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Shuowei Zhang, Ph.D. 
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The fractal dimension (D) of a surface can be viewed as a summary or average statistic for characterizing 

the geometric complexity of that surface. The D values are useful for measuring the geometric complexity 

of various land cover types. Existing fractal methods only calculate a single D value for representing the 

whole surface. However, the geometric complexity of a surface varies across patches and a single D value 

is insufficient to capture these detailed variations. Previous studies have calculated local D values using a 

moving window technique. The main purpose of this study is to compute local D values using an 

alternative way by incorporating the geographical weighting scheme within the original global fractal 

methods. Three original fractal methods are selected in this study: the Triangular Prism method, the 

Differential Box Counting method and the Fourier Power Spectral Density method. A Gaussian density 

kernel function is used for the local adaption purpose and various bandwidths are tested. The first part of 

this dissertation research explores and compares both of the global and local D values of these three 

methods using test images. The D value is computed for every single pixel across the image to show the 

surface complexity variation. In the second part of the dissertation, the main goal is to study two major 

U.S. cities located in two regions. New York City and Houston are compared using D values for both of 

spatial and temporal comparison. The results show that the geographical weighting scheme is suitable for 

calculating local D values but very sensitive to small bandwidths. New York City and Houston show 

similar global D results for both year of 2000 and 2016 indicating there were not much land cover 

changes during the study period. 
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Chapter One 

Introduction 

1.1 Introduction 

Mandelbrot’s fractal concept first appeared in his highly cited article, How Long Is the Coast of Britain, 

in 1967. This paper introduced the concepts and theories of how to interpret irregular objects in nature. 

Other than the classical geometry features, our world is filled up with irregular and rough features. The 

measurement of their geometric sizes seems impossible. On the other hand, understanding the structure of 

the natural phenomena can help us perceive the world in a more realistic and precise way. Mandelbrot 

(1967) stated the geometric characteristics and mathematical foundation for interpreting the fragmented 

shape of the west coast of Britain (Figure. 1.1). Mandelbrot termed this highly involved shape as a fractal 

and use refer to any natural objects for which the Hausdorff-Besicovich dimension exceeds the standard 

dimensions (e.g., 0 for points; 1 for lines; 2 for planes) (Goodchild 1987). This classical example of 

fractals possesses some of the best characteristics of fractals and sparks wide examinations on how to 

explain the size of these non-regular phenomena. The idea of fractal geometry is possibly the most 

appropriate approach to describe the shape of the physical forms (Mandelbrot 1977, 1983), and this rises 
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dimension as a powerful tool to capture natural fractals. A quantity D is termed the fractal dimension and 

commonly used to describe the geometric complexity of the fractals. The fractal dimension could be any 

values between 0 and 1 for a point feature, between 1 and 2 for a linear feature, and between 2 and 3 for a 

surface feature. For the west coast of Britain using Richardson’s (1961) data, Mandelbrot (1967) assigned 

a fractal dimension of D=1.25.  The more complex the fractals are, the higher the value of the fractal 

dimension would be within the corresponding boundaries of the topographical dimension. The fractal 

dimension can be considered as an infinite continuous value and this had led researchers to develop 

various methods for estimating fractal dimensions.   

 

Figure 1.1 West Coast of Britain (Andrle 1996) 

Self-similarity is a key characteristic of fractals and it is commonly used to distinguish fractals 

from other non-fractal phenomena. The definition of self-similarity could be described as natural objects 

in a whole, the subset parts are indistinguishable from the whole when any parts of it are suitably enlarged 

to the whole (Mandelbrot 1977, Goodchild 1987). This property has led researchers to another closely 

related issue of fractal analysis, scale. In other words, self-similarity should remain true at all measuring 



3 
 

scales, which is also known as strictly self-similar property (Goodchild 1987, Andrle 1996, Lam 2002). 

We assume that the fractal dimension is a constant throughout any given scales. However, many studies 

have concluded that the fractal dimension varies over a range of scales. Benguigui (2000) used city 

landscape as an example to illustrate when and where a city is a true fractal. Not only the spatial aspect of 

the city has been studied but Benguigui also examined temporal change of city landscape using fractal 

analysis and concluded that city is not always a fractal both over spatial and temporal changes. Objects 

with strict self-similarity (Figure. 1.2) exists in stochastic and constructed objects, which are generated 

using computer simulation process.  Therefore, natural phenomena are not “pure” fractals and the fractal 

dimension D should be analyzed in a different way. Instead of using strict self-similarity to describe 

fractals, statistical self-similarity is a better term to characterize the nature of fractals (Mandelbrot 1967). 

The variations of the fractal dimension provide researchers with another promising perspective on fractal 

analysis by employing fractal dimension methods. Researchers could use these methods to study what the 

optimal scales are for certain applications such as environmental assessment, landscape ecology, etc. 

would be. 

 

Figure 1.2 Simulated Object with Strictly Self-Similar Property 

Source: Google Images 

The fractal nature of geographic features has drawn much attention to geographers and spatial 

statisticians since Goodchild and Mark (1987) reviewed the importance of the fractal ideas in geographic 

field. Their work has given fractal analysis a geographic and spatial perspective, not surprisingly, spatial 
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phenomena also exhibits fractal nature and has direct relation to applications of fractal analysis methods. 

Moreover, the statistically self-similar trait of fractals tends to link the fractal analysis methods with the 

spatial statistics techniques and this connection has potentially caused researchers to expand fractal 

theories in a non-stationary way. 

City morphology is especially appealing to geographers as well as to city planners because of its 

intrinsic complexity and variability. Different from linear features, city landscape displays heterogeneous 

land covers such as built-up area and grass, which have contrasting geometric shapes. Batty and 

Longley’s book (1994), Fractal Cities: A Geometry of Form and Function, introduced how fractal 

geometry helps explain the physical forms of cities. Remotely sensed imagery provides a convenient and 

accessible way for not only fractal analyst but also remote sensing researchers to study various 

landscapes. Remotely sensed images have an advantage for mapping a large extent of land surface area 

and it is relatively ideal to study and understand the changing landscape with the information of wide 

ranging variations. Remotely sensed images are complex in space, spectrum, time and exhibit self-

similarity within certain spatial scales, or spatial resolutions (Sun 2006). This characteristic makes the 

fractal approach a promising tool to understand image landscape pattern. Combining spatial information 

into the fractal analysis of remotely sensed image has been the focus in recent years and it can help reveal 

the heterogeneity of city fractals and improve identifying clusters of local neighbors with extreme fractal 

dimensions. 

There is a huge body of interdisciplinary literatures analyzing improved methods of fractal 

models and the remote sensing applications. Fractal analysis rely heavily on the estimation of fractal 

dimension. The general research of fractal analysis including the estimation of fractal dimension on 

coastlines and land boundaries as a line feature (Richardson 1961, Mandelbrot 1967, Goodchild 1987). 

South Africa’s coast exhibits the smoothest shape with a D of 1.03 and West Britain Coast has the largest 

D value of 1.25 among all the empirical findings from Richardson (1961). The most common and 

intuitive application of fractal analysis based on remotely sensed images is the estimation of the textural 

complexity of the entire image, for example, the urban structures have been studied extensively by using 
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fractal analysis methods to estimate a single fractal dimension (Benguigui 2000, Herold 2002, Myint 

2003, Liang 2013). Coastal and rural areas were also studied in comparison with the urban landscape. The 

comparison of various fractal analysis methods revealed that different methods do not yield constant 

fractal dimension for the same imagery (Lam 1990, 2002).  Several research (Emerson 1999, Myint 2003, 

Luan 2012) have identified that fractal dimension is an effective landscape metric to describe the land 

cover structure but it alone cannot fully and accurately accomplish this. Fractal dimension has been 

employed to study the temporal change effect, for example, some of the temporal change studies cover air 

pollutant, city landscape structure and population density distribution (Benguigui 2000, Lee 2003, Chen 

2009). However, aside from the previous article focused on the estimation of a lumped fractal dimension, 

there has been little research on developing the local fractal dimension. 

1.2 Dissertation Objective 

The main objective of this dissertation is to incorporate perspective of spatial statistics into the fractal 

analysis methods. Spatial statistics is one of the most common methods for analyzing geographic issues. 

Local models haven been used widely to provide an alternative perspective to examine the spatial 

distribution of the geographic data. Combining fractal analysis methods with local models is a new and 

meaningful research direction, and this is the main approach for this dissertation. 

Another objective of this dissertation is to study the urban landscape of the major U. S. cities by 

using fractal analysis and fractal dimension. Fractal dimension are estimated for multiple time series of 

the cities to analyze the temporal change of the D value. In addition, geographical weighted scheme are 

employed to show the spatial distribution of the fractal dimension across the cities. Moreover, various 

fractal analysis methods are compared to examine their advantage and limitations. All of these objectives 

lead to the following research questions. 
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1.3 Research Questions:   

(1) How the estimation results of fractal dimension differ within the selected methods? 

(2) Can geographical weighting scheme be applied to local adaption of fractal analysis? 

(3) How significant is the spatial resolution in affecting the fractal dimension? 

(4) What are the fractal dimension implications of the selected major U.S. cities? 

 

1.4 Research Hypotheses 

The above research questions reflect the following research hypotheses: 

(1) Various fractal analysis methods will result in different global fractal dimensions. 

(2) Landscape neighborhoods (i.e., parking lots, lake body) with low complexity will have small fractal 

dimension; high complexity landscape (i.e., building concourse) will have large fractal dimension. 

(3) The temporal change of the selected major U.S. cities will have little impact on the fractal dimension 

values. 

(4) Geographic weighting scheme can be incorporated into original fractal methods. 

The above research questions serves as the guidance for this dissertation. This research 

dissertation is mainly a quantitative study that it primarily targets on the methods exploration and 

comparison. The research hypotheses are examined based on the results of the application and some 

future directions will be pointed out. 

1.5 Structure of the Dissertation 

In order to address these questions and test the hypotheses, this dissertation is constructed as follows: 

Chapter Two provides the detailed background regarding the fractal concepts, fractal development and its 

significant influence. Chapter Three consists of a review of the interdisciplinary literature focusing on 

current fractal methods, fractal applications in science. Specifically, the review will focus on the fractal 

application on urban area using remotely sensed images. Chapter Four presents the theoretical framework 
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and the methods of fractal analysis. This chapter first explains the theoretical background of the fractal 

methods in general, discusses the difference between the current methods. The methods will be focusing 

on the surface features and three commonly used methods are selected. The algorithm of the three 

selected methods are listed as well as the geographical weighting scheme. Then all of these fractal 

methods are localized for generating local fractal dimension using geographically weighted scheme. This 

expanded approach based on the principle of spatial non-stationarity. Chapter Five is the result of the 

triangular prism and differential box counting methods. This chapter compares the global and local D 

values using test images. Chapter Six focuses on the results of the Fourier power spectral density method. 

Chapter Seven focuses on an empirical analysis of the New York City and Houston for both of spatial and 

temporal considerations. Finally, Chapter Eight discusses the results and contributions of this research, 

draws some shortcomings, and outlines the future research directions.    
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Chapter Two 

Background on Fractals and Urban Sustainable Development 

2.1 Introduction 

Natural fractals can be seen almost everywhere on earth. These real world phenomena have rough shape 

and appearance, which are difficult to study. The traditional geometry such as point, line and plane failed 

to capture the intrinsic characteristics of the natural objects. Because of this, it is significant to develop an 

appropriate way, which is capable of dealing with the natural phenomenon. Fractal concept was first 

introduced to mathematics field and then distributed to other study fields including geography. Clark and 

Schweizer in their 1991’s book mentioned that fractal geometry is considered one of the four most 

significant concepts in science of the 20th century. In fact, the natural objects surrounding us have clear 

fractal nature as well as the artificial architecture (Figure. 2.1). 
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Figure 2.1 Fractal Nature of Geographic Phenomena (Above: Cauliflower; Middle: Thunder; Below: 

Eiffel Tower) 

Source: Google Images 
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We see fractal geometry in many of our surrounding substances. From cauliflower growing on 

the ground to the thunder which happens in the sky. It is the most natural and efficient way that the 

phenomena exist on earth and universe. Human being mimic the fractal idea from the natural 

phenomenon and create artificial architecture where fractal concepts can be seen embedded in. Eiffel 

Tower is one of the examples, which uses limited labor and construction materials but turns out to be a 

very strong man-made construction. Using few materials/occupy limited space and convey optimum 

function is the core principle of fractal concept. 

The fractal concepts indicate a significant meaning that fractals occupy the space in an optimum 

way (Chen 2009). This unique advantage of fractal can be related to urban sustainable development issue. 

In fact, city is a suitable candidate of fractals and yields some of the best aspects of fractals (Batty and 

Longley 1994). A number of studies have focused on applying fractal concepts on urban morphology and 

city development research. A fractal city somehow exhibits irregular transportation system, which looks 

like one main road with several branches (Figure. 2.2). On the other hand, a city with a regular road 

system usually is not considered as a fractal city (Figure. 2.3). Rome is an ancient city in Europe and it 

indeed demonstrates some of the fractal characteristics. In general, a fractal city means it has the same or 

similar structures at different scale levels. It has chaotic physical structure, but tens to grow on a way of 

absorbing the small units into larger unit (Fractal Applications 2003). One of the recognizable traits is the 

road system in Rome, and it looks irregular and extends to haphazard directions. A diagonal road is 70% 

shorter than the two rectangle roads to the same destination and this makes a fractal city functions 

efficiently.     
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Figure 2.2 Physical Structure of Rome, Italy 

Source: Fractal Applications 2003 (Website) 

 

Figure 2.3 Physical Structure of Phoenix, Arizona 

Source: Fractal Applications 2003 (Website) 
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Many of the fractal traits can be seen in the ancient cities in Western world. The form of the 

ancient city is a process of long history and citizen’s decisions from individuals. Fractal city development 

is slow but organic and can maximize its functionality and sustainability. Unlike the ancient city, a 

modern city in Figure 2.3 shows a different physical structure, which is in a complete ordered way. This 

modern city is considered to be an aesthetic one but not in an efficient form. The road system is formed 

into several squares. The advantage if this formation is that it is simple for drivers to explore the city, 

however, not surprising then, this is not a sustainable way and limited the city functions as discussed 

above. Fractal city has been recognized as the fractal foundation and it is meaningful to carry out a direct 

research on this issue. 

 This dissertation does not target on the origin of a city, but focuses on the quantitative analysis of 

the fractal cities. For a complete and detailed discussion about the fractal theory and applications on city, 

readers are directed to a book Fractal Cities edited by Batty and Long (1994). The literatures on the topic 

of fractal cities are quite countless, some of the text (Batty and Longley 1986, Benguigui et al. 2000, 

Chen 2010, Herold et al. 2002, Liang et al. 2013) provided an exemplary discussion. The case study in 

Chapter Seven of this dissertation is focused on the fractal application on the U.S. major cities. The 

following sections will review the related research. 

2.2 Fractal Characteristics of Geographic Phenomena 

Before getting into the discussion of the fractal cities, it is necessary to outline some of the key 

characteristics of the true fractals as well as the relevance to natural geography field. It is evident that 

fractals demonstrate highly complex shape and form and they possess the unique elements, which are 

critical for understanding the fractal ideas and real world applications. The properties of fractals are the 

fundamental issues and very abstract to grasp. In recent years, attentions have been diverted to the field of 

geographic and spatial phenomena. Goodchild and Mark (1987) state that geographic phenomena hold 

three characteristics relating to fractals and it is an innovative way to examine the spatial data and 

phenomena. Fractals are not themselves unless they are applied to the cartography and spatial data 
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analysis (Goodchild and Mark 1987). These key elements of fractals provide a new standard to model the 

spatial phenomena with more dynamics and reality. In this section, the goal is to briefly outline the most 

important characteristics of fractals and their relationship to the geographic phenomena. 

Scale Measure 

Lam (2004) states that, in general, scale has four meanings: (1) overall spatial extent of the study area; (2) 

data/image (e.g. vector and raster) resolution; (3) bandwidth of a spatial process; and (4) relation scale of 

the focal point. These four meanings of scale is shown in Figure 2.4 for illustration. One of the most 

crucial aspects of spatial analysis is scale. Scale affects the geometric measurement (e.g. length, area) of a 

geographic object. Scale directly influences the size of the symbols (e.g. road, building and river) on the 

map. GIS data analysis is dramatically affected by changing the scale and the results are quite different. 

Increasing the scale of a vector data can enlarge the size of the map elements. For example, studies on 

Connecticut and the U.S. will use two different scale levels. Scale also plays an essential role on raster 

data. Scale is also referred as spatial resolution when dealing with remotely sensed image. Scale change 

will change the pixel size of an image and it is usually carried out from finest to roughest resolution. Fine 

resolution image has more pixels and shows more details (e.g. roads, parking lots, neighborhoods). Scale 

change is a fundamental issue that can help decide the suitable research extent for certain environmental 

monitoring and assessments.  

Fractals are not affected by scale change, in other words, real fractals present an identical 

structure in response to the changing of scale. It is a rigorous way of fractals to be formed by 

mathematical equations and each step is constructed based on the same formula. No matter enlarge or 

shorten, the fractal geometry has the same detail and cannot be distinguishable at all scales. Thus, 

observers may not be able to estimate the size as this irregular object continue growing infinitely. 

Geographic phenomena have the characteristic of scale response but are not equal to true fractals. Take a 

coastline in Figure 1.1 for example, as scale increases, more details can be recognized of a coastline and 

the total length will increase. The image can be distinguishable when it is not suitably enlarged (e.g. 
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exceeds the acceptable scale levels). A good indicator of fractals in terms of scale effect is the value of D 

as discussed in Chapter One. For the natural objects in the geographic domain, D is dependent with the 

measure of scale and responses in a direct way. For calculating D, using fractal method is also known as a 

scale-based method (Lam 2004). For fractals, the D value tends to be the same number across the scale 

change. However, this is not always the case for real world phenomena. This characteristic is explained in 

the following part. 

 

Figure 2.4 Four Meanings of Scale 

Self-similarity 

Self-similarity is the core characteristic of fractals. Many studies have indicated that self-similarity is a 

unique and exclusive trait to differ fractals from other forms (Mandelbrot 1967, Goodchild and Mark 

1987, Andrle 1996, Benguigui 2000, Sun et al. 2006, Chen 2010). As discussed in Chapter One, self-

similarity means that an object is identical to each stage when the scale changes. This directly relates to 

the scale measure characteristic of fractals from the first part. There are two different interpretations of 

self-similarity. In the first part above, it discusses the scale measure and its effect on the structure 
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geometry. Here, the goal is to further explain the self-similarity for both fractals and geographic 

phenomena. Fractals exhibit a property of strict self-similarity that the structure shows no differences in 

detail across all scale levels (refer to Figure 1.2). Every stage the formation of a fractal is repeated and 

continues to infinity. Strict self-similarity is a unique property belongs to fractals that it demonstrates and 

connects the mathematics, geometry, science and even arts. A common and straightforward procedure to 

generate surface based on fractals is Fractal Brownian motion (fBm) and it also has a known D value 

(Mandelbrot 1983, 247). It is computer-based generating method with a parameter of H, which controls 

the roughness of the generated surface. The surfaces generated by fBm are not strictly self-similar 

fractals. In fact, they are irregular and self-similar surfaces possess limited self-similarity. Surfaces of 

fBm serves as norms for understanding strictly self-similar fractals and other geographic analysis 

(Goodchild and Mark 1987). Moreover, the generated landscape can also be treated as basis to test 

various fractal methods to compare the estimated D with the known D value. The methods are limited to 

surface complexity since the fBm only generates surface features.  

On the other hand, geographic phenomena are not mathematically formed objects and they only 

exhibit self-similarity within certain scale range (Lam 2004, Sun et al. 2006). Similar but different to 

strict self-similarity, this characteristic is termed statistical self-similarity, an object is self-similar in a 

statistical sense and the structural differences happen by chances (Goodchild and Mark 1987, Sun et al. 

2006). Figure 1.1 and 2.3 both serve as geographic phenomena examples for illustrating the self-similarity 

property in a statistical manner. In statistical analysis, a hypothesis test is commonly used to decide 

whether a null hypothesis is rejected or not. For geographic phenomena, the test can be used to examine 

whether a coastline or urban surface landscape is a fractal. The structure and fractal dimension value will 

change for natural phenomena and if the test value is within the statistical distribution range, the null 

hypothesis keeps true that the tested feature is a fractal. Statistical self-similarity makes it possible to 

relate to spatial statistics and local models for fractal analysis. Moreover, for earth’s surface features, self-

similarity also relates to a characteristic of randomness that the resemblance of the geographic phenomena 

is not the same over different scales and it is statistical and happens by chance (Weng 2003).  
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Filling Space Using Recursive Subdivision 

Recursive process directly relates to self-similarity property. Fractals are formed in a recursive way to fill 

up a space. Irregular lines with self-similarity property can be constructed in several stages based on the 

same manner. Figure 2.5 illustrates a process of a fractal line using recursive subdivision fashion. At the 

first stage, a curve starts with a letter N in a 2D space. Then the process repeats that each line segment is 

replaced by a letter N and are connected to each other. As the process continues, this N letter shape curves 

will fill up the space and continues to infinite stages. This example is also called the Morton Sequence or 

N-tree. In this case, the curve is a fractal with strict self-similarity property. Therefore, the fractal 

dimension is a constant value at all stages. Because this curve eventually fills the plane space, its D value 

is 2 as a constant number. There are many other famous examples of exact recursive process: Koch curve, 

Koch Island, Snowflake and Cantor dust (Mandelbrot 1983, 35, 41, 80). This generating method is 

reliable that the object is constructed in infinite stages with the replacement of the segments of itself. 

Moreover, there is always an equation associated with the recursive process to calculate either the length 

or the area of the object. The limit function in mathematics is the basis of recursive process and, for 

example, the length of the Koch curve is infinite because the length continues to increase with more small 

segments adding into the curve. On the other hand, the length of a Koch island is still an infinite value but 

the area is a finite value based on the equation and the limit function. The limit area depends on the side 

length of the Koch triangle. Detailed of the equation and theoretical framework will be discussed in 

Chapter Four.  

The principle of the recursive subdivision is useful in the real world application. The Koch Island 

is a representative theoretical foundation, which can be applied to the road system. Considering the 

highway system and its near city, the highway is the first stage of the construction and it has several exists 

leading to a town or city. These exists can be treated as the next stages with a growing length. Main Street 

in the city is the next level and it can have some chain roads connecting to different city function areas 

such as shopping mall, business center and residential neighborhood. The city edge is an enclosed 

boundary limits the expansion of the major and minor roads. For urban sustainable development purpose, 
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the Koch Island concept is suitable for constructing road system in a long-term development. The total 

length of the roads is infinite. The design of the branches makes the path shorter than the direct rectangle 

way. Meanwhile, the total area is limited to a constant number indicates the road system will not expand 

unrestrained. This recursive subdivision characteristic of fractals is the most efficient way to fill a space 

(Chen 2009). It has great potential in city planning and urban sustainable development application. 

The above characteristics are three fundamental properties of fractals. Knowing of these 

characteristics is the beginning step for understanding fractal concepts, and to differentiate the fractals 

from other forms. Even though these three headings are reviewed separately, indeed, they are highly 

interrelated and complementary (Goodchild and Mark 1987). Self-similarity is the core characteristic of 

fractals and it bridges with scale measurement and recursive subdivision. In other perspective, 

characteristics of fractals can be explained in the same way and they can be treated as one characteristic. 

Recursive subdivision is the initial opening for constructing a fractal either based on mathematics or 

computer programming. As a result, the recursive subdivision generates strictly self-similar objects at all 

stages. At last, for a further analysis, a quantitative measurement of the size of the object is a response to 

the scale change. A combination of the construction and the quantitative analysis makes the fractal 

concept has great potential in certain spatial and geographic applications (Mandelbrot 1967, Goodchild 

and Mark 1987, Andrle 1996).    
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Figure 2.5 Recursive Subdivision to Fill a Space (Goodchild and Mark 1987) 

2.3 Fractal Dimension 

Generally, a dimension indicates how much space a geometric object can occupy near to its points 

(Falconer 2004, 27). The notion of dimension is essential to fractal geometry as well as other natural 

phenomena (Falconer 2004, 27). Traditionally, topological dimension is the standard dimension used to 

measure the dimension of an object. Commonly, there are four forms of topological dimension for 

classical Euclidian geometry: a point is 0-dimensional, a line is 1-dimensional, a surface is 2-dimensional 

and a volume is 3-dimensional (Figure 2.6). However, for fractals and geographic phenomena, 

topological dimension can hardly capture their structures and forms since fractals are too irregular, both in 

local and global manner (Falconer 2004). The size of fractals and natural phenomena variates in response 

to scale measurement, their dimensions are not integer and lie within the traditional dimension limits (i.e. 
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0, 1, 2 and 3) as a fractal number. The lack of the power to describe the geometry of irregular objects 

leads Mandelbrot (1967) to contribute the concept of fractal dimension to the public. 

 

Figure 2.6 Topological Dimensions of Four Basic Classical Euclidian Geometry 

Source: Google Images 

A central concept and construct of fractals is termed fractal dimension (fractal dimension) which 

is a quantitative indicator of fractal geometry (Mandelbrot 1983, Sun et al. 2006). Fractal dimension 

extends the dimension family widely and more accurately. There are many definitions of fractal 

dimension have been proposed to quantitatively describe the geometric measurement of fractals. These 

definitions are based on different mathematical calculation and empirical estimation. The simplest fractal 

dimension is referred to as similarity dimension. Its calculation method is based on the recursive process 

in a repeated way. The dimension calculation of similarity dimension takes the following form: 

𝑆. 𝐷. = − log 𝑚 / log 𝑟 [1] 

Where 𝑆. 𝐷. is similarity dimension, 𝑚 is copies of itself, 𝑟 is a scale factor, and it uses logarithms 

which is always to be base e (Falconer 2004, 10). The calculation of similarity dimension is illustrated in 
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Figure 2.7. A Cantor Set starts with a line having unit of 1. As the recursive process continues, the line is 

replaced by two segments with 1/3 length for each. Based on the mathematical calculation, the similarity 

dimension of the Cantor Set is log 2 / log 3, which is a decimal number between 0 and 1. It is 

explainable because the Cantor Set tends to decrease its total length and arrives finally as several 

disconnected points. Not surprising, its total length becomes 0. The same calculation fashion can 

be applied to fractals with similarity dimension between 1 and 2 or 2 and 3. Similarity dimension is 

narrowed to be applied to the class of strictly self-similar objects and it is not applicable to the real world 

phenomena. Considering natural features are statistically self-similar and do not possess the exactly same 

value of copies and scale factor at all stages, equation (1) fails to calculate the correct dimension. As a 

result, similarity dimension is not widely adopted in fractal literatures regarding the physical and human 

geography applications.   

 

Figure 2.7 Similarity Dimension of the Cantor Middle Thirds Set 

Source: Google Images 

Different from similarity dimension, a more widely applied fractal dimension is termed box-

counting dimension, which is defined not only for strictly self-similarity, but also suitable for any sets of 

irregular objects including the geographic features (Falconer 2004). The history of box-counting 
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dimension can be dated back to 1930s and still is one of the most widely used fractal dimensions. 

Karperien (1999) stated a definition of the box-counting dimension and its method:  

Box counting is a way of sampling an image to find the rate of change in complexity with scale, as well as 

measure of heterogeneity or lacunarity. 

We recall from above that the similarity dimension can only deal with the mathematical fractals, 

box-counting dimension as an alternative method is more powerful and it is popular due to the simple and 

intuitive formulation. In addition, it can be applied to wide range of complicated fractals (e.g. trees, 

human lung) with an estimated dimension (Fractal Dimension 2003). For strictly self-similar objects, the 

box-counting dimension is equal to the similarity dimension (i.e. same dimension value for the Cantor 

Set). The basic procedure of estimating a box-counting dimension is to lay several boxes over an image, 

record the size and counts of the boxes, then change the size of the boxes for recording other pairs of size 

and counts. Converting both values using log transform and fit a straight line through the log transformed 

points. The box-counting dimension is the slope of the fitted line. This is an estimated value because the 

real world phenomena are not exactly recursive subdivision process and the value is an approximation. 

Apparently, there are two key features of box-counting dimension: 1) the count of the boxes at each 

sampling, and 2) the size of the square box.  Box-counting dimension is important but is beyond the scope 

of this dissertation, interested readers are referred to Falconer (2004) for more details regarding the 

calculation illustration as well as the properties and problems. 

Hausdorff dimension is another definition of fractal dimensions which is the oldest and the most 

important dimension (Falconer 2004 44, Schleicher 2007). It is also termed Hausdorff-Besicovitch 

dimension (Mandelbrot 1967, 1977, 1983). Hausdorff dimension is considered as the most precise fractal 

dimension when calculating dimension of geographic phenomena (Falconer 2004, University of 

Warwick). Moreover, it can be defined and calculated for any complex objects based on intuitive 

mathematical principles (Falconer 2004, 44). Not surprising, Hausdorff dimension is limited in 

application because it is difficult to calculate using the computational methods (McMullen 1984, Falconer 

1988). The value of Hausdorff dimension is illustrated in Figure 2.8. We see that the value of the 
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Hausdorff dimension is acquired when the y-axis value drops to 0 as the s increases, and the Hausdorff 

dimension is this critical value which is the value of s. The definition and calculation of the Hausdorff 

dimension are complicated and difficult to understand, and the details of the Hausdorff dimension beyond 

the scope of this dissertation. Interested readers are referred to Falconer (2004) for better understanding. 

Both of the box-counting and Hausdorff dimensions are important as a fractal dimension. 

According to Falconer (2004, 50), the Hausdorff dimension is equal or smaller than the box-counting 

dimension. Precisely, the Hausdorff dimension is equal to and smaller than lower box-counting 

dimension, and lower box-counting dimension is equal to or smaller than upper box-counting dimension. 

For most of the true fractals and the “acceptable irregular objects”, the Hausdorff dimension is no 

different from the box-counting dimension. However, the values of these two dimensions can be very 

different for some other example. There are also some other fractal dimensions (e.g. packing dimension, 

curves dimension) (Falconer 2004, 64) that are not discussed in this section but also have their importance 

and certain range of applications. In general, various definitions of fractal dimension tell different 

characteristics of a given set. Fractal dimension itself is not sufficient to describe the topological and 

geometrical property of an object, but this fractal number can convey the information of how the object 

formed and connected, some disconnected points or maybe an extremely rough surface. 
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Figure 2.8 Graph of the Hausdorff Dimension 

Source: University of Warwick (Website) 

2.4 Fractal Geometry History of Cities 

The concept of fractal geometry has been applied extensively to numerous scientific and art areas. It is 

proved that fractal geometry and fractal dimension can be applied appropriately to physical phenomena 

(e.g. coastline, air pollutant and rainfall) (Mandelbrot 1967, Mandelbrot and Wallis 1968, Burrough 1983, 

Lovejoy and Mandelbrot 1985, Goodchild and Mark 1987, Lee et al. 2003, Lam 2004). Recently, 

attention of fractal geometry has been put onto human geography and man-made world (Frankhauser 

1998, Benguigui et al. 2000).  Among all these many human involved phenome, city is considered as one 

of the best examples of random fractals (Batty and Longley 1994, Benguigui et al. 2000, Chen 2012).  

Batty and Longley (1994) mention that cities exhibit some fractal characteristics long time back to the 

ancient time, and the fractal geometry can help partially explain the development of cities, especially in a 

sustainable and organic way. A city originated on its own and designers are always concerned about the 
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aesthetic aspect and ignore the functional impact on city development. One hundred years ago, we view 

our cities focusing on the exterior shapes to make the city “look” attractive. However, our concentration 

should be placed on city’s social and economic efficiency in order to plan a more sustained progress 

(Batty and Longley 1994, 1, Chen 2010, De Keersmaecker et al. 2003). 

 Indeed, our city is originated from a small function area, a small group of people and limited 

usable land. The development then encloses more groups of people to form various function districts. An 

initial stage of a complete city will be settled and progresses based on the same manner of development. 

The physical shape of a city is an ultimate result of the combination of the economic, social and cultural 

development. Cities are usually classified into two development types: natural development and planned 

development (Batty and Longley 1994, 7). People also name the natural development as organic or 

sustainable development. This type of city evolution relies on individual decisions, which form a myriad 

structure, and the development is slow sometimes even draw back. This result in an irregular and chaotic 

internal layout of city. This type of city evolution somehow relates to the fractal geometry idea that a city 

starts at a small scale and expand based on the similar function needs with modest change each time. On 

the other hand, a planned development of a city is a result of decisions from large group of people or 

some agencies who dominate other people’s will. In addition, this type of physical development 

undergoes a rapid and monumental urban growth. It is reflected by some of the decision makers and a city 

is highly developed in an unlimited way in order to meet their social and economic demands. As a result, 

the physical shape of a city is more regular and organized but not efficient and sustainable. For an 

illustration of these two classes, readers are referred to Figure 2.2 and 2.3.  

The idea of organic development of the city has long been considered using pure geometry as a 

basis to guide the progress. An earliest description of city based upon geometry can be tracked back to 

2000BC (Berthon and Robinson 1991, Batty and Longley 1994, 18). At that time, the concept of simple 

geometry has been employed to picture a town or city’s settlement (Figure 2.9). This earliest city physical 

geometry, as well as the separate usages, was depicted in a backcloth of a military asylum. It has a 

circular boundary with two perpendicular straight streets in the middle that separates the city landscape 
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into four equal sector-shaped areas. The geometry of this early city is driven by the different land usages 

and social purposes, and can be a general physical design for many cities at that time. That is, a central 

area where the main economic and social activities occur of a city is usually where a city is originated and 

spread out to outside edges. This pure geometry of circular shape prevails in history for European cities 

for forming the city boundary before middle age. Moreover, one of the advantage of pure geometry is that 

people can accurately measure the length and area for an area based on the known values (e.g. road length 

and angle). More recently, for modern cities, the geometry of a city boundary has shifted from circle to 

star-shape, along with incorporation of numerous grids or squares within city boundary (Batty and 

Longley 1994, 23). The star-shape boundary (Figure 2.10) allow the more wall spaces for stronger 

fortification. This design utilizes the space in an optimal way and relates to the famous fractal of Koch 

snowflake. The taste of aesthetic of urban form has changed but more likely since the contemporary city 

carries more social and economic functions and responsibilities than ancient cities. One of the biggest 

changes is that some transportation systems were embedded into the city layout to make city services 

more accessible. Subsequently, a modern city would initiate a combination of perfect circle, grids and 

sinuous roads, and evolve to a cluster of regular grids switched from the circle and sector. For some 20th 

century cities, the edges are seemingly to be not perfect circle or square but display a quite irregular and 

curved shape (Keeble 1969).  With the development of latest city, it is desirable to exploit the third 

dimension to fill the volume efficiently, and free more surfaces for greenery and water body. Therefore, 

the focus should also be shifted from two to three dimension on future city (Le Corbusier 1987).   
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Figure 2.9 Pure Geometry of Circle of Early City Boundary (Batty and Longley 1994, 19) 

 

Figure 2.10 Pure Geometry of Sector Shape of Modern City Boundary (Batty and Longley 1994, 23) 
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North American cities in the late 18th century were completely dominated by grids rather than 

perfect circles (Batty and Longley 1994, 22). A new concept of company towns started to pilot the 

modern city plan of North American city (Reps 1965, 427). The grid design was still the dominant and 

popular planning type at the early years of that century for the U.S. cities, but the straight streets were 

replaced by the curved layout as the city expands. There were not many examples of pure geometry 

dominated cities in the U.S. at early ages, two examples mentioned by Batty and Longley (1994) were 

towns in Georgia and Ohio. They were both planned with strictly geometric structures and steadily 

developed to more and more regular squares. The town, with an interesting name: Circleville, in southern 

Ohio, was all changed to regular grids by the town company to serve its economic benefits and accessible 

company location. Boston as one of the major cities in the U.S. did show another type of physical 

structure. From 17th and until 18th century, Boston exhibited non-pure geometry type because of its 

advanced transportation systems and concentrated industry locations. It is noticeable to see the wall of 

Boston disappeared and the city reached out irregularly as star-shaped boundary (Vance 1990). Even 

though Boston’s geometric shape is not simple, it still has its own plan of expansion to meet the specific 

needs of the city’s social developments. This could be classified as unique urban form that originated 

from the pure geometry. Another important issue concerning most North American cities is that the scale 

has an impact on their geometric structures. Take New York City as an example, when it is considered in 

a smaller scale, Manhattan displayed a pure geometry development and then moved into a planned 

progress behavior. However, in a wider scale, from New York City to metropolitan systems of cities, an 

unplanned or irregular enlargement of boundaries was the dominant type but pure geometry can also been 

observed when the scale is zoomed into internal structures of these cities (e.g. Baltimore, Washington and 

Philadelphia).   

The history of the development of the world and North American urban forms presents us the 

initial appearance of the fractal geometry. From pure geometry (perfect circle) to grids, then to the 

combination of circle and squares, and evolves to an irregular and messy shape, all these symbols that the 

idea of fractal geometry plays an essential role in urban development. Cities as one of the most complex 
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and random systems are created by human beings based on millions of decisions and events, and closely 

relate to fractal geometry (Wong and Fotheringham 1990). Similar to coastlines, city boundaries show a 

clear self-similarity property but in a hierarchical ordering, and fractal concept can be applied to any 

systems analogous to cities (Batty 1991). City’s complexity can be linked to chaos and fractal theory, 

which are non-linear tools, and to gain deeper understanding on city evolvements (Chen 2012). Therefore, 

at some extent, urban pattern exhibits self-similarity property, and fractal geometry as an innovative 

perspective has great potential in studying city structures and urban systems (Tannier and Pumain 2005, 

Thomas et al. 2008, Chen 2010; 2012).  

2.5 Fractal Geometry Applications of Cities 

The following briefly presents the applications of fractal geometry in urban structures regarding various 

aspects, more detail is given on the estimation of fractal dimension to examine urban forms and 

development. As discussed in previous section, cities have received plentiful considerations from fractal 

geometry and could be explained by various fractal parameters (Chen 2012). Fractal dimension of cities is 

a core indicator to interpret the physical structures both in global and local senses. Urban form is 

extremely complex in comparing to mathematical objects. The differences between these two distinctive 

features are listed in Table 2.1. 

Table 2.1 Comparison of Urban Structure and Mathematical Object (adapted from Chen 2012) 

 Mathematical Fractal City Fractal 

Fractals Simple Structure Complex Structure 

Fractal Dimension Constant of Time Variable of Time 

Pattern Regular or Irregular Pattern Irregular Pattern 

Process Certain or Random Process Random Process 
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There are different issues of fractal geometry researches on urban forms. One is the focus on the 

optimal space filling indicating urban sustainable development, which links to the ultimate purpose of 

using fractal theory. This class of studies always correlates to other social and economic factors (e.g. total 

population, population density, proximity) for revealing more information on the relationship between 

fractal dimension and urban evolvement (Terzi and Kaya 2008, Feng and Chen 2010, Chen 2010; 2012). 

Another group of researches targeting on spatial and temporal effect of specific cities on the fractal 

dimension to see when and where a city shows a fractal characteristic (Benguigui et al. 2000; 2001, De 

Keersmaecker et al. 2003). These researches estimate fractal dimensions based on various methods for the 

selected cities for a period range of time. Additional, local neighborhoods are measured to see how fractal 

dimension varies over space. Benguigui et al (2000) concluded that the fractal dimension of Tel Aviv, 

Israel increased with time and only show fractal characteristic at later development stage. In addition, 

only central part of the city is a fractal. Other researches focus on applying fractal geometry on different 

urban land use to distinguish various physical structures of urban land use (Batty and Longley 1988, 

White et al. 2000, Herold et al. 2002, Lam 2004). Among these studies, the urban land use are divided 

into commercial, residential and transport. The results show that commercial land use exhibits the most 

complex spatial landscape. However, the results could change as the scale of the data changes (Benguigui 

et al. 2000). 

The studies of fractal geometry in city boundary (Anas et al. 1998) is intuitive because its 

physical structure is similar to the shape of the coastline. As a linear feature, and with the rapid 

development of urban structure, nowadays boundary of modern city not only has evolved to massively 

large, but also to a highly irregular shape. According to Batty and Longley (1994, 202), the physical form 

of a city boundary is irregular and self-similar, it lies between rural and urban area that can never be 

clearly portrayed out. A city boundary is a place where the most interesting and dramatic changes happen. 

Cities can be described in many dimensions, however, the best way to analyze a city is through its 2-

dimentional plane to visualize its shape (Batty and Longley 1994, 202). In this sense, the city boundary or 

the edge convey some useful information as it can be used to measure the city area, which is the most 
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conceptualized quantity to describe the overall structure and form of a city. Therefore, how to define a 

line or curve between city and its suburban area has been studied for two centuries but it is still a problem 

and difficult to choose the outer boundary (Benguigui et al. 2000, Greene and Pick 2011, 42). Deciding 

city boundary is prerequisite and essential to the application of fractal geometry to city studies. As 

Peitgen and Richter (1985, 571) stated a definition of city boundary: 

The fascination of boundaries lie in their ambivalent role of dividing and connecting at the same time. 

They mark the transition between different modes of existence. They transmit and control exchange 

between territories. They are the playground for discovery and conquest……They are the result of never 

ending competition and exhibit structure on many scales. 

Another definition of city boundary focusing on the growth boundary comes from Environmental 

Protection Agency (EPA) (Cho et al. 2006): 

A mapped line that separates land on which development will be concentrated from land on which 

development will be discouraged or prohibited. 

Different methods have been proposed to pick up an appropriate city boundary. Batty and 

Longley (1994, 212) defined the boundary of Cardiff, Wales based on Ordnance Survey map, by 

excluding urban fringe land use, including villages connecting to the urban area as well as the man-made 

objects close to the coastal area. David (1998) used an automatic method based on computational 

experiments with the geographic data of city population distribution. Another common method for 

finding city boundary is to enclose the contiguity built-up area. A claim has been made that a city 

boundary is a fractal and Benguigui et al (2000) mentioned that it is not proved whether the fractal 

dimension will change for the same city by different boundary definitions. On the other hand, not 

surprising, some strict methods for choosing city boundary may yield more precise and reasonable fractal 

dimension results. Many studies have applied numerous methods and models to estimate fractal 

dimension of city boundaries all over the world, either for a current condition or as a function of time 

periods (Makse et al. 1995, Benguigui et al. 2000, Frankhauser 2004, Cho et al. 2006, Tannier et al. 

2011). The city boundary encloses the city but not completely a circle or 2-dimentional object. The 

estimated results of fractal dimension for the selected cities lie around 1.7, which is closer to 2, indicating 
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a relatively highly irregular boundary. A brief list of the fractal dimension of studied cities around the 

world is listed in Table 2.2. 

Table 2.2 Fractal Dimension of Boundaries of Studied Cities (adapted from Batty and Longley 1994, 

280) 

City Name Study Year Fractal Dimension 

Albany 1990 1.49 

Beijing 1981 1.93 

Berlin 1980 1.73 

Boston 1981 1.69 

Budapest 1981 1.72 

Buffalo 1990 1.73 

Cardiff 1981 1.59 

Cleveland 1990 1.73 

Columbus 1990 1.81 

Essen 1981 1.81 

Guatemala 1990 1.70 

London 1981 1.72 

Los Angeles 1981 1.93 

Melbourne 1981 1.85 

Mexico City 1981 1.76 

Moscow 1981 1.60 

New York City 1960 1.71 

Paris 1981 1.66 

Pittsburgh 1981 1.59 

Rome 1981 1.69 

Seoul 1981 1.68 

Sydney 1981 1.82 

Syracuse 1981 1.44 

Taipei 1990 1.39 

Tokyo 1960 1.31 
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Most of the cities were measured during year of 1981, the smallest fractal dimension is found for 

Tokyo in 1960, which is 1.31. This relative smooth boundary of Tokyo could be due to the early study in 

1960 that the city was undergoing its early development stage. On the contrary, New York City was also 

studied in 1960 and has a large number of 1.71. Two kinds of irregularity of boundaries for Tokyo and 

New York City at the same time may result from the different economic backgrounds of development at 

that time. Some smaller cities in the U.S. (e.g. Albany, Syracuse) have fractal dimensions below 1.5 after 

1980. The most irregular boundaries come from Beijing and Los Angeles, as well as Sydney, the fractal 

dimensions are 1.93, 1.93 and 1.82, respectively. All these three cities are among the largest cities in the 

world in terms of population and city size. Beijing and Los Angeles, not surprising, have an extremely 

rough city boundary that closer to 2. The fractal dimension of all the city boundaries are larger than the 

West Coast of Britain (D=1.25) meaning city boundary tends to fill the 2-dimentional space with diverse 

roughness. One conclusion can be drawn from these previous studies is that the fractal dimension of city 

boundary seems to have a positive relationship with the population size. 

Another category concerning fractal geometry with city fractals is the measurement of surface 

roughness. Besides examining city boundary, the study of city landscape surface complexity could be 

complementary in order to understand the physical structure of a city in a whole. The fundamental model 

of urban landscape consisted of vegetation, impervious surface and soil (VIS) (Ridd 1995). Distribution 

of impervious surface is a major component of a city landscape, and can be seen mostly within urban 

area, especially in highly dense business district (Wu and Murray 2003). Urban surface and built-up area 

(urban canopy) together can generate many effects to city environment (e.g. turbulence change, storm 

enhancement, water storage, air pollution dispersion, etc.) (Masson 2006). Surface landscape has a 

tendency of filling up a volume into a 3-dimentional object. Unlike the linear fractal dimension for city 

boundary, city surface landscape has a fractal dimension between 2 and 3, the more rugged the surface is, 

the more peaks and valleys it will have, the larger the fractal dimension would be. For impervious surface, 

a parking lot could have a fractal dimension close to 2.0 while a building complex may generate a fractal 

dimension approaching to 3.0. Calculating surface roughness requires the dataset to have elevation value 
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(e.g. Digital Elevation Model). Therefore, remotely sensed data with the digital number is the suitable 

data source for acquiring fractal dimension for surface landscape. Radar data is also capable of providing 

height value for surface landscape. As previously mentioned, one very simple and commonly used 

method for measuring surface landscape is the computer simulation (Fractal Brownian motion) which can 

generate irregular and rough surface with various levels of roughness, and the generated image can be 

used to test different methods in compare with the known fractal dimension. The roughness and the 

known fractal dimension is controlled by a parameter of H. The most successful value of H for simulating 

surface topology is 0.7 and it relates to a fractal dimension of 2.3 (Orey 1970). Goodchild and Mark 

(1987) summarized that fBm owns significant value for simulating surface topology. As for city surface 

topology, fBm process could be used as a reference image and help choose the most appropriate method, 

then apply this method to estimate city surface roughness. Lam (2004) studied Atlanta area and separated 

the city area into four land use: commercial district, airport, mixed area and forested land. These four 

land covers were claimed to be the most common surfaces in urban area (Lam 2004). The results of the 

fractal dimension of these four land covers in response to pixel size is shown in Figure 2.11.  

 

Figure 2.11 Fractal Dimension of City Surface (Lam 2004) 

Commercial district exhibits the most heterogeneous characteristic with a fractal dimension of 

2.7. The smoothest city landscape is airport, which is not surprising. All these four land covers show 
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some flexibility to the pixel resolution change. Fractal dimension of commercial land increases slightly 

and stays close to 2.9. In contrast, the fractal dimension of all other three types of city landscape continue 

to increase, interestingly, airport seems to have a fractal dimension exceeds 3.0. This is unrealistic and it 

mainly due to either the pixel resolution effect or the fractal analysis methods (Lam 2004). In addition to 

the study on the present form of cities, it is also meaningful to discuss the application of fractal geometry 

on urban growth in a dynamic perspective. 

2.6 Fractal Geometry Applications of Urban Sustainable Development      

Earth’s resources have been consumed to a limit and it is essential to conduct and plan a sustainable 

development. Cities as one of the major consumers have absorbed excessive energies and generated air 

pollution (Breheny 1992). It is said that 65% of the population will live in urban area by the year of 2025 

(Schell and Ulijaszek 1999). Urban sustainable development is a concept in response to the growing 

circumstances that helps balance the social, economic and environmental systems of a city in a long-term 

(Campbell 1996, Diamantini and Zanon 2000, Li et al. 2009). Urban planning, especially land use 

planning continually changes for the cities all over the world (Li et al. 2009). Sustainable planning on 

urban land occupancy seems to be urgent because urban land use is remarkably heterogeneous. Complex 

transportation routes, green space and built-up area need enough available land and all these land use not 

only compete with each other, but also compete with human beings and other city systems. Finding an 

indicator to describe the urban sustainable development is imperative to imply urban monitoring and 

regulation (Repetti and Desthieux 2006, Nader et al. 2008). An effective indicator can provide a guidance 

for urban sustainable development, provide a quantitative measurement of how social and environment 

interact within city and can provide data to urban planner in the future (Nader et al. 2008).  

As previously mentioned, fractal geometry provides a powerful tool in examining city physical 

structure. However, the previous empirical results of measuring geometric complexity of city boundary 

and surface only contribute a stationary investigation, it only presents to people the present physical form 

of the city surface with some single non-integer numbers for each city. Fractals are formed through a 
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dynamic process from individual particle to a massive body. Therefore, studying fractals in a non-

stationary way against various stages is an indispensable and necessary research concern. City fractals, as 

artificial complex system, can be treated as an evolved process of continually developing stages starting 

from central place and extending to the outer range. In other words, various developing stages are 

analogous to time series of urban growth. Consequently, it seems like fractal geometry of city fractals is 

an ideal candidate for analyzing urban sustainable development. On one hand, it has been said that land 

use planning is a major component of urban planning, and urban land use is closely conducted by 

geometric composition along with the city’s density, scale and dimension (Longley and Mesev 2000). On 

the other hand, fractal dimension of fractal geometry is an effective and advanced indicator of urban 

sustainable development that it demonstrates an intrinsic property of geometric objects of urban 

composites.  

Fractals in a whole explain the optimality of a natural system filling space from its form of origin 

(Rigon et al. 1998). Similarly, city structure is self-organized hierarchy and fractal structure indicates the 

optimal and most efficient way to fill the space in a hierarchical fashion (Wu 1996, Barredo et al. 2003, 

De Keersmaecker et al. 2003, Chen 2010, 2012). In this sense, this concept can be used to optimize city 

structure for urban planning. Moreover, as urban grow, an inevitable problem that we all face now is 

urban sprawl. Occupying the space in a compact way can refrain the unlimited city expansion in order to 

control urban sprawl issue. Analyzing city fractals is a basic and theoretically fundamental groundwork 

and has significant values for urban sustainable development (Frankhauser 1998, Chen 2010). Self-

organized hierarchy of city may undergo several stages guided by the urban planning policy for the goal 

of achieving a sustainable city (Figure 2.12). Chen (2010) pointed out that sustainable development of 

city system is analyzed by population density models, and also stated that the inverse power law of 

population distribution exhibits fractal characteristic which could be used to model future regular city. 

Fractal geometry for space optimization plays an important role for city planning to reach the stage of real 

city, then a real city evolves to a future regular city.   
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Figure 2.12 Relation between Fractal Geometry and Urban Sustainable Development (Chen 2010) 

The idea of fractal geometry has great potential applications to the urban sustainable development 

from various aspects (Wong and Fotheringham 1990, Makse et al. 1995, Wentz 2000, Shen 2002, Huang 

2007, Terzi and Kaya 2008, Chen 2010). The first collection of application is simply using scale relation 

ratios to calculate fractal dimension of urban boundary to quantify the urban growth throughout the city 

development history with the available data assistance. Batty and Longley (1994, 236) reported case study 

of London from 1820 to 1962, with 8 stages of growth, the fractal dimensions are 1.322, 1.585, 1.415, 

1.700, 1.737, 1.765, 1.791 and 1.774, respectively. They claimed that this is a classical city growth in a 

fractal way and this is also confirmed by other researchers. It is noted that within the early stages of 

development, the fractal dimension increased from 1.3 to 1.7, which indicates a clear urban growth into a 
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more irregular form. After that, the fractal dimension slightly increased and becomes stable within 1.7 and 

1.8. It implies that London’s development reached a fractal structure after year of 1880. Chen (2012) used 

an alternative method for calculating fractal dimension. Instead of deriving D value directly from the grid 

map using scale and size relationship, a self-derived equation was employed that the fractal dimension of 

next year can be obtained from the current and last year values. This approach is a simulation and 

prediction process to model fractal dimension evolution and it can be fitted into London dataset. De 

Keersmaecker et al (2003) measured border and surface fractal dimension of Brussel, Belgium. Several 

fractal dimensions were calculated and the focus is to summarize the results using descriptive statistics. 

The mean values are 1.822, 1.565 and 1.719 for three methods, respectively.  

Fractal analysis of urban sustainable development also concerns with other geographic variables. 

Besides estimating fractal dimension, which is a geometric property of urban features, other intrinsic 

quantities are useful to be linked to the fractal dimension for revealing more insights about urban growth. 

Population density is an important demographic factor that conveys a homogeneous distribution over the 

city surface. It can be illustrated that a fractal city at the beginning contains all the population at the 

central place, then the population distributes to the outer edge following certain distribution laws as the 

city expands (Frankhauser 1998). Urban total population and population density function have been 

widely used to derive and relate to fractal dimension in order to understand urban growth (Wong and 

Fotheringham 1990, Benguigui et al. 2000, Chen 2010, Shen 2002, Thomas et al. 2008). Negative 

exponential model and exponential power model are usually used for the population density function and 

fractal dimension can be estimated from the census data. The fractal dimension ranges from1.37 to 1.86 in 

four time periods predicted from population density. Moreover, the information entropy increases 

suggesting an efficient space filling of city land carrying certain amount of people. Another way of 

relating population and fractal dimension is collecting population data and estimating fractal dimension 

separately. The fractal dimension is not positively relate to population size as D value increases while 

population size decrease at some points. One argument regarding the relationship between fractal 

dimension and population density is that fractal dimension alone is not adequate to predict city population 
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growth. It is because some cities may experience population loss but the urban areas still expand. More 

caution should be carried out here for linking to population issue. One way is considering the time periods 

that a city population decrease. This usually happens at the later stages of urban development. Geometric 

shape and social factors are two types of measurements and linking them should take into account the 

temporal effect. 

Some other geographic variables are also considered to link with fractal dimension for study 

urban growth. Urban sustainable development is always related to urban sprawl issue. Urban sprawl 

studies have been studied using fractal dimension by many scholars (Diamantini and Zanon 2000, Huang 

et al. 2007, Frenkel and Ashkenazi 2008). Terzi and Kaya (2008) plotted these two factors for Istanbul 

from 1975 to 2005. The results showed a positive relation before year of 1995 and then a negative effect. 

It concludes that fractal dimension is one of the methods to study urban sprawl but other methods are still 

needed to capture the multi-dimension characteristic of urban sprawl. Frankhauser (2004) studied 

European cities for different urban patterns under the context of urban sprawl. Instead of using urban 

sprawl index, this study measured fractal dimension and concluded a D value between 1.3 and 1.5 may 

indicate a limit of urban sprawl and encourage a sustainability development. A high density area of a city 

usually generate urban heat island effect. The temperature factor of different city areas and temporal 

stages can be evaluated through fractal analysis (Weng 2003). Fractal dimension was calculated for the 

city surface of temperature radiant. The fractal dimension has the smallest value for the spring season and 

largest value for the summer season. Urban development increases the spatial variation of the surface 

temperature as well as makes the thermal surfaces more complex and uneven. Moreover, fractal 

dimension has also been related to other social variables for understanding the urban morphology and 

evolvement (De Keersmaecker et al. 2003). Housing types, housing age, distance to CBD and household 

income were linked with morphology fractal dimension using correlation coefficient. The exploratory 

analysis suggests fractal dimension is a promising measurement for study urban planning and simulation. 

Fractal geometry has a profound influence on the study of urban form and urban evolvement. 

Cities are complex organizations and traditional measurements fail to capture their configuration and 
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composition. Urban form starts with a small cluster and expand to a complex system under the interaction 

between human being decisions and environment policies. However, the evolvement rule is quite simple, 

that most of the complex cities result from a simple fractal replacement at each time period. Nevertheless, 

the style of the spatial replacement changes at each development stage. Thus, cities are not strictly self-

similar, they are not in an exact repeating structure, similar to coastlines and other natural features. 

Accordingly, urban form should be explained in a sense of statistical self-similarity, which the existence 

of city fractal attributes to chance. Fractal dimension of urban growth in real world could be assumed to 

be an increasing fractal number between 1 and 2 because city is not in a true fractal form, urban land use 

tends to fill the space in a multidimensional manner (i.e. fill more land space). It is can be said that 

statistical test plays an essential role for determining whether a city can be called a fractal city during its 

development process. Statistical distribution and hypothesis tests are in more demand to analyze fractal 

dimension of city morphology before carrying out systematic application of fractal geometry. 

Fractal geometry applications on urban sustainable development can be divided into two 

dimensions (i.e. horizontal and vertical analysis). The usually horizontal analysis is the fractal dimension 

as a function of time periods of a city development. Previous studies have revealed some messages that 

city displays a fractal characteristic only through its later developing years with the indication of a 

relatively stable fraction dimension. The turning point (i.e. time periods of a fractal city emerges) can be 

located and may further studied by other social and environmental factors to examine the inner reasons of 

such an emergence of fractal city. The other dimension is the vertical axis that focusing on the spatial 

variation of fractal dimension over the internal urban area. Urban landscape is highly heterogeneous and 

its neighborhoods somehow would show a various characteristics of physical stricture. Therefore, 

measuring local fractal dimension is meaningful to pick out the hot spots (i.e. high or low fractal 

dimension). Also, mapping fractal dimension enhances the parameter visualization which is a central 

issue in geography and cartography. 

As previously mentioned, the geometry of urban form has been stated to be an outcome of the 

fractal ideas. Urban growth can be modeled using computer simulation technique to predict the future 
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urban model and most of the simulations result in a plane city. The fractal models, in fact, based on many 

aggregation or diffusion particles (e.g. diffusion-limited aggregation) which generate city simulations 

similar to the real city structure. One of the commonly used simulation technique is cellular automata 

(CA) model, which can easily yield urban dynamics analogous to fractal cities (White and Engelen 1993, 

Batty and Longley 1986, Wu 1996, Batty et al. 1999, White et al. 2000, Barredo et al. 2003). Using 

computer graphics to simulate urban growth generating urban morphology, which has comparable fractal 

dimension to real dataset. One finding from computer simulation is that the widely adopted CA technique 

embedded with fractal recursion indicates city evolves in a fractal process in a long-term period. Another 

contribution of urban simulation is that it can divulge risky and unrestricted development mode, which 

may be harmful to urban sustainable development. 

Spatial complexity of city surface in a 3-dimensional form is analogous to urban morphology 

while can be treated as an object filling the volume space. Not similar to planar filling, volume space 

filling is usually interpreted as a city landscape complexity or image intensity (Sun et al. 2006). Fractal 

dimension of urban morphology has been related to many ancillary variables, and it would be promising 

to add surface fractal dimension to fully analyze urban form and urban growth. The measurement of 

fractal dimension of city surface commonly relies on remote sensed data, which is a large study field for 

fractal geometry. Chapter Three provides a general background of fractal analysis in remote sensing field, 

focusing on images of urban area. A brief introduction of remote sensing technique and data source is also 

presented. Chapter Three also covers specific issues of fractal geometry applied on remote sensing. 

Various fractal methods for estimating fractal dimension of city surface are reviewed, along with the 

applications issues proposed for fractal analysis on remotely sensed images. 
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Chapter Three 

Fractal Geometry of Remotely Sensed Image 

3.1 Introduction 

Fractal geometry has been applied intensively to geographic phenomena for the studies of linear and 

surface physical structures. Irregular shapes such as coastlines and transit system are exhibited in a visual 

form to represent the real world phenomena. Therefore, the data source for fractal analysis is a crucial 

component for presenting physical shapes of natural features to researchers to carry out fractal dimension 

calculation. It is important to display the physical structure of the studying objects in a precise and digital 

way, and without a high quality data, fractal methods can be hardly used to fulfill the goal of measuring 

spatial complexity. Moreover, the heterogeneous landscape of geographic phenomena changes rapidly 

nowadays and both spatial and temporal analysis of fractal geometry need timely data updates. Attributes 

data is not appropriate for fractal analysis since it does not contain any physical characteristics. Vector 

data is one of the suited data source as it contains actual boundary and shape of geographic features. 

Point, line and polygon are the three most basic vector data type and they have geometric properties for 
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describing their physical arrangement. Measuring fractal dimension of geographic phenomena requires 

additional quantity information and it based on the basic geometric measurement. 

The relationship between remotely sensed images and fractal geometry could be described as a 

complementary communication. It is becoming more and more important and promising in geographic 

information sciences to study the scale effect on the geographic phenomena processes (Myint 2003). 

Changing scale can examine the dynamics of an indicator performance of a spatial phenomenon in order 

to efficiently use the data at an appropriate scale to characterize the phenomena (Emerson et al. 1999). 

Among all the available spatial data sources, remotely sensed images have many advantages and have 

attracted considerable attentions from fractal geometry studies (Sun et al. 2006). Remotely sensed image 

is both spatial and temporal complex and can covers large extent of geographic landscape. Remotely 

sensed image can be captured regularly to meet the researcher’s requirement for up-to-date analysis. In 

addition, most importantly, it is flexible to adjust the scale of a remotely sensed image to investigate the 

diversity of the geographic phenomena. Nowadays, finer spatial resolution data of remotely sensed image 

has become available and public for easy access. This has made the remotely sensed images playing an 

increasingly significant role for extracting land surface properties with detailed texture information. 

Meanwhile, using classification technique to extract linear feature without information loss on remotely 

sensed images is critical for fractal analysis, and this can be done by employing various image processing 

methods. 

On the other hand, remote sensing is an ideal community for the application of fractal geometry. 

Not only the estimation of fractional dimension for certain physical structure of earth landscape, but also 

using fractional dimension to assist related remote sensed image studies. Fractal geometry broaden the 

application of remote sensing area by introducing the concept for describing the irregular and complex 

landscape. Many applications of remotely sensed image would loss textural and geometric information 

without the introduction of fractal geometry. One of the most widely studied issue regarding remote 

sensing is the classification and it still needs to be improved at various aspects. Traditional techniques 

rely on the pure digital number and statistical analysis to classify heterogeneous land covers. Fractal 
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geometry can be employed as additional information to further classify the land covers based on texture 

and physical structure differences, especially for the land covers with similar spectral reflectance but 

different physical shapes. Fractal geometry has been applied on various classification researches and 

proven to be a robust tool for improving classification accuracy (De Jong and Burrough 1995). However, 

fractal analysis alone is unable to characterize the spatial distribution of land covers in remotely sensed 

images, and dimension cannot even be considered as a primary tool for classifying land covers (Chica-

Olmo and Abarca-Hemandez 2000, Dong 2000, Myint 2003, Sun et al. 2006). Another improvement 

when using fractal geometry is that multiple bands can be studied and a dimension reduction can be 

performed using fractal analysis other than traditional methods. Fractal methods have been studied to be a 

better approach than the conventional methods for dimension reduction of remotely sensed images, in a 

way of reducing computation complexity and yields similar classification accuracy (Mukherjee et al. 

2014).  Fractal geometry introduces a physical characteristic to the digital image, besides the purely 

digital numbers, a geometry factor replenishes to the mathematical values of the remotely sensed images 

and promotes the remote sensing study to a new level. 

It is important to note that many fractal analysis applications on remotely sensed image rely on 

the overall intensity of an image surface (Myint 2003, Lam 2004). Different from coastline and urban 

boundary, estimating remotely sensed image complexity is more focused on 3-dimentional calculation, 

and this is considered as an obvious application of fractal geometry (Sun et al. 2006). A single fractal 

dimension is calculated for an entire remotely sensed image, a single band or different segments of an 

image. A higher fractional value indicates a more complex landscape surface, and this possibly happens 

in an urban area (Lam 2004, Liang et al. 2013). Classification of various land covers based on single 

fractal dimension may not always provide desirable accuracy results. Many studies have proved that 

similar fractal dimensions may exist for strikingly different textures (Mandelbrot 1983, Voss 1986, Roy et 

al. 1987, De Jong and Burrough 1995, Myint 2003). Spatial autocorrelation is a commonly used spatial 

statistics and has been studied to be a better approach than fractal analysis for classification purposes. In 

order to further distinguish land cover types, after classification techniques and fractal dimension, 
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lacunarity has been applied to distinguish different land cover textures with similar fractal dimensions. 

Lacunarity is capable of dealing with spatial heterogeneity of remotely sensed images for similar fractal 

dimensions with different texture appearances (Dong 2000). For remote sensing application of fractal 

geometry, a single fractal dimension, along with lacunarity concept, could be treated as an innovative and 

advanced methodology for providing fundamental quantities, especially it is crucial for land cover 

classification purposes. 

Fractal geometry application on remote sensing is necessary and powerful but is not adequate to 

capture spatial landscape of a remotely sensed image. It is assumed that different textures in remotely 

sensed images have distinguishable fractal dimensions. However, fractal dimension is not only affected 

by image texture, moreover, it is also influenced by other factors: (1) fractal methods, (2) parameter 

specification, (3) estimation procedure, and (4) image band and spatial resolution. Sun et al. (2006) 

summarized several research issues regarding to the fractal geometry applications on remote sensing. One 

promising issue is the fractal methods computation and comparison. The relationship between various 

fractal methods is not clear and the computed D values are not related well. Various methods often 

generate different fractal dimensions and it has been claimed that there could be a hidden relationship 

between estimated fractal dimension and fractal methods rather than theoretical inadequacy of the fractal 

model (Klinkenberg and Goodchild 1992). Fractal geometry application on remote sensing also concerns 

about the band selection. The existing fractal methods can only be applied for a single band at each time. 

Estimating for all the bands requires intense computation time. Developing a multivariate fractal method 

for remotely sensed image is desirable, and this method should be able to compute all the bands together. 

Such an improvement not only reduce the analysis time of an image, more importantly, fractal dimensions 

can be compared across all the bands and suitable band or band combination could be selected for certain 

social and environmental analysis. 

This research dissertation focus on some of the discussed issues in the literatures. A good and 

thorough review of fractal analysis on remote sensing can be found at Sun et al. (2006). The study area is 

focused at urban landscape and multispectral remotely sensed images are collected for the analysis. 
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Fractal methods comparison is a focus of this dissertation. In addition, measuring spatial complexity of 

urban area based on fractal dimension and exploring the effect of spatial resolution are two primary goals. 

Fractal dimension can be treated as a summary or average statistic, similar to other statistical quantities, 

when applied in geographic and spatial phenomena (e.g. remote sensing), a spatial information is 

necessary to be considered to explore the analysis extent of fractal dimension. Sun et al. (2006) discussed 

that computing local fractal dimension values is a desired future research direction holds a great potential 

for remotely sensed images. The following part is a brief introduction to the remote sensing and remotely 

sensed image. 

3.2 Remote Sensing and Remotely Sensed Image 

In earth science field, remote sensing technique possesses unique advantages for researchers to analyze 

earth surface phenomena. Remotely sensed images acquired from remote sensing technique are special 

pictures that human do not experience often in daily life. Remote sensing has been variously defined by 

many scholars throughout its development history. Campbell (2002, 6) examined previous definitions and 

proposed his version: 

remote sensing is the practice of deriving information about the earth’s land and water surfaces using 

images acquired from an overhead perspective, using electromagnetic radiation in one or more regions of 

the electromagnetic spectrum, reflected or emitted from the earth’s surface. 

A central part of the definition is the collecting distant spatial objects without toughing them. Such a 

broad definition omits some other geographic phenomena. Remote sensing uses overhead instrument to 

sense the earth’s surface and result in an image structure consists of pixels. Remotely sensed image is the 

ultimate form that remote sensing brings to researchers. An image consists of pixels in a row and column 

format. Each pixel has a digital value in an integer format, which could be the most valuable information 

for researchers to examine remote sensed images. Different range of digital values associate with different 

land covers and this could be treated as the basis and guidance for remote sensing applications, especially 

the classification studies. 
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The history of remote sensing could be traced back to early 1800s. A crucial step is the first use 

of photograph to record earth surface’s landscape, the instrument was carried in a balloon in 1858 

(Campbell 2002, 7). Following this, many more instruments carried by balloon and kites were used to 

capture earth surface’s view in a photographic technology. The disadvantage of using low altitude 

platforms is that they can only cover small extent of earth surface’s view, which is impossible for 

studying spatial heterogeneity in a national level. Not surprising, these type of remote sensing aerial 

image were recorded for the experiment purposes as a starting stage of remote sensing technique. The 

first milestone of remote sensing was the introduction of the aircraft to carry digital cameras for recording 

earth surface’s land areas in 1909. An airplane platform dramatically increase the altitude of the 

instruments to acquire remote sensing images, more importantly, it can collect landscape information in a 

systematic way. Airplane platform is able to record a large extent of land surfaces in a state or national 

level. Another milestone in remote sensing would be a use of satellite carrying sensors to digitally record 

earth surface’s land covers. Landsat-1 is the first earth-orbiting satellite launched in 1972 aims at 

collecting broad scale of earth’s land areas (Campbell 2002, 9). It was then followed by other similar and 

improved earth-orbiting satellites, which formed the mainly used group of platforms for collecting 

remotely sensed images for remote sensing research. 

There are four types of resolution associated with remotely sensed image: spectral resolution, 

spatial resolution, temporal resolution and radiometric resolution. Spectral resolution relates to the 

techniques of sensors and satellites. Multispectral remotely sensed image is the most widely analyzed 

image data, which usually has seven spectral bands with different bandwidths and different colors ranging 

from visible to infrared bands. The more bands an image has, the finer a spectral resolution is. 

Hyperspectral remotely sensed image has the finest spectral resolution, which contains more than 200 

spectral bands. Analyzing hyperspectral image is becoming a popular research area for remote sensers, it 

includes dimension reduction and optimal bands selection. Temporal resolution is the frequency of the 

image acquired by its sensors. The more frequent the satellite is, the more images of a same area will be 

covered. A fine temporal resolution enables the land cover change analysis on a remotely sensed image 
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for the covered study area, especially for a fast landscape changing area. Radiometric resolution is a color 

depth configuration, which means the pixel value range for an image. Spatial resolution is interpreted as 

at what extent the detailed information of earth surface is available to human eyes. It is reflected by pixel 

size of an image and it can range from more than 100m to less than 1m. A coarse spatial resolution image 

fails to display detailed objects but can cover large area. This is beneficial for the global level study on 

change analysis, environmental assessment and monitoring. A fine spatial resolution image is able to 

show detailed objects and can improve the classification accuracy. Spatial resolution is related to scale 

analysis and scale is a crucial aspect of remotely sensed image (Benz et al. 2004). Relationship between 

spatial resolution, scale and fractal geometry is discussed in the following section. 

3.3 Fractal Geometry Characteristics of Remotely Sensed Image  

Remotely sensed images can be considered as a data source, which displays the complex physical and 

artificial phenomena. With the improvement of precise sensors, remotely sensed images become both 

spatially and spectrally complex. Detailed land cover texture and narrow bandwidth both enhance the 

complexity of an image. In order to better understanding remotely sensed images, it is necessary to 

develop advanced indicators with spatial complexity information involved to measure and extract land 

surface properties. Various landscape indicators have been developed to quantitatively examine remotely 

sensed images but very few take into account the information of physical structure of land covers. In this 

context, fractal geometry becomes an appealing tool for characterizing complex land surface patterns of 

remotely sensed images (Sun et al. 2006). Moreover, fractal analysis is still unfamiliar as a spatial 

analytical technique to remotely sensed images, even though fractal geometry holds great potential. It has 

been suggested that an extended employment of fractal geometry on remotely sensed image is needed, 

and it is also crucial for understanding the relationship between earth surface’s landscape and spatial 

properties of remotely sensed data (Quattrochi et al. 1997). 

Even though fractal geometry has been applied on spatial phenomena extensively, its use in 

remotely sensed images is still limited. Moreover, fractal geometry is necessary and suitable for analyzing 
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remotely sensed images mainly because they share self-similarity property at different scales (Lam et al. 

2002, Lam 2004, Sun et al. 2006). Self-similarity is the most fundamental characteristics of fractal 

geometry, and it is controlled by scale change. There is a linkage between fractal geometry and remotely 

sensed images by connecting scale and spatial resolution. The scale definition is discussed previously in 

Chapter Two. Spatial resolution is one of the fundamental characteristics of remotely sensed images 

(Townshend 1980). A spatial resolution of a remotely sensed image can be interpreted as an average 

square area a pixel covers on the ground (Benz et al. 2004). In this sense, for remotely sensed images, 

spatial resolution can be treated as the scale of the observations (Woodcock and Strahler 1987). Scale (i.e. 

spatial resolution) analysis of a remotely sensed image is important for several purposes such as scale 

effect on dynamic process of spatial phenomena and obtaining optimal spatial resolution. However, the 

spatial resolution has been limited decades ago since the lack of the availability of sensors. Nowadays, 

scale change analysis of remotely sensed images is becoming increasingly meaningful through the change 

of spatial resolution from finer to coarser. Woodcock and Strahler (1987) used local models to calculate 

spatial statistic values for the same study area with the change of spatial resolution to obtain the 

appropriate resolution for certain landscape patterns.  

Researches have claimed that remotely sensed image is a fractal possessing a statistical self-

similarity property (Lam and De Cola 2002). This indicates scale change of remotely sensed images 

within certain range will not affect fractal dimensions of the overall image complexity. Scale change of 

remotely sensed image is analogous to resample the image for acquiring other resolution values. 

Changing spatial resolution of a remotely sensed image is equivalent to the dynamic processes of forming 

a fractal at different scales, nevertheless the remotely sensed image is not formed in an exact recursive 

way. Not surprising, the fractal dimension value of a remotely sensed image continues to change until it 

reaches to the resolution range where fractal geometry characteristic falls. Not intuitive, the fractal 

geometry of a remotely sensed image for image complexity is not reflected in a form of physical shape. 

Instead, it is exhibited through the regularly distributed digital numbers and their impacts on neighbor 

cells. With the spatial resolution change, the landscape of an image will most likely look different at 
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every stage, not in a geometric shape view, but in an image detail and complexity perspective. For 

mathematically formed fractals and some geometric format data, one obvious way to examine whether 

there exists a fractal geometry is to visually look at the physical structure dynamics with the scale change. 

For geographic phenomena and their remotely sensed images, the fractal dimension should be a constant 

for a certain landscape area. Nevertheless, resolution change changes the image structure and therefore 

affects the estimated fractal dimension values. Finding an acceptable resolution range of an image with no 

fractal dimension change (i.e. statistically significant) benefits the scale analysis for the image and it is 

becoming a favored research area for fractal geometry on remote sensing. 

Besides the spatial resolution, spectral information is another research focus of a remotely sensed 

image. A spectral information is reflected by multiple bands, each band is a single image and they have 

the same spatial extent but different digital numbers. Characterizing spatial complexity based on 

estimating fractal dimension across spectral bands of remotely sensed images is a primary research of 

fractal geometry application on remote sensing (Lam 1990, Qiu et al. 1999, Chica-Olmo and Abarca-

Hernandez 2000, Emerson et al. 2005, Liang et al. 2013, Mukherjee et al. 2014). These studies have 

transformed the original remotely sensed images to a newly derived image. NDVI image is one of the 

most studied derived images, which is a single grey scale image indicating a broad land cover spatial 

distribution and served as an important environmental indicator in general (Lam 2004). It is calculated by 

using the ratio between red and infrared bands and several land covers including urban landscape can be 

examined using fractal dimension. Besides NDVI bands combination, another widely used technique for 

spectral bands aggregation is principal component analysis (PCA). PCA is developed to transform 

redundant band information into three principal components, which are PC1, PC2 and PC3. The spectral 

information contained in all the multiple bands are treated as variance, and the goal of PCA is to transfer 

all the information into the three PC bands without any information loss. As a result, the first PC band 

contains almost 99% variance of the entire image. Instead of applying fractal geometry on all the spectral 

bands, only use the PC bands not only keep the important spectral information, but also make the fractal 

analysis more efficient. Chica-Olmo and Abarca-Hernandez (2000) calculated fractal dimensions for each 
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of the PC bands, the fractal method is adapted from “structured walk” method. Hyperspectral remotely 

sensed image have attracted much attentions recently from fractal geometry since hyperspectral sensor is 

a group of sensors different than traditional multispectral sensors. AVIRIS sensor is the main source of 

collecting hyperspectral imagery and it is promising to examine the spectral variation of fractal 

dimensions. Results have shown that there is a clear fluctuation and several peaks of fractal dimension 

values across the entire 224 spectral bands for both the urban and rural areas (Figure 3.1).  

 

Figure 3.1 Variation of Fractal Dimension Values across 224 Spectral Bands (Qiu et al. 1999) 

 

Remotely sensed image is highly related to fractal geometry characteristics. Previous studies have 

proved that the self-similarity property exists for the entire image within certain spatial resolution range. 

In addition, calculating fractal dimension values for the entire spectral bands also reveal a fractal 

geometry characteristic (e.g. Figure 3.1). Fractal dimension values stay the same in a statistical way for 
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most of the bands, moreover, the variations across the spectral bands can help identify noisy spectral 

bands and select the appropriate bands for image classification, segmentation and other related image 

analysis (Sun et al. 2006). Fractal geometry application on both the scale and spectral analysis introduces 

a valuable spatial complexity information to the remotely sensed image, calculating a single fractal 

dimension value does not convey much information about the image, on the other hand, a dynamic 

analysis of the fractal dimension is desirable for researchers to truly understand fractal characteristics. 

Specifically, the analysis of fractal dimension should include a comparison between various spatial 

resolutions, a comparison between interested land cover types, a comparison between the available fractal 

methods and a comparison between the multiple spectral bands. Additionally, not limited to these, a 

relation can also be made through examining fractal dimension and temporal change on a remotely sensed 

image for the same study area for a temporal resolution study. It would be promising and encouraging to 

investigate the time series analysis of scale effect of fractal dimension on remotely sensed images and 

store the results in a matrix format. This process is particularly useful for urban sustainable development 

based on remotely sensed images where a fractal may exist for both urban form and an image structure. 

3.4 Fractal Geometry and Spatial Statistics 

The key ideas of fractal concepts are developed from a map data source, and continue to draw 

applications on spatial phenomena (Goodchild and Mark 1987). Map data is presented in a spatial way 

that position information is associated with each location. This is a crucial difference than the ordinary 

statistical data where the statistical data does not possess coordinates information. GIS data is a digital 

type of traditional map and it conveys wide variety of spatial characteristics. Fractal geometry analysis 

using GIS data in either a vector format or a raster format highly relates to spatial analysis. Goodchild and 

Mark (1987) claims that fractal ideas have some direct relevance to spatial analysis and it is necessary to 

undertake some reviews of the fractals to the spatial analysis in geography. They also state that fractals 

are themselves with the consideration of spatial data handling. Many early researches have attempted to 

use different types of fractal methods and applied to wide range of spatial and atmospheric phenomena. 
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Burrough (1983) estimated fractal dimension for soil data and compared with other environmental data as 

well as the Brownian fractals reference data. He concluded that soil data are fractals, not a strict fractal, 

and also implied that some bulking and block kriging method should be used to interpolate soil property 

values. Lovejoy and Mandelbrot (1985), Lovejoy and Schertzer (1986) used a fractal model to study rain 

and cloud, they concluded that the boundaries of rain and cloud on the earth ground possess a fractal 

property and this research settled the application of fractal geometry in meteorology. Lovejoy et al. 

(1986) took a network of worldwide meteorological stations as an example of highly spatially 

heterogeneous distributed phenomena and estimated an empirical fractal dimension of 1.75. They implied 

that meteorological stations network is a fractal set and the dimensional resolution is associated with 

geophysical statistics. Most of these early studies of fractal geometry mentioned remote sensing as an 

advanced measurement technique and implied some related issues such as problems in calibrating 

remotely sensed information and the importance of the mesoscale processes (Lovejoy and Schertzer 1986, 

Lovejoy et al. 1986). Similar contributions to the early studies of fractal geometry and geospatial analysis 

include Hubert et al. (1993), Olsson et al. (1993), and Anagnostakis et al. (1996), which provide a basic 

description of rainfall events and surface soils as spatial distributed natural phenomena using fractal and 

multifractal analysis. These studies reveal the fractal characteristics and suggest new spatial analysis ways 

on these physical events. 

The early studies of the fractal geometry have mainly focused on various physical phenomena, 

which spatially distributed in a highly heterogeneous manner, especially the rainfall events have inspired 

many studies linking fractal geometry with spatial phenomena. The following briefly discusses the 

concepts of spatial analysis and spatial statistics which are widely used to quantitatively analyze various 

geographic phenomena, and the linkage between fractal analysis and spatial analysis is also reviewed. For 

traditional or aspatial statistics, the assumption behind this is that there is no variation across the study 

area. In other words, there is no spatial information attached to the dataset and the calculated statistic is 

the same everywhere. This is also interpreted as spatial stationarity and a static model is used to analyze 

these spatial relationships (Fotheringham and Brunsdon 1999). Stationarity is an essential concept not 
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only in spatial analysis, but also to temporal analysis, where a stationarity model has the same parameters 

and result in similar statistical properties (e.g. mean and variance) across the entire study area (Lloyd 

2010, 9). However, this assumption does not always hold true for spatial data and other geographic 

phenomena. The important distinction here is that spatial data contain both attribute and locational 

information while aspatial data only possess attribute information (Fotheringham et al. 2003, 3). The 

locational information is additional information and somehow the most valued property of spatial data. 

Space (i.e. places) is a key element in geography and often times treated to be of fundamental importance 

for the concern that people is interested to see what factors influence certain social phenomena (e.g. 

unemployment or soil erosion) (Lloyd 2010, 1). Different from stationarity, a process for analyzing 

spatial data over space can be called spatial nonstationarity, that is, a statistic result varies from place to 

place within certain scale range. In reality, it is impossible to observe any stationary processes across 

geographical spaces, which are controlled by intrinsic variations, and there is a crucial change in 

geography that focus has been switched from similarities to differences across space (Unwin and Unwin 

1998, Fotheringham and Brunsdon 1999). Classical statistical methods in this case are favored to be 

replaced by spatial analysis methods and a new perspective of observing geographical data is therefore 

emerged and expanded. 

In a spatial statistic, the locational arrangement of data values have an impact on the value of the 

statistic (Unwin 1998), and if the various data arrangements always generate the same statistical results 

then it is aspatial statistic. As previously mentioned, global statistics are a group of spatial statistical 

methods which use all the available data to calculate a single statistic to characterize the general trend of 

the variable itself. Representative examples include global mean, global variance, global autocorrelation 

and global regressions. A global statistic intends to characterize the entire region with the mutual 

locational relationship of the data values. A major category of the measurement of global statistic is 

spatial autocorrelation which is a general statistical property, and can be briefly defined as values of 

random variables taking pairs of locations, that departs from or similar to the complete spatial randomness 

(CSR) pattern (Legendre 1993, Lloyd 2010, 80). There are several commonly used global statistics for 
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demonstrating the spatial autocorrelation. A global K function can be used to study the departure from a 

CSR point pattern and has been applied on Mediterranean subshrub of plant study (Ripley 1979, Haase 

1995). A global nearest neighbor statistic is a simple and intuitive statistic to measure the spatial pattern 

of an event, it is based on contiguity relationship and can be applicable to wide range of geographic data 

(e.g. cancer mortality) with easy implementation (Hudson 2000, Rogerson and Yamada 2008, 43). Two of 

the most frequently encountered global statistics in GISystems literatures are Moran’s I and Geary’s C 

methods, which are formulated in a similar manner in a contiguity ratio way (Lloyd 2010, 81, 82). Both 

of C and I have been applied to various social and environmental phenomena including population 

distribution, epidemiology rates and species distributional data (Oden 1995, Waldhör 1996, F Dormann et 

al. 2007, O’Sullivan and Unwin 2014). Some other theoretical researches focusing on identifying extreme 

values, adjusting current methods and improving the test methods of these two statistics, as well as 

combining with other statistical methods (Jong 1984, Assuncao and Reis 1999, Li et al. 2007). An 

appropriate term for this process could be called global spatial statistical analysis. 

Global spatial statistics have several drawbacks in spatial data analysis. Some of the properties 

and foundations were reviewed previously for global analysis but they are doubtful under geographic data 

analysis domain. Unwin (1996) pointed out three limitations of global statistics in spatial analysis. The 

main limitation is that a single global statistic fails to explain the real process and pattern of a spatial 

phenomenon, especially GIS and remote sensing techniques have the ability to store and display large 

extent and fine resolution spatial dataset, it is even more heterogeneous of the large area landscape and 

more likely that earth’s surface exhibits diverse characteristics. A secondary limitation of spatial global 

statistic is that the calculation is subject to edge effect and a so-called modifiable area unit problem 

(MAUP), which is a fundamental problem of geographic analysis and exhibited for spatially aggregated 

data (Openshaw and Taylor 1979). Another important issue with global spatial statistic is the cartographic 

visualization purpose. A single global statistic value cannot be displayed in a map format, which does not 

take the advantage of the capability of cartography and geographic illustration. Exploratory spatial data 

analysis tends to use visualization as a direct approach to display the pattern of spatial phenomena and 
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choropleth mapping has become a useful tool for displaying various parameters estimation results based 

on different color scheme, which can be synthesized by human eyes and brain (Unwin 1996, 

Fotheringham 1999, Goodchild and Haining 2004, Cromley and Hanink 2014). 

The other group of spatial statistic is local statistics. Lloyd (2010, 4) reviewed that the term local 

can have multiple definitions in many disciplines. In physical geography, a local analysis could be some 

focal areas within a study are and this particular process has a noticeable effect. A landscape in 

geomorphology discipline may be considered as different land uses and spatial analysis could be carried 

out in each these land use areas. For socioeconomic study, a local analysis could happen in the 

neighborhood or particular districts with which individual or a group interact on a regular basis. In the 

field of spatial analysis, a local space could be treated as a distance from a focal point to its neighborhood 

points or areas. In use of local statistics, we focus on learning more for each individual location including 

point, line or area and comparing with neighbor values (Unwin 1996). The foundation and core principle 

of local methods is spatial dependence (Lloyd 2010, 5). Spatial dependence is also termed the “First Law 

of Geography”, that is, objects are located closer tend to be more similar than objects located further apart 

(Tobler 1970). Spatial dependence indicates that spatial data is not independent and, the nearer the objects 

are located, the more similar the values they share. Objects with similar values located closer is termed 

positive spatial autocorrelation or strong spatial dependence, objects with dissimilar values located closer 

is termed negative spatial autocorrelation or weak spatial dependence. Fotheringham et al. (2003, 6) 

mentioned that local statistics are a set of statistical techniques which are spatial disaggregation of global 

statistics. There are some differences and relations between global and local spatial statistics (Table 3.1). 
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Table 3.1 Differences between Global and Local Spatial Statistics (adapted from Fotheringham et al. 

2003, 6) 

Global Statistics Local Statistics 

Summarize data for a whole area Local disaggregation of global statistics 

Single valued statistic Multi valued statistic 

Non mappable (GIS unfriendly) Friendly (GIS friendly) 

Aspatial or spatially limited spatial 

Emphasize similarities across space Emphasize differences across space 

Search for regularities or “laws” Search for exceptions or “hot-spots” 

 

Global and local spatial statistics vary in many ways. One of the main difference is the mapping 

purpose. The results of global spatial statistics cannot be analyzed within GIS environment. Global 

statistics generate one single value, which cannot be mapped using cartographic technique. As a result, 

the results of global statistics may only be presented in a table format and lack of a spatial display 

capability. On the other hand, local statistics are able to generate mappable statistical results, parameter 

values and can be further studied in a GIS environment. Indeed, spatial phenomena possess large amount 

of variation and it is essential to map the results for better understanding of the spatial pattern 

(Fotheringham et al. 2003, 7). Another difference is that global statistics try to capture a general trend or a 

universal rule for the spatial phenomenon. It is important, for certain applications, find a general rule or 

law is a first goal for other analysis to follow. In contrast, local spatial statistics tend to search for extreme 

areas or exceptions, which present some highest or lowest values of the spatial property, this process 

helps, identify particular local regions and relate to other factors to study the causes of this consequence. 

 Anselin (1995) proposed a new concept of local statistics, which is a general class of local 

indicators of spatial association (LISA). Spatial dataset becomes increasingly heterogeneous and largely 

available with the needs of using GIS to visualize the spatial characteristics. Moreover, it is claimed that a 

new group of techniques should be developed for exploratory and confirmatory nature (Anselin and Getis 
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2010). There are two definitions for a statistic to be considered as a LISA. One is that a LISA for each 

individual observation provides an indication of the clustering extent of similar values around that 

observation; the second requirement is that the sum of the LISA for all observations is proportional to the 

corresponding global indicator of spatial association. The concept of LISA is a fundamental idea for 

analyzing local spatial statistics and models for studying spatial autocorrelation and spatial association, 

and has been widely discussed in the literature (Unwin 1996, Fotheringham and Brunsdon 1999, Boots 

and Okabe 2007, Fotheringham 2009, Cromley and Hanink 2012). However, these literature focus on 

various aspects of LISA and relate to other concepts and methods, LISA has been related to GIS that 

incorporating LISA into GISystems may improve the functionality of local spatial statistics of GIS 

software, indicating the local spatial statistics can turn into GISable (Unwin 1996). Other studies 

mentioned LISA style to imply that some statistical methods and significant tests possess LISA 

characteristics, examples of this including a spatial version of the chi-square test developed by Rogerson 

(1999) and a spatial alternative of location quotients. The results of using LISA as an alternative method 

to examine spatial clusters can be evaluated by visual inspection, but can also be examined by inferential 

norms (Jacquez 2008). Another recent and similar concept was proposed by Boots and Okabe (2007), 

which is termed local spatial statistical analysis (LoSSA), a concept based on integrative structure of the 

existing methods. LoSSA is a framework for facilitating the development of both global and local spatial 

statistics. When developing a particular local spatial statistics, LoSSA can reveal some features and 

limitations including the nature of the datasets surrounding an observation, spatial relationship between a 

subset and the whole dataset, as well as the relationship between global statistics and the corresponding 

local one. 

At this point, after review the concept and foundation of both global and local spatial statistics, 

the focus is switched to more details of local spatial statistics, which is a main part of this dissertation 

research. This section further review the principle for creating a local statistic and model. The 

construction of a local statistic and a local model depend on spatial dependence, and spatial dependence 

reflect on spatial nonstationarity, it is also claimed that creating a local analysis in this manner follows a 
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logical way (Fotheringham 2009). Distance plays a crucial role for constructing local methods or adapting 

from global alternative. Calculating distance matrix between a focal point and neighbor observations is 

usually a first step for deciding the influence of each attribute. A widely used and a key approach to 

localization method based on distance is geographical weighting scheme (Brunsdon et al. 2002, Lloyd 

2010, 24). This scheme is informed by spatial dependence that observations locating closer to focal point 

have higher weights than the further observations. Euclidean distance is the most intuitive and common 

notion for calculating distances between pairs of observations or focal points (Pinkse and Slade 1998, 

Dray et al. 2006). Besides Euclidean distance, other parameters would also be used based on empirical 

results to formulate local statistics in various manners. There are some other options of geographical 

weighting scheme based on distances but in a different weighting assignment. The existing geographical 

weighting schemes are listed in Table 3.2. 

Table 3.2 Common Geographical Weighting Schemes (adapted from Getis and Aldstadt, 2010) 

 Geographical weighting scheme 

Contiguity-based weighting scheme Spatially contiguous neighbors 

Lengths of shared borders divided by the perimeter 

n nearest neighbors 

Distance-based weighting scheme Inverse distances raised to some power 

Bandwidth as the nth nearest neighbor distance 

Ranked distances 

All centroids within distance d 

Constrained weights for an observation equal to 

some constant 

 

A local statistic consists of distances calculation and various geographical weighting scheme. 

With the attribute values distributed at the whole study are, many local statistics and models can be 

developed to perform local spatial analysis for diverse geographical applications. Global statistics and 

models are discussed previously. Similarly, widely used local methods are reviewed as well as the 
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corresponding applications of spatial data. One of the most important outputs of local statistics is the 

mapping of spatial distribution and they are presented here for some examples to distinguish from global 

statistics results. Geographically weighted summary local statistics are a group of local statistics derived 

from mean, variance, standard deviation and skewness. Calculating of local summary statistics is intuitive 

and can be applied to almost every spatial phenomena for descriptive purposes. The most widely used 

geographically weighted variants of standard local statistics include geographically weighted mean and 

geographically weighted standard deviation. These local statistics have been applied to various situations 

include racial population distribution (Lloyd 2010, 76), housing price spatial pattern (Brunsdon et al 

2002, Cromley and Hanink 2014), hydrology and surface waters (Harris and Brunsdon 2010) and 

atmospheric data of wind direction (Brunsdon and Charlton 2006). The results can be used for measuring 

spatial variation of the general values and in assist of calibrating spatial regression models.  

Commonly used local statistics for measuring spatial autocorrelation are local G and G* (Getis 

and Ord 1992), local Moran’s I and Geary’s C (Anselin 1995), together these popular local statistics focus 

on revealing various local clusters of spatial phenomena. Wulder and Boots (1998) employed local Getis 

statistic to measure the spatial autocorrelation of digital numbers of remotely sensed image. Goovaerts 

and Jacquez (2005) used local Moran’s I to detect the clusters of high cancer mortality rate across space 

and time. Zhang et al. (2008) adopted the index of local Moran’s I to identify pollution hotspots in urban 

soils. Some other applications of exploring spatial dependence using local statistics have also been widely 

discussed in the literature (Fortin et al. 1989, Ping et al. 2004, Tsai et al. 2009). Another important and 

broadly studied local statistic is geographically weighted regression (GWR) which is developed to 

measure spatial association between multiple variables in contrast to spatial autocorrelation (Brunsdon et 

al. 1998). GWR assumes the regression model parameters vary locally and multiple regression models 

can be generated over space for the spatial relationship. Different from global regression, the concept of 

local regression allows the exploration of spatial variation on each calibration location. Consequently, 

using subsets of the entire spatial dataset would be a simple solution for achieving the various spatial 

parameters combination (Lloyd 2010, 109). GWR have been extensively applied on broad fields to 
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understand the spatial relationships between independent variables and dependent variable. One of the 

applications is to study the causing of limiting long-term illness within UK (Brunsdon et al. 1998). 

Another application includes the relationship between average rainfall altitude and gauge elevation over 

Great Britain (Brunsdon et al. 2001). Some other applications are the study of the relationship between 

level of China regional industrialization and various factors (Huang and Leung 2002), linkage between 

housing attribute price and some key variables in the housing market (Bitter et al. 2007, Cromley and 

Hanink 2014), and the connection of gross state output with capital and labour (Cromley et al. 2013). 

Besides the reviewed local statistics and regression models, there are also some other local 

statistics and methods which have been developed specifically for some local measures. One of the 

examples is the development of geographically weighted colocation quotient, which is developed for 

measuring spatial interaction between categorical data such as housing types (Cromley et al. 2014). 

Another example is the local version of the Index of Dissimilarity, which can be used to measure spatial 

pattern of disparity such as spatial segregation and regional income inequality (Lloyd et al. 2004, Reardon 

and O’Sullivan 2004, Feitosa et al. 2007, Berentsen and Cromley 2013). In addition, a local variant of the 

K function (Getis 1984, Getis and Franklin 1987) have been applied to analyze spatial clusters of white-

tailed deer habitats and clusters constrained to roads (Potvin et al. 2003, Yamada and Thill 2007). The 

selection of local statistics and models subject to spatial applications as well as scale consideration. It is 

encouraged to maximize the power of existing local methods and spatial data, and meanwhile generate 

innovative outputs (Lloyd 2010, 274). Two examples of local statistical results are provided below for the 

purpose of visual interpretation. 
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Figure 3.2 Geographically Weighted Mean of Housing Price (Cromley and Hanink, 2014) 

 

Figure 3.3 Variation of Population Density Parameter of GWR (Mennis 2006) 
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Many previous analysis of fractal methods focus on estimating one single fractal dimension 

values for the entire study landscape. Fractal analysis falls into the category of spatial global statistical 

analysis since the arrangement of data values affect the fractal analysis results and they use the entire 

dataset to measure the spatial complexity of a linear or surface landscape on earth. Sun et al. (2006) 

mentioned that estimating local fractal dimension values should be a next step research direction, which 

holds great potential for fractal analysis in remote sensing community. Local measurement of remotely 

sensed imagery mainly relies on moving windows technique. Queen’s case and Rook’s case contiguity 

are the basic three-by-three pixel moving windows for grid analysis (Cliff and Ord 1970). However, many 

different fixed sizes of moving window have been widely applied for neighborhood analysis to achieve 

local level results (Haralick et al. 1973, Thomas et al. 1981, Lee 1983). In addition, approaches with pixel 

weights and adaptive window sizes are studied as well (Chang et al. 2000, Sun et al. 2004, Harris et al. 

2010). De Jong and Burrough (1995) employed a local fixed moving window technique to compute local 

fractal dimension values. In their study, they claim that local fractal analysis may inform us some 

valuable information of spatial pattern of the land covers in addition to global fractal dimension values. 

They modified the Triangular Prism Surface Area method to a local version by using 9 by 9 kernel 

moving window in consideration of computation time and number of points for fitting the regression line. 

The local fractal dimension method was applied to a TM image and the local fractal dimension ranges 

from 2.00 to 2.55 where rangelands have the lowest fractal dimension and agricultural areas have the 

highest fractal dimension values. The results prove that fractal dimension values vary locally for different 

landscapes as well as or different fractal methods.  

There are few studies focused on developing local fractal methods to generate local fractal 

dimension for measuring landscape complexity. One issue associated with computing local fractal 

dimension based on remotely sensed imagery is that the size of the moving window affects the local 

fractal dimension values. Sun et al. (2006) claims that choosing an appropriate window size depends on 

two conditions. The first condition is large window size, which allows more regression points, but may 

cause many heterogeneous land cover types. The other one is a small window size covers homogeneous 
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landscape with realistic local fractal dimension while it contains fewer pixels, which may be insufficient 

for regression technique. Using moving window technique of local spatial analysis to compute local 

fractal dimension is intuitive and straightforward and this needs great potential researches to develop 

approaches to couple local moving window with appropriate regression techniques to estimate local 

fractal dimension. However, only considering a moving window may cause some issues (e.g. blurring and 

boundary effect) which result in a map of spatial distribution of local fractal dimension values with loss of 

several edge pixels. An alternative method to compute local fractal dimension values is to employ 

geographically weighting scheme on remotely sensed imagery, which has not been tested. Geographically 

weighted scheme ensures that every chosen focal location can be visited without pixel loss, also all the 

pixel values can be assigned a weight to decide the local fractal dimension value. In addition, various 

bandwidths also play an important role for generating a comparison of the spatial pattern of local 

variations (Bucci and Franceschetti 1987, Gatrell et al. 1996, Fotheringham et al. 1998). 

There are some previous researches relating fractal analysis to spatial statistics. Chica-Olmo and 

Abarca-Hernandez (2000) computed several image texture measurements including fractal dimension 

based on spatial autocorrelation concept using moving window technique to quantify the image data at a 

local level. Myint (2003) employed spatial autocorrelation statistics using Moran’s I and Geary’s C to 

analyze the image texture of urban landscape. Based on a discriminant analysis, the spatial autocorrelation 

technique is more favored than fractal analysis methods for urban land cover classification. Luan (2012) 

compared three fractal methods based on simple mean and variance to analyze the computed fractal 

dimension values. Liang et al. (2013) adopted coefficient of variation to measure the strength of the raw 

pixel relationship of five Landsat data and then perform fractal analysis. Some other similar literatures 

analyzed fractal dimension results using simple descriptive statistics and some measurements of spatial 

relationships (Palmer 1988, Lam 1990, Cheng 1999, Emerson et al. 1999, Lam et al. 2002, Sun 2006). 
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3.5 Results Visualization of Local Spatial Analysis 

In geography and geographic information system environment, maps could be the most important 

interface to convey information to the public and an effective visual tool in communicating geospatial 

data (Chang 2015, 170). Maps are a necessary display method for transforming numerical results into a 

plane format with both a static and dynamic representation. A well-designed map is rich in data and can 

effectively transmit the information to map reader (Tufte and Graves-Morris 1983). One advantage of 

computing local statistics results is that researchers can map the computed statistical results or model 

parameters over the study area and use GIS cartography technique to present a spatial pattern. As the 

spatial statistical methods and models become popular, the numerical result itself becomes an 

intermediate step. How to effectively visualize the results according to their associated focal points 

remains a next level issue for spatial local analysis research. Furthermore, researchers are not only 

interested in plotting the numerical results over the extent of the study are, but also they are concerned 

with the cartographic techniques to improve the appearance of the spatial pattern of the local variations. 

Local spatial statistical analysis has been claimed to be a visual exploratory analysis and an effective 

mapping approach needs to be developed in order to allow people to explore the spatial non-stationarity 

property of the spatial data (Mennis 2006). 

Cartography is defined as the making and study of maps for all their aspects (Robinson 1958).  

Cartographers have been using various formats of maps to visualize many kinds of spatial phenomena. No 

matter what type of map it is, cartographers always present a map by using symbols, colors, data 

classification and generalization (Chang 2015, 172). Among these map elements, researches mainly 

focused on two components for an informative map. One is the classification method for the local spatial 

analysis results, different classification method may yield different number of classes and range values. 

The other one is the color scheme associated with each class. There are some challenges relating mapping 

techniques, which needed to be resolved for better visualization. The main goal of mapping is to classify 

the numerical results into several groups to display a spatial variation of the results. The principle of 

classifying the numerical results is to minimize the difference within each category and maximize the 
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difference between classes. In other words, the goal is to minimize variance within category and 

maximize variance between categories. ArcGIS packages offer several classification methods to users, 

which includes equal interval, mean & standard deviation and natural breaks, et al. Another challenge is 

the choice of color scheme for each category. There are various color schemes available over the years 

and a key rule among these color schemes is that map-readers can easily recognize the progress from low 

to high values (Antes and Chang 1990). Some of the color schemes are single hue scheme, the hue and 

value scheme, the diverging or double-ended scheme, the part spectral scheme and the full spectral 

scheme. The conventional cartographic technique mainly uses an equal step classification and a no-hue 

color scheme for mapping statistical and model parameter results (Mennis 2006). The equal step 

classification method, which classifies data into equal range, appears to be the most common data 

classification method (Dent 1999), especially the most appropriate method for uniformly distributed data 

(Mennis 2006). However, this may not be an appropriate approach for some non-uniformly distributed 

spatial data, and other classification method should be considered or developed as alternatives for normal 

data distribution or other data distribution. For the choice of color scheme, a no-hue color scheme assigns 

classes of intervals an increase of grey shade (Brewer 1994). Map-readers can perceive the gradual 

increase of the importance of the values based on the sequential colors. However, for some statistical 

results and statistical tests, the sign plays an important role as both the positive and negative values 

indicate the same importance (Huang and Leung 2002, Mennis and Jordan 2005), and a no-hue color 

scheme fails to convey the information of the significant statistical results. 

 Maps are classified into several types with different concentrations. One of the cartographic style 

is quantitative map, which communicates quantitative results such as city population, ratio between ethnic 

groups or salary ranking (Chang 2015, 172). The choropleth map is one type of quantitative map plots 

derived data onto administrative units using graduate colors. The calculated data are classified before 

mapping and a graduate color scheme is used to present the spatial variation. Therefore, the appearance of 

a choropleth map is affected by the classification strategy. Indeed, one main question regarding 

choropleth mapping is that the classed versus unclassed maps or it can be rephrased as how many classes 



66 
 

are necessary to demonstrate the spatial data distribution (Cromley 1995). The ultimate goal of choropleth 

mapping is to class or unclass the unique parameter results for a better discrimination for map-readers. 

Cartographers often make several choropleth maps with different classification schemes and choose the 

best final map product. The simplest approach for data classification is an unclassed choropleth map on 

which each unique data with its color scheme is mapped. However, this process will result in many colors 

and symbols that makes it difficult to capture the spatial organization. Cartographers and geographers 

seek to develop several classification methods for applying to generate improved choropleth maps. 

Choropleth mapping has been widely applied on local regression parameter estimations. 

Geographically weighted regression can generate multiple parameter results for each local area and 

choropleth mapping of the derive data is an important part for data exploration. Many researches have 

used choropleth maps to visualize spatial pattern of parameters results of both geographically weighted 

regression and quantile regression (Mennis 2006, Matthews and Yang 2012, Cromley and Hanink 2013, 

Cromley et al. 2013). Among all the classification methods, a natural breaks classification scheme is 

employed. Besides, researchers have also used simple mapping technique to combine parameters 

estimations with t-value in a single map for further exploration of spatial nonstationarity. On one hand, 

regression technique generates spatial data for choropleth mapping. One the other hand, choropleth 

mapping has also been applied to demonstrate spatial variation for direct social and economic data (Dixon 

1972, Cromley and Cromley 1996, Berke 2001, Brewer and Pickle 2002, Poulsen and Kennedy 2004, 

Cromley et al. 2015). These spatial data includes crime data, population density, regional count data of 

red foxes, epidemiological and disease data, and birth rate data. All these data were mapped across spatial 

units using various data classification methods for a better understanding for map-readers. Table 3.3 

shows a summary of commonly and newly used data classification methods for choropleth mapping.  
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Table 3.3 Data Classification Methods for Choropleth Mapping (adapted from Brewer and Pickle 2002) 

Data Classification Method Summary 

Natural Breaks (Jenks) Jenks optimization procedure, minimize 

within class variance and maximize 

between class variance 

Quantile Method Place equal numbers of enumeration 

units into each class 

Standard Deviation Method Middle class centered on the mean, 

classes above and below are 0.5 

standard deviation (+-1 each time) 

Minimum Boundary Error Method Iterative optimization method, the only 

method considering data spatial 

distribution 

Shared Area Method Used ordered list of polygons ranked by 

data value to accumulate land areas in 

each class 

Box-Plot Based Method Middle Class centered on interquartile 

range 

Hybrid Equal Interval Classification An Improvement of Standard Equal-

Interval Method 

Concentration-based Lorenz Curve 

Method 

A Concentration-based Approach using 

Lorenz Curve  

 

Local fractal dimensions are derived across the study area, which is in a great need of choropleth 

mapping technique for visualizing the spatial pattern of how urban surface complexity varies over 

heterogeneous landscapes. Most of the current data classification methods can be applied to explore local 

fractal dimensions for map-readers, especially for city planners for a better perception of how 

neighborhoods of a city differ in terms of the fractal dimension numbers. A comparison of selected 

methods for visualizing local fractal dimensions could be carried out in this dissertation for generating 

several maps with different classes and map appearances. Scale effect is the main characteristic for 

fractals and it could be taken into account for relating with local fractal dimension values in one map to 

show a multi-level spatial organization of how scale affects fractal dimension. It is essential to explore 

choropleth map techniques for mapping local fractal dimension to better visually interpret the results. 

Moreover, mapping of spatially derived data can add additional insights into the spatial nonstationary 

process (Cromley and Hanink 2014). 
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Chapter Three can be separated into two parts, which is consistent to Chapter Two. The focus of 

this chapter is it covers the primary data source for fractal geometry application. Remotely sensed images 

nowadays as a public and easy access data source has many advantages for carrying out fractal geometry 

analysis. First, remotely sensed images possess spatial resolution characteristic, which is in consistency 

with self-similarity property in response to scale change for fractals. Changing resolution of remotely 

sensed images can generate a series of digital data where fractal analysis can be directly applied to test 

how the fractal dimension values change. Further, many remotely sensed images now available for urban 

area across the U.S, which makes it possible to compare the cities located in different areas using the 

fractal analysis. In addition, the availability of remotely sensed images ensures multi-time digital data can 

be accessed and tested for time series analysis. However, some other unique characteristics of remotely 

sensed images may affect the results of fractal dimension and are needed to be analyzed in addition to the 

standard analysis. One of the analysis is the information extraction from all the multiple spectral bands 

and then apply fractal geometry on the main band, which is called PCA. Overall, remotely sensed images 

provide a rich resource for fractal analysis on various aspects, and also fractal analysis can assist to 

identify more characteristics and issues for image analysis. 

Applying fractal concept and estimating fractal dimension are connected with geographical and 

spatial data analysis. Another reviewed section of Chapter Three is the relationship between fractal 

analysis and spatial statistics analysis especially the local spatial statistics. Fractal analysis falls directly in 

spatial analysis category. The main property of the fractal analysis for geographical phenomena is 

statistical self-similarity that the fractal dimension will vary, but if they are within the acceptable range 

then the geographical phenomena can be treated as a fractal. There are very few researches address the 

fractal dimension results using hypothesis test methods and there is not a statistical distribution has been 

proposed for fractal dimension distribution. Some commonly used spatial statistical methods have been 

applied to compare with fractal methods for remotely sensed images analysis including classification 

analysis. The results show that the spatial statistical methods outperformed the fractal analysis methods 

when carrying out classification accuracy assessment. The previous studies have demonstrated that there 
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is a great potential for relating spatial statistical methods and models to fractal analysis on analyzing 

remotely sensed images. Moreover, local spatial statistical scheme has not been widely studied for fractal 

analysis and it has been mentioned that there is a great need for developing new local methods for 

calculating local fractal dimension because earth surface exhibits heterogeneous landscape and local 

spatial analysis scheme can help reveal local variations of spatial nonstationarity. Many schemes have 

been developed for calculating local spatial statistics and the principle is to convert global statistics to its 

local version by using decomposition rule. De Jong and Burrough (1995) attempted to use moving 

window technique to calculate local fractal dimensions. However, some of the issues may be released 

using moving window including burring and boundary effect. Alternatives could be considered for using 

geographically weighted scheme to avoid missing pixels calculation. In general, there are much spaces for 

exploring local fractal dimension to add to the fractal analysis field, and furthermore, seeking local fractal 

dimension values could be treated as additional variable which can be used in regression analysis as an 

information about landscape complexity. 

Chapter Four reviews existing fractal analysis methods for estimating surface geometric 

complexity. The theoretical background and estimation procedure are demonstrated and illustrated. 

Similarities and differences are discussed and compared. Some of the fractal models are reviewed through 

graphs. Moreover, geographically weighted scheme is reviewed and related to fractal models for local 

analysis. Some of the spatial analysis methods are also discussed for analyzing fractal dimension results. 

Chapter Four focuses on the major methods of this dissertation. All the mathematical models and 

formulas are discussed in the following chapter. 
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Chapter Four 

Data and Methodology 

 

4.1 Introduction 

Mathematically constructed fractal objects possess strict self-similarity characteristics. People can easily 

compute the true fractal dimension for the mathematical objects by using the ratio function between 

length, area or volume and scale factor. The computation principle of strictly self-similar objects can be 

extended to estimate the fractal dimension for non-mathematical objects, or natural phenomena. Because 

of the roughness of the natural objects, estimation of fractal dimension can only be performed through an 

empirical analysis. 

There is a large number of methods for computing fractal dimension for remotely sensed image 

for the image surface intensity. Sun (2007) collected six common methods for computing 3D fractal 

dimension based on satellite image. Every method has its own calculation process but they all share the 

same statistical relation between the measured quantities and the step sizes to derive fractal dimension. 

There are many researches dealing with applying these fractal methods and comparing between two or 
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three methods results. It is important to systematically compare the computation results between the 

methods and also relate to a real fractal dimension value. There is a lack of research that brings together 

the methods for an exploration purpose, and also some of the methods have not been tested previously. 

Chapter Four focuses on introducing the algorithm of the common methods for the estimating 3D 

fractal dimension for remotely sensed images. The methods are illustrated for the subsequent analysis 

using the remotely sensed images of city surface. First, the general process of acquiring fractal dimension 

for non-mathematical objects is outlined, followed by a demonstration of how to apply on remotely 

sensed image. Then it focuses on describing and illustrating the theoretical background of the chosen 

fractal methods. This dissertation research focus on three fractal methods for measuring the image surface 

intensity: Triangular Prism, Differential Box Counting and Fourier Power Spectrum methods. With the 

availability of the remotely sensed image, these fractal methods can be applied directly to calculate the 

image surface intensity using digital number value. 

The fractal methods are followed by an introduction of the methods for developing local 

statistics. Several local schemes have been proposed for incorporating local information into the global 

statistics. This dissertation is mainly focused on employing the geographically weighted scheme, which is 

used to combine with the original fractal methods for the calculation of local fractal dimensions. The last 

part of Chapter Four presents the new developed local version of the fractal methods. Each fractal method 

is incorporated with the geographically weighted scheme in different manners. 

4.2 Data 

The focus of this dissertation is the comparison of fractal methods and exploration of calculating local 

fractal dimension. Therefore, the datasets in this dissertation serves as implementation purpose. The study 

areas of the datasets are not limited to specific area. Instead, several sample subsets of the original 

datasets are extracted to be used for the fractal analysis. To implement the comparison between these 

three chosen fractal methods as well as the idea of calculating local fractal dimension, this dissertation 

research consists of two different types of images: aerial photograph and Landsat remote sensing images. 
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Both of these two datasets are in raster format, which are appropriate for calculating fractal dimension. 

These two kinds of datasets have different ways of acquisition and therefore, they have distinct 

characteristics so that the results can be compared not only across methods but also between datasets. 

An original aerial imagery is downloaded from the Center for Land Use Education and Research 

(CLEAR) which is a GIS data center at University of Connecticut 

(http://www.clear.uconn.edu/data/index.htm). The aerial imagery was captured in March of 2012 and it 

covers the entire State of Connecticut. The data used in this dissertation is an aerial photograph of New 

Haven area. This area is chosen because it is a large city located near Storrs, Connecticut. This 2012 

Ortho Imagery of New Haven are composed of 4 bands, and representing colors of red, green, blue and 

near infrared. This original imagery covers an area of about 176.9 km2 including Connecticut River and 

Yale University. Each band comprises a series of pixels containing digital number ranging from 0 to 255, 

with a spatial resolution of 1 foot. For simplicity, only the red band is used in the dissertation analysis, 

and several samples with various image sizes are extracted from the original image for the further fractal 

analysis in this dissertation. 

Another dataset is remotely sensed imagery compiled from Global Land Surveys (GLS) which 

were created by NASA and U.S. Geological Survey. The datasets are terrain and geometrically corrected, 

with a consistent a period of time series of the same area across the globe. The Landsat data has a spatial 

resolution of 30 meters, with a Universal Transverse Mercator (UTM) coordinate system. The data used 

in this dissertation research are the GLS images of New York City, New York and Houston, Texas. 

Selected years are used for computing the fractal dimensions to see whether these two cities have 

undergone landscape changes as well as making comparison with aerial photograph in terms of global and 

local fractal dimension. For the GLS imagery, it is composed of several spectral bands and only the red 

band is used in the fractal analysis. 

. 

http://www.clear.uconn.edu/data/index.htm
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4.3 Mathematical Foundation of Fractal Geometry 

The theoretical foundation of fractal geometry originates from mathematics and calculus. The 

mathematics of non-smooth objects worth a great deal of study because irregular objects provide a better 

representation of the geographical phenomena than the classical geometry. However, there are two sets of 

objects that can be described as non-smooth geometric shape. A mathematical object discussed in 

previous chapters of this dissertation represents a regular and strict fractal, which has a constant value of 

fractal dimension. The following part illustrates the theoretical background of how to acquire the fractal 

dimension for mathematical objects, and this can be treated as a basis for estimating the fractal dimension 

for non-mathematical objects. 

Chapter Two outlined some of the common characteristics of the fractal geometry in general. 

Chapter Four continues to summarize some attributes, which serves the purpose of the explanation of the 

mathematical calculation for the true fractals, not limited, this mathematical background can also be 

extended to study natural phenomena. For mathematical fractals, besides the common features, we can 

also ascribe the following characteristics, in a more specific way (Falconer 2004): 

 Object has a fine structure containing details at small scales. Visually the more we enlarge the picture of 

the object, the more texture and information we will see (either more gaps or more lines) 

 Object is too irregular to be described using classical geometry terms, not only globally, but also locally. 

 Although the mathematical object has an intricately detailed structure, its definition and measurement of 

fractal dimension are straightforward 

 It is difficult to describe the local geometry of a fractal since every local part of a whole is connected with 

other large number of local parts, which makes the local measurement nearly close to a global one. 

A basic representation of mathematically constructed fractal is shown in Figure 4.1. Different 

than the Cantor Middle Third Sets in Chapter Two, Figure 4.1 displays another common used true fractal 

object which is called the Koch Curve. The Koch Curve is constructed based on a strict recursive 

procedure. It is similar to the Cantor Middle Thirds Set that they starts with a straight line. The Cantor Set 
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removes certain length of itself and continues to an infinite stage with a length close to zero and fractal 

dimension is between 0 and 1. In Figure 4.1, Let S0 be a line segment of unit length, then the second stage 

S1 consists of the four segments obtained by removing the middle one third from the whole first and 

replacing it at the removed segment by an equilateral triangle with two sides with a length of each side of 

one third of unit. S2 is the third stage, and it is shaped by applying the same procedure to each of the 

segment of S1 and this process continues to infinite stages. Each recursive stage is formed based on the 

last stage using the same construction procedure and when the stage N continues to a large number, the 

two sets SN-1 and SN are closely similar and only differs in fine details. 

 

Figure 4.1 Construction of the Koch Curve 

Source: Adopted from inspirehet.net 

The Koch Curve approaches to a detailed and limiting curve, which is similar to the Cantor set 

and many other mathematical fractals. The construction of Koch Curve is simple and forms an intricate 

structure. Each quarter of the Koch Curve is similar to the whole but scaled by a factor 1/3. The length 

calculation of the Koch curve is straightforward and SN is of length (4/3) N where N starts from 0 to 
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infinity. However, the length of Koch Curve is not useful for describing the geometrical characteristic, 

neither the area because there is no meaning of area for Koch Curve as a 1-dimensional geometry. Based 

on the formula in Chapter Two, and convert it to remove the negative sign, we can have a more 

meaningful way of calculating the fractal dimension for mathematically constructed objects: 

𝐷 =
log 𝑁

log 1 𝑟⁄
 

[2] 

 

Where N is the number of copies by itself and r is the scale factor. For the Koch Curve, its fractal 

dimension can be obtained by using the above the equation that N is equal to 4 and r is equal to 1/3. The 

fractal dimension of Koch Curve is 1.2618, which is between 1 and 2 because it is a curve shape and 

occupies zero area in the plane. It is encouraging to compare the Koch curve with the Cantor Set since a 

Koch Curve represents a geometric shape of line approaching to fill the plane while a Cantor Set proceeds 

to unconnected dots with fractal dimension between 0 and 1. Another mathematical fractal based on the 

Koch Curve is called snowflake curve, which is formed by putting three Koch Curve together to make a 

symmetrically enclosed shape. It is clearly not adequate to describe a mathematical fractal using only one 

traditional geometric parameter, incorporating of fractal dimension, it is anticipated to use a set of 

parameters including traditional geometric descriptors and the fractal dimension to better interpret a true 

fractal. 

Some of the fractals are not strictly constructed and may be randomly formed. It is not an equal 

chance to replace each side of the line segment. Figure 4.2 shows a random Koch Curve, that a coin is 

tossed at each step to determine either the above or below side of the line segment is to be replaced by the 

equilateral triangle. The random Koch Curve is not symmetrical and looks more intricate than the regular 

Koch Curve. The measurement of its geometric property is difficult that fractal dimension cannot be 

calculated using the empirical equation (2). This random Koch Curve is a fractal but possess statistical 
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self-similarity property. In other words, the resemblance may seem weaker than the strict self-similarity, 

this could also be interpreted as approximate and statistical (Falconer 2004). The family of statistical self-

similarity fractals can be seen more easily in the geographical environment and this dissertation research 

focused on studying them. 

 

Figure 4.2 Construction of the Random Koch Curve 

Source: Isaravia.github.io 

The random Koch Curve represents one of the statistical self-similarity fractals which show some 

of the patterns that slightly deviate from the true fractals, and which share similar characteristics with the 

natural phenomena. The study of geographic features directly relies on fractal dimension and the 

calculation is based on equation (2) but needs more process since the natural phenomena does not possess 

the strict self-similarity and it does not have the same number of copies and scale factor at each step. 

Therefore, the fractal dimension of non-mathematical objects needs to be estimated empirically not 

analytically (Sun et al. 2006). A large number of methods have been developed to estimate the fractal 
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dimension for natural objects based on the empirical equation. The fractal dimension calculation of 

geographic features consist of two measurements which are quantity and step size, the quantity is the 

length, area or number of cells and the step size is the scale or resolution change. In general, all the fractal 

methods used in this dissertation research have different quantity measurements but requires the same 

statistical relationship between the two quantitative results. The methods are also directly suited in 

applying on remotely sensed images. A common procedure for applying these methods for estimating 

fractal dimension for natural objects (e.g. remotely sensed image) consists of three steps (Sun et al. 2006): 

 Compute the quantities of the object based on various step sizes 

 Plot the log version of quantities against the log version of various step sizes and fit it through a straight 

line using univariate least-square regression technique 

 Based on the slope of the regression line to derive the fractal dimension of the studied object 

This procedure of estimating fractal dimension for natural objects is based on regression 

technique, which is an approximate method to obtain the desired result values. The reason for using 

regression technique is that the natural features are not constructed based on the same recursive procedure 

and the simple ratio equation is no longer applicable. The methods applied in this dissertation research are 

3-dimensional methods for calculating surface features including the remotely sensed images. Sun et al. 

(2006) mentioned that a remotely sensed image can be viewed as a hilly terrain surface whose elevation 

value is proportional to the digital number value. Therefore, the digital number can be treated as a value 

that fills up in the volume above surface and can be used to extract 3-dimenstional fractal dimension for 

the earth surface feature. There is a number of methods for computing the fractal dimension for remotely 

sensed images, three methods have been selected because their wide application in remote sensing and 

low intensity of computation complexity. Moreover, these three methods have the similar calculation 

process of not using contour line or profile measurement. The methods reviewed in next section will be 
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applied to several remotely sensed images of test images and city surfaces in the following chapters. 

Moreover, a new developed set of local fractal methods are tested. 

4.4 Estimation Methods of Fractal Dimension for Surface Features  

The Triangular Prism Method 

The triangular prism method was developed by Clarke (1986), this is also known as triangular prism 

surface area method, and it is initially developed for calculating the fractal dimension of topographical 

surface. This method has been widely adopted to analyze the surface landscape complexity of remotely 

sensed images. Taking elevation or digital number of the image as input, Figure 4.3 illustrates the process 

of the calculation. This method decides an analysis window as a square box first, and then uses a, b, c, d 

as four corner digital number values to interpolate a central value e. This value is usually the mean of the 

four pixel values. The middle point divides the square into four triangles: abe, bce, cde and dae. In Figure 

4.4, the 3D version of the triangular prism method, the top surface area is calculated by adding four 

triangles A, B, C and D. Geographically increase the step size δ, a relationship can be established between 

the total top surface areas and step size. Using univariate regression, a slope is obtained and the fractal 

dimension of the surface area can be derived from the slope. The relationship can be described as follows: 

𝑆(𝛿) ∝ 𝛿2−𝐷 [3] 

 

Where δ represents the step size and S is the total top surface area for the corresponding step size. The 

slope of the regression line is 2-D, then the fractal dimension is 2-slope. Triangular Prism method is not 

computationally intensive compared to other methods, and has been broadly applied to calculate surface 

complexity (Emerson et al. 1999, Qiu et al. 1999, Myint 2003, Luan et al. 2012, Liang et al. 2013). 
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Figure 4.3 Plane View of Triangular Prism Method (Sun et al. 2006) 

 

Figure 4.4 3D View of Triangular Prism Method (Sun et al. 2006) 

Another three variations of the triangular prism methods are also included in this dissertation for 

a comparison with other fractal techniques. These three versions: the Max-Difference method, the Mean-

Difference Method and the Eight-Pixel method are based on the original triangular prism method (Sun 

2006). These three proposed new versions are inspired by the structure of the triangular prisms but focus 

on adopting more rigorous ways for constructing the triangular prisms. In general, this modification 

causes two changes to the original method. The first is that all these three variations use the actual digital 

number of the center instead using the mean DN values. The second modification is, instead of using the 
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DN of the four corners, they use different positions of the “corner pixels” to form the triangular prims, 

and this is the main improvement for these three methods. 

The Max-Difference method takes all the edge pixels and calculate the difference with the actual 

DN of the center, and then select the edge pixels with the largest deviations for each edge. In this way, it 

captures more details of the difference between the edge and central pixels, in other words, this selection 

procedure captures the largest DN differences, which can be interpreted as covering the actual surface 

elevation. The Mean-Difference method performs similarly with the Max-Difference method, instead of 

using the four edge pixels with the maximum differences to the central pixel, it considers the edge pixels 

whose DN values differences with the central pixel are the closest to the mean differences of all the edge 

pixels. The Mean-Difference method, however, does not consider the highest elevation contrast, but 

utilize the average elevation difference to represent the triangular prisms. The third method, other than 

using four edge pixel for a square, similar to the original method, it uses the four corner pixels and four 

middle pixels together to construct triangular prisms. In this way, it could be better to approximate the 

image surface because eight pixels are taken into account with more details. The first two methods rely on 

searching the specific edge pixels following predefined rules while the third method is based on the 

number and the position of the edge pixels. These three modified versions along with the original 

triangular prism method are applied to the dataset in this research especially to examine the local version 

of each.   

          

Differential Box-Counting (DBC) Method and its improved version 

The improved differential box counting method is used in this dissertation. However, it is important to 

include the original box counting method first. The Differential Box-Counting (DBC) method was 

proposed by Sarkar and Chaudhuri (1994) for estimating the fractal dimension of image (Figure 4.5). In 

the case of a remotely sensed imagery with M×M pixel size, each original pixel will be divided by s 

where M/2≥s>1 and s is an integer. The original image will be seen as scaled down image with new 

number of grids. A ratio of r=s/M will be acquired. Then using the grey level range of the image which is 
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denoted as G, s’ is calculated by using G/s’=M/s. Now, a vertical set of boxes with size s×s×s’ can be 

acquired for each grid and the number for the boxes is counted starting from 1. For the (I, j) th grid, the 

grey level of the pixels will be displayed as intensity surface and intersect with the set of boxes. The 

minimum and maximum grey level will intersect with two different counted boxes noted as k and l, 

respectively. Then we have the following equation: 

𝑛𝑟(𝑖, 𝑗) = 𝑙 − 𝑘 + 1 [4] 

For all the grids: 

𝑁𝑟 = ∑ 𝑛𝑟(𝑖, 𝑗)

𝑖,𝑗

 [5] 

Different r will generate different quantity of 𝑁𝑟, the log form of 𝑁𝑟and 1/r will be fitted a linear line 

using univariate regression technique and the fractal dimension is equal to negative of slope. The 

regression relationship is as follows: 

𝑁𝑟 ∝ (
1

𝑟
)−𝐷 

[6] 
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Figure 4.5 Calculation Illustration of Differential Box-Counting Method (Sarkar and Chaudhuri 1994) 

 

One improved version of differential box counting method is adopted in this research. Three major 

problems were identified from the original method and the modified version tends to improve the 

estimation accuracy of fractal dimension. The improved differential box counting method is similar to 

triangular prism method as they both measure the quantity directly from the image data and constructs the 

quantity in a 3D manner. The improved differential box counting method can be implemented in the 

following steps. First considering an M by M image and partition the image into blocks with s by s size. 

In the improved version, we consider the blocks to be overlapped with each other by one row or one 

column. We will have a scale parameter r equals to s -1. Then the box height for each block is selected as: 

 

𝑟′ =
𝑟

1 + 2𝑎𝜎
 [7] 
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where 𝑟′ = the box height for each block;  

           𝑎 = a positive integer number; 

           𝜎 = the standard deviation of the digital number of the image; 

           𝑟 = the scale parameter of each block. 

A column of boxes with scale 𝑟 × 𝑟 × 𝑟′ are acquired and used to cover each block. The quantity of box 

counting is decided as follows: 

𝑛𝑟(𝑖, 𝑗) = {𝑐𝑒𝑖𝑙 (
𝑙 − 𝑘

𝑟′
) ,   𝑙 ≠ 𝑘

1,                      𝑙 = 𝑘
  

[8] 

  

where 𝑛𝑟(𝑖, 𝑗) = the number of boxes needed to cover the (I, j)th block with scale r; 

           𝑙 = the maximum digital number in (I, j)th block; 

           𝑘 = the minimum digital number in (I, j)th block. 

The function ceil (.) indicates that the division result round to a nearest and greater integer. Considering 

contributions from all blocks for scale r, the total box counting number is: 

  

𝑁𝑟 = ∑ 𝑛𝑟(𝑖, 𝑗)

𝑖,𝑗

 [9] 

Plot the log of 𝑁𝑟 and r with least squares regression and the fractal dimension is equal to the negative 

slope of the fitted straight line. 

Previous researches have been mainly focusing on comparing the following three methods: 

triangular prism, variogram and isarithm method, since only these three methods have been incorporated 

into an analysis software package known as the Image Characterization and Modeling System (ICAMS), 

which is a GIS software module, used for measuring the fractal dimension for remotely sensed images 

(Quattrochi et al. 1997). Most studies have tended to compare fractal dimension results between these 

three methods based on remotely sensed images with various spatial resolution (Qiu et al. 1999, Emerson 

et al. 1999, Lam et al. 2002, Myint 2003, Liang et al. 2013). ICAMS provides researchers these fractal 
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methods to be conveniently implemented to study the raster format data. Among the studies, the 

triangular prism method is the most widely adopted fractal method since almost every literature 

mentioned using it with one or two other methods. This research dissertation also decides to use the 

triangular prism method for its easy computation complexity. Lam et al. (2002)’s studies have shown that 

triangular prism method can produce accurate fractal dimension results for highly complex surfaces, and 

meanwhile, the variogram method performed poorly for all the tested surfaces. Liang et al. (2013) 

concluded that the triangular prism method holds the greatest potential for future research on urban 

change detection based on the experiments that this method yielded the lowest fractal dimension values. 

Their studies found that the variogram method produced some unrealistic values as the fractal dimensions 

exceed the upper limit of 3.0. Fractal algorithms have also been applied to hyperspectral remotely sensed 

images for method comparison purpose. The advantage of using hyperspectral data is that there are 

numerous spectral bands can be tested and it is more likely to reveal extra information of suitability of the 

applied methods. Qiu et al. (1999) applied both triangular and isarithm methods to examine the entire 224 

bands of hyperspectral image and disclosure that triangular prism method is more sensitive to image 

noises than isarithm method, on the other hand, isarithm method is robust to image contrasting for 

generating high fractal dimensions. 

This dissertation does not employ isarithm method since its principle relies on that the contour 

lines can be used to approximate the complexity of a surface. The methods selected in this research 

dissertation share the similar characteristics of calculation procedure using the direct DN values to extract 

fractal dimensions from a remotely sensed image. However, the isarithm method constructs isarithm lines 

(i.e. contour lines) on the image surface and a length is calculated for each of the contour line based on 

the neighborhood number of cells. This method computes a length quantity using the number of cells 

instead of directly computing the DN values. Furthermore, as described above, many researches have 

studied isarithm method and have included it in the method comparison. 

Given the focus of this dissertation on the exploration of fractal methods, it is central to switch 

attentions to other methods and compare the fractal dimension results for a broad understanding. This 
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research dissertation employs the differential-box counting method for the comparison purpose to add 

some new information to the fractal methods comparison studies. Sarkar and Chaudhuri (1994) proposed 

the differential-box counting method and compared it with other three methods. The findings of the 

comparison showed that the differential-box counting method is an efficient method and can produce 

accurate results. Furthermore, some modifications have been applied to the original method for an 

accurate estimation (Buczkowski et al. 1998, Theera-Umpon 2002, Liu 2008, Li et al. 2009). All these 

modified version of differential-boxing counting method based on the principle of using the smallest 

number of boxes to cover the image surface at each scale for estimating precise fractal dimensions. The 

experiments tested the modified methods on various images including the synthesized fractional 

Brownian motion images, texture images and remotely sensed images, the results proved that the 

improved methods outperformed the original methods of differential-box counting. Many disciplines have 

received attentions from this method including the applications on remotely sensed images (Myint et al. 

2006, Marghany 2009, Tzeng 2012). Its broad data sources containing high resolution image, 

hyperspectral imagery as well as radar dataset. The focus still remains on the development of novel 

differential-box counting method serving the general purpose of improving the classification accuracy as 

well as for detecting specific land cover types and natural phenomena. 

The Fourier Power Spectrum Method 

Fourier analysis is another technique, which can be used for computing the fractal dimension of surface. 

This method is selected in this dissertation is because the Fourier analysis technique represents another 

category of the fractal methods for computing fractal dimension for surface feature (Sun et al. 2006). The 

first category for fractal methods is the methods, which directly use the derived information from the 

image and perform the log-log regression to obtain the fractal dimension. On the other hand, the second 

category methods require a more sophisticated data preprocessing step than the first category and the 

fractal dimension is acquired based on secondary derived information from the original image. In this 
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dissertation, the triangular prism and differential box counting methods belong to the first category and 

the Fourier power spectral density approach fits into the second category. 

The Fourier power spectral density approach consists of several steps to derive a fractal 

dimension. The first step is to perform a two-dimensional discrete Fourier transform on an N by N image 

in order to extract an array of complex coefficients which are obtained by the following equation: 

𝐻𝑠𝑡 = (
𝐿

𝑁
)2 ∑ ∑ ℎ𝑛𝑚

𝑁−1

𝑚=0

𝑁−1

𝑛=0

𝑒[−
2𝜋𝑖
𝑁

(𝑠𝑛+𝑡𝑚)]
 

[10] 

where 𝐻𝑠𝑡 = the complex coefficient array corresponding to each original digital number value; 

           𝐿 = the linear size of an equally spaced grid; 

           𝑁 = the size of the grid image; 

           𝑛, 𝑚 = the index of each pixel in the original image; 

           ℎ𝑛𝑚 = the digital number values of row n and column m; 

           𝑁 = the length or size of the image; 

           𝑠, 𝑡 = the transformed index of the complex coefficients. 

Then each transformed complex coefficient is assigned an equivalent radial number using the following 

relation: 

𝑟 = (𝑠2 + 𝑡2)1/2 [11] 

For two dimensional cases for Fourier transform, the mean power spectral density is derived based on the 

following equation: 

𝑆2𝑗 =
1

𝐿2𝑁𝑗
∑ |𝐻𝑠𝑡|2

𝑁𝑗

1

 

[12] 

where 𝑆2𝑗 = the mean power spectral density for each radial wave number; 

            𝑁𝑗 = the number of the complex coefficients 

                     satisfies the condition that 𝑟 is greater than 𝑗 and smaller than 𝑗 + 1. 
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Notice that the summation is performed over all the complex coefficients in the condition. For a fractal 

distribution, the relationship between mean power spectral density and the radial wave number is as 

follows: 

𝑆2𝑗~𝐾𝑗
−𝛽−1

 [13] 

Given the log-log relationship, acquiring the slope value of the regression, the fractal dimension of 

surface features can be calculated using the following equation: 

𝐷2 =
7 − 𝛽

2
 

[14] 

 

4.5 Geographically Weighted Scheme 

 The main contribution of this research dissertation is to adapt the global fractal methods to corresponding 

local version, as it is essential to explore the local variations for earth surface landscape. Therefore, local 

adaptation approaches are needed to transform stationary method to its local form. There are many 

approaches have been proposed for local methods development. As discussed above, the moving window 

technique is one of the popular approaches often used on grid data. For remotely sensed image, it is 

intuitive and convenient to apply moving window approach for calculating local results. The window size 

determines the analysis boundary for the local analysis and the commonly used window sizes are 3 by 3, 

5 by 5 and 7 by 7. The global method is repeatedly calculated at each studied window area. As a result, 

many global statistical results are computed for the entire grid image and each global value is treated as a 

local value compared to the rest of the global results. This dissertation is aimed at adopting an alternative 

approach for developing local statistical results for gird data, geographically weighted scheme, to address 

the issue of local variations of fractal dimension. 

A geographically weighted scheme is a widely used approach for introducing local variations to 

the global methods (Lloyd 2010, 24). The core principle of geographically weighted methods is that it 

incorporates spatial information and it adjusts the traditional weight of one to a nonstationary value for 
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different locations. Prior to the adoption of the geographically weighted scheme, a focal location is 

selected and it is the location of each point or the centroids of the polygons. Then a geographically 

weighted statistic will be calculated for each focal location. This method treats distances as the main 

factor and calculates spatial weights based on various schemes. Besides the distance factor, a bandwidth 

is also crucial which has direct influence to the calculated results. A bandwidth can be treated as an 

operational scale or scale of action, which indicates the spatial extent that certain processes operate in the 

studied area (Lam 2004). Changing the bandwidth results in different distance decay profiles, which will 

affect the local estimates varying over space (LeSage 2004). For remotely sensed image, a bandwidth can 

take from several to hundreds of pixels. Based on various weighted scheme, along with the distance and 

bandwidth, the calculated geographical weight is between 0 and 1, where 1 indicates a strong impact and 

0 means weak impact to the focal location, respectively. However, for certain applications, instead of 

using distance representation, a spatially contiguous neighbor scheme may be adopted for simple 

calculation of weights (Getis and Aldstadt 2010). This typically well-known scheme is based on 

topological relations between two observations and simply assign weight of 1 to the nearest nth 

observation and 0 to the other observations.  

This dissertation focus on using distance-based weight scheme, and using a Gaussian kernel 

scheme to attempt to calculate local fractal dimension. A Gaussian distance weighting scheme is based on 

a Gaussian kernel function which is constructed by using distance and bandwidth parameters (LeSage 

2004). The Gaussian kernel scheme used in this research can be formulated as follows: 

𝑊𝑖𝑗 = exp [−0.5(𝑑/𝑏)2] [15] 

 

where 𝑊𝑖𝑗 is the weight between focal location I and observation j. d is the Euclidean distance between 

focal location I and observation j, b is the bandwidth of the kernel. The Gaussian function illustrates an 

exponential decay relation with the distance increases. When the distance is zero, the weight will be one 

indicating a full weight because the observation overlaps with the focal location; when distance increases 

to a very large value, the weight approaches to zero indicating the observation has no impact on the focal 
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location. Another situation is that the weight equals to 0.61 when the distance has as the same value as the 

bandwidth. The spatial weights dramatically decrease when the distance becomes larger than the 

bandwidth. Empirical experiences decide the negative constant parameter and the default value is -0.5. 

Another factor of Gaussian kernel function is the selection of kernel types. The most commonly used 

kernel types are fixed kernel and adaptive kernel functions. The fixed kernel function used a constant 

value of bandwidth and a changing number of observations for each focal location. On the other hand, the 

bandwidth varies in order to fix the total number of observation count for each focal location. Comparison 

between fixed and adaptive kernels has been examined in various geographical data applications (Guo et 

al. 2008, Cromley et al. 2013). This dissertation focuses on applying fixed kernel function and comparing 

local fractal dimension by using selected bandwidths. An example of Gaussian function using fixed 

kernel for calculating spatial weights is illustrated in Figure 4.6. Three bandwidths are selected for 

comparison: 5m, 10m and 15m. 

 

Figure 4.6 Comparison between Various Bandwidths of Gaussian Weighting Scheme (Guo et al. 2008) 

For remotely sensed data with regular lattice pattern, a suitable method for applying local models 

is to use a moving window, which is defined by various window sizes. Taking 7 by 7 window as an 
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example, despite the function we use, for a specific focal location, only the observations in the 7 by 7 

window are taken into consideration for calculating a local value. This local method does not provide 

sufficient information for a focal location because not all the pixels are used. A Gaussian kernel function 

calculates distances between all the observations and focal location, and generates a full set of weights. In 

this case, the local adaption based on Gaussian function uses all the observations, which provide more 

observation information than moving window technique. The advantage of the Gaussian function is that it 

not only considers the neighbor observations, but it also considers the rest observations as a decisive part. 

Gaussian function has not been widely applied on remotely sensed data, and it is intuitive to apply it since 

each pixel can be treated as a point data. Focal location can be selected as pixel location and the distance 

calculation is more convenient because of the regularity of the arrangement of the pixels. Given the focus 

of this dissertation on estimating local fractal dimension, not on applications of fractal analysis, the 

exploration of the effect of various fractal analysis methods becomes important, and the estimation of 

local fractal dimension is the core concentration of this research. In order to achieve the research goals, 

the Gaussian weighting scheme is combined with the three local analysis methods mentioned previously, 

in this way, this dissertation proposes three new methods for estimating local fractal dimension on 

remotely sensed images. 

4.6 Estimation Methods of Local Fractal Dimension 

In order to extend the basic global methods for computing local fractal dimension, the three global 

methods presented above are the basis here and the Gaussian weighting scheme is used here for achieving 

the goal of the extension. This extended approach is aimed at assessing the nonstationarity of landscape 

complexity through the study area and the functionality of using the geographically weighted scheme 

which is widely used in many global methods but have not been tested for the methods of fractal analysis. 

The computation of local fractal dimension can be quite complex due to the lack of previous attempts and 

consideration of the computation scale for the local analysis. This becomes increasingly true when 

applying on remotely sensed images because there are various types of spatial resolutions. The most 
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intuitive way for obtaining local value of fractal dimension is to partition the entire image into several 

subparts and apply the global methods to calculate the value separately. However, for a coarse resolution 

image, the small parts could still covers a very large land space and the landscape could still be complex 

that a single local fractal dimension value may still fail to explain the phenomenon. 

Recalling the moving window technique presented above in this dissertation, it is similar to the 

image partition approach that the only factor considered here is the window size. The computation scale is 

restricted by the window size that the local value of fractal dimension may lack of significance due to the 

possibility of having a large window size with a coarse spatial resolution. Even more, in order to acquire 

sufficient training data for regression in the estimation methods for fractal dimension, a large window is 

usually considered to make sure the method can at least compute results for specific partitioned area. In 

order to satisfy the computation procedure, it has to compromise to cover ample pixels which means a 

large and heterogeneous land covers. In a Gaussian function based methods, the computation scale can be 

targeted on a single pixel which is the finest operating scale for a raster data format. With either high or 

low spatial resolution, Gaussian function can perform the same procedure on a single pixel for acquiring a 

fractal dimension value. A coarse spatial resolution image may still result in a complex land cover for a 

single pixel but this is the ultimate scale for a local fractal dimension. Although this single local value 

may not be representative for this specific land cover, it has been improved from the traditional moving 

window technique in terms of the computation scale for local fractal dimension. For a very fine spatial 

resolution image, neighbor pixels may exhibit similar landscape complexity (e.g. region of lake), so the 

local value of fractal dimension will be statistically the same for this specific area. It does not seem 

worthy for presenting the local value in such detail but it is valuable for assessing the land cover types by 

recognizing a gathering of similar fractal dimension values. The geographically weighted scheme 

(Gaussian function) has the advantage of aiming at the smallest distinguishable parts (i.e. the 

measurement scale) of an object and using all the observations for contributing to the estimation of a local 

fractal dimension (Tobler 1988, Lam 2004). In this dissertation research, the measurement scale refers to 

pixels in a remotely sensed image which is the main dataset used here. 
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  The proposed methods for the dissertation research are three adjusted approaches for computing 

local value of fractal dimension. Each of the three methods discussed above is adjusted to a local version 

of itself, by using Gaussian function, respectively. The selected three estimation methods are all suited for 

modifying to a new version and forms three new estimation methods which has not been developed 

previously. The general formula of a Gaussian-based methods for estimating local fractal dimension is as 

follows: 

ln[𝑄(𝑥, 𝑦)] = 𝑎(𝑥, 𝑦) + 𝑏(𝑥, 𝑦) ln 𝑆𝑆 [16] 

where ln is natural log transform, 𝑄 is the quantity of the object under consideration, (𝑥, 𝑦) is the 

coordinate of the focal location for local fractal dimension, 𝑎 and 𝑏 are the intercept and slope of the 

regression line, respectively,  𝑆𝑆 is the various step sizes. As discussed above in the global version, the 

local version based on the same formation of the global methods, incorporating a coordinate of a focal 

location and a weighting function. The general regression rule has not changed, the dependent and 

independent variables are various quantities and step sizes, respectively. The differences occur within the 

three methods in terms of the quantity measurement and relation between slope and fractal dimension. In 

fact, the fractal dimension mentioned here is recognized as a local value. 

Local Triangular Prism Method 

This section introduces the local version of the three selected estimation methods for computing 

fractal dimension. The first method is the Triangular Prism method which we name it the local Triangular 

Prism method here. Previous section presents this method focusing on the measurement quantity and the 

global estimation procedure. The measured quantities of this method are the total top surface areas and 

they plot against the step sizes to form a least-squares regression line. In the corresponding local form, 

based on the Gaussian function, the spatial weights are constructed on the surface areas. For a remotely 

sensed image, the original input are the digital numbers of the pixels and these values stay unchanged 
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because these are not observations for the estimation method. The top surface areas are the observations 

since they are used directly in the regression. Therefore, the spatial weights are placed on the surface 

areas for specific focal location. First the Euclidian distances are calculated between a focal location and 

each of the center pixels. The center pixels are the central locations for the triangular prism. In other 

words, the central pixels are the actual locations for the observation (e.g. top surface area). The calculated 

distances can be used in the Gaussian function to compute spatial weights for each observation. Then the 

summed top surface areas multiply their corresponding spatial weights to result in a series of weighted 

areas. On the other hand, the step sizes stay the same and not weighted. At last, this procedure is repeated 

for other step sizes in order to construct a series of weighted summed areas (i.e. dependent variable) and 

step sizes (i.e. independent variable) for establishing the linear regression. Once the least-squares 

regression is performed with the weighted area, the fractal dimension equals to 2 minus the slope. This 

fractal dimension explains the land surface complexity for the focal location (i.e. local area) only. The 

only difference of the local estimation from the global method is the merging of the Gaussian function 

with the top surface areas. The geographically closer triangular prisms have higher spatial weights and the 

geographically further ones have lower spatial weights. In other words, the spatially further triangular 

prisms are not influential for the resultant fractal dimension. For geographic phenomenon, within a 

predefined bandwidth, we may not be able to see the land surfaces which are far away from the focal 

location, accordingly, the surface complexity does not remarkably affect land surface we observe 

surrounding the focal location area. Therefore, for triangular prism method, the land surface complexity is 

reflected on the top surface area of triangular prisms and the spatial weights are small or even zero in 

order to remove their influences. 

The integration of the Gaussian function discussed for triangular prism method is an example of 

how local estimation of fractal dimension can be achieved based on the geographically weighted 

perspective. We assume that the local fractal dimension changes over space, and the Gaussian function 

modifies the top surface areas that result in variations of the parameters of the least-squares regression 

from space to space. Although the Gaussian function makes use of all available data, it places spatial 



94 
 

weights on each of the observation and some of the further observations may be assigned a zero weight. 

Different from geographic mean, for triangular prism method, the spatial weights are not standardized 

because there is no ratio form in the estimation process. The triangular prism local method displays a 

basic rule for incorporating Gaussian function to a global estimation method and following two methods 

presented next also based on the same procedure here. 

Local Differential Box Counting Method 

The second estimation method for local fractal dimension is based on the improved differential 

box counting method. Follow the triangular prism method, it is not difficult to modify the differential box 

counting method to a local form. The quantity here is the number of the box counting, or the difference 

between the box numbers associated with the largest and smallest digital numbers. Recall from previous 

discussion of the global differential box counting method, each grid contributes a box number which is 

the total value for covering that grid. In this case, applying the local perspective, the grid is considered to 

be an observation location and the difference between box numbers is treated as an observation. The 

Euclidean distance is calculated between a focal location and the grid center, then a spatial weight can be 

acquired for this observation. A weighted differential box counting number is acquired by multiplying the 

spatial weight and the original box number. Repeating this process for all grids, the total weighted box 

numbers are counted by summing all the weighted box numbers from each grid. For different values of 

step sizes, the quantities (i.e. weighted box numbers) are counted and a fractal dimension for a specific 

focal location is derived from a least-squares linear fit. 

This simple adaption is similar to triangular prism method in a way of placing spatial weights on 

the corresponding quantity and the step size stays the same, also the fractal dimension is obtained by 

using the least-squares regression technique. Another change is that the original box counting number is 

an integer, and after the weighting process, the resultant box numbers become a fractional value because 

the spatial weights are fractional values. The differential box number becomes a weighted value under a 

different understanding and this does not affect the fractal dimension estimation because it uses the linear 
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regression to estimate the parameters. The original differential box counting method has not been widely 

applied to remotely sensed images, therefore, the local form of this method seems to be more desirable to 

be explored with remote sensing images for a better understanding (Tso and Mather 2001). 

This chapter first presents three widely used estimation methods for computing fractal dimension. 

These methods focused on computing global fractal dimension on remotely sensed images and can be 

applied on various land covers. In Chapter Four, a discussion is presented for the three methods focusing 

on theoretical foundation and the mathematical formulation. For remotely sensed images, different from 

the regular objects, the strict calculation method is no longer suitable for measuring the geometric 

complexity of these complex and irregular land surface features in remotely sensed images. Therefore, the 

regression technique is favored as a basis because this technique aims at searching for an optimal solution 

based on a trend line for different types of observations in a dataset. Various methods have been 

developed using least-squares regression technique as the core principle and try to capture the geometric 

details of real phenomenon. Among these methods, some can be applied to land surface features in 

remotely sensed images directly. One of the most critical issues in fractal domain is that there are many 

fractal techniques and each one has its own unique characteristics. Since the complexity of fractal objects, 

it is understandable that one method is not sufficient and these numerous methods attempt to fully study 

the nature of fractals. In this dissertation, three commonly used estimation methods are chosen for a 

comparison purpose. It is interesting to correlate the results of the computed D values to find out the 

performances of each method in the following chapter. 

The fractal dimension of land surface features which measures the geometric complexity of 

image texture can be recognized as a summary or global statistic (Sun et al. 2007). This summary statistic 

appears to have many similar aspects to other popular summary statistics that a fractal dimension 

represents an overall measurement by averaging each fractal dimensions from local neighbors. For a 

homogeneous land covers, a single fractal dimension can be appropriate quantify the geometric 

complexity of an image. However, such homogenous land covers are extremely difficult to be seen in real 

world especially when dealing with remotely sensed images covering large scale. For remotely sensed 
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image acquiring the real world land covers, the focus should shift from a summary statistic (i.e. global 

fractal dimension) to several local statistics (i.e. local fractal dimensions) in order to measure the detailed 

geometric complexity more accurately. In this case, this dissertation research tends to explore the 

possibility of calculating local fractal dimensions to explain the variations of landscape complexity. It is 

important to note that there is an R package developed for computing geographically weighted local 

fractal dimension. This package uses set of point data to estimate the multiscale behavior. 

A Gaussian function is integrated with the original methods to achieve the goal of obtaining the 

local values. In the previous sections of Chapter Four, the Gaussian function is introduced and discussed 

in detail. The conjunction between a Gaussian function and the original methods is needed to formulate 

equations for obtaining fractal dimensions for local areas. It is important to inspect where to place the 

spatial weights on the original estimation methods. Unlike other summary statistics, fractal techniques 

contain a regression step and the spatial weights are needed to be blended in before the step of least-

squares regression. For all these three methods, the Gaussian function needs to be added to the quantities 

which are constructed from different aspects of counting the digital number. Such construction aims at 

strengthening the spatially closer land surfaces and weakening the spatially further ones. One of the focus 

of this dissertation is the bandwidth selection, the Gaussian function only uses a fixed filter for the 

bandwidth to compute Euclidean distances so the effect of the bandwidth can be examined. Overall, 

Chapter Four introduces methods for computing summary statistic or fractal dimensions and the Gaussian 

function separately. Then a combination between these two parts is proposed to explore the possibility of 

decomposing a summary fractal dimension value to local values. 

  Chapter Five focuses on the application of both global and local methods for calculating fractal 

dimension for test data using the triangular prism and differential box counting methods. The purpose of 

using test data is to give a general impression of how the estimation methods work especially the local 

ones. A comparison between these two methods is performed in Chapter Five. The central part of Chapter 

Five is to compute the local values of fractal dimension and compare them with the global value in order 

to assess the effectiveness of geographically weighted fractal estimation. 
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Chapter Five 

Results of Triangular Prism and Differential Box Counting Methods 

5.1 Introduction 

This chapter mainly evaluates the performances of the first category method, the triangular prism and 

differential box counting methods. Five methods in total are evaluated and compared using the aerial 

photograph for computing the two dimensional fractal dimension. Several sample images extracted from 

aerial photography are examined for each of the method. For aerial photograph, some global fractal 

dimensions are calculated for large areas of various landscape features. Each of the methods are applied 

and the results are compared. 

For local analysis, this dissertation only uses small samples with certain sizes because of the 

computation complexity. The local fractal dimension is calculated for every pixel and the results are 

visualized and compared with the corresponding global fractal dimension. The algorithms of triangular 

prism and differential box counting methods are not computationally complex and, however, when 

carrying out the local analysis for each pixel, the computation complexity is dramatically increased. 
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Therefore, the sample images used in this dissertation for local analysis are limited to several small sizes. 

For each of the local methods of triangular prism and differential box counting, the Gaussian function is 

used for the local adaption for computing the local fractal dimension values. Moreover, the effect of 

bandwidth on the range of local fractal dimension is examined for exploring the behavior of the local 

models on fractal approaches. 

In this Chapter, the triangular prism and differential box counting methods are first studied, both 

global and local, for the first category methods. The algorithms are comparable and they can be directly 

modified to local forms. The global and local results complied from this Chapter are expected to compare 

with the Fourier power spectral density method which is discussed in next Chapter. 

5.2 Evaluation of Triangular Prism Method Results 

The triangular prism method is the first fractal approach examined for the global fractal dimension results. 

The focus for this section is to implement the four types of triangular prism methods on the aerial 

photographs to study the land cover complexity. Because of the high spatial resolution of the aerial 

photograph, various land-cover types can be visually selected for the analysis. Two different land-cover 

types are selected representing two complexity levels of the image surface. Figure 5.1 shows the two 

sample images extracted from the original aerial photograph for global fractal dimension computation. 
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Figure 5.1 Sample Images of Aerial Photograph for Global Fractal Dimension Analysis 
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As we can see from Figure 5.1, two sample images demonstrate two completely contrasting 

landscapes from the red band of aerial photograph. The location of the sampled images are not the focus 

in this dissertation, however, the land covers of the sample images play a key role here. With the high 

spatial resolution, it can be seen that the first sample image covers a large body of water area with a few 

waves captured at the right side. The rest of the land cover is filled with highways, several parking lots, 

etc. All the impervious surface areas are found at the left hand corner of the image. On the other hand, the 

second sample image, is an example of a more developed landscape than the first image. A visual 

inspection of the second image tells us the main land covers of this area are residential, also high 

buildings can be seen in the business district area. Moreover, a small portion of highway is visualized at 

the lower right hand corner. Both of the sample images are defined by 4097 × 4097 pixels with a pixel 

size of 1 foot. This length of the image is equal to 212 + 1 which is the predefined rule (2𝑛 + 1) of the 

image size for triangular prism methods. The raw digital number values are used in the analysis with a 

pixel depth ranging from 0 to 255. 

Each of the four versions of the triangular prism methods is used to compute the fractal 

dimensions of the two images. The results are shown in Table 5.1 for a comparison between the four 

methods and also between the two distinct landscapes. We can see from the results that the fractal 

dimension in summary for the first image ranges from 2.20 to 2.32 indicating a relatively low geometric 

complexity and, on the other hand, the fractal dimension for the second image ranges from 2.40 to 2.48 

which are larger values than the first case. Given the differences of fractal dimensions between these two 

landscapes, it is encouraging that based on fractal dimension, people can somehow distinguish the 

dominating land cover types of given images. Here, a water dominated area would generate small fractal 

dimension because of the nature of low geometric complexity of the water body itself. The residential 

dominated area, with high contrasting elevation because of the buildings, exhibits high geometric 

complexity and result in large values of fractal dimensions. The descriptive statistics of these computed 

results are shown in Table 5.2. Among these four methods, the original triangular prism method 

consistently generate the smallest fractal dimension values for both of the two sample images. The largest 
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D value for water area is given by the Max-difference method and, for the residential area, the Mean-

difference method produces the largest D value. The mean fractal dimensions for the two images are 2.45 

and 2.26, which shows a good distinction for these two land covers. Another interesting finding is that all 

the three modified versions give larger D values than the original method for both the water and 

residential areas. 

Table 5.1 Global Fractal Dimensions of Four Triangular Prism Methods 

Sample Images The Original Max-Difference Mean-Difference Eight-Pixel 

Water Area 2.2038 2.3168 2.2622 2.2465 

Residential Area 2.3976 2.4679 2.4811 2.4538 

 

Table 5.2 Descriptive Statistics for Computed Results of Triangular Prism Methods 

Sample Images Mean Standard Deviation Min Max 

Water Area 2.2573 0.0404 2.2038 2.3168 

Residential Area 2.4501 0.0318 2.3976 2.4811 

 

Figure 5.2 and 5.3 present the results of the regression used for deriving the fractal dimension 

values for water and residential areas, respectively. Starting from upper left and clockwise are the original 

triangular prism, Max-difference, Mean-difference and the eight-pixel method. All the three modified 

versions use 11 regression points for carrying out the univariate linear regression analysis while the 

original one uses 12 data points for the regression analysis. The R square value of the original triangular 

prism method for the water area image is 0.7656 corresponding to a slightly curved regression line. All 

the three new versions yield higher R square values than the original method, especially the Max-

difference method, the R square values are 0.9651 and 0.9806. By looking at the regression results of the 

Max-difference method, it displays a relatively straight line compared to other regression results. The R 

square values of the original triangular prism method increase from 0.7656 to 0.9031, which may suggest 
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that the original triangular prism method is more suitable for fractal analysis of high geometric 

complexity image. The four R squared values for the residential areas are all greater than 0.90 and, all the 

R squared values of the residential image are greater than the water area image. This finding may imply 

that the triangular prism method, in general, is appropriate for analyzing the earth surface with middle or 

high geometric complexity. 

 

  

 

 

Figure 5.2 Regression Results of Triangular Prism Methods for Water Area (horizontal axis: log form of 

step sizes; Vertical axis: log form of total triangular areas) 
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Figure 5.3 Regression Results of Triangular Prism Methods for Residential Area (horizontal axis: log 

form of step sizes; Vertical axis: log form of total triangular areas) 

5.3 Evaluation of Differential Box Counting Method Results 

Another selected method which belongs to the first category method is the differential box counting 

method and is analyzed as well as compared with the triangular prism methods. Based on the results of 

the triangular prism methods, the original triangular and the max-difference methods are analyzed in this 

section and together with the improved version of differential box counting method. The Max-difference 

method is chosen because of the best performances in the last section. This section is a mixture of 

analyzing one kind method and comparing it with another type of methods. The sample images used in 

this section are shown in Figure 5.4. These two images are different from the images used for the 

triangular prism methods but the structures are similar. These two images consist of a water area which 

has a large patch of water in the middle and harbor constructions on both sides of the image, for the 

second image, it is also a residential area but the distribution of high buildings is denser than the first case 
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based on the visual comparison. These 4097 × 4097 pixel images are analyzed following the same 

procedure as the last analysis. 

 

 

Figure 5.4 Sample Images of Aerial Photograph for Differential Box Counting Method 
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Table 5.3 presents the analysis results of the global fractal dimension for the chosen three 

methods. The original triangular prism method still generates the lowest D values among these three 

approaches. The results of the two triangular prism methods (original and the max-difference) for the two 

image sets are the same, 2.2038 and 2.2074 or 2.4679 and 2.4908, which are slightly different but can be 

considered as the same values because the nature of the fractal dimension itself. As mentioned before, 

these two sets images have similar landscapes and it is no surprising that the triangular prism methods 

produce the similar results. The improved differential box counting method, on the other hand, computes 

very large D values for both of the sample images. A fractal dimension value of 2.5518 of a water area 

seems larger than the normal value that, usually, the D value for low geometric complexity landscape is 

slightly exceeds 2.0. The first sample image in Figure 5.4, however, is greatly dominated by water with a 

few built-up land covers, which is a low complexity landscape and is expected to have a small D value. 

Another explanation could be that the built-up land covers, even though only occupy a limited space of 

the whole image, may still display a significant contrast to the water body and cause a high D value. The 

other case, the residential-city area, results in a D value of 2.7058 which is dramatically increased from 

the triangular prism method results. A comparable analysis of the improved DBC method of the first set 

images results in fractal dimension values of 2.5441 and 2.6863, and this is consistent with the results 

acquired from the second set images. 

 

Table 5.3 Global Fractal Dimensions of Triangular Prism and DBC Methods 

Sample Images Original Triangular Max-Difference Improved DBC 

Water Area 2.2074 2.3051 2.5518 

Residential Area 2.4150 2.4908 2.7058 

 

Figure 5.5 shows the regression results for the improved DBC methods, left is the water area and 

right is the residential area. The R square values are extremely high and close to 1.0 indicating a good fit 

for both two analyzed landscapes, for Max-difference method, the R square values are 0.9239 and 0.9836, 
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which are similar to improved DBC method but generate much lower fractal dimension values. The 

quantity used for improved differential box counting method is integer values of pure box counting, 

different from the fractional quantities used for triangular prism method. Moreover, the range of the 

dependent variable for DBC method is wider than the triangular approach. In general, although both 

belong to the method of the first category, the results of improved differential box counting method show 

a quite different outcomes, however, the distribution of high and low geometric complexity based on the 

sample images is the same for these two methods. 

 

 

 

Figure 5.5 Regression Results of Improved Differential Box Counting Method (horizontal axis: 

log form of step sizes; Vertical axis: log form of total box counts) 

 

 

5.4 Evaluation and Comparison of Local Fractal Dimension Results 

The focus of this section is to explore the results of local fractal dimension, a core idea developed in this 

dissertation research. Three methods are selected here which are the Max-difference, Mean-difference, 

eight-pixel. The reasons for choosing these three methods are that they are all modified from their 

originals. In addition, all these three methods use the same number of regression data for deriving the 

slope and fractal dimension, the original triangular prism method uses one more regression data, thus it is 

omitted from the local analysis in this part. Sample images are also extracted from the original aerial 

photographs but, as indicated before, the computation complexity is an essential factor considered for 

analyzing local fractal dimensions, which are computed for each single pixel. Therefore, the sample 
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images used for calculating the local fractal dimensions for entire images are much smaller than the 

images used for the global analysis. However, the same sample images are used again for computing the 

local fractal dimension values for several separate locations (i.e. pixels) to first test the idea of acquiring 

the local D values using kernel density functions. 

The image of the water area for the improved differential box counting method is used for 

analyzing the fractal dimensions for single pixels, with the involvement of Gaussian kernel density 

function to the global approaches. Figure 5.6 shows the sample image and the regions of interested areas. 

Three regions are selected and compared in terms of the fractal dimensions. It is observed from the image 

that these three locations display various textures, with different landscapes complexity shown in the 

image, which contains water and road land covers. It is expected that the surface complexity of these 

three landscapes are not as the same as the global fractal dimension value and, because of heterogeneity, 

the D values should be varying based on the global value. 

 

Figure 5.6 Sample Images and Locations for Local Fractal Analysis 

Because of the image length is 4097, the bandwidths used for local analysis are 2000 feet for this 

part test. The results of the local analysis are shown in Table 5.4. Again, the global values are listed in the 
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table, which are generally below 2.3. It is important to examine the separate local D values for these 

methods. The bandwidth does play a role for changing the D values based on the landscape textures. The 

smallest D values are all acquired at the lower left corner which is reasonable because that area is pure 

water and the geometric complexity is very low. The smallest fractal dimension is 2.1955 acquired by the 

Eight-pixel method. The largest D value is obtained at the middle right location, which is a more complex 

surface than the water area and, it is as expected to have a high fractal dimension. 

Notice that the global fractal dimension values are all within their corresponding local D results 

which is the rule for the local adaption. The local analysis results are promising because they provide us 

with the desired outcomes. First, the local results reflect the corresponding surface textures, for example, 

pure water generates the smallest D values. Second, the local results are in the range (i.e. between 2 to 3), 

with the incorporation of Gaussian kernel, the results are within the theoretical boundary. The results of 

the three locations are similar and consistent among these three methods. Max-difference method has the 

largest D value and also has the largest D values for each of the three locations than the other two 

methods. It is encouraging that a kernel density function is compatible with fractal approaches, for 

calculating D values for single pixel, instead of large patch of pixels. 

Table 5.4 Local Fractal Dimension for Individual Locations 

 Upper left Lower left Middle right Global 

Max-difference 2.2702 2.2576 2.3346 2.3051 

Mean-difference 2.2406 2.2202 2.2996 2.2710 

Eight-pixel 2.2187 2.1955 2.2796 2.2492 

 

To further evaluate the effectiveness of the local adaption of fractal approaches, the regression 

results of the local fractal methods are included for illustration (Figure 5.7). Only the results of the Max-

difference method are shown here, from top to bottom are upper left, lower left and middle right 

locations. It is clearly demonstrated in the figure that the R square values are equal and greater than 0.9, 

which means a great fit of the data points. However, it is obvious that, with the Gaussian Kernel function 
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and the bandwidth value, the quantities (i.e. total areas) are decreased for each step size. Furthermore, it is 

found that the last point is an outlier for all these three methods, the log transformed values of the 

dependent variable of these three points are larger than a few of their previous data points. For example, 

the upper left, the value of the last point is 15.06, while the values of its previous three step sizes are 

14.82, 14.90 and 15.01, which is not as expected as for the regression technique used for fractal analysis, 

because the regression data points resulted from triangular prism method are distributed in a descending 

order based on the step sizes and the regression line is expected to display a straight trend. This could be a 

potential problem found in the local triangular prism methods which may lead to a poor estimation of 

fractal dimension. Another consideration of this problem is that using the full step sizes may be another 

reason for causing the outliers, the last step size could be a potential source of generating this nonlinear 

tendency of the derived data points. 
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Figure 5.7 Regression Results of Local Fractal Analysis (horizontal axis: log form of step sizes; Vertical 

axis: log form of total triangular areas) 
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A general discussion of the findings of the local analysis is that the Gaussian kernel density can 

be applied to fractal approaches. Although only the triangular prism method is tested, the procedure is 

similar for other methods. On the other hand, the results from this local analysis suggest that the number 

of step sizes is essential and much more attention should be put on the last step size. Also, a single 

bandwidth cannot fully reflect the effectiveness of the kernel density function, therefore, more 

bandwidths should be added to examine the relationship with the fractal dimension values. 

In order to evaluate the relationship between fractal dimension and bandwidth, as well as the 

number of step size used, various bandwidth values are tested. Figure 5.8 shows the test image for the 

analysis in this part. This image consists of 1025 × 1025 pixels. For simplicity, only the original 

triangular prism method is used for the analysis. The geometric complexity of the entire image based on 

the visual inspection is low and the summary D value is 2.3340. The left corner of the image is selected 

and the bandwidth used are 800, 700, 600, 500, 400, 300, 200, 100, 80, 60, 40 and 20 feet. From 

bandwidth 800 to 200 feet, the fractal dimension values ranges from 2.3192 to 2.2384, which are smaller 

than the global D value. With the decrease of the bandwidth, the value of the fractal dimension becomes 

smaller which is as expected, because narrow the bandwidth to a limited space will restrict the local 

analysis focus on a small area, in this case, water area, and this may lead to lower roughness of the 

surface. However, when it comes to the bandwidth of 100, 80, 60, 40 and 20 feet. The problem emerges 

that the values of fractal dimension increase to 2.4917 and then dramatically to 2.766, 3.418, 5.455 and 

17.151 (Figure 5.9). It is clear to argue that these small bandwidths (i.e. bandwidth smaller than 1/10 of 

the original image size in this case) marked by red dots in Figure 5.9 cause an unacceptable result of the 

large D value, which exceed the upper theoretical boundary of 3, and for bandwidth of 20 feet, the values 

is 17.151 which is a disappointing finding because it is an extremely large value. 
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Figure 5.8 Test Image for Examine Effect of Bandwidth 

 

Figure 5.9 Trend of Local Fractal Dimension of Different Bandwidths  

                 (Horizontal axis: bandwidth; Vertical axis: local D values) 

 

By looking at the regression results of the goodness of fit of these small bandwidths, the R square 

values reflect the poor estimate. The R square values are 0.5681, 0.4679, 0.4106, 0.3953 and 0.4074. All 

these R square values are very low and decrease gradually with the bandwidth becomes smaller. Take an 

example of the result of bandwidth of 20 feet, which is the last bandwidth, used in this analysis, and this 

is shown in Figure 5.10. It is clearly observed from this regression result that the slope is quite a small 
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negative value result in a very large fractal dimension. An outlier is clearly identified from the last step 

size that the log transformed value is much smaller than its previous regression data points. In addition, 

not only for this last step size, but also for the 8th and 9th step sizes, the log transformed value of the 

dependent variable are both smaller than zero, which is hard to interpret since the dependent variable of 

triangular prism method is total areas of prisms and the values should not be negative. 

This analysis results have shown that the small bandwidth may cause an issue for calculating the 

fractal dimension at a local scale using Gaussian kernel density function. A number of problems have 

been identified to improve the local analysis procedure. It is still unproved that whether use the full step 

sizes is the major issue as the bandwidth becomes smaller. The desired result of the local analysis should 

be, at least, that the regression data points are in a linear trend and the log transformed dependent variable 

is positive for all step sizes. These conditions may ensure a fractal dimension within the theoretical limit.  

 

Figure 5.10 Regression Result of Bandwidth 20 Feet (horizontal axis: log form of step sizes; 

Vertical axis: log form of total triangular areas) 

 

 

It is important to note that the fractal analysis technique does not have to use the full step sizes, in 

other words, it is flexible to use different number of step sizes and this is an important adjustment for 

small bandwidth local analysis. To examine if the small bandwidth is an issue for the other locations of 

the image, two other locations are selected and together with the current one, three different location: 

lower left, upper center and image center are analyzed for small bandwidth effect. Table 5.5 shows the 
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selected bandwidths and the number of removed step sizes for each of the location. Notice the 10 feet is a 

very small bandwidth and for these three locations, the last four step sizes need to be removed from the 

regression analysis. For a 1025 × 1025 image, the left number of regression data points are 6. The table 

also demonstrates that as the bandwidth becomes smaller, the number of removed step sizes increases and 

the removed number are the same for all these three individual locations. It may be inappropriate or 

impossible to remove many step sizes since a regression analysis technique needs to be performed based 

on not very few data points. However, for the local analysis with small bandwidth, this strategy may seem 

the most straightforward way to acquire a normal fractal dimension value. It is also observed from the 

table that the removed number of step sizes are identical for each bandwidth for all these three locations. 

It is still not safe to conclude that a rule (relationship between removed number of step sizes and value of 

bandwidth) has been made here because only three locations cannot represent the general situation. The 

number of step sizes used for other individual locations for local analysis may vary slightly. 

 

Table 5.5 Number of Removed Step Sizes for Various Bandwidths 

 Lower Left Upper Center Image Center 

10 feet 4 4 4 

20 feet 3 3 3 

40 feet 2 2 2 

60 feet 2 2 2 

80 feet 1 1 1 

100 feet 1 1 1 

 

After remove the certain number of step sizes for the small bandwidths, the R squares of the 

regression plot for 10 feet to 100 feet are 0.9353, 0.9524, 0.8949, 0.8236, 0.8624 and 0.8405, 

respectively. There has been significant increase of the R square values and the corresponding fractal 
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dimension values are 2.5719, 2.4143, 2.2740, 2.2177, 2.2689 and 2.2346. Figure 5.11 shows the trend of 

the fractal dimension values of the whole range of the bandwidths including the corrected D values for 

bandwidths 10 to 100 feet. It is noticeable that for bandwidth 10 and 20 feet, the fractal dimension values 

are slightly smaller than the rest of the values, which is not consistent with the selected surface landscape. 

The reason is that the bandwidth gets smaller, the locally analyzed area of the lower left corner becomes 

narrower with only water and the surface roughness should be low compared to the wider bandwidths 

areas. However, it would be inappropriate to argue at this stage that the fractal dimension values of the 

small bandwidth of the water area are necessarily smaller than the values of the large bandwidth. For the 

rest values of the fractal dimension, they are distributed between 2.22 to 2.27 and fluctuate within this 

range. Starting from bandwidth 100 feet, the fractal dimension values increase gradually until the 

bandwidth of 800 feet. 

 

Figure 5.11 Corrected Fractal Dimension Values for Various Bandwidths (horizontal axis: 

bandwidths; Vertical axis: local D values) 

 

 

To test the performances of the modified regression analysis for acquiring new fractal dimension 

values further, the other two selected locations are also examined using the same procedure in the last part 

for the bottom left location. Figure 5.12 shows the trend of the corrected fractal dimension values for 

these three different locations. The red, green and blue lines represent upper center, image center and 
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bottom left locations, respectively. It can be observed from the following chart that, for both of the 

bandwidths of 10 and 20 feet, all these three locations possess higher D values than the rest of the 

bandwidths. From bandwidth 20 feet and forward, it can be seen that these three locations display a 

similar trend of the estimated D values. Compare the image textures of these three locations, the upper 

center location shows the highest fractal dimension and the bottom left displays the lowest D values. 

Among these three locations, the D values can be easily distinguished at the bandwidth of 100 feet, then 

as the bandwidth becomes larger, the D values gradually converge to a similar value. This finding is 

consistent with the rule of the local adaption that as the bandwidth becomes large enough, all local values 

become the same value and equal to the global one. It is encouraging and recommended that, with the 

correction of the number of the step sizes used in the regression analysis, this local concept for calculating 

local fractal dimension for single pixel could be extended to the entire image. 

 

 

Figure 5.12 Trend of Corrected Fractal Dimension Values for Three Locations (horizontal axis: 

bandwidths; Vertical axis: local D values) 
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In addition to the local analysis for the different image textures, it is necessary to carry out 

another similar test for a few locations with the similar surface textures. In order to examine the same 

textures, two locations are selected which are located at the bottom left and bottom right. The calculated 

fractal dimension values for these two locations are shown in Table 5.6. Again, for bandwidths of 10 and 

20 feet, the D values are high and not recommended for use for real world applications. As the bandwidth 

becomes 200 feet, the D values for both of the locations approximate to same D value. The mean fractal 

dimension values for both locations in the bandwidth range of 200 to 800 feet are 2.2879 and 2.2739 

which can be considered as identical value. This result follows the rules of incorporating local and spatial 

information to the analysis, and is also consistent with their highly similar image textures.  

Figure 5.13 presents the general trend of the fractal dimension values for these two locations. The 

chart presents the results of the D values in a different way than the table form and, as discussed earlier, 

the geometric complexity of these two locations are highly analogous and this is reflected in the chart that 

the two curves of the trend of the estimated fractal dimension values eventually converge to a same value. 

As noted earlier, when the bandwidth becomes larger than 100 feet, these two values differ somewhat but 

steadily approach to the same D value. Now the main issue of the local analysis for calculating fractal 

dimension is clear that the small bandwidth does have a huge impact on the fractal dimension values. The 

previous analysis all focus on exploring single locations (i.e. pixels) of the same or different image 

textures using a wide range of bandwidths, the results of this kind of analysis are limited and can only 

present a part result of the local analysis. Rather than using the single location, it is also recommended to 

explore the local fractal dimension values for the entire image, by doing so, the results can be displayed in 

map format and a lot more details and comparisons can be made through visual exploration. 
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Table 5.6 Local Fractal Dimension for Bottom Left and Bottom Right of Image 

 Bottom Left Bottom Right 

10 feet 2.5791 2.6731 

20 feet 2.4143 2.5403 

40 feet 2.2740 2.4308 

60 feet 2.2177 2.3507 

80 feet 2.2689 2.3584 

100 feet 2.2346 2.3131 

200 feet 2.2384 2.2545 

300 feet 2.2556 2.2418 

400 feet 2.2812 2.2580 

500 feet 2.2980 2.2744 

600 feet 2.3083 2.2874 

700 feet 2.3149 2.2972 

800 feet 2.3192 2.3044 

 

 

Figure 5.13 Trend of Corrected Fractal Dimension Values for Two Similar Locations (horizontal 

axis: bandwidths; Vertical axis: local D values) 
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The last test of the local fractal analysis section in this dissertation is computing local fractal 

dimension values for the entire image for every single pixel. This is the full range of the number of pixels 

for an image and each pixel will have its D value to form a range of the fractal dimension result. Because 

each pixel is used for calculating a D value, for ease of computation, a much smaller test image is used to 

demonstrate how the ranges of the fractal dimension values look like and vary by applying selected 

bandwidths and fractal approaches. 

Figure 5.14 shows the test image, a 257 × 257 image with some water body, sand and building 

land covers. It can be seen from the image that there is a clear contrast between the land covers and their 

surface complexity would be different. The full number of the pixels in this case are 66049. Firstly, the 

four triangular prism methods are applied on the this test image for calculating the fractal dimensions for 

all the pixels using Gaussian Kernel, the bandwidth used for this image is 70 feet which is approximately 

1/3 of the image size. Figure 5.15 presents the spatial pattern of the geographically weighted fractal 

dimension values for each pixel based on a Gaussian function for the four triangular prism methods. The 

original triangular prism method uses the full step sizes and the computation time for a 66049 pixel size is 

about 1 hour and 40 minutes, while for the other methods, they skip the first step size and the computation 

time is about 25 minutes which is a lot fewer than the original method because the first step size result in 

the largest number of triangular prims for summing the total areas.   
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Figure 5.14 Test Image for Local Fractal Analysis for Entire Pixels 

 

The spatial distribution of the local fractal dimensions in Figure 5.15 is presented using 5 classes 

for all the four methods, also range and color for each class is identical for each method so the results can 

be fully compared across these four method. The global fractal dimension for original triangular prism, 

Max-difference, Mean-difference and eight-pixel methods are 2.4976, 2.4691, 2.4943 and 2.5360, 

respectively. The corresponding R square values are 0.9857, 0.9960, 0.9931 and 0.9945. The R square 

value of the original triangular prism method is improved from the test image used in the previous 

analysis. The original range of the local fractal dimension values for the original, Max-difference, Mean-

difference and the Eight-pixel methods are 2.3414 - 2.6062 (global: 2.4976), 2.3280 - 2.5642 (global: 

2.4691), 2.4200 - 2.5350 (global: 2.4943) and 2.3820 - 2.6562 (global: 2.5360), respectively. It can be 

seen from the result that the global values are all within the range of their corresponding local value 

range, which are as expected. Among the results, the mean-difference method yields a different result that 

its values fall into the medium range of roughly 2.40 - 2.60. The other three results display a similar 

spatial pattern that the max-difference method yields the most pixels in the smallest range, which are 2.33 
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- 2.40, on the other hand, it does not have the values in the largest range. The eight-pixel method yields 

the most pixels in the largest range which is 2.59 - 2.66. The original method, Max-difference and the 

eight-pixel method exhibit very comparable spatial distribution of the fractal dimension values that, the 

lowest geometric complexity exist at the bottom part of the image and the highest geometric complexity is 

observed at the top right region of the image. This is somehow consistent with the test image landscape 

that the water area is at the bottom area of the image with low complexity and the top right corner is 

identified to be a built-up and shadow area, which is considered to be a high complexity area. 

 

 

Figure 5.15 Spatial Pattern of Local Fractal Dimension for Four Triangular Prism Methods. 

Upper Left: Original Triangular; Upper Right: Max-difference; Lower Left: Mean-difference; Lower 

Right: Eight-pixel. 

 

 

In addition to the within method comparison, another analysis on the comparison between 

methods is also carried out for the local fractal analysis. For simplicity, the Max-difference method is 

chosen to compare with the improved differential box counting method. The same test image is used for 

this part analysis. Figure 5.16 presents the spatial distribution of the local fractal dimension results for 
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these two methods. The global fractal dimension value using the improved differential box counting 

method is 2.4643, compared to the value of the Max-difference method which is 2.4691. These two 

values can be considered as the same value. Recall from the previous analysis for a large image, the 

global fractal dimension values for the improved differential box counting method is much larger than the 

Max-difference, however, for a smaller image, the global values are quite the same. The local fractal 

dimension of the improved DBC method ranges from 2.39 to 2.51. It is narrower than the range of the 

Max-difference method. Also compared with other triangular prism methods, the result of the improved 

differential box counting method is somehow within the range of all the triangular prism methods. From 

Figure 5.16, it can be seen that the improved differential box counting method does not yield any fractal 

dimension values within 2.33 to 2.38 and 2.51 to 2.56. Most of its results are within 2.40 to 2.50. The 

general distribution of the local fractal dimension of improved DBC is comparable to the Max-difference 

method, also to the other triangular prism methods based on the results from previous part. Both of the 

methods yield the same values fall in the value range of 2.47 to 2.51 at the top right area. The Max-

Difference method yields the largest D values (2.51 - 2.56) at the top left region of the image while the 

improved DBC method has lower values for that area. 

 

 

Figure 5.16 Spatial pattern of Local Fractal Dimension for Max-Difference and Improved DBC 
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It is also important to explore the effect of bandwidth of Gaussian function for computing local 

fractal dimension for the entire image. As mentioned before, two rules of local adaption are targeted for 

the analysis. The first one is the global result needs to be within the range of each local results for each 

bandwidth. Secondly, the range of the local fractal dimension values should vary according to the value of 

bandwidth, that is, specifically, as the bandwidth becomes larger, the maximum value decreases and the 

minimum value increases for the entire image. On the other hand, as the bandwidth becomes smaller, the 

maximum value increases and the minimum value decreases. As a special case, when the bandwidth is 

becoming large enough, usually from the image size to infinity, the results become narrower and 

eventually all the values become the same value which is the global value. In this dissertation research, 

the fractal dimension value is very different from the other spatial statistics because the fractal dimension 

value, for surface feature, has two theoretical boundaries that the result is expected to be within 2 and 3. 

Unlike geographically weighted mean, such spatial statistic does not have any boundaries for the results, 

therefore, the fractal analysis requires much more care for the local fractal dimension analysis. 

In order to examine the bandwidth effect, the Max-difference method is used for testing various 

bandwidths. The same test image from last part is used for the bandwidth effect analysis. From last part 

analysis, the spatial distribution of D values can be observed and the general trend of the pattern is shown 

for bandwidth of 70 feet. Based on the same test image, the numerical results of local D values for various 

bandwidths are presented in Table 5.7. The bandwidths used in this analysis roughly cover the whole 

range from 5 feet to 200 feet. From bandwidth 200 feet to 60 feet, the interval is 20 feet. The results of 

bandwidth 200 feet is 2.45 - 2.49, with the global D value of about 2.47. The bandwidth of 200 feet is 

approximately the image size and yields the narrowest width of result compared to the smaller 

bandwidths. With the bandwidth becomes smaller, the maximum values become larger and the minimum 

values become smaller, the range of the results become wider. Recall from previous statement, the 

behavior of this results is consistent with the rules of the geographical weighted scheme.  

It is noticeable from Table 5.7 that from bandwidth 200 to 100 feet, the change of the ranges of 

the local D values are small, for minimum and maximum values, the average change for both boundaries 
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is 0.01. However, when the bandwidth becomes smaller than 100 feet, the extreme values (maximum and 

minimum values) change more dramatically than large bandwidths. For example, from bandwidth 50 feet 

to 40 feet, the minimum value decreases from about 2.25 to 2.19, and for maximum value, it increases 

from roughly 2.63 to 2.73. The change interval is 0.06 and 0.1 for minimum value and maximum value, 

respectively. The change interval can increase to as large as 10 times (0.1 / 0.01). In addition, from 

bandwidth 200 to 30 feet, the behavior of the bandwidth effect is correct. When it comes to bandwidths 

25 to 5 feet, there are many unexpected values that caused by the small bandwidths. The minimum values 

for bandwidths 20, 15 and 10 feet are 1.99, 1.96 and 2.07. Although the values of 1.99 and 1.96 are below 

2.0, they are extremely close to 2 and still be considered as a value of 2 which may seem correct since a 

very small bandwidth covers a highly homogeneous surface and can yield a fractal dimension of 2. The 

maximum values of bandwidths 25 to 5 feet are strange which are 3.28, 3.87, 5.20, 9.17 and 31.29. It is 

interesting to find out that the maximum values exceed 3.0 and continue increase dramatically. 

  

Table 5.7 Local Fractal Dimension Values of Entire Image for Various Bandwidths 

Bandwidth Local Fractal Dimension Values 

200 feet 2.4469 - 2.4876 

180 feet 2.4420 - 2.4913 

160 feet 2.4352 - 2.4959 

140 feet 2.4258 - 2.5026 

120 feet 2.4121 - 2.5129 

100 feet 2.3922 - 2.5279 

80 feet 2.3590 - 2.5493 

60 feet 2.2892 - 2.5869 

50 feet 2.2474 - 2.6311 

40 feet 2.1882 - 2.7320 
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35 feet 2.1472 - 2.8293 

30 feet 2.0976 - 2.9919 

25 feet 2.0416 - 3.2846 

20 feet 1.9878 - 3.8662 

15 feet 1.9624 - 5.2000 

10 feet 2.0697 - 9.1661 

5 feet 3.4645 - 31.2917 

 

In order to further examine the small bandwidth effect, similar to the previous analysis, but 

instead of analyzing for single pixels, the entire test image is used and three bandwidths are selected for 

comparing the result of removing certain number of step sizes with the original result. Dark color 

indicates small values and bright color means large values. The left image is the original result and the 

right image is the corrected image. Figure 5.17 shows the original and corrected spatial distribution of 

fractal dimension values for bandwidth 5. The last three step sizes are removed for correction. The 

original image looks interesting that it has four circles with small D values distributed at four corners of 

the image. The large values are found at the middle and four edges of the image. The spatial distribution 

of the D values seem very regular but not as expected. After removing the last three step sizes, the local D 

values become smaller but still not within the range of 2 and 3. The spatial distribution changes to a 

completely different form. There are many small circles distributed across the image and some small 

values are found at the top right edge of the image. 
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Figure 5.17 Comparison of Spatial Distribution of D Values between Original and Corrected for 5 Feet 

 

Figure 5.18 shows the comparison of bandwidth of 10 feet. Increasing of 5 feet bandwidth, the 

original image shows the same pattern with the bandwidth of 5 feet. The corrected image displays a 

similar spatial pattern to bandwidth of 5 feet, but the small circles become larger. The possible 

explanation is that the bandwidth plays a role for changing the local analysis area wider. Figure 5.19 

shows another comparison for bandwidth of 30 feet. Different from the bandwidths of 5 and 10, the 

original image has four circles that are not regularly distributed in the image. Also, the values of the 

bottom two circles are smaller than the top two circles. The corrected image shows different pattern from 

bandwidths of 5 and 10 too. The spatial distribution of 30 feet looks smoother than bandwidths 5 or 10. 

The small values are found at the top left and bottom right corners. The middle of the image shows a 

small area of large fractal dimension values.  
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Figure 5.18 Comparison of Spatial Distribution of D Values between Original and Corrected for 10 feet 

 

 

Figure 5.19 Comparison of Spatial Distribution of D Values between Original and Corrected for 30 feet 
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5.5 Summary 

This Chapter focuses on exploring fractal analysis on aerial photograph, a photograph has very fine 

spatial resolution of 1 foot which is used in this dissertation research. Various analysis has been carried 

out for calculating the fractal dimension values. Global values are first explored by various methods. Four 

types of triangular prism methods are used for estimating geometric complexity of two sample images 

extracted from the original aerial photography. The two samples consist of a water land cover area and a 

residential dominated area. Among these four methods, the original triangular prism method yields 

smaller D values for both of the two sample images. The D values of residential area of these four 

methods are consistently larger than the water area indicating the geometric complexity of residential 

surface is higher than the complexity of water area. Then the triangular prism methods are compared with 

the improved differential box counting method. These two methods belong to the same category of fractal 

approaches in terms of similar manner for computing the quantities. The improved differential box 

counting method yields larger D values than the other triangular prism methods. Moreover, the Max-

difference and the improved differential box counting methods yield the largest R square values 

indicating a good fit of the regression line to the data points. 

Second, the local fractal analysis is carried out on smaller sample images. The Gaussian kernel is 

used for computing the fractal dimension values for each single pixel. A series of local analysis using the 

Max-difference method are performed to explore the effect of Gaussian kernel for computing the local 

fractal dimension values. Several single locations are first examined and the results show that the D 

values vary according to different places of the image. A built-up area results in a larger D value than the 

water area, which is correct since the geometric complexity of a built-up area, is higher than a flat water 

area. In addition to the single location analysis, the local fractal approach is further applied to the entire 

image for calculating D values for each pixel to generate classification maps for visual representation. A 

wide range of bandwidths are tested for examining the behavior of the local adaption for the fractal 

analysis. The results show that, for large bandwidths, the maximum and minimum D values change 

correctly according to the variation of bandwidths. Also the global D value is within the range of each 
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result of the large bandwidths. However, when the bandwidths become very small, the D values start to 

change to unexpected number. The regression plot also exhibits a few outliers of dependent variable and 

some has negative values. 

The solution for the small bandwidth is to remove certain number of step sizes in order to remove 

the outliers for a better fit of the regression line. In this way, the spatial distribution of corrected D values 

change to a more irregular pattern than the original pattern but still has some unrealistic D values 

compared to large bandwidth. Chapter Six focuses on exploring the Fourier power spectral density 

approach for computing both global and local D values. This method is more complex than the previous 

two methods and the detailed analyzing process is illustrated in Chapter Six.  
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Chapter Six 

Results of Fourier Power Spectral Density Method 

6.1 Introduction 

The previous chapter examines the results of triangular prism and differential box counting methods for 

computing fractal dimension values. In general, both of the triangular prism and differential box counting 

methods belong to the first category method for computing fractal dimension of surface. The comparison 

between these two methods show different scenarios, however, the use of the same category methods 

have limited their comparison. Chapter Six is focused on applying the Fourier analysis technique to 

compute the surface fractal dimension using the same sample images used in Chapter Five. Also, the 

results of the Fourier method are compared with triangular prism and differential box counting methods 

for a further and more complete comparison. 

As mentioned before, the Fourier analysis method belongs to the second category methods for 

computing the fractal dimension for surface. The computation procedure of using Fourier analysis for 

computing a D value involves many more steps than the triangular prism or differential box counting 
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methods. Therefore, this intrinsic complexity has limited its use and applications on landscape analysis 

using fractal dimension (Sun et al. 2006). It has been previously pointed out that the popular methods 

used for computing fractal dimension are triangular prism, box counting, variogram and isarithm since all 

these methods can be easily constructed and accessed through software (Quattrochi et al. 1997). As a 

sophisticated as well as accurate algorithm, the Fourier spectral approach may need more attention for its 

use for computing fractal dimension and more importantly, compare with other common fractal methods. 

Besides computing a fractal dimension based on a given image, another widely use of the Fourier 

analysis is to model the natural surfaces with various levels of roughness for constructing 3-D surfaces 

because many physical processes can be perceived as fractal surfaces (Pentland 1984). Previous studies 

have used the Fourier function for formulating fractional Brownian surfaces, which possess known D 

values ranging from 2.1 to 2.9, and the generated surfaces can be used for validating new developed 

fractal approaches (Pentland 1984, Dubuc et al. 1989). This dissertation does not aim at developing new 

fractal methods, so the Fourier analysis method is not used for generating fractional Brownian surfaces. 

Instead, it is worth of comparing the Fourier analysis method with the previously examined methods on 

the aerial photograph sample images. Chapter Six mainly examines the Fourier spectral approach for 

computing fractal dimension values which follows the same manner in Chapter Five. 

6.2 Fractal Analysis of the Fourier Spectral Approach 

This part of the results focuses on analyzing the various possibilities of the Fourier spectral approach for 

acquiring the average fractal dimension value. Different from the triangular prism method and differential 

box counting method, there are some variations of the Fourier transform method and the influence of 

different strategies on the fractal dimension results is analyzed below in this section. The analysis of 

various procedures of the Fourier spectral approaches for computing global fractal dimension values is 

crucial because the local D values are built on the results of this section and the computing strategies of 

the Fourier transform method is selected for computing local D values in the next section. 
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The test data is as the same as the image of Figure 5.14 in chapter five. A small image is used for 

computing a global D value using Fourier transform method is because the computation complexity of 

this particular method has been dramatically increased compared to the previous two methods. The image 

is not shown here and can be referred to in the last chapter. Based on Turcotte (1997, 88 - 89), the 

computation of the Fourier transform and the mean power spectral density start from the lower left origin 

and spread out to the upper right direction. In python script, for reading image, the origin starts from the 

upper left corner, these two different procedures may result in different results of the computed fractal 

dimension values. The regression plots are shown in Figure 6.1 for a comparison purpose. 

 

 

 

Figure 6.1 Regression Plots of Two Origins of Fourier Spectral Approach (horizontal axis: log 

form of radial wave number; Vertical axis: log form of mean power spectral density) 

The first attempted analysis of the Fourier spectral approach is using two different origins of the 

image. Figure 6.1a uses an origin starting from the upper left corner which is consistent with the python 

script programming used for this method for the computation while Figure 6.1b uses a different origin 

starting at the lower left corner which is consistent with the illustration in the literature. The purpose of 

this comparison is to see whether the change of the origin affects the distribution of the regression points, 

as the slope and the fractal dimension value are directly influenced by the trend of the fitted line. The D 

values for these two scenarios are 3.1805 and 3.2128, respectively. Both of these two values excess the 
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upper limits of the theoretical boundary of 3.0. It can be seen from the figure that at the beginning of the 

radial wave number, the log mean power spectral density does show a decreased trend and the values are 

distributed in a roughly equal space. Then the points start to become denser than the beginning few points 

as the radial wave number becomes larger. The overall decreasing trend is still clear until the radial wave 

number gets to 5 and the there is a sudden increase of the log mean power spectral density which causing 

the log-log plot lacks of a fractal distribution. 

Reexamine Figure 6.1, the regression plot and the slope are closely similar, although the R square 

values are not high, the change of the origin does not affect the result much. It is acceptable to use the 

origin at the upper left corner for the Fourier method, the next consideration would be adjusting the radial 

wave number in order to remove the increasing trend at the tail of the regression line for achieving a 

linear trend of a fractal distribution. 

Recall from the test image used for the first test, the largest value of the radial wave number used 

is 257 which is as the same as the image size. However, if pay close attention to the relation of computing 

the radial number, and take the largest position which is 256, the corresponding radial wave number is 

362. Therefore, there is a large missing radial wave number and amount of mean power spectral density 

for the regression. The second test considers using the full extent of radial wave number not only the 

number of the image size, but the maximum number of the radial wave number according to the image 

size. Figure 6.2 shows the log-log plot of this test for two different origins. It can be seen from the results 

that with the 362 regression data points involved, the overall trend for both situations exhibit more than 

one peaks and bottoms. As the log form of the radial number becomes larger than the first test situation, 

the power spectral density decreases and then suddenly increases to the values similar to the beginning 

several values. The reason causing this non-linear trend is that the total number of the radial wave 

coefficient number. Starting from position (0, 0), as the position index becomes larger, the total amount of 

the same radial wave number becomes larger. Since the total number of the radial wave coefficient are 

placed in the denominator position, the mean power spectral density has a great chance being smaller as 

the radial wave number becomes larger, as shown in both Figure 6.1 and 6.2. However, when the index 
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position gets very large, for example, towards to the upper right corner, the total amount of the same 

radial wave number does not exhibit the same trend as for the starting positions. For example, for the last 

position which is 256 by 256, the corresponding radial wave number is 362 and this is the only one 

number, and the mean power spectral density for 362 would be very large and this is shown in Figure 6.2. 

The fractal dimension values for test 2 for both scenarios would be non-realistic and are not reported here. 

    

 

 

Figure 6.2 Regression Plots Using Full Radial Wave Number (horizontal axis: log form of radial wave 

number; Vertical axis: log form of mean power spectral density) 

 

 

Instead of using the full radial wave number for the first and second tests, the third test aims at 

reorganizing the number of radial wave number used for the independent variable for the regression. The 

procedure of the third test is to combine two radial wave numbers and treat them as a pair and gives them 

new radial wave numbers. For example, the first pair would be the original radial wave number 0 and 1, 

combine them and give them a new radial wave number 1. Follow this manner, for the same test image of 

257 by 257, the new radial wave number used for regression would start from 1, 3, 5 and until 257, and 

the total number is 129. This new procedure guarantees that all the mean power spectral density values 

are included. In addition, for the mean power spectral density values associated with large wave number, 

the total number increases and this may make the plot of the regression points approaching to a linear 
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trend. Figure 6.3 shows the regression plots using this procedure for acquiring the global fractal 

dimension values. 

 

 

 

Figure 6.3 Regression Plots Using Alternative Sampling of Radial Wave Number (horizontal axis: log 

form of radial wave number; Vertical axis: log form of mean power spectral density) 

 

 

With this new procedure of sampling the radial wave number, the regression plots display similar 

trend with the results of the second attempt, even though the number of regression points decreased. This 

alternative way of sampling the independent variable, for higher radial wave number, does not decrease 

the values of the power spectral density. For the beginning of the regression, the quantities of the 

dependent variable slightly changed, but they are not affected much by this procedure. The equations and 

the R squared values are not reported for this third attempt. 

Based on the previous three tests, using various sampling strategies for the radial wave number, 

the Fourier transform approach generates different regression trends. The first test has the highest R 

square value, even though it is only 0.4. All of the tests fail at reporting a realistic global D value because 

of the nonlinear tendency of the regression. For the power spectral density value, it seems to contain 

redundant or noisy information as the radial wave number increases in the frequency domain. In other 

words, the higher radial wave number or frequencies consist of insignificant information for the original 

image. The first attempt tells us that the important information in the frequency domain is within the 
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radial wave number from beginning to roughly 5 after transforming into a log form. In this way, not all 

the frequencies have to be included in the regression analysis. In other words, only a subset of all the 

frequencies should be included in the regression analysis. Furthermore, the starting position is not a factor 

for the Fourier approach, for each attempt, the paired regression analyses display highly similar results in 

terms of the equations and the general trend. Therefore, the following analysis concentrates on the starting 

position located at the upper left of the digital image. 

In order to achieve the goal of having only the useful information of power spectral density, some 

of the large radial wave number need to be removed. Figure 6.4 and 6.5 displays the regression results 

using two sampling methods. Figure 6.4 uses the sampling method which starts from 1 until half number 

of the maximum radial coefficient. For this test image, the largest radial coefficient would be 362 and the 

maximum radial wave number used in the regression is 181. Figure 6.5 uses a different sampling method 

which starts from 1 until half number of the image size. For both of the cases, the step interval is 1 so this 

ensures that there are sufficient number of regression points even when the image size is small. It can be 

seen from the regression plots that the second sampling method results in a more linear trend than the first 

one. The first regression plot has an increasing tendency at the end for some of the large radial wave 

number. R square values are 0.9054 and 0.9106, respectively, and these values have been greatly 

improved from the previous regression results. The fractal dimension values are 2.6143 and 2.6012, 

respectively. These D values are slightly larger than the results of the same image using triangular prism 

method and differential box counting method which are 2.4976 and 2.4643.  
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Figure 6.4 Regression Plot Using Half Radial Wave Number of the Maximum Radial Coefficient 

(horizontal axis: log form of radial wave number; Vertical axis: log form of mean power spectral density) 

 

 

Figure 6.5 Regression Plot Using Half Radial Wave Number of Image Size (horizontal axis: log form of 

radial wave number; Vertical axis: log form of mean power spectral density) 

 

 

Based on the previous test, the half number of the image size should be the maximum radial wave 

number used in the regression analysis. For the sampling issues, there are still some variations can be 

added to the Fourier approach analysis. Another sampling method which is used by the triangular prism 

method is a series of geometric steps using power of 2. The advantage of this sampling method is that it 

can reduce the computation complexity since it only requires several regression points. Figure 6.6 shows 

the regression results of using this sampling method. The regression points space evenly and look similar 
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to the previous methods. The R square value is again increased from previously 0.91 to 0.97, which is an 

extremely high value for a regression. However, the slope becomes smaller and the corresponding D 

value is 2.6905. This D value, close to 2.7, seems not in the same complexity level with 2.5 which is an 

approximate number of the D values for the previous methods. Moreover, using geometric sampling 

method, the result D value is larger than using the consecutive sampling method (Figure 6.5). 

 

 

Figure 6.6 Regression Plot Using Geometric Steps (horizontal axis: log form of radial wave number; 

Vertical axis: log form of mean power spectral density) 

 

 

Our goal for the results of the Fourier spectral approach is to acquire a fractal dimension with a 

similar value to the triangular prism and differential box counting method, as well as the R square value 

should be high for the regression. For all of the previous tests, the first frequency, the power spectral 

density of the origin has not been employed in the fractal analysis. Based on the previous two attempts, 

using consecutive and geometric intervals, the following analysis includes the power spectral density 

associated with the first radial wave number. Since the radial wave number of the origin is 0, the sampling 

method is adjusted that the radial coefficient plus one is the corresponding independent variable value. 

Figure 6.7 and 6.8 are the results of the regression analysis using this strategy. The power spectral density 

associated with the first radial wave number is the largest that can be seen from the following figures. The 
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R square values are both larger than 0.9, and the slopes are both between -3 to -4. According to the new 

slopes, the D values are 2.4584 and 2.3595. Because of the incorporation of the first radial wave number, 

the slopes of the regression line clearly changed and both of the D values become lower than the previous 

results. Comparing with the result of the other two methods used in previous chapter, the D value of 

2.4584 is quite close, that all of these three methods generate approximately the same D values of 2.5 for 

the same test image. It is noticeable that, for the Fourier spectral approach, the surface complexity 

information contained in the first half radial wave number are all important for yielding accurate D value. 

 

 

Figure 6.7 Regression Plot Using Consecutive Steps Including Origin Radial Coefficient (horizontal axis: 

log form of radial wave number; Vertical axis: log form of mean power spectral density) 

 

Figure 6.8 Regression Plot Using Geometric Steps Including Origin Radial Coefficient (horizontal axis: 

log form of radial wave number; Vertical axis: log form of mean power spectral density) 
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Throughout all the previous testing and comparison of the Fourier spectral approach based on 

various sampling methods and maximum radial wave number, the strategy utilized for generating the 

regression plot shown in Figure 6.7 is more preferable to all the other sampling method and will be 

employed for the following global and local fractal analysis. To further analyze the effectiveness of the 

Fourier spectral approach for the entire image, a test is carried out using four subsets (Figure 6.9). Each of 

the subset is extracted from the original aerial photography and the image size is 257 by 257. Four 

different land covers: water, forest, parking lot and residential areas are selected for this analysis. These 

four land covers exhibit different surface complexity and the goal is to verify whether the global fractal 

dimension values resulted from the Fourier spectral approach is comparable to the triangular prism 

method and the differential box counting method. 

 

 

Figure 6.9 Fractal Methods Comparison between All Methods 
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All the fractal methods are used for computing fractal dimension values for the four subsets. For 

the Fourier method, both of the two sampling methods: the arithmetic and geometric step sampling 

methods are included in the analysis. The resultant global D values of each land cover for each method 

are listed in Table 6.1. Among the methods, the triangular prism and differential box counting method 

generate similar results, which is consistent with the results from chapter five. It is difficult to recognize 

the level of the surface complexity based on the visual of the four images. Figure 6.9 (a) exhibits the 

lowest fractal dimension values for the methods of triangular prism and differential box counting. The 

Max difference version of the triangular prism method yields the smallest D value for the water body 

surface. The forest area somehow has slightly larger D values than the water area. The most complex land 

surfaces are parking lot and residential areas, that both of the triangular prism and differential box 

counting methods have the largest D values than the water and the forest areas. Parking lot and residential 

areas have the similar D values, which is as expected that the both of the two land surfaces exhibit regular 

landscape of objects with relatively high complexity. 

As for the Fourier spectral method, the result is quite different from the one acquired in last 

analysis. In last analysis, the resultant D value of the Fourier spectral method using the arithmetic 

sampling method is considered to be as the same as to both the Triangular and box counting methods. 

However, when it comes to this new set of four images, the results of the Fourier method of Figure 6.1 (a) 

is much larger than the rest methods using both of the arithmetic and geometric sampling methods. It is 

interesting that Figure 6.1 (a) exhibits very similar image complexity to Figure 5.14 but the results of 

using Fourier arithmetic step are almost 2.67 compared to 2.46, respectively. For the other three images, 

the results of using arithmetic sampling method seems comparable to the other two methods. The 

geometric sampling method produces a similar trend of four D values that the water and parking area 

show the same surface complexity. 
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Table 6.1 Global Fractal Dimension of All Methods 

 Water Forest Parking Residential 

Fourier 

Arithmetic Step 

2.6699 2.5240 2.6433 2.5075 

Fourier 

Geometric Step  

2.6002 2.4659 2.6069 2.5637 

Triangular 2.4786 2.5413 2.6830 2.6301 

Max Triangular 2.3530 2.4988 2.5413 2.5293 

Mean Triangular 2.5586 2.5969 2.6556 2.6039 

Eight Triangular 2.5167 2.5842 2.6534 2.5962 

DBC 2.4334 2.5023 2.5935 2.5860 

 

Overall, both of the arithmetic and geometric sampling methods of the Fourier spectral approach 

can yield fractal dimension values, which are comparable to the previous two methods. The images, with 

the similar surface complexity, that the Fourier spectral method yields different D values, may result from 

the distribution of the DN values of the images, or because there does have difference in surface 

complexity and the D values reflect it. Next, the local fractal dimension values are computed based on 

both arithmetic and geometric sampling methods. Because the local analysis always involve the spatial 

information and the position and recall that, the Fourier spectral method employs two different origins for 

computing the global D values. Thus, the next analysis utilizes both of the two origins as well as the two 

sampling methods to report the results of the local fractal dimension of the Fourier spectral method. 

6.3 Geographically Weighted Fractal Analysis of the Fourier Spectral Approach 

The general way of incorporating the spatial weights for the Fourier spectral approach is based on the 

position of each radial wave number. Because each radial wave number is associated with a complex 
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coefficient, we treat the position of each radial wave number as the position of each observation. The 

spatial weights are multiplied to the square of the magnitude of the complex coefficients. Then the 

procedure is the same as computing the global fractal dimension. Figure 6.10 presents the results of using 

the arithmetic sampling method for the origins starting at the upper left corner. It is still the same 257 by 

257 image used for Triangular prism and differential box counting method for the geographically 

weighted fractal analysis in Chapter 5. This analysis uses bandwidths of 30 and 70 feet with the Gaussian 

kernel. Recall that the average D value for this particular sampling method is 2.4584. The range of the 

fractal dimension values for bandwidths 30 and 70 feet are 2.3425 - 2.5694 and 2.3906 - 2.5124, 

respectively. It is noted that the average value of 2.4584 is within the range for both of the bandwidths. 

Furthermore, as the bandwidth becomes larger from 30 to 70, the range becomes narrower, which starts 

converging to 2.4584. The change of the bandwidth does not seem to dramatically affect the range of the 

results, which is unlike to the results of the previous methods, for example, the triangular prism method. It 

is as expected that using this particular method of the Fourier spectral approach, the geographically 

weighted scheme can be added to the Fourier method. The use of the radial wave number as the 

observation position seems promising for further exploration between the GW scheme and the Fourier 

approach. One issue raised here is that the starting position of the Fourier transform seems to be an 

influencing factor especially for the local analysis.  
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Figure 6.10 Geographically Weighted Fractal Dimension Values for Arithmetic Sampling Method 

Starting At Upper Left Corner 

 

Figure 6.11 shows the local fractal distribution of the Fourier spectral method using the arithmetic 

sampling method with the origin starting from the lower left corner. The global D value of using this 

strategy is 2.4882, which can be treated as the same as the value of 2.4584 result from Figure 6.10. This is 

consistent with the global analysis of the Fourier spectral method that the position of the origin does not 

affect the average D value. However, it can be seen from Figure 6.11, that the radial wave number starts 

from the lower left corner, the distribution of the fractal dimension values flips over to the lower left 

origin correspondingly. Similar to Figure 6.10, for bandwidth of 30 feet, it clearly shows that the low D 

values are centered in the diagonal direction. For geographical weighting scheme of bandwidth 30 and 70 

feet, the range of the local D values becomes narrower. Both of the ranges enclose the average D value of 

2.4882. Compare with the last analysis, for bandwidth 30 feet, the smallest D values are 2.3416 and 

2.3425, respectively, the largest D values are 2.5944 and 2.5694. For bandwidth of 70 feet, the smallest D 

values are 2.4104 and 2.3906; the largest D values are 2.5366 and 2.5124, respectively. The change of the 
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positions of the radial wave number switches the diagonal direction of the distribution of the D values but 

the pattern stays the same. 

 

Figure 6.11 Geographically Weighted Fractal Dimension Values for Arithmetic Sampling Method 

Starting At Lower Left Corner 

 

Figure 6.12 displays the results of the distribution of the local D values of the Fourier spectral 

method using the geometric sampling based on the lower left corner. The corresponding average D value 

using the geometric sampling method is 2.6155, which is greater than using the arithmetic sampling 

method. Similar to the previous local fractal analysis, using the geometric sampling method also obeys 

the rule of the geographically weighted scheme. However, the resultant D values of using the geometric 

sampling method may not be as good as using the arithmetic strategy since the computed values are much 

greater than the D values computed from triangular prism and differential box counting. The pattern of 

Figure 6.12 is similar to the results that starting from the upper left corner. Regardless to the bandwidth 

effect, the pattern of using the geometric sampling method does not reflect the surface complexity of the 

sample image. 
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Figure 6.12 Geometrically Weighted Fractal Dimension Values for Geometric Sampling Method Starting 

At Lower Left Corner 

 

 

6.4 Summary 

Chapter 6 mainly presents the analysis of the Fourier spectral method for computing fractal dimension 

values. The Fourier spectral method has not drawn much attention to the researchers regarding to the 

fractal analysis since it is complex in computation. In addition, there are already many other fractal 

approaches which are easy to implement and can be utilized to analyze the images for characterizing and 

quantifying the surface complexity. This chapter attempts to compute several fractal dimension values 

based on the discrete Fourier transform (DFT). The geographically weighted scheme has been 

incorporated into the Fourier spectral approach for an exploration of the local fractal dimension analysis. 

The Fourier spectral approach is first used to analyze the global fractal dimension values. We 

carried out some initial attempts using various combination of parameters and try to yield the best fit of 

the Fourier method. The origin of the transformation does not affect the results much. Several regression 

plots reveal that the R square and the regression equation are very similar for both of the upper and lower 

starting points. The number of the regression points are another considered parameter. The regression plot 
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show that there are many redundant information if using full number of the radial wave number. These 

unnecessary information appears with the complex coefficients associated with the large radial wave 

number which causing a nonlinear distribution of the regression points. All these mean power spectral 

density values associated with the large radial wave number gradually become large values approaching 

to the small radial wave number, which makes the regression plots going up and down. At last, the radial 

wave number decrease to the half number of the image size starting from radial wave number of zero. The 

global fractal dimension value comes close to the values acquired from the triangular prism and 

differential box counting method. 

Then we carried out a local fractal analysis based on the global result of the Fourier spectral 

method. The logic of constructing a geographically weighted fractal dimension is similar to the manner 

used for the previous two methods. Different from the other two methods, which treats the center of each 

grid window as the observation position, the Fourier spectral method utilizes the existing positions of the 

radial wave number as the observations. Similarly, for each observation or radial wave number, there are 

many locations distributed across the image and all of these same values need to be added. The 

distribution of the geographically weighted fractal dimension values somehow reflects the origin of the 

Fourier transform. It is encouraging that the scope of the local fractal dimension values become smaller as 

the bandwidth changes from 30 to 70 feet. However, even though the behavior of the Gaussian kernel 

function seems to work for the Fourier spectral method, the distribution of the local D values demonstrate 

a clear pattern, which is consistent with the Fourier transform of the frequency domain instead of the 

actual surface complexity of the test image. 

Chapter 7 continues with the fractal analysis for real remotely sensed images. It utilizes the fractal 

approaches employed in this dissertation research to carry out an empirical analysis of the fractal 

characteristics of New York City and Houston. Instead of the analysis of method exploration, Chapter 7 

emphasize on the fractal applications for urban areas to reveal the landscape similarity and differences 

between these two cities. 
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Chapter Seven 

Analysis of Fractal Approaches on Remotely Sensed Images 

7.1 Introduction 

The previous two chapters mainly focused on exploring the fractal methods approaches for characterizing 

the geometric complexity of the surfaces using the indicator of fractal dimension, which is considered to 

be an average value for summarizing the whole study area. Then the focus is to develop local fractal 

dimension values using the geographically weighted scheme. The geographically weighted fractal 

dimension is acquired using several test images for various bandwidths. Also, the previous chapters 

compare three fractal methods based on the resultant D values. Chapter 7 continues with the fractal 

methods and switch from the method exploration to empirical analysis of fractal methods based on 

remotely sensed images of urban area. 

Aerial photograph presents to us a fine spatial resolution that the earth surface can be visualized 

clearly for various land covers. However, one aspect about aerial photograph is that it can only cover 

limited earth surface within one photograph and this may restrict the large area analysis of land use and 
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land covers. On the other hand, the aerial photography is suited for fractal method exploration, especially 

for the local fractal analysis because it has 1 foot spatial resolution and this simplifies the distance 

calculation for the geographically weighted scheme. However, when it comes to the empirical analysis of 

the urban area, the remotely sensed images are preferred because with the same size to the aerial 

photography, the remotely sensed images can cover more grounds than the photography, and the global D 

value could be a meaningful metric for describing the surface complexity. Therefore, this chapter is 

designed for using an alternative dataset, the remotely sensed images, to further examine the fractal 

approaches based on a study area of city settings. 

In order to examine whether the fractal methods can effectively describe the geometric 

complexity of the real earth surface, this chapter uses two urban areas for a comparison purpose to 

implement this goal. It is not important to examine several single fractal dimension values in a stationary 

manner, but to compare all these D values of the studied urban area in a dynamic way. This is more 

meaningful to provide us the intrinsic characteristics of the studied urban surfaces. In this chapter, the 

surface complexity is mainly studied in a 2D manner and this is the metric for revealing the information 

whether a city is undergoing a dramatic landscape change. 

The morphology of the urban area has been studied using the fractal geometry concept and the 

quantity of the fractal dimension (Frankhauser 1998). For example, urban sprawling is one of the 

phenomena, which usually results in an irregular form of urban development. Relate to the focus of this 

chapter, instead of studying the boundary line of a city, it is desired to examine the surface feature of the 

various urban areas. Even though studying the surface feature may not describe the horizontal change, it 

can characterize the vertical change of the studied surface, which is another important fractal information 

that can be combined with the morphology results for a better understanding of the urban development. 

As stated earlier, using fractal tools to examine the texture characteristics of remote sensing 

images is necessary. For the urban area limited to cities, the remote sensing study becomes to local scale 

(Liang et al. 2013). The major issue of the urban area is the heterogeneity of the land covers, which 

challenges the researchers to use the fractal analysis to interpret the structural characteristics of the urban 
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features. Therefore, it is recommended to focus on the overall surface complexity across the spatial 

domain for urban study. Fractal geometry is a powerful indicator that it can capture the entire variation of 

the surface complexity as a whole, the summary value examined in the previous chapters, which is 

appropriate for urban land use measurement. Many urban areas have been studied using wide range of the 

fractal methods to understand the fractal characteristics based on different perspectives (Table 7.1). In the 

table, for the method column, some of the studies use the common software package, which is mentioned 

previously known as ICAMS for computing the fractal dimension values. This software provides the 

ability to compute the texture features of the surface using the three commonly used fractal algorithms: 

Triangular prism, isarithm and variogram methods. These three methods are replaced by ICAMS in the 

table. 

Table 7.1 Image Complexity of Various Urban Areas 

Indianapolis, IN Liang et al. 2013 ICAMS software 

Fuzhou, China Luan et al. 2012 Triangular prism 

Fractal Brownian Motion 

Differential Box Counting 

Multi-fractal 

Baton Rouge, LA Myint 2003 ICAMS software 

Los Angeles, CA Qiu et al. 1999 Isarithm  

Triangular prism 

Huntsville, AL Emerson et al. 1999 Isarithm 

Lake Charles, LA Lam 1990 Isarithm 

Variogram 

Atlanta, GA Lam 2004 

Emerson et al. 2007 

Triangular prism 

Triangular prism 
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 Most of these studied urban areas are U.S. cities. Among them, Atlanta, GA has been studied 

twice by different scholars and both of them used the triangular prism method. Almost every study 

utilized the ICAMS software package for computing the fractal dimension values. These studies used 

either the three methods programmed into the software or only one or two methods. Besides the fractal 

methods, these studies also employed several other spatial statistical metrics such as Moran’s I, to 

compare with the resultant surface D values. It can be seen from the table that the triangular prism method 

is the most popular one used for computing D values for the urban area. The following analysis examines 

the New York City and Houston, which have not been studied before in the domain of fractal analysis. 

Furthermore, the selected methods also examine the scale and the temporal aspects of the fractal property. 

7.2 Landscapes of New York City and Houston 

New York City is located in the northeastern region of the United States and it is the most popular city in 

the country. It is considered as the most famous world’s city with many leading fields. Among all these 

outstanding categories, New York City is best known for its central place of the world’s finance and 

politics with the Wall Street and the United Nation. New York City has an estimated population of 

8,537,000 in 2016 and it is ranked number 1 in United States. The population spreads out in a land area of 

roughly 784 km2. New York City is settled in 1624 and consolidated in 1898 with a development of 

approximately 400 years. 

Houston is the most popular city in the state of Texas and a major city in the United States. It has 

a population of 2,303 million in 2016 and it is the fourth largest city in the nation. Houston is situated in 

southern United States and it is the largest city in this region. It has a total area of 1,730 km2 ,which is 

larger than New York City, which has a total area of 1,213 km2. Houston has massive land area with less 

population than New York City, which make Houston not a dense city. Houston is incorporated in 1837 

with development of approximately 180 years. Houston has a broad economy industry and it is famous 

for its NASA’s Johnson Space Center. Houston is the center of the Texas Medical center, which is the 
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world’s largest institute for health and research. As an important city in southern U.S., Houston has the 

number of the Fortune 500 headquarters more than any other U.S. cities except New York City. 

New York City has many different landscape features made by nature and human beings. People 

recognizes New York City as a coastal city because it is located in the mouth of the Hudson River, which 

naturally extends to the Atlantic Ocean. This natural location provides New York City great opportunities 

for trading business and it has grown as a trading city since then. The city consists of three islands: Long 

Island, Manhattan and Staten Island. Because of its densely populated characterization, New York City is 

undergoing scare land use situations. Among the total area of 1,213 km2, 429.53 km2 is water area, which 

is one third of the total area. The most famous green area in the city is the central park in Manhattan 

borough. New York City has been substantially intervened by human being for urban development. The 

Manhattan area is the main place, which was altered significantly for several decades. The land 

reclamation primarily happened along the shore and waterfront and an example is the Battery Park City 

during 1980s. The financial district Manhattan has become the city symbol attracting visitors. Many high-

rise buildings such as Empire State Building, MetLife tower are concentrated in Manhattan. Some of the 

skyscrapers are recognized as the tallest buildings in the world. 

Houston has a total area of 1,700 km2 where only 58 km2 area are covered by water. Compared to 

New York City, which has a total area 430 km2 of water, Houston is mainly covered by massive land 

area. Most of Houston city is located in the gulf coastal plain. Because of its southern location, Houston is 

filled with various forest and grassland. The highest point of Houston is roughly 38 m in elevation. There 

are four major bayous in the city, which are Buffalo Bayou, Houston Ship Channel, White Oak Bayou 

and Brays Bayou. The topography of Houston city is flat, which makes the city tend to draw flood easily. 

Houston has developed five business districts throughout the city and this makes Houston the third largest 

skyline in the United States after New York and Chicago. 
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7.3 Fractal Analysis of Scale Effect 

As mentioned earlier, scale effect is an important aspect of the fractal analysis. As for the remote sensing 

images, the surface complexity is different from the real fractals, which means the fractal results of using 

the regular remote sensing images may not reflect the property of the scale independence of the fractals. 

In fact, when the scale changes, the purpose of using fractal method is to compute several fractal 

dimension to observe the trend of the D values. For remotely sensed images, within the range of the 

selected spatial resolutions, it is desired to observe some of the D values forming a curvy trend instead of 

some equal values. For different bands of the remote sensed images, it may have contrasting behavior of 

the D values, which may reveal some information for band selection when dealing with specific land 

cover types. This section intends to examine the scale effect using the test images (Figure 7.1). The test 

images use the New York City as an example for scale exploration. 

 

 

Figure 7.1 Green Band of Coastal Area of Landsat Image 
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Figure 7.1 displays a test image subset from New York City image acquired by Landsat at 2010. 

It shows the single green band with an image size of 2049 by 2049. The majority of the image is water 

body. The overall surface complexity should be low. To simulate the scale effect on fractal dimension 

values, the spatial resolution needs to be changed for computing a series of fractal dimension values. The 

original spatial resolution is 30m. Because of the computing complexity of the Fourier transform method, 

it is not considered for this analysis. Instead, the triangular prism, Max-difference and the differential box 

counting methods are employed for this analysis. To be consistent with the method, the used spatial 

resolutions are 30m, 60m, 120m and 240m. Figure 7.2 presents the results of the change of the fractal 

dimension values using these three methods. Three methods demonstrate different behaviors of the fractal 

dimension values against spatial resolution. Triangular prism and its Max-difference version has the 

similar trend of D values according to the change of the spatial resolution. The triangular prism method 

has the lowest D values for all the four spatial resolutions. Among them, the lowest D value is 2.0667 

with a spatial resolution of 30m. The Max-difference method shows slightly larger D values than its 

original method across the four scales. From scale of 30m to 240m, both of the methods yield constantly 

increasing D values. For resolution of 240m, they have very similar D values of 2.1872 and 2.2077. 

On the other hand, the differential box counting method presents a different trend compared to the 

other two methods. For scale of 30m, the DBC method has a D value of 2.3872 which is much larger than 

the result of triangular prism method. The differential box counting method seems a scale-independent 

method that it yields four fractal dimension values which are 2.3872, 2.3771, 2.3722 and 2.3314. These 

four values are quite the same in fractal perspective. Instead of increasing its D values, the DBC produces 

a steady trend against the spatial resolution change. For the resolution of 240m, the D values of the three 

methods tend to converge to the same value. For test image similar to Figure7.1, the scale effect may not 

obvious because the majority of the image has the similar low DN values. With a low surface complexity 

contrast, the resampling technique may not significantly change the DN number and also the its 

distribution.  
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Figure 7.2 Fractal Dimension Values of Scale Effect of Coastal Area of Green Band (horizontal axis: 

spatial resolution of remote sensing image; Vertical axis: D value) 

 

 

Figure 7.3 displays the same test image using the red band, its pixel DN values ranging from 13 

to 228. Compare to the same area of the green band (Figure 7.1), it has the similar digital number 

distribution, that the green band has a pixel DN values ranging from 18 to 171. Follow the same manner, 

the same three methods are used for the scale analysis based on the red band. Figure 7.4 presents the 

results of the fractal dimension values change against the spatial resolution for 30m, 60m, 120m and 

240m. The trend of all the three methods is similar compared to the results of using green band. 

Triangular prism method has a lowest value of 2.0925 at spatial resolution of 30m, compared to 2.0667 of 

the green band. The other three values of triangular prism method also has the similar D values to the 

green band for each of the spatial resolutions. The resultant D values of 60m resolution are 2.1334 and 

2.0985, 120m of 2.1814 and 2.1369, 240m of 2.2412 and 2.1872, for red and green band. The general D 

value of using the triangular prism method of both two images is 2.20, which should be a correct value 

characterizing a coastal area with a large area of consistent water body. For both of Max-difference and 

differential box counting methods, they also yield comparable D values between each spatial resolution 

for green and red bands. 
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Figure 7.3 Red Band of Coastal Area of Landsat Image 

 

Figure 7.4 Fractal Dimension Values of Scale Effect of Coastal Area of Red Band (horizontal axis: 

spatial resolution of remote sensing image; Vertical axis: D value) 

 

 

The coastal area has a low D value in general, for both of red and green bands, and the change of 

spatial resolution does not produce significant variation for any of the three methods. It is necessary to 

test a completely different land cover based on the same manner. The goal is to examine whether the 
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change of spatial resolution can significantly affect the trend of the D values, if possible, for any of the 

methods. Figure 7.5 shows a test image covered not only water, but with many other land covers. Because 

of the resolution, it is hard to distinguish the land cover of majority. However, the selection criteria is to 

choose combination of bright and dark surfaces appearing intermitted. The image is again in green band 

with a size of 2049 by 2049. This image displays a much smaller body of water compared with the 

previous image. Figure 7.6 is the corresponding result of using this test image. The general trend of each 

of the three methods keeps constant that the fractal dimension values of triangular prism and max-

difference methods are gradually increasing, and the differential box counting method yields steady D 

values. Each method has larger D values than its coastal test image for each corresponding spatial 

resolution. However, the results of the non-water area are not too large indicating the surface complexity 

of the non-water area is not high. The trends of Max-difference method and differential box counting 

method intersect at the large spatial resolution and Max-difference method produces the largest D value at 

spatial resolution of 240m. 

 

 

Figure 7.5 Green Band of Non-water Area of Landsat Image 
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Figure 7.6 Fractal Dimension Values of Scale Effect of Non-water Area of Green Band (horizontal axis: 

spatial resolution of remote sensing image; Vertical axis: D value) 

 

 

Figure 7.7 is the non-water area of red band corresponding to Figure 7.5. The range of the DN 

value is 13 to 255 compared to 20 to 211 of the green band. Figure 7.8 is the trend of the D values of 

using the red band. Different from green band, the results of the max-difference method intersects with 

the differential box counting method at 120m spatial resolution. Max-difference method seems increase 

its fractal dimension values quite fast according to scale change. Surprisingly, for spatial resolution of 

240m, the differential box counting method yields the smallest D values and the max-difference method 

has the largest D value. Again, the triangular prism method constantly yields the smallest D values for 

small spatial resolutions. For resolution of 30m, all of the three methods compute larger D values than the 

green band image. Similar to the coastal test image, the results between green and red are not different for 

this more complex surface landscape area. 
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Figure 7.7 Red Band of Non-water Area of Landsat Image 

 

Figure 7.8 Fractal Dimension Values of Scale Effect of Non-water Area of Red Band (horizontal axis: 

spatial resolution of remote sensing image; Vertical axis: D value) 
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7.4 Time Series Analysis of New York and Houston 

Besides scale analysis, another important analysis of fractal geometry for surface features is to compare 

landscape characterization between two cities located in different regions, as well as the surface landscape 

change between different periods. As mentioned earlier, New York City and Houston, two cities located 

in different regions in U.S., are considered for a time series analysis. For choosing the image representing 

the city area, the core location of the city is used for the basis, and then urban area is decided using the 

core location as a center and spread out to a certain image size. For a better distinction within cities for 

the surface characterization, a 16-year period is considered, that is year of 2000 and 2016. The years in 

between are not considered since short time periods may not affect the land cover change, and not change 

the fractal dimension values too much. 

Figure 7.9 shows a study area from New York City, New York in two images of year 2000 and 

2016 using their DN values in red band. The study area is defined by 513 by 513 pixels with a pixel size 

of 30m. The study area mainly covers the Manhattan Island at its center for the New York City 

metropolitan area. In general, a 16-year period may not have much significant urban development. Based 

on the visual comparison, some development occurred at the upper left region of the image. 

Again, the same methods used in scale analysis are employed for the time series analysis. Each of 

the methods compute the two entire images for two global D values. The results of the D values for each 

method are shown in Table 7.2. From the table, we can see that the entire fractal dimension values are 

very similar. Specifically, for year 2000, the triangular prism method yields a D value of 2.4487. The 

other two methods also yield similar D values, which are 2.4545 and 2.4820. All these three values are 

under 2.5, which may indicate a medium surface complexity for year 2000. For year of 2016, triangular 

prism method again computes the smallest D value of 2.4101. Differential box counting method always 

have the largest D values among the three methods for both two periods. 

For these two dates, the D values do not increase much, which means that the Manhattan area 

does not undergo much land cover changes. This corresponds to the visual examination of these two 
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images. Furthermore, even though the DN values change across the study area, the fractal method is a 

useful tool to characterize the general surface complexity with some stable quantitative results.  

 

 

Figure 7.9 Images of New York City for Year 2000 and 2016 

 

Table 7.2 Fractal Dimension Values of New York City for Year 2000 and 2016 

 2000 2016 

Triangular prism 2.4487 2.4101 

Max-difference 2.4545 2.4418 

Differential box counting 2.4820 2.4553 

 

Figure 7.10 shows the study area from Houston, Texas in two dates of year of 2000 and 2016. 

The properties of the images of Houston are consistent with New York. This study area of the Houston 

metropolitan area is different from the New York City area. Figure 7.10 shows many roads systems and 

their branches, which appears more fractal than New York City. The fractal dimension values of Houston 
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is shown in Table 7.3. For year of 2000, all of the three methods yield very similar fractal dimension 

values, which is around 2.60. Similarly, for year of 2016, the three methods have approximately a general 

D value of 2.50. Compare between the methods between the two dates, there is no extreme D values 

among the methods, which suggest that the selection methods are comparable, especially between 

triangular prism method and differential box counting method. 

For the two dates of the study area of Houston, the average D values are 2.60 and 2.50 for year 

2000 and 2016, respectively. Based on the D values, this is not a dramatic change for a 16-year period. 

Examine these two images visually, there is a clear land cover change at the lower right region. Some 

roads can be seen at the lower right part of year of 2016, which is not appeared in the image of year 2000. 

For the study areas of New York City and Houston, the fractal dimension values are similar for 

these two entire regions. For year of 2000, the average D value is between 2.45 to 2.48 for New York 

City, and between 2.57 to 2.59 for Houston. Based on the D values, the surface complexity of Houston is 

more irregular than New York City. It corresponds to the visual inspection of the images of year 2000 for 

both study areas that Houston seems more fractal and irregular with intersected road systems and land 

patches than New York City, which is dominated by some water and islands with less color contrast of 

the land cover. For year 2016, the average D value of the three methods of New York City is 2.43 

compared to a summary D value of 2.50 of Houston. These two values are closely similar that indicates 

the same surface complexity of these two cities for year 2016. 
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Figure 7.10 Images of Houston for Year 2000 and 2016 

 

Table 7.3 Fractal Dimension Values of Houston for Year 2000 and 2016 

 2000 2016 

Triangular prism 2.5735 2.4852 

Max-difference 2.5711 2.5021 

Differential box counting 2.5894 2.5107 

 

7.5 Summary 

This chapter focuses on providing an empirical analysis using fractal methods. The analysis mainly 

consists of two parts: scale effect of remote sensing images and time series of city area. The fractal 

methods comparison is another main topic for the empirical analysis. To examine the scale effect, the 

original test image is 2049 by 2049 size in order to have enough regression points for coarser spatial 

resolution. Two various land cover types: coastal and noncoastal are used for a better distinction of the 

surface complexity. All of the three methods yield larger D values of noncoastal area than the coastal 
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area. It is consistent with the surface complexity of the land cover itself. Moreover, each of the land cover 

has two images with two bands: red and green for a band comparison using the fractal methods. The 

results show that the band does not affect D values much for each land cover types. Among the methods, 

the differential box counting method has the largest D values and the triangular prism method has the 

lowest D values. For scale effect, changing from 30m to 240m, the D values stay stable for each of the 

methods. 

For time series analysis, New York City and Houston located in different regions in the country. 

Year of 2000 and 2016 are used for time series analysis. The results show that the study area of Houston 

has a more irregular landscape than the study area of New York City. This corresponds to the visual 

inspection of the two images of the study areas that the image of Houston displays more land patches and 

color contrast. Between two dates, for both of the cities, the D values slightly changes, which indicates 

that both of the cities have not developed much in the study area during 2000 and 2016. 
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CHAPTER EIGHT 

Summary and Conclusions 

8.1 Summary 

This research dissertation is a method exploration research focusing on fractals. There are various fractal 

techniques, which have been developed for measuring natural phenomena with different shapes and 

properties. The geographic phenomena are appropriate earth objects for studying the fractal 

characterizations. The surface feature is an important category for measuring its complexity, which also 

relates to land cover and land use study. Besides the global fractal dimension values, there is a lack of 

algorithms for computing local fractal dimension values for small study neighborhoods. 

The main goal of this dissertation research is to develop several algorithms for computing local 

fractal dimension values. The more common way of computing the local D values are using moving 

window based on the original fractal techniques. In this manner, the single D value is separated into 

several D values for small regions, which is defined by the size of the moving window. Moving window 

has the advantage of easily adjusting the size of the study area. It can also be easily applied to any fractal 
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methods with little modifications. Another local form of computing D values is to compute four quadrants 

of an entire image. This way computes four local D values in four directions and can be compared with 

the global value. The computation complexity of this method is relatively low because only a few regions 

need to be computed. It is similar to moving window that it only uses four moving window to cover the 

entire image. Even though it is local D values, it still covers a large area and variations of surface 

complexity may still exist. This research dissertation employed the geographically weighted scheme to 

develop methods for computing GW fractal dimensions. By using GW scheme, it localize the global D 

value into each single pixel. In other words, each pixel of the entire image can have its corresponding D 

value. This could be the smallest neighborhood for having a D value. Using GW scheme, each place of 

the image can result in a fractal dimension value, but the computation complexity would be high if a large 

image is used. 

First, the GW scheme is tested with two widely used fractal methods: the triangular prism and 

differential box counting method. The triangular prism methods and its three versions: Max-difference, 

Mean-difference and Eight-pixel are also included in the analysis. The differential box counting method 

used is the improved version of the original one. There are two basic rules for GW scheme to follow for 

any GW quantities. One is that the global value should be within the full range of the local values; the 

second is that the range of the results should change the opposite direction against the bandwidth. The 

results of GW fractal dimension values using triangular prism and differential box counting methods are 

promising in general. However, there is an issue with the small bandwidth for fractal methods. For the test 

image of size 257 by 257, a bandwidth below 50 could cause the fractal dimension values significantly 

out of the theoretical range of surface feature. For method comparison, the fractal distributions are similar 

and the local D values can somehow reflect the surface complexity of the test image. 

Second, the Fourier technique applies to the same test image for computing global and local 

fractal dimension values. The Fourier technique belongs to a different category of the fractal methods 

compared to the previous two methods. The Fourier technique method require much more computation 

time for a global value than the previous used method. The global fractal dimension values of Fourier 
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method are different from the other two methods. This could caused by the algorithm of the Fourier 

spectral method itself. For local fractal analysis, the numerical values seems follow the rules of the 

geographical weighting scheme while the distribution is not similar to the other methods. The local 

distribution of the Fourier technique seems correspond to the frequency domain image of the Fourier 

transform. Lastly, three methods are selected for an empirical analysis. As shown in chapter 7, each of the 

three methods yields stable D values for various land cover types in different spectral bands. This result 

may suggest that the image surface is self-similar within the selected spatial resolutions. For the selected 

study areas of New York and Houston, Houston has a larger D values than New York. This could 

possibly indicate the complexity difference for the chosen study area. A 16-year period analysis suggests 

that there are slight changes for both cities. 

8.2 Future research 

Future research should continue with the development of the methods for computing the local fractal 

dimension values. Especially for the GW scheme, the issue of small bandwidth needs to be resolved. For 

Fourier spectral method, the distribution of the GW fractal dimension values needs to be investigated 

deeper in order to be consistent with the surface complexity of various land covers. Some other kernel 

functions could be considered to compare with the Gaussian kernel. Furthermore, the pixel-based fractal 

dimension values could be compared with moving window technique. 

The GW based local fractal dimension should be considered with other quantity values for some 

other applications. It can be incorporated into some regression models for better land cover classification. 

Only use fractal dimension value is not sufficient, several social information such as population size, 

geometric property of land cover, economic factors et al can be related to fractal dimension values for 

better characterizing the urban landscape and urban development. 
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