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Abstract 

Wildlife data is often limited by survey effort, small sample sizes, and spatial biases 

associated with collection and missing data. These factors can create unique challenges from a 

surveillance perspective when trying to extract spatial patterns of habitat suitability and disease 

distributions for conservation and management purposes. This thesis examined data quality from 

a wildlife health database in the context of spatial analysis of wildlife disease. Spatial analysis of 

the data to predict habitat suitability of bats and white nose syndrome afflicted bats was 

examined by using the MaxEnt modelling method. Methods to reduce spatial bias were 

examined and specific settings and parameters were evaluated and compared to the default 

settings in MaxEnt. This analysis showed that subsampling of occurrences leads to less 

informative models and increased similarity to accessible locations, whereas restricting 

background locations increased model performance and the resulting suitability maps showed 

new suitable areas not present in models with default settings. Alternative data sources of bat 

occurrence data were used from the Global Biodiversity Information Facility which showed 

distributions were more related to climatic covariates than CWHC models, which were heavily 

reliant on hibernacula locations. This suggests that CWHC records may benefit from 

supplementation of publicly available occurrence data. This thesis provides a basis for data 

quality analyses that should be performed on surveillance data before undertaking more complex 

modelling procedures. 
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1 Introduction 

The spread of pathogens and adverse health consequences in our environment is inherently 

spatially motivated, from mapping disease cases to risk/exposure mapping to complex modelling 

of future pathogen scenarios and dynamics (Walter 2000). Spatial epidemiology is the study of 

spatial variation in disease risk or incidence (Ostfeld, Glass, and Keesing 2005); where 

relationships between health outcomes, demographics, environments, socioeconomics, genetics 

and infection risk factors are examined in a spatial context (Elliott and Wartenberg 2004). 

Emerging infectious zoonoses (diseases that spread from animals to humans) are particularly 

sensitive to spatial factors, given the linkages inherent between humans, animal hosts, vectors, 

and the environments they share. As such, spatial epidemiological analysis has played important 

roles in many recent zoonoses research such as severe acute respiratory syndrome (SARS) (Lai 

et al. 2004), Ebola (Judson et al. 2016), Nipah Virus (Peter Daszak et al. 2013), and West Nile 

Virus (Brownstein et al. 2004; Mostashari et al. 2003). Geographic information systems (GIS) 

have been used in the surveillance of diseases, health outcomes related to environment or 

socioeconomics, and in risk assessment for several decades (Elliott and Wartenberg 2004; 

Ostfeld, Glass, and Keesing 2005; Eisen and Eisen 2010). The sophistication of GIS and spatial 

analytic tools for spatial epidemiology has shifted greatly in recent years; from simple mapping 

of existing data to predictive modelling of distributions of hosts, vectors, and their interactions 

(Openshaw 1990; Rytkönen 2004; Ostfeld, Glass, and Keesing 2005; Goodchild 2010).  

Recommendations from the Centre of Diseases Control and Prevention (CDC) and World 

Health Organization (WHO) have included GIS as a low-cost tool for detection of high-risk 



2 

 

areas, predicting potential outbreaks, and for surveillance purposes (Kaiser et al. 2003; WHO 

2006).  

 Wildlife health surveillance is a difficult task in practice that aims to quantify the health of 

wildlife in nature, however, most wild animals live and die in anonymity without ever being 

documented through census data, without baseline health information and without the causes of 

morbidity and mortality being determined (McAloose and Newton 2009). Disease surveillance is 

more often quantified through post-mortem examinations of wildlife. Figure 1 shows a general 

conceptual framework guiding this thesis and the analysis conducted. The pyramid in Figure 1 

indicates that wildlife in nature can be never be fully captured by a surveillance system or GIS 

system – they are only abstractions of nature with the best available data. Section 2.2 will 

provide definitions, an overview of surveillance activities and spatial bias in more detail for 

surveillance of wildlife. At each step along the pyramid in Figure 1 biases and errors can 

accumulate further complicating analysis from this data.  Surveillance data for wildlife 

encompasses spatial locations of where a dead animal was found by an actor along with a 

diagnosis from a trained pathologist (where possible). A portion of these data will be classified 

on the disease status of the wildlife and reports will be generated to share with wildlife 

managers, government and other relevant stakeholders. There are many possible derived outputs 

of spatial information that can be developed from surveillance data. One simple output are maps 

of observations; more complex outputs would include: risk maps or species distribution models. 

This thesis will evaluate how surveillance data can be used for spatial outputs such as:  species 

distribution modelling. The spatial nature of infectious disease and the spatial heterogeneities in 

transmission spread make risk and species distribution models valuable tools to assess the 

proportion of humans or the number of individuals that are potentially at risk for exposure to 
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vectors and vector-borne pathogens or for practical prevention and control activities (Ostfeld, 

Glass, and Keesing 2005; Eisen and Eisen 2010; Linard and Tatem 2012). Risk mapping 

characterizes the spatial variation to a static ecological risk of infection and potential causes for 

that variation. Risk maps can examine distributions of arthropod vectors, vertebrate reservoirs 

and actual cases of disease in a host and many other health related measures (Ostfeld, Glass, and 

Keesing 2005). This process involves gathering remote-sensing data and other spatial datasets 

that characterize the environment and climate, or future climates. Distribution maps of the 

vector, reservoir or disease can then be created to examine the influence of the environmental 

variables and to project the distribution to other un-sampled areas or future scenarios (Ostfeld, 

Glass, and Keesing 2005). 

For this thesis, the application of species distribution models from surveillance data will be 

explored. To apply species distribution models to wildlife, we need precise locations for where 

the specie(s) of interest occur in the landscape otherwise known as “presences”. There are many 

methods for tracking and recording where wildlife occurs, however this thesis will focus on 

wildlife mortality data recorded through surveillance systems and wildlife observations recorded 

in citizen science data. Wildlife surveillance systems are one such example where spatial data are 

being incorporated by recording the site where a mortality event occurs. The benefit of using 

species distribution models is that they can make predictions on where a species is likely to occur 

in similar environments without having recorded presences in that area. This is especially 

valuable when wildlife data is sparse or limited. The model will examine relationships to where a 

species is known to occur within a set of environmental and climatic conditions and predict a 

surface of suitability of similar conditions across the study area.  
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These models are powerful tools, however there are additive consequences at each step of 

the modelling process, starting with data collection & recording. The choice of the modelling 

method relies on the data available and how the data is collected. Elith et al. (2006) reviewed the 

performance of species distribution models as well as their assumptions. Since surveillance data 

is often based on observing a dead animal (presences) and not the absence of a dead animal and 

the sampling design is usually unknown, this limits the methodological choice to presence only 

methods. For presence only methods, MaxEnt is the most popular and recommended method 

with 1000 published uses from 2006-2013 (Merow, Smith, and Silander 2013). To complicate 

matters further, with new systems and disciplines incorporating GIS into their toolkits, there is 

additional concern with data misuse or misinterpretation, as geospatial data and tools are being 

utilized by non-spatial disciplines which may have limited expertise on appropriate methodology 

and interpretation (Unwin 2005; Van Oort and Bregt 2005; Devillers et al. 2007; Pierkot et al. 

2011).  Both types of wildlife data, mortality and occurrence data, are biased by accessibility. For 

this paper, accessibility refers to the uneven patterns in data that arise from variability in the ease 

with which observations are made. 

 Samples biased by accessibility may affect the prediction accuracy of models if roads 

directly affect the distribution of species or if the transportation network does not accurately 

represent the environmental conditions of the region (Loiselle et al. 2008; Boria et al. 2014). As 

noted earlier, wildlife surveillance data are often not-random and derived from convenience 

sampling (e.g. road kills, hunter-shot samples) (Nusser et al. 2008) or risk-based sampling 

methods (Stärk et al. 2006). When the data does exist, the data may be spatially biased by 

proximity to potential observers of wildlife and may not represent where a species occurs most 

frequently in nature. Using spatially biased data in distribution models therefore, may be missing 
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important information or giving too much importance to random conditions that may not be 

indicative of a species actual niche. All these considerations need to be examined before 

performing any distribution modelling. A method should be chosen based on what is known 

about the data and how well a specified model can provide additional methods to account for 

spatial bias. In future chapters, I will examine in detail the spatial bias associated with 

surveillance data and how “tuning” or not tuning a model can have varying model outputs which 

should be interpreted carefully. With the increasing threat of EIDs it is important to examine how 

the types of data available can influence the spatial applications and modelling of this data, as 

well as the implications of these biased and incomplete data. Since the presence/absence of wild 

animals is hard to predict but is dependent on environmental and geographical factors (Pfeiffer 

and Hugh-Jones 2002), examining the habitat requirements of a species may serve as a valuable 

tool to predict the spatial distribution of a population and identify areas vulnerable to an EID 

where increased and strategic sampling effort should occur.  

Many zoonoses of concern in recent years spill-over from wildlife populations (Mörner et 

al. 2002a; K. E. Jones et al. 2008). Wildlife are increasingly forced into smaller habitats due to 

increasing human population and development (Theobald, Miller, and Hobbs 1997; Sala et al. 

2000) has likely increased the prevalence of these zoonotic diseases (P Daszak, Cunningham, 

and Hyatt 2000; P. Daszak, Cunningham, and Hyatt 2001; Cunningham 2005; Hassell et al. 

2017). Despite the critical importance of understanding spatial distributions of wildlife; spatial 

epidemiological analyses of wildlife origin zoonoses are limited by several factors. For wildlife, 

these investigations are complicated by additional challenges due to sparse, incomplete, and 

fractured data across several departments and disciplines outside of the health sector (Leighton et 

al. 1997; Stitt, Mountifield, and Stephen 2007; Stallknecht 2007; Grogan et al. 2014). Section 2.2 
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will outline the wildlife specific challenges of data and how that can affect the fitness for use of 

that data. As well, concentrated research, funding and disease management initiatives rarely 

target wildlife-specific diseases unless they afflict humans, livestock or crops (Voyles et al. 

2014; Stephen 2014; Grogan et al. 2014) even though these can have important conservation 

concerns. For example, in comparison to human diseases, fungal diseases such as 

chytridiomycosis in amphibians and white-nose syndrome in bats both experienced time-lags in 

their detection and have resulted in loss of biodiversity and species declines (Skerratt et al. 2007; 

Blehert et al. 2009; Grogan et al. 2014; Voyles et al. 2014). The data collection for these species 

or diseases may not occur until well after devastating impacts to the population has occurred. In 

wildlife studies, often charismatic or flag-ship species are overrepresented in the literature, this is 

also true in terms of representation in surveillance data. 

 Wildlife health encompasses complex relationships between space, time, environment, 

and determinants of health and disease. These interactions can be further understood using 

wildlife surveillance data in conjunction with GIS and spatial modelling. This thesis will 

examine how surveillance data can be used in a spatial context for species distribution modelling 

and investigate spatial data quality elements that can be measured with wildlife surveillance data.  

This thesis will focus on answering the following questions:  

1)  What are the characteristics of traditional wildlife disease surveillance data 

and to what extent do data quality issues impose limits on the spatial analysis and 

interpretation of wildlife health data?  
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2) Is species distribution modelling an appropriate use for wildlife disease 

surveillance data and how do the characteristics of the data align with 

assumptions and requirements of SDMs? 

2  Background 

2.1 Surveillance 

Surveillance is defined as: “the ongoing collection, collation, and analysis of information 

related to animal health and the timely dissemination of information to those who need to know 

so that action can be taken” (“Access Online: OIE - World Organisation for Animal Health” 

n.d.). Surveillance methods can vary based on the purpose of the surveillance (e.g. overall health, 

outbreak detection), targeted species, geographic extent, community involvement, costs and 

public interest. Wildlife is defined by the World Organisation for Animal Health (OIE) as: “an 

animal that has a phenotype unaffected by human selection and lives independent of direct 

human supervision or control” (“Access Online: OIE - World Organisation for Animal Health” 

n.d.). There are stark contrasts between domestic animals and wildlife. Wildlife cannot be 

sampled in the same way that domestic animal or human populations are sampled. Domestic 

animal locations are known and confined, and typically cared for by their farmers and 

veterinarians (Artois et al. 2009). Human populations and demographics are typically known 

from census information, they can go to a doctor when they experience symptoms or admit 

themselves into a hospital. In wildlife we do not have the same amount of knowledge nor does 

wildlife have access to services that these other two groups have, so choosing the right type of 

surveillance and area for surveillance are incredibly important to minimize biased sampling.  As 

such, surveillance of domestic animals and wildlife should differ to suit these two specific 
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contexts. According to the OIE, surveillance is aimed at demonstrating the presence, absence or 

distribution of a disease or infection, or the earliest detection of an exotic or emerging disease. 

When wildlife are included in a surveillance system, it is often because they can serve as 

reservoirs for diseases and as indicators of disease risk to humans and domestic animals (“Access 

Online: OIE - World Organisation for Animal Health” n.d.). Even when wildlife surveillance 

programs exist, the number of species and sparse geographic areas covered are not at the same 

scale in which the animals are distributed (Kuiken et al. 2005). 

Hoinville et al. (2013) sought to clarify and maintain consistency in the definition of 

terms commonly used in animal health surveillance to enhance transparency and facilitate the 

exchange of data.  Two common surveillance strategies are passive and active surveillance. 

Passive surveillance (or opportunistic) relies on the observation of clinically diseased or dead 

animals and the opportunistic collection of specimens. They are dependent on submissions from 

observers (the public, hunters, scientists, veterinarians, government, farmers and those in contact 

with wildlife) to report sick or dead animals and samples can be provided by hunters or collected 

from road-kill animals (Artois et al. 2009; Ryser-Degiorgis 2013). For a case to be submitted to a 

diagnostic laboratory, it must persist in the environment, be detected and reported in a timely 

manner (Stallknecht 2007). Often post-mortem findings are the primary data collected from 

cases of passive wildlife disease surveillance. The cause of death is generally not available soon 

enough or at all to assist in early detection since they rely on laboratory analyses that are costly, 

time consuming or unavailable (Gardner, Hietala, and Boyce 1996; Institute of Medicine (US) 

Forum on Microbial Threats 2007), or challenges with obtaining the actual specimen and poor 

specimen quality. Additionally, passive surveillance can be biased towards species and diseases 

of priority interest (Artois et al. 2009).Whereas active surveillance (or targeted surveillance) 
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collects investigator-initiated (Hoinville et al. 2013) predefined data collection scheme specific 

to the objectives of the system (Duncan et al. 2008) which requires the capturing or killing of 

animals for specimen collection with traps, sharpshooters, net guns, drive nets, hazing, chemical 

immobilization and other methods (Ryser-Degiorgis 2013) or collection of wildlife found dead. 

A drawback of active surveillance is that it can produce biased results such as when sick animals 

may be too sick to be trapped or conversely, will be easier to trap through certain methods (Rees 

et al. 2011) or healthy animals are less accessible for sampling. These methods require a 

compromise of ideal scenarios that may not be financially feasible or timely to collect like an 

adequate number of samples for pathogen and antibody detection or provide reliable prevalence 

estimates and should be representative of the study population (Stallknecht 2007). For some 

species, alternative sampling schemes may be more cost efficient such as indirect sampling 

methods like fecal sampling for avian influenza virus (Bevins et al. 2014).  

Surveillance of wildlife relies heavily on communities, hunters, conservation officers, 

rehabilitation centres, zoos, park wardens and others in contact with wildlife to report animals 

that look sick or are found dead. One of the main issues for wildlife sampling is whether the 

samples are representative of the population. For example, hunter-killed samples may be 

restricted in their geography as well as temporally and may not be representative of the age, sex 

or structure of the population (Stallknecht 2007). Motivation for submitting samples is an 

important factor that may increase as public awareness and media perceives a disease outbreak in 

wildlife (Mörner et al. 2002a; Stallknecht 2007). Nielsen et al. (2004) suggests surveillance must 

address the needs of both the researchers and the hunters (or more generally all submitters) to 

highlight the mutual beneficial relationship of managing a resource. This can be facilitated by a 

strong and sustained motivation of each field collaborator by generating training sessions and 
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systemically providing scientific feedback about the fate of each sample to the contributions to 

the overall picture (Linden et al. 2011). However, despite these potential biases, surveillance data 

can still be an indicator of events and trends of interest to public health, veterinary and wildlife 

management purposes and the detection or absence of diseases (Artois et al. 2009). 

2.2 Wildlife Data 

The quantity of available wildlife distribution and disease data is often limited. Due to the 

interdisciplinary nature of wildlife and ecology, datasets may be shared and repurposed by other 

users and often there is limited documentation or metadata associated to aide the user in 

interpreting the data (Michener et al. 1997). Wildlife occurrence data (location where an animal 

is found in an environment) can be generated by a variety of sources, most commonly from 

museum records, scientific studies, conservation groups and citizen science databases (Boakes et 

al. 2010).  These occurrence records, or presences, can then be used in species distribution 

models to generate a surface of habitat suitability. Similarly, locations of where an animal has 

been found dead, such as from wildlife surveillance data, can also be used in species distribution 

modelling, or in risk mapping. Recording cases of morbidity and mortality in each location can 

provide information on spatial and temporal trends of infection in wildlife (Artois et al. 2009). 

Data from environmental monitoring schemes and long-term ecological research can provide a 

baseline for detecting environmental changes which can in turn, indicate the species, ecosystem 

or habitat health (Pôças et al. 2014). These data provide critical contextual information to 

evaluate wildlife mortality trends, or other wildlife health issues. Total population estimates are 

needed to evaluate the health of local populations, estimate the prevalence of a disease, and aid 

in identifying what populations and locations are at risk or vulnerable (Childs et al. 2007; 

Stallknecht 2007).  
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Biased data are a function of either limited resources (e.g., time, accessibility, safety, 

financial, etc.) or the repurposing of existing data whereby data are sampled non-randomly 

(Leitão, Moreira, and Osborne 2011). For occurrence data, the spatial biases are typically a result 

of sampling schemes that are biased towards roads (Kadmon, Farber, and Danin 2004; Reddy 

and Dávalos 2003), population centers (Barry and Elith 2006; Reddy and Dávalos 2003; Stolar 

and Nielsen 2015) and parks or protected areas (Leitão, Moreira, and Osborne 2011; Stolar and 

Nielsen 2015). Additional errors can accumulate through mistakes in transferring field 

observations to databases, rounding errors, failure to specify the geographic datum used, and 

geo-referencing of imprecise locality descriptions which can change over time (Wieczorek, Guo, 

and Hijmans 2004; Graham et al. 2008; Robertson et al. 2016). The quality of data and spatial 

coverage of occurrence data is also  an issue; occurrence data are often incomplete (Araújo and 

Guisan 2006), the data are presence-only and lack of observations do not necessarily signify true 

absences (Phillips, Dudík, and Schapire 2004), sample sizes are often small (Barry and Elith 

2006) and specific taxonomic groups may be overrepresented or underrepresented  (Duncan et al. 

2008; Boakes et al. 2010; Varela et al. 2014). Additionally, sick wildlife may not be found before 

predators and scavengers prey on dying or dead animals making the specimen unavailable to 

researchers for surveillance purposes (Wobeser 1994; Artois et al. 2009). The quality of wildlife 

data can affect the outcome of conservation plans where conservation planners typically must 

use incomplete and available data to make decisions despite the limitations (Grand et al. 2007). 

Some of these limitations include an over-representation of charismatic or easily detectable 

species (Grand et al. 2007; Boakes et al. 2010). When data biased by accessibility are used to 

inform conservation or surveillance plans, we need to be cautious of our interpretation of the 

spatial and environmental patterns present. Modelled relationships that use biased data (and the 
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spatial distribution maps that follow from them) may be more indicative of the patterns at these 

accessible areas and represent the sampling effort than the actual niche (Barry and Elith 2006). 

Ideally, species data would be collected systematically or randomly through surveys where 

abundance and presence/absence is recorded (Elith et al. 2011). However, this is often expensive, 

time consuming and skilled personnel, equipment and other resources are not always available to 

collect the information in inaccessible areas or over larger spatial scales congruent with 

processes driving pathogen spread and spillover. Knowing the data quality limitations can 

improve the choice of conservation priorities and guide further efforts to collect additional data 

(Grand et al. 2007).  

Given the variety of information sources for tracking and monitoring wildlife health; data 

quality evaluation is critical if these data are to be used effectively. For example, repurposing of 

wildlife health data that is collected for diagnostic testing to monitoring spatial patterns of health 

and disease may incur biases derived from laboratory locations, taxonomic sampling effort (e.g., 

mammals vs. amphibians), or spatial accessibility. There is a growing concern with spatial data 

quality (SDQ) because of the increasing use and amount of data developed by the geospatial 

community which comes from different sources, different times of acquisition and obtained 

through different processing methods or techniques (Devillers et al. 2007; Gervais et al. 2009).  

 The very nature of passive surveillance with many actors submitting observations can 

lead to uncertainty about the quality of the spatial data being recorded especially if accuracy or 

uncertainty of spatial information is not quantified within these databases. A representative 

sample of wildlife can be challenging to match to age, season, disease activity with statistical 

precision (Pfeiffer and Hugh-Jones 2002).  In terms of wildlife health, it is important that 

software and databases allow easy recording, dissemination, sharing and interpretation (Deem, 
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Karesh, and Weisman 2001) to its users and submitters, especially if these systems are to be 

integrated with other sources of data and analyzed for large-scale spatial and temporal patterns. 

Exploratory spatial analysis of wildlife data should minimally include: data description, data 

summarization, and data quality. These can be simple and straightforward to perform by 

checking for missing or null values throughout the database, checking for typos and validating 

spatial locations (e.g. does the label in the database (City, physical descriptor, road intersection, 

etc.) match the latitude and longitude given?). Summarizing the data can include grouping and 

counting the data that fits a certain criterion (e.g. # of observations in a season), calculating 

summary statistics, or classification methods that examine complex relationships within data. 

Timeliness is one factor that can be easily determined in surveillance databases. The 

impact of a disease can be mitigated by rapid detection of first cases (Anonymous 2004) making 

timeliness a critical characteristic of many surveillance systems.  The dissemination of a threat 

and response based on data interpretation separates surveillance from monitoring activities 

(Vrbova et al. 2010). Timeliness can be influenced by many factors such as the time to reach a 

diagnostic facility, the transfer of data, data management, analysis and interpretation which can 

all depend on the volume and complexity of data and specimens (Sosin 2003). Timeliness can be 

examined retroactively to determine if there was a time lag in response, which can aide in future 

efforts to close this gap or investigate methods to improve timeliness. 

2.3 CWHC and Wildlife Health Surveillance Sampling in Canada 

The lack of a legal mandate and fragmentation of responsibilities for non-zoonotic 

diseases at local, provincial and federal levels has been cited as one of the main challenges for 

wildlife surveillance (Vrbova et al. 2010; Childs et al. 2000; Miller, Farnsworth, and Malmberg 
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2013; Grogan et al. 2014).  In Canada, public health surveillance and outbreak detection 

primarily falls under provincial jurisdiction with some federal agencies tracking zoonotic 

diseases. For example, research in British Columbia found that one of the principle obstacles to 

ongoing wildlife disease surveillance was the lack of a legal mandate for agencies to collect 

pathological or etiological data from wildlife, as well as no centralized authority for contacting 

and sharing information between agencies and public health officials (Stitt, Mountifield, and 

Stephen 2007). When data is collected on wildlife, there is no internationally agreed-upon 

standards or a standardized approach to coding case definitions and recording data (Artois et al. 

2009; Childs et al. 2000; Hoinville et al. 2013). The World Organization for Animal Health 

(OIE) provides guidelines and mandatory reporting for zoonoses that can affect international 

trade (“Animal Health in the World: OIE - World Organisation for Animal Health” n.d.). For 

wildlife, the OIE has created the World Animal Health Information System-Wild (WAHIS-

WILD) which provides information about non OIE-listed disease in wildlife selected by OIE 

experts based on their importance for protecting human and animal health based on a voluntary 

basis for OIE-reporting countries (“Animal Health in the World: OIE - World Organisation for 

Animal Health” n.d.).  

In Canada, the Canadian Wildlife Health Cooperative (CWHC) has established a national 

network of wildlife disease diagnosticians, researchers and experts in wildlife health and policy 

advisors (“CWHC - Canadian Wildlife Health Cooperative” n.d.). They maintain a database of 

mortality events, locations, and associated testing and disease outcome information as well as 

targeted programs (“CWHC - Canadian Wildlife Health Cooperative” n.d.). The CWHC Wildlife 

Disease Database is a national repository that eases data sharing and exchange between 

researchers, wildlife disease managers and other stakeholders and partners (Canadian Wildlife 
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Health Cooperative n.d.). The database has standardized drop-down lists for specific fields, such 

as taxonomy and anatomy to keep the data consistent, with some fields that support free text 

entry and comments from pathologists.  Professionals can request access to the database or fill 

out a data request to the CWHC who will process the needs of the user and export relevant 

portions of the database according to the research question.  

2.4 Spatial Modelling with Wildlife Surveillance Data 

The spatial data contained in the CWHC database were used to examine association with 

respect to auxiliary geographic datasets, such as proximity to various sources (population 

centers, road networks, provincial and federal parks, or other location types) and to indicate if 

any locations are geographically biased (i.e., occur more frequently in specific areas).  

The details of ecologic parameters associated with occurrences of diseases or of 

susceptible species may be unclear because of biased reporting or lack of detailed geographic 

precision in reported wildlife mortalities. However, there are tools to help explain ecological 

conditions associated with the occurrences of wildlife and in some cases where higher risks of 

disease are present, even with incomplete data. Species distribution modelling (SDM or 

ecological niche modelling) encompasses a suite of tools that relate known occurrences of these 

species to raster GIS layers, which summarize the variation in several environmental dimensions 

(Peterson 2006).  

2.4.1 Maxent  

Maxent is a widely used approach for SDM (Phillips, Dudík, and Schapire 2004). The 

program allows users to input environmental predictors and occurrence locations and then 

generates a probability distribution of maximum entropy (interpreted as habitat 
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suitability/preference). MaxEnt has minimal assumptions compared to other SDM frameworks 

such as generalized linear modelling (GLM) and generalized additive models (GAM) and ideal 

for situations where there are a low number of occurrence locations (e.g. <100), presence only 

data, limited/incomplete information, and continuous or categorical environmental data (Phillips, 

Anderson, and Schapire 2006). “Presences” (species occurrences) are locations in the study area 

where a species occurs. Background points (BP), sometimes referred to as pseudo-absences, are 

a random sample (n=10,000) of the entire study area with the assumption that presence locations 

are also a random sample from the area where the species is present (Elith et al. 2011). This 

assumption is often not valid for occurrence data, since the data are non-random, spatially biased 

and may not encompass the entire study area (Reddy and Dávalos 2003). Values are extracted 

from the features at each presence and background location. The feature’s response curves can 

be either 1) highly complex (typical of MaxEnt) and non-linear, which may have high in-sample 

predictive power but limited biological meaning, or 2) smoother (Merow, Smith, and Silander 

2013) which may be easier to interpret and more easily support management decision-making. 

Modelling species distributions can be a challenging task as model assumptions may not 

hold true to the data and parameter decisions can greatly influence model outputs. 

Recommendations in the literature for best practices, reducing model overfitting, examining data 

bias and adjusting the model accordingly, may not be followed (See review by: Morales, 

Fernández, and Baca-González 2017) making it difficult to compare findings.  

2.4.2 Spatial Sampling Bias 

  One weakness of MaxEnt is that it is prone to overfitting. Overfitting in the context of 

SDMs occurs when a model is estimated that fits the calibration (or test) data too closely. This 

conflates the signal and noise inherent in the data and reduces model prediction accuracy 
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(Radosavljevic and Anderson 2014). Over-fit models may have a high AUC (area under the 

curve) value, but when they are applied to new regions over different time periods the model will 

lack generalizability and may fail to accurately capture the expected distribution (Robert J. 

Hijmans, Phillips, and Elith 2017). AUC is interpreted as the probability that a random presence 

location is ranked higher than a random background location (Merow, Smith, and Silander 2013; 

Phillips, Anderson, and Schapire 2006). The AUC can be exaggerated when the study area is 

large (Lobo, Jiménez-Valverde, and Real 2008) or occurrence records exhibit spatial 

autocorrelation (Veloz 2009). A regularization parameter (β) in Maxent can be adjusted by the 

user to reduce overfitting and smooth out the response curves of the features. Adjusting the β can 

penalize the addition of extra parameters (Warren and Seifert 2011) and determines the strength 

of the penalty (Merow, Smith, and Silander 2013). Sampling bias can also be handled by 

restricting background points (BP) to the area where samples were collected (restricted area) as 

opposed to being uniformly distributed over the entire study area (Phillips and Dudík 2008).  If 

the background locations are biased in the same way the occurrence locations are, then the model 

will already reflect the errors and the predictions will be consistent with the data (Barry and Elith 

2006).   

Adjusting parameters from their default settings in MaxEnt can reduce the influence of 

biased data on the resulting model. Accessibility covariates that are retained in models and have 

a high permutation importance will indicate what covariates are associated with sampling bias 

for a species. Comparison of models with an adjustment of MaxEnt parameters can indicate 

which settings are effective at reducing these biases. Examining the resulting models in this 

context can inform future methodology that can be used to analyse wildlife disease data that are 

spatially biased. 
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2.4.3 Methods to Reduce Spatial Bias in Maxent 

Subsampling is a common method to reduce spatial clustering by specifying the 

maximum number of occurrences allowed in a grid-cell and randomly selecting occurrences up 

to that maximum as a “subsample” (e.g. One occurrence per grid-cell) (Beck et al. 2014; Varela 

et al. 2014). The downside to subsampling is that it does not correct the lack of data in some 

areas and there is less data to model (Beck et al. 2014; Varela et al. 2014; Fourcade et al. 2014). 

The size of the grid cell may alter the distribution of occurrences in environmental space thus the 

size of the grid cell must be large enough to reduce the bias while also retaining spatial 

resolution and extent (Fourcade et al. 2014). Boria et al. (2014) found that models that used 

subsampled data reduced model overfitting and increased AUC scores. Additionally, Fourcade et 

al. (2014) used subsampling across five separate types of bias scenarios and found that it 

consistently performed well. In contrast, subsampling in Varela et al. (2014) resulted in 

occurrence records being discarded that contained relevant climatic information (but were 

clustered in space) and the remaining records tended to have similar climatic conditions. This 

suggests that subsampling could have varying impacts on model performance that may be 

species or sampling specific and could have a negative effect on species living in patchy or 

spatially heterogeneous environments (Varela et al. 2014).  

  Background locations in modelling are sometimes referred to as “pseudo-absences”, 

however these locations do not represent “true absences” thus the term is misleading (Phillips et 

al. 2009). These locations represent a sample of the set of conditions that are available to a 

species’ in a region (Phillips et al. 2009). Background locations are typically derived from a 

random sample of the entire study area; however, this assumption does not account for spatial 

bias. Therefore, if a model is derived from data biased by accessibility, the model will predict the 
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environmental conditions associated with roads (e.g. Roads in flat, homogeneous terrain) and 

survey effort rather than the true environmental conditions associated with a species (Phillips et 

al. 2009).  The recommendation in the literature involves restricting background locations so that 

they reflect the same sample selection bias as the occurrence data so that both data sets contain 

the same environmental bias (Phillips et al. 2009). The models derived from restricted 

background locations will ideally highlight the habitats where a species occurs rather than a 

reflection of the more heavily sampled areas (Phillips et al. 2009). Background samples drawn 

from too large of an area can lead inflated evaluation measures of model performance like AUC 

and less informative choice of response variables (VanDerWal et al. 2009). Fourcade et al. 

(2014) restricted background points based on randomly sampling buffer areas (500 km and 100 

km for different species) around occurrence records which failed to improve the model in five 

separate biased scenarios. Although, it is unclear how they choose the size of these buffers and 

their ecological importance to the species examined. The results of correcting for sampling bias 

may not perform equally across various conditions and species depending on the type and 

intensity of the bias (Fourcade et al. 2014). Therefore, the type of bias in occurrence data should 

be examined prior to modelling and bias reduction techniques need further case studies to 

elucidate how these methods may enhance or hinder model performance for various species, in 

different geographic areas.   

In addition to these bias reduction techniques, model evaluation procedures typically 

involve “training” and “test” data (Fielding and Bell 1997). Occurrence records are randomly 

split into groups where a large proportion (70-80%) represent “training” data that are used to fit 

the model; “test” data (20-30%) are retained for cross-validation and calculating AUC. 

Unfortunately, if the data collected is biased or sampling effort is spatially autocorrelated the 
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“test” data is not truly independent of training data and may generate an overly optimistic 

assessment of model accuracy (Veloz 2009).  

In summary, the difficulty of measuring wildlife disease distribution over large areas is an 

ongoing issue, coupled with the requirements of SDMs pose a unique methodological challenge. 

In this thesis, I will explore elements of spatial data quality of wildlife surveillance data through 

the intended use case of spatial modelling. In conjunction with the impact of accessibility bias 

and parameter sensitivity on a widely used species distribution modelling tool, MaxEnt. I 

compare the performance of different models to quantify the accessibility bias inherent in the 

occurrence data and couple methods for reducing this bias a priori or tuning modelling methods 

to reduce this bias. 

3 Case Study: White Nose Syndrome in Ontario 

3.1 Introduction to White Nose Syndrome 

White-nose syndrome (WNS) is an emerging wildlife disease that was first discovered in 

the winter of 2006/2007 in four caves in New York State. Since its discovery, it is estimated to 

have killed more than 6 million hibernating bats in North America (U.S. Fish & Wildlife Service 

2017). The disease is caused by infection with a cold-loving fungus called Pseudogymnoascus 

destructans (Pd) that grows on the skin and flight membranes of bats (Boyles and Willis 2009; 

Blehert et al. 2009, Gargas et al. 2009). White nose syndrome in susceptible bat species is 

associated with population level die-offs that could profoundly affect ecological communities 

(Ehlman, Cox, and Crowley 2013). 

 During hibernation bat species susceptible to WNS in Ontario, typically roost in crowded 

caves. This clustering behaviour increases the likelihood of intra- and interspecies transmission 
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of viruses (Calisher et al. 2006) or in the case of WNS, fungus. The affected bats can exhibit 

severe weight loss, unusual behaviour, more frequent arousals during hibernation, depletion of 

fat stores, irritated skin, holes in wings and dehydration (Perry 2013). WNS has expanded across 

the north-eastern United States and has been confirmed at 31 states as well as in five Canadian 

provinces, New Brunswick, Nova Scotia, Prince Edward Island, Ontario and Quebec 

(www.whitenosesyndrome.org, Accessed January 2018). In 2015 WNS was also detected in 

Washington State.   

 In Canada, no federal government organization holds bat occurrence data in a centralized 

database or has the rights to distribute the information to those seeking it. The CWHC database 

can be a useful proxy when formal species survey data are not available, as it contains spatial 

locations where the dead bats were found. The CWHC data may then be considered a presence-

only data set and we can use SDM to approximate the habitat suitability of bats across our study 

area. Additionally, a subset of these occurrences that are afflicted with WNS can be used to 

approximate the habitat suitability of WNS afflicted bats. The accessibility bias of surveillance 

data can be examined by using covariates that may be driving factors of accessibility (e.g., roads, 

parks, etc.) to determine which covariates (ecological or accessibility) better predict species 

occurrences, how the suitability differs between these models and model performance. The 

accessibility of a habitat could introduce sampling biases, since remote habitats or those with 

difficult terrain are harder to access. Some accessible geographic areas may be over-represented 

since transportation is cheaper and lower effort is required compared to areas with more difficult 

terrain (Anthony et al. 2013; Aguirre, Bröjer, and Mörner 1999). In the case of white nose 

syndrome, this may account for later detection of WNS spreading across North America, since 

bat hibernacula are often inaccessible. Ultimately, the WNS case study will shed light on the 

http://www.whitenosesyndrome.org/
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utility of spatially explicit disease modelling based on SDMs with inherently biased wildlife 

disease surveillance data. 

3.2 Methods 

An export of all records between 2010-2015 in the CWHC wildlife disease database was 

performed (n=4176). A description of the submission process and underlying database and 

reporting mechanisms can be found on the CWHC website (http://www.cwhc-

rcsf.ca/docs/CWHC%20Database%20Overview.pdf accessed Sept 2017). Briefly, the CWHC 

database is a custom-built application dedicated to storing wildlife disease data where the 

underlying data model was designed to suit the processes at the CWHC. First an incident 

(mortality event or sighting of an animal) is reported to the CWHC, then a sample of the animal 

may be submitted to the CWHC, followed by testing, diagnosis/interpretation and finally 

reporting. A description of the variable names, attributes of the data and type of data (spatial, 

numerical, categorical) used for this thesis is described in Table 1. All derived spatial data is also 

defined in Table 1; spatial data was defined into the NAD 1983 geographic coordinate system 

from csv files and projected to the Canada Conformal Conic projection.  

3.2.1 Data Quality Analysis Approach 

Before data are used for modelling, characterization of the data or a spatial data quality 

assessment should be performed. The International Organization for Standardization (ISO) is a 

worldwide federation of national standards bodies comprised of international organizations, 

governmental and non-governmental bodies. The ISO has prepared an international standard for 

geographic data which will be examined in this chapter. This standard provides principles for 

describing the quality of geographic data and concepts for handling quality information for 

http://www.cwhc-rcsf.ca/docs/CWHC%20Database%20Overview.pdf
http://www.cwhc-rcsf.ca/docs/CWHC%20Database%20Overview.pdf
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geographic data (ISO 2013). Many of the ISO principles may be difficult to evaluate for wildlife 

data since there is a lack of denominator information, external data sets and the databases used 

for surveillance may not contain uncertainty measures common in GIS databases.  

Since the CWHC data is primarily based on passive surveillance where we lack 

denominator information and validation from other data sources, there are a limited number of 

data quality elements that can be assessed. For this chapter, I chose to examine 4 data quality 

elements: 1) completeness, 2) thematic accuracy 3) temporal consistency and 4) Positional bias 

derived from the ISO (2013). The derived metrics are summarized in Figure 2 and how they are 

measured.   

Bats may be seen as a less charismatic species due to depictions in popular culture and 

association with disease, compared to other species contained in the CWHC data and thus may 

have different data characteristics than other species. Additionally, the fungal pathogen 

responsible for WNS only afflicts bats, which may contribute to the quality or characteristics 

displayed in the data compared to zoonotic diseases of concern in other species. To investigate 

this, the data was further subdivided into bat species (n=442) versus all 185-other species of 

animals in the database hereafter referred to as “all species” (n=3734) which contained 50 

columns which are described in Table 1 based on their type and a brief inferred description from 

the data.  

Completeness is defined as the presence/absence of features, their attributes and 

relationships. Thematic accuracy is the accuracy of the attributes and classification of features 

and their relationships.  Completeness was assessed by determining the number of null values or 

values coded as “unknown” in each field.  The records in the CWHC database fall into three 



24 

 

cases: 1) A diagnosis was unable to be performed or a necropsy was not performed. This case 

can be because of the quality of the sample may not be suitable or able to be determined or 

simply because the submitter was not interested in collecting that information. 2) There is one 

incident code per specimen and null values can be calculated. 3) The values contained for a 

specimen (or row) are empty but contained in another related row (incident codes). In the first 

case, the specimens that fall into this case were determined by a keyword search using the 

following terms:  

decomposed, no diagnosis, decomposition, autolysed, maggots, poor body, poor, not 

suitable, not possible, emaciated, not determined, undetermined, unknown, carcass unsuitable, 

and no necropsy 

 

If any keywords were matched for a given specimen they were omitted. Since including 

them would inflate the calculated sum of null values. The second case is the only case that can be 

directly calculated with confidence since these specimens would not fall into cases 1 and 3. 

Specimens in case 3 cannot be calculated in any standardized way and is also omitted. 

Thematic accuracy was evaluated on classification correctness of species names 

compared to the National Center for Biotechnology Information (NCBI) database and the 

Integrated Taxonomic Information system (ITIS). Frequency of observations were aggregated to 

each represented taxon to identify the most common groups observed in the database and to 

evaluate species representativeness. The R package “taxize” (Chamberlain et al. 2016) was used 

to check the scientific names from the CWHC against a reference for the most recent names and 

to automatically identify further taxonomic groups (taxon). 
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  Temporal quality was evaluated by the temporal consistency (correct order of events 

e.g. Date Received occurs after Date Found). Temporal consistency was evaluated in conjunction 

with “timeliness” which is the difference in time between when a sample was found and received 

by the CWHC. Timeliness would indicate if there was a time lag between when the sample was 

found versus when the sample was received by the CWHC, which could have implications for 

early warning systems if there is a significant time delay. If the difference in days is negative this 

would be an example of an incorrect order of events for temporal quality. The seasonal 

distribution of when samples were found was also evaluated under “temporal consistency”.   

To investigate whether timeliness is impacted by other factors within the CWHC database 

and extracted spatial components (derived from accessibility), Classification and Regression 

Trees (CART; Breiman 1984) were generated in R with time delay in days as the dependent 

variable. Trees explain variation of a single response variable by one or more explanatory 

variables where the response variable is either categorical (classification trees) or numeric 

(regression trees) and the explanatory variable can be numeric or categorical (De’ath and 

Fabricius 2000).  The goal is to split the data into groups while keeping the tree small and 

interpreted easily.  Observations that satisfy the condition at each junction are assigned to the left 

branch and the others are assigned to the right branch (Hastie, Tibshirani, and Friedman 2009).  

The following variables were examined: Captive Class, Storage Type, Submission Source, 

Number of specimens, distance to airport, distance to major roads, distance to population centres, 

distance to provincial/federal parks, distance to waterbody, distance to water source, taxonomic 

order, Bat species or All species, multiple specimens per incident or one specimen per incident, 

human population from 2016 census, human population density, and season. The Rpart package 

in R (Therneau, Atkinson, and Ripley 2015) was used to perform the CART analysis. To prevent 
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the tree from having too many terminal nodes and overfitting, a complexity parameter of 0.01 

was used and a minimum bucket of n=20 was chosen, which restricts the terminal nodes to 

containing no less than 20 observations. After 100 folds, the original tree was pruned to reduce 

the size of the tree (easier interpretation) and selected the split with minimal cross-validated 

error. 

 To further examine the spatial aspects and positional bias of surveillance data, SDMs 

were used to model relationships between species occurrences and environmental and landscape 

covariates to output a map of habitat suitability.  

3.2.2 Species Distribution Modelling of WNS in Ontario 

3.2.2.1 Data 

The modelling framework (Figure 3) was adapted from (Franklin and Miller 2010, 10) to 

include the specifics of modelling with disease surveillance data and MaxEnt.  First, we must 

have ecological theory as to the habitat requirements for these bat species and the environmental 

conditions associated with white nose syndrome (Appendix Table A3, A4).  The next level 

requires that the data is readily available in a spatial format and/or exists; environmental factors 

for bats in Ontario were difficult to acquire and were not comprehensive (many hibernacula 

locations on private land are not recorded). Finally, a model can be created linking the ecological 

theory with available data and species occurrences (or mortality for WNS).  During the 

modelling process there are many calibration, bias reduction techniques, parameters and outputs 

that can affect the overall habitat suitability map.  Bat occurrence records for species affected by 

WNS in Ontario (and within 20 km buffer) were obtained from the CWHC’s wildlife disease 

database for 2010-2015 (n=443). The three-bat species: Eptesicus fuscus (n=122), Myotis 



27 

 

lucifugus (n=295) and Myotis septentrionalis (n=26) were treated as one set of occurrences due 

to their similar habitat requirements, overlapping distributional ranges and presence in the same 

hibernaculum (Government of Canada 2015) and swarming locations (Randall and Broders 

2014). Bat occurrences that tested positive or suspected for WNS were used for separate models 

and testing (n=163).  Additional bat occurrence data was obtained from Global Biodiversity 

Information Facility (http://www.gbif.org, accessed October 2016) to compare to CWHC 

models. The study area was restricted to Ontario based on data availability and access to 

hibernacula locations that was freely available with sensitivity training. To my knowledge, 

Ontario was one of the only provinces with a centralized repository for bat hibernacula locations 

from the National Heritage Information Center. Land Information Ontario contained complete, 

up-to-date resources including detailed metadata, in various spatial formats and resolution, for 

road networks and other spatial datasets examined below that did not exist for other provinces 

with the same attention to detail.  The National Heritage Information Center (NHIC) provided 

historic and current (1934-2015) bat hibernacula locations in Ontario. Normalized Difference 

Vegetation Indices (NDVI) was obtained from MODIS Satellite MOD13A3 at a monthly 1 km 

resolution; minimum, maximum and average NDVI values were calculated for 2010-2015. 

NDVI is used in remote sensing to measure “greenness” or vegetation.  Several additional 

landscape and accessibility covariates were obtained from Land Information Ontario (Appendix 

Table A1). Environmental covariates were downloaded from the WorldClim database (R.J. 

Hijmans et al. 2005 http://worldclim.org) at a 1 km resolution. All environmental and 

accessibility covariates (See: Appendix Table A1 for a list of all covariates used) were 

transformed to euclidean distance (where necessary) and were re-projected to Canada Lambert 

Conformal Conic, clipped to the Ontario study area in ArcGIS (10.3.1) (Esri 2015). To minimize 

http://worldclim.org/
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missing environmental covariates due to a sharp boundary, the Ontario study area was buffered 

by 20 km. MaxEnt version 3.3.3k was used within the R package dismo (Robert J. Hijmans, 

Phillips, and Elith 2017). 

3.2.2.2 MaxEnt Parameter and Bias Analysis 

 Model name conventions follow the format where prefixes denote the occurrence data 

used (c=CWHC, G=GBIF); covariates were denoted by “eco” for ecologically meaningful 

covariates, “acc” for accessibility covariates, and “dis” for WNS disease covariates. Models with 

a suffix indicate a modifier on the settings and parameters where rb=restricted background and 

ss=subsampled occurrences (Appendix Table A2). For example, the C-eco-rb is a model using 

CWHC occurrence records with ecological covariates with restricted background points that 

predicts suitable bat habitat. All possible variable relationships (linear, quadratic, product, 

threshold and hinge) were used and the output format was logistic. The settings were kept 

consistent across all models, with exception of where RB were used.   

3.2.2.3 Regularization 

 To examine the effects of changing the regularization parameter (β) value on the 

complexity of the model, the β value was evaluated at 1,2,4,6,8,10,12, and 16. The default settings 

of MaxEnt use a regularization (β) value of 1, this value was chosen based on performance across 

arrange of taxonomic groups (Phillips and Dudík 2008). However, this may not be applicable to 

all species, occurrence localities, study regions and environmental data (Radosavljevic and 

Anderson 2014).  Each model used cross-validation and 4 replicates. Response curves for 

environmental covariates were examined for each iteration for an expected ecological response. 

After an optimal regularization was identified, k-fold partitioning (cross-validation) was used on 
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all occurrences with a k=5, the average response curves, jackknife test and AUC was compared 

for all folds (Appendix B). K-fold validation was chosen as it is the standard validation approach 

among most MaxEnt studies. The optimal regularization parameter was then used in all following 

models below. 

3.2.2.4 Ecological and Disease Models 

The Ecological Models (denoted by “eco” prefix) use environmental covariates that 

should reflect bat habitat based on previous studies (See: Appendix Table A3). The entire set of 

WorldClim variables was retained to determine the effects of different model parameters on 

variable selection. To simplify the model, response curves, percent contribution, permutation 

importance and jack knife results were used to eliminate environmental covariates from the final 

model. In the jackknife procedure, covariates that were used in isolation that increased training 

or testing gain (how well the covariates fit the presence data) were included in future iterations or 

covariates that reduced training or testing gain when removed from the model were retained. 

Final models used 30% of the occurrence points for testing and 70% for training. The CWHC 

WNS Disease Model (CW-dis) follows a similar procedure, however disease covariates and only 

a subset of bats that tested positive or suspect for WNS were used. 

3.2.2.5 Accessibility Models 

 To examine sampling bias, we examined how well accessibility covariates (distance to 

roads, airports, population centers, parks) predict bat occurrences. We would expect that an 

unbiased sample of bat occurrences would be better predicted by ecological covariates if the 

sample is indicative of the species niche. However, we know that with most wildlife data, there is 

often a tendency for occurrence data to be biased. Distance from accessibility covariates was 
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calculated from occurrence point locations, with distance to major indicating that most occurrences 

occurred within 1 km of a road (Appendix Figure A1). Initial models built with accessibility 

covariates indicated that distance to major roads had the highest permutation importance compared 

to all other accessibility covariates. In order to account for this bias, two methods were used: 1) 

Restricted background locations and 2) Subsampling of occurrence locations.  

3.2.2.6 Accounting for Accessibility bias 

Restricted Background Sampling 

The Ecological Restricted Background model (c-eco+rb), utilized restricted background 

sampling.  Since the survey effort for both CWHC surveillance data and GBIF data were 

unknown, a sampling bias file cannot be computed to account for spatial sampling bias. With the 

assumption that our data are biased towards accessible areas, we can use the accessibility model 

as a surrogate sampling bias file, since this surface will utilize the same bias from MaxEnt. 

Background points (n=10,000) were sampled from the binary accessibility output (derived from 

the logistic threshold of maximum test sensitivity plus specificity or true skill statistics (TSS) 

(Jiménez-Valverde and Lobo (2007)). The TSS can minimize the mean value of the error rate for 

positive observation values and the error rate for negative observations (Duan et al. 2014).   

Subsampling 

 Occurrences were randomly sampled for one occurrence per 10 km grid cell. The resulting 

model is referred to as Ecological Subsampled Model (c-eco+ss) using CWHC data and G-eco+ss 

for GBIF. This systematic sampling approach was used by Fourcade et al. (2014) which lowered 

spatial clustering bias of occurrence points for most virtual species. 
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Model Comparison Analysis 

Evaluation and comparison of models was done using their AUC values, raster subtraction 

(Appendix C) to identify the magnitude of change across Ontario and by using the common 

overlap similarity indices nicheoverlap I and D (Warren, Glor, and Turelli 2008) in dismo and 

the structural similarity index metric (Z. Wang et al. 2004; Robertson et al. 2014). Niche overlap 

‘D’ (Schoener 1970) measures the overall match between two niches over the whole study area 

and determines whether we can infer the niche characteristics of one species from another 

(Broennimann et al. 2012).  The D index was selected to compare the maps of habitat suitability 

since it is a commonly used metric within MaxEnt studies and has a straightforward 

interpretation (Warren, Glor, and Turelli 2008).  In contrast, the niche overlap ‘I’ is based on 

Hellinger distance where I treats model outputs as probability distributions and compares how 

identical the niches are (Warren, Glor, and Turelli 2008). Similar to Veloz (2009), for the 

purposes of this paper, niche overlap indices can be thought of as the level of agreement between 

the predictions of two habitat suitability maps. The Structural Similarity Index (SSIM) uses a 

local moving window to compare two maps (or in this case MaxEnt outputs) by generating 

independent units relating to local similarities in the mean, variance and spatial correlation 

(Robertson et al. 2014; Z. Wang et al. 2004, 200). SSIM is well-suited for ecological spatial data 

since it considers local magnitudes and spatial structure (E. L. Jones et al. 2016). The SSIM 

function was implemented in R and used to compute the composite SSIM index using a 5 x 5 

moving window that moves over the entire MaxEnt output raster.   
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4 Results 

4.1 Data Quality 

4.1.1 Completeness 

There was a total of 4176 records obtained for this thesis. Each row contains a “Specimen 

Code” that is a unique ID submitted for a given animal/sample. Attached to each Specimen Code 

is an Incident ID. Each incident may contain one or more specimens, which is denoted by the 

Incident ID (Many to one relationship). Each contained varying diagnoses and tests but were 

obtained at the same time or area (e.g. Submitted together). There were 822 records that fell into 

case 1; 891 in case 3 and were omitted from further completeness analysis; 2463 records were 

retained from case 2. Completeness of the data is summarized in the spider diagram in Figure 4.  

For bats and non-bat species interpretation was the least complete (66% and 54%). These levels 

of completeness would be lower if not for the omission of other cases, since only one row may 

contain all of the relevant information for one incident code with the remaining specimens (rows) 

empty.  

4.1.2 Thematic Accuracy 

The original data was subset and summarized by incident codes (n=3337). The majority 

of incidents for non-bat species were submitted by the Public (n=1234), Rehabilitation Centres 

(n=976) and Provincial Government (n=505).  For bats the majority of submissions were from 

the Public (n=68), the Provincial Government(n=64), Universities (n=21) and Rehabilitation 

Centres (n=62). 

The CWHC database contained 185 unique species names which were then classified 

using taxize (Chamberlain et al. 2016) and tax_name to get the genus, family, order, class 
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phylum and kingdom. 42 species could not be matched in the database from NCBI and were 

further examined and 28 species were found in the ITIS database.  Some species names in the 

CWHC database contained more than one name in the field in parentheses which wouldn’t allow 

further classification in taxize without proper formatting. The missing names (n=14) were fuzzy-

matched using ‘classification’ where the species name was extracted from the list. To examine 

the distribution of taxonomic groups summary statistics and plots were created (Figure 5-7). The 

top 3 species with the highest number of specimens were Procyon lotor (n=860), Myotis 

lucifugus (n=288) and Corvus brachyrhynchos (n=222).  Species were further aggregated to 

Class (Figure 5), Family (Figure 6), Order (Figure 7).  When comparing by incident code the 

number of incidents per species is similar:  Procyon lotor (n=800), Corvus brachyrhynchos 

(n=180), Lanius ludovicianus (n=146).  

4.1.3 Temporal Consistency 

For bats, there were 92 records where timeliness could not be calculated, in these cases 

Date Received and/or Date Found were missing a value. There were 6 negative values, which 

indicate there may have been a data entry error. For non-bat species there were 802 NA values 

and 50 negative values. In both cases, there were large time delays that could be attributed to 

typos with the dates (e.g., 0201-08-30 instead of 2010-08-30) or the sample was a reference from 

an earlier time; these were corrected when found (n=6) or not included in further calculations.  

Timeliness used the same subset of data from thematic accuracy based on incidents. The mean 

and median values for timeliness were the same across both groups (mean= 34 days and 

median=13 days).  

Timeliness of reports was evaluated using box plots (Figure 8-10) and regression trees 

(Figure 11).  The distribution was non-normal for all species and bat species (Appendix D).  A 
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Wilcoxon Rank Sum Test (Mann-Whitney) determined the median difference in samples was a 

difference of -1.0 (P=0.2499).  Storage Type and Submission source values influenced the time 

delay for both groups. For both groups, specimens that were “Frozen” had the highest mean time 

delay (43 days for all species and 39 days for bat species.  Fresh specimens had the lowest time 

delay of 1 day median across both groups (9 day mean for all species and 10 day mean for bats). 

Submission sources for all species with the highest mean time delay were from Conservation 

Groups (78 days) followed by Parks Canada (43 days) and Rehabilitation centres (44 days). The 

submission sources for bats that had the highest mean time delay were different; “Other” (68 

days), followed by the Public (55 days) and Environment Canada (45 days).   

Species with the highest time delay were Asio otus, Sistrurus catenatus, Falco 

peregrinus, Aegolius acadicus, Taxidea taxus s with > 200 days for mean time delay.  Orders of 

Anura, Strigiformes, Squamata and Rodentia had the highest mean time delay along with the 

highest standard deviations (>100 days). Classes of Amphibia has the highest standard deviation 

for time delay (164 days), while unclassified values had a SD of 133 days.   

 The frequency of submissions by year and month were also computed to indicate if there 

was a time of year when sampling was more frequent or if the listing of certain species of bats to 

the Species At-Risk Act inhibited collection. Prior to listing both federally and provincially 

(2012 and 2013), more observations were recorded yearly in 2010 and 2011 and in winter 

months. After listing, yearly and winter observations fell which may be in line with 

recommendations for restricted winter sampling of hibernacula or due to a decrease in population 

for bats (“Ontario’s White-Nose Syndrome Response Plan” 2015; Government of Canada 2015). 

The seasonality of observations (Figure 10) indicated that the majority of bat observations were 

found in the spring (42%) followed by summer (23%).  During the spring, the CWHC requested 
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samples from its submitters since this is when they were more likely to exhibit signs of disease. 

For all species summer had the highest number of submissions (32%) followed by fall (20%).  

The NA values indicate where season could not be determined because Date Found and other 

associated date fields were missing a value. 

4.1.4 Regression Trees 

 The predictors used in the regression tree were chosen based on consistency and 

completeness across species. The CART analysis (Figure 11) identified 5 variables as the most 

important for timeliness: Storage Type (32%), Submission Source (19%), Order (20%), and 

Population from 2011(22%) and Captive Class (7%). Resulting in 4 splits and 5 terminal nodes. 

The first split divided observations by Storage Type. Storage Types from Fresh, Fixed and 

unknown samples ended with one terminal nodes with an average of 11 days. Frozen samples 

were further split based on submission source, population and order. Conservation groups and 

NGOs were a terminal node with an average of 103 days.  The remaining submission sources 

were then split on population >= 5555; with one terminal node with an average of  34 days when 

population is <5555; the final split was based on order, for the grouping including bats 

(Chiroptera) the average was lower than the other  terminal split with 54 days while orders of: 

Falconiformes, Galliformes, Squamata, Strigiformes had a time delay of 159 days.  

 

4.2 White Nose Syndrome Case Study: Species Distribution Modelling 

 The default regularization setting produced response curves with irregular shapes that did 

not represent an ecological response for bats, whereas β values greater than 6 generated more 

realistic estimates of ecological response (Figure 12). The cross-validated model’s average AUC 
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was 0.948. The habitat suitability maps generated with a β of 1 were less generalizable, whereas a 

β of 6 yielded a smoother surface with higher intensities near Ottawa and in the Greater Toronto 

Area (GTA) as well as North-Western Ontario (Figure 13). The covariates in the final models 

(Table 2) indicate that restricting the background points can influence the importance of covariates 

and to a lesser extent, subsampling occurrences. The AUC scores for all models (Table 3) were 

>0.75.  AUC decreased most when RB was used for both C-eco and G-eco. The habitat suitability 

maps (Figure 14) range from 0-1 with values closer to 1 being predicted more suitable. The 

response plots (Figure 15) are similar across most models, with RB smoothing and generalizing 

these relationships. For models using CWHC occurrences, the permutation importance of distance 

to hibernacula was consistently >0.62. Restricting the background points decreased permutation 

importance of hibernacula and increased maximum NDVI to 24%. The models using GBIF 

occurrences had lower values of permutation importance for hibernacula (<35%). The G-eco 

Model, bio6 had a dramatic increase to 59.2% and distance to hibernacula was much lower than 

the C-eco model (13.5%). G-eco-rb had the highest permutation importance for hibernacula among 

GBIF models (35%), and increased importance of maximum NDVI (44%).The G-eco+ss model 

increased bio6 to 72% and decreased hibernacula to the lowest permutation importance.  

 Habitat suitability for bats across all models was highest in southern Ontario, specifically 

around the GTA, Niagara and Bruce County (Appendix Figure A2). Northern Ontario had 

localized suitability around hibernacula. The G-eco habitat suitability map is similar to the C-eco 

Model but follows a more generalized pattern as opposed to the localized areas surrounding 

hibernacula locations in the C-eco model. A binary representation of the C-acc was calculated at 

the maximum test sensitivity plus specificity logistic threshold value (0.186) to sample 
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background occurrences from for the c-eco+rb model. The threshold value used for G-eco+rb 

was 0.202 from the G-acc model.  

The C-eco+rb model removed noise from the C-eco Model and areas around the GTA and 

Central Ontario are less suitable, however the C-eco+ss Model increased habitat suitability in 

Central Ontario and the GTA and contained less suitable areas in Northern Ontario. It removed the 

concentrated areas around hibernacula locations that were present in the C-eco Model. Notably, 

new suitable areas in Northern Ontario that are not present in any other model, emerged through 

the G-eco+rb Model. This discovery is likely related to the use of the restricted background points 

used in G-eco+rb. 

 The WNS models (CW-eco and CW-dis) had the highest AUC (0.978, 0.976 

respectively). CW-eco utilized the same ecological covariates as all other eco models while CW-

dis used covariates associated with Pd growth from other studies (Appendix Table A4). CW-eco 

had the highest permutation importance of 97.5% for distance to hibernacula. with the rest of the 

covariates being <=1% (Table 3). The areas on the suitability map (Figure 14) are concentrated 

around hibernacula locations and have less of a gradient-like effect than the C-eco output. For 

the CW-dis hibernacula remained the most important with 95.2% while all other covariates were 

minimal in their contribution. Comparison of the models indicate that G-eco is the least similar 

to both CW models. This is difficult to compare, since CW models are derived from the same 

data source, so it is expected that G-eco would be the least similar. One interpretation could be 

that the models that used GBIF data are more indicative of an environment where WNS is less 

prevalent or the difference in where citizen science observations take place compared to 

surveillance. 
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Distance to major roads was the most important for the accessibility models (Table 3), 

however G-acc had higher values for distance to airports and population centers. Similarity 

between the eco and acc models (Table 4) were highest for models where no bias reduction was 

attempted (C-eco, G-eco), however for C-eco-ss had the highest values I and D. C-eco+rb and G-

eco+rb had the least similarity to acc models. The visual comparison of SSIM (Figure 16) 

indicated that that most models have low suitability in Northern Ontario. Areas closer to zero 

(orange) indicate that these models exhibited different patterns. These areas of divergence are 

common along smaller lakes and areas where there are no roads intersecting them. For the C-eco 

and G-eco models SSIM shows a large discrepancy on the coast of Lake Huron with ~ -0.4-0.5 

change, where GBIF predicted more suitable habitat.  

5 Discussion 

5.1 Data Quality 

The data quality analysis performed here included completeness, thematic accuracy and 

temporal consistency. The fields that contained the most null values likely have little impact on 

those using the CWHC data, depending on the purpose of their surveillance activities or special 

projects from a researcher. If many different tests are being ordered on a sample, it may not be 

relevant for the submitter to ask for a necropsy and some fields may not be filled out.  One issue 

with the data is the use of two unique ids where one indicates a specimen and another a group of 

specimens (incident). While grouping by incident can serve a specific purpose for organizing 

groups of submissions that may be found in a similar or nearby environment or collected for a 

specific purpose, it is less useful in the context of this thesis where we are already extracting 

spatial information per specimen. A complication with this data was lack of consistency across 
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fields where data is provided on a per incident basis but not per specimen. For example, a group 

of 6 specimens may only contain a diagnosis and test results in one row of the data (for one 

specimen) but this diagnosis is explaining all 6 specimens. This presented challenges when 

determining WNS status for bats. The WNS status field may have been null if WNS is not 

suspected or if data is being collected for a different purpose (e.g. If rabies is the main concern of 

the submitter). Keyword searches on multiple columns and manual identification were used to 

classify WNS status as a result of the information being inconsistently distributed. Further, 

during the study period the identification of the fungal pathogen responsible for WNS changed 

from Geomyces destructans to Pseudogymnoascus destructans which should be retroactively 

updated.  Unknown values for sex or age may be due to difficulties with desiccated bats where 

identifying sex or age is impossible. Approximately half of the interpretations were missing an 

explanation for both bats and all species. In some cases, additional information was provided in 

other fields, however interpretation may be a valuable free-text field prior to discovery of a 

disease. For example, commonly database fields for already discovered diseases are added when 

they are of concern, however prior to discovery there may be characteristics or conditions of the 

specimen that may be recorded in free-text fields such as interpretation, and history; that when 

examined after an outbreak may provide further clues to classify the existence of a disease. If 

these characteristics were identified and recorded under a free-text field such as interpretation, 

they may have served as an early warning to a spreading disease in bats before catastrophic 

population declines.  Further keyword analysis could be performed on interpretation fields to 

understand more contextual information about the diagnosis that isn’t contained in other fields 

(Appendix Table E1). For bats there was some missing information for sex and age. For 

evaluating the population affected or recovering from WNS the sex of the bat can be important 
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for estimating reproduction rates and population size  as most bat species affected by WNS have 

one offspring per year (Barbour and Davis 1969; Thomas, Fenton, and Barclay 1979). As well, 

age of the bat and timing of pup date of birth can contribute to survival rates of bats (Frick, 

Reynolds, and Kunz 2010). While the quality of the samples is an ultimate limitation on what 

can be determined and recorded about a specimen, some of these characteristics may have 

important implications for determining the surviving bat population and where intervention may 

be necessary. 

Wildlife data can also be biased with respect to seasonality. The seasonality of 

submissions differed for bats and all other species which can be attributed to life history, 

seasonality of disease prevalence and host vectors as well as regulations or restrictions for 

sampling specific species and when surveillance effort was highest. For bats, most samples occur 

in early spring which may be due to limiting disturbance or restricted sampling of hibernacula in 

winter months (“Ontario’s White-Nose Syndrome Response Plan” 2015) or spring emergence 

from hibernacula to maternity roosts (Fenton 1969; Foley et al. 2011). For all other species 

summer had the most frequent observations which may correspond to seasonal breeding and 

feeding locations (Mörner et al. 2002b), the seasonal patterns of disease emergence (Bradley and 

Altizer 2007; van Dijk et al. 2014; Rees 2011) or species were easier to detect or more accessible 

in summer months; and when people are more likely to be outside (camping, hiking, etc.). The 

temporal aspects of the database are not able to be fully examined without knowing precise dates 

and activities the CWHC is calling for submissions or actively targeting a species/disease/area. 

The species represented in the database were skewed towards animals with specific 

disease concern and larger mammals. The largest number of observations was for the 

Procyonidae family (primarily racoons), which may speak to rabies control efforts and their 
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occurrence in close proximity to humans; as well as targeted research projects for racoons over 

the study period. The number of observations for a particular species can indicate the importance 

they may hold for emerging or re-emerging zoonotic diseases, such as Rabies, West Nile Virus 

or Avian Influenza or the likelihood of being opportunistically discovered dead as part of 

community hunts or a planned large cull (Schurer et al. 2013). For bat species specifically, there 

was a large number of observations in the CWHC database which may be representative of 

testing for rabies as well as mandatory reporting of collisions/mortality associated with wind 

turbines (Kuvlesky et al. 2007; Kunz et al. 2007; Bird Studies Canada et al. 2017) as well as 

increasing interest/concern about WNS.  

There were slight differences in the timeliness observed between bats and all other 

species in Ontario specifically when looking at mean with 32 and 31 days respectively. The 

median values (12 days and 12 days, respectively) were the same. Submission source was 

another field that contributed to timeliness which may speak to the resources and funding 

available to submission sources and the cost effectiveness of sending samples to a diagnostic lab 

or mandated diagnosis through provincial and federal government.  Special projects may also 

play a role since there are dedicated and prioritized resources for these projects, however 

determining special projects from the data was not possible. For all species, conservation groups 

and rehabilitation centres had the highest median time delay while local, provincial and federal 

government sources had the shortest delay. For bats, “Other” submission sources had the highest 

median time delay followed by Environment Canada and rehabilitation centres. Bat submissions 

from conservation groups, universities, Provincial government and had the shortest time delay. 

Additionally, the storage type of the samples influenced timeliness as well; where frozen or 

unknown storage types had a higher median and mean time delay for bats. Fixed and missing 
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values for storage had the highest time delay for all species which be an indicator of overall data 

quality or the quality of the specimen submitted.  Frozen samples may have a longer delay when 

sent to the lab because of the distance to submission, or cost effectiveness in waiting to send 

multiple frozen carcasses to the CWHC.  

The CART analysis provided further insight into potential predictors for timeliness 

contained in the database and derived spatial components. The original tree was pruned to reduce 

complexity and readability, which eliminated some of the spatial components such as: 

population, distance to population centres and parks. Interestingly, CART did not find 

importance based on the binary classification of records of “all species” or “bat species” but did 

group observations by taxonomic order, of which bats had a higher time delay than the other 

taxonomic order grouping. The original hypothesis was that a large number of specimens 

associated with increased shipping costs and effort, which would contribute to a delay in 

timeliness.  The number of specimens submitted by incident was surprisingly, not an important 

determining factor of timeliness from this CART analysis. Storage types that were fresh were 

received by the CWHC the fastest, however frozen or fixed samples were further divided by 

submission source and order. Rehabilitation centres had the highest time delay in their node. The 

CART analysis was mainly exploratory in this case to examine which factors may influence 

timeliness in the database. One drawback of CART is that it partitions criteria into 2 groups, for 

data with many categorical variables (like CWHC database) this can be limiting since it 

aggregates many values in a group together. Fields like “Order” contained 34 possible outcomes 

and then were forced to be split into two groups. For examining different classifications with 

many categories, CART is biased in variable selection towards variable that have more splits 

(Loh and Shih 1997). Overall, CART is an effective way to visualize complex relationships 
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within data, however its utility when certain variables have large groups in one category (e.g. 

Frozen in Storage), or there are many categories in a variable (e.g. Order) can be limiting.  

Further research into the expected timeliness from when a sample reaches a diagnostic 

facility versus timeliness to detect and communicate a disease outbreak is needed to evaluate 

“effective timeliness”. Experts could also determine the variables to include in CART that may 

be more meaningful or to address a specific research question, or to categorically define the time 

variable (eg. <10 days = “Fast”, >10 days = “Slow”, >30 days =” Unacceptable”) to be used in a 

classification tree, which may improve generalization. 

5.2 Ecological and Disease Models 

 The data quality analysis provided additional insight into the habitat suitability maps and 

the importance of the submission source. The application of wildlife data was examined by using 

MaxEnt to model habitat suitability of bats and suitability of WNS afflicted bats. Overall, 

hibernacula locations were the most important for the Ecological Model. Southern Ontario, 

specifically around the GTA, Niagara and Bruce county, contain habitat suitable for bats. In the 

absence of cave or mine locations in Southern Ontario, buildings are common roost sites for 

more than half of Ontario’s bat species (Soper and Fenton 2007). Additionally, dead bats may 

have been reported at wind farms in Southern Ontario (Government of Canada 2012; Kunz et al. 

2007; Bird Studies Canada et al. 2017); which is further supported by the submission source 

being primary the public, provincial government, rehabilitation centres and universities in 

Southern Ontario. Further, in highly populated areas, observations were submitted by the public, 

which maybe simply because large numbers of people are able to observe bats them and 

interaction due to proximity to humans (bats flying into windows, pest removal and capture by 
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domestic cats). In Northern Ontario, the suitable habitat is more localized than the spread in 

Southern Ontario and the majority of submissions were by the provincial government. These 

locations from CWHC surveillance data were often at cave or mine locations where previous bat 

studies had occurred (e.g. Fenton 1969 and Dubois and Monson 2007). It is worth noting that 

there may be sampling bias for CWHC and GBIF data associated with these locations, since they 

are “known” to researchers and cavers, but other undocumented hibernacula in Ontario may 

exist.  

The GBIF models had a greater gradient of suitability and were less concentrated over 

hibernacula locations. This could be a function of GBIF data being reported from multiple 

observers across the province, which may not be concentrated around caves (as can be seen by 

the lower importance of hibernacula in GBIF models). The GBIF models were least similar to 

the CW models, which could indicate that observed bat occurrences have a different distribution 

and associated environmental predictors than dead bats (Appendix C). The link between 

environmental determinants of health for bats is hard to examine with the data issues examined 

in this paper and requires future research. It’s possible that abandoned mines in the Ecological 

models could contribute to bias the MaxEnt outputs as well, since mine locations may have 

existing infrastructure such as roads connected to them.  An alternate interpretation is that 

accessibility is causally related to WNS; as a mechanism for WNS spread since these areas may 

be frequently explored by cavers and researchers alike, where contamination of fungal spores on 

equipment may spread to uninfected hibernacula locations and disturbance of bats during 

hibernation may lead to mortality of bats (Foley et al. 2011; Blehert 2012; Government of 

Canada 2015). The new areas revealed in Northern Ontario through the C-eco+rb model may 

highlight inaccessible areas suitable for Pd. The C-dis model lacked a significant correlation with 
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any of the environmental variables, which may be a symptom of the data, but WNS is also 

associated with conditions inside bat hibernacula, which would not have been reflected in the 

WorldClim data. The choice of environmental covariates for MaxEnt can also be subjective to 

the modeller’s interpretation. The environment surrounding hibernating bats was also examined 

by Puechmaille et al. (2011) where the presence of viable spores of P. destructans was found on 

the surfaces of hibernaculum. This has major implications for understanding the disease 

transmission and disease modelling, as cave walls could serve as a passive vector or reservoir for 

spores (Puechmaille et al. 2011; Hallam and Mccracken 2011). Therefore, if the spores remain 

viable over many seasons, healthy bats could encounter these spores and contract WNS during 

their hibernation period. Lorch et al. (2013) state that P. destructans is capable of surviving in 

bat hibernacula when bats are either absent or at low densities, which further supports that caves 

and mines can serve as a reservoir when bats return for hibernation in autumn. Sediment samples 

from the same study also contained P. destructans after the caves had been sealed off without a 

presence of bats for two years, which indicates that the fungus is very persistent in the 

environment. In laboratory conditions, Hoyt et al. (2014) showed a long-term persistence of P. 

destructans in the absence of bats, which further suggests that environments contaminated with 

P. destructans may serve as long-term environmental reservoirs. Hoyt et al. (2014) also showed 

that the fungus can survive outside hibernacula on equipment or clothing if they are stored in 

cool, dry conditions. While the temperature outside hibernacula will control the proliferation of 

WNS, especially in cold regions (Flory et al. 2012) it would be beneficial to study microclimates 

within hibernacula as well.  Microclimates used within hibernacula may vary between species 

and within its geographic range, which could influence the proliferation or inhibit Pd growth 

(Verant et al. 2012). 
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Using both CWHC and GBIF data sources in this paper illustrate how methods to reduce 

spatial bias and evaluation procedures can have varying effects on estimated habitat suitability, 

even when the same species and study area are used. This furthers the need for more rigorous 

evaluation procedures and methods to reduce spatial bias to be examined, as both data sources 

did not provide adequate models using the default settings of MaxEnt. The regularization 

parameter in MaxEnt can affect the shape of the response curves and permutation importance of 

model covariates. For bats, the default regularization value produced irregular response patterns 

until a regularization of 6 was reached.  

Wildlife mortality data may be used in SDM and may be a viable additional data set to 

use in these models where occurrence data are sparse or do not exist. While mortality data 

eliminate the issue of repeated sampling of the same individual from wildlife surveys - there 

remains the spatial bias common in both wildlife data. It is well known that species occurrence 

data tend to be biased towards accessible areas (Reddy and Dávalos 2003; Beck et al. 2014; 

Syfert, Smith, and Coomes 2013; Kramer-Schadt et al. 2013; Dennis and Thomas 2000). 

Proximity to major roads was the most important bias in this study, in contrast to other studies 

where occurrence data was biased towards roads, rivers, and population centers (Reddy and 

Dávalos 2003). This may be due to the nature of surveillance data, but the same can be said of 

the GBIF citizen science data.   

5.3 Model Parameters and Evaluation  

A common metric to compare fit, AUC was >0.9 for C-eco and C-acc models, indicating 

a “good model” fit. Similarly, for GBIF models, the G-eco model had a lower AUC than G-acc 

model indicating that accessibility covariates better predict occurrence locations than ecological 
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covariates. The impact of spatial bias, while evident from visualization of spatial distributions is, 

critically, not detected via AUC. AUC as a model assessment criterion for MaxEnt has been 

criticized (Jiménez-Valverde and Lobo 2007; Veloz 2009; Merow, Smith, and Silander 2013) 

due to model overfitting and uncertainty with the value of AUC as a metric. This case study 

furthers the assertion AUC as an indicator of model performance is flawed, since both models 

had similar AUC’s with completely different inputs and vastly different suitability maps. A high 

AUC should be interpreted cautiously when data are biased and being used for decision-making 

as the metric may instill false-confidence in a model that does not accurately reflect habitat 

suitability.  

The global indices used to compare models tended to agree, with I having the highest 

values, followed by D and then SSIM. In contrast to Warren (2008), there was a difference 

between the I and D metrics, where the values for I were seemingly inflated and rarely fluctuated 

despite differences observed in other evaluations. This may be because of species examined but 

the use of I as a metric was not as useful to discriminate between different models. Although the 

AUC values for the C-eco and C-acc models are similar, their distance metrics vary for each 

evaluation measure. The assumption being that since the AUC is high for both models that they 

would have similar prediction surfaces for the output. SSIM had the lowest value of 0.57 

whereas I and D had higher values of 0.87 and 0.64. Visual comparisons indicate that spatially, 

these two suitability maps are more different than I and D suggest. SSIM showed differences 

between the C-models, particularly around lakes. RB led to a decrease in importance for 

hibernacula and an increase in climatic and environmental variables, such as bio 6 and NDVI. 

NDVI would then have a stronger signature for areas on lakes where NDVI is lowest. 
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 The RB models (C-eco+rb-0.47 and G-ec+rb-0.12) both had a lower SSIM than the 

subsampled models (c-eco+ss-0.574, G-eco+ss -0.462) when compared to the respective acc 

models. This may indicate that RB is better at reducing the spatial bias and reducing model 

overfitting than subsampling. Additionally, the G-eco+ss model was more similar to the GBIF 

Accessibility model, further illustrating subsampling does not reduce bias in this case. In contrast 

to Fourcade et al. (2014), subsampling did not seem to reduce model overfitting or remove the 

accessibility bias from the model output. When accounting for spatial bias in species occurrence 

data, we must be careful that removing records does not alter or remove potentially important 

information. Filtering of records can weaken prediction - ideally, prior knowledge about the 

sampling scheme and associated bias is already known and can be used to construct a bias file 

with ‘true absences’. However, this paper demonstrates that RB based on a previous accessibility 

model can be an effective method when sampling effort and true absences are unknown.  This 

method requires further studies to determine the effectiveness; however, for this paper, it 

predicted new areas, reduced noise, and was less similar to Accessibility Models than the 

standard c-eco Model. However, since the C-eco+rb model utilized the binary suitability from 

the Accessibility model we may expect these models to be the least similar.  
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6 Conclusions 

 Utilizing spatial analysis in wildlife health research could aid in decision making and 

locating at risk areas for diseases or adverse health to wildlife. Focusing sampling and 

surveillance programs in these areas could prove to be a cost-effective solution for otherwise 

expensive sampling efforts. The conceptual model guiding these thesis questions (Figure 1) 

summarizes the levels of complexity and bias that contribute to an understanding the relationship 

between wildlife & their environment. Going forward in using spatial outputs from surveillance 

data, the tools used to model species distributions and spatial epidemiology need to place 

emphasis on these three components. The first component relies on actors (Figure 1) and data 

users to improving the quality of information available. This encompasses understanding 

sampling biases, limitations and gaps in current surveillance data (spatially, temporally and 

taxonomically) and establishing common data standards. The quality of information available 

can be examined and reported in various output formats such as:  by exploratory analysis, 

graphing relationships (e.g. time of year vs count of observations) and mapping of spatial data or 

further quantified by using common spatial techniques to evaluate clustering of biased spatial 

data (e.g. Getis-Ord GI*, Moran’s I, and Kernel Density, etc.). Common data standards for 

wildlife & surveillance is would benefit the international community and any analysis that spans 

over wide geographic regions. The second component is quantity of data where data such as 

occurrence records are limited and/or need to be aggregated data from multiple sources and 

agencies, or the wildlife data does not exist. Lack of data can be collected or supplemented by 

other data sources such as citizen science, or researchers willing to share their data, however 

where no data exists, there must be an incentive or need to collect the data, which may not be 
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realized in a timely manner, or by those who would fund such endeavours. The third component 

is utilizing and understanding the underlying assumptions of statistical approaches and choosing 

the right approach that can handle large and patchy data. The results of this thesis indicate that 

although MaxEnt is widely praised and used for SDMs, the adjustments in the default settings of 

MaxEnt can affect the areas predicted as suitable for a species, as well as the importance of input 

variables. Approaches to SDMs that feature default settings, sparse or non-reproducible 

methodology sections are common in the literature although, fortunately, there is also increasing 

awareness and criticism of these approaches and the associated model evaluation procedures 

(e.g. Lobo, Jiménez-Valverde, and Real 2008; Morales, Fernández, and Baca-González 2017). 

These three components need to be examined in whole to further increase confidence in model 

outputs, data replication and their derived conservation plans and risk disease modelling. These 

changes may be slow moving and difficult to implement for wildlife health, especially in the near 

future since the availability of samples and sample distribution are limiting factors; however, 

utilizing new technologies and a transdisciplinary perspective could increase confidence in 

wildlife health research and inspire action. An EcoHealth approach to wildlife health and 

epidemiology could benefit from many different domain experts tackling a complex problem 

holistically (Stephen et al. 2004; Aguirre 2009). Since wildlife and pathogens can cross borders, 

ecosystems and species, knowledge spread across many disciplines & researchers must be part of 

the solution.   

The CWHC surveillance database contains a wealth of valuable information about 

wildlife throughout Canada. The use of this data will vary across actors, users and of course, by 

discipline. While the database contains spatial information, it is not a spatial database and cannot 

be easily validated by common spatial database procedures (e.g. is a given latitude or longitude 
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within Canada?). When examining data quality characteristics, the data is commonly looked at 

by “incident”, however in most spatial contexts we are more concerned with the individual 

specimen’s relationship to space and the environment. Mechanisms to translate the format of the 

CWHC surveillance database to a spatial database would be beneficial when a spatial component 

is being analysed by a user. This translation would again, require collaboration by the CWHC’s 

data producers, users as well as GIS and IT experts with knowledge of the CWHC’s practices. 

The benefit of a spatial surveillance database would be two-fold in that some spatial validation 

would be automatically conducted and it would make spatial data formats more available to users 

who may not be familiar with common spatial procedures.  

6.1  Recommendations 

6.1.1 Metadata 

Metadata is “data about the data” (Orr 1998) which contains information for each field of 

the database explaining the purpose, type of attribute, values that are contained and what those 

values mean as well as information about data quality. Ideally metadata comprises all 

information that is necessary for sufficient long-term secondary use or reuse by original 

investigators and by other scientists who may not have been directly involved in the data 

collection or recording process (Michener et al. 1997). Explicit metadata that contains the level 

of uncertainty in location based measurements should be included along with data products or 

included within them. As Devillers et al. (2007) notes, positional accuracy contained within a 

separate metadata document may be too general when one is interested in a specific data point 

(e.g. A specific building); instead metadata encoded at the feature level is more useful and can be 

easily examined in a GIS.  I recommend that all data collection agencies such as the CWHC 

should provide easily accessible metadata adhering to a standard (e.g.  Dublin Core, ISO-NAP) 
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to ensure that users are understanding the data and the limitations of that data. As well, 

geographical data collected in wildlife disease surveillance systems should also provide tools to 

record the level of spatial precision reported for instance, if a GPS was used for precise 

coordinates and the error associated, or whether a road intersection was given, or a general place 

marker was estimated; as this information can be incorporated into spatial models that 

incorporate uncertainty. There were few errors with the ordering of date related fields, however 

date validation upon user-entry using form-validation tools would also be beneficial (e.g. Date 

Found has an earlier date than Date Submitted and is validated before submission).  

6.1.2 Fitness for Use 

 “Fitness for Use” is a concept that illustrates the importance of taking in data consumer’s 

viewpoint of data quality (Veregin 1999), since they are the main consumers of said data. The 

CWHC could follow-up after completing a data request with the data consumers to evaluate 

perceived data quality, such as how well the CWHC data fit the purposes of the users’ study or 

analysis, what could be improved upon, and any data quality issues found. The results from these 

surveys could then be used to improve the quality of data, include user training and 

improvements to the database and metadata documents (R. Y. Wang and Strong 1996). 

6.2 Limitations 

National, centralized repositories such as the CWHC’s wildlife surveillance database are 

important data sources for wildlife health and provide educational and collaboration 

opportunities with many researchers and government scientists. The lack of wildlife data is a 

limiting constraint for wildlife health and zoonotic disease focused studies. Therefore, an 

obligation exists to evaluate these national surveillance schemes to further our own 
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understanding of these processes and establish standards for collecting, maintaining, and sharing 

data concerning wildlife at the international level. The analysis here indicates that certain species 

may be recorded disproportionately depending on public health concern and ease of sampling. 

Spatial analysis can aid in indicating which spatial factors are underlying the surveillance data.  

Using surveillance data in place of occurrence data for species distribution models is 

challenging since the data is coming from many different actors (Figure 1) who may record 

spatial precision or accuracy differently or this information may not be available. The 

information contained within surveillance data may vary by the surveillance objective, specific 

project, species, disease of interest or number of specimens at a given mortality event. 

Contextual information regarding when press releases were issued or when targeted surveillance 

started could also be incorporated to understand an increase in frequency of specimens versus a 

mortality event that was recorded without much effort. MaxEnt is a valuable tool being used in 

species distribution modelling and in disease modelling that can handle small sample sizes and 

limited data, as shown in thesis. However, more work needs to be done in understanding the 

underlying biases in occurrence data and providing detailed methods used (e.g. ecological basis 

for model covariates, regularization, cross-validation used, background locations and model 

assumptions) in published research (Morales, Fernández, and Baca-González 2017). These 

methods should include an investigation into potential spatial and accessibility biases in 

occurrence data, an ecological basis for model covariates, listing of the resolution of covariates 

and any transformations performed on the data, regularization value used (and why), type of 

cross-validation performed, number of background locations and how they were chosen and 

knowledge of underlying model assumptions. 
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There were numerous challenges with acquiring appropriate data for modelling bat 

species in Ontario. As with Maher et al. (2012), there were difficulties in obtaining Canadian 

cave data as, to my knowledge, a standardized database does not exist. Several datasets of 

interest were freely available in the United States but unavailable in Canada, or simply did not 

exist. There were concerns for privacy of cave locations that were on private property, as well as 

concerns that if these locations were known to researchers, cavers would find them closed to 

protect the bats. With the listing of three bat species to Species at Risk Act, only data at certain 

resolutions were available from the Government of Canada. Aggregation is an unfortunate 

realization for many spatial and ecological studies such that it can hinder the outcome of the 

study if these limitations are not realized.  

Comparison of this paper to Flory et al. (2012) is difficult since they used WNS-infected 

hibernacula locations as “occurrence records” rather than actual species occurrence to “map 

potentially suitable habitat for mortality associated with infection by an organism”. Similarly, 

this thesis uses mortality data of WNS positive bats to predict the latter, but also uses dead bat 

locations to map habitat suitability.  The results presented in this thesis do not account for 

differences in disease among species however the species examined are all species afflicted by 

WNS in Canada. While Flory et al. (2012) used similar climatic data (WorldClim) the variables 

used in their models and the shape of their response curves were different from the ones used 

here. Flory et al. (2012) also note the importance of environmental conditions inside of 

hibernacula (or microclimates) influencing WNS transmission, but due to the urgency of WNS 

and lack of existing information, they could not incorporate these factors into their models. 

Alves, Terribile, and Brito (2014) also used MaxEnt and used WorldClim climatic data, however 

the variables used in their final models were different than observed here. This is also difficult to 
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compare since their models for North America were projected from previous models of WNS 

presence from European caves, where pathogen and host are assumed to have coevolved 

(Warnecke et al. 2012; Wibbelt et al. 2010; Alves, Terribile, and Brito 2014).  

6.3  Research Contributions 

This thesis contributes to the existing body of literature that attempts to find a relationship 

between environmental predictors and species distributions. In situations where data is limited 

for wildlife, utilizing surveillance data as “occurrence records” is valuable. This data source may 

serve as an additional or complimentary dataset to more traditional wildlife surveys or in cases 

(like this thesis) where no other data is available for a species. More specifically, this thesis 

outlines the specific biases associated with bat surveillance data in Ontario such as accessibility, 

and how model parameterization can affect resultant models. Many studies using similar 

methodologies fail to produce reproducible methods and rely on the “default” settings in 

software tools. The results from this thesis indicate that the default settings for bats lead to 

unpredictable response curves and a bias towards accessible areas in model outputs. The 

methodologies presented to reduce accessibility bias here are novel and lead to habitat suitability 

that was present in new areas of Ontario.  

The knowledge gained from this research will help wildlife managers and the CWHC 

make evidence-based decisions to allocate resources for the surveillance and monitoring of 

wildlife, specifically concerning White Nose Syndrome in bats. It is crucial to understand the 

distribution patterns of bats as well as the distribution that is suitable for development of Pd. The 

tools presented here will contribute to the development of tools that will promote conservation 

and protection of sensitive ecological areas in Canada. As well as methods to assess the 
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reliability of wildlife health surveillance systems in Canada regarding sampling effort and spatial 

biases. Future actions and decisions to limit disease spread and protect species should not be 

made without further validation of models, which may require collaboration with existing bat 

experts and further field surveys to collect additional species occurrences. While the health of 

wildlife or, more accurately, an ecosystem is important to each individual’s health (including 

humans), there needs to be a shift in research and funding to not only fund wildlife health 

research but to recognize the value in adapting existing surveillance and monitoring wildlife 

strategies to ensure stable ecosystems, prevent or predict epidemics and, of course, protect the 

integrity of livestock and human health. Another outcome of this work will be to invite 

commentary on the existing policies in place concerning conservation, species at risk, the 

environment and disease prevention in Canada. It is my hope that the ideas presented here 

provide additional motivation for collaboration among researchers and sharing of data so that we 

can make informed decisions with the best available data to protect our shared environments 

with wildlife.  

Since WNS is a new EID there remains a number of uncertainties and room for future 

research. There is sparse literature on environmental variables and modelling on predicting the 

spread of the disease, and denominator bat data. The study of bats in Canada is primarily 

presence-based and thus would rely on presence-only modelling methods like MaxEnt. The 

covariates used described conditions outside hibernacula, similar to Flory et al. 2012; Alves, 

Terribile, and Brito (2014) and indicate that hibernacula are the largest predictor for WNS, which 

given that WNS spreads readily through hibernating bats is not a surprise.  The quality of 

environmental data also plays a role in the output of a SDM. WorldClim data are interpolated 

climatic data from weather stations. The issues with interpolation are beyond the scope of this 
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paper, but local weather fluctuations may be more useful in the context of modelling species and 

disease outbreaks over time (Fernández, Hamilton, and Kueppers 2013), and interpolated values 

may be more accurate in flat, highly sampled areas than rugged, sparsely sampled areas.  

Parameter decisions in SDMs such as regularization and BP can clearly influence model 

assessment statistics, estimates of variable importance, and thus predicted habitat suitability. 

Comparisons among models are only valid when the models use the same landscape, background 

sample, species and test data (Lobo, Jiménez-Valverde, and Real 2008; Elith et al. 2011) which 

may hinder some of the analyses between using different settings and background locations. The 

methodologies, settings and parameters of MaxEnt have been investigated by several authors 

(Warren and Seifert 2011; Yackulic et al. 2013; Merow, Smith, and Silander 2013), however, 

even after these studies were published, the majority of studies utilizing MaxEnt do not outline 

the settings and parameters used nor follow recommendations (Morales, Fernández, and Baca-

González 2017). The limited methodology section for SDM papers can be a hindrance for 

replicating work in different geographic extents and more importantly, may overestimate or 

underestimate areas where a species may be present (Morales, Fernández, and Baca-González 

2017). Model parameterization is therefore an important component to incorporate for MaxEnt, 

especially when these models will be used for conservation and/or surveillance and future 

decisions relying on these model outputs. 

 There is a critical need for more research to be done on WNS. As bat species in North 

America continue to decline, it is paramount that we actively monitor their hibernation patterns, 

behaviour, symptoms of disease and their spread across the continent. Unfortunately for bats, 

prior to the discovery of WNS, little is known about their population size and global range 

(Committee on the Status of Species at Risk in Ontario (COSSARO) 2012) – had surveys and 
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monitoring of bats taken place more rigorously, containment and spread of WNS could have 

been prevented. Early warning systems are of paramount importance for surveillance systems, 

not only to prevent and mitigate the spread of disease, but to ensure biodiversity and increase 

confidence in our models and decisions regarding wildlife.  The models presented here provide 

locations that should be further examined, in combination with continued monitoring within 

hibernacula.  The methods presented here could be further applied to North America (with 

challenges of data availability across states and provinces) to help forecast at risk populations so 

that we can implement actions to prevent or reduce exposure and concurrent stressors to WNS. 

This paper illustrated how biased occurrence data and limited data can be used in future 

applications concerning bats and WNS in Canada. These models can be used to gather more 

appropriate data for validation and for future surveillance or conservation schemes.  
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Figures and Table 
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Variable 
Name Type Description 
Specimen 
Code character ID assigned to specimen (contains duplicates) 
CommonNam
e character Common species name 

City character City where specimen was found 

LatinName character Latin Name for species 

CrossRef character Cross reference #, additional IDs for testing done 

AgeCat character Age Category 

Sex character Sex of specimen 

Weight character Weight of specimen 

DateFound date Date specimen was found 

DeathDate date Death specimen died 

Date_Recei date Date received by CWHC 

Date_Submi date Date submitted to CWHC 

MortState character Mortality state 

Captive_Ca character Class of specimen (Wild, Rehab, Research, Farm/Zoo) 

Storage character How specimen was stored Fixed, Frozen, Fresh or combination) 

Found character 
How the specimen was found (e.g. hunted, found alive, died, 
etc.) 

AgeT character Age text comment field for description of age 

Diagnostic character 
Type of sample diagnosis was performed on (Carcass, blood, 
feces, etc) 

CarcassCla character Carcass class and condition specimen is in 

FinderAgen character The name of the agency who found the animal 

SubmitAgen character The submitting agency/organization  

SubmitPers character The name of the person who submitted the specimen 

FinderPers character The name of the person who found the animal 

History character 
Description and history of circumstances surrounding the 
submission 

Interpreta character Interpretation of findings 

SubSource character 
Submission Source or category of the type of organization that 
submitted the carcass 

Latitude numeric Spatial coordinates 

Longitude numeric Spatial coordinates 

UTMEast numeric Projected coordinates 

UTMNorth numeric Projected coordinates 

DiagnosisT character Diagnosis type (Preliminary, final, open) 

Diagnosi_1 character Diagnosis text describing the results of the necropsy 

Diagnosing character 
Lab that ran the diagnostic tests or where the necropsy was 
performed 

DiagnosisB character Name of the pathologist that performed examination 
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Category character 
Category of mortality or diagnosis category (e.g. poisoning, 
trauma, emaciation, etc.) 

Accuracy character Accuracy of category of mortality 

Num_Spec integer Number of specimens submitted as part of the same incident 

Necropsy character Results from Necropsy  - descriptive text of necropsy results 

Histology character Results from Histology – descriptive text of histo results 

WNS_Status character Summary of WNS test results (positive, suspect, negative, etc…)  

Bacteriolo character Results from all Bacteriology testing – free text 

PCR character Results from all PCR tests (these could be for anything) 

MatrixPCR character 
Results from Matrix PCR (this is the AIV screening PCR – birds 
only) 

Virology character Results from all Virology testing – free text 

Toxicology character Results from all Toxicology testing – free text 

Parasitolo character Results from all Parasitology testing – free text 

Immunohist character Results from all Immunohistochemistry testing – free text 

Testing_Me character Testing methods used  

West_Nile character 
WNV test result – summary of all tests (positive, negative, 
pending, etc…). e 

AIV_H5_PCR character Results from H5 PCR (AIV specific – birds only) 

AIV_H7_PCR character Results from H7 PCR (AIV specific – birds only) 

Calculated/Derived fields for spatial analysis 

airport numeric distance of specimen to airports 

majrods numeric distance of specimen to major roads 

popltnc numeric distance of specimen to population centers 

prvp_f_ numeric distance of specimen to provincial and federal parks 

watrbdy numeric distance of specimen to waterbodies 

watrcrs numeric distance of specimen to water and rivers 

species numeric binary classification of "bats" or "all other species" in Ontario 

time numeric Timeliness (days) from Date Found – Date Received 

month date Month specimen received 

season character Season specimen received (spring, summer, fall, winter) 

kingdom character Taxon of specimen - kingdom 

phylum character Taxon of specimen - phylum 

class character Taxon of specimen - class 

order character Taxon of specimen - order 

family character Taxon of specimen - family 

genus character Taxon of specimen - genus 

speciesname character Corrected Latin Name from Taxize database 

Table 1: Description of CWHC database field/variable names with type and description (derived 

from inference) and new fields calculated for further spatial analysis and data characterization. 
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a. Ecological Models 

Covariates c-eco c-eco+rb c-eco+SS G-eco G-eco+rb 
G-

eco+SS 
CW-eco 

Distance to Hibernacula 83.7 61.9 71.6 13.5 34.5 3.7 97.5 

Bio 6 – Min. T of Coldest 
Month 

4.3 
6.1 

10.4 
59.2 

5 72.3 
0.1 

Modis Max – Maximum 
NDVI 

8.3 
23.9 

9.8 
9.6 

44.3 7.5 
1 

Bio 15 – Precipitation 
Seasonality (Coefficient of 
Variation) 

2.7 
4 

6.3 
3 

8.2 3.5 

0.7 

Distance to Abandoned 
Mines 

1.1 
4.1 

2 
14.7 

8 12.9 
0.6 

               

b. Accessibility Models 

Covariates C-acc G-acc 
        

 

Distance to Major Roads 92.8 62.3          

Distance to Airports 7.1 28.9          

Distance to Population 
Centers 

0.2 8.8 
        

 

c. WNS Disease Model      
 

Covariates CW-dis  
    

 

Distance to Hibernacula 95.2       

Modis Max – Maximum 
NDVI 

1.3  
    

 

Bio 15 – Precipitation 
Seasonality (Coefficient of 
Variation) 

0.9  
    

 

Bio 9 - Mean Temperature 

of Driest Quarter 
0.1  

    
 

Distance to Watercourse 0.4 
 

 
    

 

Distance to Abandoned 
mine 

2.1  
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Table 2: Summary of permutation importance (%) for final model covariates across all models. 

Table 1a shows the final model covariates for all eco models, 6b the acc models and 6c the dis 

model. 
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Model AUC Train AUC Test 

C-eco 0.946 0.941 

C-acc 0.928 0.915 

C-eco+RB 0.866 0.846 

C-eco+SS  0.943 0.929 

G-eco  0.876 0.878 

G-acc 0.912 0.920 

G-eco+RB 0.773 0.768 

G-eco+SS 0.887 0.909 

CW-dis 0.975 0.978 

CW-eco 0.974 0.976 

Table 3: Comparison of AUC training and Test Values across all models 
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 Model I D SSIM 

1 C-acc vs G-acc 0.97 0.85 0.80 

2 C-acc vs C-eco 0.87 0.64 0.57 

3 C-acc vs C-eco+RB 0.85 0.61 0.47 

4 C-acc vs C-eco+ss 0.88 0.66 0.57 

5 C-eco vs C-eco+RB 0.97 0.87 0.83 

6 C-eco vs C-eco+ss 0.99 0.90 0.96 

7 C-eco VS CW-eco 0.87 0.62 0.69 

8 C-eco vs CW-dis 0.86 0.60 0.69 

9 CW-eco vs CW-dis 0.99 0.92 0.98 

10 G-acc vs G-eco 0.90 0.67 0.51 

11 C-eco vs G-eco 0.95 0.80 0.65 

12 G-acc vs G-eco+rb 0.67 0.38 0.12 

13 G-acc vs G-eco+ss 0.90 0.66 0.46 

14 G-eco vs CW-eco 0.76 0.49 0.43 

15 G-eco vs CW-dis 0.75 0.48 0.43 

16 G-eco vs G-eco+rb 0.71 0.45 0.45 

17 G-eco vs G-eco+ss 0.99 0.89 0.86 

Table 4: Comparison of Models based on global metrics niche I, D and SSIM. 
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Figure 1: Conceptual Model of Surveillance of wildlife in Nature. At each step moving up the pyramid biases are 

introduced (in red) which contribute to the complexity of surveillance data and the methods used for the outputs.  

Surveillance is only capturing a fraction of what occurs in nature and depends upon many actors.  The output we are 

exploring in detail is map outputs and species distribution models. 
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Figure 2: Data Quality Framework. The data quality elements are listed on the left while the 

steps between them indicate the set of conditions that were then measured. 
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Figure 3: Framework for species distribution/disease modelling. The robustness of a model is 

dependent on ecological theory and previous studies. Environmental factors that may reflect 

ecological theory are limited by available data, which is complicated by spatial scale, geographic 

coverage and the time span that environmental factors are available. The data used for modelling 

may be the “best available” data that may not be a perfect fit for our occurrence and mortality 

data. The modelling method also has conditions and specifications within it that will affect the 

outputs of response plots and final maps of habitat suitability. 

 

  



69 

 

 

 

 

Figure 4:Completeness of fields where the outer rings indicate % 100 complete (no missing 

values) , red = all species in Ontario, green = bats in Ontario;. 
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Figure 5:Histogram representing count of observations by Class. 
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Figure 6:Histogram representing count of observations by Family. 
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Figure 7: Histogram representing count of observations by Order. 
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Figure 8: Log timeliness versus storage box plot. All species are in pink and bat species are in 

blue. The points represent outliers and horizonal lines are the median values. 
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Figure 9: Log timeliness versus submission source where All species are in pink and bat species 

are in blue. The points represent outliers and horizontal lines are the median values. 
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Figure 10: Frequency of observations by seasons of all species (pink) and bats (blue) 
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Figure 11: Regression tree with dependent variable timeliness 



77 

 

 

Figure 12: Response plots for differing regularization where the default regularization (pink) is 

irregular compared to regularization of 6 (blue) which has smoother, realistic estimates of bat 

responses. 
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Figure 13: MaxEnt Output with default regularization (left) and regularization of 6 (right). 
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Figure 14: Final habitat suitability models where red=more suitable habitat. 
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Figure 15:  Response plots for C-eco (pink), C-eco+RB (green), CW-eco (blue), G-eco (purple). 

Where y=logistic output and x=Response. 
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Figure 16: Structural Similarity Index comparison (-1 to 1) where values closer to 1 indicate 

similar underlying structural similarity and values <0 indicate diverging habitat suitability. 
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