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Abstract 

 Northern lake-rich landscapes are vulnerable to increases in surface 

air temperatures and are changing in dynamic ways. Current meteorological 

records indicate that some of the greatest warming in the past century has 

occurred in the Hudson Bay Lowlands (HBL). As the HBL is an extensive 

wetland consisting of hundreds of thousands of shallow lakes and ponds, it is 

difficult to anticipate the long-term implications that climate change will 

have on pond water balance. To develop and implement long-term 

monitoring of hydrological conditions, sampling of pond water isotope 

composition has occurred during the past six years in Wapusk National Park 

(WNP), located in the HBL. This research is part of a collaboration among 

WNP, Wilfrid Laurier University and the University of Waterloo and is 

designed to establish standard operating procedures that will be 

incorporated into hydrological monitoring protocols  for sampling ponds 

within the Park.  

Previous studies have implemented long-term hydrological 

monitoring programs in thermokarst landscapes using water isotope tracers. 

Water isotope tracers are an excellent tool for characterizing spatial and 

temporal variability of pond water balances. Here, we use water isotope 

tracers (18O and 2H) on 16 ponds in WNP, northern Manitoba, employed over 
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a six-year sampling period. Water isotope samples were collected three 

times each year during 2010 – 2015 (early, mid- and late ice-free season) to 

evaluate seasonal and annual patterns of pond water balance, and their 

drivers. An isotope framework based on evaporation pan data was 

developed to provide reliable and accurate means for interpreting water 

isotope compositions. A coupled-isotope tracer method was applied to 

obtain estimates of the isotope composition of input water ( I) and 

evaporation to inflow (E/I) ratios. Results provide insight into meteorological 

and catchment conditions influencing the seasonal, annual and spatial 

variability in pond water balance. Generally,  I values indicate pond water 

balances during the monitoring interval are influenced mainly by rainfall. E/I 

ratios reveal that ponds in the coastal fen and peat plateau ecozone are 

more influenced by mid-season evaporation and are more susceptible to 

pond-level drawdown than those in the boreal spruce ecozone. Higher than 

climate normal precipitation during 2014 and 2015 offset mid-ice-free 

season evaporation in most ponds. These results indicate that pond 

hydrological responses to climate change are likely to be complex and are 

related to catchment characteristics and ice-on and ice-free precipitation 

amounts. Data from the water isotope framework will be shared with Parks 

Canada as a tool for future monitoring. Ongoing monitoring will provide key 
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hydrological metrics for current pond water balance conditions to monitor 

future responses to climate change.  
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Chapter One: Introduction 

Climate Change in the Arctic 

Arctic regions are complex, vast and offer important habitat for many 

mammals, fish and avian species, in addition to providing critical 

environment for the survival of Indigenous people. However, many Arctic 

areas have been dynamically changing due to increasing surface air 

temperatures, which have been amplified in northern regions as a result of 

climate change. Some of the greatest warming has been observed in the 

Arctic and sub-arctic, with certain areas experiencing increases in surface air 

temperatures of up to 2oC during the past several decades (Figure 1) (Chapin 

et al., 2005; Kaufman et al., 2009). Kaufman et al. (2009) reconstructed 

temperatures for the past 2000 years for regions poleward of 60oN and 

noted that four of the five warmest decades occurred between 1950 and 

2000. Additionally, surface air temperatures in the Arctic are projected to 

rise another ~2.5oC by the mid-21st century and up to 5oC – 7oC by the end of 

the 21st century (ACIA, 2004).  

Many northern landscapes are dominated by shallow freshwater lakes 

and ponds that provide important habitat for wildlife and waterfowl. Due to 

their small water volume and relatively large surface area, they are 

particularly susceptible to hydrological change. Evidence suggests some 
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Arctic lakes and ponds have already passed ecological thresholds as a result 

of warming (Smol and Douglas, 2007, 2008; Prowse et al., 2009). Many of 

these freshwater systems depend on snowmelt to sustain lake-water 

balances (Bowling et al., 2003). However, changes in snowfall and snowmelt, 

rainfall, permafrost thaw, as well as reduced duration of ice-cover and 

greater open-water evaporation, have the potential to strongly alter lake-

water balances (Rouse et al., 1997; Schindler and Smol, 2006; Smol and 

Douglas, 2007). 

Changes in northern landscapes due to climate variability are ongoing 

(Rowland et al., 2010) and direct observational data in polar regions are 

often lacking and sparse. This is especially true in northern areas where 

climate change has been amplified and warming is occurring at a faster rate 

than other areas on Earth (ACIA, 2004; Smol and Douglas 2007). 

Understanding how climate change is impacting the unique environment of 

the North is difficult due to the complexity and remoteness of the landscape. 

Thus, it is critical to implement long-term monitoring programs to provide 

knowledge of ecosystem health and trends and to help anticipate future 

changes. 
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Figure 1. Average surface air temperature increases for June, July and August 
between 1961 and 2004 in Arctic and subarctic regions (Chapin et al. 2005; p 657). 
Hudson Bay and the Churchill region have experienced some of the greatest 
warming during the past ~50 years (denoted by a star). Purple areas represent 
surface air temperature increases up to 2oC on average.  

 

Long-Term Aquatic Ecosystem Monitoring and Research Gaps 

Due to climate change and changing northern landscapes, it is 

important to understand the ecological integrity of these areas. Ecological 

integrity refers to the natural condition of an ecosystem that is unaffected 

from human activity (Freedman et al., 1995; Turner, 2005) and in which 

native components of the ecosystem have remained intact (Parks Canada, 
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2013). Ecological monitoring requires measuring and observing an ecosystem 

at regular intervals over an extended period of time to establish 

environmental baseline conditions of a region. This is useful for 

understanding changes that are observed outside the boundary of the 

natural baseline variability, and can provide reliable information to decision-

makers for maintaining a healthy environment (Vaughan et al., 2001). 

However, ecosystem health and integrity can be difficult to measure (Turner, 

2005), especially in immense Arctic regions where numerous ecological 

factors act coincidentally. As a result, it can be challenging to implement 

monitoring plans that capture the diversity of a region. 

Additionally, environmental issues have increased in complexity 

during the past few decades, generally since the start of the industrial 

revolution (~1800) which has led to a need to understand how different 

anthropogenic factors have had negative impacts on the environment. 

Studies on environmental changes due to climate warming in northern 

regions have been conducted across Canada since the early 20th century, 

however, substantial gaps exist in terms of long-term hydrological 

monitoring of Arctic ecosystems (Karlsson et al., 2001). There have been 

numerous studies that involve data collection, yet few programs have 

implemented long-term monitoring with specific objectives (Mezquida et al., 
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2005). Beever and Woodard (2010) have stated that integrating knowledge 

of different driving factors of ecosystems and long-term monitoring into 

ecosystem management is necessary. 

Long-term water quality monitoring sites across Canada has been 

established by Environment Canada through federal and federal-provincial 

management since the 1980s. Aquatic monitoring of two major projects in 

Ontario and British Columbia, initiated in the late 1980s, has led to the 

Canadian Aquatic Biomonitoring Network (CABIN), which began in 2006 

(Environment Canada, 2015). Although a positive step towards long-term 

water quality monitoring, CABIN has only been used for the past 10 years 

and there is still a lack of sampling and monitoring in many communities and 

regions throughout northern Canada (Environment Canada, 2015). 

Environment Canada has coordinated a partnership with the Ecological 

Monitoring and Assessment Network (EMAN), which was established in 

1994, has 142 partners across Canada, and over 100 long-term 

environmental case study sites (Vaughan et al., 2001). The mission of EMAN 

is to determine why ecosystem health is changing, and what can be done to 

implement long-term monitoring to better understand current and future 

conditions (Vaughan et al., 2001). These partnerships have implemented 
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sampling and have monitored changes in water quality, however gaps still 

exist in understanding changes in water quantity. 

In addition to these government monitoring projects, scientific 

research has been conducted in remote northern regions for the purpose of 

determining how environmental stressors are affecting hydrology of shallow 

lakes and ponds in permafrost terrain. For example, a study in Siberia using 

aerial imagery from the past 30 years shows significant decline in lake 

surface area from lake drainage, which was attributed to thawing permafrost 

from increasing air and soil temperatures (Smith et al., 2005). Riordan et al. 

(2006) and Carroll et al. (2011) have documented hydrological changes in 

regions of Alaska and Canada, respectively, using remote sensing, which have 

shown decreases in the size and abundance of lakes and ponds. Similarly, 

Beck et al. (2015) used remote sensing imagery in northern Quebec to 

conclude that between 2004 and 2009, 24 percent of lake surface area 

disappeared as a result of permafrost degradation. Moreover, as some areas 

have experienced a decreasing abundance of freshwater ecosystems, others 

have noted an increase in water surface area as well as the formation of new 

thermokarst lakes due to permafrost thaw and temperature increases 

(Jorgenson et al., 2013, Coulombe et al., 2016).  
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Conventional hydrological monitoring with sampling that occurs on a 

daily to weekly basis is difficult to implement in large remote regions due to 

the high cost of sampling, short field seasons and the instrumentation 

required (Keatley et al., 2006; Rowland et al., 2010). Additionally it is difficult 

to assess the hydrological implications of climate change on specific remote 

locations. However, it is crucial to implement long-term monitoring programs 

to better understand and observe changes and trends.  

Hydrological Changes in Shallow Lakes and Ponds of the Hudson Bay 

Lowlands and Wapusk National Park 

The geographic focus of this research is Wapusk National Park (WNP), 

northern Manitoba, located within the western Hudson Bay Lowlands (HBL). 

Shallow lakes and ponds (hereafter referred to as ponds for this study due to 

depth), many of which are thermokarst in origin, are a prominent landscape 

feature within WNP as they cover >50 percent of the park surface area. 

These ponds provide critical habitat for a variety of wildlife, including 

denning locations for polar bears. Due to seasonal ice cover of Hudson Bay, 

this region is typically colder than other areas at similar latitudes (Rouse, 

1991). This ice cover generally lasts from late October to early June and has 

contributed to the presence of permafrost in the HBL as a result of extended 

periods of very cold temperatures (Markham, 1986; Gough and Leung, 2002). 
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Rising temperatures during the past half century have led to a reduction in 

sea ice cover and longer ice-free seasons over Hudson Bay (Parkinson et al., 

1999; Macrae et al., 2014). Consequently, the timing and seasonal amounts 

of precipitation are expected to change (Gagnon and Gough, 2005), as 

warming is expected to increase the ice-free season over adjacent land areas 

(Sannel and Kuhry, 2011; Macrae et al., 2014). Additionally, it has been 

observed that annual rainfall, based on measurements at the Churchill 

airport between 1943 and 2008, have increased by approximately 50 percent 

with the greatest increase in rainfall occurring in the late summer and early 

fall (Macrae et al., 2014). With the rise in air and surface water 

temperatures, in addition to a longer ice-free season, increases in 

evaporation have been predicted (Rouse et al., 1997; Macrae et al., 2014).  

Research during the past decade in WNP and surrounding areas 

indicate that the hydrology of shallow lakes and ponds are changing in 

response to shifting climate conditions (Wolfe et al., 2011a; Bouchard et al., 

2013; Macrae et al., 2014). In July 2004, Bos and Pellatt (2012) studied 32 

ponds within and adjacent to WNP and determined that ponds are an 

expression of surface waters and had little connection to groundwater due to 

permafrost. A recent study indicated that observed lake desiccation in 
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northern Manitoba, attributed to a decline in snowmelt runoff, may be 

unprecedented during the past ~200 years (Bouchard et al., 2013). 

Additionally, Wolfe et al. (2011a) used cellulose-inferred pond water oxygen 

isotope records from sediment cores retrieved from ponds near Churchill, 

Manitoba, to determine that divergent changes in water balances are likely 

due to varied responses of hydrological connectivity as a result of 20th 

century warming. Furthermore, a recent study has shown increases in 

surface air temperatures and longer ice-free seasons with predicted increase 

in summer precipitation (Macrae et al., 2014). Due to ongoing climate 

change, it is critical to implement long-term monitoring programs that allow 

for better understanding of the present and future implications that climate 

change will have on pond hydrology.  

Water Isotope Tracers for Hydrological Monitoring 

Due to the fact that many northern wetlands are difficult to access and 

that the cost of sampling is high in terms of time and resources, water 

isotope tracers have been increasingly used as they allow for surveying 

hydrological processes at a single point in time and can be applied to ongoing 

monitoring (Brock et al., 2007; Light, 2011; Tondu et al., 2013; Turner et al., 

2014). Previous studies have utilized water isotope tracers  of oxygen and 



10 
 

hydrogen (18O and 2H) to characterize both the spatial and temporal 

variability of lake water balances (Gibson and Edwards., 2002; Wolfe et al., 

2007; Tondu et al., 2013; Turner et al., 2014). A study by Gibson et al. (1993) 

used the stable isotope-mass balance method to estimate evaporation in two 

catchments in northern Canada as it is a useful metric to measure water 

balance. Brock et al. (2007) utilized water isotope tracers to characterize 

hydrology of shallow floodplain lakes in the Slave River Delta. Use of water 

isotope tracers for pond-water-balance-analysis allows for quantitative 

hydrological information to be obtained. Water isotope compositions are an 

excellent indicator of the hydrological processes that influence pond water 

balances, and are ideal to measure changes in the hydrological processes 

that influence ponds in WNP. As water isotope tracers can specify snowmelt, 

rainfall, and evaporation on pond water balance, they are ideal for studying 

ponds in remote locations such as WNP. Although studies have indicated 

change in hydrological conditions, there is still a lack of knowledge on the 

long-term influence that climate change will have on pond water balance. 

Thus, the need for determining current baseline conditions within the Park 

and understanding seasonal fluctuations on pond water balances . Knowledge 

of current conditions is necessary in order to recognise the range of natural 
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variability throughout the landscape. Water isotope sampling is 

straightforward, which makes it well-suited for agency-based monitoring. 

 A particularly relevant example of the use of water isotope tracers is a 

study by Tondu et al. (2013), which focuses on lakes in the Old Crow Flats 

(OCF) and Vuntut National Park (VNP), Yukon Territory. Similar to WNP, OCF-

VNP is a northern, remote thermokarst landscape that contains many 

shallow lakes where there are concerns about the effects of climate change 

(Wolfe et al., 2011b). An isotope framework was developed using an 

evaporation pan and applied for subsequent analysis of water isotope tracers 

(Tondu et al., 2013).  Tondu et al. (2013) utilized the coupled-isotope tracer 

method (Yi et al., 2008) to calculate input water isotope composition ( I) and 

evaporation-to-inflow (E/I) ratios. Using these water-balance metrics, 

supported by Turner et al. (2010, 2014), Tondu et al. (2013) established the 

foundation of a long-term hydroecological monitoring program. The 2016 

field season marked the 10th consecutive year of sampling of lakes in OCF-

VNP for water isotope analysis, which has been led by Parks Canada 

personnel for the past five years. This is the long-term vision for water 

isotope monitoring of ponds in WNP.  
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Long-Term Monitoring in Wapusk National Park 

       Wapusk National Park was established in 1996, and has many 

stakeholders involved in maintaining the ecological integrity of the park. The 

management board for the Park consists of the Government of Canada, the 

Government of Manitoba, the Town of Churchill, the Fox Lake Cree First 

Nation, and the York Factory First Nation (Parks Canada, 2013). 

Management for WNP agrees on the philosophy that the people are the 

‘Keepers of the Land’ (Parks Canada, 2013). To maintain the collaborations 

between these groups, the first State of the Park Report (SoPR) was 

distributed in 2011 and offers the opportunity for the park management 

board to examine the challenges and successes of decisions made through 

the WNP management plan.  

WNP is expected to provide a new SoPR every 10 years, with the next 

Park Management Plan to be published along with the Wapusk National Park 

Ecological Integrity Monitoring Plan (WNPEIMP) for 2015-2025. The current 

SoPR report (2011) for the freshwater indicator on aquatic ecosystems is not 

yet rated (SoPR, 2011, pg. 3). Therefore, this research will contribute to a 

hydrological monitoring program that is in the process of being implemented 

for WNP by Parks Canada. The monitoring program for hydrology within the 
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park will be a result of previous sampling and studies (Wolfe et al., 2007; 

Farquharson, 2013; White, PhD in progress) in addition to results presented 

in this thesis. It is anticipated that results from six years of isotope-based 

hydrological monitoring will be integrated into the Park Management Plan 

within the SoPR. The WNPEIMP will also include information pertaining to 

monitoring for wetlands, permafrost, snowpack, bear denning, coastal 

ecosystems and effects of Snow Goose populations. Currently, Wapusk 

National Park is working with researchers from Wilfrid Laurier University and 

the University of Waterloo to create standard operating procedures (SOP) 

that will be incorporated into the hydrological monitoring protocols for 

sampling ponds within the park (White et al., 2016).   

Research Objectives 

 This research aims to understand the present-day hydrological 

conditions of a representative suite of ponds in the three main ecozones 

(boreal spruce, peat-plateau palsa-bog, and coastal fen) of Wapusk National 

Park. One of the objectives of Parks Canada is to “provide clean and 

scientifically-defensible assessments of the ongoing ecological integrity 

condition of national parks” (Parks Canada, 2007, pg. 2). As efforts increase 

to incorporate more monitoring and environmental knowledge into park 
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management, long-term monitoring holds the key for assessing the ongoing 

ecological integrity of WNP. Results from this thesis will be shared with Parks 

Canada to assist with their objective to provide assessments of ecological 

integrity within WNP. This will be done by developing an isotope framework 

that can be implemented into a long-term hydrological monitoring program 

for tracking pond hydrology in the Park.  

The specific research objectives include: 

(1) Evaluate different approaches for developing an ‘isotope framework’ 

to be utilized for current and ongoing long-term hydrological 

monitoring of ponds in WNP. 

(2) Use water isotope tracers measured on a representative suite of 

ponds in WNP from 2010-2015 and apply an isotope-mass balance 

model to calculate input water isotope composition ( I) and 

evaporation to inflow (E/I) ratios to characterize the relative roles of 

snowmelt, rainfall and evaporation on pond water balances and their 

spatial, seasonal and annual variability, as well as their relations with 

catchment and meteorological conditions.  

Expected outcomes of this research include the development and 

implementation of methods that have long-term viability and sustainability 



15 
 

to ensure that Parks Canada will be able to continue monitoring into the 

future. By applying coupled analysis of water isotope measurements on 

ponds for hydrological monitoring in WNP, impacts that environmental 

stressors have on the ponds may be observed through trends and changes in 

pond water balances over time. Ongoing monitoring of lake water isotope 

compositions and determination of  I and E/I values will provide key metrics 

for identifying changes in lake-water balances as applied by Tondu et al. 

(2013). 
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Chapter Two: Study Area and Methods 

Study Area 

The Hudson Bay Lowlands (HBL) are located along Hudson Bay in the 

northern region of Ontario and Manitoba and a small northwestern portion 

of Quebec. The HBL is the largest wetland in North America and is mainly 

characterized by bogs and coastal fen with water covering >50% of the 

surface area (Parks Canada, 2010). The HBL was under the Laurentian Ice 

Sheet as recently as 9,000 years ago with the thickest ice cover occurring 

over Hudson Bay (Stella et al., 2007). Due to the landscape being depressed 

from the glaciation, it is now in a state of isostatic rebound with a rise of 

approximately one meter per century (Webber et al., 1970; Johnson et al., 

1987). The underlying geology is Silurian and Ordovician sedimentary rocks 

as well as monzonite, granodiorite and charnockite that overlies Precambrian 

sandstone, limestone and dolomite (Sanford et al. 1968; Dredge and Nixon, 

1992). Due to fine-grained marine sediment and glacial till, the region has 

developed into an extensive wetland, with flat muskeg areas of peatlands, 

low-drainage areas and thermokarst lakes (Dredge and Nixon, 1992).  

Wapusk National Park (WNP) (57oN, 97oW) was founded in 1996 to 

protect 11,475 km2 of sub-arctic habitat that spans a region of continuous 
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and discontinuous permafrost along the western shores of Hudson Bay in 

Manitoba (Figure 2a, b) (Parks Canada, 2015). The average depth of 

permafrost ranges between 30-60 m with ground temperatures of 

approximately -2oC (Rouse et al., 1997). Due to permafrost, impermeable 

substrate, and isostatic rebound, the WNP landscape consists of freshwater 

topographic and thermokarst water bodies that cover up to  ~50 % of the 

total area (Parks Canada, 2015). There are three prominent ecozones in WNP 

that are characterized by dominant vegetation: coastal fen, interior peat 

plateau-palsa bog (hereafter referred to as peat plateau), and boreal spruce 

(Parks Canada, 2012). The coastal fen is distinguished by salt marshes and 

dunes, with up to 10 foot tides along the coastal beaches (Parks Canada, 

2012). The peat plateau is marked by tundra vegetation consisting of sedge 

meadows, peatlands and ponds (Parks Canada, 2012). The boreal spruce 

forest consists of spruce, tamarack and willows of the northern taiga forest 

and is located in the southwestern region of the Park (Parks Canada, 2012). 

Ponds in the boreal spruce ecozone tend to be the largest and deepest.  

Ponds Chosen for Hydrological Monitoring  

 Sixteen ponds were selected for isotope-based hydrological 

monitoring from an original 37-pond data set sampled between 2010 and 
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2012 (Farquharson, 2013). The ponds were chosen to cover the range of 

hydrological conditions across the Park’s three main ecozones (Figure 3). 

Most of the ponds are typically less than 1 m in depth with those in the 

boreal spruce ecozone being less than 3 m in depth. They likely freeze 

completely during winter months and are ice-free during summer months (3 

- 4 months of the year). Most ponds contain bottoms that consist of a 

benthic mat, with a few ponds hosting macrophytes. The topography of the 

area is very flat and gently sloping towards Hudson Bay (1 m km-1) (Winter 

and Woo, 1990). Most ponds are disconnected from surrounding peatlands 

and do not have defined outlet channels. As a result, ponds in this study are 

considered closed-drainage. Ponds WAP 5, 7, 12, 15, 20 and 21 are located in 

the coastal fen ecozone, and range between 2.4 km and 16.7 km in distance 

from the Hudson Bay coast (Table 1). The coastal fen ponds range in size 

from 700 m2 to 23,059 m2 (WAP 12 is not reported due to low resolution 

satellite imagery), but are all less than ~3 m in depth. Vegetation in the 

surrounding catchments of coastal fen ponds consist of small wi llows, 

grasses, lichens and mosses. Ponds WAP 32, 33, 34, 37 and 39 are located in 

the peat plateau, located farther inland between 41.7 km and 52.8 km from 

Hudson Bay (Table 1). The area of these ponds ranges from 132 m2 to 

7,613,782 m2, and all are less than 60 cm in depth. However WAP 39 may be 
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up to 2 m in depth (field observations have determined pond waters to be 

deeper than 60 cm although actual depths have not been measured from a 

central pond location). These ponds have catchments that consist of grasses, 

small shrubs and willows that range in size up to 1 m tall. Ponds WAP 23, 24, 

25, 26 and 27 are located in the boreal spruce forest and are located farthest 

from Hudson Bay, between 82.4 km to 89.9 km (Table 1). They range in size 

from 98,000 m2 to 2,686,414 m2 in area and range between ~1 m to 3 m in 

depth.  
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Figure 2a) Location of Wapusk National Park, Manitoba (Parks Canada, 2016). 

 

 

 

 

 

 

 

 

 

Figure 2b) Wapusk National Park (denoted by a star) is located in an area of 
continuous and discontinuous permafrost (NRCAN, 2016). 
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Figure 3. Location of the 16 ponds that are the focus of this study. All images 
were captured in July 2014 except photos for WAP 5, 26 and 27, which were 
taken in September 2014. Red outline denotes ponds in coastal fen ecozone, 
yellow outline denotes ponds in the Interior peat plateau ecozone and blue 
outline represent ponds in the boreal spruce ecozone.  
 

WAP 20 

WAP 24 

WAP 34 

WAP 7 

WAP 12 

WAP 15 

WAP 21 

WAP 32 

WAP 33 

WAP 37 

WAP 39 

WAP 5 

WAP 25 

WAP 26 

WAP 27 

WAP 23 



22 
 

Table 1. List of 16 ponds selected for isotope-based hydrological monitoring 

for effects of climate change. Distance from Hudson Bay and pond surface 
area calculated by Farquharson (2013). WAP 12 area is not reported due to 
low-resolution satellite imagery. Pond depth is an average value and is 
estimated based on multiple field season observations.  

Pond 
Name 

Ecozone Pond 
Depth 
(cm) 

Area (m2) Latitude Longitude Distance 
from Hudson 

Bay (km) 

WAP05 Coastal Fen 5-10 2,290 58.34223 -93.2645 13.81 

WAP07 Coastal Fen 5-30 25,843 58.42721 -93.1782 9.07 
WAP12 Coastal Fen <1 NA 58.42558 -93.2689 14.74 
WAP15 Coastal Fen 15 93,724 58.62001 -93.1710 2.47 
WAP20 Coastal Fen 5 23,059 58.66995 -93.4437 14.42 

WAP21 Coastal Fen 5-10 700 58.66515 -93.4409 16.70 
WAP32 Interior Peat 

Plateau 
60 531 57.99007 -93.4593 41.79 

WAP33 Interior Peat 
Plateau 

60 12,605 58.05161 -93.5329 44.88 

WAP34 Interior Peat 
Plateau 

5 132 58.04637 -93.6592 52.87 

WAP37 Interior Peat 
Plateau 

<10 1,366,129 58.07802 -93.6610 50.83 

WAP39 Interior Peat 
Plateau 

15- >200 7,613,782 58.21463 -93.7076 47.73 

WAP23 Boreal 
Spruce 

15- >200 1,087,513 57.83547 -94.1827 89.17 

WAP24 Boreal 
Spruce 

15- >200 98,200 57.73882 -94.0051 82.46 

WAP25 Boreal 
Spruce 

15- >200 2,686,414 57.70476 -94.0465 86.33 

WAP26 Boreal 
Spruce 

15- >200 177,365 57.69803 -94.1149 89.96 

WAP27 Boreal 
Spruce 

15- >200 1,196,026 57.61421 -93.9695 88.39 
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Meteorological Conditions 

The climate in WNP is seasonal with short, warm summers and long, 

cold winters. Pond freeze-up in WNP typically occurs mid- to late September 

and ice-breakup occurs between late May and mid-June. Meteorological 

conditions were classified into two seasons for the purpose of this study (ice-

on: October to May and ice-free: June to September). Climate normal air 

temperature (1981-2010), as recorded at the Churchill Airport (Climate ID 

5060600), is -6.5oC with temperatures fluctuating between -30.1oC in January 

to 26.7oC in July (Environment Canada, 2015) (Figure 4). Average annual 

precipitation (1981-2010 climate normal) is 452.7 mm, with 53.7% falling as 

rain (243.3 mm) from June to September. This study incorporates water 

isotope compositions from ponds collected during the 2010-2015 ice-free 

seasons. Therefore, it is relevant to consider meteorological conditions 

during this interval as temperature, humidity and precipitation will influence 

the isotope compositions of the ponds. If average monthly and seasonal 

temperatures were one degree warmer or cooler or more than climate 

normal, they are highlighted with red or blue (Table 2). Total monthly and 

seasonal precipitation are reported as wetter (blue) or drier (red) than 

climate normal (Table 3).   
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Overall, there is annual variability in meteorological data. 

Meteorological data for the six sampling years shows mean monthly air 

temperatures for the ice-free season are higher than the 1981- 2010 climate 

normal for 2011 to 2014 (Table 2, Figure 4). Average temperature values for 

ice-on season are relatively similar to the climate normal for all sampling 

years with only 2012 having a warmer average value (Table 2). Total ice-free 

rainfall is less than the climate normal for all study years except for 2010. 

However, data over the six-years show much less than climate normal rainfall 

during early ice-free season with an increase in rainfall amounts during the 

mid-ice-free season (July and August). Additionally, winter snowfall was 

below climate normal (1981 – 2010) for all sampling years (Table 3). Data 

over the six-years suggests that the region was experiencing warmer 

conditions than the climate normal with drier winters and drier ice-free total 

rain amounts.   
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Figure 4. Average monthly and seasonal temperature and precipitation as 

recorded by Environment Canada (2015) Churchill meteorological station 
(Climate ID 5060600) for October 2009 to September 2015. Climate normal 
(1981-2010) monthly and seasonal temperature are also shown. 
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Table 2. Average monthly and seasonal temperatures in degrees Celsius as 

recorded by Churchill Airport (Climate ID 5060600) station, Environment 
Canada (2015). Red numbers indicate values that are one degree warmer or 
more than the 1981-2010 average, while values in blue represent those one 
degree cooler or more than the average. Average values reported for Oct-
May indicate average monthly temperatures from the previous year (e.g., 
Oct-May 2010 represents average monthly temperature from Oct 2009-May 
2010).  

Month 1981-
2010  

2010 2011 2012 2013 2014 2015 

June 7.0 5.5 7.7 6.5 10.1 9.8 7.8 

July 12.7 12.2 14.3 14.6 14.6 13.6 11.9 

August 12.3 10.5 12.9 13.1 12.2 12.6 10.9 

Sept 6.4 6.5 10.2 8.4 8.7 6.3 7.0 

Avg. Ice-
Free 

9.6 8.6 11.2 10.6 11.4 10.5 9.4 

Oct-

May 

-14.5 -14.2 -13.1 -10.9 -15.0 -15.8 -14.4 
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Table 3. Total monthly and seasonal precipitation (mm) as recorded by 

Churchill Airport (Climate ID 5060600) station, Environment Canada (2015). 
Red numbers indicate values that are lower (drier) than the 1981-2010 

average, while values in blue represent those higher (wetter) than the 
average. Average values reported for Oct-May indicate average monthly 
precipitation from the previous year (e.g., Oct-May 2010 represents average 
monthly precipitation from Oct 2009-May 2010).  

 

Month 1981-

2010  

2010 2011 2012 2013 2014 2015 

June 44.2 12.5 42.9 5.9 1.9 56.2 39.4 

July 59.8 71.9 59.8 73.1 23.4 65.1 111.6 

August 69.4 181.4 80.2 74.8 27.8 84.8 28.4 

Sept 69.9 54.2 24.2 74.5 49.4 33.1 37.2 

Ice-Free 
total 

243.3 320.0 207.1 228.3 102.5 239.2 216.6 

Oct-May 209.4 105.8 46.0 188.7 83.8 70.6 95.6 

 

Methods 

Field Methods 

 The 16-pond dataset was sampled after ice-off, mid-summer and 

before ice-on (June, July and September) between 2010 and 2015 with the 

aid of a helicopter. A hand-held GPS, in addition to pond photographs, were 

used to ensure that samples were collected from the same pond each time. 
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Samples were collected from 5 to 10 cm below the surface water of ponds 

using 30 mL high density polyethylene bottles. Once water samples were 

collected, the bottles were sealed tightly and transported to the University of 

Waterloo Environmental Isotope Laboratory (UW-EIL) for analysis of oxygen 

and hydrogen isotope compositions.  

A constant volume evaporation pan was deployed at the Wapusk 

National Park main office in Churchill, MB, and was monitored by Parks 

Canada staff during June to September of 2010-2015. The evaporation pan 

was used to simulate a terminal basin (i.e., closed-drainage) at isotopic and 

hydrologic steady-state where inflow is equal to evaporation (SSL). The 

source of water input for the evaporation pan was derived from the Churchill 

River and the pan was maintained at a constant water level with samples 

collected weekly during each ice-free season for analysis of oxygen and 

hydrogen isotope composition.   

Laboratory Methods 

 Water samples were transported to UW-EIL where they were 

analysed for hydrogen and oxygen isotope compositions. Samples submitted 

between 2010 and 2012 were analysed with continuous flow isotope ratio 

mass spectrometry using standard methods (Epstein and Mayeda, 1953; 

Coleman et al. 1982). Maximum analytical uncertainties for δ18O and δ2H are 
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± 0.2 ‰ and ± 2.0 ‰, respectively, for samples analysed by mass 

spectrometry. Samples from 2013 and onward were analysed using Off-Axis 

Integrated-Cavity Output Spectroscopy (ICOS). This method has maximum 

analytical uncertainties of ± 0.1 ‰ for δ18O and ± 0.3 ‰ for δ2H. Both 

methods are reported relative to Vienna Standard Mean Ocean Water 

(VSMOW) and results are normalized to -55.5‰ and -428‰, respectively, for 

Standard Light Antarctic Precipitation (Coplen, 1996). The delta () notation 

is used to express the isotope composition values in units per mil (‰) with 

respect to VSMOW, where 2H or 18O = [(Rsample / Rstandard) – 1] x 1000 where 

R is the 18O/16O and 2H/1H ratios in both the sample and standard. 

Water Isotope Mass-Balance Modelling 

As water passes through the hydrological cycle, labelling of naturally 

occurring stable isotopes of hydrogen (1H and 2H) and oxygen (16O, 17O and 

18O) occurs due to the differences in behaviours of water molecules (Clark 

and Fritz, 1997). These isotope compositions are expressed through the 

differences in abundances between the rare (heavy) isotope species and the 

common (light) isotope species. Due to systematic mass-dependent 

fractionation of isotope compositions of precipitation and surface water, 

patterns exist characterized by linear trends in 2H - 18O space (Gibson and 

Edwards, 2002; Edwards et al., 2004). Isotopic compositions of precipitation 
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typically cluster along the Global Meteoric Water Line (GMWL; 2H = 818O + 

10), as defined by Craig (1961) for worldwide amount-weighted annual 

precipitation. The slope of eight is generally influenced by temperature-

dependent equilibrium fractionation of the formation of precipitation from 

atmospheric vapour (Edwards et al., 2004). At regional scales, precipitation 

can plot in a linear trend on a Local Meteoric Water Line (LMWL; Dansgaard, 

1964; Gibson et al., 1993). The LMWL is often similar to the GMWL but 

requires isotopic measurements on local precipitation to define. However, if 

unavailable, the GMWL often provides a useful baseline of precipitation 

isotope composition (Edwards et al., 2004). Based on Rayleigh distillation and 

isotope rain-out effects, snow is typically more isotopically depleted in 

comparison to rain (Clark and Fritz, 1997).  

In a region experiencing the same climatic conditions, surface waters 

that have undergone varying degrees of evaporation will typically plot along 

a Local Evaporation Line (LEL), which commonly has a slope of ~4-6 (Figure 

5). The slope is controlled by humidity (h), temperature (T) and the isotope 

composition of atmospheric moisture (AS) (Yi et al., 2008), and can be 

predicted for a given location (e.g., Wolfe et al., 2007). The LEL can be 

calculated using the linear resistance model of Craig and Gordon (1965) and 
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by incorporating local isotopic and hydroclimatic information. Calculating the 

LEL, as opposed to the more common approach of using linear regression 

through water samples that have undergone varying degrees of evaporation, 

allows for lake water isotope compositions to be interpreted independent of, 

but in relation to, the LEL. The position of a water body along and about the 

LEL can indicate importance of evaporation and source waters, respectively. 

Water bodies that plot above the LEL typically reflect influence by rainfall , 

whereas water bodies that fall below the LEL generally indicate influence 

from snowmelt. Three key points on the LEL include 1) the amount-weighted 

mean annual precipitation (p at the GMWL-LEL intersection), 2) the limiting 

steady-state isotope composition (SSL), and 3) the theoretical limiting 

isotopic enrichment (*) of a pond reaching total desiccation. The isotope 

compositions of all ponds within a similar region will converge towards * as 

a body of water reaching desiccation is dependent on atmospheric 

conditions (temperature and relative humidity) and is independent of initial 

conditions (i.e., L,  I) (Yi et al., 2008).  

Developing the Local Evaporation Line 

Multiple approaches were used to evaluate and establish the ‘isotope 

framework’ (i.e., GMWL-LEL) as it was critical to define for subsequent 
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calculation of water-balance metrics ( I, E/I) and in consideration of ongoing 

Parks-led hydrological monitoring. The different iterations of the LEL were all 

anchored at p. This value was determined from www.waterisotopes.org, 

which provides monthly values of precipitation isotope composition for any 

location based on latitude, longitude, and elevation (Bowen, 2016).  

Two different frameworks were used to determine SSL. The first 

approach used the equation that defines SSL provided by Gonfiantini (1986; 

note that all equations are reported in decimal notation): 

 SSL = * I(1-h+K) + *hAS + K + *                                                    (1) 

where * is the equilibrium liquid-vapour fractionation factor,  I is assumed 

to be equal to P, h is the atmospheric relative humidity, AS is the isotope 

composition of atmospheric moisture during the ice-free season, whereas * 

and K represent the equilibrium  and kinetic isotope separation between 

liquid and vapour, respectively.   

For *, the equation by Horita and Wesolowski (1994) was used: 

 1000ln* = -7.685 + 6.7123 (103/T) – 1.6664 (106/T2) + 0.35041 (109/T3)  (2) 

for 18O and  

http://www.waterisotopes.org/
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1000ln* = 1158.8 (T3/109) – 1620.1 (T2/106) + 794.84 (T/103) – 161.04 + 

2.9992 (109/T3)                                                                                            (3)  

for 2H where temperature (T) is in Kelvin. 

Kinetic separation (K) was calculated using Gonfiantini (1986) where: 

K = 0.0142 (1-h) for 18O                                                                             (4) 

and 

K = 0.0125 (1-h) for 2H.                                                                              (5) 

The equilibrium isotope separation between the liquid and vapour phase 

(*) was determined from: 

* = (* - 1)                                                                                                     (6) 

The value for AS was determined by (Gibson et al., 2008):  

AS = (PS - *)/*                                                                                            (7) 

which assumes isotopic equilibrium with the isotope composition of open-

water season precipitation (PS). The value for PS was obtained from 

www.waterisotopes.org (June to September). 

http://www.waterisotopes.org/
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To determine the terminus of the LEL, the limiting isotope composition 

of a water body approaching desiccation (*) was determined using 

Gonfiantini (1986): 

* = (hAS + K + */*) / (h – K – */*)                                                 (8) 

The second framework determined SSL using results from the 

evaporation pan experiment. For each year, SSL was calculated from the 

average of values estimated to have reached steady-state conditions. For the 

LEL that utilized SSL from the evaporation pan experiment, AS was 

determined using Gibson et al. (1999): 

AS = [(SSL – *) / *- K – P (1 – h + K)] / h.                                           (9) 

In equation (9), SSL was determined from the evaporation pan.                                                                                                        

Values for T and h were obtained from Environment Canada’s 

National Climate Archive (Environment Canada, 2015). These data were flux-

weighted based on estimates of potential evapotranspiration following 

Thornthwaite (1948): 

Tflux =  (Ta * Et)/(Et) (oC)                                                                             (10) 

hflux =  (h * Et)/(Et) (%)                                                                               (11) 
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where Ta represents the monthly average temperature and h represents the 

monthly average humidity. The value of Et represents monthly total potential 

evapotranspiration for ice-free season months given by the equation: 

Et = 1.6 * (L/4) * (N/30) * ((10*Ta)/)a         (cm)                                      (12) 

where L represents average day length in hours (Environment Canada, 2015). 

The value of N represents the number of days in the month and  is the thaw 

season heat index, which is calculated by: 

 =  ((Ta 1.534)/5)       (oC)                                                                           (13) 

where the coefficient a is calculated by: 

 a = 0.49239 + 0.01792 *  – 7.7 * 10-5 * 2 + 6.75 * 10-7 * 3                 (14) 

Calculation of Water Balance Metrics 

Results from isotope analysis of pond water samples were plotted in 

18O-2H space to identify the hydrological influences on pond water 

balances (i.e., input sources and evaporation). Using the coupled isotope 

tracer approach (Yi et al., 2008), the isotope composition of input water ( I) 

was determined for each pond and for each sampling episode. Using this 

approach, the isotope composition of pond evaporative vapour (E) was 
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determined using the linear resistance model of Craig and Gordon (1965), 

which is provided by Gonfiantini (1986) as: 

  E = [(L – *)/ * - hAS – K ]/ (1 – h + K)                                          (15) 

Using E and L, a pond-specific evaporation line was determined and the 

intersection with the GMWL was used to define  I (Figure 5). The value of  I 

was used to identify the predominant source water (i.e., snowmelt, rainfall) 

for the ponds. Then evaporation to inflow (E/I) ratios for each pond and for 

each sampling episode were determined by the equation from Yi et al. 

(2008): 

E/I = ( I – L)/(E – L)                                                                              (16) 

where L is the measured isotope composition of pond water.  

E/I is a useful metric for lake hydrological monitoring as it can be used 

to quantify pond water balances (Gonfiantini, 1986; Gibson and Edwards, 

2002; Wolfe et al., 2007; Turner et al., 2010; Light, 2011). These metrics ( I, 

E/I) have successfully been used to quantify lake water balances in the Slave 

River Delta (Brock et al., 2008) and the Old Crow Flats (Turner et al., 2010) 

and has been applied for a hydrological monitoring program in Vuntut 

National Park, Yukon Territory (Tondu et al. 2013). Calculated E/I values that 
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were above 1.5 were given a value of 1.5 as the framework could not be used 

to accurately calculate E/I ratios for ponds experiencing extreme non-steady-

state conditions (Tondu et al., 2013; MacDonald et al., 2017).E/I values were 

analysed spatially, temporally and in relation to catchment characteristics 

(ecozone) and meteorological conditions to assess hydrological balances of 

ponds in WNP.  
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Figure 5. Schematic 18O-2H diagram representing two ponds from WNP (pond 
1=coastal fen, pond 2=boreal spruce). Key parameters within this plot include: 
amount weighted mean annual precipitation (P), the limiting steady-state isotope 

composition where evaporation is equal to inflow (SSL), and limiting isotope 

enrichment of a pond reaching total desiccation (*); all of which make up the Local 
Evaporation Line (LEL). Both ponds plot along a pond specific evaporation line which 
intersects with the Global Meteoric Water Line (GMWL). This intersection provides 

an estimate of input water (I) which is used for isotope mass balance model 
calculations to derive evaporation-to-inflow (E/I) ratios. Other values used to 

calculate E/I include pond water isotope composition (L) and the isotope 

composition of evaporated vapour from the pond (E). 
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Chapter 3 - Results  

Typically, the regional isotope composition of precipitation will 

cluster along a Local Meteoric Water Line (LMWL), which is often similar to 

the Global Meteoric Water Line (GMWL; Craig, 1961). Light (2011) calculated 

the Churchill LMWL using a linear regression model and Canadian Network 

for Isotopes in Precipitation data. Based on the similarity between the LMWL 

and the GMWL, Light (2011) determined that the GMWL suitably 

characterized the isotope composition of precipitation for the region. As 

surface waters of ponds experience evaporation, they plot below the GMWL 

forming a linear trend along the Local Evaporation Line (LEL). The amount of 

mass-dependent fractionation that pond water isotope composition 

experiences (i.e., water molecules containing the lighter isotopes will 

preferentially evaporate) will influence the distance a pond plots from the 

GMWL. Values that define the LEL include the average annual isotope 

composition of precipitation (P), where the LEL intersects the GMWL, the 

steady-state isotope composition of a terminal basin (SSL) and the 

theoretical last drop of water in a pond (*). For the purpose of this study, 

two isotope frameworks were developed to assess their appropriateness for 

subsequent interpretation of the pond water isotope compositions and 

calculation of water balance metrics. One isotope framework was developed 
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using Gonfiantini’s (1986) formulation for SSL (see equation 1 in Chapter 2) 

and values were averaged over the 6-year period of the study (hereafter 

referred to as the Gonfiantini Framework). A second isotope framework was 

developed using an evaporation pan to determine SSL, and then framework 

values were averaged over the 6-year period of the study (hereafter referred 

to as the Pan Framework). 

Developing the Gonfiantini Framework  

The Gonfiantini Framework was developed to assess its 

appropriateness for characterizing pond water isotope composition in WNP. 

Values derived are reported in Table 4. Flux weighted temperature and 

humidity were calculated from meteorological data collected at the Churchill 

Airport, which were obtained from Environment Canada (2015). The isotope 

composition of precipitation (P) was obtained through 

www.waterisotopes.org. Values for SSL and * were calculated using 

equations 1 and 8, respectively (Chapter 2). Values for AS were determined 

from equation 7. The slope of the LEL is based on the linear regression model 

of Craig and Gordon (1965) through P, SSL and * (Table 4). 

 

http://www.waterisotopes.org/
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Table 4. Results of calculations to develop the Gonfiantini Framework.  

Parameter 2010 2011 2012 2013 2014 2015 Mean Stand. 

Dev. 

Ref. 

T (K) 282.4 284.7 284.4 284.9 284.3 282.9 283.4 1.02 Env. 

Canada 
(2015) 

h (%) 80.39 77.31 77.69 73.13 74.87 81.79 77.53 3.25 Env. 

Canada 
(2015) 

   1.0108, 1.098 1.0106, 1.094 1.0107, 1.096 1.015, 1.094 1.0106, 1.095 1.0108, 1.097 1.0114, 1.095 0.0017, 

0.001 

2, 3 
(equations
, Ch. 2) 

 ‰ 10.8, 97.9 10.6, 94.9 10.6, 95.2 10.5, 94.5 10.6, 95.3 10.8, 97.3 10.6, 95.8 0.12, 1.39 6 

K ‰ 28.2, 25.0 32.2, 28.3 31.2, 27.5 38.0, 33.5 35.5, 31.2 25.9, 22.8 31.8, 27.8 4.4, 4.0 4,5 

AS
 ‰ -24.2, -185.1 -24.1, -183.0 -24.1, -183.6 -24.0, -182.7 -24.1, -183.4 -24.2, -184.5 -24.1, -183.7 1.3, 6.1 7 

SSL 

‰

-9.4, -90.5 -8.8, -88.8 -9.0, -89.4 -8.0, -86.1 -8.2, -86.6 -9.8, -91.9 -8.9, -88.9 0.6, 5.0 1 

 ‰ -7.5, -79.5 -6.3, -75.1 -6.7, -76.6 -4.5, -67.8 -5.0, -69.4 -8.1, -82.4 -6.4, -75.2 0.5, 3.1 8 

P
‰ -17.0, -129.0 -17.0, -129.0 -17.0, -129.0 -17.0, -129.0 -17.0, -129.0 -17.0, -129.0 -17.0, -129.0  www.wate

risotopes.

org 

Slope 5.4 5.3 4.9 5.3 5.3 5.1 5.2   

Intercept -36.8 -38.2 -44.3 -38.4 -38.8 -41.0 -39.5   

 

All pond water isotope compositions were plotted for each sampling 

time on the six-year average LEL to evaluate suitability of the Gonfiantini 

Framework (Figure 6). Pond water isotope compositions plot past * during 

2010-2013 implying that ponds have desiccated (Figure 6). However, only 

two ponds in 2010 completely desiccated (WAP 10 and WAP 12) based on 

field observations (Farquharson, 2010). Also, nearly every pond water 
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isotope composition plots above the LEL indicating that the primary influence 

on pond water balance is rainfall, although some ponds are also very likely 

influenced by snowmelt. These results suggest that the Gonfiantini 

Framework may not provide the most suitable LEL for interpreting pond 

water isotope compositions.  
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Figure 6. Pond water isotope compositions superimposed on the Gonfiantini 

Framework.  
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Developing the Pan Framework  

 The Pan Framework was developed to assess its appropriateness for 

interpreting pond water isotope compositions. Values derived are reported 

in Table 5. Similar to the Gonfiantini Framework, flux weighted temperature 

and humidity were calculated from 1981-2010 climate normals, which were 

obtained from Environment Canada (2015). Also, the isotope composition of 

precipitation (P) was obtained through www.waterisotopes.org and values 

for * were calculated using equation 8 (Chapter 2). In contrast to the 

Gonfiantini Framework, values for SSL were based on evaporation pan data 

(see below and Figure 7), and this was then used to determine AS using 

equation 9. All values were averaged to generate a six-year mean.  

 

 

 

 

 

 

 

http://www.waterisotopes.org/
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Table 5. Results of calculations to develop the Pan Framework. 

Parameter 2010 2011 2012 2013 2014 2015 Mean Stand. 

Dev. 

Ref. 

T (K) 282.4 284.7 284.4 284.9 284.3 282.9 283.4 1.02 Env. 

Canada 
(2015) 

h (%) 80.39 77.31 77.69 73.13 74.87 81.79 77.53 3.25 Env. 

Canada 
(2015) 

   1.0108, 1.098 1.0106, 1.094 1.0107, 1.096 1.015, 1.094 1.0106, 1.095 1.0108, 1.097 1.0114, 1.095 0.0017, 

0.001 

2, 3 

(equation
s, Ch. 2) 

  ‰ 10.8, 97.9 10.6, 94.9 10.6, 95.2 10.5, 94.5 10.6, 95.3 10.8, 97.3 10.6, 95.8 0.12, 

1.39 

6 

K ‰ 28.2, 24.0 32.2, 28.3 31.2, 27.5 38.0, 33.5 35.5, 31.2 25.9, 22.8 31.8, 27.8 4.4, 4.0 4,5 

AS
 ‰ -19.3, -157.9 -19.9, -158.4 -20.2, -170.3 -22.3, -168.2 -22.3, -169.9 -19.7, -158.4 -20.6, -163.8 1.3, 6.1 9 

SSL
 ‰ -5.5, -66.8 -5.6, -68.5 -6.0, -78.8 -6.8, -74.8 -7.1, -76.6 -6.1, -68.4 -6.2, -72.3 0.6, 5.0 1 

  ‰ -2.6, -49.3 -2.2, -48.1 -3.0, -54.0 -2.9, -51.9 -3.7, -56.5 -3.6, -53.9 -3.0, -52.2 0.5, 3.1 8 

P
 ‰ -17.0, -129.0 -17.0, -129.0 -17.0, -129.0 -17.0, -129.0 -17.0, -129.0 -17.0, -129.0 -17.0, -129.0  www.wat

erisotope
s.org 

Slope 4.56 5.04 5.33 5.03 5.04 3.95 4.82   

Intercept -41.58 -39.96 -40.42 -40.46 -40.66 -44.20 -41.21   

 

During all six sampling years, isotopic enrichment occurred during the 

first four weeks of deploying the evaporation pan (Figure 7a). This occurred 

as pan water isotope composition equilibrated with atmospheric conditions. 

The interval in which 18O became near-constant (i.e., reached steady state) 

was different each year and the mean values for these intervals were used to 

determine 18OSSL (and 2HSSL) (14 July to 11 Aug 2010: 18OSSL = -5.5 ‰, 
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2HSSL = -66.8 ‰; 5 July to 16 Aug 2011: 18OSSL = -5.6 ‰, 2HSSL = -68.5 ‰; 11 

July to 9 Aug 2012: 18OSSL = -6.0 ‰, 2HSSL = -78.8 ‰; 5 July to 23 Aug 2013: 

18OSSL = -6.8 ‰, 2HSSL = -74.7 ‰; 3 July to 28 Aug 2014: 18OSSL = -7.1 ‰, 

2HSSL = -76.6 ‰; 17 July to 11 Sept 2015: 18OSSL = -6.1 ‰, 2HSSL = -68.4 ‰). 

These data were used to determine six-year mean 18OSSL (-6.2 ± 0.6 ‰) and 

2HSSL (-72.3 ± 5.0 ‰; Table 5, Figure 7c). Evaporation pan isotope 

composition clusters along the LEL indicating influence from precipitation 

and evaporation (Figure 7b). During some portions of August and September, 

the evaporation pan was influenced by isotopically-depleted rainfall and, 

therefore, these data were not used to determine SSL.  
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Evaporation Pan Data: 2010-2015
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Figure 7. Isotope results from the evaporation pan deployed and maintained 
at the Wapusk National Park main office in Churchill, MB. A) Evaporation pan 

water oxygen isotope composition. Dashed lines represent intervals 

interpreted to represent steady state conditions (i.e., SSL). B) Water isotope 
composition clusters on and around the LEL. C) Yearly and six-year average 

SSL values. 
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Pond water isotope compositions were superimposed on the Pan 

Framework to evaluate its appropriateness for interpreting the pond water 

isotope compositions (Figure 8). The pond water isotope compositions are 

well captured by the parameters of the Pan Framework for all of the 

sampling years (aside from three ponds; WAP 5, WAP 12 and WAP 26 in 2013 

which plot beyond *). In particular, most evaporatively-enriched ponds 

during 2010-2013 do not exceed *, indicating that these ponds were 

undergoing water-level drawdown but did not fully desiccate, which is 

consistent with field observations. In addition, while most pond water 

isotope compositions plot above the LEL, several plot on the LEL. Based on 

these features, the Pan Framework was determined to be appropriate for 

interpreting pond water isotope compositions.  
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Figure 8. Pond water isotope compositions superimposed on the Pan 
Framework. 
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Pond Water Isotope Composition 

Although there is a broad range of variability in pond water isotope 

composition during the six years of sampling (18OL = -15.0‰ to -0.86‰ and 

2HL = -122.3‰ to -51.6‰), there are distinct temporal and spatial patterns 

(Figure 8). Annual variability is evident with the greatest range in pond water 

isotope composition in 2013 (WAP 26: 18OL = -15.0‰, 2HL = -122.3‰ to 

WAP 25: 18OL = -3.3‰, 2HL = -60.3‰). In contrast, the smallest range in 

pond water isotope composition occurred in 2015 (WAP 26: 18OL = -14.5‰, 

2HL = -114.0‰ to WAP 15: 18OL = -8.7‰, 2HL = -73.5‰).  

Variability exists among the six years, however pond water isotope 

compositions show generally similar patterns in seasonal isotopic evolution 

(Figure 8). Pond water isotope compositions are generally lower on the LEL 

during the early ice-free season (June) due to the influence of isotopically-

depleted snowmelt and possibly rainfall. Pond water isotope compositions 

then become more isotopically enriched during the mid-ice-free season (July) 

due to evaporation and plot higher on the LEL, around and beyond SSL 

(Figure 8). During the later ice-free season (September), pond water isotope 

compositions plot lower on the LEL and are generally more isotopically 

depleted compared to July because of the influence of rainfall. These pond 
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water isotope composition changes indicate a wet-dry-wet pattern over the 

course of the ice-free season. Pond water isotope compositions show the 

most seasonal variability between 2010 and 2013. Pond water values 

become more enriched during July, with some ponds plotting past SSL and 

towards and beyond * during 2013 (WAP 5: 18O= -2.7‰, 2H = -55.5‰; 

WAP 12: 18O= -2.2‰, 2H = -52.9‰; WAP 25: 18O= -3.3‰, 2H = -60.3‰) 

(Figure 8). In contrast, all pond water isotope compositions plot below SSL 

during 2014-2015 and occupy a smaller range in 18O – 2H space compared 

to the previous four years. Although there is variability in pond water isotope 

compositions, regardless of season, year or ecozone, most ponds plot above 

the LEL. This indicates that rainfall is an important source of the water in 

ponds as values that plot above the LEL indicate influence from rainfall.   

 In addition to seasonal variability, distinct patterns exist between the 

three ecozones. Coastal fen ponds show the greatest range in 18O – 2H 

space during all six sampling years with the greatest range in 2013 (WAP 20: 

18OL = -12.0‰, 2HL = -104.7‰ to WAP 5: 18OL = -2.2‰, 2HL = -52.9‰) 

(Figure 8). Water isotope composition of ponds in the coastal fen ecozone 

typically plot on or above the LEL with only five ponds plotting below the LEL 

(July 2012: WAP 5, WAP 12; July 2013: WAP 5, WAP 12, WAP 21) (Figure 8). 
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Ponds in the coastal fen ecozone show the greatest influence from summer 

evaporation of all ecozones, and this is most distinct from 2010 and 2013. 

During these years, many coastal fen ponds plot near and beyond SSL during 

the mid-ice-free season.  

Water isotope compositions of ponds in the peat plateau ecozone 

show variability with the greatest range in 18O – 2H space during 2010 

(WAP 32: 18OL = -13.1‰, 2HL = -101.8‰ to WAP 32: 18OL = -3.6‰, 2HL = -

57.2‰) and 2011 (WAP 37: 18OL = -13.9‰, 2HL = -111.8‰ to WAP 32: 18OL 

= -4.6‰, 2HL = -62.4‰) (Figure 8). Ponds in the peat plateau ecozone 

display similarities to ponds in the coastal fen ecozone between 2010 and 

2012 as they plot lower on the LEL during early ice-free season. Ponds then 

plot around and past SSL during the mid-ice-free season and become 

depleted again during the later ice-free season (Figure 8).  During 2013-2015, 

however, ponds in the peat plateau ecozone show more similarities in 

seasonal evolution to those in the boreal spruce ecozone.  

Pond water isotope composition of boreal spruce ponds typically 

show the smallest range in 18O – 2H space among ecozones during all years 

except 2013 (Figure 8). These ponds plot closer to P than ponds in the 

coastal fen and peat plateau ecozones during most sampling times , indicating 
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that they are the ponds most influenced by precipitation and least influenced 

by evaporation. During mid-ice-free season, boreal spruce ponds plot closer 

to SSL, however, only in 2013 do boreal spruce ponds exhibit a large range 

in18O – 2H space and one pond plots past SSL (WAP 24: 18OL = -3.3‰, 

2HL = -60.3‰) (Figure 8). Boreal spruce pond water isotope compositions 

during 2013 exhibit similarities to pond water isotope values in the coastal 

fen ecozone.  

Isotope Composition of Input Water 

Calculations of pond-specific input water isotope compositions ( I) 

were used to characterize the nature of source water to ponds in WNP.  I 

values were estimated by the intersection of the pond-specific LELs and the 

GMWL (Yi et al., 2008). Pond source waters were defined by  I relative to P, 

such that  I ≤ P indicates predominantly snowmelt whereas  I > P indicates 

predominantly rainfall (Turner et al., 2010). Note, however,  I values for WAP 

5, 12, 21 and 25 could not be calculated during July 2013 as the framework 

fails to accurately capture these values because pond water isotope 

composition plot beyond * (Figure 8). Distribution of pond water  I values 

along the GMWL was used to assess variation in source waters among ponds 

in the three ecozones (Figure 9).  I values during the six-year period display 
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variability between ecozones. Ponds within the peat plateau and boreal 

spruce ecozones have average  I values, which tend to be slightly higher than 

P indicating preferential influence by rainfall. Ponds in the coastal fen 

ecozone appear to be more rainfall-dominated as their  I values plot higher 

on the GMWL.  

Although, there does not appear to be any long term trends towards 

increasing or decreasing 18OI values over the six years, seasonal variability in 

18OI values is evident for many of the ponds (Figure 10). 18OI is generally 

low during early ice-free season (June). There is typically an increase in 18OI 

values during mid-ice-free season (July) with a decline during the late ice-free 

season (September). This may indicate a) the decrease in supply of snowmelt 

and b) increase in influence of rainfall during the ice-free season. Some 

ponds exhibit 18OI values that fall below P during June and July (WAP 5, 12, 

20 and 21) (Figure 10) indicating possible influence from early ice-free season 

snowmelt during these times. Additionally, some ponds display an increase in 

 I values in both July and September during 2010-2012 (Figure 10) indicating 

rainfall is a contributing factor to pond water balance.  

Spatial patterns of 18OI values are apparent among ecozones (Table 

6). Coastal fen and peat plateau ponds possess a similar amount of variability 



55 
 

in 18OI values whereas boreal spruce ponds have the smallest amount of 

variability (Table 6). Generally, ponds in the coastal fen had the highest 

average 18OI values (-13.5‰), followed by peat plateau ponds (-15.1‰) and 

then boreal spruce ponds (-15.6‰) (Table 6; Figure 10). These values 

indicate that pond water balance in the coastal fen is most influenced by 

rainfall, followed by ponds in the peat plateau and boreal spruce forest. 

Ponds in the coastal fen ecozone display the greatest amount of variability in 

18OI values compared to the other two ecozones, with the exception of WAP 

7 which displays low variability in 18OI values (Figure 10). Indeed, WAP 7 has 

the smallest range in 18OI values of all ponds (WAP 7: 18OI = -13.6‰ to -

11.7‰; standard deviation = 0.56; Table 6).  

Among ponds in the peat plateau ecozone, WAP 32 displays the 

greatest amount of variability in 18OI values (18OI = -19.2‰ to -12.4‰; 

standard deviation = 2.08; Table 6) (Figure 10). In contrast, WAP 33 has the 

smallest range in 18OI values (18OI = -16.8‰ to -13.2‰; standard deviation 

= 1.14; Table 6). All ponds in the peat plateau possess 18OI values that fall 

below P during June and July of some years, indicating influence from 

snowmelt (Figure 10).  
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Ponds in the boreal spruce ecozone show the least variability of 18OI 

values over the six years (Table 6, Figure 10). However, WAP 23 displays the 

greatest amount of variability in 18OI values (18OI = -17.8‰ to -6.0‰; 

standard deviation = 2.56; Table 6) (Figure 10). In contrast, WAP 24 has the 

smallest range in 18OI values (18OI = -16.9‰ to -14.1‰; standard deviation 

= 0.76; Table 6). Boreal spruce pond 18OI values plot closest to P and all 

ponds have sample times that plot below P indicating that their pond water 

balances are more influenced by snowmelt than ponds from the other 

ecozones (Figure 10). 
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Figure 9. Calculated input water isotope composition (I) for each pond from 2010 to 2015.  
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Figure 10. Pond 18OI versus time. Solid black lines represent mean 18OI values for 

each pond. Dashed black lines represent mean annual isotope composition of 

precipitation (P). 
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Table 6. Mean 18OI and E/I values, and standard deviations for ponds 
sampled between 2010 and 2015. Red labels indicate coastal fen ecozone, 

blue labels indicate the boreal spruce ecozone and yellow labels indicate the 
peat plateau ecozone.  

 

 

 

 

 

 

Pond Mean  18OI‰ Standard 

Deviation  18OI 

Mean E/I Standard 
Deviation E/I 

WAP05 -13.83 1.56 0.40 0.48 
WAP07 -12.71 0.56 0.19 0.13 
WAP12 -13.71 2.28 0.45 0.56 

WAP15 -12.56 0.91 0.15 0.11 
WAP20 -14.05 1.86 0.24 0.24 

WAP21 -14.29 1.79 0.39 0.45 
n=6     

Avg -13.54 1.49 0.30 0.32 

WAP23 -15.28 2.56 0.23 0.33 
WAP24 -15.26 0.76 0.11 0.07 
WAP25 -15.83 0.94 0.21 0.34 
WAP26 -16.13 1.31 0.12 0.13 

WAP27 -15.70 0.82 0.11 0.04 
n=5     
Avg -15.64 1.28 0.15 0.18 

WAP32 -15.06 2.08 0.40 0.50 
WAP33 -14.47 1.14 0.22 0.32 
WAP34 -15.16 1.43 0.29 0.25 

WAP37 -15.56 1.38 0.16 0.13 
WAP39 -15.11 1.28 0.12 0.04 

n=5     
Avg -15.07 1.21 0.23 0.24 
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Evaporation to Inflow Ratios  

 Evaporation to inflow (E/I) ratios were calculated for ponds using 

pond water isotope compositions (L), input water isotope composition ( I) 

and the isotope composition of evaporated vapour (E). E/I ratios provide a 

useful metric of pond water balances. Ponds with an E/I =1 represent a water 

balance in which evaporation equals inflow. Ponds with E/I values <1 indicate 

more input than evaporation whereas E/I values >1 indicate more influence 

from evaporation on pond water balance, where E/I values >1.5 indicate very 

strongly influenced by evaporation. Ponds exhibit a systematic pattern 

throughout the ice-free season which is observed in the E/I ratios. Data 

shows that E/I ratios are typically low during the spring thaw, increase during 

mid-season and decrease during late season, however some variability exists 

throughout sampling years as well as among ecozones.  

All ponds have mean E/I values that fall below 1 (Table 6). Table 6 

shows the six-year mean E/I values for ponds in all ecozones as well as the 

standard deviation for each pond. Temporal patterns of E/I values were 

based on the six-year mean and used to categorize ponds where greater than 

50% of the inflow has evaporated during mid-ice-free-season (E/I > 0.5; 

Figure 11). Ponds that display this feature during mid-ice-free season for 

more than one consecutive year include: WAP 5, 12, 21, 32 and 34.  Coastal 
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fen and peat plateau ponds show the greatest variability in E/I ratios 

throughout the ice-free season and are more influenced by evaporation as 

they have higher E/I ratios during summer months. Ponds that have an E/I >1 

may experience net water level drawdown, which is evident for some coastal 

fen and peat plateau ponds during July 2010-2013. However, by the 

September sampling period, all ponds had E/I values below 1, indicating that 

the input derived during late-season precipitation resulted in ponds with a 

positive water balance (Figure 11).  

Ponds in the boreal spruce ecozone have the smallest amount of 

variability in E/I ratios, with only slight increases during July months . Lower 

E/I ratios indicate that evaporation may be offset by snowmelt as vegetation 

entraps wind distributed snow and delays spring melt (Figure 11). 

Additionally, there may be less influence from evaporation on ponds in the 

boreal spruce ecozone as they are typically larger and deeper than ponds in 

the coastal fen and peat plateau ecozones. During July 2013, however, WAP 

23, 25, and 26 all display E/I ratios above 0.5 indicating that evaporation had 

a strong influence on some boreal spruce pond water balances (Figure 11).  
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Figure 11. Evaporation to Inflow (E/I) ratios plotted versus sampling time for all  ponds. Solid 

black l ine represents individual pond E/I mean, dashed line shows E/I = 1 and dotted line 

represents E/I = 0.5. Ponds plotting with values < 1 = more input than evaporation.  
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Chapter Four 

Discussion 

 As northern landscapes are displaying changes in lake and pond water 

balances as a response to climate change (Rowland et al., 2010; Carroll et al., 

2011; Vincent et al., 2011), it is critical to implement long-term monitoring to 

assess these changes now and in the future. While numerous studies have 

been conducted on the changing water balances of thermokarst landscapes 

(e.g., Smith et al., 2005; Riordan et al., 2006; Plug et al., 2008), there remains 

a lack of long-term monitoring on lake water balances to track responses to 

climate change (Rouse, 2000; Turner et al., 2010). Implementing and 

maintaining a sustainable long-term monitoring program involves 

collaboration between multiple stakeholders and authorities  which can be 

difficult, especially in remote areas and multiple jurisdictions. An ongoing 

partnership among Parks Canada, Wilfrid Laurier University and the 

University of Waterloo has provided training and protocols for hydrological 

monitoring (based on Tondu et al., 2013; White et al., in preparation) within 

Wapusk National Park. Results from the monitoring program can be 

incorporated into the hydrological component of the State of the Park Report 

that Parks Canada is required by federal government to produce every ten 

years.  
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The approach presented in this study uses water isotope tracers as a 

monitoring tool to evaluate pond hydrological status and change in a 

northern thermokarst landscape, Wapusk National Park. To determine the 

hydrological influences on pond water balance, water isotope tracers were 

compared annually, seasonally and by ecozone using a six-year data set. 

Additionally, a mass-balance isotope model was used to characterize the role 

of input water as  I (i.e., snowmelt and rainfall) to ponds and evaporation to 

inflow (E/I) ratios to assess key features of pond water balances as per Yi et 

al. (2008). Results demonstrate the diversity of pond hydrological conditions 

in WNP. Variability can be explained by differences in catchment 

characteristics, as well as differences in seasonal and annual meteorological 

conditions. 

 It was critical to assess two isotope frameworks to determine the one 

that most accurately represented meteorological conditions within WNP to 

evaluate pond water balances. Using an evaporation pan to capture isotope 

values of a simulated terminal pond at isotopic and hydrologic steady state 

within the Churchill region was the preferred method for establishing the 

isotope framework. The evaporation pan data formed the Pan Framework 

for evaluating isotope composition of ponds and for calculating  I and E/I 
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values. The Pan Framework was used because the alternate Gonfiantini 

Framework did not accurately capture the isotope composition of pond 

water isotope values. This was evident as pond water isotope values plotted 

past * on the Gonfiantini Framework when in fact ponds were not observed 

to be desiccated during sampling.  

Seasonal Evolution of Pond Water Balances 

Pond water isotope composition (L) values were superimposed on 

the Pan Framework and a systematic pattern in pond water balance 

evolution is evident in most ponds during the ice-free season. L values are 

low during early ice-free season due to snowmelt. Increase in L values 

occurs during mid-ice-free season due to evaporation. Depletion of L values 

at the end of the ice-free typically occurs due to the influence of rainfall. 

These seasonal patterns lead to a wet-dry-wet pattern in pond water 

balance. Ponds in the coastal fen and peat plateau ecozones are evidently 

more influenced from summer evaporation than ponds in the boreal spruce 

ecozone as L values in the former become more enriched during mid-ice-

free season. Lower amounts of snowfall than climate normal (1980-2010) 

during all six-years may have contributed to enriched L values during mid-

ice-free seasons.  
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Patterns in L values in ponds near Churchill, Manitoba have 

previously been measured, with ponds being more isotopically depleted 

during early and late ice-free seasons than mid-ice-free-season as a result of 

precipitation (Wolfe et al., 2011a; Light, 2011; Farquharson, 2013). In 

addition to the data in this thesis, one study found that even with pond 

desiccation during mid-ice-free season in WNP due to less snowpack, late ice-

free season precipitation replenished pond water balance (Bouchard et al., 

2013). Additionally, studies in other Arctic regions have found relations 

between pond water balance with spring thaw and from evaporation and 

precipitation throughout the ice-free season (Bowling et al., 2003; Woo and 

Guan, 2006).  

Yearly and seasonal data indicate that ponds within the coastal fen 

and peat plateau ecozones appear to be more sensitive to evaporation than 

ponds in the boreal spruce ecozone. During 2010 – 2015, most ponds in the 

boreal spruce ecozone show relatively stable L values. Coastal fen and peat 

plateau L values show greater inter-seasonal variability and plot around and 

beyond SSL on the LEL during 2010 - 2013 (Figure 8). Through 2014 and 2015, 

ponds in the coastal fen and peat plateau ecozones display less seasonal 

variability in L values than previous years as ponds enrich during mid-season 
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and maintain L values into late-season. This may be a result of higher than 

climate normal precipitation events that occurred in the ice-free season 

during these years (Table 2, 3). Mid-ice-free-season increase in L values may 

be attributed to lower than climate normal average values of June rainfall in 

addition to lower than climate normal ice-on snowfall (Table 2). Late ice-free 

season rainfall is likely responsible for replenishing pond water balance and 

depletion of L values during 2010 to 2012.  

Snowmelt and Rainfall 

Seasonal changes in water isotope composition in WNP and studies 

on ponds in other northern regions have indicated that rainfall is an 

important contributor for replenishing pond water balances  (Yi et al., 2008; 

Bouchard et al., 2013; White et al., 2014). Some studies in northern 

landscapes have indicated snowmelt is a contributing source of input to 

ponds at the beginning of the ice-free season (Bowling et al., 2003, Bouchard 

et al., 2013). In WNP, most ponds plot above P during most sampling times 

indicating rainfall as the main source of input (Figure 8). However, some 

ponds plot below P during June sampling, indicating that they are more 

influenced from snowmelt than rainfall during the early ice-free season 

(Figure 8).  
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All ponds in each ecozone show much less variability in  I during the 

2014 and 2015 ice-free seasons compared to 2010 to 2013 (Figure 10). Both 

2014 and 2015 experienced higher than climate normal precipitation during 

the mid-ice-free season, which indicates that summer evaporation may have 

been offset by higher precipitation amounts. Farquharson (2013) indicated 

that these 16 ponds during 2010 – 2012 were influenced by late ice-free 

season precipitation. Due to late ice-free precipitation ponds were 

isotopically depleted before ice-cover and therefore had influence from 

rainfall in addition to snowmelt during early sampling. Given that an increase 

in ice-free precipitation and a decrease in winter precipitation are predicted 

for the Churchill region (Macrae et al., 2014) ponds may experience changes 

in their hydrological conditions.  Additionally, a study by Derksen and Brown 

(2012) has shown reduction in snow cover may lead to ponds in the Arctic 

becoming more rainfall-dominated. Bouchard et al. (2013) found that a 

decrease in snowmelt runoff may lead to an increase in pond desiccation in 

WNP. Data over the six years may suggest that such predicted changes may 

already be influencing pond water balances in WNP.  

Variability in  I values may be influenced by catchment characteristics 

(e.g., differences between forested areas and non-forested). Previous studies 
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(Turner et al., 2014) have shown a relationship between thermokarst lake  I 

values and catchment vegetation. Forested catchments may capture wind-

distributed snow and lead to enhanced snowmelt runoff to lakes. Seasonal 

variability in  I values are most evident in the coastal fen ecozone (Figure 10). 

Ponds in the coastal fen ecozone have  I values that plot relatively higher 

than P, which indicates that the dominant input source is rainfall. As ponds 

in the coastal fen ecozone have the least amount of vegetation in their 

catchment compared to peat plateau and boreal spruce, less snowpack is 

captured here. Additionally, due to coastal fen ponds being more exposed 

than ponds with forested catchments, snow distribution from wind is likely. 

Ponds in the peat plateau ecozone display variability in  I values, however 

they plot closer to P than ponds in the coastal fen, with some pond  I values 

plotting below P during certain sampling times. These  I values indicate that 

ponds in the peat plateau are highly influenced by input of rainfall, however 

have more influence from snowmelt than ponds in the coastal fen ecozone. 

Boreal spruce ponds have much less variability in pond water isotope 

composition and  I values, which may be a result of drawn-out spring 

snowmelt due to lingering snow pack in forested areas. This is substantiated 

by visible snowpack within forested areas surrounding boreal forest ponds 
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during June sampling. As surface air temperatures continue to rise, an 

increase in vegetation in pond catchments has also been recorded in some 

regions (Jia et al., 2009; Turner et al., 2014). Additionally, as air temperatures 

increase, the dynamics of Arctic wetlands have been observed to change 

with some wetlands growing in size and some shrinking (Smith et al., 2005; 

Hinzman et al., 2005; Rowland et al., 2010. A general increase in vegetation 

cover could eventually shift rainfall-dominated ponds to snowmelt-

dominated. However, this may be unlikely to occur with predictions of less 

snowfall and increase in summer rainfall.  

Evaporation to Inflow  

 As ponds in WNP have high surface-area-to-depth ratios, they are 

susceptible to influence from evaporation. Ponds that possess low E/I ratios 

and low seasonal variability indicate they are the least sensitive to vapour 

loss, whereas E/I ratios with high values and variability indicate ponds that 

are more susceptible to evaporation. Ponds in the coastal fen and peat 

plateau show a great amount of seasonal and yearly E/I ratio variability as 

well as high E/I ratios during mid-ice-free season during 2010 - 2013 (Figure 

12). This indicates these ponds are influenced strongly from evaporation and 

are sensitive to vapour loss. A few ponds in these ecozones display E/I ratios 
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that indicate net level drawdown (E/I >1) during summer months, including 

some ponds that desiccated. However, these ponds tend to be replenished 

by late season rainfall. Meteorological conditions show lower than climate 

normal total rainfall for June 2010 to 2013, which may have led to higher E/I 

ratios in ponds in the coastal fen and peat plateau ecozones during these ice-

free seasons (Table 2). In contrast, E/I ratios during 2014 and 2015 remain 

relatively stable over all sampling periods in all three ecozones , which may be 

due to higher than climate normal rainfall levels during early ice-free season 

in 2014 and July 2015 (Table 2, Figure 11). E/I ratios in the boreal spruce 

ponds remain relatively stable over all sampling times and years, aside from 

July 2013, indicating that these ponds have a relatively stable water balance 

and are more resilient to changes in precipitation (Figure 12). Boreal spruce 

ponds may be less influenced by summer evaporation due to their larger size 

and also as a result of drawn out snowmelt. If less snowpack and less early-

ice-free season rainfall occur due to climate change, ponds in the boreal 

spruce ecozone may shift to become more evaporation-dominated. Although 

the boreal spruce ponds seem more resilient to meteorological conditions 

than ponds in the coastal fen and peat plateau, dry conditions in 2013 

appear to have influenced a response in isotope composition.   
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As some arctic ponds have experienced changes throughout the 

North by way of desiccation and reduced water levels (Smol and Douglas, 

2007), the continuation of monitoring ponds using water isotope 

compositions and calculating E/I ratios is critical to understand changes in 

pond water balance. Results and previous studies (i.e. Bouchard et al., 2013) 

indicate that lower rainfall amounts during early ice-free season may drive 

ponds to be more evaporatively enriched during mid ice-free season with the 

potential for desiccation (Figure 12). With respect to observations made by 

Bouchard et al. (2013), the possibility for ponds to desiccate exists as results 

show that total ice-on rainfall amounts are lower than climate normal during 

all six years. Mid-ice-free-season E/I ratios in the coastal fen and peat plateau 

ecozones are indicative of ponds that are experiencing net level drawdown 

or evaporation dominance. Additionally, the prediction of declining 

snowmelt runoff may contribute to increases in the occurrences of pond 

desiccation (Derkson and Brown, 2012). However, with a predicted increase 

in rainfall amounts (Macrae et al., 2014), ponds may maintain relatively 

stable E/I ratios meaning they would be less likely to desiccate (Figure 12). It 

is evident that long-term monitoring of these ponds may provide a better 

understanding of the long-term implications that climate change will have on 

pond water balance.  
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Figure 12. Average pond E/I ratios during 2010 to 2015 compared to total 
precipitation (mm) values (Environment Canada, 2015). 
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Conclusion 

 The knowledge gained from using water isotope tracers and 

determining input sources and evaporation to inflow ratios contributes to 

improved understanding of pond water balances in WNP. Results address the 

research objectives stated in the Introduction of this thesis. 

(1) Evaluate two different approaches for developing an ‘isotope 

framework’ to be used for current and ongoing long-term 

hydrological monitoring of ponds in WNP. 

Two approaches were taken to determine the most appropriate methods to 

establish the isotope framework used to interpret pond water isotope data. 

Firstly, the data were plotted on the Gonfiantini Framework, which used the 

Gonfiantini (1986) equation for SSL. Pond water isotope composition plotted 

past * during times when ponds were not desiccated, which indicated that 

this framework did not accurately capture atmospheric conditions . The 

evaporation pan results were used to determine a pond at steady state 

based on an average value of when the pan equilibrated with atmospheric 

conditions. Based on pond water isotope compositions plotting in a 

systematic way on the Pan Framework and within LEL parameters, the Pan 

Framework was deemed suitable for the purpose of this study. 
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The second part of the study focused on estimation of isotope 

composition of input waters and evaporation to inflow ratios to identify 

dominant influences on pond water balance. This objective, as stated in the 

Introduction, is as follows:  

(2) Use water isotope tracers measured on a representative suite of 

ponds in WNP from 2010-2015 and apply an isotope-mass balance 

model by calculating input water ( I) and evaporation to inflow (E/I) 

ratios to characterize the relative roles of snowmelt, rainfall and 

evaporation on pond water balances and their spatial, seasonal and 

annual variability, as well as their relations with meteorological 

conditions.  

Results indicate that there is variability in the hydrological conditions of 

ponds between ecozones, most notably between the coastal fen and peat 

plateau ecozone versus the boreal spruce. As snowpack and rainfall change 

due to climate warming, pond water balance may also be affected. Boreal 

spruce ponds appear to be less susceptible to changes in rainfall during the 

ice-free season because pond water balances may be offset by snowmelt 

during the early ice-free season. Assessing pond sensitivity to evaporation 

using E/I ratios gives an indication of how evaporation may influence pond 
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water balance. Some ponds in the coastal fen and peat plateau ecozone have 

E/I ratios >0.5 during mid-ice-free season indicating that these ponds are 

more influenced by evaporation than those in the boreal spruce. Ponds in 

the boreal spruce ecozone maintained relatively stable E/I ratios over most 

sampling times. These differences indicate that there is hydrological 

variability within ponds in WNP and future changes in meteorological 

conditions may influence ponds differently. Dry conditions of 2013 are 

evidentially influential on ponds and may be indicative of changes to pond 

water balance due to climate change. It has been demonstrated that water 

isotope tracers are an excellent tool to monitor variability in pond water 

balance and capture changes in source water and evaporation. As 

hydrological changes continue due to climate warming it is necessary to 

apply methods useful for understanding the long-term changes in pond 

water balances. The long-term monitoring program in collaboration with 

WNP will allow for the ability to monitor hydrological changes in WNP. The 

approaches in this study can readily be adopted into other long-term studies 

and monitoring programs by other parks and agencies that want to observe 

trends and changes in lake-rich landscapes in northern regions.  
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Recommendations 

 In order to build upon this study and to allow for ongoing hydrological 

monitoring, several recommendations are made. It is recommended that 

Parks Canada staff continue to obtain pond water samples during all three 

sample times to capture the seasonal evolution of pond water balance. 

Additionally, calculating  I values and E/I ratios for ponds is suggested to 

document key metrics of pond water balances as a response to long-term 

changes in meteorological (and potentially catchment) conditions. It is also 

recommended that observations be made on catchment characteristics in 

each ecozone to determine if there are changes in vegetation.  

Results indicate that the Pan Framework was most appropriate for 

interpretation of the water isotope data. Although there are limitations to 

using the evaporation pan as meteorological conditions throughout WNP are 

highly variable, the evaporation pan best captures the conditions of the 

region. Therefore, it is recommended that Parks continue to utilize the 

evaporation pan as it is easily maintained and represents a consistent, 

reliable means to obtain estimates of SSL. It is recommended to re-assess the 

framework every 5 years to ensure it accurately reflects local hydro-climatic 

conditions. 
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Appendix A 

Pond Water Isotope Composition of 18OL, 2HL, 18OI, 2HI, and E/I 

 

Date Pond 
Name 

18OL 2HL 18OI 2HI E/I 

June 2010 
June 2010 
June 2010 
June 2010 
June 2010 
June 2010 
June 2010 
June 2010 
June 2010 
June 2010 
June 2010 
June 2010 
June 2010 
June 2010 
June 2010 
June 2010 
July 2010 
July 2010 
July 2010 
July 2010 
July 2010 
July 2010 
July 2010 
July 2010 
July 2010 
July 2010 
July 2010 
July 2010 
July 2010 
July 2010 
July 2010 
July 2010 
Sept 2010 
Sept 2010 

WAP05 
WAP07 
WAP12 
WAP15 
WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 
WAP33 
WAP34 
WAP37 
WAP39 
WAP05 
WAP07 
WAP12 
WAP15 
WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 
WAP33 
WAP34 
WAP37 
WAP39 
WAP05 
WAP07 

-9.43 
-10.13 
-8.30 

-10.63 
-10.14 
-10.66 
-12.71 
-13.68 
-12.88 
-13.79 
-13.62 
-9.09 
-9.60 
-8.50 

-11.92 
-12.20 
-4.76 
-7.36 
-1.37 
-6.91 
-6.21 
-4.64 
-9.29 

-11.28 
-10.66 
-11.34 
-11.07 
-3.65 
-5.27 
-5.50 
-7.33 

-10.07 
-12.56 
-11.01 

-80.99 
-82.88 
-75.89 
-85.81 
-87.56 
-85.51 

-101.54 
-102.49 
-105.79 
-106.67 
-107.29 
-81.14 
-83.27 
-79.23 
-99.38 
-99.77 
-63.35 
-72.76 
-48.75 
-67.94 
-66.70 
-63.29 
-87.10 
-94.52 
-92.28 
-96.06 
-95.83 
-57.21 
-66.03 
-65.71 
-76.56 
-88.60 
-95.53 
-86.22 

-13.06 
-12.80 
-12.76 
-13.13 
-14.46 
-13.01 
-15.44 
-14.44 
-16.77 
-15.54 
-16.00 
-13.64 
-13.67 
-13.92 
-16.02 
-15.65 
-15.96 
-13.03 
-11.53 
-11.45 
-12.06 
-18.07 
-16.29 
-15.24 
-15.51 
-15.78 
-16.27 
-13.02 
-15.92 
-13.69 
-15.81 
-15.08 
-13.78 
-12.84 

-94.50 
-92.43 
-92.08 
-95.08 
-105.71 
-94.08 
-113.52 
-105.59 
-124.22 
-114.38 
-118.01 
-99.15 
-99.36 
-101.36 
-118.17 
-115.20 
-117.73 
-94.25 
-82.30 
-81.67 
-86.79 
-134.60 
-120.38 
-111.99 
-114.15 
-116.24 
-120.17 
-94.23 
-117.40 
-99.54 
-116.52 
-110.65 
-100.26 
-92.75 

0.15 
0.10 
0.23 
0.08 
0.16 
0.08 
0.07 
0.01 
0.10 
0.04 
0.05 
0.20 
0.16 
0.27 

0.122 
0.09 
2.21 
0.36 
N/A 
0.33 
0.54 
2.92 
0.30 
0.12 
0.17 
0.14 
0.17 

13.91 
1.50 
1.0 
0.55 
0.19 
0.03 
0.06 
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Sept 2010 
Sept 2010 
Sept 2010 
Sept 2010 
Sept 2010 
Sept 2010 
Sept 2010 
Sept 2010 
Sept 2010 
Sept 2010 
Sept 2010 
Sept 2010 
Sept 2010 
Sept 2010 
June 2011 
June 2011 
June 2011 
June 2011 
June 2011 
June 2011 
June 2011 
June 2011 
June 2011 
June 2011 
June 2011 
June 2011 
June 2011 
June 2011 
June 2011 
June 2011 
July 2011 
July 2011 
July 2011 
July 2011 
July 2011 
July 2011 
July 2011 
July 2011 
July 2011 
July 2011 
July 2011 
July 2011 

WAP12 
WAP15 
WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 
WAP33 
WAP34 
WAP37 
WAP39 
WAP05 
WAP07 
WAP12 
WAP15 
WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 
WAP33 
WAP34 
WAP37 
WAP39 
WAP05 
WAP07 
WAP12 
WAP15 
WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 

-11.53 
-10.31 
-12.55 
-12.73 
-11.38 
-12.78 
-12.35 
-12.72 
-12.50 
-13.18 
-12.49 
-11.46 
-12.08 
-11.66 
-13.26 
-11.57 
-11.59 
-12.14 
-13.00 
-11.78 
-13.97 
-13.55 
-14.09 
-14.44 
-13.79 
-10.18 
-11.91 
-9.84 

-13.90 
-12.55 
-6.36 
-8.24 
-4.75 
-8.70 
-7.73 
-6.41 

-10.58 
-11.40 
-11.64 
-11.98 
-11.74 
-4.69 

-90.88 
-83.24 
-94.48 
-98.46 
-94.86 

-100.33 
-101.32 
-102.62 
-99.41 

-101.81 
-96.55 
-92.38 
-95.13 
-92.93 
-97.73 
-90.77 
-91.64 
-92.71 

-102.23 
-96.27 

-106.90 
-107.39 
-110.85 
-111.01 
-108.46 
-91.37 
-94.37 
-90.17 

-111.85 
-101.75 
-69.61 
-74.24 
-59.11 
-78.07 
-75.36 
-69.74 
-91.89 
-95.98 
-97.86 
-98.38 
-96.96 
-62.43 

-13.61 
-12.72 
-13.51 
-14.42 
-15.20 
-14.93 
-15.99 
-15.82 
-15.03 
-14.85 
-14.14 
-14.16 
-14.23 
-14.08 
-13.65 
-13.56 
-13.80 
-13.48 
-15.27 
-15.09 
-15.38 
-16.18 
-16.50 
-16.00 
-16.15 
-16.26 
-14.25 
-16.57 
-17.23 
-15.83 
-14.11 
-12.36 
-10.83 
-13.16 
-13.82 
-14.00 
-15.57 
-15.67 
-15.98 
-15.54 
-15.42 
-15.19 

-98.89 
-91.76 
-98.14 
-105.38 
-111.63 
-109.49 
-117.95 
-116.63 
-110.29 
-108.82 
-103.16 
-103.32 
-103.84 
-102.68 
-99.24 
-98.55 
-100.47 
-97.88 
-112.17 
-110.72 
-113.11 
-119.44 
-122.03 
-118.04 
-119.25 
-120.13 
-104.00 
-122.62 
-127.84 
-116.64 
-102.92 
-88.92 
-76.71 
-95.33 
-100.61 
-102.06 
-114.57 
-115.43 
-117.85 
-114.35 
-113.36 
-111.56 

0.06 
0.08 
0.02 
0.04 
0.12 
0.05 
0.10 
0.08 
0.07 
0.04 
0.04 
0.08 
0.06 
0.07 
0.01 
0.06 
0.07 
0.04 
0.06 
0.11 
0.03 
0.07 
0.06 
0.04 
0.06 
0.25 
0.07 
0.29 
0.09 
0.10 
0.68 
0.23 
1.01 
0.23 
0.38 
0.66 
0.19 
0.15 
0.15 
0.11 
0.12 
1.80 
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July 2011 
July 2011 
July 2011 
July 2011 
Sept 2011 
Sept 2011 
Sept 2011 
Sept 2011 
Sept 2011 
Sept 2011 
Sept 2011 
Sept 2011 
Sept 2011 
Sept 2011 
Sept 2011 
Sept 2011 
Sept 2011 
Sept 2011 
Sept 2011 
Sept 2011 
June 2012 
June 2012 
June 2012 
June 2012 
June 2012 
June 2012 
June 2012 
June 2012 
June 2012 
June 2012 
June 2012 
June 2012 
June 2012 
June 2012 
June 2012 
June 2012 
July 2012 
July 2012 
July 2012 
July 2012 
July 2012 
July 2012 

WAP33 
WAP34 
WAP37 
WAP39 
WAP05 
WAP07 
WAP12 
WAP15 
WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 
WAP33 
WAP34 
WAP37 
WAP39 
WAP05 
WAP07 
WAP12 
WAP15 
WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 
WAP33 
WAP34 
WAP37 
WAP39 
WAP05 
WAP07 
WAP12 
WAP15 
WAP20 
WAP21 

-9.49 
-6.38 
-9.38 

-11.27 
-8.49 
-8.63 
-7.75 
-8.86 
-8.30 
-7.75 

-11.29 
-12.15 
-11.92 
-12.04 
-11.71 
-8.78 

-10.21 
-8.65 

-10.83 
-10.62 
-7.09 
-9.63 
-9.87 

-10.42 
-12.32 
-10.23 
-12.68 
-13.12 
-13.11 
-13.55 
-13.25 
-9.72 

-10.20 
-10.39 
-13.27 
-11.61 
-6.13 
-7.20 
-5.55 
-8.43 
-8.28 
-6.53 

-83.22 
-69.85 
-83.76 
-91.15 
-76.85 
-74.08 
-71.36 
-72.53 
-70.34 
-70.84 
-92.05 
-95.27 
-96.18 
-97.85 
-98.68 
-77.66 
-84.59 
-81.73 
-89.61 
-87.12 
-74.50 
-81.70 
-86.53 
-84.45 
-99.16 
-87.46 

-105.88 
-103.87 
-107.47 
-107.60 
-108.10 
-85.03 
-88.18 
-91.13 

-107.03 
-97.87 
-72.06 
-72.05 
-69.58 
-74.27 
-77.04 
-73.05 

-13.93 
-14.24 
-14.37 
-14.28 
-13.01 
-11.81 
-11.94 
-11.15 
-11.01 
-11.74 
-14.36 
-14.21 
-14.83 
-15.24 
-16.20 
-12.87 
-13.34 
-15.04 
-14.19 
-13.63 
-15.20 
-13.11 
-14.61 
-13.01 
-15.24 
-14.34 
-17.27 
-15.63 
-17.02 
-16.25 
-17.01 
-14.25 
-14.69 
-15.63 
-16.54 
-16.03 
-18.38 
-13.18 
-20.40 
-12.08 
-13.43 
-16.60 

-101.51 
-103.94 
-104.99 
-102.68 
-94.09 
-84.53 
-85.53 
-79.25 
-78.09 
-83.96 
-104.88 
-103.72 
-108.71 
-111.94 
-119.64 
-93.00 
-96.72 
-110.36 
-103.54 
-99.04 
-111.67 
-94.89 
-106.91 
-94.09 
-111.99 
-104.73 
-128.17 
-115.04 
-126.19 
-120.04 
-126.13 
-104.02 
-107.55 
-115.07 
-122.36 
-188.28 
-137.05 
-95.48 
-153.23 
-86.70 
-97.49 
-122.82 

0.20 
0.69 
0.23 
0.10 
0.24 
0.16 
0.26 
0.11 
0.15 
0.25 
0.11 
0.06 
0.09 
0.10 
0.15 
0.21 
0.13 
0.33 
0.12 
0.11 
0.58 
0.15 
0.20 
0.10 
0.09 
0.16 
0.13 
0.07 
0.11 
0.07 
0.10 
0.19 
0.18 
0.20 
0.09 
0.15 
1.16 
0.42 
1.73 
0.19 
0.28 
0.84 
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July 2012 
July 2012 
July 2012 
July 2012 
July 2012 
July 2012 
July 2012 
July 2012 
July 2012 
July 2012 
Sept 2012 
Sept 2012 
Sept 2012 
Sept 2012 
Sept 2012 
Sept 2012 
Sept 2012 
Sept 2012 
Sept 2012 
Sept 2012 
Sept 2012 
Sept 2012 
Sept 2012 
Sept 2012 
Sept 2012 
Sept 2012 
June 2013 
June 2013 
June 2013 
June 2013 
June 2013 
June 2013 
June 2013 
June 2013 
June 2013 
June 2013 
June 2013 
June 2013 
June 2013 
June 2013 
June 2013 
June 2013 

WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 
WAP33 
WAP34 
WAP37 
WAP39 
WAP05 
WAP07 
WAP12 
WAP15 
WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 
WAP33 
WAP34 
WAP37 
WAP39 
WAP05 
WAP07 
WAP12 
WAP15 
WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 
WAP33 
WAP34 
WAP37 
WAP39 

-10.37 
-11.89 
-11.56 
-11.96 
-11.85 
-6.42 
-9.98 
-7.49 
-8.86 

-10.67 
-10.24 
-7.93 
-9.41 
-9.19 
-7.94 
-8.21 
-9.87 

-11.27 
-11.23 
-11.60 
-11.54 
-8.21 
-8.76 
-8.74 
-8.56 
-9.70 
-8.17 
-9.43 
-7.58 

-10.50 
-12.41 
-8.48 
-8.75 

-11.42 
-7.10 

-15.00 
-11.79 
-13.38 
-13.37 
-13.58 
-14.31 
-13.54 

-94.94 
-96.91 
-95.66 

-100.24 
-99.05 
-74.26 
-84.87 
-79.67 
-85.65 
-89.12 
-79.46 
-72.27 
-77.09 
-74.88 
-70.64 
-72.77 
-88.45 
-93.28 
-93.97 
-96.13 
-95.41 
-74.37 
-78.99 
-79.46 
-77.08 
-84.52 
-76.92 
-79.05 
-78.61 
-87.50 

-104.77 
-83.70 
-84.33 
-94.73 
-73.21 

-122.38 
-95.63 

-113.37 
-108.09 
-111.10 
-114.16 
-110.12 

-17.82 
-15.13 
-15.22 
-16.34 
-16.04 
-19.20 
-13.75 
-18.18 
-16.87 
-14.24 
-11.80 
-12.00 
-11.90 
-11.48 
-11.40 
-11.82 
-15.51 
-14.88 
-15.15 
-15.35 
-15.16 
-12.41 
-13.42 
-13.66 
-12.96 
-14.07 
-13.87 
-12.63 
-16.77 
-14.03 
-17.41 
-17.01 
-16.49 
-15.20 
-14.55 
-19.33 
-14.90 
-19.15 
-16.79 
-17.60 
-17.36 
-17.28 

-132.56 
-111.07 
-111.84 
-120.76 
-118.37 
-143.62 
-100.05 
-135.48 
-125.00 
-103.92 
-84.45 
-86.03 
-85.26 
-81.91 
-81.26 
-84.63 
-114.10 
-108.58 
-111.26 
-112.83 
-111.35 
-89.29 
-97.41 
-99.29 
-93.71 
-102.57 
-101.03 
-91.07 
-124.22 
-102.24 
-129.34 
-126.12 
-121.99 
-111.61 
-106.44 
-144.71 
-109.25 
-143.21 
-124.34 
-130.80 
-128.88 
-128.28 

0.29 
0.10 
0.12 
0.14 
0.13 
1.10 
0.15 
0.70 
0.40 
0.13 
0.06 
0.24 
0.11 
0.10 
0.20 
0.20 
0.24 
0.12 
0.13 
0.12 
0.12 
0.23 
0.23 
0.25 
0.23 
0.19 
0.35 
0.16 
0.63 
0.15 
0.18 
0.50 
0.44 
0.15 
0.56 
0.12 
0.12 
0.19 
0.11 
0.13 
0.09 
0.12 
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July 2013 
July 2013 
July 2013 
July 2013 
July 2013 
July 2013 
July 2013 
July 2013 
July 2013 
July 2013 
July 2013 
July 2013 
July 2013 
July 2013 
July 2013 
July 2013 
Sept 2013 
Sept 2013 
Sept 2013 
Sept 2013 
Sept 2013 
Sept 2013 
Sept 2013 
Sept 2013 
Sept 2013 
Sept 2013 
Sept 2013 
Sept 2013 
Sept 2013 
Sept 2013 
Sept 2013 
Sept 2013 
June 2014 
June 2014 
June 2014 
June 2014 
June 2014 
June 2014 
June 2014 
June 2014 
June 2014 
June 2014 

WAP05 
WAP07 
WAP12 
WAP15 
WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 
WAP33 
WAP34 
WAP37 
WAP39 
WAP05 
WAP07 
WAP12 
WAP15 
WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 
WAP33 
WAP34 
WAP37 
WAP39 
WAP05 
WAP07 
WAP12 
WAP15 
WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 

-2.72 
-6.38 
-2.28 
-6.80 
-6.19 
-4.02 
-3.40 
-9.05 
-3.35 
-8.37 

-10.52 
-10.83 
-11.13 
-11.26 
-11.77 
-11.48 
-9.47 
-7.86 

-10.03 
-7.56 
-7.93 
-8.59 

-11.32 
-9.39 

-11.56 
-11.80 
-10.85 
-10.88 
-11.68 
-11.54 
-11.92 
-11.96 
-11.31 
-11.68 
-12.04 
-12.04 
-14.30 
-13.41 
-14.41 
-14.59 
-14.66 
-13.16 

-55.56 
-66.51 
-52.98 
-68.18 
-71.91 
-61.60 
-60.30 
-82.82 
-60.31 
-85.60 
-89.87 
-97.69 
-97.16 
-97.68 

-101.85 
-100.82 
-80.08 
-72.03 
-81.63 
-69.54 
-75.06 
-77.03 
-89.14 
-83.58 
-94.24 
-94.54 
-91.33 
-94.46 
-97.38 
-96.77 
-99.90 
-98.31 
-90.05 
-91.44 
-98.52 
-93.85 

-109.66 
-105.20 
-115.13 
-114.50 
-115.60 
-103.42 

14.56 
-12.47 
0.62 

-12.45 
-17.62 
-26.23 
-6.09 
-14.79 
71.73 
-19.1 
-14.91 
-18.02 
-16.86 
-16.80 
-17.58 
-17.83 
-12.92 
-12.30 
-12.72 
-11.79 
-13.49 
-13.13 
-13.44 
-14.43 
-14.78 
-14.51 
-14.88 
-16.47 
-15.77 
-15.78 
-16.34 
-15.61 
-13.72 
-13.68 
-15.53 
-13.96 
-15.80 
-15.67 
-17.55 
-16.97 
-17.25 
-15.46 

125.71 
-89.80 
14.99 
-89.62 
-131.00 
-199.81 
-38.78 
-108.35 
583.90 
-142.82 
-109.25 
-134.16 
-124.91 
-124.36 
-130.64 
-132.63 
-93.39 
-88.40 
-91.72 
-84.31 
-97.90 
-95.04 
-97.52 
-105.47 
-108.20 
-106.06 
-109.07 
-119.34 
-116.15 
-116.22 
-120.72 
-114.84 
-99.76 
-99.44 
-114.21 
-101.64 
-116.42 
-115.36 
-130.41 
-125.77 
-127.97 
-113.64 

N/A 
0.54 
N/A 
0.45 
1.06 
4.40 
N/A 
0.31 
N/A 
0.65 
0.19 
0.31 
0.24 
0.22 
0.22 
0.25 
0.17 
0.29 
0.12 
0.29 
0.36 
0.26 
0.08 
0.26 
0.12 
0.10 
0.17 
0.22 
0.16 
0.17 
0.17 
0.14 
0.09 
0.07 
0.12 
0.07 
0.04 
0.07 
0.09 
0.07 
0.07 
0.07 
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June 2014 
June 2014 
June 2014 
June 2014 
June 2014 
June 2014 
July 2014 
July 2014 
July 2014 
July 2014 
July 2014 
July 2014 
July 2014 
July 2014 
July 2014 
July 2014 
July 2014 
July 2014 
July 2014 
July 2014 
July 2014 
July 2014 
Sept 2014 
Sept 2014 
Sept 2014 
Sept 2014 
Sept 2014 
Sept 2014 
Sept 2014 
Sept 2014 
Sept 2014 
Sept 2014 
Sept 2014 
Sept 2014 
Sept 2014 
Sept 2014 
Sept 2014 
Sept 2014 
June 2015 
June 2015 
June 2015 
June 2015 

WAP27 
WAP32 
WAP33 
WAP34 
WAP37 
WAP39 
WAP05 
WAP07 
WAP12 
WAP15 
WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 
WAP33 
WAP34 
WAP37 
WAP39 
WAP05 
WAP07 
WAP12 
WAP15 
WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 
WAP33 
WAP34 
WAP37 
WAP39 
WAP05 
WAP07 
WAP12 
WAP15 

-12.80 
-12.28 
-11.65 
-11.69 
-13.77 
-12.74 
-9.44 
-9.76 
-7.91 
-9.95 
-9.68 
-9.02 

-11.99 
-12.21 
-11.98 
-12.40 
-11.51 
-9.58 

-10.99 
-10.58 
-11.54 
-11.42 
-10.53 
-9.07 

-11.30 
-8.79 
-8.67 
-9.51 

-11.28 
-11.49 
-11.70 
-11.91 
-12.28 
-9.75 
-9.81 
-9.47 

-11.06 
-10.58 
-9.80 

-10.67 
-10.76 
-11.73 

-99.33 
-95.05 
-90.48 
-92.45 

-105.75 
-98.59 
-78.23 
-78.95 
-72.23 
-78.89 
-81.25 
-77.78 
-94.10 
-95.05 
-94.90 
-97.17 
-92.90 
-80.66 
-87.32 
-86.25 
-91.80 
-89.97 
-86.05 
-77.71 
-90.43 
-75.45 
-78.59 
-83.03 
-96.53 
-97.33 
-98.28 

-100.44 
-101.29 
-86.16 
-85.71 
-84.91 
-92.08 
-89.22 
-84.95 
-86.23 
-90.23 
-90.96 

-14.64 
-14.02 
-13.44 
-13.98 
-15.32 
-14.50 
-12.34 
-12.20 
-12.25 
-11.99 
-13.02 
-12.72 
-14.10 
-14.11 
-14.37 
-14.51 
-14.38 
-12.95 
-13.29 
-13.46 
-13.97 
-13.57 
-13.46 
-12.62 
-13.85 
-12.22 
-13.60 
-13.94 
-16.21 
-16.11 
-16.09 
-15.58 
-16.17 
-14.82 
-14.50 
-14.84 
-14.79 
-14.51 
-13.96 
-13.19 
-14.44 
-13.40 

-107.13 
-102.14 
-97.48 
-101.81 
-112.57 
-105.97 
-88.72 
-87.58 
-87.99 
-85.92 
-94.15 
-91.78 
-102.78 
102.91 
-104.93 
-106.05 
-105.00 
-93.60 
-96.31 
-97.70 
-101.79 
-98.52 
-97.70 
-90.97 
-100.81 
-87.73 
-98.80 
-101.53 
-119.69 
-118.91 
-118.70 
-122.60 
-119.35 
-108.53 
-105.99 
-108.72 
-108.32 
-106.11 
-101.70 
-95.48 
-105.50 
-97.19 

0.06 
0.06 
0.06 
0.08 
0.04 
0.06 
0.14 
0.11 
0.27 
0.09 
0.16 
0.19 
0.07 
0.06 
0.08 
0.07 
0.11 
0.16 
0.09 
0.12 
0.09 
0.08 
0.12 
0.18 
0.10 
0.19 
0.28 
0.22 
0.19 
0.18 
0.16 
0.17 
0.14 
0.24 
0.22 
0.27 
0.15 
0.17 
0.15 
0.08 
0.12 
0.04 
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June 2015 
June 2015 
June 2015 
June 2015 
June 2015 
June 2015 
June 2015 
June 2015 
June 2015 
June 2015 
June 2015 
June 2015 
July 2015 
July 2015 
July 2015 
July 2015 
July 2015 
July 2015 
July 2015 
July 2015 
July 2015 
July 2015 
July 2015 
July 2015 
July 2015 
July 2015 
July 2015 
July 2015 
Sept 2015 
Sept 2015 
Sept 2015 
Sept 2015 
Sept 2015 
Sept 2015 
Sept 2015 
Sept 2015 
Sept 2015 
Sept 2015 
Sept 2015 
Sept 2015 
Sept 2015 
Sept 2015 

WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 
WAP33 
WAP34 
WAP37 
WAP39 
WAP05 
WAP07 
WAP12 
WAP15 
WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 
WAP33 
WAP34 
WAP37 
WAP39 
WAP05 
WAP07 
WAP12 
WAP15 
WAP20 
WAP21 
WAP23 
WAP24 
WAP25 
WAP26 
WAP27 
WAP32 
WAP33 
WAP34 

-13.03 
-10.90 
-13.48 
-13.69 
-14.30 
-14.51 
-13.90 
-9.74 

-11.62 
-9.99 

-13.86 
-13.47 
-9.27 
-9.74 
-9.62 

-10.36 
-11.19 
-10.37 
-13.04 
-12.77 
-13.13 
-13.13 
-12.87 
-9.76 

-10.61 
-10.26 
-11.63 
-11.72 
-8.99 
-8.89 

-10.31 
-8.79 
-8.81 
-9.14 

-11.62 
-11.84 
-12.36 
-12.49 
-12.18 
-10.42 
-9.63 

-11.09 

-102.64 
-91.06 

-108.16 
-107.28 
-113.98 
-114.09 
-110.67 
-88.72 
-93.40 
-89.54 

-110.93 
-109.38 
-82.58 
-82.82 
-83.58 
-85.10 
-92.49 
-88.83 

-105.32 
-103.15 
-105.93 
-107.15 
-106.47 
-87.69 
-90.59 
-91.04 
-96.96 
-95.93 
-76.48 
-75.44 
-82.44 
-73.57 
-75.72 
-78.15 
-96.69 
-96.80 

-100.04 
-100.20 
-99.51 
-85.07 
-83.58 
-89.95 

-15.32 
-14.52 
-16.56 
-15.89 
-17.28 
-16.94 
-16.75 
-15.91 
-14.27 
-15.68 
-16.93 
-17.06 
-13.89 
-13.24 
-13.71 
-13.20 
-14.59 
-14.56 
-16.27 
-15.92 
-16.35 
-16.83 
-17.09 
-15.30 
-14.84 
-15.80 
-15.57 
-15.01 
-12.01 
-11.79 
-12.46 
-11.33 
-11.96 
-12.39 
-15.48 
-15.13 
-15.47 
-15.31 
-15.58 
-13.12 
-13.70 
-13.85 

-112.53 
-106.16 
-122.49 
-117.09 
-128.25 
-125.50 
-123.97 
-117.26 
-104.14 
-115.44 
-125.46 
-126.49 
-101.10 
-95.89 
-99.71 
-95.62 
-106.74 
-106.46 
-120.12 
-117.34 
-120.79 
-124.62 
-126.73 
-112.41 
-108.72 
-116.40 
-114.59 
-110.06 
-86.08 
-84.33 
-89.66 
-80.64 
-85.69 
-89.09 
-113.84 
-111.00 
-113.73 
-112.48 
-114.61 
-94.96 
-99.58 
-100.78 

0.05 
0.11 
0.07 
0.05 
0.06 
0.05 
0.06 
0.23 
0.07 
0.20 
0.06 
0.08 
0.19 
0.13 
0.16 
0.09 
0.10 
0.14 
0.07 
0.08 
0.07 
0.09 
0.10 
0.21 
0.14 
0.19 
0.11 
0.09 
0.13 
0.12 
0.07 
0.11 
0.14 
0.13 
0.11 
0.09 
0.08 
0.07 
0.09 
0.09 
0.15 
0.08 
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Sept 2015 
Sept 2015 

 

WAP37 
WAP39 

-11.18 
-10.71 

-90.94 
-89.06 

-14.05 
-14.08 

-102.42 
-102.64 

0.08 
0.11 

 

 

E/I ratios that had negative values are not reported as the framework could not 
accurately represent these ponds.  
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Appendix B.  

Evaporation pan water isotope composition  

Date 

2010 
 18O‰  2H‰ Date 

2011 
 18O‰  2H‰ 

June 24 -10.9 -100.0 June 21 -10.8 -96.0 

June 30 -8.6 -90.0 June 28 -8.6 -85.0 
July 7 -7.7 -74.0 July 5 -6.3 -77.0 

July 14 -6.4 -72.0 July 12 -4.4 -65.0 

July 21 -4.4 -62.0 July 19 -5.3 -64.0 
July 28 -5.4 -63.0 July 26 -4.7 -64.0 

Aug 4 -6.3 -71.0 Aug 2 -6.2 -67.0 
Aug 11 -5.0 -66.0 Aug 16 -6.9 -74.0 

Aug 18 -8.1 -74.0 Aug 23 -8.2 -76.0 

Aug 25 -10.3 -85.0 Aug 31 -8.7 -81.0 

Sept 13 -9.13 -76.0 Sept 6 -8.4 -78.0 
Sept 16 -9.0 -76.0 Sept 13 -8.19 -79.0 

   Sept 22 -8.5 -76.0 

Date 
2012 

 18O‰  2H‰ Date 
2013 

 18O‰  2H‰ 

June 20 -10.0 -99.9 June 28 -9.9 -95.6 
June 27 -8.0 -91.5 July 3 -7.5 -84.5 

July 4 -6.1 -80.8 July 5 -6.4 -79.3 
July 11 -5.7 -79.3 July 12 -6.1 -74.5 

July 18 -6.1 -45.9 July 19 -8.0 -81.9 

Aug 8 -6.1 -19.3 July 26 -6.8 -76.9 
Aug 9 -8.4 -107.6 Aug 2 -6.7 -71.3 

Aug 16 -8.8 -94.0 Aug 9 -7.6 -73.1 

Aug 22 -8.7 -89.0 Aug 17 -6.0 -66.7 

Aug 30 -8.9 -75.5 Aug 23 -6.9 -73.8 
Sept 6 -8.4 -73.7    

Sept 13 -8.9 -70.4    

Sept 19 -8.6 -72.6    
Date 
2014 

 18O‰  2H‰ Date 
2015 

 18O‰  2H‰ 

June 11 -10.4 -115.2 June 12 -10.5 -95.6 
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June 19 -10.2 -100.1 June 14 -9.7 -93.0 
June 26 -7.7 -88.7 June 26 -8.0 -86.4 

July 3 -6.1 -72.4 July 3 -6.0 -77.9 
July 10 -6.2 -73.8 July 10 -10.3 -96.4 

July 17 -7.8 -79.5 July 17 -7.6 -82.0 

July 24 -7.8 -81.3 July 24 -7.5 -81.9 

July 31 -7.0 -76.9 July 31 -6.9 -76.0 
Aug 7 -6.9 -77.2 Aug 7 -5.7 -64.4 

Aug 14 -7.4 -76.9 Aug 14 -5.3 -62.0 

Aug 21 -7.5 -76.4 Aug 21 -5.4 -63.6 

Aug 28 -7.1 -74.9 Aug 28 -5.3 -63.4 

Sept 5 -7.4 -75.7 Sept 4 -6.0 -65.5 
Sept 11 -8.8 -81.8 Sept 11 -5.0 -56.7 

Sept 18 -9.7 -89.3 Sept 18 -6.6 -65.9 
   Sept 25 -7.7 -71.6 
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Appendix C 

Flux Weighted Temperatures and Humidity 

Date 

2010 

Temp Rh 

(avg) 

li a N L Et 

(tot) 

Flux 

T 

Flux 

rh 
June 5.5 76.0 1.15 0.53 30.0 21.30 449.78   

July 12.2 76.6 3.81 0.53 31.0 20.06 670.07   

August 10.5 83.3 3.04 0.53 31.0 17.07 526.39   
Sept 6.5 83.4 1.48 0.53 30.0 14.19 327.73   

Avg 8.6 80.5 2.37 0.53 30.5 18.16  9.27 80.39 
          

Date 

2011 

Temp Rh 

(avg) 

li A N L Et 

(tot) 

Flux 

T 

Flux 

rh 

June 7.7 76.5 1.91 0.55 30.0 21.29 467.14   
July 14.3 74.9 4.83 0.55 31.0 20.08 641.16   

August 12.9 83.7 4.14 0.55 31.0 17.10 515.67   

Sept 10.2 74.1 2.91 0.55 30.0 14.22 364.40   

Avg 11.2 77.3 3.45 0.55 30.5 18.17  11.63 77.41 

          
Date 

2012 

Temp Rh 

(avg) 

li a N L Et 

(tot) 

Flux 

T 

Flux 

rh 
June 6.5 78.5 1.48 0.54 30.0 21.31 436.89   

July 14.6 74.3 4.98 0.54 31.0 20.02 661.33   

August 13.1 77.5 4.24 0.54 31.0 17.02 529.98   
Sept 8.4 83.7 2.17 0.54 30.0 14.15 333.92   

Avg 10.6 78.5 3.22 0.54 30.5 18.12  11.33 77.69 
          

Date 
2013 

Temp Rh 
(avg) 

li a N L Et 
(tot) 

Flux 
T 

Flux 
rh 

June 10.1 63.3 2.87 0.55 30.0 21.31 540.90   

July 14.6 73.6 4.98 0.55 31.0 20.04 644.66   
August 12.2 79.3 3.81 0.55 31.0 17.05 496.54   

Sept 8.7 79.6 2.29 0.55 30.0 14.17 331.19   

Avg 11.4 73.9 3.49 0.55 30.5 18.14  11.82 73.22 

          
Date 
2014 

Temp Rh 
(avg) 

li a N L Et 
(tot) 

Flux 
T 

Flux 
rh 

June 9.8 67.6 2.74 0.54 30.0 21.30 550.94   
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July 13.6 75.8 4.48 0.54 31.0 20.06 641.54   
August 12.6 77.4 4.00 0.54 31.0 17.07 523.68   

Sept 6.3 81.3 1.41 0.54 30.0 14.19 288.09   
Avg 10.5 75.5 3.16 0.54 30.5 18.15  11.24 74.75 

          

Date 
2015 

Temp Rh 
(avg) 

li a N L Et 
(tot) 

Flux 
T 

Flux 
rh 

June 7.8 78.3 1.95 0.53 30.0 21.29 521.37   

July 11.9 81.9 3.67 0.53 31.0 30.08 637.19   

August 10.9 85.3 3.24 0.53 31.0 17.09 518.57   
Sept 7.0 81.4 1.65 0.53 30.0 14.21 328.05   

Avg 9.4 81.7 2.63 0.53 30.5   9.79 81.79 
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