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ABSTRACT 
 

MAPPING DEBRIS-COVERED GLACIERS IN THE CORDILLERA BLANCA, 

PERU: AN OBJECT-BASED IMAGE ANALYSIS APPROACH 

Donald J. Biddle 

July 27, 2015 

Accurate remote-sensing based inventories of glacial ice are often hindered by the 

presence of supraglacial debris cover. Attempts at automated mapping of debris-covered 

glacier areas from remotely-sensed multispectral data have met with limited success due 

to the spectral similarity of supraglacial debris to nearby bedrock, moraines, and fluvial 

deposition features. Data-fusion approaches leveraging terrain and/or thermal data with 

multispectral data have yielded improved results in certain geographic regions, but 

remain unproven in others. This research builds on the data-fusion approaches from the 

literature and explores the efficacy of object-based image analysis (OBIA) and tree-based 

machine learning classifiers using Landsat OLI imagery and SRTM elevation data, in 

effort to map debris-covered glaciers in the Cordillera Blanca range of Peru. Results 

suggest that the OBIA and machine learning methods render advantages over traditional 

methods given the unique morphological settings associated with debris-covered glaciers. 

Accurate inventories of glacial mass and debris-covered glaciers in the Cordillera Blanca 

are important for understanding the unique water resource, natural hazards, and climate 

change implications associated with these tropical mountain glaciers. 
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CHAPTER 1: INTRODUCTION 

Glacial systems have long occupied a central role in discussions of climate change, as 

the equilibrium state of glaciers is a direct result of the global climate system (Benn and 

Evans 2010). Since the “Little Ice Age” (16th to mid-19th centuries) the fluctuations of 

glacier ice has served as a conspicuous indicator of climate change, an inextricable link 

between the nebulous, often contradictory realm of climate science and the real, tangible 

evidence of changes on the landscape. In quantitative terms, ice core data extracted from 

alpine glaciers and ice caps have provided the foundation of our understanding of Earth’s 

climate history and given context to the rate and magnitude of contemporary climate 

change (Dansgaard et al. 1993, Thompson et al. 1995, Petit et al. 1999).  

Debris-covered glaciers (DCGs) represent a vital, if sometimes overlooked 

component of glacial systems in mountain environments. The presence of supraglacial 

debris cover on the tongues of mountain glaciers can affect melt rates, alternately 

increasing rates of ablation in cases of thin debris cover or diminishing ablation under 

thick debris cover (Brock et al. 2010). Debris cover also obscures the true extents of 

glacial ice, making for difficulties in accurate inventorying of glacier areas and their 

respective fluctuations in response to climate change and other factors (Ghosh, Pandey 

and Nathawat 2014, Shukla, Gupta and Arora 2010, Veettil 2012, Paul, Huggel and Kääb 

2004). In regions where local populations are entirely dependent on glacial meltwaters 

for water supplies, accurate assessment of glacial hydrology is vital to planning for 
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sustainable use of water resources (Mark and Seltzer 2003, Baraer et al. 2012). 

Furthermore, changes in glacial environments in mountain regions, specifically with 

regard to DCGs, can exacerbate the potential for geohazards like mass movements and 

glacial lake outburst flooding (Benn et al. 2012, Reynolds 2000).  

Since in-situ monitoring of high mountain glaciers is difficult and expensive due to 

the inaccessible and rugged nature of the terrain, remote sensing and geographic 

information science (GIS) techniques are commonly employed in effort to characterize 

land cover in glacial environments (Pellikka and Rees 2009, Paul et al. 2002b, Bishop et 

al. 2004, Raup et al. 2007, Huggel et al. 2002). Satellite image data from moderate-

resolution sensors like Landsat have been successfully used to map the extents of clean 

glacial ice and to quantify their changes over time (Raup et al. 2007, Sidjak 1999). 

However, accurate remote-sensing based inventories of glacial ice are often hindered by 

the presence of supraglacial debris cover. Attempts at automated mapping of DCGs from 

remotely-sensed multispectral data have met with limited success due to the spectral 

similarity of supraglacial debris to nearby bedrock, moraines, and fluvial deposition 

features (Racoviteanu, Williams and Barry 2008, Racoviteanu et al. 2008, Burns and 

Nolin 2014). Data-fusion approaches that leverage terrain and/or thermal data alongside 

multispectral data have yielded improved results in certain geographic regions, but 

remain unproven in others (Shukla, Gupta and Arora 2010, Bolch et al. 2007).  

In recent years, object-based image analysis (OBIA) has emerged as an alternative 

framework for analyzing image data from multiple sources (Dupuy, Lainé and Tormos 

2012, Saliola 2014, Berger et al. 2013). While pixel-based image analysis methods 

employ spectral information on a pixel-by-pixel basis, OBIA segments images into 
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collections of “image objects” – groups of pixels that share similar spectral 

characteristics. OBIA classification techniques can then leverage a wealth of information 

about image objects unaccounted for by pixel-based methods, including morphometric 

variables, textural features, and contextual relationships between neighboring image 

objects. This expanded breadth of information may then be incorporated into 

classification algorithms to in order to improve accuracy and efficacy.  

This thesis explores the value of OBIA in conjunction with two types of tree-based 

machine learning classifiers in the development of an automated method extraction of 

DCGs using multisource image data. The research is centered on the assumption that 

DCGs are unique morphological entities, a class of objects that may share a common 

signature that could permit their extraction from image data given an appropriate 

selection of spectral and terrain information. The study area for this work is the 

Cordillera Blanca mountain range of Peru (approx. 9˚10’S, 77˚30’W). The Cordillera 

Blanca holds the largest concentration of tropical mountain glaciers of any place on Earth 

(Kaser and Osmaston 2002). Tropical glaciers occupy a unique position in the discussion 

of global climate change as they are sensitive indicators of change exhibiting more 

immediate response to climatic variation than mid-latitude and polar glaciers (Wagnon et 

al. 1999, Kaser and Osmaston 2002, IPCC 2013). The Cordillera Blanca also holds a 

large number of DCGs of varying size and character. While DCGs in other regions may 

display a more distinct and consistent character in terms of length, slope, elevation, etc., 

the DCGs of the Cordillera Blanca exhibit great variability. This makes the region a 

suitable, if more challenging arena for the development of an automated technique for 

extraction of DCG extents from remotely sensed image data.  
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Research Objectives and Hypotheses 

The objectives of the present research include the following: 

1.) Evaluate the capacity of object-based image analysis, and specifically multiresolution 

image segmentation of pan-sharpened Landsat Operational Land Imager (OLI) 

Visible and Near Infrared and Shuttle Radar Topography Mission (SRTM) terrain 

data, to identify the boundaries of debris-covered glaciers in the Cordillera Blanca 

range as discrete morphometric units distinct from their surroundings. Hypothesis 1: 

Multiresolution image segmentation will be successful in identifying the boundaries 

of debris-covered glaciers in the Cordillera Blanca range. 

2.) Evaluate the efficacy of tree-based classifiers, including conditional inference trees 

and random forests, in the classification of image objects as “debris-covered glacier” 

or “other” in the Cordillera Blanca range. Hypothesis 2: Tree-based classifiers will 

achieve classification accuracies for debris-covered glaciers which are consistent 

with the target accuracy of 85% recommended for land cover classification by the 

United States Geological Survey (Anderson 1976). Random forests will yield higher 

classification accuracies than conditional inference trees.  

3.) Through objectives 1 and 2, explore the most important predictor variables and their 

associated critical values in discriminating debris-covered glaciers in the Cordillera 

Blanca region of Peru. Hypothesis 3: Debris-covered glaciers will exhibit a unique 

signature in terms of slope, temperature, and texture that is distinct from the 

signature of surrounding bedrock and moraine deposits. Variable importance metrics 
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associated with tree-based classifiers will be capable of identifying critical values for 

these variables and others.  

The paucity of literature regarding object-based image analysis and tree-based 

classifiers with respect to mapping of debris-covered glaciers suggests that the findings of 

this study may have important implications for the field of remote sensing in glacial 

environments. Additionally, the few efforts at semi-automated or automated mapping of 

debris-covered glaciers in the Cordillera Blanca have been unsuccessful (Burns and Nolin 

2014). Given the documented challenge of mapping debris-covered glaciers in the 

Cordillera Blanca, any success here would hold promise for future efforts. The techniques 

developed here could also be useful in other areas with large concentrations of debris-

covered glaciers. Results of this research would be appropriate for publication in the 

following selected journals: Remote Sensing of Environment, International Journal of 

Remote Sensing, Annals of Glaciology, Journal of Glaciology, and Cold Regions Science 

and Technology.  

 

Glacier Dynamics 

Glaciers represent nearly 10% of land cover globally, and up to 75% of Earth’s 

freshwater stores, covering 15 million square kilometers of Earth’s surface (NSIDC 

2015a). Glaciers form and advance when annual snowfall exceeds snowmelt, that is, 

when accumulation exceeds ablation. Each year, the weight of new snow causes 

compression of the underlying layers remaining from previous seasons. Over decades, 

centuries, and millennia, this compression and associated increase in density transforms 
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snow into firn (granular snow), and firn into glacier ice (Benn and Evans 2010). Glaciers 

are found where the local climate regime permits this accumulation over time, mainly at 

high latitudes and high altitudes, with large winter snowfalls and mild summer 

temperatures. In regions with extreme topographic relief, cirque glaciers form in 

accumulation basins flanked by steep ridges. Flowing out of these cirque glaciers into 

downstream valleys are valley glaciers. The pattern of valley glaciers on the landscape 

resembles in many cases that of a drainage basin and river system. When local climate 

shifts toward higher precipitation and colder temperatures, and accumulation exceeds 

ablation, these glaciers advance down-valley to lower altitudes, snaking through the 

valley floor like rivers of ice. Conversely, when precipitation patterns shift towards drier 

and/or warmer conditions, ice melt increases and valley glaciers retreat. In the late 20th 

and early 21st centuries CE, increases in global temperatures have driven the retreat of 

valley glaciers worldwide (Vaughan et al. 2013). A number of distinct landforms are 

associated with this retreat, including terminal and medial moraines, proglacial and 

supraglacial lakes, and debris-covered glaciers (Stokes et al. 2007, Tweed and Carrivick 

2015, Benn et al. 2012). 

Supraglacial debris often cover portions of the ablation zones of valley glaciers in 

areas of extreme topographic relief (Kirkbride 2011). Indeed, a majority of valley glaciers 

in environments such as the Himalaya, Karakoram, Alaska, and the Cordillera Blanca are 

debris-covered glaciers. Rockfall, rock avalanche, and other mass movements from 

surrounding terrain result in the deposition of large angular material on glacier surfaces, 

while aeolian and fluvial processes may contribute smaller, rounded sediments (Hambrey 
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1994, Kirkbride 2011). Basal debris, forced from the bottom of the glacier to the surface,  

may also be present in cases where glacial ice is compressed (Hambrey 1994).  

Debris-covered glaciers (e.g. Figure 1.1) play a significant role in the mass-balance of 

glaciers due to the effects of debris cover on melt rates of underlying ice. A debris cover 

thinner than the “critical thickness” (where melt rates are equal to that of clean ice) 

values of 0.01m – 0.04m, lead to increased ice melt resulting from greater absorption of 

insolation due to the lower albedo of debris. However, with a majority of debris-covered 

glaciers debris exceeds this critical thickness, leading to an insulating effect due to the 

low thermal conductivity of the debris material (Brock et al. 2010, Racoviteanu and 

Williams 2012). The net effect of this insulation and reduced ice melt is that glaciers with 

significant debris cover have accumulation-area ratios lower than those without (Benn et 

al. 2003, Nakawo and Rana 1999). Simply put, this means that to preserve equilibrium 

mass-balance, a debris-covered glacier requires a smaller accumulation area than a 

similar “clean” glacier.  

 

Figure 1.1 Chacraraju debris-covered glacier tongue, Cordillera Blanca range, Peru. 
Google EarthTM perspective view. Image: 6/20/2015. 
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In addition to their effects on the hydrology of glacial systems, debris-covered 

glaciers and the dynamics of their change have consequences for human populations. As 

debris-covered glaciers retreat due to climate change, they represent a threat to down-

valley populations by producing potentially dangerous supraglacial and moraine-dammed 

lakes, and associated glacial lake outburst floods (GLOFs) (Quincey et al. 2005). In the 

Cordillera Blanca region, the memory of the 1941 Palcacocha GLOF that killed 5,000 

people and leveled much of the city of Huaraz still influences public consciousness and 

government policy where glacial lakes are concerned (Carey 2010). While perhaps less 

acute than catastrophic outburst flooding, the diminishing of water supplies for drinking 

water, industry, and hydroelectric power generation by glacier retreat is also a long-term 

concern for local populations in the Cordillera Blanca region (Mark and Seltzer 2003).  

 

Characterizing Glacial Environments and Change Dynamics 

The necessity to understand the dynamics of change in glacial environments has 

given rise to a number of metrics to characterize the conditions of glaciers, their health, 

and the direction and magnitude of change over time. The concept of “mass balance” 

represents the most fundamental of these metrics. Mass balance refers to the change in a 

glacier’s mass over a given period of time, usually expressed on a seasonal or annual 

basis. Mass balance is the net result of accumulation and ablation for the time period in 

question. Mass balance can be measured for individual locations on a glacier, but is more 

commonly measured for the total area of the glacier – the mean specific mass balance 

(Benn and Evans 2010). Mass balance can be either positive for advancing glaciers, or 

negative for retreating glaciers. The most reliable methods for quantifying mass balance 
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utilize extensive field measurements of glacier accumulation and ablation, directly 

recording snow accumulation or melt in relation to stakes fixed in the glacier’s surface. 

This work is most often slow, labor and resource intensive, and in many cases dangerous. 

Despite these challenges, prolific efforts to collect and record mass balance data for 

glaciers worldwide have spurred the World Glacier Monitoring Service (WGMS), which 

details mass balance observations for over 200 glaciers since 1975 (Zemp, Hoelzle and 

Haeberli 2009). The WGMS has recorded twenty four consecutive years of negative 

mean cumulative mass balance for the glaciers it monitors (WGMS 2015).  

Given the logistical difficulties of field studies, and the need for greater temporal 

resolution and spatial coverage of glacier monitoring, optical remote sensing techniques 

have gained favor for quantifying glaciers (Racoviteanu, Williams and Barry 2008, 

Pellikka and Rees 2009, Raup et al. 2007) . While remotely sensed data are clearly not 

capable of making direct measurements of accumulation and ablation, there are a wealth 

of proxy data that can be extracted from multispectral image data that allow for close 

approximation of mass balance without the need for in-situ observation. Glacier 

area/extent, terminus position, snow cover, and surface temperature are but a few of the 

myriad properties available through optical remote sensing. With digital elevation model 

(DEM) data to supplement the analysis additional properties become distinguishable, 

such as minimum/maximum elevations, average elevations, slope and curvature, etc.  

The usefulness of remote sensing techniques in accurately discriminating glaciers and 

glacier properties rests on the unique spectral response of snow and ice. In general, the 

high albedo of snow and ice correspond to relatively high reflectance values in the visible 

(VIS) spectrum (0.4 µm – 0.75 µm), in contrast to relatively low values in the near 
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infrared (NIR, 0.78 µm – 0.90 µm), and very low values in the shortwave infrared 

(SWIR, 1.5 µm – 1.8 µm) (Warren 1982, König, Winther and Isaksson 2001). As fresh 

snow ages and transitions to firn (granular snow) and eventually glacial ice, its overall 

reflectivity decreases, while contrasts between reflectance in specific wavelength regions 

are generally preserved, as seen in Figure 1.1. The introduction of impurities such as fine 

sediment and dust can also diminish the reflectance of snow and ice. The variation in 

reflectance of snow versus firn and glacial ice and the spectral resolution of many modern 

multispectral satellite sensors makes possible the differentiation of bare ice and snow 

zones (facies) within a glacier (Pellikka and Rees 2009). For imagery acquired at the end 

of the ablation season (summer or local dry season), the snowline – the interface of the 

bare ice and snow facies – is often used as an analog for the equilibrium line of the 

glacier. The equilibrium line is an isoline where net balance is neither positive nor 

negative (Benn and Evans 2010). The altitude of the equilibrium line (ELA), which can 

be extracted from DEM data, is used as a measure of the health and change of a glacier. 

During periods of positive mass balance ELAs may advance to lower elevations, while 

retreating upslope during negative mass balance phases (Benn and Evans 2010). Remote 

sensing based observations of changes in ELAs evidence the retreat of glaciers 

worldwide (Racoviteanu et al. 2008, Loibl, Lehmkuhl and Grießinger 2014).  
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Figure 1.2 Spectral reflectance curves for snow and ice. Bandwidths of common 
sensors shown for reference. Landsat OLI most closely resembles the 
“ETM+” sensor in the VNIR and SWIR regions. Image from Williams 
and Ferrigno (2012).  

By accurately mapping glacier extents and modeling the equilibrium line altitude, the 

glacier’s accumulation area ratio (AAR) may be calculated. Above the equilibrium line 

lies the accumulation zone (roughly equivalent to the snow zone in imagery), and below, 

the ablation zone (corresponding to the bare ice zone in imagery). The AAR refers to the 

ratio of the area of accumulation zone to the total area of the glacier (Benn and Evans 

2010). For instance, for a glacier with 40% of its area falling above the equilibrium line, 

the AAR is 0.4. For tropical glaciers like those found in the Cordillera Blanca, AARs are 

typically quite high (~0.8) (Kaser and Osmaston 2002). However, the presence of debris-

cover can cause much lower AARs, as ice melt rates are typically lower under layers of 

supraglacial debris (Nakawo and Rana 1999).  

The simplest and most common application of optical remote sensing in glacial 

environments is the mapping of glaciers extents. While manual delineation via heads-up 

digitizing is commonly used with single band imagery, multispectral data offer the ability 
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to perform automated classification of glacier extents by exploiting the absorption 

features of snow and ice in the SWIR region. Table 1.1 depicts the spectral bands 

commonly employed in mapping of glaciers, and their applications. Because much of the 

previous work done utilizes Landsat Thematic Mapper (TM) data and refers to spectral 

products in terms of TM bands, these bands and the corresponding Landsat Operational 

Land Imager/Thermal Infrared Sensor (hereafter referred to as Landsat OLI) bands are 

both listed.  

Table 1.1 Spectral bands and their applications for remote sensing of glaciers.       
Adapted from Pellikka and Rees (2009). 

Wavelengths 

(µm) 

Common 

Name 

TM 

Band 

OLI 

Band 

Application 

0.45 - 0.51 Blue 1 2 Snow/ice discrim. in shadow, mapping glacier lakes 
0.53 - 0.59 Green 2 3 Part of NDSI, snow/ice discrim. in shadow 
0.64 - 0.67 Red 3 4 Part of NDVI, useful in some band ratios 
0.85 - 0.88 NIR 4 5 Part of NDVI, useful in some band ratios 
1.57 - 1.65 SWIR 5 6 Key band for auto classification (ratio, NDSI) 
2.11 - 2.29 SWIR 7 7 Noise in shadow areas limits effectiveness 

10.60 - 12.51 TIR 6 10/11 Some use for mapping thin debris-covered areas 
0.50 - 0.68 Panchromatic - 8  Manual delineation, sharpening of multispec. bands 
 

Because snow and ice exhibit high reflectance in the visible bands and very low 

reflectance in the SWIR region, a majority of established techniques for glacier mapping 

rely on band ratios and indices. Paul et al. (2002a) explored the use of a TM4/TM5 band 

ratio for glacier mapping in the Swiss Alps and found success using threshold values of 

TM4/TM5 = ~2.0. For areas with deep topographic shadow effects, the TM3/TM5 ratio 

has proven to be effective, with some misclassification of water bodies as glacier (Paul 

and Kääb 2005). The normalized difference snow index (NDSI) has been successful in 

environments with extremely rugged topography, where soil, rock, snow, and cloud cover 

may cause confusion (Dozier 1989, Sidjak 1999). Silverio and Jaquet (2005) used the 
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NDSI to map glaciers in the Cordillera Blanca in 1987 and 1996 Landsat TM imagery, 

selecting appropriate threshold values between >0.52 and >0.4 respectively. The NDSI 

can be calculated using TM2 and TM5 following Hall, Riggs and Salomonson (1995): 

 NDSI = (TM2 – TM5)/(TM2 + TM5)                                               (Equation 1.1) 

While these three band ratio/index products (TM3/TM5, TM4/TM5, and NDSI) are 

the most common techniques for glacier extent mapping using multispectral image data, a 

wide variety of other methods have been applied from unsupervised and supervised 

classification (Aniya et al. 1996, Li, Sun and Zeng 1998) to spectral mixture analysis 

(Klein and Isacks 1999) and fuzzy theory (Binaghi et al. 1997). 

To reduce confusion and misclassification of other land cover types as glacier, it can 

be helpful to classify those areas and mask them out of further analysis (Pellikka and 

Rees 2009, Hendriks and Pellikka 2007). In heavily vegetated areas the normalized 

difference vegetation index (NDVI) can detect photosynthetic vegetation. The NDVI is 

calculated following Jensen (2007):  

 NDVI = (TM3 – TM4)/(TM3 + TM4)                                              (Equation 1.2)  

No discussion of remote sensing of glaciers would be complete without addressing 

the Global Land Ice Measurements from Space (GLIMS) project. The objectives of 

GLIMS are to establish and maintain a global GIS database of land ice to include surface 

topography, glacier extents, and surface velocities, and to facilitate the understanding of 

change dynamics of glacier areas included in the database (Bishop et al. 2004). Glacier 

inventories conducted within the framework of GLIMS use multispectral image data 

from moderate resolution platforms like the Advanced Spaceborne Thermal Emission and 
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Reflectance Radiometer (ASTER) and Landsat as the principal data source for analysis of 

glacier conditions and change dynamics, but also seeks integration of  auxiliary data from 

other sources, such as thermal, microwave, LiDAR, and Synthetic Aperture Radar (SAR) 

(Bishop et al. 2004). The GLIMS Analysis Tutorial provides guidance for researchers 

seeking to contribute to the inventory by defining key terms, image analysis procedures, 

feature attribution practices, etc. (Raup and Khalsa 2010). Image data and GIS shapefiles 

containing the glacier inventory data can be downloaded from the National Snow and Ice 

Data Center website (NSIDC 2015b). GLIMS glacier inventory data can serve as a 

suitable reference and validation dataset for subsequent remote sensing projects, with the 

understanding that the GLIMS data are generated for a specific image date, using a 

variety of techniques that may contrast with those of the proposed research itself. 

Fortunately GLIMS data is well-documented at the individual glacier level, and is 

explicit about the acquisition dates of imagery and the techniques used for glacier and 

debris-covered glacier extraction (Raup and Khalsa 2010). 

 

Remote Sensing of Debris-Covered Glaciers 

Manual delineation is widely considered the most accurate method of mapping 

debris-covered glacier areas from multispectral imagery, and even the most recent studies 

of glacial environments in the Cordillera Blanca rely on this technique (Burns and Nolin 

2014) – a testament to the difficulty of automated mapping of DCGs in this area. Still, 

many efforts have been undertaken to develop a more sophisticated technique, both in the 

Cordillera Blanca and other regions. On balance, these efforts utilize some degree of data 

fusion, combining multispectral data with ancillary datasets like terrain data and thermal 
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infrared imagery (Paul, Huggel and Kääb 2004, Shukla, Gupta and Arora 2010, Ranzi et 

al. 2004). Paul, Huggel and Kääb (2004) provide the most notable early example of this 

effort, employing multispectral data from ASTER and DEM data derived from ASTER 

stereoscopic bands to map DCGs in the Swiss Alps. The study uses decision-tree 

methodology to extract debris-covered glacier areas out of the data by process of 

elimination. The (TM4/TM5) band ratio provides segmentation of the study area into 

“glacier” and “other”. From the “other” areas, a vegetation is classified with an intensity 

hue saturation (IHS) transformation image. Slope data is used to select all non-glacier and 

non-vegetation areas with a slope below the threshold of 24˚, to be classified as “debris”. 

Finally, a neighborhood analysis distinguishes debris areas with connectivity to glacier 

areas, which are classified as “debris-covered glacier”. While the authors do not present a 

formal accuracy assessment, they note that their results provide “good correspondence” 

with a vector data set of “debris on glacier ice”. They stress the importance of using the 

highest accuracy and finest spatial resolution DEM data available for the study area to 

achieve the best results.  

Another prominent theme in the literature of remote sensing of DCGs is the use of 

thermal infrared (TIR) imagery in combination with multispectral and/or terrain data. 

Empirical studies have demonstrated that surface temperatures of ice-cored debris are 

lower than un-cored debris and bare rock by up to ~4.5˚C where ice-cored debris layers 

are less than 30cm thick (Ranzi et al. 2004). A number of efforts have employed TIR data 

from Landsat and ASTER sensors to exploit this “thermal gap” (Shukla, Gupta and Arora 

2010, Alifu, Tateishi and Johnson 2015). Taschner and Ranzi (2002) and Ranzi et al. 

(2004) achieve some success mapping DCGs in the Italian Alps using optical and thermal 
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data, but find a debris depth of 40cm-50cm as a practical limitation on the use of these 

techniques. Shukla, Gupta and Arora (2010) note that while illumination effects of high 

topographic relief combined with low solar elevations can have a significant effect on 

surface temperatures observed in TIR data, the thermal gap between ice-cored debris and 

un-cored debris remains for both illuminated and shaded slopes.  

In a notable recent study, Racoviteanu and Williams (2012) use a decision tree 

approach and a near exhaustive gamut of data including multispectral VNIR, SWIR, and 

TIR and DEM data from ASTER to classify debris-cover for ten glacier tongues in the 

Kangchenjunga area of the Himalaya. They also explore using Grey-Level Co-

Occurrence Matrix (GLCM) textural measures within debris-covered glaciers and other 

land-cover classes. Analysis of texture measures can be used to discriminate surface 

conditions like roughness and symmetry within an image (Racoviteanu and Williams 

2012). GLCM texture measures, including mean, entropy, homogeneity, dissimilarity, 

etc. are statistical tools for characterizing the variance of brightness values over a portion 

of an image defined either by a region of interest (ROI) or a moving-

window/neighborhood analysis (Albregtsen 2008, Haralick, Shanmugam and Dinstein 

1973). The authors compare a debris-covered glacier map manually delineated from 

texture images with the results of the decision tree classification and find an +8% 

difference in total area as calculated by the texture-based method, and note that the 

texture analysis was most useful in areas where glacier termini were covered with thick 

layers of debris (Racoviteanu and Williams 2012). This suggests the potential value of 

GLCM texture measures in mapping DCGs in the Cordillera Blanca, where debris-cover 

is often quite thick.  
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Tree-Based Classifiers 

While much of the data fusion research in relation to DCGs has employed decision-

tree methods or maximum likelihood classifiers (MLC) as the principal method of image 

classification, there is growing interest in the use of alternative classification techniques 

(Brenning 2009).  Non-parametric tree-based classifiers are gaining consideration in 

remote sensing studies for their robust predictive capacity and their ability to integrate 

large multidimensional datasets that have multicollinearity amongst input covariates 

(Hansen, Dubayah and DeFries 1996). Two such methods are random forests and 

conditional inference trees (CTree) (Breiman 2001, Hothorn, Hornik and Zeileis 2006). 

Both methods make use of recursive partitioning of training data to develop tree-like 

models that seek to predict class membership with maximum homogeneity within classes 

and heterogeneity between classes. 

CTree is a tree-based classification and regression model that integrates with the 

theory of conditional inference procedures (Hothorn, Hornik and Zeileis 2006). As with 

other classification and regression tree (CART) models, CTree uses binary recursive 

partitioning, where input cases are separated into increasingly homogenous nodes based 

on binary splits of individual predictor variables in a recursive fashion (Ishwaran and Rao 

2009). At each node in the tree, splitting rules dictate how the cases are split into binary 

groupings by examining all possible splits and selecting the covariate demonstrating the 

best split (Hothorn, Hornik and Zeileis 2006).  

Unique to CTree, conditional inference procedures add a measure of statistical rigor 

in the variable selection process by using conditional statistics at each split to measure the 

interaction between the dependent variable and predictor variables. Furthermore, CTree 
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adds statistical tests to the stopping rules that dictate when the tree has reached maturity 

and no more splits should be made (Hothorn, Hornik and Zeileis 2006). These additional 

procedures result in a model with strong predictive performance while addressing the 

tendency for overfitting inherent in standard classification and regression tree models 

(Hothorn, Hornik and Zeileis 2006). Another advantage of the CTree model is the 

explicit nature of the variable selection process, and the resulting variable importance 

plots and tree diagram that detail split decisions and critical values of predictor variables 

upon which splits are made. For the present research this could prove very useful in 

understanding the specific conditions leading to the classification of image objects as 

DCG or other.  

Random forests are another type of classification and regression tree algorithm, 

distinguished from CART and CTree models in that it is an ensemble method that utilizes 

the results of many decision trees in aggregate to achieve the best outcome for the overall 

classification (Horning 2010). Random forests are considered to be more robust than 

individual tree-based models, although they are “black box” models, being less-

transparent in terms of the structure of the individual trees within the ensemble (Breiman 

2001). Random forests work by creating many (usually several hundred) decision trees 

and then applying each of those trees to each case in the dataset. Additionally, at each 

node in the tree a random subset of predictor variables is drawn for consideration as a 

split variable. By using only a random subset of predictor variables at each node in each 

tree, the algorithm ensures a higher level of distinctiveness between individual trees in 

the forest, reducing the overall error rate (Horning 2010).   
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For classification of remote sensing data, cases are either individual pixels, or as in 

the present study, image objects with their associated ancillary covariates. Each tree will 

predict the class membership for each case, with the overall classification for that case 

being the class most often predicted by the sum of the trees in the forest (Horning 2010). 

For example if class “glacier” is predicted 75 times out of 100 trees, the random forest 

assigns class “glacier” to that case with a 75% probability. Thus, in addition to providing 

simple classification, random forests also attach a measure of uncertainty to the 

predictions they generate. Finally, the relatively simple nature of parameterizing the 

random forest model makes it attractive in comparison to other machine learning methods 

like boosting and support vector machines (Ghimire et al. 2012). The list of parameters 

that must be determined in a random forest model include: the training data, with 

selection of predictor variables (spectral features, terrain information, etc.) and dependent 

variables (i.e. land cover class); the desired number of trees to be generated; the number 

of predictor variables to be considered in each binary split decision; and parameters 

related to error estimation and variable significance (Horning 2010).  

CTree and random forests both offer unique advantages that make them valuable for 

understanding debris-covered glaciers in the Cordillera Blanca. CTree provides an easily 

interpretable decision tree model complete with the critical values for split decisions that 

permit the inference of empirical values for covariates useful in describing DCGs. 

Random forests provide a robust prediction of class membership as well as clear error 

estimation and variable importance information. The results of the two methods viewed 

side-by-side should produce a more complete picture of the phenomenon of DCGs than 

either one alone.   
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CHAPTER 2: METHODS 

 

Study Area 

Located 400km north of Lima, in the Ancash region of Peru, the Cordillera Blanca 

range extends 180km north to south from 8°30’S latitude to 10°0’S (Figure 2.1). Over 

200 summits in the Cordillera Blanca reach 5000m or greater, with 27 topping 6000m 

including Peru’s tallest mountain, Huascarán Sur (6768m). Glaciers occupy much of the 

highest areas from elevations of~3000m and greater (Racoviteanu et al. 2008). Mountain 

glaciers in the Cordillera Blanca are characterized by steep, heavily crevassed slopes and 

are typically short in length (Silverio and Jaquet 2005, Kaser and Osmaston 2002). A 

recent advance and retreat of these glaciers has left behind small and vaguely defined 

lateral and frontal moraines, which may be prone to the formation of lakes. Over 60 

valley glaciers, many with substantial debris cover, also reside in the Cordillera Blanca.  

Moraines produced by these valley glaciers are often quite large and well suited for the 

damming of glacial meltwater. A moraine of this nature is implicated in the 1941 Lake 

Palcacocha disaster, and still represents a significant potential flood hazard to area 

residents (Kaser and Osmaston 2002).   
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Figure 2.1 Study area: Cordillera Blanca region of Peru (Total Area: ~3,400km2). 

 

Climate in the Cordillera Blanca is typical of locations in the outer tropical latitudes.  

Seasonal temperature variations are relatively small compared to diurnal fluxes, with 

seasons being better defined in terms of precipitation. The austral winter (May - 

September) is typically dry with a majority of precipitation being received in the summer 

months (October – April). During these months the southward oscillation of the 

Intertropical Convergence Zone (ITCZ) draws in moist air masses from the Amazon 

Basin (Kaser and Osmaston 2002). Southeasterly winds carry air masses west, with 

windward eastern slopes receiving 2-3 times more precipitation than the leeward slopes 

of the western side (Johnson 1976). Intense solar radiation drives year-round ablation of 

glaciers, though higher rates of ablation occur during austral summer. Accumulation is 

mainly limited to the wet summer months, with extra-glacial snow cover usually melting 

within a few days after snowfall occurs (Silverio and Jaquet 2005).   
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Reference Data 

Reference data for this study come from two sources. The first source is the Global 

Land Ice Measurements from Space (GLIMS) Glacier Database. The GLIMS Glacier 

Database provides vector glacier extent data principally derived from ASTER and 

Landsat ETM+ imagery (Bishop et al. 2004). The GLIMS database includes polygon and 

attribute data identifying debris-covered glacier areas, making these data useful as a 

reference and validation dataset. GLIMS data for the study area were downloaded from 

the National Snow and Ice Data Center’s online data clearinghouse in GIS shapefile 

format (NSIDC 2015b). The attribute information for polygons identified as “debris-

covered glacier” in the GLIMS data indicate that there are two sets of DCG polygons 

covering the Cordillera Blanca region, one digitized from 2003 imagery from the French 

Satellite Pour l'Observation de la Terre (SPOT), and another digitized from 2005 ASTER 

imagery (NSIDC 2015b). Visual analysis of the two datasets revealed that the polygons 

derived from the 2003 SPOT imagery are more complete and better reflect the true 

boundaries of DCGs than the alternative dataset. As a result, SPOT-derived polygons 

were the main source of validation while the ASTER-derived data were used only where 

necessary due to data gaps. 

 

Manual Delineation 

The second source of reference data is an inventory of DCGs manually delineated 

from high resolution Google EarthTM and Bing MapsTM imagery. Google EarthTM and 

Bing MapsTM provide a free source of very high resolution image data with worldwide 

coverage, but images comprising the mosaic for a particular area may have been acquired 
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on different dates, sometimes with disparities of over one year between conterminous 

image tiles. In dynamic environments like the Cordillera Blanca, temporal variability in 

environmental conditions between images in the mosaic, and between the mosaic data 

and the Landsat OLI data selected for study may be significant. Care was taken to utilize 

imagery from Google EarthTM and Bing MapsTM that most closely matched the date of 

acquisition of the Landsat OLI data. A majority of the Bing Maps imagery was acquired 

in June 2010, July 2012, or June 2013 , while Google EarthTM imagery was generally 

acquired in either August 2013 or June 2015 (van Exel 2010, Google 2015). This data is 

the most accurate and representative reference data available given the constraint of 

available resources.  

With the assistance of an expert with knowledge of the study area, and using visually 

identifiable DCG features like hummocky topography, ice cliffs, and supraglacial lakes, 

boundaries of DCGs were manually delineated at a map scale of 1:4000 in the ArcGIS 

software package environment using very high resolution (~0.5m/pixel) Bing MapsTM 

aerial imagery as the principal source (ESRI 2014). GLIMS debris-covered glacier 

polygon data were used as a guide to help locate previously identified DCGs. However, 

as GLIMS data were generated from moderate resolution imagery acquired a decade 

prior, it was assumed that there would be some discrepancies in the DCGs identified in 

the GLIMS data and the present survey due to the increased resolution of the Bing 

MapsTM imagery and changes in the study area environment in the intervening years. 

Google EarthTM imagery was utilized primarily as an ancillary dataset to clarify and/or 

verify the results of digitization over the Bing MapsTM imagery in areas where cloud 

contamination or poor image quality presented challenges.  
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The manual delineation of DCGs even by a trained analyst can be somewhat 

subjective in terms of the absolute position of glacier boundaries. To address this 

uncertainty, three repeat delineations, each performed 24 hours apart, of five DCGs of 

various sizes distributed along the longitudinal axis of the Cordillera Blanca range were 

completed according to the best practices in Paul et al. (2013). For each glacier sampled, 

the standard deviation of the areas resulting from each repeat digitization was calculated 

and expressed as a percentage of the mean area for that glacier. Finally, the mean of the 

standard deviations for the five glaciers sampled was computed and serves as a measure 

of the accuracy of the manual delineation technique (Paul et al. 2013).   

 

Image Data 

Landsat 8 OLI multispectral data have a nominal spatial resolution of 30 meters, with 

five spectral bands located in the visible and near-infrared region (VNIR), two shortwave 

infrared (SWIR) bands, a cirrus cloud detection band, a 15-meter resolution panchromatic 

band, and two 100-meter (resampled to 30 meter) thermal infrared (TIRS) bands (USGS 

2015). Table 2.1 shows OLI spectral bands and their respective bandwidths.  

Table 2.1 Landsat OLI bands 
 Band Number Band Name Wavelength   Resolution (m) 

1  Coastal aerosol 0.43 - 0.45 30 
2 Blue 0.45 - 0.51 30 
3 Green 0.53 - 0.59 30 
4 Red 0.64 - 0.67 30 
5  Near Infrared (NIR) 0.85 - 0.88 30 
6 SWIR 1 1.57 - 1.65 30 
7 SWIR 2 2.11 - 2.29 30 
8 Panchromatic 0.50 - 0.68 15 
8 Cirrus Cloud  1.36 - 1.38 30 
10 Thermal IR 1 10.60 - 11.19 100 (30) 
11 Thermal IR 2 11.50 - 12.51 100 (30) 
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A Landsat 8 OLI scene  from World Reference System (WRS2) path 08 and row 66, 

acquired July 12th, 2014, was downloaded from the United States Geological Survey 

(USGS) Earth Resources Observation and Science (EROS) Center using the USGS 

EarthExplorer tool. The data were received in the Geotiff format and came orthorectified 

and projected in the Universal Transverse Mercator (UTM) coordinate system, zone 18 

south. This image was selected due to its acquisition date falling within the local dry 

season when glacier extents are most visible and snow cover is at or near annual 

minimums. Visual inspection of the image also confirms that it contains negligible cloud 

contamination and limited seasonal snow cover in the study area (Figure 2.2). The extent 

of this scene provides full coverage of the Cordillera Blanca with the exception of a small 

area at the southern margin of the range. This study excludes that area to avoid the 

complications of mosaicking datasets, and because GLIMS data showed no DCGs in this 

portion of the range.  
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Figure 2.2 Pan-sharpened Landsat OLI true color composite (RGB: Landsat OLI 4-3-
2) image of Cordillera Blanca range for July 12, 2014. 

 

Image Preprocessing 

Recent research has demonstrated the value of performing atmospheric corrections of 

satellite data before use in glaciological applications (Burns and Nolin 2014). For the 

present research, the Landsat OLI scene was first converted from raw digital numbers 

(DNs) to at-sensor radiance using the Radiometric Calibration tool in the Environment 

for Visualization of Imagery (ENVI) v5.1 software package (Exelis Visual Information 
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Solutions, Boulder, Colorado). Radiance data were then converted to surface reflectance 

using the Modtran4-based Fast Line-of-sight Atmospheric Analysis of Hypercubes 

(FLAASH) atmospheric correction module in ENVI (Felde et al. 2003). Independently, 

Landsat thermal band 10 was converted to at-sensor radiance, and then to at-sensor 

brightness temperature using the method recommended by the United State Geological 

Survey (USGS 2013).  

In order that the image segmentation algorithm result in accurate and representative 

image objects, the Landsat OLI visible and near-infrared (VNIR) bands were submitted 

to the Gram-Schmidt pan-sharpening algorithm in ENVI (Laben and Brower 2000). Pan-

sharpening is a resolution merging procedure that resamples lower resolution 

multispectral bands to a higher-resolution panchromatic band using the cubic convolution 

algorithm. In this instance, 30 meter Landsat OLI VNIR bands were pan-sharpened using 

the 15 meter Landsat OLI panchromatic band, resulting in a four band, 15 meter 

multispectral image. 

 

Terrain Data 

For the representation of elevation and other terrain information, a digital elevation 

model (DEM) acquired during the Shuttle Radar Topography Mission (SRTM) was 

downloaded from the Consultative Group for International Agriculture Research – 

Consortium for Spatial Information (CGIAR) website (Jarvis et al. 2008). SRTM data 

were received in GeoTiff format with a nominal resolution of 90 meters, and projected in 

the UTM zone 18 south coordinate system. The original SRTM data distributed by 

NASA often contain voids in rugged, high relief areas such as the Cordillera Blanca. 
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CGIAR distributed SRTM data have been void-filled using auxiliary elevation data to 

produce a continuous surface which is free of data gaps (Jarvis et al. 2008).  

Alternative DEM data sets considered for use in analysis include a 30 meter 

resolution version of the SRTM DEM data for all of South America, released at the end 

of 2014 by NASA. While the improved resolution of this product held appeal, significant 

data gaps and abnormalities rendered it unsuitable for the study area.   Also considered 

for use in this research was the ASTER Global DEM (GDEM2). ASTER GDEM2, a 

product of the stereoscopic capabilities of the ASTER sensor, also offer resolution of 30 

meters and worldwide coverage (Kääb et al. 2002). Unfortunately GDEM2 data often 

suffer from significant artifacts and inconsistencies in high relief areas. Other research 

utilizing digital elevation data for glaciological applications have noted the challenges 

and errors associated with the GDEM2 product (Racoviteanu et al. 2007, Kääb et al. 

2002). Review of the available GDEM2 data available for the Cordillera Blanca region 

confirmed that it exhibits artifacts that make it unsuitable for this study.  

SRTM digital elevation data were imported into the ArcGIS Desktop software 

package and clipped to the spatial extent matching the Landsat OLI scene. A number of 

derivative datasets were created from the DEM data using the Spatial Analyst tools in 

ArcGIS: a slope raster (in degrees), an aspect raster (in degrees), and a curvature raster 

(in radians/meter). The slope raster was resampled to 15 meters using the cubic 

convolution method, in order to match the pan-sharpened Landsat OLI VNIR data to be 

used in the image segmentation process.   
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Image Segmentation 

Object-based image analysis begins with the segmentation of image data into image 

objects. Image objects are defined by a segmentation algorithm that classifies images into 

discrete groups of pixels based on some measure of homogeneity. Though many 

techniques exist for the purpose of image segmentation, the multiresolution segmentation 

algorithm has gained widespread acceptance in recent years for use in multispectral 

remote sensing applications (Blaschke et al. 2000, Benz et al. 2004). The multiresolution 

segmentation (MS) algorithm is a region-growing technique that begins by assessing each 

pixel in an image as a separate object and iteratively merging adjacent objects into larger 

and larger objects, based on local homogeneity criteria (Baatz and Schäpe 2000).  

Segmentation parameters – the scale parameter, shape/color parameter, and 

compactness/smoothness parameter – define homogeneity criteria and dictate the size and 

shape of the objects in the final iteration of region-merging. Region-growing terminates 

when the homogeneity of image objects exceeds the scale parameter (SP), an abstract 

value the magnitude of which determines the maximum size of image objects (Baatz and 

Schäpe 2000). A larger SP will result in larger resulting image objects, and vice-versa. 

The color parameter defines the influence of pixel values on region-merging decisions 

and is derived from the weighted sum of standard deviations of spectral bands within 

image objects (Baatz and Schäpe 2000). The shape parameter is a composite of 

smoothness and compactness. Compactness refers to the ratio of an image object’s 

perimeter to its area while smoothness refers to the relationship of an image object 

boundary’s shape to that of a perfect square (Baatz and Schäpe 2000). The shape and 

color parameters are related in that their total value must be equal to one. If the shape 
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parameter is 0.4, the shape parameter must 0.6. The same is true for smoothness and 

compactness.  

The process of determining the optimal values for segmentation parameters is often 

qualitative and subjective. It is common practice to run the segmentation algorithm using 

a variety of scale parameters, selecting the most appropriate based on visual analysis of 

the resulting image objects (Meinel and Neubert 2004). Color and shape parameters are 

evaluated in a similar fashion. Rather than simple trial and error, this study used an 

approach that evaluated segmentation parameters based on regular intervals defined for 

each parameter, and selected the optimal combination of values based on best conformity 

of resulting image objects to features visually identified as debris-covered glaciers. The 

higher resolution pan-sharpened Landsat OLI bands, as well as the resampled 15 meter 

slope raster, were the only data layers employed in image segmentation as the scale 

parameter is dependent upon the resolution of input layers. 

The range of scale parameters from 2 to 20 were explored iteratively in increments of 

two. At the minimum value of 2, image objects may contain just a few pan-sharpened 

Landsat OLI pixels, and are too small to effectively represent any features of interest in 

the imagery (Figure 2.3a). At the other extreme, a scale parameter of 20, image objects 

have grown so large that they may contain more than one land cover class (Figure 2.3b). 

After stepping through the full range of values, a scale parameter of 12 was determined to 

be the most appropriate for this study. 
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Figure 2.3 Segmentation demonstrating effects of scale parameter. Subset of study 
area containing the Jatunraju debris-covered glacier tongue. Scale 
parameter: a = 2, b = 20. 

 

Values for the shape/color parameter ranging from shape = 0.1/color = 0.9 to shape = 

0.9/color = 0.1 in increments of 0.1, were tested for the study area. At the minimum value 

of this range (Figure 2.4a), color has the greatest influence on image objects and resulting 

objects are free to grow sinuously to maximize homogeneity of image spectral values. At 

the other extreme (Figure 2.4b) the importance of color is minimized, and more influence 

is given to the uniformity of image shape, which is regulated by the compactness/ 

smoothness parameter discussed in the next section. Debris-covered glaciers do not 

generally demonstrate a regular shape, so a relatively low weight for the shape parameter 

of 0.3 (color 0.7) was selected.   

 

a b 500m 500m 
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Figure 2.4 Segmentation demonstrating effect of shape parameter. Subset of study 
area containing the Jatunraju debris- covered glacier tongue. Shape 
parameter: a = 0.1, b = 0.9. 

 

Finally, values ranging from compactness = 0.1/smoothness 0.9 to compactness = 0.9 

/smoothness 0.1 were tested iteratively in increments of 0.1. Lower compactness (and 

thus higher smoothness) values allowed objects to grow longer and narrower (Figure 

2.5a), while conversely increasing the value for compactness minimized the 

perimeter/area ratio of image objects and resulted in compact, regular objects as 

demonstrated in Figure 2.5b. A low compactness value of 0.2/smoothness 0.8 was 

considered to be optimal here, largely due to the phenomenon of elongated units of 

relatively homogenous slope values observed for DCGs in the study area.  

 

a b 500m 500m 
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Figure 2.5 Segmentation demonstrating effects of compactness parameter. Subset of 
study area containing the Jatunraju debris- covered glacier tongue. 
Compactness parameter: a = 0.1, b = 0.9. 

 

Initial Classification 

An exploratory visual analysis of the image and terrain data was conducted following 

the final image segmentation, and 30 unique image object features were generated to 

characterize various dynamics associated with the study area environment (Table 2.2). 

These features included: spectral derivatives like band ratios, indices, and 

transformations; simple statistics regarding data values within image objects, such as 

mean values and standard deviations; and textural features like grey-level covariance 

matrix (GLCM) homogeneity, contrast, and dissimilarity (Trimble 2012). For each of the 

input bands (Landsat OLI bands, and the terrain variables elevation, slope, aspect, and 

curvature), image object mean and standard deviation features were calculated.  

Additionally, to identify clean glacial ice and snow two spectral derivative features 

were generated: the TM4/TM5 band ratio, and NDSI. Similarly, NDVI features were 

generated for classification of vegetated. An RGB to intensity, hue, and saturation (IHS) 

transformation was also calculated, resulting in one feature for each of the three 

a b 500m 500m 



34 
 

components of the transformation. Finally, five textural features were created: GLCM 

homogeneity, GLCM dissimilarity, GLCM contrast, GLCM energy, and GLCM entropy.  

Table 2.2 Image object features  

Data Source Class Features 

OLI Blue Spectral Mean & StdDev Blue 
OLI Green Spectral Mean & StdDev Green 
OLI Red Spectral Mean & StdDev Red 
OLI NIR Spectral Mean & StdDev NIR 

OLI SWIR1 Spectral Mean & StdDev SWIR1 
OLI SWIR2 Spectral Mean & StdDev SWIR2 

OLI TIR Spectral Mean & StdDev Brightness Temp 
OLI Red & NIR Ratio/Index Mean & StdDev NDVI 

OLI Green & SWIR Ratio/Index Mean & StdDev NDSI 
OLI NIR & SWIR Ratio/Index Mean & StdDev NIR/SWIR 
OLI Visible Bands Transform Mean IHS Hue Component 

SRTM Slope Terrain Mean & StdDev SRTM Slope 
SRTM Aspect Terrain Mean & StdDev SRTM Aspect 

SRTM Curvature Terrain Mean & StdDev SRTM Curvature 
SRTM Elevation Terrain Mean & StdDev SRTM Elevation 

 Textural GLCM Homogeneity 
 Textural GLCM Dissimilarity 
 Textural GLCM Contrast 
 Textural GLCM Energy 
 Textural GLCM Entropy 

 

 

While the ultimate objective of the image classification process is the discrimination 

of debris-covered glaciers, it is useful at first to mask out the areas that can be positively 

identified as “non-debris-covered glacier”. Two major land-cover classes with clear 

spectral signals – clean ice and snow (class “glacier”), and vegetated slopes (class 

“vegetation”) – were identified using the Feature View in eCognition. Figure 2.6 provides 

an example of this interactive density-slicing applied to the TM4/TM5 ratio. Initial 

classification of glacial ice and snow, and vegetated areas was performed in eCognition 
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using class membership rules based on the threshold values of TM4/TM5 > 2.0 for 

glacier and NDVI > 0.1 for vegetation.  

 

 

Figure 2.6 eCognition Feature View. Subset of study area centered on Laguna Parón 
and the Huandoy Massif. Image objects are color coded based on their 
TM4/TM5 ratio. Values below the minimum threshold are black, above 
the maximum threshold are white, and within the threshold range are dark 
blue to light green. 

 

Tree-based Classifiers 

After masking out glacier ice and vegetation, the two tree-based classifiers – random 

forests and conditional inference trees – were applied to the remaining image objects 

(Hothorn et al. 2015, Breiman 2001). Tree-based classifiers require a sample of training 

data to build their predictive models. To capture the dependent variable for the training 

data, the unclassified image object polygons were intersected with the manually derived 

DCG polygons. A 70% random sample dataset containing predictor variables (image 
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object feature values) and the dependent variable (DCG presence/absence), was 

generated as training data for classification. The remaining 30% was held out of the 

training data to be used for validation of classification results.  

The random forests classification used the implementation included in the 

‘randomForest’ package v1.0-21 for the R statistics programming environment to predict 

class membership for the original complete image objects in the study area (R Core Team 

2015). After initial data tidying within R a random forests model was fitted to the training 

data using the tuneRF function. The number of trees was set to 500, which proved to 

provide enough iterations to minimize classification errors. For each individual tree in the 

random forest, the algorithm draws two-thirds of the user-input training data as a random 

sample and uses that sample to generate a tree. The remaining training data initially held 

out – the out-of-bag (OOB) sample – is then classified to cross-validate the resulting tree. 

The rate of misclassification of this cross-validated data is the out-of-bag (OOB) error 

rate  (Breiman 2001). For variable selection, the tuneRF algorithm optimizes the model 

by iteratively varying the number of predictor variables (the “mtry” value) available for 

split decisions at each node. For each successive mtry value the algorithm calculates 

OOB error rate and chooses the mtry value with the lowest error rate (Liaw and Wiener 

2002). The tuneRF algorithm determined an optimal mtry value of 8 variables.  

The random forest algorithm also determines the importance of individual predictor 

variables. For each tree, a random predictor variable is selected and its values randomly 

permuted across cases in the out-of-bag sample, which is then reclassified by the same 

tree. The OOB error from the classification using the permuted data is calculated and 

compared to the actual OOB error of the tree. If the permutation of values results in 
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dramatic changes to the classification results, it can be inferred that the variable in 

question is of great importance to the model. If permutation results in little change in 

classification accuracy, the variable has relatively lesser importance for prediction 

performance. Variable importance for the entire forest is measured by calculating the 

mean decrease in accuracy (increase in OOB error rate) for each predictor variable in the 

forest (Breiman 2001).  

The same training data used in the random forests classification were then applied to 

the CTree classifier. The CTree model includes the option to use variable randomization 

similar to the random forests model (Hothorn et al. 2015), and thus the optimal mtry 

value identified from the tuneRF function described above was used to match the CTree 

model as closely as possible to the random forests model. For a comprehensive summary 

of the workflow of the classification procedures described above, the resulting R 

programming code has been included as Appendix A. 

 

Accuracy Assessment 

To evaluate the accuracy of the two classifications, error plots comparing the 

predicted class memberships to the actual class memberships in the reference data were 

generated in R (see code in Appendix A), and full error matrices including user’s and 

producer’s accuracy, false positive rates, and overall classification accuracy statistics 

were calculated for better understanding of the nature of the errors (Congalton 1991). An 

error matrix is a table that presents the expected classification of a reference/validation 

dataset versus the predicted classification results.  
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The user’s accuracy describes the errors of commission made by the classifier (i.e. 

false positives) and is calculated on a per-class basis as (Story and Congalton 1986):  

𝑈𝑠𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠 𝑌

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠 𝑌
               (Equation 2.1) 

The producer’s accuracy describes errors of omission and is calculated and is 

calculated on a per-class basis as (Story and Congalton 1986): 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠 𝑌

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑌 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑑𝑎𝑡𝑎
 (Equation 2.2) 

The overall classification accuracy statistic describes the overall rate of correct 

classifications across all classes. It is calculated as (Story and Congalton 1986): 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
   (Equation 2.3) 

An additional accuracy metric, the Kappa statistic, was also calculated from the error 

matrices for each of the two classifications. Kappa is a single statistic that incorporates all 

of the information within an error matrix, making it a comprehensive measure of 

accuracy that can facilitate comparison across different error matrices (Congalton 1991). 

The Kappa statistic is calculated as,  

     𝛫 =  
𝑁 ∑ 𝑥𝑖𝑖 − ∑ (𝑥𝑖+∗𝑟

𝑖=1 𝑥+𝑖)𝑟
𝑖=1

𝑁2− ∑ (𝑥𝑖+∗𝑟
𝑖=1 𝑥+𝑖)

                                                             (Equation 2.4) 

where r is the number of rows in the matrix, xii is the number of cases in row i and 

column i, xi+ and x+i are the marginal totals of row i and column i, respectively, and N is 

the total number of cases (Congalton 1991).   

Another measure of accuracy that can be useful in situations where the land cover of 

interest occupies a small percentage of the total study area is to examine the false positive 

rate (FPR) in context of the sensitivity rate achieved by a classifier (Brenning 2009). The 
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sensitivity rate, which in a binary classification is equivalent to the producer’s accuracy 

for positive cases, measures the percentage of positive cases in the training data that are 

accurately classified (Hand 1997). The FPR represents the percentage of negative cases 

from the training data that are incorrectly classified as positive (Hand 1997). Comparing 

the FPR in relation to the sensitivity rate provides a measure of the accuracy of the 

classifier at the expense of errors of commission. The FPR can be calculated from the 

producer’s accuracy for negative cases as follows: 

𝐹𝑃𝑅 = 100 − 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑓𝑜𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠   (Equation 2.5)  

In addition to the calculation of traditional accuracy statistics described above, a 

qualitative visual interpretation of the classification results was undertaken in ArcGIS 

Desktop by mapping the predicted class memberships of image objects in relation to the 

manually delineated DCG reference polygons. Visual interpretation facilitated the 

analysis of spatial patterns of error that were not obvious in the traditional accuracy 

assessment metrics.  
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CHAPTER 3: RESULTS 

Manual Delineation  

 The visual survey of the debris-covered glaciers in the Cordillera Blanca region 

yielded 37 DCGs totaling an area of 14.4km2. Hummocky terrain, lobate features, and 

supraglacial lakes in close proximity to clean glacier ice were all considered to be 

indicators of debris-covered glacier. Interestingly, many of the debris-covered glaciers 

identified in the GLIMS data, when viewed against the very high resolution Bing MapsTM 

imagery, did not exhibit the characteristic indicators of DCGs. As a result there were 

differences between the manually-delineated DCGs and the GLIMS data in terms of both 

the number and area of DCGs identified in the study area. Table 3.1 provides details of 

the DCGs identified in the GLIMS data compared to the present survey. 

Table 3.1 Results of manual delineation of DCGs vs. GLIMS database. 

DCG Polygons # of DCGs Area of DCGs Image Source 

GLIMS (2003) 47 17.8km2 SPOT 
GLIMS (2005) 37 16.1km2 ASTER 
Biddle (2014) 37 14.4km2 Bing MapsTM 

 

 

  The mean standard deviation of the areas of the five glaciers sampled for repeat 

delineation was 6.7%. This value serves as a measure of the accuracy of area calculations 

derived from manually delineated DCG boundaries. Applying this error term to all DCGs 

identified in the survey results in an estimated total area of DCGs of 14.4km2±0.97km2. 

The full statistical results from the repeat delineations are presented in Table 3.2, and a 
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visual example of the repeat delineations for a selected DCG are depicted in Figure 3.1. 

Results suggest that the while some DCG boundaries are quite clear in very high 

resolution imagery, others are more nebulous. This is particularly true where DCGs are 

adjacent to lateral moraines that have a similar appearance in color and texture.  

Table 3.2 Statistics from the repeat digitization of five selected DCGs.  

Glacier Min Area 

(km2) 

Max Area 

(km2) 

Mean Area 

(km2) 

Std Dev. (km2) Std Dev (%) 

1 0.08478 0.08995 0.087 0.0027 3.103 
2 0.13508 0.15265 0.1457 0.0093 6.383 
3 0.26347 0.28734 0.2776 0.0125 4.503 
4 0.43851 0.54044 0.4773 0.0552 11.57 
5 1.49502 1.71102 1.5695 0.1226 7.811 

         Mean Std Dev (%):  6.673 
 

 

 

Figure 3.1 Debris-covered glacier boundaries from repeat manual delineations for 
subset of one DCG, demonstrating the potential variation in the position of 
DCG boundaries interpreted on separate occasions by the same analyst.   
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Image Segmentation 

Iterative testing of segmentation parameters resulted in the final selection of scale = 

12, shape = 0.3, and compactness = 0.2, which provided the best visual conformity of 

image objects with features identified debris-covered glaciers as demonstrated in Figure 

3.2. It is important to note that while one debris-covered glacier could be comprised of 

many image objects, the boundaries of those image objects generally correspond to the 

boundaries of debris-covered glaciers identifiable through visual interpretation. Although 

the agreement between image object boundaries and manually delineated DCG 

boundaries was good overall, there were some instances where they diverged, creating 

image objects with potential for mixed land-cover classes that could impact the accuracy 

of classification of DCGs. 
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Figure 3.2 True color composite of Cordillera Blanca region showing final 
segmentation results. Two subsets displayed at different scales. Scale 
Parameter = 12, Shape Parameter = 0.3, Compactness Parameter = 0.2. 
Landsat OLI (RGB: 4-3-2).  
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Initial Classification  

The initial classification of glacial ice resulted in an estimated 468.81 km2 of glacial ice 

in the study area, as compared with 486.4 km2 identified in the 2003 SPOT-based GLIMS 

polygons, and 456.5 km2 in the 2005 ASTER-based GLIMS data. Burns and Nolin (2014) 

also report a total glacier area (including debris-covered areas) of 482km2 in 2010.  Area 

estimates for vegetation are not provided, as these areas comprise the majority of the 

Landsat tile, and are of no further interest for this study. An example of the results of 

initial classification are displayed in Figure 3.3.  

 

Figure 3.3 Results of initial classification. Subset of study area centered on Laguna 
Parón and Huandoy Massif. Green = vegetation; Cyan = glacier; Black = 
unclassified 
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Tree-Based Classifiers 

 Initial classification of glacier ice and vegetation left 4,280 image objects 

remaining as unclassified. Of these objects 172 intersected the manually delineated DCG 

polygons, and were thus assigned to class DCG for use as training and validation data. 

The 172 image objects identified by intersection as DCG occupy a total area of 16.4 km2, 

which is consistent with the estimates from the reference data (Table 3.1).  

A 70% random sample of the image object data with the 30 predictor variables was 

used to train the random forests and CTree classifiers. The resulting models were then 

applied to the full set of 4,280 image objects for validation. The random forests model 

classified 650 image objects as DCG, with a total area of 46.1 km2, and an OOB error 

rate of 13.3%. Plotting the error rate against the number of trees used in the model 

demonstrates that 500 trees were sufficient to stabilize error (Figure 3.4).  

 
Figure 3.4 Out-of-bag error rate plot. OOB error plotted against the number of trees 

included in the model. The error rate stabilizes after 500 trees to the point 
where any variations are accounted for by statistical noise. 
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The random forests algorithm provide a means for assessing the importance of 

individual predictor variables in the model. The variable importance plot (Figure 3.5) for 

the random forests model depicts the decrease in accuracy of the model (i.e. the 

percentage increase in OOB error rate) resulting from the permutation of each predictor 

variable. A greater decrease in accuracy indicates greater importance of the variable in 

question to the performance of the model.  

 

Figure 3.5 Variable importance plot for random forest model, showing the mean 
decrease in accuracy for each predictor variable. Mean decrease in 
accuracy corresponds to the percentage increase in the OOB error rate.  

 

The variable importance plot in Figure 3.5 shows that terrain variables, including 

mean slope, mean elevation, mean curvature, and standard deviation of elevation 

contributed most to the random forests model’s prediction of DCGs. Mean slope and 

mean elevation were the most important predictor variables, showing mean decrease in 

(%) 
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accuracy values of 29.3% and 25.7% respectively. Also of relatively high importance are 

the hue component of the HSI transformation, and the standard deviations of the red and 

blue bands. This suggests that the variability of spectral reflectance within image objects 

has a stronger influence on predictions of DCGs than does overall reflectivity in 

individual wavelength regions. Less informative, the textural features like GLCM 

Dissimilarity, Homogeneity, and Contrast have little importance in the predictive ability 

of the random forests classification.  

The CTree model classified 897 objects as DCG, with a total area of 62.5 km2. CTree, 

as a single-tree classification, is unable to match the overall predictive performance of 

random forests. However, it does provide an enhanced level of interpretability through its 

resulting tree diagram (Figure 3.6).  

 

Figure 3.6 Tree diagram for conditional inference tree. Classification of DCG (1) vs 
non-DCG (0).  
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The tree diagram depicts the split decisions used to classify the image objects into 

DCG or non-DCG. At each node in the tree a predictor variable is selected, and the cases 

are split into binary groups based on a critical value for that variable. Split decisions are 

then made recursively at each resulting node, and the process repeats until the splits fail 

to demonstrate statistical significance at the 95% confidence level. The results are a 

number of terminal nodes or “leaves” representing discrete groups of cases. At each 

terminal node, the number of cases and the fraction of those cases belonging to class 

DCG (1) or non-DCG (0) is given. The tree in Figure 3.6 would be very similar to a 

single tree in the random forests model, which combines the results of 500 trees for more 

robust performance.  

While this CTree model does utilize some spectral features such as mean blue 

reflectance and standard deviation of shortwave reflectance, the overall low importance 

of those variables in the more robust random forests model suggests their appearance 

here may be more a result of the tendency for single tree models to overfit the data. In 

general, the results of this single CTree model should be interpreted with some caution, 

as it represents but one possible tree. Re-fit one hundred times, the tree could yield 

different combinations of predictor variables, though the most important variables should 

reappear consistently. 

 

Classification Accuracy 

Error matrices for the random forests and CTree classifiers reveal more detail about 

the results of the models (Table 3.3 and Table 3.4, respectively). The random forests 
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model achieved an overall accuracy of 88.5%, while the CTree model achieved 81.6% 

overall accuracy. The Kappa statistic for the random forests was calculated as Κ = 0.36 

as compared with Κ = 0.21 for CTree. Both values fall into the “fair” range for strength 

of agreement suggested by (Landis and Koch (1977)). The false positive rate for random 

forests was 11.8% at a sensitivity rate of 96.5%, while for CTree the FPR was 18.4% at a 

sensitivity of 82.0%. 

Table 3.3 Error matrix for random forests model. 

 

 

 

 

 

Table 3.4 Error matrix for conditional inference tree model. 

 

 

 

 

 

 

 

 Reference  

DCG_No DCG_Yes Totals User’s Accuracy 

C
la

ss
ifi

ed
 DCG_No 3,624 6 3,630 99.8% 

DCG_Yes 484 166 650 25.5% 

 
 

Totals 4,108 172 4,280  
Producer’s Accuracy/

Sensitivity Rate 
88.2% 96.5%  Total: 88.5% 

False Positive Rate 11.8%    

 Reference  

DCG_No DCG_Yes Totals User’s Accuracy 

C
la

ss
ifi

ed
 DCG_No 3,352 31 3,383 99.08% 

DCG_Yes 756 141 897 15.7% 

 
 

Totals 4,108 172 4,280  
Producer’s Accuracy/

Sensitivity Rate 
81.6% 82.0%  Total: 81.6% 

 False Positive Rate 18.4%    
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Spatial Analysis of Classification Results 

To better understand the patterns of errors associated with the random forests 

classification of DCGs, image objects were mapped according to RF predicted class 

membership values and overlaid with manually delineated reference data and Bing 

MapsTM imagery (Figure 3.7). A visual analysis of the data was conducted with the intent 

to identify any obvious spatial components to the errors in the RF classification.  

 

Figure 3.7 Spatial analysis of error for subset of study area. Random forest model 
class predictions (Green = DCG, Red = Non-DCG), overlaid with manual 
delineated reference data (blue). A. False positive - fluvial sediments. B. 
False positive - small isolated area. 

 

With respect to Figure 3.7, areas that are illuminated in green were classified as DCG 

by the RF classifier. Classification errors occur wherever those areas occur independently 

of the manually delineated DCG boundaries (in blue). Visual interpretation of those areas 

show several patterns of misclassification that could be attenuated with additional spatial 

A 

B 
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queries. One such example occurs in Figure 3.7 at location “A”, where a valley floor 

comprised of fluvial sediments is erroneously identified as DCG. The slope, curvature 

and spectral signal of these sediment deposits is similar to that of a debris-covered 

glacier, but these sediments, across the study area, tend to occur at lower elevations than 

DCGs. By filtering the classified image polygons for areas below 4200m elevation, we 

can effectively remove these areas from consideration and improve the overall accuracy 

of DCG estimates.  

Another common misclassification relates to very small image objects that are 

isolated from other DCG objects, and from glacier ice areas. This phenomenon is 

evidenced by location “B” in Figure 3.7. These image objects are small, not contiguous to 

other DCG objects, and not found in close proximity to glacier ice as is characteristic of 

debris-covered glaciers. Reviewing the reference data reveals that the smallest identified 

DCGs have areas of >0.08km2. Merging contiguous DCG image objects together into 

larger polygons allows for the calculation of the total areas of those composite regions. 

Filtering the resulting polygons for areas <0.08km2 excludes the image objects that are 

unlikely to represent DCGs based on their small size. Additionally filtering for polygons 

that are not adjacent to glacier ice eliminates those regions that are isolated from glaciers 

and also unlikely to represent DCGs. By applying the filters above to exclude lower lying 

objects (<4200 m), small image objects (<0.08km2), and isolated objects (not within 

100m of glacier ice) the area estimate of total DCG in the study area falls by 10.8km2 to 

35.3km2, still nearly double the area of the reference data (Table 3.1).  
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CHAPTER 4: DISCUSSION 

The object-based image analysis approach to semi-automated mapping of debris-

covered glaciers was largely effective in achieving the goals set forth at the beginning of 

this project. OBIA multiresolution image segmentation was mostly successful in 

identifying DCG boundaries from Landsat OLI and SRTM slope data, as evidenced by 

the 86% agreement between area estimates of DCGs derived from manual delineation 

(14.4km2) and image objects that intersect the manually delineated polygons (16.4km2). 

The tree-based machine learning techniques achieved high classification accuracies, 

including an 88.5% overall classification accuracy using the random forest approach, and 

an 81.6% overall accuracy using the conditional inference tree approach. Thus, the 

random forest classification results meet the target for land cover classification accuracy 

of 85% suggested by the USGS, while the CTree model falls just short (Anderson 1976). 

The random forest model was superior in all measures of classification accuracy and is 

recommended here as the more suitable approach for classification, while CTree provides 

value in the enhanced interpretability of the predictor variables that both classifiers agree 

are important. Employing the two classifiers side-by-side provides a richer account of the 

overall phenomenon of DCGs in the Cordillera Blanca than either could provide alone. 

As one of the first and only studies to use these techniques for DCG mapping, these 

findings strongly suggest that OBIA and tree-based machine learning can make 

significant contributions to the understanding of DCGs and glacial environments in 

general if pursued to maturity.  
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As promising as the results of this study are in regards to the potential of OBIA and 

tree-based classifiers, instances of misclassification of non-DCG objects as DCGs 

reinforce the notion that the task in question is not an easy one. Findings from this 

analysis support previous findings in the DCG mapping literature, namely that accurate 

automated mapping of DCGs is difficult without augmentation by manual editing (Alifu 

and Tateishi 2013, Paul, Huggel and Kääb 2004, Ghosh, Pandey and Nathawat 2014); 

that geomorphometric terrain data show promise when combined with optical data 

(Shukla, Arora and Gupta 2010, Paul, Huggel and Kääb 2004); and that thermal data are 

of limited utility where debris cover is thick, as in the Cordillera Blanca (Alifu and 

Tateishi 2013, Veettil 2012, Racoviteanu et al. 2008). 

 

Image Segmentation Accuracy 

The accurate classification of features of interest within the OBIA framework begins 

with the segmentation of image data that results in image objects that are internally 

homogenous and representative of the real world phenomena that is targeted for 

extraction (Blaschke, Lang and Hay 2008). While the boundaries of the image objects 

resulting from image segmentation (Figure 3.5) generally agree with the boundaries of 

DCGs identified by manual delineation, there were clearly instances where they diverge. 

The most common errors occur where image object boundaries overshoot the manually 

delineated boundaries, resulting in the inclusion of mixed land cover classes in image 

objects that should homogeneously represent DCGs. Thus, the image segmentation 

algorithm suffers some of the same ambiguity of DCG boundaries as does the human 

analyst when interpreting where DCGs end and surrounding land cover (i.e. lateral and 
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terminal moraines) begins. Furthermore, while the human analyst can make inferences 

about where the boundary should be placed based on contextual information, the 

segmentation algorithm cannot. There are several limitations to the image segmentation 

process as parameterized in this study that may be consequential in terms of the 

algorithm’s ability to correctly interpret DCG boundaries.  

The first and most prominent limitation is the spatial resolution of the image data 

employed in segmentation. Landsat OLI data, even when pan-sharpened to 15-meter 

resolution, may simply lack the detail necessary to resolve fine gradations in the surface 

reflectance of DCGs versus surrounding land cover. The use of higher resolution image 

data such as Quickbird (~2.5-meter VNIR) or IKONOS (1-meter pan-sharpened VNIR) 

may yield improved results over Landsat OLI data, but at higher cost and with increased 

processing and storage requirements. An ideal scenario would consist of image 

segmentation using very-high resolution image data, and subsequent analysis employing 

multispectral VNIR/SWIR/TIR data from moderate resolution sensors and ancillary data 

from other sources. This “best of both worlds” model could reap the benefits of the 

higher resolution data as it relates to image segmentation, while exploiting the broader 

gamut of available information for image classification.  

Another issue of resolution and scale arises in relation to the slope data employed in 

segmentation. The original SRTM elevation data from which the slope data were derived 

have a resolution of 90 meters. Again, this relatively coarse data may not contain the 

detail necessary to accurately discriminate DCGs as distinct morphometric units. 

Racoviteanu et al. (2007) find that the 90m resolution SRTM data limited the data’s 

utility in glaciological applications in the Nevado Coropuna area of the Peruvian Andes. 
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ASTER GDEM2 data provide improved spatial resolution, but were deemed unsuitable 

due to significant data artifacts and accuracy issues (±61m vertical accuracy and 200m-

300m elevation spikes according to Racoviteanu et al. (2007)). Research suggests that 

with additional processing to correct for these errors, the GDEM2 data may represent the 

best available solution and warrant further consideration in future studies (Buchroithner 

and Bolch 2007). Airborne LiDAR data present another option for high resolution DEM 

data, but their availability are limited in many areas, and data acquisition is expensive 

(Karimi et al. 2012, Abermann et al. 2010). In summary, the accuracy and resolution of 

presently available DEM data present a significant limitation on efforts to accurately 

segment images using terrain information in efforts to map DCGs.  

 

Tree-Based Classifiers 

Much of the literature on DCG mapping has focused on pixel-based semi-automated 

decision tree approaches that use various thresholds of key spectral or terrain features to 

extract DCGs from the data (Paul, Huggel and Kääb 2004, Veettil 2012, Buchroithner 

and Bolch 2007). These approaches have largely relied on a priori knowledge of the 

critical values upon which the image data are partitioned or employ some type of 

interactive selection of those critical values. Relatively little attention has been focused 

on the potential for machine learning tree-based classifiers to classify DCGs given an 

extensive set of image-based variables. The present study demonstrates that these 

techniques exhibit great potential in this regard. The primary evidence of this potential is 

the high overall classification accuracy (88.5%) achieved by the random forest 

classification. Table 3.3 shows that while the random forest is guilty of significant errors 
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of commission as evidenced by the low user’s accuracy for DCGs, it performs well in 

correctly classifying the DCGs from the reference data, with only six errors of omission 

(producer’s accuracy = 96.5%). This suggests that the input data do contain the 

information necessary to achieve separability of DCGs and non-DCGs.  

Machine learning techniques also provide a potential advantage over the knowledge-

based decision trees commonly employed in the DCG mapping literature, in that limited 

a priori understanding of the characteristics of debris-covered glaciers is required for 

classification. Rather than the analyst selecting the critical values for a limited set of 

image variables for which the relevance to DCGs has been established, the random forest 

approach can consume a wide gamut of input variables and select those that are most 

essential. 

While machine learning techniques have not been extensively explored in relation to 

mapping supraglacial debris, the closest comparison comes from Brenning (2009), which 

assesses the predictive performance of eleven different classifiers for detecting rock 

glaciers (similar to debris-covered glaciers) in the San Juan Mountains of Colorado. The 

author submits randomly generated points with covariates from DEM data and Landsat 

imagery to the classifiers which range from statistical techniques (e.g. logistic regression 

and linear discriminant techniques) to machine-learning techniques like random forests. 

Brenning finds that random forests attain an FPR of ~10.5%, with linear discriminant 

techniques and generalized additive models producing the lowest FPR of the eleven 

classifiers tested, at ~8-9%. With the significantly higher sensitivity rate achieved here 

(96.5%), and a comparable FPR (11.8%), the results of the present study suggests that the 

random forest algorithm compares very favorably to existing literature on machine 
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learning techniques for supraglacial debris mapping. However, future studies should 

consider the use of the linear discriminant and other statistical techniques that Benning 

found superior to random forests. 

Despite the encouraging comparison of the present results with the findings of 

existing studies, the significant errors of commission committed by the random forest 

model are still of concern and warrant closer consideration. Further visual examination of 

these false positives indicates that there may be another phenomenon at play – 

underestimation of the total number and area of DCGs in the manually delineated 

reference dataset, as well as in the GLIMS data. Close visual analysis of Bing MapsTM 

imagery and “ground-truthing” using Google EarthTM perspective views suggests that 

while there are many legitimate errors of commission made by the random forests 

classification, there are also many “false positives” that actually portray the visual 

signature of debris-covered glacier, but are not represented in the manually delineated 

reference data nor the GLIMS data. Figure 4.1 provides an example of this situation. The 

areas bounded by the red polygons bordering the margins of the clean glacier ice show 

many of the features typical of debris-covered ice including hummocky terrain, presence 

of small pools of water, and lobate features. While it is impossible to confirm the 

presence of ice under the debris layer without field study, there is a strong possibility that 

this example and many like it represent debris-covered glaciers that were simply 

overlooked during previous visual inventories. A conservative estimate of the area of 

these potential DCGs identified by visual survey of the random forest predictions is 

~3.0km2, a 17% to 21% increase in the total area of debris-covered glaciers identified in 

the study area. It is possible that glacier recession in the occurring in the area since the 
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imagery used in the GLIMS inventory was acquired has driven land cover change 

resulting in these debris-covered glacier areas, which would explain their absence in that 

data. Whether by simple omission or by recent changes, the presence of these 

undocumented DCGs raise questions about the extent of knowledge about the debris-

covered glaciers in the area and their associated glacial and periglacial dynamics.  

 

Figure 4.1 Potential debris-covered glaciers near the Artesonraju Glacier identified 
by random forest classification. Google EarthTM perspective showing 
potential debris-covered glaciers as red polygons. Image: 6/20/2015 

  

There are several aspects of the classification procedure that warrant critical 

assessment in light of the classification results. The first relates to the simple geographic 

intersection method employed for identifying positive cases of DCG in the training data. -

Under this scheme, any image object that intersected a manually-delineated DCG 

polygon was assigned a positive value for DCG presence in the training data. A positive 

identification would result regardless of whether the image object in question was 
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identical to a manually-derived DCG or if it shared only the smallest area. This inevitably 

resulted in some image objects that only slightly overlapped manually-delineated DCGs 

being included as positive cases in the training data. This is particularly concerning since 

these neighboring image objects likely represent the lateral and terminal moraines that 

often border DCGs and represent a principal source of confusion in their classification. 

This phenomenon likely accounts for some of the errors of commission during 

classification. An alternate approach could implement some manual correction of the 

training data after the initial intersection and before submitting to the classifiers.  

Another decision that may hold implications for overall classification results and 

accuracy was the use of a 70% random sample of the training data to submit to the 

classifiers. It is an unusual case that a full reference dataset exists for the phenomenon 

that is to be classified, as is the case for this study, given the survey of the entire study 

area by manual delineation. Thus in this case there exists the luxury of selecting as much 

or as little training data for classification as is desired. In this instance a 70% sample was 

considered adequate, but further studies might choose to evaluate the accuracy of 

classifications conducted using a range of sample sizes. Identifying the optimal sample 

size to maximize classification accuracy while minimizing laborious manual delineation 

would be instructive for future efforts to classify DCGs in study areas where full manual 

survey would be impractical.  

The hybrid nature of the approach to classification employed here is another element 

that may influence the outcomes of the classification. Because this study was not 

explicitly interested in quantifying land cover other than that of debris-covered glacier, it 

used the initial classification process to eliminate areas which could be identified as 
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“non-DCG” with certainty. An alternative approach that could yield different 

classification results would employ training data for an exhaustive array of land cover 

classes found in the study area rather than a simple binary “DCG” versus “non-DCG” 

classification. This approach would forego initial classification of the area in favor of 

defining training data for class “glacier”, class “water”, class “vegetation”, class 

“bedrock”, class “moraine”, etc. and letting the random forest model sort the image 

objects into the n classes identified within the study area. This approach could potentially 

account for the notion that there could be multiple categories of “non-DCG” that may 

exhibit their own unique signatures given the covariates employed in the analysis. By 

enhancing the separability of the non-DCG objects into more homogenous groups, it is 

possible that image objects that were misclassified as DCG in the present study would 

fall into one of those groups.  

 

Characteristics of DCGs in the Cordillera Blanca 

One of the advantages that tree-based classifiers like random forests and conditional 

inference trees provide is the ability to interpret the importance of predictor variables to 

the resulting classification trees. The variable importance plot and associated mean 

decrease in accuracy statistics from the random forest model helps to rank predictor 

variables and determine the ones that are most vital to making accurate predictions. 

However, random forests lack the ability to interpret the critical values of those important 

predictor variables. On the other hand, while lacking in the predictive power of random 

forests, conditional inference trees provide an explicit representation of the predictor 

variables selected for classification and the critical values of those variables upon which 
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binary split decisions have been made. In this study both classifiers have been employed 

to leverage their relative strengths and present a more complete picture of DCGs in the 

Cordillera Blanca. 

As noted in the results, the random forest model relies heavily on terrain variables for 

predicting DCGs vs non-DCGs (Figure 3.5), suggesting that the clearest signature of 

DCGs in the study area is represented by morphometric characteristics. Indeed, when 

interpreting the tree diagram for the CTree model (Figure 3.6), the most striking feature is 

the correspondence of the CTree model’s selection of terrain variables with that of the 

random forests model. The four top predictor variables (mean slope, mean elevation, 

mean curvature, and standard deviation of elevation) from the random forests model 

appear again here. Of additional interest are the critical values for these variables. 

Perhaps the clearest split occurs at node 2, where the standard deviation of elevation is 

selected and split at a value of ~26 m. Objects with values greater than 26 m are almost 

uniformly (~90%) classified a DCG, while objects with lower standard deviation of 

elevation values are more likely to be non-DCG. Interpreting this split decision, debris-

covered glaciers are more likely represented by image objects with an elongate 

orientation along slope units with large differences in minimum and maximum elevation. 

This is consistent with the characteristic configuration of debris-covered glacier tongues 

that snake down-valley in long, narrow entities. Another interesting split occurs at node 

11, where the data were split on the mean slope of objects at a value of ~24˚. Objects 

with mean slopes less than 24˚ had a high probability (~90%) of being classified as DCG, 

and vice versa. This is also consistent with the literature on debris-covered glaciers, 

which are typically lower in slope than surrounding terrain features (Ghosh, Pandey and 
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Nathawat 2014, Paul, Huggel and Kääb 2004, Bandishoev, Dilo and Stein 2011). Indeed, 

Paul, Huggel and Kääb (2004) and Veettil (2012) find that a slope threshold of < 24˚ is 

ideal for the delineation of DCGs in the Swiss Alps and the Karakoram, Himalaya 

respectively. Also of note is node 5, where mean elevation is split at a value of ~4800m. 

A greater portion of the >4800m objects are eventually classified as DCG, lending 

credibility to the elevation-based masking previously discussed in the results.  

Of equal interest to the variables that ranked highest in importance are those that fell 

low in the rankings. The textural variables – GLCM, dissimilarity, homogeneity and 

contrast – were all ranked in the bottom six of the variable importance plot (Figure 3.5), 

with mean decrease in accuracy values all below 5%. This result was unanticipated given 

the utility of textural analysis demonstrated by Racoviteanu and Williams (2012) for 

mapping DCGs in the Himalaya. However, a possible explanation for the insignificance 

of these variables may relate to the way the textural features were calculated within 

eCognition. Rather than generating textural features for individual spectral bands, these 

features were calculated using all data available within the image objects, including the 

terrain variables and thermal data. Racoviteanu and Williams (2012) apply the GLCM 

texture measures only to VNIR and SWIR data. Limiting the input bands for textural 

features to the optical bands of Landsat OLI may yield different results.  

Also falling near the bottom of the variable importance plot as the third least 

important variable, is mean temperature, with a mean decrease in accuracy value of <3%. 

This was perhaps the most surprising outcome of the classification results, given the 

abundance of recent research that effectively utilize thermal infrared data for mapping 

DCGs (Alifu, Tateishi and Johnson 2015, Karimi et al. 2012, Bhardwaj et al. 2015, 
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Shukla and Ali 2016). There are two possible explanations for the lack of a clear thermal 

signature for DCGs in the Cordillera Blanca as it relates to this study. The first is that the 

thickness of the debris layer on DCGs in the Cordillera Blanca exceeds the 40cm-50cm 

depth of debris, above which the cooling effect of underlying ice is not manifest on the 

debris surface (Taschner and Ranzi 2002, Ranzi et al. 2004). While there were no data 

available that comprehensively quantify debris depths in this region, a recent survey of 

the well-documented Jatunraju glacier found debris depths of several meters in the 

thickest parts, and over one meter in thinner portions (Emmer et al. 2015). It seems 

plausible that the debris layers of DCGs in the Cordillera Blanca are simply too thick for 

any thermal effect from underlying ice to be detectable on the surface.  

Another possible explanation for the insignificance of the Landsat thermal IR data in 

this research relates to the data itself. The acquisition time of the Landsat OLI scene was 

15:16 Zulu time, or about 9:16AM local time in the study area. The low solar elevation 

(~48˚) at this time of day resulted in deep topographic shadowing on many southerly and 

westerly facing slopes. On illuminated slopes there was a pronounced solar heating 

effect, while shaded slopes were generally cooler. This effect could be enough to obscure 

any clear thermal signatures exhibited by debris-covered glaciers. Techniques have been 

proposed to account for this illumination effect, and may be of utility for future studies 

employing this Landsat OLI data (Shukla, Arora and Gupta 2010). Nighttime imagery 

from the Landsat sensor and others may also be useful to overcome this challenge. 

Another potential concern is the 120 meter original resolution of Landsat OLI thermal 

data, which may be too coarse for effective discrimination of thermal anomalies 

associated with debris-covered glaciers.  
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The Context of Automated DCG Mapping 

Throughout the research process some common themes emerged in context to the 

larger body of literature that has been published concerning the automated mapping of 

debris-covered glaciers. Firstly, a large majority of this research has been concentrated on 

study areas in the Himalaya region and the European Alps. This focus in no doubt driven 

by the tight interconnections of glacial and periglacial dynamics, glacial hazards, and 

significant human populations found in these regions. However, relatively little attention 

has been focused on other regions with large concentrations of DCGS, such as the 

Cordillera Blanca, Alaska, and the Caucasus Mountains of Russia. This seems like a 

missed opportunity to evaluate and refine the techniques developed in the Himalaya and 

Alps to be more generalizable across geographic regions, and to advance general 

understanding of debris-covered glaciers and the glacial environments in which they are 

found. The present study evaluates a robust OBIA and machine learning technique in a 

region that has been understudied in the DCG mapping literature. The ability of the tree-

based machine learning classifiers to consume a large array of input variables with 

minimal a priori knowledge of their importance suggests that it may be well-suited for 

use in other areas where the unique character of DCGs is not well understood. It is 

recommended that future studies apply such techniques developed for automated 

mapping of DCGs to case studies from a multitude of regions where DCGs are prevalent 

in order to more thoroughly measure their efficacy.  

Another theme that emerged from the research relates to the scale at which techniques 

for automated mapping of DCGs are developed and evaluated. Often researchers will 

identify a region such as the Himalaya or the European Alps where DCGs are 
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concentrated, but then select case studies within those regions that are centered about a 

single glacier system or massif with the assumption that the case study could be 

representative of the larger region or even DCGs worldwide (Ranzi et al. 2004, Paul, 

Huggel and Kääb 2004, Bolch et al. 2007, Alifu, Tateishi and Johnson 2015). Mapping 

techniques are developed for that case study, but are rarely applied to the larger region. 

Given the variability of debris-covered glaciers observed in the Cordillera Blanca during 

this study, it follows that more regional scale inventories of DCGs that apply the 

automated techniques proposed in the existing literature are warranted. Regional scale 

research such as the present study would more fully expose the limitations of techniques 

that were parameterized for small study areas, and provide more accurate error estimates 

that could inform future analyses.  

The third theme that developed from this study addresses the inconsistencies in the 

reporting of classification accuracies across the body of research that has been published 

on automated mapping of DCGs. In many cases, the present study included, accuracy is 

measured by reporting the difference in area calculations for DCGs derived from 

automated techniques versus a reference dataset (Bolch et al. 2007, Alifu, Tateishi and 

Johnson 2015) or visual correspondence of automated mapping versus reference data 

(Paul, Huggel and Kääb 2004). Some studies use traditional error matrix accuracy 

assessments, but as has been noted, they have shortcomings in relation to features that 

occupy small areas within a study area (Brenning 2009). It is difficult to make 

comparisons of the efficacy of various models for automated DCG mapping when the 

metrics by which they are measured are not consistent. This study elected to present 

classification results in multiple formats (error matrix, false positive rate, area estimates) 
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in effort to facilitate evaluation against existing techniques. Ideally, a standard method for 

error reporting could be established and employed by future studies in effort to 

benchmark new and existing techniques for automated DCG mapping.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 
 

 

 

CHAPTER 5: CONCLUSIONS 

This research evaluated the efficacy of object-based image analysis and tree-based 

machine learning techniques with regard to their potential for automated extraction of 

debris-covered glaciers in the Cordillera Blanca region of Peru. Results demonstrated that 

OBIA is indeed capable of discriminating debris-covered glaciers using multiresolution 

image segmentation, and that tree-based classifiers, specifically the random forests 

model, can be successful in classifying debris-covered glaciers from optical imagery and 

terrain data, herein producing overall classification accuracy of 88.5% and a low false 

positive rate of 11.8%. This study also demonstrates that automated classification of 

debris-covered glaciers is feasible in the Cordillera Blanca region where previous 

attempts were found to be unsuccessful (Burns and Nolin 2014). Moreover, the 

techniques presented here hold great promise of transferability to other regions with high 

concentrations of debris-covered glaciers, grounded in the ability of the random forests 

model to analyze large arrays of predictor variables. The current paradigm in automated 

mapping of DCGs necessitates a high degree of a priori knowledge of the specific 

characteristics of the study area, whereas the random forest approach can leverage the 

advantages of machine learning to efficiently partition the data without this expert 

knowledge.  

The results of this study also revealed that previous efforts to inventory debris 

covered glaciers in the Cordillera Blanca may have underestimated debris-covered ice 
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areas by as much as 20%. The OBIA and machine learning techniques introduced in this 

thesis identified more than 3km2 of potential debris-covered glacier in the Cordillera 

Blanca range that is not reflected in the benchmark GLIMS database. Future field-based 

assessments of the debris-covered glaciers in the Cordillera Blanca should include 

ground-truthing of these areas to definitively identify them as debris-covered glacier or 

other land cover. In an environment that is rapidly being altered in response to climate 

change, a thorough knowledge of the dynamics of these previously undocumented debris-

covered glaciers areas is essential to understanding the larger picture of climate change 

responses of tropical glaciers. Moreover, at the local level these potential debris-covered 

glaciers could impact resident populations through the associated rapid growth of 

supraglacial and moraine-dammed lakes and other glacial hazards.  

While this research has delivered answers for many of the questions raised at its 

outset, it also raises many more to be considered as future research directions are 

identified. The techniques presented demonstrated their effectiveness using freely-

available moderate resolution Landsat OLI and SRTM data. However, the increasing 

accessibility of high resolution VNIR image data and better quality digital terrain data 

hold the promise of improved image segmentation and classification from OBIA 

methods. More consideration of the utility of thermal data and textural features in relation 

to these methods is also recommended, given their apparent success in other DCG 

mapping efforts. Also, the tree-based classifiers explored herein are but two of the many 

machine learning techniques extant, and though they are effective here other research 

show that a full survey of methods, including machine learning, linear discriminant 
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techniques, and support vector machines is warranted for classification of debris-covered 

glaciers.  

Finally, as glacial environments continue to come into sharper focus at the center of 

debates on global climate change, some consensus should be sought with regard to the 

direction and goals of the body of research pertaining to mapping debris-covered glaciers 

using remote sensing techniques. The scope and magnitude of the impact of this research 

could be increased by making positive changes in several facets, namely by: adopting 

standards for presenting research findings particularly with regard to accuracy reporting; 

objectively evaluating existing and new methodologies against one another and across 

geographic regions; moving beyond methodological case studies and conducting broader 

scale inventories of DCGs regionally and worldwide; and focusing more attention on 

unstudied and understudied regions with high concentrations of DCGs, such as the 

Cordillera Blanca.  
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APPENDIX A: R Programming Code for Tree-Based Classifiers 

##Required libraries and configuration: 
setwd("C:/Tmp/src") 
 
##Load required packages: 
require(foreign) 
require(readr) 
install.packages("tidyr") 
install.packages("dplyr") 
install.packages("ggplot2") 
require(tidyr) 
require(dplyr) 
require(ggplot2) 
 
##The following could be replaced by the caret package, depends on both: 
install.packages("party") 
install.packages("randomForest") 
require(party) 
require(randomForest) 
 
#rd <- read.dbf("../data/DCG_Sample70.dbf") 
rd <- read.csv("../data/Stats_Data.csv", stringsAsFactors=FALSE) 
 
##Fix first column name: 
names(rd)[1] <- "Brightness" 
names(rd)[24] <- "Std_Temp" 
glimpse(rd) 
View(rd) 
 
##Tidy our data: 
 
##Calculate the number NAs per column: 
nas <- summarise_each(data.frame(is.na(rd)), funs(sum)) 
 
##Select those rows with no NAs: 
(rd %>%  
  select( one_of(names( nas[, nas[1,] == 0])) ) %>%  
  mutate(dcg=as.factor(dcg)) 
) -> td 
 
##Read in non-reference, original data: 
od <- read.csv("../data/DCG_FullSample.csv") 
names(od) 
 
##Remove first column of original data: 
tod <- od[,-1] 
tod$dcg <- as.factor(tod$dcg) 
 
 
##Subset reference data to dependent variable and covariates: 
y_data <- select(td, dcg)[[1]] 
x_data <- select(td, -dcg) 
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y_data_orig <- select(tod, dcg)[[1]] 
x_data_orig <- select(tod, -dcg) 
 
##Estimate a Random Forest: 
 
##Set the random number generation seed: 
set.seed(2005) 
 
##Tune mtry value 
rf_fit = tuneRF(y=y_data, x=x_data, plot=TRUE, mtryStart=length(x_data)/3, 
ntreeTry=500, stepFactor=1.20, trace=TRUE, doBest=TRUE, nodesize=1, na.action=na.omit, 
importance=TRUE, proximity=TRUE)  
rf_fit_orig = tuneRF(y=y_data_orig, x=x_data_orig, plot=TRUE, 
mtryStart=length(x_data)/3, ntreeTry=500, stepFactor=1.20, trace=TRUE, doBest=TRUE, 
nodesize=1, na.action=na.omit, importance=TRUE, proximity=TRUE)  
 
 
##Get predictions for OOB, reference data: 
predict(rf_fit) 
 
 
##Get predictions for original reference data, but 
##use non OOB estimates: 
predict(rf_fit, newdata=x_data) 
table(predict(rf_fit, newdata=x_data), y_data) 
 
 
##Get predictions for non-reference, original data: 
pred_rf <- predict(rf_fit, newdata=x_data_orig) 
pred_rf_all <- predict(rf_fit_orig, newdata=x_data_orig) 
table( pred_rf, y_data_orig ) 
table( predict(rf_fit_orig), y_data_orig ) 
table( pred_rf_all, y_data_orig ) 
 
pred_prob <- predict(rf_fit, newdata=x_data_orig, type="prob") 
table((pred_prob[,2] > 0.3), y_data_orig) 
 
##Plot random forest error rate and variable importance plots 
print(rf_fit) 
plot(rf_fit, main="Random Forest for Debris Covered Glacier Classification") 
varImpPlot(rf_fit, main="Random Forest for Debris Covered Glacier Classification") 
table( predict(rf_fit), y_data ) 
 
##Calculate variable importance for random forests and output to csv file 
imp <- importance(rf_fit) 
table(imp) 
write.csv(imp, file="../output/VarImp.csv") 
 
 
##Estimate a conditional inference tree with Random Forest-like variable randomization 
(mtry): 
ctree_fit <- ctree(dcg ~ ., data=td, controls=ctree_control(mtry=8)) 
ctree_fit_all <- ctree(dcg ~ ., data=tod, controls=ctree_control(mtry=8)) 
 
 
##Plot ctree output: 
pdf("../output/Conditional Inference Tree1.pdf", width=11, height=9) 
plot(ctree_fit, main="Conditional Inference Tree for Debris Covered Glacier 
Classification") 
dev.off() 
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##Generate predictions using conditional inference tree for 
##original, non-reference data: 
pred_ctree <- predict(ctree_fit, newdata=x_data_orig) 
table( pred_ctree, y_data_orig) 
 
##Generate predictions using model estimated against all data: 
pred_ctree_all <- predict(ctree_fit_all, newdata=x_data_orig) 
table( predict(ctree_fit_all), tod[["dcg"]] ) 
 
##Add predictions to original non-reference data: 
tod$pred_rf <- pred_rf 
tod$pred_rf_prob <- pred_prob[,2] 
tod$pred_ctree <- pred_ctree 
tod$pred_ctree_all <- pred_ctree_all 
 
write.csv(tod, file="../output/DCG_FullSample_pred.csv") 
 
tod_pred <- read.csv("../output/DCG_FullSample_pred.csv",stringsAsFactors=FALSE) 
View(tod_pred) 
 
##END 
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