a perfect block shape.   

Thrust (࣮) is the other surge force (ࣲ) acting on the hull of the own-agent (Γ௢), and it is 

controlled by the rotational speed (ݎ) of the propeller as measured in RPS.  When the propeller speed (ݎ) 

remains stable over the course of a time step, so does thrust ࣮.  Thrust is computed with (Ueng, Lin, & 

Liu, 2008):   

࣮ =  ସ 3.27ߢଶݎ ߩ ௧ܭ 

where ࣮ is thrust, ߩ is the density of seawater (1029 kg/m3), ܭ௧ is the propeller thrust coefficient (Zubaly 

 is the diameter of the ߢ is the propeller speed measured in revolutions per second (RPS), and ݎ ,(1996

propeller (m).  The version of this ABM used a standard ܭ௧ of 1.2.   

 After resolving drag (ࣞ) and thrust (࣮), the own agent calculates the total surge force ࣲ 

with: 

ࣲ = ࣮ − ࣞ 3.28 

where ࣲ is the total surge force in the positive ݔ direction in a body fixed coordinate system, ࣮ is thrust 

(3.27) and ࣞ is the drag or resistance force applied to the hull (3.25).  Rearranging Newton’s second law 

of motion, the own-agent  Γ௢ then solves for acceleration (ݑሶ ) with: 
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ሶݑ =
ࣲ
݉

 
3.29 

 

Where ࣲ is the surge force, ݉ is the mass of a vessel in kg and ݑሶ  is the acceleration of the own-agent Γ௢ 

over time step ݐ in m/s2.  With acceleration over the time step known, the own-agent Γ௢ computes velocity 

at ݐ + 1 with: 

ଵݑ = ଴ݑ + ሶݑ  3.30 ݐ݀ 

Where ݑଵ is the velocity of the own-agent at time ݐ + ሶݑ ,ݐ ௢ is velocity at timeݑ ,1  is acceleration over 

time ݐ, and ݀ݐ is the change in time over a time step ݐ.  After solving for velocity, the model solves for 

movement. 

3.4.2.2.2 Angular Movement 

With forward movement solved, the agent now incorporates the steering command Δ߰ (from 

3.21) and completes the movement modules (݊ݎݑݐ).  The position at the start of the next time step ࢖ଵ is 

solved with 3.31 and 3.32.  The new heading ߰ଵ is given with 3.33 and the rate of turn ߟ with 3.34 as in 

(Kawaguchi 2004): 

భ࢖ݔ
= బ࢖ݔ

+ ݑ cos ߰଴  3.31 ݐ݀

భ࢖ݕ
= బ࢖ݕ

+ ݑ sin ߰଴  3.32 ݐ݀

߰ଵ = ߰଴ + η ݀3.33 ݐ 

ηଵ = η +
Δ߰ܭ − η

ܶ
 ݐ݀ 

3.34 

where (࢖ݔబ
, బ࢖ݕ

) and (࢖ݔభ
, భ࢖ݕ

) are the own-agents Γ௢ current ࢖଴ and next ࢖ଵ positions, ݑ is the own-

agent’s (Γ௢) current velocity measured in m/s at the beginning of the time step, ߰଴ is the vessel’s current 

heading in degrees, η is the vessels current rate of rotation in degrees per second, Δ߰ is the command 

rudder angle, and ܭ and ܶ are first order Nomoto indices.   
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The ܶ and ܭ indices are simplified characteristic constants of a ship (Journee 2001) and are often 

called the K-T indices.  A large time constant ܶ is necessary for vessels with a large moment of inertia, 

which defines the torque needed for a desired angular acceleration (Journee 2001).  Long, heavy vessels 

like tanker vessels will have a large ܶ.  As ܭ increases, so does the steady state turning ability of the 

ship, while a smaller ܶ provides quicker response to helm (Journee 2001).  Poor turning, slow response 

or bad course stability is associated with a small ܭ and large ܶ.  Table 3.1 lists the range of the K-T 

indices used by this ABM.  Currently, we only have K-T indices for cargo and tanker vessels. 

Table 3.1 typical ship parameters used in this simulation 

Ship Type ܭ ேܶ ܥ஽ ܥ஻ 

Cargo 1.5 – 2.5 1.5 – 2.0 0.04 0.60 

Tanker 3.0 – 6.0 1.7 – 3.0 0.04 0.80 

 

After each agent solves resolves movement, the simulation proceeds to the next timestamp, iterates over 

each agent and repeats these methods until all agents have reached their destination or until the simulation 

has reached the desired number of time steps.  The following pseudo code outlines the entire ABM 

Initialize simulation: 
     Create event log file 
     Import obstacles: ܱ 
     Create population of agents: {Γଵ … Γ௡} 
For Γ௜ in {Γଵ … Γ௡} 
     Run route(࡭,  :(࡮
For ݐ in Δ 
     For Γ௢ in {Γଵ … Γ௡}: 
          Calculate: ݏ௢  
     For Γ௢ in {Γଵ … Γ௡}: 
          Calculate: ࣛ  
          Run F_rep_agn(): 
               For Γ௜ in Γ௢ ∉ {Γଵ … Γ௡}: 
                   Calculate ℛ୻೔

  
               ℛ୻ = ∑ ℛ୻೔

௡
௜ୀ௡ିଵ  

          Run F_rep_obs(): 
               For Ω௞ in ܱ: 
                   Calculate ℛஐೖ

  
               ℛஐ = ∑ ℛஐ೔

௞
௜ୀ௞  
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          Calculate: ℱ = ℛ୻ + ℛஐ + ࣛ  
          Run surge(ݎ): 
          Run turn(Δ߰): 
          Write interaction and decision details to event log  

3.5 Calibration  

 Kawaguchi (2004) provided the only published values of K-T indices found during literature 

review, and they were only for cargo and tanker vessels.  As a result of this data gap, we experimented 

with a calibration method designed to identify K-T indices from empirical data.   

 During sea trials, a vessel’s maneuverability under load is tested with a turning circle test.  A 

procedure for identifying K-T indices from turning circle data was outlined in NTNU (2009).  Data 

obtained from turning circle tests provides the necessary calibration data, and allows for realistic vessel 

maneuverability.  The NTNU (2009) procedure employs a nonlinear least squares regression technique to 

solve for two unknowns (ܭ and ܶ).  The Nomoto gain (ܭ) and time constants (ܶ) are computed from a 

turning test using non-linear least-squares curve fitting via the SciPy function curve_fit (Jones, et al. 

2001).  During a turning test, the rudder angle ߬ is held constant, usually at ߬′, the initial rate of turn ߟ and 

rate of turn at time (ݐ)ߟ are also known.  Our equation to solve for ܭ and ܶ is given with (NTNU 2009):  

(ݐ)ߟ = exp ൬−
ݐ
ܶ

൰ ߟ + ൤1 − exp ൬−
ݐ
ܶ

൰൨  3.35 ߬ܭ

The method requires that the rate of turn over time (ݐ)ߟ, initial rate of turn ߟ, and rudder deflection angle 

߬ are known.   

 Data from the turning circle test is typically displayed on the ‘wheelhouse poster’ found at 

the helm of all commercial vessels, which provides local vessel pilots with the necessary information to 

safely navigate a vessel to berth.  A number of consulting firms, pilot associations and shipyards were 

asked to provide data from wheelhouse posters.  Following ABM calibration, numerical experiments were 

conducted testing the model’s ability to reproduce chaotic behavior.   
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3.6 Numerical Experiments 

 Prior to running a simulation of the approach to the Port of New York and New Jersey, a series of 

numerical experiments were conducted to understand how the vessel physics work, as well as testing 

whether or not the model is capable of simulating a complex adaptive system.  For the first series of 

experiments, we tested the inertial stopping capabilities, acceleration, maneuverability, and route finding 

capabilities by altering specific vessel parameters and study area configuration.   

3.6.1 Inertial Stop  

 For the inertial stopping capabilities (ݏ௢), it is hypothesized that a vessel’s tonnage (ߤ), hull 

dimensions (ߣ, ,ߚ  affect its ability to stop.  In each experiment, the initial (஽ܥ) and drag (஻ܥ) shape ,(ߜ

velocity (u) was set at 8 m/s or 15.56 knots and fluid density (ߩ) remained constant at 1029 kg/m3 while 

calculating the inertial stopping distance (ݏ௢) of a reference vessel (Γ௢) after altering a single vessel 

parameter.  Table 3.2 lists the experiments, the first varied tonnage (ߤ), the second vessel size (ߣ, ,ߚ  ,(ߜ

the third block coefficient (ܥ஻) and the fourth the drag coefficient (ܥ஽). 

Table 3.2 Numerical experiments designed to assess inertial stop capabilities of a reference vessel.  Variable indicates the 
parameter the parameter that is incrementally changed to understand how a vessel would react to small changes.   

Parameter Units Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Weight ߤ kg variable 90,000 90,000 90,000 

Length (ߣ) m 200 variable 200 200 

Beam (ߚ) m 25 variable 25 25 

Draft (ߜ) m 15 variable 15 15 

Block Coefficient (ܥ஻)  0.8 0.8 variable 0.8 

Drag Coefficient (ܥ஽)  0.10 0.10 0.10 variable 

Initial velocity (ݑ) m/s 8  8  8 8 

Fluid density (ߩ) kg/m3 1029 1029 1029 1029 
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3.6.2 Acceleration  

 The second set of experiments aims to understand how an agent determines ݎ௢௣௧, and how it 

accelerates from a velocity (ݑ) of 0 m/s up to its optimal velocity (ݑ′).  The parameters hypothesized to 

affect propeller speed (ݎ௢௣௧) and acceleration (ݑሶ )  ̇are propeller diameter (ߢ), the vessel’s size (ߣ, ,ߚ  ,(ߜ

block coefficient ܥ஻, and drag coefficient (ܥ஽).  Propeller diameter (ߢ) affects thrust (࣮), while the 

vessel’s size affects wetted area (ߙ) and thus drag (ࣞ).  In all experiments, the initial velocity (ݑ) is 0 m/s 

and the desired velocity (ݑ′) is 15 m/s.  Table 3.3 contains the parameter settings for each experiment, 

with the first altering weight (ߤ), the second altering size (ߣ, ,ߚ  the third altering the block coefficient ,(ߜ

   .(஽ܥ) and the fourth altering the drag coefficient (஻ܥ)

Table 3.3 Numerical experiments designed to show how certain vessel parameters effect the number of propeller revolutions per 
second (RPS) required to obtain a desired acceleration. 

Parameter Units Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Weight ߤ tonnage 150,000 150,000 150,000 150,000 

Length (ߣ) m 200 200 Variable Variable 

Beam (ߚ) m 25 25 Variable Variable 

Draft (ߜ) m 15 15 15 Variable 

Block Coefficient (ܥ஻)  0.8 0.8 0.8 0.8 

Drag Coefficient (ܥ஽)  0.04 0.04 0.04 0.04 

Fluid density (ߩ) kg/m3 1029 1029 1029 1029 

Thrust Coefficient (ܭ௧)  1.2 1.2 1.2 1.2 

Propeller Diameter (ߢ) m 9.75 variable 9.75 variable 

Initial velocity (ݑ) m/s 0 0 0 0 

Desired velocity (ݑ′) m/s 15 15 15 15 

 

3.6.3 Maneuverability  

 The next set of experiments examined the maneuverability of vessels and incrementally altered a 

reference vessel’s K and T index.  In each experiment, the vessels maintained a velocity of 15 m/s.  The 
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first reference vessel was a 250,000 (ߤ) ܹܶܦ tanker, which was 330 m long (ߣ), 60 m wide (ߚ) and 20 m 

deep (ߜ) with a block coefficient (ܥ஻) of 0.8 and drag coefficient (ܥ஽) of 0.004.  The second reference 

vessel was a 40,000 DWT cargo vessel that was 226 m long (ߣ), 24 m wide (ߚ) and 7 m deep (ߜ) with a 

block coefficient (ܥ஻) of 0.6 and drag coefficient (ܥ஽) of 0.004. Table 3.4 lists each maneuvering 

experiment: 

Table 3.4 Numerical experiments showing the effect of K and T on a vessel’s maneuverability.  
Each experiment employed a standard vessel while manipulating K and T.   

Experiment Vessel Type ܭ ܶ Velocity (݉/ݏ) 
1 Tanker 1.7 3.0 15 
2 Tanker 1.7 6.0 15 
3 Tanker 3.0 3.0 15 
4 Tanker 3.0 6.0 15 
5 Cargo 1.5 1.5 15 
6 Cargo 1.5 2.5 15 
7 Cargo 2.0 1.5 15 
8 Cargo 2.0 2.5 15 
9 Tanker 1.7 3.0 5 
10 Tanker 1.7 6.0 5 
11 Tanker 3.0 3.0 5 
12 Tanker 3.0 6.0 5 
13 Cargo 1.5 1.5 5 
14 Cargo 1.5 2.5 5 
15 Cargo 2.0 1.5 5 
16 Cargo 2.0 2.5 5 

 

3.6.4 Routing 

 The next set of numerical experiments examines route selection for a population of agents 

{Γଵ … Γ௡} and navigational obstructions will affect the route of each agent.  A population of 20 agents are 

created, with 10 in the southwest corner of the study area travelling northeast, and 10 in the northwest 

corner of the study area traveling southeast.  We tested three configurations (including one without any 

obstructions) and noted the change in routing configuration.   
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3.6.5 Chaos 

 Charles Ruelle (1991) discussed the properties of chaotic systems and noted that they are: (1) 

deterministic, (2) sensitive to initial conditions, and that (3) individual interaction within the modeled 

system results in emergent properties of interest.  For the first two experiments, an input file created a 

priori is loaded into the simulation in repeated trials so that initial conditions match exactly, and 

parameters of interest are easily altered by small amounts.  The initial model run is henceforth known as 

the ‘reference model’, and will serve as the standard by which the first two sets of chaos-experiments are 

assessed against.  Each experiment occurred within a rectangular study area 10 km wide by 20 km long 

with vessels starting in the northwest quadrant and traveling southeast and vessels starting in the 

southwest quadrant and travelling northeast.   

 The first of these experiments determines whether or not the system is deterministic.  If the model 

is truly deterministic, it is hypothesized that there will be no difference in position across model runs.  

The second set of experiments incrementally alter a single vessel parameter (Δߚ, Δߜ, Δߤ) on a logarithmic 

scale (Table 3.).  Each experiment contains the same 20 agents, meaning they could be paired and 

followed in time allowing for an exact measurement of the error (क़) in position across model runs in time 

with: 

ߝ = ට൫࢖ݔబ
ଵ − బ࢖ݔ

଴ ൯
ଶ

+ ൫࢖ݕబ
ଵ − బ࢖ݕ

଴ ൯
ଶ
 

3.36 

Where (࢖ݔబ
଴ , బ࢖ݕ

଴ ) is the position of the agent Γ௢ within the reference model at time ݐ, and (࢖ݔబ
ଵ , బ࢖ݕ

ଵ ) is the 

position of the agent Γ௢ at time ݐ within the current experiment iteration.  Table 3.5 lists the change in 

vessel parameter for each set of experiments (ߚ, ,ߜ  (ߤ
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Table 3.5 Numerical experiments designed to test for the presence of chaos.  
Is the ABM deterministic yet sensitive initial conditions? 

Model Run Beam (Δߚ) Draft (Δߜ) Mass (Δߤ) 
Reference 0 0 0 
1 0 0 0 
2 0.001 0.001 1 
3 0.002 0.002 2 
4 0.003 0.003 3 
5 0.004 0.004 4 
6 0.005 0.005 5 
7 0.006 0.006 6 
8 0.007 0.007 7 
9 0.008 0.008 8 
10 0.009 0.009 9 
11 0.010 0.010 10 
12 0.020 0.020 20 
13 0.030 0.030 30 
14 0.040 0.040 40 
15 0.050 0.050 50 
16 0.060 0.060 60 
17 0.070 0.070 70 
18 0.080 0.080 80 
19 0.090 0.090 90 
20 0.100 0.100 100 
21 0.200 0.200 200 
22 0.300 0.300 300 
23 0.400 0.400 400 
24 0.500 0.500 500 
25 0.600 0.600 600 
26 0.700 0.700 700 
27 0.800 0.800 800 
28 0.900 0.900 900 
29 1.000 1.000 1000 

 

 The final chaos experiment assesses whether or not the simulation is capable of producing 

complex emergent phenomena of interest to the marine spatial planner.  In a seminal paper on traffic 

jams, Lighthill and Whitham (1955) describe a jam as a ‘hump or region of increased concentration’ that 

propagates along a crowded main road, and coined the phenomena ‘kinematic waves’.  This simulation 

seeks to produce those waves as described by Lighthill and Whitham (1955).  The experiment 

purposefully set up a navigational bottle neck and forced a population of agents through the narrow pass 

(Figure 3.16).  Following the experiment, the agents speed and location along the x-axis were plotted and 

assessed for kinematic waves.   
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Figure 3.16 depicts a screen shot of the simulation purpose built to produce kinematics waves.  The study area forces all agents 
through a bottle neck on their way towards the destination.  In all cases, vessels either start in the northwest with destinations in 
the southeast, or from the south west with destinations in the northeast.  The vessel track lines are present and are shaded 
according to their velocity.  As vessels approach their desired velocity, they turn green, while stopped vessels appear read.   

3.7 Application 

 The Bureau of Ocean Energy Management (BOEM) has located a wind energy area (WEA) 

between two shipping channels within the approach to the Port of New York and New Jersey (Error! 

Reference source not found.).  The WEA represents foregone space that commercial shipping could 

have once occupied.  The USCG fears that displacement can result in an increase in risk due to vessels 

navigating in closer proximity to each other than they would otherwise in an open ocean scenarios, and 

they have recommended creating modeling and analysis tools that are capable of predicting changes in 

vessel traffic patterns (USCG, 2016).  Our ABM of commercial shipping simulated the sector’s response 

to the planned wind energy area, and attempted to identify emergent pattern resulting from displacement.  

However, before we could proceed with the simulation, we need to generate an input file that is reflective 

of the sector as it operates within the project area to inform the model’s input parameters. 
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 During ABM initialization, we pass along an input file that is designed to reproduce conditions of 

the study area, including the relative proportion of each vessel type, their maneuvering characteristics, 

direction of movement, origins, destinations and basic vessel parameters.  Input data for the ABM relies 

upon statistics generated from AIS data of the study region (BOEM 2014).  To generate the input file, we 

first generate a list of agent vessel classes of length ݊ with numpy.random.choice (Van Der Walt, 

Colbert and Varoquaux 2011).  The vessel class can have one of two values: ‘cargo’ or ‘tanker’.  The 

probability of either vessel-class is not uniform, but rather is represented as the relative proportion of each 

vessel type as given with AIS data.   

 Next, we assign the agents K-T indices.  Kawaguchi et al. (2004) provided the only published 

range of K-T indices for cargo and tanker vessels.  Therefore, the K-T indices for the agents in this 

application are not representative of the regional sector, but instead are generated with draws from 

uniform random probability distributions (Table 3.6). 

Table 3.6 Uniform random probability distributions for K and T indices by vessel type. 

Vessel Type K T 

Cargo ࣯(1.5,2.0) ࣯(1.5,2.5) 

Tanker ࣯(1.7,3.0) ࣯(3.0,6.0) 

 Vessel traffic within the study region is bidirectional with incoming and outgoing traffic.  The 

input file generation procedure chooses direction randomly with draws from a multinomial probability 

distribution with the proportion of incoming traffic at 0.75 and outgoing at 0.25.  Incoming traffic may 

originate from one of three channels, the Nantucket to Ambrose, Hudson Canyon to Ambrose or Barnegat 

to Ambrose (Figure 3.2).  All incoming traffic is destined for one of two locations, Port Jersey or Port 

Elizabeth (Figure 3.2).  Outgoing traffic may originate from either Port Elizabeth or Port Jersey (Figure 

3.2) and is destined for either the Ambrose to Nantuket, the Ambrose to Hudson Canyon or the Ambrose 
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to Barnegat channel (Figure 3.2).  The assignment of origins and destinations is uniform and random.  

Following the assignment of origins and destinations, we then generate vessel parameters. 

 After implementing the input data generation procedure and ensuring that it approximates the 

regional sector, we can proceed to the ABM itself.  The application was not just one model run, but rather 

a series of simulations that altered the number of agents (݊) at each iteration.  We ran 100 simulations 

with the WEA present, and 100 without it.  After each simulation, we analyzed the event log and 

calculated the the average time agents spent repulsed by other agents or obstacles, the number of crashes 

that occurred and when and where they occurred, the average duration of the first voyage, the average 

distance travelled per agent, and the average velocity per agent.  We designed the indicator statistics in 

such a manner that we could assess the socio-economic well-being of the system following change, either 

through an increase in the number of agents or the presence of the wind farm.  When agents feel repulsive 

forces, they are at risk of collision.  The more time they are at risk, the greater the likelihood that they will 

crash.  Also, shipping companies make profit by minimizing travel costs, the longer their duration or 

greater the distance travelled, the more their profit is reduced. 

3.8 Summary  

 We described the ABM of the navigational approach to the Port of New York and New 

Jersey within the Overview, Design Concepts, and Details (ODD) framework.  We presented ABM in a 

hierarchical manner as an overview of model structure and processes followed by details on those 

processes.  The ABM incorporates route finding, collision avoidance, throttle control and movement 

modules based on classical mechanics to control the behavior ship-agents.  We also implemented a 

calibration procedure that is capable of identifying K-T indices from vessel parameters commonly found 

and displayed within the bridge of every ship.  Following calibration, we designed a series of experiments 

to assess whether or not the model is capable of simulating a complex adaptive system.  After validating 
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the model, we finally simulated the approach to the Port of New York and New Jersey, and modeled the 

impact to the sector with and without the proposed WEA.   
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Chapter 4 

Results 

 

 

 

4.1 Introduction 

 This chapter presents the results of the ABM of commercial shipping, which was designed to 

quantify displacement related effects from the location of an offshore wind farm within close proximity to 

a navigational channel.  The first section contains a set of numerical experiments that show how vessel 

parameters effect an agent’s maneuverability and behavior.  The next set of experiments look for signals 

evident of complex interaction.  Following this section, are the results of the numerical calibration and 

validation procedures.  Then, we describe the study area and spatial patterns of shipping.  The final 
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section discusses the results of the ABM and identifies the impacts, if any, of the proposed wind farm on 

the navigability of the entrance to the Port of New York and New Jersey. 

4.2 Numerical Models 

 We designed a series of experiments to understand how the agents move (stop, accelerate, and 

turn) and find their way within the study area.  With each experiment, we incrementally vary a few key 

parameters in the model and study how an agent responds.  This broadens our understanding of how 

agents navigate through their virtual environment and allows us to explain and eventually validate their 

behavior.  The first set of these experiments examines the inertial stopping capabilities of large 

commercial ships with great momentum.   

4.2.1 Inertial Stop 

When ݎ = 0, the propeller is not producing any thrust and the force of drag slows the vessel 

down.  With the velocity at time (ݐ) given with eqn 3.3, we assume that an agent’s tonnage, hull size, 

shape and drag coefficient affect its ability to stop.  In all experiments, the initial velocity was set at 8 m/s 

or 15.5508 knots and the fluid density (ߩ) remained constant at 1029 kg/m3.  The first experiment varied 

tonnage, while the second increased the size of the hull, the third varied the shape of the hull, and the 

fourth varied the reference hull’s drag coefficient. 

Table 4.1 Results of the first inertial stop microsimulation varying vessel tonnage (DWT).  The 
noted velocity and displacement occurred at 7200 seconds.   

Agent DWT Velocity at 7200s (m/s) Displacement at 7200s (m) 
1 20000 0.01 546.67 
2 40000 0.02 977.37 
3 60000 0.03 1,364.52 
4 80000 0.05 1,723.55 
5 100000 0.06 2,061.70 
6 120000 0.07 2,383.27 
7 140000 0.08 2,691.09 
8 160000 0.09 2,987.16 
9 180000 0.10 3,273.00 
10 200000 0.11 3,549.78 
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The first experiment incrementally increased tonnage (ߤ) while holding wetted area (ߙ) and block 

coefficient (ܥ஻) constant.  The heavier a vessel becomes, the more momentum it has, and the lower the 

rate at which it slows down under inertial stopping conditions (Table 4.1).  Therefore, a lighter vessel will 

travel much shorter distances during inertial stop than a heavier vessel.  At 7200 seconds, a 20,000 DWT 

vessel is displaced by 546.67 m, while a 200,000 DWT vessel will travel over 3 km (3,549.78 m).  Figure 

4.1 contains the results of the first numerical experiment, note as the vessel tonnage (DWT) increases, so 

does the velocity at 7200 s and its subsequent displacement.  The top panel of Figure 4.1 shows velocity 

over time while the bottom panel displays displacement at time t.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 is a graphical depiction of velocity (top) and displacement (bottom) 
over time during the first inertial stop simulation.  Colors represent increasing 
vessel tonnage as noted in the legend.   
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The second experiment increased the size of the hull (and subsequently wetted area, ߙ) while 

holding tonnage (ߤ) and the block coefficient (ܥ஻) constant (Table 4.2).  As the wetted area becomes 

larger, resistance increases and the vessel will decelerate faster.  This experiment incrementally decreased 

the basic hull dimensions of length (ߣ), width or beam (ߚ) and depth or draft (ߜ), thus decreasing the 

wetted area (ߙ).  At 7200s, a 10,550 m2 vessel would slow down to 0.05 m/s covering a distance of 1,894 

m while a 1583.49 m2 vessel slows to 0.33 m/s and covers 7961.57 m (Table 4.).  Figure 4.2 displays 

velocity (top) and displacement (bottom) at time (t).   

Table 4.2 Results of the second inertial stop microsimulation varying wetted area.  As wetted area increases the vessel will slow 
down more quickly than a smaller vessel because it has more resistance.   

Agent L (݉) B (݉) T (݉) Wetted Area (ܣ) Velocity (݉/ݏ) Displacement (݉) 
1 200.0 25.0 15.0 10,550 0.05 1,894.92 
2 180.0 22.5 13.5 8,545.50 0.06 2,242.20 
3 162.0 20.25 12.15 6,921.86 0.08 2,648.35 
4 145.8 18.23 10.94 5,606.70 0.10 3,122.35 
5 131.22 16.40 9.84 4,541.43 0.12 3,672.64 
6 118.10 14.76 8.86 3,678.56 0.15 4,310.54 
7 106.28 13.29 7.97 2,979.63 0.18 5,046.72 
8 95.66 11.96 7.17 2,413.50 0.22 5,892.74 
9 86.10 10.76 6.46 1,954.94 0.27 6,860.44 

10 77.48 9.69 5.81 1,583.50 0.33 7,961.57 
  

 

The third experiment decreased the block coefficient (ܥ஻) while holding wetted area (ߙ) and 

tonnage (ߤ) constant.  The block coefficient (ܥ஻) effects the hull’s wetted area (3.26).  The larger the 

coefficient, the more “brick-like” the hull.  Thus, a small coefficient equates to a very streamlined hull 

with a smaller wetted area.  As the block coefficient increases, so does wetted area, which increases 

resistance allowing a vessel to decelerate faster (Table 4.3).  While this relationship holds, velocity is not 

affected much by the change in block coefficient (Figure 4.3).  For a 61% reduction in a hull’s block 

coefficient (0.8 - 0.31), the velocity at 7200 seconds only decreases by 38%.   
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Figure 4.2 Graphical depiction of velocity (top) and displacement (bottom) 
over time during the second inertial stop simulation varying the size of the 
hull.  Colors represent increasing hull size (m2) as noted in the legend.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3 results of the third inertial stop microsimulation that alters the block coefficient of a 
vessel’s hull.  As the block coefficient decreases, the hull becomes more streamlined and 
displacement and velocity at 7200 seconds increases.   

Agent Block Coefficient (ܥ஻) Velocity (݉/ݏ) Displacement (݉) 
1 0.8 0.05 1,894.92 
2 0.72 0.05 1,967.00 
3 0.65 0.06 2,037.23 
4 0.58 0.06 2,105.32 
5 0.53 0.06 2,171.02 
6 0.47 0.06 2,234.13 
7 0.42 0.07 2,294.48 
8 0.38 0.07 2,351.95 
9 0.34 0.07 2,406.46 

10 0.31 0.07 2,457.95 
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Figure 4.3 Graphical depiction of velocity (top) and displacement (bottom) 
over time during the third inertial stop simulation varying the block coefficient 
of a hull.  Colors represent increasing block coefficient (CB) as noted in the 
legend.   

The fourth inertial stop experiment increased drag coefficient (ܥ஽) while holding wetted area (ߙ), 

tonnage (ߤ), and block coefficient (ܥ஻) constant.  As the drag coefficient increases, the rate at which an 

agent decelerates is greater (Table 4.4).  From Figure 4.4, velocity over time appears similar across 

increasing drag coefficients, however the hypothesized trend holds.  A vessel with a higher drag 

coefficient has more deceleration than a vessel with a low drag coefficient.   
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Figure 4.4 Graphical depiction of velocity (top) and displacement (bottom) 
over time during the fourth inertial stop simulation varying the drag 
coefficient of a hull.  Colors represent increasing hull size (m2) as noted in the 
legend.  As the coefficient increases, so does the rate of deceleration. 

Table 4.4 results of the fourth inertial stop microsimulation varying drag coefficient while holding wetted area, tonnage and 
block coefficient constant.  As drag coefficient increased, so does resistance.  Therefore, the velocity and displacement at 7200 
seconds decreases.   

Agent Drag Coefficient (ܥ஽) Velocity (݉/ݏ) Displacement (݉) 
1 0.04 0.05 1,894.92 
2 0.04 0.05 1,755.07 
3 0.05 0.04 1,625.01 
4 0.05 0.04 1,504.11 
5 0.06 0.04 1,391.77 
6 0.06 0.03 1,287.45 
7 0.07 0.03 1,190.59 
8 0.08 0.03 1,100.72 
9 0.09 0.02 1,017.36 

10 0.09 0.02 9,40.06 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2 Acceleration 

 The next series of experiments uncovered how agents control their throttle and accelerate.  In 

each experiment, an agent starts from a dead stop (0 m/s) and accelerates until it reaches the desired 
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Figure 4.5 results of the first throttle experiment.  The top panel shows the initial 
disparity between drag and thrust as the vessel accelerates towards the optimal 
velocity setting.  Over time, as the vessel approaches 15 m/s, thrust is reduced 
until it equals drag and the vessel maintains speed.  In the bottom panel, velocity 
in m/s is on the primary y-axis while RPS is on the secondary y-axis. 

velocity (15 m/s), all while continuously varying throttle (ݎ) according to equation 3.23.   The first 

experiment examines how the forces of thrust and resistance counterbalance as an agent accelerates, while 

the second incrementally varies propeller diameter, and the third varies size of the hull.   

In each experiment, an agent starts from a dead stop and accelerates until it reaches its optimal 

velocity (15 m/s ൎ 30 knots).    Initially, the velocity is low and RPS (ݎ) high, meaning that there is little 

resistance and high rate of acceleration.  As the agent approaches the optimal velocity, it throttles down 

by lowering ݎ so as not to overshoot its goal.  When the desired velocity is achieved, thrust 

counterbalances resistance and the agent maintains velocity.   
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In the first experiment, a reference vessel (table 3.3) accelerates from 0 m/s until the desired 

velocity of 15 m/s is met.  In the top panel of Figure 4.5, thrust (measured in newtons, N) is much greater 

than drag (also measured in N) and the vessel accelerates.  As the desired velocity is met, thrust equals 

drag and the vessel maintains velocity.  The lower panel displays velocity on the primary y-axis while ݎ 

(RPS) is on the secondary y-axis.  Note as the vessel accelerates, the agent will decrease ݎ so it does not 

overshoot the desired velocity.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second experiment incrementally reduced propeller diameter (ߢ) while holding wetted area 

 needed to (ݎ) constant.   As the propeller diameter is decreased, the number of revolutions per second (ߙ)

Figure 4.6  Results of the second set of thrust experiments altering propeller 
diameter.  The top panel displays velocity over time while the bottom panel 
displays the RPS setting.  Note the undersized propeller diameter of 1.1 m, 
the agent maximizes the RPS setting at 60 (3600 RPM) and the vessel takes 
much longer to reach the desired velocity.  An undersized propeller means 
the engine must work harder to achieve the same velocity. 
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Figure 4.7 Results of the third thrust experiment altering the size of the hull.  
As the size of the hull increases, so does the resistance, therefore more RPS 
are required to produce more thrust to maintain the desired velocity. 

maintain the same rate of acceleration as larger propellers increases (Figure 4.6).  The figure depicts a 

critical propeller diameter (1.1 m) where the number of revolutions required exceeds the capacity of the 

engine (60 RPS = 3600 RPM) and the engine cannot spin fast enough to maintain acceleration.  However, 

at all other diameters tested, the propeller is able to produce the same amount of thrust, with smaller 

propellers requiring higher RPS.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The third thrust experiment varied the hull’s cross sectional area. As cross sectional area 

increases the amount of revolutions required to sustain sufficient thrust over time also increases, because 

a larger hull (m2) generates more drag (Figure 4.7).  While we increase the size of the hull in this 

experiment, the propeller is never undersized and the same velocity profile is achieved with each 

iteration. 
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Figure 4.8 depicts the high velocity scenario turning radius tests.  Refer to table 3.4 for K-T parameters.  
Plot A experiments 1 and 4, plot B experiments 2 and 5, plot C experiments 3 and 6 and plot D 
experiments 4 and 7. Note smaller K’ values result in a larger turning radius. 

4.2.3 Vessel Maneuverability  

 The next set of numerical experiments assessed the maneuverability of vessels by altering their 

respective K and T indices (refer to Table 3.4).  The experiments used a standard tanker (250,000 DWT, 

330 L, 60 B, 20 T, 0.8 CB, and 0.004 CD) and cargo vessel (40,000 DWT, 226 L, 24 B, 7 T, 0.6 CB, and 

0.004 CD) that incorporated the minimum and maximum published K-T indices (Table 3.1) while 

simulating a port side turn at low and high speeds (see Table 3.4).  In each experiment, the test vessel 

maintains a straight course for 100 time steps, then it makes a turn to port and maintains a constant rudder 

angle for the next 400 time steps.   
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Figure 4.9 low velocity scenario turning radius tests.  Refer to table 3.4 for K-T parameters.  Plot A contain 
experiments 9 and 13, plot B experiments 10 and 14, plot C experiments 11 and 15 and plot D experiments 12 
and 16. Note smaller K’ values result in a larger turning radius. 

 Figure 4.8 displays the results of the high velocity (15 m/s) scenarios, with each subplot having 

the same X and Y scale.  The first sub plot (A) simulates a left turn with minimum published K and T 

index for Tanker and Cargo vessels (experiments 1 and 5 on table 3.4).  Note the cargo vessels (dashed 

lines) are able to make a much tighter turn than the tanker (solid line).  Subplot B displays experiments 2 

and 6, subplot C displays experiments 3 and 7 and subplot D shows experiments 4 and 8.  Note, smaller K 

values (plots A and B) result in a larger turning radius.  Similar results were obtained in Figure 4.9, 

however, due to the lower velocity the vessels were not capable of completing a full turn and the overall 

displacement was much lower. 
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Figure 4.10 Result of 20 agents implementing the ESP algorithm from their starting locations without any obstacles 
present.  Note the ESP algorithm does not plan around the route of other agents, rather it is up to each agent within 
each time step to avoid collision using the collision avoidance procedures identified in section 3.xx of the methods. 

The vessel with the worst turning performance was the tanker vessel with a K of 1.7 and T of 6.0.  

The turning radius was much larger than all other vessels, and it did not make it as far around the circle 

compared with others.  The vessel with the tightest turning radius was the cargo vessel with a K of 2.0 

and T of 1.5.  When velocity is decreased, the vessel made tighter turns.   

4.2.3 Route Planning 

The Euclidean shortest path (ESP) algorithm created routes for each agent that depended on their 

initial location, destination, and all known obstacles.  The study area was a simple 20 x 10 km rectangle.  

The initial locations and destinations of each agent were random within a quadrant with ten vessels 

starting in the northwest and ending in the southeast, and ten vessels starting in the southwest and end in 

the northeast.  The first route planning experiment (Figure 4.10) did not have any obstacles, and the ESP 

algorithm identified the shortest path for each agent as a straight line.  Note the ESP algorithm does not 

plan routes around other agents, rather each agent is responsible for collision avoidance within every time 

step. 
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Figure 4.11  Results of the ESP algorithm with twenty agents and 3 obstacles.  Note the convergence of routes 
around obstacles forming “choke points”.   

The next two figures, Figure 4.11 and Figure 4.12 show the results of the ESP algorithm with two 

obstacle configurations.  The introduction of obstacles creates choke points where agent routes converge 

around the corners of obstructions.  In these locations, agents will compete for space increasing the risk of 

interaction and possible collision.  The COLREGs state that vessels on the left must yield, and give way, 

meaning the repulsive forces may push the agent towards an obstacle, force further interaction, and 

initiate obstacle collision avoidance procedures.  These figures show an unintended consequence of 

locating a wind farm in navigable water, displacement will lead to routing scenarios where multiple ships 

aggregate into choke points around obstacles.    
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Figure 4.12 Results of the ESP algorithm with twenty agents and three obstacles.  Note the convergence of routes 
around obstacles forming “choke points”.   

 

 

 

 

 

 

 

 

 

 

 

4.3 Chaos Experiments 

The following experiments assessed whether or not the proposed agent based model is capable of 

exhibiting chaotic behavior.   Charles Ruelle (1991) discussed the properties of chaotic systems and noted 

that they are (1) deterministic, are (2) sensitive to initial conditions, and that (3) individual interaction 

within the modeled system results in emergent properties of interest.  For the first two experiments, an 

input file was created a priori allowing us to match initial conditions match exactly or alter specific 

parameters by small amounts.  The initial model was the reference model, and serves as the standard by 

which the first two sets of chaos-experiments are assessed against.  To determine whether or not the ABM 

was sensitive to initial conditions, we tested the same 20 agents in each iteration by incrementally 

changing the beam (ߚ), draft (ߜ) and weight (ߤ) of each agent allowing for a measurement of error (ߝ) in 

position across model runs with equation 3.36. Each experiment occurred within a rectangular study area 

10 km wide by 20 km long with vessels starting in the northwest quadrant and traveling southeast and 

vessels starting in the southwest quadrant and travelling northeast.   
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Figure 4.15 Two separate model runs with identical 
starting conditions and no change in tonnage (ߤ).   

Figure 4.13 Two separate model runs with identical 
starting conditions and no change in beam (ߚ) 

Figure 4.14 Two separate model runs with identical 
starting conditions and no change in draft (ߜ) 

The first experiment tested whether or not the ABM was deterministic.  For this experiment, we used 

the same input file from the reference model, meaning that there were no changes in vessel parameters.  

In each figure, we find no error in vessel position (Euclidean distance between positions in time) between 

model runs (Figure 4.13 - Figure 4.15) signaling that the model is deterministic.  The next set of 

experiments incrementally varied beam, draft and weight according to Table 3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 By incrementally altering beam (ߚ), draft (ߜ) and tonnage (ߤ) by small amounts, the performance 

characteristics of an individual vessel changes, which affects the displacement of a vessel between time 

steps.  This means the timing and location of vessel interactions change, which leads to unforeseen and 

profound (chaotic) changes in system state.  Increasing beam (ߚ) affects the wetted area of a hull, which 

changes resistance (ࣞ, eqn 3.25).  The more wetted area (ߙ), the more resistance (ࣞ).  Increasing draft (ߜ) 
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Figure 4.16 Results of experiment changing the beam of 
each agent by 1.0 mm.  Note, each line is a separate agent.  

Figure 4.17 Results of experiment changing the beam of 
each agent by 10.0 mm.  Note, each line is a separate 
agent.   

Figure 4.19 Results of experiment changing the beam of 
each agent by 1000.0 mm.  Note, each line is a separate 
agent.   

Figure 4.18 Results of experiment changing the beam of 
each agent by 100.0 mm.  Note, each line is a separate 
agent.   

also affects the wetted area (ߙ), however there is also a design relationship between draft and propeller 

diameter (ߢ).  Increasing the draft allows for a larger propeller diameter, the larger the propeller more 

thrust (࣮, eqn 3.27).  Lastly, tonnage (ߤ) effects acceleration, the heavier the vessel, the lower the rate of 

deceleration.   

We found the ABM to be sensitive to changes in beam (ߚ).  A 1.0 mm change in beam leads to a 

0.25 m error (ߝ) for an individual agent at 1000 seconds, while a change of 1,000 mm leads to an error in 

10 km.  Aside from the drastic error in position across simulations, no discernable pattern exists between 

simulations (Figure 4.16 - 4.19).  We found displacement error (ߝ) between simulations chaotic and 

sensitive to small changes in beam. 
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Figure 4.21 Results of experiment changing the draft of 
each agent by 10.0 mm.  Note, each line is a separate 
agent.   

Figure 4.20 Results of experiment changing the draft of 
each agent by 1.0 mm.  Note, each line is a separate agent.  

Figure 4.23 Results of experiment changing the draft of 
each agent by 100.0 mm.  Note, each line is a separate 
agent.   

Figure 4.22 Results of experiment changing the draft of 
each agent by 100.0 mm.  Note, each line is a separate 
agent.  

 We also found the ABM sensitive to small changes in draft (ߜ).  A 1.0 mm change in draft can 

cause an error in displacement of 10 km (Figure 4.20), while a change in 10.0 mm causes an error in 6 km 

(4.21).  Further, there is no discernable pattern across experiments. This unpredictable nature in 

displacement error (ߝ) across simulations is a true signal of chaos.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final experiment incrementally varied vessel tonnage (ߤ).  Unlike beam (ߚ) and draft (ߜ), the 

displacement error (ߝ) pattern after a 1-unit (Figure 4.24), 10-unit (Figure 4.24) and 100 DWT change 

(Figure 4.25) were similar, albeit orders of magnitude apart.  It wasn’t until a change in 1,000 DWT 

(Figure 4.27) where an unpredictable change in pattern occurred.  However, significant and unpredictable 

changes from the reference model still occurred, and the ABM was still sensitive to changes in tonnage. 
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Figure 4.25 Results of experiment changing the tonnage of 
each agent by 10.0 DWT.  Note, each line is a separate 
agent 

Figure 4.24 Results of experiment changing the tonnage of 
each agent by 1.0 DWT.  Note, each line is a separate 
agent.   

Figure 4.27. Results of experiment changing the tonnage of 
each agent by 1000.0 DWT.  Note, each line is a separate 
agent.   

Figure 4.26 Results of experiment changing the tonnage of 
each agent by 100.0 DWT.  Note, each line is a separate 
agent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The final experiment assessed if the ABM was capable of emergent properties of interest through 

individual interaction.  Of interest to marine spatial planners is whether or not offshore renewable energy 

installations will create traffic related problems that lead to increased interaction and risk of collision.  

The experiment was designed to induce traffic jams by funneling 20 agents through a narrow passage.  

The presence of kinematic waves (Figure 4.28) demonstrate the ABM is capable of reproducing emergent 

behavior of interest to planners.  The diagonal columns depicted in the figure represent individual agent 

tracks while the color hue represents velocity (left panel) or change in direction (right panel).  Note a 

majority of the agents, with the exception of the first few, slow down prior to 10,000 m, which is the 

location of the bottleneck depicted on figure 3.19.  Some agents are able to progress through the 



 
 

104 

bottleneck unscathed while the remaining agents compete for space and decelerate in order to minimize 

risk of collision.  Further, as the simulation progresses, there is a contingent of slower moving agents 

close to their origins, indicating that they are at the back of the traffic jam throughout the entire 

simulation.   

 

 

 

 

 

 

 

 

 

 

4.4 Calibration and Validation 

The researcher made multiple data requests to boat builders, pilot organizations, regulatory 

agencies and shipping companies, however, data on the turning capabilities of vessels was not 

forthcoming as most viewed this information to be sensitive in nature.  A pilot on the Great Lakes was 

able to share information from a single bulk cargo carrier (Figure 4.29, name withheld).  The vessel was 

143 m in length, started the turning test at 15.7 knots and ended at 7.0 knots.  Throughout the turning test, 

the vessel held its rudder angle constant at −35.0௢.  The derived T and K were 2.25 and 1.72 

respectively.  Figure 4.30 contains a port turn validation simulation with parameters matching those of the 

calibration vessel.  The simulated transfer closely matched that of the calibration vessel while the advance 

was slightly under estimated. 

Figure 4.28 results of the simulation that intentionally causes traffic delays through the 
creation of a bottleneck that forces all agents through a narrow pass.  Diagonal columns 
represent individual agent tracks.  The left panel shows speed in m/s while the right panel 
displays changes in direction in degrees.  Note, once agents pass through bottleneck, their 
speed generally increases as they are through the jam and their direction remains 
relatively unaffected.   
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Figure 4.29 A picture of a wheelhouse poster taken from a bulk carrier operating on 
the great lakes.  K-T indices were derived from the port side turning test, note advance 
was 404.53 m while transfer was 391.69 m.   

Figure 4.30 Validation simulation run of a port side turn with the same 
parameters as the calibration vessel.  Note the advance obtained in the 
simulation run was slightly under that of the calibration vessel, however the 
transfer was validated. 
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4.5 The Port of New York and New Jersey 

Prior to performing a simulation of the effect of an offshore renewable energy installation on the 

commercial shipping industry, an analysis of the traffic patterns into and out of the Port of New York and 

New Jersey (henceforth known as the Port) was required.   The Port is the third busiest by cargo volume 

in the United States (PANYNJ, 2016) and receives considerable vessel traffic.  Figure 4.31 - 4.42 contain 

a simple Poisson count of unique voyages per 100 m2.  Overall, the highest concentration of voyages 

occurred in June with one cell having 1,332 unique voyages.  In total June 2014 had 2,034 unique 

voyages from 1,260 vessels.  The highest concentration of vessel traffic occurs within the Ambrose 

Channel where the Nantucket, Hudson Canyon, and Barnegat traffic lanes converge at the entrance to the 

Port.  June is by far the busiest month for commercial traffic in and around the Port, descriptive statistics 

were compiled describing the vessel traffic. 

The study area contained a diverse assemblage of vessel traffic during the month of June 2014 

(Table 4.5).  Aside from cargo vessels and tankers, there is considerable traffic associated with port 

service vessels (tugs and pilot craft) as well as ferry and cruise ship traffic (passenger vessels).    

Table 4.5 Unique voyages by vessel type found within the 
study region during the month of June, 2014 

Vessel Type Unique Voyages 
Cargo 557 
Tanker 226 
Tugs 169 
Towing 146 
Passenger (ferry and cruise ship) 90 
Pleasure Craft 57 
Wing in Ground Effect 55 
Pilot Vessel 35 
Law Enforcement 23 
Fishing 13 
Dredging 9 
Military 6 
High Speed Craft 5 
Search and Rescue 4 
Sailing 4 
Port Tender 1 

 

The longest (ߣ) ships found within the study area were cargo ships at 352 m followed closely by 

passenger ships at 345 m (Table 4.6).  The largest vessels by beam (ߚ) are Passenger vessels with 51 m 

while cargo vessels and tankers are regulated at 46 m to fit within the new Panama Canal locks and are 
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considered New Panamax vessels (Table 4.7).   The maximum reported draft for passenger ships, 

dredging vessels, towed barges and tugs appear to be suspect as they are all greater than the dredged 

depth of the Ambrose Channel at 50 feet (PANYNJ, 2016), however, the draft for cargo vessels and 

tankers appear to be correct (Table 4.8).   

Table 4.6 Vessel type length summary statistics.  Note AIS data did not report statistics for Port Tenders. 

Vessel Type Mean St. Dev. 25% 50% 75% max 
Cargo Ships 233.7 76.56 195 261 294 352 
Passenger Ships 167.13 124.06 63 104 294 345 
Military 81.5 104.95 36 42 72 289 
Tanker 184.21 39.67 180 183 186 256 
Pilot Vessel 203.17 55.9 220 220 220 220 
Towing 62.11 55.46 30 34 133.75 205 
Tugs 32.6 30.6 21 29 33 200 
Wing in ground effect 114.85 59.49 41 152 152 182 
Dredging 81.22 22.71 68 84 86 121 
Pleasure Craft 35.51 13.2 22 39 45 61 
Law Enforcement 10.74 14.1 0 9 11 53 
High Speed Craft 38.8 6.53 39 39 44 44 
Sailing 25.25 6.85 20.75 23 27.5 35 
Fishing 18.54 10.71 9 21 27 32 
Search and Rescue 10.5 4.12 7.5 11 14 14 

Table 4.7 Vessel type beam summary statistics.  Note AIS data did not report statistics for Port Tenders. 

Vessel Type Mean St. Dev. 25% 50% 75% max 
Passenger Ships 25.41 14.9 14 22 32 51 
Tanker 30.54 6.84 30 32 32 46 
Cargo Ships 31.32 6.95 31 32 32 46 
Pilot Vessel 39.74 10.8 43 43 43 43 
Military 12.33 10.8 7.5 12 12 32 
Towing 12.97 7.35 9 10 23.8 27 
Tugs 9.5 3.49 8 8 10 24 
Dredging 17.22 4.38 16 17 20 24 
Wing in ground effect 17.82 7.9 11 22 24 24 
Law Enforcement 2.87 3.18 0 3 3.5 12 
Pleasure Craft 7.72 2.02 6 8 10 12 
High Speed Craft 9.6 3.29 10 10 12 12 
Sailing 5.75 3.1 3.8 5 7 10 
Fishing 6.54 2.18 6 7 8 9 
Search and Rescue 3.75 0.96 3 3.5 4.25 5 

 
Table 4.8 Vessel type draft summary statistics.  Note AIS data did not report statistics for port tenders or pilot vessels and the maximum draft 
data for passenger ships, dredging vessels, towed barges and tugs appear suspect as they are greater than the maximum depth of the Ambrose 
Channel.   

Vessel Type Mean St. Dev. 25% 50% 75% max 
Passenger Ships 5.31 4.91 0 4 8.4 25 
Dredging 7.2 6.28 3.63 5.8 6.38 20 
Towing 5.81 3.35 4 5.2 6.1 17 
Tugs 3.66 2.44 2.6 3 4.53 16 
Cargo Ships 10.08 2.82 8.5 11 12 15 
Tanker 9.59 1.99 8.5 10 10.9 13 
Military 4.9 5.41 2 4 7.35 11 
Pleasure Craft 2.46 1.36 2 2.1 2.45 8 
Wing in ground effect 5.72 1.17 4.5 6 6.8 7 
Port Tender 6  6 6 6 6 
Law Enforcement 1.3 1.86 0 0 2.5 4 
Sailing 2.25 1.75 1.5 2.4 3.15 4 
High Speed Craft 1.3 1.84 0.65 1.3 1.95 3 
Fishing 0.82 1.37 0 0 1.2 3 
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The ABM attempted to model the worst-case traffic scenario, which was the highest travelled 

hour during the highest travelled month.  An hourly assessment of vessel traffic during the month of June 

in the Ambrose channel showed the highest vessel traffic occurred during the hour of 8 PM (Figure 4.43) 

averaging upwards of 36 vessels per hour within the Ambrose Channel where the offshore traffic lanes 

converge at the point closest to the Port.  Within this convergence area, traffic densities during the 8 PM 

hour ranged between less than 1 and 36 vessels per hour per 1 km2 cell (Figure 4.44).   When just cargo 

vessels and tankers are taken into account, the maximum average number of vessels per hour is only 27 

within the Ambrose Channel.  The Ambrose to Barnegat maxes out at 6 outgoing vessels per hour, while 

the Nantucket to Ambrose incoming traffic lane has only 5 vessels per hour (Figure 4.45).   

4.6 ABM of the Entrance to the Port of New York and New Jersey 

 

As stated, the purpose of the agent based model for the Port was to assess potential socio-economic 

impacts to marine trade, including navigability, from the construction of a proposed wind farm (Figure 

3.1).  The agent based model consisted of two sets of simulations.  The first contained no wind farm and 

served to validate against current configurations, while the second located the wind farm as proposed. 

Each scenario had multiple iterations that increased the number of agents from 20 to 100 at 5 agent 

increments.  Each simulation ran for 7200 seconds, which was enough time for agents to reach their 

destination.  Once agents reached their destinations there were removed from the simulation.  Each 

simulation employed a standard input dataset, meaning starting conditions would match between each 

scenario-agent pair with the exception of new agents added during each iteration.  The simulations started 

with 20 agents, and each iteration added 5.  However, results were only compiled for the original 20 

agents so that simulation iterations could be compared.   
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 The simulation consisted of 41 cargo vessels and 59 tanker vessels.  The mean lengths for cargo 

and tanker respectively were 278.18 and 278.04 m respectively.  While lengths were similar, their 

respective maneuvering indices were not (Table 4.9), cargo vessels were not as responsive to helm, but 

could turn faster.  In total, there was 84 incoming vessels and only 16 outgoing.  Of the outgoing vessels, 

three were headed to Barnegat, four along the coastal tug route, three to the Hudson Canyon and 6 were 

headed to Nantucket.  Of the incoming vessels, 37 were headed to the Elizabeth container terminal 

adjacent to Newark International Airport, while 47 were headed to Port Jersey through the Verrazano 

Narrows.  Following creation of the initial states, the first set of simulations modeled the system without 

the proposed wind farm.   

Table 4.9 Mean values for maneuvering indices of each vessel class used in the agent based model. 

Vessel Type Mean K Mean T 
Cargo 1.77 2.00 
Tanker  2.28 4.61 

 

In general, as the number of agents increased, the percent of time agents felt repulsive forces 

increased, as did the duration of each voyage, while the average distance travelled and average velocity 

decreased (Figure 4.46 and Figure 4.48).  However, at 30 and 35 agents, the percent of model time the 

original 20 agents felt repulsive forces increased dramatically (Figure 4.46) suggesting a threshold, but 

there was no increase in voyage duration or average velocity which paralleled these increases.  Under 

these circumstances, it is hypothesized that the agent-agent interaction scenarios did not warrant a 

reduction in speed.  Starting at 45 agents, accidents started occurring.  The most vessel crashes to 

occurred in the simulation with 90 agents, the locations of which are found in (Figure 4.47). A majority of 

the crashes occurred within the USCG precautionary area that regulates vessel speed into the Ambrose 

Channel where all incoming and outgoing traffic lanes converge as vessels enter the Port.  The location of 

the crash outside of the precautionary area was due to a traffic jam and a vessel that could not slowdown 

in time.  Following the no-farm simulation, another agent based model assessed the impact to the 

shipping industry with the same agents only this time included the proposed WEA (Figure 3.2).  
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However, there was no difference between either simulation (Figure 4.48), including the positions and 

times of each crash which suggests the placement of this WEA has no effect on the industry.   
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Figure 4.31 AIS track line density into and out of the Port in January of 2014. 
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Figure 4.32 AIS track line density into and out of the Port in February of 2014. 
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Figure 4.33 AIS track line density into and out of the Port in March of 2014. 
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Figure 4.34 AIS track line density into and out of the Port in April of 2014. 
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Figure 4.35 AIS track line density into and out of the Port in May of 2014. 
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Figure 4.36 AIS track line density into and out of the Port in June of 2014. 
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Figure 4.37 AIS track line density into and out of the Port in July of 2014. 
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Figure 4.38 AIS track line density into and out of the Port in August of 2014. 
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Figure 4.39 AIS track line density into and out of the Port in September of 2014. 
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Figure 4.40 AIS track line density into and out of the Port in October of 2014. 
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Figure 4.41 AIS track line density into and out of the Port in November of 2014. 
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Figure 4.42 AIS track line density into and out of the Port in December of 2014. 
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Figure 4.43 Number of unique voyages per square kilometer during of the hour between 20:00 and 21:00 during the month of 
June, 2014. 
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Figure 4.44 average tracking density within the aggregation of traffic lanes into the Ambrose Channel in June 2014 during the 
20:00 hour. 
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Figure 4.45 average track line density for Cargo Vessels and Tankers within the Ambrose Channel aggregation area.  Note, the 
largest concentration of vessels occurs within the Ambrose Channel, however the traffic lanes into and out of the Port only 
average between 4 and 6 vessels per hour.   
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Figure 4.46 panel figure for the no wind farm simulation showing the percent of time repulsed, average voyage duration, average 
distance travelled and average velocity of the original 20 agents as a function of the number of agents in a simulation.  Note the 
dramatic increase in percent of time repulsed at 30 and 35 agents, however this bump is not noted in the voyage duration or 
average distance travelled so its effect is minimal 



 
 

127 
 

Figure 4.47 Location of all vessel crashes during a simulation with 90 agents.  Note no crashes occur with the wind farm, and all 
are a result of increased traffic within the USCG precautionary area.  These incidents are due to heavy traffic situations with such a 
large number of agents.   



 
 

128 

 

4.7 Summary 

A suite of numerical experiments tested an agent’s inertial stopping capabilities, acceleration, and 

maneuvering.  For the inertial stop experiments, the mass, wetted area, block coefficient, and drag 

coefficient were tested in individual experiments while holding all other variables constant.  As the mass 

of a vessel increases, it’s stopping capability decreases.  As the size of the vessel (wetted area) increases, 

the hull has more resistance and the agent decelerates faster.  In the third experiment as the block 

coefficient increases, so does resistance, and the vessel decelerates quicker.  In the fourth experiment, as 

drag coefficient increases, so does resistance and the vessel decelerates quicker.  To test how an agent 

accelerates, propeller diameter and cross sectional area were varied in separate experiments.  In the first 

Figure 4.48 panel figure for the wind farm simulation showing the percent of time repulsed, average voyage duration, average 
distance travelled and average velocity of the original 20 agents as a function of the number of agents in a simulation.  Note the 
dramatic increase in percent of time repulsed at 30 and 35 agents, however this bump is not noted in the voyage duration or 
average distance travelled so its effect is minimal.   
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acceleration experiment, a larger propeller produces more thrust and an agent may accelerate faster.  An 

interesting phenomenon occurs when the propeller diameter is undersized for a vessel.  The vessel attains 

maximum RPS (Figure 4.) meaning it cannot maintain the desired acceleration.  The second acceleration 

experiment varied cross sectional area.  As the area increases, so does resistance, and the vessel’s 

propeller must spin faster to achieve the desired acceleration.  The final set of numerical experiments 

tested an agent’s maneuvering by adjusting the Nomoto K and T indices.  As K increases and T decreases, 

a vessel can make tighter turns, while a large T and small K will produce a large turning radius.  

Following the numerical experiments, the Euclidean shortest path route finding algorithm tested agent’s 

route finding capabilities with and without obstacles.  

Prior to embarking on a voyage, an agent will identify the shortest route to its destination from its 

starting point with the Euclidean shortest path algorithm as adopted from Hong and Murray (2013).  

Provided that the origins and destinations among a populaiton of agents are unique, their shortest path 

routes will not be coincident (Figure 4.).  However, when obstacles are introduced into the problem, 

routes converge and agents are forced to compete for space and the COLREGs will determine which 

agent has movement priority.  Following the shortest path experiments, a new set of experiments were 

designed to test for the presence of chaos.   

Chaotic systems are deterministic, sensitive to initial conditions, and will produce emergent 

properties of interest to resource managers through individual interaction.  The first set of experiments 

found that if no variable in the system were changed, than the outcome of any two model runs will be 

identical.  In other words, the agent based model was found to be determinisitc (Figures 4.13 - 4.15).  

Following the initial experiment, we incrementally altered beam, draft and tonnage by small amounts and 

we found that the agent based model was sensitive to initial conditions (Figures 4.16 - 4.26).  The final 

chaos experiment looked for the presence of emergence.  Of interest to marine spatial planners are the 

secondary effects stemming from the location of a wind farm.  A model was set up that intentially 

funnelled agents through a bottleneck.  The experiment produced kinematic waves, a tell-tale sign of 
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traffic jams.  The potential for traffic jams at sea means longer voyage times and an increased risk of 

collision.  With these results, the model was deemed to reproduce complex adaptive systems.  Following 

the chaos experiments, the agent based model was validated against real ship maneuvering data.   

The wheelhouse poster presents information on the maneuverability, which pilots use to guide 

vessels into port.  Information from the wheelhouse poster was used to derive a set of K and T indices for 

the vessel of interest.  Then a turning simulation validated the maneuvering model, producing a turn to 

port that closely matched the refernece vessel.  After validating the turning model, we simulated the 

entrance to the port of New York and New Jersey.    

 The agent based model of the entrance to the Port of New York and New Jersey simulated 

incoming and outgoing vessel traffic with and without a wind farm.  While the presence or absence of a 

wind farm had no effect on the population of vessels, increasing the vessel density past a threshold led to 

accidents.  When vessels from multiple pathways converge at the Ambrose Channel, they interact with 

each other and must slow down.  This decrease in speed produces a cascade of effects throughout the 

system.  In high density simulations, vessels must slow down prior to approaching the speed regulated 

areas.  In these instances, vessels cannot decelerate fast enough to meet intersecting traffic and crashes 

occurred.  Generally, the more vessels in the system, the more crashes occurred.  There is a clear upper 

limit to the amount of traffic within an hour that the current system can sustain.   
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Chapter 5 

Discussion and Conclusion 

 

 

 

5.1 Introduction 

As the nuclear energy infrastructure in the northeast United States ages and we begin to transition 

away from fossil fuel energy sources, renewable energy sources must become a prominent feature of our 

energy landscape.  With the siting of WEAs by BOEM in coastal waters along the continental shelf of the 

eastern United States, marine space will be managed in a manner that regulates activity into appropriate 

resource use areas.  The allocation of space towards a single use will exclude other resource users leading 

to economic displacement and potential for socio-economic change within the coastal economy.  Socio-

economic systems that are not resilient enough to withstand change may falter.  Displacement has real 

economic cost to the marine trade and transport sector as it leads to increased time at sea, greater fuel 
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costs and lower profit margins.  These impacts will have direct consequences for the shipping lines and 

may reduce the profitability of ports as shippers look to other less congested sea lanes and ports.  While 

these displacement costs are real, few researchers have evaluated their potential on the marine landscape.  

The purpose of this study was to implement methods that can anticipate the displacement of mutually 

exclusive activities resulting from foregone space by studying the effect of a WEA within close proximity 

of a shipping lane through the use of an ABM.  The ABM simulated individual ships competing for space 

within a shipping lane while abiding by COLREGs.   The study employed ABMs because they offer a 

way to experiment with the spatial configuration of a plan prior their implementation rather than studying 

the effects after the fact.   

 

5.2 Evaluating the Impact of Wind Energy Areas Using Agent Based Modeling 

Agent based models have been around for a number of years and have solved numerous geographic 

problems (An, Linderman, Qi, Shortridge, & Liu, 2005 and Crooks, 2010), increased our knowledge of 

the natural world (Graniero & Robinson, 2006 and Bennett & Tang, 2006) and have studied human 

interaction in crowds (Arentze, Pelizaro, & Timmermans, 2010 and Batty, Desyllas, & Duxbury, 2003).  

Recently, the USCG has ruled that there is not enough information to warrant the development of 

offshore renewable energy infrastructure, particularly wind farms, off of the Atlantic coast because there 

is a lack of information on their potential effects  (USCG, 2016).  Agent based models present an 

opportunity to understand the potential impacts of offshore wind on the navigability of coastal waterways, 

and have the opportunity to satiate the concerns of regulatory agencies that are hesitant to allow for the 

construction of the first major development.  Assuming the model is validated for conditions without the 

presence of a wind farm, when one is added to the study area, the resulting population level impacts can 

provide resource agencies with the information they need to assess the implications of a project.  This 



 
 

133 

agent based model is constructed of numerous modules that control the maneuverability of vessels and 

agent interaction.   

The first group of modules control the maneuverability of each ship agent and aim to approach 

physical reality.  The main advantage of the numerical models employed in this application are their 

simplicity and elegance.  The models are simple enough to be solved in near real time and ranged 

between 5,609 and 33,692 seconds depending upon the number of agents in the simulation and Python 

IDE used.  This allows an ordinary desktop computer to run the application with simple open source tools 

(Python 2.7.5) without having to rely upon parallelization over a computerized network, parallelization 

over a graphics processing unit (GPU) or the use a super computer.  While the model enjoys simplicity 

and efficiency, each numerical model has its drawback. 

The first such module employs gravity for collision avoidance and navigation.  The inverse of the 

apparent gravitational force between two agents act to push agents away from danger, while the attractive 

force of each waypoint acts to pull the agents toward their destination.  However, the collision avoidance 

procedures also require complex logic in order to comply with COLREGs.  The COLREGs are a set of 

regulations that govern ship interactions in open water (USCG, 2015).    Thus, guiding a ship requires 

intelligence, institutional (tacit) knowledge, and foresight, all of which are not contained within the 

gravity model.   

Intelligence is the ability to recognize the severity of each interaction scenario and react accordingly.  

Currently, the agents have no decision-making ability, they simply react to stimuli in much the same way 

instinctual decisions are made by animals – they are ingrained with the ability to minimize risk of 

collision through gravity models.  With Institutional knowledge, ships of different types and sizes have 

inherent differences in their stopping, maneuvering and accelerating capabilities.  Hence the requirement 

for wheelhouse posters for pilots.  Thus, a significant amount of tacit knowledge only learned from years 

of experience are required before a captain can master their ship.  This knowledge is completely lost upon 
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the modeler, and therefore absent from any code contained herein.  The gravity model also lacks 

foresight.  The agents cannot “see” a situation developing in front of them and react before it becomes a 

problem because they do not have the intelligence and institutional knowledge that real ship captains 

generate after years of experience.  In future iterations, it may be necessary to employ some of these 

capabilities so that the model approaches reality and accurately simulates the real world.  The next set of 

modules govern the maneuverability vessels, with the first describing the ability of a ship agent to stop 

and accelerate. 

The agent based model is limited in its applicability because it only has models for rigid, single hull 

ships with single propellers.  Ships come in many shapes, sizes, and designs, some of which have multiple 

propellers and hulls.  Further, tug boats often tow massive barges that do not have any source of 

propulsion.  Thus, their physics are significantly different than a rigid monohull design.  Therefore, the 

types of vessels that can be modeled with this application are limited.  There are other factors in the open 

ocean that affect how a vessel can decelerate or accelerate including resistance from wind and waves and 

the effects of tidal currents 

5.3 Summary and Future Research 

Future iterations of this agent based model can incorporate other forms of resistance, including wind, 

waves and tide, to improve the accuracy of the model and incorporate scenarios that are impossible given 

the current configuration.  Wind resistance could easily be accounted for by taking the cross-sectional 

area the vessel’s windward profile and the direction and strength of the wind.  Incorporating resistance 

from waves is more difficult because a realistic wave model must couple wind conditions throughout the 

study area and run in real time alongside the agent based model.  Tidal forces are easier to incorporate 

because they act upon the hull of the ship in much the same way as thrust and resistance.  Further, tidal 

forces are simpler than wind and waves because they are usually unidirectional for a given study area.  

While it is possible to incorporate wind, wave and tidal forces into the model, doing so would increase the 
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number of computations and model complexity, which may affect one of the main advantages of the 

model, its simplicity and real time computation on personal desktop computers.  There must be a tradeoff 

between model simplicity and realism, and more study is required to determine where this tradeoff lies, 

and if it is even required for the type of open water simulations we are employing here.  The final module 

governing ship movement concerns maneuverability.   

The Nomoto model is the most common used model for heading in autopilot systems (Fossen, 2005) 

and is a generally accepted method for simulating ship maneuvering.  However, the maneuvering model 

does not take into account added resistance to the hull when the rudder is activated.  This source of 

resistance will slow a vessel considerably during a turn, and must be accounted for in future iterations.  

After calibrating the Nomoto K and T indices, the model was able to accurately simulate the test vessel’s 

advance and transfer.  Validation of the Nomoto model proved successful, however the amount of 

calibration data received from the shipping community was paltry.   The researcher initiated 

communication with ship builders, ship owners, regulatory agencies, rating firms, pilot associations and 

consulting firms that perform sea trials and was met with near universal rejection.  There was only a 

single pilot, on a single vessel that provided appropriate data for calibration.  Due to these setbacks, the 

model is currently limited in its applicability and is simulating vessel maneuverability with unverifiable 

but published ranges of K-T indices (Kawaguchi, Xiong, Inaishi, & Kondo, 2004).     If this application is 

to become accepted practice for assessing the potential effects of offshore energy installations on the 

commercial shipping industry, then the industry must be more cooperative.  Perhaps there will be 

regulatory pressure for the industry to comply after the Coast Guard’s latest report (USCG, 2016) that 

found considerable potential for impact from these competing industries.  

With the limitations of the physical models and lack of calibration data for the entire shipping 

industry, it is important to discuss the limitations of this model.  The ABM lacks physical models 

describing the effects of wind, wave, and tides on the maneuverability of ships.  Therefore, it is 
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inappropriate to model the interaction of the shipping industry with offshore renewable energy 

installations in storm conditions and locations with considerable tidal currents, which may be of interest 

to regulatory agencies.  Future iterations of the ABM should incorporate these modules.  The lack of K-T 

index calibration data means that the model relies upon the unverifiable published limits (Kawaguchi, 

Xiong, Inaishi, & Kondo, 2004) for cargo vessels and tankers.  Further only having limits for cargo 

vessels and tankers means that the model can only simulate these types of vessels, but according to Table 

4.5, many other types of vessels exist within the Port.  Further research and industry compliance is 

required before the model is appropriate for assessing the impact to the entire shipping industry.  Until 

then, the model is only appropriate for assessing impacts to cargo vessels and tankers, which happen to be 

the two largest components of vessel traffic in the study area (Table 4.5).  The maneuvering models and 

physics described in this application are appropriate for single screw, single rigid hull vessels.  It cannot 

simulate vessels with multiple propellers or hulls, nor can it simulate towed barges.  Lastly, the Nomoto 

model is not appropriate for simulating movement at velocities close to steerage speed.  At these low 

speeds the rudders are no longer effective and vessels cannot turn without the aid of bow thrusters or 

assistance from tug boats.    

While the application has considerable limitations, it was still able to simulate commercial traffic in 

and around the traffic separation schemes that are well outside the entrance to the port.  These locations 

are dominated by traffic from cargo vessels and tankers, which we have calibration data for and can 

simulate well.  While the agent based model simulated crashes when the number of vessels were high, the 

modeled vessel density when crashes occurred was far greater than what occurs presently.  The vessel 

crashes were not a result of the proposed wind farm considering the two sets of simulations (one with and 

one without the wind farm) were identical.  The proposed wind farm does not affect the initial route 

selection of cargo vessels and tankers, nor does it increase the vessel density within the channels leading 

to an increase in collision avoidance procedures.   Therefore, at this time, the proposed wind farm appears 

to have no effect on the socio-economic well-being of the marine trade and transport industry.   
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In all experiments, the model produced results indicative of chaotic systems.  The agent based model 

was deterministic, sensitive to small changes in initial states, and is capable of producing emergent 

phenomena of interest to spatial planners.  Theoretically, the model is similar to Ruelle’s billiard ball 

experiment (Ruelle, 1991), so the fact that it is chaotic comes as no surprise.  The results of the ESP 

algorithm as iterated over a population of agents (Figure 4.12 and Figure 4.13) may also be chaotic.  Not 

only will the shortest distance pathways change with small changes in the initial locations of the agents, 

but they will also change with small changes in the locations of obstacles.     

While interesting from a theoretical standpoint, making sense out of the simulated interactions of 

complex adaptive systems may prove difficult for spatial planners.  Through individual interaction guided 

by simple behavioral rules, agent based models reproduce the complex tapestry of behaviors on display 

across a landscape.  After comparing the emergent pattern of a model with that of a real system, a 

plausible causal explanation arises that is not readily apparent from a traditional reductionist approach.  

Further, agent based models, or any model of a complex adaptive system, provides a mechanism for the 

study of thresholds, where small changes in an individual parameter leads to a profound change in system 

state.  In the case of traffic problems, laminar flow can seize into gridlock, which eventually give way to 

smooth laminar flow.  Described as kinematic waves (Lighthill and Whitham, 1955), pulses of interrupted 

traffic (gridlock) travel longitudinally through a column of traffic.  With two-dimensional traffic in 

continuous space, disruptions lead to a deflection in course as well as a reduction in speed (Figure 4.29).  

While not the intention of the model, crashes are inevitable in every transportation system.   

It is possible for the model to exhibit all three states of physical matter, gas, liquid and solid within a 

single simulation.  At low traffic densities, the population of agents behaves like a gas.  As density 

increases, the traffic begins to behave as a fluid.  At a critical density threshold, the agents may collide in 

a process similar to crystallization, the shape of which is in the form of the kinematic wave that was 

progressing through the population before the initial contact occurred.  Once the first two vessels within a 
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wave collide, a chain reaction occurs with each trailing vessel colliding with the vessel in front of it.  

Accidents like this are common on our highways, and the model exhibited this behavior during some 

extreme scenarios.  Considering each vessel is massive with incredible amounts of momentum, it is nearly 

impossible to stop quickly and an accident in close quarters easily sparks a chain reaction of accidents.   

In conclusion, this agent based model of the commercial shipping industry in and around the Port of 

New York and New Jersey offers great promise to understand the potential effects from developing wind 

energy in coastal waters.  The model was able to reproduce current behavior of cargo vessels and tankers, 

and with better calibration data and physical models incorporating the effects of wind, waves and tides, 

this application could become an important tool for regulators and spatial planners alike.   
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