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ABSTRACT 

 

POTENTIAL FOR DEVELOPING RUN-OF-RIVER SYSTEMS IN EASTERN 

KENTUCKY: 

A GIS APPROACH TO SITE SUITABILITY 

 

Thomas Jeffords 

April 24, 2018 

 

Coal has a questionable future with the potential exhaustion of available coal.  

Alternate sources of energy production should be considered, such as hydropower dams, 

or the more environmentally friendly, Run of River (RoR) hydropower system. This 

study seeks to answer the question: What is the potential for RoR hydroelectric systems 

in Eastern Kentucky counties with significant decreases in coal production and 

employment?  I hypothesize that GIS will identify suitable sites within Pike County for 

RoR systems. 

Site suitability for Eastern Kentucky was assessed and determined that Pike 

County did not have a suitable physical environment for RoR systems.  The power 

generation was too low for efficient use.  Future studies could expand the research into 

other locations, focusing on watersheds with the most potential.  With appropriate 

landscape requirements, RoR systems have a smaller environmental impact than 

traditional dams, and potential for economic benefit from producing jobs and energy 

supply. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Coal’s Questionable Future 

As Earth’s finite energy resources are continually used and go through economic 

fluctuations, the need for more sustainable sources of energy become more important.  

The USGS preliminary proposal (2015) indicates that coal production in Central 

Appalachia has been decreasing since its peak in 1990, seeing large losses in demand 

between 2006 and 2011 with the large decrease in use of the electricity sector.  Coal 

production for Central Appalachia is projected to continue to decrease by about 53% 

between 2011 and 2040 as market prices, labor productivity, foreign competitors, and 

national demand undergo changes (Milici 2000 and McIlmoil et al. 2013).  Additionally, 

on a global scale, coal production is expected to peak in 2050 with China becoming a 

leading producer, although their reserves are not fully known and many studies debate 

their peak production based on reserves and potential production (Zaipu and Mingyu 

2007; Lin and Liu 2010).  Although studies predict there to be hundreds of years of 

geologically available coal, not all of it is feasible for recovery. Technological 

improvements are helpful, but the biggest factor is economic sustainability (Höök et al. 

2010).  Ruppert et al. (2002) suggests that less than one half of available coal can be 

recovered due to mining restrictions, and only about one-tenth of the geologically 

available coal is recoverable based on economic restrictions.  
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1.2 Renewable Energy Resources 

A solution to this issue is to develop alternative sources of energy and revenue.  

One method is to use renewable sources for energy such as solar, wind, and hydro power.  

These methods can be considered clean energy with a lower impact than burning fossil 

fuels, but they still can have an impact on the surrounding environment (Akella at al. 

2009).  For hydro power, dams are built to collect water that can pass through turbines to 

generate energy based on the hydraulic head and discharge of the waterway (Lyndon 

1916; Renewables First 2015).  Hydropower is the amount of electricity that is generated, 

and energy is derived from this generation further by multiplying by a time variable 

(Oregon State University 2002). Because reservoir or impounding dams store a large 

amount of water to create an artificial head, the natural flow of the waterway is altered, 

resulting in various environmental impacts (The Constructor 2017). Graf (2006) reviewed 

literature on downstream effects of 36 large dams throughout the U.S to quantify 

hydrologic and geomorphic changes.  Not only do the findings show that larger dams 

have a significant impact on downstream hydrology and geomorphology, but there is 

regional variation between dams that adds to the complexity of the issues, such as 

differences in rivers as described by Benke and Cushing (2005).   Some of the hydrologic 

results of the study show peak flow was reduced after being controlled with dams, which 

could overall have negative impacts on riparian areas that are dependent on flooding 

(Doyle et al. 2005).  Many areas have grown to survive in flood plain areas and those 

areas can be impacted as well.  It was also noted that because of the low flow and high 

flow dates that large dams rotate between, avian species may try to nest during low flow, 

and if the dates change then there can be effects on bird populations.  Geomorphic effects 
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show the standard active areas of rivers are reduced considerably, sometimes up to 91% 

less area, showing large dams’ great ability to modify hydrologic regimes (Graf 2006). 

Ecological implications from the study included changes in vegetation habitat for 

downstream areas that are important to wildlife.  Biodiversity changes occur with 

changes in the hydrologic regime.  Magilligan and Nislow (2005) as well as Yang et al. 

(2007) studied how dams change the amount and distribution of sediment that travels 

downstream, causing ecological and water quality impacts.  Species diversity in aquatic 

habitats are impacted when a change in sediment transport occurs from dam 

constructions. Construction and maintenance can cause critical areas like spawning 

surfaces to be covered in sediment fines upstream of the dam.  Conversely, a reduction in 

flow from the dam would reduce sediment and nutrients from moving downstream as 

resources that some species would have originally depended upon. 

1.3 Power and Energy Generation 

 Typical hydropower dams store large amounts of water to produce their own 

hydraulic head, which is the measurement of liquid pressure above a geographically 

referenced coordinate system.  Water is channeled through turbines to create electricity. 

Large dams in U.S. represent over 20 GW of electricity capacity (2%) (Energy Storage 

Association 2017).  Electricity is produced in the form of energy.  Energy is measured in 

joules (j) in the International System of Units and one joule is equal to 1 watt second in 

electricity (Encyclopedia Britannica 2017).  A watt (W) is a measurement of power 

through how much energy is used over time. There are 1,000 watts in a kilowatt (kW), 

which is how most watt unit power is displayed.  In terms of time, a kilowatt hour (kWh) 

explains the amount of energy used for 1 kW of power in an hours’ time.  Home energy 
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reports are often explained in terms of kWh (IGS Energy 2016).  Larger power usage are 

displayed in megawatt (MW) (1,000 kW) which is typically how hydroelectric storage 

dams explain power generation. For example, the Hoover Dam, which is mainly used for 

flood control, but does have hydropower capabilities, has a 2,000 MW capacity, and 

produces 4.5 billion kWh of power a year for 8 million people in the Southwest United 

States (Arizona Power Authority 2012). 

1.4 Run-of-River Systems 

 A method of attaining hydropower with a smaller environmental, economic, and 

social impacts includes a form of distributed renewable energy called run-of-river 

systems (RoR) (USGS Preliminary Proposal 2015).  Distributed energy systems convert 

power in locations close to energy consumers, as opposed to centralized units like power 

plants (Alanne and Sarri 2006). RoR distributed energy systems have lower power 

capacity and lower costs/impact ratio that could be seen as beneficial to local 

communities (McIlmoil et al. 2012). This system works by creating a small upstream 

pond called a weir that keeps a steel pipe (penstock) submerged. The penstock transports 

water down to a power house where turbines generate the power.  The energy is directly 

fed to transmission lines instead of being stored, and the water is returned to the river at 

the end of the RoR system.  There are different levels of these systems from small to 

micro power generators ranging from about 30 MW to less than 100kW. These systems 

can be considered RoR as long as they do not have a significant impact on the natural 

flow of the stream and have a smaller environmental impact than traditional hydropower 

storage dams (USGS 2015). A study in Oregon on the South Fork Coquille River, and the 

Chetco River reveal some potential for RoR energy generation. Some low discharge 
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measurements (5-10 cfs) yielded ~ 4-8 kW, coming to ~37,000 to 74,000 kWh per year. 

Higher discharges (55-120 cfs) resulted in 46-101 kW, at ~407,000 to 880,000 kWh per 

year (Oregon State University 2002). For perspective, according to the U.S. Energy 

Information Administration, the 2015 average annual electricity consumption per 

household for the U.S. was about 10,812 kWh, at about 901 kWh per month. (EIA 2016).  

1.5 RoR Considerations 

 As pointed out by Rojanamon et al. (2009), there are social, economic, 

engineering, and environmental aspects that need attention when implementing RoR 

systems.  Important points from Rojanamon et al. (2009) that will aid this study are their 

GIS applications using digital elevation models to find waterways with proper a 

hydrologic head (which is usually no more than 30ft), discharge estimations to 

accompany various head heights, and determining downstream environmental impact of 

the RoR implementation.  Using this analytical framework, Rojanamon et al. (2009) were 

able to identify potential sites that met all of their criteria and proved the ability to review 

a large area for RoR potential in the Nan River Basin of Thailand.   

 An additional study by Anderson et al. (2015) focused on the environmental 

impact of RoR systems.  Even though the RoR systems are an improvement to 

conventional hydro/turbine dams, they determined that there is evidence of potential 

disruption in the habitat availability, structure of biological communities, and potential 

for sediment transport and fish migration changes. Changes in the temporal and spatial 

scale of the RoR systems yielded differing levels of environmental impact.  In the 

conclusion of their study, they outline several suggestions for moving forward when 

implementing RoR systems, such as including experimental phases in development with 
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before-and-after impact studies.  They also recommended a greater level of 

interdisciplinary studies when developing hydro energy systems, such as hydro-

morphological and ecological research. They outlined the importance of hydro energy as 

well as its growth, while making sure to identify potential issues to be aware of that could 

help make RoR systems more environmentally friendly. 

 Other studies have looked at aspects such as the size of the hydropower plants 

based on turbines and discharge (Anagnostopoulos and Papantonis 2007).  This study 

was helpful in determining the optimal size, quantity and combination of turbines 

commonly used in the RoR systems giving them the ability to indicate the general 

procedure and equipment for different financial or hydrologic conditions. Additionally, 

cost of implementation is important as covered by at by Singal et al. (2010) and Okot 

(2013). Some advantages identified were the low operating costs, long lasting technology 

with systems that could last 50 to 100 years, and the availability of employment 

opportunities.  A big cost disadvantage are the high capital costs for implementation.  

Difference in hydraulic head also changed costs with lower head having a higher cost, 

and requiring a bigger discharge than high head RoR systems.  There is variation in costs 

of implantation depending on location. The cost per kilowatt changes based on labor 

costs, number of sites, and site condition parameters (Singal et al. 2010). 

 This study will employ a GIS-based analysis to evaluate the suitability of Eastern 

Kentucky for RoR systems in order to answer the question: What is the potential for run 

of river hydroelectric systems in Eastern Kentucky counties with significant decreases in 

coal production and employment?  I hypothesize that there were suitable sites within 
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county or watershed level locations in Eastern Kentucky for RoR systems, as determined 

through GIS. 

 Using GIS to determine suitable locations for RoR systems is ideal when 

reviewing large regions, and opens the possibility for more studies and hydro power 

implementation.  An improved mindset of environmental awareness means RoR systems 

could be a great asset to renewable energy production. 
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CHAPTER 2: STUDY AREA 

Identifying counties in Eastern Kentucky for the study were achieved using 

information from Kentucky Coal facts (2016).  Initially, only the counties that have had 

the largest percent decrease in coal production and employment were studied.  Pike 

County had a 33.69% decrease in production between 2014 and 2015, which was one of 

the largest decreases.  Additionally, Pike County has several stream gauges (Figure 1) 

recording discharge, a key variable required for any RoR site development analysis. 

 

Figure 1. Study Area and USGS Stream Gauges.  

Eastern Kentucky as a whole experienced a 25% reduction in coal production 

between 2014 and 2015, to about 28 million tons of coal.  Since 2000, Eastern Kentucky 

coal production for surface and underground mining has decreased by 74%.  The KY 
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Coal facts contains coal production and employment statistics to county level (Figure 2) 

which were used to determine other specific counties to focus efforts on determining 

appropriate land scape and river and stream characteristics for this study.   

 

Figure 2. 2015 Kentucky Coal Production (Kentucky Coal Facts 2016). 
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CHAPTER 3: DATA 

3.1 Physical Data 

A land cover data set gave a better understanding of how target areas are 

represented through land cover.  This study used the National Land Cover Database from 

2011 (updated in 2014). The NLCD contains 16 land cover classifications, at a spatial 

resolution of 30m in raster format.  The classifications are water (open water and 

perennial ice/snow), developed (open space, low intensity, medium intensity, high 

intensity), barren, forest (deciduous, evergreen, and mixed forest), shrubland (dwarf 

scrub, shrub/scrub), herbacious (grassland, sedge, lichens, moss), planted/cultivated 

(pasture/hay, cultivated crops), wetlands (woody wetlands, emergent herbaceous 

wetlands.  Landsat 5 Thematic Mapper provided the source imagery for this database, 

from which the imagery was classified into the specific land covers using decision tree 

algorithms (Homer et al. 2015).  Additional land cover information used included 

Kentucky local road, state highway and transmission line data layers, downloaded from 

the Kentucky geo portal (Kentucky Geography Network 2018). 

Elevation was important to this study in order to determine the hydraulic head of 

the streams. A digital elevation model with 1 arc-second (or 30 meter) resolution was 

used from the USGS National Elevation Dataset (NED 2018).  The USDA GeoSpatial 

Data Gateway (USDA 2018) provided a download for this data. 

Stream discharge information was needed for the study area obtained from the 

USGS National Water Information System (NWIS) which allows downloading of stream 
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gauge discharge data, including peak instantaneous, daily, monthly, and annual statistics 

of discharge in cubic feet per second.  This information can be downloaded into a table, 

graph, or table separated file.  

The National Hydrography Dataset provided stream layer data in order to ensure 

that point locations for potential RoR sites could be directly identified with relation to 

known streams (NHD 2018).  This database represents the water drainage network, and 

surface water features in the United States. 

3.2 Population Data 

Using the Census Estimates for 2016, population was used to assess the direct 

benefit for cities close to potential RoR systems (United States Census Bureau 2016).  

After calculating energy generation potential from the RoR systems, location and 

population information will aid in assessing how much of a nearby population could 

benefit from RoR distributed energy (Lei et al. 2009).  Knowing the total kWh potential 

of RoR systems near populated areas will show the direct benefit of energy production 

that homes or businesses could use.   
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CHAPTER 4: METHODS 

The success of RoR sites is dependent on how well an appropriate landscape is 

chosen and utilized.  Rojanamon et al. (2009) laid a successful frame work for identifying 

suitable RoR systems in the Nan River Basin in India.  As a result, many of their methods 

were used for this study in Eastern Kentucky to see if such an approach may be 

successfully developed elsewhere.  Additionally, proposed methods from the USGS 

Preliminary Proposal (2015) were used.  Determining site suitability requires watershed 

delineation, discharge, land cover and elevation data.  The multiple spatial layers and 

information were combined in ArcGIS to select the best candidates for RoR systems. 

Because of Pike County’s recent decline in coal production indicated from 

Kentucky Coal facts (2016), along with the vast range of elevation changes, it was chosen 

as the focus for this analysis.  Pike county elevation ranges from about 200 meters in the 

lowest elevation along the Western boundary, to the highest elevation of about 960 

meters at the peak of Pine Mountain.  Many towns, roads, and railways are located in the 

narrow ridges between the mountain peaks in Pike County (University of Kentucky 

2014). 

The National Hydrography Dataset was first loaded into arcmap and clipped to 

only include Pike County.  The Generate Random Points tool generated points along the 

NHD flowlines at intervals of 250 meters to create individual site locations.  The USGS 

Proposal suggested to check points every 100 meters, but this led to an inundation of 
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point locations with very similar physical characteristics.  The split lines at points tool 

next broke the NHD flowlines into 250 meter segments. Between each of these points, it 

was important to know the elevation change in that area of the stream.   

The 30 meter DEMs identified the change in elevation across the county.  Two 

DEMs were mosaicked to cover the entire county.  The extract surface feature tool 

identified the minimum and maximum elevation to add to the 250 meter line segments 

along the stream network.  To find the difference in elevation, the minimum z value was 

subtracted from the maximum z value and added as a z difference field to the point shape 

file.  The intersect geoprocessing tool paired up the 250m lines and points that were 

generated.  These points represented the un-edited potential locations for RoR systems.  

The intersect geoprocessing tool produced many duplicate values from the 

overlapping 250 m points and split line segments, and excel processing further removed 

duplicate elevation differences.  Before exporting the table to excel, the latitude and 

longitude were calculated so the points could be re added as a shapefile to arcmap.   

After the points were added as a shapefile, they were next subsetted based on the 

land cover. A NLCD layer was clipped to Pike County, and then using the raster to 

Polygon tool, was converted to a vector layer.  From this layer, a selection was performed 

to exclude urban development and agricultural land covers.  There are many important 

structural components of the RoR systems such as the water intake weir, power house 

(small generator and connection to power grid), surge tank (for sudden changes in 

pressure), headrace and tail race (where water enters and leaves system), and penstock 

(small pipe used to deliver and control water flow to the power house) Rojanamon et al. 

(2009), (Figure 3).  Ensuring there is available, undeveloped space is important for 
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identifying locations to build RoR systems.  Based on the NLCD selection, the 250m 

points were clipped to only include those that were located on the remainder of the 

NLCD shapefile.   

 

Figure 3. Run of River System Example (SSWM 2010) 

In order to ensure the accessibility of RoR sites, they need to be geographically 

close to roads.  Between road and transmission line GIS layers, the two were usually 

located right next to each other, as well as the rivers and streams.  This study opted to clip 

the RoR potential sites that were within a kilometer of a road.  The next subset was based 

on elevation difference.  To expand the potential site selection, Elevation differences 

between 8 to 50 feet, or about 2.5 to 15 meters were selected.  This ensured that the study 

had a proper elevation change for the RoR hydraulic head.  In Table 1. below from the 

USGS Preliminary Proposal (2015) hydro plant classifications are correlated with 

hydraulic head height in feet, and the power capacity in megawatts (MW).   
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Table 1. Classification of small to micro hydroelectric plants (USGS Preliminary 

Proposal 2015). 

 To determine annual discharge, the most reliable method would be to directly use 

a stream gauge on the potential stream for the RoR system.  There are 7 gauges within 

Pike County but not all have historical discharge data.  Table 2. has information about 

each gauge. 

  

Table 2. Pike County Gauging Stations  

 Rojanamon et al. (2009) determined discharge using a regional flow duration 

model as there were no stream gauging sites located near the watershed being 

investigated for RoR systems.  While the USGS gauge network is extensive, it will not 

cover every stream location needed in this study.  To estimate discharge for streams that 

do not have an associated gauge, this study will use the Drainage-Area ratio method 

(Asquith et al. 2001).  A ratio between the area draining to the known gauge and the 

ungauged site is first determined. The ratio is then multiplied by the known gauged 

Plant Classification Hydraulic Head (feet) Power Capacity (MW)

Small > 30ft 1-30 MW

Low-power < 30ft < 1 MW

Mini-hydro 100 kW-1 MW

Conventional 8-30ft

Unconventional < 8ft

Micro-hydro < 30ft < 100kW

Station # Station Name

Drainage Area 

in km sqr

Historical 

discharge record

3210000 Johns Creek nr Meta, Ky 90.61 km 1941-2018

3209500 Levisa Fork @ Pikeville, Ky 1982.71 km 1938-2017

3207995 Fishtrap Lake nr Milliard, Ky 630.86 km N/A

3208000 Levisa Fork below Fishtrap Dam nr Millard, Ky 630.86 km 1938-2000

3207965 Grapevine Creek nr Phyllis, Ky 9.98 km 1974-2016

3209300 Russell Fork @ Elkhorn City, Ky 891.58 km 1961-1992

3213700 Tug Fork @ Williamson, WV 1506.35 km 1968-2018
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discharge to find estimated discharge for the ungauged site.  The formula to determine 

the drainage-area ratio is as follows. (Equation 1) 

 

Y = X (Ay/Ax)
φ      

(1) 

Y = The stream flow of the ungauged location. 

X = The stream flow of the gauged location. 

Ay = Drainage Area for ungauged location 

Ax = Drainage Area for Gauged location 

φ = 1,
 
showing the method is a direct proportion. 

 

To verify this method can accurately estimate the annual discharge for ungauged 

sites, the drainage area ratio method was calculated against known gauged sites to show it 

could reasonably estimate discharge.  Table 3. shows the testing gauge sites used, and 

Table 4. shows the reference gauge to be used for the drainage-area ratio method.  These 

gauges are located within or adjacent to the same county for this study and represent 

similar biophysical conditions.  They are also the only gauges of the 7 in Pike County 

that have necessary long term annual discharge data (1981-2010). 

 

 

Table 3. Test gauge sites for drainage-area ratio method. 

Gage# Area (km2)

Area Ratio to 

Levisa Fork

Observed 

Ann Q (cms)

Estimated 

Ann Q (cms)

Estd-Obs 

Q

St Johns 3210000 145.8 0.046 1.75 1.79 0.04

Tug Fork 3214500 3315.2 1.039 40.8 40.62 -0.18

N Fk Kentucky3277500 1206.9 0.378 15.1 14.79 -0.31
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Table 4. Levisa Fork area and cms discharge. 

In order to calculate drainage area and then discharge for the potential RoR sites, 

the 30 meter DEM created a fill, flow direction, and flow accumulation layer.  With the 

flow accumulation layer, it is possible to determine which pixels of a raster contribute to 

segments of streams in a watershed. Using the extract value to points tool, the drainage 

area in pixels is added as a file to each of the 250 meter points.  Area in kilometers is 

calculated which gave the drained area for each of the associate points.  There were many 

small drainage areas, so the layer was subsetted further to only include those with at least 

1 kilometer drainage area.  This information was exported into excel for further analysis. 

Using the drainage-area ratio method, annual discharge was calculated in cubic 

meters per second for each potential RoR location.  Finally, power was calculated using 

the Oregon State University (2002) power calculations, suggested by the USGS 

preliminary proposal (2015).  Power is determined by multiplying discharge by the 

specific weight of water, and by the hydraulic head (ft) (Equation 2).  Energy is then 

further determined by multiplying power by a time interval (kWh) (Equation 3). 

 

Power = Discharge (cfs) * Specific Weight of water (61.4 lbf/ft
3) 

* Hydraulic Head (ft) 

(2) 

Energy = Power * time interval (kWh) (3) 

 

 

 

Levisa Fork Area (km2) 3190.9

Levisa Fork Ann Q (cms) 39.1
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CHAPTER 5: RESULTS 

Table 5. shows the highest kWh calculation for potential RoR sites for sites with 

over 1km drainage area.  For a full list of potential RoR locations, see appendix.  Based 

on the Area-Drainage ratio method, there were varying discharge rates with the highest 

reporting about 1 to 2 cubic feet/second (csf), or .01 to .05 cubic meters/second (cms). 

 
Table 5.  Highest ten kWh results. 

 

The drainage area for these potential RoR locations were very small, with the largest 

having an area just over 4 sq. km. When looking directly at the potential RoR sites, of the 

two best results, one location had a hydraulic head of 32 feet with a higher cfs of 2.1, and 

the next had a hydraulic head of 44 feet, and a lower cfs of 1.6.  Respectively, these had 

an annual power generation of 52,835 kWh and 51,674 kWh based on the estimation 

from the average annual discharge from the Levisa Fork Gauge near Pikeville.  Based on 

the plant classification from the USGS Preliminary Proposal (2015), these two sites 

would be a micro-hydro classification as they produce less than 100 kW.  If the discharge 

for these areas was greater, they could be classified as a small hydro-power plant because 

z_diff 

(feet) km_sqr

area ratio to 

levisa

estimated 

cms cfs

 cfs*head*specific 

weight of water 

(lbf-ft/s)

divided by 550lbft-

ft/s = Horsepower

1hp=.746 

KW

annual 

kWh

44.054 3.6963 0.001158388 0.045292968 1.617606 4446.74967 8.0849994 6.0314096 52,835.15 

32.6363 4.8798 0.001529286 0.059795099 2.135539 4349.036585 7.907339245 5.8988751 51,674.15 

41.9669 1.7361 0.000544078 0.021273468 0.759767 1989.62738 3.617504328 2.6986582 23,640.25 

16.4981 4.2219 0.001323106 0.051733458 1.847623 1902.094088 3.458352888 2.5799313 22,600.20 

44.7643 1.4157 0.000443668 0.017347416 0.619551 1730.585862 3.146519749 2.3473037 20,562.38 

38.8652 1.6074 0.000503745 0.01969643 0.703444 1705.984153 3.101789369 2.3139349 20,270.07 

25.1135 2.4768 0.000776207 0.030349707 1.083918 1698.588988 3.088343614 2.3039043 20,182.20 

30.1223 2.034 0.000637438 0.024923815 0.890136 1673.128126 3.042051137 2.2693701 19,879.68 

42.4391 1.4157 0.000443668 0.017347416 0.619551 1640.693733 2.983079514 2.2253773 19,494.31 

33.1167 1.782 0.000558463 0.021835908 0.779854 1611.554048 2.930098269 2.1858533 19,148.07 
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their hydraulic head is above 30 feet and could potentially have greater than 1 MW power 

generation.  Compared to the average estimated household energy use by the U.S. Energy 

Information Administration (2015), the average house hold uses just under 11,000 kWh a 

year, each of these two sites only produce about 52,000 kWh annually.   

Paw Paw City is nearest to Site 1, and Kimper City is closest to Site 2.  Both are 

listed as a “populated place” bv the Geographic Names Information System (2018) and 

do not seem to be included in the latest census estimates (United states Census 2016). 

Figures 4. and Figure 5. show aerial imagery of the areas taken from google maps 

showing the terrain close to the potential RoR sites identified in this study.  Figure 6. 

shows where all of the potential RoR sites are located, along with the best candidates and 

the cities closest to them. 

Figure 4. Paw Paw city (Google Maps 2018). 

Figure 5. Kimper City (Google Maps 2018). 
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Figure 6. Pike County RoR sites. 

There is a drastic elevation contrast throughout Pike County including low 

elevation areas with some of the bigger rivers like Levisa or Russel Fork in the Western 

region, and the higher peaks of the mountain ranges throughout the county.  While the 

elevation change is important to have a hydraulic head high enough to produce 

electricity, most of the potential RoR sites were located on small streams that would only 

have a few square kilometers of drainage area due to the contrasting landscape.  The 

lower energy generation of a RoR hydro-power plant in these regions would not be worth 
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the costs of initial infrastructure development if it couldn’t only support itself, or one 

other home with power. 
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CHAPTER 6: DISCUSSION 

6.1 Limitations 

While Pike County did not yield any candidates for further study to develop RoR 

systems, there proved to be potential for using GIS to determine appropriate locations for 

RoR implementation.  Elevation, land cover, and annual discharge were the important 

factors in originally determining potential locations.  Many levels of sub setting were 

implemented to ensure the locations had appropriate elevation change, relative closeness 

to roadways, and were not being placed within developed or agricultural areas.  It would 

be simple to extend this procedure to other areas in the United States for future studies.  

This should be very evident based on the success of other RoR projects such as in the 

Nan River Basin from Rojanamon et al. (2009), or studies from Oregon State University 

(2002).  The use of the Drainage-Area Ratio Model for this study was an efficient way to 

estimate discharge for ungauged locations.  Originally the plan for this study was to 

follow the suggestion of the USGS preliminary Proposal and use the USGS StreamStats 

program (StreamStats Version 3, 2015).  Using StreamStats, it is possible to delineate 

basins, compute basin characteristics, and compute flow statistics like peak and average 

annual flow estimations.  The program is well supported, and has specific algorithms 

based on different states.  StreamStats has a batch processing tool that allows the user to 

submit a shapefile with up to 200 points and then calculate the desired statistics from 

those points.    However, StreamStats become a major shortfall with this project as a 
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method to estimate discharge at unknown sites.  When using the batch processing tool, it 

was important to ensure that generated points of interest were snapped to the streamgrid 

that was provided by USGS StreamStats.  After submitting the shapefile, the data is 

placed in a queue and a confirmation email is sent out.  The queue can take several days 

to get through, and it does not always return all data points.  Because the program is 

limited to 200 points at a time, large scale studies would need to plan in advance while 

StreamStats processes, or ensure that the shapefile point layer was properly subsetted to a 

manageable amount of points.  StreamStats was not the best option for this study as there 

were originally several hundred potential RoR candidates locations.  If the study was to 

focus on smaller watersheds that had specific interest from the population and 

governance, StreamStats batch processing would be a more adequate tool. 

6.2 Future Studies. 

 For locations with a suitable landscape for RoR systems, the next step would be to 

further evaluate the discharge for the region.  Monthly average, peak, and minimum flow 

are important to ensure RoR systems can run on a year round basis to be efficient.  The 

drainage area ratio method may not be a suitable method to estimate discharge on a 

monthly scale, so further research, and potential site visits would be necessary at this 

point.  

 RoR systems are implemented for their lower cost and small environmental 

impact, but there will still be some form of impact that should be accounted for. 

Anderson et al. (2015), looked at site specific considerations to assess issues like water 

flow disruption from the weir, or disruption from the tailrace where water reenters the 

stream.  Considerations on maintenance and construction were also assessed regarding 
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their potential for disruption.  Their paper assessed multiple studies and the impact from 

various sizes of dams and RoR systems.  Comparing between the potential and size of 

RoR system locations identified by this study, and examples of impact given by 

Anderson et al. (2015), Site 1 and Site 2 did not meet the energy generation to relate to 

the given examples. Some of the expected disruptions that could occur with a higher 

discharge and energy output would be reduction in species population between the head 

and tailrace, known as the depleted stretches.  Examples given by Anderson et al. (2015) 

indicated small spawning fish were found absent, mayfly populations reduced, and one 

example showed drops in salmonid populations from RoR systems of less than 1MW 

generation in Europe.  If a weir was used to divert stream flow, many migratory aquatic 

species were also hindered.  While the RoR potential sites in this study had a very small 

energy potential, their expected impact would be similar because the water diversion is a 

key part of the RoR systems.  As suggested by Anderson et al. (2015), the environmental 

impact would be an important part of the RoR system into the future as it would need to 

be monitored, and especially tailored to fit each system.   

 While coal development is in a decline, as indicated by the yearly Kentucky Coal 

Facts report, some mines within Pike County are also set to reopen.  The Southern Coal 

Corporation, for example, plans to reopen some mines to restart production again.  This is 

exciting for individuals who previously relied on the lost jobs from the coal mines that 

were closed (McCauley 2017).  But as some companies suggest, coal is not always an 

option for sustainable income or energy into the future. Additional sources of energy 

through RoR hydro power systems is not an option for Pike County, but there are other 

ideas that have been given attention.  Berkley Energy Group, a Pike County company, is 
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studying the potential to implement solar power fields in the unused strip mining 

locations.  The company’s goal would be a 50 to 100 MW solar farm, making it the 

biggest in Kentucky, and the first large scale solar energy farm in Appalachia (Estep 

2017; Bruggers 2017).  They are working with EDF Renewable energy who have 

implemented 885 megawatts of solar projects in North America.  If the studies show 

promising potential, EDF would be financing the project.  The goal of implementing 

solar power into eastern Kentucky would still not be to replace coal, but as all of the coal 

has been extracted in some of their strip mining locations, the project could add 

additional sources of revenue and employment for populations that have relied heavily on 

coal in the past. 

 6.3 Conclusion 

In conclusion, the objective of this study to use GIS to locate potential locations 

for RoR systems was achieved, although it was identified that Pike County in Eastern 

Kentucky did not meet the criteria, so my hypothesis was not supported. The landscape 

has plenty of elevation change to produce an artificial hydraulic head to meet energy 

production needs, but there was not enough associated discharge for RoR systems to be 

efficient.  Much of Pike County has varying elevation change due to the mountain ranges, 

and the sharp contrast could be part of the issues with discharge, as many of the streams 

segments with a good hydraulic head only had a few square km of drainage area.  While 

Pike County in Eastern Kentucky did not have suitable physical characteristics, other 

regions should be investigated for RoR potential to continue to expand the use of 

sustainable energy resources in the U.S. 
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APENDIX 

 

 

z_diff 

(feet) km_sqr

area ratio to 

levisa

estimated 

cms cfs

 cfs*head*specific 

weight of water 

(lbf-ft/s)

divided by 550lbft-

ft/s = Horsepower

1hp=.746 

KW

annual 

kWh

44.054 3.6963 0.001158388 0.045292968 1.617606 4446.74967 8.0849994 6.0314096 52,835.15 

32.6363 4.8798 0.001529286 0.059795099 2.135539 4349.036585 7.907339245 5.8988751 51,674.15 

41.9669 1.7361 0.000544078 0.021273468 0.759767 1989.62738 3.617504328 2.6986582 23,640.25 

16.4981 4.2219 0.001323106 0.051733458 1.847623 1902.094088 3.458352888 2.5799313 22,600.20 

44.7643 1.4157 0.000443668 0.017347416 0.619551 1730.585862 3.146519749 2.3473037 20,562.38 

38.8652 1.6074 0.000503745 0.01969643 0.703444 1705.984153 3.101789369 2.3139349 20,270.07 

25.1135 2.4768 0.000776207 0.030349707 1.083918 1698.588988 3.088343614 2.3039043 20,182.20 

30.1223 2.034 0.000637438 0.024923815 0.890136 1673.128126 3.042051137 2.2693701 19,879.68 

42.4391 1.4157 0.000443668 0.017347416 0.619551 1640.693733 2.983079514 2.2253773 19,494.31 

33.1167 1.782 0.000558463 0.021835908 0.779854 1611.554048 2.930098269 2.1858533 19,148.07 

39.1895 1.4769 0.000462847 0.018097336 0.646333 1580.559811 2.87374511 2.1438139 18,779.81 

31.2256 1.845 0.000578207 0.022607885 0.807424 1573.248348 2.860451541 2.1338968 18,692.94 

33.0911 1.6668 0.00052236 0.020424294 0.729439 1506.207541 2.738559165 2.0429651 17,896.37 

31.3663 1.737 0.000544361 0.021284497 0.760161 1487.829728 2.705144961 2.0180381 17,678.01 

26.6832 2.0205 0.000633207 0.024758391 0.884228 1472.268052 2.676851003 1.9969308 17,493.11 

26.3819 2.0169 0.000632079 0.024714278 0.882653 1453.049996 2.641909083 1.9708642 17,264.77 

30.519 1.6668 0.00052236 0.020424294 0.729439 1389.13327 2.525696854 1.8841699 16,505.33 

48.9381 1.0269 0.000321821 0.012583218 0.449401 1372.351558 2.495184651 1.8614077 16,305.93 

45.2119 1.0962 0.000343539 0.013432392 0.479728 1353.420274 2.460764134 1.83573 16,081.00 

34.5199 1.4328 0.000449027 0.017556953 0.627034 1350.657466 2.455740847 1.8319827 16,048.17 

16.156 3.033 0.000950516 0.037165157 1.327327 1338.124051 2.432952819 1.8149828 15,899.25 

37.5302 1.2942 0.000405591 0.015858604 0.566379 1326.393534 2.411624607 1.799072 15,759.87 

35.6263 1.3221 0.000414335 0.016200479 0.578589 1286.249289 2.338635071 1.7446218 15,282.89 

44.7462 1.044 0.00032718 0.012792754 0.456884 1275.694784 2.319445062 1.730306 15,157.48 

38.6562 1.1511 0.000360745 0.014105115 0.503754 1215.128859 2.209325197 1.6481566 14,437.85 

31.081 1.3545 0.000424488 0.016597496 0.592768 1149.645952 2.090265367 1.559338 13,659.80 

25.6962 1.5993 0.000501207 0.019597176 0.699899 1122.248317 2.040451486 1.5221768 13,334.27 

36.4143 1.0656 0.00033395 0.013057432 0.466337 1059.635011 1.926609112 1.4372504 12,590.31 

36.9478 1.0323 0.000323514 0.012649387 0.451764 1041.560816 1.893746938 1.4127352 12,375.56 

18.1097 1.9908 0.000623899 0.024394459 0.871231 984.5301259 1.790054774 1.3353809 11,697.94 

24.3119 1.4499 0.000454386 0.017766489 0.634517 962.602693 1.750186715 1.3056393 11,437.40 

11.4842 2.9412 0.000921746 0.036040277 1.287153 922.3917847 1.677075972 1.2510987 10,959.62 

15.5562 1.9908 0.000623899 0.024394459 0.871231 845.7096222 1.537653859 1.1470898 10,048.51 

28.4526 1.071 0.000335642 0.013123601 0.4687 832.1498725 1.512999768 1.1286978 9,887.39    

26.4435 1.1178 0.000350309 0.01369707 0.489181 807.1851507 1.467609365 1.0948366 9,590.77    

14.9902 1.8927 0.000593156 0.023192381 0.828299 774.7816586 1.408693925 1.0508857 9,205.76    

25.3606 1.1034 0.000345796 0.013520618 0.482879 764.1570524 1.389376459 1.0364748 9,079.52    

20.2296 1.0638 0.000333386 0.013035376 0.465549 587.6752534 1.068500461 0.7971013 6,982.61    

18.3129 1.1682 0.000366104 0.014314651 0.511238 584.2038941 1.062188898 0.7923929 6,941.36    

19.2505 1.0539 0.000330283 0.012914065 0.461217 554.0277783 1.007323233 0.7514631 6,582.82    

17.8755 1.0962 0.000343539 0.013432392 0.479728 535.103902 0.972916185 0.7257955 6,357.97    

17.203 1.1214 0.000351437 0.013741183 0.490757 526.8110342 0.957838244 0.7145473 6,259.43    

12.4394 1.5093 0.000473001 0.018494353 0.660513 512.7021362 0.932185702 0.6954105 6,091.80    

10.8254 1.3941 0.000436899 0.017082738 0.610098 412.1240903 0.749316528 0.5589901 4,896.75    

8.54128 1.2555 0.000393463 0.01538439 0.549442 292.8395952 0.532435628 0.397197 3,479.45    
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