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ABSTRACT 

In the discontinuous permafrost zone of northwestern Canada, snow covers the ground surface 

for over half the year, thus snowmelt constitutes a primary source of ecosystem moisture supply 

and strongly influences stream hydrographs. The peat landscapes along the southern limit of 

discontinuous permafrost are dominated by forested permafrost plateaus (“forest”), and treeless, 

permafrost-free wetlands (“wetland”). Permafrost-thaw induced transformation of this landscape 

has changed water flow and storage processes and therefore introduced new uncertainties on the 

region’s water futures. Here, I a) characterize forest and wetland water storage and flow from 

snowmelt, and b) evaluate how permafrost thaw-induced wetland expansion at the expense of 

forest might affect the proportion of snowmelt that can contribute to basin runoff during the 

spring freshet of a 152-km2 watershed in the southern Northwest Territories. Analysis of 

historical imagery suggests that wetland coverage within a 0.14-km2 area-of-interest increased by 

approximately 7 % between 1977 and 2010. Over the 34-year period, total areal SWE decreased 

by 1.5 %, but the amount of SWE made available as runoff increased by 25%. The increased 

proportion of the snow cover that contributes melt water to streams may be a factor contributing 

to the rising steam flows observed across the study region in the mid-1990s and early 2000s, 

given that there has been no concomitant increase in winter-time precipitation. 
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Chapter 1:  

General Introduction 
 

1.1 Introduction and background  

The southern Northwest Territories (NWT), Canada, is one of the most rapidly warming 

regions on Earth (Jorgenson et al., 2010; Vincent et al., 2015), and there is mounting evidence 

that this warming has affected water resources in this subarctic region. For example, the 

frequency of mid-winter melt events has increased (Putkonen et al., 2009), end-of winter melt 

occurs earlier (Pachauri and Reisinger, 2007), and key hydrological and climatic variables such 

as snowpack depth (Hinzman et al., 2005), river discharge (St. Jacques and Sauchyn, 2009), and 

seasonal precipitation patterns (Putkonen et al., 2009) have deviated from long-term means. 

Such changes also have the potential to bring about dramatic changes to subarctic ecosystems 

with potentially important but poorly characterised feedbacks to hydrological processes. Recent 

work in the wetland-dominated, southern fringe of discontinuous permafrost or “fringe zone” 

(Kwong and Gan.,1994), has demonstrated that: 1) the major land cover types have contrasting 

hydrological functions (Quinton et al., 2003); 2) the relative proportions and spatial arrangement 

of these cover types is changing due to climate warming (Quinton et al., 2009); and 3) this 

warming-induced land-cover change is affecting the water balance at basin and regional scales 

(Trochim, 2010).  

In the wetland-dominated areas of the fringe zone, permafrost thaw has led to the loss of 

forest cover and concomitant expansion of treeless wetland terrain (Chasmer et al., 2011; Baltzer 

et al., 2014). In these areas, land cover types can be divided into two classes: 1) permafrost-free 

wetlands; and 2) forested, permafrost cored peat plateaus. Each of these land cover types exhibits 

contrasting snow accumulation, snowmelt, and runoff regimes (Wright et al., 2009). Since the 
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end-of winter snowmelt event produces the dominant feature of stream hydrographs in subarctic 

regions, changes to basin snow covers resulting from permafrost thaw-induced land cover 

change have the potential to disrupt the hydrological cycle of drainage basins occupying this 

fringe zone. A logical first step toward understanding the long-term implications of land-cover 

changes occurring throughout this region on late-winter snow distribution, melt and runoff, is to 

understand how these land cover types differ with respect to their snow covers and their rates and 

patterns of snowmelt. 

1.2 Land cover types 

Ice-rich permafrost in the form of tree-covered peat plateaus are common in the peatlands 

that cover much of the fringe zone. Here, plateaus occur as forested permafrost islands within a 

wetland complex of flat bogs and channel fens. The contrasting biophysical properties of these 

three peatland types gives each a specific role in the water balance of drainage basins. The 

combination of a relatively large snowmelt water supply and a limited capacity to store water 

enables plateaus to function primarily as generators of runoff which they direct into their 

adjacent wetlands (Wright et al., 2009). Plateau runoff occurs predominately through the thawed, 

saturated layer that occupies the region between the water table and the underlying, relatively 

impermeable frost table. Flat bogs are entirely surrounded by the raised permafrost of the 

plateaus and are therefore unable to exchange surface or near-surface water with the basin 

drainage network. Subpermafrost groundwater flow is also restricted due to the low hydraulic 

conductivity of the underlying clay-rich glacial till. However, recent field studies at Scotty 

Creek, NWT (Connon et al., 2015) found that certain bogs can form lateral surface connections 

with the channel fen. These bogs can are either connected with the fen network through 

ephemeral drainage channels that cut through a plateau (i.e.  cascade bogs) and bogs that have a 
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direct, open connection with the fen (i.e. open bogs). These connected bogs can produce runoff 

under conditions of high moisture supply and/or minimal ground thaw. 

Cascade bogs route water through a series of connected bogs and eventually drain into a 

fen, and open bogs occur where the permafrost that once separated a flat bog from an adjacent 

fen has thawed entirely or sufficiently so that the flat bog is now ‘open’ (i.e. hydrologically 

connected) to the fen. This process referred to as ‘bog capture’ (Connon et al., 2014) enables 

surface and near-surface flow between fens and open bogs during periods of high moisture 

supply. Finally, the channel fens collect water from their surrounding peatlands and convey it 

along their broad (~50-100 m), hydraulically rough channels, toward the basin outlet (Quinton et 

al., 2003). 

1.3 Land cover change 

Climate warming disrupts the balance between permafrost aggradation and degradation 

described by Zoltai (1993) such that permafrost degradation is favoured. For example, 30-65% 

of permafrost in the fringe zone of the southern NWT has degraded over the last 100-150 years 

(Beilman and Robinson, 2003), with degradation rates increasing in recent decades (e.g. Lantz et 

al., 2008). The aforementioned loss of forest and expansion of wetlands is driven by permafrost-

thaw induced subsidence of plateau ground surfaces which are then flooded by the adjacent bogs 

or fens (Jorgensen et al., 2005). There are strong indications that permafrost thaw and the 

resulting land-cover changes have affected basin water balances, as suggested by rising river 

flows throughout the fringe zone (St. Jacques and Sauchyn, 2009). For example, the total annual 

runoff from all gauged rivers in the lower Liard River valley of the NWT has steadily risen since 

the mid-1990s (Connon et al., 2014), with the exception of very dry years of 2013 and 2014 

(MSC, 2016). The current understanding of water flow and storage processes in wetland-
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dominated, discontinuous permafrost terrains, and how climate warming and the resulting land 

cover changes affect these processes, cannot adequately explain this rise in river flows, nor is it 

sufficient to predict future river flows. Rising flows from subarctic rivers are often attributed to 

‘reactivation’ of groundwater systems (e.g. St.Jacques and Sauchyn, 2009), but the very low 

hydraulic conductivity of the glacial sediments throughout much of the lower Liard River valley 

precludes appreciable groundwater input. Permafrost thaw-induced changes to basin flow, and 

storage processes including expansion of runoff contributing areas, offers a more plausible 

explanation for rising river flows in this region (Connon et al., 2014). This increase in lateral 

surface and subsurface connectivity is especially pronounced during the spring freshet, when 

infiltration is reduced due to the presence of frozen ground beneath the snowpack. As 

hydrological connectivity increases it is expected that a greater proportion of snowmelt water 

will be available to the basin drainage network. 

1.4 Snowcover 

Snow on the ground plays an important role in the formation and preservation of the 

permafrost below the plateaus (CWWG, 1988). The depth of the snow cover is strongly 

influenced by the tree canopy, which intercepts and stores snowfall, which proportionately 

reduces the snow accumulation on the ground below (Pomeroy and Gray, 1995). Tree canopies 

also reduce wind speeds over the sub-canopy snowpack (Pomeroy and Harding, 1996), and 

influence wind speeds and turbulence over adjacent treeless terrains.  The erosion, transport, and 

deposition of snow by wind is highly variable over the mosaic of peat plateaus, fens, and flat 

bogs. Snow accumulation below tree canopies can be 20 to 45% less than in adjacent open 

terrains (Golding and Swanson, 1986), with the difference in snow depths between the forested 

and treeless terrains increasing with the size of the latter due to increased wind erosion in larger 
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open areas. For example, open areas with a fetch of five times the height of the tree canopy (5H) 

at the up-wind forest edge, accumulate the maximum amount of snow (Troendle and Leaf, 

1980). When the size of the clearing is greater than 12H, the clearing retains less snow compared 

with the upwind forest floor. The reduction of snow retention with increasing fetch results from 

the greater likelihood for wind gusts (Pomeroy and Gray, 1995).  

Spatial variations in the distribution of snow on the ground and of its melt rate not only 

have implications for the volume and timing of runoff, but also have the potential to influence 

the rate and spatial pattern of permafrost thaw, and therefore the spatial pattern of permafrost 

thaw-induced land cover change, which ultimately feeds back to affect flow and storage 

processes (Connon et al., 2014).  

1.5 Snowmelt 

The energy balance of the snow surface controls the production of melt water, and is 

therefore critically important that it be represented accurately in any numerical simulation of 

snowmelt and runoff. Snowmelt energy balances have been well documented in a variety of cold 

environments, including prairie (Male and Granger, 1981), alpine (Cline, 1997) and peatland 

(Knox et al. 2012).   There has been little study of snowmelt energy balances in the peat plateau-

fen-bog dominated landscape of the fringe zone; however, much information can be transferred 

from studies in other, similar land cover types. For example, treeless surfaces such as wetlands, 

typically experience greater contributions from turbulent fluxes as a result of higher windspeeds 

(Male and Granger, 1981). Depending on the size and orientation of the wetland, turbulent fluxes 

can drastically alter the snowmelt energy balance and snow characteristics of a land cover with 

increased losses due to wind-driven sublimation as a result of increased contributions from 

turbulent fluxes (Male and Granger, 1981).  Radiative fluxes somewhat contrast those of forested 
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terrain such that greater maximum incoming radiation occurs, as well as greater losses to 

longwave in the absence of a moderating medium such as a tree canopy.  

The surface energy balance below tree canopies is more complicated, since such canopies 

are known to provide a larger reflecting, absorbing and radiating structure above the snowcover 

surface that it interacts with both mass (snowfall) and energy flows. Therefore, the surface 

energy balance of the snowpack on the plateaus is expected to be strongly influenced by the large 

spatial variability of radiative and turbulent transfers (Pomeroy et al., 2008), and by variations in 

the structure and density of the forest canopy (Hardy et al., 2004; Davis et al., 1997; Pomeroy, 

2006), which attenuates incoming solar radiation, alters the surface albedo by way of leaf litter 

deposition, and shelters the snow surface from wind. The latter reduces the amount of energy 

available for melt by dampening turbulent fluxes, making snowmelt dependent mainly on 

radiative fluxes (Boon et al., 2009; Davis et al., 1997; Sicart et al., 2003).  

Conifer tree canopies also introduce irregularities in the spatial distribution of energy 

applied to the snow surface which, during the annual snowmelt event, can influence the rate of 

snow cover depletion and the areal mean snowmelt rate at small, sub-stand scales (Faria et al., 

2000).  For example, absorption of shortwave radiation by trunks and branches, and its 

redistribution as longwave energy, affects the spatial and temporal distributions of melt energy 

(Golding and Swanson, 1986; Verry et al., 1983; Woo and Geisbrecht, 2000).  Longwave 

radiation creates ‘hot spots’ around trees that produce patches of bare ground extending outward 

from the trunk in the direction of melt (Davis et al., 1999; Hardy et al., 2004). The spatial 

distribution of these hot spots is determined by that of the tree trunks (Rowlands et al., 2002). 

This process is especially pronounced in stands containing a significant number of dead or dying 

trees (Pomeroy et al., 2009), as observed on the subsiding edges of thawing peat plateaus, since 
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such trees warm more readily than healthy trees owing to their relatively low moisture content 

and lower volumetric heat capacity (Vines, 1968).The spatial distribution of incoming shortwave 

energy arriving at the sub-canopy snow surface is large and varies continually throughout the day 

due to changing sun angles through a heterogeneous canopy (Sicart et al., 2003). Spatial patterns 

of snowmelt are often controlled by the spatial variation of shortwave radiation arriving at the 

sub-canopy snowpack surface (Pomeroy et al., 2008).  Since snowmelt is the primary source of 

runoff to streams in the subarctic, canopy characteristics such as stand density and spatial extent 

must have an indirect effect on landscape runoff and streamflow. For example, changes to 

canopy structure and density or aerial extent of the stand can change the amount of snow 

intercepted by the canopy and therefore the amount that would subsequently sublimate back to 

the atmosphere (Burles and Boon, 2011; Pomeroy et al., 2012), thereby changing the water 

equivalent of the sub-canopy snowpack, and the amount of moisture available for runoff 

(Pomeroy et al., 1993). The permafrost thaw induced changes to tree canopies reported for the 

southern margin of discontinuous permafrost including canopy thinning (Baltzer et al., 2014), 

and the conversion of forests to wetlands (e.g. Robinson and Moore, 2002), have potentially 

important but poorly understood implications to basin runoff.  

1.6 Thesis Overview 

The thesis consists of one manuscript which examines the effects of permafrost thaw -

induced land cover changes on basin snowmelt runoff production. This goal is met by a) 

characterising the snow water equivalent (SWE) storage and melt of forested and treeless land 

cover types for the 2014 and 2015 hydrological years and b) evaluating how the permafrost 

thaw-induced wetland expansion and resulting forest loss might affect the aerially weighted 
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SWE storage, and the proportion of snowmelt that can contribute to basin runoff during the 

spring freshet over the time period 1977-2010. 

A brief summary of the main research findings and an explanation of the implications of 

permafrost thaw-induced land cover changes on SWE storage and melt concludes the thesis. 

Furthermore, the final chapter identifies gaps in the existing body of scientific knowledge on the 

subject of permafrost degradation and presents recommendations on potential areas for future 

research. 
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Chapter 2:  Permafrost thaw-induced forest to wetland conversion: potential 

impacts on snowmelt and basin runoff in northwestern Canada 

 

E.R. Haughton1, L. Chasmer2, R. Connon1, O. Sonnentag3, W.L. Quinton1 

 

1Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, ON, Canada, 
2Department of Geography, University of Lethbridge, Lethbridge, AB, Canada. 
3Departément de géographie & Centre d’études nordiques, Université de Montréal, Montréal, 

QC, Canada, 

 

 

  2.1 Introduction: 

Northwestern Canada is one of the most rapidly warming regions on Earth (IPCC AR5, 

2014). It is expected that continued warming will have a substantial influence on snow 

accumulation, (re-) distribution and melt patterns in this region, resulting in greater frequency of 

mid-winter snow melt events (Putkonen et al., 2009), a shorter snow-covered season (Semmens 

et al., 2013; Pachauri and Reisinger, 2007), and greater variability in snow depth (Hinzman et 

al., 2005). Such changes throughout northwestern Canada co-occur with warming-induced 

permafrost thaw (Connon et al., 2014; Goodrich, 1982), resulting in changes to active (i.e. 

seasonally frozen and thawed) layer properties (Sturm et al., 2005) and ecosystem composition, 

structure and functioning (Jorgensen et al., 2001). The combined effects of such snow cover, 

permafrost and ecosystem changes on water storage and flow is poorly understood, and as a 

result, there is considerable uncertainty on the future availability of water resources in the region 

(NWT Water Stewardship Strategy, 2009). 

The highest rates of aerial permafrost thaw in northwestern Canada are found in the 

region near the southern limit of discontinuous permafrost, since the permafrost in this low-
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lying, peat-dominated ‘fringe region’ (Kwong and Gan, 1994) is relatively thin (< 15 m), and is 

at or near the freezing point depression temperature (-0.3°C). Moreover, its spatially 

discontinuous nature allows thaw to be driven by both vertical heat flows from the ground 

surface and horizontal heat conduction and advection from the permafrost edges. Much of the 

fringe region occurs below forested plateaus (“forest”) which are surrounded by and often 

contain permafrost-free, treeless wetlands (“wetland”). Specifically, such forests may occur as a 

relatively small “islands” (<400 m2) within a larger wetland, but more often forests are 

sufficiently large that they contain numerous treeless wetlands ‘collapse-scar bogs’. Because of 

their higher (1-2 m) topographic position, sloping surfaces, and the presence of permafrost near 

the ground surface, water drains from the forests to the wetlands (Quinton and Baltzer, 2013). 

Since the wetlands are impounded by the raised permafrost of the surrounding forest (Quinton et 

al., 2003), water loss from these features and the overall landscape is typically controlled by 

evaporation (Helbig et al., 2016a) and groundwater recharge (Gordon et al., 2016). Forests 

containing wetlands (i.e. forest-wetland complexes) are typically bordered by open channels, 

riverine wetlands or channel fens, which collectively comprise the basin drainage network. 

Water received by this network from the forest-wetland complex is conveyed slowly toward the 

basin outlet (Quinton et al., 2009). 

Permafrost-thaw induced land cover change is well documented in the zone of 

discontinuous permafrost  in northwestern Canada (e.g. Helbig et al., 2016b; Quinton et al., 

2011; Robinson and Moore, 2002). Permafrost thaw and associated melting of ground ice causes 

subsidence of the overlying ground surfaces which are then engulfed by the surrounding 

wetlands (McClymont et al., 2013). Through this permafrost thaw-subsidence-flooding 

sequence, forests are transformed into permafrost-free wetlands. Between 30 and 65 % of the 
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permafrost-supported forest has disappeared from this region over the last 100 to 150 years 

(Jorgensen et al., 2001), with concomitant increases in wetland coverage (Chasmer et al., 2010). 

Annual forest-to-wetland conversion rates have increased in recent decades (Chasmer and 

Hopkinson, 2016) as the forests have become more fragmented, resulting in increased edge-to-

area ratios (Baltzer et al., 2014).  

It is reasonable to expect that the conversion of forest to wetland will itself transform the 

end-of-season snow cover distribution, since the areal average snow cover is known to decrease 

as the proportion of open land cover increases (e.g. Pomeroy and Gray, 1995), owing to the 

differences between forested and treeless land cover types in terms of snow interception (Faria 

and Pomeroy, 2000), sublimation (Storck et al., 1999), and surface energy balance (Helbig et al., 

2016b). Such a forest-to-wetland conversion is potentially of great importance hydrologically for 

the fringe region, where the end-of-winter snowmelt event releases roughly half of the total 

annual precipitation within a two to three-week period at a time when infiltration and storage are 

limited by frozen ground (Woo, 1986).  

Aside from inducing a forest-to-wetland conversion, permafrost thaw also alters the 

hydrological connectivity of the landscape. For example, the thaw of permafrost separating a 

wetland from the basin drainage network transforms the wetland from being internally drained to 

one hydrologically connected to the basin outlet. As such wetlands expand due to permafrost 

thaw around their margins, they merge into other wetlands, a process that further expands the 

basin runoff contributing area, and therefore basin runoff as well. Thawing permafrost has also 

led to the formation of drainage channels between wetlands, allowing them to transmit overland 

and shallow subsurface runoff along a wetland cascade toward the basin drainage network and 

onward to the basin outlet (Connon et al., 2015).  
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By converting forests to wetlands and by increasing the hydrological connectivity of the 

landscape, permafrost thaw has the potential to affect snow accumulation, melt, and snowmelt 

runoff processes, with implications to the volume and timing of the hydrograph response of 

basins during the spring freshet. St. Jacques and Sauchyn (2009) demonstrated significant 

increases in mean annual stream flow in the sporadic and discontinuous permafrost zones of the 

Northwest Territories (NWT), Canada.  These authors suggest that groundwater reactivation as a 

result of permafrost thaw may cause these increases. However, a widespread, clay-rich glacial till 

deposit with very low hydraulic conductivity exists beneath the peatland complexes in the 

southwestern NWT (Hayashi et al., 1998), suggesting that groundwater reactivation may not be 

the primary driver of rising stream flows in this region. Connon et al. (2014) suggested that 

permafrost thaw is increasing stream flows through increased surface and near-surface 

hydrological connectivity. 

Using continuous, year-round micrometeorological measurements, snow surveys, and 

simple snow surface energy balance calculations, the goal of this study is to evaluate the impact 

of permafrost thaw-induced land cover changes on basin snowmelt runoff production. This goal 

is met by a) characterising the snow water equivalent (SWE) storage and melt of forested and 

treeless land cover types for the 2014 and 2015 hydrological years and b) evaluating how the 

permafrost thaw-induced wetland expansion and resulting forest loss might affect the aerially 

weighted SWE storage, and the proportion of snowmelt that can contribute to basin runoff during 

the spring freshet. 

2.2 Study Site: 

Scotty Creek (6118' N, 12118' W) is a 152 km2 drainage basin that lies 50 km south of 

Fort Simpson in the lower Liard River valley of the NWT, Canada (Figure 1a). Hydrometric data 
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at Scotty Creek has been collected by the Water Survey of Canada (WSC) since 1995. Longer 

term hydrometric records (1972 to present) are available for the adjacent 1 310 km2 Jean-Marie 

River basin, an area that exhibits similar land cover characteristics and hydrologic response to 

the Scotty Creek basin (Quinton et al., 2003; Connon et al., 2014). The longer term hydrometric 

data allows for the analysis of changing runoff patterns as a response to permafrost thaw. Annual 

runoff at Jean-Marie river over the past 30 years (1986 – 2015) is 143 mm yr-1 (WSC, 2017), 

while a significant increase in runoff has been observed since 1996 (Connon et al., 2014).  

The landscape of the southern portion of the Scotty Creek basin is underlain by 

discontinuous permafrost (Hegginbottom and Radburn, 1992) and is comprised of peatland 

complexes typical of the ‘continental high boreal’ wetland region (NWWG, 1988). The Scotty 

Creek drainage basin has a thick peat cover (2-8 m, McClymont et al., 2013) overlying a thick 

clay/silt-clay glacial till deposit of low permeability (Aylesworth and Kettles, 2000; Hayashi et 

al., 1998). Most of the Scotty Creek basin is a heterogeneous mosaic of forested peat plateaus 

underlain by permafrost (‘forest’), and treeless, permafrost-free wetlands (‘wetland’) (Figure 1b), 

typical of the southern fringe of discontinuous permafrost (Helbig et al., 2016a). This study 

focuses on a 0.14 km2 area-of-interest (AOI) with 40% forest and 60% wetland coverage (Figure 

1c). Measurements were made at fixed, individual points and along measurement transects 

within the forest and wetland portions of the AOI (Figure 1b). The AOI included 40 wetlands 

ranging in size between 1,000 m2 and 20,000 m2. The plateaus support a black spruce (Picea 

mariana)-dominated canopy with an average tree height of 3.1 m (Chasmer et al., 2010), as well 

as multiple shrub species including Labrador tea (Ledum groenlandicum), small bog cranberry 

(Vaccinium oxycoccos), Leatherleaf (Chamaedaphne calyculata), bog birch (Betula glandulosa), 

and a variety of lichen and moss species on the ground surface (Gabron-Labreque et al., 2015).  
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In the wetlands, the vegetation consists of mosses (Sphagnum fuscum, Dicranum elongatum) and 

non-tussock forming stands of sedges (Eriophorum vaginatum). The Fort Simpson region has a 

dry continental climate with short, dry summers and long, cold winters. Based on climate 

normals (1971-2000), mean annual air temperature is -3.2o C, with 369 mm of annual 

precipitation, of which 46% falls as snow (MSC, 2016). Snowmelt usually commences in the 

early to mid-April and continues throughout most of the month, so that by May, only small 

amounts of snow remain (Hamlin et al., 1998).  

2.3 Methods: 

The AOI was separated into large wetland (LW), small wetland (SW), sparse forest (SF) 

and dense forest (DF) classes. The distinction between small and large wetlands was based on a 

non-parametric Kruskal-Wallis H-test (Kruskal and Wallis, 1952) of the end-of-winter snow 

water equivalent of 40 wetlands within the AOI in addition to a histogram analysis, in which the 

median wetland area (10, 000 m2) was selected as a threshold for separation. Using nine years of 

data between 2006 and 2015, this test indicated that the SWE of wetlands larger than 

approximately 10,000 m2 (WL) have significantly lower SWE values than forests (H =

10.31, df = 3, α = 0.05), while wetlands smaller than 10,000 m2 (SW) have SWE values not 

significantly different than those of the forest cover Using these results, the 40 wetlands of the 

AOI were separated into 14 of the LW class and 26 of the SW class. The Kruskal-Wallis H-test 

indicated no significant difference between SF and DF in terms of SWE, however the distinction 

was made because stand density is known to affect the amount of radiation reaching the snow 

and ground surface below the canopy. In this study, we defined SF as having a stem density of 1 

- 2 stems m-2, and DF as having stem densities greater than 2 stems m-2 based on stem counts 
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done along each snow survey transect. Using these values, the forested portion of the AOI was 

separated into SF and DF classes through stem counts along the routinely surveyed transects.  

Meteorological stations were located in SF, DF and LW areas of the AOI. The LW 

station was assumed to represent the meteorological conditions of both the LW and SW classes. 

At each station, air temperature (Ta; °C) and relative humidity (RH; %) were measured with a 

temperature-relative humidity sensor enclosed in a radiation shield (HMP4C5; Vaisala, Helsinki, 

Finland). Wind speed (Uz; m s-1) was measured using standard cup anemometers (O14A; Met 

One Instruments INC, Grants Pass, Oregon, USA) at 1.5 m above the mean ground surface. 

Snow depth (ds; m) was measured using a snow depth sensor (SR50A; Campbell Scientific, 

Logan, Utah, USA). Net radiation (Qnet; W m-2) and incoming and outgoing short and longwave 

radiation were measured with a four-component net radiometer (CNR1; Kipp & Zonen, Delft, 

the Netherlands) at 1.5 m above the ground surface. Snowpack temperature was measured using 

four thermistors (109; Campbell Scientific, Edmonton, Alberta, Canada) vertically spaced at 10 

cm intervals, with the deepest sensor located at 10 cm above the ground surface. All other station 

measurements were taken every minute and averaged and recorded every half hour. All station 

measurements were recorder using a CR1000 data logger (Campbell Scientific).  

To characterize melt, snow surveys were conducted along seven 100-m transects 

representing the SF, DF and LW classes every other day throughout the snowmelt period in 2014 

(10 measurement days) and 2015 (14 measurement days) (Figure 1b). Along each transect, snow 

depth was measured every metre using a ruler following the standard method described by 

Pomeroy and Gray (1995). Snow samples of known volume were taken every 5th depth 

measurement using the standard federal snow tube (Geo Scientific; Vancouver, BC, Canada) and 

weighed with an electronic scale (Light Duty Crane Scale; BC Scale, Langley, BC, Canada) to 
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determine snow density. Average depth and density measurements were used to compute 

average SWE for each transect. Each transect was equipped with three ablation stakes, located 

next to the first, middle, and last transect point (Wright et al., 2008). Daily ablation was derived 

from the change in the elevation of the snow surface, relative to the fixed datum of the ablation 

stake over a 24-hour period. Snow density was also measured in the vicinity of the ablation 

stake, but far enough away (5 to 10 m) to not impact the ablation measurements. The ablation 

stakes were used to compute the depth of daily melt, as well as provide a spatially distributed set 

of data independent of the transect. 

2.3.1 Snowmelt Energy Balance: 

The snow surface energy balance was computed with data supplied by the LW, SF and 

DF stations using the one-dimensional energy balance equation: 

               𝑄𝑚 = 𝑄 ∗ +𝑄ℎ + 𝑄𝑒 + 𝑄𝑔 − 𝑄𝑐𝑐   (1) 

where Qm is the energy available for snowmelt, Qh and Qe are the turbulent fluxes of sensible and 

latent heat, Qg and Q* is the net all-wave radiation. All units are MJ m-2. When the snow surface 

is melting, the air directly above is assumed to have a temperature of 0°C and a vapour pressure 

at the saturation value of 6.11mb (Heron and Woo, 1978). The horizontal wind speed is assumed 

to be zero at the snow surface, and increase logarithmically to the measurement height above the 

snow. 

Qh was calculated as a function of the difference between the temperature at the snow surface 

and overlying air as:                                

                                           𝑄ℎ = 𝑝𝑎𝐶𝑝𝑎𝐷ℎ(𝑇𝑎 − 𝑇𝑠𝑠)                           (2) 
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where pa is the density of air (kg m-3), Cpa is the heat capacity of air at a constant pressure (J kg-

1K-1), Dh is the bulk sensible heat transfer coefficient (m s-1), and Ta and Tss are the temperatures 

of the air and snow surface (K).  

Qe was calculated as a function of the difference in vapour pressure in the overlying air as: 

𝑄𝑒=p𝑎λv𝐷𝑒 
0.622

𝑃
(𝑒𝑎 − 𝑒𝑠𝑠)                 (3) 

where λv is the latent heat of vapourization (2.48x106 J kg-1), De is the bulk latent-heat transfer 

coefficient (m s-1), P is the atmospheric pressure (kPa) and ea and ess are atmospheric and snow 

surface vapour pressures (kPa). Positive Qe values indicate energy directed into the snowpack as 

condensation, while negative Qe values indicate energy release from the snow surface through 

either evaporation or sublimation. 

Qg can be estimated using soil temperature and moisture data (Gray and Prowse, 1993):  

             𝑄𝑔=𝑘𝑔(
∆𝑇𝑠

𝑑𝑠
)                                          (4) 

where kG is the thermal conductivity of the soil (W m-1 K -1 ), ΔTs is the change in temperature of 

the soil (K), and ds is depth of measurement below the ground (m). The ground heat flux at this 

site was deemed negligible.  

Qcc is the change of internal energy in the snowpack (Gray and Prowse, 1993). Within 

deep snowpacks internal energy changes can be relatively small in comparison to other energy 

fluxes and in most studies are considered negligible because the snowpack temperature during 

ablation is close to 0ºC. However, if snow melts during the day and freezes overnight, large 

changes in internal energy can occur within shallow snowpacks and the upper layers of deep 

snow. Qcc is calculated using: 

𝑄𝑐𝑐 =  −𝑐𝑖𝑝𝑤ℎ𝑚(𝑇𝑠 − 𝑇𝑚)                                    (5) 
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where ci is the heat capacity of ice (2102 J kg-1 K-1), Ts is the average temperature of the 

snowpack, Tm is the melting point of ice (0oC), ρw is the density of water (approximately 1000 kg 

m-3), and hm is the snowpack water equivalent in meters.  

In a constant flux layer, under the assumption of neutral atmospheric conditions, the 

diffusivities of water vapour and heat can be seen as equal (Dingman, 2002) such that 𝐷ℎ=𝐷𝑒=𝐷 

and: 

                    𝐷 =
𝑘2𝑢𝑎

⟦𝑙𝑛
𝑧𝑎
𝑧𝑜

⟧
                                               (6) 

where k is von Karman’s constant (0.4), ua is the windspeed (m s-1), za is the height of the wind 

measurement (m) and zo is the surface roughness (m) of the snowpack. Surface roughness refers 

to an estimation of the mean height of the roughness elements of the snow surface. The values of 

zo should theoretically incorporate the increasing roughness of the snow surface as the ablation 

season progresses, and as snow cover becomes patchy and vegetation appears (Metcalfe and 

Buttle, 1998) however following the results of a sensitivity analysis conducted by Boon (2009), 

it was found that zo was relatively insensitive within an order of magnitude in healthy forest 

stands.The surface roughness coefficient of 0.006 m was used as it represents a midway value 

between seasonal (0.005m) and wet (0.006m) snow covers, and was deemed representative of the 

snow characteristics at the study site (see Moore, 1983; Oke, p.57, 1988). 

The Richardson number (Ri) was used to characterize the stability of the atmospheric boundary 

layer (Dingman, 2002): 

𝑅𝑖 =
𝑔[𝑇𝑎−𝑇𝑆𝑆]

𝑢𝑎   
2 𝑇𝑘

                                               (7) 

where g is acceleration due to gravity (ms-1) and Tk is the mean temperature of the air (K). 

Temperature inversions often occur over snow cover and create stable conditions as temperature 

increases with increasing altitude suppressing turbulence. As the temperature of the snow surface 



 25 

has been fixed to 0°C, Ta-Tss is usually positive, indicating stable atmospheric conditions over 

the snowpack. To correct for the occurrence for stable conditions (i.e Ri>0.3), Dh and De were 

modified following the method of Price and Dunne (1976): 

𝐷𝑀𝑠 =
𝐷𝑀 

1+10𝑅𝑖
                                     (8) 

When the atmosphere was unstable (i.e. Ri<0.3), the bulk transfer coefficient was modified 

following the method of Price and Dunne (1976): 

  𝐷𝑀𝑈 = 𝐷𝑀(1 − 10𝑅𝑖)                              (9) 

Daily total snowmelt was computed using the following equation: 

𝑀 =
𝑄𝑚

𝑙𝑣
                                                   (10) 

 where 𝑀 is the amount of snowmelt over a 24 hour period in mm and 𝑙𝑣 is the latent heat of 

fusion in MJ m-2.  

For each meteorological station, the cumulative measured value of incoming shortwave 

radiation (K↓) was regressed with the total daily Qm computed value over the same 24-hour 

period. The relationship derived for the LW station was assumed to represent both LW and SW 

classes. Each relationship was then used to estimate the total daily Qm within each land cover 

class from the distributed values of direct K↓ provided by Solar Analyst (ArcGIS 10.1; ESRI, 

Redlands, CA, USA). This procedure was conducted using a pixel resolution of 1 m for the 

period 1 April to 10 June in both 2014 and 2015, and verified from digital aerial photography 

following Chasmer et al. (2011). The values of direct K↓ provided by Solar Analyst were added 

to diffuse K↓ estimated using an atmospheric transmissivity multiplier of 0.5. In order to verify 

the accuracy of the distributed Qm estimates, the total (i.e. direct + diffuse) K↓ values were 

extracted for each pixel along the snow survey transect (T) representing the SF (T1), DF (T2) 

and LW (T3) land cover components. These extracted values were then summed for each pixel 
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along each transect for each day of the 2014 and 2015 snowmelt periods and converted to total 

daily Qm values based on the regressions developed by the procedure described above. The 

resulting estimates of total daily melt for each transect were then compared with the day to day 

measured change in SWE for the same transects.  

The permafrost thaw induced change in forest and wetland cover between 1977 and 2010 

reported by Connon et al. (2014) for the same AOI as used in this study, was used to evaluate 

how permafrost thaw affects the aerially weighted SWE, and the proportion of the SWE that can 

contribute to basin runoff during the spring freshet. In the present study, “Connected SWE” 

refers to the snow cover of an area that is hydrologically connected to the basin drainage network 

and  “isolated SWE” refers to snow cover of an area that is hydrologically isolated from the 

drainage network. To evaluate the impact of the permafrost-thaw induced increased connectivity 

of the landscape on streamflow, the ratio between total precipitation input and total runoff (i.e. 

the runoff ratio) was computed for Scotty Creek and the adjacent Jean-Marie River basin for the 

snowmelt runoff period (1 April to 30 May) and for the summer period (1 June to 31 September). 

Runoff from both watersheds was measured by the Water Survey of Canada and precipitation 

was measured at the Fort Simpson A climate station. Total annual snowfall was also computed to 

evaluate whether changes in winter precipitation have occurred over the same period (1977-

2010). 

2.4 Results: 

 

2.4.1 Snow accumulation: 

The two years in this study received a stark difference in snowfall amount, allowing for 

comparison between years with high and low end-of-season SWE. There was 95.6 mm of SWE 

in  2014, the second-lowest amount over the past 30 years, as recorded by Environment Canada 
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at the Fort Simpson A station. In contrast, the 2015 winter received 167.0 mm, well above the 

30-year average of 138.6 mm in Fort Simpson (Table 1). These values recorded in Fort Simpson 

have not been corrected for gauge undercatch, but allow for comparison to the 30-year climate 

normal. Snowfall was also measured at the study site using a Geonor weighing gauge and 

undercatch was accounted for by the method of Smith (2008). At the study site, total adjusted 

snowfall was 143.7 mm in 2014 and 216.6 mm in 2015.  

Snow surveys conducted near the end of the snowfall season (late March) displayed 

similar results. In 2014, the average end of season snowpack in WL areas was 95.8 mm, while 

forested areas (SF and DF combined) retained 99.1 mm of SWE. In 2015, WL sites had 170.8 

mm of SWE and forests had 179.9 mm of SWE. The trend observed here of forested sites 

retaining marginally more end-of-season SWE than WL sites is consistent with the previous 15 

years of snow survey data from the study site.  

Given the large differences in end of season SWE, snow depth at the WL sites was 

surprisingly similar between years, with average depths of 60.1 cm in 2014 and 69.5 cm in 2015 

(Figure 2). The similarities in snow depth were offset by large differences in snow density. 

Average density in 2014 was 0.159 g cm-3, whereas the average density in 2015 was 0.246 g cm-

3.  The similarity in depth and disparity in density in the WL sites is likely a result of a string of 

warm temperatures at the end of March, 2015. It appears that the warm temperatures caused an 

internal collapse in the snowpack, as is shown in Fig 2b. Meltwater likely infiltrated into and 

percolated through the snowpack, eventually consuming large amounts of latent heat upon re-

freezing. This energy consumption within the snowpack likely led to structural instability in the 

depth hoar-base and caused the collapse. 
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A more noticeable difference was observed in average snow depth at forested sites, with 

2014 having an average of 58.4 cm and 2015 receiving 77.7 cm. The average density at forested 

sites was 0.170 g cm-3 in 2014 and 0.232 g cm-3 in 2015. Of the 143.7 mm of SWE that fell in 

2014, 10.5 mm of SWE fell after snow surveys were conducted. In 2015, 28.0 mm of the 216.6 

mm of SWE fell after the completion of snow surveys. As expected, end of season SWE on the 

ground is less than the total recorded snowfall, largely due to wind-blown sublimation loss in 

open wetland areas, and canopy interception and subsequent sublimation in forests.  

In addition to the drastic differences in total snowfall amount, there was also a noticeable 

difference in the amount of snow retained on the ground. In 2014, at the time of snow surveys, 

WL sites had retained 72% of total snowfall, while forested sites retained 74%. Conversely, in 

2015, WL sites had 91% of total snowfall, and forest sites had 95%. This is likely explained by 

differences in canopy sublimation rates. The unloading of intercepted snow from tree canopies 

increases with time and with the load stored (Hedstrom and Pomeroy, 1998). This suggests that 

in years with low snowfall amounts, there is a decreased probability of canopy unloading. 

Sublimation rates within a canopy can be very high (Schmidt 1991, Pomeroy et al., 1998), which 

decreases the amount of snow that is retained in the end of season snow cover, and ultimately the 

amount of moisture available for the spring freshet. Timing for snow accumulation was also very 

different between the two years (Table 2). In 2014, the most of the snowfall (74%) occurred in 

the middle of the winter (November, December, and January). In 2015, only 34% of total 

snowfall occurred during these months. Large snowfall events occurred near the start and end of 

winter, where warmer temperatures allow for increased amounts of atmospheric moisture.  
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2.4.2 Snowmelt: 

The duration of snowmelt was much higher in 2015 than 2014, due primarily to the 

difference in snowpack size and the amount of extra energy required for melt. The onset of 

snowmelt (defined as the day when the snowpack became homogenous and isothermal 

determined from snow pit analysis) in 2014 occurred approximately 10 days later than in 2015, 

due to relatively cool April air temperatures. Average April temperatures in 2014 were -2.3°C in 

2014, compared to 1.4°C in 2015. In both years, snowmelt was most rapid in WL sites and was 

prolonged in the SF and DF sites (Table 2). The difference in snowmelt onset and duration 

between land cover types exerts a key control on the quantity and timing of snowmelt water 

during the freshet. 

Snowmelt values calculated using the snow surface energy balance matched closely with 

measured values for each land cover type during both years of study (Figure 3). The validation of 

the snow surface energy balance calculations allows for a comparison of the contributing fluxes 

to Qm. While computed and measured values are in relatively close agreement (𝑝 < 0.05) in both 

years of this study, computed melt was less accurate in 2014. The relatively shallow snowpack in 

2014 became discontinuous early in the melt period, enabling advective energy contributions 

from snow-free patches. This was caused by a reduction in surface albedo and subsequent 

increased absorption of solar radiation by the ground and ground heat flux early in the year 

(Granger et al., 2006). Moreover, a patchy snow cover increases the surface roughness as 

vegetation protrudes through the snow cover, a phenomenon not accounted for in the snow melt 

computations. In addition, the Richardson stability correction introduces error in the 

underestimation of the turbulent fluxes that could be greater when compared to the wetlands due 

to the frequency of extremely stable atmospheric conditions experienced throughout both 2014 

and 2015 melt periods (Andreas et al., 2002). 
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In both years and at all land cover types, Q* was the dominant flux contributing to Qm 

(Table 4). Combined, the two turbulent fluxes (Qh and Qe) account for between 12 and 32% of 

Qm. Of the four components contributing to Q*, K↓ contributed the largest amount of energy to 

Qm, indicating that melt in the region is driven primarily by K↓ (Table 4). The average 

cumulative K↓ for the melt season expressed as a fraction of the total cumulative Qm over the 

same period (i.e. ƩK↓/ƩQm) for the three sites was 0.70 in 2014 and 0.78 in 2015.  

Typically, the upward longwave flux (L↑) is greater than the downward flux (L↓) such 

that L* represents a loss from the snowpack. Of the three land cover types, the DF site received 

the highest contribution from L*, which was likely due to the emission of longwave radiation 

from the relatively warm trees. At these locations, L* contributions were slightly less than the 

WL sites, however this increase in longwave energy was not substantial enough to counter-act 

the decrease of shortwave radiation imposed by the tree canopy. 

Because of the strong control that K↓ exerts on snowmelt, an incoming radiation model 

was used to simulate snowmelt across the AOI. The K↓ values produced by the model produced 

values that matched closely with values measured at the meteorological stations at the three site 

types, with the strongest association at WL sit (R2 : 0.98), owing to the absence of a tree canopy. 

The root mean square error (RMSE) was lowest at the WL site (0.34 and 0.14 MJ for 2014 and 

2015, respectively), highest for the DF site (2.12 and 2.65 MJ) and moderate for the SF site (1.77 

and 1.80 MJ). Total daily modelled K↓ was closely correlated to total daily snowmelt measured 

along each snow survey transect (Figure 4). The cumulative modelled Qm for the snowmelt 

period ranged between 72 and 106 MJ for the WL areas of the AOI, 106 and 140 MJ in SF areas, 

and between 140 and 174 MJ in DF areas (Figure 5). 
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2.5 Discussion: 

2.5.1 Comparison of energy dynamics between forest and wetlands: 

  Turbulent fluxes of sensible and latent heat play an important role in snow surface energy 

and mass balances which change with differing land cover characteristics (Marsh and Pomeroy, 

1996; Link and Marks, 1997; Koivusalo and Kokkonen, 2006). Trees reduce wind speed and 

subsequently reduce the exchanges of latent and sensible heat between the snow pack and the 

overlaying atmosphere, making the forest canopy an important factor influencing the snow 

surface energy balance (Pohl et al., 2006; Knox et al., 2012). Conversely, open areas, such as 

wetlands, typically receive greater solar radiation, and experience greater loss of longwave 

radiation (Marks et al., 1998). These patterns were observed in this study, which showed that 

~70 to 80% of net radiation was available as melt energy. The analysis of modelled K↓ illustrates 

that the range of K↓ captured by the model is more variable in the SF and DF sites than WL sites 

due to the forest canopy (Figure 6.) Subsequent irregularities in K↓ are introduced as a result of 

variable canopy gaps and canopy scattering elements (Faria et al., 2000) with SF sites 

consistently receiving higher inputs of K↓ compared to the DF sites (Figure 6). These patterns 

become very pronounced in more southern regions where closed canopies reduce K↓ at the 

ground surface relative to open sites (Hardy et al., 2004; Ellis and Pomeroy, 2007; Pomeroy et 

al., 2007; Lawler and Link, 2011). The irregularities in canopy gaps studied here result in uneven 

snowmelt patterns within forest patches.  

  Differing snowmelt patterns between land cover types allowed WL sites to be the first to 

experience snow-free conditions while less snow accumulation in WL sites meant that energy 

requirements to melt the snowpack were lower than in SF and DF sites (Figure 5).  These 

findings are consistent with other studies conducted in similar environments (Koivusalo and 
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Kokkonen, 2002; Hardy et al., 2004; Pomeroy et al., 2012) which also found greater 

contributions to melt from turbulent fluxes in the wetlands than the forests, likely as a result of 

higher wind speeds and a larger air temperature gradient. Reduced windspeeds in forest areas 

supressed the energy contributions from turbulent heat transfer.  

  Maximum snow accumulation has been shown to occur in openings two to five times the 

average height of the surrounding canopy (Golding and Swanson, 1986). Canopy height 

surrounding the wetlands yields a minimum tree height of 1.6 m and a maximum tree height of 

4.5 m.  Based on the maximum tree height shown here, snow accumulation would be greatest in 

openings with a maximum fetch of 25 m, which is still considerably lower than any wetlands 

where snow surveys were conducted as part of the 9-year period of record. The smallest wetland 

with annual SWE measurements is a circular feature with an area of ~1000 m2 and a fetch length 

of 73 m. Unfortunately, there is insufficient data at this study site to test the hypothesis that small 

openings retain more snow than forested areas. Helbig et al. (2016) found that Scotty Creek is 

characterized by uniform wind fields, indicating that no accumulation patterns would be 

expected relative to wind direction. 

  While the size and shape of surveyed wetlands did not satisfy the areal characteristics 

required for maximum accumulation, results remained consistent with other studies showing 

linkages between SWE loss in large openings to wind redistribution and surrounding tree height 

(Troendle and Leaf, 1980; Golding and Swanson, 1986, Pomeroy et al., 2002). Typically, large 

openings (i.e. large WL sites) with a width equal to 20 times the average height of the 

surrounding trees are more susceptible to wind redistribution and can yield less SWE than a 

more sheltered forested area (Golding and Swanson, 1986). This phenomenon was apparent at 

the forest-wetland complex studied, as indicated by the consistently lower SWE (~30%) found in 
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wetlands when compared to forests (Table 3). This is likely a result of the relatively large size of 

the wetlands sampled over the 9-year period of record (fetch >163 m; defined as the distance 

over which the wind can blow unobstructed) and comparatively short, sparse, surrounding 

canopy (3.1 m). It is important to note, however, that this is not necessarily the case earlier in the 

winter when the tree canopies are accumulating intercepted snow (Pomeroy et al., 2002) as the 

greater aerodynamic roughness imposed by the tree canopy limits the re-entrainment of 

deposited snow by the wind.  

Findings of this study suggest that relative to the WL and DF sites, SF sites typically receive the 

highest amount of end of season SWE. The open and relatively thin tree canopy at SF sites is 

sparse enough to minimize canopy interception, but inhibits turbulent fluxes by preventing wind-

driven sublimation and transportation. This is an important distinction between forests in more 

temperate environments, where a proportionally larger tree canopy can greatly increase 

interception. 

  Several studies have noted the existence of a “radiative paradox” to explain the long-

wave offset of decreases in shortwave irradiance with increasing canopy density (e.g., Woo and 

Giebrecht, 2000; Rowlands et al., 2002; Pomeroy et al., 2009). Lawler and Link (2011) suggest 

the existence of two incoming radiative paradoxes unique to discontinuous forests resultant of 

variable canopy gaps and changing solar elevation angles. The first paradox suggests that in 

small gaps, when solar elevation angles are relatively low, the snow surface may remain shaded 

throughout the day. Increases to longwave radiation remain minimal due to a relatively large sky 

view fraction resulting in all-wave radiative minima relative to both continuous canopy and open 

environments. The second paradox indicates a reversal of these conditions at high solar elevation 

angles. Gaps may receive similar amounts of shortwave radiation as open sites, and similar 



 34 

longwave radiation amounts as continuous canopy sites due to a relatively small sky view 

fraction. In this case, all-wave radiation can be higher in the small forest gap relative to both the 

continuous canopy and open sites, resulting in a radiative ‘hotspot’ which may be enhanced by 

warm tree boles that increase longwave emission (Pomeroy et al., 2009). 

  The phenomenon associated with the first paradox was observed during both years of this 

study, and is indicated by the ~35% contributions from L* to Q*. Despite this, shortwave 

reduction caused by the tree canopy was found to be the dominant control on snowmelt energy 

availability (consistent with Link and Marks, 1999). As a consequence, the snowmelt rate 

beneath forest canopies was lower than at adjacent treeless terrains (WL sites). Temporal 

changes in albedo throughout the melt periods were also examined, illustrating the reduction in 

albedo with time, and increasing forest density likely owing the increase in needle-leaf 

deposition. With contributions of ~35% from L* to Q*, the difference in albedo between wetland 

and forested areas served as an important factor affecting changes in land cover specific surface 

energetics for this study area. Generally, contributions from L* only account for a small fraction 

of the shortwave that is blocked by the canopy (Metcalfe and Buttle, 1998) and as such, K↓ 

remains the controlling radiative flux.  

  While it is not novel to state that K↓ is the dominant flux controlling snowmelt, it is 

important to examine the implications of this given a changing landscape. The Scotty Creek 

basin is undergoing a rapid conversion land cover types from forest to wetland in response to 

permafrost thaw (Quinton et al., 2003; Chasmer and Hopkinson, 2016). Under a hypothetical 

complete conversion of forested plateaus to permafrost-free wetlands, Helbig et al. (2016) 

suggest a near-surface cooling of 3-4 °C in late winter, due to the increase in albedo of a treeless 

landscape. In this study we show that WL sites lose their snowpack more rapidly than forested 
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sites. Combining the results of Helbig et al. (2016), it may be expected that a hypothetical 

homogenous, wetland landscape may experience a delayed onset of snowmelt (in response to 

local cooling), but will lose the snowpack quicker once snowmelt has commenced. A more rapid 

release of snowmelt water will delay the lag time between snowmelt and peak flows during the 

spring freshet, producing a flashier hydrograph and providing less storage on the landscape. 

2.5.2 Permafrost thaw induced changes to SWE and melt runoff: 

The increased proportion of the snow cover that contributes meltwater for landscape 

runoff to the basin drainage network (e.g. channel fens), may also be a factor contributing to the 

rising annual runoff from streams and rivers in the study region (Connon et al., 2014). This 

possibility is supported by the rising runoff ratios of streams and rivers during the annual 

snowmelt periods. At Scotty Creek, permafrost thaw results in the transformation of forested 

peat plateaus (DF and SF) to wetlands (WL). As documented in this study, the mechanisms for 

snow accumulation and melt are different between these land cover types. As permafrost thaws 

and the relative proportion of these land cover types change, total SWE accumulation and the 

timing of the release of meltwater will also change. Furthermore, permafrost thaw has led to 

increased surface and subsurface connectivity of wetlands that is fundamentally changing the 

way in which water is routed and stored on the landscape (Connon et al., 2014, 2015). Water is 

routed to the basin outlet through a network of channel fens (Quinton et al., 2003; Hayashi et al., 

2004), which are amalgamating and coalescing with bogs in response to permafrost thaw. This 

process increases the effective contributing area of the basin and has been shown to increase 

basin runoff ratios in recent years (Connon et al., 2014; Chasmer and Hopkinson, 2016). As a 

result, the amount of SWE that is made available for runoff upon melt is proposed to increase.   
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In a change detection analysis, Connon et al. (2014) found that for the period 1977 to 

2010, total forested area decreased by 7% over a 6 km2 area at Scotty Creek.  End-of-winter 

SWE has been measured at different land cover types at Scotty Creek for 10 years (2006-2015). 

Average SWE for each land cover type was calculated over this 10-year period and was used to 

calculate areally weighted end-of-winter SWE based on the forest (SF and DF) to wetland (WL) 

ratios for 1977 and 2010. Given a constant input of SWE, but applied to different land cover 

conditions, total areal SWE decreased by 1.5% (120 mm to 118 mm) over the 33-year period; a 

negligible change given the inter-annual variability in SWE.      

This represents the change in SWE accumulation strictly by change in land cover type 

and does not include the effects of increased connectivity. Over the same time period (1977-

2010), Connon et al. (2014) found that the area of the basin capable of transmitting runoff to the 

basin outlet increased from 31.4% to 41.8%. Using these estimates, the amount of SWE made 

available as runoff increased by 25% (37 mm to 49 mm) over the 33-year period. The increase in 

available runoff due to changes in surface and near-surface hydrological connectivity 

substantially outweighs the decrease caused by transformation of land cover type.              

These hydrological changes are evident in increased basin runoff ratios in the lower Liard 

River valley (Connon et al., 2014; Chasmer and Hopkinson, 2016). Collection of stream flow 

data by the Water Survey of Canada at Scotty Creek began in 1996, and is therefore insufficient 

in length to analyze change over long time periods. Jean-Marie River, a 1310 km2 basin located 

adjacent to Scotty Creek has streamflow data commencing in 1976 and exhibits similar land-

cover characteristics to Scotty Creek (Quinton et al., 2003). The changing runoff regimes at 

Jean-Marie River are evident when comparing the 10-year average composite hydrographs for 

the periods 1976-1985 and 2006-2015 (Figure 7), especially during the spring freshet period. 
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Average annual runoff more than doubled between the two periods (87 mm to 193 mm), while 

annual precipitation increased marginally (365 mm to 402 mm). This resulted in a doubling of 

basin runoff ratios, from 0.24 to 0.48, further illustrating the enhanced efficiency of transporting 

precipitation inputs to the stream network.  

2.6 Conclusions: 

Recent work in the wetland-dominated, southern fringe of discontinuous permafrost has 

demonstrated that the relative proportions and spatial arrangement of land cover types within this 

zone is changing due to climate warming. This warming-induced land-cover change is changing 

the water balance at basin and regional scales.  

Our results demonstrate that permafrost thaw in the study region is changing how 

snowmelt is partitioned between storage and runoff with potentially important implications for 

water resources. Here, we have characterized the snow cover and melt regimes over three 

characteristic terrain types; wetland, sparse forest, and dense forest. We have evaluated the effect 

of changes to tree-covered area and canopy density on the volume and timing of snowmelt at the 

end of winter. This information has demonstrated that permafrost thaw driven conversion of 

forests to treeless wetlands has marginally decreased areal SWE while increasing the amount of 

SWE made available as runoff. The increase in available runoff due to changes in surface and 

near-surface hydrological connectivity substantially outweighs the decrease caused by 

transformation of land cover type.           

The partitioning of these land cover types based on energetics and accumulation and melt 

patterns poses important implications to water resources should land cover change continue to 

occur. Since K↓ was found to be a controlling radiative flux it can be reasoned that open areas 

will lose snow more quickly than forested areas. Should permafrost thaw driven land cover 
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conversion from forest to wetland continue, we predict to see a more rapid snowmelt and in turn, 

more exposed ground cover for a longer duration which could lead to increased thaw rates. 

Hydrologically, this could have implications for the volume and timing of runoff (flashier 

hydrographs with higher spring peaks) and influence the rate and spatial pattern of permafrost 

thaw. As there is a dearth of knowledge on the quantification of the variation of melt rates and 

snow cover depletion in the fringe zone by field measurements during melt, more studies like 

this are required to be able to better simulate snowmelt, ground thaw, and runoff for this region.  
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Figure 1. (a) Location of study site. (b) Classified 22 km 2 image of the Scotty Creek basin 

illustrating location of meteorological stations used in study. c) 0.14 km2 area-of-interest (AOI) 

with 40% forest and 60% wetland coverage.  

c) 
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Figure 2. Average daily air temperature (Ta), experienced at Scotty Creek; (b) Line plot 

illustrating change in snow depth (m) throughout the 2014 and 2015 melt seasons for the forest 

and wetland land cover types. 
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Figure 3. Scatterplots illustrating measured and computed daily total melt rates in mm for WL, 

SF, and DF sites in (a) 2014; R2 = 0.73, 0.74, 0.51 and (b) 2015; R2 = 0.85, 0.76, 0.68.  

 

a) 

b) 
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Figure 4. (a) Scatterplot illustrating agreement between total daily snowmelt energy and 

modelled total daily K↓, both in megajoules for the various transect locations (WL>SF> >DF; R2 

= 0.64 to 0.87). Scatter plots illustrating relationship between computed daily snowmelt and total 

daily measured K↓ for 2014 and 2015. K↓ was found to be the dominant flux contributing to 

snowmelt for all land cover types studied. 
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Figure 5. Line plot illustrating cumulative snowmelt energy in megajoules for the 2014 and 

2015 periods of study for wetland, sparse forest, and dense forest land cover types. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. (a) Location of trees combined and distribution of incoming solar radiation to the 

ground for the study periods in megajoules. (b) Image inset presents 0.14 km2 AOI illustrating 

routinely surveyed snow transects, location of meteorological stations used in study, as well as 

the distribution of snowmelt energy in megajoules based on cumulative daily modelled incoming 

shortwave radiation receipt to the ground. 
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Figure 7. Composite hydrograph of Jean-Marie River for the time periods 1976-1985 and 2006-

2015. 

 

Table 1. Average depth, density, and SWE for each landcover type. Values were computed 

based on data collected through routine snow surveying for the end of winter snowmelt in 2014 

and 2015; Geonor data was obtained and adjusted from the Scotty Creek Research Station.  

 

 
 

 

Table 2. Snow cover duration period. 

 

 
 

 

 

 

Year Land Cover Start End Days

DF 18 Apr 01 May 13

SF 18 Apr 27 Apr 9

WL 18 Apr 26 Apr 8

DF 12 Apr 05 May 23

SF 11 Apr 27 Apr 16

WL 10 Apr 20 Apr 10

2014

2015
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Table 3. 2014 and 2015 total snowfall values for Scotty Creek and Fort Simpson. 

 

 

 

Table 4. Percent contribution from each computed energy balance component to the total energy 

available for melt; absolute values taken for fluxes expressed as an energy loss from the 

snowpack. 

 

 
 

 

 

 

 

 

 

 

Scotty Creek Fort Simpson Scotty Creek Fort Simpson

Corrected Raw Corrected Raw

(mm) (mm) (mm) (mm)

October 11.5 6.2 46.2 40.8

November 27.7 20.4 29.0 20.6

December 26.5 19.6 14.7 21.6

January 46.4 30.6 30.0 15.4

February 9.7 6.2 50.4 39.0

March 11.4 4.0 22.5 19.0

April 8.6 5.0 22.7 10.0

May 2.0 3.6 1.3 0.6

Annual 143.7 95.6 216.6 167.0

Month

2014 2015

Year Land Cover Qe Qh
Q*

DF 8 12 80

SF 10 10 80

WL 15 17 68

DF 8 16 75

SF 8 5 87

WL 12 18 70

2014

2015
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Chapter 3:  

3.1 Summary and Conclusions: 

Recent global climate trends suggest evidence of a northward migration of atmospheric 

moisture (Peterson, et al., 2002). This makes the investigation of snow accumulation and melt in 

regions dominated by these processes to be of greater concern due to the implications on the 

frequency and form of precipitation events (Peterson, et al., 2002).  

At high latitudes, snow has a significant influence on hydrological and atmospheric 

processes. Large portions of these regions are covered by evergreen coniferous forests which 

affect energy and mass exchanges between the atmosphere, canopy, and ground surface (Eaton et 

al., 2001). Beneath a forest canopy, energy budget dynamics are strongly influenced by the large 

spatial variability of radiative and turbulent transfers (Pomeroy et al., 2008). The spatial 

variation of shortwave irradiance to snow is important to quantify as it can affect the depletion of 

snow covered area and areal melt rates (Pomeroy et al., 2008). However, the magnitude of this 

variation has been sparsely quantified by field measurements during melt. The spatial variability 

of melt energy derived from radiation on cloudy days has been shown to be vastly different from 

that experienced on sunny days highlighting the variability in downwelling radiant energy, 

(Rowlands et al., 2002). 

The degree of influence to which radiative and turbulent transfers are affected is 

dependent on the structure of the forest canopy and density (Hardy et al., 2004). For instance, 

trees pose substantial implications to the spatial distribution of melt energy. Trees attenuate a 

large part of the incoming solar radiation, shelter the snow surface from wind, and thereby 

reduce the amount of energy available for melt by dampening turbulent fluxes; making snowmelt 

dependent mainly on radiative fluxes (Boon et al., 2009; Davis et al., 1997). Additionally, trees 
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alter snow surface albedo in that leaf litter deposited onto the snow surface will increase with 

increasing canopy cover and lead to increased melt rates (Sicart et al., 2003).  

While canopy density and structure have been identified as primary factors affecting the 

spatial distribution of radiative fluxes, studies have also shown forest canopy disturbance to be a 

controlling factor in generating peak streamflows (Burles and Boon, 2011). This is due to the 

decrease in sublimation loss from interception and blowing snow from the forest canopy, (Burles 

and Boon, 2011; Pomeroy et al., 2012). Furthermore, Eaton (2001) has shown a clear 

correspondence between energy balance characteristics and terrain types after examining the 

surface energy balance of five sites across western and subarctic Canada, and the major 

variations between these terrain types. 

These studies highlight the variability in surface energetics across a landscape, and the 

subsequent importance of developing an accurate characterization of the radiation regime 

beneath a forest canopy. This is necessary for the parameterization of physically-based canopy 

models, as well as for the assessment of variability in short and longwave radiative components, 

as well as for input to energy-balance models concerned with ground conditions beneath a 

canopy (Pomeroy et al., 2009). As this region remains snow covered for most of the year, and 

the end of winter snowmelt event produces the most prominent feature of stream hydrographs in 

cold regions, changes to basin snow covers resulting from permafrost thaw-induced land cover 

change have the potential to disrupt the hydrological cycle of basins throughout the fringe zone. 

Therefore, in order to understand the long-term implications of land-cover changes occurring 

throughout this region on late-winter snow distribution, melt and runoff, it is necessary to 

understand how the major land cover types of this region differ with respect to their snow covers 

and their rates and patterns of snowmelt. 
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Here, I have characterized the snowcover and snowmelt regimes over a spectrum from 

treeless terrains to dense canopies. Using this information, I have evaluated the effect of changes 

to tree-covered area and canopy density on the volume and timing of snowmelt at the end of 

winter. Analysis of historical imagery suggests that wetland coverage within a 0.14-km2 area-of-

interest increased by approximately 7 % between 1977 and 2010. Over the 34-year period, total 

areal SWE decreased by 1.5 %, but the amount of SWE made available as runoff increased by 

25%. The increased proportion of the snow cover that contributes melt water to streams may be a 

factor contributing to the rising steam flows observed across the study region in the mid-1990s 

and early 2000s, given that there has been no concomitant increase in winter-time precipitation. 

This could pose substantial implications for water resources and management within the 

region should climate change continue. As there is a deficit of knowledge on the quantification 

of the variation of melt rates and snow cover depletion in the fringe zone by field measurements 

during melt, more studies like this are required to be able to better simulate snowmelt, ground 

thaw and runoff for this region. 
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